
G-TREACLE: A New Grid-Based and Tree-Alike

Pattern Clustering Technique for Large
Databases

Cheng-Fa Tsai and Chia-Chen Yen

Department of Management Information Systems,
National Pingtung University of Science and Technology,

91201 Pingtung, Taiwan
{cftsai,m9556001}@mail.npust.edu.tw

Abstract. As data mining having attracted a significant amount of re-
search attention, many clustering methods have been proposed in past
decades. However, most of those techniques have annoying obstacles
in precise pattern recognition. This paper presents a new clustering
algorithm termed G-TREACLE, which can fulfill numerous clustering
requirements in data mining applications. As a hybrid approach that
adopts grid-based concept, the proposed algorithm recognizes the solid
framework of clusters and, then, identifies the arbitrary edge of clusters
by utilization of a new density-based expansion process, which named
“tree-alike pattern”. Experimental results illustrate that the new al-
gorithm precisely recognizes the whole cluster, and efficiently reduces
the problem of high computational time. It also indicates that the pro-
posed new clustering algorithm performs better than several existing
well-known approaches such as the K-means, DBSCAN, CLIQUE and
GDH algorithms, while produces much smaller errors than the K-means,
DBSCAN, CLIQUE and GDH approaches in most the cases examined
herein.

Keywords: data clustering, data mining, hybrid clustering algorithm.

1 Introduction

Cluster analysis in data mining is a critical business application, which has re-
cently become a highly active topic in data mining research [1]-[7]. Most of
existing clustering techniques have high computational time, or may have pat-
tern recognition problems when using large databases. To solve limitations of the
previous existing clustering methods, this work presents a new algorithm named
“Grid-based and TREe-Alike Clustering technique for Large databasEs” (G-
TREACLE) by integrating with grid-based, density-based and hierarchical clus-
tering approaches. Performance studies show that the proposed G-TREACLE
approach is a highly robust clustering technique.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 739–748, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

740 C.-F. Tsai and C.-C. Yen

2 Preliminaries

Several clustering algorithms regarding this work are described as follows.
K-means is the one of popular partitional algorithm [4]. It takes the input

parameter, k, and partitions a set of n objects into k clusters. K-means always
converges to a local optimum and it can not filter noise.

The grid-based clustering algorithm defines clusters as a multisolution grid
data structure. It quantizes the object space into a finite number of cells that
form a grid structure on which all of the operations for clustering are performed.
The major advantage of the approach is its fast processing time. CLIQUE is one
of the most famous grid-based techniques [7]. However, its cluster boundaries
are either horizontal or vertical, due to the nature of the rectangular grid.

To identify clusters with arbitrary shape, density-based clustering approaches
have been proposed. Those typically regard clusters as dense regions of objects in
the data space that are separated by regions of low density (representing noise).
DBSCAN is the one of well-know density-based approaches. Although it can
accurately recognize any arbitrary pattern and different size clusters, and filters
noise [5]. However, the time complexity of DBSCAN is high when the database
size is large.

GDH integrates the idea of grid-based, density-based and hierarchical clus-
tering methods, developed by Wang [2]. GDH refers the conception of density
function and gradient decrease and concept of sliding window [2]. Although GDH
can significantly eliminate the problem of indentation boundaries resulted from
traditional grid-based algorithms, it may fail in grouping objects to the right
position if two clusters are the same time in the populated hypercube.

3 The Proposed G-TREACLE Clustering Algorithm

This section describes the concepts of the proposed new G-TREACLE clustering
algorithm. Ideally, the G-TREACLE algorithm creates a feature space through
“hypercubes map constructing” in which all of objects are located on appropriate

Fig. 1. In the 2-D hypercubes map, the hypercubes with dark colors are termed pop-
ulated hypercube [6]

A New Grid-Based and Tree-Alike Pattern Clustering Technique 741

Fig. 2. Sample of solid framework recognizing in 1-D feature space

position. Then, “recognizing solid framework” is employed to fleetly identify the
framework of clusters, and subsequently adopt “tree-alike pattern” within “edge
shaping” to discover “blurred region”, which may contain noises and cluster
objects. Finally, the parts resulted from the above concepts will be integrated to
acquire the complete clusters. The implemented details of concepts are illustrated
with four parts as follows:

(1) Hypercubes map constructing: Reducing the number of searching
spaces is the main idea of this step. Initially, G-TREACLE constructs a hy-
percubes map by splitting the feature space in accordance with a hypercube’s
length. Then, each object is assigned to an appropriate hypercube. If the to-
tal number of objects in the hypercube is greater than the threshold Hd, this
hypercube is named “populated hypercube” [6]. Fig. 1 illustrates the concept.
The searching expansion through the initial point will be performed. Notably, a
populated hypercube is called “initial point” of search space if it has the highest
number of objects among all populated hypercubes.

