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Abstract. The problem of computing unordered tree kernels based on
exhaustive counts of subtrees has known to be #P-complete. In this
paper, we develop an efficient and general unordered tree kernel based
on bifoliate g-grams that are unordered trees with at most two leaves and
just g nodes. First, we introduce a bifoliate q-gram profile as a sequence
of the frequencies of all bifoliate g-grams embedded into a given tree.
Then, we formulate a bifoliate tree kernel as an inner product of bifoliate
g-gram profiles of two trees. Next, we design an efficient algorithm for
computing the bifoliate tree kernel. Finally, we apply the bifoliate tree
kernel to classifying glycan structures.

1 Introduction

A rooted labeled tree is a fairly general data structure that models a wide vari-
ety of hierarchical data including parse trees for natural language texts, semi-
structured data such as HTML/XML, and biological data such as RNA sec-
ondary structures and glycans.

In this paper, we concentrate on a binary classification problem based on
kernel methods with support vector machines (SVMs). Let X be the input space
(e.g. a set of rooted labeled unordered trees in this paper), and Y = {+1, —1} be
the output domain. A training set is a finite set of training data, denoted by D =
{(x1,91); -, (X, Ym)} © X XY. The purpose of the learning procedure in SVMs
is to give a decision function fg(-) from a training set D. The learning procedure
outputs a decision function fg : X — Y so that y; = fq(z;) approximates the
probabilistic relation between inputs and outputs.

A number of tree structure classification problems have been successfully ad-
dressed by kernel methods with SVMs in the past decade. In order to apply kernel
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methods to a specific domain, the most important task is to design similarity
functions, so called kernel functions, between two objects. One of the earliest
work on tree kernels was by Collins and Duffy [4], who presented a parse tree
kernel as a counting function of common subtrees between two parse trees. In-
spired by the parse tree kernel, Kashima and Koyanagi [9] extended it to general
rooted labeled ordered trees and proposed a quadratic-time algorithm. These
kernels employ the convolution kernel [5] as their design framework by counting
all the common subtrees between two trees.

On the other hand, in our previous work [T2JT3IT4IT5IT6], we introduced an or-
dered tree g-gram as arooted ordered labeled tree isomorphic to a path. We further
proposed a spectrum tree kernel [14] and a gram distribution kernel [13] based on
the frequencies of all common g-grams embedded in a given tree, which are more
efficient and representative than the tree kernels by Kashima and Koyanagi [9].

In contrast to ordered trees, Kashima, Sakamoto, and Koyanagi [I0] recently
showed that their approach to design kernel functions inherently for unordered
trees, in which the order of sibling nodes is arbitrary, leads to #P-completeness.
It is also known that the problem of computing the similarity of trees based
on tree edit distance [20] and alignment of trees [7] is intractable. On the other
hand, Vishwanathan first presented a fast kernel for unordered trees [17] based
on a string kernel using suffix trees. Kailing et al. also proposed a tractable
algorithm for computing the structural dissimilarity between unordered trees [g].
The effectiveness of these methods, however, has yet to be proven.

In this paper, we aim at developing an expressive and efficient kernel for rooted
labeled unordered trees by circumventing the issues in the previous work. In fact,
our kernel counts all the common subtrees with ¢ nodes and at most two leaves,
as an extension of all the common paths with ¢ nodes (g-grams) [T2UT3IT4T516]
and restricting to all the common subtrees between two trees [9]. We call such a
subtree a bifoliate q-gram.

Our contributions are as follows: (1) we introduce a bifoliate g-gram profile
as a sequence of the frequencies of all bifoliate g-grams embedded in a given
tree; (2) we design an efficient algorithm for computing a bifoliate tree kernel
as an inner product of the bifoliate g-gram profiles of two trees; (3) we apply
the bifoliate tree kernel to classifying glycan structures in bioinformatics and
compare the performance of the bifoliate tree kernel with the kernel based on
the structural similarity of unordered trees proposed by Kailing et al. [§].

This paper is organized as follows: in Section[2] we introduce a bifoliate q-gram
and a bifoliate q-gram profile. We also formulate the bifoliate tree kernel of two
given trees as an inner product of their bifoliate g-gram profiles. In Section [3
we design an efficient algorithm Bifoliate Profile to compute a bifoliate g-gram
profile of a given tree, which runs correctly in O(gd min(q, d)In) time, where n,
d and [ are the number of nodes, the depth, and the number of leaves, respec-
tively. This implies that we can also compute bifoliate tree kernels efficiently. In
Section [l we apply the bifoliate tree kernel to classifying glycan structures. Our
experimental results illustrate the effectiveness of our kernel. Section [ concludes
the paper by summarizing our contributions.
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2 Bifoliate Tree Kernel

We first introduce the basic notions used in this paper. A tree is a connected
graph without cycles. For a tree T' = (V, E), we sometimes denote v € T instead
of v € V, and |T| instead of |V|. A rooted tree is a tree with one node r chosen
as its root. For each node v and u in T', let UP,(u) be the unique path from v
towin T.

