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Abstract. Privacy-preserving data mining enables two or more parties
to collaboratively perform data mining while preserving the data pri-
vacy of the participating parties. So far, various data mining and ma-
chine learning algorithms have been enhanced to incorporate privacy
preservation. In this paper, we propose privacy-preserving solutions for
Fisher Discriminant Analysis (FDA) over horizontally and vertically par-
titioned data. FDA is one of the widely used discriminant algorithms that
seeks to separate different classes as much as possible for discriminant
analysis or dimension reduction. It has been applied to face recognition,
speech recognition, and handwriting recognition. The secure solutions
are designed based on two basic secure building blocks that we have
proposed—the Secure Matrix Multiplication protocol and the Secure In-
verse of Matrix Sum protocol—which are in turn based on cryptographic
techniques. We conducted experiments to evaluate the scalability of the
proposed secure building blocks and overheads to achieve privacy when
performing FDA.

1 Introduction

Data mining is a powerful tool to discover interesting, useful, and even hidden
patterns that has been applied to various domain such as business intelligence,
bioinformatics, and homeland security. While conventional data mining assumes
that the data miner has full access rights to data that are collected from different
sources or that are distributed among multiple parties, privacy or security issues
render this assumption infeasible when the parties cannot be fully trusted, as
some parties may have malicious intent. How to collaboratively perform data
mining without compromising the data privacy of the participating parties has
become an interesting topic of research in the data mining community.

Privacy-preserving data mining (PPDM) is a response from the data mining
community to address data privacy issues. Approaches in PPDM are generally
based on Secure Multi-party Computations (SMC) [12] and/or randomization
techniques [1]. The former uses specialized, proven protocols to achieve various
types of computation without losing data privacy. The latter introduces noise
to the original private data to achieve security but lose accuracy. As the former
approach achieves a higher degree of accuracy, we focus on SMC in this paper. To
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date, various data mining algorithms have been enhanced to incorporate privacy
preservation based on SMC techniques.

In machine learning and data mining, Fisher Discriminant Analysis (FDA)
is one of the widely used discriminant algorithms that seeks to find directions
so that data in the same classes are projected near to each other while ones in
different classes are projected as far as possible for classification or dimension re-
duction. It has wide applications in face recognition [13], speech recognition [11],
and digit recognition [2]. In this paper, we enhance Fisher Discriminant Analy-
sis to incorporate the privacy-preserving feature. To the best of our knowledge,
there has not been any work that extends privacy preservation to FDA.

Our contributions in this paper are summarized as follows:

1. We propose two protocols—the Secure Matrix Multiplication protocol and
the Secure Inverse of Matrix Sum protocol—as secure basic building blocks
for privacy-preserving FDA. The underlying algorithms of these protocols
are novel and more secure than those by Du et al. [3].

2. Based on the two secure building blocks, we propose protocol for privacy-
preserving FDA over horizontally and vertically partitioned data.

We have evaluated the computational complexity and scalability of the pro-
posed protocols both analytically and empirically and show that the protocols
are efficient and scalable for small to medium size data. We also addressed some
specific implementation issues such as methods to handle real numbers and neg-
ative numbers in cryptography. We believe this work is significant as it serves
as a guide to the investigation of extending data privacy preservation to re-
lated methods such as Principal Component Analysis, Independent Component
Analysis, and so on.

The organization of this paper is as follows: In Section 2, we present an
overview of background knowledge about linear FDA and related work. Section 3
proposes two secure building blocks of matrix computation. We also present pro-
tocols for Privacy-Preserving FDA (PPFDA) over horizontally partitioned data
and vertically partitioned data in Section 4. In Section 5, we perform experi-
ments to evaluate the proposed secure building blocks and protocols. Finally,
Section 6 concludes the paper.

2 Background and Related Work

2.1 Linear Fisher Discriminant Analysis

Fisher Discriminant Analysis (FDA) as introduced by Fisher [5] seeks to separate
different classes as much as possible using some criterion function (Eq. 1). As
the technique of applying FDA on a two-class dataset is used repeatedly for
the analysis of any pairs of data in a multi-class dataset, we focus on the two-
class problem using FDA in this paper. It is non-trivial to extend the two-class
problem approach to multi-class problems. This will be part of our future work.
This section provides an overview of background knowledge about linear FDA.
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We present the conventional mathematical model of linear FDA for two-class
data [4]. Suppose we have a set of two-class n data samples of d dimensions:
X = {x1,x2, . . . ,xn} where xi = [x1,i, x1,i, . . . , xd,i]T such that n1 samples are
in the subset ϕ1 = {x1

1,x
1
2 . . . ,x1

n1
} and n2 samples are in the subset ϕ2 =

{x2
1,x

2
2 . . . ,x2

n2
}, n1 + n2 = n. Assuming that column vector w is the direction

of the projection from X to y = {y1, y2, . . . , yn}, we have y = wTX. The d-
dimensional sample mean mi for class i is mi = 1

ni

∑ni

j=1 xi
j .

