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Abstract. This paper considers a rough set approach for the problem of
finding minimal jumping emerging patterns (JEPs) in classified transac-
tional datasets. The discovery is transformed into a series of transaction-
wise local reduct computations. In order to decrease average subproblem
dimensionality, we introduce local projection of a database. The novel al-
gorithm is compared to the table condensation method and JEP-Producer
for sparse and dense, originally relational data. For a more complete pic-
ture, in our experiments, different implementations of basic structures are
considered.
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1 Introduction

Pattern mining is one of key tasks in contemporary knowledge discovery. Al-
though recent years have brought a wide spectrum of pattern types, discovery
algorithms still follow common strategies such as Apriori, operations on concise
representations ([1]), pattern trees ([2]). Regardless of a particular method, pro-
cessing may involve exponentially large item set collections, which makes overall
feasibility very sensitive to input data. Therefore, in our opinion, it is crucial to
study, how to approach datasets of certain characteristics.

Here, we look at the problem of finding jumping emerging patterns (JEPs) in
classified transaction databases. A JEP refers to an itemset that is supported in
one class and absent from others. This highly discriminative idea was introduced
in [3], and, since then, it has been successfully applied to business and gene
expression problems. Because all JEPs constitute a convex space, the task is
often perceived as finding minimal patterns. In fact, these patterns have found
valuable applications to classification and clustering ([3]).

Among known algorithms, JEP-Producer ([1]) is believed to be the most ef-
ficient solution for finding a complete space of JEPs. It operates on concise
representation of convex collections and employs a border differentiation opera-
tion to obtain a result set. In our previous works ([4]), it has been demonstrated
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that reducts from the rough set theory ([5]) are closely related to JEPs. Algo-
rithms based on these relations appeared superior in experiments for relational
data ([6]). Moreover, even if data is originally given in a transactional form, a
condensed decision table can be efficiently obtained by finding an approximate
graph coloring in an item-conflict graph ([7]).

Following successful results for dense, originally relational data, we decided
to examine opportunities for reduct-based methods against a popular class of
sparse transaction databases. Note that, for large datasets, table condensation
may likely deal with adverse item distribution in transactions, which results
in low dimensionality reduction and inefficient discovery. The method of local
projection that is put forward in this paper ascertains average dimensionality
to depend only on average transaction length, not on item distribution in a
database. The problem is decomposed into a series of per transaction local reduct
computations in a locally projected decision table. For each subproblem only
objects and attributes substantial for reduct induction are taken into account,
which significantly improves overall efficiency. In addition, we propose several
optimization to decrease a construction overhead of discernibility matrices.

Our experiments covered efficiency comparison between JEP-Producer, table
condensation and local projection with different reduct computation methods.
Approaches were tested against originally relational and sparse datasets. Since
actual performance depends strongly on implementation, different structures to
represent an attribute/item set were tested.

Section 2 provides fundamentals of emerging patterns and border representa-
tion. In Sect. 3, we present basic elements of the rough set theory. Local projec-
tion is introduced and proved correct in Sect. 4. In Sect. 5 the novel algorithm is
described. It also discusses optimizations for discernibility matrix computation
and impact of different implementations of main structures. Section 6 covers
testing procedure and experimental results. The paper is concluded in Sect. 7.

2 Emerging Patterns

Let a transaction system be a pair (D, I), where D is a finite sequence of trans-
actions (T1, .., Tn) (database) such as Ti ⊆ I for i = 1, .., n and I is a non-
empty set of items (itemspace). The support of an itemset X ⊆ I in a sequence
D = (Ti)i∈K ⊆ D is defined as suppD(X) = |{i∈K:X⊆Ti}|

|K| , where K ⊆ {1, .., n}.
Let a decision transaction system be a tuple (D, I, Id), where (D, I ∪ Id) is

a transaction system and ∀T∈D|T ∩ Id| = 1. Elements of I and Id are called
condition and decision items, respectively. Support in a decision transaction
system (D, I, Id) is understood as support in the transaction system (D, I ∪Id).

For each decision item c ∈ Id, we define a decision class sequence Cc =
(Ti)i∈K , where K = {k ∈ {1, .., n} : c ∈ Tk}. For convenience, the nota-
tions Cc and C{c} are used interchangeably. Note that each of the transactions
from D belongs to exactly one class sequence. In addition, for a database D =
(Ti)i∈K⊆{1,..,n} ⊆ D, we define a complementary database D′ = (Ti)i∈{1,..,n}−K .
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Given two databases D1, D2 ⊆ D, in particular decision classes, we define a
jumping emerging pattern (JEP) from D1 to D2 as an itemset X ⊆ I such as
suppD1(X) = 0 and suppD2(X) > 0. A set of all JEPs from D1 to D2 is called
a JEP space and denoted by JEP (D1, D2).

