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Abstract. Randomized Response techniques have been empirically investigated
in privacy preserving association rule mining. In this paper, we investigate the ac-
curacy (in terms of bias and variance of estimates) of both support and confidence
estimates of association rules derived from the randomized data. We demonstrate
that providing confidence on data mining results from randomized data is sig-
nificant to data miners. We propose the novel idea of using interquantile range
to bound those estimates derived from the randomized market basket data. The
performance is evaluated using both representative real and synthetic data sets.

1 Introduction

Privacy is becoming an increasingly important issue in many data mining applications.
A considerable amount of work on privacy preserving data mining [2,1,11,10] has been
investigated recently. Among them, randomization has been a primary tool to hide sen-
sitive private data for privacy preserving data mining. The issue of maintaining privacy
in association rule mining has attracted considerable attention in recent years [7,8,4,13].
Most of techniques are based on a data perturbation or Randomized Response (RR) ap-
proach [5], wherein the 0 or 1 (0 denotes absence of an item while 1 denotes presence
of an item) in the original user transaction vector is distorted in a probabilistic manner
that is disclosed to data miners.

In [13,4,3], the authors proposed the MASK technique to preserve privacy for fre-
quent itemset mining and addressed the issue of providing efficiency in calculating the
estimated support values. Their results empirically showed a high degree of privacy to
users and a high level of accuracy in the mining results can be simultaneously achieved.
To evaluate the privacy, they defined a privacy metric and presented an analytical for-
mula for evaluating the privacy obtained under the metric. However, accuracy metric
on data mining results was only defined in an aggregate manner as support error and
identity error computed over all discovered frequent itemsets.

Our paper moves one step further to address the issue of providing accuracy in pri-
vacy preserving mining of association rules. We investigate the issue of how the accu-
racy (i.e., support and confidence) of each association rule mined from randomized data
is affected when the randomized response technique is applied.

Specifically, we present an analytical formula for evaluating the accuracy (in terms
of bias and variance of estimates) of both support and confidence measures of associ-
ation rules derived from the randomized data. From the derived bias and variance of
estimates, we further derive approximate interquantile ranges. Data miners are ensured
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that their estimates lie within these ranges with a high confidence, say 95%. We would
emphasize that providing confidence on estimated data mining results is significant to
data miners since they can learn how accurate their reconstructed results are. We illus-
trate the importance of those estimated interquantile ranges using an example.
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Fig. 1. Accuracy of the estimated support values of association rules derived from randomized
data with p=0.65

Figure 1 shows the original support values, the estimated support values from the
randomized data, and their corresponding 95% interquantile ranges of 7 association
rules, which were derived from COIL data sets1. A distortion parameter p = 0.65
and support threshold supmin = 23% were used in the experiment. The interquantile
range of each rule can give data miners confidence about their estimate derived from
randomized data. For example, the estimated support of rule 2 is 31.5% and its 95%
interquantile range is [23.8%,39.1%], which suggests the original support value lies in
this range with 95% probability. Furthermore, we can observe the 95% interquantile
ranges for rules 1-3 are above the support threshold, which guarantees those are true
frequent itemsets (with at least 95% confidence).

We emphasize providing accuracy of data mining results is important for data miners
during data exploration. When the support threshold is set as 23%, we may not only
take rule 2 and 6 as frequent sets from the estimated support values, but also conclude
rule 6 (35.9%) is more frequent than rule 2 (31.5%). However, rule 2 has the original
support as 36.3% while rule 6 has the original support as 22.1%, we mistakenly assign
the infrequent itemset 6 as frequent. By using the derived interquantile ranges, we can
determine that rule 2 is frequent with high confidence (since its lower bound 23.8% is
above the support threshold) and rule 6 may be infrequent (since its lower bound 12.3%
is below the support threshold).

The remainder of this paper is organized as follows. In Section 2, we present the dis-
tortion framework and discuss how the Randomized Response techniques are applied to
privacy preserving market association rule mining. We conduct the theoretical analysis
on how distortion process affects the accuracy of both support and confidence values
derived from the randomized data in Section 3. In Section 4, empirical evaluations on
various datasets are given. We conclude our work in Section 5.

