A Tree-Based Approach for
Frequent Pattern Mining from Uncertain Data

Carson Kai-Sang Leung*, Mark Anthony F. Mateo, and Dale A. Brajczuk

The University of Manitoba, Winnipeg, MB, Canada
{kleung, mfmateo, umbrajcz}@cs.umanitoba.ca

Abstract. Many frequent pattern mining algorithms find patterns from tradi-
tional transaction databases, in which the content of each transaction—namely,
items—is definitely known and precise. However, there are many real-life situ-
ations in which the content of transactions is uncertain. To deal with these sit-
uations, we propose a tree-based mining algorithm to efficiently find frequent
patterns from uncertain data, where each item in the transactions is associated
with an existential probability. Experimental results show the efficiency of our
proposed algorithm.

1 Introduction

Over the past decade, there have been numerous studies [TI21316I7/8OUTTIT2UT3IT4IT5]

on mining frequent patterns from precise data such as databases of market basket trans-
actions, web logs, and click streams. In these databases of precise data, users definitely
know whether an item (or an event) is present in, or is absent from, a transaction in the
databases. However, there are situations in which users are uncertain about the presence
or absence of some items or events [4I5/10]. For example, a physician may highly sus-
pect (but cannot guarantee) that a patient suffers from flu. The uncertainty of such sus-
picion can be expressed in terms of existential probability. So, in this uncertain database
of patient records, each transaction ¢; represents a visit to the physician’s office. Each
item within ¢; represents a potential disease, and is associated with an existential prob-
ability expressing the likelihood of a patient having that disease in ¢;. For instance, in
t;, the patient has an 80% likelihood of having the flu, and a 60% likelihood of having
a cold regardless of having the flu or not. With this notion, each item in a transaction ¢;
in traditional databases containing precise data can be viewed as an item with a 100%
likelihood of being present in ¢;.

Since there are many real-life situations in which data are uncertain, efficient al-
gorithms for mining uncertain data are in demand. To mine frequent patterns from
uncertain data, Chui et al. [4] proposed an algorithm called U-Apriori. Although they
also introduced a trimming strategy to reduce the number of candidates that need to be
counted, their algorithm is Apriori-based (i.e., relies on the candidate generate-and-test
paradigm). Hence, some natural questions to ask are: Can we avoid generating candi-
dates at all? Since tree-based algorithms for handling precise data [8/13] are usually
faster than their Apriori-based counterparts [[1l9]], is this also the case when handling

* Corresponding author.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 653-6611 2008.
(© Springer-Verlag Berlin Heidelberg 2008

654 C.K.-S. Leung, M.A.F. Mateo, and D.A. Brajczuk

uncertain data? In response to these questions, we did a feasibility study [10] on using
a tree for mining uncertain data. The study showed that the tree can be used for uncer-
tain data mining. Hence, in the current paper, we propose an efficient tree-based algo-
rithm for mining uncertain data. The key contributions of our work are (i) the proposal
of an effective tree structure—called a UF-tree—for capturing the content of trans-
actions consisting of uncertain data, (ii) the development of an efficient algorithm—
called UF-growth—for mining frequent patterns from the proposed tree, and (iii) two
improvements to the proposed UF-growth algorithm for mining frequent patterns from
the UF-tree. Experimental results in Section [3] show the effectiveness of our proposed
algorithm in mining frequent patterns from uncertain data.

This paper is organized as follows. The next section gives related work and back-
ground. In Section 3] we introduce our UF-growth algorithm for mining frequent pat-
terns from uncertain data. Improvements to this UF-growth algorithm are described in
Section Ml Section Bl shows experimental results. Finally, conclusions are presented in
Section[6l

2 Related Work and Background

Both the Apriori algorithm [1]] and the FP-growth algorithm [8]] were designed to handle
precise data—but not uncertain data. A key difference between precise and uncertain
data is that each transaction of the latter contains items and their existential probabil-
ities. The existential probability P(z,t;) of an item x in a transaction ¢; indicates the
likelihood of = being present in ¢,. Using the “possible world” interpretation of uncer-
tain data [43]], there are two possible worlds for an item x and a transaction ¢;: (i) W1
where x € t; and (ii) Wy where x & ;. Although it is uncertain which of these two
worlds be the true world, the probability of W; be the true world is P(x, ¢;) and that of
Wy is 1 — P(z,t;). To a further extent, there are many items in each of many transac-
tions in a transaction database TDB. Hence, the expected support of a pattern (or a set of
items) X in TDB can be computed by summing the support of X in possible world W
(while taking in account the probability of W; to be the true world) over all possible
worlds:

|TDB]
expSup(X) = Z [sup(X) in Wj x H (H P(x,t;) x H (1- P(y,ti)))] (D

J z€t; in W y&t; in W;

|TDB|
-y (H P(m,ti)>. @

1=1 zeX
With this setting, a pattern X is considered frequent if its expected support equals or
exceeds the user-specified support threshold minsup.

