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Abstract. All learning algorithms perform very well when provided
with a small number of highly relevant features. This paper proposes a
constructive induction method to automatically construct such features.
The method, named GLOREF (GLObally RElevant Features), exploits
low-level interactions between the attributes in order to generate glob-
ally relevant features. The usefulness of the approach is demonstrated
empirically through a large scale experiment involving 13 classifiers and
24 datasets. Results demonstrate the ability of the method in generating
highly informative features and a strong positive effect on the accuracy
of the classifiers.

Keywords: Machine Learning, Attribute Interactions, Feature
Extraction.

1 Introduction

Attribute interactions may increase the complexity of a classification task by dis-
persing the instances that belong to the same class across the attribute space.
In such cases, the initial attributes, when taken individually, appear to be only
remotely related to the class attribute. To uncover the predictive power of such
data, the learning systems need to analyze the interacting attributes simultane-
ously and then build a model that takes into account the interactions observed.
As explained by several researchers, this is a complex task that surpasses the
ability of many existing machine learning systems.

In particular, Rendell & Seshu [12] emphasizes the fact that current machine-
learning techniques rely on the assumption of simple attribute interactions which
make them sub-optimal in domains with important attribute interactions. Fo-
cusing on the attribute evaluation process, Kononenko & Hong [6] and Bloedorn
& Michalski [1] explain that all learning approaches that evaluate the usefulness
of each attribute individually using quality measures such as the information
gain, the gini-index, the distance measure, or the j-measure are likely to gener-
ate inaccurate or too complex models whenever there are important attribute
interactions. There have been numerous works on trying to improve the ability of
the naive-Bayes with respect to attribute dependencies (e.g., [7]). Specific issues
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such as the replication and the fragmentation problems with decision trees are
also directly related to the lack of capacity of current techniques to deal with
attribute interactions [13]. From an applied perspective, it has been argued that
attribute interactions are becoming the norm in KDD applications and failing
to address this problem adequately has important consequences on the perfor-
mance obtained [2]. All of these observations call for novel practical techniques
that can facilitate learning in domains with important attribute interactions.

This paper proposes such a technique. It is a constructive induction tech-
nique that augments the initial representation with new features which make
explicit the important information hidden in the interactions among the initial
attributes. The new features are self-contained globally relevant features that
are suitable for learning algorithms assuming independence. As it will be shown
experimentally, the new features can also increase the performance of more com-
plex learning algorithms.

After presenting motivation and related work, the paper introduces the
method to derive the new globally relevant features. Sect. 5 offers a large-scale
experiment illustrating the usefulness of the approach and the last section con-
cludes the paper.

2 Motivation

In this research, the concept of relevance designates the usefulness of a given
attribute to predict the values of the class attribute. We assume that relevance
is computed through a univariate measure such as the gain ratio [11]. Moreover,
we use the term globally relevant attribute to designate an attribute that is
relevant over the full training set.

To illustrate the potential effects of attribute interactions on relevance and
the usefulness of globally relevant features, let us consider a simple binary clas-
sification task with three attributes X1, X2, and X3 that follow a multivariate
normal distribution defined by the following class-conditioned mean vectors and
variance-covariance matrix (same for both class values):

u0 =

⎡
⎣
70
70
40

⎤
⎦ u1 =

⎡
⎣

70
70
55

⎤
⎦ Σ =

⎡
⎣
650.0 0 −160

0 50 −115
−160 −115 350

⎤
⎦

From the mean vectors (u0 and u1), we conclude that X3 is the only relevant
attribute for this task while Σ indicates that X1 and X2 interact with X3.
Fig. 1 (a) shows a simple dataset generated from the above distribution. As seen
from the scatter plots of X3 versus X1 and X3 versus X2, it is difficult to separate
the positive from the negative instances. This difficulty is further illustrated by
the class-conditional density curves for X3; the great overlap between the two
curves clearly indicates that any decisions based on X3 will be highly error-
proned. The null gain ratio and χ2 values confirm that, from a univariate global
perspective, X3 appears powerless in predicting the class values.
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Fig. 1. The effects of interactions on relevance and a globally relevant feature

To uncover the power of the data, we propose a constructive induction method
capable of generating a new globally relevant feature Z that cancels the negative
effects of X1 and X2 on X3. The new feature is shown in Fig. 1 (b). We observe
that the transformation removed a great proportion of the initial dispersion since
the instances of the same class are now grouped together. As illustrated by the
class-conditional density curves for Z, the new feature is highly relevant and its
power is observable across the full dataset independently of the other attributes.