1 http://kdd.ics.uci.edu/databases/tic/tic.html
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2 Distortion Framework

2.1 Association Rule Revisited

Denoting the set of transactions in the database D by T = {T1, · · · , Tn} and the set
of items in the database by I = {A1, · · · , Am}. An association rule X ⇒ Y , where
X ,Y ⊂ I and X ∩ Y = φ, has two measures: the support s defined as the s(100%) of
the transactions in T contain X ∪ Y , and the confidence c is defined as c(100%) of the
transactions in T that contain X also contain Y .

2.2 Randomization Procedure

Let there be m sensitive items A1, A2, · · · , Am, each being considered as one dichoto-
mous variable with 2 mutually exclusive and exhaustive categories (0 = absence, 1 =
presence). One transaction can be logically translated as a fixed-length sequence of
0’s and 1’s. For each transaction, we apply the Warner RR model [15] independently
on each item using different settings of distortion. If the original value is in the ab-
sence(presence) category, it will be kept in such category with a probability θ0 (θ1) and
changed to presence(absence) category with a probability 1− θ0 (1− θ1). For item Aj ,

the distortion probability matrix Pj generally takes the form Pj =
(

θ0 1 − θ1

1 − θ0 θ1

)
.

In this paper, we follow the original Warner RR model by setting θ0 = θ1 = pj . This
setting indicates users have the same level of privacy for both 1’s and 0’s. In general
customers may expect more privacy for their 1’s than for their 0’s, since the 1’s denote
specific actions whereas the 0’s are the default options.

Denote π(j) = (π(j)
0 , π

(j)
1 )′ (λ(j) = (λ(j)

0 , λ
(j)
1 )′) as the vector of marginal pro-

portions corresponding to item Aj in the original (randomized) data set, where j =
1, · · · , m. We have

λ(j) = Pjπ
(j) (1)

Note that each vector π(j) has two values π
(j)
0 , π

(j)
1 and the latter corresponds to

the support value of item Aj . For a market data set with n transactions, let λ̂(j) be the
vector of sample proportions corresponding to λ(j). Then an unbiased estimate of π(j)

is π̂(j) = P−1
j λ̂(j).

2.3 Estimating k-Itemset Supports

We can easily extend Equation 1, which is applicable to one individual item, to com-
pute the support of an arbitrary k-itemset. For simplicity, let us assume that we would
compute the support of an itemset which contains the first k items {A1, · · · , Ak} (The
general case with any k items is quite straightforward but algebraically messy).

Let πi1,··· ,ik
denote the true proportion corresponding to the categorical combination

(A1i1 , · · · , Akik
), where i1, · · · , ik ∈ {0, 1}. Let π be vectors with elements πi1,··· ,ik

arranged in a fixed order. The combination vector corresponds to a fixed order of cell
entries in the contingency table formed by the k-itemset. When we have k items, the
number of cells in the k-dimensional contingency table is 2k. Table 1(a) shows one
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Table 1. 2 × 2 contingency tables for two variables A,B

(a) Original

B̄ B
Ā π00 π01 π0+

A π10 π11 π1+

π+0 π+1 π++

(b) After randomization

B̄ B
Ā λ00 λ01 λ0+

A λ10 λ11 λ1+

λ+0 λ+1 λ++

contingency table for a pair of two variables. We use the notation Ā (B̄) to indicate that
A (B) is absent from a transaction. The vector π = (π00, π01, π10, π11)

′
corresponds

to a fixed order of cell entries πij in the 2 × 2 contingency table. π11 denotes the
proportion of transactions which contain both A and B while π10 denotes the proportion
of transactions which contain A but not B. The row sum π1+ represents the support
frequency of item A while the column sum π+1 represents the support frequency of
item B.

