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Abstract. In this paper we propose an algorithm for the on-line main-
tenance of the joint probability distribution of a data stream. The joint
probability distribution is modeled by a mixture of low dependence
Bayesian networks, and maintained by an on-line EM-algorithm. Mod-
eling the joint probability function by a mixture of low dependence
Bayesian networks is motivated by two key observations. First, the prob-
ability distribution can be maintained with time cost linear in the number
of data points and constant time per data point. Whereas other meth-
ods like Bayesian networks have polynomial time complexity. Secondly,
looking at the literature there is empirical indication [1] that mixtures
of Naive-Bayes structures can model the data as accurate as Bayesian
networks. In this paper we relax the constraints of the mixture model
of Naive-Bayes structures to that of the mixture models of arbitrary
low dependence structures. Furthermore we propose an on-line algo-
rithm for the maintenance of a mixture model of arbitrary Bayesian net-
works. We empirically show that speed-up is achieved with no decrease in
performance.

1 Introduction

In recent years, the emergence of applications involving massive data sets such
as customer click streams, telephone records, multimedia data, has resulted in
extensive research on analyzing data streams within the field of data mining
[2]. The computational analysis of data streams is constrained by the limited
amount of memory and time.

Furthermore the process, which generates the data stream, is changing over
time. Consequently the analysis should cope with changes in the data distribution.

Probability distribution estimation is used widely as a component of descrip-
tive analysis, outlier -and change detection, etc. Thus, it is a necessarily com-
ponent in almost any data stream analysis system. Popular models used for
representing the joint probability distribution are Bayesian networks, depen-
dency models, mixture models, markov models and wavelets.

In this paper we restrict ourselves to the following models: dependency models,
Bayesian networks and mixture of Bayesian networks. The optimal dependency
tree can be found efficiently using the The Chow-Liu [3] algorithm. Bayesian
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network exhibit more expressive power than dependency tree, but learning is
more expensive. So, on the one hand, we have a simple model which can be
maintained efficiently and on other hand a powerfull model but with larger
maintenance cost. Our solution, namely mixture models, provides a powerfull
model and a less demanding estimation procedure. The parameters are learned
by an online EM-algorithm and the structure is adjusted by randomly adding
components and dependencies.

The paper is structured as follows. First we report on related work on online
EM-algorithms and joint probability distribution estimation. Hereafter we define
the problem as well the batch and online algorithm. Experiments on synthetic
data show the performance of the system compared to two baseline models,
namely dependency trees and Bayesian networks.

2 Related Work

In reporting on related work we restrict ourselves to the topics of the estimation of
the joint probability distribution in the context of data stream mining and on-line
or one-pass versions of the EM-(Expectation Maximization) algorithm [4].

A major part of the research on on-line versions of the EM-algorithm like [5]
is based on stochastic approximation and can be seen as special types of the
Robbins-Monro algorithm.

In [6] a one-pass EM algorithm is proposed for the estimation of Gaussian
mixtures in large data sets. Data points are compressed into sufficient statistics
or discarded based on their clusterness. The method seems scalable in the number
of records and more accurate than sampling.

In [7] a method is proposed to sequentially update the dependency structure
of a Bayesian network. The Bayesian network is updated using a search buffer
for possible neighborhood structures.

In [8] a density estimation procedure is proposed based on kernel estimation.
A buffer is maintained in which kernels over data point are stored. The buffer
is compressed whenever it reached the maximum buffer size. The procedure has
linear time complexity.

In [9] the wavelet density estimation technique is adapted to the context of
data streams. The wavelet density estimators require fixed amount of memory
and is updated in an on-line manner.

In [1] the joint probability distribution is estimated using mixtures of Naive-
Bayes models. The Naive-Bayes basis model is a Bayesian network with the
constraint of independence between all ’non-target’ variables given the ’target’
variable. The mixture model was comparable in accuracy to Bayesian networks.

3 Problem Description

We define a data stream s as a possibly infinite sequence of random variables
Xd

i , . . . , Xd
n from the discrete nominal domain Nd. The objective is to have

an any time up-to-date accurate estimate of the underlying joint probability
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distribution of s. Furthermore, the estimation is constrained by time and space
and must have low time and space complexity.

We translate this problem to finding the probability mass function F which
maximized L(Xt, F ) indexed by t. The likelihood function L is defined as:
L(Xi..n, F ) =

∏n
i F t=i(Xi).

In this paper, Bayesian networks, mixture models, dependency trees and mix-
ture of independence models constitute for F . In the on-line setting we want to
optimize L(Xi..n, F t), the likelihood over the sequence Xi, . . . , Xn, where F t is
the probability mass function at time t.

4 Mixture Models

A mixture model is a convex combination of k probability mass function: P (Xi)=∑k
s=1 αsPs(Xi). A d-dimensional mixture of arbitrary Bayesian networks is a

probability mass function on Nd that is given by a convex combination of k
Bayesian networks: Ps(Xi) =

∏d
j Ps(X

j
i |parents(Xj

i )), where parents ⊂ ∪dX
d

and the underlying dependency structure of the data distribution does not con-
tain loops. The Likelihood of a data record i given a Bayesian network is equal
to the product of local probabilities. Xj

i is the j-th attribute of record i. Note
that dependency trees are Bayesian models only with an extra constraint on the
dependency structure.

