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Preface

The Pacific-Asia Conference on Knowledge Discovery and DataMining (PAKDD)
has been held every year since 1997. PAKDD 2008, the 12th in the series, was
held at Osaka, Japan during May 20–23, 2008. PAKDD is a leading international
conference in the area of data mining. It provides an international forum for re-
searchers and industry practitioners to share their new ideas, original research
results, and practical development experiences from all KDD-related areas in-
cluding data mining, data warehousing, machine learning, databases, statistics,
knowledge acquisition, automatic scientific discovery, data visualization, causal
induction, and knowledge-based systems.

This year we received a total of 312 research papers from 34 countries and
regions in Asia, Australia, North America, South America, Europe, and Africa.
Every submitted paper was rigorously reviewed by two or three reviewers, dis-
cussed by the reviewers under the supervision of an Area Chair, and judged
by the Program Committee Chairs. When there was a disagreement, the Area
Chair and/or the Program Committee Chairs provided an additional review.
Thus, many submissions were reviewed by four experts. The Program Commit-
tee members were deeply involved in a highly selective process. As a result, only
approximately 11.9% of the 312 submissions were accepted as long papers, 12.8%
of them were accepted as regular papers, and 11.5% of them were accepted as
short papers.

The PAKDD 2008 conference program also included four workshops. They
were a workshop on Algorithms for Large-Scale Information Processing in Knowl-
edge Discovery (ALSIP 2008), a workshop on Web Mining and Web-Based Ap-
plication 2008 (WMWA 2008), a workshop on Data Mining for Decision Making
and Risk Management (DMDRM 2008), and a workshop on Interactive Data
Mining (IDM 2008). PAKDD 2008 would not have been successful without the
support of many people and organizations. We wish to thank the members of the
Steering Committee for their invaluable suggestions and support throughout the
organization process. We are indebted to the Area Chairs, Program Committee
members, and external reviewers for their effort and engagement in providing a
rich and rigorous scientific program for PAKDD 2008. We wish to express our
gratitude to our General Workshop Co-chairs Sharma Chakravarthy and Sanjay
Chawla for selecting and coordinating the exciting workshops, to our Tutorial
Co-chairs Achim Hoffmann and Akihiro Yamamoto for coordinating the fruitful
tutorials, and to the distinguished keynote speakers, invited speakers, and tu-
torial presenters for their wonderful talks and lectures. We are also grateful to
the Local Arrangement Chair Takashi Okada, the Local Arrangement Co-chairs
Katsutoshi Yada and Kouzou Ohara, and the Local Arrangement Committee,
whose great effort ensured the success of the conference.



VI Preface

We greatly appreciate the support from various institutions. The conference
was organized by the Institute of Scientific and Industrial Research, Osaka Uni-
versity, Osaka, Japan and co-organized by the School of Science and Technology,
Kwansei Gakuin University, Hyogo, Japan and the Faculty of Commerce, Kansai
University, Osaka, Japan in cooperation with the Japanese Society of Artificial
Intelligence. It was sponsored by Osaka Convention and Tourism Bureau, Com-
memorative Organization for the Japan World Exposition ’70, Kayamori Foun-
dation of Informational Science, the Air Force Office of Scientific Research/Asian
Office of Aerospace Research and Development (AFOSR/AOARD), Future Sys-
tems Corp., Salford Systems, and Mathematical Systems Inc.

We also want to thank all authors and all conference participants for their
contribution and support. We hope all participants took this opportunity to
share and exchange ideas with one another and enjoyed PAKDD 2008.

March 2008 Takashi Washio
Einoshin Suzuki
Kai Ming Ting
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Extended Abstract

How do graphs look like? How do they evolve over time? How can we gener-
ate realistic-looking graphs? We review some static and temporal ’laws’, and
we describe the “Kronecker” graph generator, which naturally matches all of
the known properties of real graphs. Moreover, we present tools for discovering
anomalies and patterns in two types of graphs, static and time-evolving. For the
former, we present the ’CenterPiece’ subgraphs (CePS), which expects q query
nodes (eg., suspicious people) and finds the node that is best connected to all q
of them (eg., the master mind of a criminal group). We also show how to com-
pute CenterPiece subgraphs efficiently. For the time evolving graphs, we present
tensor-based methods, and apply them on real data, like the DBLP author-
paper dataset, where they are able to find natural research communities, and
track their evolution.

Finally, we also briefly mention some results on influence and virus propaga-
tion on real graphs.
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Abstract. In this talk, we study effcient algorithms that find frequent
patterns and maximal (or closed) patterns from large collections of semi-
structured data. We review basic techniques developed by the authors,
called the rightmost expansion and the PPC-extension, respectively, for
designing efficient frequent and maximal/closed pattern mining algo-
rithms for large semi-structured data. Then, we discuss their applications
to design of polynomial-delay and polynomial-space algorithms for fre-
quent and maximal pattern mining of sets, sequences, trees, and graphs.

1 Introduction

By rapid progress of high-speed networks and large-scale storage technologies, a
huge amount of electronic data of new types, called semi-structured data have
emerged in the late 1990s. Web Pages, XML documents, and genome data are
typical examples of such semi-structured data. Therefore, there have been po-
tential demands for efficient methods that extract useful information from these
semi-structured data.

Traditionally, data mining mainly deals with well-structured data, e.g., trans-
action databases or relational databases, for which data is arranged in a table-like
regular structure. On the other hand, these semi-structured data are (i) huge, (ii)
heterogeneous collections of (iii) weakly-structured data that do not have rigid
structures. Thus, we cannot directly apply these traditional data mining tech-
nologies to semi-structured data. Hence, our goal is to develop efficient methods
that discover interesting or useful rules from large collections of semi-structured
data, namely, semi-structured data mining [13, 15, 17, 18, 20, 21, 25, 29].

In this paper, we present efficient semistuructured data mining algorithms
for discovering rules and patterns from structured data such as sequence, trees,
and graphs. In Section 2, we considers tree mining and sequence mining in the
framework of frequent pattern mining. We present the rightmost expansion tech-
nique [9,1,11]. Then, in Section 3, we extend them to closed or maximal pattern
mining by the PCC-expansion technique [31,4,5,7], where each pattern is a rep-
resentative of an equivalence class of patterns having the same occurrences in a
given database. Finally, in Section 4, we condlude.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 2–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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<phonebook>
<person>
<name>Alan</name>
<tel>7786</tel>
<tel>2133</tel>

</person>
<person>
<name>
<given>Sara</given>
<family>Green</family>

</name>
<tel>6877</tel>

</person>
</phonebook>

phonebook

person

name tel tel

person

name

given family

tel

Alan 7786

Sara Green

6877
2133

Fig. 1. An XML document (left) as a la-
beled ordered tree (right)
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Fig. 2. A data tree D and a pattern tree
T on the label set L = {A,B}

2 Efficient Frequent Pattern Mining Algorithms

In this section, we introduce a framework of frequent pattern mining for semi-
structured data and present efficient tree mining algorithms.

2.1 Framework of Semi-structured Data Mining

A general framework. In our framework, a semi-structured data mining prob-
lem is specified by a 4-tuple (P , T ,O, L), where P is a class of patterns , T is a
class of databases , O is a class of occurrences (or positions), and L : P×D → 2O

is a function called occurrence function, where L(P, T ) = {o1, . . . , on} ⊆ O is
the set of all occurrences of a pattern P ∈ P in a given database T ∈ T . We
also assume that a partial order � over patterns, called the subsumption order
(or the generalization order) such that for every patterns P, Q, P � Q implies
L(P, T ) ⊇ L(Q, T ). If P � Q then we say that P subsumes Q or P is more
general than Q. For most classes of semi-structured patterns, L(·, ·) and � are
defined by the notion of matching or embedding of patterns.

Now, we define the frequent pattern mining problem for P as the problem
of, given a database T ∈ T and a minimum frequency threshold 0 ≤ σ ≤ |T |,
finding all frequent patterns P ∈ P appearing in T such that |L(P, T )| ≥ σ
without duplicates.

As the theoretical framework to study the computational complexity of semi-
structured data mining, we adopt the theory of enumeration algorithms. Hence,
our goal is to design polynomial-delay polynomial-space enumeration algorithms
[16], where the exact delay is the maximum computation time between the suc-
cessive outputs and the amortized delay is the total time devided by the number
of output patterns.

Ordered and unordered trees. For example, we gives the definition of fre-
quent ordered tree mining. In tree mining, data and patterns are modeled by
labeled ordered trees as shown in Fig. 2. Let Σ be a countable alphabet of sym-
bols. A labeld ordered tree is a rooted tree T = (VT , ET ,≤T , rootT , labT ), where
V = VT is the set of vertices , ET ⊆ V 2 is a set of directed edges called the
parent-child relation, ≤T⊆ V 2 is a binary relation called the sibling relation,
which orders children of each internal node left to right, rootT ∈ V is the root
of T , and labT : V → Σ is a function called the labeling function. A labeld
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unordered tree is a rooted tree T = (VT , ET , rootT , labT ), where the order ≤T of
children is not relevant. We denote by OT and UT the classes of labeled ordered
trees and of labeled unordered trees.

For a ordered trees P and T , P matches Q, denoted by P � Q, if there
exists a matching function φ : VP → VT from P to T that satisfies the following
conditions (i) – (iv): (i) φ is one-to-one; (ii) φ preserves the parent-child relation;
(iii) φ preserves the sibling relation; (iv) φ preserves the node label. We denote by
Φ(P, T ) the set of all matching functions from P to T . An input database is a set
of trees T = {T1, . . . , Tm}. We assume that T is encoded in a single tree T ∈ OT
obtained by attaching a common root to T1, . . . , Tm. Then, the occurrence list
of a pattern tree P in a text tree T is the set of the root occurrences of P in T
defined by L(P, T ) = { φ(rootP ) : φ ∈ Φ(P, T ) }. Then, the frequency of P is
defined by the number of occurrences 1 ≤ |L(P, T )| ≤ |T |.

2.2 Rightmost Expansion Technique for Frequent Pattern Mining

For frequent ordered tree mining problem, we developed algorithm Freqt [9]
that finds all frequent ordered tree patterns in a database. One of the keys of the
algorithm is efficient enumeration of labeled ordered trees. Our Freqt, as well
as TreeMiner by Zaki [34], are in the first generation of depth-first tree and
graph mining algorithms. The key of these algorithms is the rightmost expansion
technique explained below, which is independently proposed by our group [9],
Nakano [23], and Zaki [34].

A basic idea of the method is to build a spanning tree G over the search space of
ordered tree patterns, called family tree for labeled ordered trees as shown in Fig. 3.
By using the family tree, we can enumerate all the distinct ordered tree patterns
without duplicates in a unique way starting at the root pattern called the empty
tree⊥ and expanding (or growing) an already generated tree of size k−1 (a parent
tree) by attaching a new node to yield larger tree of size k (a child tree).

However, a straightforward implementation of this idea leads exponential
number of the duplication for one tree resulting G to be a DAG. The rightmost
expansion [9,23,34] is a technique to avoid duplicates, where we grow a pattern
tree by attaching a new node to only the rightward positions on the rightmost
branch of the parent tree so that the attached node becomes the rightmost leaf
of the resulting tree.

This is equivalent to encode each labeled ordered tree T with n nodes by the
sequence code(T ) = (X1, . . . , Xn), called the depth-label sequence, where for
each 1 ≤ i ≤ n, Xi = (depthi, labi) ∈ N × Σ are the pair of the depth and
the label of the i-th nodes of T in the preorder traversal of T . Then, we grow
a tree by attaching a new depth-label pair at the tail of code(T ) [11, 23, 34].
Optimization techniques such as occurrence-deliver [31] and duplicate detection
achieve significant speed-up of the order of magnitude.

2.3 Frequent Unordered Tree Miner Unot

For frequent unordered tree mining problem, we developed algorithm Unot [11]
that finds all frequent unordered tree patterns in a database. Some real-world
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T1 T2 T3 T4

Fig. 3. A family tree for (unlabeled) ordered trees

applications requires more general classes of graph patterns than ordered trees.
However, from theory point of view, graph mining with general graph patterns
seems intractable due to the NP-completeness of the subgraph isomorphism
problem for general graphs. Our algorithm Unot, and the algorithm indepen-
dently proposed by Nijssen and Kok [26], are ones of the first output-polynomial
time tree/graph mining algorithms for nontrivial subclasses of graphs larger
than ordered trees, which finds all frequent unordered tree patterns from a given
collections of trees in time polynomial time per pattern [11].

A difficulty comes from the fact that an unordered tree can have exponen-
tially many equivalent representations as ordered trees (Fig. 4). To overcome
this difficulty, we introduced the unique canonical representation of an ordered
tree, called a left-heavier tree. Left-heavier tree representation has a monotonic-
ity that if an unordered tree T (a child) is left-heavier then the tree S obtained
from T (the parent) by removing the rightmost leaf is also left-heavier. Thus,
We developed an efficient method to enumerate such canonical representation
without duplicates [11,24] by generalizing rightmost expansion technique of [1].
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B B

B A A

T3
1

2

3 5
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A 4
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AT1
1
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B

A B

5
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A 8
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B B
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1

2

3 4

9
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A 5
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AB
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3 4 7 8 9 10

Fig. 4. Equivalent unordered trees. Tree T3 is the canoncial representation among three
equivalent trees.

2.4 Applications of Frequent and Optimized Pattern Mining

Optimized pattern mining is a variant of frequent pattern mining, where a
database is a collection D = {T1, . . . , Tm} ⊆ T of data together with labeling
function χ : D → {+1,−1} that assigns a binary classification label χ(Ti) to
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each text Ti ∈ D and the goal is to find a best pattern P ∈ P that optimizes
a given statistical score function such as the classification error or the Shan-
non entropy in D. In weighted frequent pattern mining, we optimizes the sum
score(P, D, χ) =

∑
T∈L(P,D) χ(T ).

An interesting application of the optimized tree miners are feature extraction
for statistical machine learning over semi-structured data, such as boosting [19],
SVM, statistical clustering [30] for tree and graph structures. Our tree min-
ing algorithm Freqt is appleid to text mining from natural language texts for
log analysis at the call center and customer services [22], where a collection of
Japanese sentences are transformed into a collection of labeled unordered trees
by lexical and dependency analyses, and then Freqt is applied to find top-K
best patterns in the MDL measure [22].

3 Efficient Maximal Pattern Mining Algorithms

3.1 Maximal Pattern Discovery

Maximal pattern discovery (also known as closed pattern discovery [27]) is one
of the most important topics in recent studies of data mining [4, 5, 7, 8, 12, 27,
29,33,32]. A maximal pattern is such a pattern that is maximal with respect to
the subsumption ordering (or the generalization relation) among an equivalence
class of patterns having the same set of occurrences in a database. For some
known classes of patterns, such as itemsets and sequence motifs [3], it is known
that the number of frequent maximal patterns is much smaller than that of fre-
quent patterns on most realworld datasets, while the frequent maximal patterns
still contain the complete information of the frequency of all frequent patterns.
Thus, Maximal pattern discovery is useful to increase the performance and the
comprehensivity of data mining.

Formally, for a class P of patterns , we define the associated classe C of maximal
patterns (also known as closed patterns in [27]) as follows [31,4,5,7]. Recall that
the class of maximal patterns C is specified by a 4-tuple (P , T ,O, L) of a pattern
class P , a database class T , an occurrence class, and an occurrence mapping
L : P×T → 2O. We define patterns P and Q are equivalent each other, denoted
by P ≡ Q, iff L(P, T ) = L(Q, T ) holds, and the equivalence class for pattern P
by [P ] = {Q ∈ P : P ≡ Q }. Then, a pattern P is maximal in a database T if P
is a maximal elment in [P ] w.r.t. �. Equivalently, P is maximal if there exists
no strictly more specific pattern Q ∈ P than P equivalent to P , i.e., P � Q and
L(P, T ) = L(Q, T ) hold.

3.2 Depth-First Algorithms for Maximal Pattern Discovery

Efficient Algorithms. For maximal pattern discovery, we have developed the
following efficient algorithms for finding all maximal patterns from a given col-
lection of data. Let Σ be an alphabet of symbols.
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Fig. 5. Geometric Graph Mining, where patterns and a database are graphs having
points in the 2-D plane as their verticies, and are invariant under translation, rotation,
and enlargement

• The algorithm LCM (Linear-time Closed Itemset Miner) for maximal sets
[31] (Fig. 6), where a closed set [27], also called a maximal set here, is an
itemset over Σ which is maximal w.r.t. set inclusion among those itemsets
having the same set of ocurrences in a given databases.
• The algorithm MaxMotif (Maximal Motif Miner) for mining maximal mo-

tifs with wildcards [4]. A motif with wildcards [28] is a sequence of constant
symbols in Σ and special wildcards ◦ for single letters such as AB◦B◦ABC.
• The algorithm CloAtt (Closed Atribute Tree Miner) for mining maximal

trees [5]. An attribute tree [29] is a labeled unordered tree where out-going
edges starting from any internal node mutually distinct symbols in Σ as
their labels. This class can be seen as a fragment of description logic having
deterministic roles only.
• The algorithm MaxGeo (Maximal Geometric Subgraph Miner) for mining

maximal geometric graphs [7]. A geometric graph is an undirected graph
whose vertices are points in the 2-D plane R2 and labeled with symbols in
Σ, as shown in Fig. 5. The matching among geometric graphs is defined to
be invariant under a set of geometric transformations such as translation,
rotation, and enlargement.

All of the above algorithms are polynomial time polynomial space algorithms
based on depth-first search. To achieve this requirement, we developed the PPC-
extension (prefix-preserving closure extension) technique below.

Reverse search technique. Our PPC-extension can be viewed as an instance
of the reverse search technique [16], which is a technique for designing effi-
cient enumeration algorithms for complex combinatorial objects, such as perfect
matching and maximal cliques. Let S be the set of solutions on an instance of a
given combinatorial enumeration problem. In reverse search, for every non-root
solutions Y , we arbitrarily assign the parent X = Pa(X) in a systematic way
by using a parent mapping Pa. The mapping Pa is designed so that Pa(P ) is
uniquely determined and the size of P is properly decreasing. Then, it follows
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Fig. 6. An example of a transaction database (left) and maximal (closed) item sets on
the database generated by the PPC-extension (right), where ⊥ is the smallest closed set
and each arrow indicates the parent-child relationship according to the PPC-extension.
A small box on an item of each closed set indicates newly added item as a seed of the
PPC-extension.

that the directed graphs with S as the set of vertices and Pa as the set of di-
rected edges, called the family tree1 forms a spanning tree over the solutions.
Finally, we can apply depth-first search to enumerate all solutions by starting
from the root and then by expanding the current solution to obtain its children.
If a child no longer belongs to S, then we backtrack to its parent and continue
the search. Repeating the above process, we can enumrate all the solutions in S
in depth-first manner with small delay and small memory.

3.3 PPC-Extension for Maximal Semi-structured Patterns

In this subsection, we will present the PPC-extension framework for designing an
efficient maximal pattern mining algorithm for a given class P of semi-structured
patterns. In particular, we give an algorithmic schema PPC-MaxMine, from
which we can derive polynomial delay and polynomial time enumeration algo-
rithms LCM [31], MaxMotif [4], CloAtt [5], and MaxGeo [7] for maximal
pattern mining.

Merge and Closure operations. For the class of maximal patterns C specified
by a 4-tuple (P , T ,O, L), we require that any set S of patterns has the unique
greatest lower bound �S of S w.r.t. �, or the least common subsumer (LCS)
of all patterns in S. Although this property of the existence of the unique LCS
does not hold in general, the four classes of patterns that we have considered,
i.e., the classes of itemsets, motifs with wildcards, attribute trees, and geometric
graphs, enjoy this property.

Under the assumption of the unique LCS, we give the merge operation ⊕ :
P×P → P that computes the least common subsumer Q1⊕Q2 ∈ P of a pair of
patterns Q1, Q2 ∈ P . We suppose that a pattern P occures in a database T ∈ T
at occurrence or position p ∈ L(P, T ) ∈ O. Then, an alignment or displacement
of T at the occurrence p, denoted by (T − p) ∈ T , is a copy of the data T where
1 This graph sometimes has several roots, and then called a spanning forest.
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the origin of the copy is set to the position p. Then, we define the closure of a
possibly non-maximal pattern P by the pattern CloT (P ) =

⊕
p∈L(P )(T − p).

Lemma 1. Let P be any class among the classes of itemsets, motifs with wild-
cards, attribute trees, and geometric graphs. Let T ∈ T be any database. Then,
for every P, Q ∈ P, the following properties holds:

1. If P � Q then CloT (P ) � CloT (Q).
2. CloT (CloT (P )) = CloT (P ).
3. If P and Q are maximal, then P � Q iff L(P, T ) ⊇ L(Q, T ).
4. P is maximal in T iff CloT (P ) = P .

Defining the parent function. Now, we define the parent function for the
maximal patterns in C by using the closure operator CloT as follows. Firstly, we
introduce an adequate representation scheme for patterns of P , where each pat-
tern P of size n is encoded by a sequence code(P ) = (X1, . . . , Xn) over an alpha-
bet X of components. Then, we assume that the encoding is prefix-closed, i.e., for
any pattern P , any prefix of the encode of P is a proper encoding of some pattern
in P . The increasing sequence representation for itemsets and the depth-label
sequence representations are examples of such encoding schema. In what follows,
we identify a pattern P and its encoding code(P ) = (X1, . . . , Xn) if it is clear
from the context. If P = (X1, . . . , Xn), 1 ≤ k ≤ n, and Z ∈ X then we define
the insertion of Z at the index k by P [k ← Y ] = (X1, . . . , Xk−1, Z, Xk, . . . , Xn).

We define the root pattern by ⊥ = CloT (ε) ∈ C, which is the closure of the
empty pattern ε that appears everyposition in T . Let P = (X1, . . . , Xn) ∈ C be
any non-root pattern that is maximal in T . For k ≤ n, we denote by P (k) =
(X1, . . . , Xk) the prefix of P with length k. The critical prefix of P in T is the
shortest prefix P (k) (0 ≤ k ≤ n) of P that has the same occurrence list with
the original, i.e., L(P (k), T ) = L(P, T ) holds. Then, i is called the critical index
of P w.r.t. T and denoted by crit idx(P ) = i. We define the parent of pattern
Q in T by

Pa(Q) = CloT (Q(k − 1)),

where k = crit idx(Q) is the critical index of Q w.r.t. T . Then, we can observe
that since Q(k) is the shortest prefix of Q having the same set of occurrences, the
strictly shorter prefix Q(k − 1) has a properly larger set of occurrence L(Q(k −
1)) (L(Q) ⊂ L(Q(k − 1))). By the definition of the equivalence relation ≡, we
know that Q(k− 1) now belongs to an equivalence class [Q(k− 1)] ⊆ Q disjoint
with the previous equivalence class [Q] for Q. Thus, it follows by Property 4 of
Lemma 1 that the closure P = CloT (Q(k − 1)) ∈ P of Q(k − 1) is a maximal
pattern in C. By this construction, for every non-root maximal pattern Q ∈ C, we
always associate as its parent the maximal pattern P = Pa(Q) ∈ C. Furthermore,
we can easily see from Lemma 1 that P is more general than Q, and furthermore,
P is strictly shorter than Q in length. Combining the above discussion, we can
see that the rooted directed graph G = (C, Pa,⊥) with the set of vertices C, the
set of reverse edges Pa ⊆ C×C, and the root ⊥ is a family tree for C, a spanning
tree for all maximal patterns in C.
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Algorithm PPC-MaxMine(X : component alphabet, T ∈ T : database, σ ≥ 0: min-freq):
1 global: T, σ;
2 PPC-Expand(⊥, 0);

Procedure PPC-Expand(P, i):
1 if |L(P, T )| < σ then return; //in-frequent
2 Output P ;
3 for any X ∈ X and any k > i such that P [k ← X] ∈ P do begin
4 Q = CloT (P [k ← X]); //PPC-extension: closure computation
5 if P (k − 1) = R(k − 1) then //PPC-extension: prefix check
6 PPC-Expand(Q, k);
7 end

Fig. 7. An algorithm schme PPC-MaxMine for enumerating all maximal patterns in
P in a database

Depth-first mining by PPC-extension. The remaining thing is to perform
the depth-first search over the family tree G for C by inverting the direction of
the reverse edges in Pa. Suppose that P is a parent of Q, i.e., P = Pa(Q) =
CloT (Q(k−1)) for the critical index k = crit idx(Q) and Z = Xk ∈ X is the k-th
component of Q. Then, we can show that we can recover Q from P by computing
Q = CloT (P [k ← Z]) provided that the prefix check P (k − 1) = Q(k − 1)
succeeds, i.e., the prefices of P and Q of length k − 1 coincide, where P [k ← Z]
is the encoding obtained from P by inserting Z at position k. Then, Q is said to
be a PPC-extension of P . Furthermore, for different selection of (k, Z) ∈ N×X
generates distinct children of P .

Fig 6 shows the search structure of PPC-extension in LCM algorithm in the
case of maximal itemset mining [31]. In Fig. 7, we give a simple backtracking
algorithm PPC-MaxMine based on the PPC-extension technique. The algorithm
PPC-MaxMine finds all maximal patterns in the class C appearing in T without
duplicates in the depth-first manner.

Complexity analysis. From the view from enumeration algorithms, we showed
that all instances of the algorithm scheme PPC-MaxMine, namely, LCM [31],
MaxMotif [4], CloAtt [5], and MaxGeo [7], are actually polynomial delay
and polynomial time enumeration algorithms that computes all maximal pat-
terns for the classes of itemsets, motifs with wildcards, attribute trees, and ge-
ometric graphs, respectively. To our knowledge, these are the first results on
efficient output-sensitive algorithms for maximal pattern disocvery for semi-
structured data.

4 Conlusion

In this talk, we reviewed techniques for designing efficient frequent and max-
imal/closed mining algorithms for large semi-structured data. We capture the
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notion of high-throughput and light-weight pattern mining algorithms by the
class of polynomial-delay and polynomial space enumeration algorithms for pat-
tern mining problems. Firstly, we study efficient frequent tree mining based on
the rightmost expansion technique developed by [9,23,34], which enable us to effi-
ciently enumerate complex semi-structured patterns in a systematic way without
duplicates. Then, we present frequent mining algorithms Freqt [9], Optt [1],
and Unot [11]. Secondly, we study efficient maximal/closed pattern mining for
classes sets, sequences, trees, and graphs based on the prefix-preserving clo-
sure extension (PPC-extension) technique. Based on this technique, we present
frequent mining algorithms LCM [31], MaxMotif [4], CloAtt [5], and Max-
Geo [7]. All the above algorithms that we presented have polynomial-delay and
polynomial space enumeration complexity for the corresponding semi-structured
data mining problems.

It is an interesting future problem to apply the above frameworks for other
classes of complex pattern mining problems such as maximal/closed pattern
mining for sequential patterns (sequences of itemsets) or generalized itemsets
(sets of elements of a concept hierarchy). On maximal/closed pattern mining,
we mainly considered the pattern classes of “ridid patterns”, e.g., items sets,
motifs with wild cards and attribute trees, where the LCS and the closure are
uniquely determined from the occurrences. On the othe hands, there are a few
results on efficient maximal/closed pattern mining for the classes of “flexible”
patterns such as ordered trees, unordered trees, and subsequences patterns for
which no closure operator is known. Thus, it is a future problem to study a
generic framework for mining maximal flexible patterns.
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Abstract. In this paper we outline an approach for network-based in-
formation access and exploration. In contrast to existing methods, the
presented framework allows for the integration of both semantically
meaningful information as well as loosely coupled information fragments
from heterogeneous information repositories. The resulting Bisociative
Information Networks (BisoNets) together with explorative navigation
methods facilitate the discovery of links across diverse domains. In addi-
tion to such “chains of evidence”, they enable the user to go back to the
original information repository and investigate the origin of each link,
ultimately resulting in the discovery of previously unknown connections
between information entities of different domains, subsequently trigger-
ing new insights and supporting creative discoveries.

Keywords: BisoNet, Bisociative Information Networks, Bisociation,
Discovery Support Systems.

1 Motivation: The Need for Information Exploration

Data collection and generation methods continue to increase their ability to fill
up information repositories at an alarming rate. In many industries it is nowadays
commonly accepted – although often not openly admitted – that only a fraction
of available information is taken into account when making decisions or trying
to uncover interesting, potentially crucial links between previously unconnected
pieces of information.

In order to allow users to be able to find important pieces of information
it is necessary to replace classical question answering systems with tools that
allow for the interactive exploration of potentially related information – which
can often trigger new insights and spark new ideas which the user did not ex-
pect at start and was therefore unable to formulate as a query initially. It is
especially crucial for such systems to enable the seamless crossing of repository
boundaries to trigger new discoveries across domains. Since we will not know
at the start which types of information are needed or which kind of questions
will be asked throughout this explorative process, the system always needs to
be able to provide access to heterogeneous information repositories. These can
be structured, well annotated repositories, such as an ontology or a database of
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human annotations (“known facts”) but it needs to incorporate other types of
information as well, such as experimental data or the vast amounts of results
from the mining of e.g. published texts (“pieces of evidence”). The real chal-
lenge lies in providing the user with easy access to all of this information so that
she can quickly discard uninteresting paths to information that is not currently
relevant and at the same time focus on areas of interest. Similar to drill down
operations in Visual Data Mining, such a system will need to be able to show
summarizations according to different dimensions or levels of detail and allow
parallel changes of focus to enable the user to ultimately navigate to the infor-
mation entities that explain the connections of interest. Of course, the system
cannot be static but will require not only means for continuous updating of the
underlying information repositories to accommodate new data, but also new and
better methods to extract connections. In [1] we have argued that such a system
will truly support the discovery of new insights. Related work investigating the
nature of creativity (see [2] among others) describes similar requirements for
creative discoveries, based on broad but at the same time context dependent
more focused exploration of associations as the underlying backbone.

In this paper we outline an approach to realize such a system using a network-
based model to continuously integrate and update heterogeneous information
repositories and at the same time allow for explorative access to navigate both
semantic and evidential links. Before describing our prototypical system in more
detail we review existing network-based systems for knowledge or information
modeling. We conclude the paper by discussing open issues and challenges.

2 State of the Art: Network-Based Information Access

Different network-based models have been applied to Information Retrieval, such
as artificial neural networks, probabilistic inference networks, Hopfield or knowl-
edge networks [3]. The first two are mainly used to match documents to queries
and to find relevant documents related to a certain query. Documents and index
terms, which are the most discriminative terms, are represented as vertices in
these networks. Edges can be created to connect documents citing each other,
documents with their index terms, as well as cooccurring index terms. Hopfield
and knowledge networks are additionally used for automatic thesaurus creation
and consultation [4]. In this case only vertices of index terms cooccurring in doc-
uments or sentences are connected via edges. Another connectionist approach,
Adaptive Information Retrieval (AIR), creates additional vertices for each doc-
ument author and connects them by their author co-author relationships [5,6].

The majority of these approaches use weighted networks. In these networks a
weight is assigned to each edge, which depends on the underlying network model
as well as the computation and interpretation of the relation. In probabilistic
inference networks the weights represent probabilities of terms occurring in doc-
uments being relevant to a certain query [3,7]. Whereas the weights of knowledge
or Hopfield networks as discussed in [4] represent the relatedness of cooccurring
terms. Usually the weights of these approaches are only computed once and not
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changed afterwards. In contrast to these approaches, Belew enables each user of
an AIR model to adapt the weights according to their relevance feedback [5].
After initialization of the weights where the edges between documents and terms
are weighted with the term’s inverse document frequency, a user can send queries
to the network. The user then rates the resulting nodes, representing terms, doc-
uments or authors, as relevant or irrelevant. This relevance feedback is passed to
the network again in order to adjust the edge weight and process another query.
This kind of iterative process is continued until the result fits the users needs.
One essential disadvantage of such an adaptive system is that it adapts to the
user’s opinion of which documents are more relevant than others related to a
certain query. This means that the network will, over time, be strongly biased
by the opinion of the majority of the users.

In a number of other domains, networks have been applied to combine, rep-
resent, integrate and analyze information, such as bioinformatics and life sci-
ence, with a strong emphasis on the extraction of pharmacological targets [8],
protein functions [9], gene-gene [10], gene-protein [11] or protein-protein inter-
actions [12,13] from different biological databases and biomedical literature [14].
To mine texts and find this kind of interaction Blaschke et al. [12] proposed to
parse the sentences into grammatical units. Patterns or regular expressions have
been used as well to extract genes, proteins and their relations in texts [10,13].

Once the units of information and their relations are found, they can be
represented in a network. Additional algorithms can be used to cluster and
analyze these networks in order to identify meaningful subnetworks (commu-
nities) [15,13]. The analysis of network structures also reveals new insights into
complex processes such as regulator strategies in yeast cells [16]. Additionally
the edges can be evaluated and their quality can be specified based on several
features like edge reliability, relevance and rarity [17]. Note that also the increas-
ingly popular social networks fall into this category. In general much work has
been done when it comes to methods for network analysis [18].

2.1 Adaptive and Explorative Approaches

To visually analyze graphs, different layout algorithms such as the force-directed
Fruchterman-Reingold algorithm [19] have been developed. But large networks
with several million vertices and many more edges cannot be visualized com-
pletely in a reasonable manner. Therefore the visualization has to be focused on
a subgraph or at least summarized to match the current user’s interest or give
an overview. Various visualization techniques have been developed to address
this problem. Examples are the generalized Fisheye views [20], the splitting of
a network into several smaller semantical distinct regions [21] or the interactive
navigation through different levels of abstractions [22].

Another way to analyze large networks is to extract subgraphs that contain
most of the relevant information. One way to do this is to query a graph. On the
one hand queries can be generated by manually drawing a sub-graph or by using
a particular query language, i.e. GenoLink [23]. The results of such queries are
represented as sub-graphs which themselves could be the starting point of further
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analyses. On the other hand Spreading Activation techniques are very common
techniques to explore networks and handle queries [24]. In general the idea of
activity spreading is based on assumed mechanisms of human cognitive mem-
ory operations, originated from psychological studies [25]. These techniques are
adopted to many different areas such as Cognitive Science, Databases, Artificial
Intelligence, Psychology, Biology and Information Retrieval. The basic activity
spreading technique is quite simple. First, one or more vertices, representing the
query terms, are activated. The initial activation is distributed (spread) over
the outgoing edges and activates in subsequent iterations the adjacent vertices.
This iterative process will continue until a certain termination condition, such
as a maximum number of activated nodes or iterations or a minimum edge or
vertex weight is reached. The activation itself can also be weighted and can de-
crease over time or when propagating over certain edges. Furthermore different
activation functions can be used for the vertices [24]. In [4] the networks are
explored by usage of a branch-and-bound search and a Hopfield net activation.
Due to the restriction that a Hopfield activation algorithm only guarantees to
converge if the graph’s adjacency matrix is symmetric, meaning that the graph
is undirected, this technique is only applicable for certain kinds of networks.
Other approaches cope with the complexity by clustering or pruning the graph
based on their topology [26] or based on additional information such as a given
ontology [27].

2.2 Combining Heterogeneous Information Repositories

The integration of heterogeneous data sources facilitates insights across different
domains. Such insights are important especially in complex application areas
such as life sciences, which deal with different kinds of data, e.g. gene expression
experiments, gene ontologies, scientific literature, expert notes, etc. During the
last few years several approaches have been developed that attempt to tackle this
problem. The authors of [28] classified these systems into three general classes:
navigational integration, mediator-based integration and warehouse integration.

Navigational integration approaches like SRS [29], Entrez [30] and LinkDB [20]
aim to integrate heterogeneous data by providing links between units of infor-
mation derived from different sources. Links can be created based on database
entries as well as on the similarity of the units of information, or manually by
experts [20]. Most of the applications consist of one or more indexed flat files
containing the relations between the different concepts.

The second category is the mediator-based integration systems such as Discov-
eryLink [31], BioMediator [32], Kleisli [33] and its derivatives like TAMBIS [34]
or K2 [35]. These systems act as a mediator, which maps the schema of different
data sources onto a unified schema. Each query is converted and split up into
a set of sub-queries, which are than redirected to the wrapper of the integrated
data source. Finally the results of the sub-queries are combined to a single result
and returned by the mediator.

Warehouse approaches like GUS [35], Atlas [36], BIOZON [37] and BNDB [38]
are similar to the mediator-based approach since they also provide a unified
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schema for all data sources. But instead of creating a sub-query for each data
source the data itself is loaded into the unified schema.

Navigational integration and mediator-based approaches do not integrate all
the detailed data of a concept. The amount and complexity to handle additional
data is much smaller in comparison to systems that integrate the detailed infor-
mation of a concept like the warehouse approach. The advantage of this kind of
light integration is the ability to keep the detailed information up to date since
it is stored in the external sources itself. The drawback of such an integration
is the dependency on all the integrated systems with respect to reliability and
performance. In contrast, the warehouse approach also integrates all the detailed
information from the distributed repositories. The data can be preprocessed and
enriched with additional information such as similarity measures or user anno-
tations. The local storage of all data leads to a better performance and system
reliability. However the huge amount of data itself and continued maintenance
to detect changes and inconsitencies are the major drawback of such systems.

In summary, warehouse and mediator-based approaches provide the user with
a unified, mostly relational schema. This allows professional users the ability to
use powerful query languages like SQL to perform complex joins and queries.
The unification leads mostly to a complex data model including link tables to
combine the different data sources. Navigational approaches only maintain link
information between concepts and provide simple point and click interfaces vi-
sualizing links between them. These interfaces are also manageable by semi pro-
fessional users but restricted in their query capabilities like the lack of complex
joins. A common goal of all the mentioned integration approaches is the com-
bination of equal or similar concepts from different data sources. An obvious
approach to link these concepts is the usage of a flexible graph structure. An
example of integrating high confidence biological data is PathSys [39]. PathSys is
a graph-based data warehouse, which is used to analyze relations between genes
and proteins. To predict protein-protein interactions several approaches adopted
Bayesian Networks to model the mostly noisy or uncorrelated evidences of bio-
logical experiments [40,41].

3 BisoNets: Bisociative Information Networks

As we have suggested above, simply finding classical associations is not sufficient
to detect interesting connections across different information repositories and
contexts. Existing systems either tend to be to application focussed or restricted
to only a few type of information sources or types. However, in order to support
creative discoveries across domains we cannot assume that we know from the be-
ginning which information repositories will need to be combined in which way.

In 1964 Arthur Koestler introduced the term bisociation [42] to indicate the
“...joining of unrelated, often conflicting information in a new way...”. Using
this terminology we use the term Bisociative Information Networks, or short
BisoNets to denote a type of information network addressing the above concerns,
fusing the following requirements:
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– Heterogeneous Information: BisoNets integrate information from various
information repositories, representing both semantically solid knowledge
(such as from an ontology or a human annotated semantic net) and im-
precise and/or unreliable knowledge such as derived from automatic analy-
sis methods (e.g. results from text mining or association rule analyses) or
other experimental results (e.g. correlations derived from protein expression
experiments).

– Merging Evidence and Facts: BisoNets provide a unifying mechanism to
combine these different types of information and assign and maintain edge
weights and annotations in order to allow the mixing of links with different
degrees of certainty.

– Continuous Update: BisoNets can be refined online and continuously inte-
grate updated or new information.

– Exploration/Navigation: Finally, in order to allow access to the resulting in-
formation structure, BisoNets provide explorative navigation methods, which
show summarizations of (sub-) networks, and allow the changing of focus and
quick zooming operations.

There is strong evidence that such a complex system of loosely, not necessar-
ily semantically coupled information granules exhibits surprisingly sophisticated
features. In [43] Hecht-Nielsen describes a network which generates grammati-
cally correct and semantically meaningful sentences purely based on links created
from word co-occurrence without any additional syntactical or semantical anal-
ysis. In addition, [2] discusses requirements for creativity, supporting this type
of domain bridging bisociations.

3.1 First Steps: A BisoNet Prototype

In order to evaluate the concept of BisoNets, we have implemented a first proto-
type and so far have mainly applied it to life science related data. However, the
toolkit is not restricted to this type of data. The BisoNet prototype creates one
vertex for each arbitrary unit of information, i.e. a gene or protein name, a spe-
cific molecule, an index term or a document, and other types of named entities.
Relations between vertices are represented by edges. Vertices are identified by
their unique name and edges by the vertices they connect. In order to model not
only facts but also more or less precise pieces of evidence, edges are weighted to
reflect the degree of certainty and specificity of the relation.

Due to the uniqueness of a vertex name, a vertex can be ambiguous and
represent different units of information, i.e. a vertex can represent a term ex-
tracted from a document and a gene or protein name derived from a certain
database. For example a vertex could represent the animal “jaguar” or the make
of car. To distinguish the different kinds of meanings, an annotation can be ap-
plied to vertices and edges. An annotation specifies the origin and the type of
the information unit. A vertex representing different units of information will
contain different annotations: one annotation for each meaning. Edges with dif-
ferent annotations represent relations derived from different data sources. Each
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annotation of an edge contains its own weight in order to specify the evidence
of the relation according to the data sources it was derived from.

The structure of the knowledge network is rather lightweight, that is it simply
consists of vertices and edges, but contains no detailed information of the vertices
or edges itself. In order to access this valuable, more detailed information as well,
so-called data agents have been implemented. For each annotation, representing a
particular kind of information of a certain data source, a data agent is available,
which can be used to access the corresponding data source and extract the
detailed information for a particular vertex or edge annotation.

To analyze and explore the network in order to find new and hopefully use-
ful information, potentially uninteresting information has to be filtered. The
prototype provides several filtering methods. One method allows particular an-
notation types of vertices and edges to be hidden, such as terms, species, or
chemical compounds to focus on a specific context. Another one filters edges
by their weight to filter out all relations below a certain degree of evidence. To
extract information related to a particular issue, an activity spreading algorithm
has been implemented, similar to the branch-and-bound algorithm of [4], which
is able to extract subgraphs consisting of the most relevant vertices related to a
specified set of initially activated vertices.

We implemented the BisoNet prototype within the modular information min-
ing platform KNIME [44] due to the large set of data preprocessing and analysis
methods available already. Each procedure and algorithm dealing with the net-
work was implemented as a module or KNIME node respectively. This allows
them to be used and combined individually and networks can be created, an-
alyzed and explored in a flexible manner. Figure 1 shows an example KNIME
workflow in which a network was created consisting of PubMed [45] abstracts as
text data, gene subgroup information derived from gene expression data, gene-
gene interaction data from Genetwork [46] and Gene Ontology [47] information.
One by one all data sources are integrated into the network and at the end of the
pipeline various filters can be applied to concentrate on a particular subgraph.

To visualize the network we used Cytoscape [48] an open source software
platform for graph visualization. Note that this graph visualization toolkit does
not offer sophisticated means to navigate the underlying BisoNet.

To create the complete network PubMed abstracts, related to the drug Plavix,
treating thrombotic events, were analyzed and all content bearing index terms,
gene and compound names were extracted and inserted into the network as
vertices. Co-occurring terms above a certain frequency are connected by an edge.
In addition gene-gene interaction data of Genetwork was integrated and, by
applying different filters such as gene annotation filter or edge weight filter, the
subgraph shown in Figure 2 can be extracted. The graph consists of 27 vertices
representing gene names and 33 edges representing gene-gene interactions. The
green vertices stem from the Genetwork data, the brown vertices from PubMed
text data. In the subgraph illustrated in Figure 2 the four genes derived from
text data connect and supplement the gene subgraphs of the Genetwork data
nicely. Note how connections between subgraphs based on one data source are
connected by information derived from a second source.
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Fig. 1. A KNIME workflow which creates a network consisting of text and gene data.
See text for details.

3.2 Open Issues and Challenges

The BisoNet prototype as described above is a first attempt at implementing the
concepts listed in Section 1. Many open issues and challenges are still awaiting
solutions and usable realizations. Within the EU Project “BISON” many of
these challenges will be tackled over the coming years, focussing among others
on issues related to:

– Scalability: addressing problems related to the increasing size of the resulting
networks demanding new approaches for the storage, access, and subgraph
operations on distributed representations of very large networks,

– Weight and Network Aggregation: that is, issues related to information
sources of vastly different context and levels of certainty but also presum-
ably simple problems of different versions of the same information repository,
which also requires dealing with outdated information.

– Graph Abstraction: relating to methods that are especially crucial for prob-
lems related to exploration and navigation. In order to support zoom in and
out operations, we need sophisticated methods for graph summarization and
abstraction allowing for the offering, creation, and formalization of different
views along different dimensions and at different levels of granularity on
(sub) graphs.

– Disambiguation: that is, the differentiation of named entities with different
meaning will also be critical to avoid nonsensical paths. Some of this will man-
ifest automatically by supporting links of different domains but some means
of at least semi automatic detection of ambiguous terms will be needed.

Without doubt, many other issues will be encountered along the way and soon
cognitive issues will also become increasingly important, i.e., developing interfaces
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Fig. 2. A gene subgraph extracted from a network. See text for details.

that are adopted to the way humans think and work and therefore truly support
human creativity instead of asking the user to adopt to the way the system has
been designed.

4 Summary

In this paper we have outlined a new approach to support associative information
access, enabling the user to find links across different information repositories
and contexts. The underlying network combines pieces of information of vari-
ous degrees of precision and reliability and allows for the exploration of both
connections and original information fragments. We believe these types of biso-
ciative information networks are a promising basis for the interactive exploration
of loosely connected, semi- or unstructured information repositories, ultimately
leading to fully fledged Discovery Support Systems.
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Abstract. The evaluation of classifier performance in a cost-sensitive setting is
straightforward if the operating conditions (misclassification costs and class dis-
tributions) are fixed and known. When this is not the case, evaluation requires
a method of visualizing classifier performance across the full range of possi-
ble operating conditions. This talk outlines the most important requirements for
cost-sensitive classifier evaluation for machine learning and KDD researchers and
practitioners, and introduces a recently developed technique for classifier perfor-
mance visualization – the cost curve – that meets all these requirements.

1 Introduction

Methods for creating accurate classifiers from data are of central interest to the data
mining community [2,15,16]. The focus of this talk is on binary classification, i.e. clas-
sification tasks in which there are only two possible classes, which we will call positive
and negative. In binary classification, there are just two types of error a classifier can
make: a false positive is a negative example that is incorrectly classified as positive, and
a false negative is a positive example that is incorrectly classified as negative. In gen-
eral, the cost of making one type of misclassification will be different—possibly very
different—than the cost of making the other type.1

Methods for evaluating the performance of classifiers fall into two broad categories:
numerical and graphical. Numerical evaluations produce a single number summarizing
a classifier’s performance, whereas graphical methods depict performance in a plot that
typically has just two or three dimensions so that it can be easily inspected by humans.
Examples of numerical performance measures are accuracy, expected cost, precision,
recall, and area under a performance curve (AUC). Examples of graphical performance
evaluations are ROC curves [18,19], precision-recall curves [6], DET curves [17], re-
gret graphs [13], loss difference plots [1], skill plots [4], prevalence-value-accuracy
plots [21], and the method presented in this talk, cost curves [7,11].

Graphical methods are especially useful when there is uncertainty about the misclas-
sification costs or the class distribution that will occur when the classifier is deployed. In
this setting, graphical measures can present a classifier’s actual performance for a wide
variety of different operating points (combinations of costs and class distributions),

1 We assume the misclassification cost is the same for all instances of a given class; see [12] for
a discussion of performance evaluation when the cost can be different for each instance.
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whereas the best a numerical measure can do is to represent the average performance
across a set of operating points.

Cost curves are perhaps the ideal graphical method in this setting because they di-
rectly show performance as a function of the misclassification costs and class distribu-
tion. In particular, the x-axis and y-axis of a cost curve plot are defined as follows.

The x-axis of a cost curve plot is defined by combining the two misclassification
costs and the class distribution—represented by p(+), the probability that a given in-
stance is positive—into a single value, PC(+), using the following formula:

PC(+) =
p(+)C(−|+)

p(+)C(−|+) + (1− p(+))C(+|−)
(1)

where C(-|+)is the cost of a false negative and C(+|-)is the cost of a false positive.
PC(+) ranges from 0 to 1.

Classifier performance, the y-axis of a cost curve plot, is “normalized expected cost”
(NEC), defined as follows:

NEC = FN ∗ PC(+) + FP ∗ (1− PC(+)) (2)

where FN is a classifier’s false negative rate, and FP is its false positive rate. NEC
ranges between 0 and 1.
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Fig. 1. Japanese credit - Cost curves for 1R (dashed line) and C4.5 (solid line)

To draw the cost curve for a classifier we draw two points, y = FP at x = 0 and y =
FN at x = 1, and join them by a straight line. The cost curve represents the normalized
expected cost of the classifier over the full range of possible class distributions and
misclassification costs. For example, the dashed line in Figure 1 is the cost curve for
the decision stump produced by 1R [14] for the Japanese credit dataset from the UCI
repository and the solid line is the cost curve for the decision tree C4.5 [20] learns
from the same training data. In this plot we can instantly see the relation between 1R
and C4.5’s performance across the full range of deployment situations. The vertical
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difference between the two lines is the difference between their normalized expected
costs at a specific operating point. The intersection point of the two lines is the operating
point where 1R’s stump and C4.5’s tree perform identically. This occurs at PC(+) =
0.445. For larger values of PC(+) 1R’s performance is better than C4.5’s, for smaller
values of PC(+) the opposite is true.

Mathematically, cost curves are intimately related to ROC curves: they are “point-
line duals” of one another. However, cost curves have the following advantages over
ROC curves (see [11] for details):

– Cost curves directly show performance on their y-axis, whereas ROC curves do
not explicitly depict performance. This means performance and performance dif-
ferences can be easily seen in cost curves but not in ROC curves.

– When applied to a set of cost curves the natural way of averaging two-dimensional
curves produces a cost curve that represents the average of the performances rep-
resented by the given curves. By contrast, there is no agreed upon way to average
ROC curves, and none of the proposed averaging methods produces an ROC curve
representing average performance.

– Cost curves allow confidence intervals to be estimated for a classifier’s perfor-
mance, and allow the statistical significance of performance differences to be as-
sessed. The confidence interval and statistical significance testing methods for ROC
curves do not relate directly to classifier performance.

For these reasons, we have gained insights into classifier performance using cost curves
that would likely not have been possible using other methods [8,9,10] and other data
mining researchers are using cost curves in their analyses [3,5,22,23].
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Abstract. Due to rapid development of information and communica-
tion technologies, the methodology of scientific research and the society
itself is changing. The present grand challenge is the development of the
fourth methodology for scientific researches to create knowledge based
on large scale massive data. To realize this, it is necessary to develop
a method of integrating various types of information and of personal-
ization, and the Bayes modeling is becoming the key technology. In the
latter half of the paper, several time series examples are presented to
show the importance of careful modeling that can take into account of
essential information.
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centric science, active modeling, time series analysis.

1 Change of Scientific Research and Society Due to the
Development of Information Technology

1.1 Change of Society Due to Informationization

Due to the progress of information and communication technologies (IT), large-
scale massive data are accumulating in various fields of scientific researches and
in society. As examples, we may consider the microarray data in life science, POS
data in marketing, high-frequency data in finance, all-sky CCD image in astron-
omy, and various data obtained in environmental science, earth science, etc.

Rapid development of information and communication technologies influenced
the research methodologies of science and technology and also society itself. In
the information society, the information became as worthy as the substances
and the energy, and the quantity of information decides the success and failure
in the society. However, in the 21st century, the post-IT society is approaching.
In other words, ubiquitous society for every body, is going to be realized, where
everybody can access to huge amount of information anywhere and anytime.
If such post-IT society actually realized, the value of information itself will be
depreciated, because huge amount of information can be shared by everybody.
The success and failure in the post-IT society depends on whether one can extract
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essential or useful information or knowledge from massive data. Therefore, in the
post-IT society, the development of the methods and technologies for knowledge
discovery and knowledge creation are very important.

Informationization also strongly influenced society. According to P. E. Drucker
(1993), the capitalism has been moved to the post-capitalist society shortly after
the World War II, due to the productivity revolution. This is because, the knowl-
edge became the real, controlling resource and the absolutely decisive factor of
production. According to him, the means of production is no longer capital, nor
land, nor labor. It is and will be knowledge.

1.2 Expansion of Research Object and Change in Scientific
Methodology Due to Informationization

The scientific research until the 19th century has developed basically under
Newton-Descartes paradigm based on a mechanic view of the world. In the de-
ductive approach, or in theoretical sciences, mathematics played an important
role as the language of the science. However, the theory of evolution advocated
by C. Darwin in mid 19th century means that every creature in real world evolves
and changes with time.

Motivated by such changes of view of real world, in 1891, K. Pearson declared
that everything in the real world can be an object of scientific research, and
advocated the grammar of science (Tsubaki (2002)). It can be considered that
the descriptive statistics and subsequent inferential statistics have developed as
methodologies of achieving the grammar of science. By the establishment of
the method of experimental sciences, not only biology but also many stochastic
phenomena in real world such as economy and psychology, became the objects
of scientific research.

In the latter half of the 20th century, the computation ability has increased
rapidly by the development of the computers. As a result, numerical computation
and Monte Carlo computation are applied to the nonlinear dynamics, complex
systems, and intertwined high degree of freedom systems that have been difficult
to handle by conventional analytic approach based on theoretical science, and
the computational science has developed very rapidly.

However, development of IT became a trigger of another development of uti-
lizing the information in rapidly exploding cyber-world. The development of the
information technology resulted in accumulation of large-scale massive data in
various fields of scientific researches and society, and a huge cyber-world is being
created. It is not possible to talk about future development of the science and the
technology without establishing methods of effective use of large-scale data. In
this article, the scientific methodology supported by the technology of utilizing
large-scale data set will be called the “fourth science” (Figure 1).

Needless to say, the first and the second methodologies are the theoretical
sciences and the experimental sciences. These sciences are called the deductive
method (or principle driven approach) and the inductive method (or data driven
approach), and became mainsprings that promoted the scientific researches in
the 20th century. However, in the latter half of the 20th century, the computing
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Fig. 1. Four methodologies that drive scientific researches

science was established as a method of alleviating the limit of the theoretical
science based on analytic method, and succeeded in the prediction and simulation
of nonlinear dynamics, complex systems or intertwined systems.

The computing science and the fourth science are newly establishing cyber-
enabled deductive and inductive methods while the conventional methodologies,
theoretical science and experimental science, relies on the researcher’s knowl-
edge and experiences. Now having been developed the computing science, it is
indispensable to promote this fourth science strategically to realize well-balanced
scientific researches in the information era. It is notable that the U.S. National
Science Foundation set “Cyber-enabled discovery and innovation” as a new pri-
ority area in the fiscal year 2008 (NSF(2008)).

In the field of global simulation etc., the data assimilation that integrates
information obtained from the theoretical model and observations from satellite
are becoming popular. In general, this can be considered as a technology to
integrate the principle driven approach and the data driven approach. So far, in
some area of scientific researches, the integration of two methodologies has been
intentionally avoided. However, it is an important subject for the development
of the knowledge society in the future. Actually, it can be considered as the
filtering method from the standpoints of statistical science or control engineering.
A rather natural way of thinking for researchers in methodologies can become
the key technology for the science and technology in the future.

The statistics before the inferential statistics, such as the descriptive statistics
was based on the observations of the object. On the other hand, the inferential
statistics aims at performing scientific reasoning based on carefully designed
rather small number of experimental data. However, due to the information-
ization in recent years, huge amount of heterogeneous data are accumulating,
and knowledge discovery from massive large-scale data that are not necessarily
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designed strictly, became important again. In spite of significant difference of
amount of data, it may be said that it is a kind of atavism to descriptive statistics.

In relation to this, Dr. Hotta, President of the Research Organization of Infor-
mation and Systems, stated an interesting thing about the transition of biology.
According to him; “biology that used to be a kind of natural history, became
an area of experimental sciences by adopting the scientific methodology in the
20th century. However, now it is becoming possible to decode entire genome of
living bodies. In a sense, biology is returning to a kind of natural history in the
modern age.”

1.3 Active Modeling

In parallel to the changes of the society and expansion of object of the scien-
tific researches, our images of “knowledge” is also radically changing. In the
past, a typical definition of the knowledge is “justified true belief,” that used
to be applied to being. However, with the progress of modern age, the knowl-
edge is becoming to applied to doing and brought productivity reevaluation and
management revolution (Drucker (1993)). Now, approaching to the knowledge
society, the knowledge discovery and the knowledge creation are becoming im-
portant. Corresponding to these changes, the definition of the knowledge is also
changing to “information effective in action and information focused on results.”

In the area of statistical science, the role of the model is changing along with
the change of the scientific methodology and the image of the knowledge. In the
conventional setting of the mathematical statistics, by assuming that the data
is obtained from the true distribution, we aimed at performing an objective
inference concerning the true structure. However, in the statistical modeling
for information processing or for information extraction, it is rather natural to
consider that the model is not true or close replica of the truth but is an useful
“tool” for information extraction.

Once the statistical model is considered like this, a flexible standpoint of model
construction is obtained, namely, in statistical modeling we should use not only
the present data but also the theory on that subject, empirical knowledge, and
any other data that have been obtained so far, and even the objective of the
modeling. Once the model is obtained, the information extraction, knowledge
discovery, prediction, simulation, control, and management, etc. can be achieved
straightforwardly or deductively (Figure 2). Needless to say, the result of knowl-
edge acquisition using the model leads to refined modeling. In this article, such a
process will be called active modeling. Therefore, active modeling forms a spiral
of the knowledge development.

To establish the “fourth science” for large-scale massive data, we have the
following grand challenges:

1. Prediction and knowledge discovery based on large-scale data,
2. Quantitative risk science, i.e., modeling uncertainty and managing risks,
3. Real world simulation,
4. Service science, i.e., innovations in medical care, pharmacology, marketing,

education, etc.
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Fig. 2. Active modeling and the use of identified model

In addition, as element technologies for these problems solving, the technolo-
gies for the knowledge integration and for the personalization are needed. For
the personalization, it is necessary to convert from the formulation of the past
statistical inference to an inference about individual object. Of course, this does
not mean to abandon the main feature of the statistical inference, namely, the
standpoint of capturing stochastic phenomena based on distribution, and can
be realized by an appropriate conditioning on the distribution. However, in the
modeling for personalization, ultimate conditioning is required, and the difficult
problem called “new NP problem” arise, in which the number of variables is
much more than the number of observations.

Anyways, the technology that becomes a key to achieve information integra-
tion and an ultimate conditioning is the Bayes modeling. It is because various
prior information and information from data can be integrated by the use of the
Bayes model. Although the Bayes’ theorem was discovered middle in the 18th
century, and the superiority of the inference based on the Bayes’ theorem was
well-known, application to real problems was rather rare, due to philosophical
controversy, difficulty in determining the prior distributions, and the difficulty
in computing the posterior distribution, etc. However, owing to the develop-
ment of statistical science such as the change in the viewpoint of modeling,
the model evaluation criterion that objectively evaluates models that are intro-
duced subjectively, and the development of statistical computing methods such
as MCMC and sequential Monte Carlo methods (Kitagawa and Gersch (1996),
Doucet et al. (2001)), now the Bayes method becomes the main tool in informa-
tion extraction, information integration, and information retrieval, etc. (Higuchi
et al. (2007)).

Although the Bayes modeling is becoming of practical use, there is one diffi-
culty in the achievement of modeling. Namely, there is no established method-
ology to derive appropriate class of models for particular problem. Therefore,
the researcher’s art is still demanded in the most important part of statisti-
cal modeling, i.e., the presentation of the model family. The raison d’etre of
the researchers, in particular of the statisticians in a cyber world can be found
here.



Prospective Scientific Methodology in Knowledge Society 35

2 Active Modeling of Time Series: Some Examples

So far, we have discussed importance of integrating various kind of information
considering the characteristics of the object and objective of the modeling. In
this section, we shall show several examples of time series modeling. In time
series analysis, the nonlinear non-Gaussian state-space model

xn = f(xn−1, vn), yn = h(xn, wn) (1)

is a useful tool for information extraction and information integration (Kitagawa
and Gersch (1996)). Here, yn, xn, vn and wn are time series, unknown state
vector, system noise and observation noise, respectively. The functions f(x, v)
and h(x, w) are, in general, nonlinear functions and the distributions of vn and
wn are not necessarily Gaussian. This general state-space model is a powerful
platform for integrating various types of information in time series analysis.

The ordinary state-space model used to be popular in time series modeling
because of the presence of the computationally efficient Kalman filter. However,
development of sequential Monte Carlo methods for filtering and smoothing with
general state-space model opened the door to flexible nonlinear non-Gaussian
modeling of time series (Kitagawa and Gersch (1996), Doucet et al. (2001)).

2.1 Prediction and Interpolation by Time Series Modeling

Figure 3 shows the results of increasing horizon prediction of BLSALLFOOD
data, the number of food industry workers in US (Kitagawa and Gersch (1996)),
based on autoregressive (AR) models with various orders. This time series has
apparent seasonal component. In the following prediction, the AR models are
estimated based on the first 110 observations and predict the succeeding 46
observations, yn, n = 111, . . . , 156.

The upper left plot shows the case when AR model with order 1, hereafter de-
noted as AR(1), was fitted by the Yule-Walker method and obtain the increasing
horizon predictive distributions by the Kalman filter. The smooth curve shows
the predicted values, i.e. the means of the increasing horizon predictive distri-
butions, and two dotted curves above and below this mean function are the
±1 standard error interval. Almost all actual observations are in these bounds
that suggests slight over estimation of the prediction variance. Except for this
problem, the prediction looks reasonable. However, the seasonal pattern is not
considered at all and this cannot be a good prediction.

The upper right plot shows the results by the AR(3). In this case, the first
one cycle was reasonably predicted. But the prediction over one year period is
too smooth and is almost the same as the AR(1). The lower left plot shows the
results by AR(11). In this case, cyclic behavior was predicted in entire period
of four years and the prediction errors are significantly reduced. On the other
hand, the lower right plot shows the results by AR(15), the minimum AIC model.
Comparing with the prediction by AR(11), it can be seen that much more precise
prediction was attained by this model. Actually, it is remarkable that details of
the seasonal pattern were successfully predicted by this model.
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Fig. 3. Increasing horizon prediction of BLSALLFOOD data by AR models with var-
ious orders (Kitagawa (2005))

Fig. 4. Interpolation of missing observations by AR models with various orders (Kita-
gawa and Gersch (1996))

From these results, it can be concluded that even though we obtain the best
predictors by the Kalman filter, if the model order is inappropriate, we cannot
get good predictive distribution.

Figure 4 show the results of interpolating missing observations by AR mod-
els. In this example, 50 observations, y41, . . . , y60 and y111, . . . , y140, are assumed
to be missing and are estimated by the fixed interval smoothing algorithm
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Fig. 5. AIC’s and power spectra of the fitted AR models

(Kitagawa and Gersch (1996)). The upper left plot shows the result by AR(1).
Approximately 75% of missing observations are included in the ±1 confidence in-
terval. However, similar to the case of increasing horizon prediction, the seasonal
pattern of the time series is not used at all for prediction.

The upper right plot shows the result by AR(3). In this case, moderate cyclic
pattern was obtained. But the width of the confidence interval is not reduced
significantly. In the case of AR(11) shown in bottom left plot, reasonable esti-
mates are obtained by incorporating the annual cyclic pattern. The AR(15) also
yields the similar results.

Here, we shall consider from the point of view of the power spectra. The right
plot of Figure 5 shows the power spectra obtained by four AR models use for
increasing horizon prediction and interpolation. The spectrum by AR(1) is very
smooth curve that falls in the right. It can capture the characteristic that the
time series has stronger long period components but cannot capture any cyclic
behavior. The spectrum by AR(3) has a peak around at f = 0.08, corresponding
to one year cycle. However, its peak is very broad indicating that it does not
capture very definite cyclic pattern. In the case of AR(11), sharp peaks with one
year, 6 months and 3 months cycles appeared, but the ones with 4 months and
2.4 months period did not. This means that by AR(11), it is possible to express
one year cycle but cannot reproduce every details within the one cycle. On the
other hand, in the case of AR(15), any cyclic pattern with one year cycle can
be expressed since the spectrum by AR(15) can express 6 periodic components
and one direct current component, i.e., f = 0.

Incidentally, if we use too higher order models, the spectrum may have more
than 6 peaks and it may deteriorate the accuracy of increasing horizon predic-
tion and interpolation. The left plot of Figure 5 shows the values of AIC for
various orders of AR models (Konishi and Kitagawa (2007)). The minimum of
the AIC was attained at order 15. AR(3) and AR(11) are local minima of AIC
but corresponding AIC are significantly larger than that of AR(15). AICfs of
the models with order higher than 15 are larger than that of AR(15), suggesting
poor prediction abilities than the AR(15).

These results suggest an obvious thing that given a specific model, we cannot
breakthrough the limitation of that model. In other words, even if we use the
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Fig. 6. Interpolation by multivariate AR models

best prediction or best interpolation, it does not guarantee the optimality of the
estimation.

2.2 Use of Multivariate Structure

In this subsection, we shall consider interpolation of 2-variate time series (yn, xn)
and exemplify that the interpolation may significantly improved by incorporating
information from other time series. Figure 6 shows an artificially generate 2-
variate time series. The problem here is to estimate the data y41, . . . , y70 by
assuming that they are missing.

Figure 6 show the result by obtained by using univariate AR model. The best
model selected by AIC was AR(5). Since the periodicity is not so strong as the
time series of considered in the previous subsection, the interpolated values are
very smooth and good reproduction of the missing observations are not achieved
even with the AIC best model. This result shows a possible limitation of the
univariate time series model for recovering missing data.

To mitigate this limitation, we shall consider the use of information from other
time series. Two plots in Figure 7 show the scatter plots of two time series. The
left plot show the scatter plot between yn and xn, and the right one between yn

and xn−2. Almost no correlation between two time series is seen between yn and
xn. On the other hand, in the right plot, significant correlation exists between
yn and previous values of other time series, xn−2 is seen. These suggest the
possibility of improving the prediction or interpolation by using the information
about the past values of xn.

The bottom left plot of Figure 6 show the result obtained by interpolating the
missing observations by using the bivariate AR model. It is assumed that on the
missing interval both of yn and xn are not observed. Although the confidence
interval is slightly reduced, the estimated values are similar to those of univariate
AR model. On the other hand, the bottom right plot shows the case when we
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Fig. 7. Scatter plots of two time series

can use the observations of the time series xn on this interval. Even though
we used the same bivariate AR model, very good reproduction of the missing
observations of yn is achieved by using the information of xn. Although, it is
rather obvious, this example clearly shows that we should utilize the all available
information appropriate for the current purpose.
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Abstract. Classification has been widely studied and successfully employed in
various application domains. In multidimensional noisy settings, however, clas-
sification accuracy may be unsatisfactory. Locally irrelevant attributes often oc-
clude class-relevant information. A global reduction to relevant attributes is often
infeasible, as relevance of attributes is not necessarily a globally uniform prop-
erty. In a current project with an airport scheduling software company, locally
varying attributes in the data indicate whether flights will be on time, delayed or
ahead of schedule. To detect locally relevant information, we propose combining
classification with subspace clustering (SubClass). Subspace clustering aims at
detecting clusters in arbitrary subspaces of the attributes. It has proved to work
well in multidimensional and noisy domains. However, it does not utilize class la-
bel information and thus does not necessarily provide appropriate groupings for
classification. We propose incorporating class label information into subspace
search. As a result we obtain locally relevant attribute combinations for classi-
fication. We present the SubClass classifier that successfully exploits classify-
ing subspace cluster information. Experiments on both synthetic and real world
datasets demonstrate that classification accuracy is clearly improved for noisy
multidimensional settings.

1 Introduction

Data produced in application domains like life sciences, meteorology, telecommuni-
cation, and multimedia entertainment is rapidly growing, increasing the demand for
data mining techniques which help users generate knowledge from data. Many applica-
tions require incoming data to be classified according to models derived from labeled
historic data. In a current project, we investigate flight delays for airport scheduling
purposes. The significance of flight delays can e.g. be studied in reports of the Bureau
of Transportation Statistics in the U.S. [7] and the Central Office for Delay Analysis of
Eurocontrol [11]. Extensive flight data is recorded by flight information systems at all
major airports. Using such databases, we classify flights as on time, delayed or ahead
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of schedule. This classification is essential in refining robust scheduling methods for
airport resources and ground staff (like the one presented in [6]).

For classification, numerous techniques exist. For our noisy database that contains
nominal attributes, numerical classifiers are not applicable. Neural networks or support
vector machines do not allow users to easily understand the decision model for flight
classification [20,17]. Bayes classifiers, decision trees, and nearest neighbor classifiers
provide explanatory information, yet assume globally uniform relevance of attributes
[20,18,3]. It has been shown that each type of classifier has its merit; there is no inherent
superiority of any classifier [10]. However, classification is difficult in the presence of
noise. Moreover, patterns may not show across all data attributes for all classes to be
learned. In multidimensional data only a subgroup of attributes may be relevant for
classification. This relevance is not globally uniform, but differs from class to class and
from instance to instance.

We have validated the assumption of local relevance of attributes for the flight classi-
fication project by training several types of classifiers. When using only attributes which
are determined as relevant by standard statistical tests, classification accuracy actually
drops. This suggests that globally irrelevant attributes are nonetheless locally relevant
for individual patterns. We therefore target at grouping flights with similar characteris-
tics and identifying structure on the attribute level. In the flight domain, several aspects
support the locality of flight delay structures. As an example, passenger figures may
only influence departure delays when the aircraft is parked at a remote stand, i.e. when
bus transportation is required. At some times of the day, these effects may be super-
posed by other factors like runway congestion. Weather conditions and other influences
not recorded in the data cause significant noise.

Recent classification approaches like [9] use local weighting in nearest neighbor
classification to overcome this drawback. Combing relevant attributes hierarchically a
subspace is constructed for nearest neighbor classification. However, locally adaptive
nearest neighbor methods do not consider the correlation of different attribute sets.
Association rules have been extended to classification [16]. Recent approaches adopt
subspace clustering methods to identify relevant subspaces for rule based classification
[21].

In this work, we propose a nearest neighbor classifier which directly uses the result
of our new subspace clustering method. Note that our approach is different from semi-
supervised learning where unlabeled data is used for training [22]. Our approach as-
sumes class labels that are directly incorporated into subspace clustering. Clustering is
helpful for understanding the overall structure of a data set. Its aim is automatic group-
ing of the data in absence of any known class labels in historic data [13]. Since class
labels are not known in advance (“unsupervised learning”), they are not used to classify
according to given groupings (“supervised learning”). Hence clustering is not appropri-
ate for classification purposes by its very nature [13]. However, the structures detected
by clustering may be helpful for detecting local relevance of attributes. For noisy and
high-dimensional data, clustering is often infeasible as clusters are hidden by irrelevant
attributes. Different attribute combinations might show different clustering structures,
thus the aim of subspace clustering is to detect clusters in arbitrary projections (“sub-
spaces”) of the attributes. As the number of subspaces is exponential in the number of
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attributes, most approaches try to prune the subspace search space [1,8,4]. Subspace
clustering has been shown to successfully detect locally relevant attribute combinations
[15,5].

We propose combining both worlds, supervised learning and unsupervised learning
by incorporating class label information into subspace search and clustering. Classifi-
cation based on these classifying subspace clusters exploits both class and local corre-
lation information. The flight classification problem is used to evaluate our model. Its
applicability, however, goes beyond this scenario. In fact, there are many more applica-
tion areas where classification has to handle noisy multidimensional data with locally
relevant attributes.

This paper is structured as follows: we define interesting subspaces for subspace
classification in Section 2.1. Classifying subspace clusters and the overall classifica-
tion scheme are discussed in Sections 2.2 and 2.3, respectively. Algorithmic concepts
are presented in Section 3. The proposed method is evaluated in the experiments in
Section 4 on both synthetic and flight data, before concluding the paper.

2 Subspace Classification

Subspace clustering is a recent research area which tries to detect local structures in the
presence of noise or high-dimensional data where meaningful clusters can no longer
be detected in all attributes [1,8,15]. As searching all possible subspaces is usually in-
tractable, subspace clustering algorithms try to focus on promising subspace regions.
The challenge is a suitable notion of interestingness for subspaces to find all relevant
clusters. Subspace clustering is a technique well-suited to identify relevant regions of
historic data, however, it is not suited for classification ”as is”. Our classification ap-
proach is capable of exploiting local patterns in the data for classification. This requires
detecting subspaces and subspace clusters that are also based on class structure. Our
SubClass model thus comprises three steps:

– Step 1: interesting subspaces for classifying clusters: Section 2.1
– Step 2: classifying subspace clusters: Section 2.2
– Step 3: a classification scheme: Section 2.3.

