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Abstract. We study the problem of mining frequent itemsets from un-
certain data under a probabilistic model. We consider transactions whose
items are associated with existential probabilities. A decremental prun-
ing (DP) technique, which exploits the statistical properties of items’
existential probabilities, is proposed. Experimental results show that DP
can achieve significant computational cost savings compared with ex-
isting approaches, such as U-Apriori and LGS-Trimming. Also, unlike
LGS-Trimming, DP does not require a user-specified trimming thresh-
old and its performance is relatively insensitive to the population of
low-probability items in the dataset.

1 Introduction

Frequent itemset mining (FIM) is a core component in many data analysis tasks
such as association analysis [1] and sequential-pattern mining [2]. Traditionally,
FIM is applied to data that is certain and precise. As an example, a transaction
in a market-basket dataset registers items that are purchased by a customer.
Applying FIM on such a dataset allows one to identify items that are often
purchased together. In this example, the presence/absence of an item in a trans-
action is known with certainty. Existing FIM algorithms, such as the well-known
Apriori algorithm [1] and other variants, were designed for mining “certain” data.

Most of the previous studies on FIM assume a data model under which trans-
actions capture doubtless facts about the items that are contained in each trans-
action. However, in many applications, the existence of an item in a transaction
is best captured by a probability. As an example, consider experiments that
test certain drug-resistant properties of pathogens. Results of such tests can be
represented by a transactional dataset: each pathogen is represented by a trans-
action and the drugs it shows resistance to are listed as items in the transaction.
Applying FIM on such a dataset allows us to discover multi-drug-resistant asso-
ciations [3]. In practice, due to measurement and experimental errors, multiple
measurements or experiments are conducted to obtain a higher confidence of the
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results. In such cases, the existence of an item or property in a transaction should
be expressed in terms of a probability. For example, if Streptococcus Pneumo-
niae (a pathogen) shows resistance to penicillin (an antibiotics drug) 90 times
out of 100 experiments, the probability that the property “penicillin-resistant”
exists in Streptococcus Pneumoniae is 90%. We call this kind of probability ex-
istential probability. In this paper we study the problem of applying FIM on
datasets under the existential uncertain data model, in which each item is asso-
ciated with an existential probability that indicates the likelihood of its presence
in a transaction. Table 1 shows an example of an existential uncertain dataset.

Table 1. An existential uncertain dataset with 2 transactions t1, t2 and 2 items a, b

Transaction \ Item a b

t1 90% 80%

t2 40% 70%

The problem of mining frequent itemsets under the existential uncertain data
model was first studied in [4]. The Apriori algorithm was modified to mine uncer-
tain data. The modified algorithm, called U-Apriori, was shown to be computa-
tionally inefficient. A data trimming framework (LGS-Trimming) was proposed
to reduce the computational and I/O costs of U-Apriori. As a summary, given
an existential uncertain dataset D, LGS-Trimming creates a trimmed dataset
DT by removing items with low existential probabilities in D. The trimming
framework works under the assumption that a non-trivial portion of the items
in the dataset are associated with low existential probabilities (e.g., a pathogen
may be highly resistant to a few drugs but not so for most of the others). Based
on this assumption, the size of DT is significantly smaller than D and mining
DT instead of D has the following advantages:

– The I/O cost of scanning DT is smaller.
– Since many low-probability items have been removed, transactions in DT are

much smaller. Hence, there are a lot fewer subsets contained in transactions
leading to much faster subset testing of candidate itemsets and faster support
counting.