The data transformation approach proposed in this paper can automatically
generate globally relevant features from complex interactions between any con-
tinuous attribute and an arbitrary large number of influencing attributes of pos-
sibly different types (continuous, nominal, binary). No information about the
underlying distribution of the data or the nature of the interactions is required.

3 Related Work

Related research has been conducted in constructive induction and statistics.
A large proportion of the constructive induction techniques are designed to be
integrated with existing learning approaches and are not producing a new rep-
resentation (e.g.:FRINGE[10], AQ17-DCI[1], and OCI[9]). With these systems,
the focus is on the improvement of the accuracy of existing methods by oppo-
sition to be on the assessment and removal of the negative effects of attribute
interactions. Hu [4] noticed the lack of general data pre-processing methods that
are independent of specific learning algorithms. Their solution was to propose
the GALA systems. These systems generate highly comprehensible features but
the types of interactions that it can handle are limited to either prototypical re-
lationships or boolean expressions. The GALA systems do not directly assess the
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interactions observed in the data and do not produce a model that describes the
effects of these interactions. Recent work by Jakulin & Bratko [5] introduced the
notion of interaction gain to analyse attribute interactions along with visualiza-
tion methods. They proposed an experiment showing the benefits of Cartesian
product as an approach to resolve the most important interactions.

The topic of interactions has been extensively studied in statistics. PCA, ICA,
and contextual normalization methods (e.g., [8]) are examples of methods that
have been used in machine learning to help assess the structure of the interactions
and produce new features that keep the most important information (according
to some criteria). On the other hand, these methods do not rely on the class
information, which limit their usefulness for classification tasks [3]. We also notice
that most of them can only handle continuous attributes.

In summary, we observe a lack of paradigm-independent supervised construc-
tive induction techniques that directly address the issues of attribute interac-
tions while being capable of handling both continuous and discrete attributes. The
GLOREF approach we propose in this paper is an attempt to fulfill this need.

4 The GLOREF Approach

We now describe the GLOREF (GLObally RElevant Features) approach which
we propose for the construction of globally relevant features that account for the
initial interactions among the attributes. GLOREF works as a pre-processor and
can be used with any standard learning algorithm. The input is a training dataset
which contains at least one numerical attribute. The GLOREF approach has two
phases: the analysis of relevance and the generation of globally relevant features.
The analysis phase computes information to characterize the interactions among
the attributes along with their impact on learning. The results of this analysis are
stored in data structures named relevance matrices. The feature generation phase
uses the relevance matrices to search for transformation models. Finally, these
transformation models are applied to augment the initial data representation and
the learning can proceed as usual with the augmented data representation. The
following subsections describe the analysis of relevance, the automatic generation
of globally relevant features, and application considerations.

4.1 Analysis of Relevance

The analysis of relevance takes as input the training dataset and, optionally,
two lists defining the explanatory and the response attributes. If these lists are
not provided, we simply generate default lists of explanatory and response at-
tributes containing all initial attributes and all initial continuous attributes,
respectively1. As output, the analysis of relevance returns a set of relevance
1 The use of the terms response and explanatory attributes follows statistical nomen-

clature for the analysis of interactions. On the other hand, it is important to notice
that the end objective of the proposed method is not to generate new features that
approximate the response attributes but instead generate new features that have
higher global relevance than any of the initial attributes.
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matrices. These matrices provide information on the relevance of the response
attributes over partitions based on the explanatory attributes.

