
T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 697–704, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Fast k Most Similar Neighbor Classifier for Mixed Data
Based on Approximating and Eliminating

Selene Hernández-Rodríguez, J. Ariel Carrasco-Ochoa, and J. Fco. Martínez-Trinidad

Computer Science Department
National Institute of Astrophysics, Optics and Electronics

Luis Enrique Erro No. 1, Sta. María Tonantzintla, Puebla, CP: 72840, México
{selehdez,ariel,fmartine}@inaoep.mx

Abstract. The k nearest neighbor (k-NN) classifier has been a widely used non-
parametric technique in Pattern Recognition. In order to decide the class of a new
prototype, the k-NN classifier performs an exhaustive comparison between the
prototype to classify (query) and the prototypes in the training set T. However,
when T is large, the exhaustive comparison is expensive. To avoid this problem,
many fast k-NN algorithms have been developed. Some of these algorithms are
based on Approximating-Eliminating search. In this case, the Approximating and
Eliminating steps rely on the triangle inequality. However, in soft sciences, the
prototypes are usually described by qualitative and quantitative features (mixed
data), and sometimes the comparison function does not satisfy the triangle ine-
quality. Therefore, in this work, a fast k most similar neighbour classifier for
mixed data (AEMD) is presented. This classifier consists of two phases. In the
first phase, a binary similarity matrix among the prototypes in T is stored. In the
second phase, new Approximating and Eliminating steps, which are not based on
the triangle inequality, are presented. The proposed classifier is compared against
other fast k-NN algorithms, which are adapted to work with mixed data. Some ex-
periments with real datasets are presented.

Keywords: Nearest Neighbors Rule, Fast Nearest Neighbor Search, Mixed
Data, Approximating Eliminating search algorithms.

1 Introduction

The k-NN [1] rule has been a widely used nonparametric technique in Pattern Recog-
nition. However, in some applications, the exhaustive comparison between the new
prototype to classify and the prototypes in the training set T becomes impractical.
Therefore, many fast k-NN classifiers have been designed to avoid this problem.

Some of these fast k-NN algorithms can be classified as exact methods, because
they find the same NN that would be found using the exhaustive search. Some other
algorithms are approximate methods, because they do not guarantee to find the NN to
a query prototype among the training set, but they find an approximation faster than
the exact methods.

To avoid comparisons between prototypes during the search of the NN, different
techniques have been developed: Approximating Eliminating algorithms [2-5],

698 S. Hernández-Rodríguez, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

Tree-based algorithms [4,6-8]. In particular, in this work, the proposed algorithm is
based on an Approximating Eliminating approach.

One of the first approaches that uses approximating and eliminating steps is AESA
(Approximating Eliminating Search Algorithm), proposed by Vidal [2]. In a preproc-
essing phase, this algorithm creates a matrix of distances between the prototypes in
the training set. Given a new prototype Q to classify; a new candidate is approxi-
mated, compared against Q and, supported on the triangle inequality, those prototypes
that can not be closer that the current NN are eliminated from the set T. The process
finishes when all prototypes in T have been compared or eliminated.

Using AESA, good results have been obtained. However, a drawback of AESA is
its quadratic memory space requirements. For this reason, in [3] an improvement
(LAESA), which requires linear memory space, is proposed (LAESA). LAESA algo-
rithm is focused on reducing the amount of information stored, but this algorithm
increases the number of comparisons between prototypes. In [5] an improvement on
the Approximation step is proposed, for approximating a better candidate and, there-
fore reducing the number of comparisons between prototypes even more than AESA.

AESA, LAESA and iAESA are exact methods to find the k-NN. However, in [5] a
probabilistic approach [9] to find approximate k NN’s is also proposed. In order to
reduce the amount of work, the search is stopped when certain percentage of the data-
base has been evaluated, this method is called Probabilistic iAESA.