To handle uncertain data, Chui et al. [4] proposed the U-Apriori algorithm, which
is a modification of the Apriori algorithm. Specifically, instead of incrementing the
support counts of candidate patterns by their actual support, U-Apriori increments the
support counts of candidate patterns by their expected support (using Equation @)). As
indicated by Chui et al., U-Apriori suffers from the following problems: (i) Inherited
from the Apriori algorithm, U-Apriori does not scale well when handling large amounts

A Tree-Based Approach for Frequent Pattern Mining from Uncertain Data 655

of data because it also follows a levelwise generate-and-test framework. (ii) If the ex-
istential probabilities of most items within a pattern X are small, increments for each
transaction can be insignificantly small. Consequently, many candidates would not be
recognized as infrequent until most (if not all) transactions were processed.

3 Our Proposed UF-Growth Algorithm

In this section, we propose a tree-based algorithm, called UF-growth, for mining un-
certain data. The algorithm consists of two main operations: (i) the construction of
UF-trees and (ii) the mining of frequent patterns from UF-trees.

3.1 Construction of the UF-Tree

As with many tree-based mining algorithms, a key challenge here is how to represent
and store data—in this case, uncertain data—in a tree? For precise data, each item in a
database transaction TDB is implicitly associated with a definite certainty of its presence
in the transaction. In contrast, for uncertain data, each item is explicitly associated with
an existential probability ranging from a positive value close to O (indicating that the item
has an insignificantly low chance to be present in 7DB) to a value of 1 (indicating that the
item is definitely present). Moreover, the existential probability of the item can vary from
one transaction to another. Different items may have the same existential probability.

To effectively represent uncertain data, we propose a UF-tree which is a variant of
the FP-tree. Each node in our UF-tree stores (i) an item, (ii) its expected support, and
(iii) the number of occurrence of such expected support for such an item. Our proposed
UF-growth algorithm constructs the UF-tree as follows. It scans the database once and
accumulates the expected support of each item. Hence, it finds all frequent items (i.e.,
items having expected support > minsup). It sorts these frequent items in descending
order of accumulated expected support. The algorithm then scans the database the sec-
ond time and inserts each transaction into the UF-tree in a similar fashion as in the
construction of an FP-tree except for the following:

— The new transaction is merged with a child (or descendant) node of the root of the
UF-tree (at the highest support level) only if the same item and the same expected
support exist in both the transaction and the child (or descendant) nodes.

With such a tree construction process, our UF-tree possesses a nice property that the
occurrence count of a node is at least the sum of occurrence counts of all its children
nodes. See Example [[lfor an illustration on constructing a UF-tree.

Example 1. Consider the following transaction database T'D B consisting of uncertain
data:

Transactions Contents
t1 {a:0.9, d:0.72, e:§g=0.71875, f:0.8}
to {a:0.9, ¢:0.81, d:0.71875, €:0.72}
ts {b: g=0.875, c: ?z0.85714}
ta {a:0.9, d:0.72, €:0.71875}
ts {0:0.875, ¢:0.85714, d:0.05}

te {b:0.875, f:0.1}

656 C.K.-S. Leung, M.A.F. Mateo, and D.A. Brajczuk

/\

(a:0.9):3 (b:0.875):3
(c:0.81):1 (d:0.72):2 (c:0.85714):2
‘ ‘ ‘ (a:0.9):3
(d:0.71875):1 (e:0.71875):2 (d:0.05):1
‘ (d:0.71875):1 (d:0.72):2 (2:0.9):3
(0.72):1 0.72 0.71875 0.5175
(a) The UF-tree for T'DB (b) The UF-tree for (¢) The UF-tree for

{e}-projected DB {d, e}-projected DB

Fig. 1. The UF-trees

Here, each transaction contains items and their corresponding existential probability
(e.g., the existential probability of item a in transaction ¢; is 0.9).