The analysis starts by creating a partition of the training dataset S =
{s1, s2, . . . , sN} for each explanatory attribute. For example, a partition
based on a nominal explanatory attribute X with m possible values, noted
{X(1), X(2), . . . , X(m)}2, generates m subsets S1, S2, . . . , Sm where each Si =
{s ∈ S | valX(s) = X(i)} for i ∈ {1, 2, . . . , m}. If the explanatory attribute is
continuous, we first discretize it and then partition based on the discretized val-
ues instead of the original ones. Since the discretized attributes produced are not
going to be used for classification, there is no need to use a supervised discretiza-
tion technique in this step. A simple unsupervised method such as equal-width
or equal-frequency is more appropriate. By default, we use three intervalls for
discretization. As shown by the experimental results in Sect. 5, this seems to be
an adequate choice accross a variety of domains although it is likely that even
better performance could be obtained by increasing the number of intervals.

The next step computes the relevance information. This step considers one
explanatory and one response attributes at a time. To evaluate the effect of
the explanatory attribute, we evaluate the relevance of the response attribute
in each of the subsets (Si) and in the full training dataset (S). Following the
standard approach to characterize relevance of continuous attributes in decision
tree building, we first sort the instances along the response attribute. We then
define a split for each observed value of the response attribute in the given
set and compute how many examples of each class would fall on each side of
the split. Using these numbers, we compute the gain ratio for each possible
split. Finally, we define two additional values noted λ1 and λ2 that identify the
majority class on each side of the split. We name these two values compatibility
characteristics since they will be used to determine whether the subsets of the
partitions interact in a compatible manner or not (i.e., if they reduce the global
relevance or not). All information computed during this step is stored in a set
of relevance matrices noted RM1, RM2, . . . , RMm, and RM, where RMi contains
the information computed using subset Si, and RM the information from S.

To illustrate, let us consider the analysis of the effects of X2 on the relevance
of X3 for the domain introduced above. First, the partitioning step needs to
discretize X2. Let us suppose that this discretization did lead to a new attribute
X2 discretized with 5 possible values (0, 1, 2, 3, and 4). In this case, 6 relevance
matrices would be generated (one for each subset and one for the global dataset).
The table on the left hand side in Fig. 2 shows part of the relevance matrix for
the subset S1, which includes all instances s such that valX2 discretized(s) = 0.
There are 18 entries in this relevance matrix which corresponds to the number
of distinct values observed for the response attribute X3 in the given subset. For
each cut point, the relevance matrix shows the threshold value, the number of
instances per class in each side of the split (columns ‘Cumul.’ and ‘Bal.’), the
compatibility characteristics λ1 and λ2

3, and the relevance in terms of gain ratio.

2 The missing value (indicated by ‘?’) is considered like any other possible values.
3 The symbol NA indicates that no class is in majority in the given side of the split.
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X2 discretized

X3

0

? 0 1 2 3

Num Thresh. Cumul. Bal. λ1 λ2 Rel.

1 97.36 {7,10} {0,1} 1 1 0
2 91.67 {7,9} {0,2} 1 1 0
3 89.07 {7,7} {0,4} NA 1 .0
4 84.45 {7,6} {0,5} 0 1 .02

. . .
11 76.32 {7,1} {0,10} 0 1 .5 �

. . .
17 57.83 {2,0} {5,11} 0 1 .0
18 43.43 {1,0} {6,11} 0 1 .0

Fig. 2. A relevance matrix and the relevance graph to analyze the effects of X2 on X3

The best cut point for this subset (denoted by �) is at threshold 76.32 which
splits the dataset into two subsets of 8 (7 from 1st class and 1 from 2nd class)
and 10 (all from 2st class) instances, respectively.

Visualizing Relevance Matrices and Detecting Harmful Interactions.
The information contained in the relevance matrices for a given pair of attributes
can be effeciently visualized through a Relevance Graph. For example, let us
consider the graph in Fig. 2 which shows the effects of X2 on the relevance of X3

for the same example. This relevance graph is composed of 6 curves, one for each
relevance matrix. The one on the left (named global relevance curve) accounts
for the global relevance matrix (i.e., RM) while the following ones (named local
relevance curves) are for the relevance matrices corresponding to the subsets of
the partition based on X2 discretized (i.e., RM1, RM2, . . . , RM5). In particular,
the first local relevance curve (labeled ’0’) corresponds to the relevance matrix
shown on the left side. Each point on a given curve represents one entry in the
corresponding relevance matrix. The threshold values for the response attribute
are shown along the vertical axis. The color (or gray scale) and symbol (e.g.,
square, cross, plus) of each point designate the compatibility characteristics λ1

and λ2, respectively. There is one color (symbol) for each possible value of λ1

(λ2). The relevance of a given point is shown by the horizontal distance that
separates it from the vertical reference line located on the left side of each curve.
The larger the distance; the better is the cut point in producing pure partitions.