In [4] TLAESA algorithm is proposed. In TLAESA, a binary tree and a matrix of
distances between the prototypes in T and a subset of T, are used. In [10] an im-
provement of TLAESA is presented.

All these methods based on Approximating and Eliminating search, were designed
to work with quantitative data when the prototype comparison function satisfies the
triangle inequality. However, in soft sciences as Medicine, Geology, Sociology, etc.,
the prototypes are described by quantitative and qualitative features (mixed data). In
these cases, sometimes the comparison function for mixed data does not satisfy the
triangle inequality and therefore, we can not use most of the methods proposed for
quantitative prototype descriptions. Therefore, in this paper we introduce a fast ap-
proximate k most similar neighbor (k-MSN) classifier for mixed data, based on new
Approximating and Eliminating steps, which are not based on the triangle inequality
property of the comparison function.

This paper is organized as follows: in Section 2 the comparison function used in
this work is described. In Section 3 our fast k-MSN classifier (AEMD) is introduced.
Finally, we report experimental results (Section 4) and conclusions (Section 5).

2 Comparison Functions for Mixed Data

In this work, in order to compare prototypes described by mixed data, the function F
[11], which does not fulfil the triangle inequality, was used. Let us consider a set of
prototypes {P1, P2, …, PN}, each of them described by d attributes {x1, x2, …, xd}.
Each feature could be quantitative or qualitative. The function F is defined as follows:

{ }
d

PxPxCx
PPF iiii |1))(),((||

1),(21
21

=−=
(1)

 Fast k Most Similar Neighbor Classifier 699

For qualitative data Ci(xi(P1), xi(P2)) is defined as follows:

⎪
⎩

⎪
⎨

⎧ =
=

otherwise0

valuemissingais

)(nor)(neitherand)()(If1

))(),((
2121

21

PxPxPxPx

PxPxC
iiii

iii

(2)

For quantitative data Ci(xi(P1), xi(P2)) is defined as follows:

⎪
⎩

⎪
⎨

⎧ <−
=

otherwise0

valuemissingais

)(nor)(neitherand|)()(|If1

))(),((
2121

21

PxPxPxPx

PxPxC
iiiii

iii

σ

(3)

Where, σi is the standard deviation of the attribute xi. Using the function F, the most
similar neighbor (MSN) of a prototype P, is the one that minimizes the function.

3 Proposed Classifier

In this section, an approximate fast k-MSN classifier, which considers prototypes
described by mixed data, is introduced. The classifier consists of two phases: preproc-
essing and classification.

3.1 Preprocessing Phase

In this phase, AEDM computes the following:

1. Similarity Matrix (SM). In this work, we proposed to compute and store an array of
similarity per attribute among the prototypes in the training set (T), where
SM[Pa,Pb,xi]=1 if, according to certain criterion, we can conclude that the prototypes
Pa and Pb are similar considering the attribute xi and SM[Pa,Pb,xi]=0, in other case;

[]Nba ,1, ∈ and []di ,1∈ (see figure 1). In this work, the similarity criterion described

in Section 2, was used.

Number of prototypes in T

Number of attributes

1 1 0 0 1
1 1 0 0 1
0 0 1 0 1
0 0 0 1 0
1 1 1 0 1

Number of prototypes in T

Fig. 1. SM matrix

The required space to store SM matrix is N x N x d but each element is a bit, there-
fore, the needed space is N x N words of d bits.

2. A representative prototype per class (RPc). In order to obtain a first approximation
during the classification phase, we propose to use a representative prototype per class,
taking advantage of the class information. To compute RPc, let Classc be the set of

700 S. Hernández-Rodríguez, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

prototypes in T, which belong to the class c. Then, for each prototype
ca ClassP ∈ , the

following function is computed:

||

),(

)(

||

,1

c

Class

abb
ba

a Class

PPF

PAvgSim

c

∑
≠== (4)

AvgSim evaluates the average of similarity between a fixed prototype (Pa) and the
rest of the prototypes that belong to the same class. Thus, the representative prototype
for class c (RPc) is the most similar on average (or the one that minimizes AvgSim
function):

|]|,1[)),((cac ClassaPAvgSimArgminRP ∈∀= (5)

This process is repeated for every []Cc ,1∈ , where C is the number of classes in

the training set.