Let the user-specified support threshold minsup be set to 1. The UF-tree can be con-
structed as follows. First, our UF-growth algorithm scans 7"D B once and accumulates
the expected support of each item. Hence, it finds all frequent items and sorts them in
descending order of (accumulated) expected support. Items a, b, ¢, d and e are frequent
(i.e., expected support of each of these items > minsup), with their corresponding ac-
cumulated expected support of 2.7, 2.625, 2.52429,2.20875 and 2.1575. Item f having
accumulated expected support of 0.9 < minsup is removed because it is infrequent.

Then, UF-growth scans T'D B the second time and inserts each transaction into the
UF-tree. The algorithm first inserts the content of ¢; into the tree, and results in a tree
branch {(a:0.9):1, (d:0.72):1, (e:0.71875):1). It then inserts the content of ¢ into the
UF-tree. Since the expected support of a in 5 is the same as the expected support of a
in an existing branch (i.e., the branch for ¢;), this node can be shared. So, UF-growth
increments the occurrence count for the tree node (a:0.9) to 2, and adds the remainder
of t5 as a child of the node (a:0.9):2. As a result, we get the tree branch ((a:0.9):2,
(¢:0.81):1, (d:0.71875):1, (€:0.72):1). Afterwards, UF-growth inserts the content of ¢3
as a new branch ((b:0.875):1, (¢:0.85714):1) because the node (b:0.875):1 cannot be
shared with the node (a:0.9):2. Remaining three transactions (¢4 to tg) are then inserted
into the UF-tree in a similar fashion. Consequently, at the end of the tree construction
process, we get the UF-tree shown in Fig.[[(a) capturing the content of the above T DB
of uncertain data. O

3.2 Mining of Frequent Patterns from the UF-Tree

Once the UF-tree is constructed, our UF-growth algorithm recursively mines frequent
patterns from this tree in a similar fashion as in the FP-growth algorithm except for the
following:

— Our UF-growth uses UF-trees (instead of FP-trees) for mining.
— When forming a UF-tree for the projected database for a pattern X, we need to
keep track of the expected support (in addition to the occurrence) of X.

A Tree-Based Approach for Frequent Pattern Mining from Uncertain Data 657

— When computing the expected support of an extension of a pattern X (say, X U{y}),
we need to multiply the expected support of y in a tree path by the expected support
of X.

See Example [2l for an illustration on how the UF-growth algorithm finds frequent pat-
terns from the UF-tree.

Example 2. Once the UF-tree for Example [[lis constructed, our proposed UF-growth
algorithm recursively mines frequent patterns from this tree with minsup=1 as fol-
lows. It starts with item e (with expSup({e}) = 2.1575). UF-growth extracts from
two tree paths—namely, (i) ((a:0.9), (¢:0.81), (d:0.71875)) occurs once with (e:0.72)
and (i) ((a:0.9), (d:0.72)) occurs twice with (e:0.71875)—and forms the {e}-projected
DB. Then, expSup({a,e}) = (1 x 0.72 x 0.9) + (2 x 0.71875 x 0.9) = 1.94175, and
expSup({d, e}) = (1 x 0.72 x 0.71875) + (2 x 0.71875 x 0.72) = 1.5525. So, both pat-
terns {a,e} and {d,e} are frequent. However, {c,e} is infrequent because
expSup({c,e}) = 1 x 0.72 x 0.81 < minsup. Thus, ¢ is removed from the {e}-
projected DB. The UF-tree for this {e}-projected DB is shown in Fig. [Ilb).

Then, the UF-growth algorithm extracts from the UF-tree for the {e}-projected DB
to form the {d, e}-projected DB, which consists of {a} (which represents the frequent
pattern {a, d, e}) with expSup({a,d,e}) =3 x 0.5175 x 0.9 = 1.39725, where 0.5175
=0.71875x0.72 represents expSup({d, e}) in this projected DB. The UF-tree for this
{d, e}-projected DB is shown in Fig.[Ilc).

Next, UF-growth deals with items d, ¢ and b (and finds all frequent supersets of {d},
{c} and {b}) in a similar fashion. Consequently, by applying our proposed UF-growth
algorithm to the UF-tree that captures the content of uncertain data in Example [Tl we
find frequent patterns {a}, {a, d}, {a,d, e}, {a, e}, {b}, {b, c},{c},{d},{d, e} and {e}.