However, there are disadvantages of the trimming framework. First, there is
the overhead of creating DT . Second, since DT is incomplete information, the
set of frequent itemsets mined from it is only a subset of the complete set. A
patch-up phase (and thus some overhead) is therefore needed to recover those
missed frequent itemsets. As a result, if there are relatively few low-probability
items in D, then DT and D will be of similar sizes. The savings obtained by LGS-
Trimming may not compensate for the overhead incurred. The performance of
LGS-Trimming is thus sensitive to the percentage (R) of items with low exis-
tential probabilities. Trimming can be counter-productive when R is very low.
Third, a trimming threshold ρt (to determine “low” probability) is needed, which
in some cases could be hard to set. A large ρt implies a greater reduction of the
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size of D but a larger overhead in the patch-up phase to recover missed frequent
itemsets. On the other hand, a small ρt would trim D by little extent resulting in
little savings. The performance of Trimming is thus sensitive to ρt. In [4], it was
assumed that the existential probabilities of items in a dataset follow a bimodal
distribution. That is, most items’ can be classified as very-high-probability ones
or very-low-probability ones. There were few items with moderate existential
probabilities. In that case, it is easy to determine ρt as there is a clearcut dis-
tinction between high and low existential probabilities. It would be harder to
select an appropriate ρt if the distribution of existential probabilities is more
uniform.

In this paper we propose an alternative method, called Decremental Pruning
(DP), for mining frequent itemsets from existential uncertain data. As we will
discuss in later sections, DP exploits the statistical properties of existential prob-
abilities to gradually reduce the set of candidate itemsets. This leads to more
efficient support counting and thus significant CPU cost savings. Comparing
with LGS-Trimming, DP has two desirable properties: (1) it does not require a
user-specified trimming threshold; (2) its performance is relatively less sensitive
to R, the fraction of small-probability items in the dataset. DP is thus more
applicable to a larger range of applications. Moreover, we will show that DP
and LGS-Trimming are complementary to each other. They can be combined to
achieve an even better performance.

The rest of this paper is organized as follows. Section 2 describes the mining
problem and revisits the brute force U-Apriori algorithm. Section 3 presents the
DP approach. Section 4 presents some experimental results and discusses some
observations. We conclude the study in Section 5.

2 Preliminaries

In the existential uncertain data model, a dataset D consists of d transactions
t1, . . . , td. A transaction ti contains a number of items. Each item x in ti is
associated with a non-zero probability Pti(x), which indicates the likelihood
that item x is present in transaction ti

1. A Possible World model [5] can be
applied to interpret an existential uncertain dataset. Basically, each probability
Pti(x) associated with an item x derives two possible worlds, say, W1 and W2.
In World W1, item x is present in transaction ti; In World W2, item x is not
in ti. Let P (Wj) be the probability that World Wj being the true world, then
we have P (W1) = Pti(x) and P (W2) = 1 − Pti(x). This idea can be extended
to cover cases in which transaction ti contains other items. For example, let y
be another item in ti with probability Pti(y). Assume that the observations of
item x and item y are independently done, then there are four possible worlds.
In particular, the probability of the world in which ti contains both items x and
y is Pti(x) · Pti(y). We can further generalize the idea to datasets that contain
more than one transaction. Figure 1 illustrates the 16 possible worlds derived
from the dataset shown in Table 1.
1 If an item has 0 existential probability, it does not appear in the transaction.
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W1