(2) Recognizing solid framework: This investigation adopts the “dynamic-
gradient-threshold” as a measure of hypercube-volume, namely the number of
objects in the populated hypercube, detecting preprocesses to discover the solid
framework of clusters excluding the blurred region. The dynamic-gradient-
threshold is obtained as follows:

DGT = |HC| × PSV (1)

where |HC| indicates the number of objects in the most populated hypercube
HC in the cluster, and PSV is the percentage of the submontane value, which
is an input parameter. Fig. 2 depicts an example of the usage of dynamic-
gradient-threshold. Every bar in Fig. 2 indicates the number of objects in each
populated hypercube. Since every bar within a cluster may be different, dynamic-
gradient-threshold can dynamically determine whether a populated hypercube
can be treated as the solid framework of clusters in which every object can be
assigned to a cluster without calculation. In Fig. 2, NC1, NC2 and NC3 rep-
resent the complete cluster. After computing the dynamic-gradient-threshold,
such as DGT 1, DGT 2 and DGT 3 in Fig. 2, for each cluster, the solid frame-
work of clusters will be identified and assigned directly to a cluster but excluding

742 C.-F. Tsai and C.-C. Yen

the “blurred region” representing the areas whose number of objects is under
dynamic-gradient-threshold, given as IC1, IC2, IC3 and the areas between the
clusters. Subsequently, the edge shaping step has to be utilized to detect those
“blurred region”, as displayed on populated hypercubes A, B, D, F and G of
Fig. 3.

Fig. 3. Illustration of border objects for edge shaping in 2-D hypercubes map

Fig. 4. Concept of searching expansion through the tree-alike pattern. (a) The original
datasets (b) The neighbor-area set (c) The tree-alike pattern.

(3) Edge Shaping: The aim of this step is to define accurately the blurred
region of a cluster. In this work, the new density-based clustering method is
proposed. In contrast to conventional density-based clustering algorithms, e.g.,
DBSCAN, the proposed density-based method processes searching expansion
through a “tree-alike pattern” comprising many centroids for each cluster, thus
decreasing time complexity. Fig. 4 displays the procedure of how does the pro-
posed density-based method work. In the 2-D hypercubes map, displayed in the
diagram (a) of Fig.4, there is a given original data set D = {x1, x2, ..., xm}, and
a centroid set C = {c1, c2, ..., cn}. For an object xj picked from D, the centroid
ci choosing process is defined as:

ci = {xj , if C = φ} (2)

or

ci = {xj , if d(xj , cp) > w, cp ∈ C, p = 1, ..., i− 1} (3)

A New Grid-Based and Tree-Alike Pattern Clustering Technique 743

where w is the radius of the search circle and the distance function d(xj , cp) is
the Euclidean distance function:

d(xj , cp) =

√
√
√
√

k∑

r=1

(xjr − cpr)2 (4)

where k represents the dimension. If the centroid set C is empty or the distance
between the object xj and each centroid cp in C is greater than w, the object
xj is chosen as new centroid. Otherwise, the object xj is assigned to its closest
centroid cp in C. As displayed in the diagram (b) of Fig. 4, each zone surrounded
by dotted circle is termed “neighbor-area” in which the largest point is illustrated
as centroid. And the neighbor-area NAp must satisfy:

NAp ⊃ {xj ∈ D, cp ∈ C : d(xj , cp) ≤ w} (5)

where cp is the centroid of NAp. Subsequently, we need to identify which
neighbor-area consisting of noise. In order to achieve this purpose, the den-
sity of every neighbor-area NAp is determined by deriving density function [6]
rather than directly counting the number of objects contained in the neighbor-
area. The assumption is that the density value of the neighbor-area (namely
region) comprising noise is generally lower than that of the populated neighbor-
area containing normal clusters objects since its distribution is always sparser
than that of the populated neighbor-area [6]. In other words, this means that
although the neighbor-areas consisting of noise have the same number equivalent
to the ones consisting of normal clusters objects, but the derived density value of
former generally lower than that of latter. Consider some neighbor-areas within
the clusters displayed in the diagram (b) of Fig. 4 that are not surrounded com-
pletely by dotted circle, those areas consist of fewer normal objects but cannot be
labeled as noise-area since the density of those areas is greater than the density
of noise-areas that not belong to any cluster.