JEP spaces can be described concisely by borders ([1]). For c ∈ Id, we use a
border < Lc,Rc > to uniquely represent a JEP space JEP (C′

c, Cc). Members
of the left bounds are minimal JEPs, whereas member of the right bounds are
maximal JEPs, i.e. distinguishable transactions.

The problem of JEP discovery can be defined as computing {< Lc,Rc >}c∈Id

for a decision transaction system (D, I, Id). Since finding of right bounds is
trivial ([1]) and not interesting from a practical point of view, we focus on the
collection of left bounds {Lc}c∈Id

.

3 Rough Sets

Let a decision table be a triple (U , C, d), where U (universum) is a non-empty,
finite set of objects, C is a non-empty finite set of condition attributes and d
is a decision attribute. A set of all attributes is denoted by A = C ∪ {d}. The
domain of an attribute a ∈ A is denoted by Va and its value for an object u ∈ U
is denoted by a(u). In particular, Vd = {c1, .., c|Vd|} and the decision attribute
induces a partition of U into decision classes {Uc}c∈Vd

. Hereinafter, we use the
term attribute to denote a condition attribute.

Consider B ⊆ A. An indiscernibility relation IND(B) is defined as IND(B)=
{(u, v) ∈ U × U : ∀a∈B a(u) = a(v)}. Since IND(B) is an equivalence relation
it induces a partition of U denoted by U/IND(B). Let B(u) be a block of the
partition containing u ∈ U . A B-lower approximation of a set X ⊆ U is defined
as follows: B∗(X) = {u ∈ U | B(u) ⊆ X} and a B-positive region with respect
to a decision attribute d is defined as POS(B, d) =

⋃
X∈U/IND({d}) B∗(X).

A local reduct for an object u ∈ U is a minimal attribute set B ⊆ C such
that ∀c∈Vd

(C(u) ∩ Uc = ∅ =⇒ B(u) ∩ Uc = ∅). It means that the object u can
be differentiated by means of B from all objects from other classes as well as
using C. The set of all local reducts for an object u is denoted by REDLOC(u, d).

4 Local Projection

In order to apply the rough set framework to transactional data, transformation
to a respective relational form is required. We consider two representations:
a binary decision table, which already found an application to negative pattern
discovery ([4]), and a locally projected form - introduced in this paper for efficient
finding of positive patterns.

Hereinafter, we assume that our input data is represented by a decision
transaction system DTS = (D, I, Id), where D = (T1, .., Tn), I = {I1, .., Im},
Id = {c1, .., cp}, K = {1, .., n}.
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A binary decision table for a decision transaction system DTS is a decision
table BDTDTS = (U , C, d) such that U = {u1, .., un}, C = {a1, .., am}, Vd =

{c1, .., cp}; aj(ui) =
{

0, Ij 	∈ Ti

1, Ij ∈ Ti
, ∀i∈1..n,j∈1..m; d(ui) = Ti ∩ Id, ∀i∈1..n.

Local reducts in a binary decision table correspond to jumping emerging pat-
terns with negation (JEPNs, [4]). JEPNs constitute a convex space that contains
JEPs for the same transaction system. Note that, although {e, g} and {d, f} are
both local reducts for u1, the pattern eg is a minimal JEP, whereas df is not,
since it is not supported by the respective transaction.

Solving a problem of a double dimensionality and filtering positive patterns is
most often expensive, thus, the idea of a table condensation was proposed ([7]).
Before local reduct computation, binary attributes are aggregated into multi-
valued attributes by means of an approximate graph coloring. This approach is
efficient for originally relational datasets, however, remains sensitive to a distri-
bution of items in transactions.

The table condensation leads to an alternative representation of a decision
transaction system. However, one may get much higher complexity reduction if
transformation is performed independently for every transaction. The following
structure demonstrates how we may limit our interest only to items that are
indispensable to compute complete discernibility information for a transaction.

A locally projected decision table for: DTS, a decision transaction system,
and Ti ∈ D, where i = 1, .., |D|, a transaction, is a binary decision table
LPDTDTS,Ti = BDTDTSi,Ti , where DTSi = (Di, Ti, Id) and Di = (Tk ∩Ti)k∈K .

Hardness of an input decision system DTS can be characterized by average
(maximal) dimensionality of subproblems, i.e. a locally projected decision table
for distinguishable transactions, namely avgDim(DTS) = {|T | : T ∈ Rc ∧ c ∈
Id}/

∑
c∈Id

|Rc| and maxDim(DTS) = maxT∈Rc∧c∈Id
|T |. Note that, when all

transactions are distinguishable, these parameters refer to an average (maximal)
transaction length DTS.