For a root r of T, we call the number of edges in UP,(v) the depth of v (in
T) and denote it by dep(v). In particular, since UP,(r) has no edges, we set
dep(r) = 0. For a tree T, we call max{dep(v) | v € T} the depth of T and denote
it by dep(T).

The parent of v(# r) is the node adjacent to v on the path UP,(v). We say
that u is a child of v if v is the parent of u. A leaf is a node having no children,
and a branch is a node having just two children. We denote the number of all
leaves in T by lvs(T).

A rooted tree is ordered if a left-to-right order for the children of each node
is given, and it is unordered otherwise. A rooted tree T' = (V, E) is labeled (by
an alphabet X' of labels) if there exists an onto function I : V' — X such that
l(v)=a (veV,aeX). In the remainder of this paper, we simply call a rooted
unordered labeled tree and a rooted ordered labeled tree a tree and an ordered
tree, respectively.

Let T be an ordered tree with the root v and the children vq,...,v,, of v.
The postorder traversal (postorder, for short) of T is obtained by visiting v;
(1 <4 <m) in order, recursively, and then visiting v.

Let T be an ordered tree with n nodes and suppose that the sequence vy - - - v,
is the postorder of T'. Also let p(v;) be the index j such that v; is a parent of v;
for every 1 <i < mn — 1. Then, we formulate the depth sequence D(T'), the label
sequence L(T') and the parent sequence PS(T') of T as follows.

D(T) = dep(vy) -+~ dep(vy), L(T) = l(v1) - - - l(vy), PS(T) = p(v1) - - p(Vr—1)-

For the depth sequence D of T, we denote max{d | d € D} by maxD. It is
obvious that dep(T) = max D.

Ezample 1. Consider the tree T' in shown at the top of Figure [Il The depth
sequence D(T'), the label sequence L(T), and the parent sequence PS(T) of T
are given below the tree in the figure.

In this paper, as an extension of tree ¢-grams [T2JT3ITATHIT6], we introduce the
concept of bifoliate g-grams. Note that we are here only concerned with their
structures. Thus, their labels are omitted.

Definition 1. A bifoliate g-gram is a tree with at most two leaves and exactly
q nodes, denoted by Py, for [¢/2] <k <g—2and 0 <b<k—1and P/,
where k is the depth of a leaf located relatively far from the root (hereafter called
a deeper leaf) and b is the depth of a branch.

Note that the range of the depth b of the branch varies depending on the depth
k of the deeper leaf.
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1 2 4 7 9 11

7 12345678 91011121314
DT) 33232132323210
L(T) babbabbaabdaaa
PS(T)3 365 6148 131013121314 —

Fig. 1. The tree T and its corresponding depth, label, and parent sequences

Proposition 1. The number of bifoliate ¢-grams is |¢/2](¢ — |¢/2] — 1) + 1.

Proof. Let p = |g/2]. Note that the depth & of a deeper leaf varies from p to
qg—2. Itk =q—1i(2<1i<q—p), then the number of bifoliate g-grams is
q—2(i—1). Since i = g — k, the number of bifoliate g- grams fork (p<k<gq—2)
is 2k+2—q. Hence, the number of bifoliate g-grams is > 7 _ (Qk +2—-¢q)+1. O

We denote the number |¢/2|(q¢ — |¢/2] — 1) + 1 in Proposition [ by q.

Proposition 2. Let > be a lexicographic order on depth sequences, where a
deeper leaf is regarded as the left-most leaf in ordered trees. Then, the bifoliate
q-gram P}, is the (k(¢ — k — 1) — b+ 1)-th element under >.

Proof. 1t is obvious that the first element of a bifoliate g-gram under > is P

Let j be an integer such that 2 < j < ¢. By Proposition [Tl in the case that
k = q—i, there exist ¢—2(i—1) bifoliate g-grams. Since P}/, is the (k—b—(i—2))-
th element from the first element P/, ;.| under = for k = ¢ — i, P/, is the

i—1
1+ {Z(q —2(l=1)) +k—b— (i —2) p-th element from P; , ; under >. By
1=2
replacing 7 with ¢ — k, we obtain the statement in Proposition 2 a
Hence, we also denote the j-th bifoliate g-gram under = by Qj (1 <j < ¢).