Fisher Discriminant Analysis aims to maximize between-class separability and
minimize within-class variability. Formally, the criterion function in Eq. 1 is to
be maximized for the function wT X:

J(w) =
wTSBw
wT SWw

(1)

where
SB = (m1 − m2) (m1 − m2)T

SW =
∑

i=1,2

ni∑

j=1

(xi
j − mi)(xi

j − mi)T (2)

is the within-class scatter matrix.
The objective of FDA is to find a projection vector w such that J(w) in Eq. 1

is a maximum. The solution for such w can be obtained by differentiating J(w)
with respect to w yielding

w = S−1
W (m1 − m2) (3)

We note that only the direction, not the length of w, is important.
To incorporate the privacy-preserving feature to linear FDA, the challenge is

to securely compute S−1
W and m1 − m2 so that w can be securely computed.

Clearly, what we need is a method to perform matrix multiplication and ma-
trix inverse securely. In Section 4, we propose a secure approach to address the
problem.

2.2 Secure Building Blocks

Various data mining algorithms have been enhanced to incorporate privacy
preservation, including classification using decision tree [12], association rule
mining [16], clustering using k-means [10], and so on. Recently, the approach
has been extended to several machine learning algorithms such as linear regres-
sion [3], gradient descent methods [17], self-organizing maps [8], and genetic
algorithms [7]. Many of these privacy-enabled algorithms rely on secure building
blocks to enforce privacy. Secure building blocks are basic common operations
that underly many algorithms. Examples include secure sum, secure comparison,
secure scalar product, secure matrix multiplication, and so on.

Fisher Discriminant Analysis—the focus of this paper—requires two secure
building blocks: Secure matrix multiplication and secure inverse of matrix sum.
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Du et al. [3] has proposed a secure protocol for secure matrix multiplication using
linear algebraic methods. It uses a random and invertible matrix to disguise the
original matrices to achieve privacy. For security, a concept called “k-secure”
was introduced to generate the random matrix. Assuming that Party B wants
to attack private matrix A of Party A, a k-secure matrix M (jointly generated
by both parties) means that (1) any equation from MA includes at least k + 1
unknown elements of A, and (2) any k combined equations include at least 2k
unknown elements of A. Therefore, it is impossible to know any elements of
matrix A as there are infinite possible solutions due to insufficient equations.

An issue with Du’s approach is that constructing such a matrix is a complex
process [3]. More importantly, Du’s approach may have a security problem. If
Party A and the same Party B or different Party Bs (a group of colluding parties)
perform secure matrix multiplication more than once, more Ms (more equations)
are available for attacking the fixed unknown elements matrix A. In response to
this problem, we propose another more secure and efficient protocol for matrix
multiplication in this paper.

3 Secure Building Blocks

In this section, we propose the Secure Matrix Multiplication protocol and Secure
Inverse of Matrix Sum protocol to support the secure computation of Eq. 3,
which we have identified to be the key to incorporating privacy preservation in
FDA. Our proposed protocols are based on cryptographic techniques and are
improvements over existing protocols [3] for secure matrix multiplication and
inverse of matrix sum.

3.1 Secure Matrix Multiplication

Parties A and B each hold private d×N matrix A and private N × n matrix B
respectively. They want to securely compute matrix multiplication so that at the
end of the computation, party A and B each only holds a portion of the product
matrix Ma and Mb respectively such that their matrix sum Ma + Mb = AB is
the desired product matrix, which is unknown to both parties.

Given any m × n matrix H, its ith row vector h(i, :) = (hi,1, hi,2, . . . , hi,n)
and jth column vector h(:, j) = (h1,j , h2,i, . . . , hm,j). By definition of matrix
multiplication M=AB, we have

M = AB =

⎡

⎢
⎢
⎢
⎢
⎣

a(1, :) · b(:, 1) a(1, :) · b(:, 2) · · · a(1, :) · b(:, n)
a(2, :) · b(:, 1) a(2, :) · b(:, 2) · · · a(2, :) · b(:, n)

...
...