The original database D is changed to Dran after randomization. Assume λμ1,··· ,μk

is the probability of getting a response (μ1, · · · , μk) and λ the vector with elements
λμ1,··· ,μk

arranged in a fixed order (e.g., the vector λ = (λ00, λ01, λ10, λ11)′ corre-
sponds to cell entries λij in the randomized contingency table as shown in Table 1(b) ),
we can obtain

λ = (P1 × · · · × Pk)π

where × stands for the Kronecker product.
Let P = P1 × · · · × Pk, an unbiased estimate of π follows as

π̂ = P−1λ̂ = (P−1
1 × · · · × P−1

k )λ̂ (2)

where λ̂ is the vector of sample proportions corresponding to λ and P−1
j denotes the

inverse of the matrix Pj . Note that although the distortion matrices P1, · · · , Pk are
known, they can only be utilized to estimate the proportions of itemsets of the original
data, rather than precisely reconstruct the original 0-1 data.

In this paper we follow the Moment Estimation method as shown in Equation 2 to
get the unbiased estimate of the distribution for original data. This method has been
broadly adopted in the scenarios where RR is used to perturb data for preserving pri-
vacy. Although it has good properties as computational simplicity and unbiasedness,
some awkward property exists due to random errors [5,6]. That is, the estimate may fall
out of the parameter space, which makes the estimate meaningless. This is one reason
that Maximum Likelihood Estimation (MLE) is adopted to estimate the distribution in
literature [6].

It has been proved in [6] that a good relation holds between these two methods in the
scenarios of RR: The moment estimate is equal to the MLE estimate within parameter
space. Based on that, we can know that moment estimate from Equation 2 achieves the
Cramér-Rao bound as MLE does. Therefore, moment estimate is the minimum variance
unbiased (MVU) estimator in RR contexts. Our later analysis on accuracy of association
rule is based on such unbiased estimate under the assumption that the estimate is within
parameter space.
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3 Theoretical Analysis on Accuracy of Association Rule

In this section, we theoretically analyze the variance of the estimates of both s and c for
any individual association rule X ⇒ Y . To derive their interquantile ranges, we also
analyze the distributions of those estimates derived from the randomized data.

3.1 Accuracy on Support s

From Equation 2, we know how to derive the estimate of support values of any itemset
from the observed randomized data. Now we address the question how accurate the
estimated support value is.

The whole contingency table is usually modeled as a multinomial distribution in
statistics. When we have k items, the number of cells in the contingency table is 2k.
For each cell d, where d = 1, 2, · · · , 2k, it has a separate binomial distribution with
parameters n and ηi. The binomial distribution is the discrete probability distribution of
the number of successes in a sequence of n independent 0/1 experiments, each of which
yields success with probability ηi. When n is large enough (one rule of thumb is that
both nηi and n(1 − ηi) must be greater than 5), an approximation to B(n, ηi) is given
by the normal distribution N(nηi, nηi(1 − ηi)).

Result 1. Since each cell πi1,··· ,ik
approximately follows normal distribution, its (1 −

α)100% interquantile range can be approximated as

[π̂i1···ik
− zα/2 ∗

√
v̂ar(π̂i1···ik

), π̂i1···ik
+ zα/2 ∗

√
v̂ar(π̂i1···ik

)]

zα/2 is the upper α/2 critical value for the standard normal distribution.
v̂ar(π̂i1···ik

) can be derived from the covariance matrix [5]:

ˆcov(π̂) = Σ1 + Σ2

= (n − 1)−1(π̂δ − π̂π̂
′
) + (n − 1)−1P−1(λ̂δ − P π̂δP

′
)P

′−1

Note that Σ1 is the dispersion matrix of the direct estimator of π, which is only related
to the data size for estimation. While the data size is usually large in most market bas-
ket analysis scenarios, it can be neglected. Σ2 represents the component of dispersion
associated with RR distortion.

We can simply use the derived π̂i1···im (from Equation 2) as an estimate of μ and the
derived

√
v̂ar(π̂i1···im) as an estimate of σ, where μ and σ are unknown parameters of

the normal distribution of each cell. An (1−α)100% interquantile range, say α = 0.05,
shows the interval contains the original πi1,··· ,im with 95% probability.