Example 2. All of the bifoliate 5-grams with their depth sequences are described
in Figure 2l Here, the deeper leaf is set to the left.

For labeled trees, we denote a bifoliate g-gram by a pair (Q, L(QY)), where Qf
is an ordered tree and L(Q7) is its label sequence. It is obv10us that L(QY) € 5,

Definition 2 (¢f. Zhang & Shasha [19]). Let T and P be trees. Then, we
say that P matches T at a node v if there exists a bijection f from the nodes of
P into the nodes of T satisfying the following conditions.
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P

P40 P32 Pdl Q4_P30 P20
43210 33210 32210 32110 21210

Fig. 2. All of the bifoliate 5-grams

1. f maps the root of P to v.

2. Suppose that f maps x to y and « has children z1,...,z;. Then, y has chil-
dren 1, ..., Ym such that m > [ and there exists an injection g : {1,...,l} —
{1,...,m} such that f(z;) = yg0;).

3. l(z) =1(f(x)) for each z € P.

Definition 3. Let T be a tree and (Qq w) be a bifoliate g-gram for 1 < j < ¢
and w € X9. Then, we say that (Qq w) is embedded into T if there exists a node

v in T such that (Qq w) matches T at v. Furthermore, we denote the number
of (Q w) embedded into T by Lq(T)[Q%, w].

]7

We order all of the strings in X9 by wy, . . U]|2|q For 1 < j < ¢, we denote the
sequence (Lq(T)[QF, w1, ..., Le(T )[Qywm ]) by Lq(T)[QF]-

Definition 4. For a tree T', the following sequence £, (T') of the number of every
embedded bifoliate g-gram into T is a bifoliate q-gram profile of T'.

Ly(T) = (Lg(TQT], - -, Lg(T)[QZ)-

We are now ready to formulate the bifoliate tree kernel of two trees T} and Tb
as an inner product of their bifoliate g-gram profiles as follows.

Definition 5 (Bifoliate Tree Kernel). For rooted labeled unordered trees T}
and T and a fixed integer ¢ > 2, the bifoliate tree kernel K4(T1,T5) is defined
as

Ky(Th, T2) = (Lq(T1), L4(T2))-

For ¢ = 1, we assume that K,(T1,T%) denotes the inner product of the label
frequency vectors of 77 and Tb.

3 Computing a Bifoliate g-Gram Profile

In this section, we design the algorithm to compute a bifoliate g-gram profile.
First, we prepare subroutines as given in Algorithm[I], where D, L and PS denote
the depth sequence, the label sequence and the parent sequence, respectively, of
an ordered tree.
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procedure pseq(D)
/* D: a depth sequence */
T(0] — | DJ;
for i = |[D| — 1 downto 1 do
PS[i] « T[D[i] — 1]; T[D[z]] < 3;

return PS;

W N

procedure labels(i, k, PS, L)
/* PS: a parent sequence, L: a label sequence */
w — g; pt — 1
for m =1 to k do
w — w - Lpt]; pt — PS[pt];
return (w, pt);

® N o o

procedure shift table(q, D)
/* shift is assumed to be an empty array */

9 for d = max D — 1 downto 1 do

10 for k=1toqg—1do

11 if d+ k <maxD then

12 shift[d] «— shift[d] U{(d+ k,k)};
13 return shift;

Algorithm 1. Subroutines for computing a bifoliate g-gram profile

The algorithm pseq(D) constructs the parent sequence from a given depth
sequence D. The algorithm labels(i, k, PS, L) concatenates the labels from the
node indexed by ¢ with length k£ by selecting nodes and labels according to a
parent sequence PS and a label sequence L. “” and ¢ denote the concatena-
tion of two strings and an empty string, respectively. The algorithm shift table
constructs the table shift (cf., [[2T3UTATHTE]).

Using these subroutines, we can design the algorithm Bifoliate Profile to com-
pute a bifoliate g-gram profile of a given tree described as in Algorithm 2l Here,
we use an ordered g-gram [T2IT3ITAT5IT6], which is an ordered tree with ¢ nodes
isomorphic to a path whose depth of the left leaf is k, and we denote it by P.
We also denote < as a lexicographic order on X'9. Furthermore, the algorithm
adopts the table 4d[j][k] in order to store the indices of the left leaf of P! for
some p < q. We will show below that p = D[i] + 2k + 1 — j for a current depth
DJi].