. . .
...

a(d, :) · b(:, 1) a(d, :) · b(:, 2) · · · a(d, :) · b(:, n)

⎤

⎥
⎥
⎥
⎥
⎦

Clearly, each element of M above is a scalar product of two vectors. To securely
perform the matrix multiplication AB, we may apply the Secure Scalar Product
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Protocol 1. Secure Matrix Multiplication Protocol

Input: Party A has private d×N matrix A and Party B has private N ×n matrix B.

Output: Party A obtains private matrix Ma and Party B obtains private matrix Mb

such that their sum Ma +Mb = AB yields the product matrix.

1: for i = 1 to d do
2: for j = 1 to n do
3: Party A and Party B securely compute the scalar product of vector a(i, :) and

vector b(:, j). At the end, Party A and Party B each hold a private value ma
i,j

and mb
i,j respectively. Part A designates Ma

i,j = ma
i,j and Party B designates

Mb
i,j = mb

i,j .
4: end for
5: end for

protocol [6] so that each scalar product is the sum of two portions as follows:

AB =

⎡

⎢
⎢
⎢
⎣

ma
1,1 + mb

1,1 ma
1,2 + mb

1,2 · · · ma
1,n + mb

1,n

ma
2,1 + mb

2,1 ma
2,2 + mb

2,2 · · · ma
2,n + mb

2,n
...

...
. . .

...
ma

d,1 + mb
d,1 ma

d,2 + mb
d,2 · · · ma

d,n + mb
d,n

⎤

⎥
⎥
⎥
⎦

= Ma + Mb

In this way, we securely obtain the matrix multiplication (which is unknown to
both parties) as the sum of two private portions Ma and Mb held by Party A
and B respectively. The details are shown in Protocol 1.

This method is more straightforward and less complex than the secure matrix
multiplication protocol by Du et al. [3]. Moreover, the execution of secure scalar
product of each matrix element can be performed concurrently to increase effi-
ciency. In Section 5, we show that the approach is efficient for computing the
product of two small and medium size matrices.

3.2 Secure Inverse of Matrix Sum

Party A and B each hold a private d×d matrix A and B respectively. They want
to securely compute the inverse of A+B. At the end of the secure computation,
Party A and B each only holds a portion of the inverse matrix Ma and Mb

respectively such that their sum Ma + Mb = (A + B)−1; the inverse matrix is
not known to both parties.

The steps to securely perform the inverse of matrix sum by two parties are
shown in Protocol 2. In Steps 1 to 3, Party B uses a random, non-singular matrix
P to hide its private matrix B before sending it to Party A. In Steps 4 and 5,
both both parties securely compute the inverse of (A+B)P and then the product
P(P−1(A + B)−1), essentially eliminating the random matrix P in the process.
This yields the desired result (A+B)−1 in the form of two private portions Ma

and Mb held by each party respectively.
In the case when the sum matrix A+B is singular, a simple perturbation

can be introduced to the sum matrix to make it non-singular. For instance, the



Privacy-Preserving Linear Fisher Discriminant Analysis 141

Protocol 2. Secure Inverse of Matrix Sum Protocol
Input: Party A has private d × d matrix A and Party B has private d × d matrix B.

Output: Party A obtains private matrix Ma and Party B obtains private matrix Mb

such that their sum Ma + Mb = (A + B)−1 yields the inverse of the sum of their
private matrices.

1: Party B randomly generates a non-singular d × d matrix P.
2: Party A and Party B jointly perform secure matrix multiplication (using Protocol 1)

to compute AP, at the end of which, Party A and Party B each obtain Sa and Sb

respectively such that Sa + Sb = AP.
3: Party B computes Sb + BP and sends it to Party A.
4: Party A computes Sa+Sb+BP; i.e., (A+B)P, and then its inverse P−1(A+B)−1.

5: Party B and Party A jointly perform secure matrix multiplication (using Protocol 1)
on P and P−1(A+B)−1, at the end of which, Party A and Party B each hold private
portions Mb and Ma respectively such that Ma + Mb = P(P−1(A + B)−1) =
(A + B)−1.

perturbation method proposed by Hong and Yang [9] can be used to stabilize
A + B by adding a small perturbation matrix to A or B.

In contrast to the secure inverse of matrix sum protocol by Du et al. [3],
Protocol 2 is more efficient and accurate as it uses only one random matrix P
instead of two matrices in Du’s protocol. Clearly, less (one random matrix less)
algebraic operations yields more accurate computations results as less errors are
introduced due to roundoff errors.