2.1 Step 1: Interesting Subspaces

Interesting subspaces for classifying clusters exhibit a clustering structure in their at-
tributes as well as coherent class label information. Such a structure is reflected by
homogeneity in the attribute values or class labels of that subspace. Homogeneity can
be measured using Shannon Entropy [19], or entropy for short. From an information
theoretic perspective, Shannon entropy is the minimum number of bits required for en-
coding information. More frequently occurring events are encoded with fewer bits than
less frequent ones. The sum over logarithmic probabilities weighted by their probability,
measures the amount of information, i.e. the heterogeneity of the data.
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Definition 1. Shannon Entropy. Given a random variable X and its possible events
v1, .., vm the Shannon Entropy H(X) is defined as:

H(X) = −
m∑

i=1

p(vi) · log2 p(vi)

Transferring the entropy notion to the clustering or classification domain, an attribute
can be seen as a random variable whose domain is the set of all possible events. In
case of continuous domains, the entropy requires discretization of attributes. Entropy
according to a set of attributes with respect to a set of class labels is then:

Definition 2. Attribute Entropy. Given a set of attributes X1, . . . , Xm, their possible
values v1, . . . , vm, and class labels C = {c1, . . . , cn}, attribute entropy is defined as:

H(X1, . . . , Xm|C) = −
∑

ci∈C

∑

v1∈X1

· · ·
∑

vm∈Xm

p(ci) ·H(X1, . . . , Xm|C = ci)

Attribute entropy is thus the sum over all conditional attribute entropy value combina-
tions weighted by the class label probabilities. It is a measure for the clustering tendency
for all class labels ci of a subspace in terms of the attributes. To measure the cluster-
ing tendency in terms of individual class labels, we define class entropy according to
conditional entropy H(C|X) (as e.g. in [18]).

Definition 3. Class Entropy. Given a set of attributes X1, . . . , Xm, their possible val-
ues v1, . . . , vm, and class label C the conditional entropy of a segmentation along these
attribute values is defined as:

H(C|X1, . . . , Xm)= −
∑

v1∈X1

. . .
∑

vm∈Xm

p(v1, .., vm) ·H(C|X1 = v1, . . . , Xm = vm)

Class entropy is thus the sum over all conditional class entropy value combinations for
individual class labels C. It corresponds to investigating the data for individual classes
instead of aggregated as for attribute entropy.

We are interested in subspaces that exhibit both a distinct class structure as well as
a clear clustering structure. Since entropy measures homogeneity, we are interested in
low entropy values that reflect a non-uniform distribution of class or attribute values.

However, comparing subspaces using entropy is clearly biased with respect to the
number of attributes. Subspaces with more attributes typically have lower entropy val-
ues. This is due to the fact that with increasing attribute number, objects tend to be less
similar: each attribute contributes potential dissimilarity [5]. Thus, we have to normalize
entropy with respect to the number of attributes. Normalization to a range of [0,1] can be
achieved by taking the maximum possible entropy value for a given number of attributes
into account. Maximum entropy means all values are equally likely, i.e. a uniform distri-
bution. Huniform(X1, .., Xm|C) for d = |X1× · · · ×Xm| possible attribute combina-
tions is determined as: Huniform(X1, .., Xm|C) = −d· 1d ·log2

1
d = − log2

1
d = log2 d,

since in uniform distribution, each attribute value occurs 1/d times. For larger numbers
of attributes, the theoretical upper bound of log2 d cannot be reached, as the actual num-
ber of instances is smaller than the number of possible attribute value combinations d.
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To account for this, we the number of instances |I| is used in this case:

HN (X1, .., Xm|C) =
H(X1, .., Xm|C)

min{log2|I|, log2 d}

In a similar spirit, we use the overall class distribution to normalize class entropy:

HN (C|X1, .., Xm) =
H(C|X1, .., Xm)

H(C)

Since those subspaces are interesting that cover both aspects, we define interestingness
as a convex combination of attribute and class entropy, provided that each of the two is
within reasonable bounds:

Definition 4. Subspace Interestingness. Given attributes X1, . . . , Xm, a class
attribute C, and a weighting factor 0 ≤ w ≤ 1, a subspace is interesting with respect
to thresholds β, λ iff:

w ·HN (X1, .., Xm|C) + (1− w) ·HN (C|X1, .., Xm) ≤ β

∧HN (X1, .., Xm|C) ≤ λ ∧ HN (C|X1, .., Xm) ≤ λ

Thus, a subspace is interesting for subspace classification if it shows low normalized
class and attribute entropy as an indication of class and cluster structure. w allows as-
signing different weights to these two aspects for different applications, while λ is set
to fairly relaxed threshold values to ensure that both aspects fulfill minimum entropy
requirements.

2.2 Step 2: Classifying Subspace Clusters

Having defined interesting subspaces, the next step is detecting classifying subspace
clusters. On discretized data, clusters can be defined as frequent attribute value com-
binations. To incorporate class information, these groupings should be homogeneous
with respect to class label. We defined the absolute frequency

AbsFreq(v1, . . . , vm) = |{o, o|S = (v1, . . . , vm)|

as the number of objects o which exhibit the attribute values (v1, . . . , vm) in subspace
S (projection o|S contains those attribute values vi from o where Xi ∈ S).

To ensure that non-trivial clusters are mined, we normalize frequency with respect
to the expected frequency of uniformly distributed subspaces. The expected frequency

ExpFreq(v1, . . . , vm) = AbsFreq(v1, . . . , vm) ∗ d/|I|

is the number of cluster objects in comparison to the number of instances |I| per at-
tribute combination under uniform distribution. Classifying subspace clusters exceed
minimum frequency for both absolute and relative (expected) frequency. Note that min-
imum absolute frequency simply ensures that a cluster exceeds a minimum size even
for very small expected frequency values:
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Definition 5. Classifying Subspace Cluster. Given a subspace S of attributes X1, . . . ,
Xm, a classifying subspace cluster SC with respect to attribute values v1, . . . , vm,
minimum frequency thresholds φ1, φ2, and maximum entropy γ is defined as follows:

– HN (C|X1 = v1, . . . , Xm = vm) ≤ γ
– AbsFreq(v1, . . . , vm) ≥ φ1

– ExpFreq(v1, . . . , vm) ≥ φ2

Classifying subspace clusters have low normalized class entropy, as well as high fre-
quency in terms of attribute values. Thus, they are homogeneous in terms of class and
show local attribute correlations.

2.3 Step 3: Classification

Classification of a given object o is based on the class label distribution of similar clas-
sifying subspace clusters. For nominal values as they occur in our flight data, an object
o is typically contained in several subspace clusters and similarity is reduced to con-
tainment. Let CSC(o) = {SCi|vk = ok∀vk ∈ SCi} denote the set of all classifying
subspace clusters containing object o. Simply assigning the majority class label from
this set CSC(o) would be biased with respect to very large and redundant subspace
clusters, where redundancy means similar clusters in slightly varying projections [5].
We therefore propose an iterative procedure that takes the information gain into ac-
count to build the decision set DSk(o).

Just as in the subspace clustering step we measure class homogeneity using the con-
ditional class entropy. Starting with an empty decision set and apriori knowledge about
class distribution H(C) we select up to k subspace clusters with maximal information
gain on the class label as long as more than φ1 objects are contained in the decision
space, i.e. the projection to the union of dimensions of the subspace clusters in the
decision set.

Definition 6. Classification. Given a dataset D, parameter k, an object o = (o1, . . . ,
od) is classified to the majority class label of decision set DSk. DSk is iteratively
constructed from DS0 = ∅ by selecting the subspace cluster SCj ∈ CSC(o) which
maximizes the information gain about the class label:

DSj =DSj−1 ∪SCj , SCj =

{

argmax
SCi∈CSC(o)

{H(C|DSj−1)−H(C|DSj−1 ∪ SCi)}
}

under the constraints that the decision space contains at least φ1 objects:

|{v ∈ D, v|DSk
= o|DSk

}| ≥ φ1

and that the information gain is positive

H(C|DSj−1)−H(C|DSj−1 ∪ SCi) > 0

Hence, the decision set of an object o is created by choosing those k subspace clusters
containing o that provide most information on the class label, as long as more than a
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minimum number of objects are in the decision space. o is then classified according to
the majority in the decision set DSk. The decision set is then the set of locally relevant
attributes that were used to classify object o. The attributes in the decision set are helpful
for users wishing to understand the information that led to classification.

3 Algorithmic Concept

Our algorithmic concept focuses on step 1 that is the computationally most complex.
A simple brute-force search would require evaluating all 2N subspaces which is not
acceptable for high dimensionality N . We thus propose lossless pruning of subspaces
based on two entropy monotonicities.

Theorem 1. Upward Monotony of the Class Entropy. Given a set of m attributes,
subspace S = {X1, .., Xm}, e ∈ IR+ and T ⊆ S, the class entropy in subspace T is
less than or at most equal to the class entropy of its superspace S:

H(C|T ) < e ⇒ H(C|S) < e

Proof. The theorem follows immediately from H(X |Xi, Xj) ≤ H(X |Xi) [12].

This theorem states that the class entropy decreases monotonically with growing num-
ber of attributes. Conversely, attribute entropy increases monotonically with the number
of attributes.

Theorem 2. Downward Monotony of the Attribute Entropy. Given a set of m at-
tributes, subspace S = {X1, .., Xm}, e ∈ IR+ and T ⊆ S, the attribute entropy in
subspace T is greater than or at most equal to the class entropy of its superspace S:

H(S|C) < e ⇒ H(T |C) < e

Proof. The theorem follows immediately from H(Xi, Xj |C) ≥ H(Xi|C) [12].

We exploit monotonicity by pruning

– all those subspaces T whose superspaces S ⊃ T fail the class entropy threshold.
This is correct since the normalization factor H(C) is independent of the subspace.

– Prune all those superspaces T whose subspaces S ⊂ T fail the attribute entropy
threshold if log2|I| ≥ log2|S|. This is correct since the normalization factor is
independent of the subspace if min{log2|I|, log2|S|} = log2|I|.

Our proposed algorithm alternately determines lower dimensional and higher dimen-
sional one-sided homogeneous subspaces, i.e. subspaces that are homogeneous w.r.t. to
class or attribute entropy, respectively. In each step new candidates are created from the
set of one-sided homogeneous subspaces mined in the last step.

Figure 1 illustrates pruning in a subspace lattice of four attributes. The solid line is
the boundary for pruning according to attribute entropy and the dashed line according to
class entropy. Each subspace below the attribute boundary and above the class bound-
ary is homogeneous with respect to the entropy considered. The subspaces between
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Fig. 1. Lattice of Subspaces and their projections used for up- and downward pruning

both boundaries are interesting subspace candidates, whose combined entropy has to be
computed in the next step.

For the bottom up case, the apriori property, originally from association rule mining,
can be used to create new candidates [2,8,15]. Following the apriori approach, we join
two attribute homogeneous subspaces of size m with identical prefixes (e.g. in lexi-
cographic ordering) to create a candidate subspace of size m + 1. After this, each new
candidate is checked for entropy validity, i.e. if all of its possible subspace of cardinality
m are contained in the set of attribute homogeneous candidate subspaces.

We suggest a similar method for top down candidate generation using class mono-
tonicity. From the set of class homogeneous subspaces of dimensionality m, we gener-
ate all subspace candidates of dimensionality m− 1. We develop a method that ensures
that each subspace candidate is only generated once. Based on the lexicographic order,
our method uniquely generates a subspace of dimensionality m−1 from its smallest su-
perspace. Note that this guarantees that all candidates but no superfluous candidates are
generated (see example below). After this, just as with apriori, we check whether all su-
perspaces containing the newly generated candidates are class homogeneous subspaces.
Otherwise the new generated subspace is removed from the candidate set.

X1X2X3 X1X2X4 X2X3X4

X1X2 X1X3 X1X4 X2X3 X2X4

Fig. 2. Example top down generation

Example. Assume four attributes X1, . . . , X4 from the previous step subspaces
X1X2X3, X1X2X4, and X2X3X4 that satisfy the class entropy criterion. In order
to generate candidates, we iterate over these subspaces in lexicographic order. The first
three-dimensional subspace X1X2X3 generates the two-dimensional subspaces X1X2

(drop X3), X1X3 (drop X2), X2X3 (drop X1). Next, X1X2X4 generates X1X4 and
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X2X4. X1X2 is not generated, because dropping X4 is not possible, as it is preceded
by X3 which is not contained in this subspace. The last three-dimensional subspace
X2X3X4 does not generate any two-dimensional subspace since the leading X1 is not
contained; its subsets X2X3 and X2X4 have been generated by other three- dimen-
sional subspaces. After candidate generation, we check their respective supersets. For
example, for X1X2, its supersets X1X2X3 and X1X2X4 exist. For X1X3, its superset
X1X2X3 exists, but X1X3X4 does not, so it is removed from further consideration
following monotony pruning. Likewise, X1X4 is removed as X1X3X4 is missing, but
X2X3 and X2X4 are kept.

As we use two entropies, one with downward, one with upward pruning, subspaces
may need to be considered twice. Minimizing computations is thus a trade-off. Fig-
ure 3 illustrates these effects. A missing candidate in SDown (e.g. X1X2) means that
this candidate has an attribute entropy above β. According to the attribute monotony,
superspaces (e.g. X1X2X3) have an attribute entropy above β and thus the combined
entropy is also greater than β. Even though the subspace could be pruned according
to combined entropy, it is still required for valid class entropy candidate generation.
There is thus a trade off between avoiding computations and reducing the search space

X1X2 X1X3 X2X3

X1X2X3
Class-

Entropy
Attribute-
Entropy

X1X2 X1X3 X2X3

X1X2X3

B
ot

to
m

 U
p

Top D
ow

n

Combined 
Entropy

+

Fig. 3. Pruning of subspace X1X2X3

by pruning high entropy subspaces. A good heuristic is to evaluate the entropy of those
subspaces for which larger subspaces already had a high entropy. Randomly picking
subspaces for additional evaluation also performs quite well in practice.

If the bottom up approach has not pruned the investigated subspace, the top down
approach computes the entropy of the subspace. If the weighted normalized entropy is
below β the subspaces is added to the result set and marked as one-sided homogeneous.
The algorithm finally computes the combined entropy of all subspaces for which both
subspaces are marked one-sided homogeneous in the result sets.

Once subspaces have been evaluated for step 1, the most complex algorithmic task
has been solved. Having reduced the potentially exponential number of subspaces to the
interesting ones, the actual clustering (step 2) is performed for each of these subspaces.
This is done by computing the frequency and class entropy for all attribute value combi-
nations in these subspaces. The resulting classifying subspace clusters then provide the
model that is used for the actual classification (step 3). For incoming objects, compute
the most similar classifying subspace clusters according to relative Hamming distance.
If tied, compute reverse class entropy. The decision is then based on their class label
distribution.
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4 Experiments

Experiments were run on both synthetic and real world data. Synthetic data is used to
show the correctness of our approach. Local patterns are hidden in a data set of 7.000
objects and eight attributes. As background noise, each attribute of the synthetic data
set is uniformly distributed over ten values. On top of this, 16 different local patterns
(subspace clusters) with different dimensionalities and different numbers of objects are
hidden in the data set. Each local pattern contains two or three class labels among which
one class label is dominating. We randomly picked 7.000 objects for training and 1.000
objects for testing.

The flight data contains historic data from a large European airport. For a three-
month period, we trained the classifier on arrivals of two consecutive months and tested
on the following month. Outliers with delays outside [-60, 120] minutes have been elim-
inated. In total, 11.072 flights have been used for training and 5.720 flights for testing.
Each flight has a total of 13 attributes, including e.g. the airline, flight number, aircraft
type, routing, and the scheduled arrival time within the day. The class labels are ”ahead
of schedule”, ”on time” and ”delayed”. Finally we use two well-known real world data
sets from the UCI KDD archive (Glass and Iris [14]), as a general benchmark.

As mentioned before, preliminary experiments on the flight data indicate that no
global relevance of attributes exist. Moreover, the data is inherently noisy, and impor-
tant influences like weather conditions are not collected from scheduling. For realistic
testing as in practical application, classifiers can only draw from existing attributes.
Missing or not collected parameters are not available for training or testing neither in
our experiments nor during the actual scheduling process.

We have conducted prior experiments to evaluate the effect of φ and γ for minimum
frequency and maximum entropy thresholds, respectively. For each data set we used a
cross validation to chose φ1 (absolute frequency), φ2 (relative frequency) and γ. For
λ we have chosen 0.9. This value corresponds to a rather relaxed setting as we only
want to remove completely inhomogeneous subspaces from consideration. To restrict
the search space β can be set to a low value.

In our first experiments we develop a heuristic to set up reasonable parameters for the
threshold β of the interestingness and the weight w of the class and attribute entropy,
respectively.

Figure 4(a) illustrates varying β from 0.45 to 0.95 on the synthetic data, measuring
classification accuracy and the number of classifying subspaces. The weight w for in-
terestingness was set to 0.5. As expected, the number of classifying subspaces (CSS)
decreases when lowering the threshold β. At the same time, the classification accuracy
does not change substantially or even increases slightly when less subspaces are used.
This effect may be related to the effect of overfitting. Using too many subspaces pat-
terns are not sufficiently generalized, and noise is not removed. To set up the threshold
β, slowly increasing β until the number of classifying subspace clusters shows a rapid
rise, allows adjusting β to a point between generalization and overfitting. For both our
data sets, a value around 0.65 obtains produces good results.

The effect of slightly increasing classification accuracy when reducing the number of
subspaces can also be observed on the flight delay data (see Figure 4(c)). This confirms
that the flight data contains local patterns for classification.
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(a) Varying β on synthetic data
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(b) Varying w on synthetic data
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(c) Varying β on flight delay data
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(d) Varying w on flight delay data

Fig. 4. Parameter evaluation using synthetic and real world data set

Varying parameter w yields the results depicted in the left part of Figure 4(b) and 4(d).
The number of classifying subspaces decreases when giving more weight to attribute
entropy. At the same time, classification accuracy does not change significantly. This ro-
bustness is due to the ensuing subspace clustering phase. As classification accuracy does
not change this confirms that our classifying subspace cluster definition selects the rele-
vant patterns. Setting w = 0.5 gives equivalent weight to the class and attribute entropy
and hence is a good choice for pruning subspaces. We summarize our heuristics used to
setup the parameters for our SubClass algorithm in Figure 5.

Next, we evaluate classification accuracy by comparing SubClass with other well-
established classifiers that are applicable on nominal attributes: the k-NN classifier
with Manhattan distance, the C4.5 decision tree that also uses a class and attribute
entropy model [18], and a Naive Bayes classifier, a probabilistic classifier that assumes
independence of attributes. Parameter settings use the best values from the preceding
experiments.

Figure 6 illustrates the classification accuracy using four different data sets. In the
noisy synthetic data set, our SubClass approach outperforms other classifiers. The large
degree of noise and the varying class label distribution within the subspace clusters
make this a challenging task. From the real world experiment on the flight data, depicted
in Figure 6, we see that the situation is even more complex. Still, our SubClass method
performs better than its competitors. This result supports our analysis that locally rele-
vant information for classification exists that should be used for model building. Experts
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Subspace Search Parameter 

Parameter Value

w

Subspace Clustering Parameter 

Parameter Value

Fig. 5. Parameters used by SubClass

Flight Data Synthetic Data Iris Glass

SubClass 45.4% 65.9% 96.27% 70.9%

C4.5 43.9% 58.0% 95.94% 66.8%

K NN 42.4% 54.3% 93.91% 71.1%

Naive Bayes 42.8% 64.1% 95.27% 46.7%

Fig. 6. Classification accuracy on four data sets

from flight scheduling confirm that additional information on further parameters, e.g.
weather conditions, is likely to boost classification. This information is inexistent in the
current scheduling data that is collected routinely. SubClass exploits all the information
available, especially locally relevant attribute and value combinations, for the best clas-
sification in this noisy scenario. Finally we evaluated the performance of SubClass on
Glass and Iris [14]. The results indicate that even in settings containing no or little noise
SubClass performs well.

5 Conclusion

Classification in noisy data with locally varying attribute relevance, as for our project
in scheduling at airports, requires an approach that detects local patterns. Our SubClass
method automatically detects classifying subspace clusters by incorporating class struc-
ture into the subspace search and the subspace clustering process. The general concept
requires a definition of interesting subspaces for classification, of classifying subspace
clusters and a classification scheme. Based on class and attribute value entropy, our Sub-
Class ensures that clusters contain class-relevant information. Working both bottom-up
and top-down on the lattice of subspaces, SubClass prunes irrelevant subspaces from
the mining process. Our experiments on synthetic and real world data demonstrate that
local structures are successfully detected and employed for classification, even in ex-
tremely noisy data.
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Abstract. In this paper, we study the quality issue of subspace clusters,
which is an important but unsolved challenge in the literature of subspace
clustering. After binning the data set into disjoint grids/regions, current
solutions of subspace clustering usually invoke a grid-based apriori-like
procedure to efficiently identify dense regions level by level according
to the monotonic property in so defined subspace regions. A cluster in
a subspace is intuitively considered as a set of dense regions that each
one is connected to another dense region in the cluster. The measure of
what is a dense region is successfully studied in recent years. However,
the rigid definition of subspace clusters as connected regions still needs
further justification in terms of the two principal measures of clustering
quality, i.e., the intra-cluster similarity and the inter-cluster dissimilarity.
A true cluster is likely to be separated into two or more clusters, whereas
many true clusters may be merged into a fat cluster. In this paper, we
propose an innovative algorithm, called the QASC algorithm (standing
for Quality-Aware Subspace Clustering) to effectively discover accurate
clusters. The QASC algorithm is devised as a general solution to partition
dense regions into clusters and can be easily integrated into most of
grid-based subspace clustering algorithms. By conducting on extensive
synthetic data sets, the experimental results reveal that QASC is effective
in identifying true subspace clusters.

1 Introduction

Clustering has been studied for decades and recognized as an important and
valuable capability in various fields. Recently, instead of clustering in the full
dimensions, research in data mining has been in the direction of finding clusters
which are embedded in subspaces. The increase of research attention for subspace
clustering comes from the recent report of ”the curse of dimensionality” [1],
which points out that the distances between data points will be indiscriminate
in the high dimensional space. Due to the infeasibility of clustering in high
dimensional data, discovering clusters in subspaces becomes the mainstream of
cluster research, including the work of projected clustering [8] and subspace
clustering [2][3][5].

The CLIQUE algorithm is one of the state-of-the-art methodology in the
literature, which essentially relies on the monotonicity property in the partition
of grid-based regions: if a region/grid is called dense, i.e., its coverage (count

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 53–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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(a) Examples of setting the grid width and the 
density threshold for CLIQUE in a 2-D data set.

(b) The influence of single parameter setting 
for all subspaces in CLIQUE.

X

Y

Z`

1. CLIQUE with a thin gird width 
and a small density threshold

2. CLIQUE with a thin gird width 
and a large density threshold

3. CLIQUE with a thick gird width 
and a small density threshold

4. CLIQUE with a thick gird width 
and a large density threshold

Fig. 1. Examples of quality issues in subspace clustering

of points) exceeds a specified threshold, all of its projection units will be alos
dense. Therefore, after binning input data into disjointed grids according to
the coordinate of each data point, Apriori-based manners are able to efficiently
identify dense grids level by level.

The measure of what is a dense region and the issue of how to efficiently
and precisely identify dense regions have been comprehensively studied in re-
cent years [2][4][5]. However, identifying clusters from connected dense grids, is
deemed reasonable but does not be systematically evaluated yet. In fact, the rigid
definition of subspace clusters as connected grids needs further justification in
terms of two general criteria of clustering quality: (1) inter-cluster dissimilarity1;
and (2) intra-cluster similarity2. We note that rashly connecting dense grids as
clusters inevitably faces the compromise between inter-cluster dissimilarity and
intra-cluster similarity, since the naive approach will amplify the side-effect from
the misadjustment of two subtle input parameters, i.e., (1) the binning width
of a grid and (2) the density threshold for identifying whether a region/grid is
dense. With an inappropriate parameter setting, a true cluster is likely to be
separated into two or more clusters, whereas many true clusters may be merged
into a fat but improper cluster.

Consider the illustrative examples shown in Figure 1(a), which contain four
situations in a two-dimensional space with different input parameters in CLIQUE.
It is clear to see that different parameter settings result in highly divergent
results when we straightforwardly link dense grids and construct clusters. Since

1 The inter-cluster dissimilarity is used to reflect dissimilarity between two clusters.
Different clusters are generally considered with dissimilar behavior and characters.

2 The intra-cluster similarity refers to the measure of how similar the members in a
cluster are. Intuitively, data within a valid cluster are more similar to each other
than to a member belonging to a different cluster.



Mining Quality-Aware Subspace Clusters 55

dense grids may distribute apart from each other when the connectivity between
dense grids is relatively sparse, clusters could be separated into lots of slivers
in CLIQUE, such as the case in Figure 1(a).2, or the shapes of clusters could
be distorted, such as the case in Figure 1(a).4. As a result, the inter-cluster
dimssimilarity is strikingly sacrificed. On the other hand, true clusters could be
merged into a few fat clusters when we have the crowded connection between
dense grids, such as the result in Figure 1(a).1 and Figure 1(a).3. In such cases,
we have the undesired loss of intra-cluster similarity in the clustering result.

Figure 1(b) illustrates another critical limitation in current subspace cluster-
ing algorithms. Essentially, users could identify a set of parameters which is able
to precisely discover all clusters embedded in a subspace, such as the result in
the 2-dimensional subspace {X, Y } shown in Figure 1(b). However, there are
numerous subspaces and using the same parameter setting is difficult to capture
the best clustering characteristics for different subspaces due to variety of their
distributions. Consider the 2-D subspaces {X, Z} and {Y, Z} in Figure 1(b) as
examples, where the result in {X, Z} is expected to have two separated clusters
without linkages, and the result in {Y, Z} is expected to have three clusters with
near-circular shapes instead of a set of small clusters with irregular shapes.

As a result, we present in this paper an approach, called QASC (standing for
Quality-Aware Subspace Clustering) to accurately construct subspace clusters
from dense grids. Specifically, in order to conserve data characteristics within
each subspace clusters, QASC takes the data distribution into consideration.
Given a set of dense grids, QASC is devised as a two-phase algorithm to merge
dense grids: (1) dense grids are partitioned into numerous small groups, where
neighbor grids are located in the same group iff they are identified belonging
to the same area influenced by a density function; (2) deliberately merge these
small groups according to their distances and density functions by a hierarchical
clustering manner.

The remaining of the paper is organized as follows. In Section 2, related works
on subspace clustering are presented. In Section 3, we give the model and algo-
rithm of QASC. Section 4 presents the experimental results. The paper concludes
with Section 5.

2 Related Works

Without loss of generality, previous works on density-based subspace cluster-
ing for high dimensional data can be classified into two categories according to
whether the grid structure is applied or not. Most of these algorithms utilize the
grid structure, and the CLIQUE algorithm is the representative of such grid-
based algorithms. On the other hand, a few works, e.g., the SUBCLU algorithm,
can identify subspace clusters without use of grids.

Specifically, in the first step of CLIQUE, the data space is binned into equi-
sized and axis-parallel units, where the width ξ of each dimension of a unit is
one user-specified parameter. Afterward, the second step of CLIQUE exploits
an apriori-like method to recursively identify all dense units in a bottom-up
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way, where a dense unit is a unit whose density exceeds another user-specified
threshold τ .

The use of grids can greatly reduce the computational complexity [6]. How-
ever, CLIQUE inevitably incurs many limitations from (1) using the support as a
measure of interesting grids and (2) setting the subtle grid width. Consequently,
the SUBCLU algorithm [3] and its extension utilize the idea of density-connected
clusters from the DBSCAN algorithm without the use of grids. Giving two pa-
rameters ε and m in SUBCLU, the core objects are defined as the data points
containing at least m data points in their ε-neighborhood. Since the definition
of core objects also has the monotonicity property, clusters can be considered as
a number of density-connected core objects with their surrounding objects, and
identified in a bottom-up manner like CLIQUE. In general, SUBCLU can avoid
the limitations of grids. However, the computation is higher than grid-based so-
lutions. In addition, it also leaves the user with the responsibility of selecting
subtle parameters. Even though users can empirically set parameter values that
will lead to the discovery of acceptable clusters in a subspace, SUBCLU also has
the problem illustrated in Figure 1(b) that clustering quality in other subspaces
may be strikingly unsatisfactory.

Several variants of CLIQUE have been proposed to resolve the limitation
of using the support as the measure of interesting grids. The ENCLUS algo-
rithm in [2] utilizes entropy as a measure for subspace clusters instead of using
support. The basic idea behind ENCLUS is that entropy of any subspace with
clusters is higher than that of any subspace without clusters. The SCHISM
algorithm is proposed to discover statistically ”interesting” subspace clusters,
where a cluster is interesting if the number of points it contains is statistically
significantly higher than the number in the uniform distribution according to
Chernoff-Hoeffding bound [7]. In addition, the MAFIA algorithm solves another
limitation in CLIQUE. It uses adaptive, variable-sized grids whose widths are
determined according to the distribution of data in each dimension [5]. As such,
the side-effect from the rigid setting of grid widths in CLIQUE can be minimized.
However, these new algorithms all merge dense/interesting grids as the same as
CLIQUE. Depending on the connectivity between dense grids, they will face the
same trade-off between inter-cluster dissimilarity and intra-cluster similarity in
different subspaces as we show in Figure 1.

3 Quality Aware Subspace Clustering

3.1 Problem Description

We first introduce the notations used hereafter and then formalize the problem.
Without loss of generality, we formalize the grid-based model by following the
definition in CLIQUE. Specifically, let S = A1×A2×...×Ad be the d-dimensional
data space formed by the d data attributes. A k-dimensional subspace is the
space with the k dimensions drawn from the d attributes, where k ≤ d.

In the grid-based subspace clustering, the data space S is first partitioned
into a number of non-overlapping rectangular units by dividing each attribute
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into δ intervals, where δ is an input parameter. Consider the projection of the
dataset in a k-dimensional subspace. A ”k-dimensional grid”, u is defined as the
intersection of one interval from each of the k attributes, and the density, or said
support, of u is defined as the number of data points contained in u. In CLIQUE,
a grid is said a dense grid if its density exceeds a threshold τ , where τ is called
”the density threshold”. Note that the definition of density grids is different be-
tween various subspace clustering algorithms, but subspace cluster is generally
considered as disjointed sets of dense grids in CLIQUE and all its successors.

3.2 The QASC Algorithm

We then describe our algorithm, called QASC (the Quality-Aware Subspace
Clustering algorithm), to deliver high-quality subspace clusters while considering
the generality of the proposed model. We aim at improving the strategy of
merging grids for the generality issue while conserving two general criteria of
clustering quality, i.e., inter-cluster dissimilarity and intra-cluster similarity. To
achieve this, the data distribution is taken into account. The basic idea behind
our model is to construct small and disjointed groups of dense grids initially,
where grids in each group are influenced by the same density function. Therefore,
we are able to guarantee the intra-cluster similarity in the first phase. Afterward,
we merge groups for improving the inter-cluster dissimilarity. We then formally
present these two steps in the following sections, respectively.

Phase I of QASC: Identify Seed Clusters. The first step of QASC is to
identify highly condensed group of dense grids, called seed clusters in this paper.
We first have to present necessary definitions before introducing the solution to
identify seed clusters.

Definition 1 (Grid Distance): Suppose that Vy = [a1, a2, ..., ak] represents
the center vector of grid y in the k-dimensional space Sk, where ai denotes its
index in the i-th dimension in the grid coordinates. The grid distance between
grid y and grid y′ in the k-dimensional space Sk is defined as the normalized
Manhattan distance in the grid coordinates:

Dist(y, y′) = |Vy − Vy′ | .

According to the definition, a grid y′ is said a neighbor grid of y in Sk if
Dist(y, y′) = 1.

Definition 2 (Seed Gird): Given the set of dense grids D in the k-dimensional
space Sk, a grid g is called a seed grid iff its density sup(g) is larger than the
density of any of its neighbor grids in D.

Essentially, a seed grid is a local maximum in terms of the density in the
k-dimensional space, and we are able to identify the set of seed grids in each
subspace by a hill-climbing procedure.

Definition 3 (Density Function): A density function of a grid y wrt a seed
grid ysg in the k-dimensional space Sk is a function f(ysg, y) : Sd → R+

0 which
shows the degree of the influence from ysg in y, and
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Fig. 2. Illustration of identifying seed grids and seed clusters in the 1-dim space with
different parameters

f(ysg, y) =
{

x, x > 0, if y is influenced by ysg

0, if y is not influenced by ysg
.

In principle, the density function can be arbitrary. However, to conserve the
nature characteristics in the input data without the assumption of the data dis-
tribution, the density function is specified according to the support distribution:

f(ysg, y)=

⎧
⎨

⎩

sup(y)
sup(ysg) ,

if sup(ysg) > sup(y),
∃y′ ∈ D : sup(y′) ≥ sup(y), f(ysg, y

′)>0, Dist(y, y′)=1
0, else

.

Based on the foregoing, we can define the seed cluster, which is used to denote
the region influenced by a density function:

Definition 4 (Seed Cluster): Given the set of dense grids D in the k-
dimensional space Sk, a seed cluster ci wrt a seed grid ysg is the maximum
set of dense grids in which each grid y has f(ysg, y) > 0, i.e., ci = ysg ∪
{∀y ∈ D |f(ysg, y) > 0} .

Figure 2 shows the identification of seed grids and seed clusters, where these
sets of dense grids in Figures 2(a)˜Figure 2(d) are discovered with different pa-
rameters in CLIQUE. Clearly, a seed grid, e.g., grid A, B, C, or D, in Figure 2(a),
has a local maximum density in the density distribution. In addition, a seed clus-
ter wrt a seed grid ysg covers a set of grids surrounding ysg which are with the
same distribution trend, indicating that grids within a seed cluster are highly
condensed. Clearly, seed clusters can be considered as a set of most strictly de-
fined clusters and the intra-cluster similarity can be entirely conserved in seed
clusters.

Note that seed clusters inherently cannot contain grids with the density
smaller than the density threshold in CLIQUE even though these grids may
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satisfy the definition of density function. It is the natural limitation from the
process of identifying dense grids. Nevertheless, as can be seen in Figure 2, four
major seed clusters are all identified in various situations, showing the identifi-
cation of seed clusters can robustly distinguish characteristics in groups of grids.
On the other hand, clusters cannot be separated in Figure 2(c) and Figure 2(d) if
we rashly connect dense grids into subspace clusters. The intra-cluster similarity
is inevitably sacrificed.

The whole procedure to identify seed clusters in a subspace is outlined in
Procedure Seed Identify(). Specifically, the given set of dense grids should be
sorted in order of decreasing grid density. Therefore, we can identify the seed
grid from the root of the list and utilize a hill-climbing manner to search if a grid
belongs to the generated seed grid. If a connected grid yi is identified satisfying
Definition 4, we set yi.cluster pointed to the corresponding seed cluster. The
next grid in the sorted list is skipped if it has been identified belonging to a seed
cluster. Otherwise, the procedure is iteratively executed until we have identified
the cluster index for each grid. Finally, the set of seed clusters is returned.

Procedure: Seed_Identify():
Input:
dense grids D = {y1, y2, ..., ym}

Output:
seed cluster C = {c1, c2, .., cn}
1. S_D := Sort(D); /*sort dense grids according to the density*/
2. for each dense grid syi ∈ S_D do
3. if syi.cluster = NULL then
4. let cj be a new seed cluster;
5. cj .seed_grid = syi;
6. syi.cluster = cj ;
7. hill_climbing(syi, cj , syi.density);
8. C = C ∪ cj ;
9. end if
10. end for

Procedure: hill_climbing():
Input:
Dense grid yi; Seed Cluster cj ; Integer count;
1. if (yi.density ≤ count = true) then
2. yi.cluster = cj ; /*identify that yi belongs to seed cluster cj*/
3. for each dimension at of grid yi do
4. yleft = Left_Neighbor(yi, at ); /*return the left grid wrt the dimension at*/
5. if (yleft = NULL) and (yleft.cluster = NULL)
6. hill_climbing(yleft, cj , yi.density);
7. yright = Right_Neighbor(yi, at ); /*return the right grid wrt the dimension at*/
8. if (yright = NULL) and (yright.cluster = NULL)
9. hill_climbing(yright, cj , yi.density);
10. end for
11. end if

Phase II of QASC: Merge Seed Clusters. In essence, the seed clusters
conserve the intra-cluster similarity. The inter-cluster dissimilarity is not con-
sidered yet. As shown in Figure 2(a), it is expected that seed clusters A and B
belong to the same cluster because they have the same trend of distribution and
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are quite close to each other. Similarly, seed clusters C and D follow the same
distribution. Note that the gap with the grid distance equal to one between seed
clusters C and D may occur due to noise and the choice of the grid cutting-line.
It is desired to have the clustering result with only two clusters in terms of both
the intra-cluster similarity and the inter-cluster dissimilarity.

The second step of QASC is thus to deliberately merge seed clusters by a
hierarchical clustering manner, where the distance between clusters is taken into
consideration. Here we define the cluster grid distance first.

Definition 5 (Cluster Grid Distance): Given two clusters ci and cj, the
cluster grid distance between ci and cj is defined as

CDist(ci, cj) = min {Dist(yi, yj) |yi ∈ ci, yj ∈ cj } .

The general criterion to merge two seed clusters is that they should be close
to each other, i.e., they have the small CDist(ci, cj). In addition, their seed
grids should also be close to each other and the difference of the cluster sizes
should be significantly large, meaning that they are likely to belong to the same
distribution. As such, we build a global heap for merging clusters. The heap is
sorted by the weight defined as:

weight(ci, cj) =
size ratio(ci, cj)

MinSeedGridDist(ci, cj)
× 1

CDist(ci, cj)
,

where size ratio(ci, cj) = max{ |ci|
|cj | ,

|cj |
|ci|}, and |ci| and |cj| are the number of

points in clusters ci and cj, respectively. In addition, MinSeedGridDist(ci, cj) =
min{Dist(yi, yj)}, where yi is a seed grid in ci and yj is a seed grid in cj .

Importantly, clusters with a quite large CDist(ci, cj) are not permitted to
be merged even though weight(ci, cj) is large. Note that it is reasonable to
consider merging clusters with a small distance gap such as the example of seed
clusters C and D in Figure 2(a). It is sufficient to avoid the influence from
noise or the choice of the grid cutting-line if we permit a tolerant grid distance
equal to one. As such, the prerequisite to insert the cluster pair into the heap is
CDist(ci, cj) ≤ 2k,where k is the number of dimensions in the subspace Sk.

The procedure in QASC to hierarchically merge clusters is outlined in Pro-
cedure Seed Merge(), where the input is the set of seed clusters in Sk. Note
that while two clusters ci and cj are merged, all information of cluster pairs in
the heap related to ci and cj should be updated according to their new weight
value.

Another criterion to determine if two clusters should be merged is shown in
Line 11 in Seed Merge(). Essentially, it is not desired to merge two clusters if
they have similar cluster sizes because they are difficult to follow a single dis-
tribution trend. We set δ = 1.2 in default to ensure the merged clusters are of
variant sizes. Finally, the set of remaining clusters are returned when the heap
is empty.
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Procedure: Seed_Merge():
Input:
Seed clusters C = {c1, c2, ..., cm} in the subspace Sk

Output:
Subspace clusters in the subspace Sk

1. for each seed cluster ci ∈ c do
2. for each seed cluster cj ∈ c, cj = ci do
3. if CDist(ci, cj) ≤ 2× k then
4. weight =

size_ratio(ci,cj)
MinSeedGridDist(ci,cj)

× 1
CDist(ci,cj)

;

5. insertHeap(ci, cj , weight); /*insert the pair ci, cj in the heap sorted by the weight
value*/
6. end if
7. end for
8. end for
9. while (Heap = NULL) do
10. {ci, cj} = popHeapHead(Heap);
11. if size_ratio(ci, cj) ≥ δ then
12. ci = ci ∪ cj ;
13. remove cj from C;
14. QueuesUpdate(ci, cj);
15. end if
16. end while

4 Experimental Studies

We assess the result of QASC in Windows XP professional platform with 1Gb
memory and 1.7G P4-CPU. In this section, we call the methodology to rashly
merge dense grids as the naive approach, which is used in CLIQUE and all grid-
based subspace clustering algorithms. For fair comparison, we generate dense
grids by the first step in CLIQUE for QASC and the naive approach. Note that
our goal is to provide an effective approach for merging grids, and the current
grid-based subspace algorithms all utilize the naive approach. The benefit from
QASC for these variant algorithms is expected if we can gain good clustering
quality for CLIQUE. All necessary codes are implemented by Java and complied
by Sun jdk1.5.

Note that various approaches to identify dense grids in subspaces introduce
various parameters which would affect the clustering quality. We study the sen-
sitivity of the QASC algorithm and the naive algorithm in various parameter
setting of CLIQUE. For visualization reasons, the sensitivity analysis is studied
in two dimensional spaces as the evaluation method used in traditional clustering
algorithms. The result of the first study is shown in Figure 3, where a synthetic
data with 6,547 points is used. Note that CLIQUE introduces two parameters,
i.e., (1) the number of grids in each dimensions and (2) the density threshold,
which are specified as ”grid” and ”minsup” in figures. Clearly, two clusters with
similar diamond-like shapes are expected in the clustering results. However, the
naive approach cannot capture the best result in this datasets wrt different pa-
rameter setting of CLIQUE. Figure 3(a) shows that the naive approach tends to
merge clusters in high connectivity between dense grids, whereas Figures 3(b)
and 3(c) show that many clusters are reported if dense grids distribute sparsely.
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Fig. 4. Results of subspace clusters in different subspaces

On the other hand, Figures 3(d)˜(f) show that QASC results in acceptable re-
sults with two expected clusters. Specifically, the two clusters are separated in
Figure 3(d) because QASC does not merge two clusters with similar sizes. In
addition, it is worth mentioning that QASC permits the combination of clusters
when they are distributed with a gap equal to one. Therefore, QASC can report
two acceptable clusters, as shown in Figure 3(f), to avoid the side-effect from
the improper parameter setting of subspace clustering algorithms, indicating the
robustness of QASC.

We study the sensitivity issue in another 7-dimensional synthetic data with
6,500 points. The data is generated by embedding clusters in two 2-dimensional
spaces and a 3-dimensional space. The clustering results in these subspaces are
shown in Figure 4. In this case, we set grid=20 and the density threshold equal to
0.08%, which is able to correctly retrieve three clusters in the first subspace for
the naive approach. However, similar to the example illustrated in Figure 1(b),
this parameter setting is difficult to make correct clustering result for other
subspaces. In contrast, QASC can retrieve accurate subspace clusters in other
subspaces since the data distribution is taken into consideration.
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5 Conclusions

In this paper, we proposed an effective algorithm, QASC, to merge dense grids
for generating high-quality subspace clusters. QASC is devised as a two-step
method, where the first step generates seed clusters with high intra-cluster simi-
larity and the second step deliberately merges seed clusters to construct subspace
clusters with high inter-cluster dissimilarity. QASC is devised as a general ap-
proach to merge dense/interesting grids, and can be easily integrated into most
of grid-based subspace clustering algorithms in place of the naive approach of
rashly connecting dense grids as clusters. We complement our analytical and
algorithmic results by a thorough empirical study, and show that QASC can
retrieve high-quality subspace clusters in various subspaces, demonstrating its
prominent advantages to be a practicable component for subspace clustering.
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Abstract. We study the problem of mining frequent itemsets from un-
certain data under a probabilistic model. We consider transactions whose
items are associated with existential probabilities. A decremental prun-
ing (DP) technique, which exploits the statistical properties of items’
existential probabilities, is proposed. Experimental results show that DP
can achieve significant computational cost savings compared with ex-
isting approaches, such as U-Apriori and LGS-Trimming. Also, unlike
LGS-Trimming, DP does not require a user-specified trimming thresh-
old and its performance is relatively insensitive to the population of
low-probability items in the dataset.

1 Introduction

Frequent itemset mining (FIM) is a core component in many data analysis tasks
such as association analysis [1] and sequential-pattern mining [2]. Traditionally,
FIM is applied to data that is certain and precise. As an example, a transaction
in a market-basket dataset registers items that are purchased by a customer.
Applying FIM on such a dataset allows one to identify items that are often
purchased together. In this example, the presence/absence of an item in a trans-
action is known with certainty. Existing FIM algorithms, such as the well-known
Apriori algorithm [1] and other variants, were designed for mining “certain” data.

Most of the previous studies on FIM assume a data model under which trans-
actions capture doubtless facts about the items that are contained in each trans-
action. However, in many applications, the existence of an item in a transaction
is best captured by a probability. As an example, consider experiments that
test certain drug-resistant properties of pathogens. Results of such tests can be
represented by a transactional dataset: each pathogen is represented by a trans-
action and the drugs it shows resistance to are listed as items in the transaction.
Applying FIM on such a dataset allows us to discover multi-drug-resistant asso-
ciations [3]. In practice, due to measurement and experimental errors, multiple
measurements or experiments are conducted to obtain a higher confidence of the
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results. In such cases, the existence of an item or property in a transaction should
be expressed in terms of a probability. For example, if Streptococcus Pneumo-
niae (a pathogen) shows resistance to penicillin (an antibiotics drug) 90 times
out of 100 experiments, the probability that the property “penicillin-resistant”
exists in Streptococcus Pneumoniae is 90%. We call this kind of probability ex-
istential probability. In this paper we study the problem of applying FIM on
datasets under the existential uncertain data model, in which each item is asso-
ciated with an existential probability that indicates the likelihood of its presence
in a transaction. Table 1 shows an example of an existential uncertain dataset.

Table 1. An existential uncertain dataset with 2 transactions t1, t2 and 2 items a, b

Transaction \ Item a b

t1 90% 80%

t2 40% 70%

The problem of mining frequent itemsets under the existential uncertain data
model was first studied in [4]. The Apriori algorithm was modified to mine uncer-
tain data. The modified algorithm, called U-Apriori, was shown to be computa-
tionally inefficient. A data trimming framework (LGS-Trimming) was proposed
to reduce the computational and I/O costs of U-Apriori. As a summary, given
an existential uncertain dataset D, LGS-Trimming creates a trimmed dataset
DT by removing items with low existential probabilities in D. The trimming
framework works under the assumption that a non-trivial portion of the items
in the dataset are associated with low existential probabilities (e.g., a pathogen
may be highly resistant to a few drugs but not so for most of the others). Based
on this assumption, the size of DT is significantly smaller than D and mining
DT instead of D has the following advantages:

– The I/O cost of scanning DT is smaller.
– Since many low-probability items have been removed, transactions in DT are

much smaller. Hence, there are a lot fewer subsets contained in transactions
leading to much faster subset testing of candidate itemsets and faster support
counting.

However, there are disadvantages of the trimming framework. First, there is
the overhead of creating DT . Second, since DT is incomplete information, the
set of frequent itemsets mined from it is only a subset of the complete set. A
patch-up phase (and thus some overhead) is therefore needed to recover those
missed frequent itemsets. As a result, if there are relatively few low-probability
items in D, then DT and D will be of similar sizes. The savings obtained by LGS-
Trimming may not compensate for the overhead incurred. The performance of
LGS-Trimming is thus sensitive to the percentage (R) of items with low exis-
tential probabilities. Trimming can be counter-productive when R is very low.
Third, a trimming threshold ρt (to determine “low” probability) is needed, which
in some cases could be hard to set. A large ρt implies a greater reduction of the
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size of D but a larger overhead in the patch-up phase to recover missed frequent
itemsets. On the other hand, a small ρt would trim D by little extent resulting in
little savings. The performance of Trimming is thus sensitive to ρt. In [4], it was
assumed that the existential probabilities of items in a dataset follow a bimodal
distribution. That is, most items’ can be classified as very-high-probability ones
or very-low-probability ones. There were few items with moderate existential
probabilities. In that case, it is easy to determine ρt as there is a clearcut dis-
tinction between high and low existential probabilities. It would be harder to
select an appropriate ρt if the distribution of existential probabilities is more
uniform.

In this paper we propose an alternative method, called Decremental Pruning
(DP), for mining frequent itemsets from existential uncertain data. As we will
discuss in later sections, DP exploits the statistical properties of existential prob-
abilities to gradually reduce the set of candidate itemsets. This leads to more
efficient support counting and thus significant CPU cost savings. Comparing
with LGS-Trimming, DP has two desirable properties: (1) it does not require a
user-specified trimming threshold; (2) its performance is relatively less sensitive
to R, the fraction of small-probability items in the dataset. DP is thus more
applicable to a larger range of applications. Moreover, we will show that DP
and LGS-Trimming are complementary to each other. They can be combined to
achieve an even better performance.

The rest of this paper is organized as follows. Section 2 describes the mining
problem and revisits the brute force U-Apriori algorithm. Section 3 presents the
DP approach. Section 4 presents some experimental results and discusses some
observations. We conclude the study in Section 5.

2 Preliminaries

In the existential uncertain data model, a dataset D consists of d transactions
t1, . . . , td. A transaction ti contains a number of items. Each item x in ti is
associated with a non-zero probability Pti(x), which indicates the likelihood
that item x is present in transaction ti

1. A Possible World model [5] can be
applied to interpret an existential uncertain dataset. Basically, each probability
Pti(x) associated with an item x derives two possible worlds, say, W1 and W2.
In World W1, item x is present in transaction ti; In World W2, item x is not
in ti. Let P (Wj) be the probability that World Wj being the true world, then
we have P (W1) = Pti(x) and P (W2) = 1 − Pti(x). This idea can be extended
to cover cases in which transaction ti contains other items. For example, let y
be another item in ti with probability Pti(y). Assume that the observations of
item x and item y are independently done, then there are four possible worlds.
In particular, the probability of the world in which ti contains both items x and
y is Pti(x) · Pti(y). We can further generalize the idea to datasets that contain
more than one transaction. Figure 1 illustrates the 16 possible worlds derived
from the dataset shown in Table 1.
1 If an item has 0 existential probability, it does not appear in the transaction.
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W1

a b

t1 ✔ ✔

t2 ✔ ✔

W2

a b

t1 ✔ ✔

t2 ✔ ✘

W3

a b

t1 ✔ ✔

t2 ✘ ✔

W4

a b

t1 ✔ ✘

t2 ✔ ✔

W5

a b

t1 ✘ ✔

t2 ✔ ✔

W6

a b

t1 ✔ ✔

t2 ✘ ✘

W7

a b

t1 ✘ ✘

t2 ✔ ✔

W8

a b

t1 ✔ ✘

t2 ✔ ✘

W9

a b

t1 ✘ ✔

t2 ✘ ✔

W10

a b

t1 ✘ ✔

t2 ✔ ✘

W11

a b

t1 ✔ ✘

t2 ✘ ✔

W12

a b

t1 ✘ ✘

t2 ✔ ✘

W13

a b

t1 ✘ ✘

t2 ✘ ✔

W14

a b

t1 ✘ ✔

t2 ✘ ✘

W15

a b

t1 ✔ ✘

t2 ✘ ✘

W16

a b

t1 ✘ ✘

t2 ✘ ✘

Fig. 1. 16 possible worlds derived from dataset with 2 transactions and 2 items

In traditional frequent itemset mining, the support count of an itemset X is
defined as the number of transactions that contain X . For an uncertain dataset,
such a support value is undefined since set containment is probabilistic. However,
we note that each possible world derived from an uncertain dataset is certain,
and therefore support counts are well-defined with respect to each world. For
example, the support counts of itemset {a, b} in Worlds W1 and W6 (Figure 1)
are 2 and 1, respectively. In [4], the notion of expected support was proposed as
a frequency measure. Let W be the set of all possible worlds derivable from an
uncertain dataset D. Given a world Wj ∈ W , let P (Wj) be the probability of
World Wj ; S(X, Wj) be the support count of X with respect to Wj ; and Ti,j be
the ith transaction in World Wj . Assuming that items’ existential probabilities
are determined through independent observations, then P (Wj) and the expected
support Se(X) of an itemset X are given by the following formulae2:

P (Wj) =
|D|∏

i=1

⎛

⎝
∏

x∈Ti,j

Pti(x) ·
∏

y �∈Ti,j

(1− Pti(y))

⎞

⎠ , and (1)

Se(X) =
|W |∑

j=1

P (Wj)× S(X, Wj) =
|D|∑

i=1

∏

x∈X

Pti(x). (2)

Problem Statement. Given an existential uncertain dataset D and a user-
specified support threshold ρs, the problem of mining frequent itemsets is to
return all itemsets X with expected support Se(X) ≥ ρs · |D|.

U-Apriori, a modified version of the Apriori algorithm, was presented in [4] as
a baseline algorithm to solve the problem. The difference between Apriori and
U-Apriori lies in the way supports are counted. Given a candidate itemset X
and a transaction ti, Apriori tests whether X ⊆ ti. If so, the support count of
X is incremented by 1. Under U-Apriori, the support count of X is incremented
by the value

∏
x∈X Pti(x) instead (see Equation 2).

2 Readers are referred to [4] for the details of the derivations.
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3 Decremental Pruning

In this section we describe the Decremental Pruning (DP) technique, which ex-
ploits the statistical properties of the existential probabilities of items to achieve
candidate reduction during the mining process. The basic idea is to estimate
upper bounds of candidate itemsets’ expected supports progressively after each
dataset transaction is processed. If a candidate’s upper bound falls below the
support threshold ρs, the candidate is immediately pruned. To illustrate, let
us consider a sample dataset shown in Table 2. Assume a support threshold
ρs = 0.5, the minimum support count is min sup = 4 × 0.5 = 2. Consider the
candidate itemset {a, b}. To obtain the expected support of {a, b}, denoted as
Se({a, b}), U-Apriori scans the entire dataset once and obtains Se({a, b}) = 1.54,
which is infrequent.

Table 2. An example of existentially uncertain dataset

Transaction \ Item a b c d

t1 1 0.5 0.3 0.2

t2 0.9 0.8 0.7 0.4

t3 0.3 0 0.9 0.7

t4 0.4 0.8 0.3 0.7

During the dataset scanning process, we observe that a candidate itemset X
can be pruned before the entire dataset is scanned. The idea is to maintain a
decremental counter Ŝe(X, X ′) for some non-empty X ′ ⊂ X . The counter main-
tains an upper bound of the expected support count of X , i.e., Se(X). This
upper bound’s value is progressively updated as dataset transactions are pro-
cessed. We use Ŝe(X, X ′, k) to denote the value of Ŝe(X, X ′) after transactions
t1, . . . , tk have been processed.

Definition 1. Decremental Counter. For any non-empty X ′ ⊂ X, k ≥ 0,
Ŝe(X, X ′, k) =

∑k
i=1

∏
x∈X Pti(x) +

∑|D|
i=k+1

∏
x∈X′ Pti(x).

From Equation 2, we have

Se(X) =
|D|∑

i=1

∏

x∈X

Pti(x)

=
k∑

i=1

∏

x∈X

Pti(x) +
|D|∑

i=k+1

∏

x∈X

Pti(x)

≤
k∑

i=1

∏

x∈X

Pti(x) +
|D|∑

i=k+1

(
∏

x∈X′
Pti(x) ·

∏

x∈X−X′
1

)

= Ŝe(X, X ′, k).
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Hence, Ŝe(X, X ′, k) is an upper bound of Se(X). Essentially, we are assuming
that the probabilities of all items x ∈ X−X ′ are 1 in transactions tk+1, . . . , t|D| in
estimating the upper bound. Also, Ŝe(X, X ′, 0) =

∑|D|
i=1

∏
x∈X′ Pti(x) = Se(X ′).

In our running example, suppose we have executed the first iteration of U-
Apriori and have determined the expected supports of all 1-itemsets, in par-
ticular, we know Se({a}) = 2.6. At the beginning of the 2nd iteration, we
have, for the candidate itemset {a, b}, Ŝe({a, b}, {a}, 0) = Se({a}) = 2.6. We
then process the first transaction t1 and find that Pt1(b) is 0.5 (instead of 1 as
assumed when we calculated the upper bound), we know that we have over-
estimated Se({a, b}) by Pt1(a) × (1 − Pt1(b)) = 0.5. Therefore, we refine the
bound and get Ŝe({a, b}, {a}, 1) = Ŝe({a, b}, {a}, 0)− 0.5 = 2.1. Next, we pro-
cess t2. By similar argument, we know that we have overestimated the support
by 0.9× (1 − 0.8) = 0.18. We thus update the bound to get Ŝe({a, b}, {a}, 2) =
Ŝe({a, b}, {a}, 1)− 0.18 = 1.92. At this point, the bound has dropped below the
support threshold. The candidate {a, b} is thus infrequent and can be pruned.

Equation 3 summarizes the initialization and update of the decremental
counter Ŝe(X, X ′, k):

Ŝe(X, X ′, k) =
{

Se(X ′) if k = 0;
Ŝe(X, X ′, k − 1)− Stk

e (X ′)× {1− Stk
e (X −X ′)} if k > 0.

(3)
where Stk

e (X ′) =
∏

x∈X′ Ptk
(x) and Stk

e (X −X ′) =
∏

x∈X−X′ Ptk
(x).

From the example, we see that {a, b} can be pruned before the entire dataset is
scanned. This candidate reduction potentially saves a lot of computational cost.
However, there are 2|X| − 2 non-empty proper subsets of a candidate itemset
X . The number of decremental counters is thus huge. Maintaining a large num-
ber of decremental counters involves too much overhead, and the DP method
could be counter-productive. We propose two methods for reducing the number
of decremental counters while maintaining a good pruning effectiveness in the
rest of this section.

Aggregate by Singletons (AS). The AS method reduces the number of decre-
mental counters to the number of frequent singletons. First, only those decre-
mental counters Ŝe(X, X ′) where X ′ is a frequent singleton are maintained.
Second, given a frequent item x, the decremental counters Ŝe(X, {x}) for any
itemset X that contains x are replaced by a singleton decremental counter ds(x).
Let ds(x, k) be the value of ds(x) after the first k data transactions have been
processed. Equation 4 shows the initialization and update of ds(x, k).

ds(x, k) =
{

Se({x}) if k = 0;
ds(x, k − 1)− Ptk

(x) × {1−maxs(k)} if k > 0.
(4)

where maxs(k) = max{Ptk
(x′)|x′ ∈ tk, x′ �= x} returns the maximum existential

probability among the items (except x) in transaction tk.
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One can prove by induction that Ŝe(X, {x}, k) ≤ ds(x, k) for any itemset
X that contains item x. With the AS method, the aggregated counters can be
organized in an array. During the mining process, if a counter’s value ds(x, k)
drops below the support requirement, we know that any candidate itemset X
that contains x must not be frequent and hence can be pruned. Also, we can
remove item x from the dataset starting from transaction tk+1. Therefore, AS
not only achieves candidate reduction, it also shrinks dataset transactions. The
latter allows more efficient subset testing during support counting.

Common-Prefix Method (CP). The CP method aggregates the decremental
counters of candidates with common prefix. Here, we assume that items follow
a certain ordering Φ, and the set of items of an itemset is listed according to
Φ. First, only decremental counters of the form Ŝe(X, X ′) where X ′ is a proper
prefix of X (denoted by X ′ � X) are maintained. Second, given an itemset X ′,
all counters Ŝe(X, X ′) such that X ′ � X are replaced by a prefix decremental
counter dp(X ′). Let dp(X ′, k) be the value of dp(X ′) after the first k data trans-
actions have been processed. Equation 5 shows the initialization and update of
dp(X ′, k).

dp(X ′, k) =
{

Se(X ′) if k = 0;
dp(X ′, k − 1)− Stk

e (X ′)× {1−maxp(k)} if k > 0.
(5)

where Stk
e (X ′) =

∏
x∈X′ Ptk

(x) and maxp(k) = max{Ptk
(z)|z is after all the

items in X ′ according to the item ordering Φ}.
Again, by induction, we can prove that Ŝe(X, X ′, k) ≤ dp(X ′, k) for any X ′ �

X . Hence when dp(X ′, k) drops below the support requirement, we can conclude
that any candidate itemset X such that X ′ � X must be infrequent and can thus
be pruned. We remark that since most of the traditional frequent itemset mining
algorithms apply a prefix-tree data structure to organize candidates [1][6][4], the
way that CP aggregates the decremental counters facilitates its integration with
the prefix-tree data structure.

Figure 2 shows the size-2 candidates of the dataset in Table 2 organized in a
hash-tree data structure [1]. A hash-tree is essentially a prefix tree, where can-
didates with the same prefix are organized under the same sub-tree. A prefix is
thus associated with a node in the tree. A prefix decremental counter dp(X ′) is
stored in the parent node of the node that is associated with the prefix X ′. For
example, dp(b) is stored in the root node since the prefix b is at level 1 of the tree
(the second child node shown in Figure 2). [1] presented a recursive strategy
for searching candidates that are contained in each transaction using a hash-tree
structure. We illustrate the steps of processing a transaction t1 from our running
example (see Table 2) and explain how the counter dp(b) is updated in Figure 2.

From the figure, we see that dp(b, 1) = 1.75 after t1 is processed. Since dp(b, 1)
is an upper bound of the expected supports of {b, c} and {b, d}, and since dp(b, 1)
is smaller than the support requirement, we conclude that both {b, c} and {b, d}
are infrequent and are thus pruned. With the hash-tree structure, we can virtu-
ally prune the candidates by setting the pointer root.hash(b) = NULL. Also, the
counter dp(b) is removed from the root. As a result, the two candidates cannot
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n
Hash
table

a
d

b
e

c
f

n1

{a,b}
{a,c}

...

dp(b) covers all the
candidates with prefix b. It is
initialized with value Se(b).

n2

{b,c}
{b,d}

n3

Prefix decremental counter

root

Value

2.6

2.1

Transaction t1 = {a(1), b(0.5), c(0.3), d(0.2)} is
processed. The hash values of the items are computed to
retrieve the appropriate pointers to child nodes. E.g.,
root.hash(b) gives the pointer to Node n2.

After updating the expected support counts of the
candidates stored in a leaf node, we compute maxp(1),
which is equal to the largest probabilities of all items in t1
that are ordered after b in the ordering . In this case,
maxp(1) = 0.3.

1

2

3

4

  We update counter dp(b) according
to Equation 5:
dp(b,1) = dp(b,0) - Pt1(b) * (1-maxp(1))

   = 2.1-0.5*0.7
   = 1.75

Decremental counters
in the root node

dp(a)

dp(b)
dp(c) 2.2

......

Fig. 2. A size-2 candidate hash tree with prefix decremental counters

be reached when subsequent transactions are processed. The computational cost
of incrementing the expected support counts of the two candidates in subsequent
transactions is saved.

Item ordering. According to Equation 5, the initial value of a counter dp(X ′)
is given by dp(X ′, 0) = Se(X ′), i.e., the expected support of the prefix X ′. Since
candidates are pruned if a prefix decremental counter drops below the support
requirement, it makes sense to pick those prefixes X ′ such that their initial val-
ues are as small as possible. A heuristic would be to set the item ordering Φ in
increasing order of items’ supports. We adopt this strategy for the CP method.

4 Experimental Evaluation

We conducted experiments comparing the performance of the DP methods
against U-Apriori and LGS-Trimming. The experiments were conducted on a
2.6GHz P4 machine with 512MB memory running Linux Kernel 2.6.10. The
algorithms were implemented using C.

We use the two-step dataset generation procedure documented in [4]. In the
first step, the generator uses the IBM synthetic generator [1] to generate a dataset
that contains frequent itemsets. We set the average number of items per trans-
action (Thigh) to 20, the average length of frequent itemsets (I) to 6, and the
number of transactions (D) to 100K3. In the second step, the generator uses an

3 We have conducted our experiments using different values of Thigh, I and D. Due
to space limitation, we only report a representative result using Thigh20I6D100K in
this paper.
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Fig. 3. a) Percentage of candidates pruned in the 2nd iteration. b) CPU cost in each
iteration.

uncertainty simulator to generate an existential probability for each item. The
simulator first assigns each item in the dataset with a relatively high probability
following a normal distribution with mean HB and standard deviation HD. To
simulate items with low probabilities, the simulator inserts Tlow items into each
transaction. The probabilities of these items follow a normal distribution with
mean LB and standard deviation LD. The average number of items per transac-
tion, denoted by T , is equal to Thigh +Tlow. A parameter R is used to control the
percentage of items with low probabilities in the dataset (i.e. R = Tlow

Thigh+Tlow
).

As an example, T 25/R20/I6/D100K/HB75/HD15/LB25/LD15 represents
an uncertain dataset with 25 items per transaction on average. Out of the 25
items, 20 are assigned with high probabilities and 5 are assigned with low prob-
abilities. The high (low) probabilities are generated following a normal distribu-
tion with mean equal to 75% (25%) and standard deviation equal to 15% (15%).
We call this dataset Synthetic-1.

4.1 Pruning Power of the Decremental Methods

In this section we investigate the pruning power of the decremental methods.
The dataset we use is Synthetic-1 and we set ρs = 0.1% in the experiment.
Figure 3a shows the percentage of candidates pruned by AS and CP in the
second iteration after a certain fraction of the dataset transactions have been
processed. For example, the figure shows that about 20% of the candidates are
pruned by CP after 60% of the transactions are processed. From the figure, we
observe that the pruning power of CP is higher than that of AS. In particular,
CP prunes twice as many candidates as AS after the entire dataset is scanned.

Recall that the idea of AS and CP is to replace a group of decremental counters
by either a singleton decremental counter (AS-counter) or a prefix decremental
counter (CP-counter). We say that an AS- or CP-counter ds/p(X ′) “covers”
a decremental counter Ŝe(X, X ′) if Ŝe(X, X ′) is replaced by ds/p(X ′). Essen-
tially, an AS- or CP-counter serves as an upper bound of a group of decremen-
tal counters covered by it. In the 2nd iteration, candidates are of size 2 and
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Fig. 4. CPU cost and saving with different ρs

therefore all proper prefixes contain only one item. We note that in general, a
CP-counter, say dp({a}) covers fewer decremental counters than its AS coun-
terpart, say ds({a}). This is because dp({a}) covers Ŝe(X, {a}) only if {a} is a
prefix of X , while ds({a}) covers Ŝe(X, {a}) only if {a} is contained in X . Since
prefix is a stronger requirement than containment, the set of counters covered by
dp({a}) is always a subset of ds({a}). Therefore, each CP-counter “covers” fewer
decremental counters than an AS-counter does. CP-counters are thus generally
tighter upper bounds, leading to a more effective pruning.

Figure 3b shows the CPU cost in each iteration of the mining process. We
see that in this experiment the costs of the 2nd iteration dominates the others
under all three algorithms. The pruning effectiveness of AS and CP in the 2nd

iteration (Figure 3a) thus reflects the CPU cost savings. For example, the 40%
candidate reduction of CP translates into about 40s of CPU cost saving. Another
observation is that although CP prunes twice as much as AS, the CPU cost
saving of CP is not double of that of AS. This is because CP requires a more
complex recursive strategy to maintain the prefix decremental counters, which
is comparatively more costly.

4.2 Varying Minimum Support Threshold

Our next experiment compares the CPU costs of the DP methods against U-
Apriori as the support threshold ρs varies from 0.1% to 1.0%. Figure 4a shows
the CPU costs and Figure 4b shows the percentage of savings over U-Apriori.
For example, when ρs = 1%, CP saves about 59% of CPU time compared with
U-Apriori. From the figures, we see that CP performs slightly better than AS
over a wide range of ρs value. Also, the CPU costs of both CP and AS decrease
as ρs increases. This is because a larger ρs implies fewer candidates and frequent
itemsets, so the algorithms execute faster. Also, a larger ρs implies the minimum
support requirement is larger. Hence, it is easier for the decremental counters to
drop below the required value and more candidates can be pruned early.
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4.3 Comparing with Data Trimming

Recall that LGS-Trimming consists of three steps: (1) remove low-probability
items from dataset D to obtain a trimmed dataset DT ; (2) mine DT ; (3) patch
up and recover missed frequent itemsets. LGS-Trimming and DP methods are
orthogonal and can be combined. (DP can be applied to mining DT and it also
helps the patch-up step, which is essentially an additional iteration of candidate-
generation and support-counting). In this section we compare U-Apriori, AS,
CP, LGS-Trimming, and the combined method that integrates CP and LGS-
Trimming. In particular, we study how the percentage of low-probability items
(R) affects the algorithms’ performance. In the experiment, we use Synthetic-1
and set ρs = 0.1%. Figure 5a shows the CPU costs and Figure 5b shows the per-
centage of savings over U-Apriori. From Figure 5b, we see that the performance
of LGS-Trimming is very sensitive to R. Trimming outperforms AS and CP when
R is large (e.g., 50%). This is because when there are numerous low-probability
items, the trimmed dataset DT is very small, and mining DT is very efficient.
On the other hand, if R is small, Trimming is less efficient than DP methods,
and it could even be counter-productive for very small R. This is because for
small R, DT is large, so not much savings can be achieved by mining a trimmed
dataset to compensate for the patch-up overhead.
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In contrary, the performance of the DP methods are very stable over the
range of R values. To understand this phenomenon let us consider Equation 4
for updating a AS-counter. The value of a AS-counter is determined by three
terms: Se(x), Ptk

(x) and maxs(k). We note that varying R has small impact
on the value of Se(x) because Se(x) is the expected support of item x, which is
mainly determined by the high-probability entries of x in the dataset. Also, if
transaction tk contains a small-probability entry for x, then Ptk

(x) is small and so
the decrement to the value ds(x, k) would be insignificant. Hence, the population
of small-probability items (i.e., R) has little effect in the decremental process.
Finally, since maxs(k) is determined by the maximum existential probability of
the items (except x) in transaction tk, low-probability items have little effect on
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the value of maxs(k). As a result, the performance of AS is not sensitive to the
population of low-probability items. A similar conclusion can be drawn for CP
by considering Equation 5.

From the figures, we also observe that the combined algorithm strikes a good
balance and gives consistently good performance. It’s performance is comparable
to those of AS and CP when R is small, and it gives the best performance when
R is large.

5 Conclusions

In this paper we proposed a decremental pruning (DP) approach for efficient
mining of frequent itemsets from existential uncertain data. Experimental results
showed that DP achieved significant candidate reduction and computational
cost savings. Compared with LGS-Trimming, DP had the advantages of not
requiring a trimming threshold and its performance was relatively stable over
a wide range of low-probability-item population. In particular, it outperformed
data trimming when the dataset contained few low-probability items. We argued
that the Trimming approach and the DP approach were orthogonal to each other.
We showed that the two approaches could be combined leading to a generally
best overall performance.
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5. Zimányi, E., Pirotte, A.: Imperfect information in relational databases. In: Uncer-
tainty Management in Information Systems, pp. 35–88 (1996)

6. Bayardo Jr., R.J.: Efficiently mining long patterns from databases. In: Proc. of
SIGMOD 1998, pp. 85–93. ACM Press, New York (1998)



Multi-class Named Entity Recognition Via

Bootstrapping with Dependency Tree-Based
Patterns

Van B. Dang1,2 and Akiko Aizawa1

1 National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430

2 University of Natural Sciences,
227 Nguyen Van Cu St., Dist. 5, Hochiminh, Vietnam

dbvan@fit.hcmuns.edu.vn, aizawa@nii.ac.jp

Abstract. Named Entity Recognition (NER) has become a well-known
problem with many important applications, such as Question Answering,
Relation Extraction and Concept Retrieval. NER based on unsupervised
learning via bootstrapping is gaining researchers’ interest these days be-
cause it does not require manually annotating training data. Meanwhile,
dependency tree-based patterns have proved to be effective in Relation
Extraction. In this paper, we demonstrate that the use of dependency
trees as extraction patterns, together with a bootstrapping framework,
can improve the performance of the NER system and suggest a method
for efficiently computing these tree patterns. Since unsupervised NER
via bootstrapping uses the entities learned from each iteration as seeds
for the next iterations, the quality of these seeds greatly affects the entire
learning process. We introduce the technique of simultaneous bootstrap-
ping of multiple classes, which can dramatically improve the quality of
the seeds obtained at each iteration and hence increase the quality of the
final learning results. Our experiments show beneficial results.