3. Similarity threshold between prototypes (SimThres). The average value of the simi-
larity between the prototypes belonging to the same class in T, is used as a confidence
threshold to make decisions during the classification phase. This value can be a pa-
rameter given by the user. However, in this section three options to compute the con-
fidence threshold are proposed.

To define the similarity threshold for each class c, the average of similarity, among
the prototypes belonging to the same class, is computed as follows:

|]|,1[,,
1||

1||

),(
||

1

||

,1

c
c

Class

a c

Class

bab
ba

c Classba
Class

Class

PPF

assAvgValueCl

c

c

∈∀
−

−=
∑

∑
=

≠=

(6)

Finally, the similarity threshold is selected following (7), (8) and (9):

],1[),Argmin(CcassAvgValueClSimMinSimThres c ∈∀== (7)

],1[,1 Cc
C

assAvgValueCl
SimAvgSimThres

C

c
c

∈∀==
∑

= (8)

],1[),Argmax(CcassAvgValueClSimMaxSimThres c ∈∀== (9)

3.2 Classification Phase

Given a new prototype Q to classify, SM, RPc and SimThres, computed during the
preprocessing phase, are used to avoid comparisons among prototypes. The classifica-
tion phase of the proposed algorithm (AEMD) is based on Approximating and Elimi-
nating steps, which are not based on the triangle inequality.

 Fast k Most Similar Neighbor Classifier 701

Initial approximation step. At the beginning of the algorithm, the prototype Q is com-
pared against the class representative prototypes to obtain a first approximation to the
most similar prototype MSN and its similarity value SMSN.

],1[)),,((ArgMin CcRPQFMSN c ∈∀= (10)

The current MSN is eliminated from the set T. If SMSN ≥ SimThres (where SimThres is
a confidence value of similarity between prototypes belonging to the same class in T),
the prototype MSN is used to eliminate prototypes from T (Eliminating step).

Eliminating step. In this step, given a fixed prototype (MSN) to eliminate prototypes
from T, a binary representation (BR) contains the similarity per attribute, between Q
and MSN is created as follows:

],1[)),(),((),(diMSNxQxCMSNQBR iiii ∈∀= (11)

Thus, BRi(Q, MSN)=1 if Q and MSN are similar in the attribute xi and BRi(Q,
MSN)=0, in other case. Using BR, those prototypes in T, which are not similar to MSN
at least, in the same attributes in which MSN is similar to Q, are eliminated from T
(using TPPMSNSM aa ∈∀),,().

For example, supposed that P0, P1, Q and MSN, are such that BR(Q, MSN) =
[1,1,0,1,1,1,0,0], SM(MSN, P0)=[1,1,1,1,1,1,0,1] and SM(MSN, P1)=[1,0,0,0,0,1,0,1].
Then, according to this criterion, P0 is not eliminated because is similar to MSN in the
same attributes, where MSN is similar to Q (attributes 1, 2, 4, 5 and 6). But P1 is
eliminated, without have explicitly compared it to Q, because P1 is not similar in the
same attributes, where MSN is similar to Q (MSN is similar to Q in attribute 2, but P1
is not similar to MSN in this attribute). The similarity per attribute between MSN and
P0 (SM(MSN, P0)) and the similarity per attribute between MSN and P1 (SM(MSN,
P1)) are known (because these similarities were computed in the preprocessing
phase). The similarity between MSN and Q, has already been computed.

After the Initial approximation and the Eliminating steps, if T is not empty, the ap-
proximation step is performed.