The effect of a given interaction on the global relevance is directly assessed
by comparing the relevance of the best cut points (the ones that are the farthest
away from their vertical reference line) in the local relevance curves with the
relevance of the best cut point in the global relevance curve. If one or more
best cut points in local curves are more relevant than the best global cut point,
then the interaction has a negative effect on the global relevance of the response
attribute. The relevance graph in Fig. 2 illustrates this situation since several
of the most relevant cut points in the local relevance curves (indicated on the
graph by �) are more relevant than the best global cut point.
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4.2 Automatic Generation of Globally Relevant Features

A key idea behind the GLOREF approach comes from the observation that the
global relevance of the response attribute can be modified by altering the aligne-
ment of the local relevance matrices. Such a re-alignement can be accomplished
by modifying the values of the response attribute within each local relevance
matrix by a value ωi for i = 1, . . . , m. The result is a new feature Z defined as

Z = Γ (X, Y ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y + ω1 if X = X(1)
Y + ω2 if X = X(2)
...
Y + ωm if X = X(m)

(1)

where Y is the response attribute, X(1), X(2), . . . , X(m) are the distinct values
for the explanatory attribute X , and {ω1, ω2, . . . , ωm} are the parameter values
of the model. The objective is to set the ωi values in a way that maximizes the
global relevance of the new feature. We first present the algorithm developed to
resolve this optimization problem and then introduce the approach to cope with
interactions involving several explanatory attributes.

Univariate Transformations. A brute force solution to select the parameter
values {ω1, ω2, . . . , ωm} is to evaluate all possible alignments of the local rele-
vance curves and select the alignment with the best global relevance. Recognizing
that the number of possible alignments is exponential in the number of relevance
curves, this solution would not be practical in most real world applications. We
therefore introduce the heuristic approach described in Fig. 3.

The algorithm starts by handling a special case that happens when all the
most relevant cut points in the various relevance matrices are compatible (equal
values for both compatibility characteristics λ1 and λ2). In this case, the algo-
rithm directly returns the optimal solution which aligns these most relevant cut
points on an arbitrary threshold noted T∗4. The relevance graph in Fig. 2 illus-
trates this situation since all maximally relevant cut points are compatible (same
color and same symbol). When the most relevant cut points are not all compat-
ible, the algorithm proceeds with a gready search. This search gradually builds
the complete solution by combining local solutions. It starts by finding the best
alignment between the first two relevance matrices and store the result into a
temporary relevance matrix noted RMcum. In the following iteration, it combines
RMcum with the third relevance matrix and so on until all local relevance ma-
trices have been processed. There are three steps in each iteration of the search
procedure: reduction of the two relevance matrices to be considered (ReduceRM),
search for the best local alignment (UnivExhaustiveSearch), and update of the
current solution (ComputeGlobalRM). In the first step, ReduceRM removes many
of the cut points from the two relevance matrices considered in order to reduce
4 By default, the algorithm sets the ωi values such that the best global cut point will

be at threshold value 0.
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Algorithm UnivGLOREF

Input : The set of relevance matrices RM1, RM2, . . . , RMm for pair of attributes

Output : A set of values {ω1, ω2, . . . , ωm} maximizing the relevance of a new feature.

if best cut points from all subsets Si have identical λ1 and λ2

{T∗
1, T

∗
2, . . . , T

∗
m} ← best cut point thresholds in {RM1, RM2, . . . , RMm}

Ω∗ ← {−T∗
1,−T∗

2, . . . ,−T∗
m}

else

{ω1, ω2, . . . , ωm} ← {0, 0, . . . , 0}, RMcum ← RM1

For i = 2 to m

/* Simplify current relevance matrices */

RMcum ← ReduceRM(RMcum), RMi ← ReduceRM(RMi)