1 Introduction

Supervised learning for Named Entity Recognition (NER) has been studied thor-
oughly and has become the dominant technique [1, 2, 3, 4]. However, this ap-
proach requires hand-tagged training data, which is nontrivial to generate. Even
more effort is needed to apply systems of this kind to a new domain of interest,
since one needs to annotate a new training corpus by hand. Therefore, super-
vised learning for NER is used mainly in well-known domains like news and
biomedical texts.

Unsupervised learning [5, 6, 7, 8, 9], by contrast, requires no manually an-
notated data at all. Therefore, this approach increases inter-domain portability.
The common framework of this approach is known as “bootstrapping” [6, 8, 9],
that is, from a list of some seed named entities, the system will discover many
extraction patterns, a subset of which is selected to be the “good” set, which is
then used to discover more seed entities, and so forth.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 76–87, 2008.
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Unsupervised frameworks for NER use extraction patterns to extract entities,
and many types of patterns have been proposed. Yangarber [6] used string-level
representation of extraction patterns, that is, used only the surrounding text
in a context window. Nevertheless, string-level patterns usually have limitations
due to lack of syntactic information. Incorporating the parts of speech tends to
help; the predicate–argument model [5] is of this type. A further improvement
on the predicate–argument model [5] is the dependency sub-tree model proposed
by Sudo et al. [10]. Since it is designed for Relation Extraction, it aims to extract
relationships between entities recognized by a Named Entity (NE) recognizer.
Thus, one needs an NE recognizer for this type of pattern. For example, with the
sentence, “A smiling Palestinian suicide bomber triggered a massive explosion in
downtown Jerusalem,”1 firstly, the NE recognizer understands that “A smiling
Palestinian suicide bomber” is a <PERSON>and “downtown Jerusalem” is a
<LOCATION>. The sentence is then generalized with the NE tag in place of
the actual text: “<PERSON>triggered a massive explosion in <LOCATION>.”
The dependency tree-based pattern obtained from this generalized sentence cap-
tures the relation between those two entities. In this paper, we show that sub-tree
patterns can be effectively integrated into the framework of bootstrapping NER,
rather than using an NE tagger for the work. Since each sentence can produce a
large number of sub-trees, we also propose an efficient method to compute them.

Since bootstrapping uses the entities learned from each iteration as seeds for
the next ones, any false seed will mislead the next iteration of learning and
might lead to even more false seeds, which degrades the performance of the
entire learning process. Therefore, we introduce the technique of simultaneous
bootstrapping of multiple classes, which can dramatically improve the quality of
the seeds obtained at each iteration and hence increase the quality of the final
learning results.

The main contributions of this paper are: (i) we apply sub-tree models to the
NER task with an efficient computational method with beneficial results; (ii)
we show the advantage of simultaneous bootstrapping of multiple classes to im-
prove the quality of learning. In the following sections we focus on these points.
Section 2 describes the bootstrapping framework with dependency tree-based
patterns and introduces a method to efficiently compute the large number of
generated patterns. Section 3 describes the advantages of bootstrapping from
multiple classes. Experimental results are presented in Section 4. Section 5 con-
tains an overview of some related works. Finally, Section 6 gives concluding
remarks and describes future paths for our research.

2 Bootstrapping NER with Tree-Based Patterns

2.1 Pattern Acquisition

From the list of seed entities in each category, our system first retrieves all sen-
tences that contain any of them. Occurrences of these seeds are then replaced
1 This example is taken from [10].
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by a generalized concept <C>denoting their category (see Table 1). In our ex-
periment, we use four categories: APPROACH (“<APPR>”) such as “Maxi-
mum Entropy Models”, TASK (“<TASK>”) such as “Named Entity Recogni-
tion”, TOOL (“<TOOL>”) such as “SVMLight”, and DATASET (“<COL>”)
such as “Wall Street Journal”. We use the Stanford Parser [16] to parse these

Table 1. The instance of the seed in the source sentence is replaced by its generalized
concept to form a generalized sentence

Seed Entity Source Sentence Generalized Sentence

SVMs Kernel functions allow SVMs
to combine the input features
at relatively low computational
cost.

Kernel functions allow <APPR>to
combine the input features at rela-
tively low computational cost.

generalized sentences to obtain dependency trees. Then we apply a rightmost
expansion-based algorithm for sub-tree discovery [14] to generate all sub-trees of
them. Each of these sub-trees is an extraction pattern, and these patterns form
the set of potential patterns Ω. Fig. 1(a) shows the dependency tree obtained
from the generalized sentence shown in Table 1 and Fig. 1(b), (c) show some
examples of patterns generated from this tree.

Fig. 1. Dependency trees and sub-trees obtained from the generalized sentence “Kernel
functions allow <APPR>to combine the input features at relatively low computational
cost.” (a) Dependency tree of the sentence. (b), (c) Some of the acquired patterns.

2.2 Pattern Matching

A tree-based pattern is said to match a target sentence if, (i) the pattern exclud-
ing the generalized node is a sub-tree of the dependency tree obtained from that
sentence, and (ii) the node on the target tree corresponding to the generalized
node is a noun and is called the target node. The noun group ([Adj*Noun+]) con-
taining this target node is considered to be the extraction target. Fig. 2 shows
a matching between one tree-based pattern learned from the source sentence
“Kernel functions allow SVMs to combine the input features at relatively low
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Fig. 2. Matching between a pattern and a target sentence. Since “Maximum Entropy
models” is the noun group containing the target node “models”, it is considered an
extracted entity.

computational cost” (as shown in Section 2.1 above) against the target sentence
“We employ Maximum Entropy models to combine diverse lexical, syntactic and
semantic features derived from the text.” We can see from the Fig. 2 that the
pattern (on the left) is a sub-tree of the dependency tree of the target sentence
(on the right), and “models” is the target node. Thus, the noun group containing
“models”—the phrase “Maximum Entropy models”—is extracted as the entity.

After discovering a list of extraction patterns Ω for each category, our system
starts to match all of them against all sentences in the entire corpus. If a pattern
matches a sentence, the extraction target will be extracted as an entity (as “Max-
imum Entropy models” in Fig. 2), which is then checked and labeled as follows.

– Positive: An entity of category A is labeled as “positive” when it has been
in the list of seed entities for category A.

– Negative: An entity of category A is labeled as “negative” when it has been
in the list of seed entities for any category but A.

– Unknown: An entity of category A is labeled as “unknown” when it has not
been in any seed entity list for any category. This is the pool where new seed
entities come from.

The limitation of dependency sub-trees models [10] is the very large number
of patterns that need to be computed [12]. In our work, therefore, we take only
patterns of maximum length five nodes, and their root node has to be either
a noun or a verb. In each iteration, we observed the discovery of on average
1000 new potential patterns for each category. We needed to match all of these
1000 patterns against 2760 sentences in the entire corpus in each iteration to
see whether they could extract any entities, which could then be used to check
the accuracy of the potential patterns (please refer to Section 2.3). Exhaustively
matching them against thousands of sentences is very time consuming, however
there are actually only a small number of sentences that match each pattern, and
the unmatched ones can be rejected with only a small amount of computation.
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IR-style Inverted File. We construct an IR-style inverted file for all sentences
in the corpus. For each pattern to be matched, we only perform matching on
sentences that contain all keywords of the pattern.

Pattern Hierarchical Structure. Since patterns are actually trees, they have
a hierarchical structure. This means that if a pattern does not match a target
sentence, neither does its child. Therefore, each pattern only needs to be com-
pared with those sentences which its parent matches.

2.3 Pattern Ranking

To score the patterns in Ω, we use the scoring strategy proposed in [6]. The
accuracy and confidence of the pattern p are defined as follows:

acc(p) =
pos(p)

pos(p) + neg(p)
(1)

conf(p) =
pos(p)

pos(p) + neg(p) + ukn(p)
(2)

where pos(p) is the number of unique positive entities that p extracts, neg(p)
is the number of unique negative entities p extracts and ukn(p) is the number
of unique unknown entities p extracts. All patterns with an accuracy above a
predefined threshold θ will be selected and ranked by a measure given by:

rank(p) = conf(p) × log2 pos(p) (3)

The top n patterns are then added to the list of accepted patterns for each
category. Unknown entities extracted by all accepted patterns for a category
will be considered candidate entities to be added to the list of seed entities for
that category. Our next step is to select good entities from these as new seeds.

2.4 Entity Ranking

We use the entity scoring strategy proposed in [6]. A score of an entity e is then
defined as:

score(e) = 1 −
∏

p∈SupportPat

(1 − conf(p)) (4)

The top m unknown entities with the highest scores extracted by accepted pat-
terns for each category are then added to the list of seed entities for that category,
and the process from 2.1 to 2.4 is iterated until no new entities are found.

3 The Advantage of Bootstrapping from Multiple Classes

The quality of seeds obtained in each iteration greatly affects the performance
of the entire learning process. For example, if the learning process for finding
extraction patterns for APPROACH (e.g., SVMs, Maximum Entropy Models)
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mistakes entities denoting TASK (e.g., word sense disambiguation) as new seeds
in iteration k, it might then wrongly accept patterns that actually extract TASK
rather than APPROACH, and hence, it might mistake more TASK entities as
seeds. As a result, the final set of learned patterns for APPROACH will extract
entities denoting both APPROACH and TASK, which is undesirable.

By bootstrapping from multiple classes simultaneously, we have the informa-
tion about seeds from more than one class. We can develop methods to exploit
information about the seeds of these competing categories in order to guide the
learning process to avoid mistakenly generating the wrong seeds. Our experi-
ments show that a simple list of words created automatically—the Exception
Lists—from 10 starting seeds can improve the quality of seeds obtained in each
iteration and dramatically improve the final learning results.

3.1 Exception List Construction

Our bootstrapping system starts with 10 seeds for each category. The so-called
Exception List is constructed also from only these 10 starting seeds, as described
in Table 2 below.

Table 2. Method for constructing the Exception List

For each category i:
- Retrieve all sentences S containing any instance of the 10 seeds
- Record all words that appear right after instances of the seeds
- Measure the frequency with which they co-occur with seeds
- Discard all words with frequency less than two. The resulting words form the list Li

For each category i:
- All words in Li that do not appear in any other lists Lj , j �= i, form the Exception
List for category i

3.2 Exception List Usage

Generally, the new entities discovered in iteration k will be used as seeds for
iteration k + 1. In the stage of Pattern Acquisition for iteration k + 1, for each
category, we retrieve sentences containing any of its seeds to learn patterns.
However, the seed for one category may actually be a seed for another due to
a learning error. To prevent this from happening, for each retrieved sentence,
we check whether the word appearing right after the seed instance appears in
the Exception Lists of any other classes. If it does appear, this instance is not
likely to be a good seed. For instance, suppose the learning process mistakes
“text categorization” as a seed for the class APPROACH. It should then know
that

“. . . feature selection seems to be essential for some text categorization tasks”

is not a good sentence from which to learn patterns for this class if “tasks”
appears in the Exception List of TASK, meaning that “tasks” is more likely to



82 V.B. Dang and A. Aizawa

come after entities of TASK. It should be noted that the simple Exception Lists
constructed as described above are not used to conclude that a new entity is a
good seed. Instead, they are used to tell whether that entity is less likely to be
a good seed for a particular class. In the example above, we do not conclude
that “text categorization” is a good seed for TASK; instead, we say that it is less
likely to be one for APPROACH.

Our experiments have shown that this simple method of exploiting informa-
tion from competing categories dramatically improves the performance of the
NER system. We believe that the system of bootstrapping from multiple classes
has great potential, and that more powerful methods, such as statistical tools,
can give even better results.

4 Experiments

4.1 Data Preparation

We conducted experiments in the domain of Computer Science papers, extract-
ing Computer Science-specific entities. This choice was made because the aim
of an unsupervised approach is to eliminate time-consuming manual effort so
that the approach can be applied to domains where no tagged data is available,
and Computer Science text is such a domain. Moreover, entity recognition in
Computer Science texts can provide useful information for researchers. For in-
stance, if we can extract entities denoting approaches and tasks, we can then tell
which approaches have been applied to which tasks. This obviously facilitates
the process of literature review.

As our first attempt, we aimed to extract entities of four classes: APPROACH,
such as “Maximum Entropy Models”, TASK, such as “Named Entity Recogni-
tion”, TOOL, such as “SVMLight”, and DATASET, such as “Wall Street Jour-
nal”. For each of the four classes, we manually constructed a list of common
entities and submitted them to the Yahoo! search engine through the supported
search API [17]. We took the top 20 returned pdf documents for each class.
We then extracted sentences containing any instances of seeds and manually
tagged these instances for evaluation. This process resulted in a collection of
2760 sentences with the following statistics.

– Approach: 1000 sentences with 1456 instances.
– Task: 1000 sentences with 1352 instances.
– Tool: 380 sentences with 436 instances.
– Dataset: 380 sentences with 480 instances.

We used the Stanford Parser [16] to parse sentences to obtain dependency trees.
We selected m = n = 5 and θ=0.8 in our experiments.

4.2 Experimental Results

We evaluated our system by comparing it to the one described in [6] since it
was the closest work to ours. In [6], the author used a bootstrapping framework
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Table 3. String-based patterns learned from the source sentence “We employ
<APPR>to combine diverse lexical, syntactic and semantic features derived from the
text”

String-based Extraction Pattern

<APPR> * combine diverse
<APPR> to * diverse
<APPR> to combine *

. . . . . . . . . . . .

Fig. 3. Precision/Recall curves for the four categories APPROACH, TASK, TOOL
and DATASET. Settings with “-EL” are those with Exception Lists.

with string-based patterns that were generated from a context window of width
w around the generalized concept.

Fig. 3 shows the learning curves for all four categories. For the APPROACH,
TOOL and DATASET categories, we can see that tree-based patterns outper-
form string-based patterns. Our analysis shows that string-based patterns can
only work with sentences with minimal variation such as “. . . X for text classi-
fication” and “. . . Y for text categorization”. Otherwise, they fail to capture the
salient contexts from the sentence. For instance, from the source sentence “We
employ <APPR>to combine diverse lexical, syntactic and semantic features de-
rived from the text,” some generated string-based patterns are showed in Table 3
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Fig. 4. Tree-based patterns can capture the salient contexts from source sentences and
match them to target sentences, even though the surface texts may differ greatly

Table 4. Sentences in which our system extracts the correct entity, but where the
extraction is judged to be incorrect since the extracted entity is not a name of interest

Figure 5 compares the runtime of our algorithm only with bisecting k-means and
HFTC.
We ran the algorithm given in Section 4.1 on the Penn Treebank.
We applied our approach to translation from German to English in the Europarl
corpus.
Our tests with the Penn Treebank showed that our integrated approach achieves 92.3
% in precision and 93.2 % in recall.

below. None of them matches the target sentence “Neuro-fuzzy models combine
various features of neural networks with fuzzy models” since it fails to capture the
important context “<APPR>. . . combine . . . features”, in which the key words
are noncontiguous. Tree-based patterns, on the contrary, can deal with this very
well. Fig. 4 illustrates the effectiveness of tree-based patterns. They can capture
the crucial context shared between the source and target sentences, which can
be very different to the surface texts.

It should be noted that the practical precision of our system is underestimated
in the evaluation conducted here. With sentences such as “Figure 5 compares
the runtime of our algorithm only with bisecting k-means and HFTC”, the tree-
based patterns extract “our algorithm” as an entity of APPROACH. Since we
aim to extract the name of the approach, we judge this as a wrong extraction.
However, “our algorithm” is actually a co-reference of a name which is mentioned
somewhere. Thus, we understate the precision of our system (with both string-
based and tree-based patterns). Table 4 shows examples of such sentences. The
system even recognizes approaches that do not have a name, for instance, “We
applied our approach to translation from German to English in the Europarl cor-
pus”, even though “our approach” (which is not always named) is a combination
of many modules or techniques. We are not tackling this problem now: since
we want to study the effectiveness of tree-based patterns and a bootstrapping
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framework for NER, we have not applied co-reference resolution to our work,
though we believe it would improve precision.

Fig. 3 also shows the effectiveness of the Exception List. Either with string-
based or tree-based patterns, systems with an Exception List outperform sys-
tems without one most of the time, which means the simple Exception List can
help prevent the system from generating the wrong entities as new seeds during
learning. This indicates the potential of simultaneously bootstrapping from mul-
tiple classes. We believe that employing more complicated methods can further
improve the quality of learning.

5 Related Work

Riloff [11] employed a weakly supervised method to the problem of NER. The
author only requires the training corpus to be labeled as relevant and irrelevant
rather than fully tagged. From a set of handcrafted rule templates, their system
learns extraction patterns and selects those that occur most frequently in the
relevant corpus. The set of patterns learned is then filtered manually. This ap-
proach greatly reduces human intervention, but human labor is still required to
judge the training data as relevant or not and to compose rule templates.

To the best of our knowledge, the first work using bootstrapping for Infor-
mation Extraction is DIPRE [8]. From a handful of examples of (book title,
author) relations, their system searches the web for their instances, and extracts
patterns that are then used to extract new instances of (book title, author).
Their system only uses simple token-based patterns and simple methods to se-
lect good patterns—just the length of the pattern and the number of times it
occurs. Snowball [9] improved DIPRE by only extracting relationships between
entities recognized by a named entity tagger. However, their techniques were
proposed mainly for Relation Extraction.

The prior work that is closest to ours is the one proposed in [6], which describes
the unsupervised learning of disease names and locations via bootstrapping.
Since their system uses only string-based patterns, it has limitations because of
the variation of text. They also took advantage of competing categories to select
more distinctive patterns, but they did not address the problem of how picking
bad entities as seeds can mislead the entire learning process.

Sudo et al. [10] proposed dependency tree-based patterns for Relation Extrac-
tion, and they have been used very successfully in an On-Demand Information
Extraction system [13]. Its powerful representation ability for Relation Extrac-
tion has also been confirmed by Stevenson et al. [12]. However, since it is designed
for Relation Extraction, it requires a named entity tagger to specify the bound-
ary of entities for which the relationship is to be extracted. Therefore, we modify
it for NER.

Etzioni et al. [15] proposed an unsupervised method to extract named entities
from the web. This interesting scheme uses web statistics to improve the accuracy
of extraction. However, since their system is targeted more at extracting entities
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than learning patterns, it is not related to our work. Nevertheless, the idea is
inspiring, and we can incorporate it into the present framework in the future.

6 Conclusions and Future Work

Dependency tree-based extraction patterns have powerful representation abilities
[10, 12, 13]. They were originally used to identify relationships between entities
extracted by a Named Entity recognizer. In this paper, we have adapted them
to the task of NER—rather than using a Named Entity Recognizer for this
task—via a bootstrapping framework, and shown that this is also very effective.
We also proposed an efficient method for handling the large number of tree-
based patterns. Finally, we introduced a novel scheme using bootstrapping from
multiple classes to improve the quality of the seeds obtained in each iteration,
improving the final learning results.

Our system can be improved in many aspects. We have implemented a very
simple technique for taking advantage of multi-class bootstrapping—only a list
of words that co-occur with entities of interest more than twice. We believe that
by employing statistical methods such as co-occurrence statistics, we can fur-
ther improve the results. Moreover, since we take the noun group containing
the extraction target given by patterns as an entity, some seeds obtained during
learning are not “clean”, for example, “traditional speech recognition” instead
of “speech recognition”. The system will miss sentences in which “speech recog-
nition” occurs on its own, which are even more frequent. We have to implement
techniques to remove these “noisy” words to improve the learning quality.

In this paper, we only work with the four fixed classes in which we are inter-
ested. We believe that the selection of classes for learning will affect the final
learning results, and we will investigate this problem in the future. We also be-
lieve the integration of co-reference resolution can help the system extract more
precise entities, rather than only their co-references.
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Abstract. This paper presents a novel region discovery framework
geared towards finding scientifically interesting places in spatial datasets.
We view region discovery as a clustering problem in which an exter-
nally given fitness function has to be maximized. The framework adapts
four representative clustering algorithms, exemplifying prototype-based,
grid-based, density-based, and agglomerative clustering algorithms, and
then we systematically evaluated the four algorithms in a real-world case
study. The task is to find feature-based hotspots where extreme densi-
ties of deep ice and shallow ice co-locate on Mars. The results reveal that
the density-based algorithm outperforms other algorithms inasmuch as it
discovers more regions with higher interestingness, the grid-based algo-
rithm can provide acceptable solutions quickly, while the agglomerative
clustering algorithm performs best to identify larger regions of arbitrary
shape. Moreover, the results indicate that there are only a few regions
on Mars where shallow and deep ground ice co-locate, suggesting that
they have been deposited at different geological times.

Keywords: Region Discovery, Clustering, Hotspot Discovery, Spatial
Data Mining.

1 Introduction

The goal of spatial data mining [1,2,3] is to automate the extraction of interest-
ing and useful patterns that are not explicitly represented in spatial datasets.
Of particular interests to scientists are the techniques capable of finding sci-
entifically meaningful regions as they have many immediate applications in
geoscience, medical science, and social science; e.g., detection of earthquake
hotspots, disease zones, and criminal locations. An ultimate goal for region
discovery is to provide search-engine-style capabilities to scientists in a highly
automated fashion. Developing such a system faces the following challenges.
First, the system must be able to find regions of arbitrary shape at differ-
ent levels of resolution. Second, the system needs to provide suitable, plug-in
measures of interestingness to instruct discovery algorithms what they should
seek for. Third, the identified regions should be properly ranked by relevance.
� Also, Computer Science Department, University of Houston-Clear Lake.
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Fig. 1. Region discovery framework

Fourth, the system must be able to
accommodate discrepancies in various
formats of spatial datasets. In par-
ticular, the discrepancy between con-
tinuous and discrete datasets poses a
challenge, because existing data min-
ing techniques are not designed to op-
erate on a mixture of continuous and
discrete datasets. Fifth, it is desirable
for the framework to provide pruning
and other sophisticated search strate-
gies as the goal is to seek for interest-
ing, highly ranked regions.

This paper presents a novel region discovery framework (see Fig. 1) geared to-
wards finding scientifically interesting places in spatial datasets. We view region
discovery as a clustering problem in which an externally given fitness function
has to be maximized. The framework adapts four representative clustering algo-
rithms, exemplifying prototype-based, grid-based, density-based, and agglomer-
ative clustering algorithms for the task of region discovery. The fitness function
combines contributions of interestingness from constituent clusters and can be
customized by domain experts. The framework allows for plug-in fitness functions
to support a variety of region discovery applications correspondent to different
domain interests.

Relevant Work. Many studies have been conducted in region discovery. These
most relevant to our work are region-oriented clustering techniques and hotspot
discovery. In our previous work, we have discussed a region discovery method
that was restricted to one categorical attribute [4,5]. The integrated framework
introduced in this paper is generalized to be applicable to both continuous and
discrete datasets. The framework allows for various plug-in fitness functions and
extends our work to the field of feature-based hotspot discovery (see Section 2).
[1] introduces a “region oriented” clustering algorithm to select regions to satisfy
certain condition such as density. This approach uses statistical information
instead of a fitness function to evaluate a cluster.

Hotspots are object clusters with respect to spatial coordinates. Detection
of hotspots using variable resolution approach [6] was investigated in order to
minimize the effects of spatial superposition. In [7] a region growing method for
hotspot discovery was described, which selects seed points first and then grows
clusters from these seed points by adding neighbor points as long as a density
threshold condition is satisfied. Definition of hotspots was extended in [8] using
circular zones for multiple variables.

Contributions. This paper presents a highly generic framework for region dis-
covery in spatial datasets. We customize our discovery framework to accom-
modate raster, continuous, and categorical datasets. This involves finding a
suitable object structure, suitable preprocessing techniques, a family of reward-
based fitness functions for various measures of interestingness, and a collection of
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clustering algorithms. We systematically evaluate a wide range of representative
clustering algorithms to determine when and which type of clustering techniques
are more suitable for region discovery. We apply our framework to a real-world
case study concerning ground ice on Mars and successfully find scientifically
interesting places.

2 Methodology

Region Discovery Framework. Our region discovery method employs a
reward-based evaluation scheme that evaluates the quality of the discovered
regions. Given a set of regions R = {r1, . . . , rk} identified from a spatial dataset
O = {o1, . . . , on}, the fitness of R is defined as the sum of the rewards obtained
from each region rj (j = 1 . . . k):

q(R) =
k∑

j=1

(i(rj)× size(rj)β) (1)

where i(rj) is the interestingness measure of region rj – a quantity based on
domain interest to reflect the degree to which the region is “newsworthy”. The
framework seeks for a set of regions R such that the sum of rewards over all of its
constituent regions is maximized. size(rj)β (β > 1) in q(R) increases the value
of the fitness nonlinearly with respect to the number of objects in O belonging
to the region rj . A region reward is proportional to its interestingness, but given
two regions with the same value of interestingness, a larger region receives a
higher reward to reflect a preference given to larger regions.

We employ clustering algorithms for region discovery. A region is a contiguous
subspace that contains a set of spatial objects: for each pair of objects belonging
to the same region, there always exists a path within this region that connects
them. We search for regions r1, . . . , rk such that:

1. ri ∩ rj = ∅, i �= j. The regions are disjoint.
2. R = {r1, . . . , rk} maximizes q(R).
3. r1 ∪ . . . ∪ rk ⊆ O. The generated regions are not required to be exhaustive

with respect to the global dataset O.
4. r1, . . . , rk are ranked based on their reward values. Regions that receive no

reward are discarded as outliers.

Preprocessing. Preprocessing techniques are introduced to facilitate the appli-
cation of the framework to heterogeneous datasets. Given a collection of raster,
categorical, and continuous datasets with a common spatial extent, the raster
datasets are represented as (<pixel>, <continuous variables>), the categorical
dataset as (<point>, <category variables>)1, and the continuous datasets as
(<point>, <continuous variables>). Fig. 2 depicts our preprocessing procedure:

1 To deal with multiple categorical datasets a single dataset can be constructed by
taking the union of multiple categorical datasets.
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Fig. 2. Preprocessing for heterogeneous spatial datasets

Step 1. Dataset Integration. Categorical datasets are converted into a con-
tinuous density dataset (<point>, <density variables>), where a density
variable describes the density of a class for a given point. Classical density
estimation techniques [9], such as Gaussian kernel functions, can be used for
such transformation. Raster datasets are mapped into point datasets using
interpolation functions that compute point values based on the raster values.

Step 2. Dataset Unification. A single unified spatial dataset is created by
taking a natural join on the spatial attributes of each dataset. Notice that
the datasets have to be made “join compatible” in Step 1. This can be
accomplished by using the same set of points in each individual dataset.

Step 3. Dataset Normalization. Finally, continuous variables are normal-
ized into z-scores to produce a generic dataset O=(<point>, <z-scores>),
where z-score is the number of standard deviations that a given value is
above or below the mean.

Measure of Interestingness. The fitness function q(R) (Eqn. 1) allows a
function of interestingness to be defined based on different domain interests.
In our previous work, we have defined fitness functions to search risk zones of
earthquakes [4] and volcanoes [5] with respect to a single categorical attribute.
In this paper, we define feature-based hotspots as localized regions where contin-
uous non-spatial features of objects attain together the values from the wings
of their respective distributions. Hence our feature-based hotspots are places
where multiple, potentially globally uncorrelated attributes happen to attain
extreme values. We then introduce a new interestingness function i on the top
of the generic dataset O: given set of continuous features A = {A1, ..., Aq} the
interestingness of an object o ∈ O is measured as follows:

i(A, o) =
q∏

j=1

zAj (o) (2)
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where zAj (o) is the z-score of the continuous feature Aj . Objects with |i(A, o)| �
0 are clustered in feature-based hotspots where the features in A happen to attain
extreme values—measured as products of z-scores.

We then extend the definition of interestingness to regions: the interestingness
of a region r is the absolute value of the average interestingness of the objects
belonging to it:

i(A, r) =

{
( |Σo∈r i(A,o)|

size(r) − zth) if |Σo∈r i(A,o)|
size(r) > zth

0 otherwise.
(3)

In Eqn. 3 the interestingness threshold zth is introduced to weed out regions
with i(r) close to 0, which prevents clustering solutions from containing only
large clusters of low interestingness.

Clustering Algorithms. Our regional discovery framework relies on reward-
based fitness functions. Consequently, clustering algorithms embedded in the
framework, have to allow for plug-in fitness functions. However, the use of fitness
function is quite uncommon in clustering, although a few exceptions exist, e.g.,
CHAMELEON [10]. Furthermore, region discovery is different from traditional
clustering as it gears to find interesting places with respect to a given measure
of interestingness. Consequently, existing clustering techniques need to be mod-
ified extensively for the task of region discovery. The proposed region discovery
framework adapts a family of prototype-based, agglomerative, density-based,
and grid-based clustering approaches. We give a brief survey of these algorithms
in this section.

Prototype-based Clustering Algorithms. Prototype-based clustering algo-
rithms first seek for a set of representatives; clusters are then created by assigning
objects in the dataset to the closest representatives. We introduce a modifica-
tion of the PAM algorithm [11] which we call SPAM (Supervised PAM). SPAM
starts its search with a random set of k representatives, and then greedily re-
places representatives with non-representatives as long as q(R) improves. SPAM
requires the number of clusters, k, as an input parameter. Fig. 3a illustrates the
application of SPAM to a supervised clustering task in which purity of clusters
with respect to the instances of two classes has to be maximized. SPAM correctly
separates cluster A from cluster B because the fitness value would be decreased
if the two clusters were merged, while the traditional PAM algorithm will merge
the two clusters because they are in close proximity.

Agglomerative Algorithms. Due to the fact that prototype-based algorithms
construct clusters using nearest neighbor queries, the shape of clusters iden-
tified are limited to convex polygons (Voronoi cells). Interesting regions, and
in particular, hotspots, may not be restricted to convex shapes. Agglomerative
clustering algorithms are capable of yielding solutions with clusters of arbitrary
shape by constructing unions of small convex polygons. We adapt the MOSAIC
algorithm [5] that takes a set of small convex clusters as its input and greed-
ily merges neighboring clusters as long as q(R) improves. In our experiments
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Fig. 3. Clustering algorithms

the inputs are generated by the SPAM algorithm. Gabriel graphs [12] are used
to determine which clusters are neighbors. The number of clusters, k, is then
implicitly determined by the clustering algorithm itself. Fig. 3b illustrates that
MOSAIC identifies 9 clusters (4 of them are in non-convex shape) from the 95
small convex clusters generated by SPAM.

Density-Based Algorithms. Density-based algorithms construct clusters from
an overall density function. We adapt the SCDE (Supervised Clustering Using
Density Estimation) algorithm [13] to search feature-based hotspots. Each object
o in O is assigned a value of i(A, o) (see Eqn. 2). The influence function of object
o, fGauss(p, o), is defined as the product of i(A, o) and a Gaussian kernel:

fGauss(p, o) = i(A, o)× e−
d(p,o)2

2σ2 . (4)

The parameter σ determines how quickly the influence of o on p decreases as
the distance between o and p increases. The density function, Ψ(p) at point p is
then computed as:

Ψ(p) =
∑

o∈O

fGauss(p, o). (5)

Unlike traditional density estimation techniques, which only consider the spa-
tial distance between data points, our density estimation approach additionally
considers the influence of the interestingness i(A, o). SCDE uses a hill climbing
approach to compute local maxima and local minima of the density function Ψ .
These locales act as cluster attractors; clusters are formed by associating objects
in O with the attractors. The number of clusters, k, is implicitly determined by
the parameter σ. Fig. 3c illustrates an example in which SCDE identifies 9 re-
gions that are associated with maxima (in red) and minima (in blue) of the
depicted density function on the right.

Grid-based Algorithms. SCMRG (Supervised Clustering using Multi-
Resolution Grids) [4] is a hierarchical, grid-based method that utilizes a di-
visive, top-down search. The spatial space of the dataset is partitioned into grid
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cells. Each grid cell at a higher level is partitioned further into smaller cells at
the lower level, and this process continues as long as the sum of the rewards of
the lower level cells q(R) is not decreased. The regions returned by SCMRG are
combination of grid cells obtained at different level of resolution. The number of
clusters, k, is calculated by the algorithm itself. Fig. 3d illustrates that SCMRG
drills down 3 levels and identifies 2 clusters (the rest of cells are discarded as
outliers due to low interestingness).

3 A Real-World Case Study: Ground Ice on Mars

Dataset Description and Preprocessing. We systematically evaluate our
region discovery framework on spatial distribution of ground ice on Mars. Mars
is at the center of the solar system exploration efforts. Finding scientifically
interesting places where shallow and deep ice abundances coincide provides im-
portant insight into the history of water on Mars. Shallow ice located in the
shallow subsurface of Mars, within an upper 1 meter, is obtained remotely from
orbit by the gamma-ray spectrometer [14] (see Fig. 4a, shallow ice in 5o × 5o

resolution). A spatial distribution of deep ice, up to the depth of a few kilo-
meters, can be inferred from spatial distribution of rampart craters [15] (see
Fig. 4b, distribution of 7559 rampart craters restricted to the spatial extent de-
fined by the shallow ice raster). Rampart craters, which constitute about 20%
of all the 35927 craters on Mars, are surrounded by ejecta that have patterns
like splashes and are thought to form in locations once rich in subsurface ice.
Locally-defined relative abundance of rampart craters can be considered a proxy
for the abundance of deep ice.

Using the preprocessing procedure outlined in Section 2 we construct a generic
dataset (<longitude, latitude>, zdi, zsi) where <longitude, latitude> is the coor-
dinate of each rampart crater, zdi denotes the z-score of deep ice and zsi denotes
the z-score of shallow ice. The values of these two features at location p are
computed using a 5o × 5o moving window wrapped around p. The shallow ice
feature is an average of shallow-ice abundances as measured at locations of ob-
jects within the window, and the deep-ice feature is a ratio of rampart to all the
craters located within the window.

Region Discovery Results. SPAM, MOSAIC, SCDE, and SCMRG clustering
algorithms are used to find feature-based hotspots where extreme values of deep
ice and shallow ice co-locate on Mars. The algorithms have been developed in
our open source project Cougar2 Java Library for Machine Learning and Data
Mining Algorithms [16]. In the experiments, the clustering algorithms maximize
the following fitness function q(R) — see also Eqn 1:

q(R) =
∑

r∈R

(i({zdi, zsi}, r)× size(r)β) (6)

For the purpose of simplification, we will use z for i({zdi, zsi}, r) in the rest of the
paper. In the experiments, the interestingness threshold is set to be zth = 0.15
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Fig. 4. Grayscale background depicts elevation of the Martian surface between lon-
gitude of −180o to 180o and latitude −60o to 60o. Legend indicates z value for each
cluster. Objects not belonging to regions identified are not shown (better viewed in
color).

and two different β values are used: β = 1.01 is used for finding stronger hotspots
characterized by higher values of z even if the sizes are small, and β = 1.2 for
identifying larger but likely weaker hotspots. Table 1 summarizes the experimen-
tal results. Fig. 4c shows the correspondent clustering results using β = 1.01.
And Fig. 4d demonstrates that larger (but weaker) hotspots are identified for
β = 1.2. Objects (craters) are color-coded according to the z values of clus-
ters to which they belong. The hotspots are in the locations where objects are
coded by either deep red or deep blue colors. In the red-coded hotspots the two
variables have values from the same-side wings of their distributions (high-high
or low-low). In the blue-coded hotspots the two variables have values from the
opposite-side wings of their distributions (high-low or low-high).

Which clustering algorithm produces the best region discovery results? In
the rest of section, we evaluate the four clustering algorithms with respect to



96 W. Ding et al.

Table 1. Parameters of clustering algorithms and statistical analysis

SPAM SCMRG SCDE MOSAIC

β = 1.01/β = 1.2

Parameters k = 2000/k = 807 None σ = 0.1/σ = 1.2 None

q(R) 13502/24265 14129 / 34614 14709/39935 14047/59006
# of clusters 2000/807 1597/644 1155/613 258/152

Statistics of Number of Objects Per Region

Max 93/162 523/2685 1258/3806 4155/5542
Mean 18/45 15/45 25/49 139/236
Std 10/25 31/201 80/193 399/717

Skewness 1.38/1.06 9.52/10.16 9.1/13.44 6.0/5.24

Statistics of Rewards Per Region

Max 197/705 743/6380 671/9488 3126/16461
Mean 10/46 9/54 12/65 94/694
Std 15/66 35/326 38/415 373/2661

Skewness 5.11/4.02 13.8/13.95 10.1/19.59 6.24/4.69

Statistics of
√
z Per Region

Max 2.7/2.45 2.85/2.31 2.95/2.94 1.24/1.01
Mean 0.6/0.57 0.74/0.68 0.95/0.97 0.44/0.40
Std 0.38/0.36 0.31/0.26 0.47/0.47 0.24/0.22

Skewness 1.14/1.34 1.58/1.88 1.28/1.31 0.73/0.40

statistical measures, algorithmic consideration, shape analysis, and scientific
contributions.

Statistical Measures. Table 1 is divided into four sections. The first section
reports on the overall properties of clustering solutions: the parameters used by
the clustering algorithms, the total reward and the number of regions discovered.
The remaining three sections report on statistics of three different properties:
region size, its reward on the population of the constituent regions, and

√
z,

the square root of the interestingness of regions. The SPAM algorithm requires
an input parameter k, which is chosen to be a value that is of the same order
of magnitude as the values of k yielded by the SCMRG and SCDE algorithms.
Due to its agglomerative character the MOSAIC algorithm always produces a
significantly smaller number of clusters regardless of the size of its input provided
by the SPAM clustering solution. Thus the MOSAIC is separated from the other
solutions in the table.

To seek for feature-based hotspots of shallow ice and deep ice, the solution that
receives high value of q(R) and provides more clusters with the highest values of√

z is the most suitable. This is the solution having a large value of skewness for
the reward and

√
z properties. Skewness measures the asymmetry of the proba-

bility distribution, as the large value of skewness indicates existence of hotspots
(more extreme values). In addition a suitable solution has larger values of the
mean and the standard deviation for the reward and

√
z properties, as they indi-

cate existence of stronger hotspots. The analysis of Table 1 indicates that SCDE
and SCMRG algorithms are more suitable to discovery hotspots with higher
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values in z. Furthermore, we are interested in evaluating the search capability,
how the top n regions are selected by the four algorithms. Fig. 5a illustrates
the average region size with respect to the top 99th, 97th, 94th, 90th, 80th, 60th

percentile for the value of interetingness z. Fig. 5b depicts the average value of
interestingness per cluster with respect to the top 10 largest regions. We ob-
serve that SCDE can pinpoint stronger hotspots in smaller size (e.g., size = 4
and z = 5.95), while MOSAIC is the better algorithm for larger hotspots with
relatively higher value of interestingness (e.g., size = 2096 and z = 1.38).

Algorithmic Considerations. As determined by the nature of the algorithm,
SCDE and SCMRG algorithms support the notion of outliers – both algorithms
evaluate and prune low-interest regions (outliers) dynamically during the search
procedure. Outliers create an overhead for MOSAIC and SPAM because both
algorithms are forced to create clusters to separate non-reward regions (outliers)
from reward regions. Assigning outliers to a reward region in proximity is not an
alternative because this would lead to a significant drop in the interestingness
value and therefore to a significant drop in total rewards.

The computer used in our experiments is Intel(R) Xeon, CPU 3.2GHz, 1GB
of RAM. In the experiments of β = 1.01 the SCDE algorithm takes ∼ 500s to
complete, whereas the SCMRG takes ∼ 3.5s, the SPAM takes ∼ 50000s, and the
MOSAIC took ∼ 155000s. Thus, the SCMRG algorithm is significantly faster
than the other clustering algorithms and, on this basis, it could be a suitable
candidate to searching for hotspots in a very large dataset with limited time.

Shape Analysis. As depicted in Fig. 4, in con-
trast to SPAM whose shapes are limited to convex
polygons, and SCMRG whose shapes are limited to
unions of grid-cells, MOSAIC and SCDE can find
arbitrary-shaped clusters. The SCMRG algorithm
only produces good solutions for small values of β,
as larger values of β lead to the formation of large, boxy segments that are not
effective in isolating the hotspots. In addition, the figure on the right depicts
the area of Acidalia Plantia on Mars (centered at ∼ −15o longitude, −40o lati-
tude). MOSAIC and SCDE have done a good job in finding non-convex shape
clusters. Moveover, notice that both algorithms can discover interesting regions
inside other regions – red-coded regions (high-high or low-low) are successfully
identified inside the blue-coded regions (low-high or high-low). It thus makes the
hotspots even “hotter” when excluding inside regions from an outside region.

Scientific Contributions. Although the global correlation between the shal-
low ice and deep ice variables is only −0.14434 — suggesting the absence of a
global linear relationship — our region discovery framework has found a number
of local regions where extreme values of both variables co-locate. Our results in-
dicate that there are several regions on Mars that show a strong anti-collocation
between shallow and deep ice (in blue), but there are only few regions on Mars
where shallow and deep ground ice co-locate (in red). This suggests that shallow
ice and deep ice have been deposited at different geological times on Mars. These
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Fig. 5. Search capability evaluation

places need to be further studied by the domain experts to find what particular
set of geological circumstances led to their existence.

4 Conclusion

This paper presents a novel region discovery framework for identifying the
feature-based hotspots in spatial datasets. We have evaluated the framework with
a real-world case study of spatial distribution of ground ice on Mar. Empirical sta-
tistical evaluation was developed to compare the different clustering solutions for
their effectiveness in locating hotspots. The results reveal that the density-based
SCDE algorithm outperforms other algorithms inasmuch as it discovers more re-
gions with higher interestingness, the grid-based SCMRG algorithm can provide
acceptable solutions within limited time, while the agglomerative MOSAIC clus-
tering algorithm performs best on larger hotspots of arbitrary shape. Further-
more, our region discovery algorithms have identified several interesting places
on Mars that will be further studied in the application domain.
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Abstract. In this digital age, great interest has been shifted toward multimedia 
data manipulations. This includes videos, images, and audios, where typical 
manipulations require fairly large storage and are computationally intensive. 
Recent research has demonstrated the utilities of time series representation in 
various data mining tasks, allowing considerable reduction in time and space 
complexity. Specifically, the utilities of Uniform Scaling (US) and Dynamic 
Time Warping (DTW) have been shown to be necessary in several human-
related domains, where uniform stretching or shrinking, as well as some local 
variation are typical. Classic examples include a query-by-humming system and 
motion capture data. However, all the past work has neglected the importance 
of data normalization before distance calculations, and therefore does not guar-
antee accurate retrievals. In this work, we discuss this concern and present a 
technique that accurately and efficiently searches under the US with DTW for 
normalized time series data, where no-false-dismissals are guaranteed. 

Keywords: Data Mining, Content-based Multimedia Retrieval, Time Series, 
Uniform Scaling, Dynamic Time Warping. 

1   Introduction 

At present, multimedia data have evolved into our lives, where we increasingly have 
higher expectations in exploiting these data at hands. Typical manipulation usually 
requires fairly large amount of storage and is computationally intensive. Recently, it 
has been demonstrated that time series representation could be more efficient and 
effective in several domains, including science, bioinformatics, economics, and espe-
cially in multimedia [1]. For example, in a query-by-humming system, we can just 
extract a sequence of pitch from a sung query [2-6] to retrieve an intended song from 
the database. In motion retrieval, we can extract a sequence of motion in each video 
frame from a centroid of the object of interest in X, Y, and Z axes [7-9]. Similarly, in 
a content-based image search, image’s shape can also be transformed into time series 
data for an efficient retrieval [10].  

For the past decade, the most widely used distance measure in time series data has 
been Euclidean distance. It has been used for data retrieval, classification, clustering, 
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etc. However, Euclidean distance appears to be unsuitable for many applications be-
cause of its high sensitivity to variability in the time axis, and the superiority in accu-
racy of Dynamic Time Warping (DTW) over the Euclidean distance, which have been 
noted in various domains [7-9, 11, 12]. DTW, nonetheless, can handle only local 
variations in the data. Thus, it appears to be inappropriate for many applications, 
especially for multimedia or human-related domains where uniform stretching and 
shrinking are very typical [8, 12]; for example, in a query-by-humming system, most 
users tend to sing slower or faster than the original song. Similar problems also arise 
in other applications, such as motion capture and image retrievals [7, 9]. Recently, the 
use of Uniform Scaling (US) together with DTW has been introduced to mitigate this 
problem since US allows global scaling of time series before DTW distance calcula-
tion. However, this combination comes at a cost and cannot scale well with large 
databases. Fortunately, we have a lower-bounding function of this distance measure 
[12], which can efficiently prune most of the dissimilar candidate sequences to 
achieve significant speedup over these calculations. 

The Importance of Normalization 

Even though we now have a relatively efficient technique to speed up US with DTW 
calculations, in almost all applications, data pre-processing is still mandatory for ac-
curate and meaningful similarity measurements. In addition, z-normalization and 
mean normalization are typically used when our primary interest is the time series’ 
shapes. 
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Fig. 1. a) A raw pitch contour extracted from a sung query represents a query sequence Q, and 
a MIDI pitch contour of “Happy Birthday” song represents a candidate sequence C. b) A re-
scaled query sequence Q with scaling factor = 1.25. c) Both sequences after mean normaliza-
tion at the query’s length. The shaded region shows their Euclidean distance.  
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In query by humming, for instance, we want to search the song database for the one 
whose segment is most similar to the sung query. However, most users may not sing 
queries in the same key or the same pitch level as the songs stored in the database. Thus, 
normalization of both the query and candidate sequences is needed to remove any exist-
ing offsets [3, 4, 13] before any distance calculations. An example of this problem is 
illustrated in Fig.1, where Q is the extracted sung query segment of the popular “Happy 
Birthday” song, and C is one of the candidate sequences stored in the database. We can 
quickly see that the shape of Q and a prefix of C are quite similar. Nevertheless, if we 
measure the similarity of these sequences directly using either Euclidean distance or 
DTW distance without any normalization nor rescaling, the distance will become exces-
sive since both sequences may not be in the same pitch level nor in the right scale. 
Therefore, normalization and rescaling of both sequences before distance calculation are 
crucial steps to achieve an accurate retrieval (see Fig. 1 b) and c)). 

In addition, the current lower-bounding method to prune off a large number of 
candidate sequences is developed without realization of the importance nor effects of 
data normalization. Hence, we propose a lower-bounding function to deal with this 
normalization problem efficiently and to calculate a distance under the US with DTW, 
where no false dismissals are guaranteed.  

The rest of this paper is organized as follows. In section 2, we describe related re-
search work and our motivation behind solving this normalization problem. Section 3 
covers necessary background. In section 4, we describe our proposed method with a 
proof of no false dismissals. Section 5 verifies correctness of our method with a set of 
experiments to confirm the large pruning power in massive databases. Finally,  
section 6 gives some conclusions and offers possible future work. 

2   Related Work 

For the past decade, DTW has attracted many researchers because of its superiority in 
accuracy over the ubiquitous Euclidean distance, which has been widely known in a 
variety of domains and applications [1-3, 5, 7-12, 14, 15]. However, lack of ability to 
globally stretch or shrink a time series of DTW in dealing with tempo variations has 
been known in music retrieval community [6, 16]. A straightforward solution is to 
generate every possible scaled version of the query or the candidates to be used in the 
measurement; it is, however, impractical for large databases. Thus, some researchers 
have proposed the methods to address and resolve this concern efficiently. Keogh has 
proposed a lower-bounding function for the US that can speed up the calculation by 
two to three orders of magnitude [8]. In 2005, Fu et al. have extended Keogh’s 
method providing a solution for a lower-bounding distance calculation under US with 
DTW [12]. At this point, although there have been relatively efficient solutions to 
deal with both US and DTW, practically none of the researchers has realized the im-
portance and effects of normalization under US, and this is a primary cause of flaws 
in their methods due to the inapplicable distance calculation. Regardless of the dire 
need in normalization as mentioned earlier, it has been neglected and in turn has 
blocked up both US and DTW to achieve high accuracy and efficient retrieval. 

Our contribution is to propose an efficient lower-bounding function for US with 
DTW distance calculation under normalization requirement, which can prune a sig-
nificant number of unqualified candidate sequences. Nonetheless, we would like to 
reemphasize that normalization is a crucial step to achieve a meaningful distance 



 Accurate and Efficient Retrieval of Multimedia Time Series Data 103 

calculation, especially in multimedia applications, as well as for efficient retrieval of 
the time series data. 

3   Background 

We begin with a formal problem definition as well as reviews of necessary back-
ground. 

 
Problem definition. Suppose we have a query sequence Q of length m, where Q = 
q1,q2,q3,…,qm. It is scalable between lengths sfmin*m and sfmax*m, where sfmin and 
sfmax are minimum and maximum scaling factors respectively, i.e., we can shrink or 
stretch a query sequence from lengths sfmin*m to sfmax*m, where sfmax ≥ 1 and 0 < 
sfmin ≤ 1. In addition, each candidate sequence C of length n, C = c1,c2,c3,…,cn, is 
stored in a database D. For simplicity, here, we define n ≥ sfmax*m. Finally, we want 
to find the most similar-shaped candidate sequence C in the database D to the query 
sequence Q, which is also scalable in arbitrary lengths between sfmin*m and 
sfmax*m. 
 
Definition 1. Squared Euclidean distance: We define a squared Euclidean distance 
measure in eq.(1), which calculates distance between two sequences of equal length m 
(query’s length). Note that the square root from the original Euclidean distance has 
been removed for an optimization purpose since the rankings of the results from both 
of these approaches are identical [8].  

∑
=

−≡
m

i
ii cqCQ

1

2)(),D(  (1) 

 
Definition 2. Uniform Scaling: Uniform Scaling is a technique that uniformly 
stretches or shrinks a time series. In this approach, if we want to stretch a prefix of a 
candidate sequence C of length l to length m, we can use the Uniform Scaling func-
tion in eq.(2); shrinking of a candidate is done similarly to a stretching process. 

We can formally define the Uniform Scaling function as follows. 

⎣ ⎦ mjcc mljj ≤≤= ∗ 1where/  (2) 

For US distance calculation, prefixes of a candidate sequence C of length l, 
where ⎣ ⎦ ⎣ ⎦ ),min( nmsfmaxlmsfmin ∗≤≤∗ , are rescaled to length m (query’s length). 

Then we use a squared Euclidean distance function to calculate distance between a 
query sequence and all rescaled prefix sequences in order to find a minimum distance 
value ranging from sfmin to sfmax.  

The formal definition of a Uniform Scaling distance function (US) is provided in 
eq.(3) and eq.(4), where RP(C,m,l) is a Rescaled Prefix function that returns a prefix 
of a candidate sequence of length l rescaled to length m. 

⎣ ⎦ mjmiclmC mlji ≤≤≤≤= ∗ 1and1where),,RP( /  (3) 
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∗

∗=
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Definition 3. Lower bounding of Uniform Scaling [8, 12]: Lower bounding of Uni-
form Scaling is a distance approximation function, which can quickly compute a 
lower-bounding distance between a query and a candidate sequences; however,  
this lower bound value must not exceed the true distance value in order to be a valid 
lower-bounding function. To illustrate the idea, two new sequences are created, an 
upper envelope sequence UY and a lower envelope sequence LY, which enclose a 
candidate sequence. This envelope represents all scaled candidate sequences for a 
lower-bounding distance calculation.  

UY and LY are formally defined in eq.(5), which was proposed in [8]. Note that a 
lower-bounding distance can simply be a squared Euclidean distance between a query 
sequence and the candidate’s envelope, as defined in eq.(6). 

⎣ ⎦ ⎣ ⎦ ),,max( sfmaxisfminii cc  UY ∗∗ …=  

⎣ ⎦ ⎣ ⎦ ),,min( sfmaxisfminii cc  LY ∗∗ …=  
(5) 

2

2
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LBY( , ) ( ) if

0 otherwise

i i i im

i i i i
i

q UY q UY

Q C LY q q LY
=

⎧ − >
⎪= − <⎨
⎪
⎩

∑  (6) 

Interest readers may consult [12] for further details about US and DTW. 

4   Our Proposed Method 

Because the existing lower-bounding functions are not designed for distance calcula-
tion under normalization requirement, they are flawed and do not give correct and 
meaningful calculation. Consequently, this paper is highly motivated to fix this flaw 
by proposing US with DTW function under normalization condition as well as their 
efficient lower-bounding functions. Furthermore, our proposed lower-bounding func-
tion is able to prune a large number of candidate sequences without undergoing  
such costly distance calculation, primarily to speed up the computation with no false 
dismissals. 

The failure in lower-bounding distance calculation under z-normalization condition 
of the previous work is illustrated in Fig. 2 b) and c). The shown query in Fig. 2 a) is a 
rescaled version of the candidate’s prefix (scaling factor = 1.2). Then we normalize 
both sequences by using z-normalization as presented in Fig. 2 b) to e). However, in 
Fig. 2 b) and c) being the previously proposed lower-bounding functions [8, 12], it is 
apparent that their results (lower-bounding distance) are not zero, i.e., the normalized 
query is not fully contained within the lower-bounding envelopes, as illustrated by the 
shaded regions. This phenomenon definitely violates the lower-bounding rule because 
the lower-bounding distance must not exceed the true distance; in this case, the true 
distance should in fact be zero. Therefore, these existing lower-bounding functions 
could cause some false dismissals in normalization scheme. Actually, this phenome-
non is not surprising since both of the previously proposed lower-bounding functions 
are not developed for the normalization problem. Figs. 2 d) and e) are our proposed 
lower-bounding function that satisfy all the lower bounding conditions. 
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Fig. 2. a) Raw pitch contours extracted from a “Happy Birthday” song, where C represents the 
candidate, and Q is the query sung in a slower tempo (scaling factor = 1.2). Assume that a 
query sequence is no longer than the candidate sequence. b)-e) the query and the candidate 
sequences are z-normalized within the query’s length, enclosed by different lower-bounding 
envelopes with the scaling factor of range [0.7, 1.3]. b) A lower-bounding function of US that 
do not satisfy the lower-bounding condition [8]. c) A lower-bounding function of US with 
DTW, where a size of global constraint is 5%, which also does not satisfy the lower-bounding 
condition [12]. d) Our proposed lower-bounding function of US. e) Our proposed lower-
bounding function of US with DTW, where a size of global constraint is 5%. 

In this section, we begin with solutions for US and US with DTW distance measure, 
which satisfy normalization requirement, followed by the proof of no false dismissals.  

 
Definition 4. Uniform Scaling with Normalization: The formal definition of a US 
with z-normalization is shown in eq.(7) and eq.(8), where Q′  is a z-normalized query, 

and lc K1  and SD(c1…l) are mean and standard deviation of a candidate’s prefix of 

length l , respectively. Although different scalings of the same sequence through in-
terpolation may yield different mean and standard deviation values, our observation 
discovers no statistically significant difference of mean and standard deviation be-
tween normalization before rescaling the sequences and rescaling the sequences be-
fore normalization. 
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Definition 5. Lower bound of Uniform Scaling with Normalization: We develop a 
bounding envelope as expressed in eq.(9) and eq.(10), where UZ′i and LZ′i are upper 
and lower envelope sequences respectively. The corresponding distance calculation 
function is shown in eq.(11). 
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In case of US with DTW distance measure with normalization, we can simply 
change distance calculation function D in eq.(8) from the squared Euclidean function 
to DTW function. Additionally, its lower-bounding function is also quite straightfor-
ward that we can apply lower bounding of DTW over our envelope from eq.(9) and 
eq.(10), as shown in eq.(12); r is the size of a global constraint when using DTW 
distance calculation. The calculation of this lower-bounding function is similar to 
other functions as stated earlier. Due to space limitations, we omit full details of this 
distance function and its proof for brevity. 

max(1, ) min( , )max( , , )i i r i r mU   UZ UZ− +′ ′ ′= …  

max(1, ) min( , )min( , , )i i r i r mL   LZ LZ− +′ ′ ′= …  
(12) 

Lastly, to validate the correctness of the proposed method, we complete this sec-
tion with a proof of our lower bounding properties. 
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Proposition 1. Let Q′ be a normalized query sequence of length m, and C be a candi-
date sequence of length n. In addition, a minimum scaling factor and a maximum 
scaling factor are sfmin and sfmax respectively, where 0 < sfmin ≤ 1 and sfmax ≥ 1, 
i.e., the query can be scalable between sfmin*m and sfmax*m. Then the value of 
LBZ(Q′,C) is a lower-bounding distance of USnorm(Q′,C,sfmin,sfmax). 
 
Proof. Suppose UZ′i ≥ c′j ≥ LZ′i, where UZ′i is an upper envelope, LZ′i is a lower  
envelope, and c′j is a normalized data point of a candidate sequence at an arbitrary 
scaling between sfmin and sfmax, i.e., sfmin*i ≤ j ≤ sfmax*i. Then LBZ(Q′,C) ≤  
USnorm(Q′,C,sfmin, sfmax). 
 

If a query is stretched to length sf*m, where sf is a scaling factor, a prefix of a can-
didate sequence with length sf*m will be rescaled into length m and z-normalized by 
its mean and standard deviation, as shown in eq.(13). 
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From eq.(9) and eq.(10), the upper and lower envelopes are defined as follows. 
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From eq.(13) and (14), it follows that 
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5   Experiment 

In the previous section, we introduce our proposed lower-bounding function as well 
as justification of its correctness in preserving the lower-bounding properties. In this 
section, we carefully evaluate the efficiency of our proposed method by conducting 
sets of experiments to observe the pruning power [11, 12]. Note that the pruning 
power is the fraction of the total candidate objects that can be discarded from further 
calculation, as defined in eq.(15).  

sequencescandidateofnumberTotal

candidatesprunedofNumber
PowerPruning =  (15) 
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In these experiments, we develop a simple Query-by-Humming system based on 
one-nearest-neighbor time series matching technique [3, 4, 6, 12, 17] in order to dem-
onstrate the quality and utilities of our proposed method in multimedia database. We 
use 100 to 2,000 different international songs in MIDI file format and generate candi-
date sequences from this MIDI songs by using sliding windows of length 150*sfmax 
data points, where sfmax = 1.4, and then store it in a database. For query sequences, 
we collect 55 sung queries from 12 subjects of both genders with various singing 
abilities and then extract sequences of pitch from these sung queries by using autocor-
relation algorithm [18].  

To carefully evaluate each factor that affects quality of the lower-bounding func-
tion, we conduct three experiments. In the first experiment, we examine an effect of 
different lengths of sequences with different ranges of scaling factors under 22441 
sequences (generated from 100 songs), where a size of the global constraint is set to 
4 percent of the sequences’ length (see Fig. 3 a)). In the second experiment, we 
investigate an effect of different lengths of the sequences with different sizes of 
global constraint under 22441 sequences, where range of scaling factor is between 
0.8 and 1.2 (see Fig. 3 b)). In the last experiment, we use 22441, 55595, 107993, 
220378, and 442366 subsequences from 100, 250, 500, 1000, and 2000 songs to 
construct different-sized databases in order to observe their pruning powers, as 
shown in Fig. 4. 

0

10

20

30

40

50

60

70

80

90

100

P
ru

ni
ng

 P
ow

er
 (%

)

length = 75
length = 100
length = 125
length = 150

Scaling factor range
0.95 - 1.05

0.90 - 1.10

0.85 - 1.15

0.80 - 1.20

0.75 - 1.25

0.70 - 1.30

0.65 - 1.35

0.60 - 1.40
0% 2% 4% 6% 8% 10%

50

55

60

65

70

75

80

85

90

95

100

Size of global constraints (r)

Pr
un

in
g 

Po
w

er
 (%

)

length = 75
length = 100
length = 125
length = 150

a) b)  

Fig. 3. a) The pruning powers of different time series lengths with various ranges of scaling 
factors. b) The pruning powers of different lengths with various sizes of global constraint. 

According to these experiment results, our proposed lower-bounding function can 
prune a great number of candidate sequences in every parameter setting, as shown in 
Figs. 3 and 4. However, from these experiments, we found that there are several fac-
tors influencing the pruning power, and range of scaling factors is one of them. In  
Fig. 3 a), increases in range of scaling factors are likely to decrease the pruning power 
directly. Besides, the pruning power slightly decreases as the sizes of global con-
straint increase (see Fig. 3 b)). The rationale behind these results is that both increases 
in range of scaling factors and in size of global constraint definitely enlarge the size of  
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Fig. 4. The pruning powers of different database’s sizes 

the lower-bounding envelopes, causing a reduction in the lower bounding distance, 
and hence its pruning power. In addition, longer sequences appear to give smaller 
pruning power than that of the shorter sequences as illustrated in Figs. 3 and 4. In 
contrast, the pruning power is found to increase as the database size increases (see 
Fig. 4), which is a highly desirable property for lower-bounding functions.  

Regardless of a few factors that decrease the pruning power, we discover no sig-
nificant improvement in accuracy when we increase scaling factor range over 0.6-1.4 
in our experiment. In addition, from recent research [19], wider sizes of the global 
constraint do not imply higher accuracy. In fact, in most cases, the size of the global 
constraint of less than 10 percent often yields optimal accuracy. 

Notice that the normalization does affect the pruning power because the distances 
between the normalized query and the normalized candidate sequences are greatly 
reduced, comparing with the distances among unnormalized sequences. However, we 
would like to reemphasize that normalization is essential in many applications. 

6   Discussion and Conclusions 

We have shown that this proposed lower-bounding function of US with DTW under 
normalization requirement can efficiently prune a large number of candidates in the 
database, significantly reducing the time complexity in the data retrieval, especially 
for multimedia retrieval, while no false dismissals are also guaranteed. Furthermore, 
our approach can work well with other types of normalization. Nonetheless, we would 
like to reemphasize the importance and necessity of normalization, especially in mul-
timedia applications.  

Besides dramatically speeding up the calculations by pruning almost all candidates, 
this lower-bounding function is possible to utilize dimensionality reduction and in-
dexing techniques [9] in order to be scalable to truly massive databases. 
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Abstract. Feature construction has been studied extensively, including
for 0/1 data samples. Given the recent breakthrough in closedness-related
constraint-based mining, we are considering its impact on feature con-
struction for classification tasks. We investigate the use of condensed
representations of frequent itemsets (closure equivalence classes) as new
features. These itemset types have been proposed to avoid set counting
in difficult association rule mining tasks. However, our guess is that their
intrinsic properties (say the maximality for the closed itemsets and the
minimality for the δ-free itemsets) might influence feature quality. Un-
derstanding this remains fairly open and we discuss these issues thanks
to itemset properties on the one hand and an experimental validation on
various data sets on the other hand.

1 Introduction

Feature construction is one of the major research topics for supporting classifica-
tion tasks. Based on a set of original features, the idea is to compute new features
that may better describe labeled samples such that the predictive accuracy of
classifiers can be improved. When considering the case of 0/1 data (i.e., in most
of the cases, collections of attribute-value pairs that are true or not within a
sample), several authors have proposed to look at feature construction based
on patterns that satisfy closedness-related constraints [1,2,3,4,5,6]. Using pat-
terns that hold in 0/1 data as features (e.g., itemsets or association rules) is not
new. Indeed, pioneering work on classification based on association rules [7] or
emerging pattern discovery [8,9] have given rise to many proposals. Descriptive
pattern discovery from unlabeled 0/1 data has been studied extensively during
the last decade: many algorithms have been designed to compute every set pat-
tern that satisfies a given constraint (e.g., a conjunction of constraints whose one
conjunct is a minimal frequency constraint). One breakthrough into the compu-
tational complexity of such mining tasks has been obtained thanks to condensed

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 112–123, 2008.
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representations for frequent itemsets, i.e., rather small collections of patterns
from which one can infer the frequency of many sets instead of counting for it
(see [10] for a survey). In this paper, we consider closure equivalence classes, i.e.,
frequent closed sets and their generators [11]. Furthermore, when considering
the δ-free itemsets with δ > 0 [12,13], we can consider a “near equivalence” per-
spective and thus, roughly speaking, the concept of almost-closed itemsets. We
want to contribute to difficult classification tasks by using a method based on:
(1) the efficient extraction of set patterns that satisfy given constraints, (2) the
encoding of the original data into a new data set by using extracted patterns as
new features. Clearly, one of the technical difficulties is to discuss the impact of
the intrinsic properties of these patterns (i.e., closedness-related properties) on
a classification process.

Our work is related to pattern-based classification. Since [7], various authors
have considered the use of association rules. These proposals are based on a
pruned set of extracted rules built w.r.t. support and confidence ranking. Differ-
ences between these methods mainly come from the way they use the selected
set of rules when an unseen example x is coming. For example, CBA [7] ranks
the rules and it uses the best one to label x. Other algorithms choose the class
that maximizes a defined score (CMAR [14] uses combined effect of subsets of rules
when CPAR [15] uses average expected accuracy of the best k rules). Also, starting
from ideas for class characterization [16], [17] is an in-depth formalization of all
these approaches. Another related research stream concerns emerging patterns
[18]. These patterns are frequent in samples of a given class and infrequent for
samples from the other classes. Several algorithms have exploited this for fea-
ture construction. Some of them select essential ones (CAEP classifier [8]) or the
most expressive ones (JEPs classifier [9]). Then, an incoming example is labeled
with the class c which maximizes scores based on these sets. Moreover, a few
researchers have considered condensed representations of frequent sets for fea-
ture construction. Garriga et al. [3] have proposed to characterize a target class
with a collection of relevant closed itemsets. Li et al. [1] invoke MDL principle and
suggest that free itemsets might be better than closed ones. However, classifica-
tion experimental results to support such a claim are still lacking. It turns out
that the rules studied in [17] are based on 0-free sets such that a minimal body
property holds. The relevancy of such a minimality property is also discussed
in terms of “near equivalence” in [19]. In [2], we have considered preliminary
results on feature construction based on δ-freeness [12,13]. Feature construction
approaches based on closedness properties differ in two main aspects: (i) mining
can be performed on the whole database or per class, and (ii) we can mine with
or without the class labels. The pros and cons of these alternatives are discussed
in this paper.

In Section 2, we provide more details on state-of-the-art approaches before
introducing our feature construction method. Section 3 reports on our experi-
mental results for UCI data sets [20] and a real-world medical database. Section 4
concludes.
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2 Feature Construction Using Closure Equivalence
Classes

A binary database r is defined as a binary relation (T , I, R) where T is a set
of objects (or transactions), I is a set of attributes (or items) and R ⊆ T × I.
The frequency of an itemset I ⊆ I in r is freq(I, r) = |Objects(I, r)| where
Objects(I, r) = {t ∈ T | ∀i ∈ I, (t, i) ∈ R}. Let γ be an integer, an itemset I is
said to be γ-frequent if freq(I, r) ≥ γ.

Considering that “what is frequent may be interesting” is intuitive, Cheng
et al. [4] brought some evidence to support such a claim and they have linked
frequency with other interestingness measures such as Information Gain and Fis-
cher score. Since the number of frequent itemsets can be huge in dense databases,
it is now common to use condensed representations (e.g., free itemsets, closed
ones, non derivable itemsets [10]) to save space and time during the frequent
itemset mining task and to avoid some redundancy.

Definition 1 (Closed itemset). An itemset I is a closed itemset in r iff
there is no superset of I with the same frequency than I in r, i.e., �I ′ ⊃ I
s.t. freq(I ′, r) = freq(I, r). Another definition exploits the closure operation
cl : P(I) → P(I). Assume that Items is the dual operator for Objects: given
T ⊆ T , Items(T, r) = {i ∈ I | ∀t ∈ T, (t, i) ∈ R}, and assume cl(I, r) ≡
Items(Objects(I, r), r): the itemset I is a closed itemset in r iff I = cl(I, r).

Since [11], it is common to formalize the fact that many itemsets have the same
closure by means of closure equivalence relation.

Definition 2 (Closure equivalence). Two itemsets I and J are said to be
equivalent in r (denoted I ∼cl J) iff cl(I, r) = cl(J, r). Thus, a closure equiva-
lence class (CEC) is made of itemsets that have the same closure, i.e., they are
all supported by the same set of objects (Objects(I, r) = Objects(J, r)).

Each CEC contains exactly one maximal itemset (w.r.t. set inclusion) which is a
closed itemset. It may contain several minimal itemsets which are 0-free itemsets
according to the terminology in [12] (also called key patterns in [11]).

Example 1. Considering Tab. 1, we have r = (T , I, R), T = {t1, . . . , t6}, and I =
{A, B, C, D, c1, c2}, c1 and c2 being the class labels. For a frequency threshold
γ = 2, itemsets AB and AC are γ-frequent. ABCc1 is a γ-frequent closed itemset.
Considering the equivalence class C = {AB, AC, ABC, ABc1, ACc1, ABCc1},
AB and AC are its minimal elements (i.e., they are 0-free itemsets) and ABCc1

is the maximal element, i.e., one of the closed itemsets in this toy database.

2.1 Freeness or Closedness?

Two different approaches for feature construction based on condensed represen-
tations have been considered so far. In, e.g., [1,5], the authors mine free itemsets
and closed itemsets (i.e., CECs) once the class attribute has been removed from
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Table 1. A toy example of a binary labeled database

r A B C D c1 c2
t1 1 1 1 1 1 0

t2 1 1 1 0 1 0

t3 0 1 1 0 1 0

t4 1 0 0 1 1 0

t5 0 1 1 0 0 1

t6 0 1 0 1 0 1

the entire database. Other proposals, e.g., [3,4], consider (closed) itemset mining
from samples of each class separately.

Looking at the first direction of research, we may consider that closed sets,
because of their maximality, are good candidates for characterizing labeled data,
but not necessarily suitable to predict classes for unseen samples. Moreover,
thanks to their minimality, free itemsets might be better for predictive tasks. Due
to closedness properties, every itemset of a given closure equivalence class C in r
covers exactly the same set of objects. Thus, free itemsets and their associated
closed are equivalent w.r.t. interestingness measures based on frequencies. As a
result, it is unclear whether choosing a free itemset or its closure to characterize
a class is important or not. Let us now consider an incoming sample x (test
phase) that is exactly described by the itemset Y (i.e., all its properties that are
true are in Y ). Furthermore, assume that we have F ⊆ Y ⊆ cl(F, r) where F is a
free itemset from the closure equivalence class CF . Using free itemsets to label x
will not lead to the same decision than using closed itemsets. Indeed, x ⊇ F and
it satisfies rule F ⇒ c while x � cl(Y, r) and it does not satisfy rule cl(F, r)⇒ c.
Following that direction of work, Baralis et al. have proposed classification rules
based on free itemsets [17].

On the other hand, for the “per-class” approach, let us consider w.l.o.g a
two-class classification problem. In such a context, the equivalence between free
itemsets and their associated closed ones is lost. The intuition is that, for a
given free itemset Y in rc1 –database restricted to samples of class c1– and
its closure X = cl(Y, rc1), X is more relevant than Y since Objects(X, rc1) =
Objects(Y, rc1) and Objects(X, rc2) ⊆ Objects(Y, rc2). The closed itemsets (say
X = cl(X, rc1)) such that there is no other closed itemset (say X ′ = cl(X ′, r)) for
which cl(X, rc2) = cl(X ′, rc2) are chosen as relevant itemsets to characterize c1.
In some cases, a free itemset Y could be equivalent to its closure X = cl(Y, rc1),
i.e., Objects(X, rc2) = Objects(Y, rc2). Here, for the same reason as above, a free
itemset may be chosen instead of its closed counterpart. Note that relevancy of
closed itemsets does not avoid conflicting rules, i.e., we can have two closed
itemsets X relevant for c1 and Y relevant for c2 with X ⊆ Y .

Moreover, these approaches need for a post-processing of the extracted pat-
terns. Indeed, we not only look for closedness-related properties but we have also
to exploit interesting measures to keep only the ones that are discriminating. To
avoid such a post-processing, we propose to use syntactic constraint (i.e., keeping
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the class attribute during the mining phase) to mine class-discriminant closure
equivalence classes.

2.2 What Is Interesting in Closure Equivalence Classes?

In Fig. 1, we report the different kinds of CECs that can be obtained when
considering class attributes during the mining phase.

Fig. 1. Different types of CECs

These CECs have nice properties that are useful to our purpose: since associ-
ation rules with a maximal confidence (no exception, also called hereafter exact
rules) stand between a free itemset and its closure, we are interested in CECs
whose closure contains a class attribute to characterize classes. Thus, we may
neglect Case 1 in Fig. 1.

Definition 3 (Association rule). Given r = {T , I, R}, an association rule π
on r is an expression I ⇒ J , where I ⊆ I and J ⊆ I\I. The frequency of the rule
π is freq(I ∪ J, r) and its confidence is conf(π, r) = freq(I ∪ J, r)/freq(I, r).
It provides a ratio about the numbers of exceptions for π in r. When J turns to
be a single class attribute, π is called a classification rule.