4 Privacy-Preserving FDA

4.1 PPFDA over Horizontally Partitioned Data

In this scenario, we have n data samples of d dimensions held by two parties.
Let Party A hold the first n1 data samples and Party B hold the remaining n2

data samples; n = n1 + n2.
In Protocol 3, we show how m1 − m2 and S−1

W can be securely computed so
as to yield w in a secure manner. In addition to using Protocols 1 and 2, we also
make use of the random shares technique by Jagannathan and Wright [10]. In
this technique, all numerical intermediate results are splitted into two random
portions where each party holds one portion so that neither party is able to
speculate anything about the intermediate results using only its private portion.

In Step 1, we show how m1 − m2 can be splitted into two random portions.
As Party A holds na data samples (with na

i data samples of class i) and Party B
holds nb data samples (with nb

i data samples of class i), ni = na
i + nb

i , the mean
vector of class i as computed by Party A using only its private data samples is
ma

i . Likewise, the mean vector of class ii computed by Party B using its private
data samples is mb

i . Hence, we have
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Protocol 3. PPFDA over Horizontally Partitioned Data

Input: Party A has na private d-dimensional data samples. Party B has nb private
d-dimensional data samples.

Output: Party A and Party B securely compute a projection vector w for the data
samples held by them.

1: Party A computes ta = (na
1/n1)m

a
1 − (na

2/n2)m
a
2 . Party B computes tb =

(nb
1/n1)m

b
1 − (nb

2/n2)m
b
2.

2: Party A sets Sa
W = 0 and Party B sets Sb

W = 0.
3: for i = 1 to 2 do
4: for j = 1 to ni do
5: if (xi

j is held by Party A) then
6: ua = xi

j − (na
i /ni)m

a
i and ub = −(nb

i/ni)m
b
i

7: else
8: ua = −(na

i /ni)m
a
i and ub = xi

j − (nb
i/ni)m

b
i

9: end if
10: Using Eq. 4, Ma + Mb = (ua + ub)(ua + ub)T

11: Update Sa
W = Sa

W + Ma and Sb
W = Sb

W + Mb

12: end for
13: end for
14: Both parties jointly perform secure inverse of matrix sum (Protocol 2) to obtain

Sa + Sb = (Sa
W + Sb

W )−1.
15: Both parties jointly perform secure matrix multiplication (Protocol 1) to obtain

Satb and Sbta; projection vector w = Sata + Satb + Sbta + Sbtb (Eq. 6) may now
be computed.

Notations: na
1 and na

2 refer to the number of data samples of classes 1 and 2 respec-
tively held by Party A; nb

1 and nb
2 refer to the number of data samples of classes 1 and

2 respectively held by Party B.

m1 − m2 =
na

1m
a
1 + nb

1m
b
1

n1
− na

2m
a
2 + nb

2m
b
2

n2

=
(

na
1

n1
ma

1 − na
2

n2
ma

2

)

+
(

nb
1

n1
mb

1 −
nb

2

n2
mb

2

)

= ta + tb

Next, Steps 2 to 13 securely compute SW =
∑

i=1,2

∑ni

j=1(x
i
j −mi)(xi

j −mi)T

(Eq. 2). The secure manner to compute SW is to obtain two portion matrices
Sa

W and Sb
W each held by Party A and Party B respectively. This is performed

using the two for loops as shown in the protocol.
In Step 5, if xi

j belongs to Party A, then we have

xi
j − mi =

(

xi
j −

na
i

ni
ma

i

)

+ (−na
i

ni
mb

i)

= ua + ub

which yields (xi
j − mi)(xi

j − mi)T = (ua + ub)(ua + ub)T . The same process is
performed if xi

j belongs to Party B.
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Step 10 shows the secure manner to split the resultant product matrix of two
vectors (ua + ub)(ua + ub)T into two portions such that

M = (ua + ub)(ua + ub)T = Ma + Mb (4)

The element mi,j of matrix M is computed as follows:

mi,j = (ua
i + ub

i)(u
a
j + ub

j)

= ua
i × ua

j +
[
ua

i

ua
j

]

·
[

ub
j

ub
i

]

+ ub
i × ub

j (5)

= ma
i,j + mb

i,j

After securely computing the scalar product of vectors in Eq. 5, each element
of matrix M is splitted into two portions. Hence, the matrix M is splitted into
two private matrices. Overall, SW is securely splitted into two private portions
Sa

W and Sb
W .