Given a set D = {X1, . . . , Xn} of independent and identically distributed
samples from P(X), the learning task is to estimate the parameter vector Θ =
{αs, CPTk,i}k

s=1 components that maximizes the log-likelihood function
L(Θ; D) =

∑k
i=1 log P (Xi). Maximization of the data log-likelihood L(Θ) is

usually achieved by running the EM-algorithm. The standard batch-EM algo-
rithm starts with parameters set to some initial values, and then iteratively
repeats two steps (the E-step and the M-step) trying to improve the value of
L(Θ) by adjusting. It terminates after a pre-specified number of iterations, or
when the improvement rate drops below a certain threshold. In the E-step, the
EM-algorithm finds the contributions qi(s) of the points Xi to all mixture com-
ponents, qi(s) = p(sj |Xi).

4.1 Estimating Mixture Models Using On-Line EM

In [10] improvements are investigated such as block-EM. In block-EM both the E
and M-step are performed over blocks of data. Per block the sufficient statistics
are stored and replaced when it is used to update the model. This enables the
model to incorporate information faster.

In this paper we extend the work of [10] by exponentially weighting sufficient
statistics. We update the model after observing a buffer of b data points. Then
the formulas become: S

b,α
(t+1)
k

=
∑

xεb P (sk|xt+1), S
b,θ

(t+1)
v,k

=
∑

xεb Pv(sk|xt+1
v )

and αk,b = (1−λ)αk,t +λSt+1
αb,k

, θk,b = (1−β)θk,t +βSt+1
θb,k

. Sα, Sθ are sufficient
statistics for α and θ(=CPT).
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The advantage of updating the model after b points is two-fold. Firstly, it
saves computational effort by not having to update the model parameters after
each point, but only after each b points. Secondly, because of the more reliable
estimates of the expectations improvement of the performance is more stable
and faster.

4.2 Adapting Model Structure

To facilitate faster adaptation to changes in the true data distribution we use
four different techniques: adding and deleting components and, adding and delet-
ing dependencies in basis models. Components are added by probability depen-
dent on the number of components in the mixture model and is bounded by
a maximum. In practice the formula equals: P (add component|ncomp=n) =
η(1 − n

nmax
) It follows that if n = nmax, the probability of adding a component

is 0. The new component is a full-independence model with uniform random pa-
rameters. The prior of the new component is set equal to priorαmin. The priors
of the remaining basis models are adjusted relatively, such that

∑
αi = 1.

A Component is deleted when its prior drops below some threshold t. To
ensure that components are not deleted immediately after insertion, deletion is
constrained by minage. After deletion the priors α. are normalized.

The structure of individual basis models is changed by removing and adding
dependencies in the Bayesian model. Dependencies are added randomly from the
set of eligible dependencies. The maximal number of parents is 1. The proba-
bilities of the new dependency is set such the marginal distribution is equal the
distribution before adding. Assuming dependencies which are not supported by
the data can be harmful.

We represent every conditional probability table (CPT) by a mixture model of
two components, CPTX|Y = P (X |Y ) = λP̂ (X) + (1− λ)P̂ (X |Y ). This mixture
representation is only used in the on-line mixture model. Parameters are esti-
mated using the EM-algortihm. We interchange P (X |Y ) by P (X), when λ > h.
This corresponds to the deletion of the dependency X |Y , the prior is set to zero
and the dependency deleted.

4.3 Bayesian Networks and Dependency Trees

Dependency trees and Bayesian networks are use as a reference to our methods.
Learning in Bayesian networks is divided into two tasks: structure learning and
parameter estimation. Structure learning is the learning of the optimal topology
of the network. All parameters can be estimated by determining frequencies
of combinations of variable values. Examples of structure learning algorithms
are: K2, MCMC, etc.. We use the K2 algorithm [11]. Dependency trees can
be constructed more efficiently than Bayesian networks. A dependency tree is
a Bayesian network with the extra constraint that each variable has only one
parent. The optimal tree can be constructed in polynomial time [3].
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4.4 Time Complexity

The complexity of the Chow-Liu algorithm is O(nd2 + d2c2), of K2 it is
O(n max2

p d2c), Batch EM for mixture of Bayesian networks: O(iknd+ ikcnd
b ) and

On-line EM for mixture of Bayesian networks: O(knd + kcnd
b ) . The variables n,

d, i, c, maxp correspond to the number of data points, the dimensionality, the
number of iterations of the EM-algorithm, the maximum number of values per
variable and the maximum number of parents.

The advantage of the on-line EM-algorithm is the spread of the computational
effort over the data points, resulting in an O(kdc/b) average time complexity per
data point. The parameter b corresponds to the number of data points between
two model updates. In the experiments b = 50.

5 Experiments

In the first experiment we investigate the performance of the different methods
on different kind of stationary artificial data sets. In the second experiment we
explore the performance on dynamic data.

