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Abstract. The k nearest neighbor (k-NN) classifier has been a widely used non-
parametric technique in Pattern Recognition. In order to decide the class of a new 
prototype, the k-NN classifier performs an exhaustive comparison between the 
prototype to classify (query) and the prototypes in the training set T. However, 
when T is large, the exhaustive comparison is expensive. To avoid this problem, 
many fast k-NN algorithms have been developed. Some of these algorithms are 
based on Approximating-Eliminating search. In this case, the Approximating and 
Eliminating steps rely on the triangle inequality. However, in soft sciences, the 
prototypes are usually described by qualitative and quantitative features (mixed 
data), and sometimes the comparison function does not satisfy the triangle ine-
quality. Therefore, in this work, a fast k most similar neighbour classifier for 
mixed data (AEMD) is presented. This classifier consists of two phases. In the 
first phase, a binary similarity matrix among the prototypes in T is stored. In the 
second phase, new Approximating and Eliminating steps, which are not based on 
the triangle inequality, are presented. The proposed classifier is compared against 
other fast k-NN algorithms, which are adapted to work with mixed data. Some ex-
periments with real datasets are presented. 

Keywords: Nearest Neighbors Rule, Fast Nearest Neighbor Search, Mixed 
Data, Approximating Eliminating search algorithms. 

1   Introduction 

The k-NN [1] rule has been a widely used nonparametric technique in Pattern Recog-
nition. However, in some applications, the exhaustive comparison between the new 
prototype to classify and the prototypes in the training set T becomes impractical. 
Therefore, many fast k-NN classifiers have been designed to avoid this problem. 

Some of these fast k-NN algorithms can be classified as exact methods, because 
they find the same NN that would be found using the exhaustive search. Some other 
algorithms are approximate methods, because they do not guarantee to find the NN to 
a query prototype among the training set, but they find an approximation faster than 
the exact methods.  

To avoid comparisons between prototypes during the search of the NN, different 
techniques have been developed: Approximating Eliminating algorithms [2-5],  
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Tree-based algorithms [4,6-8]. In particular, in this work, the proposed algorithm is 
based on an Approximating Eliminating approach. 

One of the first approaches that uses approximating and eliminating steps is AESA 
(Approximating Eliminating Search Algorithm), proposed by Vidal [2]. In a preproc-
essing phase, this algorithm creates a matrix of distances between the prototypes in 
the training set. Given a new prototype Q to classify; a new candidate is approxi-
mated, compared against Q and, supported on the triangle inequality, those prototypes 
that can not be closer that the current NN are eliminated from the set T. The process 
finishes when all prototypes in T have been compared or eliminated. 

Using AESA, good results have been obtained. However, a drawback of AESA is 
its quadratic memory space requirements. For this reason, in [3] an improvement 
(LAESA), which requires linear memory space, is proposed (LAESA). LAESA algo-
rithm is focused on reducing the amount of information stored, but this algorithm 
increases the number of comparisons between prototypes. In [5] an improvement on 
the Approximation step is proposed, for approximating a better candidate and, there-
fore reducing the number of comparisons between prototypes even more than AESA. 

AESA, LAESA and iAESA are exact methods to find the k-NN. However, in [5] a 
probabilistic approach [9] to find approximate k NN’s is also proposed. In order to 
reduce the amount of work, the search is stopped when certain percentage of the data-
base has been evaluated, this method is called Probabilistic iAESA.  

In [4] TLAESA algorithm is proposed. In TLAESA, a binary tree and a matrix of 
distances between the prototypes in T and a subset of T, are used. In [10] an im-
provement of TLAESA is presented. 

All these methods based on Approximating and Eliminating search, were designed 
to work with quantitative data when the prototype comparison function satisfies the 
triangle inequality. However, in soft sciences as Medicine, Geology, Sociology, etc., 
the prototypes are described by quantitative and qualitative features (mixed data). In 
these cases, sometimes the comparison function for mixed data does not satisfy the 
triangle inequality and therefore, we can not use most of the methods proposed for 
quantitative prototype descriptions. Therefore, in this paper we introduce a fast ap-
proximate k most similar neighbor (k-MSN) classifier for mixed data, based on new 
Approximating and Eliminating steps, which are not based on the triangle inequality 
property of the comparison function.  