a b

t1 ✔ ✔

t2 ✔ ✔

W2

a b

t1 ✔ ✔

t2 ✔ ✘

W3

a b

t1 ✔ ✔

t2 ✘ ✔

W4

a b

t1 ✔ ✘

t2 ✔ ✔

W5

a b

t1 ✘ ✔

t2 ✔ ✔

W6

a b

t1 ✔ ✔

t2 ✘ ✘

W7

a b

t1 ✘ ✘

t2 ✔ ✔

W8

a b

t1 ✔ ✘

t2 ✔ ✘

W9

a b

t1 ✘ ✔

t2 ✘ ✔

W10

a b

t1 ✘ ✔

t2 ✔ ✘

W11

a b

t1 ✔ ✘

t2 ✘ ✔

W12

a b

t1 ✘ ✘

t2 ✔ ✘

W13

a b

t1 ✘ ✘

t2 ✘ ✔

W14

a b

t1 ✘ ✔

t2 ✘ ✘

W15

a b

t1 ✔ ✘

t2 ✘ ✘

W16

a b

t1 ✘ ✘

t2 ✘ ✘

Fig. 1. 16 possible worlds derived from dataset with 2 transactions and 2 items

In traditional frequent itemset mining, the support count of an itemset X is
defined as the number of transactions that contain X . For an uncertain dataset,
such a support value is undefined since set containment is probabilistic. However,
we note that each possible world derived from an uncertain dataset is certain,
and therefore support counts are well-defined with respect to each world. For
example, the support counts of itemset {a, b} in Worlds W1 and W6 (Figure 1)
are 2 and 1, respectively. In [4], the notion of expected support was proposed as
a frequency measure. Let W be the set of all possible worlds derivable from an
uncertain dataset D. Given a world Wj ∈ W , let P (Wj) be the probability of
World Wj ; S(X, Wj) be the support count of X with respect to Wj ; and Ti,j be
the ith transaction in World Wj . Assuming that items’ existential probabilities
are determined through independent observations, then P (Wj) and the expected
support Se(X) of an itemset X are given by the following formulae2:

P (Wj) =
|D|∏

i=1

⎛

⎝
∏

x∈Ti,j

Pti(x) ·
∏

y �∈Ti,j

(1 − Pti(y))

⎞

⎠ , and (1)

Se(X) =
|W |∑

j=1

P (Wj) × S(X, Wj) =
|D|∑

i=1

∏

x∈X

Pti(x). (2)

Problem Statement. Given an existential uncertain dataset D and a user-
specified support threshold ρs, the problem of mining frequent itemsets is to
return all itemsets X with expected support Se(X) ≥ ρs · |D|.

U-Apriori, a modified version of the Apriori algorithm, was presented in [4] as
a baseline algorithm to solve the problem. The difference between Apriori and
U-Apriori lies in the way supports are counted. Given a candidate itemset X
and a transaction ti, Apriori tests whether X ⊆ ti. If so, the support count of
X is incremented by 1. Under U-Apriori, the support count of X is incremented
by the value

∏
x∈X Pti(x) instead (see Equation 2).

2 Readers are referred to [4] for the details of the derivations.
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3 Decremental Pruning

In this section we describe the Decremental Pruning (DP) technique, which ex-
ploits the statistical properties of the existential probabilities of items to achieve
candidate reduction during the mining process. The basic idea is to estimate
upper bounds of candidate itemsets’ expected supports progressively after each
dataset transaction is processed. If a candidate’s upper bound falls below the
support threshold ρs, the candidate is immediately pruned. To illustrate, let
us consider a sample dataset shown in Table 2. Assume a support threshold
ρs = 0.5, the minimum support count is min sup = 4 × 0.5 = 2. Consider the
candidate itemset {a, b}. To obtain the expected support of {a, b}, denoted as
Se({a, b}), U-Apriori scans the entire dataset once and obtains Se({a, b}) = 1.54,
which is infrequent.

Table 2. An example of existentially uncertain dataset

Transaction \ Item a b c d

t1 1 0.5 0.3 0.2

t2 0.9 0.8 0.7 0.4

t3 0.3 0 0.9 0.7

t4 0.4 0.8 0.3 0.7

During the dataset scanning process, we observe that a candidate itemset X
can be pruned before the entire dataset is scanned. The idea is to maintain a
decremental counter Ŝe(X, X ′) for some non-empty X ′ ⊂ X . The counter main-
tains an upper bound of the expected support count of X , i.e., Se(X). This
upper bound’s value is progressively updated as dataset transactions are pro-
cessed. We use Ŝe(X, X ′, k) to denote the value of Ŝe(X, X ′) after transactions
t1, . . . , tk have been processed.

Definition 1. Decremental Counter. For any non-empty X ′ ⊂ X, k ≥ 0,
Ŝe(X, X ′, k) =

∑k
i=1

∏
x∈X Pti(x) +

∑|D|
i=k+1

∏
x∈X′ Pti(x).

From Equation 2, we have

Se(X) =
|D|∑

i=1

∏

x∈X

Pti(x)

=
k∑

i=1

∏

x∈X

Pti(x) +
|D|∑

i=k+1

∏

x∈X

Pti(x)

≤
k∑

i=1

∏

x∈X

Pti(x) +
|D|∑

i=k+1

(
∏

x∈X′
Pti(x) ·

∏

x∈X−X′
1

)

= Ŝe(X, X ′, k).