O

4 Improvements to Our Proposed UF-Growth Algorithm

The UF-tree above may appear to require a large amount of memory. Due to nature of
uncertain data, the UF-tree is often larger than the FP-tree. This is because the FP-tree
merges nodes sharing the same item whereas the UF-tree merges nodes sharing both
the same item and the same expected support, where the expected support is in the
domain of real numbers in the range of (0,1]—which can be infinitely many. Hence, the
chance of sharing a path in the FP-tree is higher than that in the UF-tree. However, it
is important to note that, even in the worst case, the number of nodes in a UF-tree is
the same as the sum of the number of items in all transactions in the original database
of uncertain data. Moreover, thanks to advances in modern technology, we are able to
make the same realistic assumption as in many studies that we have enough
main memory space in the sense that the trees can fit into the memory.

A natural question to ask is: Can we reduce the memory consumption? In this section,
we discuss how we improve our proposed UF-growth algorithm.

Improvement 1. To reduce the memory consumption and to increase the chance
of path sharing, we discretize and round the expected support of each tree node up
to k decimal places (e.g., 2 decimal places). By so doing, we reduce the potentially
infinite number of possible expected support values—in the domain of real numbers in

658 C.K.-S. Leung, M.A.F. Mateo, and D.A. Brajczuk

T

(a:0.90):3 (b:0.88):3

(c:0.81):1 (d:0.72):2 (c:0.86):2

(d:0.72):1 (e:0.72):2 (d:0.05):1

‘ (a:0.90):3
(e:0.72):1
0.52

(a) The improved UF-tree for 'DB (b) The improved UF-tree for {e}-projected DB

Fig. 2. The improved UF-trees (with Improvement 1)

the range of (0,1]—to a maximum of 10* possible values (e.g., at most 100 possible
expected support values ranging from 0.01 to 1.00 inclusive when k& = 2). Thus, sizes
of the UF-trees for the original 7"D B and subsequent projected databases are reduced.
Fig.2lshows some of these smaller UF-trees when Improvement 1 is applied.

Improvement 2. Inspired by the idea of the co-occurrence frequent-itemset tree [6],
we modify and improve the mining procedure in our proposed UF-growth algorithm so
that UF-trees are built only for the first two levels (i.e., for the original 7D B and for
each singleton pattern). In other words, the improved UF-growth does nof need to build
subsequent UF-trees for any non-singleton patterns (e.g., not need to build a UF-tree
for the {d, e}-projected database). Specifically, the improved UF-growth systematically
extracts relevant paths from the UF-tree built for each singleton, enumerates all subsets
of each extracted tree path, summing the expected support of patterns extracted from
these paths to find frequent patterns. See Example [3 for an illustration on how the
improved UF-growth algorithm finds frequent patterns from the UF-tree.

Example 3. Similar to Example [2| the improved UF-growth builds a UF-tree for the
original TDB (as illustrated in Example [I)), finds frequent singleton patterns (e.g.,
{a},{b},{c},{d} and {e}), forms a projected DB and builds a UF-tree for each of
these singletons starting with singleton {e}. From the {e}-projected DB, the improved
UF-growth does nor build any subsequent trees such as {d, e}-projected DB. Instead,
the algorithm first extracts the tree path ((a:0.9):3, (d:0.71875):1) that occurs once with
(e:0.72), enumerates all its subsets and obtains {a, e}, {a,d, e} & {d, e} (with their
expected supports equal 0.648, 0.46575 & 0.5175 so far), and then decrements the
occurrence counts of all nodes in this path. The algorithm then extracts the tree path
((a:0.9):2, (d:0.72):2) that occurs twice with (e:0.71875), enumerates all its subsets
and obtains {a, e}, {a,d, e} & {d, e} (with their accumulative expected supports equal
1.94175,1.39725 & 1.5525), and then decrements the occurrence counts of all nodes in
this path. Afterwards, all the nodes have occurrence counts equal to 0. We find frequent
patterns {a, e}, {a,d,e} & {d,e} and their expected supports, directly from the UF-
tree representing the {e}-projected DB and without forming any subsequent UF-trees
for non-singletons. Our improved UF-growth applies this technique to other UF-trees
for singletons and finds other frequent patterns in a similar fashion. As a result, it finds
the same set of frequent patterns as in Example 2lbut requires less memory space. O

A Tree-Based Approach for Frequent Pattern Mining from Uncertain Data 659

Note that Improvement 2 can be applied independently or in conjunction with Improve-
ment 1 (i.e., rounding expected support values).