Using Protocol 2, (SW )−1 =
(
Sa

W + Sb
W

)−1 can be securely splitted into Sa

and Sb such that (SW )−1 = Sa + Sb. Therefore

w = (SW )−1(m1 − m2)
= (Sa + Sb)(ta + tb)
= Sata + Satb + Sbta + Sbtb (6)

Using Protocol 1, we securely compute Satb and Sbta. Thus, we are able to
securely compute w.

Analysis: Two parities are assumed to be semi-honest who strictly follow the
protocol but collect all intermediate results during the execution of protocols to
attack the private data of honest parties. As we observe, Protocol 3 applies two
main secure building blocks: Secure Matrix Multiplication protocol and Secure
Inverse of Matrix Sum protocol. Both protocols depend on the Secure Scalar
Product protocol that is provably secure [6]. Based on random share technique,
we actually split all the intermediate results into two random shares (portions)
except the final w in Protocol 3. The private variables of one party are protected
by the equivalent numbers of random portions known by itself only. Therefore
we claim data privacy of honest parties are preserved.

We derive computational complexity of Protocol 3 here. As in Steps 3 to
13, the Secure Scalar Product protocol is invoked once to compute the scalar
product of two vectors (2× 1) (in Eq. 5), then one element of matrix M (d× d)
is securely split. As we know, there are n1 + n2 = n data. Therefore, the Secure
Scalar Product protocol is invoked n × d2 times in Steps 3 to 13 for computing
the scalar product of two vectors (2 × 1).

In Step 14, the Secure Inverse of Matrix Sum protocol is invoked once for
splitting (Sa

W + Sb
W )−1 (d× d). It requires to run the Secure Matrix Multiplica-

tion protocol twice (Step 2 and 5 in Protocol 2). In Step 14, the Secure Matrix
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Multiplication protocol is invoked twice for splitting items Satb (d × 1) and
Sbta (d × 1) securely. In the Secure Matrix Multiplication protocol, it requires
to perform the Secure Scalar Product protocol once to split one element of the
desired matrix. The overall number of invoking Secure Scalar Product protocol
in Step 14 and 15 is (2d2 + 2d) for computing the scalar product of two vectors
(d × 1).

Therefore, the overall computational complexity is O(nd2 +d3) as the compu-
tational complexity of the Secure Scalar Product protocol is O(τ) for two vectors
of length τ [6].

The communication of Protocol 3 between two parties mainly comes from
depends on Secure Scalar Product protocol invoked in the protocol. Based on
the analysis above, the the communication complexity of Protocol 3 depends
on the overall number of the Secure Scalar Product protocol invoked, which
is O(nd2 + d3) as the communication complexity of the Secure Scalar Product
protocol is O(τ) for two vectors of length τ [6].

In Section 5, we experimentally evaluate the efficiency and scalability of the
secure building blocks.

4.2 PPFDA over Vertically Partitioned Data

In this scenario, d dimensions of data are distributed between two parties. Party
A holds d1 dimensions and Party B holds d2 dimensions; d = d1 + d2. We show
how w can be securely computed in such a scenario.

In vertically partitioned data, we assume the first d1 dimensions of data sample
x = [x1, x2, . . . , xd] are held by Party A: xa = [x1, x2, . . . , xd1 ]T and the remain-
ing d2 dimensions of x are held by Party B: xb = [xd1+1, xd1+2, . . . , xd1+d2 ]T . We
show that Party A and Party B may extend their vertical data partitions with
empty dimensions so that both parties have d dimensional partitions. In this
way, the problem of vertically partitioned data is transformed to a horizontally
partitioned problem so that the method in Section 4.1 can be applied to securely
compute w.

The transformation is as follows: For each d1 dimension data sample xa of
Party A, additional d2 zeroes can be appended so that the data sample has d
dimension:

(xa)′ = [x1, x2, . . . , xd1 ,

d2
︷ ︸︸ ︷
0, 0, . . . , 0]T

Likewise, data samples of Party B can be prepended with d1 zeroes to become
d dimensional:

(xb)′ = [

d1
︷ ︸︸ ︷
0, 0, . . . , 0, xd1+1, xd1+2, . . . , xd1+d2 ]

T

After the transformation, we have a total of 2n data samples of d dimensions
rather than n data samples of d1 held by Party A and n data samples of d2 held
by Party B.
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Fig. 1. Accuracy comparison of FDA without and with privacy