To illustrate this result, we use a simple example G ⇒ H (rule 2 in Figure 1). The
proportion of itemsets of the original data is given as

π = (π00, π01, π10, π11)′ = (0.415, 0.043, 0.183, 0.359)′

Using the RR scheme presented in the previous section, with the distortion parame-
ters p1 = p2 = 0.9 , we get the randomized responses

λ̂ = (0.368, 0.097, 0.218, 0.316)′
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By applying Equation 2, we derive the unbiased estimate of π as

π̂ = (0.427, 0.031, 0.181, 0.362)′

The covariance matrix of π̂ is unbiasedly estimated as

ˆcov(π̂) =

⎡
⎢⎢⎣

7.113 −1.668 −3.134 −2.311
−1.668 2.902 0.244 −1.478
−3.134 0.244 5.667 −2.777
−2.311 −1.478 −2.777 6.566

⎤
⎥⎥⎦ × 10−5

The diagonal elements of the above matrix represent the variances of the estimated π̂,
e.g., v̂ar(π̂00) = 7.113 × 10−5 and v̂ar(π̂11) = 6.566 × 10−5. Those off-diagonal
elements indicate the estimated covariances, e.g., côv(π̂11, π̂10) = −2.777× 10−5.

From Result 1, we can derive 95% interquantile range of sGH as

[π̂11 − z0.025

√
v̂ar(π̂11), π̂11 + z0.025

√
v̂ar(π̂11)] = [0.346, 0.378]

We can also see this derived interquantile range [0.346, 0.378] for rule 2 with p1 =
p2 = 0.9 is shorter than [0.238, 0.391] with p1 = p2 = 0.65 as shown in Figure 1.

3.2 Accuracy on Confidence c

We first analyze the accuracy on confidence of a simple association rule A ⇒ B where
A and B are two single items which have 2 mutually exclusive and exhaustive cate-
gories. We denote sA, sB , and sAB as the support values of A, B, and AB respectively.
Accordingly, we denote ŝA, ŝB , and ŝAB as the estimated support values from random-
ized data of A, B, and AB respectively.

Result 2. The confidence (c) of a simple association rule A ⇒ B has estimated value
as

ĉ =
ŝAB

ŝA
=

π̂11

π̂1+

with the expectation of ĉ approximated as

Ê(ĉ) ≈ π̂11

π̂1+
+

π̂11

π̂3
1+

v̂ar(π̂10) −
π̂10

π̂3
1+

v̂ar(π̂11) +
π̂11 − π̂10

π̂3
1+

côv(π̂11, π̂10) (3)

and the variance of ĉ approximated as

v̂ar(ĉ) ≈ π̂2
10

π̂4
1+

v̂ar(π̂11) +
π̂2

11

π̂4
1+

v̂ar(π̂10) − 2
π̂10π̂11

π̂4
1+

côv(π̂11, π̂10) (4)

according to the delta method [12].

Confidence can be regarded as a ratio (W ) of two correlated normal random variables
(X, Y ), W = X/Y . However, it is hard to derive the critical value for the distribu-
tion of W from its cumulative density function F (w) [14], we provide an approximate
interquantile range of confidence based on Chebyshev’s Inequality.
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Theorem 1. (Chebyshev’s Inequality) For any random variable X with mean μ and
variance σ2

Pr(|X − μ| ≥ kσ) ≤ 1/k2 k > 0

Chebyshev’s Inequality gives a conservative estimate. It provides a lower bound to the
proportion of measurements that are within a certain number of standard deviations
from the mean.

Result 3. The loose (1 − α)100% interquantile range of confidence (c) of A ⇒ B can
be approximated as

[Ê(ĉ) − 1√
α

√
v̂ar(ĉ), Ê(ĉ) +

1√
α

√
v̂ar(ĉ)]

From Chebyshev’s Inequality, we know for any sample, at least (1 − 1/k2) of the ob-
servations in the data set fall within k standard deviations of the mean. When we set
α = 1

k2 , we have Pr(|X−μ| ≥ 1√
α
σ) ≤ α. Hence, Pr(|X−μ| ≤ 1√

α
σ) ≥ 1−α. We

can simply use the derived Ê(ĉ) (from Equation 3) as an estimate of μ and the derived√
v̂ar(ĉ) (from Equation 4) as an estimate of σ, where μ and σ are unknown parame-

ters of the distribution of confidence. An approximate (1−α)100% interquantile range
of confidence c is then derived.