From Case 3 (resp. Case 4), we can extract the exact classification rule π3 :
L1 ⇒ C (resp. the exact rules π41 : L1 ⇒ C · · ·π4k

: Lk ⇒ C). Note that if we
are interested in exact rules only, we also neglect Case 2: L1C is a free itemset
and it implies there is no exact rule I ⇒ J such that I ∪J ⊆ L1C. Thus, we are
interested in CECs whose closed itemset contains a class attribute and whose
free itemsets (at least one) do not contain a class attribute. This also leads to a
closedness-related condensed representation of Jumping Emerging Patterns [21].
Unfortunately, in pattern-based classification (a fortiori in associative classifica-
tion), for a given frequency threshold γ, mining exact rules is restrictive since
they can be rare and the training database may not be covered by the rule set.
In a relaxed setting, we consider association rules that enable exceptions.

Definition 4 (δ-strong rule, δ-free itemset). Let δ be an integer. A δ-strong
rule is an association rule of the form I ⇒δ J which is violated in at most δ
objects, and where I ⊆ I and J ⊆ I \ I. An itemset I ⊆ I is a δ-free itemset iff
there is no δ-strong rule which holds between its proper subsets. When δ = 0, δ
is omitted, and we talk about strong rules, and free itemsets.
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When the right-hand side is a single item i, saying that I ⇒δ i is a δ-strong
rule in r means that freq(I, r) − freq(I ∪ {i}) ≤ δ. When this item is a class
attribute, a δ-strong rule is called a δ-strong classification rule [16].

The set of δ-strong rules can be built from δ-free itemsets and their δ-closures.

Definition 5 (δ-closure). Let δ be an integer. The δ-closure of an itemset I on
r is clδ : P(I) → P(I) s.t. clδ(I, r) = {i ∈ I | freq(I, r) − freq(I ∪ {i}) ≤ δ}.
Once again, when δ = 0, cl0(I, r) = {i ∈ I | freq(I, r) = freq(I ∪ {i})}
and it corresponds to the closure operator that we already defined. We can also
group itemsets by δ-closure equivalence classes: two δ-free itemsets I and J are
δ-equivalent (I ∼clδ J) if clδ(I, r) = clδ(J, r).

The intuition is that the δ-closure of a set I is the superset X of I such that every
added attribute is almost always true for the objects which satisfy the properties
from I: at most δ false values (or exceptions) are enabled. The computation of
every frequent δ-free set (i.e., sets which are both frequent and δ-free) can be
performed efficiently [13]. Given threshold values for γ (frequency) and δ (free-
ness), the used AC like1 implementation outputs each δ-free frequent itemset
and its associated δ-closure. Considering Table 1, a frequency threshold γ = 3
and a number of exceptions δ = 1, itemset C is a 3-frequent 1-free itemset ; items
B and c1 belong to its δ-closure and π : C ⇒δ c1 is a 1-strong classification rule.

2.3 Information and Equivalence Classes

We get more information from δ-closure equivalence classes than with other
approaches. Indeed, when considering contingency tables (See Tab. 2), for all
the studied approaches, f∗1 and f∗0 are known (class distribution). However, if
we consider the proposals from [3,4] based on frequent closed itemsets mined
per class, we get directly the value f11 (i.e., freq(X ∪ c, r)) and the value for
f01 can be inferred. Closure equivalence classes in [5] only inform us on f1∗ (i.e.,
freq(X, r)) and f0∗. In our approach, when mining γ-frequent δ-free itemsets
whose closure contains a class attribute, f1∗ ≥ γ and we have a lower bound
f11 ≥ γ− δ and an upper bound f10 ≤ δ for frequencies on X . We can also infer
other bounds for f01 and f00

2.

Table 2. Contingency table for a δ-strong classification rule X ⇒δ c

X ⇒ c c c̄ Σ

X f11 f10 f1∗
X̄ f01 f00 f0∗
Σ f∗1 f∗0 f∗∗

Moreover, γ-frequent δ-free itemsets, bodies of δ-strong classification rules are
known to have a minimal body property. Some constraints on γ and δ can help
1 AC like implementation is available at http://liris.cnrs.fr/jeremy.besson/
2 Note the confidence of a δ-strong classification rule π is f11/f1∗ ≥ 1 − (δ/γ).
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to avoid some of the classification conflicts announced at the end of Section 2.1.
Indeed, [16] has shown that setting δ ∈ [0; �γ/2�[ ensures that we can not have
two classification rules π1 : I ⇒δ ci and π2 : I ⇒δ cj with i �= j s.t. I ⊆ J . This
constraint also enforces confidence to be greater than 1

2 . Furthermore, we know
that we can produce δ-strong classification rules that exhibit the discriminant
power of emerging patterns if δ ∈ [0; γ · (1 − |rci

|
|r| )[, rci being the database

restricted to objects of the majority class ci [6]. One may say that the concept
of γ-frequent δ-free itemsets (δ �= 0) can be considered as an interestingness
measures (function of γ and δ) for feature selection.

2.4 Towards a New Space of Descriptors

Once γ-frequent (δ)-free itemsets have been mined, we can build a new represen-
tation of the original database using these new features. Each selected itemset
I will generate a new attribute NewAttI in the new database. One may encode
NewAttI to a binary attribute, i.e., for a given object t, NewAttI equals 1 if
I ⊆ Items(t, r) else 0. In a relaxed setting and noise-tolerant way, we propose
to compute NewattI as follows:

NewAttI(t) =
|I ∩ Items(t, r)|

|I|

This way, I is a multivalued ordinal attribute. It is obvious that for an object
t, NewAttI(t) ∈ {0, 1, . . . , p−1

p , 1} where p = |I|. Then, the value NewAttI(t) is
the proportion of items i ∈ I that describe t. We think that multivalued encoding
–followed by an entropy-based supervised discretization step3– should hold more
information than binary encoding. Indeed, in the worst case, the split will take
place between p−1

p and 1, that is equivalent to binary case; in other better cases,
split may take place between j−1

p and j
p , 1 ≤ j ≤ p− 1 and this split leads to a

better separation of data.

3 Experimental Validation

The frequency threshold γ and the accepted number of exceptions δ are impor-
tant parameters for our Feature Construction (FC) proposal. Let us discuss how
to set up sensible values for them. Extreme values for γ bring either (for low-
est values) a huge amount of features –some of which are obviously irrelevant–
or (for highest values) not enough features to correctly cover the training set.
Furthermore, in both cases, these solutions are of limited interest in terms of
Information Gain (see [4]). Then, δ varies from 0 to γ · (1 − |rci

|
r ) to capture

discriminating power of emerging patterns. Once again, lowest values of δ lead
to strong emerging patterns but a potentially low coverage proportion of data
and features with high values of δ lacks of discriminating power.
3 The best split between 2 values is recursively chosen until no more information is

gained.
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Intuitively, a high coverage proportion implies a relatively good representation
of data. In Fig. 2, we plotted proportion of the database coverage w.r.t. δ for a
given frequency threshold. Results for breast, cleve, heart and hepatic data
(from UCI repository) are reported. We easily observe that coverage proportion
grows as δ grows. Then, it reaches a saturation point for δ0 which is interesting:
higher values of δ > δ0 are less discriminant and lower values δ < δ0 cover less
objects. In our following experiments, we report (1) maximal accuracies over all
γ and δ values (denoted Max), and (2) average accuracies of all γ values with
δ = δ0 (denoted Av).
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Fig. 2. Evolution of training database coverage proportion w.r.t. γ and δ

To validate our feature construction (FC) process, we used it on several data
sets from UCI repository [20] and a real-world data set meningitis4. We have
been using popular classification algorithms such as NB and C4.5 on both the
original data and the new representation based on extracted features. As a result,
our main objective criterion is the accuracy of the obtained classifiers.

Notice that before performing feature construction, we translated all attributes
into binary ones. While the translation of nominal attributes is straightforward,
we decided to discretize continuous attributes with the entropy-based method
by Fayyad et al. [22]. Discretizations and classifier constructions have been per-
formed with WEKA [23] (10-folds stratified cross validation).
4 meningitis concerns children hospitalized for acute bacterial or viral meningitis.
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Table 3. Accuracy results improvement thanks to FC

databases NB FC & NB (Av/Max) C4.5 FC & C4.5 (Av/Max)

breast 95.99 97.32/97.54 94.56 96.12/96.43

car 85.53 81.95/84.64 92.36 98.49/99.13

cleve 83.5 83.35/84.33 76.24 81.39/83.18

crx 77.68 85.91/86.46 86.09 83.95/86.33

diabetes 75.91 75.56/76.59 72.26 76.03/77.75

heart 84.07 83.62/84.81 80 84.56/85.55

hepatic 83.22 84.09/84.67 81.93 85.29/86.83

horse 78.8 81.09/83.74 85.33 83.35/85.40

iris 96 94.26/96 96 94.26/96.67

labor 94.74 93.5/95.17 78.95 83.07/87.17

lymph 85.81 83.35/85.46 76.35 81.08/83.46

meningitis 95.74 93.24/93.64 94.83 92.54/95.13

sonar 69.71 85.17/86.28 78.85 79.88/83.86

vehicle 45.03 59.72/62.88 71.04 70.70/71.28

wine 96.63 96.42/97.83 94.38 95.57/96.29

Table 4. Our FC Feature Construction proposal vs. state-of-the-art approaches

databases BCEP LB FC&NB(Av/Max) SJEP CBA CMAR CPAR FC&C4.5(Av/Max)

breast – 96.86 97.32/97.54 96.96 96.3 96.4 96.0 96.12/96.43

car – – 81.95/84.64 – 88.90 – 92.65 98.49/99.13

cleve 82.41 82.19 83.35/84.33 82.41 82.8 82.2 81.5 81.39/83.18

crx – – 85.91/86.46 87.65 84.7 84.9 85.7 83.95/86.33

diabetes 76.8 76.69 75.56/76.59 76.18 74.5 75.8 75.1 76.03/77.75

heart 81.85 82.22 83.62/84.81 82.96 81.9 82.2 82.6 84.56/85.55

hepatic – 84.5 84.09/84.67 83.33 81.8 80.5 79.4 85.29/86.83

horse – – 81.09/83.74 84.17 82.1 82.6 84.2 83.35/85.40

iris – – 94.26/96 – 94.7 94.0 94.7 94.26/96.67

labor – – 93.5/95.17 82 86.3 89.7 84.7 83.07/87.17

lymph 83.13 84.57 83.35/85.46 – 77.8 83.1 82.3 81.08/83.46

meningitis – – 93.24/93.64 – 91.79 – 91.52 92.54/95.13

sonar 78.4 – 85.17/86.28 85.10 77.5 79.4 79.3 79.88/83.86

vehicle 68.05 68.8 59.72/62.88 71.36 68.7 68.8 69.5 70.70/71.28

wine – – 96.42/97.83 95.63 95.0 95.0 95.5 95.57/96.29

We report in Tab. 3 the accuracy results obtained on both the original data
and its new representation. NB, C4.5 classifiers built on the new representation
often perform better (i.e., it lead to higher accuracies) than respective NB and
C4.5 classifiers built from the original data. One can see that we have often (12
times among 15) a combination of γ and δ for which NB accuracies are improved
by feature construction (column Max). And this is experimentally always the case
for C4.5. Now considering average accuracies (column Av), improvement is still
there w.r.t. C4.5 but it appears less obvious when using NB.
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Then, we also compared our results with state-of-the-art classification
techniques: FC & NB is compared with other bayesian approaches, LB [24] and BCEP
[25]. When accessible, accuracies were reported from original papers within Tab. 4.
Then, we have comparedFC &C4.5with other associative classification approaches,
namely CBA [7], CMAR [14], CPAR [15], and an EPs-based classifier SJEP-classifier
[26]. Accuracy results for associative classifiers are taken from [14]. Others results
are taken from the published papers. FC allows to often achieve better accuracies
than the state-of-the-art classifiers, e.g., FC & C4.5 wins 9 times over 15 against
CPAR, 8 times over 13 against CMAR, 10 times over 15 against CBA when considering
average accuracies (column Av). Considering optimal γ and δ values (column Max),
it wins 10 times over 15 (see bold faced results).

4 Conclusion

We study the use of closedness-related condensed representations for feature
construction. We pointed out that differences about “freeness or closedness”
within existing approaches come from the way that condensed representations
are mined : with or without class label, per class or in the whole database. We
proposed a systematic framework to construct features. Our new features are
built from mined (δ)-closure equivalence classes – more precisely from γ-frequent
δ-free itemsets whose δ-closures involve a class attribute. Mining these types of
itemsets differs from other approaches since (1) mined itemsets hold more in-
formation (such as emergence) and (2) there is no need for post-processing the
set of features to select interesting features. We also proposed a new numeric
encoding that is more suitable than binary encoding. Our FC process has been
validated by means of an empirical evaluation. Using C4.5 and NB on new rep-
resentations of various datasets, we demonstrated improvement compared with
original data features. We have also shown comparable accuracy results w.r.t.
efficient state-of-the-art classification techniques. We have now a better under-
standing of critical issues w.r.t. feature construction when considering closedness
related properties. One perspective of this work is to consider our FC process in
terms of constraints over sets of patterns and its recent formalization in [27].
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Abstract. Randomized Response techniques have been empirically investigated
in privacy preserving association rule mining. In this paper, we investigate the ac-
curacy (in terms of bias and variance of estimates) of both support and confidence
estimates of association rules derived from the randomized data. We demonstrate
that providing confidence on data mining results from randomized data is sig-
nificant to data miners. We propose the novel idea of using interquantile range
to bound those estimates derived from the randomized market basket data. The
performance is evaluated using both representative real and synthetic data sets.

1 Introduction

Privacy is becoming an increasingly important issue in many data mining applications.
A considerable amount of work on privacy preserving data mining [2,1,11,10] has been
investigated recently. Among them, randomization has been a primary tool to hide sen-
sitive private data for privacy preserving data mining. The issue of maintaining privacy
in association rule mining has attracted considerable attention in recent years [7,8,4,13].
Most of techniques are based on a data perturbation or Randomized Response (RR) ap-
proach [5], wherein the 0 or 1 (0 denotes absence of an item while 1 denotes presence
of an item) in the original user transaction vector is distorted in a probabilistic manner
that is disclosed to data miners.

In [13,4,3], the authors proposed the MASK technique to preserve privacy for fre-
quent itemset mining and addressed the issue of providing efficiency in calculating the
estimated support values. Their results empirically showed a high degree of privacy to
users and a high level of accuracy in the mining results can be simultaneously achieved.
To evaluate the privacy, they defined a privacy metric and presented an analytical for-
mula for evaluating the privacy obtained under the metric. However, accuracy metric
on data mining results was only defined in an aggregate manner as support error and
identity error computed over all discovered frequent itemsets.

Our paper moves one step further to address the issue of providing accuracy in pri-
vacy preserving mining of association rules. We investigate the issue of how the accu-
racy (i.e., support and confidence) of each association rule mined from randomized data
is affected when the randomized response technique is applied.

Specifically, we present an analytical formula for evaluating the accuracy (in terms
of bias and variance of estimates) of both support and confidence measures of associ-
ation rules derived from the randomized data. From the derived bias and variance of
estimates, we further derive approximate interquantile ranges. Data miners are ensured

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 124–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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that their estimates lie within these ranges with a high confidence, say 95%. We would
emphasize that providing confidence on estimated data mining results is significant to
data miners since they can learn how accurate their reconstructed results are. We illus-
trate the importance of those estimated interquantile ranges using an example.
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Fig. 1. Accuracy of the estimated support values of association rules derived from randomized
data with p=0.65

Figure 1 shows the original support values, the estimated support values from the
randomized data, and their corresponding 95% interquantile ranges of 7 association
rules, which were derived from COIL data sets1. A distortion parameter p = 0.65
and support threshold supmin = 23% were used in the experiment. The interquantile
range of each rule can give data miners confidence about their estimate derived from
randomized data. For example, the estimated support of rule 2 is 31.5% and its 95%
interquantile range is [23.8%,39.1%], which suggests the original support value lies in
this range with 95% probability. Furthermore, we can observe the 95% interquantile
ranges for rules 1-3 are above the support threshold, which guarantees those are true
frequent itemsets (with at least 95% confidence).

We emphasize providing accuracy of data mining results is important for data miners
during data exploration. When the support threshold is set as 23%, we may not only
take rule 2 and 6 as frequent sets from the estimated support values, but also conclude
rule 6 (35.9%) is more frequent than rule 2 (31.5%). However, rule 2 has the original
support as 36.3% while rule 6 has the original support as 22.1%, we mistakenly assign
the infrequent itemset 6 as frequent. By using the derived interquantile ranges, we can
determine that rule 2 is frequent with high confidence (since its lower bound 23.8% is
above the support threshold) and rule 6 may be infrequent (since its lower bound 12.3%
is below the support threshold).

The remainder of this paper is organized as follows. In Section 2, we present the dis-
tortion framework and discuss how the Randomized Response techniques are applied to
privacy preserving market association rule mining. We conduct the theoretical analysis
on how distortion process affects the accuracy of both support and confidence values
derived from the randomized data in Section 3. In Section 4, empirical evaluations on
various datasets are given. We conclude our work in Section 5.

1 http://kdd.ics.uci.edu/databases/tic/tic.html
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2 Distortion Framework

2.1 Association Rule Revisited

Denoting the set of transactions in the database D by T = {T1, · · · , Tn} and the set
of items in the database by I = {A1, · · · , Am}. An association rule X ⇒ Y , where
X ,Y ⊂ I and X ∩ Y = φ, has two measures: the support s defined as the s(100%) of
the transactions in T contain X ∪ Y , and the confidence c is defined as c(100%) of the
transactions in T that contain X also contain Y .

2.2 Randomization Procedure

Let there be m sensitive items A1, A2, · · · , Am, each being considered as one dichoto-
mous variable with 2 mutually exclusive and exhaustive categories (0 = absence, 1 =
presence). One transaction can be logically translated as a fixed-length sequence of
0’s and 1’s. For each transaction, we apply the Warner RR model [15] independently
on each item using different settings of distortion. If the original value is in the ab-
sence(presence) category, it will be kept in such category with a probability θ0 (θ1) and
changed to presence(absence) category with a probability 1− θ0 (1− θ1). For item Aj ,

the distortion probability matrix Pj generally takes the form Pj =
(

θ0 1− θ1

1− θ0 θ1

)

.

In this paper, we follow the original Warner RR model by setting θ0 = θ1 = pj . This
setting indicates users have the same level of privacy for both 1’s and 0’s. In general
customers may expect more privacy for their 1’s than for their 0’s, since the 1’s denote
specific actions whereas the 0’s are the default options.

Denote π(j) = (π(j)
0 , π

(j)
1 )′ (λ(j) = (λ(j)

0 , λ
(j)
1 )′) as the vector of marginal pro-

portions corresponding to item Aj in the original (randomized) data set, where j =
1, · · · , m. We have

λ(j) = Pjπ
(j) (1)

Note that each vector π(j) has two values π
(j)
0 , π

(j)
1 and the latter corresponds to

the support value of item Aj . For a market data set with n transactions, let λ̂(j) be the
vector of sample proportions corresponding to λ(j). Then an unbiased estimate of π(j)

is π̂(j) = P−1
j λ̂(j).

2.3 Estimating k-Itemset Supports

We can easily extend Equation 1, which is applicable to one individual item, to com-
pute the support of an arbitrary k-itemset. For simplicity, let us assume that we would
compute the support of an itemset which contains the first k items {A1, · · · , Ak} (The
general case with any k items is quite straightforward but algebraically messy).

Let πi1,··· ,ik
denote the true proportion corresponding to the categorical combination

(A1i1 , · · · , Akik
), where i1, · · · , ik ∈ {0, 1}. Let π be vectors with elements πi1,··· ,ik

arranged in a fixed order. The combination vector corresponds to a fixed order of cell
entries in the contingency table formed by the k-itemset. When we have k items, the
number of cells in the k-dimensional contingency table is 2k. Table 1(a) shows one
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Table 1. 2 × 2 contingency tables for two variables A,B

(a) Original

B̄ B
Ā π00 π01 π0+

A π10 π11 π1+

π+0 π+1 π++

(b) After randomization

B̄ B
Ā λ00 λ01 λ0+

A λ10 λ11 λ1+

λ+0 λ+1 λ++

contingency table for a pair of two variables. We use the notation Ā (B̄) to indicate that
A (B) is absent from a transaction. The vector π = (π00, π01, π10, π11)

′
corresponds

to a fixed order of cell entries πij in the 2 × 2 contingency table. π11 denotes the
proportion of transactions which contain both A and B while π10 denotes the proportion
of transactions which contain A but not B. The row sum π1+ represents the support
frequency of item A while the column sum π+1 represents the support frequency of
item B.

The original database D is changed to Dran after randomization. Assume λμ1,··· ,μk

is the probability of getting a response (μ1, · · · , μk) and λ the vector with elements
λμ1,··· ,μk

arranged in a fixed order (e.g., the vector λ = (λ00, λ01, λ10, λ11)′ corre-
sponds to cell entries λij in the randomized contingency table as shown in Table 1(b) ),
we can obtain

λ = (P1 × · · · × Pk)π

where× stands for the Kronecker product.
Let P = P1 × · · · × Pk, an unbiased estimate of π follows as

π̂ = P−1λ̂ = (P−1
1 × · · · × P−1

k )λ̂ (2)

where λ̂ is the vector of sample proportions corresponding to λ and P−1
j denotes the

inverse of the matrix Pj . Note that although the distortion matrices P1, · · · , Pk are
known, they can only be utilized to estimate the proportions of itemsets of the original
data, rather than precisely reconstruct the original 0-1 data.

In this paper we follow the Moment Estimation method as shown in Equation 2 to
get the unbiased estimate of the distribution for original data. This method has been
broadly adopted in the scenarios where RR is used to perturb data for preserving pri-
vacy. Although it has good properties as computational simplicity and unbiasedness,
some awkward property exists due to random errors [5,6]. That is, the estimate may fall
out of the parameter space, which makes the estimate meaningless. This is one reason
that Maximum Likelihood Estimation (MLE) is adopted to estimate the distribution in
literature [6].

It has been proved in [6] that a good relation holds between these two methods in the
scenarios of RR: The moment estimate is equal to the MLE estimate within parameter
space. Based on that, we can know that moment estimate from Equation 2 achieves the
Cramér-Rao bound as MLE does. Therefore, moment estimate is the minimum variance
unbiased (MVU) estimator in RR contexts. Our later analysis on accuracy of association
rule is based on such unbiased estimate under the assumption that the estimate is within
parameter space.
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3 Theoretical Analysis on Accuracy of Association Rule

In this section, we theoretically analyze the variance of the estimates of both s and c for
any individual association rule X ⇒ Y . To derive their interquantile ranges, we also
analyze the distributions of those estimates derived from the randomized data.

3.1 Accuracy on Support s

From Equation 2, we know how to derive the estimate of support values of any itemset
from the observed randomized data. Now we address the question how accurate the
estimated support value is.

The whole contingency table is usually modeled as a multinomial distribution in
statistics. When we have k items, the number of cells in the contingency table is 2k.
For each cell d, where d = 1, 2, · · · , 2k, it has a separate binomial distribution with
parameters n and ηi. The binomial distribution is the discrete probability distribution of
the number of successes in a sequence of n independent 0/1 experiments, each of which
yields success with probability ηi. When n is large enough (one rule of thumb is that
both nηi and n(1 − ηi) must be greater than 5), an approximation to B(n, ηi) is given
by the normal distribution N(nηi, nηi(1− ηi)).

Result 1. Since each cell πi1,··· ,ik
approximately follows normal distribution, its (1 −

α)100% interquantile range can be approximated as

[π̂i1···ik
− zα/2 ∗

√
v̂ar(π̂i1···ik

), π̂i1···ik
+ zα/2 ∗

√
v̂ar(π̂i1···ik

)]

zα/2 is the upper α/2 critical value for the standard normal distribution.
v̂ar(π̂i1···ik

) can be derived from the covariance matrix [5]:

ˆcov(π̂) = Σ1 + Σ2

= (n− 1)−1(π̂δ − π̂π̂
′
) + (n− 1)−1P−1(λ̂δ − P π̂δP

′
)P

′−1

Note that Σ1 is the dispersion matrix of the direct estimator of π, which is only related
to the data size for estimation. While the data size is usually large in most market bas-
ket analysis scenarios, it can be neglected. Σ2 represents the component of dispersion
associated with RR distortion.

We can simply use the derived π̂i1···im (from Equation 2) as an estimate of μ and the
derived

√
v̂ar(π̂i1···im) as an estimate of σ, where μ and σ are unknown parameters of

the normal distribution of each cell. An (1−α)100% interquantile range, say α = 0.05,
shows the interval contains the original πi1,··· ,im with 95% probability.

To illustrate this result, we use a simple example G ⇒ H (rule 2 in Figure 1). The
proportion of itemsets of the original data is given as

π = (π00, π01, π10, π11)′ = (0.415, 0.043, 0.183, 0.359)′

Using the RR scheme presented in the previous section, with the distortion parame-
ters p1 = p2 = 0.9 , we get the randomized responses

λ̂ = (0.368, 0.097, 0.218, 0.316)′
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By applying Equation 2, we derive the unbiased estimate of π as

π̂ = (0.427, 0.031, 0.181, 0.362)′

The covariance matrix of π̂ is unbiasedly estimated as

ˆcov(π̂) =

⎡

⎢
⎢
⎣

7.113 −1.668 −3.134 −2.311
−1.668 2.902 0.244 −1.478
−3.134 0.244 5.667 −2.777
−2.311 −1.478 −2.777 6.566

⎤

⎥
⎥
⎦× 10−5

The diagonal elements of the above matrix represent the variances of the estimated π̂,
e.g., v̂ar(π̂00) = 7.113 × 10−5 and v̂ar(π̂11) = 6.566 × 10−5. Those off-diagonal
elements indicate the estimated covariances, e.g., côv(π̂11, π̂10) = −2.777× 10−5.

From Result 1, we can derive 95% interquantile range of sGH as

[π̂11 − z0.025

√
v̂ar(π̂11), π̂11 + z0.025

√
v̂ar(π̂11)] = [0.346, 0.378]

We can also see this derived interquantile range [0.346, 0.378] for rule 2 with p1 =
p2 = 0.9 is shorter than [0.238, 0.391] with p1 = p2 = 0.65 as shown in Figure 1.

3.2 Accuracy on Confidence c

We first analyze the accuracy on confidence of a simple association rule A⇒ B where
A and B are two single items which have 2 mutually exclusive and exhaustive cate-
gories. We denote sA, sB , and sAB as the support values of A, B, and AB respectively.
Accordingly, we denote ŝA, ŝB , and ŝAB as the estimated support values from random-
ized data of A, B, and AB respectively.

Result 2. The confidence (c) of a simple association rule A ⇒ B has estimated value
as

ĉ =
ŝAB

ŝA
=

π̂11

π̂1+

with the expectation of ĉ approximated as

Ê(ĉ) ≈ π̂11

π̂1+
+

π̂11

π̂3
1+

v̂ar(π̂10)−
π̂10

π̂3
1+

v̂ar(π̂11) +
π̂11 − π̂10

π̂3
1+

côv(π̂11, π̂10) (3)

and the variance of ĉ approximated as

v̂ar(ĉ) ≈ π̂2
10

π̂4
1+

v̂ar(π̂11) +
π̂2

11

π̂4
1+

v̂ar(π̂10)− 2
π̂10π̂11

π̂4
1+

côv(π̂11, π̂10) (4)

according to the delta method [12].

Confidence can be regarded as a ratio (W ) of two correlated normal random variables
(X, Y ), W = X/Y . However, it is hard to derive the critical value for the distribu-
tion of W from its cumulative density function F (w) [14], we provide an approximate
interquantile range of confidence based on Chebyshev’s Inequality.
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Theorem 1. (Chebyshev’s Inequality) For any random variable X with mean μ and
variance σ2

Pr(|X − μ| ≥ kσ) ≤ 1/k2 k > 0

Chebyshev’s Inequality gives a conservative estimate. It provides a lower bound to the
proportion of measurements that are within a certain number of standard deviations
from the mean.

Result 3. The loose (1− α)100% interquantile range of confidence (c) of A⇒ B can
be approximated as

[Ê(ĉ)− 1√
α

√
v̂ar(ĉ), Ê(ĉ) +

1√
α

√
v̂ar(ĉ)]

From Chebyshev’s Inequality, we know for any sample, at least (1 − 1/k2) of the ob-
servations in the data set fall within k standard deviations of the mean. When we set
α = 1

k2 , we have Pr(|X−μ| ≥ 1√
α
σ) ≤ α. Hence, Pr(|X−μ| ≤ 1√

α
σ) ≥ 1−α. We

can simply use the derived Ê(ĉ) (from Equation 3) as an estimate of μ and the derived√
v̂ar(ĉ) (from Equation 4) as an estimate of σ, where μ and σ are unknown parame-

ters of the distribution of confidence. An approximate (1−α)100% interquantile range
of confidence c is then derived.

All the above results can be straightforwardly extended to the general association
rule X ⇒ Y and further details can be found in [9].

4 Empirical Evaluation

In our experiments, we use the COIL Challenge 2000 which provides data from a
real insurance business. Information about customers consists of 86 attributes and in-
cludes product usage data and socio-demographic data derived from zip area codes.
The training set consists of 5822 descriptions of customers, including the information
of whether or not they have a Caravan insurance policy. Our binary data is formed by
collapsing non-binary categorical attributes into binary form (the data can be found at
www.cs.uncc.edu/∼xwu/classify/b86.dat), with n = 5822 baskets and m = 86 binary
items.

4.1 Accuracy of Individual Rule vs. Varying p

Table 22 shows the 7 randomly chosen association rules derived from the randomized
COIL data with distortion parameter p = 0.65 . In this table, s (ŝ) indicates the original
(estimated) support value. ŝl (ŝu) denotes the lower bound (upper bound) of the 95%
interquantile range of the estimated support value. Similarly, c (ĉ) indicates the original
(estimated) confidence value. ĉl (ĉu) denotes the lower bound (upper bound) of the 95%
estimated confidence value. We have shown how the accuracy of the estimated support
values varies in Figure 1 (Section 1). One observation is that interquantile ranges of

2 The meaning of these items can be found in Table 2 of [16].
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Table 2. Accuracy of the estimated support and confidence for 7 representative rules of COIL

ID X Y s ŝ ŝl ŝu c ĉ ĉl ĉu
1 G E 35.9 34.1 26.3 41.8 66.2 64.7 31.3 95.3
2 G H 35.9 31.5 23.8 39.1 66.2 62.2 26.6 90.4
3 EH G 35.8 45.0 31.5 58.5 89.3 77.5 33.5 100
4 EG I 22.1 28.4 14.9 42.0 61.7 75.2 0 100
5 HF I 23.9 17.2 3.7 30.8 100 91.0 0 100
6 EGH F 22.1 36.3 12.3 60.2 61.7 99.4 0 100
7 FGI E 22.1 27.6 3.32 52.0 77.9 86.3 0 100

confidence estimates are usually wider than that of support estimates. For example,
the 95% interquantile range of the estimated confidence for rule 2 is [26.6%, 90.4%],
which is much wider than that of the estimated support [23.8%, 39.1%]. This is due to
three reasons. First, we set the distortion parameter p = 0.65 which implies a relatively
large noise (the perturbed data will be completely random when p = 0.5). Second,
the variance of the ratio of two variables is usually larger than the variance of either
single variable. Third, the estimated support can be modeled as one approximate normal
distribution so we can use the tight interquantile range. On the contrary, we derive
the loose interquantile range of confidence using the general Chebyshev’s Theorem.
We expect that the explicit form of the F (w) distribution can significantly reduce this
width. We will investigate the explicit form of the distribution of confidence and all
other measures, e.g. correlation, lift, etc. to derive tight bounds in our future work.
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Fig. 2. Accuracy vs. varying p for rule G⇒ H

Our next experiment shows how the derived estimates (support, confidence, and their
corresponding interquantile ranges) of one individual rule vary with the distortion pa-
rameter p. We vary the distortion parameter p from 0.65 to 0.95. Figure 2(a) (2(b))
shows the accuracy of the estimated support (confidence) values with varied distortion
p values for a particular rule G ⇒ H . As expected, the larger the p, the more accu-
rate the estimate and the tighter the interquantile range is. It was empirically shown in
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[13] that a distortion probability of p = 0.9 (equivalently p = 0.1) is ideally suited to
provide both privacy and good data mining results for the sparse market basket data.
We can observe from Figure 2(b) that the 95% interquantile range of the confidence
estimate with p ≥ 0.9 is tight.

4.2 Accuracy of All Rules vs. Varying p

The above study of the accuracy of the estimate in terms of each individual rule is based
on the variance as criterion. In the case of all rules together, we can evaluate the overall
accuracy of data mining results using the average support error, the average confidence
error, percentage of false positives, percentage of false negatives etc. as defined in [4].

The metric ρ = 1
|R|
∑

r∈R
|ŝr−sr |

sr
× 100 represents the average relative error in the

reconstructed support values for those rules that are correctly identified. The identity
error σ reflects the percentage error in identifying association rules. σ+ = |R−F |

|F | ×
100 indicates the percentage of false positives and σ− = |F−R|

|F | × 100 indicates the
percentage of false negatives where R (F ) denotes the reconstructed (actual) set of
association rules. In addition to the support error (ρ) and the identity error (σ+, σ−),
we define the following three measures.

– γ: the confidence error γ = 1
|R|
∑

r∈R
|ĉr−cr|

cr
× 100 represents the average rela-

tive error in the reconstructed confidence values for those rules that are correctly
identified.

– s-p: the number of pairs of conflict support estimates. We consider ŝ1, ŝ2 as a pair
of conflict estimates if ŝ1 < ŝ2 but s1 > ŝ1l > smin > s2 where ŝ1l denotes the
lower bound of interqunatile range for s1.

– c-p: the number of pairs of conflict confidence estimates (similarly defined as the
above s-p).

Errors in support estimation due to the distortion procedure can result in falsely iden-
tified frequent itemsets. This becomes especially an issue when the support threshold
setting is such that the support of a number of frequent itemsets lie very close to this
threshold value (smin). Such border-line itemsets can cause many false positives and
false negatives. Even worse, an error in identifying a frequent itemset correctly in early
passes has a ripple effect in terms of causing errors in later passes.

Table 3(a) shows how the above measures are varied by changing distortion parame-
ter p from 0.65 to 0.95. We can observe all measures (the support error ρ, the confidence
error γ, the false positives σ+, the false negatives σ−) decrease when p increases. The
number of conflict support pairs (s-p) and conflict confidence pairs (c-p) also have the
same trend. Our experiment shows that when p ≥ 0.85, there are no or very few conflict
support (confidence) pairs, which implies the reconstructed set of association rules is
close to the original set. However, when p ≤ 0.80, there are significant number of con-
flict pairs, which implies the reconstructed set may be quite different from the original
one. By incorporating the derived interquantile range for each estimate, we can de-
crease the error caused by conflict pairs. In Section 1, we have shown one conflict sup-
port pair: rule 2 and rule 6. We can see that ŝ2 < ŝ6 (but s2 > s6). As ŝ2l > smin and
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Table 3. supmin = 25% confmin = 65% for COIL

(a)

p ρ σ− σ+ s-p γ c-p
0.65 25.6 34.0 53.8 27817 9.90 737
0.70 12.3 21.2 38.1 4803 6.39 393
0.75 7.35 11.8 30.8 729 4.44 85
0.80 3.64 6.82 16.9 0 2.47 28
0.85 2.64 6.67 7.76 0 1.76 0
0.90 1.91 5.18 4.24 0 1.10 0
0.95 0.84 4.63 1.02 0 0.51 0

(b)

p σ− σ−
l σ−

u σ+ σ+
l σ+

u

0.65 34.0 98.8 1.25 53.8 0.00 110.7
0.70 21.2 90.9 0.08 38.1 0.08 105.7
0.75 11.8 66.3 0.00 30.8 1.18 96.5
0.80 6.82 50.7 0.31 16.9 0.24 80.9
0.85 6.67 37.7 0.00 7.76 0.55 53.0
0.90 5.18 31.8 0.00 4.24 0.00 35.0
0.95 4.63 26.8 0.00 1.02 0.00 25.7

ŝ6l < smin, data miners can safely determine rule 2 is frequent but rule 6 may be
infrequent. We would emphasize again that providing estimates together with their in-
terquantile ranges (especially for those conflict pairs) through some visualization is very
useful for data exploration tasks conducted on the randomized data.

Table 3(b) shows the comparison between the identity errors derived using lower
bound and upper bound respectively. We define σ+

l = |Rl−F |
|F | × 100 (σ+

u = |Ru−F |
|F | ×

100) as the false positives calculated from Rl (Ru) where Rl (Ru) denotes the re-
constructed set of association rules using lower (upper) bound of interquantile range
respectively. Similarly we define σ−

l and σ−
u . We can observe from Table 3(b) that σ−

u

is significantly lower than σ− while σ+
l is significantly lower than σ+. In other words,

using the upper bound of the derived interquantile range can decrease the false nega-
tives while using the lower bound can decrease the false positives. In some scenario,
we may emphasize more on decreasing the false positive error. Hence, we can use the
lower bound of the derived interquantile range, rather than the estimated value, to de-
termine whether the set is frequent or not (i.e., frequent only if ŝl ≥ smin, infrequent
otherwise).

4.3 Other Datasets

Since the COIL Challenge data is very sparse (5822 tuples with 86 attributes), we also
conducted evaluations on the following representative databases used for association
rule mining.

1. BMS-WebView-13. Each transaction in the data set is a web session consisting of all
the product detail pages viewed in that session. There are about 60,000 transactions
with close 500 items.

2. A synthetic database generated from the IBM Almaden market basket data gener-
ator with parameters T10.I4.D0.1M.N0.1K., resulting in 10k customer tuples with
each customer purchasing about ten items on average.

Tables 4 and 5 show our results on these two data sets respectively. We can observe
similar patterns as shown in COIL data set.

3 http://www.ecn.purdue.edu/KDDCUP
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Table 4. supmin = 0.20% confmin = 20% for BMS-WebView-1

(a)

p ρ σ− σ+ s-p γ c-p
0.65 362.4 64.1 80.6 632 114.7 11
0.75 72.9 39.9 68.7 418 57.9 2
0.85 19.5 27.9 54.0 67 24.5 0
0.95 5.47 9.66 16.5 56 7.23 0

(b)

p σ− σ−
l σ−

u σ+ σ+
l σ+

u

0.65 63.9 100.0 1.34 81.8 0.0 187.6
0.75 40.1 100.0 1.07 69.8 0.0 155.3
0.85 27.9 99.1 0.40 54.0 0.0 152.8
0.95 9.66 70.6 0.00 16.5 0.0 123.8

Table 5. supmin = 0.20% confmin = 60% for IBM data with T10.I4.D0.1M.N0.1K

(a)

p ρ σ− σ+ s-p γ c-p
0.65 1234.9 73.4 171.9 971 47.8 7
0.75 99.7 57.8 168.0 11 38.3 0
0.85 19.9 49.7 165.6 3 18.6 0
0.95 5.14 21.3 50.3 0 4.61 0

(b)

p σ− σ−
l σ−

u σ+ σ+
l σ+

u

0.65 73.7 100.0 2.99 172.8 0.0 722.5
0.75 57.8 100.0 1.20 167.9 0.0 674.3
0.85 49.7 100.0 0.90 165.6 0.0 673.4
0.95 21.3 99.7 0.00 50.3 0.0 460.8

5 Conclusion and Future Work

In this paper, we have considered the issue of providing confidence ranges of support
and confidence in privacy preserving association rule mining. Providing the accuracy
of discovered patterns from randomized data is important for data miners. To the best
of our knowledge, this has not been previously explored in the context of privacy pre-
serving data mining.

Randomization still runs certain risk of disclosures. It was observed as a general
phenomenon that maintenance of item privacy and precise estimation were in conflict.
We will investigate how to determine distortion parameters optimally to satisfy both
privacy and accuracy constraints. We will explore some scenario where some sensitive
items are randomized while the remaining are released directly or where some transac-
tions are randomized while the remaining are unperturbed. We also plan to investigate
the extension of our results to generalized and quantitative association rules.
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Abstract. Privacy-preserving data mining enables two or more parties
to collaboratively perform data mining while preserving the data pri-
vacy of the participating parties. So far, various data mining and ma-
chine learning algorithms have been enhanced to incorporate privacy
preservation. In this paper, we propose privacy-preserving solutions for
Fisher Discriminant Analysis (FDA) over horizontally and vertically par-
titioned data. FDA is one of the widely used discriminant algorithms that
seeks to separate different classes as much as possible for discriminant
analysis or dimension reduction. It has been applied to face recognition,
speech recognition, and handwriting recognition. The secure solutions
are designed based on two basic secure building blocks that we have
proposed—the Secure Matrix Multiplication protocol and the Secure In-
verse of Matrix Sum protocol—which are in turn based on cryptographic
techniques. We conducted experiments to evaluate the scalability of the
proposed secure building blocks and overheads to achieve privacy when
performing FDA.

1 Introduction

Data mining is a powerful tool to discover interesting, useful, and even hidden
patterns that has been applied to various domain such as business intelligence,
bioinformatics, and homeland security. While conventional data mining assumes
that the data miner has full access rights to data that are collected from different
sources or that are distributed among multiple parties, privacy or security issues
render this assumption infeasible when the parties cannot be fully trusted, as
some parties may have malicious intent. How to collaboratively perform data
mining without compromising the data privacy of the participating parties has
become an interesting topic of research in the data mining community.

Privacy-preserving data mining (PPDM) is a response from the data mining
community to address data privacy issues. Approaches in PPDM are generally
based on Secure Multi-party Computations (SMC) [12] and/or randomization
techniques [1]. The former uses specialized, proven protocols to achieve various
types of computation without losing data privacy. The latter introduces noise
to the original private data to achieve security but lose accuracy. As the former
approach achieves a higher degree of accuracy, we focus on SMC in this paper. To

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 136–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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date, various data mining algorithms have been enhanced to incorporate privacy
preservation based on SMC techniques.

In machine learning and data mining, Fisher Discriminant Analysis (FDA)
is one of the widely used discriminant algorithms that seeks to find directions
so that data in the same classes are projected near to each other while ones in
different classes are projected as far as possible for classification or dimension re-
duction. It has wide applications in face recognition [13], speech recognition [11],
and digit recognition [2]. In this paper, we enhance Fisher Discriminant Analy-
sis to incorporate the privacy-preserving feature. To the best of our knowledge,
there has not been any work that extends privacy preservation to FDA.

Our contributions in this paper are summarized as follows:

1. We propose two protocols—the Secure Matrix Multiplication protocol and
the Secure Inverse of Matrix Sum protocol—as secure basic building blocks
for privacy-preserving FDA. The underlying algorithms of these protocols
are novel and more secure than those by Du et al. [3].

2. Based on the two secure building blocks, we propose protocol for privacy-
preserving FDA over horizontally and vertically partitioned data.

We have evaluated the computational complexity and scalability of the pro-
posed protocols both analytically and empirically and show that the protocols
are efficient and scalable for small to medium size data. We also addressed some
specific implementation issues such as methods to handle real numbers and neg-
ative numbers in cryptography. We believe this work is significant as it serves
as a guide to the investigation of extending data privacy preservation to re-
lated methods such as Principal Component Analysis, Independent Component
Analysis, and so on.

The organization of this paper is as follows: In Section 2, we present an
overview of background knowledge about linear FDA and related work. Section 3
proposes two secure building blocks of matrix computation. We also present pro-
tocols for Privacy-Preserving FDA (PPFDA) over horizontally partitioned data
and vertically partitioned data in Section 4. In Section 5, we perform experi-
ments to evaluate the proposed secure building blocks and protocols. Finally,
Section 6 concludes the paper.

2 Background and Related Work

2.1 Linear Fisher Discriminant Analysis

Fisher Discriminant Analysis (FDA) as introduced by Fisher [5] seeks to separate
different classes as much as possible using some criterion function (Eq. 1). As
the technique of applying FDA on a two-class dataset is used repeatedly for
the analysis of any pairs of data in a multi-class dataset, we focus on the two-
class problem using FDA in this paper. It is non-trivial to extend the two-class
problem approach to multi-class problems. This will be part of our future work.
This section provides an overview of background knowledge about linear FDA.
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We present the conventional mathematical model of linear FDA for two-class
data [4]. Suppose we have a set of two-class n data samples of d dimensions:
X = {x1,x2, . . . ,xn} where xi = [x1,i, x1,i, . . . , xd,i]T such that n1 samples are
in the subset ϕ1 = {x1

1,x
1
2 . . . ,x1

n1
} and n2 samples are in the subset ϕ2 =

{x2
1,x

2
2 . . . ,x2

n2
}, n1 + n2 = n. Assuming that column vector w is the direction

of the projection from X to y = {y1, y2, . . . , yn}, we have y = wTX. The d-
dimensional sample mean mi for class i is mi = 1

ni

∑ni

j=1 xi
j .

Fisher Discriminant Analysis aims to maximize between-class separability and
minimize within-class variability. Formally, the criterion function in Eq. 1 is to
be maximized for the function wT X:

J(w) =
wTSBw
wT SWw

(1)

where
SB = (m1 − m2) (m1 − m2)T

SW =
∑

i=1,2

ni∑

j=1

(xi
j − mi)(xi

j − mi)T (2)

is the within-class scatter matrix.
The objective of FDA is to find a projection vector w such that J(w) in Eq. 1

is a maximum. The solution for such w can be obtained by differentiating J(w)
with respect to w yielding

w = S−1
W (m1 − m2) (3)

We note that only the direction, not the length of w, is important.
To incorporate the privacy-preserving feature to linear FDA, the challenge is

to securely compute S−1
W and m1 − m2 so that w can be securely computed.

Clearly, what we need is a method to perform matrix multiplication and ma-
trix inverse securely. In Section 4, we propose a secure approach to address the
problem.

2.2 Secure Building Blocks

Various data mining algorithms have been enhanced to incorporate privacy
preservation, including classification using decision tree [12], association rule
mining [16], clustering using k-means [10], and so on. Recently, the approach
has been extended to several machine learning algorithms such as linear regres-
sion [3], gradient descent methods [17], self-organizing maps [8], and genetic
algorithms [7]. Many of these privacy-enabled algorithms rely on secure building
blocks to enforce privacy. Secure building blocks are basic common operations
that underly many algorithms. Examples include secure sum, secure comparison,
secure scalar product, secure matrix multiplication, and so on.

Fisher Discriminant Analysis—the focus of this paper—requires two secure
building blocks: Secure matrix multiplication and secure inverse of matrix sum.
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Du et al. [3] has proposed a secure protocol for secure matrix multiplication using
linear algebraic methods. It uses a random and invertible matrix to disguise the
original matrices to achieve privacy. For security, a concept called “k-secure”
was introduced to generate the random matrix. Assuming that Party B wants
to attack private matrix A of Party A, a k-secure matrix M (jointly generated
by both parties) means that (1) any equation from MA includes at least k + 1
unknown elements of A, and (2) any k combined equations include at least 2k
unknown elements of A. Therefore, it is impossible to know any elements of
matrix A as there are infinite possible solutions due to insufficient equations.

An issue with Du’s approach is that constructing such a matrix is a complex
process [3]. More importantly, Du’s approach may have a security problem. If
Party A and the same Party B or different Party Bs (a group of colluding parties)
perform secure matrix multiplication more than once, more Ms (more equations)
are available for attacking the fixed unknown elements matrix A. In response to
this problem, we propose another more secure and efficient protocol for matrix
multiplication in this paper.

3 Secure Building Blocks

In this section, we propose the Secure Matrix Multiplication protocol and Secure
Inverse of Matrix Sum protocol to support the secure computation of Eq. 3,
which we have identified to be the key to incorporating privacy preservation in
FDA. Our proposed protocols are based on cryptographic techniques and are
improvements over existing protocols [3] for secure matrix multiplication and
inverse of matrix sum.

3.1 Secure Matrix Multiplication

Parties A and B each hold private d×N matrix A and private N × n matrix B
respectively. They want to securely compute matrix multiplication so that at the
end of the computation, party A and B each only holds a portion of the product
matrix Ma and Mb respectively such that their matrix sum Ma + Mb = AB is
the desired product matrix, which is unknown to both parties.

Given any m × n matrix H, its ith row vector h(i, :) = (hi,1, hi,2, . . . , hi,n)
and jth column vector h(:, j) = (h1,j , h2,i, . . . , hm,j). By definition of matrix
multiplication M=AB, we have

M = AB =

⎡

⎢
⎢
⎢
⎢
⎣

a(1, :) · b(:, 1) a(1, :) · b(:, 2) · · · a(1, :) · b(:, n)
a(2, :) · b(:, 1) a(2, :) · b(:, 2) · · · a(2, :) · b(:, n)

...
...

. . .
...

a(d, :) · b(:, 1) a(d, :) · b(:, 2) · · · a(d, :) · b(:, n)

⎤

⎥
⎥
⎥
⎥
⎦

Clearly, each element of M above is a scalar product of two vectors. To securely
perform the matrix multiplication AB, we may apply the Secure Scalar Product
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Protocol 1. Secure Matrix Multiplication Protocol

Input: Party A has private d× N matrix A and Party B has private N ×n matrix B.

Output: Party A obtains private matrix Ma and Party B obtains private matrix Mb

such that their sum Ma +Mb = AB yields the product matrix.

1: for i = 1 to d do
2: for j = 1 to n do
3: Party A and Party B securely compute the scalar product of vector a(i, :) and

vector b(:, j). At the end, Party A and Party B each hold a private value ma
i,j

and mb
i,j respectively. Part A designates Ma

i,j = ma
i,j and Party B designates

Mb
i,j = mb

i,j .
4: end for
5: end for

protocol [6] so that each scalar product is the sum of two portions as follows:

AB =

⎡

⎢
⎢
⎢
⎣

ma
1,1 + mb

1,1 ma
1,2 + mb

1,2 · · · ma
1,n + mb

1,n

ma
2,1 + mb

2,1 ma
2,2 + mb

2,2 · · · ma
2,n + mb

2,n
...

...
. . .

...
ma

d,1 + mb
d,1 ma

d,2 + mb
d,2 · · · ma

d,n + mb
d,n

⎤

⎥
⎥
⎥
⎦

= Ma + Mb

In this way, we securely obtain the matrix multiplication (which is unknown to
both parties) as the sum of two private portions Ma and Mb held by Party A
and B respectively. The details are shown in Protocol 1.

This method is more straightforward and less complex than the secure matrix
multiplication protocol by Du et al. [3]. Moreover, the execution of secure scalar
product of each matrix element can be performed concurrently to increase effi-
ciency. In Section 5, we show that the approach is efficient for computing the
product of two small and medium size matrices.

3.2 Secure Inverse of Matrix Sum

Party A and B each hold a private d×d matrix A and B respectively. They want
to securely compute the inverse of A+B. At the end of the secure computation,
Party A and B each only holds a portion of the inverse matrix Ma and Mb

respectively such that their sum Ma + Mb = (A + B)−1; the inverse matrix is
not known to both parties.

The steps to securely perform the inverse of matrix sum by two parties are
shown in Protocol 2. In Steps 1 to 3, Party B uses a random, non-singular matrix
P to hide its private matrix B before sending it to Party A. In Steps 4 and 5,
both both parties securely compute the inverse of (A+B)P and then the product
P(P−1(A + B)−1), essentially eliminating the random matrix P in the process.
This yields the desired result (A +B)−1 in the form of two private portions Ma

and Mb held by each party respectively.
In the case when the sum matrix A+B is singular, a simple perturbation

can be introduced to the sum matrix to make it non-singular. For instance, the
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Protocol 2. Secure Inverse of Matrix Sum Protocol
Input: Party A has private d × d matrix A and Party B has private d × d matrix B.

Output: Party A obtains private matrix Ma and Party B obtains private matrix Mb

such that their sum Ma + Mb = (A + B)−1 yields the inverse of the sum of their
private matrices.

1: Party B randomly generates a non-singular d × d matrix P.
2: Party A and Party B jointly perform secure matrix multiplication (using Protocol 1)

to compute AP, at the end of which, Party A and Party B each obtain Sa and Sb

respectively such that Sa + Sb = AP.
3: Party B computes Sb + BP and sends it to Party A.
4: Party A computes Sa+Sb+BP; i.e., (A+B)P, and then its inverse P−1(A+B)−1.

5: Party B and Party A jointly perform secure matrix multiplication (using Protocol 1)
on P and P−1(A+B)−1, at the end of which, Party A and Party B each hold private
portions Mb and Ma respectively such that Ma + Mb = P(P−1(A + B)−1) =
(A + B)−1.

perturbation method proposed by Hong and Yang [9] can be used to stabilize
A + B by adding a small perturbation matrix to A or B.

In contrast to the secure inverse of matrix sum protocol by Du et al. [3],
Protocol 2 is more efficient and accurate as it uses only one random matrix P
instead of two matrices in Du’s protocol. Clearly, less (one random matrix less)
algebraic operations yields more accurate computations results as less errors are
introduced due to roundoff errors.

4 Privacy-Preserving FDA

4.1 PPFDA over Horizontally Partitioned Data

In this scenario, we have n data samples of d dimensions held by two parties.
Let Party A hold the first n1 data samples and Party B hold the remaining n2

data samples; n = n1 + n2.
In Protocol 3, we show how m1 − m2 and S−1

W can be securely computed so
as to yield w in a secure manner. In addition to using Protocols 1 and 2, we also
make use of the random shares technique by Jagannathan and Wright [10]. In
this technique, all numerical intermediate results are splitted into two random
portions where each party holds one portion so that neither party is able to
speculate anything about the intermediate results using only its private portion.

In Step 1, we show how m1 − m2 can be splitted into two random portions.
As Party A holds na data samples (with na

i data samples of class i) and Party B
holds nb data samples (with nb

i data samples of class i), ni = na
i + nb

i , the mean
vector of class i as computed by Party A using only its private data samples is
ma

i . Likewise, the mean vector of class ii computed by Party B using its private
data samples is mb

i . Hence, we have
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Protocol 3. PPFDA over Horizontally Partitioned Data

Input: Party A has na private d-dimensional data samples. Party B has nb private
d-dimensional data samples.

Output: Party A and Party B securely compute a projection vector w for the data
samples held by them.

1: Party A computes ta = (na
1/n1)m

a
1 − (na

2/n2)m
a
2 . Party B computes tb =

(nb
1/n1)m

b
1 − (nb

2/n2)m
b
2.

2: Party A sets Sa
W = 0 and Party B sets Sb

W = 0.
3: for i = 1 to 2 do
4: for j = 1 to ni do
5: if (xi

j is held by Party A) then
6: ua = xi

j − (na
i /ni)m

a
i and ub = −(nb

i/ni)m
b
i

7: else
8: ua = −(na

i /ni)m
a
i and ub = xi

j − (nb
i/ni)m

b
i

9: end if
10: Using Eq. 4, Ma + Mb = (ua + ub)(ua + ub)T

11: Update Sa
W = Sa

W + Ma and Sb
W = Sb

W + Mb

12: end for
13: end for
14: Both parties jointly perform secure inverse of matrix sum (Protocol 2) to obtain

Sa + Sb = (Sa
W + Sb

W )−1.
15: Both parties jointly perform secure matrix multiplication (Protocol 1) to obtain

Satb and Sbta; projection vector w = Sata + Satb + Sbta + Sbtb (Eq. 6) may now
be computed.

Notations: na
1 and na

2 refer to the number of data samples of classes 1 and 2 respec-
tively held by Party A; nb

1 and nb
2 refer to the number of data samples of classes 1 and

2 respectively held by Party B.

m1 − m2 =
na

1m
a
1 + nb

1m
b
1

n1
− na

2m
a
2 + nb

2m
b
2

n2

=
(

na
1

n1
ma

1 − na
2

n2
ma

2

)

+
(

nb
1

n1
mb

1 −
nb

2

n2
mb

2

)

= ta + tb

Next, Steps 2 to 13 securely compute SW =
∑

i=1,2

∑ni

j=1(xi
j −mi)(xi

j −mi)T

(Eq. 2). The secure manner to compute SW is to obtain two portion matrices
Sa

W and Sb
W each held by Party A and Party B respectively. This is performed

using the two for loops as shown in the protocol.
In Step 5, if xi

j belongs to Party A, then we have

xi
j − mi =

(

xi
j −

na
i

ni
ma

i

)

+ (−na
i

ni
mb

i)

= ua + ub

which yields (xi
j − mi)(xi

j − mi)T = (ua + ub)(ua + ub)T . The same process is
performed if xi

j belongs to Party B.
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Step 10 shows the secure manner to split the resultant product matrix of two
vectors (ua + ub)(ua + ub)T into two portions such that

M = (ua + ub)(ua + ub)T = Ma + Mb (4)

The element mi,j of matrix M is computed as follows:

mi,j = (ua
i + ub

i)(u
a
j + ub

j)

= ua
i × ua

j +
[
ua

i

ua
j

]

·
[

ub
j

ub
i

]

+ ub
i × ub

j (5)

= ma
i,j + mb

i,j

After securely computing the scalar product of vectors in Eq. 5, each element
of matrix M is splitted into two portions. Hence, the matrix M is splitted into
two private matrices. Overall, SW is securely splitted into two private portions
Sa

W and Sb
W .

Using Protocol 2, (SW )−1 =
(
Sa

W + Sb
W

)−1 can be securely splitted into Sa

and Sb such that (SW )−1 = Sa + Sb. Therefore

w = (SW )−1(m1 − m2)
= (Sa + Sb)(ta + tb)
= Sata + Satb + Sbta + Sbtb (6)

Using Protocol 1, we securely compute Satb and Sbta. Thus, we are able to
securely compute w.

Analysis: Two parities are assumed to be semi-honest who strictly follow the
protocol but collect all intermediate results during the execution of protocols to
attack the private data of honest parties. As we observe, Protocol 3 applies two
main secure building blocks: Secure Matrix Multiplication protocol and Secure
Inverse of Matrix Sum protocol. Both protocols depend on the Secure Scalar
Product protocol that is provably secure [6]. Based on random share technique,
we actually split all the intermediate results into two random shares (portions)
except the final w in Protocol 3. The private variables of one party are protected
by the equivalent numbers of random portions known by itself only. Therefore
we claim data privacy of honest parties are preserved.

We derive computational complexity of Protocol 3 here. As in Steps 3 to
13, the Secure Scalar Product protocol is invoked once to compute the scalar
product of two vectors (2× 1) (in Eq. 5), then one element of matrix M (d× d)
is securely split. As we know, there are n1 + n2 = n data. Therefore, the Secure
Scalar Product protocol is invoked n × d2 times in Steps 3 to 13 for computing
the scalar product of two vectors (2 × 1).

In Step 14, the Secure Inverse of Matrix Sum protocol is invoked once for
splitting (Sa

W + Sb
W )−1 (d× d). It requires to run the Secure Matrix Multiplica-

tion protocol twice (Step 2 and 5 in Protocol 2). In Step 14, the Secure Matrix
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Multiplication protocol is invoked twice for splitting items Satb (d × 1) and
Sbta (d × 1) securely. In the Secure Matrix Multiplication protocol, it requires
to perform the Secure Scalar Product protocol once to split one element of the
desired matrix. The overall number of invoking Secure Scalar Product protocol
in Step 14 and 15 is (2d2 + 2d) for computing the scalar product of two vectors
(d × 1).

Therefore, the overall computational complexity is O(nd2 +d3) as the compu-
tational complexity of the Secure Scalar Product protocol is O(τ) for two vectors
of length τ [6].

The communication of Protocol 3 between two parties mainly comes from
depends on Secure Scalar Product protocol invoked in the protocol. Based on
the analysis above, the the communication complexity of Protocol 3 depends
on the overall number of the Secure Scalar Product protocol invoked, which
is O(nd2 + d3) as the communication complexity of the Secure Scalar Product
protocol is O(τ) for two vectors of length τ [6].

In Section 5, we experimentally evaluate the efficiency and scalability of the
secure building blocks.

4.2 PPFDA over Vertically Partitioned Data

In this scenario, d dimensions of data are distributed between two parties. Party
A holds d1 dimensions and Party B holds d2 dimensions; d = d1 + d2. We show
how w can be securely computed in such a scenario.

In vertically partitioned data, we assume the first d1 dimensions of data sample
x = [x1, x2, . . . , xd] are held by Party A: xa = [x1, x2, . . . , xd1 ]T and the remain-
ing d2 dimensions of x are held by Party B: xb = [xd1+1, xd1+2, . . . , xd1+d2 ]T . We
show that Party A and Party B may extend their vertical data partitions with
empty dimensions so that both parties have d dimensional partitions. In this
way, the problem of vertically partitioned data is transformed to a horizontally
partitioned problem so that the method in Section 4.1 can be applied to securely
compute w.

The transformation is as follows: For each d1 dimension data sample xa of
Party A, additional d2 zeroes can be appended so that the data sample has d
dimension:

(xa)′ = [x1, x2, . . . , xd1 ,

d2
︷ ︸︸ ︷
0, 0, . . . , 0]T

Likewise, data samples of Party B can be prepended with d1 zeroes to become
d dimensional:

(xb)′ = [

d1
︷ ︸︸ ︷
0, 0, . . . , 0, xd1+1, xd1+2, . . . , xd1+d2 ]T

After the transformation, we have a total of 2n data samples of d dimensions
rather than n data samples of d1 held by Party A and n data samples of d2 held
by Party B.
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Fig. 1. Accuracy comparison of FDA without and with privacy
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Fig. 2. Scalability of the Secure Scalar Product Protocol and Secure Inverse of Matrix
Sum

5 Experiments

In this section, we discuss the implementation issues and evaluate the perfor-
mance of the proposed protocols. All protocols were implemented in the C#
language running under Microsoft Visual Studio 2005 environment. All experi-
ments are performed on the Window XP operating system with 3.40GHz CPU
and 1GB memory. As network performance mainly depends on the network speed
and physical distance of two parties, we simply implemented parties as threads
that exchange data directly by shared memory.

The dataset used is the Iris Plants Database from the UCI Machine Learning
Depository. There are 150 data samples in three classes: “Iris Setosa”, “Iris
Versicolour”, and “Iris Virginica” . As the latter two classes are not linearly
separable, we select them as our analysis data. There are 4 numeric predictive
attributes: “sepal length”, “sepal width”, “petal length”, and “petal width”.

The Paillier cryptosystem [14] was selected as our choice in the implementa-
tion. As the Paillier cryptosystem only encrypts non-negative integers, we have
to deal with issues when real numbers and negative numbers occur. For real
numbers, two parties multiply some large constants (e.g., 1000) to transform
the real numbers to integers. We remove the effects of the constants by divid-
ing the (intermediate) results by the constants. For negative numbers, the basic
property of congruence a+kn = a mod n is applied to transform negative integer
a to positive integers by adding multiples of n.
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Table 1. Efficiency analysis of Secure Inverse of Matrix Sum protocol

Dimension (d × d)
Secure Inverse of

Matrix Sum
Matrix Inverse

Overhead from
Secure Matrix Multiplication

5 0.069516s 0.015586s 0.05393s

6 0.15586s 0.046758s 0.109102s

7 0.436408s 0.249376s 0.187032s

8 2.72755s 2.228798s 0.498752s

9 24.095956s 21.867158 2.228798s

10 244.8105s 240.055572s 4.754928s

Accuracy: To show the accuracy of performing FDA with privacy preservation
using Protocol 3, we evaluated horizontally partitioned data where data instances
of data set are uniformly distributed between two parties. The first figure in
Fig. 1 was obtained by performing FDA using MATLAB. The second figure was
obtained by Protocol 3. We clearly observe that accuracy is not reduced when
we preserve the data privacy of the participant parties.

Scalability: We investigate the scalability of the two protocols proposed in this
paper. For the Secure Matrix Multiplication protocol, we observe that the bulk
of its operations are secure scalar products. Hence, we evaluated the scalability
of the Secure Scalar Product protocol as shown in the first figure in Fig. 2.
The running time is linear to the length of vectors as expected. Some random
numbers in our implementation were generated offline. The time for two vectors
of length 100,000 was estimated at 41 seconds, which is sufficiently low for small
and medium data sets. The second figure in Fig. 2 shows the efficiency of the
Secure Inverse of Matrix Sum protocol. We observe that the time to execute the
protocol for more than 10 × 10 dimensions matrices becomes impractical. From
Table 1, it is shown that the matrix inverse algorithm we used is time consuming
due to the computation of matrix inverse and not due to overhead of the Secure
Matrix Multiplication protocol. In our experiment, we use adjoint method [15]
to perform matrix inverse as follows: A−1 = (1/det)A(adjoint of A) which is
very computationally slow, comparing with other methods, such as Gauss-Jordan
elimination and LU decomposition.

In these experiments, we only evaluated privacy-preserving FDA over horizon-
tally partitioned data for low dimension (4× 4). To apply the proposed protocol
to higher dimension data would be part of our future work.

6 Conclusions

In this paper, we have proposed the privacy-preserving version of Fisher Dis-
criminant Analysis over horizontally and vertically partitioned data. We have
also proposed two basic secure building blocks for matrix computation: the Se-
cure Matrix Multiplication protocol and Secure Inverse of Matrix Sum proto-
col. Finally, we have conducted experiments to demonstrate the scalability of
the proposed secure building blocks and overheads to achieve the privacy when
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performing FDA. Our future work includes applying the proposed protocol to
high-dimensional data and extending the proposed protocols to multiple parties.
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Abstract. We propose a formulation of a new problem, which we call change
analysis, and a novel method for solving the problem. In contrast to the existing
methods of change (or outlier) detection, the goal of change analysis goes beyond
detecting whether or not any changes exist. Its ultimate goal is to find the expla-
nation of the changes. While change analysis falls in the category of unsupervised
learning in nature, we propose a novel approach based on supervised learning to
achieve the goal. The key idea is to use a supervised classifier for interpreting
the changes. A classifier should be able to discriminate between the two data sets
if they actually come from two different data sources. In other words, we use
a hypothetical label to train the supervised learner, and exploit the learner for
interpreting the change. Experimental results using real data show the proposed
approach is promising in change analysis as well as concept drift analysis.

Keywords: change analysis, two-sample test, concept drift.

1 Introduction

Outlier (or novelty) detection is one of the typical unsupervised learning tasks. It aims
at deciding on whether or not an observed sample is “strange” based on some distance
metric to the rest of the data. Change detection is similar to outlier detection, which
is typically formulated as a statistical test for the probability distribution of a data set
under some online settings.

In many practical data analysis problems, however, the problem of change detection
appears with a slightly different motivation. For example, a marketing researcher may
be interested in comparing the current list of customers’ profile with a past list to get in-
formation about changes. Here, detecting the changes itself is not of particular interest.
What the researcher really wants is the detailed information about how they changed.

In this paper, we formulate this practically important problem, which we call change
analysis. In contrast to change detection, we focus on developing a general framework
of how to describe a change between two data sets. Clearly, the change analysis prob-
lem is an unsupervised learning task in nature. We assume that we are given two data
sets, each of which contains a set of unlabeled vectors. Our goal is to find some diagno-
sis information based on the comparisons between the two data sets, without using side
information about the internal structure of the system. The main contribution of this

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 148–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Unsupervised Change Analysis Using Supervised Learning 149

paper is to show that this essentially unsupervised problem can be solved with super-
vised learners.

To date, the problem of comparing two data sets has been addressed in various ar-
eas. For example, the two-sample test [1,2,3], which is essentially to tell whether or
not two (unlabeled) data sets are distinct, has a long history in statistics [4]. Another
example is concept drift analysis [5,6,7], which basically addresses changes in super-
vised learners when the (labeled) training data set changes over time. However, most of
the existing approaches have a serious drawback in practice in that they focus almost
only on whether or not any change exists. As mentioned before, in most of the practical
problems, what we really want to know is which variables could explain the change
and how.

The layout of this paper is as follows. In Section 2, we describe the definition of
the change analysis problem, and give an overview of our approach. Unexpectedly, this
unsupervised problem can be solved using supervised learners, as explained in Section 3
in detail. Based on these sections, in Section 4, we present experimental results using
real data to show the proposed approach is promising. Finally, we give a brief review of
related work in Section 5, and conclude the paper in Section 6.

2 Problem Setting and Overview

In this section, we define a task of change analysis somewhat formally, and give an
overview of our approach.

2.1 The Change Analysis Problem

Suppose that we are given two sets of unlabeled data, XA ≡ {x(1)
A , x

(2)
A , . . . , x

(NA)
A }

and XB ≡ {x(1)
B , x

(2)
B , . . . , x

(NB)
B }, where NA and NB are the numbers of data items

in XA and XB, respectively. Each of x
(i)
A and x

(i)
B is an i.i.d. sample in a d-dimensional

feature space.
This paper addresses two problems about these data sets. The first one is the change

detection problem, which is basically the same as the two-sample problem:

Definition 1 (change detection problem). Given nonidentical data sets XA and XB,
tell whether or not the difference is significant, and compute the degree of discrepancy
between XA and XB.

Note that, unlike concept drift studies, we focus on unlabeled data in this problem. The
second problem we address is the change analysis problem, which is stated as follows:

Definition 2 (change analysis problem). Given nonidentical data sets XA and XB,
output a set of decision rules that explain the difference in terms of individual features1.

Since no supervised information is given in getting the decision rules, this is an unsu-
pervised learning task.

1 The term of “difference analysis” could be more appropriate here, since we do not necessarily
confine ourselves within online settings. However, to highlight the contrast to change detec-
tion, which is a well-known technical term, we will call the concept change analysis.
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To understand the difference between these two problems, let us think about lim-
itations of the two-sample test, which has been thought of as a standard approach to
the change detection problem. The two-sample test is a statistical test which attempts
to detect the difference between two data sets. Formally, it attempts to decide whether
PA = PB or PA �= PB, where PA and PB are probability distributions for XA and
XB, respectively. In statistics, two-sample tests are classified into two categories [4].
The first category is the parametric method, where a parametric functional form is ex-
plicitly assumed to model the distribution. In practice, however, such density modeling
is generally difficult, since the distribution of real-world data does not have a simple
functional form. In addition, even if a good parametric model such as Gaussian had
been obtained, explaining the origin of the difference in terms of individual variables is
generally a tough task, unless the variables are independent.

The second category is the nonparametric method, which allows us to conduct a
statistical test without density modeling. If our interest were to detect only the discrep-
ancy between two data sets, distance-like metrics such as the maximum mean discrep-
ancy [3], the Kolmogorov-Smirnov statistic [1], energy-based metrics [8], and nearest
neighbor statistics [2] are available for solving the change detection problem. However,
these methods are not capable of handling the change analysis problem. While some
of the two-sample tests offer asymptotic distributions for the data in such limit as large
number of samples, it is generally very hard to answer the change analysis problem in
practice. This is because, first, such a distribution is an asymptotic distribution, so it
generally cannot be a good model for real-world data, where, e.g., the number of sam-
ples is finite. Second, since the nonparametric approach avoids density modeling, little
information is obtained about the internal structure of the data.

2.2 Overview of Our Approach

Considering the limitations of the two-sample test, we propose a simple approach to
these two problems. Our key idea is just as follows: Attach a hypothetical label +1 to
each sample of XA, and−1 to each sample of XB. Then train a classifier in a supervised
fashion. We call this classifier the virtual classifier (VC) hereafter.

Figure 1 shows a high-level overview of our approach, where© and � indicate la-
bels of +1 and −1, respectively. In our approach, if two data sets actually have the dif-
ferences, they should be correctly classified by the classifier. Thus a high classification
accuracy p indicates a difference between XA and XB. For example, if PA = PB, the
classification accuracy will be about 0.5 when NA = NB. However, if p is significantly
larger than 0.5, we infer that the labels make difference, so PA �= PB.

In addition, to solve the change analysis problem, we take advantage of the inter-
pretability of classification algorithms. For example, the logistic regression algorithm
gives the weight of each feature representing the importance. For another example, if
the decision tree is employed, variables appearing in such nodes that are close to the root
should have a major impact. In this way, we can get decision rules about the changes
from the VC.

The advantages of this VC approach are as follows: First, it can solve the change
detection and analysis problem at the same time. The classifier readily gives the degree
of change as the classification accuracy, and also provides diagnosis information about
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Change detection (discrepancy score) Change analysis

(decision rules for explanation)

Fig. 1. High-level overview of the virtual classifier approach

changes through its feature selection functions. Second, the VC approach does not need
density estimation, which can be hard especially for high dimensional data. Finally, the
VC approach allows us to evaluate the significance of changes simply by a binomial
test. This is an advantage over traditional nonparametric two-sample tests, which have
focused on asymptotic distributions that hold only in some limit.