Computational Cost of Secure Scalar 

Product Protocol

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000 1000000
Vectors Length

T
im

es
(s

)

Computational Cost Of Secure Inverse of 

Matrix Sum Protocol 

0.01

0.1

1

10

100

1000

2 3 4 5 6 7 8 9 10
Dimension (d)

T
im

e 
(s

)

Fig. 2. Scalability of the Secure Scalar Product Protocol and Secure Inverse of Matrix
Sum

5 Experiments

In this section, we discuss the implementation issues and evaluate the perfor-
mance of the proposed protocols. All protocols were implemented in the C#
language running under Microsoft Visual Studio 2005 environment. All experi-
ments are performed on the Window XP operating system with 3.40GHz CPU
and 1GB memory. As network performance mainly depends on the network speed
and physical distance of two parties, we simply implemented parties as threads
that exchange data directly by shared memory.

The dataset used is the Iris Plants Database from the UCI Machine Learning
Depository. There are 150 data samples in three classes: “Iris Setosa”, “Iris
Versicolour”, and “Iris Virginica” . As the latter two classes are not linearly
separable, we select them as our analysis data. There are 4 numeric predictive
attributes: “sepal length”, “sepal width”, “petal length”, and “petal width”.

The Paillier cryptosystem [14] was selected as our choice in the implementa-
tion. As the Paillier cryptosystem only encrypts non-negative integers, we have
to deal with issues when real numbers and negative numbers occur. For real
numbers, two parties multiply some large constants (e.g., 1000) to transform
the real numbers to integers. We remove the effects of the constants by divid-
ing the (intermediate) results by the constants. For negative numbers, the basic
property of congruence a+kn = a mod n is applied to transform negative integer
a to positive integers by adding multiples of n.
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Table 1. Efficiency analysis of Secure Inverse of Matrix Sum protocol

Dimension (d × d)
Secure Inverse of

Matrix Sum
Matrix Inverse

Overhead from
Secure Matrix Multiplication

5 0.069516s 0.015586s 0.05393s

6 0.15586s 0.046758s 0.109102s

7 0.436408s 0.249376s 0.187032s

8 2.72755s 2.228798s 0.498752s

9 24.095956s 21.867158 2.228798s

10 244.8105s 240.055572s 4.754928s

Accuracy: To show the accuracy of performing FDA with privacy preservation
using Protocol 3, we evaluated horizontally partitioned data where data instances
of data set are uniformly distributed between two parties. The first figure in
Fig. 1 was obtained by performing FDA using MATLAB. The second figure was
obtained by Protocol 3. We clearly observe that accuracy is not reduced when
we preserve the data privacy of the participant parties.

Scalability: We investigate the scalability of the two protocols proposed in this
paper. For the Secure Matrix Multiplication protocol, we observe that the bulk
of its operations are secure scalar products. Hence, we evaluated the scalability
of the Secure Scalar Product protocol as shown in the first figure in Fig. 2.
The running time is linear to the length of vectors as expected. Some random
numbers in our implementation were generated offline. The time for two vectors
of length 100,000 was estimated at 41 seconds, which is sufficiently low for small
and medium data sets. The second figure in Fig. 2 shows the efficiency of the
Secure Inverse of Matrix Sum protocol. We observe that the time to execute the
protocol for more than 10 × 10 dimensions matrices becomes impractical. From
Table 1, it is shown that the matrix inverse algorithm we used is time consuming
due to the computation of matrix inverse and not due to overhead of the Secure
Matrix Multiplication protocol. In our experiment, we use adjoint method [15]
to perform matrix inverse as follows: A−1 = (1/det)A(adjoint of A) which is
very computationally slow, comparing with other methods, such as Gauss-Jordan
elimination and LU decomposition.

In these experiments, we only evaluated privacy-preserving FDA over horizon-
tally partitioned data for low dimension (4× 4). To apply the proposed protocol
to higher dimension data would be part of our future work.

6 Conclusions

In this paper, we have proposed the privacy-preserving version of Fisher Dis-
criminant Analysis over horizontally and vertically partitioned data. We have
also proposed two basic secure building blocks for matrix computation: the Se-
cure Matrix Multiplication protocol and Secure Inverse of Matrix Sum proto-
col. Finally, we have conducted experiments to demonstrate the scalability of
the proposed secure building blocks and overheads to achieve the privacy when
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performing FDA. Our future work includes applying the proposed protocol to
high-dimensional data and extending the proposed protocols to multiple parties.
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