Approximating step. In this step, a new prototype MSN’∈T is randomly selected,
compared against Q (SMSN’), eliminated from T and used to update the current MSN. If
SMSN’ < SimThres a new MSN’ is randomly selected (Approximating step). Otherwise,
if SMSN’ ≥ SimThres (where SimThres is a confidence value of similarity between pro-
totypes belonging to the same class in T), the prototype MSN’ is used to eliminate
prototypes from T (Eliminating step). This process is repeated until the set T is empty.
After finding the MSN, its class is assigned to Q.

4 Experimental Results

In this section, the performance of the proposed classifier (AEMD) is evaluated. In
order to compared AEMD; the exhaustive search [1], AESA [2], LAESA (|BP|=20%
of the objects in the dataset) [3], iAESA [5], Probabilistic iAESA (using 70% as per-
centage threshold of the data set) [5], TLAESA [4] and modified TLAESA [10] algo-
rithms were evaluated using the same comparison function (F, described in Section 2)
instead of using a metric. To do the experiments, 10 datasets from the UCI repository

702 S. Hernández-Rodríguez, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

[12] were used (Mixed datasets: Hepatitis, Zoo, Flag and Echocardiogram. Qualitative
datasets: Hayes, Bridges and Soybean-large. Quantitative: Glass, Iris and Wine).

In order to compare the different classifiers, the accuracy (Acc) and the percentage
of comparisons between prototypes (Comp), were considered. The accuracy was
computed as follows:

NoTestObj

bjNoCorrectO
Acc =

(12)

Where, NoCorrectObj is the number of correctly classified prototypes in the test
set and NoTestObj is the size of the test set. The percentage of comparisons between
objects was computed as follows:

ObjNoTraining

ClassNoCompFast
Comp

100*
=

(13)

Where, NoCompFastClass is the number of comparisons done by the fast classi-
fier, and NoTrainingObj is the size of the training set. According to (13), for the ex-
haustive classifier, the 100 % of the comparisons is done. In all the experiments, k=1
in k-MSN, was used.

As first experiment, the proposed algorithm (AEMD) was evaluated. To use
AEMD algorithm, SimThres, which corresponds to a confidence value of similarity,
was tested with the values SimThres = 40, 60 and 80 (see table 1).

Table 1. Obtained results using AEMD, according to different values of SimThres

Exhaustive k-NN
classifier

AEMD
(SimThres=40%)

AEMD
(SimThres=60%)

AEMD
(SimThres=80%) Datasets

Acc Comp Acc Comp Acc Comp Acc Comp

Hepatitis 81,66 100 74,65 7,45 80,65 17,37 81,63 23,17
Zoo 96,00 100 78,42 8,83 94,01 9,63 95,30 28,80
Flag 54,67 100 45,15 4,11 53,85 7,62 52,08 13,11
Echocardiogram 82,44 100 80,15 7,44 81,06 9,04 81,70 25,23
Hayes 81,24 100 78,23 8,19 80,21 12,52 81,05 18,57
Soybean-large 85,40 100 65,74 7,32 84,12 8,65 83,07 8,11
Bridges 57,85 100 38,52 3,55 53,54 9,20 56,78 11,19
Glass 68,26 100 62,58 9,11 67,35 13,66 67,90 16,45
Iris 93,30 100 45,52 8,50 91,01 10,29 93,30 12,99
Wine 90,90 100 58,42 7,17 90,90 13,58 89,63 13,18

General average 79,17 100 62,74 7,17 77,67 11,16 78,24 17,08

As we can see from table 1, the bigger the value of SimThres, the higher the ob-

tained accuracy. However, the percentage of comparisons is also increased. Besides,
for some datasets (Echocardiogram and Hayes), good results were obtained using
SimThres=40, while for other datasets (Flag and Soybean-large) good results are ob-
tained using SimThres=60. From these results, we can not conclude an optimal value
for SimThres. For this reason, the criteria, described in section 3.1, to establish a value
for SimThres, were used. Thus, AEMD algorithm was evaluated with SimThres=
SimMin, SimAvg and SimMax (see table 2). From table 2, we can observe that using
SimThres=SimAvg, good results are obtained, for all the datasets.