3 Virtual Classifier Approach to Change Analysis

This section presents details of our supervised learning approach to change analysis.
For notations, we use bars to denote data sets including the hypothetical labels, such
as X̄A ≡ {(x(i)

A , +1) | i = 1, ..., NA} and X̄B ≡ {(x(i)
B ,−1) | i = 1, ..., NB}. The

prediction accuracy of VCs is represented by p.

3.1 Condition of No Change

Suppose that we are given the combined data set X̄ ≡ X̄A ∪ X̄B, and a binary clas-
sification algorithm L. We train L using X̄, and evaluate the classification accuracy p,
making use of k-fold cross validation (CV). In particular, randomly divide X̄ into k
equi-sized portions, leave out one portion for test, and use the remaining (k − 1) por-
tions for training. The overall prediction accuracy p is computed as the average of those
of the k classifiers.

If PA = PB, classification of each of the samples in X̄ by L can be viewed as a
Bernoulli trial. Thus the log-likelihood of NA + NB trials over all the members of X̄
will be

ln
[
qNA(1 − q)NB

]

under the assumption of i.i.d. samples, where q is the probability of the class A. By
differentiating this w.r.t. q, and setting the derivative zero, we have the maximum likeli-
hood solution of this binomial process as q = NA/(NA + NB). Since the classification
accuracy p should be max{q, 1− q}, we see that p is given by

pbin ≡
max{NA, NB}

NA + NB
, (1)

where the subscript represents binomial.
If PA �= PB, so the information of the class labels is important, the classification

accuracy will be considerably higher than pbin. Specifically, the larger the differences



152 S. Hido et al.

they have, the higher the prediction accuracy will become. One of the major features of
our VC approach is that it enables us to evaluate the significance of p via a binomial
test. Consider a null hypothesis that the prediction accuracy is given by pbin, and assume
NA > NB for simplicity. For a value of the confidence level α > 0, we reject the null
hypothesis if

N∑

nA=Np

N !
nA!(N − nA)!

pnA
bin(1− pbin)N−nA ≤ α, (2)

where N = NA + NB. This means that the class labels are so informative that p is
sufficiently higher than pbin. If we parameterize the critical probability as (1+γα)pbin,
the condition of no change is represented as

p < (1 + γα)pbin. (3)

For a numerical example, if N = 1000 and pbin = 0.5, the 5% and 1% confidence
levels correspond to γ0.05 = 0.054 and γ0.01 = 0.076, respectively. For relatively large
N , Gaussian approximation can be used for computing γα [4].

3.2 Change Analysis Algorithm

Once the binomial test identifies that the difference between XA and XB is significant,
we re-train L (or another type of classification algorithm) using all the samples in X̄. If
some features play a dominant role in the classifier, then they are the ones that charac-
terize the difference. As an example, imagine that we have employed the C4.5 decision
trees [9] as L. The algorithm iteratively identifies the most important feature in terms of
information gain, so such features that appear closest to the root will be most important.
Thus focusing on such nodes amounts to feature selection, and the selected features are
the ones that explain the difference. In this way, feature selection and weighting func-
tions of L are utilized in change analysis.

We summarize our change analysis algorithm in Fig. 2. The first half (1-3) essentially
concerns change detection by evaluating the significance of the changes through the
binomial test, while the second half (4-5) addresses change analysis. As shown, there
are two input parameters, α and k.

3.3 Application to Labeled Data

While the algorithm in Fig. 2 is for unlabeled data, we can extend the algorithm for
labeled data. This extension is practically important since it enables us to do change
analysis between classifiers. Suppose that we are given a classification algorithm M,
and two labeled data sets DA and DB, defined as {(x(i)

A , y
(i)
A )|i = 1, ..., NA} and

{(x(i)
B , y

(i)
B )|i = 1, ..., NB}, respectively, where y

(i)
A and y

(i)
B represent class labels.

We train M based on DA and DB to obtain classifiers MA and MB, respectively. What
we wish to solve is a change analysis problem between MA and MB: Output a set of
decision rules that explain the difference between MA and MB in terms of individual
features.
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Algorithm: Change Analysis
INPUT:

· Two data sets XA and XB

· Binary classification algorithm L
· Number of folds k
· Significance level α > 0

1. Give the positive label to each sample of XA, and the negative label to each sample of XB.
2. Train L based on k-fold cross-validation to obtain the estimated predictive accuracy p.
3. If p < pbin(1 + γα), then quit. Otherwise, report that XA and XB have different distributions.
4. Re-train L on all of the data.
5. Investigate the trained classifier to understand the differences between XA and XB.

Fig. 2. The virtual classifier algorithm for change analysis

To solve this, we create unlabeled data sets based on the following strategy. For each
sample, x

(i)
A or x

(i)
B , we make classification with both MA and MB. If the predictions

are inconsistent, then we put the sample into a set XA, otherwise into XB. Scanning
all the samples, we have two unlabeled data sets XA and XB. By construction, XA

characterizes the inconsistencies between MA and MB, while XB characterizes their
commonalities. Thus, by making use of the change analysis algorithm in Fig. 2 for
these XA and XB, detailed information about the inconsistencies will be obtained. In
our context, the quantity

ρ ≡ Ninc/(NA + NB) (4)

works as the degree of the inconsistencies between MA and MB (or DA and DB), where
Ninc represents the number of samples whose predictions are inconsistent.

When the number of possible values for the target variable is small, it is useful to ex-
tend the change analysis algorithm to include multi-class classification. As an example,
suppose that the given label is binary, i.e. y

(i)
A , y

(i)
B ∈ {±1}. We separate the incon-

sistent set XA into two subsets XA1 and XA2. Here, XA1 consists of the inconsistent
samples whose original prediction is +1 but cross-classification gives −1. Similarly,
XA2 consists of the inconsistent samples that make a transition from −1 to +1. Then
we apply a three-class classification algorithm L to classify XA1, XA2, and XB. Finally,
we examine the resulting classifier for each type of disagreement.

4 Experiment

We evaluated the utility of the VC approach for change analysis using synthetic as well
as real-world data. In the following experiments, we used α = 0.05 and k = 10 unless
otherwise noted. For a classification algorithm L, we mainly used the C4.5 decision
trees (DT) algorithm implemented as J48 in Weka [9], which has a parameter named
minNumObj meaning the minimum number of instances per leaf. To see the degree
of linear separability between the two data sets, we additionally used logistic regression
(LR) also implemented as Logistic in Weka. Two parameters in Logistic (a ridge
parameter and the maximum iterations) were left unchanged to the default values (10−8

and infinity, respectively).
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4.1 Synthetic Data

We conducted two experiments based on synthetic data with NA = NB = 500. For
this number of samples, the critical accuracy is given by 0.527 (γ0.05 = 0.054). In both
of the experiments, the ten features were independently generated based on zero-mean
Gaussians.

For the first experiment, the data sets XA and XB were designed so that PA and PB

had a significant difference. In XA, the standard deviations (denoted by σ) were set to
be 1.0 except for Attr1 (the first feature), where σ was set to be 4.0. On the other hand,
in XB, all the σs were 1.0 except for Attr2 (the second feature), where σ was set to
be 4.0. Figure 3 (a) shows the marginal distribution of this data set in the Attr1-Attr2
space. Our goal is to pick up Attr1 and Attr2 as features that are responsible for the
difference.

We conducted change analysis for this data set with minNumObj = 10 for DT. The
estimated prediction accuracy p computed by 10-fold CV was 0.797 (DT), which far
exceeds the critical accuracy. This means that the two data sets were correctly judged
as being different. Figure 3 (b) represents the DT as the VC, where the labels of the
ellipses and the edges show the split variables and the decision rules, respectively. The
shaded boxes enclose the class labels as well as (1) the number of instances fallen into
the node and (2) the number of misclassified instances in the form of (1)/(2). The
latter is to be omitted when zero. The decision boundaries found by the DT are shown
by the lines in Fig. 3 (a). Clearly, the model learned the intended nonlinear change
between Attr1 and Attr2. Note that, when LR was used as L, 10-fold CV gave only
p = 0.505, which is below the critical accuracy. This result clearly shows the crucial
role of nonlinear decision boundaries.

For the second experiment, PA and PB were designed to be the same. In both XA

and XB, all the σs were set to be 1.0 except for Attr2, where σ = 4.0. Figure 4 shows
the marginal distribution corresponding to Fig. 3 (a). In contrast to the first experiment,
the DT model naturally showed a low p of 0.500, indicating that the differences were
not statistically significant. This result shows that our approach using DT generates a
valid classifier with statistical significance only when the data set contains a difference
between classes.

4.2 Spambase Data

Spambase is a public domain data set in UCI Machine Learning Repository [10]. While
the original data contains spam and non-spam email collections, we used only the 1,813
instances belonging to the spam email set. The features consist of fifty-five continuous
values of word and symbol statistics. We divided the spam set into halves, XA and
XB, keeping the original order of the instances unchanged. In this setting, the critical
accuracy is 0.520 (γ0.05 = 0.039). We performed change analysis for XA and XB to
see if there was any hidden shift in the data. We used minNumObj = 2 for DT.

Interestingly, the 10-fold CV produced a rather high prediction accuracy of p =
0.548 (DT), which is higher than the critical accuracy. According to the VC, the ma-
jor features were the frequencies of the words ‘edu’, ‘85’, and ‘hp’, although space
limitation does not permit showing the output DT. Considering the additional fact that
LR produced just p = 0.515, we conclude that the spam class in Spambase has some
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Fig. 3. (a) Distribution over Attr1 and Attr2 in the first syn-
thetic data, and (b) the resulting virtual classifier
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second synthetic data

nonlinear changes on the word frequencies, which are difficult to find using a linear
model like LR. This result is of particular practical importance, since it suggests that
learning algorithms that depend on the order of the training samples might tend to have
considerable biases.

4.3 Enron Email Data

The Enron email data set is an archive of real email at the now defunct Enron Corporation,
and no class labels are available [11]. We used the year 2001 subset that contains 272,823
email messages in a bag-of-words representation [12]. We separated the data into the first
(1H) and the second (2H) halves of this year, and generated feature vectors by including
the 100 and 150 most frequent words in each period. Meaningless zero vectors including
none of the selected feature words were omitted. Each half was further divided into halves
to allow comparison on quarterly basis. We conducted change analysis within either 1H
or 2H with numMinObj = 1, 000. For example, in the analysis of 2H, XA and XB

roughly correspond to the data in the third (3Q) and fourth (4Q) quarters, respectively.
Table 1 shows the estimated prediction accuracies. We see that both LR and DT

mark accuracies much higher than the critical accuracies. To explore the details of the
differences, we picked the 2H data, and did change analysis to obtain the DT in Fig. 5,
where top 5 nodes from the root have been selected, comparing between 100- and 150-
word models. The notation of the trees are the same as Section 4.1, although the rank of
each feature has been added here (‘access’ is 44th frequent, etc.). The threshold values
represent the occurrence numbers of feature words in each email. Since we followed the
simple frequency-based feature generation strategy, the 150-word tree tends to include
such words that bear particular meanings.

We see that ‘position’ is at the root node in the 150-word model in spite of its less
frequency (144th rank). Enron went bankrupt at the end of 2001. If we imagine what
had been talked about by the employees who were doomed to lose their job position,
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Table 1. Prediction accuracies on
Enron

Data set Algorithm
Period Words LR DT

2001-1H 100 64.3% 67.4%
2001-1H 150 65.4% 68.4%
2001-2H 100 60.9% 62.8%
2001-2H 150 62.3% 64.1%

< 2001-2H, 100 words > < 2001-2H, 150 words >

access(44)

today(41)

<= 12

B (305)

> 12

Week(16)

<= 3

B (170/20)

> 3

time(7)

<= 5

B (150/9)

> 5

email(18)

<= 10

A (73/7)

> 10

(Others)

<= 3

A (1223/227)

> 3

position(144)

email(18)

<= 8

A (132/11)

> 8

Jeff(49)

<= 3

A (1225/226)

> 3

Week(16)

<= 0

B (6059/1463)

> 0

Davis(79)

<= 5

B (117/8)

> 5

(Others)

<= 3

B (112/12)

> 3

Fig. 5. VCs on the Enron 2001-2H data set

this result is quite suggestive. In addition, we see that ‘Jeff’ and ‘Davis’ are dominant
features to characterize the 4Q data. Interestingly, the name of CEO of Enron in 2001
was Jeffrey Skilling, who unexpectedly resigned from this position on August 2001 af-
ter selling all his stock options. Many employees must have said something to him at the
moment of the collapse. For Davis, there was a key person named Gray Davis, who was
California’s Governor in the course of the California electricity crisis in the same year.
It may result from his response to the investigation of Enron in 4Q. Note that the VC
has discovered these key persons without any newspaper information, demonstrating
the utility in studying the dynamics of complex systems such as Enron.

4.4 Academic Activities Data

As an example of application to labeled and categorical data, we performed change
analysis for “academic activities” data collected in a research laboratory. This data set
consists of 4,683 records over five years in the form of (x(s), y(s)), where s is the
time index and y(s) represents a binary label of either ‘Y’ (meaning important) or ‘N’
(unimportant). Each of the vectors x(s) includes three categorical features, title , group,
and category, whose values are shown in Table 2.

Since the labels are manually attached to x(s)s by evaluating each activity, it greatly
depends on subjective decision-making of the database administrator. For example,
some administrators might think of PAKDD papers as very important, while other might
not. Triggered by such events as job rotations of the administrator and revisions of eval-
uation guidelines, the trend of decision-making is expected to change over time. The
purpose on this analysis is to investigate when and what changes have occurred in the
decision criteria to select importance labels.

We created 14 data subsets by dividing the data on quarterly basis, denoted by D1,
D2, . . . , D14. First, to see whether or not distinct concept drifts exist over time, we com-
puted the inconsistency score ρ (see Eq. (4)) between neighboring quarters. Specifically,
we think of DA and DB as Dt and Dt+1 for t = 1, 2, ..., 13. For M, we employed
decision trees. Figure 6 shows the inconsistency score ρ for all the pairs. We see that
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Table 2. Three features and their values in the academic activity data

category title group
GOVERNANCE, EDITOR, ORGANIZATION, COMMITTEE, MEMBER, UNIVERSITY, DOMESTIC, STANDARD,

PROFESSIONAL ACTIVITY AWARD, OTHERS PUBLISHER, SOCIETY1, OTHERGROUPS

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13
data index
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en
cy
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co

re

Fig. 6. Inconsistency scores ρ between Dt and Dt+1. The largest score can be seen where t = 5.

two peaks appear around t = 5 and t = 10, showing clear concept drifts at those pe-
riods. Interestingly, these peaks correspond to when the administrator changed off in
reality, suggesting the fact that the handover process did not work well.

Next, to study what happened around t = 5, we picked D5 and D6 for change anal-
ysis. Following the procedure in Section 3.3, we obtained the VC as shown in Fig. 7.
Here, we used a three-class DT based on three sets XA1, XA2 and XB, where XA1

includes samples whose predicted labels make a transition of Y → N. The set XA2

includes samples of N → Y, while XB includes consistent samples of Y → Y. If we
focus on the leaves of ‘NY’ in Fig. 7 representing the transition from N to Y, we find
interesting changes between D5 and D6: The new administrator at t = 6 tended to put
more importance on such academic activities as program and executive committees as
well as journal editors.

One might think that there can be a simpler approach that two decision trees M5 and
M6 are directly compared, where M5 and M6 are decision trees trained only within D5

title

NY (45)

= GOVERNANCE

NY (24/6)

= COMMITTEE

category

= MEMBER

YY (70/37)

= OTHERS

NY (112/40)

= EDITOR

group

= ORGANIZATION

YY (141/24)

= PROFESSIONAL ACTIVITY

YY (6)

= AWARD

NY (10)

= PUBLISHER

YY (10/3)

= STANDARD

YY (13/3)

= SOCIETY1

YY (32/15)

=DOMESTIC

YY (85/19)

= nogroup

Fig. 7. Virtual classifier for D5 and D6
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and D6, respectively. However, considering complex tree structures of decision trees,
we see that direct comparison between different decision trees is generally difficult.
Our VC approach provides us a direct means of viewing the difference between the
classifiers, and is in contrast to such a naive approach.

5 Related Work

The relationship between supervised classifiers and the change detection problem had
been implicitly suggested in the 80’s [2], where a nearest-neighbor test was used to
solve the two-sample problem. However, it did not address the problem of change anal-
ysis. In addition, the nearest-neighbor classifier was not capable of explaining changes,
since it did not construct any explicit classification model. FOCUS is another framework
for quantifying the deviation between the two data sets [13]. In the case of supervised
learning, it constructs two decision trees (dt-models) on each data set, then expands
them further until both trees converge to the same structure. The differences between
the numbers of the instances which fall into the same region (leaf) indicate the devia-
tion between the original data sets. In high-dimensional settings, however, the models
should become ineffective since the size of the converged tree increases exponentially
therefore the method requires substantial computational cost and massive instances.

Graphical models such as Bayesian networks [14] are often used in the context of
root cause analysis. By adding a variable indicating one of the two data sets, in princi-
ple Bayesian networks allow us to handle change analysis. However, a graphical mod-
eling approach inevitably requires a lot of training data and involves extensively time-
consuming steps for graph structure learning. Our VC approach allows us to directly
explain the data set labels. This is in contrast to graphical model approaches, which
basically aim at modeling the joint distribution over all variables.

In stream mining settings, handling concept drift is one of the essential research is-
sues. While much work has been done in this area [5,6,7], little of that addresses the
problem of change analysis. One of the exceptions is KBS-stream [15] that quantifies
the amount of concept drift, and also provides a difference model. The difference model
of KBS-Stream tries to correctly discriminate the positive examples from the negative
examples in the misclassified examples under the current hypothesis. On the other hand,
our VC tries to correctly discriminate the misclassified examples by the current hypoth-
esis against the correctly classified examples. Both models are of use to analyze concept
drift, but the points of view are slightly different.

Other studies such as ensemble averaging [16] and fast decision trees [17] tackle
problems which are seemingly similar to but essentially different from change analysis.

6 Conclusion

We have proposed a new framework for the change analysis problem. The key of
our approach is to use a virtual classifier, based on the idea that it should be able
to tell the two data apart if they came from two different data sources. The resulting
classifier is a model explaining the differences between the two data sets, and analyzing
this model allows us to obtain insights about the differences. In addition, we showed
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that the significance of the changes can be statistically evaluated using the binomial
test. The experimental results demonstrated that our approach is capable of discovering
interesting knowledge about the difference.

For future work, although we have used only decision trees and logistic regression for
the virtual classifier, other algorithms also should be examined. Extending our method
to allow on-line change analysis and regression models would also be interesting re-
search issues.
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Abstract. The Neighborhood Expectation-Maximization (NEM) algo-
rithm is an iterative EM-style method for clustering spatial data. Un-
like the traditional EM algorithm, NEM has the spatial penalty term
incorporated in the objective function. The clustering performance of
NEM depends mainly on two factors: the choice of the spatial coeffi-
cient, which is used to weigh the penalty term; and the initial state of
cluster separation, to which the resultant clustering is sensitive. Existing
NEM algorithms usually assign an equal spatial coefficient to every site,
regardless of whether this site is in the class interior or on the class bor-
der. However, when estimating posterior probabilities, sites in the class
interior should receive stronger influence from its neighbors than those
on the border. In addition, initialization methods deployed for EM-based
clustering algorithms generally do not account for the unique properties
of spatial data, such as spatial autocorrelation. As a result, they often
fail to provide a proper initialization for NEM to find a good solution
in practice. To that end, this paper presents a variant of NEM, called
ANEMI, which exploits an adaptive spatial coefficient determined by
the correlation of explanatory attributes inside the neighborhood. Also,
ANEMI runs from the initial state returned by the spatial augmented
initialization method. Finally, the experimental results on both synthetic
and real-world datasets validated the effectiveness of ANEMI.

1 Introduction

Spatial data have traditional numeric and categorical attributes as well as spatial
attributes that describe the spatial information of the objects, such as location
and shape. The assumption of independent and identical distribution (IID) is
no longer valid for spatial data. In the spatial domain, everything is related to
everything else but nearby objects are more related than distant objects [1]. For
example, houses in nearby neighborhoods tend to have similar prices which are
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affected by one another. In remote sensing images, close pixels usually belong to
the same landcover type: soil, forest, etc.

Traditional model based clustering algorithms, such as the Expectation-Maxi-
mization (EM) algorithm [2], do not take spatial information into consideration.
To this end, Ambroise et al. [3] proposed the Neighborhood Expectation-
Maximization (NEM) algorithm, which extends EM by adding a spatial penalty
term into the objective function. Such a spatial penalty favors those solutions
where neighboring sites are assigned to the same class. The performance of NEM
depends mainly on two factors. One is the choice of the spatial coefficient, which
is used to weigh the penalty term in the objective function and specifies the
degree of spatial smoothness in the clustering solution. Another one is the initial
state of cluster separation, from which NEM starts iterative refinement.

For the choice of the spatial coefficient, NEM employs a fixed coefficient that
has to be determined a priori and is often set empirically in practice. However,
it may not be appropriate to assign a fixed coefficient to every site, regardless of
whether it is in the class interior or on the class border. When estimating pos-
terior probabilities, sites in the class interior should receive stronger influence
from its neighbors than those on the border. In addition, for initialization, it is
usually impossible for NEM to achieve the global optimization, which has been
shown to be NP-hard [4]. The clustering performance of NEM is very sensitive
to the initial state of cluster separation. As a result, a proper initialization is
of great value for the success of finding a better sub-optimal solution in prac-
tice. Nevertheless, existing initialization methods for NEM and other EM-style
clustering algorithms do not account for such spatial information.

To address the above mentioned challenges, in this paper, we propose a vari-
ant of NEM: Adaptive Neighborhood EM with spatial augmented Initializa-
tion (ANEMI) for spatial clustering. ANEMI exploits a site-sensitive coefficient,
which is determined by the correlation of explanatory attributes inside the neigh-
borhood. In addition, the refinement process of ANEMI starts from the initial
state returned by the spatial augmented initialization method. Indeed, by push-
ing spatial information further into the whole clustering process, our experimen-
tal results on both synthetic and real datasets show that ANEMI generally leads
to better clustering performance than traditional NEM.

Overview. The remainder of this paper is organized as follows. Section 2 intro-
duces the problem background and related work. In Section 3, after reviewing
the basic concepts of NEM, we present the ANEMI algorithm. Experimental
results are reported in Section 4, where both the augmented initialization and
the adaptive coefficient assignment of ANEMI are evaluated thoroughly. Finally,
in Section 5, we draw conclusions and suggest future work.

2 Background

In this section, we first introduce the background by formulating the problem.
Then, we briefly review related work.
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2.1 Problem Formulation

The goal of spatial clustering is to partition data into groups so that pairwise
dissimilarity, in both non-spatial space and spatial space, between those as-
signed to the same cluster tend to be smaller than those in different clusters. In
detail, we are given a spatial framework of n sites S = {si}ni=1, which are de-
scribed with an observable set X = {xi ≡ x(si)}ni=1 of random variables. Note
that we overload notation and use X to refer to both the given dataset and
their corresponding random variables. Often it is enough to know the neigh-
borhood information, which can be represented by a contiguity matrix W with
Wij = 1 if si and sj are neighbors and Wij = 0 otherwise. We need to infer
the unobservable (hidden) set Y = {yi ∈ {1, 2, ..., K}}ni=1 of random variables,
corresponding to the cluster label of xi. Due to the spatial constraint, the re-
sulting random field defined over Y is a Markov Random Field (MRF), where
P (yi|Y −{yi}) = P (yi|{yj : Wij = 1}). Hence it is more appropriate to model the
posterior distribution of yi as P ( yi | xi, {yj : Wij = 1)} ) instead of P (yi|xi).

2.2 Related Work

There are roughly two categories of work that are related to the main theme of
this paper: spatial clustering and the cluster initialization methods for iterative
refinement clustering.

Most conventional clustering methods in the literature treat each object as
a point in the high dimensional space and do not distinguish spatial attributes
from non-spatial attributes. These clustering methods can be divided into the
following groups: distance-based [5], density-based [6], hierarchy-based [7], etc.

In the field of spatial clustering, some methods only handle 2-dimensional
spatial attributes [8] and deal with problems like obstacles which are unique
in clustering geo-spatial data [9]. To incorporate spatial constraints, the sim-
plest method is to directly add spatial information, e.g., spatial coordinates, into
datasets [10]. Others achieve this goal by modifying existing algorithms, e.g., al-
lowing an object assigned to a class if this class already contains its neighbor
[11]. Another class, where our algorithm falls, selects a model that encompasses
spatial information. This can be achieved by modifying a criterion function that
includes spatial constraints [12], which mainly comes from image analysis where
MRF and EM-style algorithms were intensively used [13,14].

Clustering using mixture models with conventional EM does not account for
spatial information. NEM extends EM by adding a weighted spatial penalty term
in the objective function. The clustering performance of NEM depends largely
on the global fixed coefficient, the weight of the penalty. If further information
about structure is available, spatially varying coefficient models can be employed,
which has been mainly investigated for regression problems [15].

In practice, the subsequent cluster refinement in NEM is only a sub-task of the
whole clustering, which succeeds the execution of a certain initialization method.
With the initialization methods returning a set of seed centers, the data are
assigned to the closest center and thus an initial clustering is obtained for NEM
to refine. Roughly speaking, the cluster initialization methods fall into three
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major families: random sampling, distance optimization and density estimation.
We will examine three representative methods in more details later.

3 The ANEMI Algorithm

In this section, we first introduce the basics of NEM from the MRF perspective.
Then we present the cluster refinement part of the ANEMI algorithm, which
exploits an adaptive scheme of coefficient assignment. Finally, we discuss the
initialization methods for the ANEMI algorithm.

3.1 The MRF Framework

By the Hammersley-Clifford theorem [16], the prior probability of a cluster label
configuration Y = {yi}ni=1 (a realization of the MRF) can be expressed as a Gibbs
distribution [13], P (Y ) = 1

Z1
exp(−V (Y )), where Z1 is a normalizing constant,

and V (Y ) is the overall label configuration potential function. In the clustering
framework, the conditional probability of X given Y has the form P (X |Y ) =
f(X |Y, Φ), a density function parameterized with Φ. The posterior probability
becomes P (Y |X) = 1

Z2
P (Y )P (X |Y ), where Z2 = Z1P (X) is the normalizing

constant. Hence finding the maximum a-posteriori (MAP) configuration of the
hidden MRF is equivalent to maximizing the logarithm of P (Y |X) (scaled by a
constant)

U = ln(f(X |Y, Φ))− V (Y ) (1)

3.2 Neighborhood EM (NEM)

For the potential function V (Y ), NEM employs a soft version of the pairwise
Potts model, V (Y ) = −

∑
i,j WijI(yi = yj), where I(·) is the indicator function

with I(true) = 1 and I(false) = 0. In detail, let P denote a set of distributions
{P ik ≡ P (yi = k)} governing {yi}. Termed “spatial penalty”, the potential
function used in NEM is G(P ) = − 1

2

∑
i,j Wij

∑K
k=1 P ikP jk. One can see it

becomes the Potts model if we require P ik be binary(a hard distribution). Such
a model favors spatially regular partitions, which is appropriate in the case of
spatial positive autocorrelation.

In NEM, the conditional density f(x|Φ) takes the form of a mixture model
of K components f(x|Φ) =

∑K
k=1 πkfk(x|θk), where fk(x|θk) is k-th compo-

nent’s density function and p(x|y = k) = fk(x|θk). Following [17], NEM’s soft
counterpart of ln(f(X |Y, Φ)) in Eq. (1) can be written as

F (P , Φ) =
n∑

i=1

K∑

k=1

P ikln(πkfk(x|θk))−
n∑

i=1

K∑

k=1

P iklnP ik (2)

Note that maximizing F is also equivalent to maximizing the log-likelihood cri-
terion function in the conventional mixture model [18]. Then, the new objective
function in NEM becomes U(P , Φ) = F (P , Φ)+βG(P ), where β is a fixed positive
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coefficient to weigh the spatial penalty and controls the desired smoothness of
output clustering. U can be maximized via the EM procedure, starting from an
initial P

0
.

1. M-step: With P
t

fixed, set Φt = argmaxΦU(P
t
, Φ), which is exactly the same

as the M-step in the standard EM for mixture models, for G dose not depend
on Φ.

2. E-step: With Φt fixed, set P
t+1

= argmaxP U(P , Φt).

It can be shown that in the E-step, U will be maximized at P
∗

that satisfies
Eq. (3), which can be organized as P

∗
= O(P

∗
). It was proven in [3] that under

certain conditions, the sequence produced by P
m

= O(P
m−1

) will converge to
that solution to maximize U . Hence P

∗
ik can be regarded as dot product between

the estimation from its own x and the estimation from its neighbors.

P
∗
ik =

πkfk(xi|θk)exp
(
β

∑n
j=1 WijP

∗
jk

)

∑K
l=1 πlfl(xi|θl)exp

(
β

∑n
j=1 WijP

∗
jl

) (3)

3.3 NEM with Adaptive Coefficient Assignment

EM for the conventional mixture model is not appropriate for spatial clustering
since it does not account for spatial information. In contrast, NEM adds in the
criterion a spatial penalty weighted by a fixed coefficient β. However, it may not
be appropriate to assign a constant coefficient to every site. For those in the
class interior, the whole neighborhood is from the same class and hence the site
should receive more influence from its neighbors, especially when their posterior
estimates are accurate. For those on the class border, because their neighbors are
from different classes, its own class membership should be determined mainly
by its own explanatory attributes.

Along this line, ANEMI employs a site-sensitive spatial coefficient for the
spatial penalty term. In detail, besides the original β that determines the global
smoothness in the solution clustering, every site si has another coefficient βi

of its own that determines the local smoothness. Then the new penalty be-
comes G(P ) = 1

2

∑n
i=1 βi

∑n
j=1 Wij

∑K
k=1 P ikP jk. The original G in NEM can

be regarded as a special case with βi = 1 for all sites. Let U ′ denote the La-
grangian of U : U ′ = U +

∑n
i=1 λi(

∑K
k=1 P ik − 1), which takes into account the

constraints on P ik. Based on the necessary optimality Kuhn-Tucker conditions,
solving ∂U ′/∂P ik = 0 for P ik yields

P
∗
ik =

πkfk(xi|θk)exp
(
β

∑n
j=1 Wij

βi+βj

2 P
∗
jk

)

∑K
l=1 πlfl(xi|θl)exp

(
β

∑n
j=1 Wij

βi+βj

2 P
∗
jl

) (4)

Then the estimation is the same as that in NEM, except that we apply Eq. (4)
in the E-step.
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What remains is to determine βi. In our implementation, we employ the local
Moran’s I measure, which evaluates the local spatial autocorrelation at site si

based on the explanatory attributes inside the neighborhood [19]. Let zip denote
the normalized p-th attribute of site si, i.e., zip = xip−xp, where xp is the global
mean of the p-th attribute. Let σp denote the global standard deviation of the p-
th attribute. Then, for the p-th attribute at site si, the local I is defined as Iip =
zip

σ2
p

∑
j Wijzjp, where W is a row-normalized (sum to 1) version of the original

binary W . A high I (e.g., I > 1) implies a high local spatial autocorrelation at
site si, which is likely to occur in the class interior. The reverse happens on the
border. In ANEMI, βi is obtained by first averaging Iip over all attributes and

then normalizing to [0, 1], i.e., Ii = meanp(Iip), βi = Ii−mini{Ii}
maxi{Ii}−mini{Ii} .

3.4 Spatial Augmented Initialization

Like other EM-based algorithms, ANEMI’s clustering solution is sensitive to
the initial state and hence the study of proper initialization is another focus of
this paper. In this paper, we examined three representative methods for cluster-
ing initialization: random sampling, K-Means and KKZ. The random sampling
method returns K seed centers by uniformly selecting K input instances. For
within-cluster scatter minimization, the K-Means algorithm [20] can be regarded
as a simplified hard version of EM on Gaussian mixture. While many clustering
methods essentially minimize the within-cluster scatter, KKZ [21] is a greedy
search method to optimize the complementary between-cluster scatter.

We can see that all initialization methods above only consider normal at-
tributes without accounting for spatial information. If the positive autocorrela-
tion is the major trend within data, then most sites would be surrounded by
neighbors from the same class. Based on this observation, we propose to aug-
ment feature vector xi of site si with xNi, the average of its neighbors. That is,
the augmented vector becomes x′

i = [xi, αxNi] , where α > 0 is a coefficient to
weigh the impact of the neighbors, and xNi =

∑n
j=1 Wijxi/

∑n
j=1 Wij . Then the

initialization methods can be run on the augmented {x′
i}.

4 Experimental Evaluation

In this section, we first introduce the datasets and the clustering comparison
methodology used in our experiments. Then we report comparative results.

4.1 Experimental Datasets

We evaluate ANEMI on five datasets, two synthetic and three real. Some data
characteristics are listed in Table 1. The last row gives the spatial smoothness
of the target variable y measured with contiguity ratio [19].

The synthetic image datasets are generated in the following way: First, a
partition in four classes is simulated from a Potts MRF model with four-neighbor
context on a 20 × 20 rectangular grid. Then, the observations are simulated
from this partition based on four Gaussian densities. Fig. 1 shows two sample
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Table 1. Some data characteristics

Data Im1 Im2 Satimage House Election

size 400 400 4416 506 3107
#attribute 1 1 4 12 3

#class 4 4 6 n/a n/a
ratio 0.78 0.84 0.96 0.58 0.61

partitions Im1 and Im2 of different smoothness, together with their observations.
The observations for both partitions are drawn from four Gaussian densities:
N(0, 0.52), N(1, 0.52), N(2, 0.82), N(4, 0.82).

Satimage is a real landcover dataset available at the UCI repository [22]. It
consists of the four multi-spectral values of pixels in a satellite image together
with the class label from a six soil type set. Because the dataset is given in
random order, we synthesize their spatial coordinates and allocate them in a
64× 69 grid to yield a high contiguity ratio of 0.96 with four-neighbor context.
Fig. 2 illustrates the original partition and a sample obtained partition.

The House dataset records house prices and their environment indices of 506
towns in Boston area [23]. The 12 explanatory variables, such as nitric oxides
concentration and crime rate, are used to predict the median value of houses,
which is expected to have a small spread in each cluster of a reasonable partition.
Fig. 3(a) and (b) show the true house values of 506 towns and their histogram.
After normalizing the data to zero mean and unit variance, we fit two Gaussian
mixtures, one with two components, the other with four components.

The Election dataset [23] records 1980 US presidential election results of 3107
counties. Originally the three attributes, fraction of population with college de-
gree, fraction of population with homeownership and income, are used to predict
voting rate. Here voting rate is used to evaluate clustering performance. Fig. 4(a)
and (b) show the voting rates and their histogram. Again, we normalize the data
and test two Gaussian mixtures with two and four components respectively.

4.2 Comparison Methodology

We evaluate the clustering quality via two external validation measures. Let C, Y
denote the true class label and the derived cluster label, respectively. The con-
ditional entropy H(C|Y ) is defined as H(C|Y ) = −

∑K
k=1 PY (k)H(C|Y = k),

where probabilities are computed as sample frequencies. Analogously, for the
continuous target variable C, we calculate the weighted standard deviation de-
fined as S(C|Y ) =

∑K
k=1 PY (k) std(C|Y = k), where std(·) denotes the stan-

dard deviation operator and (C|Y = k) denotes the C’s values in cluster Y = k.
Both measures are minimized to zero in the ideal case.

During experimentation, we concentrate on whether spatial augmented initial-
ization and adaptive coefficient assignment bring any gain in the final clustering
quality. For fair comparison, we first compute the augmented version of vec-
tors and then randomly draw K vectors. They are treated as the initial centers
returned by the random sampling method on the augmented data. The first half
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Fig. 1. (a) and (b) show Im1’s true partition and observations, respectively. The coun-
terparts of Im2 are shown in (c) and (d).
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Fig. 2. (a) and (b) show Satimage’s true partitions and a sample clustering

of these vectors are treated as those on original data. These vectors also play the
role of initial centers for K-Means that runs 10 iterations. Euclidean distance
is used in K-Means and KKZ. In the augmented vector x′

i = [xi, αxNi] , often
α = 1 led to the best results, so we only report results with α = 1.

The cluster refinement part of ANEMI is built upon an implementation of
NEM [24]. Specifically, Gaussian mixture is employed as the model. The global
coefficient β is tuned empirically in NEM for each dataset and the obtained
value is also used in ANEMI. The number of internal iterations of E-step is set
to 10. The outer iteration is stopped when |(U t − U t−1)/U t| < 0.0001 . Finally,
for each dataset, we report average results of 20 runs.

4.3 Results and Discussions

Initialization. First, we run conventional NEM initialized in both original and
augmented spaces. The clustering results are given in Table 2, where the best
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Fig. 3. (a) shows house price distribution in 506 towns in Boston. The corresponding
histogram is plotted in (b). Two sample clustering results are shown in (c) and (d).

Table 2. Comparison with different initializations

Data Sup Rand A-Rand KMeans A-KMeans KKZ A-KKZ
Im1 0.8252 0.9333 ± 0.0556 0.9027 ± 0.0264 0.8306 ± 0.0034 0.8145± 0.0117 0.9578 0.8947
Im2 0.8045 0.9900 ± 0.0949 0.9558 ± 0.0874 0.7405± 0.0014 0.7540 ± 0.0088 0.9362 0.7834

Satimage 0.6278 0.5970 ± 0.0453 0.6243 ± 0.0516 0.5170 ± 0.0344 0.5142± 0.0273 0.8468 0.8630
House:2 n/a 8.0918 ± 0.0230 8.0011± 0.0282 8.0633 ± 0.0001 8.0624 ± 0.0001 8.0632 8.0642
House:4 n/a 7.7830 ± 0.1427 7.7768± 0.2683 7.8401 ± 0.0806 7.8170 ± 0.0496 7.8145 7.8145

Election:2 n/a 0.1088 ± 0.0023 0.1011 ± 0.0024 0.0968 ± 0.0004 0.0965± 0.0001 0.1077 0.1077
Election:4 n/a 0.0992 ± 0.0018 0.0953 ± 0.0023 0.0927 ± 0.0005 0.0919± 0.0004 0.1007 0.0962

results are in boldface. “A-X” means initialization method “X” on the augmented
data. For instance, the 3rd and 4th columns show the results with random initial-
ization and augmented random initialization. For the three datasets with discrete
target variables, we also list in the column “Sup” the results under supervised
mode where each component’s parameters are estimated with all data from a
single true class. One can see that initialization using augmented data generally
brings improvement. The only exception is Satimage with random sampling and
KKZ, possibly because its contiguity ratio is so high that almost every site is sur-
rounded by sites from the same class with very similar observations. Thus using
augmented data does not make much a difference to the initialization results.
Among the three initialization methods, augmented K-Means always leads to
the best or sub-optimal results, though the improvement of augmented versions
is often more obvious with random sampling and KKZ.

Coefficient Assignment. Since K-Means generally provides the best initial-
ization, we use it to initialize the mixture model for the subsequent comparison
of spatial coefficient assignments. Fig. 5 presents the results corresponding to



ANEMI: An Adaptive Neighborhood Expectation-Maximization Algorithm 169

Fig. 4. (a) shows election voting rate distribution in 3107 counties. The corresponding
histogram is plotted in (b). Two sample clustering results are shown in (c) and (d).
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Fig. 5. Impact of spatial augmented initialization and adaptive coefficient assignment

different component combinations: “NEM” denotes conventional NEM with K-
Means initialization in the original space; “NEM+I” denotes conventional NEM
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with K-Means initialization in the augmented space; “A+NEM” denotes NEM
with adaptive coefficient and K-Means initialization in the original space;
“ANEMI” denotes NEM with adaptive coefficient and K-Means initialization
in the augmented space. One can see that compared to conventional NEM, us-
ing site-sensitive coefficients generally yields better results. The only exception
is Satimage again. The reasons may be that Satimage’s contiguity ratio is so
high that almost every site is surrounded by sites from the same class. Thus it
may be always beneficial to assign sites in the neighborhood to the same class.
Compared to spatial augmented initialization, the adaptive coefficient assign-
ment has a greater impact on the final clustering quality. The best results are
always achieved by combining them two together.

5 Conclusions

In this paper, we introduced an Adaptive Neighborhood Expectation–
Maximization with spatial augmented Initialization (ANEMI) algorithm for spa-
tial clustering. ANEMI is an extension of the NEM algorithm, which is built
on top of the EM algorithm by incorporating a spatial penalty term into the
criterion function. This penalty term is weighed by a spatial coefficient that de-
termines the global smoothness of the solution clustering. Unlike NEM, which
assigns an equal weight to every site, ANEMI exploits an adaptive site-sensitive
weight assignment scheme, which is determined by the local smoothness in-
side the neighborhood for each site. In addition, to provide a good initial state
for clustering, we proposed to push spatial information early into the initial-
ization methods. Along this line, we also examined three representative
initialization methods in the spatial augmented space. Finally, we evaluated the
impact of spatial augmented initialization and adaptive coefficient assignment in
ANEMI against NEM on both synthetic and real-world datasets. Empirical re-
sults showed that with adaptive coefficient assignment, ANEMI using augmented
K-Means initialization generally leads to better clustering results than NEM. The
gain is most obvious when they are run on datasets with low contiguity ratio.

As for future work, we plan to investigate stochastic versions of NEM to reduce
dependence on the algorithm initialization. Also, other optimization techniques,
such as genetic algorithms [25], are worth trying to speed up the convergence
rate and to improve the final clustering quality further.
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Abstract. The paper presents minimum variance patterns: a new class
of itemsets and rules for numerical data, which capture arbitrary con-
tinuous relationships between numerical attributes without the need for
discretization. The approach is based on finding polynomials over sets
of attributes whose variance, in a given dataset, is close to zero. Sets of
attributes for which such functions exist are considered interesting. Fur-
ther, two types of rules are introduced, which help extract understand-
able relationships from such itemsets. Efficient algorithms for mining
minimum variance patterns are presented and verified experimentally.

1 Introduction and Related Research

Mining association patterns has a long tradition in data-mining. Most methods,
however, are designed for binary or categorical attributes. The usual approach to
numerical data is discretization [22]. Discretization however leads to information
loss and problems such as rules being split over several intervals. Approaches al-
lowing numerical attributes in rule consequent have been proposed, such as [3,25],
but they do not allow undiscretized numerical attributes in rule antecedent.

Recently, progress has been reported in this area, with a number of pa-
pers presenting extensions of the definition of support not requiring discretiza-
tion [23,14,7]. Other papers provide alternative approaches which also do not
require discretization [20,12,19,1,5].

This work extends those methods further, allowing for the discovery of com-
plex nonlinear relationships between sets of numerical attributes without the
need for discretization. The work is set in the spirit of association rule mining.
First, a concept of minimum variance itemsets is introduced. Those itemsets
describe functions which are always close to zero on a given dataset, and thus
represent equations describing relationships in data. Based on those itemsets,
rules can be derived showing relationships between disjoint sets of attributes.
An Apriori style mining algorithm is also presented.

Let us now review the related work. The approach presented in [16] allows
for combining attributes using arithmetic operations, but after combining them
discretization is applied. Also, since only addition and subtraction are allowed,
nonlinear relationships cannot be represented.
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In [20,12,19] a method for finding rules of the form “if a linear combination of
some attributes is above a given threshold, then a linear combination of another
set of attributes is above some other threshold” is described. Rules of this type
are mined using standard optimization algorithms. While the approach could
be extended to nonlinear case, the method presented here is more efficient since
it requires solving eigenvalue problems of limited size instead of using general
optimization methods on the full dataset. Furthermore, since binary thresholds
are used, the method from [20] cannot represent continuous relationships between
groups of attributes. Our work is more in the standard association rule spirit
providing both itemsets and rules, as well as an Apriori style mining algorithm.

In [1], an interesting method is presented for deriving equations describing
clusters of numerical data. The authors first use a clustering algorithm to find
correlation clusters in data, and then derive equations describing the linear space
approximating each cluster’s data points based on the cluster’s principal com-
ponents computed using eigenvectors of the correlation matrix of data in the
cluster. While the use of eigenvectors to discover equations may suggest sim-
ilarities, the approach presented here is quite different. We are not trying to
describe previously discovered clusters, but give method of pattern discovery
(defining itemsets and rules) in the spirit of association rule mining. Further we
allow for arbitrarily complex nonlinear relationships to be discovered, while [1]
essentially describes a cluster as a linear subspace. Third, by adding an extra
constraint to the optimization, we guarantee that patterns discovered will not
involve statistically independent attributes.

There is some similarity between our approach and equation discovery [9,18].
Equation discovery algorithms are in principle capable of discovering minimum
variance patterns we propose. However the discovery methodology, is quite dif-
ferent in both cases. In fact our approach was more than an order of magnitude
more efficient than Lagrange [9], an equation discovery system. Combining the
two approaches, such as using equation discovery to give explicit formulas for
minimum variance patterns is an interesting topic for future research.

2 Minimum Variance Itemsets

Let us begin by introducing the notation and some preliminary concepts.
We assume that we are dealing with a dataset D whose attributes are all

numeric. Non-numerical attributes can be trivially converted to {0, 1} attributes.
To avoid overflow problems while computing powers, we also assume that the
attributes are scaled to the range [−1, 1].

Attributes of D will be denoted with letters X with appropriate subscripts,
and sets of attributes with letters I, J, K. If t ∈ D is a record of D, let t.X
denote the value of attribute X in t, and t[I] the projection of t on a set of
attributes I. Following [15,8] we now define support of arbitrary functions. Let
f be a function of an attribute set I. Support of f in D is defined as

suppD(f) =
∑

t∈D

f(t[I]).



174 S. Jaroszewicz

We are now ready to describe minimum variance itemsets, the key concept of
this work. Our goal is to discover arbitrary relationships between the attributes
of D. The patterns we are looking for have the general form

f(I) = f(X1, X2, . . . , Xr),

where we expect the function f to somehow capture the relationship among the
variables of I = {X1, X2, . . . , Xr}.

Let us look at two examples. Suppose we have two attributes x and y, such
that x = y. The equality between them can be represented by an equation

f(x, y) = x− y = 0,

so one possible function f for this case is x− y. Suppose now that x, y represent
random points on a circle of radius 1. The function f could now be f(x, y) = x2+
y2−1 since the relationship can be described by an equation x2 + y2−1 = 0. Of
course if noise was present the equalities would be satisfied only approximately.

The common pattern of the two above cases is, that the function f was iden-
tically equal to zero for all points (records) in the data. It is thus natural, for a
given itemset I, to look for a function f(I) which minimizes

∑

t∈D

[f(t[I])]2 = suppD(f2).

We will call this quantity the variance of f around zero, or briefly variance,
and a function minimizing it, a minimum variance itemset. This concept should
not be confused with statistical notion of variance, which would be around the
function’s mean (we consciously abuse the terminology).

This formulation has a problem. The function f(I) ≡ 0 minimizes variance
but does not carry any information. Also 1

2f necessarily has lower variance than
f , although it does not carry any more information. To avoid such situations, we
add a normalizing condition guaranteeing that the function f is of appropriate
magnitude. Several such normalizations will be presented below.

2.1 Formal Problem Statement

The above discussion was in terms of arbitrary functions. In practice we have
to restrict the family of functions considered. Here we choose to approximate
the functions using polynomials, such that the degree of every variable does not
exceed a predefined value d. Let I = {X1, . . . , Xr} be a set of attributes. Then
any function f of interest to us can be represented by

fc(I) = f(X1, . . . , Xr) =
d∑

α1=0

· · ·
d∑

αr=0

c(α1,...,αr)X
α1
1 · · ·Xαr

r ,

where c(α1,...,αr) are the coefficients of the polynomial. We will organize all coef-
ficients and monomials involved in two column vectors (using the lexicographic
ordering of exponents):
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c = [c(0,...,0), c(0,...,1), . . . , c(d,...,d)]T ,

x = [X0
1 · · ·X0

r , X0
1 · · ·X1

r , . . . , Xd
1 · · ·Xd

r ]T .

We now have fc = cT x = xT c, and fc
2 = cT (xxT )c. Notice that xxT is a

(d+1)r× (d+1)r matrix, whose entries are monomials with each variable raised
to power at most 2d. So the entry in row corresponding to (α1, . . . , αr) and
column corresponding to (β1, . . . , βr) is Xα1+β1

1 · · ·Xαr+βr
r .

We now use the trick from [15] in order to compute support of fc
2 for various

values of c without accessing the data. Let t[x] denote the x vector for a given
record t, i.e. t[x] = [t.X0

1 · · · t.X0
r , t.X0

1 · · · t.X1
r , . . . , t.Xd

1 · · · t.Xd
r ]T . Now

suppD(fc
2) =

∑

t∈D

cT (t.x · t.xT )c = cT

(
∑

t∈D

t.x · t.xT

)

c = cT SD c, (1)

where SD is a (d + 1)r × (d + 1)r matrix, whose entry in row corresponding
to (α1, . . . , αr) and column corresponding to (β1, . . . , βr) contains the value of
suppD(Xα1+β1

1 · · ·Xαr+βr
r ). It thus suffices to compute supports of all neces-

sary monomials, after which support of fc
2 for any coefficient vector c can be

computed without accessing the data, using the quadratic form (1).
We now go back to the problem of normalizing fc such that the trivial solution

fc ≡ 0 is avoided. We tried various normalizations:

(a) require that the vector c be of unit length, ||c|| = 1,
(b) require that weighted length of c be 1,

∑
α wαcα

2 = 1, this allows for penal-
izing high degree coefficients.

(c) require that support of fc
2(I) be equal to one, under the assumption that

all variables in I are distributed uniformly.
(d) require that support of fc

2(I) be equal to one, under the assumption that
all variables in I are distributed as in D, but are independent.

When no outliers were present, all of those approaches worked reasonably
well. However in the presence of outliers only approach (d) was useful. Other
methods picked fc such that it was close to zero everywhere except for the few
outlier points. Also, this approach guarantees that patterns involving statistically
independent attributes will have high minimum variance.

We thus limit further discussion to normalization based on the requirement
(d). Imagine a hypothetical database DI in which each attribute is distributed
as in D but all attributes are independent. The support of fc

2 under such an
independence assumption can be computed analogously to (1) as suppI(fc

2) =
cT SI c, where an element of SI in row corresponding to (α1, . . . , αr) and column
corresponding to (β1, . . . , βr) is given by

suppDI
(Xα1+β1

1 · · ·Xαr+βr
r ) = suppD(Xα1+β1

1 ) · · · suppD(Xαr+βr
r ),

since variables X1, . . . , Xr are assumed to be independent.
We are now ready to formally define a minimum variance itemset for a given

set attributes I:
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Definition 1. A real valued function f on a set of attributes I is called itemset
on I. The variance of f is defined as

var(f) = suppD(f2).

A minimum variance itemset on I is a function f∗(I) = fc∗(I) on a set of
attributes I which minimizes cT SD c subject to a constraint cT SI c = 1.

2.2 Finding the Minimum Variance Itemset for a Set of Attributes

To find a minimum variance itemset for a given I we use the method of Lagrange
multipliers [11]. The Lagrangian is L(c, λ) = cT SD c − λ

(
cT SI c− 1

)
. Using

elementary matrix differential calculus [24,13] we get ∂L
∂c = 2SD c− 2λSI c, and

after equating to zero we get the necessary condition for the minimum:

SD c = λSI c. (2)

This is the generalized eigenvalue problem [10,24,13], well studied in computa-
tional linear algebra. Routines for solving this problem are available for example
in LAPACK [10]. If (c, λ) is a solution to (2), a candidate solution c′ to our opti-
mization problem is obtained by scaling c to satisfy the optimization constraint:
c′ = c√

cT SI c
. Variance of this solution (using substitution and Equation 2) is

var(fc′) = suppD(fc′2) = c′TSD c′ =
cT

√
cTSI c

· SD c
√

cT SI c
=

λcT SI c
cTSI c

= λ.

The variance of c′ is thus equal to the corresponding eigenvalue, so the final
solution c∗ is the (scaled) eigenvector corresponding to the smallest eigenvalue.

The above property can be used to speed up computations, since finding only
the smallest eigenvalue can be done faster than finding all eigenvalues (routines
for finding a subset of eigenvalues are also available in LAPACK).

Another important observation is that matrices SD and SI are symmetric
(follows directly from their definition) and positive semi-definite (support of a
square of a function cannot be negative). This again allows for more efficient
computations, see [10,24] for details.

2.3 Example Calculation

We will now show an example calculation on a toy example of a dataset D =
{(1,−2), (−2, 4), (−1, 2)} over attributes x, y, for d = 1. x = [1, x, y, xy]T , and
c = [c(0,0), c(1,0), c(0,1), c(1,1)]T . Now, suppD(1) = 3, suppD(x) = −2, suppD(y) =
4, suppD(xy) = −12, suppD(x2) = 6, suppD(y2) = 24, suppD(x2y) = 16,
suppD(xy2) = −32, suppD(x2y2) = 72. Supports under independence assump-
tion are suppI(y) = suppD(x0) · suppD(y) = 12, suppI(x2y) = suppD(x2) ·
suppD(y) = 24, etc. The SD and SI matrices are

SD =

⎡

⎢
⎢
⎣

3 −2 4 −12
−2 6 −12 16
4 −12 24 −32

−12 16 −32 72

⎤

⎥
⎥
⎦ , SI =

⎡

⎢
⎢
⎣

9 −6 12 −8
−6 6 −8 24
12 −8 24 −48
−8 24 −48 144

⎤

⎥
⎥
⎦ .
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After solving the generalized eigenvalue problem and rescaling we get c∗ =
[0,−0.5,−0.25, 0]. The correct relationship −2x− y = 0 has been discovered.

Let us now discuss closure properties of minimum variance itemsets.

Theorem 1. Let I ⊆ J be two sets of attributes, and f∗(I) and g∗(J) be mini-
mum variance itemsets on I and J respectively. Then var(g∗) ≤ var(f∗).

In other words variance is upward closed, adding attributes reduces the variance.
The proof is a trivial consequence of the fact that a function of I is also a function
of J (constant in variables in J \ I), so the lowest variance attainable for J is at
least as low as the variance attainable for I, and may be better.

The problem is that we are interested in itemsets with low variance, so if one
is found, all its supersets are potentially interesting too. The solution is to set
a minimum threshold for variance, and then find smallest (in the sense of set
inclusion) sets of attributes for which the variance (of the minimum variance
itemset or the itemset’s best equality or regression rule) is less than the specified
threshold. Similar approach has been used e.g. in [6]. The algorithm is a simple
adaptation of the Apriori algorithm [2], and is omitted due to lack of space.

3 From Itemsets to Rules

In order to facilitate the interpretation of minimum variance itemsets two types
of rules are introduced. The first kind are what we call equality rules.

Definition 2. An equality rule is an expression of the form g(I) = h(J), where
I ∩ J = ∅, and g and h are real valued functions on I and J respectively. The
variance of the rule is defined as var(g(I) = h(J)) = suppD

(
(g − h)2

)
.

Thus equality rules capture relationships between disjoint groups of attributes
which are usually easier to understand than the itemsets defined above.

A minimum variance equality rule g∗(I) = h∗(J) is defined, similarly to
the minimum variance itemset case above, as a pair of functions for which
var (g∗(I) = h∗(J)) is minimum subject to a constraint that the support of
(g − h)2 is equal to one, under the independence assumption. Finding mini-
mum variance equality rules for given I and J can be achieved using the same
approach as finding minimum variance itemsets. If we approximate both g and
h with polynomials, I = {X1, . . . , Xr} and J = {Xr+1, . . . , Xr+s}, and denote

cg = [c(0,...,0), c(0,...,1), . . . , c(d,...,d)]T ,

xg = [X0
1 · · ·X0

r , X0
1 · · ·X1

r , . . . , Xd
1 · · ·Xd

r ]T ,

ch = [d(0,...,1), d(0,...,2), . . . , d(d,...,d)]T ,

xh = [X0
r+1 · · ·X1

r+s, X
0
r+1 · · ·X2

r+s, . . . , X
d
r+1 · · ·Xd

r+s]T ,

we get g = cT
g xg, h = cT

h xh, and g+h = [cg|ch]T ·[xg|xh]. Note that the constant
term is omitted from ch and xh, since it is included in cg and xg.
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From that point on, the derivation proceeds exactly as in the case of min-
imum variance itemsets in order to find the vector [cg |ch]∗ which minimizes
suppD

(
(g + h)2

)
subject to suppI

(
(g + h)2

)
= 1. After finding the solution,

signs of coefficients in ch are reversed to get from a minimum variance for g + h
to the desired minimum variance for g − h.

Finding a minimum variance equality rule on I and J is analogous to finding
a minimum variance itemset f on I ∪ J subject to an additional constraint that
f be a difference of functions on I and J . Thus, the minimum variance of an
itemset on I∪J is less than or equal to the minimum variance of an equality rule
on I and J . If an itemset has high minimum variance, we don’t need to check
rules which can be generated from it, since their variance is necessarily high too.

Another kind of rules are what we call regression rules.

Definition 3. A regression rule is an expression of the form X = g(I), where
X is an attribute, I a set of attributes, X 
∈ I, and g is a function of I.

It is easy to see that regression rules are equality rules with additional constraint
that one side of the rule must contain a single attribute in the first power only.
It is thus clear that minimum variance of a regression rule cannot be lower
than minimum variance of a corresponding equality rule. Also, the definition of
variance of a regression rule as well as discovery of minimum variance regression
rules are analogous to the case of equality rules and are thus omitted.

Minimum variance regression rules correspond to standard least-squares poly-
nomial regression with X being the dependent variable. Therefore minimum vari-
ance equality rules can be seen as a generalization of standard polynomial regres-
sion to allow functions of dependent variables, and minimum variance itemset as
a further generalization allowing for discovering patterns not involving equality.

4 Illustrative Examples

In this section we show some illustrative examples of patterns discovered, and
give some suggestions on how to elicit understandable knowledge from them.

We first apply the method to a small artificial dataset. The dataset has three
attributes x, y, z, and is generated as follows: (x, y) are randomly chosen points
on a unit circle and z is set equal to x. The relationships among the attributes
are therefore z = x, x2 + y2 = 1, and z2 + y2 = 1.

We applied the algorithm with d = 2 without any minimum variance thresh-
old. Only pairs of attributes were considered. Generated patterns are given in
the table below (terms with negligibly small coefficients are omitted)

attrs. min. variance equation

{x, y} 6.62 · 10−15 −1.99 + 1.99x2 + 1.99y2

{y, z} 6.62 · 10−15 −1.99 + 1.99y2 + 1.99z2

{x, z} 1.24 · 10−17 −0.663x2 + 1.325xz − 0.663z2 = −0.663(x − z)2

The minimum variance itemsets for {x, y} and {y, z} do not require any com-
ment. They clearly capture the correct relationship x2 + y2 = 1.
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contours of the minimum variance item-
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The case for {x, z} is more interesting. Instead of the expected x − z = 0
we obtained an equivalent, but more complicated expression (x − z)2 = 0. The
reason is that the degree of the approximating polynomial exceeds that of the
true relationship. As a result, two of the eigenvalues are equal to zero, and
any linear combination of their corresponding eigenvectors is also a minimum
variance solution. To avoid such situations we recommend decreasing the value
of d until a minimum value is found at which the relationship still occurs. In the
currently analyzed case lowering d to 1 gives the expected −0.997x+0.997z = 0.
Another approach, to use regression rules, which also helps in this case.

It should be noted that the best regression rules for {x, y} and {y, z} have vari-
ance of about 1, so the relationship would not have been discovered by standard
regression analysis (indeed the correlation coefficient is about 8 · 10−3).

Let us look at another example which shows that minimum variance itemsets
are able to represent patterns much reacher than those usually described using
algebraic equations. Consider an artificial dataset which has two attributes x, y ∈
[−1, 1] and contains points randomly generated on the set where the condition
x < 0 ∨ y < 0 is true. Thus no points are present in the [0, 1] × [0, 1] square.
The correlation coefficient is −0.359, thus not very high. The minimum variance
itemset on xy however, has small values everywhere except for the [0, 1]× [0, 1]
square and the minimum variance of {x, y} is 0.024. The representation is of
course not perfect, but tends to approximate the data quite well (Figure 1). We
will see a similar pattern occurring in real life datasets (sonar) below.

Extrasolar planets data. This section shows more examples of minimum variance
patterns. The dataset used is about currently known extrasolar planets, and can
be downloaded from [21]. Six attributes were chosen and 197 planets selected
for which all those attributes were defined. The attributes are described in the
table below:
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attribute description

pl. mass mass of the planet

period orbital period around star

semi-major axis distance of the planet from star

ang. distance angular distance of planet from star (as seen from Earth)

star distance distance of planet’s star from Earth

star mass mass of the star

Attributes were scaled to [0, 1] range, so units are omitted. Afterwards, logarith-
mic transform was applied. The advantage of the data is that there are some
well established relationships which should be discovered if the method works
correctly. This experiment is similar to that from [18], but uses more data and
involves additional relationships.

First, semi-major axis divided by the distance of the star from Earth is equal
to the tangent of the angular distance of the star from the planet. Second, by
Kepler’s law, the square of orbital period of a planet is proportional to the cube
of the semi-major axis of its orbit. If planet and star masses are known, the
proportionality constant can also be determined [17]. It is possible that further
relationships exist, but due to the author’s lack of astronomical knowledge they
will not be discussed. We begin by looking at pairs of attributes. The value d = 2
was used, with no minimum variance requirement.

The strongest relationship was discovered between planet’s period and its
semi-major axis with minimum variance of 6.83 · 10−5. The relationship is
shown in Figure 2. The data points are marked with circles. Contour plot of the
minimum variance itemset is also shown. According to Kepler’s law there is a
linear relationship between logarithms of the two values. The minimum variance
itemset is not linear (due to overfitting and ignoring the star mass) but captures
the relationship well. Decreasing the degree or examining rules, reveals the linear
nature. The clarity of the relationship is surprising since, planet and star masses
also play a role. It turned out, that masses of most stars in the data are very
close to each other, and planets’ masses are too small to distort the relationship.

To explore the relationship further we examined patterns of size 3 and 4 con-
taining attributes period and semi-major axis. As expected, the most interest-
ing pattern of length three added the star mass attribute (minimum variance
6.85 · 10−7), and by adding pl. mass, a four attribute set was obtained with
variance 8.33 · 10−10 — an almost perfect match.

The triple of attributes which had the lowest variance of 9.72 · 10−8 was
semi-major axis, ang. distance and star distance. This is expected due
to the deterministic relationship among them described above. All equality rules
involving those attributes had very low variance too. Variance of regression rules
was higher (in the range of 10−4).

An interesting subset of the above triple, is the pair semi-major axis and
ang. distance. Its minimum variance is 0.027, but the variance of all rules
between those attributes is much higher, about 0.15 in all cases. This is another
example of a low variance itemset which cannot be captured by equality rules.
The situation is depicted graphically in Figure 3, where data points and the
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contours of the itemset are shown. It can be seen that there is a clear relationship
between the attributes, high values of semi-major axis correspond to low values
of ang. distance and vice versa. But the relationship is not functional, and is
not well described by rules. Nevertheless, the minimum variance itemset has
values close to zero in the areas where there is a lot of data points. Minimum
variance patterns are thus capable of discovering, and describing groupings of
data points which are otherwise hard to define.

The sonar dataset. We now turn our attention to the well known sonar dataset.
Since our method is somewhat sensitive to outliers, we removed every record
which contained a value more than 3 standard deviations from the mean for
some attribute. An interesting pattern has been found between attributes 15
and 44, see Figure 4. We can see that high values of both attributes never
occur together. The actual relationship is reminiscent of the second artificial
dataset presented above. The correlation coefficient is only −0.114; based on it,
the pattern would have most probably been missed by traditional correlation
analysis. This situation is similar to ‘holes in data’ analyzed in [4] which are well
approximated in our framework.

5 Performance Analysis

We now present performance evaluation of the minimum variance itemset mining
algorithm. The default parameters were d = 2 and maximum of r = 3 attributes
per itemset. We found this combination to be flexible enough to discover complex
patterns, which are still reasonably easy to interpret.

We used three datasets for testing: the extrasolar planet and sonar datasets
described above, and a large Physics dataset from the KDD Cup 2004 competi-
tion with 80 attributes and 50000 records.

The algorithm has been implemented in C. Figure 5 (left) shows the influ-
ence of the parameter d on computation time for various minimum variance
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thresholds. The parameter r is kept equal to the default value of 3. Figure 5
(right) shows the influence of the r parameter (d is kept equal to 2). Note that
charts for d = 2 (left) and for r = 3 (right) in Figure 5 are identical since they
correspond to the same parameter values. While performance of the algorithm is
worse than for association rules in case of binary attributes (this is to be expected
due to a much reacher structure of the data), the algorithm is practically applica-
ble even for large datasets. It is interesting to see that, below a certain threshold,
the minimum variance parameter has little influence on computation time.

We have also compared our approach with an equation discoverer Lagrange [9]
(horizontal lines in Figure 5 (right)). The parameters were set such that it would
discover polynomials of degree at most 2 involving at most 2 or 3 variables. Our
approach was more than an order of magnitude faster than Lagrange. This is not
surprising, as for every set of attributes Lagrange conducts an exhaustive search
compared to a single relatively efficient eigenvalue computation in our case.

6 Conclusions and Future Research

A method for discovering arbitrarily complex relationships among numerical at-
tributes has been presented. Its application yields itemsets and rules in the spirit
of associations discovery. It has been shown experimentally that the approach
does indeed produce interesting patterns, which capture various types of com-
plex relationships present among the attributes. It is capable of finding patterns
which would have been missed by standard polynomial regression analysis.

Future work is planned on increasing performance, e.g. by using bounds for
eigenvalues to prune itemsets early.
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Abstract. The problem of computing unordered tree kernels based on
exhaustive counts of subtrees has known to be #P-complete. In this
paper, we develop an efficient and general unordered tree kernel based
on bifoliate q-grams that are unordered trees with at most two leaves and
just q nodes. First, we introduce a bifoliate q-gram profile as a sequence
of the frequencies of all bifoliate q-grams embedded into a given tree.
Then, we formulate a bifoliate tree kernel as an inner product of bifoliate
q-gram profiles of two trees. Next, we design an efficient algorithm for
computing the bifoliate tree kernel. Finally, we apply the bifoliate tree
kernel to classifying glycan structures.

1 Introduction

A rooted labeled tree is a fairly general data structure that models a wide vari-
ety of hierarchical data including parse trees for natural language texts, semi-
structured data such as HTML/XML, and biological data such as RNA sec-
ondary structures and glycans.

In this paper, we concentrate on a binary classification problem based on
kernel methods with support vector machines (SVMs). Let X be the input space
(e.g. a set of rooted labeled unordered trees in this paper), and Y = {+1,−1} be
the output domain. A training set is a finite set of training data, denoted by D =
{(x1, y1), . . . , (xm, ym)} � X×Y . The purpose of the learning procedure in SVMs
is to give a decision function fd(·) from a training set D. The learning procedure
outputs a decision function fd : X → Y so that yi = fd(xi) approximates the
probabilistic relation between inputs and outputs.

A number of tree structure classification problems have been successfully ad-
dressed by kernel methods with SVMs in the past decade. In order to apply kernel
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methods to a specific domain, the most important task is to design similarity
functions, so called kernel functions, between two objects. One of the earliest
work on tree kernels was by Collins and Duffy [4], who presented a parse tree
kernel as a counting function of common subtrees between two parse trees. In-
spired by the parse tree kernel, Kashima and Koyanagi [9] extended it to general
rooted labeled ordered trees and proposed a quadratic-time algorithm. These
kernels employ the convolution kernel [5] as their design framework by counting
all the common subtrees between two trees.

On the other hand, in our previous work [12,13,14,15,16], we introduced an or-
dered tree q-gram as a rooted ordered labeled tree isomorphic to a path. We further
proposed a spectrum tree kernel [14] and a gram distribution kernel [13] based on
the frequencies of all common q-grams embedded in a given tree, which are more
efficient and representative than the tree kernels by Kashima and Koyanagi [9].

In contrast to ordered trees, Kashima, Sakamoto, and Koyanagi [10] recently
showed that their approach to design kernel functions inherently for unordered
trees , in which the order of sibling nodes is arbitrary, leads to #P-completeness.
It is also known that the problem of computing the similarity of trees based
on tree edit distance [20] and alignment of trees [7] is intractable. On the other
hand, Vishwanathan first presented a fast kernel for unordered trees [17] based
on a string kernel using suffix trees. Kailing et al. also proposed a tractable
algorithm for computing the structural dissimilarity between unordered trees [8].
The effectiveness of these methods, however, has yet to be proven.

In this paper, we aim at developing an expressive and efficient kernel for rooted
labeled unordered trees by circumventing the issues in the previous work. In fact,
our kernel counts all the common subtrees with q nodes and at most two leaves,
as an extension of all the common paths with q nodes (q-grams) [12,13,14,15,16]
and restricting to all the common subtrees between two trees [9]. We call such a
subtree a bifoliate q-gram.

Our contributions are as follows: (1) we introduce a bifoliate q-gram profile
as a sequence of the frequencies of all bifoliate q-grams embedded in a given
tree; (2) we design an efficient algorithm for computing a bifoliate tree kernel
as an inner product of the bifoliate q-gram profiles of two trees; (3) we apply
the bifoliate tree kernel to classifying glycan structures in bioinformatics and
compare the performance of the bifoliate tree kernel with the kernel based on
the structural similarity of unordered trees proposed by Kailing et al. [8].

This paper is organized as follows: in Section 2, we introduce a bifoliate q-gram
and a bifoliate q-gram profile. We also formulate the bifoliate tree kernel of two
given trees as an inner product of their bifoliate q-gram profiles. In Section 3,
we design an efficient algorithm Bifoliate Profile to compute a bifoliate q-gram
profile of a given tree, which runs correctly in O(qd min(q, d)ln) time, where n,
d and l are the number of nodes, the depth, and the number of leaves, respec-
tively. This implies that we can also compute bifoliate tree kernels efficiently. In
Section 4, we apply the bifoliate tree kernel to classifying glycan structures. Our
experimental results illustrate the effectiveness of our kernel. Section 5 concludes
the paper by summarizing our contributions.
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2 Bifoliate Tree Kernel

We first introduce the basic notions used in this paper. A tree is a connected
graph without cycles. For a tree T = (V, E), we sometimes denote v ∈ T instead
of v ∈ V , and |T | instead of |V |. A rooted tree is a tree with one node r chosen
as its root . For each node v and u in T , let UPv(u) be the unique path from v
to u in T .

For a root r of T , we call the number of edges in UPr(v) the depth of v (in
T ) and denote it by dep(v). In particular, since UPr(r) has no edges, we set
dep(r) = 0. For a tree T , we call max{dep(v) | v ∈ T } the depth of T and denote
it by dep(T ).

The parent of v(�= r) is the node adjacent to v on the path UPr(v). We say
that u is a child of v if v is the parent of u. A leaf is a node having no children,
and a branch is a node having just two children. We denote the number of all
leaves in T by lvs(T ).

A rooted tree is ordered if a left-to-right order for the children of each node
is given, and it is unordered otherwise. A rooted tree T = (V, E) is labeled (by
an alphabet Σ of labels) if there exists an onto function l : V → Σ such that
l(v) = a (v ∈ V, a ∈ Σ). In the remainder of this paper, we simply call a rooted
unordered labeled tree and a rooted ordered labeled tree a tree and an ordered
tree, respectively.

Let T be an ordered tree with the root v and the children v1, . . . , vm of v.
The postorder traversal (postorder , for short) of T is obtained by visiting vi

(1 ≤ i ≤ m) in order, recursively, and then visiting v.
Let T be an ordered tree with n nodes and suppose that the sequence v1 · · · vn

is the postorder of T . Also let p(vi) be the index j such that vj is a parent of vi

for every 1 ≤ i ≤ n− 1. Then, we formulate the depth sequence D(T ), the label
sequence L(T ) and the parent sequence PS (T ) of T as follows.

D(T ) = dep(v1) · · · dep(vn), L(T ) = l(v1) · · · l(vn), PS (T ) = p(v1) · · · p(vn−1).