Ezample 3. Consider the tree T in Example [l (Figure [[) and let ¢ be 5. Note
first that the result applying the algorithm shift table to the depth sequence
D(T) is given in Figure 3

Figure M describes the transition of the table id in the algorithm Bifoli-
ate Profile. Here, the first and second lines are the depth sequence D(T) of
T and index i, respectively. The numbers in bold in the i-th column satisfies the
condition of line 7 at the (¢ + 1)-th iteration of the main loop.
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procedure Bifoliate Profile(q, D, L)
/* D: a depth sequence, L: a label sequence */
/* initialize: Every P[k|[b][w] is assumed to be zero. */
/* initialize: Every id[k][j] is assumed to be empty. */

1 PS «— pseq(D); shift — shift table(q, D);

2 for i =1 to |D| do

3 for j = max D downto 1 do

4 for k=1 to min(j,q — 1) do

5 p<— D[] +2k+1—7j;

6 s« j—k; /* s : the depth of the root of P} */

7 if2<p<qgand gq—p<sthen

8 foreach c € id[j][k] do

9 (w1, ) < labels(c, k, PS, L);
10 (wa, pt) « labels(i,p — k — 1, PS, L);
11 if (Jwi| < |wz]|) or (|wi| = |wz| and w1 < w2) then
12 (w1, w2) — (w2, w1);
13 wy < Lipt]; pt < PS[pt]; w — w1 - w2 - wr;

/* pt : the index of the root of P} */
14 if j # D[i] + k then
/*not P? | */

15 (ws, ) « labels(pt,q — p, PS, L); w «— w - ws;
6 Pllws] +q - plla - pllw]++

17 else if p = g then Pq — 1][0][w]++;

18 if D[i] < max D then

19 foreach (j, k) € shift[D[i]] do
20 id|j]lk + 1] < 4d[j][k + 1] U id[j][k];
21 id[j][k] < 0;
22 1d[D[i]][1] « 4d[D[:]][1] U {i};
23 return P;

Algorithm 2. Bifoliate Profile

Consider the indices 1, 2 and 3 in the third column for index 4. They denote
the left leaves of ordered 5-grams whose index of the right leaf is 4.

For index 1 € id[3][2], the algorithm Bifoliate Profile constructs the label
sequences wy = [(vy)l(vs) = bb and we = I(v4)l(vs) = ba. Since |wi| = |wal,
wy < wi and w, = l(vg) = b, w is set to bbbab. Furthermore, it holds that
3 # D[4]+2 = 5. Since p = 3+2-24+1—3 = 5 = g, the algorithm Bifoliate Profile
constructs ws = € and increments the frequency of bifoliate 5-gram (P25 0, bbbab),
where |w;] = 2.

Moreover, for index 2 € id[3][2], the algorithm Bifoliate Profile constructs the
label sequences wy = I(v2)l(v3) = ab and we = ba. Since |wi| = |wa|, w1 < wa
and w, = l(v4) = b, w is set to baabb by replacing wy with ws. Similarly to
the case for index 1, the algorithm Bifoliate Profile increments the frequency of
bifoliate 5-gram (Py,, baabb).
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d (j, k)
2 (3,1)
1(2,1),(3,2)

P (k=1)] P35, (k=2)

Fig. 3. The table shift for ¢ =5 and max D =3

id 33 2 3 2 1 3 2 3 2 3 2 1 0
jk12 3 4 5 6 7 &8 9 10 11 12 13 14
3111,2 4 7 9 11

32 1,21,21,2,4 7 7 7,9 7,9 7,911

33 1,2,41,2,41,2,41,2,41,2,41,2,4 1,2,4 1,2,4,7,9,11
21 3 3 3,5 8 8 810 810 8,10,12

22 3,5 3,5 3,5 35 35 35 35 30581012
11 6 6 6 6 6 6 6 6,13

Fig. 4. The transition of the table id in the algorithm Bifoliate Profile

On the other hand, for index 3 € id[2][1], the algorithm Bifoliate Profile
constructs the label sequences wy = l(v3) = b and we = ba. Since |w| < |ws|
and w, = l(vy) = b, w is set to babb by replacing wy with ws. Furthermore, it
holds that 3 # D[4]+2 =5. Sincep=3+2-1+2—-3=4and ¢—p = 1,
the algorithm Bifoliate Profile constructs ws = [(vg) = a and increments the
frequency of bifoliate 5-gram (Pg, bbbab), where |wi| +¢q—p=2+5—-4=3.