All the above results can be straightforwardly extended to the general association
rule X ⇒ Y and further details can be found in [9].

4 Empirical Evaluation

In our experiments, we use the COIL Challenge 2000 which provides data from a
real insurance business. Information about customers consists of 86 attributes and in-
cludes product usage data and socio-demographic data derived from zip area codes.
The training set consists of 5822 descriptions of customers, including the information
of whether or not they have a Caravan insurance policy. Our binary data is formed by
collapsing non-binary categorical attributes into binary form (the data can be found at
www.cs.uncc.edu/∼xwu/classify/b86.dat), with n = 5822 baskets and m = 86 binary
items.

4.1 Accuracy of Individual Rule vs. Varying p

Table 22 shows the 7 randomly chosen association rules derived from the randomized
COIL data with distortion parameter p = 0.65 . In this table, s (ŝ) indicates the original
(estimated) support value. ŝl (ŝu) denotes the lower bound (upper bound) of the 95%
interquantile range of the estimated support value. Similarly, c (ĉ) indicates the original
(estimated) confidence value. ĉl (ĉu) denotes the lower bound (upper bound) of the 95%
estimated confidence value. We have shown how the accuracy of the estimated support
values varies in Figure 1 (Section 1). One observation is that interquantile ranges of

2 The meaning of these items can be found in Table 2 of [16].
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Table 2. Accuracy of the estimated support and confidence for 7 representative rules of COIL

ID X Y s ŝ ŝl ŝu c ĉ ĉl ĉu

1 G E 35.9 34.1 26.3 41.8 66.2 64.7 31.3 95.3
2 G H 35.9 31.5 23.8 39.1 66.2 62.2 26.6 90.4
3 EH G 35.8 45.0 31.5 58.5 89.3 77.5 33.5 100
4 EG I 22.1 28.4 14.9 42.0 61.7 75.2 0 100
5 HF I 23.9 17.2 3.7 30.8 100 91.0 0 100
6 EGH F 22.1 36.3 12.3 60.2 61.7 99.4 0 100
7 FGI E 22.1 27.6 3.32 52.0 77.9 86.3 0 100

confidence estimates are usually wider than that of support estimates. For example,
the 95% interquantile range of the estimated confidence for rule 2 is [26.6%, 90.4%],
which is much wider than that of the estimated support [23.8%, 39.1%]. This is due to
three reasons. First, we set the distortion parameter p = 0.65 which implies a relatively
large noise (the perturbed data will be completely random when p = 0.5). Second,
the variance of the ratio of two variables is usually larger than the variance of either
single variable. Third, the estimated support can be modeled as one approximate normal
distribution so we can use the tight interquantile range. On the contrary, we derive
the loose interquantile range of confidence using the general Chebyshev’s Theorem.
We expect that the explicit form of the F (w) distribution can significantly reduce this
width. We will investigate the explicit form of the distribution of confidence and all
other measures, e.g. correlation, lift, etc. to derive tight bounds in our future work.
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Fig. 2. Accuracy vs. varying p for rule G ⇒ H

Our next experiment shows how the derived estimates (support, confidence, and their
corresponding interquantile ranges) of one individual rule vary with the distortion pa-
rameter p. We vary the distortion parameter p from 0.65 to 0.95. Figure 2(a) (2(b))
shows the accuracy of the estimated support (confidence) values with varied distortion
p values for a particular rule G ⇒ H . As expected, the larger the p, the more accu-
rate the estimate and the tighter the interquantile range is. It was empirically shown in
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[13] that a distortion probability of p = 0.9 (equivalently p = 0.1) is ideally suited to
provide both privacy and good data mining results for the sparse market basket data.
We can observe from Figure 2(b) that the 95% interquantile range of the confidence
estimate with p ≥ 0.9 is tight.

