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Abstract. Classification has been widely studied and successfully employed in
various application domains. In multidimensional noisy settings, however, clas-
sification accuracy may be unsatisfactory. Locally irrelevant attributes often oc-
clude class-relevant information. A global reduction to relevant attributes is often
infeasible, as relevance of attributes is not necessarily a globally uniform prop-
erty. In a current project with an airport scheduling software company, locally
varying attributes in the data indicate whether flights will be on time, delayed or
ahead of schedule. To detect locally relevant information, we propose combining
classification with subspace clustering (SubClass). Subspace clustering aims at
detecting clusters in arbitrary subspaces of the attributes. It has proved to work
well in multidimensional and noisy domains. However, it does not utilize class la-
bel information and thus does not necessarily provide appropriate groupings for
classification. We propose incorporating class label information into subspace
search. As a result we obtain locally relevant attribute combinations for classi-
fication. We present the SubClass classifier that successfully exploits classify-
ing subspace cluster information. Experiments on both synthetic and real world
datasets demonstrate that classification accuracy is clearly improved for noisy
multidimensional settings.

1 Introduction

Data produced in application domains like life sciences, meteorology, telecommuni-
cation, and multimedia entertainment is rapidly growing, increasing the demand for
data mining techniques which help users generate knowledge from data. Many applica-
tions require incoming data to be classified according to models derived from labeled
historic data. In a current project, we investigate flight delays for airport scheduling
purposes. The significance of flight delays can e.g. be studied in reports of the Bureau
of Transportation Statistics in the U.S. [7] and the Central Office for Delay Analysis of
Eurocontrol [11]. Extensive flight data is recorded by flight information systems at all
major airports. Using such databases, we classify flights as on time, delayed or ahead
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of schedule. This classification is essential in refining robust scheduling methods for
airport resources and ground staff (like the one presented in [6]).

For classification, numerous techniques exist. For our noisy database that contains
nominal attributes, numerical classifiers are not applicable. Neural networks or support
vector machines do not allow users to easily understand the decision model for flight
classification [20,17]. Bayes classifiers, decision trees, and nearest neighbor classifiers
provide explanatory information, yet assume globally uniform relevance of attributes
[20,18,3]. It has been shown that each type of classifier has its merit; there is no inherent
superiority of any classifier [10]. However, classification is difficult in the presence of
noise. Moreover, patterns may not show across all data attributes for all classes to be
learned. In multidimensional data only a subgroup of attributes may be relevant for
classification. This relevance is not globally uniform, but differs from class to class and
from instance to instance.

We have validated the assumption of local relevance of attributes for the flight classi-
fication project by training several types of classifiers. When using only attributes which
are determined as relevant by standard statistical tests, classification accuracy actually
drops. This suggests that globally irrelevant attributes are nonetheless locally relevant
for individual patterns. We therefore target at grouping flights with similar characteris-
tics and identifying structure on the attribute level. In the flight domain, several aspects
support the locality of flight delay structures. As an example, passenger figures may
only influence departure delays when the aircraft is parked at a remote stand, i.e. when
bus transportation is required. At some times of the day, these effects may be super-
posed by other factors like runway congestion. Weather conditions and other influences
not recorded in the data cause significant noise.

Recent classification approaches like [9] use local weighting in nearest neighbor
classification to overcome this drawback. Combing relevant attributes hierarchically a
subspace is constructed for nearest neighbor classification. However, locally adaptive
nearest neighbor methods do not consider the correlation of different attribute sets.
Association rules have been extended to classification [16]. Recent approaches adopt
subspace clustering methods to identify relevant subspaces for rule based classification
[21].