 Fast k Most Similar Neighbor Classifier 703

Table 2. Obtained results using AEMD, according to different values of SimThres

Exhaustive k-NN
search

AEMD
(SimThres=SimMin)

AEMD
(SimThres=SimAvg)

AEMD
(SimThres=SimMax) Dataset

Acc Comp Acc Comp Acc Comp Acc Comp
Hepatitis 81,66 100 80,03 11,95 81,63 13,52 81,66 82,46
Zoo 96,00 100 94,10 9,31 94,00 24,76 96,00 91,00
Flag 54,67 100 52,60 16,87 52,05 17,41 54,67 56,32
Echocardiogram 82,44 100 81,05 13,56 81,70 18,50 82,44 85,60
Hayes 81,24 100 81,16 13,80 81,05 12,97 81,24 79,40
Soybean-large 85,40 100 84,21 15,70 83,07 23,46 85,40 57,55
Bridges 57,85 100 56,12 15,21 57,00 12,54 57,85 66,75
Glass 68,26 100 66,74 12,50 67,92 11,17 68,26 95,33
Iris 93,30 100 93,30 15,04 93,30 12,52 93,30 93,20
Wine 90,90 100 89,63 13,77 89,63 16,32 90,90 78,62
General average 79,17 100 77,89 13,77 78,14 16,32 79,17 78,62

Table 3. Obtained results using different classifiers

Exhaustive k-NN
search

AESA LAESA i AESA Dataset
Acc Comp Acc Comp Acc Comp Acc Comp

Hepatitis 81,66 100 80,57 52,96 80,54 61,86 81,03 52,78
Zoo 96,00 100 96,00 23,50 96,00 15,26 96,00 19,36
Flag 54,67 100 51,45 28,02 51,45 25,73 51,36 27,65
Echocardiogram 82,44 100 81,77 62,04 81,77 68,23 81,05 63,62
Hayes 81,24 100 81,24 24,82 81,24 23,32 80,77 17,62
Soybean-large 85,40 100 85,40 2,51 85,40 4,49 85,40 1,96
Bridges 57,85 100 57,85 25,62 57,85 36,10 57,85 25,07
Glass 68,26 100 66,45 14,02 67,92 20,83 66,34 12,62
Iris 93,30 100 93,30 9,22 93,30 6,86 93,30 7,54
Wine 90,90 100 89,01 15,46 90,90 25,26 90,01 10,62
General average 79,17 100 78,30 25,82 78,64 28,79 78,31 23,88

Table 4. Obtained results using different classifiers

PROPOSED CLASSIFIER Probabilistic i
AESA TLAESA Modified TLAESA AEMD

(SimThres= SimA)
Dataset

Acc Comp Acc Comp Acc Comp Acc Comp
Hepatitis 80,64 32,44 81,33 87,54 81,66 72,65 81,63 13,52
Zoo 94,00 17,51 96,00 42,74 96,00 23,95 94,00 24,76
Flag 49,62 26,41 52,84 48,41 52,09 32,95 52,05 17,41
Echocardiogram 80,06 63,08 81,77 71,58 82,44 44,62 81,70 18,50
Hayes 80,07 16,74 80,54 46,42 81,06 24,05 81,05 12,97
Soybean-large 82,15 2,04 85,40 47,51 85,40 16,85 83,07 23,46
Bridges 56,95 25,064 56,74 46,75 57,23 38,74 57,00 12,54
Glass 66,21 12,06 67,92 62,47 67,72 22,85 67,92 11,17
Iris 93,30 8,01 93,30 41,51 93,30 11,65 93,30 12,52
Wine 90,90 10,54 90,90 39,75 90,90 12,64 89,63 16,32
General average 77,39 21,39 78,67 53,47 78,78 30,10 78,14 16,32

In order to compare the classifiers proposed in this work, different classifiers,

based on Approximating and Eliminating, were considered. In table 3 and 4, the ob-
tained results are shown.