This paper is organized as follows: in Section 2 the comparison function used in 
this work is described. In Section 3 our fast k-MSN classifier (AEMD) is introduced. 
Finally, we report experimental results (Section 4) and conclusions (Section 5). 

2   Comparison Functions for Mixed Data 

In this work, in order to compare prototypes described by mixed data, the function F 
[11], which does not fulfil the triangle inequality, was used. Let us consider a set of 
prototypes {P1, P2, …, PN}, each of them described by d attributes {x1, x2, …, xd}. 
Each feature could be quantitative or qualitative. The function F is defined as follows:  
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For qualitative data Ci(xi(P1), xi(P2)) is defined as follows: 
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For quantitative data Ci(xi(P1), xi(P2)) is defined as follows: 
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Where, σi is the standard deviation of the attribute xi. Using the function F, the most 
similar neighbor (MSN) of a prototype P, is the one that minimizes the function.  

3   Proposed Classifier 

In this section, an approximate fast k-MSN classifier, which considers prototypes 
described by mixed data, is introduced. The classifier consists of two phases: preproc-
essing and classification. 

3.1   Preprocessing Phase 

In this phase, AEDM computes the following: 

1. Similarity Matrix (SM). In this work, we proposed to compute and store an array of 
similarity per attribute among the prototypes in the training set (T), where 
SM[Pa,Pb,xi]=1 if, according to certain criterion, we can conclude that the prototypes 
Pa and Pb are similar considering the attribute xi and SM[Pa,Pb,xi]=0, in other case; 

[ ]Nba ,1, ∈  and [ ]di ,1∈  (see figure 1). In this work, the similarity criterion described 

in Section 2, was used.  

Number of prototypes in T

Number of attributes 

1      1     0     0     1
1      1     0     0     1
0      0     1     0     1
0      0     0     1     0
1      1     1     0     1

Number of prototypes in T  

Fig. 1. SM matrix 

The required space to store SM matrix is N x N x d but each element is a bit, there-
fore, the needed space is N x N words of d bits.  

2. A representative prototype per class (RPc). In order to obtain a first approximation 
during the classification phase, we propose to use a representative prototype per class, 
taking advantage of the class information. To compute RPc, let Classc be the set of 
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prototypes in T, which belong to the class c. Then, for each prototype
ca ClassP ∈ , the 

following function is computed: 
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AvgSim evaluates the average of similarity between a fixed prototype (Pa) and the 
rest of the prototypes that belong to the same class. Thus, the representative prototype 
for class c (RPc) is the most similar on average (or the one that minimizes AvgSim 
function): 

|]|,1[)),(( cac ClassaPAvgSimArgminRP ∈∀=  (5) 

This process is repeated for every [ ]Cc ,1∈ , where C is the number of classes in 

the training set. 

3. Similarity threshold between prototypes (SimThres). The average value of the simi-
larity between the prototypes belonging to the same class in T, is used as a confidence 
threshold to make decisions during the classification phase. This value can be a pa-
rameter given by the user. However, in this section three options to compute the con-
fidence threshold are proposed. 

To define the similarity threshold for each class c, the average of similarity, among 
the prototypes belonging to the same class, is computed as follows:  

|]|,1[,,
1||

1||

),(
||

1

||

,1

c
c

Class

a c

Class

bab
ba

c Classba
Class

Class

PPF

assAvgValueCl

c

c

∈∀
−

−=
∑

∑
=

≠=

 
(6) 

Finally, the similarity threshold is selected following (7), (8) and (9): 

],1[),Argmin( CcassAvgValueClSimMinSimThres c ∈∀==  (7) 
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],1[),Argmax( CcassAvgValueClSimMaxSimThres c ∈∀==  (9) 

3.2   Classification Phase  

Given a new prototype Q to classify, SM, RPc and SimThres, computed during the 
preprocessing phase, are used to avoid comparisons among prototypes. The classifica-
tion phase of the proposed algorithm (AEMD) is based on Approximating and Elimi-
nating steps, which are not based on the triangle inequality. 
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Initial approximation step. At the beginning of the algorithm, the prototype Q is com-
pared against the class representative prototypes to obtain a first approximation to the 
most similar prototype MSN and its similarity value SMSN. 