In [6], influence function is defined as a mathematical description that the
influence of an object has within its neighborhood, while the density function is
defined as the sum of influence function of all objects in the region, and can be
any arbitrary function. For simplicity, this work applies the Euclidean density
function and Gaussian representation. The Gaussian density function is given
by [6]:

fD
Gauss(x) =

N∑

i=1

e−
d(xi,xj)2

2σ2 , (6)

where N represents the number of objects within the region, d(xi, xj) denotes the
distance between xi and xj , and σ is the standard deviation. If derived density
value of the neighbor-area is greater than the threshold MinDensityV al, it
will be preserved as a “node”. Otherwise, the neighbor-area will be pruned and
labeled as noise-area.

After the pruning process, each node searches its neighbor nodes and links
them through the virtual edges, which are illustrated in the diagram (c) of Fig. 4.

744 C.-F. Tsai and C.-C. Yen

The connection between the nodes means that their distance is less than twice
the w stated above. After neighbor nodes searching recursively, a “tree-alike
pattern” can be constructed as a cluster mapping. On the other hand, a broken
connection between the patterns makes them into different clusters or noises.
The complete algorithm is described as follows.

TAClustering(PartialDataSets,Width,MinDensityVal)
NeighborAreaSet = null;
FOR i FROM 1 TO PartialDataSets.Size DO

Object = PartialDataSets.get(i);
IF NeighborAreaSet.Size <> Empty

FOR j FROM 1 TO NeighborAreaSet.Size DO
NeighborArea = NeighborAreaSet.get(j);
IF Object.isCloseToCentroid(NeighborArea,Width) == TRUE

Object.assignTo(NeighborArea);
Object.isAssigned = TRUE;
break;

END IF
END FOR
IF Object.isAssigned == FALSE

NeighborAreaSet.setCentroid(Object);
END IF

ELSE
NeighborAreaSet.setCentroid(Object);

END IF-ELSE
END FOR

FOR i FROM 1 TO NeighborAreaSet.Size DO
IF NeighborAreaSet.get(i).DensityValue < MinDensityVal

NeighborAreaSet.prune(i);
END IF

END FOR

FOR i FROM 1 TO NeighborAreaSet.Size DO
Centroid = NeighborAreaSet.getCentroid(i);
searchNeighborNode(Centroid,2*Width,NeighborAreaSet);

END FOR
END TAClustering

PartialDataSets represents a partial dataset. Width is a search radius, and
MinDensityVal denotes the minimal density threshold value in the region.

The neighbor node searching process searchNeighborNode() is as follows:

searchNeighborNode(CCentroid,DWidth,NeighborAreaSet)
FOR i FROM 1 TO NeighborAreaSet.Size DO

NCentroid = NeighborAreaSet.getCentroid(i);
IF NCentroid.PROCESSED == FALSE && NCentroid.isCloseTo(CCentroid,DWidth) == TURE

NCentroid.linkTo(CCentroid);
NCentroid.PROCESSED = TURE;
searchNeighborNode(NCentroid,DWidth,NeighborAreaSet);

END IF
END FOR

END searchNeighborNode

After running the new density-based clustering method TAClustering(), a
set of sub-clusters can be gained from the populated hypercube that not be-
longs to the solid framework of the cluster. These populated hypercubes may
contain objects belonging to two different clusters, as mentioned above and
depicted on populated hypercubes F and G in Fig. 3. Border objects of sub-
cluster and noise can be recognized at the same time [5]. In order to produce the
precise combination, the proposed algorithm connects sub-cluster resulted from

A New Grid-Based and Tree-Alike Pattern Clustering Technique 745

TAClustering() run with the solid framework of cluster through the border
objects of sub-cluster. Border objects are redefined as objects resulting from a
TAClustering() run that are close to the populated hypercube’s border. This
redefinition shortens the computational time in TAClustering(). The light color
objects (on the border) on populated hypercubes A, B, D, F and G of Fig. 3
indicate border objects.