In this work, we propose a nearest neighbor classifier which directly uses the result
of our new subspace clustering method. Note that our approach is different from semi-
supervised learning where unlabeled data is used for training [22]. Our approach as-
sumes class labels that are directly incorporated into subspace clustering. Clustering is
helpful for understanding the overall structure of a data set. Its aim is automatic group-
ing of the data in absence of any known class labels in historic data [13]. Since class
labels are not known in advance (“unsupervised learning”), they are not used to classify
according to given groupings (“supervised learning”). Hence clustering is not appropri-
ate for classification purposes by its very nature [13]. However, the structures detected
by clustering may be helpful for detecting local relevance of attributes. For noisy and
high-dimensional data, clustering is often infeasible as clusters are hidden by irrelevant
attributes. Different attribute combinations might show different clustering structures,
thus the aim of subspace clustering is to detect clusters in arbitrary projections (“sub-
spaces”) of the attributes. As the number of subspaces is exponential in the number of



42 I. Assent et al.

attributes, most approaches try to prune the subspace search space [1,8,4]. Subspace
clustering has been shown to successfully detect locally relevant attribute combinations
[15,5].

We propose combining both worlds, supervised learning and unsupervised learning
by incorporating class label information into subspace search and clustering. Classifi-
cation based on these classifying subspace clusters exploits both class and local corre-
lation information. The flight classification problem is used to evaluate our model. Its
applicability, however, goes beyond this scenario. In fact, there are many more applica-
tion areas where classification has to handle noisy multidimensional data with locally
relevant attributes.

This paper is structured as follows: we define interesting subspaces for subspace
classification in Section 2.1. Classifying subspace clusters and the overall classifica-
tion scheme are discussed in Sections 2.2 and 2.3, respectively. Algorithmic concepts
are presented in Section 3. The proposed method is evaluated in the experiments in
Section 4 on both synthetic and flight data, before concluding the paper.

2 Subspace Classification

Subspace clustering is a recent research area which tries to detect local structures in the
presence of noise or high-dimensional data where meaningful clusters can no longer
be detected in all attributes [1,8,15]. As searching all possible subspaces is usually in-
tractable, subspace clustering algorithms try to focus on promising subspace regions.
The challenge is a suitable notion of interestingness for subspaces to find all relevant
clusters. Subspace clustering is a technique well-suited to identify relevant regions of
historic data, however, it is not suited for classification ”as is”. Our classification ap-
proach is capable of exploiting local patterns in the data for classification. This requires
detecting subspaces and subspace clusters that are also based on class structure. Our
SubClass model thus comprises three steps:

– Step 1: interesting subspaces for classifying clusters: Section 2.1
– Step 2: classifying subspace clusters: Section 2.2
– Step 3: a classification scheme: Section 2.3.

2.1 Step 1: Interesting Subspaces

Interesting subspaces for classifying clusters exhibit a clustering structure in their at-
tributes as well as coherent class label information. Such a structure is reflected by
homogeneity in the attribute values or class labels of that subspace. Homogeneity can
be measured using Shannon Entropy [19], or entropy for short. From an information
theoretic perspective, Shannon entropy is the minimum number of bits required for en-
coding information. More frequently occurring events are encoded with fewer bits than
less frequent ones. The sum over logarithmic probabilities weighted by their probability,
measures the amount of information, i.e. the heterogeneity of the data.
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Definition 1. Shannon Entropy. Given a random variable X and its possible events
v1, .., vm the Shannon Entropy H(X) is defined as:

H(X) = −
m∑

i=1

p(vi) · log2 p(vi)

Transferring the entropy notion to the clustering or classification domain, an attribute
can be seen as a random variable whose domain is the set of all possible events. In
case of continuous domains, the entropy requires discretization of attributes. Entropy
according to a set of attributes with respect to a set of class labels is then:

Definition 2. Attribute Entropy. Given a set of attributes X1, . . . , Xm, their possible
values v1, . . . , vm, and class labels C = {c1, . . . , cn}, attribute entropy is defined as:

H(X1, . . . , Xm|C) = −
∑

ci∈C

∑

v1∈X1

· · ·
∑

vm∈Xm

p(ci) · H(X1, . . . , Xm|C = ci)

Attribute entropy is thus the sum over all conditional attribute entropy value combina-
tions weighted by the class label probabilities. It is a measure for the clustering tendency
for all class labels ci of a subspace in terms of the attributes. To measure the cluster-
ing tendency in terms of individual class labels, we define class entropy according to
conditional entropy H(C|X) (as e.g. in [18]).