],1[)),,((ArgMin CcRPQFMSN c ∈∀=  (10) 

The current MSN is eliminated from the set T. If SMSN ≥ SimThres (where SimThres is 
a confidence value of similarity between prototypes belonging to the same class in T), 
the prototype MSN is used to eliminate prototypes from T (Eliminating step). 

Eliminating step. In this step, given a fixed prototype (MSN) to eliminate prototypes 
from T, a binary representation (BR) contains the similarity per attribute, between Q 
and MSN is created as follows: 

],1[)),(),((),( diMSNxQxCMSNQBR iiii ∈∀=  (11) 

Thus, BRi(Q, MSN)=1 if Q and MSN are similar in the attribute xi and BRi(Q, 
MSN)=0, in other case. Using BR, those prototypes in T, which are not similar to MSN 
at least, in the same attributes in which MSN is similar to Q, are eliminated from T 
(using TPPMSNSM aa ∈∀),,( ). 

For example, supposed that P0, P1, Q and MSN, are such that BR(Q, MSN) = 
[1,1,0,1,1,1,0,0], SM(MSN, P0)=[1,1,1,1,1,1,0,1] and SM(MSN, P1)=[1,0,0,0,0,1,0,1]. 
Then, according to this criterion, P0 is not eliminated because is similar to MSN in the 
same attributes, where MSN is similar to Q (attributes 1, 2, 4, 5 and 6). But P1 is 
eliminated, without have explicitly compared it to Q, because P1 is not similar in the 
same attributes, where MSN is similar to Q (MSN is similar to Q in attribute 2, but P1 
is not similar to MSN in this attribute). The similarity per attribute between MSN and 
P0 (SM(MSN, P0)) and the similarity per attribute between MSN  and P1 (SM(MSN, 
P1)) are known (because these similarities were computed in the preprocessing 
phase). The similarity between MSN and Q, has already been computed. 

After the Initial approximation and the Eliminating steps, if T is not empty, the ap-
proximation step is performed. 

Approximating step. In this step, a new prototype MSN’∈T is randomly selected, 
compared against Q (SMSN’), eliminated from T and used to update the current MSN. If 
SMSN’ < SimThres a new MSN’ is randomly selected (Approximating step). Otherwise, 
if SMSN’ ≥ SimThres (where SimThres is a confidence value of similarity between pro-
totypes belonging to the same class in T), the prototype MSN’ is used to eliminate 
prototypes from T (Eliminating step). This process is repeated until the set T is empty. 
After finding the MSN, its class is assigned to Q. 

4   Experimental Results 

In this section, the performance of the proposed classifier (AEMD) is evaluated. In 
order to compared AEMD; the exhaustive search [1], AESA [2], LAESA (|BP|=20% 
of the objects in the dataset) [3], iAESA [5], Probabilistic iAESA (using 70% as per-
centage threshold of the data set) [5], TLAESA [4] and modified TLAESA [10] algo-
rithms were evaluated using the same comparison function (F, described in Section 2) 
instead of using a metric. To do the experiments, 10 datasets from the UCI repository 
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[12] were used (Mixed datasets: Hepatitis, Zoo, Flag and Echocardiogram. Qualitative 
datasets: Hayes, Bridges and Soybean-large. Quantitative: Glass, Iris and Wine).  