(4) Consolidation stage: After the edge shaping stage, the algorithm merges
the parts resulted from method TAClustering()with the solid framework of the
cluster, depending on which border objects are close to the solid framework of
cluster. The proposed algorithm repeats the process to recognize all clusters.

The complete clustering algorithm described as follows:

G_TREACLE(DataSets,Cl,PSV,Hd,Width,MinDensityVal)
Initialization();
ClusterId = 1;
constructHCubeMap(Cl);
PopulHCubeSet = getPopulHCubeSet(DataSets,PSV,Hd);
WHILE(TRUE) DO

IPHCube = getInitialPoint(PopulHCubeSet);
IF IPHCube == NULL

END ALGORITHM
END IF
DGT = IPHCube.ObjcetNumber * PSV;
changeClusterId(IPHCube,ClusterId);
searchNeighborHCubes(IPHCube,ClusterId,DGT);
ClusterId++;

END WHILE
END G_TREACLE

DataSets is an entire database. Cl represents the length of a hypercube,
PSV denotes the percentage of the submontane value, and Hd is the threshold
of the populated hypercube’s volume. Width represents a search radius, and
MinDensityVal denotes the minimal density threshold value in the region.

The neighbor searching process searchNeighborHCubes() is as follows:

searchNeighborHCubes(HCube,ClusterId,DGT)
NeighborHCubes = getNeighborHCubes(HCube);
WHILE NeighborHCubes.Size <> Empty DO

CurrHCube = getHighestVolumeNeighborHCubes(NeighborHCubes);
IF CurrHCube.ObjectNumber > DGT

changeClusterId(CurrHCube,ClusterId);
searchNeighborHCubes(CurrHCube,ClusterId,DGT);

ELSE
NCs = TAClustering(CurrHCube,Width,MinDensityVal);
FOR i FROM 1 TO NCs.Size DO

IF NCs.getSubCluster(i).Borders.areNear(HCube) == TRUE
changeClusterId(NCs.getSubCluster(i),ClusterId);

END IF
END FOR
searchNeighborHCubes(CurrHCube,ClusterId,DGT);

END IF-ELSE
NeighborHCubes.deleteNeighborHCube(CurrHCube);

END WHILE
END searchNeighborHCubes

The process is repeated to construct the entire cluster.

746 C.-F. Tsai and C.-C. Yen

Fig. 5. The original datasets for experiment

4 Performance Studies

In this study, G-TREACLE was implemented in a Java-based program, and
run on a desktop computer with 256MB RAM, an Intel 1.5GHz CPU on Mi-
crosoft MS Windows XP professional Operational System. For simple visual-
ization, seven synthetic 2-D datasets were utilized to evaluate the performance
of the proposed algorithm [3]. Among these datasets, the patterns of dataset
1, 2 and 4 were sampled from [2] and [5], Fig. 5 shows the original datasets.
The results of the proposed algorithm were compared with DBSCAN, K-means,
CLIQUE and GDH. Four kinds of data sizes in seven synthetic 2-D datasets, with
11,500, 115,000, 230,000 and 575,000 objects in seven synthetic 2-D datasets,
and all with 15% noise, were employed in this experiment. For clustering per-
formance comparisons, the clustering correctness rate (CCR) and noise filtering
rate (NFR) are introduced. Notably, CCR represents the percentage of cluster
objects correctly recognized by algorithm, while NFR denotes the percentage
of noise objects correctly filtered by algorithm. Due to the computational time
of DBSCAN increases significantly as the number of databases increases, hence
Table 1 does not list the simulation results for DBSCAN (N/A means that the
simulations were not performed). Table 1 shows the clustering experimental re-
sults with G-TREACLE, K-means, DBSCAN, CLIQUE and GDH by utilizing
575,000 object datasets. Owing to the limitation of length, not all experimen-
tal results are shown. It is observed that G-TREACLE can handle arbitrary
patterns for clustering, while K-means cannot recognize arbitrary shapes. Al-
though CLIQUE and GDH could handle the complex patterns in Dataset 4
to 7, CLIQUE could not smoothly identify clusters’ edge due to the nature of
the rectangular grid, and then it caused in inaccurate results. Additionally, the
gradient decrease function in GDH placed some clusters the wrong position if
the populated hypercubes were neighbors but the gradient decrease between the
populated hypercubes was too high. In complex datasets such as DataSets 4, 5,
6 and 7, GDH and CLIQUE need to set small capacity of populated hypercube
for distinction between cluster’s borders that are close to each other. Therefore,
the time cost of GDH and CLIQUE raises with increasing numbers of populated

A New Grid-Based and Tree-Alike Pattern Clustering Technique 747

Table 1. Comparisons with G-TREACLE, K-means, DBSCAN, CLIQUE and GDH
using 575,000 objects data sets with 15% noise; item 1 represents time cost (in seconds);
item 2 denotes the CCR (%), while item 3 is NFR (%).