A Decremental Approach for Mining Frequent Itemsets 69

Hence, Ŝe(X, X ′, k) is an upper bound of Se(X). Essentially, we are assuming
that the probabilities of all items x ∈ X−X ′ are 1 in transactions tk+1, . . . , t|D| in
estimating the upper bound. Also, Ŝe(X, X ′, 0) =

∑|D|
i=1

∏
x∈X′ Pti(x) = Se(X ′).

In our running example, suppose we have executed the first iteration of U-
Apriori and have determined the expected supports of all 1-itemsets, in par-
ticular, we know Se({a}) = 2.6. At the beginning of the 2nd iteration, we
have, for the candidate itemset {a, b}, Ŝe({a, b}, {a}, 0) = Se({a}) = 2.6. We
then process the first transaction t1 and find that Pt1(b) is 0.5 (instead of 1 as
assumed when we calculated the upper bound), we know that we have over-
estimated Se({a, b}) by Pt1(a) × (1 − Pt1(b)) = 0.5. Therefore, we refine the
bound and get Ŝe({a, b}, {a}, 1) = Ŝe({a, b}, {a}, 0) − 0.5 = 2.1. Next, we pro-
cess t2. By similar argument, we know that we have overestimated the support
by 0.9 × (1 − 0.8) = 0.18. We thus update the bound to get Ŝe({a, b}, {a}, 2) =
Ŝe({a, b}, {a}, 1)− 0.18 = 1.92. At this point, the bound has dropped below the
support threshold. The candidate {a, b} is thus infrequent and can be pruned.

Equation 3 summarizes the initialization and update of the decremental
counter Ŝe(X, X ′, k):

Ŝe(X, X ′, k) =
{

Se(X ′) if k = 0;
Ŝe(X, X ′, k − 1) − Stk

e (X ′) × {1 − Stk
e (X − X ′)} if k > 0.

(3)
where Stk

e (X ′) =
∏

x∈X′ Ptk
(x) and Stk

e (X − X ′) =
∏

x∈X−X′ Ptk
(x).

From the example, we see that {a, b} can be pruned before the entire dataset is
scanned. This candidate reduction potentially saves a lot of computational cost.
However, there are 2|X| − 2 non-empty proper subsets of a candidate itemset
X . The number of decremental counters is thus huge. Maintaining a large num-
ber of decremental counters involves too much overhead, and the DP method
could be counter-productive. We propose two methods for reducing the number
of decremental counters while maintaining a good pruning effectiveness in the
rest of this section.

Aggregate by Singletons (AS). The AS method reduces the number of decre-
mental counters to the number of frequent singletons. First, only those decre-
mental counters Ŝe(X, X ′) where X ′ is a frequent singleton are maintained.
Second, given a frequent item x, the decremental counters Ŝe(X, {x}) for any
itemset X that contains x are replaced by a singleton decremental counter ds(x).
Let ds(x, k) be the value of ds(x) after the first k data transactions have been
processed. Equation 4 shows the initialization and update of ds(x, k).

ds(x, k) =
{

Se({x}) if k = 0;
ds(x, k − 1) − Ptk

(x) × {1 − maxs(k)} if k > 0. (4)

where maxs(k) = max{Ptk
(x′)|x′ ∈ tk, x′ �= x} returns the maximum existential

probability among the items (except x) in transaction tk.
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One can prove by induction that Ŝe(X, {x}, k) ≤ ds(x, k) for any itemset
X that contains item x. With the AS method, the aggregated counters can be
organized in an array. During the mining process, if a counter’s value ds(x, k)
drops below the support requirement, we know that any candidate itemset X
that contains x must not be frequent and hence can be pruned. Also, we can
remove item x from the dataset starting from transaction tk+1. Therefore, AS
not only achieves candidate reduction, it also shrinks dataset transactions. The
latter allows more efficient subset testing during support counting.