For the depth sequence D of T , we denote max{d | d ∈ D} by max D. It is
obvious that dep(T ) = max D.

Example 1. Consider the tree T in shown at the top of Figure 1. The depth
sequence D(T ), the label sequence L(T ), and the parent sequence PS (T ) of T
are given below the tree in the figure.

In this paper, as an extension of tree q-grams [12,13,14,15,16], we introduce the
concept of bifoliate q-grams . Note that we are here only concerned with their
structures. Thus, their labels are omitted.

Definition 1. A bifoliate q-gram is a tree with at most two leaves and exactly
q nodes, denoted by P q

k,b for �q/2� ≤ k ≤ q − 2 and 0 ≤ b ≤ k − 1 and P q
q−1,0,

where k is the depth of a leaf located relatively far from the root (hereafter called
a deeper leaf) and b is the depth of a branch.

Note that the range of the depth b of the branch varies depending on the depth
k of the deeper leaf.
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D(T ) 3 3 2 3 2 1 3 2 3 2 3 2 1 0
L(T ) b a b b a b b a a b b a a a
PS(T ) 3 3 6 5 6 14 8 13 10 13 12 13 14 −

Fig. 1. The tree T and its corresponding depth, label, and parent sequences

Proposition 1. The number of bifoliate q-grams is �q/2�(q − �q/2� − 1) + 1.

Proof. Let p = �q/2�. Note that the depth k of a deeper leaf varies from p to
q − 2. If k = q − i (2 ≤ i ≤ q − p), then the number of bifoliate q-grams is
q−2(i−1). Since i = q−k, the number of bifoliate q-grams for k (p ≤ k ≤ q−2)
is 2k+2−q. Hence, the number of bifoliate q-grams is

∑q−2
k=p(2k + 2− q) + 1. �	

We denote the number �q/2�(q − �q/2� − 1) + 1 in Proposition 1 by q̃.

Proposition 2. Let 
 be a lexicographic order on depth sequences, where a
deeper leaf is regarded as the left-most leaf in ordered trees. Then, the bifoliate
q-gram P q

k,b is the (k(q − k − 1)− b + 1)-th element under 
.

Proof. It is obvious that the first element of a bifoliate q-gram under 
 is P q
q−1,0.

Let j be an integer such that 2 ≤ j ≤ q̃. By Proposition 1, in the case that
k = q−i, there exist q−2(i−1) bifoliate q-grams. Since P q

k,b is the (k−b−(i−2))-
th element from the first element P q

k,k−i+1 under 
 for k = q − i, P q
k,b is the

1 +

{
i−1∑

l=2

(q − 2(l − 1)) + k − b− (i− 2)

}

-th element from P q
q−1,0 under 
. By

replacing i with q − k, we obtain the statement in Proposition 2. �	

Hence, we also denote the j-th bifoliate q-gram under 
 by Qq
j (1 ≤ j ≤ q̃).

Example 2. All of the bifoliate 5-grams with their depth sequences are described
in Figure 2. Here, the deeper leaf is set to the left.

For labeled trees, we denote a bifoliate q-gram by a pair (Qq
j , L(Qq

j)), where Qq
j

is an ordered tree and L(Qq
j) is its label sequence. It is obvious that L(Qq

j) ∈ Σq.

Definition 2 (cf. Zhang & Shasha [19]). Let T and P be trees. Then, we
say that P matches T at a node v if there exists a bijection f from the nodes of
P into the nodes of T satisfying the following conditions.
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Q5
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3 = P 5
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2,0

43210 33210 32210 32110 21210

Fig. 2. All of the bifoliate 5-grams

1. f maps the root of P to v.
2. Suppose that f maps x to y and x has children x1, . . . , xl. Then, y has chil-

dren y1, . . . , ym such that m ≥ l and there exists an injection g : {1, . . . , l} →
{1, . . . , m} such that f(xi) = yg(i).

3. l(x) = l(f(x)) for each x ∈ P .

Definition 3. Let T be a tree and (Qq
j , w) be a bifoliate q-gram for 1 ≤ j ≤ q̃

and w ∈ Σq. Then, we say that (Qq
j , w) is embedded into T if there exists a node

v in T such that (Qq
j , w) matches T at v. Furthermore, we denote the number

of (Qq
j , w) embedded into T by Lq(T )[Qq

j , w].

We order all of the strings in Σq by w1, . . . , w|Σ|q . For 1 ≤ j ≤ q̃, we denote the
sequence (Lq(T )[Qq

j , w1], . . . , Lq(T )[Qq
j , w|Σ|q ]) by Lq(T )[Qq

j ].

Definition 4. For a tree T , the following sequence Lq(T ) of the number of every
embedded bifoliate q-gram into T is a bifoliate q-gram profile of T .

Lq(T ) = (Lq(T )[Qq
1], . . . , Lq(T )[Qq

q̃]).

We are now ready to formulate the bifoliate tree kernel of two trees T1 and T2

as an inner product of their bifoliate q-gram profiles as follows.

Definition 5 (Bifoliate Tree Kernel). For rooted labeled unordered trees T1

and T2 and a fixed integer q ≥ 2, the bifoliate tree kernel Kq(T1, T2) is defined
as

Kq(T1, T2) = 〈Lq(T1),Lq(T2)〉.
For q = 1, we assume that Kq(T1, T2) denotes the inner product of the label
frequency vectors of T1 and T2.

3 Computing a Bifoliate q-Gram Profile

In this section, we design the algorithm to compute a bifoliate q-gram profile.
First, we prepare subroutines as given in Algorithm 1, where D, L and PS denote
the depth sequence, the label sequence and the parent sequence, respectively, of
an ordered tree.
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procedure pseq(D)
/* D: a depth sequence */
T [0] ← |D|;1

for i = |D| − 1 downto 1 do2

PS [i] ← T [D[i] − 1]; T [D[i]] ← i;3

return PS ;4

procedure labels(i, k, PS , L)
/* PS: a parent sequence, L: a label sequence */
w ← ε; pt ← i;5

for m = 1 to k do6

w ← w · L[pt]; pt ← PS [pt];7

return (w, pt);8

procedure shift table(q, D)
/* shift is assumed to be an empty array */
for d = maxD − 1 downto 1 do9

for k = 1 to q − 1 do10

if d+ k ≤ maxD then11

shift [d] ← shift [d] ∪ {(d+ k, k)};12

return shift ;13

Algorithm 1. Subroutines for computing a bifoliate q-gram profile

The algorithm pseq(D) constructs the parent sequence from a given depth
sequence D. The algorithm labels(i, k, PS , L) concatenates the labels from the
node indexed by i with length k by selecting nodes and labels according to a
parent sequence PS and a label sequence L. “·” and ε denote the concatena-
tion of two strings and an empty string, respectively. The algorithm shift table
constructs the table shift (cf., [12,13,14,15,16]).

Using these subroutines, we can design the algorithm Bifoliate Profile to com-
pute a bifoliate q-gram profile of a given tree described as in Algorithm 2. Here,
we use an ordered q-gram [12,13,14,15,16], which is an ordered tree with q nodes
isomorphic to a path whose depth of the left leaf is k, and we denote it by P q

k .
We also denote ≺ as a lexicographic order on Σq. Furthermore, the algorithm
adopts the table id [j][k] in order to store the indices of the left leaf of P p

k for
some p < q. We will show below that p = D[i] + 2k + 1− j for a current depth
D[i].

Example 3. Consider the tree T in Example 1 (Figure 1) and let q be 5. Note
first that the result applying the algorithm shift table to the depth sequence
D(T ) is given in Figure 3.

Figure 4 describes the transition of the table id in the algorithm Bifoli-
ate Profile. Here, the first and second lines are the depth sequence D(T ) of
T and index i, respectively. The numbers in bold in the i-th column satisfies the
condition of line 7 at the (i + 1)-th iteration of the main loop.



190 T. Kuboyama, K. Hirata, and K.F. Aoki-Kinoshita

procedure Bifoliate Profile(q, D, L)
/* D: a depth sequence, L: a label sequence */
/* initialize: Every P [k][b][w] is assumed to be zero. */
/* initialize: Every id [k][j] is assumed to be empty. */
PS ← pseq(D); shift ← shift table(q,D);1

for i = 1 to |D| do2

for j = maxD downto 1 do3

for k = 1 to min(j, q − 1) do4

p← D[i] + 2k + 1 − j;5

s← j − k; /* s : the depth of the root of P p
k */6

if 2 ≤ p ≤ q and q − p ≤ s then7

foreach c ∈ id [j][k] do8

(w1, ) ← labels(c, k,PS ,L);9

(w2, pt) ← labels(i, p− k − 1,PS ,L);10

if (|w1| < |w2|) or (|w1| = |w2| and w1 ≺ w2) then11

(w1, w2) ← (w2, w1);12

wr ← L[pt ]; pt← PS [pt ]; w ← w1 · w2 · wr;13

/* pt : the index of the root of P p
k */

if j �= D[i] + k then14

/* not P p
p−1 */

(w3, ) ← labels(pt, q − p,PS ,L); w ← w · w3;15

P [|w1| + q − p][q − p][w]++;16

else if p = q then P [q − 1][0][w]++;17

if D[i] < maxD then18

foreach (j, k) ∈ shift [D[i]] do19

id [j][k + 1] ← id [j][k + 1] ∪ id [j][k];20

id [j][k] ← ∅;21

id [D[i]][1] ← id [D[i]][1] ∪ {i};22

return P ;23

Algorithm 2. Bifoliate Profile

Consider the indices 1, 2 and 3 in the third column for index 4. They denote
the left leaves of ordered 5-grams whose index of the right leaf is 4.

For index 1 ∈ id [3][2], the algorithm Bifoliate Profile constructs the label
sequences w1 = l(v1)l(v3) = bb and w2 = l(v4)l(v5) = ba. Since |w1| = |w2|,
w2 ≺ w1 and wr = l(v4) = b, w is set to bbbab. Furthermore, it holds that
3 �= D[4]+2 = 5. Since p = 3+2·2+1−3 = 5 = q, the algorithm Bifoliate Profile
constructs w3 = ε and increments the frequency of bifoliate 5-gram (P 5

2,0, bbbab),
where |w1| = 2.

Moreover, for index 2 ∈ id [3][2], the algorithm Bifoliate Profile constructs the
label sequences w1 = l(v2)l(v3) = ab and w2 = ba. Since |w1| = |w2|, w1 ≺ w2

and wr = l(v4) = b, w is set to baabb by replacing w1 with w2. Similarly to
the case for index 1, the algorithm Bifoliate Profile increments the frequency of
bifoliate 5-gram (P 5

2,0, baabb).
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d (j, k)

2 (3, 1)
1 (2, 1), (3, 2)

0

1

2

3

P1,0 (k=1) P2,0 (k=2)

j

d

j

d

j

d

5 5

Fig. 3. The table shift for q = 5 and maxD = 3

id 3 3 2 3 2 1 3 2 3 2 3 2 1 0

j k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 1 1 1, 2 4 7 9 11
3 2 1, 2 1, 2 1, 2, 4 7 7 7,9 7,9 7, 9, 11
3 3 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1,2,4 1, 2, 4, 7, 9, 11

2 1 3 3 3, 5 8 8 8,10 8, 10 8, 10, 12
2 2 3, 5 3,5 3, 5 3, 5 3, 5 3,5 3, 5 3, 5, 8, 10, 12

1 1 6 6 6 6 6 6 6 6, 13

Fig. 4. The transition of the table id in the algorithm Bifoliate Profile

On the other hand, for index 3 ∈ id [2][1], the algorithm Bifoliate Profile
constructs the label sequences w1 = l(v3) = b and w2 = ba. Since |w1| < |w2|
and wr = l(v4) = b, w is set to babb by replacing w1 with w2. Furthermore, it
holds that 3 �= D[4] + 2 = 5. Since p = 3 + 2 · 1 + 2 − 3 = 4 and q − p = 1,
the algorithm Bifoliate Profile constructs w3 = l(v6) = a and increments the
frequency of bifoliate 5-gram (P 5

3,1, bbbab), where |w1|+ q − p = 2 + 5− 4 = 3.
As a result, we obtain the frequencies of bifoliate 5-grams in T that are non-

negative for every P q
k,b as in Figure 5.

P 5
k,b (w, frequency)

P 5
2,0 (babaa , 1) (abaaa , 2) (bbbaa , 1) (bbbab, 1) (baaba , 3) (bbaaa , 2) (baabb, 1)
P 5

3,0 (babaa , 1) (bbbaa , 1) (ababa , 1) (baaba , 2) (abbaa , 1)
P 5

3,1 (bbaba , 1) (babaa , 2) (abaaa , 2) (babba , 1) (ababa , 1) (baaaa , 2)
P 5

3,2 (babba , 1)

Fig. 5. The frequencies of bifoliate 5-grams in T that are non-negative

Theorem 1. For a tree T , let D = D(T ), L = L(T ), n = |T |, d = dep(T )
and l = lvs(T ). Then, the algorithm Bifoliate Profile(q, D, L) described in Algo-
rithm 2 is correct and runs in O(qd min(q, d)ln) time.

Proof. First, we discuss the correctness of the algorithm Bifoliate Profile.
Consider an ordered p-gram P p

k with left leaf v and right leaf u, where j =
dep(v) and d = dep(u). Also let s be j−k. Then, it holds that p = d+2k+1− j,
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and s is the depth of root r of P p
k (Figure 6(a)). This corresponds to lines 5–6

in the algorithm Bifoliate Profile.
Let k′ be the depth of a deeper leaf of P p

k . If q − p > s, then there exists no
bifoliate q-gram P q

k′+q−p,q−p. Otherwise, if q − p ≤ s (line 7), then the algorithm
Bifoliate Profile finds the label sequences w1 on the path from v to the child of
r on UPr(v) and w2 on the path from u to the child of r on UPr(u) (lines 9–10)
using the subroutine labels . By comparing the length of w1 with that of w2, the
algorithm Bifoliate Profile determines which of v and u is a deeper leaf, and it then
constructs the label sequence w12r = w1 · w2 · wr (where wr = l(r)) of a bifoliate
q-gram P p

|w1|,0 by setting v (corresponding to w1) to a deeper leaf (lines 11–12).
Furthermore, if j �= d + k, then it holds that p �= q, so the algorithm Bifoli-

ate Profile finds a path from r to r′ in Figure 6(b) that is the root of a given tree
with length q−p and its label sequence w3 (line 15). Hence, w12r3 = w1 ·w2 ·wr ·w3

is the label sequence of a bifoliate q-gram P q
|w1|+q−p,q−p, and the algorithm Bi-

foliate Profile increments the bifoliate q-gram (P q
|w1|+q−p,q−p, w12r3) in the table

P (line 16). Otherwise, if j = d + k and p = q, that is, u is the root of an or-
dered q-gram P q

q−1, then the algorithm Bifoliate Profile increments the bifoliate
q-gram (P q

q−1,0, w12r) in table P (line 17).

�

��

����	
�����

���	�������	
���

����	������	�����

���	����	����

�

�

���	�������

��	
	������

� ���	���

���	
�����

��		
��������

(a) (b)

Fig. 6. The relationship of the parameters in P p
k (left) and P q

k,b (right)

The algorithm Bifoliate Profile maintains the indices already searched in a
table id [j][k]. Note that l ∈ id [j][k] means that vl is the left leaf of P p

k . For an
index i, the algorithm Bifoliate Profile first stores it in id [D[i]][1] (line 22). Next,
for every (j, k) ∈ shift [D[i]], the algorithm Bifoliate Profile shifts the indices in
id [j][k] to id [j][k+1] (lines 19–21), because D[i] and j are the depths of the root
and the left leaf of P q

k , respectively. In this case, the algorithm Bifoliate Profile
finishes searching for P q

k and begins searching for P q
k+1.

Next, we consider the running time of the algorithm Bifoliate Profile. Since
|id [j][k]| ≤ l and labels(i, k, PS , D) runs in O(k) time, the running time of the
routine from lines 8 to 17 is O(ql). Here, in lines 16 and 17, we use the hash
function to increment the element of P [·][·][w] (by encoding a string w as a
numeral), so the running time is assumed to be constant. Furthermore, the al-
gorithms pseq(D) and shift table(q, D) (line 1) run in O(n) and O(qd) time,
respectively. Since |shift [D[i]]| ≤ q for every i, the algorithm Bifoliate Profile
runs in O(n + (d×min(q, d) × ql + ql)n) = O(qd min(q, d)ln) time. �	
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Table 1. Summary of the glycan data used in experiments

data set # of data avg.# of nodes avg.height

leukemic cells 192 16.1 6.0
other blood components 294 10.4 5.4

colon cancer 93 7.8 4.2
other colon-related 46 9.7 4.5

4 Experimental Results

In this section, we evaluate the effectiveness of our kernel by empirically compar-
ing its predictive performance in glycan structure classification problems with
two other kernels for unordered trees. Glycans are defined as the third major
class of biomolecules next to DNA and proteins and play important roles in
various fundamental biological processes such as cell-cell interactions. Glycan
structures are modeled as either ordered or unordered trees according to its con-
text since the level of appropriate abstractions in modeling the structures depend
on the problem to be addressed (cf. [1]). In this paper, we focus on unordered
tree modeling of glycans.

We consider the following two competitors to the bifoliate tree kernel. One is
the tree kernel by Vishwanathan [17] based on a string kernel, and the other,
denoted by KH(T1, T2), is defined based on three simple vectors used in the
dissimilarity measure proposed by Kailing et al. [8], which are the vectors of the
degree histogram Vd(T ), the height histogram Vh(T ), and the label histogram
Vl(T ) for an unordered tree T . We define the kernel KH(T1, T2) for two trees T1

and T2 as the sum of the inner products of each pair of vectors.

KH(T1, T2) = 〈Vd(T1), Vd(T2)〉+ 〈Vh(T1), Vh(T2)〉+ 〈Vl(T1), Vl(T2)〉.

These kernels were implemented in Ruby and executed on a Windows XP ma-
chine with a Pentium M processor running at 1.50 GHz and 750 MB of memory. We
used LIBSVM [3] as the SVM implementation, and we computed the area under
the ROC curve (AUC) for measuring performance. AUC is the prevailing perfor-
mance measure for a decision function with a kernel that separates positive exam-
ples from negative ones. The AUC values range from 0.5 to 1.0, where the value 0.5
indicates a random separation and the value 1.0 indicates a perfect separation.

The glycan data that we used in the first experiment basically follows Hizukuri
et al. [6]; we retrieved the glycan structures from the KEGG/GLYCAN database
[11] and used the annotations from the CarbBank/CCSD database [2]. Based on
these annotations, we extracted those structures annotated with blood com-
ponents, labeled as leukemic cells, and other non-leukemic blood components
(erythrocyte, serum, and plasma). Leukemia is a cancer of the blood induced by
an abnormal proliferation of blood components (usually white blood cells). In
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Fig. 7. The areas under the ROC curves for two experiments

the second experiment, we employ two data sets from colon, i.e. glycans related
to colon cancer, and others not related to cancer but related to the colon. We
retrieved 29 distinct node labels. We have summarized the data used in our
experiments in Table 1.

Figure 7 shows the comparison of the results by the proposed method while vary-
ing the parameter q. The kernel by Vishwanathan [17] is indicated by “VS”, and
the kernel based on dissimilarity proposed by Kailing et al. [8] is indicated by “Kail-
ing.” All of the performance measures were calculated with 5-fold cross validation.

Our tree kernel achieves the best performances at q = 5 and q = 3 for the
leukemia and colon data sets, respectively. The tree kernel due to Vishwanathan
also achieves relatively good performance in spite of its restricted expressive
power. Since the nodes near the leaves tend to determine the functionalities of
glycans, this data set seems to be well-suited to this tree kernel.

Also, it is interesting to see that the value of q achieving the highest predictive
performance varies between the two experiments, which indicates that the q
size of the most characteristic features varies according to the data set. This
corresponds with previous knowledge that structure of glycan biomarkers are
varied depending on the cell population being studied.

5 Conclusion

We have presented a novel kernel function for rooted labeled unordered trees.
Given two trees, our tree kernel counts the number of common bifoliate q-grams
between them, which are trees with at most two leaves and a fixed number of
nodes q. We conducted comparative experiments to illustrate the efficiency of
our kernel by applying it to the classification problem of glycan structures. Our
kernel outperformed the existing kernels for unordered trees in its predictive
performance. The experiments also suggested that the performance depends on
the fixed number q, and the optimal value q to give the best performance depends
on the data set.
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In the future, we plan to design a new tree kernel based on the bifoliate tree
kernel so that we can select an appropriate parameter q to achieve better average
performance regardless of the data set.
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Abstract. All learning algorithms perform very well when provided
with a small number of highly relevant features. This paper proposes a
constructive induction method to automatically construct such features.
The method, named GLOREF (GLObally RElevant Features), exploits
low-level interactions between the attributes in order to generate glob-
ally relevant features. The usefulness of the approach is demonstrated
empirically through a large scale experiment involving 13 classifiers and
24 datasets. Results demonstrate the ability of the method in generating
highly informative features and a strong positive effect on the accuracy
of the classifiers.

Keywords: Machine Learning, Attribute Interactions, Feature
Extraction.

1 Introduction

Attribute interactions may increase the complexity of a classification task by dis-
persing the instances that belong to the same class across the attribute space.
In such cases, the initial attributes, when taken individually, appear to be only
remotely related to the class attribute. To uncover the predictive power of such
data, the learning systems need to analyze the interacting attributes simultane-
ously and then build a model that takes into account the interactions observed.
As explained by several researchers, this is a complex task that surpasses the
ability of many existing machine learning systems.

In particular, Rendell & Seshu [12] emphasizes the fact that current machine-
learning techniques rely on the assumption of simple attribute interactions which
make them sub-optimal in domains with important attribute interactions. Fo-
cusing on the attribute evaluation process, Kononenko & Hong [6] and Bloedorn
& Michalski [1] explain that all learning approaches that evaluate the usefulness
of each attribute individually using quality measures such as the information
gain, the gini-index, the distance measure, or the j-measure are likely to gener-
ate inaccurate or too complex models whenever there are important attribute
interactions. There have been numerous works on trying to improve the ability of
the naive-Bayes with respect to attribute dependencies (e.g., [7]). Specific issues
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such as the replication and the fragmentation problems with decision trees are
also directly related to the lack of capacity of current techniques to deal with
attribute interactions [13]. From an applied perspective, it has been argued that
attribute interactions are becoming the norm in KDD applications and failing
to address this problem adequately has important consequences on the perfor-
mance obtained [2]. All of these observations call for novel practical techniques
that can facilitate learning in domains with important attribute interactions.

This paper proposes such a technique. It is a constructive induction tech-
nique that augments the initial representation with new features which make
explicit the important information hidden in the interactions among the initial
attributes. The new features are self-contained globally relevant features that
are suitable for learning algorithms assuming independence. As it will be shown
experimentally, the new features can also increase the performance of more com-
plex learning algorithms.

After presenting motivation and related work, the paper introduces the
method to derive the new globally relevant features. Sect. 5 offers a large-scale
experiment illustrating the usefulness of the approach and the last section con-
cludes the paper.

2 Motivation

In this research, the concept of relevance designates the usefulness of a given
attribute to predict the values of the class attribute. We assume that relevance
is computed through a univariate measure such as the gain ratio [11]. Moreover,
we use the term globally relevant attribute to designate an attribute that is
relevant over the full training set.

To illustrate the potential effects of attribute interactions on relevance and
the usefulness of globally relevant features, let us consider a simple binary clas-
sification task with three attributes X1, X2, and X3 that follow a multivariate
normal distribution defined by the following class-conditioned mean vectors and
variance-covariance matrix (same for both class values):

u0 =

⎡

⎣
70
70
40

⎤

⎦ u1 =

⎡

⎣
70
70
55

⎤

⎦ Σ =

⎡

⎣
650.0 0 −160

0 50 −115
−160 −115 350

⎤

⎦

From the mean vectors (u0 and u1), we conclude that X3 is the only relevant
attribute for this task while Σ indicates that X1 and X2 interact with X3.
Fig. 1 (a) shows a simple dataset generated from the above distribution. As seen
from the scatter plots of X3 versus X1 and X3 versus X2, it is difficult to separate
the positive from the negative instances. This difficulty is further illustrated by
the class-conditional density curves for X3; the great overlap between the two
curves clearly indicates that any decisions based on X3 will be highly error-
proned. The null gain ratio and χ2 values confirm that, from a univariate global
perspective, X3 appears powerless in predicting the class values.
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Fig. 1. The effects of interactions on relevance and a globally relevant feature

To uncover the power of the data, we propose a constructive induction method
capable of generating a new globally relevant feature Z that cancels the negative
effects of X1 and X2 on X3. The new feature is shown in Fig. 1 (b). We observe
that the transformation removed a great proportion of the initial dispersion since
the instances of the same class are now grouped together. As illustrated by the
class-conditional density curves for Z, the new feature is highly relevant and its
power is observable across the full dataset independently of the other attributes.

The data transformation approach proposed in this paper can automatically
generate globally relevant features from complex interactions between any con-
tinuous attribute and an arbitrary large number of influencing attributes of pos-
sibly different types (continuous, nominal, binary). No information about the
underlying distribution of the data or the nature of the interactions is required.

3 Related Work

Related research has been conducted in constructive induction and statistics.
A large proportion of the constructive induction techniques are designed to be
integrated with existing learning approaches and are not producing a new rep-
resentation (e.g.:FRINGE[10], AQ17-DCI[1], and OCI[9]). With these systems,
the focus is on the improvement of the accuracy of existing methods by oppo-
sition to be on the assessment and removal of the negative effects of attribute
interactions. Hu [4] noticed the lack of general data pre-processing methods that
are independent of specific learning algorithms. Their solution was to propose
the GALA systems. These systems generate highly comprehensible features but
the types of interactions that it can handle are limited to either prototypical re-
lationships or boolean expressions. The GALA systems do not directly assess the
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interactions observed in the data and do not produce a model that describes the
effects of these interactions. Recent work by Jakulin & Bratko [5] introduced the
notion of interaction gain to analyse attribute interactions along with visualiza-
tion methods. They proposed an experiment showing the benefits of Cartesian
product as an approach to resolve the most important interactions.

The topic of interactions has been extensively studied in statistics. PCA, ICA,
and contextual normalization methods (e.g., [8]) are examples of methods that
have been used in machine learning to help assess the structure of the interactions
and produce new features that keep the most important information (according
to some criteria). On the other hand, these methods do not rely on the class
information, which limit their usefulness for classification tasks [3]. We also notice
that most of them can only handle continuous attributes.

In summary, we observe a lack of paradigm-independent supervised construc-
tive induction techniques that directly address the issues of attribute interac-
tions while being capable of handling both continuous and discrete attributes. The
GLOREF approach we propose in this paper is an attempt to fulfill this need.

4 The GLOREF Approach

We now describe the GLOREF (GLObally RElevant Features) approach which
we propose for the construction of globally relevant features that account for the
initial interactions among the attributes. GLOREF works as a pre-processor and
can be used with any standard learning algorithm. The input is a training dataset
which contains at least one numerical attribute. The GLOREF approach has two
phases: the analysis of relevance and the generation of globally relevant features.
The analysis phase computes information to characterize the interactions among
the attributes along with their impact on learning. The results of this analysis are
stored in data structures named relevance matrices. The feature generation phase
uses the relevance matrices to search for transformation models. Finally, these
transformation models are applied to augment the initial data representation and
the learning can proceed as usual with the augmented data representation. The
following subsections describe the analysis of relevance, the automatic generation
of globally relevant features, and application considerations.

4.1 Analysis of Relevance

The analysis of relevance takes as input the training dataset and, optionally,
two lists defining the explanatory and the response attributes. If these lists are
not provided, we simply generate default lists of explanatory and response at-
tributes containing all initial attributes and all initial continuous attributes,
respectively1. As output, the analysis of relevance returns a set of relevance
1 The use of the terms response and explanatory attributes follows statistical nomen-

clature for the analysis of interactions. On the other hand, it is important to notice
that the end objective of the proposed method is not to generate new features that
approximate the response attributes but instead generate new features that have
higher global relevance than any of the initial attributes.
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matrices. These matrices provide information on the relevance of the response
attributes over partitions based on the explanatory attributes.

The analysis starts by creating a partition of the training dataset S =
{s1, s2, . . . , sN} for each explanatory attribute. For example, a partition
based on a nominal explanatory attribute X with m possible values, noted
{X(1), X(2), . . . , X(m)}2, generates m subsets S1, S2, . . . , Sm where each Si =
{s ∈ S | valX(s) = X(i)} for i ∈ {1, 2, . . . , m}. If the explanatory attribute is
continuous, we first discretize it and then partition based on the discretized val-
ues instead of the original ones. Since the discretized attributes produced are not
going to be used for classification, there is no need to use a supervised discretiza-
tion technique in this step. A simple unsupervised method such as equal-width
or equal-frequency is more appropriate. By default, we use three intervalls for
discretization. As shown by the experimental results in Sect. 5, this seems to be
an adequate choice accross a variety of domains although it is likely that even
better performance could be obtained by increasing the number of intervals.

The next step computes the relevance information. This step considers one
explanatory and one response attributes at a time. To evaluate the effect of
the explanatory attribute, we evaluate the relevance of the response attribute
in each of the subsets (Si) and in the full training dataset (S). Following the
standard approach to characterize relevance of continuous attributes in decision
tree building, we first sort the instances along the response attribute. We then
define a split for each observed value of the response attribute in the given
set and compute how many examples of each class would fall on each side of
the split. Using these numbers, we compute the gain ratio for each possible
split. Finally, we define two additional values noted λ1 and λ2 that identify the
majority class on each side of the split. We name these two values compatibility
characteristics since they will be used to determine whether the subsets of the
partitions interact in a compatible manner or not (i.e., if they reduce the global
relevance or not). All information computed during this step is stored in a set
of relevance matrices noted RM1, RM2, . . . , RMm, and RM, where RMi contains
the information computed using subset Si, and RM the information from S.

To illustrate, let us consider the analysis of the effects of X2 on the relevance
of X3 for the domain introduced above. First, the partitioning step needs to
discretize X2. Let us suppose that this discretization did lead to a new attribute
X2 discretized with 5 possible values (0, 1, 2, 3, and 4). In this case, 6 relevance
matrices would be generated (one for each subset and one for the global dataset).
The table on the left hand side in Fig. 2 shows part of the relevance matrix for
the subset S1, which includes all instances s such that valX2 discretized(s) = 0.
There are 18 entries in this relevance matrix which corresponds to the number
of distinct values observed for the response attribute X3 in the given subset. For
each cut point, the relevance matrix shows the threshold value, the number of
instances per class in each side of the split (columns ‘Cumul.’ and ‘Bal.’), the
compatibility characteristics λ1 and λ2

3, and the relevance in terms of gain ratio.

2 The missing value (indicated by ‘?’) is considered like any other possible values.
3 The symbol NA indicates that no class is in majority in the given side of the split.
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80

4Global

X2 discretized

X3

0

? 0 1 2 3

Num Thresh. Cumul. Bal. λ1 λ2 Rel.

1 97.36 {7,10} {0,1} 1 1 0
2 91.67 {7,9} {0,2} 1 1 0
3 89.07 {7,7} {0,4} NA 1 .0
4 84.45 {7,6} {0,5} 0 1 .02

. . .
11 76.32 {7,1} {0,10} 0 1 .5 �

. . .
17 57.83 {2,0} {5,11} 0 1 .0
18 43.43 {1,0} {6,11} 0 1 .0

Fig. 2. A relevance matrix and the relevance graph to analyze the effects of X2 on X3

The best cut point for this subset (denoted by �) is at threshold 76.32 which
splits the dataset into two subsets of 8 (7 from 1st class and 1 from 2nd class)
and 10 (all from 2st class) instances, respectively.

Visualizing Relevance Matrices and Detecting Harmful Interactions.
The information contained in the relevance matrices for a given pair of attributes
can be effeciently visualized through a Relevance Graph. For example, let us
consider the graph in Fig. 2 which shows the effects of X2 on the relevance of X3

for the same example. This relevance graph is composed of 6 curves, one for each
relevance matrix. The one on the left (named global relevance curve) accounts
for the global relevance matrix (i.e., RM) while the following ones (named local
relevance curves) are for the relevance matrices corresponding to the subsets of
the partition based on X2 discretized (i.e., RM1, RM2, . . . , RM5). In particular,
the first local relevance curve (labeled ’0’) corresponds to the relevance matrix
shown on the left side. Each point on a given curve represents one entry in the
corresponding relevance matrix. The threshold values for the response attribute
are shown along the vertical axis. The color (or gray scale) and symbol (e.g.,
square, cross, plus) of each point designate the compatibility characteristics λ1

and λ2, respectively. There is one color (symbol) for each possible value of λ1

(λ2). The relevance of a given point is shown by the horizontal distance that
separates it from the vertical reference line located on the left side of each curve.
The larger the distance; the better is the cut point in producing pure partitions.

The effect of a given interaction on the global relevance is directly assessed
by comparing the relevance of the best cut points (the ones that are the farthest
away from their vertical reference line) in the local relevance curves with the
relevance of the best cut point in the global relevance curve. If one or more
best cut points in local curves are more relevant than the best global cut point,
then the interaction has a negative effect on the global relevance of the response
attribute. The relevance graph in Fig. 2 illustrates this situation since several
of the most relevant cut points in the local relevance curves (indicated on the
graph by �) are more relevant than the best global cut point.
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4.2 Automatic Generation of Globally Relevant Features

A key idea behind the GLOREF approach comes from the observation that the
global relevance of the response attribute can be modified by altering the aligne-
ment of the local relevance matrices. Such a re-alignement can be accomplished
by modifying the values of the response attribute within each local relevance
matrix by a value ωi for i = 1, . . . , m. The result is a new feature Z defined as

Z = Γ (X, Y ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y + ω1 if X = X(1)
Y + ω2 if X = X(2)
...
Y + ωm if X = X(m)

(1)

where Y is the response attribute, X(1), X(2), . . . , X(m) are the distinct values
for the explanatory attribute X , and {ω1, ω2, . . . , ωm} are the parameter values
of the model. The objective is to set the ωi values in a way that maximizes the
global relevance of the new feature. We first present the algorithm developed to
resolve this optimization problem and then introduce the approach to cope with
interactions involving several explanatory attributes.

Univariate Transformations. A brute force solution to select the parameter
values {ω1, ω2, . . . , ωm} is to evaluate all possible alignments of the local rele-
vance curves and select the alignment with the best global relevance. Recognizing
that the number of possible alignments is exponential in the number of relevance
curves, this solution would not be practical in most real world applications. We
therefore introduce the heuristic approach described in Fig. 3.

The algorithm starts by handling a special case that happens when all the
most relevant cut points in the various relevance matrices are compatible (equal
values for both compatibility characteristics λ1 and λ2). In this case, the algo-
rithm directly returns the optimal solution which aligns these most relevant cut
points on an arbitrary threshold noted T∗4. The relevance graph in Fig. 2 illus-
trates this situation since all maximally relevant cut points are compatible (same
color and same symbol). When the most relevant cut points are not all compat-
ible, the algorithm proceeds with a gready search. This search gradually builds
the complete solution by combining local solutions. It starts by finding the best
alignment between the first two relevance matrices and store the result into a
temporary relevance matrix noted RMcum. In the following iteration, it combines
RMcum with the third relevance matrix and so on until all local relevance ma-
trices have been processed. There are three steps in each iteration of the search
procedure: reduction of the two relevance matrices to be considered (ReduceRM),
search for the best local alignment (UnivExhaustiveSearch), and update of the
current solution (ComputeGlobalRM). In the first step, ReduceRM removes many
of the cut points from the two relevance matrices considered in order to reduce
4 By default, the algorithm sets the ωi values such that the best global cut point will

be at threshold value 0.
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Algorithm UnivGLOREF

Input : The set of relevance matrices RM1,RM2, . . . ,RMm for pair of attributes

Output : A set of values {ω1, ω2, . . . , ωm} maximizing the relevance of a new feature.

if best cut points from all subsets Si have identical λ1 and λ2

{T∗
1,T

∗
2, . . . ,T

∗
m} ← best cut point thresholds in {RM1,RM2, . . . ,RMm}

Ω∗ ← {−T∗
1,−T∗

2, . . . ,−T∗
m}

else

{ω1, ω2, . . . , ωm} ← {0, 0, . . . , 0}, RMcum ← RM1

For i = 2 to m

/* Simplify current relevance matrices */

RMcum ← ReduceRM(RMcum), RMi ← ReduceRM(RMi)

/* Find current best solution and update previous solution */

{ω, ωi} ← UnivExhaustiveSearch(RMcum,RMi)

For j = 1 to i− 1 ωj ← ωj + ω

/* Compute global relevance info for current partial solution */

RMcum ← ComputeGlobalRM({RM′
i−1,RM′

i}, {ωi−1, ωi})
Ω∗ ← {ω1, ω2, . . . , ωm}

return Ω∗

Fig. 3. Heuristic to efficiently generate univariate GLOREF features

the number of potential alignments to evaluate. Precisely, it removes all entries
except the most relevant cut point for each observed combination of λ1 and λ2

and the two points with minimal and maximal thresholds. In the second step,
UnivExhaustiveSearch evaluates all potential alignments of the two reduced
relevance matrices and returns the two ω values that maximize the global rele-
vance of a new feature that would be created by combining the subsets consid-
ered. Finally, ComputeGlobalRM updates the current solution by adding the new
ω values to the previous global solution. Once all relevance matrices have been
considered, the heuristic returns the set of parameter values {ω1, ω2, . . . , ωm}
selected for the generation of a new globally relevant feature (Eq. 1).

Multivariate Transformations. The direct extension of the univariate solu-
tion to handle the multivariate case would require a multivariate partionning of
the initial dataset along with the analysis of the resulting combinatorial number
of subsets. Efficiency concerns and the risk of having to proceed with insufficient
data in the various subsets call for an alternative method. Accordingly, we pro-
pose an inductive process where each phase has two steps: Feature Generation
and Feature Selection.

The generation step constructs features in progressive order of complexity
by combining pairs of features from the previous phase. In the first phase, it
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uses the univariate transformations to create multivariate features with two ex-
planatory attributes. For instance, if there are two univariate transformations
Z1 = Γ (X1, Y ) and Z2 = Γ (X2, Y ), then the generation step in the inital phase
would create a new multivariate feature Z = Γ ({X1, X2}, Y ). In the second
phase, the generation step uses the selected features from the first phase to cre-
ate features involving either three or four explanatory attributes, and so forth.
Each multivariate feature is constructed through an iterative optimization pro-
cess. Precisely, to construct a multivariate feature Z involving l explanatory
attributes X1, . . . , Xl and a response attribute Y we repeat the following steps

1. Using the univariate procedure described above, compute for each Xi a set
of parameter values noted Ωt

i that optimizes the relevance of Γ (Xi, Z
t−1).

2. Update the values of the new feature using

Zt =
l∑

i=1

Γ (Xi, Z
t−1; Ωt

i )− (l − 1) ∗ Y (2)

where t > 1, Z0 = Y , and Γ (Xi, Z
t−1; Ωt

i) is equivalent to (1) with the parameter
values specified by the set Ωt

i . The repeated summation allows us to jointly
realign the univariate relevance curves in a way that maximize the relevance of
the new feature. The process stops when there is no significant improvements
in the global relevance of Z between two iterations or when a maximal number
of iterations has been performed. In practice, only a few iterations are required
to converge (between two and five in most cases). This process ensures that the
number of parameters to estimate grows linearly with the number of explanatory
attributes and avoids the multivariate partitioning issues mentioned above. The
reuse of the efficient univariate heuristic presented above further improve the
performance of the approach.

The feature selection determines which features are allowed to proceed to the
next phase of the inductive process. To be selected, a new multivariate feature
must have a higher global relevance than any of the attributes involved in its
creation. To control the risk of overfitting, we use only 70% of the training data
during the creation of the features and keep the remaining part for the feature
selection step. The inductive process stops when less than two new features are
selected for the following iteration. Finally, all univariate transformation models
and all selected multivariate ones are applied to augment the initial represen-
tation with globally relevant features. We notice that the overall computational
complexity of the approach is polynomial in the number of features provided
as input to each iteration. By applying feature selection prior to each iteration,
we ensure that the approach stays practical regardless of the number of initial
attributes.

4.3 Application Issues and Smoothing of Transformations

When computing the values for the new features, two issues may arise: missing
values and unseen values. Missing values might be observed for one or more of



Generation of Globally Relevant Continuous Features for Classification 205

Table 1. Global relevance of the best initial attribute and GLOREF feature

Dataset
Initial GLOREF
GR Type GR Diff (%)

autos .55 Mul .92 .37 (69 %)
balance-scale .17 Mul .67 .49 (286 %)
breast-w .55 Mul .86 .31 (57 %)
cars .44 Mul .54 .10 (23 %)
colic .28 Mul .38 .10 (36 %)
credit-a .42 Mul .47 .05 (12 %)
diabetes .18 Mul .30 .12 (64 %)
glass .80 Mul .98 .17 (21 %)
heart-statlog .35 Mul .59 .24 (68 %)
hepatitis .33 Mul .55 .22 (65 %)
ionosphere .50 Mul .73 .22 (44 %)
liver .05 Mul .31 .26 (482 %)

Dataset
Initial GLOREF
GR Type GR Diff (%)

N1F1 .29 Mul .63 .34 (117 %)
N1MN .15 Mul .29 .14 (91 %)
N2F1 .59 Mul .79 .20 (34 %)
N2MN .17 Uni .32 .15 (88 %)
N3F1 .56 Mul .90 .34 (60 %)
N3MN .17 Mul .41 .24 (145 %)
N4F1 .31 Mul .84 .53 (169 %)
N4MN .17 Mul .98 .81 (488 %)
N5F1 .38 Mul .58 .20 (53 %)
N5MN .19 Mul 1.0 .81 (435 %)
N6F1 .27 Mul .53 .26 (97 %)
N6MN .16 Mul .41 .25 (163 %)

the explanatory attributes or for the response attribute. The former case does
not cause any problem as our implementation treats this situation explicitly by
including the missing value as one of the potential values for all explanatory
attributes. However, if the response attribute has a missing value then the new
feature would also need to have a missing value. The problem of unseen val-
ues arises when the model tries to process an instance for which the observed
explanatory attribute value has not been seen during the generation of the trans-
formation model. Since the given value was not part of the training dataset, the
models do not include an entry for this value and therefore there is no corre-
sponding ω parameter value. In this case, the value of the new feature equals
the value of the response attribute (i.e., no transformation).

The discretization of continuous explanatory attributes may introduce unnec-
essary discontinuities in the new features. We avoid this problem by smoothing
the ω values when applying transformations that involve one or more contin-
uous explanatory attributes. We use the inverse distance weighting smoothing
method to adjust the ω values based on the observed values of the explanatory
attribute(s).

5 Experimental Evaluation

To evaluate the feasibility of the GLOREF approach, we propose a large-scale
experiment involving 24 datasets (12 artificial and 12 from the UCI repository)
and 13 classifiers implemented in the WEKA package. The artificial datasets
contain numerical attributes only with pre-defined univariate and simple mul-
tivariate interactions. Several of the UCI datasets contain a mix of continuous
and discrete attributes. The maximal number of attributes is 35. We followed
the 10-fold cross-validation methodology. In each fold, we performed the fol-
lowing tasks: (1) apply GLOREF on the training data to learn univariate and
multivariate transformation models, (2) use these models to augment the ini-
tial representation with GLOREF features, (3) for each learning system, learn a
model using only the initial attributes and another model using the augmented
representation, and (4) evaluate the accuracy of the two models on test data.
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Accuracy with vs without GLOREF
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Classifier
Accuracy improvement Better Worse
Avg Std Min Max (Significant)

BaggingDT 1.10 3.67 -3.8 11.2 16 (6) 7 (0)
BoostingDT 1.01 3.82 -4.1 14.6 13 (5) 10 (0)
DecisionStump 9.87 9.81 -.45 32.8 22 (13) 2 (0)
DecisionTable 5.33 7.41 -3.5 21.5 18 (12) 6 (0)
HyperPipes 24.4 17.4 -6.0 61.2 22 (22) 2 (1)
IB1 3.01 3.49 -1.9 10.5 18 (7) 4 (0)
IB5 2.70 3.10 -.30 8.40 9 (5) 3 (0)
J48 2.87 4.89 -5.6 12.9 17 (10) 7 (0)
KernelDensity 2.00 3.97 -5.8 10.1 13 (8) 10 (0)
NaiveBayes 4.82 6.21 -3.7 18.7 19 (11) 5 (1)
OneR 10.5 10.9 -1.3 34.9 19 (16) 5 (0)
PART 3.27 3.73 -4.6 10.0 20 (8) 4 (0)
SMO 1.78 4.09 -3.0 16.3 12 (2) 6 (0)
Artificial 7.54 9.75 -1.2 47.5 135(95) 17(0)
UCI 3.79 9.54 -6.0 61.2 83(30) 54(2)
All 5.78 9.82 -6.0 61.2 218(125) 71(2)

Fig. 4. The effects of GLOREF features on accuracies

We first consider the ability of GLOREF to produce new globally relevant
features by comparing the expected gain-ratio of the best initial attribute and
the best GLOREF feature. We compute the expected gain-ratio of the best ini-
tial (resp. GLOREF) attribute by averaging the gain-ratios of the best initial
(resp. GLOREF) attribute based on test data from the various folds of the cross-
validation procedure. Table 1 presents the results. The gain ratio for the best
GLOREF feature is systematically higher that the one for the best initial at-
tribute. The standard t-test to compare group means reveals that all increases
are statistically significant at the 0.05 level. The relatively large variation in per-
centage of increase (from 12% to 488%) suggests that the datasets are not all
equally affected by the problem of attribute interactions. We repeated the analy-
sis using the χ2 measure and obtained consistent results. Therefore, we conclude
that the GLOREF approach succeeded in producing new highly globally relevant
features.

The graph on the right side of Fig. 4 offers a quick view of the usefulness of
the new features for learning. There is one point for each combination of learning
system and dataset for which the use of GLOREF features significantly changed
the accuracy. All points located above the diagonal line indicate positive results
and inversely for the points located below. The table on the left side details
the results by classifier. The first four columns provide the statistics on increase
in accuracy due to the GLOREF features while the last two columns count
the number of better and worse results with statistically significantly results in
parentheses (the number of datasets for which the addition of the GLOREF fea-
tures did not change the results equals the difference between 24 and the sum of
the ‘Better’ and ‘Worse’ columns). Out of the 312 experiments (13 classifiers *
24 datasets), 127 lead to a significant difference in accuracy and only 2 of these
are on the negative side. As expected, learning systems which are powerless with
respect to attribute interactions such as HyperPipes, OneR, and DecisionStump
profited the most from the GLOREF features with average increase in accuracy
of 24%, 10.5% and 9.8%, respectively. Focusing on statistically significant results,
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we notice that all classifiers have been positively affected by the GLOREF fea-
tures, with the number of statistically significant wins varying from 2 to 22 over
24. Moreover, the column ‘Max’ clearly shows that complex approaches such as
bagging, boosting and support vector machine (SMO) can also greatly benefit
from highly globally relevant features. The relatively important standard devia-
tions tend to confirm the heterogeneousness of the selected datasets. Finally, by
analyzing the results by datasets, we observe that the levels of increase in accu-
racy tend to match the increase of global relevance between the best GLOREF
and best initial feature. In other words, large improvements in global relevance
generally result in high increases in accuracy and inversely.

6 Conclusion

This paper links the problem of attribute interactions to the concept of attribute
relevance. After discussing the potential effects of interactions on relevance, we
introduce the GLOREF method to model interactions and construct new glob-
ally relevant features. The autonomous solution is evaluated through a large-scale
experimentation involving 24 datasets and 13 learning systems. The analysis of
the relevance of the new features shows that the GLOREF system generates
highly globally relevant features for all datasets, with some increases in gain ra-
tio that are close to 500%. Adding the GLOREF features to the initial represen-
tation significantly improved the accuracy in more than 40% of the experiments,
while reducing it in only less than 1%. Although these results are strongly posi-
tive, it is possible that the heuristics proposed are not optimal. Future work will
investigate alternative heuristics to further improve performance.
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Abstract. Bulletin board system (BBS) is popular on the Internet. This paper at-
tempts to identify communities of interest-sharing users on BBS. First, the paper
formulates a general model for the BBS data, consisting of a collection of user
IDs described by two views to their behavior actions along the timeline, i.e., the
topics of the posted messages and the boards to which the messages are posted.
Based on this model which contains no explicit link information between users,
a uni-party data community generation algorithm called ISGI is proposed, which
employs a specifically designed hierarchical similarity function to measure the
correlations between two different individual users. Then, the BPUC algorithm
is proposed, which uses the generated communities to predict users’ behavior
actions under certain conditions for situation awareness or personalized services
development. For instance, the BPUC predictions may be used to answer ques-
tions such as “what will be the likely behavior user X may take if he/she logs
into the BBS tomorrow?”. Experiments on a large scale, real-world BBS data set
demonstrate the effectiveness of the proposed model and algorithms.

1 Introduction

Bulletin board system (BBS) is an important information exchanging and sharing plat-
form on the Internet. The analysis of useful patterns from BBS data has drawn much
attention in recent years [5,6,8].

A BBS is an electronic “whiteboard” which usually consists of a number of boards,
the discussion areas relating to some general themes (e.g. Sports). On each board, users
read and/or post messages on different topics, which may be well determined by the
titles of the message. In a BBS, one could easily start a discussion on a specific topic or
express his/her viewpoint on an existing topic.

Since users with different backgrounds, different interests may access the same BBS,
the BBS essentially serves as a mapping to the real world society, such that the relation-
ships between the individual users may be discovered and analyzed through discovering
and learning this mapping. Various relationships between users that hold sufficient in-
terestingness to mine through the BBS data include the users with a similar interest or
a similar taste, or a similar behavior action, and given what type of users, what spe-
cific behavior action may be taken if they share a similar specific interest. For example,
two individuals who happen to be both basketball fans are likely to go to the same

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 209–221, 2008.
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boards under a topic related to basketballs of a BBS. Clearly, effective discovery of
these relationships between users of a BBS through mining the BBS data is essential
and extremely helpful in situation awareness and in the development and delivery of
personalized services to users.

Community generation is an effective way to identify groups of data items satisfying
certain relationship constraints in a large amount of data, where the identified groups are
called communities. Based on the availability of link information between data items,
methods could be divided into two categories [9]. One is bi-party data community gen-
eration (BDCG), where link information between data items is explicitly provided be-
sides the features that describe the data items. Such link information is important and
methods of this category usually generate communities by combining link analysis and
clustering techniques (e.g., [1]). Successful applications include [4], [2], [3], etc. The
other category, in contrast, is uni-party data community generation (UDCG), where the
link information is not available and must be obtained by further exploring additional
information from data items.

In this paper, the BBS data are mined to discover the interest-sharing user groups,
or communities. In particular, the topics of the posted messages and the boards the
messages are posted to are considered as the two attributes of a user’s behavior actions
to demonstrate the user’s interest, and thus are subsequently considered as the two views
to the user’s actions. Hence, a formulated BBS data model is proposed in this paper
consisting of a collection of the BBS users, whose behaviors or access patterns are
described by the history of actions reflected in the two views. Under this model, a
UDCG algorithm called ISGI, i.e. Interest-Sharing Group Identification, is proposed to
discover the groups of the users with similar interests, where communities are generated
by analyzing the correlations between users based on a specially designed hierarchical
similarity function. In addition, the users’ behaviors are predicted with the help of the
interest-sharing groups under certain conditions, which illustrates one of many potential
applications using the generated community. Experiments show that the interest-sharing
user groups may be effectively discovered by ISGI, and the generated communities are
helpful in predicting users’ behaviors, which will be useful in situation awareness and
personalized services development.

The rest of the paper is organized as follows. Section 2 formulates the BBS data
model. Section 3 proposes the ISGI method. Section 4 describes how to use the gener-
ated community to predict the behavior of a given user. Section 5 reports on the experi-
ment results. Finally, Section 6 concludes the paper.

2 A General Model for Community Generation on BBS

In general, a BBS provides more facilities (e.g., file sharing). To simplify the problem,
we only consider the posted messages in a BBS in this paper. For further simplication,
the message body is ignored and only the title of a message is used to fully determine the
topics of the message. Key words of the tiles are extracted using standard text processing
techniques, and mapped to those collected topics through standard statistical analysis
(histogramming).
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To identify the specific interest-sharing relationships among a BBS users, we explic-
itly model a user’s access pattern on BBS using information from two different views.
Presumably, a BBS user tends to initiate or join in a discussion on a certain topic in
which he or she is interested. Thus, the history of the topics on which the user has
posted messages may reflect the interests of the user. Note that the users’ interests are
time-dependent because the discussions on BBS are usually closely related to the events
that happen at the times when the discussions are raised. Consequently, posting mes-
sages to the same topic at different times may carry different semantics and meanings.
On the other hand, a user’s interest level in a specific topic may also be assessed by the
frequency of messages which this user had posted on this topic within a certain period
of time. For example, given a specific time interval, a user posting more messages on a
topic presumably shows a greater interest in this topic than another user posting fewer
messages on the same topic within the same time interval. Therefore, for the proposed
BBS model, in the view of Topics, a user’s access pattern is explicitly represented as a
set of topics and the user access frequencies of the messages posted to different boards
by different users along the timeline.

On the other hand, a user’s interests may also be revealed by the boards where the
messages are posted. In a typical BBS, discussion area is divided into different boards
according to a set of categories. When accessing to a BBS, a user usually prefers visiting
the boards that have the most interesting categories to this user. After exposing to an
interesting topic in these boards, the user may decide to join the discussion on the topic
being held in this board. Therefore, for the proposed BBS model, in the view of Boards,
a user’s access pattern is represented as a set of boards and the frequencies of messages
posted to the boards along the timeline.

Consequently, the proposed BBS model is represented as a collection of users, each
being represented by two timelines of actions on the Boards view and Topics view,
respectively. Formally, let ID denote the set of all valid users in a BBS. Let T and B be
the sets of the topics that have been discussed on the BBS and all the boards to which
messages are posted, respectively; let T denote the set of time intervals quantified (e.g.,
a day) for the whole activation period of the BBS. Thus, the proposed BBS model is
represented as follows:

BBS = {< id, AT
id, A

B
id > |id ∈ ID,AT

id ⊂ AT , AB
id ⊂ AB} (1)

AT = {< τ, fτ , t > |τ ∈ T , fτ ∈ N, t ∈ T} (2)

AB = {< β, fβ , t > |β ∈ B, fβ ∈ N, t ∈ T} (3)

where < τ, fτ , t > and < β, fβ , t > are actions in each view, indicating that at time t
posting messages with topic τ for fτ times and to the board β for fβ times, respectively.
Note that the timelines of both views are used together and contribute equally to the
representation of the user’s access pattern.

3 Interest-Sharing Group Identification

Given the BBS model presented above, we can identify the communities of users shar-
ing similar interests. Unfortunately, many widely used methods (e.g., [3,4,7]) rely on
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Fig. 1. An example of finding similar access patterns between the timelines of users

explicit link information to generate communities. Due to the absence of link informa-
tion in our problem, we propose ISGI algorithm to identify interest-sharing groups from
BBS without provided link information.

Firstly, the links between all the pairs of users are hypothesized, which induces a
complete graph Gh on ID. And then, the correlation between each pair of users is
measured by aggregating the overall similarities in each view of actions of the two users.
we hierarchically define a similarity function to determine the correlation between two
users access patterns under a given view. Such similarity is measured by combining a
set of time-dependent local similarities between all pairs of access patterns in individual
time slots along the timeline.

Specifically, given two timelines of actions X and Y (either in the Topic View or in
the Boards View) of two users idx and idy, respectively, we examine similarity between
every pair of time slots from different timelines by sliding a time window of size z along
both the timelines, as shown in Figure 1. Let Xi and Yj be sets of the actions in two time
slots starting at time t and time s along each timelines, respectively. Note that the order
information of actions within a time slot is not considered because users with similar
interest may not necessarily take similar actions within a time slot in the same order. A
straightforward way to define the similarity between Xi and Yj is |Xi ∩ Yj |/|Xi ∪ Yj |.
However, this definition ignores the frequencies of the actions; with this definition, one
who takes an action (e.g., posting a message to a board) 100 times would be considered
the same as another who takes the action only once. To accommodate the contributions
from different action frequencies, the average frequency difference of the actions shared
by both Xi and Yj is defined as

fd (Xi, Yj) =
1

|Xi ∩ Yj |
∑

a∈Xi∩Yj

∣
∣fXi(a)− fYj (a)

∣
∣ (4)

where fXi(a) and fYj (a) denote the frequencies of the action a in Xi and Yj , respec-
tively. Then, we define local similarity between Xi and Yj as

ls(Xi, Yj) =
1

1 + fd(Xi, Yj)
· |Xi ∩ Yj |
|Xi ∪ Yj |

(5)

We then construct a global similarity between the two timelines based on the local
similarities between all pairs time slots. Firstly, for any time slot Xi, we aggregate these
local similarities between Xi and all Yj ∈ Y into a hybrid similarity between Xi and
Y , which is defined as follows,
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Table 1. Pseudo-code describing the ISGI algorithm

Algorithm: ISGI
Input: user set ID

correlation threshold θ
Process: Generate a complete graph Gh(Vh, Eh) based on all users in ID

for each idx ∈ ID do
for each idy ∈ ID do

Compute the global similarity of idx and idy from the Boards view (c.f. Eq. 8)
Compute the global similarity of idx and idy from the Topics view (c.f. Eq. 8)
Generate the correlation value c on the edge (idx, idy) of Gh

end
end
Add all the edges whose correlation values are no less than θ to a new Edge set E
Construct a new Vertex set V with idx, idy such that (idx, idy) ∈ E

Output: interest-sharing group G(V, E)

hs (Xi, Y ) = max
Yj∈Y

{w (Xi, Yj) ls (Xi, Yj)} (6)

where
w(Xi, Yj) = exp

(

−|i− j|
M

)

(7)

and M is the number of possible time slot in timeline Y .
Note that the local similarities are weighted by Eq. 7, which incorporates regulariza-

tion that similar actions taken by two users with similar interests should not be too far
from each other. The reason has been explained in Section 2.

Then, by using the hybrid similarities with respect to different time slots, we derive
the global similarity between X and Y as

gs (X, Y ) =
1
2
(

∑
Xi∈X,Xi �=∅ hs (Xi, Y )

∑
Xi∈X,Xi �=∅ 1

+

∑
Yj∈Y,Yj �=∅ hs (Yj , X)

∑
Yj∈Y,Yj �=∅ 1

) (8)

Note that only the hybrid similarities for the non-empty time slots are aggregated in
Eq. 8. The reason is that in real world two users with similar interests may differ from
each other by the log-in frequency. For instance, user idy may login BBS everyday,
while user idx may login only once a month but does exactly what idy does. If we use
the hybrid similarities for all the empty time slots, the global similarity between the two
users idx and idy would be very low.

Since the global similarity in each view reveals the correlation of idx and idy in dif-
ferent perspective, the overall correlation between the two users is computed by simply
averaging the global similarities in both views.

After correlations between all pairs of users are obtained, all the weak links whose
corresponding correlation value is less than a prest threshold θ is removed from the
hypothesized graph Gh, and the induced graph is regarded as the interest-sharing groups
G, where the neighbors of a user idi, i.e., those who are connected to idi by the links,
share similar interests to idi. The pseudo code of ISGI algorithm is shown in Table 1.
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4 Predicting User Behavior Using Generated Community

In many existing work, the generated communities are only used for identifying cor-
related entities. Besides such a simple application, we consider another potential ap-
plication which exploits the communities generated by ISGI on BBS – predicting user
behavior under certain conditions.

Given a user idi, now the task is to predict what action idi may take in the near future,
i.e., in a time slot of size z which starts at time t. A possible solution to this problem is
to learn the probabilistic model directly from the BBS data. Since the actions that have
been taken by idi in current time slot may be closely related to idi’s future actions in
the same time slot, the prediction may be made according to Eq. 9, where the posterior
probability is estimated by consulting the access history of idi.

P
(
ax|Aobsv

i ; idi

)
=

# of ax in a time slot with a′ ∈ Aobsv
i

# the time slots contain a′ ∈ Aobsv
i

(9)

where Aobsv
i is the set of actions taken by idi in the current time slot.

In reality, however, such a method fails since Aobsv
i is often empty. In this case,

the posterior probability cannot be computed directly. This situation is common in a
BBS. For instance, in order to provide a discussion recommendation, the prediction is
usually required to be made as soon as the user logins to the BBS. Fortunately, with the
interest-sharing groups identified by ISGI, this problem can be resolved as follows.

Recall that a community is generated based on the similar access patterns between
users. If a user is likely to take an action at a time instant, other users with the similar
behavior also tend to take the action at some other time instants. Thus, when the pos-
terior probability of action ax for user idi is computed, given that Aobsv

i is empty, we
consults the neighbors of idi in the generated community for determine the possible
future actions of idi according to the following equation,

Table 2. Pseudo-code describing the BPUC algorithm

Algorithm: BPUC
Input: user to be predicted idi

view of action to be predicted V
generated community G
time slot TSt starting at time t

Process: Fill the neighbor set Ni with all the neighbors of idi in G
for each action ax on the view V do

for each idj in Ni do
Record the correlation value cij between idi and idj from G

Construct Aobsv
j of with all the actions taken by idj in TSt on the both views

Estimate the posterior probability P
(
ax|Aobsv

j ; idj

)
according to Eq.9

end
Approximate the posterior probability using Eq. 10

end
Output: predicted user behavior a∗ ← arg max

ax

P
(
ax|Aobsv

i ; idi

)



Mining Bulletin Board Systems Using Community Generation 215

P
(
ax|Aobsv

i ; idi

)
=

1
Z

∑

idj∈Ni;Aobsv
j �=∅

cijP
(
ax|Aobsv

j ; idj

)
(10)

where cij is the correlation value between idi and idj , and Z =
∑

idj∈Ni;Aobsv
j �=∅ cij .

Note that according to Eq.10 the estimation is done by weighting the sum of posterior
probabilities of the neighbors instead of filling Aobsv

i with the actions in Aobsv
j first and

then computing the posterior probability P
(
ax|Aobsv

i ; idi

)
directly. The reason is that

the correlations between users reflect the possibilities that two users may take similar
actions at a time instant; hence, the posterior probabilities of the action ax may be
“smoothly” propagated from those similar users to idi. By contrast, propagating the
events to idi assumes that idi should have also taken the actions that idi’s neighbors
have already taken, which is clearly inconsistent with the information conveyed by this
community.

Based on Eq. 10, an algorithm called BPUC (Behavior Prediction Using Commu-
nity), whose pseudo code is shown in Table 2, is proposed to generate the probabili-
ties for user behavior prediction. BPUC may be used to predict what actions a given
user may take in the near future. This is extremely useful in situation awareness in
which we can foresee any potential event that is likely to happen as well as the likeli-
hood associated with this event. Besides, it is also helpful in the development and the
delivery of the personalized services such as discussion recommendation to the BBS
users.

5 Experiments

5.1 Data Set

The data used for the experiments are extracted from the BBS of Nanjing University1.
Currently, this system is one of the most popular university BBS in mainland China.
The daily average number of online users is usually above 5000.

In the experiments, all the messages dated from January 1st, 2003 to December 1st,
2005 on 17 most popular and frequently accessed boards are collected. For each mes-
sage, all the nouns, verbs and quantities appearing in the title are extracted as a bag of
key words to represent a certain topic. Some different topics discussing the same issue
are merged together manually for sematic consistency. After that, the topics that have
been discussed by less than 5 messages and the users who have posted less than 50
messages are removed from the data set.

After the removal, the data set contains 4512 topics of 17 boards, and there are 1109
users under consideration. For each user, data are organized into two views, i.e. the
Boards view and the Topics view. In each view, the sets of actions with their frequen-
cies are ordered along the timeline. Due to the considerations on effectiveness and effi-
ciency, the smallest time unit used in this experiment is Day. Thus, there are altogether
1066 time instants along the timeline, and actions taken within a day are regarded as
simultaneous events.

1 More information could be found by accessing this BBS at http://bbs.nju.edu.cn
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5.2 Experiments on Community Generation

In order to evaluate whether ISGI correctly identifies the interest-sharing groups, the
ground truth of the data set must be available. However, since this is a real-world BBS,
it is not feasible to get all the ground-truth information as this involves the users’ pri-
vacy. Fortunately, 42 volunteers have joined the experiment and told us their IDs and
main interests. Based on this valuable information, an evaluation set ES of 42 users
is obtained. According to the main interest of the 42 users, they were roughly divided
into 3 groups: 18 users are interested in modern weapons; another 12 users are fond of
programming skills; and the rest of the users are fans of various computer games.

With the availability of part of the ground truth, the performance of the ISGI al-
gorithm is evaluated by the neighborhood accuracy and the component accuracy, re-
spectively. The neighborhood accuracy describes how accurate the neighbors of a user
in the generated community share similar interests to that of the user, while the com-
ponent accuracy measures how well these generated groups represent certain interests
that are common to the individuals of the groups. For instance, considering a generated
community shown in Fig. 2, the number of all possible links is 21 (= 7∗(7−1)

2 ). 7 links
between similar users which should be kept in the graph and 10 links between dissim-
ilar users which should be removed are correctly identified from the 21 possible links.
Thus, the neighborhood accuracy is (7+10)/21 = 0.810. Since 7 pairs of similar users
are grouped into the same graph component and no pairs of dissimilar users are split
into different group, the component accuracy is (7 + 0)/21 = 0.333.

In the experiment, the size of the time slot used in ISGI is fixed to 5. Note that many
well-known community generation methods (e.g., [1]) are essentially BDCG methods
directly working on explicitly provided link information. They are not suitable for our
baselines. Here, we only compares ISGI with another recently developed UDCG algo-
rithm CORAL [9], which does not rely on explicit link information either. Due to the
large number of users and the long timelines in both views, CORAL fails to generate
a community from the experimental data set within a reasonable time interval. In order
to report a manageable evaluation comparison between ISGI and CORAL, the original
data set is reduced by downsizing the action points along the timelines by a factor of 10
such that each timeline comprises 107 time instants, and all the comparison evaluations
with CORAL are reported based on this reduced data set. For simplicity, the original
data set and the reduced data set is denoted by BBS big and BBS small respectively.

Fig. 2. An example of computing neighborhood accuracy and component accuracy
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Fig. 3. Accuracies of the communities generated by ISGI and CORAL on BBS small

Also, since CORAL only assumes one timeline for each individual user while in ISGI
two timelines are used for the two views, respectively, another version of BBS small is
prepared for CORAL by collapsing the two timelines together into one to ensure a fair
comparison between the two algorithms.

Recall that the structure of the community is determined by a pre-set minimum cor-
relation threshold θ. In order to see how θ affects the community generation, in the
experiments the value of θ varies from 0 to 1 with the step length 0.05. For each θ, the
correlation values on all the links in communities generated by ISGI and CORAL re-
spectively are normalized into the range [0, 1], and then the accuracy of the communities
on ES are measured respectively.

Fig. 3 reports the neighborhood accuracy and the component accuracy versus the
threshold θ, respectively. It is clear to observe from the figures that the communities
generated by ISGI are always better than those generated by CORAL for different θ
w.r.t. both neighborhood and component accuracies.

Interestingly, when increasing θ from 0 to 0.05 to remove links from the initial com-
munity generated by CORAL, the neighborhood accuracy climbs up from 0.331 to
the highest value 0.746, while the component accuracy drops at the same time. By
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Fig. 4. Results of community generation using ISGI on BBS big
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Table 3. Time (in hours) taken for community generation

Data set ISGI CORAL

BBS small 5.5 56.1
BBS big 20.5 N/A

investigating the average number of the neighbors of a user and the number of the com-
ponents when θ = 0 and θ = 0.05, it is found that the average number of a user’s
neighbors in a generated community drops dramatically from 953.1 to 64.1, and the
number of the components in the community increases to 286. Therefore, it is con-
cluded that most of the correlation values between similar users and between dissimilar
users are both small such that it is difficult to discriminate links between similar users
and those between dissimilar users by increasing θ. In CORAL, only the frequencies
of actions can be used. Neither the information on the boards where the messages are
posted nor the topics that the messages are addressed are used for deriving the corre-
lations between users. Two users who post 10 messages to B1 and B2 respectively are
regarded as similar by CORAL, while two users who post 5 messages and 20 messages
to B1 are regarded dissimilar. Therefore, all these facts suggest that CORAL is not
suitable for identifying the interest-sharing user groups as ISGI does.

To further illustrate the effectiveness of ISGI on the original data set, ISGI is ap-
plied to BBS big to generate communities with respect to different values of θ, and the
accuracies of the generated communities are plotted in Fig. 4(a). Similarly, value of θ
varies from 0 to 1 with the step length 0.05. As shown in the figure, ISGI performs
even better on this large data set with respect to both the neighborhood accuracy and
component accuracy. When θ ranges from 0.2 to 0.35, the neighborhood accuracy even
reaches 1.0. Note that both accuracies of the communities generated by ISGI do not
reach their corresponding maxima with the same value of θ. This phenomenon is due
to the incomplete evaluation set ES. Even if the link between two dissimilar users is
removed, the users may still be in the same group since they may still be connected to
some other users outside the evaluation set. Moreover, Fig 4(b) gives an insight view
of the generated community when θ = 0.3. It is easy to find that the 3 groups of users
with different interests are exactly identified by ISGI.

In addition, the evaluations are performed on workstations with 3.0 GHz Pentium
4 hyper-thread CPU. The running time ISGI and CORAL, respectively, on BBS small,
and the running time of ISGI on BBS big is shown in Table 3. The CPU time shows that
the extensibility of ISGI is better than that of CORAL in that ISGI is able to generate
from large data set while CORAL fails.

5.3 Experiments on User Behavior Prediction

The community generated by ISGI in Section 6.2 is used to evaluate the BPUC algo-
rithm described in Section 5. Here the task is to predict what actions a given user might
take in the near future, i.e., within a time slot of the size z.

For each user in the experimental data set, the actions along the timeline in each
view, either Boards or Topics, are split into two parts. One part which contains the
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actions taken in the first 1056 days are used for training the probability model, while
the actions in the last 10 days are kept aside for testing. In the experiment, the length of
the time slot, within which the predicted actions may take place, is set to 5 days. Thus,
there are altogether 6 different predictive time slots in the last 10 days. Predictions
are made for each time slot and the errors are averaged over the 6 time slots. When
predicting the most probable action that may be taken by a user within a time slot in the
last 10 days, all the actions in the corresponding time slot of the user’s neighbors are
considered as the observed actions and are available for use.

Two algorithms, PM and Comm, are compared with BPUC. PM is a pure proba-
bilistic model directly learned from the training data without using the generated com-
munity. Due to the characteristics of the task specified in Section 4, where a user has
taken no actions in the predictive time slot observed, it is unable to compute the poste-
rior probability according to Eq. 10. Instead, the prediction of the most probable action
taken by the user is made based on the user’s prior probability on the action to be pre-
dicted. Comm is a method that totally bases its prediction on the generated community.
It considers the most frequent action taken by a user’s neighbors in the community as
the most probable action taken by the user, where the frequency of an action ax is the
correlation-weighted sum of the frequencies of ax taken by the neighbors.

Leave-one-out test is used. In detail, when making prediction for a user with respect
to a certain predictive time slot, the actions of the other users in the corresponding time
slot are available for use. The users without neighbors in the community is skipped for
prediction. Note that some neighbors of a user in the generated community may take
no actions in the predictive time slots. In this case, both BPUC and Comm ignore these
neighbors in making the prediction. If all the neighbors are ignored, the prediction for
this user is also skipped.

Since a user may take serval actions in a predictive time slot, the prediction is made
correctly if the predicted most probable action appears in the given predictive time slot.
Thus, the error rate with respect to a predictive time slot is computed by the ratio of the
number of users whose predicted actions do not appear in the time slot over the total
number of the users included in prediction. The evaluations are repeated for each of the
6 predictive time slots and the error rates are averaged to report the final error rate.

Different communities can be generated using different θ, thus, the experiment is
repeated on each generated community. However, as θ increases, a user may have fewer
neighbors in the community. To ensure that the neighborhood size is larger than 2, θ
only ranges from 0 to 0.55 with a step length of 0.05.