Algorithm Item DataSet-1 DataSet-2 DataSet-3 DataSet-4 DataSet-5 DataSet-6 DataSet-7

1 18.531 16.391 36.625 59.437 43.203 7.828 19.906
K-means 2 49.925% 51.149% 25.887% 60.837% 57.612% 50.007% 54.49%

3 0% 0% 0% 0% 0% 0% 0%

1 N/A N/A N/A N/A N/A N/A N/A
DBSCAN 2 N/A N/A N/A N/A N/A N/A N/A

3 N/A N/A N/A N/A N/A N/A N/A

1 5.016 8.031 8.906 12.281 30.094 31.219 46
CLIQUE 2 98.763% 99.104% 98.615% 95.926% 97.274% 95.647% 93.547%

3 95.92% 98.149% 97.568% 99.305% 99.608% 99.79% 99.805%

1 8.188 9.516 10.063 13.359 31.75 26.297 51.469
GDH 2 99.213% 99.642% 98.884% 98.299% 98.153% 96.456% 96.4%

3 96.618% 97.477% 97.387% 98.932% 99.408% 99.736% 99.71%

1 6.156 5.594 6.547 7.766 8.469 10.64 15.75
G-TREACLE 2 99.392% 99.511% 99.138% 98.376% 99.767% 99.754% 99.127%

3 98.694% 99.051% 98.998% 98.894% 98.377% 98.74% 98.949%

hypercubes to be searched and processed. As shown in Table 1, G-TREACLE
usually yields more accurate results and performs fast than K-means, DBSCAN,
CLIQUE and GDH.

5 Conclusion

This work develops a new clustering algorithm named G-TREACLE for data
mining. It can accurately identifies large patterns that are close to each other by
using tree-alike pattern and is capable of successfully eliminate edge indention,
so that it may improve the clustering performance of large databases as well as
eliminate outliers. In addition, simulation results demonstrate that the proposed
new clustering approach performs better than some existing well-known methods
such as the K-means, DBSCAN, CLIQUE and GDH algorithms.

Acknowledgments. The authors would like to thank the National Science
Council of the Republic of China, Taiwan for financially supporting this research
under Contract No. NSC 96-2221-E-020-027.

References

1. Tsai, C.F., Tsai, C.W., Wu, H.C., Yang, T.: ACODF: A Novel Data Clustering
Approach for Data Mining in Large Databases. Journal of Systems and Software 73,
133–145 (2004)

2. Wang, T.P., Tsai, C.F.: GDH: An Effective and Efficient Approach to Detect Ar-
bitrary Patterns in Clusters with Noises in Very Large Databases. In: Degree of
master at National Pingtung University of Science and Technology, Taiwan (2006)

748 C.-F. Tsai and C.-C. Yen

3. Tsai, C.F., Yen, C.C.: ANGEL: A New Effective and Efficient Hybrid Clustering
Technique for Large Databases. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD
2007. LNCS (LNAI), vol. 4426, pp. 817–824. Springer, Heidelberg (2007)

4. McQueen, J.B.: Some Methods of Classification and Analysis of Multivariate Obser-
vations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, pp. 281–297 (1967)

5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise. In: Proceedings of the 2nd
International Conference on Knowledge Discovery and Data Mining, pp. 226–231
(1996)

6. Hinneburg, A., Keim, D.A.: An Efficient Approach to Clustering in Large Multime-
dia Databases with Noise. In: Proceedings of the 4th International Conference on
Knowledge Discovery and Data Mining, pp. 58–65 (1998)

7. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic Subspace Clus-
tering of High Dimensional Data for Data Mining Applications. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp. 94–105.
ACM Press, Seattle, Washington (1998)

	G-TREACLE: A New Grid-Based and Tree-Alike Pattern Clustering Technique for Large Databases
	Introduction
	Preliminaries
	The Proposed G-TREACLE Clustering Algorithm
	Performance Studies
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