As a result, we obtain the frequencies of bifoliate 5-grams in 7' that are non-
negative for every P,gﬁb as in Figure

Py (w, frequency)

Py (babaa,1) (abaaa,2) (bbbaa,1) (bbbab,1) (baaba,3) (bbaaa,2) (baabb,1)
P, (babaa,1) (bbbaa,1) (ababa,l) (baaba,?2) (abbaa, 1)

Py, (bbaba, 1) (babaa,?2) (abaaa,?2) (babba,l) (ababa,l) (baaaa,2)

P, (babba,1)

Fig. 5. The frequencies of bifoliate 5-grams in T that are non-negative

Theorem 1. For a tree T, let D = D(T), L = L(T), n = |T|, d = dep(T)
and l = lvs(T). Then, the algorithm Bifoliate Profile(q, D, L) described in Algo-
rithm[@ is correct and runs in O(gdmin(q,d)ln) time.

Proof. First, we discuss the correctness of the algorithm Bifoliate Profile.
Consider an ordered p-gram P with left leaf v and right leaf u, where j =
dep(v) and d = dep(u). Also let s be j— k. Then, it holds that p = d+2k+1—j,
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and s is the depth of root r of P! (Figure[B(a)). This corresponds to lines 5-6
in the algorithm Bifoliate Profile.

Let &’ be the depth of a deeper leaf of P{. If ¢ — p > s, then there exists no
bifoliate ¢-gram Pq,+q_p7q_p. Otherwise, if ¢ — p < s (line 7), then the algorithm
Bifoliate Profile finds the label sequences w; on the path from v to the child of
r on UP,(v) and we on the path from u to the child of 7 on UP,(u) (lines 9-10)
using the subroutine labels. By comparing the length of w; with that of ws, the
algorithm Bifoliate Profile determines which of v and w is a deeper leaf, and it then
constructs the label sequence wyo, = w1 - we - w, (where w, = [(r)) of a bifoliate
g-gram me,o by setting v (corresponding to wq) to a deeper leaf (lines 11-12).

Furthermore, if j # d + k, then it holds that p # ¢, so the algorithm Bifoli-
ate Profile finds a path from r to r’ in Figure[G(b) that is the root of a given tree
with length ¢—p and its label sequence ws (line 15). Hence, wia,3 = w1 -wa-w,-ws
is the label sequence of a bifoliate g-gram Pﬁulqup’qu and the algorithm Bi-
foliate Profile increments the bifoliate ¢g-gram (Pl‘fvllJrqu’qu7 wi2r3) in the table
P (line 16). Otherwise, if j = d 4+ k and p = ¢, that is, u is the root of an or-
dered g-gram Pg_l, then the algorithm Bifoliate Profile increments the bifoliate
g-gram (P, ;,w12,) in table P (line 17).

sy PO |UP (11=g-p+1 ﬁ dep(w)=0
< s ' dep(r)=q-
|UP)l=k+1 @ s G.!, P(0=ap
dep(v)=j dep(w=d  “PITETP
Pt N\

(a) (b)

Fig. 6. The relationship of the parameters in P/ (left) and P/, (right)

The algorithm Bifoliate Profile maintains the indices already searched in a
table id[j][k]. Note that [ € id[j][k] means that v; is the left leaf of P. For an
index i, the algorithm Bifoliate Profile first stores it in id[D[i]][1] (line 22). Next,
for every (j, k) € shift[D[i]], the algorithm Bifoliate Profile shifts the indices in
id[j][k] to id[j][k+1] (lines 19-21), because D[i] and j are the depths of the root
and the left leaf of P/, respectively. In this case, the algorithm Bifoliate Profile
finishes searching for P! and begins searching for P/, .

Next, we consider the running time of the algorithm Bifoliate Profile. Since
lid[j][k]| <1 and labels(i, k, PS, D) runs in O(k) time, the running time of the
routine from lines 8 to 17 is O(ql). Here, in lines 16 and 17, we use the hash
function to increment the element of P[][][w] (by encoding a string w as a
numeral), so the running time is assumed to be constant. Furthermore, the al-
gorithms pseq(D) and shift table(q, D) (line 1) run in O(n) and O(gd) time,
respectively. Since |shift[D[i]]] < ¢ for every i, the algorithm Bifoliate Profile
runs in O(n + (d x min(g,d) x gl + ¢l)n) = O(gd min(g, d)In) time. |
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Table 1. Summary of the glycan data used in experiments

data set # of data  avg.# of nodes  avg.height
leukemic cells 192 16.1 6.0
other blood components 294 10.4 5.4
colon cancer 93 7.8 4.2
other colon-related 46 9.7 4.5