Definition 3. Class Entropy. Given a set of attributes X1, . . . , Xm, their possible val-
ues v1, . . . , vm, and class label C the conditional entropy of a segmentation along these
attribute values is defined as:

H(C|X1, . . . , Xm)= −
∑

v1∈X1

. . .
∑

vm∈Xm

p(v1, .., vm) ·H(C|X1 = v1, . . . , Xm = vm)

Class entropy is thus the sum over all conditional class entropy value combinations for
individual class labels C. It corresponds to investigating the data for individual classes
instead of aggregated as for attribute entropy.

We are interested in subspaces that exhibit both a distinct class structure as well as
a clear clustering structure. Since entropy measures homogeneity, we are interested in
low entropy values that reflect a non-uniform distribution of class or attribute values.

However, comparing subspaces using entropy is clearly biased with respect to the
number of attributes. Subspaces with more attributes typically have lower entropy val-
ues. This is due to the fact that with increasing attribute number, objects tend to be less
similar: each attribute contributes potential dissimilarity [5]. Thus, we have to normalize
entropy with respect to the number of attributes. Normalization to a range of [0,1] can be
achieved by taking the maximum possible entropy value for a given number of attributes
into account. Maximum entropy means all values are equally likely, i.e. a uniform distri-
bution. Huniform(X1, .., Xm|C) for d = |X1 × · · · ×Xm| possible attribute combina-
tions is determined as: Huniform(X1, .., Xm|C) = −d· 1d ·log2

1
d = − log2

1
d = log2 d,

since in uniform distribution, each attribute value occurs 1/d times. For larger numbers
of attributes, the theoretical upper bound of log2 d cannot be reached, as the actual num-
ber of instances is smaller than the number of possible attribute value combinations d.
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To account for this, we the number of instances |I| is used in this case:

HN (X1, .., Xm|C) =
H(X1, .., Xm|C)

min{log2|I|, log2 d}
In a similar spirit, we use the overall class distribution to normalize class entropy:

HN (C|X1, .., Xm) =
H(C|X1, .., Xm)

H(C)

Since those subspaces are interesting that cover both aspects, we define interestingness
as a convex combination of attribute and class entropy, provided that each of the two is
within reasonable bounds:

Definition 4. Subspace Interestingness. Given attributes X1, . . . , Xm, a class
attribute C, and a weighting factor 0 ≤ w ≤ 1, a subspace is interesting with respect
to thresholds β, λ iff:

w · HN (X1, .., Xm|C) + (1 − w) · HN (C|X1, .., Xm) ≤ β

∧ HN (X1, .., Xm|C) ≤ λ ∧ HN (C|X1, .., Xm) ≤ λ

Thus, a subspace is interesting for subspace classification if it shows low normalized
class and attribute entropy as an indication of class and cluster structure. w allows as-
signing different weights to these two aspects for different applications, while λ is set
to fairly relaxed threshold values to ensure that both aspects fulfill minimum entropy
requirements.

2.2 Step 2: Classifying Subspace Clusters

Having defined interesting subspaces, the next step is detecting classifying subspace
clusters. On discretized data, clusters can be defined as frequent attribute value com-
binations. To incorporate class information, these groupings should be homogeneous
with respect to class label. We defined the absolute frequency

AbsFreq(v1, . . . , vm) = |{o, o|S = (v1, . . . , vm)|

as the number of objects o which exhibit the attribute values (v1, . . . , vm) in subspace
S (projection o|S contains those attribute values vi from o where Xi ∈ S).