In order to compare the different classifiers, the accuracy (Acc) and the percentage 
of comparisons between prototypes (Comp), were considered. The accuracy was 
computed as follows: 

NoTestObj

bjNoCorrectO
Acc =  

(12) 

Where, NoCorrectObj is the number of correctly classified prototypes in the test 
set and NoTestObj is the size of the test set. The percentage of comparisons between 
objects was computed as follows: 

      
ObjNoTraining

ClassNoCompFast
Comp

100*
=              

(13) 

Where, NoCompFastClass is the number of comparisons done by the fast classi-
fier, and NoTrainingObj is the size of the training set. According to (13), for the ex-
haustive classifier, the 100 % of the comparisons is done. In all the experiments, k=1 
in k-MSN, was used. 

As first experiment, the proposed algorithm (AEMD) was evaluated. To use 
AEMD algorithm, SimThres, which corresponds to a confidence value of similarity, 
was tested with the values SimThres = 40, 60 and 80 (see table 1). 

Table 1. Obtained results using AEMD, according to different values of SimThres 

Exhaustive k-NN 
classifier 

AEMD 
(SimThres=40%) 

AEMD 
(SimThres=60%) 

AEMD 
(SimThres=80%) Datasets 

Acc Comp Acc Comp Acc Comp Acc Comp 

Hepatitis 81,66 100 74,65 7,45 80,65 17,37 81,63 23,17 
Zoo 96,00 100 78,42 8,83 94,01 9,63 95,30 28,80 
Flag 54,67 100 45,15 4,11 53,85 7,62 52,08 13,11 
Echocardiogram 82,44 100 80,15 7,44 81,06 9,04 81,70 25,23 
Hayes 81,24 100 78,23 8,19 80,21 12,52 81,05 18,57 
Soybean-large 85,40 100 65,74 7,32 84,12 8,65 83,07 8,11 
Bridges 57,85 100 38,52 3,55 53,54 9,20 56,78 11,19 
Glass 68,26 100 62,58 9,11 67,35 13,66 67,90 16,45 
Iris 93,30 100 45,52 8,50 91,01 10,29 93,30 12,99 
Wine 90,90 100 58,42 7,17 90,90 13,58 89,63 13,18 

General average 79,17 100 62,74 7,17 77,67 11,16 78,24 17,08 

 
As we can see from table 1, the bigger the value of SimThres, the higher the ob-

tained accuracy. However, the percentage of comparisons is also increased. Besides, 
for some datasets (Echocardiogram and Hayes), good results were obtained using 
SimThres=40, while for other datasets (Flag and Soybean-large) good results are ob-
tained using SimThres=60. From these results, we can not conclude an optimal value 
for SimThres. For this reason, the criteria, described in section 3.1, to establish a value 
for SimThres, were used. Thus, AEMD algorithm was evaluated with SimThres= 
SimMin, SimAvg and SimMax (see table 2). From table 2, we can observe that using 
SimThres=SimAvg, good results are obtained, for all the datasets. 
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Table 2. Obtained results using AEMD, according to different values of SimThres 

Exhaustive k-NN 
search 

AEMD 
(SimThres=SimMin) 

AEMD 
(SimThres=SimAvg) 

AEMD 
(SimThres=SimMax) Dataset 

Acc Comp Acc Comp Acc Comp Acc Comp 
Hepatitis 81,66 100 80,03 11,95 81,63 13,52 81,66 82,46 
Zoo 96,00 100 94,10 9,31 94,00 24,76 96,00 91,00 
Flag 54,67 100 52,60 16,87 52,05 17,41 54,67 56,32 
Echocardiogram 82,44 100 81,05 13,56 81,70 18,50 82,44 85,60 
Hayes 81,24 100 81,16 13,80 81,05 12,97 81,24 79,40 
Soybean-large 85,40 100 84,21 15,70 83,07 23,46 85,40 57,55 
Bridges 57,85 100 56,12 15,21 57,00 12,54 57,85 66,75 
Glass 68,26 100 66,74 12,50 67,92 11,17 68,26 95,33 
Iris 93,30 100 93,30 15,04 93,30 12,52 93,30 93,20 
Wine 90,90 100 89,63 13,77 89,63 16,32 90,90 78,62 
General average 79,17 100 77,89 13,77 78,14 16,32 79,17 78,62 