The models that are compared are: dependency trees, Bayesian networks and
the proposed on-line EM-algorithm for arbitrary low complexity Bayesian net-
works as well as the batch EM variant. Performance is measured by the log
likelihood on a test set.

We generated 50 different data sets differing in cardinality, complexity and
dimensionality. The cardinality, the number of different values per variable is,
2, 5 and 10 values and equal for all variables. The complexity of the underlying
Bayesian models is expressed in the number of dependencies. The number of
dependencies in the experiments is set to 1, 3 and 5. If the complexity is 1,
a variable has one parent, if no loops are present, consequently when 3 then
three parents. The adjacency matrix and the probabilities of the conditional
probability tables are generated at random.

The Bayesian networks are build using the Murphy toolbox [12] for Matlab
using K2. The K2-algorithm was constraint by a maximum of 3 parents. We
called the algorithm 10 times with different order on the variables and selected
the network with the highest log likelihood on the training set.

In case of the batch-EM algorithm, the algorithm is stopped when 100 itera-
tions of E and M-steps are performed or when the log likelihood did not improve
significantly. The structure as well the number of the basis models is fixed after
initialization.

The online-EM algorithm is initialized in the same way as the batch variant.
Note that in the case of the online variant we use a basis model which represents
the conditional probability table as a mixture of the full probability table and
the marginal probabilities. The online-EM calculates sufficient statistics over
blocks of 50 data points. Every 100 data points components and dependencies are
pruned and added. Components are pruned when the prior < 1

50k . Components
are added by probability p = (ncompmax − ncompmodel)/(2 · ncompmax). The
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learning rate is uniformly decreased from 1 to 0.01. Dependencies are removed
when the prior of the marginal distribution is larger than 0.5. Dependencies are
added at random when possible, thus not creating loops and not exceeding the
maximum number of parents.

In the experiments the performance is determined using different sizes of data
streams and different number of components. The number of components used
are: 5, 10, 15 and 20 components and the sizes are: 1.000, 10.000, 20.000, 30.000,
40.000, 50.000 data points. The data dimensionality is 10 or 20.
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Fig. 1. The performance of Bayesian networks, dependency trees and mixture models
using batch EM an on-line EM on 9 different data sets as a function of different data
sizes. The data sets have 10 dimensions and differed on the number of different values
per variable and the complexity of the underlying Bayesian network. The mixture
models contained 20 basis model components.

6 Results

In Figure 1. is shown the typical behavior of the different algorithms on the data
stream. We generated more data sets than shown, however these figures show
the typical behavior. The figure shows the results of the mixture models with 20
components. A common picture, except for batch EM, is, the more components
the better the performance. In case of batch-EM, the more components the
slower the improvement. The online-EM did not seem to suffer from this. The
batch EM-variant performed best on data streams with complexity of at least 3,
on which the on-line variant and Bayesian networks are comparable.

Whenever the cardinality of the variables was 10 the ’convergence’ of the
basic-EM was relatively slow. This seems to hold for all complexity data sets
with cardinality of 10. Both mixture models seem to perform relatively worst in
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Fig. 2. From left to right: 1. The number of components as a function of the size of
the data stream. The data is generated from a dependency tree. 2. The maximum and
mean number of correct dependencies per component in the case of 3 different data
streams. 3. The Log Likelihood as a function of a changing data stream as well the
standard deviation over 10 runs initialized by 10 different structures.

the case complexity 1. The online variant approaches the highest accuracy when
the cardinality is 5 and 10 and complexity is 1. This is due random search over
the dependencies.

In Figure 2.1. is shown the number of components as a function of the data
stream from data sets with complexity 1. There is a clear linear trend in the
number of components and the size of the data stream. Probably the priors of
the better fitting mixture components are growing faster than others.

In Figure 2.2. is shown the number of correctly estimated dependencies, we see
an large improvement when the complexity is 1. When the number of correct de-
pendencies is one, every basis component has the same dependency structure as
the underlying Bayesian network. We plotted the maximum and average number
of correct dependencies over the total number of basis models. The maximum
approaches almost 1, and the average to 75 percent correct.

In the second experiment the data distribution is changed abruptly at data
point 50.000. As we can see in Figure 2.3. the Log Likelihood drops and recovers.
The top line is the performance of a Bayesian network build on 50.000 data
points. The data is generated from Bayesian networks of complexity 2.

7 Conclusion and Future Work

We proposed a fast online-EM algorithm for the mixture of arbitrary Bayesian
networks. The method iteratively changes the structure of the basis components
in search of better structures. It outperforms the batch variant with respect to
speed and in some cases improves on accuracy. Our method is comparable to
the Bayesian network structure finding algorithm K2. When the dimensionality
increases the Bayesian network is outperforming both methods. Our method
outperforms the other methods with respect to speed in case the number of
components are of reasonable size. In case of dynamic data streams the online-
EM algorithm recovers from a change in the underlying data stream.
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Random structure does not always effectively search the space. If the space
grows the usefulness of random search will decrease. Thus, possible future work
is a more directed randomized search procedure at the same computational cost,
constraining the space of structures or using the Chow-Liu algorithm.
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