Form table 3 and 4, we can observe that when the comparison function does not
satisfy the triangle inequality, AESA, LAESA, iAESA, TLAESA and modified
TLAESA algorithms are inexact methods (the obtained results are not the same as
using the exhaustive search). However, the percentage of comparisons is, on average,

704 S. Hernández-Rodríguez, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

reduced from 100%, done by the exhaustive search, to 25.82 %, 28.79 %, 23.88%,
53.47 % and 30.10%, respectively.

5 Conclusions

In this work, a fast approximated k-MSN classifier for mixed data, based on Approxi-
mating and Eliminating approach, applicable when the comparison function does not
satisfy metric properties was proposed. In order to compare our method, AESA,
LAESA, iAESA, probabilistic iAESA, TLAESA, modified TLAESA algorithms were
implemented using the same prototype comparison function for mixed data. Based on
our experimental results, it is possible to conclude that, our classifier (AEMD) obtained
competitive accuracy, but with a smaller number of comparisons between prototypes.

As future work, we are going to look for an strategy to reduce the memory space
required to store the similarity matrix (SM).

References

1. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. Trans. Information Theory
13, 21–27 (1967)

2. Vidal, E.: An algorithm for finding nearest neighbours in (approximately) constant average
time complexity. Pattern Recognition Letters 4, 145–157 (1986)

3. Micó, L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating and
eliminating search algorithm (AESA) with linear preprocessing-time and memory re-
quirements. Pattern Recognition Letters 15, 9–17 (1994)

4. Mico, L., Oncina, J., Carrasco, R.: A fast Branch and Bound nearest neighbor classifier in
metric spaces. Pattern Recognition Letters 17, 731–739 (1996)

5. Figueroa, K., Chávez, E., Navarro, G., Paredes, R.: On the last cost for proximity search-
ing in metric spaces. In: Àlvarez, C., Serna, M.J. (eds.) WEA 2006. LNCS, vol. 4007, pp.
279–290. Springer, Heidelberg (2006)

6. Fukunaga, K., Narendra, P.: A branch and bound algorithm for computing k-nearest
neighbors. IEEE Trans. Comput. 24, 743–750 (1975)

7. Gómez-Ballester, E., Mico, L., Oncina, J.: Some approaches to improve tree-based nearest
neighbor search algorithms. Pattern Recognition Letters 39, 171–179 (2006)

8. Yong-Sheng, C., Yi-Ping, H., Chiou-Shann, F.: Fast and versatile algorithm for nearest
neighbor search based on lower bound tree. Pattern Recognition Letters 40(2), 360–375
(2007)

9. Bustos, B., Navarro, G.: Probabilistic proximity search algorithms based on compact parti-
tions. Journal of Discrete Algorithms (JDA) 2(1), 115–134 (2003)

10. Tokoro, K., Yamaguchi, K., Masuda, S.: Improvements of TLAESA nearest neighbor
search and extension to approximation search. In: ACSC 2006: Proceedings of the 29th
Australian Computer Science Conference, pp. 77–83 (2006)

11. García-Serrano, J.R., Martínez-Trinidad, J.F.: Extension to C-Means Algorithm for the use
of Similarity Functions. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI),
vol. 1704, pp. 354–359. Springer, Heidelberg (1999)

12. Blake, C., Merz, C.: UCI Repository of machine learning databases, Department of Infor-
mation and Computer Science, University of California, Irvine, CA (1998),
http://www.uci.edu/mlearn/databases/

	Fast k Most Similar Neighbor Classifier for Mixed Data Based on Approximating and Eliminating
	Introduction
	Comparison Functions for Mixed Data
	Proposed Classifier
	Preprocessing Phase
	Classification Phase

	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