To ensure that non-trivial clusters are mined, we normalize frequency with respect
to the expected frequency of uniformly distributed subspaces. The expected frequency

ExpFreq(v1, . . . , vm) = AbsFreq(v1, . . . , vm) ∗ d/|I|

is the number of cluster objects in comparison to the number of instances |I| per at-
tribute combination under uniform distribution. Classifying subspace clusters exceed
minimum frequency for both absolute and relative (expected) frequency. Note that min-
imum absolute frequency simply ensures that a cluster exceeds a minimum size even
for very small expected frequency values:
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Definition 5. Classifying Subspace Cluster. Given a subspace S of attributes X1, . . . ,
Xm, a classifying subspace cluster SC with respect to attribute values v1, . . . , vm,
minimum frequency thresholds φ1, φ2, and maximum entropy γ is defined as follows:

– HN (C|X1 = v1, . . . , Xm = vm) ≤ γ
– AbsFreq(v1, . . . , vm) ≥ φ1

– ExpFreq(v1, . . . , vm) ≥ φ2

Classifying subspace clusters have low normalized class entropy, as well as high fre-
quency in terms of attribute values. Thus, they are homogeneous in terms of class and
show local attribute correlations.

2.3 Step 3: Classification

Classification of a given object o is based on the class label distribution of similar clas-
sifying subspace clusters. For nominal values as they occur in our flight data, an object
o is typically contained in several subspace clusters and similarity is reduced to con-
tainment. Let CSC(o) = {SCi|vk = ok∀vk ∈ SCi} denote the set of all classifying
subspace clusters containing object o. Simply assigning the majority class label from
this set CSC(o) would be biased with respect to very large and redundant subspace
clusters, where redundancy means similar clusters in slightly varying projections [5].
We therefore propose an iterative procedure that takes the information gain into ac-
count to build the decision set DSk(o).

Just as in the subspace clustering step we measure class homogeneity using the con-
ditional class entropy. Starting with an empty decision set and apriori knowledge about
class distribution H(C) we select up to k subspace clusters with maximal information
gain on the class label as long as more than φ1 objects are contained in the decision
space, i.e. the projection to the union of dimensions of the subspace clusters in the
decision set.

Definition 6. Classification. Given a dataset D, parameter k, an object o = (o1, . . . ,
od) is classified to the majority class label of decision set DSk. DSk is iteratively
constructed from DS0 = ∅ by selecting the subspace cluster SCj ∈ CSC(o) which
maximizes the information gain about the class label:

DSj =DSj−1 ∪SCj , SCj =

{
argmax

SCi∈CSC(o)

{H(C|DSj−1) − H(C|DSj−1 ∪ SCi)}
}

under the constraints that the decision space contains at least φ1 objects:

|{v ∈ D, v|DSk
= o|DSk

}| ≥ φ1

and that the information gain is positive

H(C|DSj−1) − H(C|DSj−1 ∪ SCi) > 0

Hence, the decision set of an object o is created by choosing those k subspace clusters
containing o that provide most information on the class label, as long as more than a
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minimum number of objects are in the decision space. o is then classified according to
the majority in the decision set DSk. The decision set is then the set of locally relevant
attributes that were used to classify object o. The attributes in the decision set are helpful
for users wishing to understand the information that led to classification.

3 Algorithmic Concept

Our algorithmic concept focuses on step 1 that is the computationally most complex.
A simple brute-force search would require evaluating all 2N subspaces which is not
acceptable for high dimensionality N . We thus propose lossless pruning of subspaces
based on two entropy monotonicities.

Theorem 1. Upward Monotony of the Class Entropy. Given a set of m attributes,
subspace S = {X1, .., Xm}, e ∈ IR+ and T ⊆ S, the class entropy in subspace T is
less than or at most equal to the class entropy of its superspace S:

H(C|T ) < e ⇒ H(C|S) < e

Proof. The theorem follows immediately from H(X |Xi, Xj) ≤ H(X |Xi) [12].

This theorem states that the class entropy decreases monotonically with growing num-
ber of attributes. Conversely, attribute entropy increases monotonically with the number
of attributes.