4.2 Accuracy of All Rules vs. Varying p

The above study of the accuracy of the estimate in terms of each individual rule is based
on the variance as criterion. In the case of all rules together, we can evaluate the overall
accuracy of data mining results using the average support error, the average confidence
error, percentage of false positives, percentage of false negatives etc. as defined in [4].

The metric ρ = 1
|R|

∑
r∈R

|ŝr−sr |
sr

× 100 represents the average relative error in the
reconstructed support values for those rules that are correctly identified. The identity
error σ reflects the percentage error in identifying association rules. σ+ = |R−F |

|F | ×
100 indicates the percentage of false positives and σ− = |F−R|

|F | × 100 indicates the
percentage of false negatives where R (F ) denotes the reconstructed (actual) set of
association rules. In addition to the support error (ρ) and the identity error (σ+, σ−),
we define the following three measures.

– γ: the confidence error γ = 1
|R|

∑
r∈R

|ĉr−cr|
cr

× 100 represents the average rela-
tive error in the reconstructed confidence values for those rules that are correctly
identified.

– s-p: the number of pairs of conflict support estimates. We consider ŝ1, ŝ2 as a pair
of conflict estimates if ŝ1 < ŝ2 but s1 > ŝ1l > smin > s2 where ŝ1l denotes the
lower bound of interqunatile range for s1.

– c-p: the number of pairs of conflict confidence estimates (similarly defined as the
above s-p).

Errors in support estimation due to the distortion procedure can result in falsely iden-
tified frequent itemsets. This becomes especially an issue when the support threshold
setting is such that the support of a number of frequent itemsets lie very close to this
threshold value (smin). Such border-line itemsets can cause many false positives and
false negatives. Even worse, an error in identifying a frequent itemset correctly in early
passes has a ripple effect in terms of causing errors in later passes.

Table 3(a) shows how the above measures are varied by changing distortion parame-
ter p from 0.65 to 0.95. We can observe all measures (the support error ρ, the confidence
error γ, the false positives σ+, the false negatives σ−) decrease when p increases. The
number of conflict support pairs (s-p) and conflict confidence pairs (c-p) also have the
same trend. Our experiment shows that when p ≥ 0.85, there are no or very few conflict
support (confidence) pairs, which implies the reconstructed set of association rules is
close to the original set. However, when p ≤ 0.80, there are significant number of con-
flict pairs, which implies the reconstructed set may be quite different from the original
one. By incorporating the derived interquantile range for each estimate, we can de-
crease the error caused by conflict pairs. In Section 1, we have shown one conflict sup-
port pair: rule 2 and rule 6. We can see that ŝ2 < ŝ6 (but s2 > s6). As ŝ2l > smin and
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Table 3. supmin = 25% confmin = 65% for COIL

(a)

p ρ σ− σ+ s-p γ c-p
0.65 25.6 34.0 53.8 27817 9.90 737
0.70 12.3 21.2 38.1 4803 6.39 393
0.75 7.35 11.8 30.8 729 4.44 85
0.80 3.64 6.82 16.9 0 2.47 28
0.85 2.64 6.67 7.76 0 1.76 0
0.90 1.91 5.18 4.24 0 1.10 0
0.95 0.84 4.63 1.02 0 0.51 0

(b)

p σ− σ−
l σ−

u σ+ σ+
l σ+

u

0.65 34.0 98.8 1.25 53.8 0.00 110.7
0.70 21.2 90.9 0.08 38.1 0.08 105.7
0.75 11.8 66.3 0.00 30.8 1.18 96.5
0.80 6.82 50.7 0.31 16.9 0.24 80.9
0.85 6.67 37.7 0.00 7.76 0.55 53.0
0.90 5.18 31.8 0.00 4.24 0.00 35.0
0.95 4.63 26.8 0.00 1.02 0.00 25.7

ŝ6l < smin, data miners can safely determine rule 2 is frequent but rule 6 may be
infrequent. We would emphasize again that providing estimates together with their in-
terquantile ranges (especially for those conflict pairs) through some visualization is very
useful for data exploration tasks conducted on the randomized data.