Common-Prefix Method (CP). The CP method aggregates the decremental
counters of candidates with common prefix. Here, we assume that items follow
a certain ordering Φ, and the set of items of an itemset is listed according to
Φ. First, only decremental counters of the form Ŝe(X, X ′) where X ′ is a proper
prefix of X (denoted by X ′ � X) are maintained. Second, given an itemset X ′,
all counters Ŝe(X, X ′) such that X ′ � X are replaced by a prefix decremental
counter dp(X ′). Let dp(X ′, k) be the value of dp(X ′) after the first k data trans-
actions have been processed. Equation 5 shows the initialization and update of
dp(X ′, k).

dp(X ′, k) =
{

Se(X ′) if k = 0;
dp(X ′, k − 1) − Stk

e (X ′) × {1 − maxp(k)} if k > 0.
(5)

where Stk
e (X ′) =

∏
x∈X′ Ptk

(x) and maxp(k) = max{Ptk
(z)|z is after all the

items in X ′ according to the item ordering Φ}.
Again, by induction, we can prove that Ŝe(X, X ′, k) ≤ dp(X ′, k) for any X ′ �

X . Hence when dp(X ′, k) drops below the support requirement, we can conclude
that any candidate itemset X such that X ′ � X must be infrequent and can thus
be pruned. We remark that since most of the traditional frequent itemset mining
algorithms apply a prefix-tree data structure to organize candidates [1][6][4], the
way that CP aggregates the decremental counters facilitates its integration with
the prefix-tree data structure.

Figure 2 shows the size-2 candidates of the dataset in Table 2 organized in a
hash-tree data structure [1]. A hash-tree is essentially a prefix tree, where can-
didates with the same prefix are organized under the same sub-tree. A prefix is
thus associated with a node in the tree. A prefix decremental counter dp(X ′) is
stored in the parent node of the node that is associated with the prefix X ′. For
example, dp(b) is stored in the root node since the prefix b is at level 1 of the tree
(the second child node shown in Figure 2). [1] presented a recursive strategy
for searching candidates that are contained in each transaction using a hash-tree
structure. We illustrate the steps of processing a transaction t1 from our running
example (see Table 2) and explain how the counter dp(b) is updated in Figure 2.

From the figure, we see that dp(b, 1) = 1.75 after t1 is processed. Since dp(b, 1)
is an upper bound of the expected supports of {b, c} and {b, d}, and since dp(b, 1)
is smaller than the support requirement, we conclude that both {b, c} and {b, d}
are infrequent and are thus pruned. With the hash-tree structure, we can virtu-
ally prune the candidates by setting the pointer root.hash(b) = NULL. Also, the
counter dp(b) is removed from the root. As a result, the two candidates cannot
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n
Hash
table

a
d

b
e

c
f

n1

{a,b}
{a,c}

...

dp(b) covers all the
candidates with prefix b. It is
initialized with value Se(b).

n2

{b,c}
{b,d}

n3

Prefix decremental counter

root

Value

2.6

2.1

Transaction t1 = {a(1), b(0.5), c(0.3), d(0.2)} is
processed. The hash values of the items are computed to
retrieve the appropriate pointers to child nodes. E.g.,
root.hash(b) gives the pointer to Node n2.

After updating the expected support counts of the
candidates stored in a leaf node, we compute maxp(1),
which is equal to the largest probabilities of all items in t1
that are ordered after b in the ordering . In this case,
maxp(1) = 0.3.

1

2

3

4

  We update counter dp(b) according
to Equation 5:
dp(b,1) = dp(b,0) - Pt1(b) * (1-maxp(1))

   = 2.1-0.5*0.7
   = 1.75

Decremental counters
in the root node

dp(a)

dp(b)
dp(c) 2.2

......

Fig. 2. A size-2 candidate hash tree with prefix decremental counters

be reached when subsequent transactions are processed. The computational cost
of incrementing the expected support counts of the two candidates in subsequent
transactions is saved.