Theorem 2. Downward Monotony of the Attribute Entropy. Given a set of m at-
tributes, subspace S = {X1, .., Xm}, e ∈ IR+ and T ⊆ S, the attribute entropy in
subspace T is greater than or at most equal to the class entropy of its superspace S:

H(S|C) < e ⇒ H(T |C) < e

Proof. The theorem follows immediately from H(Xi, Xj |C) ≥ H(Xi|C) [12].

We exploit monotonicity by pruning

– all those subspaces T whose superspaces S ⊃ T fail the class entropy threshold.
This is correct since the normalization factor H(C) is independent of the subspace.

– Prune all those superspaces T whose subspaces S ⊂ T fail the attribute entropy
threshold if log2|I| ≥ log2|S|. This is correct since the normalization factor is
independent of the subspace if min{log2|I|, log2|S|} = log2|I|.

Our proposed algorithm alternately determines lower dimensional and higher dimen-
sional one-sided homogeneous subspaces, i.e. subspaces that are homogeneous w.r.t. to
class or attribute entropy, respectively. In each step new candidates are created from the
set of one-sided homogeneous subspaces mined in the last step.

Figure 1 illustrates pruning in a subspace lattice of four attributes. The solid line is
the boundary for pruning according to attribute entropy and the dashed line according to
class entropy. Each subspace below the attribute boundary and above the class bound-
ary is homogeneous with respect to the entropy considered. The subspaces between
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Fig. 1. Lattice of Subspaces and their projections used for up- and downward pruning

both boundaries are interesting subspace candidates, whose combined entropy has to be
computed in the next step.

For the bottom up case, the apriori property, originally from association rule mining,
can be used to create new candidates [2,8,15]. Following the apriori approach, we join
two attribute homogeneous subspaces of size m with identical prefixes (e.g. in lexi-
cographic ordering) to create a candidate subspace of size m + 1. After this, each new
candidate is checked for entropy validity, i.e. if all of its possible subspace of cardinality
m are contained in the set of attribute homogeneous candidate subspaces.

We suggest a similar method for top down candidate generation using class mono-
tonicity. From the set of class homogeneous subspaces of dimensionality m, we gener-
ate all subspace candidates of dimensionality m− 1. We develop a method that ensures
that each subspace candidate is only generated once. Based on the lexicographic order,
our method uniquely generates a subspace of dimensionality m−1 from its smallest su-
perspace. Note that this guarantees that all candidates but no superfluous candidates are
generated (see example below). After this, just as with apriori, we check whether all su-
perspaces containing the newly generated candidates are class homogeneous subspaces.
Otherwise the new generated subspace is removed from the candidate set.

X1X2X3 X1X2X4 X2X3X4

X1X2 X1X3 X1X4 X2X3 X2X4

Fig. 2. Example top down generation

Example. Assume four attributes X1, . . . , X4 from the previous step subspaces
X1X2X3, X1X2X4, and X2X3X4 that satisfy the class entropy criterion. In order
to generate candidates, we iterate over these subspaces in lexicographic order. The first
three-dimensional subspace X1X2X3 generates the two-dimensional subspaces X1X2

(drop X3), X1X3 (drop X2), X2X3 (drop X1). Next, X1X2X4 generates X1X4 and
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X2X4. X1X2 is not generated, because dropping X4 is not possible, as it is preceded
by X3 which is not contained in this subspace. The last three-dimensional subspace
X2X3X4 does not generate any two-dimensional subspace since the leading X1 is not
contained; its subsets X2X3 and X2X4 have been generated by other three- dimen-
sional subspaces. After candidate generation, we check their respective supersets. For
example, for X1X2, its supersets X1X2X3 and X1X2X4 exist. For X1X3, its superset
X1X2X3 exists, but X1X3X4 does not, so it is removed from further consideration
following monotony pruning. Likewise, X1X4 is removed as X1X3X4 is missing, but
X2X3 and X2X4 are kept.