Table 3. Obtained results using different classifiers 

Exhaustive k-NN 
search 

AESA LAESA i AESA Dataset 
Acc Comp Acc Comp Acc Comp Acc Comp 

Hepatitis 81,66 100 80,57 52,96 80,54 61,86 81,03 52,78 
Zoo 96,00 100 96,00 23,50 96,00 15,26 96,00 19,36 
Flag 54,67 100 51,45 28,02 51,45 25,73 51,36 27,65 
Echocardiogram 82,44 100 81,77 62,04 81,77 68,23 81,05 63,62 
Hayes 81,24 100 81,24 24,82 81,24 23,32 80,77 17,62 
Soybean-large 85,40 100 85,40 2,51 85,40 4,49 85,40 1,96 
Bridges 57,85 100 57,85 25,62 57,85 36,10 57,85 25,07 
Glass 68,26 100 66,45 14,02 67,92 20,83 66,34 12,62 
Iris 93,30 100 93,30 9,22 93,30 6,86 93,30 7,54 
Wine 90,90 100 89,01 15,46 90,90 25,26 90,01 10,62 
General average 79,17 100 78,30 25,82 78,64 28,79 78,31 23,88 

Table 4. Obtained results using different classifiers 

PROPOSED CLASSIFIER Probabilistic i 
AESA TLAESA Modified TLAESA AEMD  

(SimThres= SimA) 
Dataset 

Acc Comp Acc Comp Acc Comp Acc Comp 
Hepatitis 80,64 32,44 81,33 87,54 81,66 72,65 81,63 13,52 
Zoo 94,00 17,51 96,00 42,74 96,00 23,95 94,00 24,76 
Flag 49,62 26,41 52,84 48,41 52,09 32,95 52,05 17,41 
Echocardiogram 80,06 63,08 81,77 71,58 82,44 44,62 81,70 18,50 
Hayes 80,07 16,74 80,54 46,42 81,06 24,05 81,05 12,97 
Soybean-large 82,15 2,04 85,40 47,51 85,40 16,85 83,07 23,46 
Bridges 56,95 25,064 56,74 46,75 57,23 38,74 57,00 12,54 
Glass 66,21 12,06 67,92 62,47 67,72 22,85 67,92 11,17 
Iris 93,30 8,01 93,30 41,51 93,30 11,65 93,30 12,52 
Wine 90,90 10,54 90,90 39,75 90,90 12,64 89,63 16,32 
General average 77,39 21,39 78,67 53,47 78,78 30,10 78,14 16,32 

 
In order to compare the classifiers proposed in this work, different classifiers, 

based on Approximating and Eliminating, were considered. In table 3 and 4, the ob-
tained results are shown. 

Form table 3 and 4, we can observe that when the comparison function does not 
satisfy the triangle inequality, AESA, LAESA, iAESA, TLAESA and modified 
TLAESA algorithms are inexact methods (the obtained results are not the same as 
using the exhaustive search). However, the percentage of comparisons is, on average, 
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reduced from 100%, done by the exhaustive search, to 25.82 %, 28.79 %, 23.88%, 
53.47 % and 30.10%, respectively. 

5   Conclusions 

In this work, a fast approximated k-MSN classifier for mixed data, based on Approxi-
mating and Eliminating approach, applicable when the comparison function does not 
satisfy metric properties was proposed. In order to compare our method, AESA, 
LAESA, iAESA, probabilistic iAESA, TLAESA, modified TLAESA algorithms were 
implemented using the same prototype comparison function for mixed data. Based on 
our experimental results, it is possible to conclude that, our classifier (AEMD) obtained 
competitive accuracy, but with a smaller number of comparisons between prototypes.  

As future work, we are going to look for an strategy to reduce the memory space 
required to store the similarity matrix (SM). 
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