For each community determined by θ, PM, Comm, and BPUC are used to predict the
most probable boards a user might access. The error rates are tabulated in Table 4. It is
obvious that BPUC and Comm outperforms PM. The average error rate of BPUC over
different structures reaches 0.231, which improves 17.5% over PM on average. More-
over, even though Comm makes prediction only based on the generated community, it
reaches lower error rates than PM. The average performance improvement of Comm
over PM is 5.3%. Thus, the generated community is helpful to improve the prediction
on the user behavior.

The average performance improvement of BPUC is higher than that of Comm. Al-
though Comm achieves higher improvements for 6 different communities (0.2 ≤ θ ≤
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Table 4. Error rates of compared algorithms based on the communities specified by θ

θ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 Avg.
PM .307 .307 .307 .307 .307 .310 .310 .305 .277 .246 .199 .182 .280

Comm .392 .390 .339 .261 .215 .213 .220 .233 .241 .230 .227 .214 .265
BPUC .249 .249 .232 .225 .226 .236 .241 .260 .247 .242 .197 .174 .231

0.45), it also performs worse than BPUC for the other 6 communities. By contrast, BPUC
performs stably well for different structures of the communities in the experiments. This
fact indicates that BPUC benefits from the combination of probabilistic model and the
generated community. BPUC is more suitable for this special task than Comm which
bases its predictions only on the community.

6 Conclusions

Bulletin board system is an important platform for information exchange and sharing.
This paper attempts to mine the interest-sharing groups from the BBS data and further
applies the identified groups for user behavior prediction under certain condition. The
contributions of this paper are as follows:

– We have formulated a general BBS data model for community generation as a
collection of BBS users represented by two timelines of actions on different views.
One view stands for the boards where the messages are posted, while the other
represents the topics of the posted messages.

– We have designed a hierarchical similarity function to measure the relationship be-
tween different user IDs under the formulated model. This similarity function ex-
ploits time-dependent local similarities between timelines for each view and com-
bines them for use.

– We have proposed a uni-party data community generation method called ISGI to
identify the interest-sharing user groups under the formulated BBS data model. We
have proposed the algorithm that combines a probabilistic model and the identified
interest-sharing groups to predict the user behavior under certain conditions, which
may be very useful for applications such as situation awareness and personalized
services development.

Note that two users may post a message on the same topic to the same board with
totally different actual contents. Consequently, besides the boards and the topics of the
posted messages, the content of a message may also be used to describe a user’s interest
in the future work. Moreover, the user behavior prediction is just one application of the
generated communities; identifying other applications using the generated communities
will also be investigated in future.

Acknowledgement

Z.-H. Zhou and M. Li were partially supported by NSFC (60635030, 60721002) and
973 (2002CB312002), and Z. Zhang was supported in part by NSF (IIS-0535162),
AFRL (FA8750-05-2-0284), and AFOSR (FA9550-06-1-0327).



Mining Bulletin Board Systems Using Community Generation 221

References

1. Bhattacharya, I., Getoor, L.: Deduplication and group detection using links. In: KDD Work-
shop on Link Analysis and Group Detection (2004)

2. Cohen, W.W., Fan, W.: Web-collaborative filtering: recommending music by crawling the web.
In: WWW 2000, pp. 685–698 (2000)

3. Culotta, A., Bekkerman, R., McCallum, A.: Extracting social networks and contact informa-
tion from email and the web. In: CEAS 2004 (2004)

4. Gibson, D., Kleinberg, J., Raghavan, P.: Inferring web communities from link topology. In:
Hypertext 1998, pp. 225–234 (1998)

5. Kou, Z., Zhang, C.: Reply networks on a bulletin board system. Phys. Rev. E 76 (2003)
6. Pena-Shaff, J.B., Nicholls, C.: Analyzing student interactions and meaning construction in

computer bulletin board discussions. Comp. & Edu. 42, 243–265 (2004)
7. Toyoda, M., Kitsuregawa, M.: Creating a Web community chart for navigating related com-

munities. In: Hypertext 2001, pp. 103–112 (2001)
8. Xu, J., Zhu, Y., Li, X.: An article language model for bbs search. In: Lowe, D.G., Gaedke, M.

(eds.) ICWE 2005. LNCS, vol. 3579, pp. 152–160. Springer, Heidelberg (2005)
9. Zhang, Z., Salerno, J.J., Yu, P.S.: Applying data mining in investigating money laundering

crimes. In: KDD 2003, pp. 747–752 (2003)



Extreme Support Vector Machine Classifier

Qiuge Liu1,2, Qing He1, and Zhongzhi Shi1

1 Key Laboratory of Intelligent Information Processing, Institute of Computing
Technology, Chinese Academy of Sciences, P.O. Box 2704-28, Beijing 100080 China

2 Graduate School of the Chinese Academy of Sciences, Beijing, China
{liuqg,heq,shizz}@ics.ict.ac.cn

Abstract. Instead of previous SVM algorithms that utilize a kernel to
evaluate the dot products of data points in a feature space, here points
are explicitly mapped into a feature space by a Single hidden Layer
Feedforward Network (SLFN) with its input weights randomly gener-
ated. In theory this formulation, which can be interpreted as a special
form of Regularization Network (RN), tends to provide better general-
ization performance than the algorithm for SLFNs—Extreme Learning
Machine (ELM) and leads to a extremely simple and fast nonlinear SVM
algorithm that requires only the inversion of a potentially small matrix
with the order independent of the size of the training dataset. The ex-
perimental results show that the proposed Extreme SVM can produce
better generalization performance than ELM almost all of the time and
can run much faster than other nonlinear SVM algorithms with compa-
rable accuracy.

1 Introduction

It has been shown that SLFNs with arbitrarily assigned input weights and with
almost any nonzero activation function can universally approximate any contin-
uous functions on any compact input sets ([1], [2]).

Based on these research results ELM [3] randomly chooses the input weights of
an SLFN, then the output weights (linking the hidden layer to the output layer)
of an SLFN is analytically determined by the minimum norm least-squares solu-
tions of a general system of linear equations [3]. The running speed of ELM can
be thousand times faster than traditional iterative implementations of SLFNs
like BP, however it still tends to be overfitting and can be seen within the Em-
pirical Risk Minimization (ERM) principle [15,16,17].

In this paper, with the focus on 2-class classification problem, a new nonlinear
Support Vector Machine (SVM) formulation is proposed, in which a nonlinear
map function is explicitly constructed by a SLFN with its input weights ran-
domly generated. As can be seen later it leads to a better generalization per-
formance than ELM most of the time and provides a stronger capacity control
capability.

The new SVM classifier, which can be interpreted as a special form of regu-
larization networks [4,5,6], classifies points by assigning them to the closest of

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 222–233, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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two parallel ”approximating”planes like the way in Proximal SVM (PSVM) [7],
Multisurface PSVM [8], and Least Squares SVM (LSSVM) [9] etc.. In all of the
other SVMs, a nonlinear kernel is utilized to obtain a nonlinear classifier and a
linear system of equations of the order of the number of data points needs to be
solved, which makes it intractable when the number of training points is several
thousands. In our new formulation, however, the dot products of the data points
are computed explicitly by first map them into a feature space through a ran-
dom SLFN and then an extremely fast and simple nonlinear SVM algorithm can
be devised, which requires only the solution of a potentially small (usually less
than 200) system of linear equations with the order independent of the size of
the input dataset. We will call it the Extreme Support Vector Machine (ESVM)
in the context of this paper.

This work is organized as follows. In Sect.2 the basic architecture of SLFNs
and the ELM classifier is reviewed. Then in Sect.3 the new ESVM classifier is
proposed, and we will also compare it with some other theories. Finally many
numerical test results based on real world benchmarking classification problems
can be found in Sect.4, which show that ESVM can produce better generalization
performance than ELM most of the time and can run much faster than other
nonlinear SVM algorithms with comparable testing set correctness.

A word about our notations. All vectors will be column vectors unless trans-
posed by a superscript ′. The scalar product of two vectors x and y in n-
dimensional space Rn will be denoted by x′y, and the 2-norm of a vector x
is denoted by ‖x‖ =

√
x′x. For a matrix A ∈ Rm×n, Ai is the ith row of A which

is a row vector Rn, while A.j is the jth column of A. A column vector of ones
of arbitrary dimension will be denoted by e. The identity matrix of arbitrary
dimension will be denoted by I.

2 SLFNs and ELM

In this section we provide some preliminaries about the architecture of SLFN
(similar as the notation in [1]), and review the SLFN’s ELM algorithm.

2.1 Single Hidden Layer Feedforward Networks

Assume that a training set consisting of m pairs of input vectors {aj, dj} 1 ≤
j ≤ m is given, where aj ∈ Rn, and dj ∈ Rñ×1 is the desired output vector. The
output of the single layer neural network is described by

O1 = G
(
A1W 1

)
(1)

where A1 := [a1
1 , . . . , a1

m]′ ∈ Rm×(n+1) is the matrix of input vectors, a1
i is

the vector of inputs plus the bias of one for the last term i.e. a1
i = [a′

i, 1] ′;
O1 := [o1

1 , . . . , o1
m]′ ∈ Rm×ñ is the matrix of the neurons’ output, o1

i ∈ Rñ×1, 1 ≤
i ≤ m is the vector of the neurons’ output vector corresponding to ai; and
W 1 := [w1

1 , . . . , w1
ñ] ∈ R(n+1)×ñ is the matrix of weight vectors. The notation
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G(Z) represents a map which takes a matrix Z with elements zij and returns
another matrix of the same size with elements g(zij), where g is the neuron’s
nonlinearity.

The multilayer neural network consists of many layers of parallel neurons
connected in a feedforward manner. Using the quantity #k as the number of
nodes in the kth layer, the output of the kth layer is described by

Ok = G
(
AkWk

)
(2)

Here Ak := [ak
1 , . . . , ak

m]′ ∈ Rm×(#(k−1)+1) is the matrix of input vectors; ak
i

is the vector of inputs equal to the outputs from the previous layer plus the
bias of one for the last term; Ok := [ok

1 , . . . , ok
m]′ ∈ Rm×#k is the matrix of

outputs; ok
i is the kth layer neurons’ output vector for ai; Wk := [wk

1 , . . . , wk
#k] ∈

R(#(k−1)+1)×#k is the matrix of weight vectors.
Thus for an Single hidden Layer Feedforward Network (SLFN) the expression

of the output of the first hidden layer is the same as (1). And for simplicity the
output of the second hidden (output) layer is described by

O2 = A2W 2. (3)

where
A2 =

[
O1, e

]
=
[
G(A1W 1), e

]
. (4)

In this paper A2 is called the hidden layer output matrix, and W 1, W 2 is named
the input weights and the output weights of an SLFN respectively.

It has been shown that for an arbitrary training set with m training patterns,
a neural network with one hidden layer and with m − 1 hidden layer neurons
can exactly implement the training set ([12,13,22]). It has been further indicated
that SLFNs (with N hidden neurons) with arbitrarily chosen input weights can
learn N distinct observations with arbitrarily small error, which means that the
input weights w1 are not necessarily adjusted in applications ([2,3]).

2.2 Extreme Learning Machine

Consider the 2-class classification problem of classifying m points in n-dimensional
real space Rn, represented by the m× n matrix A. A diagonal matrix D with +1
or −1 along its diagonal specifies the membership of class A+ or class A− of each
point Ai. Note that for the 2-class classification problem the number of the output
layer neurons of the SLFN is one, i.e. #2 = 1.

ELM, based on what is stated in the preliminaries, randomly generates the
input weights W 1 and it models the SLFN as follows:

min
W2

F
(
W 2

)
= ‖A2W 2 −De‖2 (5)

where A2 is defined the same as in (4).
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The key point of ELM is that the input weights W 1 of an SLFN need not be
adjusted at all and can be arbitrarily given. It can be easily seen from (5) that to
train an SLFN, in ELM, is simply equivalent to finding a least squares solution
of the linear system A2W 2 = De, which can be analytically determined by the
expression below:

Ŵ 2 = A2†De (6)

where A2† is the generalized inverse of the hidden layer output matrix([14]).
The expression (5) aims to minimize the empirical risk of the approximating

function A2W 2 = O2. And, since the solution takes the minimum norm among
the least-squares solutions, ELM provides weak control of the capacity of the
models. Consequently the ELM algorithm can be considered within the ERM
theme ([15],[16],[17]) and tends to result an overfitting model especially when
the number of hidden neurons is relatively large as is shown by the numerical
results in Sect.4.

Observe that the leaning process of ELM for an SLFN can be interpreted
as consisting of two steps. First the input vectors are mapped to the hidden
layer output vectors through the 1st hidden layer of the SLFN, with its input
weights randomly generated. Second a minimum norm least squares solution of
the output weights W 2 is obtained through (6).

Based on these observations a new SVM classifier — ESVM is devised in
Sect.3, which first maps the input data into a feature space explicitly by the
hidden layer of a random SLFN, then a linear algorithm based on regulariza-
tion least squares is performed in the feature space. In theory it is derived
from the SRM theory ([15,16,17]), and is supposed to provide better general-
ization performance than ELM. Moreover The experimental results in Sect.4
show that it runs much faster than other SVM algorithms with comparable
accuracy.

3 Extreme Support Vector Machine Classifier

In this section we will introduce our new SVM algorithm — Extreme Support
Vector Machine (ESVM). And we will also compare it with some other learning
methods in theory.

3.1 The Linear Extreme Support Machine Classifier

Consider again the 2-class classification problem stated in Sect.2.
The linear Extreme Support Vector Machine (ESVM) algorithm has the same

form as the linear PSVM [7], however still we present it here for the conve-
nience of the derivation of our nonlinear formulation. For the classification prob-
lem stated above, the ESVM with a linear kernel tries to find the proximal
planes:x′w − r = ±1 where w, r are the orientation and the relative location
to the origin respectively. And it can be formulated by the following quadratic
program with a parameter ν:
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min
(w,r,y)∈Rn+1+m

ν

2
‖y‖2 +

1
2

(w′w + r2)

s.t. D(Aw − er) + y = e

(7)

which replaces the inequality constraints in standard SVM by equality. The
resulting separating plane acts like below:

x′w − r

⎧
⎨

⎩

> 0, then x ∈ A+,
< 0, then x ∈ A−,
= 0, then x ∈ A + orx ∈ A−,

(8)

We now introduce our new nonlinear ESVM classifier by applying the linear
formulation (7) in a feature space introduced by a mapping function.

3.2 The Nonlinear Extreme Support Vector Machine Classifier

To obtain the nonlinear ESVM formulation, we devise a special nonlinear trans-
form function: Φ(x), which maps the input vectors into the vectors in a feature
space. Then the linear expression (7) is performed in the feature space to get
the nonlinear classifier. To be concrete the nonlinear ESVM is formulated to be
the following quadric program problem with a parameter ν.

min
(w,r,y)∈Rñ+1+m

ν

2
‖y‖2 +

1
2
‖
[
w
r

]

‖2

s.t. D(Φ(A)w − er) + y = e

(9)

where Φ(x) : Rn −→ Rñ is a map function which will be explained later. The
lagrangian for (9) can be written as follow:

L(w, r, y, s) =
ν

2
‖y‖2 +

1
2
‖
[
w
r

]

‖2 − s′(D(Φ(A)w − er) + y − e) (10)

Here s ∈ Rm is the lagrangian multiplier with the equality constraints of (9).
Setting the gradients of this lagrangian with respect to (w, r, y, s) equal to zero
gives the following KKT optimality condition:

w = Φ(A)′Ds
r = −e′Ds

νy − s = 0
D(Φ(A)w − er) + y − e = 0

(11)

Substituting the first three expressions of (11) in the last expression gives an
explicit expression for Ds in terms of the problem data A and D as follows:

Ds = (
1
ν

I + Φ(A)Φ(A)′ + ee′)−1De = (
1
ν

I + EΦEΦ
′)−1De (12)

where EΦ = [Φ(A) − e] ∈ Rm×(ñ+1).
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To the best of our knowledge almost all previous nonlinear SVM algorithms
make use of a kernel function K(x′, x)(e.g. RBF, Polynomial), which corresponds
to the dot products of mapped vectors in the feature space, to implement the
expression Φ(A)Φ(A)′ in (12). Thus the transform function Φ and many of its
properties are unknown in these nonlinear SVM algorithms. However in ESVM
we will construct the map function Φ explicitly by the hidden layer of a random
SLFN as what is stated at the end of Sect.2. To be concrete the transform
function can be formulated as follows:

Φ(x) = G(W 1x1)
=
(
g(
∑n

j=1 W 1
1jxj + W 1

1̃(n+1)
), . . . , g(

∑n
j=1 W 1

ñjxj + W 1
ñn+1)

) (13)

where x ∈ Rn is the input vector and x1 = [x′, 1]′, W 1 ∈ Rñ×(n+1) is a matrix
whose elements is randomly generated, and the notation G(·) has the same
definition as in (1). Note that x1,W 1 can be interpreted as the input vector and
input weights of an SLFN respectively, and Φ(x) is the hidden layer’s output
vector of x.

It can be seen that the expression (12) of Ds still entails the inversion of
a possibly massive matrix of order m × m. To get rid of this problem we can
make immediate use of the Sherman-Morrison-Woodbury (SMW) formula [21]
for matrix inversion which results in the following expression:

Ds = ν(I − EΦ(
I

ν
+ EΦ

′EΦ)−1E′
Φ)De (14)

Note that if we substitute the expression (14) for Ds in (11), we can obtain
the following simple expression for w and r in terms of problem data:

[
w
r

]

= (
I

ν
+ EΦ

′EΦ)−1EΦ
′De (15)

We comment further that the expression (15) only involves the inversion of a
matrix of order (ñ + 1)× (ñ + 1), where ñ can be typically very small (usually
less than 200 as is shown in Sect.4) and is independent of the number of the
training points m.

Now for an unseen point x the nonlinear ESVM classifier works as follows:

Φ(x)′w − r

⎧
⎨

⎩

> 0, then x ∈ A+,
< 0, then x ∈ A−,
= 0, then x ∈ A + orx ∈ A−,

(16)

Compared to the linear classifier (8) we can see that (16) classify the point x in
the feature space by maps it into Φ(x) first.

We can now give an explicit statement of our ESVM algorithm.

Algorithm 1. Extreme Support Vector Machine (ESVM) classifier
Given m data points in Rn represented by the m × n matrix A and a diago-
nal matrix D of ±1 labels denoting the class of each row of A, we generate the
nonlinear classifier as follows:
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(i) Randomly generate a matrix W1 ∈ Rñ×(n+1) and choose an activation
function g, typically the signum function, to construct Φ(x) as (13).

(ii) Define EΦ = [Φ(A), −e] where e is an m× 1 vector of ones

(iii) compute
[
w
r

]

by (15) for some positive parameter ν.

(iv) Classify a new point x by (16)

In the next section we will present many experimental results which demon-
strate the effectiveness of the ESVM algorithm.

3.3 What Is the Relationship between ESVM and the RN?

ESVM is a special form of Regularization Network. We can see from the ex-
pression (7) or (9) that the planes x′w − r = ±1 or Φ(x)′w − r = ±1 are not
bounding planes, like in standard SVM, anymore, but can be thought of as
”proximal” planes, around which the points of each class are clustered. Thus the
ESVM classifiers are constructed from an approximating function whose inputs
are the training patterns and expected outputs are +1 or −1 according to the
membership of input vectors in the class A+ or A- like PSVM [7] and LSSVM
[9].

The problem of approximating a function from sparse data is ill-posed and a
classical way to solve it is regularization theory [4], [18],[19], which formulates
the approximating problem as a variational problem of finding the function f
that minimizes the functional of the form

min
f∈H

=
1
l

m∑

i=1

V (Dii, f(xi)) + λ‖f‖2K , (17)

where V (·, ·) is a loss function and ‖f‖2K is a norm in a Reproducing Kernel
Hilbert Space H defined by the positive definite function K and λ is the reg-
ularization parameter[20]. The ESVM formulation (9) can be seen as a special
form of (17), in which the loss function is squares error and the positive definite
kernel function K is defined by K(x, y) = Φ(x)′ · Φ(y).

As depicted in [5] regularization network provides a form of capacity control
and it, like SVM, can also be derived from Structural Risk Minimization (SRM)
principle. Thus we can expect that ESVM can lead to a model that not only fits
the training data but also with good predictive capability on new data according
to Vapnik’s theory [15,16,17].

3.4 What Is the Relationship between ESVM and Nonlinear
PSVM?

As what is stated above, the linear ESVM (7) has the same formulation as the
linear PSVM [7], however they have different nonlinear expression.
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In [7] the proximal kernel-based Nonlinear PSVM (NPSVM) is formulated as
follows:

min
(u,r,y)∈Rn+1+m

ν

2
‖y‖2 +

1
2

(u′u + r2)

s.t. D(K(A, A′)Du − er) + y = e

(18)

which, compared to (7), replace the primal variables w by its dual equivalent
w = A′Du and replace the linear kernel by a nonlinear kernel K(A, A′). Through
the KKT optimality conditions of (18), we can get the explicit expression for Ds
(s is the dual variables) in terms of the problem data A and D as follows:

Ds = (
1
ν

I + KK ′ + ee′)−1De (19)

Compare (12) with (19), it can be easily seen that (12) do not require the
kernel matrices’ multiplication: KK ′. Furthermore, as K is a square m × m
matrix, the SMW formula is useless for (19) and the inversion must take place
in a potentially high-dimensional Rm [7], which makes it intractable when the
dataset is huge. However the resolution (14) of ESVM only requires the inversion
of a matrix of order ñ × ñ where ñ is independent of m even when there are
millions of data points. It is shown in the experimental results in Sect.4 that ñ
can be much smaller than m with acceptable accuracy.

3.5 What Is the Relationship between ELM and ESVM?

As what is mentioned above both learning processes of ELM and ESVM can be
think of consisting of two steps: first the input vector is mapped to a feature
space by the hidden layer of a SLFN in ELM or by the function Φ(·) in ESVM;
second the algorithms are performed in the feature space. We can easily see that
the transform function (13) in ESVM works in a similar way as the hidden layer
of an SLFN in ELM. However the learning processes of the two algorithms are
quite different.

As mentioned above, the solution of ESVM is a regularized least squares solu-
tion of D(Φ(A)′w− er) = e, however the ELM obtains the minimum norm least
square solution of (5) where we have the following relationship A2 = [Φ(A) , e]
and W 2 = [w′,−r′]′ between ELM and ESVM.

As what is stated above the algorithm ELM tries to minimize the empirical
risk of an SLFN on the training dataset and provides weak capacity control,
which means, according to Vapnik’s theory, it may leads to an overfitting model.
However ESVM avoids this problem by regularization technique and the exper-
imental results in Sect.4 show that it can lead to better generalization perfor-
mance than ELM most of the time.

3.6 What Are the Differences between ESVM and Standard SVM?

Both ESVM and SVM [17] can be derived from Vapnik’s SRM theory, however
there are two main differences between ESVM and standard SVM.
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First unlike standard SVM, ESVM is based on regularized least squares and
can leads to an extremely fast and simple algorithm for generating a nonlinear
classifier that merely requires the solution of a single system of linear equations
(14).Second, instead of making use of an integral operator kernels K(x, y) as
in standard SVM, we construct a map function Φ : Rn −→ Rñ explicitly, which
makes the resolution of ESVM only requires the inversion of a matrix of order
ñ× ñ where ñ can be much smaller than the number of input vectors.

4 Experimental Results

In this section, the performance of the proposed ESVM learning algorithm is
compared with the popular SVM algorithm, the NPSVM algorithm and the ELM
algorithm on some benchmarking problems in the classification areas. Most of
our computations for ESVM and ELM were performed in the environment of
MATLAB 7.0 running in a machine with 2.80GHz Pentium 4 CPU and 512M
memory. The C-coded SVM packages: LIBSVM is used in our simulations for
SVM algorithm in the same PC. The kernel function used in SVM is radial basis
function whereas the activation function used in ESVM and ELM is a simple
sigmoidal function g(x) = 1/(1 + exp(−x)). To compare our ESVM and ELM,
the dimensional ñ of the feature space in the ESVM are set to be the number of
hidden neurons of the SLFN in the ELM.

The datasets used for our numerical tests are eight publicly available datasets
from the UCI [24], Statlog and Delve repositories: australian, breast-cancer, di-
abetes, heart, ionosphere, liver-disorders, sonar, splice.

We conclude our computational results now in two groups as follows:

1. Figure 1: Comparison of Generalization Performance between
ESVM and ELM on Eight Different Publicly Available Datasets.
In this experiment we compared the generalization performance between
ESVM and ELM on eight publicly available datasets. The testing accuracy
of both ESVM and ELM are obtained by a ten-fold testing (10 percent of
the total data points are randomly chosen as the testing datasets) and the
parameter ν of ESVM is decided by cross validation. As shown in Fig.1, the
generalization performance of ESVM are better than ELM most of the time
especially when the number of hidden neurons is relatively large. We can
observe that the testing accuracy of ELM first rises, and after arriving at
the peak then falls as the number of hidden neurons increases, however the
performance of ESVM is more stable.

2. Table 1: Comparison between ESVM, Standard SVM and Nonliner
PSVM. In this experiment we performed the ESVM, LIBSVM and Nonlin-
ear PSVM (NPSVM) algorithms on 8 publicly available datasets. Here cross
validation method is used to choose the parameter of SVM and NPSVM.
Then the ten fold average training and testing accuracy and training time
of these three algorithms are given. Furthermore for ESVM we also give the
results with different value of ñ. The best results for different data sets is
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Fig. 1. Training and testing accuracy of ESVM and ELM on 8 publicly available
datasets when different dimensional feature space is used

Table 1. Training and testing accuracy and training time of ESVM, SVM and NPSVM
on eight publicly available datasets. The best testing accuracy is in bold face.

Datasets ESVM SVM NPSVM
Train Train Train
Test Test Test
Time Time Time

20 60 100 140 180 200

Australia 91.26% 96.09% 97.86% 98.42% 99.19% 99.28% 92.59% 100%
690 × 14 92.32% 96.38% 97.39% 98.12% 97.97% 97.54% 83.91% 96.52%

0.0047 0.0141 0.0219 0.0469 0.0703 0.0828 0.1703 0.3297

breast-cancer 97.08% 97.54% 97.77% 97.74% 97.92% 97.85% 96.73% 97.48%
683 × 10 97.39% 98.12% 97.68% 97.68% 97.54% 97.25% 96.63% 97.73%

0 0.0125 0.0281 0.0453 0.0672 0.0781 0.125 0.3281

diabetes 78.17% 80.46% 79.15% 80.81% 79.83% 85.33% 77.47% 79.15%
768 × 8 79.22% 78.44% 78.96% 80.81% 79.83% 85.33% 75.78% 77.48%

0.0078 0.0172 0.0313 0.0516 0.0766 0.0906 0.1689 0.4406

heart 85.76% 85.35% 88.72% 89.26% 90.12% 84.73% 96.75% 83.29%
270 × 13 88.15% 83.70% 86.67% 87.41% 84.44% 86.30% 75.56% 82.96%

0.0047 0.063 0.0109 0.0219 0.0313 0.0344 0.0312 0.0297

ionosphere 85.62% 94.19% 96.67% 96.32% 94.19% 97.46% 100% 99.37%
351 × 34 85.83% 88.61% 89.72% 92.22% 91.39% 91.11% 92.02% 94.87%

0.0031 0.0094 0.0156 0.0281 0.0344 0.0437 0.0610 0.0626

liver 75.13% 75.35% 77.23% 78.16% 76.32% 74.97% 80.58% 76.75%
345 × 6 70.57% 75.43% 73.14% 76.57% 74.29% 74.57% 72.49% 73.34%

0.0016 0.0063 0.0156 0.0234 0.0359 0.0453 0.05 0.0581

sonar 81.18% 90.43% 90.91% 99.89% 99.57% 87.49% 100% 100%
208 × 60 76.67% 83.33% 85.24% 81.90% 84.76% 80% 74.04% 89.47%

0.0016 0.0031 0.0141 0.0172 0.0313 0.0281 0.0405 0.0156

splice 68.31% 80.08% 83.99% 86.63% 88.44% 86.17% 100% -
1000 × 60 70.30% 78.50% 81.10% 81.30% 81.10% 81.20% 56.9% -

0.0063 0.0234 0.0484 0.0703 0.1 0.1141 1.25 -
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emphasized in boldface. We can observe that the ESVM can achieve comparable
accuracy to SVM most of the time, however the training time is shorter than
SVM and NPSVM obviously. Specially for the splice dataset, the NPSVM is
unapplicable as it requires too much memory.

5 Conclusions

In this paper we have proposed a new nonlinear SVM algorithm — ESVM based
on regularized least squares. Instead of utilizing a kernel to compute the dot
product of mapped data in the feature space, we explicitly construct a nonlinear
transform function Φ(x) : Rn −→ Rñ, which acts like the first hidden layer of an
SLFN with its input weights randomly generated. The resolution of it requires
nothing more sophisticated than solving a simple system of linear equations, in
contrast to the more costly solution of a quadratic program in standard SVM.
Our computational results demonstrate that ESVM can lead to a better pre-
dictive capability than ELM most of the time and reduce the training time of
standard SVM greatly while still hold comparable accuracy.
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Abstract. Frequent itemset mining is one of the fundamental tech-
niques for data mining and knowledge discovery. In the last decade, a
number of efficient algorithms have been presented for frequent itemset
mining, but most of them focused on only enumerating the itemsets that
satisfy the given conditions, and how to store and index the mining result
in order to ensure an efficient data analysis is a different matter.

In this paper, we propose a fast algorithm for generating very large-
scale all/closed/maximal frequent itemsets using Zero-suppressed BDDs
(ZBDDs), a compact graph-based data structure. Our method, “LCM
over ZBDDs,” is based on one of the most efficient state-of-the-art algo-
rithms proposed thus far. Not only does it enumerate/list the itemsets,
but it also generates a compact output data structure on the main mem-
ory. The result can be efficiently postprocessed by using algebraic ZBDD
operations. The original LCM is known as an output linear time algo-
rithm, but our new method requires a sub-linear time for the number of
frequent patterns when the ZBDD-based data compression works well.
Our method will greatly accelerate the data mining process and this will
leads to a new style of on-memory processing for dealing with knowledge
discovery problems.

1 Introduction

Considerable attention in the last decade has been placed on discovering useful
information from large-scale databases. Frequent itemset mining is one of the
fundamental data mining problems. Since the pioneering paper by Agrawal et
al. [1] various algorithms have been proposed to solve the frequent pattern min-
ing problem (cf., e.g., [3,5,16]. Among those state-of-the-art algorithms, Linear
time Closed itemset Miner (LCM) [15,13,14] by Uno et al. has a feature of the
theoretical bound as output linear time. Their open source code [12] is known
as one of the fastest implementations of a frequent itemset mining program.

LCM and most of the other itemset mining algorithms focus on only enu-
merating or listing the itemsets that satisfy the given conditions, and how to

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 234–246, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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store and index the result of itemsets for a more efficient data analysis was a
different matter. If we want to postprocess the mining results by setting various
conditions or restrictions, we have to dump the frequent itemsets into storage
at least once. Even though LCM is an output linear time algorithm, it may re-
quire impracticable time and space if the number of frequent itemsets gets too
large. We usually control the size of the output by using the minimum support
threshold in the ad hoc setting, but we unsure if this may cause some important
information to be lost.

For representing very large-scale frequent itemsets, S. Minato proposed a
method using Zero-suppressed Binary Decision Diagrams (ZBDDs) [7], an ef-
ficient graph-based data structure. ZBDD is a variant of a Binary Decision Di-
agram (BDD) [2], which was originally developed in the VLSI logic design area,
but has recently been applied to data mining problems [9,6,8]. Last year, Mi-
nato et al. presented the ZBDD-growth [11] algorithm for computing all/closed/
maximum frequent itemsets based on ZBDD operations, and that generates a
compressed output data structure on the main memory. Unfortunately, the over-
head of ZBDD-based frequency computation is not small when using their algo-
rithm, so the computational advantage is limited to only the examples where the
ZBDD-based data compression rate is extremely high. Otherwise, for example,
when the number of frequent itemsets is not large, an ordinary LCM algorithm
is much faster than the ZBDD-growth one.

In this paper, we propose a nice combination of an LCM algorithm and a
ZBDD-based data structure. Our method, “LCM over ZBDDs,” can generate
very large-scale frequent itemsets on the main memory that uses a very small
overhead of computational time when compared with the original LCM algo-
rithm. The mining result can be efficiently postprocessed by using algebraic
ZBDD operations. The original LCM is an output linear time algorithm, but
our new method requires a sub-linear time for the number of frequent itemsets
when the ZBDD-based data compression works well. Our method will greatly
accelerate the data mining process and this will lead to a new style of on-memory
processing for dealing with knowledge discovery problems.

2 Preliminaries

Let E = {1, 2, . . . , n} be the set of items. A transaction database on E is a
multiset T = {T1, T2, . . . , Tm} where each Ti is included in E . Each Ti is called
a transaction (or tuple). We denote the sum of sizes of all transactions in T ,
with ||T || that is, the size of database T . A set P ⊆ E is called an itemset (or
pattern). The maximum element of P is called the tail of P , and is denoted by
tail(P ). An itemset Q is a tail extension of P if and only if both Q \ P = {e}
and e > tail(P ) hold for an item e. An itemset P �= ∅ is a tail extension of Q
if and only if Q = P \ tail(P ), and therefore, Q is unique, i.e., any non-empty
itemset is a tail extension of a unique itemset.

For itemset P , a transaction including P is an occurrence of P . The denotation
of P , which is denoted by Occ(P ), is the set of the occurrences of P . |Occ(P )|
is the frequency of P , and is denoted by frq(P ). In particular, for an item e,
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frq({e}) is the frequency of e. For a given constant θ, called a minimum support,
itemset P is frequent if frq(P ) ≥ θ. If a frequent itemset P is not included in
any other frequent itemset, P is maximal. We define the closure of itemset P in
T , denoted by clo(P ), with

⋂
T∈Occ(P ) T . An itemset P is closed if P = clo(P ).

3 LCM and ZBDDs

We briefly explain LCM algorithm and ZBDD-based techniques for representing
frequent itemsets in this section.

3.1 LCM Algorithm

LCM is a series of algorithms for enumerating frequent itemsets, which was
developed by Uno et al. These algorithms feature that the computation time is
theoretically bounded as an output linear time. The first LCM algorithm was
presented at FIMI2003 [15], and the second version of LCM demonstrated its
remarkable efficiency at FIMI2004 [13]. The original LCM was developed for
enumerating closed itemsets, and then LCMfreq and LCMmax were presented
for mining all frequent itemsets and maximal itemsets1. Now the three variants
are integrated into one program. These implementations are available on the
developer’s web page [12] as open source software.

In general, frequent itemset mining algorithms are classified into two cate-
gories: apriori-like (or level-by-level) algorithms [1] and backtracking (or depth-
first) algorithms [16,5]. LCM algorithms belong to the backtracking style.

Backtracking algorithms are based on recursive calls. The algorithm inputs
a frequent itemset P , and generates new itemsets by adding one of the un-
used items to P . Then, for each itemset being frequent among them, it gen-
erates recursive calls with respect to it. To avoid duplications, an iteration of
the backtracking algorithms adds items with indices larger than the tail of P .
The following information is a description of the framework of the backtracking
algorithms.

ALGORITHM Backtracking (P : itemset)
Output P
For each e ∈ E , e > tail(P ) do
If P ∪ {e} is frequent then
call Backtracking (P ∪ {e})

LCM algorithms are based on backtracking algorithms, and use accelera-
tion techniques for the frequency counting, called occurrence deliver and any-
time database reduction. Therefore, LCM algorithms efficiently compute the fre-
quency. Here, we omit the detailed techniques used in LCM, as they are described
in references [13,14].
1 The complexity has been theoretically proven in generating all/closed itemsets, but

is still open (only experimental) for a maximal one.
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Fig. 1. Binary Decision Tree, BDDs and ZBDDs

a b c F → S
0 0 0 0
0 0 1 0
0 1 0 1 → b
0 1 1 0
1 0 0 0
1 0 1 1 → ac
1 1 0 0
1 1 1 0

As a Boolean function:
F = abc ∨ abc

As a set of combinations:
S = {ac, b}

Fig. 2. Correspondence of Boolean functions and
sets of combinations Fig. 3. ZBDD reduction rule

Although LCM can efficiently enumerate large-scale frequent itemsets, how
to store and index the result of itemsets for efficient data analysis is a different
matter. Even though LCM is an output linear time algorithm, it may require im-
practicable time and space if the number of frequent itemsets becomes too large.
We usually control the output size by using the minimum support threshold in
the ad hoc setting, but we do not know if it may lose some of the important
information that needed to be discovered.

3.2 ZBDDs

A Binary Decision Diagram (BDD) is a graph representation for a Boolean
function. An example is shown in Fig. 1 for F (a, b, c) = abc ∨ abc. Given a
variable ordering (a, b, c in our example), we can use Bryant’s algorithm [2] to
construct the BDD for any given Boolean function. For many Boolean functions
appearing in practice this algorithm is quite efficient and the resulting BDDs are
much more efficient representations than binary decision trees.

BDDs were originally invented to represent Boolean functions. However, we
can also map a set of combinations into the Boolean space of n variables, where
n is the cardinality of E (Fig. 2). So, we could also use BDDs to represent sets
of combinations. However, we can even obtain a more efficient representation by
using Zero-suppressed BDDs (ZBDDs) [7].
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Table 1. Primitive ZBDD operations

“∅” Returns empty set. (0-termial node)
“1” Returns set of only null-combination. (1-terminal node)
P.top Returns item-ID at root node of P .
P.offset(v) Subset of combinations not including item v.
P.onset(v) Gets P − P.offset(v) and then deletes v from each combination.
P.change(v) Inverts existence of v (add / delete) on each combination.
P ∪ Q Returns union set.
P ∩ Q Returns intersection set.
P − Q Returns difference set. (in P but not in Q.)
P.count Counts number of combinations.

If there are many similar combinations then the subgraphs are shared resulting
in a smaller representation. In addition, ZBDDs have a special type of node
deletion rule. As shown in Fig. 3, all of the nodes whose 1-edge directly points
to the 0-terminal node are deleted. As the result, the nodes of items that do not
appear in any sets of combinations are automatically deleted (Fig.1). This ZBDD
reduction rule is extremely effective for handling a set of sparse combinations.
If the average appearance ratio of each item is 1%, ZBDDs are possibly more
compact than ordinary BDDs, even up to 100 times more.

ZBDD representation has another good property, which is that each path
from the root node to the 1-terminal node corresponds to each combination in
the set. Namely, the number of such paths in the ZBDD equals the number of
combinations in the set. This attractive property indicates that, even if there
are no equivalent nodes to be shared, the ZBDD structure explicitly stores all
the items of each combination, as well as uses an explicit linear linked list data
structure. In other words, (the order of) the size of the ZBDD never exceeds the
explicit representation. If more nodes are shared, the ZBDD is more compact
than the linear list.

Table 1 summarizes most of the primitive operations of the ZBDDs. In these
operations, “∅,” “1,” and P.top can be obtained in a constant time. P.offset(v),
P.onset(v), and P.change(v) operations require a constant time if v is the top
variable of P , otherwise they consume linear time for the number of ZBDD
nodes located at a higher position than v. The union, intersection, and difference
operations can be performed in almost linear time to the size of the ZBDDs.

3.3 ZBDD-Growth Algorithm

Using a ZBDD-based compact data structure, we can efficiently manipulate
large-scale itemset databases on the main memory. Recently, Minato et al. have
developed a ZBDD-growth algorithm to generate all/closed/maximal frequent
itemsets for given databases. The details of the algorithm are written in the
article referenced in this paper [11]. The ZBDD-growth is based on the back-
tracking algorithm using recursive calls as well as the LCM. This algorithm has
two following technical features:
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Fig. 4. ZBDD vector for frequency counting

(i) Uses ZBDDs for the internal data structure, and
(ii) Uses ZBDDs for the output data structure.

In the first feature, the internal data structure means that the given transac-
tion database is converted to a ZBDD-based representation on the main memory.
On each recursive step of the backtracking, frequency counting for the condi-
tional (or restricted) database is performed by the ZBDD operations. This is
similar to the FP-growth [5] algorithm, which manipulates the FP-tree in the
backtracking algorithm.

Since ZBDDs are representations of sets of combinations, a simple ZBDD only
distinguishes the existence of each itemset in the database. In order to count the
integer numbers of frequency, the ZBDD-growth algorithm uses the m-digits of
the ZBDD vector {F0, F1, . . . , Fm−1} to represent the integers up to (2m − 1),
as shown in Fig. 4. The numbers are encoded into a binary digital code, as F0

represents a set of itemsets appearing at odd times (LSB = 1), F1 represents a
set of itemsets whose appearance number’s second lowest bit is a one, and which
is similar to the way we define the set of each digit up to Fm−1. Notice that this
ZBDD vector is used only for the internal data structure in the ZBDD-growth
algorithm. The output data is represented by a simple ZBDD, because the result
is just a set of frequent itemsets. (It does not keep the frequency of each itemset.)

ZBDD-growth algorithm manipulates the ZBDDs for both the internal and
output data structures, so the advantage of the ZBDD-based data compression
is fully employed. There are examples where billions of frequent itemsets can
be represented by only thousands of ZBDD nodes. The mining result can be
efficiently postprocessed by using algebraic ZBDD operations.

However, ZBDD-growth has an frequency computing overhead for using ZBDD
vectors. The arithmetic operations of the ZBDD vectors are performed by a series
of ZBDD operations on each binary digit, and this requires more steps than or-
dinary 32- or 64-bit arithmetic operations in the CPU normally use. Unless the
ZBDD-based data compression rate is very high, the overhead becomes obvious.
There are the two typical cases when the ZBDD is not very effective.

– The number of itemsets is small enough to be easily handled in anyway.
– The database is completely random and no similar itemsets are included.

In many practical cases, the ZBDD-growth algorithm is no faster than previous
algorithms. As shown in the experimental results outlined in this paper, the
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ZBDD-growth is 10 to 100 times slower than ordinary LCM when the output
size is small. ZBDD-growth wins only when a huge number of frequent itemsets
are generated.

4 LCM over ZBDDs

In this section, we discuss the combination of the LCM and ZBDDs. It is for-
tunate that we can observe a number of common properties in LCM algorithms
and ZBDD manipulation, and they are listed as follows:

– Both are based on the backtracking (depth-first) algorithm.
– All the items used in the database have a fixed variable ordering.
– In the algorithm, we choose items one by one according to the variable

ordering, and then recursively call the algorithm.
– In the current LCM implementation, the variable ordering is decided at the

beginning of the algorithm, and the ordering is never changed until the end
of execution.

These common properties indicate that LCM and ZBDDs may be a really good
combination. Our algorithm, “LCM over ZBDDs,” does not touch the core algo-
rithm of LCM, and just generates a ZBDD for the solutions obtained by LCM. In
this way, we aim to efficiently generate very large-scale frequent itemsets with a
very small overhead of ZBDD manipulation. We will now describe the techniques
used in the new method.

4.1 ZBDD Construction in LCM Procedure

We recall the basic structure of the original LCM algorithm shown in Fig. 5.
However, we omit the detailed techniques used in checking the frequency of each
itemset, but basically the algorithm explores all the candidates of the itemsets
in a backtracking (or depth-first) manner, and when a frequent itemset is found,
they are appended one by one to the output file. On the other hand, “LCM
over ZBDDs” constructs a ZBDD that is the union of all the itemsets found in
the backtracking search, and finally returns a pointer to the root node of the
ZBDD. A naive modification can be described using in Fig. 6. However, this
naive algorithm has a problem with its efficiency.

In the LCM procedure, a ZBDD grows by repeating the union operations of
the frequent itemsets found in the depth-first search. If we look at the sequence
of itemsets generated by the algorithm, the consecutive itemsets are quite similar
to each other in most cases, namely, only a few items near the tail are different
and the other top items are completely identical. The ZBDD union operations
look similar to those shown in Fig. 7, although only a few of the bottom levels are
different, but almost all the other parts are the same. Since the procedures for
the ZBDD operations are recursively executed from the top node to the bottom
one, the computation of a union operation requires O(n) steps, while only a
few bottom items are meaningful. Namely, this algorithm will become n times
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LCM Backtrack(P : itemset)
{

Output P
For e = n to tail(P ) + 1 step −1

do
If P ∪ {e} is frequent

LCM Backtrack(P ∪ {e})
}

Fig. 5. Basic structure of LCM
algorithm

ZBDD LCMovZBDD Naive(P : itemset)
{

ZBDD F ← P
For e = n to tail(P ) + 1 step −1 do

If P ∪ {e} is frequent {
F ′ ← LCMovZBDD Naive(P ∪ {e})
F ← F ∪ F ′

}
Return F

}

Fig. 6. Naive modification for generating
ZBDDs

Fig. 7. ZBDD union operations in naive LCM over ZBDDs

slower. This is an unacceptable loss of efficiency, because n may be more than a
hundred in practical datasets.

To address this problem, we improved the algorithm (Fig. 8). On each recur-
sive step, we construct a ZBDD only for the lower items, and after returning
from the subsidiary recursive call, we stack the top item up on the current result
of ZBDD. In this way, we can avoid redundant traversals in the ZBDD union
operation, as shown in Fig. 9. If we use the variable ordering of ZBDDs that
is the same as the LCM’s item ordering, each ZBDD operation requires only a
constant time, and the total overhead of the ZBDD generation can be bounded
by a constant factor compared with the original LCM.

ZBDD LCMovZBDD(P : itemset)
{

ZBDD F ← “1”
For e = n to tail(P ) + 1 step −1 do

If P ∪ {e} is frequent {
F ′ ← LCMovZBDD(P ∪ {e})
F ← F ∪ F ′.change(e)

}
Return F

}

Fig. 8. Improved version of “LCM over
ZBDD”

Fig. 9. Efficient ZBDD con-
struction in LCM over ZBDDs
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4.2 Employing Hypercube Decomposition

The original LCM finds a number of frequent itemsets all at once to reduce the
computation time by using the technique of hypercube decomposition [15] (or,
also called equisupport). For a frequent itemset P , let H(P ) be the set of items
e satisfying e > tail(P ) and Occ(P ) = Occ(P ∪ {e}). Then, for any Q ⊆ H(P ),
Occ(P ) = Occ(P ∪ Q) holds, and P ∪ Q is frequent. The original LCM avoids
duplicated backtracking with respect to the items included in H(P ), by passing
H(P ) to the subsidiary recursive calls. This algorithm is shown in Fig. 10.

Current LCM implementations have two output options: (i) printing out all
the solutions to the output file, or (ii) just counting the total number of so-
lutions. When counting the number of itemsets, we accumulate a 2’s power to
the hypercube size for each solution, without generating all the candidates de-
rived from the hypercube. This technique greatly reduces the computation time
because the LCM algorithm is dominated by the output size.

Also in LCM over ZBDDs, we can employ the hypercube decomposition tech-
nique. The algorithm is described in Fig. 11. A remarkable advantage of our
method is that we can efficiently generate a ZBDD that includes all of the so-
lutions, within a similar computation time as the original LCM when counting
only the number of solutions. The original LCM is known as an output linear
time algorithm, but our method can generate all the solutions in a sub-linear
time for the number of solutions if the hypercubes appear often.

4.3 Closed/Maximal Itemset Mining

The original LCM can also generate closed/maximal itemsets. Our method does
not touch the core algorithm of LCM, and just generates ZBDDs for the solutions
obtained by LCM. Therefore, a ZBDD for closed/maximal itemsets as well as
the original LCMs can be generated. The technique for hypercube decomposition
should be slightly modified to generate a closed/maximal one, but it is a similar
technique as to one used in the original LCMs.

LCM Backtrack H(P, S: itemset)
{

S′ ← S ∪ H(P )
Output itemsets including P

and included in P ∪ S′

For e = n to tail(P ) + 1 step −1
do

If e /∈ S′ and P ∪ {e} is frequent
LCM Backtrack H(P ∪ {e}, S′)

}

Fig. 10. Original LCM with hypercube
decomposition

ZBDD LCMovZBDD H(P, S: itemset)
{

S′ ← S ∪ H(P )
ZBDD F ← “1”
For e = n to tail(P ) + 1 step −1 do

If e ∈ S′

F ← F ∪ F.change(e)
Else if P ∪ {e} is frequent {

F ′ ← LCMovZBDD H(P ∪ {e}, S′)
F ← F ∪ F ′.change(e)

}
Return F

}

Fig. 11. LCM over ZBDDs with hyper-
cube decomposition
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5 Experimental Results

Based on the above ideas, we implemented LCM over ZBDDs by modifying the
open software, LCM ver. 5 [12]. We composed about 50 line modifications or
additions to the main file of the original LCM, and compiled it with our own
ZBDD package, which consists of about 2,300 lines of C codes. We used a 2.4GHz
Core2Duo E6600 PC, 2 GB of main memory, with SuSE Linux 10 and a GNU
C++ compiler. On this platform, we can manipulate up to 40,000,000 nodes of
ZBDDs with up to 65,000 different items.

To evaluate the performance of our method, we applied it to a practical size of
the datasets chosen from FIMI2003 repository [4] with various minimum support
thresholds. We compared our results with those of the original LCM [12] and the
ZBDD-growth [11]. In the datasets, a “mushroom” is known as an example where
the ZBDD-growth is effective because the ZBDD-based data compression works
well. ”T10I4D100K” is known as the opposite, an artificial database consists of
randomly generated combinations. In this case, ZBDD-based data compression
is quite ineffective. “BMS-WebView-1” has an intermediate property between
the two.

Table 2 shows our experimental results. In this table, |ZBDD| represents
the number of ZBDD nodes representing all the frequent itemsets. The column
“LCM-count” shows the computational time of the original LCM when counting
only the number of solutions, and ‘LCM-dump” represents the time for listing
all the itemset data to the output file (using /dev/null). “LCMoverZBDD” and
“ZBDD-growth” show the time for generating the results of the ZBDD on the
main memory, including the time for counting the ZBDD nodes.

From the experimental results, we can clearly see that LCM over ZBDDs is
more efficient than ZBDD-growth in most cases. The advantage of our method
can be observed when a smaller number of solutions are generated. ZBDD-growth
shows comparable performances to our method only in the “mushroom” with
very low minimum support, but for all the other cases, our method overwhelms
the ZBDD-growth.

We can also observe that LCM over ZBDDs is more efficient than the origi-
nal LCM-dump. The difference becomes significant when very large numbers of
itemsets are generated. The original LCM-dump is known as an output linear
time algorithm, but our LCM over ZBDDs requires a sub-linear time for the
number of itemsets. The computational time of our method is almost the same
as executing an LCM-count. We must emphasize that LCM-count does not store
the itemsets, but only counts the number of solutions. On the other hand, LCM
over ZBDDs generates all the solutions and stores them on the main memory as
a compact ZBDD. This is an important point.

After executing LCM over ZBDDs, we can apply various algebraic operations
to the ZBDD to filter or analyze the frequent itemsets [11]. Storing the results
as a ZBDD will be more useful than having a large dump file of all the frequent
itemsets.

Finally, we show the experimental results for generating closed itemsets in Ta-
ble 3. We compared our results with the original LCM and ZBDD-growthC [10], a
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Table 2. Comparison of LCM over ZBDDs with previous methods

Dataset name: #Frequent LCMoverZBDDs LCM-count LCM-dump ZBDD-growth
min. support itemsets |ZBDD|Time(s) Time(s) Time(s) Time(s)

mushroom: 1,000 123,287 760 0.50 0.49 0.64 1.78
500 1,442,504 2,254 1.32 1.30 3.29 3.49
300 5,259,786 4,412 2.25 2.22 9.96 5.11
200 18,094,822 6,383 3.21 3.13 31.63 6.24
100 66,076,586 11,584 5.06 4.87 114.21 6.72
70 153,336,056 14,307 7.16 7.08 277.15 6.97
50 198,169,866 17,830 8.17 7.86 357.27 6.39

T10I4D100K: 100 27,533 8,482 0.85 0.85 0.86 209.82
50 53,386 16,872 0.97 0.92 0.98 242.31
20 129,876 58,413 1.13 1.08 1.20 290.78
10 411,366 173,422 1.55 1.36 1.64 332.22
5 1,923,260 628,491 2.86 2.08 3.54 370.54
3 6,169,854 1,576,184 5.20 3.15 8.14 386.72
2 19,561,715 3,270,977 9.68 5.09 22.66 384.60

BMS-WebView-1: 50 8,192 3,415 0.11 0.11 0.12 29.46
40 48,544 10,755 0.18 0.18 0.22 48.54
36 461,522 28,964 0.49 0.42 0.98 67.16
35 1,177,608 38,164 0.80 0.69 2.24 73.64
34 4,849,466 49,377 1.30 1.07 8.58 83.36
33 69,417,074 59,119 3.53 3.13 144.98 91.62
32 1,531,980,298 71,574 31.90 29.73 3,843.06 92.47

chess: 1,000 29,442,849 53,338 197.58 197.10 248.18 1,500.78
connect: 40,000 23,981,184 3,067 5.42 5.40 49.21 212.84
pumsb: 32,000 7,733,322 5,443 60.65 60.42 75.29 4,189.09

BMS-WebView-2: 5 26,946,004 353,091 4.84 3.62 51.28 118.01

Table 3. Generating closed itemsets

Dataset name: #Closed LCMoverZBDDs LCM-count LCM-dumpZBDD-growthC
min. support itemsets |ZBDD|Time(s) Time(s) Time(s) Time(s)

mushroom: 1,000 3,427 1,059 0.58 0.55 0.55 1.86
500 9,864 2,803 1.28 1.24 1.24 3.62
100 45,944 9,884 3.06 2.93 2.40 6.54
50 68,468 12,412 3.48 3.35 3.50 8.71

T10I4D100K: 100 26,806 8,548 0.89 0.89 0.92 1,931.21
50 46,993 16,995 1.03 0.99 1.03 2,455.22
10 283,397 164,773 1.69 1.54 1.75 (>5,000)
2 2,270,195 1,476,698 6.62 4.76 6.47 (>5,000)

BMS-WebView-1: 50 7,811 3,477 0.12 0.12 0.13 32.09
40 29,489 11,096 0.24 0.22 0.26 58.44
35 76,260 29,553 0.84 0.79 0.88 102.87
32 110,800 46,667 1.94 1.86 1.98 138.22

variation of ZBDD-growth to generate closed itemsets. Since the closed (or maxi-
mal) itemsets are a very small subset of all the frequent itemsets, in this case, the
performances of LCM-count and LCM-dump were not so different. Anyway, LCM
over ZBDDs can efficiently generate closed itemsets using a very small overhead
of the ZBDD manipulation. As well as the ZBDD of all the frequent itemsets, var-
ious postprocessing is applicable to the ZBDD of closed itemsets. For example, we
can easily obtain all the “non-closed” itemsets by using a ZBDD-based difference
operation between all the frequent itemsets and closed itemsets.
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6 Conclusion

We proposed our “LCM over ZBDDs” algorithm for efficiently generating very
large-scale all/closed/maximal frequent itemsets using ZBDDs. Our method is
based on LCM, one of the most efficient state-of-the-art algorithms previously
proposed. The algorithm not only enumerates the itemsets but also generates a
compact output data structure on the main memory. The result can efficiently
be postprocessed by using algebraic ZBDD operations.

The original LCM is known as an output linear time algorithm, but our new
method requires a sub-linear time for the number of frequent patterns when the
ZBDD-based data compression works well. Our experimental results indicate
that the ZBDD-based method will greatly accelerate the data mining process
and will lead to a new style of on-memory processing for dealing with knowledge
discovery problems.
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Education, Science, Sports and Culture (MEXT), Grant-in-Aid for Scientific
Research on Priority Area: “Cyber Infrastructure for the Information-explosion
Era.”
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Abstract. In this paper, we present an alternative approach to discover
interesting unusual observations that can not be discovered by outlier
detection techniques. The unusual pattern is determined according to
the deviation of a group of observations from other observations and the
number of observations in the group. To measure the degree of deviation,
we introduce the concept of adaptive nearest neighbors that captures the
natural similarity between two observations. The boundary points deter-
mined by the adaptive nearest neighbor algorithm are used to adjust
the level of granularity. The adaptive nearest neighbors are then used to
cluster the data set. Finally, we ran experiments on a real life data set
to evaluate the result. According to the experiments, we discovered in-
teresting unusual patterns that are overlooked by using outlier detection
and clustering algorithms.

1 Introduction

Data mining is the process of discovering meaningful nontrivial patterns in large
data sets. In this field, clustering analysis plays an important role. The cluster-
ing algorithms divide the similar observations into groups in order to extract
the common patterns of the data. In order to learn the general patterns, small
clusters and nondominant patterns are discarded or simply undetected . Despite
their relatively small size, these clusters may be invaluable because their nondom-
inant patterns may reveal important knowledge. Network Intrusion, malicious
computer activity and fraudulent transaction detection are the typical applica-
tions for this kind of problem [1]. Recently, outlier detection has emerged as an
approach for discovering nondominant patterns by measuring the deviation of
the outliers from the norm [2,3,4].The top outliers will be the most interesting
ones. However, outlier detection has two major drawbacks. First, the false alarm
rate is high. Even for a good outlier detection algorithm that can discover all
true outliers in terms of the deviation from the norm, most outliers except for
extreme ones are unimportant.This is the nature of an outlier detection approach
because the outliers are defined based on the distance between the outliers and
the norm. Noise is also classified as an outlier for its deviation from the norm.
In real life, domain experts are often required to investigate and analyze the

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 247–259, 2008.
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outliers manually in order to understand their meaning. If the algorithm returns
many outliers, which is likely in large and heterogeneous data sets, this approach
becomes difficult when the interesting outliers do not always appear in the top
outliers. Another drawback is that each point can be considered an outlier by it-
self in high dimensions. The volume of the data space grows exponentially when
the dimensionality increases [5]. In other words, the data is very sparse and the
density of the data set approaces zero. As a result, except for extreme outliers,
using an outlier detection method to discover novel patterns is difficult in high
dimensional and heterogeneous data.

To overcome the limitations associated with outlier detection, we propose to
use the number of similar surrounding observations that deviate from others as
a metric to measure the level of interestingness instead of the degree of deviation
metric. From this perspective, all non extreme outliers are equal even though
their rankings are different because most observations in high dimensions are
outliers by themselves. However, when some outliers start to form a small cluster,
they are not simply noise and do not appear as outliers accidentially. They
indicate interesting unusual behaviors in the data set. One may ask if we can
apply several clustering algorithms on the top outliers to cluster them in order
to discover their pattern. As shown in the experiments, it is not the case. The
interesting observations can be the outliers with low rankings and they are often
removed from the list of top outliers. As a result, the clustering algorithms can
not detect those important clusters.

In this paper, we introduce an algorithm that can discover small clusters in
high dimensional and heterogenous datasets. We have shown that our algorithm
can effectively discover these clusters. In addition, our algorithm has discov-
ered novel patterns based on our proposed metric of interestingness for unusual
observations

2 Related Work

The closest work to our approach is that of density-based clustering algorithms.
Among the well-known algorithms,i.e. DBSCAN, Chamelon, CURE, shared
nearest neighbor (SNN), SNN [6] shows the best performance because it can
find clusters of different sizes, shapes and densities. This algorithm is based on
the concept of core points and the number of strong links of the core points. A
point is a core point if the number of strong links exceeds a given threshold.
A core point will be the representative of the cluster. Any point that has the
strength of the link with a core point exceeding a certain threshold will be in the
same cluster as the core point. Finally, a point that has a neighbor in a cluster
and the strength of the link between them is greater than a threshold will be
put into the same cluster as its neighbor. The algorithm works very well for a
two dimensional data set. The algorithm can find small sized clusters but it is
sensitive to the deviation of a point from its neighbors. In high dimensions, the
clusters are broken into many tiny clusters. In contrast, our algorithm separates
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a point from a cluster only if it deviates largely from the other points, which
makes the algorithm more suitable for unsual pattern detection.

Another similar work is outlier detection. Recently, Breunig et al [2] intro-
duced the local based outlier factor (LOF) which can detect local outliers. The
main idea is that if a point is inside a tight cluster, its LOF value should be
close to one and if it is outside the cluster or non-tight area, LOF should be
greater than one. A point with LOF greater than one is an outlier. In high di-
mensionality, the clusters are no longer tight as assumed [5] and LOF becomes
unbounded. Virtually, most observations are local outliers according to LOF.

3 Our Approach

Our approach is based on a variation of k-nearest neighbors (KNN) and the
concept of dual-neighbor to cluster the data set. In clustering, KNN is used to
cluster the data set by constructing a list of k nearest neighbors for each point in
the data set. The distance from a point to its kth-nearest neighbor is considered
as its neighborhood distance. A point and its neighbors are considered to be
similar to each other. The definition of similarity can be misleading since the
close points may not be actually close to each other as illustrated in figure 1(a).
Point q belongs to a dense region while point p is in a less dense region. With k
= 5, s is in the list of KNNs of p and s is considered to be similar to p. However,
as shown in the figure, s is not similar to p because the distance between q and
its nearest neighbors is less than that between q and p. Those two dissimilar
points will be in the same cluster.

To solve the problem, Jarvis and Patrick introduced the concept of shared
nearest neighbor [7]. The strength of the similarity between two points is mea-
sured by the number of nearest neighbors shared between them. Two points
belong to the same cluster if the strength of the link exceeds a certain threshold.
The clustering algorithm can produce excellent results. However, it is non-trivial
to select an approriate value of k and to justify the results of SNN in high dimen-
sions. Ertoz et al improved the SNN by introducing the topic threshold. A point
with the number of strong links exceeding the topic threshold will represent its
neighbors. Their clustering algorithm is based on the number of strong links and
the link strength of the point in the data set. In high dimensions, the points in
the small clusters can not have the number of strong links sufficient enough to
form a cluster. The points in this cluster will be broken into smaller clusters even
though they may be only slightly different from other points. Another problem
is that the parameter k is the same for all points in data set. As illustrated in
figure 1(a), the result will be inconsistent with a global parameter k. Figure 1(a)
illustrates a simplified case when k is small. In the figure, the distance from p to
its 4th-nearest neighbor is twice the distance from q to its 4th-nearest neighbor
even though the distance from p and q to their 2th nearest neighbors are the
same. The volumes of k-distances of p and q will be different signficantly with a
small increase in k.
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In this paper, we propose the use of adaptive nearest neighbors (ANN) to
define the neighborhood distance. The approach has three parameters to fine
tune the adaptive neighborhood distance. From our perspective, the concept of
neighhood distance of a point, say p, is a relative concept since it can not be de-
fined without surrounding points. As illustrated in figure 1(a). the neighborhood
distance of p is greater than that of q because the first two nearest neighbors of
p are farther than those of q.

With this observation, the first few nearest neighbors are used to define the
initial neighborhood distance. Those neighbors are called the initial neighbors or
i-neighbors in short. The distance from p to its i-neighbors is called i-distance.
The i-distance defines the minimum neighborhood distance of p regardless of k.
When p is in a dense cluster, the i-distance tends to be smaller.

The next parameter, α, is used to control the local variation of the neighbor-
hood distance around p. In figure 1(b), r, s and t are i-neighbors of p whereas q
is the 4th nearest neighbor of p. First, we project r, s and t on the line passing
two points p and q. ph is chosen for it is the longest projected line segment of
r,s and t on pq. If the ratio between the line segment pq and ph is less than α,
then q is included in the adaptive nearest neighbor list of p, denoted by ANN(p).
This process is repeated until there is a point w in the k-nearest neighbor list
of p whose ratio is greater than α. Point w and all the nearest neighbors of p
farther than w are excluded from the adaptive nearest neighbor list of p. Point
w is called the boundary point. α controls the local maximum variation of the
nearest neighbors. The idea of α is that the neighbor should be excluded from
the list of nearest neighbors when it is signifcantly different from the others in
the list and α measures the level of differences.

The last parameter is to adjust the granularity level. For the small data set
as in figure 1(a), it makes sense to cluster it into two distinct clusters. But in
a larger data set, the two clusters should be merged into one if the distinction
between them is small compared with others. The boundary points can be used
for controlling the granularity. We use the parameter z for this. The procedure
for constructing the lists of ANNs is modified as follows. Instead of stopping the
construction of ANN list for p when a boundary point is reached, we continue
to put it into the ANN list of p. The process is stopped when z equals the
number of times we reach the boundary points. The algorithm achieves the finest
granularity level when z = 1. The detailed procedure for constructing the ANN
list is described in algorithm 1.. In algorithm 1., s is the number of i-neighbors

(a) kth nearest neigh-
bors of p and q.

(b) Adaptive nearest
neighbors of p and q.

Fig. 1. Nearest neighbors of p and q
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and z is the granularity tuning parameter. Also, k is the maximum number of
nearest neighbors that are computed for a point p.

With adaptive nearest neighbors, we can define the neighborhood distance of
a point independent of k with different levels of granularity. This neighborhood
distance is called the adaptive neighbor distance, denoted by a− distance. Ac-
cording to the discussion above, we can say that any point within the adaptive
neighborhood of a point p is truly a natural neighbor of p. Also, we observe
that the similarlity must be a mutual relation. In other words, if two points are
considered naturally close to each other, they should be in the list of ANNs of
each other. We formally define the closeness as follows:

Definition 1. Given any two points p and q in dataset D, p and q have a dual-
neighbor relationship, denoted by dual(p, q) ≡ true, if and only if p ∈ ANN(q)
and q ∈ ANN(p)

In the definition, two points are considered neighbors to each other when they
have a dual-neighbor relationship. With this definition, we can address the prob-
lem of KNN as illustrated in 1(a) when p and q have no dual-neighbor relation-
ship where z = 1. In a coarser granularity level, i.e. z = 2, p and q become
neighbors to each other. Another useful concept is the indirect dual-neighbor
relationship.

Definition 2. Given any two points p and q in dataset D, p and q have an
indirect dual-neighbor relationship, denoted by indual(p, q) ≡ true, if and only
if

(i) dual(p, q) ≡ true, or

(ii) ∃r ∈ D : dual(p, r) ≡ true ∧ indual(r, q) ≡ true

As discussed above, we are interested in discovering unusual patterns. With the
definition of the indirect dual-neighbor, we can formally define the concepts of
usual and unusual patterns as follows:

Definition 3. An observation is usual if it belongs to a large group of obser-
vation where each observation has at least one observation in the group that is
similar to it. The group that contains those usual observations is called a usual
pattern.

Definition 4. An observation is said to have an unusual pattern if it belongs to
a small group of observations where each observation has at least one observation
in the group that is similar to it and has no other observation outside of the
group similar to it. The group that contains those unusual observations is called
an unusual pattern.

In this paper, ANN and the dual-neighbor are used to define the similarity
between two points. The indirect dual-neighbor shows the indirect similarity
between two observations belonging to the same pattern. With the definitions
of unusual pattern, the clustering criteria of our approach is stated as follows:

Given two points p, q in dataset D, p and q belong to the same cluster C if
and only if indual(p, q) ≡ true.
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This definition implies the chain affect and it can produce very large clusters.
This, however, is acceptable because the observations in large clusters are usual.
As mentioned above, we are interested in discovering unusual patterns. To be
unsual, the observations should deviate from other usual patterns. Therefore, the
chain affect will have no impact on the results for discovering unusual patterns.

The parameters i-neighbors, α and z play an important role in defining the
level of similarity. In a uniformly distributed region, the choice of the number of
i-neighbors has less affect since all points should belong to the same cluster. The
concept of i-neighbor is useful in non-uniformly distributed regions. In this case,
the number of i-neighbors should be small, which is usually less than 10. The
parameter α is used to control the local variance of the neighborhood distance
according to the i-neighbors. The parameter α defines the upperbound of the
acceptable deviation between the neighbors. The last parameter is z which is
used for adjusting the level of granularity. When z = 1, we can see all natural
clusters in terms of ANN. When z is increased, the nearby clusters are merged
together. In practice, the number of i-neighbors and α are less important than
z since they can be easily selected without affecting the results. Intuitively, we
can set α = 1.2 and z ∈ [2, 4].

Algorithm 1. Adpative Nearest Neighbors
1: function ANN(p)
2: for i← s, k do
3: r ← ithneighbor(p)
4: τmax ← 0
5: πmax ← 0
6: for j ← 1, (i− 1) do
7: q ← jthneighbor(p)
8: π ← −→pq−→pr/ ‖−→pr‖
9: τ ← ‖−→pr‖ /π

10: if π > πmax then
11: πmax ← π
12: τmax ← τ
13: idx← j
14: end if
15: end for
16: if τmax > α || τmax = 0 then
17: if level < z then
18: level ← level + 1
19: else
20: return all jthneighbor(p), where j ≤ idx
21: end if
22: end if
23: end for
24: end function

Algorithm 2. shows the linear time processing steps to cluster the data set
after the lists of adaptive nearest neighbors have been computed according to
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algorithm 1.. For every unclustered point, we randomly select a point to form a
new cluster where the selected point is the representative of the cluster. Then,
we expand the cluster by including all the dual-neighbors and the indirect dual-
neighbors of the point into the cluster. To facilitate the algorithm, we create
a stack S to store the dual-neighbors. As shown in steps 11-12, an unclustered
point p is removed from the data set. Since p does not belong to any cluster, a
new cluster C is created for p before pushing p onto stack S. In steps 13-16, a
point q is popped from S and q is added to cluster C. Besides, all dual-neighbors
of q are pushed onto the stack. Those steps are repeated until S is empty, which
means the inner while loop is stopped when indirect dual-neighbors of the points
in cluster C are included in the cluster.

Algorithm 2. Outcast Pseudocode
1: procedure Outcast(HashSet D)
2: Stack S
3: V ector clsSet
4: HashSet C
5: while D �= ∅ do
6: p← remove D
7: push p→ S
8: C ← new HashSet
9: add C → clsSet

10: while S �= ∅ do
11: q ← pop S
12: add q → C
13: for r ∈ ANN(q) ∧ dual(q, r) do
14: push r → S
15: remove r from D
16: end for
17: end while
18: end while
19: end procedure

4 Experiments

In this section, we present experimental results using the SAM’s Club data set [8].
The data set contains the sales transaction data for 18 Sam’s club stores between
the dates of January 1 and January 31, 2000. From the sales transactions, we
create a new data set of 34,250 tuples with 31 attributes. Each tuple represents a
sale item and the attributes represent the total sales quantities for each individual
item between the dates of January 1. The total sale varies from 0 to 16,788. The
purpose of this experiment is to apply the well-known local outlier detection
method LOF and the density-based clustering algorithm SNN on the data set in
order to detect any unusual sales patterns. We first ran LOF on the data set to
determine the top local outliers. We then ran KMEAN and SNN on the top 5%
outliers to produce a summary of the outliers. We also ran SNN on the whole
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data set with different values of k in the attempt to discover unusual patterns
by studying the small clusters returned by SNN. We then compared the results
with those from our alogirthm.

4.1 LOF, KMEAN and SNN

Figure 2(a) shows the average sales for each day in January for all items in the
dataset. According to the figure, the sale follows the same pattern every week.
Sales gradually decrease from the start of the week toward the middle of the
week and then slightly increase toward the end of the week before achieving its
peak on Saturday. The sales quickly drops on Sunday. This pattern repeats every
week in January. The figure illustrates that most customers tend to go shopping
on Saturdays.

For the first test, we computed the LOF values for all items. The LOF values
vary greatly from 0.012 to 2681.28. There are 13990 items with LOF greater than
2 and 8495 items with LOF greater than 10. According to the LOF algorithm
[2], most of items in the dataset are outliers. This confirms our remark that most
data points become outliers in high dimensions due to the space sparsity. The
values of the top 10 outliers and their sale information are shown in table 1(a)
and figure 2(b). The strongest outlier is item 1 whose pattern deviates from the
norm since its sales increase slightly on Saturdays and tends to fall toward the
end of the month. For the next 9 outliers ranked by the LOF approach, the sale
pattern resembles that in figure 2(a).

We take the top 5% of the items ranked by LOF to form a new dataset with the
size of 1712 and then apply several clustering algorithms on the new data set. The
purpose is to group the top outliers together in order to learn the common patterns
of these outliers in an attempt to explain their significance. In this experiment, we
use KMEAN and SNN to cluster the dataset.

Figure 3(a) shows the average sales amount and its standard deviation for
items in the clusters clustered by KMEAN when k = 20. According to figure 3(a),
KMEAN clusters the outliers into groups with different ranges of sale volume
(less than 500, 500, 1000 and 1500) and the average size of the clusters is 85.6.
The sale patterns for those clusters are the same as the common pattern of the
whole data set. Similar results are obtained when we ran KMEAN with different
values of k.
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Fig. 2. The average daily sale
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Table 1. Data Set clustered by KMEAN and SNN

(a) Top 10 LOF outliers.