As we use two entropies, one with downward, one with upward pruning, subspaces
may need to be considered twice. Minimizing computations is thus a trade-off. Fig-
ure 3 illustrates these effects. A missing candidate in SDown (e.g. X1X2) means that
this candidate has an attribute entropy above β. According to the attribute monotony,
superspaces (e.g. X1X2X3) have an attribute entropy above β and thus the combined
entropy is also greater than β. Even though the subspace could be pruned according
to combined entropy, it is still required for valid class entropy candidate generation.
There is thus a trade off between avoiding computations and reducing the search space

X1X2 X1X3 X2X3

X1X2X3
Class-

Entropy
Attribute-
Entropy

X1X2 X1X3 X2X3

X1X2X3

B
ot

to
m

 U
p

Top D
ow

n

Combined 
Entropy

+

Fig. 3. Pruning of subspace X1X2X3

by pruning high entropy subspaces. A good heuristic is to evaluate the entropy of those
subspaces for which larger subspaces already had a high entropy. Randomly picking
subspaces for additional evaluation also performs quite well in practice.

If the bottom up approach has not pruned the investigated subspace, the top down
approach computes the entropy of the subspace. If the weighted normalized entropy is
below β the subspaces is added to the result set and marked as one-sided homogeneous.
The algorithm finally computes the combined entropy of all subspaces for which both
subspaces are marked one-sided homogeneous in the result sets.

Once subspaces have been evaluated for step 1, the most complex algorithmic task
has been solved. Having reduced the potentially exponential number of subspaces to the
interesting ones, the actual clustering (step 2) is performed for each of these subspaces.
This is done by computing the frequency and class entropy for all attribute value combi-
nations in these subspaces. The resulting classifying subspace clusters then provide the
model that is used for the actual classification (step 3). For incoming objects, compute
the most similar classifying subspace clusters according to relative Hamming distance.
If tied, compute reverse class entropy. The decision is then based on their class label
distribution.
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4 Experiments

Experiments were run on both synthetic and real world data. Synthetic data is used to
show the correctness of our approach. Local patterns are hidden in a data set of 7.000
objects and eight attributes. As background noise, each attribute of the synthetic data
set is uniformly distributed over ten values. On top of this, 16 different local patterns
(subspace clusters) with different dimensionalities and different numbers of objects are
hidden in the data set. Each local pattern contains two or three class labels among which
one class label is dominating. We randomly picked 7.000 objects for training and 1.000
objects for testing.

The flight data contains historic data from a large European airport. For a three-
month period, we trained the classifier on arrivals of two consecutive months and tested
on the following month. Outliers with delays outside [-60, 120] minutes have been elim-
inated. In total, 11.072 flights have been used for training and 5.720 flights for testing.
Each flight has a total of 13 attributes, including e.g. the airline, flight number, aircraft
type, routing, and the scheduled arrival time within the day. The class labels are ”ahead
of schedule”, ”on time” and ”delayed”. Finally we use two well-known real world data
sets from the UCI KDD archive (Glass and Iris [14]), as a general benchmark.

As mentioned before, preliminary experiments on the flight data indicate that no
global relevance of attributes exist. Moreover, the data is inherently noisy, and impor-
tant influences like weather conditions are not collected from scheduling. For realistic
testing as in practical application, classifiers can only draw from existing attributes.
Missing or not collected parameters are not available for training or testing neither in
our experiments nor during the actual scheduling process.

We have conducted prior experiments to evaluate the effect of φ and γ for minimum
frequency and maximum entropy thresholds, respectively. For each data set we used a
cross validation to chose φ1 (absolute frequency), φ2 (relative frequency) and γ. For
λ we have chosen 0.9. This value corresponds to a rather relaxed setting as we only
want to remove completely inhomogeneous subspaces from consideration. To restrict
the search space β can be set to a low value.

In our first experiments we develop a heuristic to set up reasonable parameters for the
threshold β of the interestingness and the weight w of the class and attribute entropy,
respectively.