Table 3(b) shows the comparison between the identity errors derived using lower
bound and upper bound respectively. We define σ+

l = |Rl−F |
|F | × 100 (σ+

u = |Ru−F |
|F | ×

100) as the false positives calculated from Rl (Ru) where Rl (Ru) denotes the re-
constructed set of association rules using lower (upper) bound of interquantile range
respectively. Similarly we define σ−

l and σ−
u . We can observe from Table 3(b) that σ−

u

is significantly lower than σ− while σ+
l is significantly lower than σ+. In other words,

using the upper bound of the derived interquantile range can decrease the false nega-
tives while using the lower bound can decrease the false positives. In some scenario,
we may emphasize more on decreasing the false positive error. Hence, we can use the
lower bound of the derived interquantile range, rather than the estimated value, to de-
termine whether the set is frequent or not (i.e., frequent only if ŝl ≥ smin, infrequent
otherwise).

4.3 Other Datasets

Since the COIL Challenge data is very sparse (5822 tuples with 86 attributes), we also
conducted evaluations on the following representative databases used for association
rule mining.

1. BMS-WebView-13. Each transaction in the data set is a web session consisting of all
the product detail pages viewed in that session. There are about 60,000 transactions
with close 500 items.

2. A synthetic database generated from the IBM Almaden market basket data gener-
ator with parameters T10.I4.D0.1M.N0.1K., resulting in 10k customer tuples with
each customer purchasing about ten items on average.

Tables 4 and 5 show our results on these two data sets respectively. We can observe
similar patterns as shown in COIL data set.

3 http://www.ecn.purdue.edu/KDDCUP
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Table 4. supmin = 0.20% confmin = 20% for BMS-WebView-1

(a)

p ρ σ− σ+ s-p γ c-p
0.65 362.4 64.1 80.6 632 114.7 11
0.75 72.9 39.9 68.7 418 57.9 2
0.85 19.5 27.9 54.0 67 24.5 0
0.95 5.47 9.66 16.5 56 7.23 0

(b)

p σ− σ−
l σ−

u σ+ σ+
l σ+

u

0.65 63.9 100.0 1.34 81.8 0.0 187.6
0.75 40.1 100.0 1.07 69.8 0.0 155.3
0.85 27.9 99.1 0.40 54.0 0.0 152.8
0.95 9.66 70.6 0.00 16.5 0.0 123.8

Table 5. supmin = 0.20% confmin = 60% for IBM data with T10.I4.D0.1M.N0.1K

(a)

p ρ σ− σ+ s-p γ c-p
0.65 1234.9 73.4 171.9 971 47.8 7
0.75 99.7 57.8 168.0 11 38.3 0
0.85 19.9 49.7 165.6 3 18.6 0
0.95 5.14 21.3 50.3 0 4.61 0

(b)

p σ− σ−
l σ−

u σ+ σ+
l σ+

u

0.65 73.7 100.0 2.99 172.8 0.0 722.5
0.75 57.8 100.0 1.20 167.9 0.0 674.3
0.85 49.7 100.0 0.90 165.6 0.0 673.4
0.95 21.3 99.7 0.00 50.3 0.0 460.8

5 Conclusion and Future Work

In this paper, we have considered the issue of providing confidence ranges of support
and confidence in privacy preserving association rule mining. Providing the accuracy
of discovered patterns from randomized data is important for data miners. To the best
of our knowledge, this has not been previously explored in the context of privacy pre-
serving data mining.

Randomization still runs certain risk of disclosures. It was observed as a general
phenomenon that maintenance of item privacy and precise estimation were in conflict.
We will investigate how to determine distortion parameters optimally to satisfy both
privacy and accuracy constraints. We will explore some scenario where some sensitive
items are randomized while the remaining are released directly or where some transac-
tions are randomized while the remaining are unperturbed. We also plan to investigate
the extension of our results to generalized and quantitative association rules.
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