For the sake of convenience, we use the notation: itemPattDTS,Ti(u, B) =
{Ik ∈ Ti : ak ∈ B ∧ ak(u) = 1 ∧ k ∈ M ′}, where u ∈ U , B ⊆ Ci = {ak}k∈M ′ ,
LPDTDTS,Ti = (U , Ci, d) is a locally projected decision table and a transac-
tion Ti = {Ik}k∈M ′ , M ′ ⊆ {1, .., m}. Note that |itemPattDTS,Ti(ui, B)| = |B|.
Whenever a decision transaction system is known from the context, the respec-
tive subscript is omitted.

The following theorem states that the complete JEP space for the DTS and
a given class can be obtained by finding a locally projected tables for each
distinguishable transaction and generating patterns for the respective objects
and any attribute set in the respective table.

Theorem 1. ∀c∈Id
{itemPattDTS,Ti(ui, R) : i ∈ K∧LPDTDTS,Ti = (U , Ci, d)∧

ui ∈ POS(Ci, d) ∩ Uc ∧ R ⊆ Ci} = JEP (C′
c, Cc).

The respective left bound of a JEP space can be found by applying local reducts
for a given object instead of any attribute sets.
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Theorem 2. ∀c∈Id
{itemPattDTS,Ti(ui, R) : i ∈ K∧LPDTDTS,Ti = (U , Ci, d)∧

ui ∈ POS(Ci, d) ∩ Uc ∧ R ∈ REDLOC(ui, d)} = Lc.

The proofs are omitted here due to space limitations.

5 JEP Computation

Minimal jumping emerging patterns in DTS = (D, I, Id) can be computed by
local reduct computation in locally condensed tables for all transactions. The
actual procedure is straightforward and fully based on Theorem 2.

1: Lc = ∅ for each c ∈ Id

2: for (k = 1; 1 <= |D|; k + +) do
3: Construct a locally projected decision table LPDTDTS,Tk

4: Compute REDLOC(uk, d) in LPDTDTS,Tk

5: Lc = Lc ∪ {itemPattDTS,Tk(uk, R) : R ∈ REDLOC(uk, d)}, c = Tk ∪ Id

6: end for

Identification of minimal patterns by means of local reduct induction is the
most complex part of our approach. It is normally addressed with methods used
for global reducts ([5]). Unfortunately, all known exact solutions are pessimisti-
cally exponential.

Here, we look at two algorithms that employ a discernibility matrix. The first
one reduces the problem to finding prime implicants of a monotonous boolean
functions ([5], RedPrime). It loops over elements of a matrix and extends a
collection of reducts for rows seen so far, so that they are sufficient to discern the
current row as well. The second algorithm traverses a lattice of all subsets of an
attribute space using the apriori scheme ([8], RedApriori). Successive collections
of candidates are pruned basing on a degree of attribute set dependence, which
is calculated by means of a discernibility matrix. Also, in order to optimize this
stage, one may eliminate transactions that are not maximal JEPs and group
transactions by their classes.

6 Experimental Results

Experiments focused on efficiency of the new algorithm, table condensation and
JEP-Producer for synthetically generated sparse data and dense data obtained
from relational tables. Each result was averaged over several executions.

The testing environment and algorithms were coded in Java 5. Since the rough
set methods and JEP-Producer differ significantly, it is not possible to come up
with one single dominant operation for time complexity representation. There-
fore, in order to provide reliable time measurements, we based their implemen-
tations on mostly the same structures. In particular, all the studied approaches
process large collections of attribute/item sets. To obtain results possibly in-
dependent from what a data structure was used to represent such a set, three
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implementations were tested. The first two are characteristic vectors of an at-
tributes/item space, one based on a regular byte array (Array) and the other
one - on java.util.BitSet (BitSet). The third structure is a balanced binary tree
implemented by means of java.util.TreeSet (TreeSet). Array is generous in mem-
ory allocation, but assures the most efficient access. Bit and dynamic structures
are slower, however, they may take precedence for large attribute/item spaces
when a high number of sets is created.

Table 1. Synthetic dataset summary with problem hardness characteristics

No Trans Items Classes MaxTrans JEPs avgDim maxDim

1 2000 20 2 326 539 5,09 9,00
2 2000 40 3 1075 5967 6,33 14,00
3 2000 60 3 1551 19140 6,79 16,00
4 2000 80 2 1858 71250 9,37 19,00
5 5000 50 2 2918 20088 6.25 15.00
6 10000 50 3 4119 18673 5.57 12.00
7 15000 50 2 7920 94252 7.57 18.00
8 20000 50 2 10300 126162 7.63 18.00

Sparse Data. In this test local projection and JEP-Producer are compared for
sparse datasets. Since itemspaces are commonly much larger than average trans-
action size, this kind of data is substantial for practical tasks. Unfortunately, it
is hard to find publicly available classified sparse datasets, thus, the test was per-
formed against synthetic data. Transaction databases were produced by means
of the IBM generator ([9]) and, then, the CLUTO package was used to classify
transactions (Tab. 1). The density of each database was set up at 5-15% of a
respective item space. We studied behavior of the algorithms when a size of a
database or an item space increases. In order to describe the actual hardness of
each problem, additional measures were provided, in particular, a total number
of JEPs over all classes, number of maximal transactions and average (maximal)
dimensionality.