5 Experimental Results

We conducted the following experiments using various databases including the IBM
synthetic datasets [1]], real-life databases from the UC Irvine Machine Learning De-
pository, as well as datasets from the Frequent Itemset Mining Implementation (FIMI)
Dataset Repository. The experimental results were consistent. Hence, for lack of space,
we only show below the experimental results on the IBM datasets, which contain 100k
records with an average transaction length of 10 items and a domain of 1,000 items. We
assigned an existential probability from the range (0,1] to each item in each transac-
tion. All experiments were run in a time-sharing environment on a 1 GHz machine. The
reported results are based on the average of multiple runs. Runtime includes CPU and
I/Os; it includes the time for both tree construction and frequent pattern mining steps.
In the experiments, we mainly evaluated the efficiency of the proposed algorithm.

First, we tested the effect of minsup. Theoretically, (i) the runtime decreases when
minsup increases and (ii) our UF-growth algorithm (which does not rely on the candi-
date generate-and-test paradigm) requires much less runtime than the U-Apriori algo-
rithm (which relies on the candidate generation process). Experimental results (as
shown in Fig.[3la)) confirmed that, when minsup increased, fewer patterns had expected
support > minsup, and thus shorter runtimes were required. Moreover, our tree-based
mining algorithm (UF-growth) outperformed its Apriori-based counterpart (U-Apriori).

Second, we tested scalability of our proposed UF-growth algorithm. Theoretically,
UF-growth should be scalable with respect to the number of transactions. Experimental
results (as shown in Fig. [B(b)) confirmed that mining with our proposed algorithm had
linear scalability.

Third, we tested the effect of the distribution of item existential probability. The-
oretically, when items take on many different existential probability values, UF-trees
(for the original T'D B, projected databases for singletons as well as for non-singletons)
become larger and times for both UF-tree construction and frequent pattern mining
become longer. On the other hand, when items take on a few unique existential prob-
ability values, the runtime becomes shorter. This is confirmed by experimental results
(as shown in Fig.[Blc)). Note that we can reduce the number of unique existential prob-
ability values by applying Improvement 1.

Fourth, we measured the number of nodes in UF-trees. Theoretically, our proposed
UF-growth described in Section[3]builds UF-trees for the original 7D B and projected
databases for singletons as well as for non-singletons. The total number of nodes in
the UF-tree representing the original 7D B is no more than the total number of items
in all transactions in T'DB. The size of this tree, as well as other UF-trees, built for
UF-growth with Improvement 1 is the same—and usually smaller than—that without
improvement. Moreover, UF-growth with Improvement 2 builds only UF-trees repre-
senting the original 7'D B and projected databases for singletons; it does not build any
UF-trees representing projected databases for non-singleton patterns. See Table [Tl and
Fig. B(d). The graph shows the reduction in tree size when k=2 decimal places were

660 C.K.-S. Leung, M.A.F. Mateo, and D.A. Brajczuk

Runtime vs. minsup. Runtime vs. #transactions

U-Aprion —+— U-growth ——'

conds)

Runtime (n se

o 005 01 03 035 04 10 20 30 60 70 &0 % 100

015 02 025 w0 50
Minimum supportthreshald (in percentage) Size of database (in thousand ransactons)

(a) Runtime vs. minsup (b) Runtime vs. DB size

Runti

probailty

12000

o 10000

all UF-re

8000

6000

number of nodes in

4000

Runtime of UF-growth (in seconds)

2000

L L L L L L . i Et
o 005 01 015 02 025 [001 o015 002 0055 003

004 0035 005
Minimum support threshold (in percentage) Minimum support threshald (in percentage)

(c) Runtime vs. existential probability (d) Reduction in tree size

Fig. 3. Experimental results on our proposed UF-growth algorithm

Table 1. Comparison on the sizes of UF-trees for variants of the UF-growth algorithm

UF-trees for... UF-growth w/Improvement 1 w/ Improvement 2 w/ Improvements 1 & 2

TDB #nodestpp < #nodestpp #nodesTpB < #nodestpp
singletons #nodesing < #nodessing #nodessing < #nodessing
non-singletons #nodesy s < #nodesn s 0 0

used. More savings were observed when a lower k (e.g., k=1 decimal places) was used
for Improvement 1.