/* Find current best solution and update previous solution */

{ω, ωi} ← UnivExhaustiveSearch(RMcum, RMi)

For j = 1 to i− 1 ωj ← ωj + ω

/* Compute global relevance info for current partial solution */

RMcum ← ComputeGlobalRM({RM′
i−1, RM′

i}, {ωi−1, ωi})
Ω∗ ← {ω1, ω2, . . . , ωm}

return Ω∗

Fig. 3. Heuristic to efficiently generate univariate GLOREF features

the number of potential alignments to evaluate. Precisely, it removes all entries
except the most relevant cut point for each observed combination of λ1 and λ2

and the two points with minimal and maximal thresholds. In the second step,
UnivExhaustiveSearch evaluates all potential alignments of the two reduced
relevance matrices and returns the two ω values that maximize the global rele-
vance of a new feature that would be created by combining the subsets consid-
ered. Finally, ComputeGlobalRM updates the current solution by adding the new
ω values to the previous global solution. Once all relevance matrices have been
considered, the heuristic returns the set of parameter values {ω1, ω2, . . . , ωm}
selected for the generation of a new globally relevant feature (Eq. 1).

Multivariate Transformations. The direct extension of the univariate solu-
tion to handle the multivariate case would require a multivariate partionning of
the initial dataset along with the analysis of the resulting combinatorial number
of subsets. Efficiency concerns and the risk of having to proceed with insufficient
data in the various subsets call for an alternative method. Accordingly, we pro-
pose an inductive process where each phase has two steps: Feature Generation
and Feature Selection.

The generation step constructs features in progressive order of complexity
by combining pairs of features from the previous phase. In the first phase, it
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uses the univariate transformations to create multivariate features with two ex-
planatory attributes. For instance, if there are two univariate transformations
Z1 = Γ (X1, Y ) and Z2 = Γ (X2, Y ), then the generation step in the inital phase
would create a new multivariate feature Z = Γ ({X1, X2}, Y ). In the second
phase, the generation step uses the selected features from the first phase to cre-
ate features involving either three or four explanatory attributes, and so forth.
Each multivariate feature is constructed through an iterative optimization pro-
cess. Precisely, to construct a multivariate feature Z involving l explanatory
attributes X1, . . . , Xl and a response attribute Y we repeat the following steps

1. Using the univariate procedure described above, compute for each Xi a set
of parameter values noted Ωt

i that optimizes the relevance of Γ (Xi, Z
t−1).

2. Update the values of the new feature using

Zt =
l∑

i=1

Γ (Xi, Z
t−1; Ωt

i ) − (l − 1) ∗ Y (2)

where t > 1, Z0 = Y , and Γ (Xi, Z
t−1; Ωt

i) is equivalent to (1) with the parameter
values specified by the set Ωt

i . The repeated summation allows us to jointly
realign the univariate relevance curves in a way that maximize the relevance of
the new feature. The process stops when there is no significant improvements
in the global relevance of Z between two iterations or when a maximal number
of iterations has been performed. In practice, only a few iterations are required
to converge (between two and five in most cases). This process ensures that the
number of parameters to estimate grows linearly with the number of explanatory
attributes and avoids the multivariate partitioning issues mentioned above. The
reuse of the efficient univariate heuristic presented above further improve the
performance of the approach.

The feature selection determines which features are allowed to proceed to the
next phase of the inductive process. To be selected, a new multivariate feature
must have a higher global relevance than any of the attributes involved in its
creation. To control the risk of overfitting, we use only 70% of the training data
during the creation of the features and keep the remaining part for the feature
selection step. The inductive process stops when less than two new features are
selected for the following iteration. Finally, all univariate transformation models
and all selected multivariate ones are applied to augment the initial represen-
tation with globally relevant features. We notice that the overall computational
complexity of the approach is polynomial in the number of features provided
as input to each iteration. By applying feature selection prior to each iteration,
we ensure that the approach stays practical regardless of the number of initial
attributes.