Figure 4(a) illustrates varying β from 0.45 to 0.95 on the synthetic data, measuring
classification accuracy and the number of classifying subspaces. The weight w for in-
terestingness was set to 0.5. As expected, the number of classifying subspaces (CSS)
decreases when lowering the threshold β. At the same time, the classification accuracy
does not change substantially or even increases slightly when less subspaces are used.
This effect may be related to the effect of overfitting. Using too many subspaces pat-
terns are not sufficiently generalized, and noise is not removed. To set up the threshold
β, slowly increasing β until the number of classifying subspace clusters shows a rapid
rise, allows adjusting β to a point between generalization and overfitting. For both our
data sets, a value around 0.65 obtains produces good results.

The effect of slightly increasing classification accuracy when reducing the number of
subspaces can also be observed on the flight delay data (see Figure 4(c)). This confirms
that the flight data contains local patterns for classification.
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(a) Varying β on synthetic data
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(b) Varying w on synthetic data
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(c) Varying β on flight delay data
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(d) Varying w on flight delay data

Fig. 4. Parameter evaluation using synthetic and real world data set

Varying parameter w yields the results depicted in the left part of Figure 4(b) and 4(d).
The number of classifying subspaces decreases when giving more weight to attribute
entropy. At the same time, classification accuracy does not change significantly. This ro-
bustness is due to the ensuing subspace clustering phase. As classification accuracy does
not change this confirms that our classifying subspace cluster definition selects the rele-
vant patterns. Setting w = 0.5 gives equivalent weight to the class and attribute entropy
and hence is a good choice for pruning subspaces. We summarize our heuristics used to
setup the parameters for our SubClass algorithm in Figure 5.

Next, we evaluate classification accuracy by comparing SubClass with other well-
established classifiers that are applicable on nominal attributes: the k-NN classifier
with Manhattan distance, the C4.5 decision tree that also uses a class and attribute
entropy model [18], and a Naive Bayes classifier, a probabilistic classifier that assumes
independence of attributes. Parameter settings use the best values from the preceding
experiments.

Figure 6 illustrates the classification accuracy using four different data sets. In the
noisy synthetic data set, our SubClass approach outperforms other classifiers. The large
degree of noise and the varying class label distribution within the subspace clusters
make this a challenging task. From the real world experiment on the flight data, depicted
in Figure 6, we see that the situation is even more complex. Still, our SubClass method
performs better than its competitors. This result supports our analysis that locally rele-
vant information for classification exists that should be used for model building. Experts
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Subspace Search Parameter 

Parameter Value

w

Subspace Clustering Parameter 

Parameter Value

Fig. 5. Parameters used by SubClass

Flight Data Synthetic Data Iris Glass

SubClass 45.4% 65.9% 96.27% 70.9%

C4.5 43.9% 58.0% 95.94% 66.8%

K NN 42.4% 54.3% 93.91% 71.1%

Naive Bayes 42.8% 64.1% 95.27% 46.7%

Fig. 6. Classification accuracy on four data sets

from flight scheduling confirm that additional information on further parameters, e.g.
weather conditions, is likely to boost classification. This information is inexistent in the
current scheduling data that is collected routinely. SubClass exploits all the information
available, especially locally relevant attribute and value combinations, for the best clas-
sification in this noisy scenario. Finally we evaluated the performance of SubClass on
Glass and Iris [14]. The results indicate that even in settings containing no or little noise
SubClass performs well.

5 Conclusion

Classification in noisy data with locally varying attribute relevance, as for our project
in scheduling at airports, requires an approach that detects local patterns. Our SubClass
method automatically detects classifying subspace clusters by incorporating class struc-
ture into the subspace search and the subspace clustering process. The general concept
requires a definition of interesting subspaces for classification, of classifying subspace
clusters and a classification scheme. Based on class and attribute value entropy, our Sub-
Class ensures that clusters contain class-relevant information. Working both bottom-up
and top-down on the lattice of subspaces, SubClass prunes irrelevant subspaces from
the mining process. Our experiments on synthetic and real world data demonstrate that
local structures are successfully detected and employed for classification, even in ex-
tremely noisy data.
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