6 Conclusions

Most existing algorithms mine frequent patterns from traditional transaction databases
that contain precise data. However, there are many real-life situations in which one
needs to deal with uncertain data. To handle these situations, we proposed (i) the UF-tree
to effectively capture the content of transaction databases consisting of uncertain data
(in which each item in every transaction is associated with an existential probability)
and (ii) a tree-based mining algorithm called UF-growth to efficiently find frequent
patterns from UF-trees. When compared with U-Apriori, our proposed UF-growth al-
gorithm is superior in performance. In addition, we also presented two improvements
(which can be applied independently or simultaneously) to UF-growth. The rounding

A Tree-Based Approach for Frequent Pattern Mining from Uncertain Data 661

of expected support values and the elimination of UF-trees for projected databases for
non-singleton patterns both contribute to the reduction of the amount of required mem-
ory and further speed-up of the mining process. Hence, with our tree-based approach,
users can mine frequent patterns from uncertain data effectively.

Acknowledgement. This project is partially supported by NSERC (Canada) in the form
of research grants.

References

10.

11.

12.

13.

14.

15.

. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. VLDB, pp.

487-499 (1994)

. Bonchi, F., Lucchese, C.: Pushing tougher constraints in frequent pattern mining. In: Ho,

T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 114-124.
Springer, Heidelberg (2005)

. Cheung, W., Zaiane, O.R.: Incremental mining of frequent patterns without candidate gener-

ation or support constraint. In: Proc. IDEAS, pp. 111-116 (2003)

. Chui, C.-K., Kao, B., Hung, E.: Mining frequent itemsets from uncertain data. In: Zhou, Z.-

H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 47-58. Springer,
Heidelberg (2007)

. Dai, X., Yiu, M.L., et al.: Probabilistic spatial queries on existentially uncertain data. In:

Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp.
400-417. Springer, Heidelberg (2005)

. El-Hajj, M., Zaiane, O.R.: COFI-tree mining: a new approach to pattern growth with reduced

candidacy generation. In: Proc. FIMI (2003)

. Giannella, C., Han, J., et al.: Mining frequent patterns in data streams at multiple time

granularities. In: Data Mining: Next Generation Challenges and Future Directions, ch. 6.
AAAI/MIT Press (2004)

. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proc.

SIGMOD, pp. 1-12 (2000)

. Lakshmanan, L.V.S., Leung, C.K.-S., Ng, R.T.: Efficient dynamic mining of constrained fre-

quent sets. ACM TODS 28(4), 337-389 (2003)

Leung, C.K.-S., Carmichael, C.L., Hao, B.: Efficient mining of frequent patterns from uncer-
tain data. In: Proc. IEEE ICDM Workshops, pp. 489—494 (2007)

Leung, C.K.-S., Irani, P.P., Carmichael, C.L.: FIsViz: A frequent itemset visualizer. In:
Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI),
vol. 5012, pp. 644—652. Springer, Heidelberg (2008)

Leung, C.K.-S., Khan, Q.I.: DSTree: a tree structure for the mining of frequent sets from data
streams. In: Proc. IEEE ICDM, pp. 928-932 (2006)

Leung, C.K.-S., Lakshmanan, L.V.S., Ng, R.T.: Exploiting succinct constraints using FP-
trees. SIGKDD Explorations 4(1), 40—49 (2002)

Ng, R.T., Lakshmanan, L.V.S., et al.: Exploratory mining and pruning optimizations of con-
strained associations Rules. In: Proc. SIGMOD, pp. 13-24 (1998)

Pei, J., Han, J., Mao, R.: CLOSET: an efficient algorithm for mining frequent closed itemsets.
In: Proc. SIGMOD Workshop on DMKD, pp. 21-30 (2000)

	A Tree-Based Approach for Frequent Pattern Mining from Uncertain Data
	Introduction
	Related Work and Background
	Our Proposed UF-Growth Algorithm
	Construction of the UF-Tree
	Mining of Frequent Patterns from the UF-Tree

	Improvements to Our Proposed UF-Growth Algorithm
	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