4.3 Application Issues and Smoothing of Transformations

When computing the values for the new features, two issues may arise: missing
values and unseen values. Missing values might be observed for one or more of
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Table 1. Global relevance of the best initial attribute and GLOREF feature

Dataset
Initial GLOREF
GR Type GR Diff (%)

autos .55 Mul .92 .37 (69 %)
balance-scale .17 Mul .67 .49 (286 %)
breast-w .55 Mul .86 .31 (57 %)
cars .44 Mul .54 .10 (23 %)
colic .28 Mul .38 .10 (36 %)
credit-a .42 Mul .47 .05 (12 %)
diabetes .18 Mul .30 .12 (64 %)
glass .80 Mul .98 .17 (21 %)
heart-statlog .35 Mul .59 .24 (68 %)
hepatitis .33 Mul .55 .22 (65 %)
ionosphere .50 Mul .73 .22 (44 %)
liver .05 Mul .31 .26 (482 %)

Dataset
Initial GLOREF
GR Type GR Diff (%)

N1F1 .29 Mul .63 .34 (117 %)
N1MN .15 Mul .29 .14 (91 %)
N2F1 .59 Mul .79 .20 (34 %)
N2MN .17 Uni .32 .15 (88 %)
N3F1 .56 Mul .90 .34 (60 %)
N3MN .17 Mul .41 .24 (145 %)
N4F1 .31 Mul .84 .53 (169 %)
N4MN .17 Mul .98 .81 (488 %)
N5F1 .38 Mul .58 .20 (53 %)
N5MN .19 Mul 1.0 .81 (435 %)
N6F1 .27 Mul .53 .26 (97 %)
N6MN .16 Mul .41 .25 (163 %)

the explanatory attributes or for the response attribute. The former case does
not cause any problem as our implementation treats this situation explicitly by
including the missing value as one of the potential values for all explanatory
attributes. However, if the response attribute has a missing value then the new
feature would also need to have a missing value. The problem of unseen val-
ues arises when the model tries to process an instance for which the observed
explanatory attribute value has not been seen during the generation of the trans-
formation model. Since the given value was not part of the training dataset, the
models do not include an entry for this value and therefore there is no corre-
sponding ω parameter value. In this case, the value of the new feature equals
the value of the response attribute (i.e., no transformation).

The discretization of continuous explanatory attributes may introduce unnec-
essary discontinuities in the new features. We avoid this problem by smoothing
the ω values when applying transformations that involve one or more contin-
uous explanatory attributes. We use the inverse distance weighting smoothing
method to adjust the ω values based on the observed values of the explanatory
attribute(s).

5 Experimental Evaluation

To evaluate the feasibility of the GLOREF approach, we propose a large-scale
experiment involving 24 datasets (12 artificial and 12 from the UCI repository)
and 13 classifiers implemented in the WEKA package. The artificial datasets
contain numerical attributes only with pre-defined univariate and simple mul-
tivariate interactions. Several of the UCI datasets contain a mix of continuous
and discrete attributes. The maximal number of attributes is 35. We followed
the 10-fold cross-validation methodology. In each fold, we performed the fol-
lowing tasks: (1) apply GLOREF on the training data to learn univariate and
multivariate transformation models, (2) use these models to augment the ini-
tial representation with GLOREF features, (3) for each learning system, learn a
model using only the initial attributes and another model using the augmented
representation, and (4) evaluate the accuracy of the two models on test data.
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Accuracy with vs without GLOREF
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Classifier
Accuracy improvement Better Worse
Avg Std Min Max (Significant)