Item ordering. According to Equation 5, the initial value of a counter dp(X ′)
is given by dp(X ′, 0) = Se(X ′), i.e., the expected support of the prefix X ′. Since
candidates are pruned if a prefix decremental counter drops below the support
requirement, it makes sense to pick those prefixes X ′ such that their initial val-
ues are as small as possible. A heuristic would be to set the item ordering Φ in
increasing order of items’ supports. We adopt this strategy for the CP method.

4 Experimental Evaluation

We conducted experiments comparing the performance of the DP methods
against U-Apriori and LGS-Trimming. The experiments were conducted on a
2.6GHz P4 machine with 512MB memory running Linux Kernel 2.6.10. The
algorithms were implemented using C.

We use the two-step dataset generation procedure documented in [4]. In the
first step, the generator uses the IBM synthetic generator [1] to generate a dataset
that contains frequent itemsets. We set the average number of items per trans-
action (Thigh) to 20, the average length of frequent itemsets (I) to 6, and the
number of transactions (D) to 100K3. In the second step, the generator uses an

3 We have conducted our experiments using different values of Thigh, I and D. Due
to space limitation, we only report a representative result using Thigh20I6D100K in
this paper.
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Fig. 3. a) Percentage of candidates pruned in the 2nd iteration. b) CPU cost in each
iteration.

uncertainty simulator to generate an existential probability for each item. The
simulator first assigns each item in the dataset with a relatively high probability
following a normal distribution with mean HB and standard deviation HD. To
simulate items with low probabilities, the simulator inserts Tlow items into each
transaction. The probabilities of these items follow a normal distribution with
mean LB and standard deviation LD. The average number of items per transac-
tion, denoted by T , is equal to Thigh +Tlow. A parameter R is used to control the
percentage of items with low probabilities in the dataset (i.e. R = Tlow

Thigh+Tlow
).

As an example, T 25/R20/I6/D100K/HB75/HD15/LB25/LD15 represents
an uncertain dataset with 25 items per transaction on average. Out of the 25
items, 20 are assigned with high probabilities and 5 are assigned with low prob-
abilities. The high (low) probabilities are generated following a normal distribu-
tion with mean equal to 75% (25%) and standard deviation equal to 15% (15%).
We call this dataset Synthetic-1.

4.1 Pruning Power of the Decremental Methods

In this section we investigate the pruning power of the decremental methods.
The dataset we use is Synthetic-1 and we set ρs = 0.1% in the experiment.
Figure 3a shows the percentage of candidates pruned by AS and CP in the
second iteration after a certain fraction of the dataset transactions have been
processed. For example, the figure shows that about 20% of the candidates are
pruned by CP after 60% of the transactions are processed. From the figure, we
observe that the pruning power of CP is higher than that of AS. In particular,
CP prunes twice as many candidates as AS after the entire dataset is scanned.

Recall that the idea of AS and CP is to replace a group of decremental counters
by either a singleton decremental counter (AS-counter) or a prefix decremental
counter (CP-counter). We say that an AS- or CP-counter ds/p(X ′) “covers”
a decremental counter Ŝe(X, X ′) if Ŝe(X, X ′) is replaced by ds/p(X ′). Essen-
tially, an AS- or CP-counter serves as an upper bound of a group of decremen-
tal counters covered by it. In the 2nd iteration, candidates are of size 2 and
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Fig. 4. CPU cost and saving with different ρs

therefore all proper prefixes contain only one item. We note that in general, a
CP-counter, say dp({a}) covers fewer decremental counters than its AS coun-
terpart, say ds({a}). This is because dp({a}) covers Ŝe(X, {a}) only if {a} is a
prefix of X , while ds({a}) covers Ŝe(X, {a}) only if {a} is contained in X . Since
prefix is a stronger requirement than containment, the set of counters covered by
dp({a}) is always a subset of ds({a}). Therefore, each CP-counter “covers” fewer
decremental counters than an AS-counter does. CP-counters are thus generally
tighter upper bounds, leading to a more effective pruning.