The local projection algorithm was tested with two different reduct compu-
tation methods: RedPrime ([5]) and RedApriori ([8]). JEP-Producer was imple-
mented according to the scheme and optimizations described in [1]. To optimize
all computations a database is always reduced to contain only maximal trans-
actions. Measurements for all the algorithms were taken for the aforementioned
implementations of an attribute/item set.

Table 2 shows that the rough set approach outperforms JEP-Producer. In par-
ticular, for RedApriori and Array, there is a difference of 1-2 orders of magnitude.
In general, all the methods perform well for Array. Reduct computations are
performed for locally projected tables with small attribute spaces, thus, slower
structures significantly affect the overall performance. For example, for TreeSet,
efficiency of RedPrime and JEP-Producer remain very close. On the other hand,
JEP-Producer is sensitive to the size of a whole item space, therefore, BitSet led
to slightly better results in almost all the cases.
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Table 2. Execution time comparison for sparse datasets between local projection and
JEP-Producer for different implementations of an attribute/item set

No
RedPrime RedApriori JEP-Producer

Array BitSet TreeSet Array BitSet TreeSet Array BitSet TreeSet

1 297 484 797 138 218 470 594 640 1296
2 4906 8938 19063 1796 3196 10262 14375 13469 28547
3 20453 34860 78406 4553 8120 29351 53281 47250 93562
4 202328 323296 810360 48469 77129 340541 217796 164594 346265
5 26532 45219 95203 6573 10669 36239 118453 97735 200094
6 28750 55906 104812 4071 7608 21565 215250 190906 390937
7 671390 1123562 2739329 162874 263418 1033108 1311203 1169141 2623266
8 877655 1468744 3582734 243205 393338 1490587 2153109 1982421 4316875

Originally Relational Data. Earlier tests demonstrated that, for dense, orig-
inally relational datasets, condensation successfully reduces dimensionality and
performs better that JEP-Producer ([6]). Here, it is contrasted with local projec-
tion. Due to space limitations, results for RedPrime and Array-based attribute
set implementation are presented. Transactional databases for this test were
generated from relational tables from UCI Repository. Average time and dimen-
sionality is given for each of the methods.

According to the results in Tab. 3, table condensation and local projection lead
most often to the same subproblem dimensionality. Since databases are reduced
in an analogical way, both methods achieve similar efficiency. Nevertheless, the
former strongly relies on optimality of graph coloring solution. An overhead of
generation and filtering of additional patterns is visible for mushroom.

Table 3. Execution time comparison for originally relational datasets between table
condensation and local projection with RedPrime and Array-based implementation

Dataset Trans Items Class JEPs
Table Condensation Local Projection
avgDim Time avgDim Time

lymn 148 59 4 6794 18.00 13156 18.00 8359
house 435 48 2 6986 16.00 27218 16.00 21141

balance 625 20 3 303 4.00 671 4.00 406
tic-tac-toe 958 27 2 2858 9.00 9203 9.00 7578

car-mod 1728 21 4 246 6.00 4109 6.00 3985
mushroom 8124 117 2 3635 23.00 608546 22.00 440656

nursery 12960 27 5 638 8.00 477484 8.00 495375
krkopt 28056 43 18 21370 6.00 1754469 6.00 1728782

7 Conclusions

In this paper we have proposed a rough set approach to discovery of jumping
emerging patterns (JEPs) in classified transaction databases. The problem is
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decomposed into a series of local reduct computations performed for locally
projected decision tables for each transaction.

Main benefit of our approach is that only the transactions and items neces-
sary for each computation are considered, which results in potentially significant
dimensionality reduction of subproblems. In this case, additional processing can
be a significant factor. The way of discernibility matrices construction can be
optimized by caching of partial per-attribute results in complementary form.

Experiments have proved that the method outperforms JEP-Producer, the
most popular solution for the considered problem, for sparse, synthetically gen-
erated datasets. The high efficiency is a result of a dramatic decrease in average
dimensionality. This fact was observed independently from a reduct computation
method. Nevertheless, the algorithm based on attribute set dependence behaves
much better than the classical one searching for prime implicants and is faster
than JEP-Producer by 1-2 orders of magnitude. On the other hand, for dense,
originally relational data the new approach achieves at least the same dimen-
sionality gain as the previously proposed method of table condensation and gives
similar overall efficiency.

The future research will extend our method to look for derivative types of
patterns and confront its efficiency with existing tree-based strategies.
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