BaggingDT 1.10 3.67 -3.8 11.2 16 (6) 7 (0)
BoostingDT 1.01 3.82 -4.1 14.6 13 (5) 10 (0)
DecisionStump 9.87 9.81 -.45 32.8 22 (13) 2 (0)
DecisionTable 5.33 7.41 -3.5 21.5 18 (12) 6 (0)
HyperPipes 24.4 17.4 -6.0 61.2 22 (22) 2 (1)
IB1 3.01 3.49 -1.9 10.5 18 (7) 4 (0)
IB5 2.70 3.10 -.30 8.40 9 (5) 3 (0)
J48 2.87 4.89 -5.6 12.9 17 (10) 7 (0)
KernelDensity 2.00 3.97 -5.8 10.1 13 (8) 10 (0)
NaiveBayes 4.82 6.21 -3.7 18.7 19 (11) 5 (1)
OneR 10.5 10.9 -1.3 34.9 19 (16) 5 (0)
PART 3.27 3.73 -4.6 10.0 20 (8) 4 (0)
SMO 1.78 4.09 -3.0 16.3 12 (2) 6 (0)
Artificial 7.54 9.75 -1.2 47.5 135(95) 17(0)
UCI 3.79 9.54 -6.0 61.2 83(30) 54(2)
All 5.78 9.82 -6.0 61.2 218(125) 71(2)

Fig. 4. The effects of GLOREF features on accuracies

We first consider the ability of GLOREF to produce new globally relevant
features by comparing the expected gain-ratio of the best initial attribute and
the best GLOREF feature. We compute the expected gain-ratio of the best ini-
tial (resp. GLOREF) attribute by averaging the gain-ratios of the best initial
(resp. GLOREF) attribute based on test data from the various folds of the cross-
validation procedure. Table 1 presents the results. The gain ratio for the best
GLOREF feature is systematically higher that the one for the best initial at-
tribute. The standard t-test to compare group means reveals that all increases
are statistically significant at the 0.05 level. The relatively large variation in per-
centage of increase (from 12% to 488%) suggests that the datasets are not all
equally affected by the problem of attribute interactions. We repeated the analy-
sis using the χ2 measure and obtained consistent results. Therefore, we conclude
that the GLOREF approach succeeded in producing new highly globally relevant
features.

The graph on the right side of Fig. 4 offers a quick view of the usefulness of
the new features for learning. There is one point for each combination of learning
system and dataset for which the use of GLOREF features significantly changed
the accuracy. All points located above the diagonal line indicate positive results
and inversely for the points located below. The table on the left side details
the results by classifier. The first four columns provide the statistics on increase
in accuracy due to the GLOREF features while the last two columns count
the number of better and worse results with statistically significantly results in
parentheses (the number of datasets for which the addition of the GLOREF fea-
tures did not change the results equals the difference between 24 and the sum of
the ‘Better’ and ‘Worse’ columns). Out of the 312 experiments (13 classifiers *
24 datasets), 127 lead to a significant difference in accuracy and only 2 of these
are on the negative side. As expected, learning systems which are powerless with
respect to attribute interactions such as HyperPipes, OneR, and DecisionStump
profited the most from the GLOREF features with average increase in accuracy
of 24%, 10.5% and 9.8%, respectively. Focusing on statistically significant results,
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we notice that all classifiers have been positively affected by the GLOREF fea-
tures, with the number of statistically significant wins varying from 2 to 22 over
24. Moreover, the column ‘Max’ clearly shows that complex approaches such as
bagging, boosting and support vector machine (SMO) can also greatly benefit
from highly globally relevant features. The relatively important standard devia-
tions tend to confirm the heterogeneousness of the selected datasets. Finally, by
analyzing the results by datasets, we observe that the levels of increase in accu-
racy tend to match the increase of global relevance between the best GLOREF
and best initial feature. In other words, large improvements in global relevance
generally result in high increases in accuracy and inversely.

6 Conclusion

This paper links the problem of attribute interactions to the concept of attribute
relevance. After discussing the potential effects of interactions on relevance, we
introduce the GLOREF method to model interactions and construct new glob-
ally relevant features. The autonomous solution is evaluated through a large-scale
experimentation involving 24 datasets and 13 learning systems. The analysis of
the relevance of the new features shows that the GLOREF system generates
highly globally relevant features for all datasets, with some increases in gain ra-
tio that are close to 500%. Adding the GLOREF features to the initial represen-
tation significantly improved the accuracy in more than 40% of the experiments,
while reducing it in only less than 1%. Although these results are strongly posi-
tive, it is possible that the heuristics proposed are not optimal. Future work will
investigate alternative heuristics to further improve performance.
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