4 Experimental Results

In this section, we evaluate the effectiveness of our kernel by empirically compar-
ing its predictive performance in glycan structure classification problems with
two other kernels for unordered trees. Glycans are defined as the third major
class of biomolecules next to DNA and proteins and play important roles in
various fundamental biological processes such as cell-cell interactions. Glycan
structures are modeled as either ordered or unordered trees according to its con-
text since the level of appropriate abstractions in modeling the structures depend
on the problem to be addressed (cf. [I]). In this paper, we focus on unordered
tree modeling of glycans.

We consider the following two competitors to the bifoliate tree kernel. One is
the tree kernel by Vishwanathan [I7] based on a string kernel, and the other,
denoted by Ky (T1,T2), is defined based on three simple vectors used in the
dissimilarity measure proposed by Kailing et al. [§], which are the vectors of the
degree histogram V4(T'), the height histogram V},(T'), and the label histogram
Vi(T) for an unordered tree T'. We define the kernel Ky (T}, T5) for two trees Ty
and T5 as the sum of the inner products of each pair of vectors.

Ku(Th,T2) = (Va(T1), Va(T2)) + (Vi(T1), Vi (T2)) + (Vi(Th), Vi(T2)).

These kernels were implemented in Ruby and executed on a Windows XP ma-
chine with a Pentium M processor running at 1.50 GHz and 750 MB of memory. We
used LIBSVM [3] as the SVM implementation, and we computed the area under
the ROC curve (AUC) for measuring performance. AUC is the prevailing perfor-
mance measure for a decision function with a kernel that separates positive exam-
ples from negative ones. The AUC values range from 0.5 to 1.0, where the value 0.5
indicates a random separation and the value 1.0 indicates a perfect separation.

The glycan data that we used in the first experiment basically follows Hizukuri
et al. [6]; we retrieved the glycan structures from the KEGG/GLYCAN database
[11] and used the annotations from the CarbBank/CCSD database [2]. Based on
these annotations, we extracted those structures annotated with blood com-
ponents, labeled as leukemic cells, and other non-leukemic blood components
(erythrocyte, serum, and plasma). Leukemia is a cancer of the blood induced by
an abnormal proliferation of blood components (usually white blood cells). In
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0.84
Unordered Tree Kernels Unordered Tree Kernels

Leukemic vs the other organs in blood Cancer vs the other organs in colon

Fig. 7. The areas under the ROC curves for two experiments

the second experiment, we employ two data sets from colon, i.e. glycans related
to colon cancer, and others not related to cancer but related to the colon. We
retrieved 29 distinct node labels. We have summarized the data used in our
experiments in Table [Tl

Figure[lshows the comparison of the results by the proposed method while vary-
ing the parameter g. The kernel by Vishwanathan [I7] is indicated by “VS”, and
the kernel based on dissimilarity proposed by Kailing et al. [8] is indicated by “Kail-
ing.” All of the performance measures were calculated with 5-fold cross validation.

Our tree kernel achieves the best performances at ¢ = 5 and ¢ = 3 for the
leukemia and colon data sets, respectively. The tree kernel due to Vishwanathan
also achieves relatively good performance in spite of its restricted expressive
power. Since the nodes near the leaves tend to determine the functionalities of
glycans, this data set seems to be well-suited to this tree kernel.

Also, it is interesting to see that the value of g achieving the highest predictive
performance varies between the two experiments, which indicates that the ¢
size of the most characteristic features varies according to the data set. This
corresponds with previous knowledge that structure of glycan biomarkers are
varied depending on the cell population being studied.

5 Conclusion

We have presented a novel kernel function for rooted labeled unordered trees.
Given two trees, our tree kernel counts the number of common bifoliate q-grams
between them, which are trees with at most two leaves and a fixed number of
nodes q. We conducted comparative experiments to illustrate the efficiency of
our kernel by applying it to the classification problem of glycan structures. Our
kernel outperformed the existing kernels for unordered trees in its predictive
performance. The experiments also suggested that the performance depends on
the fixed number ¢, and the optimal value ¢ to give the best performance depends
on the data set.
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In the future, we plan to design a new tree kernel based on the bifoliate tree
kernel so that we can select an appropriate parameter ¢ to achieve better average
performance regardless of the data set.
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