Figure 3b shows the CPU cost in each iteration of the mining process. We
see that in this experiment the costs of the 2nd iteration dominates the others
under all three algorithms. The pruning effectiveness of AS and CP in the 2nd

iteration (Figure 3a) thus reflects the CPU cost savings. For example, the 40%
candidate reduction of CP translates into about 40s of CPU cost saving. Another
observation is that although CP prunes twice as much as AS, the CPU cost
saving of CP is not double of that of AS. This is because CP requires a more
complex recursive strategy to maintain the prefix decremental counters, which
is comparatively more costly.

4.2 Varying Minimum Support Threshold

Our next experiment compares the CPU costs of the DP methods against U-
Apriori as the support threshold ρs varies from 0.1% to 1.0%. Figure 4a shows
the CPU costs and Figure 4b shows the percentage of savings over U-Apriori.
For example, when ρs = 1%, CP saves about 59% of CPU time compared with
U-Apriori. From the figures, we see that CP performs slightly better than AS
over a wide range of ρs value. Also, the CPU costs of both CP and AS decrease
as ρs increases. This is because a larger ρs implies fewer candidates and frequent
itemsets, so the algorithms execute faster. Also, a larger ρs implies the minimum
support requirement is larger. Hence, it is easier for the decremental counters to
drop below the required value and more candidates can be pruned early.
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4.3 Comparing with Data Trimming

Recall that LGS-Trimming consists of three steps: (1) remove low-probability
items from dataset D to obtain a trimmed dataset DT ; (2) mine DT ; (3) patch
up and recover missed frequent itemsets. LGS-Trimming and DP methods are
orthogonal and can be combined. (DP can be applied to mining DT and it also
helps the patch-up step, which is essentially an additional iteration of candidate-
generation and support-counting). In this section we compare U-Apriori, AS,
CP, LGS-Trimming, and the combined method that integrates CP and LGS-
Trimming. In particular, we study how the percentage of low-probability items
(R) affects the algorithms’ performance. In the experiment, we use Synthetic-1
and set ρs = 0.1%. Figure 5a shows the CPU costs and Figure 5b shows the per-
centage of savings over U-Apriori. From Figure 5b, we see that the performance
of LGS-Trimming is very sensitive to R. Trimming outperforms AS and CP when
R is large (e.g., 50%). This is because when there are numerous low-probability
items, the trimmed dataset DT is very small, and mining DT is very efficient.
On the other hand, if R is small, Trimming is less efficient than DP methods,
and it could even be counter-productive for very small R. This is because for
small R, DT is large, so not much savings can be achieved by mining a trimmed
dataset to compensate for the patch-up overhead.
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In contrary, the performance of the DP methods are very stable over the
range of R values. To understand this phenomenon let us consider Equation 4
for updating a AS-counter. The value of a AS-counter is determined by three
terms: Se(x), Ptk

(x) and maxs(k). We note that varying R has small impact
on the value of Se(x) because Se(x) is the expected support of item x, which is
mainly determined by the high-probability entries of x in the dataset. Also, if
transaction tk contains a small-probability entry for x, then Ptk

(x) is small and so
the decrement to the value ds(x, k) would be insignificant. Hence, the population
of small-probability items (i.e., R) has little effect in the decremental process.
Finally, since maxs(k) is determined by the maximum existential probability of
the items (except x) in transaction tk, low-probability items have little effect on
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the value of maxs(k). As a result, the performance of AS is not sensitive to the
population of low-probability items. A similar conclusion can be drawn for CP
by considering Equation 5.

From the figures, we also observe that the combined algorithm strikes a good
balance and gives consistently good performance. It’s performance is comparable
to those of AS and CP when R is small, and it gives the best performance when
R is large.

5 Conclusions

In this paper we proposed a decremental pruning (DP) approach for efficient
mining of frequent itemsets from existential uncertain data. Experimental results
showed that DP achieved significant candidate reduction and computational
cost savings. Compared with LGS-Trimming, DP had the advantages of not
requiring a trimming threshold and its performance was relatively stable over
a wide range of low-probability-item population. In particular, it outperformed
data trimming when the dataset contained few low-probability items. We argued
that the Trimming approach and the DP approach were orthogonal to each other.
We showed that the two approaches could be combined leading to a generally
best overall performance.
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