Item LOF Item LOF

1 2681.28 6 1798.9

2 2205.68 7 1789.0

3 1907.18 8 1710.38

4 1895.92 9 1699.56

5 1841.24 10 1686.28

(b) Clusters generated by SNN.

k cluster size μ σ

80
86 30 73.75 195.02

1571 41 101.07 267.16

110
85 33 122.96 300.23

1522 82 87.76 213.85

140
85 33 122.96 300.23

1561 112 74.66 213.85

170
14 32 90.83 267.01

1600 155 78.66 207.4

200 1668 185 89.16 208.46
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(a) Top 5% items clustered by KMEAN.
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(b) Top 10% items clustered by SNN.

Fig. 3. Top LOF outliers clustered by KMEAN and SNN

Figure 3(b) shows the results of SNN when k = 20. There are 32 clusters with
the average size of 53.5. Clusters 1 and 17 are two main clusters with the size
of 791 and 100 respectively. The average sale of cluster 1 ranges from 32.3 to
89.3 and its standard deviation ranges from 167 to 419.4. The sales volume of
the items in the cluster are quite different even though they belong to the same
cluster. As illustrated, the sales pattern of the clusters resembles the common
sales pattern of the whole data set.

In the next experiment, we ran SNN on the whole data set, varying k from
20 to 200. Table 1(b) shows the list of clusters with the size greater than 30
for each k. In table 1(b), μ is the average sales for each cluster and σ is the
average standard deviation of the sales for the dates in January. We found that
most items form a cluster by themselves and that there are at most two clusters
with the size greater than 30 for each k. Also, the fourth and fifth columns of
table 1(b) show that σ is twice μ. It means that the sale quantity varies greatly
for the items in the same clusters as shown in figure 4(a). Consequently, We have
found no interesting patterns in this experiment.

4.2 Outcast

Table 2(a) shows the size of the interesting clusters found by our algorithm with
the granularity level 2. There is one major cluster with the size of 6203 and 16
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Fig. 4. The average sale volumes for each day in January

Table 2. Dataset clustered by Outcast

(a) Interesting patterns

Cluster Size Cluster Size

93 70 652 40

363 54 663 40

241 49 444 209

(b) Top 4 highest items and 4 lowest
items in cluster 241 ranked by LOF.

Item LOF Rank Item LOF Rank

3175 4.23 10974 2273 2.03 14368

3315 4.21 10984 10804 1.92 14718

1902 4.13 11068 1920 1.84 14989

572 4.03 11128 3229 1.81 15111

small clusters with their size ranging from 40 to 209. Among them, cluster 1
and 110 (figure 4(b)) have sale patterns that resemble the common pattern. We
found that the top 14 outliers recognized by LOF belong to cluster 1 and that
51 out of 58 items in cluster 1 are in the top 100 outliers.

Cluster 241 with the size of 49 is the most interesting pattern found by our
algorithm. Figure 5(a) shows the sales pattern of the items in the cluster. Even
though the average sale volumes of the items vary from 80.74 to 389.35, they fol-
low the same pattern which is reversed from the common sale pattern (fig.2(a)).
The sale achieves the peak at the beginning of the week instead of on Satur-
day and then slightly decreases toward the weekend before reaching its lowest
on Sunday. It is interesting to find that all the sales in the second week of the
items in this cluster jump sharply on Friday instead of Saturday as the common
pattern and then the sale drops quickly on the Saturday and Sunday. The sales
on this day is almost double the sales on the peaks of the other weeks. When we
further investigate the items in the clusters, we found that all of those items are
cigarettes. Table 2(b) shows the top highest and lowest LOF values for items in
cluster 241. Even though the items have interesting sales patterns, their LOF
ranking is very low. The item with highest rank in the cluster is item 3175 and
its rank is 10974th. The ranking varies greatly from 15111th to 10974th despite
the fact that the sale patterns are very similar for those items.

Two other interesting patterns occur in clusters 93 and 652 as shown in
figure 5(b). Even though cluster 93 resembles the weekly common sales pattern
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Fig. 5. The average sale volumes for each day in January

in the way that the sale is highest on Saturday as compared with the other days
in the same week, the overall sales in every week tends to decrease toward the
end of the month. In contrast, items in cluster 652 almost have no sale for the
first three weeks. In the last week, the sales increase rapidly toward the end of
the month and achieve their peak on the last Saturday of the month. Figure 6(a)
shows the sale pattern for clusters 363 and 663. Those two clusters are similar
to clusters 93 and 652 except that the sales for those clusters are four times less
than that of clusters 93 and 652.

Figure 6(b) shows the sale patterns for clusters 60, 463, 444 and 331. Cluster
444 contains 209 items and those items have almost no sales except for a few
sales on the last Saturday. The other clusters are less interesting than the ones
mentioned above due to their small sale volume.

In summary, we ran experiments with different combinations of the outlier
detection and clustering algorithms. With LOF, most items in the data set were
classified as outliers. When examing the top 10 outliers. We found that the
sales pattern of the top outlier is slightly different from the common weekly
sales pattern. The top 10 outliers have high sale volumes and their sales pattern
follow the weekly pattern. We then clustered the dataset with KMEAN and
SNN. Those clustering algorithms divide the top 5% of the outliers into groups
of different sale volumes but no interesting patterns are found. It is the same
when we ran SNN on the whole data set. However, when we tested the data
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set with our algorithm, we discover six unusual patterns. Among them, the sale
pattern of cluster 1 does not differ from the weekly sales pattern. We found
that 89% of the items in the cluster are in the top 100 outliers ranked by LOF.
Cluster 241 is the most interesting since we found that cigarrete sales follow the
Friday sales pattern rather than the Saturday pattern. The other four clusters do
not follow the common sales pattern. The experiment confirms that interesting
patterns may not be discovered by simply clustering the top outliers.

5 Conclusion

Clustering and outlier detection are two different approaches that can be used
to learn general patterns and novel events. However, both of these approaches
can not detect unusual patterns that appear in small clusters, which may be
interesting. For most clustering algorithms, small size clusters are sacrified in
order to discover large size clusters. In contrast, the outlier detection approach
simply focuses on single outliers rather than groups of outliers. Top outliers are
the most interesting events. In our experiments, we have shown that top outliers
are not always interesting since they may simply be noise in high dimensions,
all data points may be considered outliers due to the sparsity of the data.

In this paper, we present an alternative approach for knowledge learning by
introducing the concept of an unusual pattern, based on the size of the small
clusters and their deviation from the common patterns. We have developed an
algorithm to detect those unusual patterns. The parameters of the algorithm
are used to adjust the granularity level of the output. Our experiments on a
real world data set show that our algorithm can discover interesting unusual
patterns which are undetected by two well-known oultier detection and clustering
techniques , namely LOF and SNN, and their combination.
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Abstract. The World Wide Web (WWW) provides much information
about persons, and in recent years WWW search engines have been com-
monly used for learning about persons. However, many persons have the
same name and that ambiguity typically causes the search results of one
person name to include Web pages about several different persons. We
propose a novel framework for person name disambiguation that has
the following three components processes. Extraction of social network
information by finding co-occurrences of named entities, Measurement
of document similarities based on occurrences of key compound words,
Inference of topic information from documents based on the Dirichlet
process unigram mixture model. Experiments using an actual Web doc-
ument dataset show that the result of our framework is promising.

Keywords: person name disambiguation, web people search, clustering,
social network.

1 Introduction

The World Wide Web (WWW) provides much information about persons, and
in recent years WWW search engines have been commonly used for learning
about persons. However, ambiguity in person names (i. e. , many persons having
the same name), typically causes the search results of one person name to result
in Web pages about several different persons.

In this paper, the ambiguity of person name in Web pages is defined as follows.
Each string appearing as a name on a Web page is a reference to a certain entity
in the real world, i. e. , each name refers to an entity. The ambiguity of person
name in Web pages is that person names that have the same string in many Web
pages refers to different entities.

For example, if you want to know about a “George Bush” who is not the pres-
ident but an ordinary person, many pages about the president that are returned
as the search result may be a problem you. According to the circumstances, we
may have to look once more to find Web pages about the target person among
the many search results, which may be hard and time consuming work.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 260–271, 2008.
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Hereinafter, we use a term “person name” to mean a string indicating the
name of a person.

In this paper, we propose a novel framework for person name disambiguation
(i. e. , the problem of clustering Web pages about persons with the same name
according to the true entities. )

Our framework is based on the following three intuitions:

1. Each person has his/her own social network.
2. There are specific compound key words that characterize him/her.
3. Each person is related to some specific topics.

These intuitions led to our framework, which comprises the following steps.
First, we extract social networks by finding co-occurrences of person names

with Named Entity extraction tools (NE taggers). Second, we measure document
similarities based on occurrences of key compound words that are extracted by
using statistics of compound nouns and their components. Third, we infer topic
information from documents based on a basic topic model Unigram mixture,
which is a probabilistic generative model of a document. In particular, we use
Dirichlet Process Unigram Mixture (DPUM), which is an extension of unigram
mixture that uses Dirichlet process. Finally, we cluster Web pages by using the
above three types of features (i.e., social networks, document similarities, and
documents topics. ) Among these three steps, the first step is the one proposed
in our previous work [14].

The remaining part of this paper is organized as follows. Section 2 and 3 explain
the task definition and related works Section 4 explains our framework. Section 5
evaluates our framework with an actual Web document dataset. Section 6 sum-
marizes our work.

2 Task Definition

Our task, the disambiguation of person names appearing on Web pages, is for-
malized as follows. The query (target person name) is referred to as q. The set
of Web pages obtained by inputting query q to a search engine is denoted by
P = {d1, d2, · · · , dk}. Each Web page di has at least one string q. Then, the jth
appearance of string q on Web page di is assumed to be sij . Each sij indicates
only one entity in the set E = {e1, e2, · · · , en} of entities in the real world having
the name q. Now, the set of sij is assumed to be S. We define function Φ : S → E .
Function Φ is a mapping from the name appearing in the document to entities
in the real world. In other words, Φ maps from a string to an entity. Our purpose
is to find function Φ̆ that will approximate function Φ.

The modeling above permits the same string q appearing in the same doc-
ument to refer to different entities. Web pages with such properties are quite
rare and dealing with them makes the system more complicated, so we decided
to ignore such pages by assuming that all instances of the same string q on a
certain Web page di refer to the same entity, i.e., for each i, there exists em ∈ E ,
such that ∀j, Φ(Sij) = em. This assumption means that the same name that
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appears multiple times on one page only refers to one entity. This results in a
simpler model i.e., Φ′ : P → E . In this research, our aim was to estimate Φ′. The
problem here is n (that appears in the definition of E) is not known in advance.
In other words, we do not know how many distinct entities have the string q.
We actually estimated Φ′ by clustering Web pages.

Our system works as follows. Given query q, the system retrieves Web pages that
have string q using a search engine and then disambiguates the reference. Finally,
the system outputs a set of page clusters, each of which refers to a single entity.

3 Related Works

Several important works have tried to solve the task described in the previous
section. Bagga and Baldwin [4] applied the vector space model to calculating
similarity between names using only co-occurring words. Based on this, Niu
et al. [13] presented an algorithm that uses information extraction results in
addition to co-occurring words. However, these methods had only been tested on
artificial small test data, leaving doubt concerning their suitability for practical
use. Mann and Yarowsky [9] employed a clustering algorithm to generate person
clusters based on extracted biographic data. However, this method was also
only tested on artificial test data. Wan et al. [16] proposed a system that rebuilt
search results for person names. Their system, called WebHawk, was aimed at
practical use like our systems, but their task was somewhat different. Their
system was designed for actual frequent queries. The algorithm of their system
was specialized for English person name queries that consist of three words:
family name, first name, and middle name. They mainly assumed queries such
as “<first name>” or “<first name> <family name>”, and took middle names
into consideration, which may have improved accuracy. However, it would not
be suitable for other types of names such as those in Japanese (consisting only
of a family name and given name).

As another approach to this task, Bekkerman and McCallum [5] proposed
two methods of finding Web pages that refer to a particular person. Their work
consists of two distinct mechanisms: the first is based on link structure and
the second uses agglomerative/conglomerative double clustering. However, they
focused on disambiguating an existing social network of people, which is not the
case when searching for people in real situations. In addition, our experience is
that the number of direct links between pages that contain the same name are
fewer than expected, so information on link structures would be difficult to use
to resolve our task. Although there may be indirect links (i. e. , one page can be
found from another page via other pages), it is too time consuming to find them.

4 Proposed Framework

In this section, we explain three types of features of the proposed framework:
social networks, document similarities and documents topics.
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4.1 Preprocessing

We eliminate noise tokens such as HTML tags and stop words. We extract local
texts that appear within 100 words before and after the target person name
(query). In this study, our analysis is limited to the local texts.

4.2 Extraction of Social Networks

This section explains how to extract social networks and to cluster pages by
using social networks. This method was used in our previous work[14].

We use graph representation of relations between documents. Let G be an
undirected graph with vertex set V and edge set E. Each vertex vi ∈ V corre-
sponds to page di. Then, edge eij represents that di and dj refer to the same
entity.

On the other hand, social networks can be seen as another graph structure
in which each node represents an entity, each edge represents that the fact that
two entities have a relation, and each connected component represents one social
network. We assume that every pair of entities that appears in the same page
have a relation. We also assume that the same name in the same social network
refers to the same entity.

In graph G, we make edge eij if the same person name m (other than q)
appears in both of di and dj because, roughly speaking, this means that both
of di and dj are related to m (i.e., both are in the same social network which m
belongs to. ) 1 Moreover, we utilize the place names and organization names that
appear near the position of the target person name to extract more information of
social networks. the place names and organization names can be discriminating
as well as person names around the target parson name. To identify person,
place, and organization names, we used CaboCha2 as an NE tagger which tags
each proper noun according to context, such as person name, place name, or
organization name.

The clustering algorithm by Social Networks is presented below.

Procedure: Clustering by Social Networks(SN)
1. From all documents dj (1 ≤ j ≤ k), extract person names (full

name), place names and organization names with a NE tagger.
2. Calculate SN similarity simSN(dx, dy) as follows:

simSN(dx, dy)
= μ ∗ (number of person names appearing in both dx and dy)
+ν ∗ (number of place or organization names appearing in both dx and dy)

3. If simSN(dx, dy) ≥ θSN, then Φ′(dx) = Φ′(dy), where θSN is the
threshold.

1 We ignore the ambiguity of m by assuming that it is rare that two or more social
networks contain the same person name pair (q,m).

2 http://chasen.org/˜taku/software/cabocha/
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This is where μ and ν are parameters for weighting and θSN is a threshold. In
this study, μ and ν are constrained as μ >> ν. The constraint says that person
names are more important than other names.

Φ′(dx) = Φ′(dy) means two pages, dx and dy, are to be in the same cluster
and clustering is done as follows. Let G be an undirected graph with vertex set
V and edge set E. Each vertex vi ∈ V corresponds to page di. The result of
the above procedure gives edge set E. Each edge eij ∈ E exists if and only if
constraint Φ′(di) = Φ′(dj) was added in Step 3 of the above algorithm. Then,
graph G = 〈V, E〉 has some connected components. Each connected components
means one cluster of Web pages all of which refer to the same entity.

In Fig. 1, the dotted-lines show occurrences of the same person name, place
name or organization name. In Fig. 2, the solid lines show the connection among
documents whose SN similarities are over the threshold.

4.3 Document Similarities Based on Compound Key Words

This section explains how to measure document similarities based on key com-
pound words and to cluster documents by similarity.
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First, we calculate an importance score of compound words in a document with
the method proposed by Nakagawa et al. [11]. Next, we construct a compound
word vector cwv = (s1, s2, · · · , sVc) for each document where {1, 2, · · · , Vc} are
the indices of the compound words in documents and sv is the score of compound
word v. Then, we measure the document similarity by using the scalar product of
the compound word vectors. Finally, we cluster the documents by the similarity
and a threshold.

The importance score for the compound words is calculated as follows: Let
CW (= W1W2 · · ·WL) be a compound word, where Wi (i = 1, 2, · · · , L) is a
simple noun. f(CW ) is the number of independent occurrences of compound
word CW in a document where “independent” occurrence of CW means that
CW is not a part of any longer compound nouns. The importance score of
compound word CW is

Score(CW ) = f(CW ) · LR(CW ), (1)

LR(CW ) is defined as follows:

LR(CW ) =

(
L∏

i=1

(LN(Wi) + 1)(RN(Wi) + 1)

) 1
2L

(2)

LN(Wi) and RN(Wi) are the frequencies of nouns that directly precede or suc-
ceed simple noun Wi.

This system can be obtained as “Term Extraction System3”.
The clustering algorithm by key compound words is presented below.

Procedure: Clustering by Compound Key Words(CKW)
1. From all documents dj (1 ≤ j ≤ M), extract key compound words

and construct compound word vectors cwvj (1 ≤ j ≤ k) with Term
Extraction System .

2. Calculate CKW similarity simCKW(dx, dy) as,

simCKW(dx, dy) = cwvx · cwvy

3. If simCKW(dx, dy) ≥ θCKW, then Φ′(dx) = Φ′(dy), where θCKW is the
threshold.

Having constrains Φ′(dx) = Φ′(dy), clustering is done in the same way as Social
Networks.

4.4 Estimate Latent Topic of Document

In this paper, we assume that pages referring to the same entity have the same
latent topic that indicates a word distribution. Therefore, inferring the latent
topic of a page allows the pages that have the same topic to be categorized into
the same cluster.
3 http://www.r.dl.itc.u-tokyo.ac.jp/˜nakagawa/resource/termext/atr-e.html
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As a clustering algorithm that can treat latent topics, we adopt unigram mix-
ture that is a basic topic model [12]. Moreover, we use unigram mixture expanded
by Dirichlet process [7] : Dirichlet process unigram mixture(DPUM). DPUM can
estimate the number of latent topics corresponding to a set of pages. In the per-
son name disambiguation, the number of true entities(topics) is unknown at first,
so DPUM is suitable to our purpose.

Unigram mixture is a probabilistic generative model of a document based on
unigram model, which assumes that the words of every document are drawn inde-
pendently from a single multinomial distribution. In unigram mixture, each doc-
ument is generated by the topic-conditional multinomial distribution p(w|z, φ).
z ∈ {1, 2, · · · , T } is a latent topic and T is the number of latent topics. φ =
{φt}Tt=1 is the parameter of the multinomial distribution corresponding to latent
topic t where φt = (φt1, φt2, · · · , φtNv ) and Nv is the number of vocabulary items
and φtw is the probability that word w is generated from topic t. It is a problem
that the number of latent topics is unknown in advance. To solve this problem,
a nonparametric Bayes model using Dirichlet process was proposed [7,1,6]. This
model can change the model structure (the number of latent topics, etc...) in
correspondence with the data. A mixture model expanded by Dirichlet process
is called Dirichlet process mixture(DPM) [1].

Sethuraman provides a constructive representation of Dirichlet process as
stick-breaking process [15]. By using Stick-breaking process, the effective learn-
ing algorithm of DPM can be proposed [6].

The stick-breaking process is based on countably infinite random variables
{βt}∞t=1, {πt}∞t=1 and {φt}∞t=1 as follows:

βt ∼ Beta(1, α0), πt = βtΠ
t−1
i=1 (1 − βi) (3)

φt ∼ G0 (4)

α0 is a concentrate parameter and G0 is a base measure of Dirichlet process. In
DPUM, G0 is Dirichlet distribution p(φ|λ) where λ is a parameter of Dirichlet
distribution. Beta is a beta distribution.

We write π(= {π}∞t=1) ∼ SB(π; α0) if π is constructed by Eq. (3).
The process of generating a document in DPUM by using the stick-breaking

process is as follows:

1. Draw π (= {π}∞t=1) ∼ SB(π; α0)

2. Draw φt ∼ G0 (t = 1, 2, · · · ,∞)

3. For each document d:
(a) zd ∼ Multi(z; π)

(b) For each of the Nd words wdn: wdn ∼ p(w|zd, φ)

Note that Multi is a multinomial distribution and p(w = v|z = t, φ) = φtv.
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Therefore, DPUM can be formulated in the joint probability distribution as
follows.

p(D, z, π, φ|α0, λ) = p(π|α0)p(φ|λ)ΠM
d=1p(wd|zd, φ)p(zd|π) (5)

p(wd|zd, φ) = ΠNd
n=1p(wdn|zd, φ) (6)

M is the number of documents. Nd is the number of words in a document d.
wd = (wd1, wd2, · · · , wdNd

) is a sequence of Nd words where wdn denotes the
nth word in the sequence. p(π|α0) is SB(π|α0).

For inference of latent topics in DPUM, we adopt Variational Bayes inference,
which provides a deterministic method [3]. Blei et al. proposed a framework
of Variational Bayes inference for DPM that was restricted to an exponential
family mixture and was formulated by Stick-breaking process [6]. This inference
scheme does not need to set the number of latent topics, but it does need to set
a maximum number of latent topics due to computational cost.

5 Experimentation of Proposed Framework

5.1 Data Set

As we mentioned, the English corpus for the Name Disambiguation task is de-
veloped in WePS [2]. Because our system targets Japanese Web pages, however,
we developed an original Japanese Web page test set for this task as follows.

We first input Japanese person name queries into a search engine. Some of the
person queries were chosen from among ambiguous popular names. For example,
“Taro Kimura” is a very common name in Japan, and we found there were many
people called “Taro Kimura”, including a famous commentator, a member of
the Diet, a translator, and a schoolmaster. Some other queries were selected
from persons in our laboratory, and other person name queries were generated
automatically.

Second, we tried to extract Web pages containing these names. We retrieved
these pages with a search engine. If the query hit many pages, we collected the
top 100-200 Web pages.

Finally, these pages were manually annotated4. Annotators removed pages
that violated our assumption that one page refers to only one entity. As a result,
we collected 5015 Web pages on 38 person names, and all page references were
clarified.

5.2 Evaluation

Precision (P), recall (R), and F-measure (F) were used as the evaluation met-
rics in our experiments. All metrics were calculated as follows [8]. Assume C =
4 Note that the annotators were unable to determine pages perfectly; there were a

few pages that were too ambiguous to determine. To standardize the results, each
ambiguous page was regarded as referring to another independent entity, i.e., each
of them composed a cluster by itself in correct grouping.
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{C1, C2, · · · , Cn} is a set with correct grouping, and D = {D1, D2, · · · , Dm} is
a set for the result of clustering, where Ci and Dj are sets of pages. For each
correct cluster Ci(1 ≤ i ≤ n), we calculated precision, recall, and F-measure for
all clusters Dj(1 ≤ j ≤ m) as

Pij =
|Ci ∩Dj |
|Dj |

, Rij =
|Ci ∩Dj |
|Ci|

, Fij =
2PijRij

Pij + Rij
.

The F-measure of Ci (Fi) was calculated by Fi = maxj Fij . Using j′ =
argmaxjFij , Pi and Ri were calculated as Pi = Pij′ , Ri = Rij′ .

The entire evaluation was conducted by calculating the weighted average
where weights were proportional to the number of elements in the clusters, cal-
culated as

F =
n∑

i=1

|Ci|Fi

|C| ,

where |C| =
∑n

i=1 |Ci|. The weighted average precision and recall were also
calculated in the same way for the F-measure.

5.3 Baseline

Baseline is a clustering method that uses well-known document similarities by
word frequency.

First, we construct a word frequency vector wfvj = (f1, f2, · · · , fW ) for each
document where {1, 2, · · · , W} are the indices of the vocabulary in documents
and fw is the frequency of word w in a document dj . Then, we measure the
document similarity by using the scalar product of the word frequency vectors:
simBase(dx, dy) = wfvx ·wfvy Finally, we cluster the documents by the simi-
larity simBase and a threshold θBase. The clustering is done in the same way as
Compound Key Words.

Moreover, we tested the No Cluster algorithm in which all documents are
categorized into different clusters, that is, there are not any documents that are
categorized into the same cluster.

5.4 Experimentation

We investigated which of the Social Network (SN), Compound Key Words
(CKW), Dirichlet Process Unigram Mixture (DP) or their combinations were
the best. Combinations of two or three methods means different methods to-
gether used together.

More precisely, the result of the combination of SN and CKW is given by
considering graph G = 〈V, ESN ∪ ECKW〉 and G = 〈V, ESN ∩ ECKW〉 where
GSN = 〈V, ESN〉 is the result for SN and GCKW = 〈V, ECKW〉 is the result
for CKW. DP needs to initialize the latent topic zd of a document and the max-
imum number of latent topics. Since we had to determine thresholds θSN and
θCKW , we used 5-fold cross validation for the evaluation of SN/CKW methods
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Table 1. Results: Average of 38 queries

F P R
No Cluster 0. 2996 1. 0000 0. 2536
Baseline 0. 5409 0. 6668 0. 6950
DP 0. 3853 0. 8443 0. 3526
SN 0. 7163 0. 9000 0. 6692
CKW 0. 6974 0. 8195 0. 7050
SN ∩ CKW 0. 6196 0. 9469 0. 5180
SN ∪ CKW 0. 7443 0. 8328 0. 7683
SN+DP 0. 7388 0. 8994 0. 6975
CKW+DP 0. 7048 0. 8454 0. 6944
(SN ∩ CKW)+DP 0. 6535 0. 9457 0. 5542
(SN ∪ CKW)+DP 0. 7529 0. 8496 0. 7640
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Fig. 4. F-measure of CKW and CKW+DP
with respect to each person name

or their combinations. θSN and θCKW were estimated to maximize training set
F-measure, and then test set F-measure was calculated using these estimated
parameters.

When DP was applied in a stand-alone way, the latent topic was initialized
randomly and the maximum number of topics was set to 100. When DP was
combined with SN/CKW methods, SN/CKW methods were applied first, and
DP was then initialized with the SN/CKW results. That is, we regarded the
clusters constructed by SN/CKW methods as the initial latent topics of DP and
applied DP. In this case, the maximum number of latent topics was set to the
number of the cluster constructed by SN/CKW methods.

Table 1 lists the results of an average of 38 queries. Fig. 3-6 shows F-measure
of SN, CKW, SN∪CKW, SN+DP, CKW+DP and (SN∪CKW)+DP with re-
spect to each person name. According to the results, Either SN or CKW showed
the great improvement from the baseline. In addition, they seem to employ dis-
tinct type of information to a certain extent because SN∪CKW shows four to
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son name

five points improvement from SN or CKW alone. The fact that DP also improves
SN or CKW on F-measure means that DP introduces another aspect of the
information, i.e., documents topics. As expected from these results, proposed
methods (SN∪CKW)+DP showed the highest performance on F-measure among
others.

6 Conclusion

We propose a novel framework for person name disambiguation that has the
following three components processes: social networks, document similarities by
compound key words and documents topics. Experiments using an actual Web
document dataset show that the result of our framework is promising because our
framework uses distinct type of information potentially being within documents.
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Abstract. In this paper, we bring the concept of hyperclique pattern in
transaction databases into the graph mining and consider the discovery
of sets of highly-correlated subgraphs in graph-structured databases. To
discover frequent hyperclique patterns in graph databases efficiently, a
novel algorithm named HSG is proposed. By considering the generality
ordering of subgraphs, HSG employs the depth-first/breadth-first search
strategy with powerful pruning techniques based on the upper bound of
h-confidence measure. The effectiveness of HSG is assessed through the
experiments with real world datasets.

1 Introduction

Recently, the research area of correlation mining, that extracts the underlying
dependency among objects, attracts a big attention and extensive studies have
been reported [25,23,7,15,12]. Among these researches on correlation mining, we
focus on the hyperclique pattern discovery [26,27] in this paper.

While the most of researches aim at finding mutually dependent ‘pairs’ of ob-
jects efficiently, a hyperclique pattern is a ‘set’ of highly-correlated items that has
high value of an objective measure named h-confidence [26,27]. The h-confidence
measure of an itemset P = {i1, · · · , im} is designed for capturing the strong
affinity relationship and is defined as follows.

hconf(P ) = min
l=1,···,m

{conf(il → P \ {il})} = sup(P )/ max
l=1,···m

{sup({il})}

where sup and conf are the conventional definitions of support and confidence
in association rules[1], respectively. A hyperclique pattern P states that the
occurrence of an item il ∈ P in a transaction implies the occurrence of all other
items P \ {il} in the same transaction with probability at least hconf(P ). In
addition, the cosine similarity between any pair of items in P is greater than
or equals to hconf(P )[27]. By these features, hyperclique pattern discovery has
been applied successfully to some real world problems [9,18,24].

While hyperclique pattern discovery aims at finding valuable patterns in trans-
action databases, structured data is becoming increasingly abundant in many ap-
plication domains recently. Although we can easily expect to get a more powerful

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 272–283, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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tool for structured data by introducing correlation mining, the most of current
research on correlation mining are designed for transaction databases and lit-
tle attention is paid to mining correlations from structured data. Motivated by
these background, in this paper, we tackle the problem of hyperclique pattern
discovery in the context of graph mining[21,22] and discuss the effectiveness of
the correlation mining in structured domains.

The basic idea of hyperclique patterns in graph databases is simple: Instead
of items, we employ subgraphs (i.e. patterns) as building blocks of hyperclique
patterns. While this simple replacement might seem to be trivial, it gives us new
expectations and difficulties. On one hand, the proposed framework extracts sets
of mutually dependent or affinitive patterns in graph databases. Because each
pattern gives another view to other patterns in the same set, we can expect to
obtain new findings and precise insights. On the other hand, as easily imagined,
hyperclique pattern discovery in graph databases is much harder than the tradi-
tional tasks because there are exponentially many subgraphs in graph databases
and any combinations of those subgraphs are to be potentially candidates. In
order to alleviate this combinatorial explosion and to discover hyperclique pat-
terns efficiently, in this paper, we propose a novel algorithm named HSG. HSG
reduces the search space effectively by taking into account the generality ordering
of hyperclique patterns.

The main contributions of this paper are briefly summarized as follows. First, we
formulate the new problem of hyperclique pattern discovery in graph databases.
Second, we propose a novel algorithm named HSG for solving this problem effi-
ciently. Third, through the experiments with real world datasets, we assess the
effectiveness of our proposal.

This paper is organized as follows. In section2, after introducing basic no-
tations, we formulate the problem of hyperclique pattern discovery in graph
databases. In section3, the proposed algorithm HSG is explained in detail. After
mentioned related work in section4, we show the results of the experiments in
section5. Finally, we conclude the paper and describe future work in section6.

2 Preliminaries

Let L be a finite set of labels. A labeled graph g = (Vg, Eg, lg) on L consists of
a vertex set Vg, an edge set Eg and a labeling function lg : Vg ∪ Eg → L that
maps each vertex or edge to a label in L. Hereafter, we refer labeled graph as
graph simply.

Each graph can be represented in so called code word [3,28], that is a unique
string which consists of a series of edges associated with connection information.
Especially, we employ canonical code word[3,28] which is minimal code word
among isomorphic graphs to represent each graph. The lexicographic order on
code word gives a total order on graphs. Given two graphs g and g′, g <lex g′

denotes that the code word of g is lexicographically earlier than that of g′. If the
code word of g is a prefix of that of g′, we denote it as g <pfx g′. Examples of
graphs and those code words are shown in Fig.1.
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(All edge labels are assumed to be ‘–’)

For example, the re-
lations below hold.⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0 <lex g4
g1 <lex g2
g3 <lex g5

g0 <pfx g1
g2 <pfx g3
g4 <pfx g5

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 1. Examples of Labeled Graphs and those Code Words

A graph g = (Vg, Eg, lg) is called a subgraph of another graph g′ = (Vg′ , Eg′ , lg′),
denoted as g � g′, if there exists an injective function f : Vg → Vg′ such that
∀u ∈ Vg lg(u) = lg′(f(u)) and ∀(u, v) ∈ Eg (f(u), f(v)) ∈ Eg′ ∧ lg(u, v) =
lg′(f(u), f(v)). If g � g′, then we say that g is more general than g′. Note that, if
g <pfx g′ holds, then g � g′ also holds[3,28].

Based on the relationship of subgraphs, we consider the joint occurrence of a
set of subgraphs in a graph. The most intuitive definition is as follows: Given a
set of subgraphs G and a graph g′, if ∀gi ∈ G gi � g′ holds, then G is considered
as to be occurred in g′. However, this simple definition might not be suitable
for the hyperclique patterns of subgraphs because large number of uninteresting
combinations of subgraphs having large overlaps in a graph will be obtained.
Therefore, we introduce another definition in consideration of edge-disjointness
to suppress the redundancy. Given a set of m subgraphs G = {g1, · · · , gm} and a
graph g′, G is called a set of k-edge disjoint subgraphs of g′, denoted as G ≤k g′, if
there exists the following set of injective functions {fi : Vgi → Vg′ | i = 1, · · · , m}:

(1) ∀gi ∈ G gi � g′

(2)
∑m

i=1 |Egi | − |
⋃

i=1,···,m{(fi(u), fi(v)) | (u, v) ∈ Egi} | ≤ k

The second condition gives the constraint on the edge overlaps. By this con-
straint, the redundant combinations can be expected to be controlled. For ex-
ample in Fig.1, while both g1 � g3 and g2 ≺ g3 hold, if k is set to be 0, then
{g1, g2} ≤0 g3 does not hold because of an overlap of edge ‘A-B’ in g3.

We introduce the definitions of support and h-confidence for a set of subgraphs.
Let D = {d1, · · · , dN} be a database of N graphs. The support and h-confidence
of a set of subgraph G = {g1, · · · , gm} in D are defined as follows:

supD(G) =
∑

d′∈D σ(G, d′)/N where σ(G, d′) =
{

1 (G ≤k d′)
0 (otherwise)

hconfD(G) = supD(G)/ max
i=1,···,m

{supD({gi})}

Based on the above preparation, we formulate the problem of “mining frequent
hyperclique patterns in graph databases” (HSG mining in short) below. Given a
database D of labeled graphs, a positive number called minimum support σ (0 <
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σ ≤ 1) and a positive number called minimum h-confidence hc (0 ≤ hc ≤ 1),
then the problem of HSG mining is to find all frequent hyperclique patterns of
subgraphs G in D such that supD(G) ≥ σ, hconfD(G) ≥ hc and the cardinality of
G is more than one. Note that, because we are interested in the sets of mutually
dependent subgraphs, the hyperclique patterns of cardinality one are excluded.

3 Mining Hyperclique Patterns of Subgraphs

In this section, we propose an algorithm named HSG for mining frequent hy-
perclique patterns in graph databases. Before describing the concrete algorithm,
we show some properties of hyperclique patterns and a data structure called a
conditional prefix tree of hyperclique patterns, that are utilized for the effective
pruning based on the generality ordering of hyperclique patterns.

3.1 Properties of Hyperclique Patterns

Given two sets G1 and G2 of subgraphs, if there exists an injective function
φ : G1 → G2 which satisfies ∀g ∈ G1 g � φ(g) ∈ G2, then we say that G1 is
more general than G2 and denote it as G1 � G2.

As shown formally below, given a set of subgraphs G1, there are two kinds
of specializations to obtain a more specific set of subgraphs G2 from G1. Note
that, while only first kind of specialization is considered in item set mining, the
second one also plays the key role in HSG mining.

(1) Specialization by addition G2 is obtained by adding a new subgraph g′

to G1, i.e. G2 = G1 ∪ {g′}
(2) Specialization by replacement G2 is obtained by replacing a subgraph

g ∈ G1 to a more specific subgraph g′ (� g), i.e. G2 = (G1 \ {g}) ∪ {g′}.

The following two lemmas hold in hyperclique patterns of subgraphs based
on the generality ordering introduced above.

Lemma 1 (Anti-monotone property of support value). Given two sets
G1 and G2 of subgraphs, if G1 � G2, then supD(G1) ≥ supD(G2) holds.

Proof. Obvious from the definition of support value. �

By this lemma, if a set of subgraphs G1 does not satisfy the minimum support,
then all sets of subgraphs G2 s.t. G1 � G2 can be eliminated safely from the
candidate of frequent hyperclique patterns.

Lemma 2 (Upper bound of h-confidence). Given two sets of subgraphs
G1 = GA ∪GB s.t. GA �= ∅, GA∩GB = ∅ and G2 = GA ∪G′

B s.t. GA∩G′
B = ∅,

if GB � G′
B, then the following inequality holds.

up(G1, GA) = supD(G1)/ max
g∈GA

{supD({g})} ≥ hconfD(G2)
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Proof. Since GA ⊆G2, max
g∈GA

{supD({g})} ≤max
g′∈G2

{supD({g′})} holds. By lemma1,

supD(G1) ≥ supD(G2) also holds. Therefore, supD(G1)/max
g∈GA

{supD({g})} ≥
supD(G2)/ max

g′∈G2
{supD({g′})} =hconfD(G2) holds. �

This lemma gives the upper bound of h-confidence. If up(G1, GA) does not satisfy
the minimum h-confidence hc, then any set of subgraphs G2 = GA ∪ G′

B s.t.
G′

B � GB must not satisfy hc. Furthermore, this lemma also shows the anti-
monotone property of h-confidence with respect to the specialization by addition.
By definition, hconfD(G1) = up(G1, G1) holds. Thus, if hconfD(G1) < hc, then
no set of subgraphs obtained by adding some subgraphs to G1 can satisfy hc.

3.2 A Conditional Prefix Tree of Hyperclique Patterns

Here, we consider the enumeration of hyperclique patterns in graph databases.
According to the reverse search[2], the repeated enumeration of the same

pattern can be avoided by generating each pattern from its unique parent. In
case of hyperclique patterns of subgraphs, the parent can be uniquely defined
by using the total order of graphs formed by code word. The parent of a set of
subgraphs G, denoted as p(G), is a set obtained by removing the smallest element
with respect to <lex from G, i.e. p(G) = G \ {g ∈ G | � ∃g′ ∈ G g′ <lex g}.

Because of the anti-monotone property of hyperclique patterns with respect
to the specialization by addition shown in lemma1 and 2, all subsets of a frequent
hyperclique pattern must be also frequent hyperclique patterns. Furthermore, a
hyperclique pattern should be enumerated via its parent to avoid the repeated
enumerations. Therefore, in our strategy, a new hyperclique pattern G′ will be
generated by joining two hyperclique patterns G1 = G∪{g1} and G2 = G∪{g2}
as G′ = G ∪ {g1} ∪ {g2} = G1 ∪ {g2}. Note that “the enumeration via parent”
can be naturally realized through the join operation.

Since a hyperclique pattern will be generated by joining two hyperclique pat-
terns having the same parent, it is convenient to treat all hyperclique patterns
which have the same parent as an unit. Furthermore, in order to effectively uti-
lize the pruning based on the generality ordering, hyperclique patterns in this
unit should be organized in consideration of the generality ordering. Motivated
by these backgrounds, we propose a tree-shaped data structure called condi-
tional prefix tree of hyperclique patterns, on which our algorithm HSG works, for
storing hyperclique patterns which have the same parent in common.

A conditional prefix tree of hyperclique patterns CPTG = (VG, EG, BG, root)
is an ordered tree and it stores hyperclique patterns which have a hyperclique
pattern G as those parent. The root node root is a dummy node. Each node v in
VG, except for root, corresponds to a hyperclique pattern G∪{g(v)} and has an
graph g(v). EG ⊆ VG × VG and BG ⊆ VG × VG represent the set of parent-child
and sibling relationships, respectively. These are formally defined as follows.

EG = {(v1, v2) | g(v1) <pfx g(v2), � ∃v′ ∈ VG[ g(v1) <pfx g(v
′) ∧ g(v′) <pfx g(v2) ]}

∪ {(root, v3) | � ∃v′ ∈ VG[ g(v′) <pfx g(v3) ]}
BG = {(v1, v2) | g(v1) <lex g(v2), ∃v′ ∈ VG[ (v′, v1) ∈ EG ∧ (v′, v2) ∈ EG ]}
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Fig. 2. An Example of Conditional Prefix Tree

Intuitively speaking, v1 is the parent of v2 if the code word of g(v1) is the longest
prefix of that of g(v2). If v3 has no such parent, then root is assigned as the parent
of v3. Note that, ∀(g1, g2) ∈ EG g1 � g2 holds. The children of a node are ordered
in the lexicographic order <lex. An example of conditional prefix tree is shown
in Fig.2. This tree is constructed from six hyperclique patterns that have {G}
as parent in common.

3.3 HSG: A Hyperclique Pattern Miner in Graph Databases

In this subsection, we propose an algorithm HSG and explain it in detail.
The algorithm HSG for mining frequent hyperclique patterns in graph data-

bases is shown in Fig.3. In the following explanation, we use the notations below
for the sake of simplicity: Gx = G ∪ {g(gx)}, Gx′ = G ∪ {g(g′x)} and Gx,y =
G ∪ {g(gx), g(gy)} where we assume g(gx) ≺ g(g′x).

As an input, HSG takes an unconditional prefix tree CPT∅ of hyperclique
patterns that stores frequent hyperclique patterns of cardinality one, i.e. frequent
subgraphs potentially obtained by the conventional graph miners[28,11,10,16].
Then, HSG calls a procedure LoopV with Ta = Tb = CPT∅ (line1 in HSG).

HSG consists of two main procedures LoopV and LoopH which realize the join
of elements in a conditional prefix tree mutually while considering the generality
ordering. LoopV traverses a tree Ta in preorder by using recursive call (line5 in
LoopV). By using the preorder traversal, elements in Ta will be considered in the
order of <lex. During the traversal, LoopV calls LoopH with G, ga and Tb (line3
in LoopV). LoopH also traverses a tree Tb in preorder (line16 in LoopH). Since Ta

and Tb refer to the same tree at the beginning, if no pruning is applied, all pairs
of elements in a conditional prefix tree will be considered. Note that, no repeated
enumeration occurs due to the check of g(ga) ≤lex g(gb) (line2 in LoopH).

During the recursive calls, LoopH constructs two new conditional prefix trees
NTa and NTb which form the search spaces afterwards. NTa is a prefix tree under
the condition Ga and it is used as an input for discovering hyperclique patterns
whose parent is Ga,b (line4 in LoopV). NTa will be constructed by adding a new
hyperclique pattern Ga,b whenever it is obtained (line10 in LoopH). NTb is a
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Algorithm HSG(CPT∅)
1: LoopV(∅, CPT∅, CPT∅)

Procedure LoopV(G, Ta, Tb)

1: for each ga ∈ Ta’s children //G ∪ {g(ga)} is a frequent hyperclique pattern
2: NTa := new root node, NTb := new root node
3: LoopH(G, ga, Tb, NTa, NTb) //specialize G ∪ {g(ga)} by addition
4: LoopV(G ∪ {g(ga)}, NTa, NTa) //search on new conditional prefix tree
5: LoopV(G, ga, NTb) //preorder traversal in Ta

//specialize G ∪ {g(ga)} by replacement

Procedure LoopH(G, ga, Tb, NTa, NTb)

1: for each gb ∈ Tb’s children //check G ∪ {g(ga), g(gb)} and prune by it
2: if (g(ga) ≤lex g(gb)) then
3: add gb to the last of NTb’s children
4: continue
5: if (supD(G ∪ {g(ga), g(gb)}) < σ) then continue //pruning (1)
6: if (G �= ∅ ∧ up(G ∪ {g(ga), g(gb)}, G) < hc) then continue //pruning (2)
7: Na := NTa

8: if (hconfD(G ∪ {g(ga), g(gb)}) ≥ hc) then //pruning (3)
9: ouput(G ∪ {g(ga), g(gb)}) //output of a frequent hyperclique pattern

10: C := new node, g(C) := g(gb), add C to the last of Na’s children
11: Na := C //replacement of Na

12: Nb := new node, g(Nb) := g(gb), add Nb to the last of NTb’s children
13: if (up(G ∪ {g(ga), g(gb)}, G ∪ {g(ga)}) < hc) then //pruning (4)
14: for each gc ∈ gb’s children add gc to the last of Nb’s children
15: else
16: LoopH(G, ga, gb, Na, Nb) //preorder traversal in Tb

// specialize G ∪ {g(ga), g(gb)} by replacement

Fig. 3. An algorithm HSG of mining hyperclique patterns in graph databases

prefix tree under the condition G, on which hyperclique patterns having Ga′ as
parents will be mined (line5 in LoopV). Conceptually, NTb will be obtained by
pruning some branches in Tb.

Four prunings will be applied in LoopH. They are achieved partially by “not
adding new vertices to NTa and NTb”. The first pruning is based on the anti-
monotone property of support value in lemma1 (line5 in LoopH). If the support of
Ga,b is less than the minimum support, then all patterns which are more specific
than Ga,b must not satisfy the minimum support. Thus, we ignore the following
specializations of Ga,b by skipping the loop of line1 in LoopH: (1) Ga,b′ by
not calling LoopH (line16 in LoopH), (2) patterns obtained by “specialization of
Ga,b by addition” by not updating NTa, and (3) Ga′,b and Ga′,b′ by not updating
NTb. The second pruning is derived from the upper bound of h-confidence in
lemma2 (line6 in LoopH). As similar to the first pruning, all specializations
of Ga,b will be ignored in the same way. The third pruning is by anti-monotone
property of h-confidence with respect to the specialization by addition in lemma2



Mining Correlated Subgraphs in Graph Databases 279

(line8 in LoopH). If Ga,b dose not satisfy minimum h-confidence, the search for
patterns having Ga,b as parent will be avoided by not adding Ga,b to NTa. The
fourth pruning is based on the upper bound of h-confidence in lemma2 (line13
in LoopH). The search for Ga,b′ can be avoided by not calling LoopH. Note that,
Ga′,b as well as Ga′,b′ must be considered. Therefore, NTb has to be updated.
This is achieved through the update of Nb.

As shown above, HSG makes the best use of the pruning based on the special-
izations by using the conditional prefix trees. For HSG, the following theorem
holds.

Theorem 1. Given an unconditional prefix tree having all frequent subgraphs,
HSG discovers all frequent hyperclique patterns without any duplication.

Proof. Derived from the complete enumeration procedure by the double preorder
traversals and the safety prunings guaranteed by lemma1 and 2. �

Although HSG can discover all frequent hyperclique patterns, the obtained
set of hyperclique patterns may contain some redundancy. Since each frequent
subgraph in the unconditional prefix tree is treated as an item, if some sub-
graphs which are equivalent in some senses are contained in the tree, they
cause the redundancy. To eliminate obviously redundant patterns, we believe
that the frequent subgraphs included in the unconditional prefix tree should
be limited to the representatives such as closed subgraphs (a graph gc s.t.
� ∃g′ gc � g′ ∧ supD(gc) = supD(g′)) or minimal subgraphs (a graph gm s.t.
� ∃g′ g′ � gm ∧ supD(gm) = supD(g′)). In particular, minimal subgraphs might
be more suitable if the edge-disjointness is considered in the joint occurrence.
Although, to the best of our knowledge, the method which finds minimal sub-
graphs directly has not been proposed yet, those subgraphs can be obtained by
some post-processing of the conventional graph miners[28,11,10,16].

4 Related Work

The concept of HSG mining is inspired by the hyperclique pattern discovery in
transaction databases [26,27].

The methods of mining correlated pairs of items have been proposed[25,23,7].
Furthermore, correlated pattern mining based on a pattern-growth methodology
in transaction databases has been proposed[15]. Compared with these methods,
HSG is different in the point of finding sets of affinitive structured patterns.

On the correlation mining in graph databases, a new problem named Corre-
lated Graph Search has been proposed recently[12]. In this problem, Pearson’s
correlation coefficient[20] is employed as correlation measure and all correlated
subgraphs with a query graph will be discovered. This framework is greatly dif-
ferent from our proposal because the different measure is employed and only
subgraphs correlated with a given query are considered.

Pattern team proposed in [13] is a set of patterns that optimizes some quality
measure. The discovery of pattern team may look similar to the HSG mining
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Table 1. Statistics of Datasets

|D| Va Ea |V | |E| Description

D1 1000 11.6 20.5 20 20 A synthetic dataset generated by graph generator[5]

PTE 340 27.0 27.4 66 4 The Predictive Toxicology Evaluation Challenge[8]

DTP CM 877 29.1 31.5 12 4 The DTP AIDS Antiviral Screen dataset[4]

|D|: # of graphs in datasets. Va, Ea: average number of vertices and edges per
graph. |V |, |E|: # of distinct labels of vertices and edges.

because both find the set or combination of patterns. However, pattern team
discovery is done by selecting patterns from the given set. In addition, pattern
team usually consists of a set of mutually dissimilar and independent patterns
for optimizing the quality measure. Similar to the pattern team in some senses,
the concept of α-orthogonal patterns in graph databases has been proposed
recently[6]. In this framework, a set of frequent maximal subgraphs that are
mutually dissimilar with each other will be obtained by employing a randomized
search. While treating a set of subgraphs, this framework is also different from
the HSG mining because HSG discovers the complete sets of affinitive subgraphs.

From the aspect of finding similar patterns, redescription mining [19,17,29] is
closely related to the HSG mining. In redescription mining, patterns consist of
any combinations of conjunction, disjunction and negation of items and pairs of
patterns that occur in almost the same transactions will be discovered. While
this framework is very general, neither the application to the structured data
nor precise algorithms which use the generality ordering have been proposed yet.

5 Experimental Evaluation

To assess the effectiveness of the proposed algorithm, we implement HSG in
Java and conduct some experiments with the datasets shown in Table1 on a
PC (CPU: Intel(R) Core2Quad 2.4GHz) with 4Gbytes of main memory running
Windows XP. Furthermore, another miner pHSG, that is “HSG without pruning
(2) and (4)”, is also prepared to demonstrate the effects of pruning related to
the “specialization by replacement”. In the experiments, we construct the un-
conditional prefix trees CPT∅ by using minimal subgraphs only. Experimental
results are shown in Table2.

The obtained number of hyperclique patterns decreases when the value of k
is reduced. Furthermore, though not shown in Table2, about 231 million and 17
thousand of hyperclique patterns were obtained if we set σ = 0.1, hc = 0.9 and
k =∞ in PTE and DTP CM, respectively. This means that the consideration of
edge-disjointness succeeds in suppressing the generation of redundant patterns.

In all cases, pHSG discovers all frequent hyperclique patterns in a reasonable
time though at least O(|CPT∅|2) of candidates will be generated if no pruning
applied. Thus, it is understood that the pruning by minimum support is effective
enough. Note that, this pruning eliminates the patterns obtained by the “special-
ization by addition” as well as the “specialization by replacement”. Compared
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Table 2. Experimental Results

hc k P Time Cand. P Time Cand.

Results for D1

σ = 0.025 (|CPT∅| = 1208) σ = 0.01 (|CPT∅| = 8946)

0.8 0 0 0.3 (0.6) 17.4 (32.6) 0 1.3 (4.4) 102.5 (337.9)
1 2 0.4 (0.6) 22.5 (38.2) 4 2.0 (6.1) 155.9 (470.6)
∞ 7 0.3 (0.5) 22.7 (38.3) 756 2.1 (5.7) 191.3 (513.1)

0.7 0 0 0.3 (0.6) 18.0 (32.6) 0 1.4 (4.4) 109.6 (337.9)
1 45 0.4 (0.6) 23.2 (38.2) 64 2.2 (6.1) 174.5 (470.6)
∞ 81 0.3 (0.5) 23.4 (38.4) 3066 2.3 (5.7) 213.7 (514.3)

Results for PTE
σ = 0.1 (|CPT∅| = 561) σ = 0.05 (|CPT∅| = 1441)

0.9 0 16 0.3 (1.1) 2.3 (8.3) 154 1.7 (8.0) 9.6 (48.0)
1 93 0.6 (2.0) 4.2 (13.9) 565 3.0 (13.2) 16.2 (67.0)

0.8 0 85 0.9 (2.1) 2.9 (8.4) 821 3.2 (9.4) 13.8 (49.9)
1 524 3.4 (7.0) 5.9 (14.8) 3815 16.5 (28.1) 29.5 (77.2)

0.7 0 165 1.3 (4.0) 3.5 (9.1) 1165 5.5 (11.8) 17.0 (51.4)
1 1228 9.0 (35.5) 7.9 (17.1) 6000 45.4 (77.2) 38.5 (85.4)

Results for DTP CM
σ = 0.1 (|CPT∅| = 417) σ = 0.05 (|CPT∅| = 1592)

0.9 0 9 0.5 (2.4) 2.2 (11.3) 10 1.2 (7.7) 9.9 (62.6)
1 48 0.7 (2.8) 3.1 (13.9) 70 1.6 (9.0) 15.8 (79.0)

0.8 0 32 1.0 (2.7) 3.3 (11.3) 40 2.2 (8.0) 14.7 (62.7)
1 109 1.4 (3.4) 4.4 (14.0) 242 2.9 (9.7) 22.7 (79.3)

0.7 0 110 2.6 (8.8) 4.3 (11.6) 129 4.1 (14.1) 19.0 (63.0)
1 371 48.3 (116.6) 5.7 (14.7) 628 50.3 (123.1) 28.5 (80.2)

k: # of the edge overlaps permitted in the joint occurrence (∞ means no restriction).
P : # of obtained hyperclique patterns. Time: execution time after CPT∅ is given (in
second). Cand.: # of candidates enumerated during the search (in thousand). Numbers
in parentheses in Time and Cand. are for pHSG.

with pHSG, the execution time of HSG for real world problems decreases to
16.0% in the maximum and to 33.9% on the average. The number of candidate
patterns is also reduced to 15.9% in the maximum and to 30.8% on the average.
It is also observed that HSG runs about two times faster than pHSG in the
synthetic dataset on the average. These reductions are the strong evidences to
show the effectiveness of the pruning based on the generality ordering, especially
on the “specialization by replacement”.

6 Conclusion

In this paper, we formulate the problem of hyperclique pattern discovery in graph
databases. To solve this problem efficiently, a novel algorithm named HSG is pro-
posed that utilizes the depth-first/breadth-first search with the effective pruning
based on the generality ordering. We believe that HSG can mine hyperclique
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patterns efficiently not only in other types of structured data but also in trans-
action databases with the conceptual hierarchy because the conditional prefix
trees, on which HSG works, can be constructed naturally from these kinds of
datasets.

For future work, the theoretical analysis of the proposed algorithm and fur-
ther experiments with large-scale datasets are necessary. In addition, some more
efficient mechanism is required for computing support value of a set of edge dis-
joint subgraphs. For this objective, we plan to employ the idea of support value
computation of edge disjoint subgraphs in a large graph[14]. We also plan to
apply the proposed algorithm to top-k correlated pattern discovery as well as to
redescription mining in structured databases.
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Abstract. The paper addresses the task of polynomial regression, i.e.,
the task of inducing polynomials from numeric data that can be used
to predict the value of a selected numeric variable. As in other learning
tasks, we face the problem of finding an optimal trade-off between the
complexity of the induced model and its predictive error. One of the
approaches to finding this optimal trade-off is the minimal description
length (MDL) principle. In this paper, we propose an MDL scheme for
polynomial regression, which includes coding schemes for polynomials
and the errors they make on data. We empirically compare this princi-
pled MDL scheme to an ad-hoc MDL scheme and show that it performs
better. The improvements in performance are such that the polynomial
regression approach we propose is now comparable in performance to
other commonly used methods for regression, such as model trees.

Keywords: regression, polynomial regression, minimal description
length.

1 Introduction

Regression models are used to predict the value of a dependent numeric variable
from the values of independent (predictor) variables. Commonly used regression
methods include linear regression and regression trees [1]. While linear regres-
sion tries to find a global model of the data (a linear equation), regression tree
induction finds piecewise models that partition the data space into a number of
sub-spaces and induce use a constant or a linear model in each of them. While
linear models tend to be oversimplistic, regression trees can sometimes overfit
the data. In this paper, we address the task of polynomial regression, i.e., the
task of inducing polynomial equations that can be used to predict the value of a
numeric variable. Polynomials can also overfit the data. Namely, it is well known
that a data set of n points can be perfectly interpolated (and often overfitted)
with a polynomial of an (n− 1)-th degree.

In order to address the problem of overfitting, different approaches to model
selection have been proposed in the literature [3] (pages 193-222). Each ap-
proach tries to find an optimal trade-off between the complexity of the induced
model and its predictive error and thus avoid overfitting. The minimal descrip-
tion length (MDL) principle is one such approach. Following the MDL principle,
the quality of a model is estimated by combining the model complexity and the
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predictive error that the model makes on the training data. The complexity of
the model and the error are measured in terms of the number of bits necessary
for encoding them. Therefore, MDL based measures of model quality heavily
depend on the encoding scheme chosen. Different encoding schemes have been
proposed for linear equations and regression trees [7], but to our knowledge no
encoding scheme has been proposed for multivariate polynomials.

The aim of this paper is to identify an appropriate MDL scheme for polynomial
regression. We consider two MDL schemes. The first one is an ad-hoc scheme
proposed in [8]. The second is a novel scheme proposed by this paper and is
based on the refined MDL principle [2]. The MDL schemes are implemented
and used in the context of Ciper [8], a machine learning system for finding
polynomial equations from numeric data. Ciper algorithm performs a heuristic
beam search through the space of equations, proceeding from simple to more
complex equations by using a refinement operator that at each step increases the
equation complexity by one. In this paper we also introduce a new refinement
operator in Ciper which can increase the complexity of the equation by more
then one, combined with a simplification step.

We perform an empirical evaluation on several standard regression datasets
from the UCI repository [4]. Within Ciper, we compare the old and the new
refinement operator, as well as the two MDL schemes to each other and to linear
regression, regression trees and model trees.

The paper is organized as follows. In Section 2, we introduce the task of poly-
nomial regression and outline Ciper, a method for inducing polynomials based
on heuristic search through the space of candidate polynomials. This sections
also includes description of the refinement operator used in Ciper and our pro-
posal for a new refinement operator. Section 3 presents the two MDL schemes
compared in the paper. Section 4 presents and discusses the results of the em-
pirical evaluation of the MDL schemes. Finally, Section 5 concludes the paper,
discusses related work, and proposes directions for further research.

2 Polynomial Regression

The task of polynomial regression is defined as follows: given numeric data,
induce a polynomial equation that can predict the value of a target variable.

A polynomial over variables x1, x2, ...xn can be written in the form:

P = C0 + Ci ·
m∑

i=1

Ti

where Ti =
∏n

j=1 xj
ai,j , Ci , i = 1..m and C0 are constants, and Ci �= 0. We say

Ti is a term or monomial in P . The length of P is Len(P ) =
∑m

i=1

∑n
j=1 ai,j ,

the size of P is size(P ) = m; and the degree of P is Deg(P ) = Maxm
i=1

∑n
j=1 ai,j .

An example polynomial equation is P = 1.2x2y + 3.5xy3 + 5xz + 2. This
equation has size 3, degree 4 and length 9.
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2.1 Ciper

Ciper [8] (Constrained Induction of Polynomial Equations for Regression) is
a machine learning algorithm for finding polynomial equations. It uses beam
search to heuristically search through the space of possible equations for ones
that fit the data best.

The top-level outline of the Ciper algorithm is shown in Table 1. First, the
beam is initialized either with the simplest polynomial equation P = C, or with a
user specified minimal polynomial. In every search iteration, a set of polynomials
is generated from the polynomials in the beam by using a refinement operator.
The coefficients before the terms in a polynomial are fitted by using the method
of least squares. For each of the generated polynomials, the value of the minimal
description length (MDL) heuristics is calculated. At the end of the iteration, the
equations with smallest MDL values are retained in the beam. The evaluation
stops when the refinement operator can not generate new equations or when the
content of the beam is unchanged in the last iteration. Such a situation occurs
when every polynomial generated in the last iteration has a worse MDL estimate
than the polynomials already in the beam.

We have introduced some optimizations for fitting the coefficients of the gen-
erated polynomial structure.The data is represented as a matrix M , where the
number of rows is the number of instances, and the number of columns is the
number of terms plus one (the first column is filled with ones). The least squares
estimate for the coefficients Ci of the equation is

C = (MT ·M)−1 · (MT · y)

where y is the vector of values we are trying to predict. In this equation the
multiplication is computationally expensive because of the large number of rows.
Let T1 and T2 be terms in equation A, T3 and T4 terms in equation B, such that
T1 · T2 = T3 · T4. Then the appropriate elements in the matrices MT

A · MA

and MT
B · MB are equal. We store all generated elements from the matrices

Table 1. A top-level outline of the Ciper algorithm. Q is the set of best b equations
and Qr is the set of refined equations.

procedure Ciper(Data, InitialPolynomial)
InitialPol = FitParameters(InitialPolynomial, Data)
Q = {InitialPolynomial}
repeat

Qr = refinements of equation structures in Q
foreach equation structure E ∈ Qr do

E = FitParameters(E, Data)
endfor
Q = {best b equations from Q ∪ Qr}

until Q unchanged during the last iteration
print Q
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Fig. 1. A lattice of polynomial equations generated by the original Ciper refinement
operator. Equation length is increased by one in each refinement step.

MT ·M . We reuse them for calculating the matrices of the subsequently generated
polynomials. This optimization considerably lowers the computational cost at
the expense of some memory.

2.2 The Ciper Refinement Operator

A refinement operator is a function that takes as input an equations structure
and generates a new equation structure by modifying the old one. The original
Ciper refinement operator increases the length of an equation by one, either by
adding a first degree term or by multiplying an existing term with a variable
(Figure 1). Starting with the simplest equation, and iteratively applying this
refinement operator, all polynomial equations can be generated.

Given an expression x + y, we can refine it in two ways. First, we can include
a new linear term yielding x + y + z. Second we can replace an existing term in
the expression (e.g. x) by multiplying it with a variable (e.g. z), yelding a new
expression (e.g. xz + y).

2.3 The New Refinement Operator

Adding a term to a linear (in the parameters) equation always decreases its
error (at least on training data). However, replacing a term with a more complex
version thereof (multiplied by a variable) doesn’t necessarily decrease the error
of the equation. If we add z to x + y, yielding x + y + z, we will reduce the error
of the equation. However, if we replace x with xz, yielding xz + y, xz need not
be strongly correlated with x and the replacement might actually increase the
error of the equation.

This has motivated us to modify the refinement operator in Ciper. Besides the
two types of refinement considered in the originla version of Ciper, we introduce
a third one. We take a term in the equation, make a copy thereof, multiply the
copy with a new variable and add the product back to the equation. For example,
x + y can be refined to x + y + xz by the new operator.

The old refinement operator always increases the complexity of an equation
by one. The new refinement operator can increase the complexity of an equation
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Fig. 2. The improved Ciper refinement operator. The length of the equation can in-
crease by more than one.

considerably. Because of this, we introduce an extra simplification step in Ciper.
For every equation added to the beam, we try removing each of its terms: if this
yields an equation with better heuristic value, we add the newly formed equation
to the beam.

We will refer to Ciper using the new refinement operator as Ciper-R.
We came to the part of identifying the best equations in the beam. For this

we need an objective measure that will combine complexity and the error.

3 Minimal Description Length Heuristics for Polynomial
Models

We will give two alternatives for measuring the complexity of the model. The first
is an ad-hoc solution, used in the first version of the Ciper algorithm [8]. The
second is based on theoretical results in MDL theory. We present the encoding
and the associated complexity measure.

3.1 Ad-Hoc MDL Heuristic

The original Ciper implementation used an ad-hoc MDL heuristics, defined as
fallows

MDL(P ) = len(P ) · log(m) + m · log(MSE(P ))

where P is the polynomial equation being evaluated, len(P ) is its length, MSE(P )
is its mean squared error, and m is the number of training examples.

This evaluation function is based on the Akaike and Bayesian information
criteria for regression model selection [3]. The second term of the ad-hoc MDL
heuristic function measures the degree of fit of a given equation and the first
term introduces a penalty for the complexity of the equation. With this penalty,
the MDL heuristic function introduces a preference toward simpler equations.
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3.2 Improved MDL Heuristic

Following the minimal description length (MDL) principle, among a number
of candidate models, we select the one that represents a good trade-off be-
tween the model’s predictive error and its complexity. The MDL principle com-
bines two ideas (or assumptions) about the relation between learning and data
compression:

– regularities in the data can be used to compress the data, i.e., the more
regularities there are, the more the data can be compressed;

– the more we are able to compress the data, the more we have learned about
the data.

Thus, the complexity of a model can be estimated as its ability to compress
data: the larger the compression, the smaller the complexity of the obtained
model. More specifically, an MDL estimate of model quality is composed of two
components:

MDL(H) = L(H) + L(D|H),

where the first component L(H) corresponds to the length of the encoding of
the model (hypothesis) H , while the second one L(D|H) is the length of the
description of the data when encoded using the model H .

3.3 Encoding Polynomial Structure

In order to encode the structure of a polynomial, we follow the refined MDL
approach [2]. We first partition the space of candidate models into subgroups
Hc of models with equal complexity c. A particular model H ∈ Hc can be then
encoded using N = log|Hc| (log stands for the binary logarithm) bits, where |Hc|
denotes the number of models in the class Hc.

In the case of polynomials, we partition the space of candidate polynomial
structures in to classes at several levels. At the highest level, we group together
the candidate polynomials with the same length l and the same number of terms
(size) m. We refer to these classes as G(m, l); for example G(1, 1) contains poly-
nomial structures with one linear term, while G(1, 2) contains polynomial struc-
tures with only one term of second degree. Note that m ≤ l. At the second level,
we partition each G(m, l) in subgroups with fixed term degrees G′(a1, a2, . . . am).
All polynomials in this subgroup have m terms with degrees a1 ≥ a2 ≥ . . . ≥ am.
Note that

∑m
i=1 ai = l. Now we have to calculate how many sub-groups G′ there

are in a single G(m, l) group and also calculate how many polynomial structures
there are in each G(a1, a2, . . . , am) group.

The number |G′(a1, a2, . . . , am)| can be easily calculated using a procedure
roughly depicted in Figure 3. Given the degree of the first term a1 we have
to choose a1 variables from the set {x1, x2, . . . xn}, where variables can appear
in the selection more than once. Thus, the number of possibilities for the first
term equals the number of combinations with repetition where we select a1
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Fig. 3. Calculating the number of polynomial structures in G′(a1, a2, . . . am). At the
bottom, we have the sets of terms (two sets are depicted, one with terms of degree i
and one with terms of degree k). In the middle layer, they are combined in to equation
structures, where s(i) and s(k) denote the number of repetitions of i and k values
respectively.

elements from a set of n elements. This number equals
(
n+a1−1

a1

)
. Continuing

the same reasoning for all m terms we obtain the number of possible structures
in G′(a1, a2, . . . am) to be

∏m
i=1

(
n+ai−1

ai

)
. However, if there are several ai values

that are equal, we will encounter the same term many times, which means that
the above formula over-estimates the number of possible structures. The remedy
is to divide the number with the factorial of repetitions observed in the tuple. For
example, when dealing with the case G′(5, 5, 3, 2, 2, 2), we have to divide with
2!3!, since 5 is repeated twice and 2 is repeated three times. Note also that each
multiplicative term decreases by 1 for each degree value repetition (see Figure 3).

Having the number of equation structures in each G′ group, we now turn to
the problem of calculating the number of G′ groups within each G(m, l). The
size of G grows according to the recursive formula |G(m, l)| = |G(m−1, l−1)|+
|G(m, l−m)|. The first additive term corresponds to the cases when the G′ groups
contain linear terms (there is an ai with value 1), while the second corresponds
to the cases when all terms in the G′ groups have a degree at least 2 (all ai > 1).
In the first case, when removing the linear term, we obtain polynomials with
m − 1 terms and length l − 1. In the second case, we can remove one variable
from each of the terms, which leads to polynomials with the same number of
terms (m) and length m− l. Figure 4 depicts the relationship between G and G′

classes of polynomial structures.
Now, having this partitioning and the number of polynomials in each partition,

we can decompose the code for each candidate polynomial in four components.
First, we have to encode its length l and for this we need log(l) + 2log(log(l))
bits (the second double logarithm term is necessary, since we do not know the
magnitude of l in advance). Second, we encode the number of terms m, for which
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Fig. 4. A general overview of the partitioning of polynomial structures. The small sets
correspond to G′ classes (e.g., the set G′(5, 2, 1)). In turn, we group them into larger
classes of structures G that have the same length and size.

we need log(l) bits (remember that m ≤ l). Third, we can identify a particular
G′ class within the class G(m, l) using log(|G(m, l)|) bits. Finally, we identify
the specific polynomial structure within G′ using log(|G′(a1, a2, . . . am)|) bits.
Putting these four components together gives us the final formula:

L(H) = 2log(l) + 2log(log(l)) + log(|G(n, l)|) + log(G′(a1, a2, . . . an))

for number of bits necessary to encode the polynomial structure.

3.4 Encoding the Linear Regression Model

Rissanen provides a formula for calculating the stochastic complexity of a linear
regression model generated by using the method of least squares [6]:

W = minγ{(N − k)log(τ̂ ) + k log(R̂) + (N − k − 1)log( 1
N−k )− (k − 1)log(k)}

where the γ index goes through all the possible subsets of variables involved
in the linear regression, k is the number of elements in γ, N is the size of
the dataset, τ̂ is the maximum likelihood estimation of the model error, and
R̂ = 1

n ĉT (MT M)ĉ ( where ĉ = (MT M)−1MT y and M is the matrix of data).
The stochastic complexity of the model is then 2W . Intuitively, this corresponds
to the length of the code necessary to encode the errors of the linear regression
model (L(D|H)) together with the constant parameters of the linear model.
The two are closely related and thus the constant parameters are not encoded
separately or with the model structure, which is what is usually done in machine
learning algorithms when using the MDL principle in an ad-hoc manner. For
further details, see [6].

4 Empirical Evaluation

Our work is an extension of Ciper [8]. As described above we have implemented
a new refinement operator as Ciper-R. In addition we have implemented the
new MDL heuristic in Ciper-R yielding Ciper-MR.
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The main goal of the performed experiments is to evaluate the predictive
performance of Ciper, Ciper-R and Ciper-MR i.e. evaluate the two differ-
ent heuristics and the two refinement operators described above. We also made
a comparison with the standard regression methods, implemented in the data
mining suite Weka [10]. The performance of the methods is evaluated on twenty
data sets from the UCI Repository [4] and another publicly available collection of
regression data sets [9]. These data sets have been widely used in other compar-
ative studies. In all the experiments presented here, we estimate the predictive
performance on unseen examples using 10-fold cross validation. The predictive
performance of a model M is measured in terms of relative root mean squared
error (RRMSE).

In the first phase of the evaluation we do a performance comparison between
the original Ciper algorithm (using the old refinement operator) and the Ciper-
R algorithm. In this phase we use the ad-hoc heuristic as used in the original
implementation of the algorithm [8]. We show that the new refinement opera-
tor has better predictive capabilities than the old one. In the next phase we do
a performance comparison between the improved MDL heuristics (Ciper-MR)
and the ad-hoc MDL heuristic (Ciper-R), now using the new refinement opera-
tor. We show that the improved MDL heuristic performs better than the ad-hoc
heuristic. In the last phase, we compare Ciper-MR to standard regression al-
gorithms linear regression, regression trees, and model trees.

Table 2. Comparison of the predictive performance of the Ciper-R algorithm and
Ciper algorithm

Data set Ciper vs Ciper-R

2dplanes 0.2617 + 0.2276
autoprice 0.3977 - 0.4273
baskball 0.8521 0.8165
bank32nh 0.8525 + 0.8119
bodyfat 0.1617 0.1632
cal-housing 0.5729 0.5975
cpu-small 0.5007 0.4529
elusage 0.4009 0.4009
fried-delve 0.1996 0.1996
house-8l 0.6166 + 0.6097
housing 0.4252 0.4068
kin-8nm 0.8522 + 0.8461
mv 0.0828 + 0.0671
pw-linear 0.4550 + 0.3326
vineyard 0.5899 + 0.5102
puma32h 0.8835 0.8835
delta-ailerons 0.6354 + 0.6279
delta-elevators 0.7580 0.7567
elevators 0.7663 + 0.6756
quake 1.0000 1.0000
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4.1 Evaluating the New Refinement Operator

Table 2 summarises the results of the performance comparison between the old
and the new refinement operator. The statistical significance is tested using a
paired t-test and a Wilcoxon signed-rank test. If the p-value is smaller than 0.05
then we reject the null hypothesis, and conclude that the difference is statistically
significant. The + sign in the table is used when the improvements we introduce
perform significantly better according to the paired t-test and the − sign is
used when they perform worse. We can see that Ciper-R performs significantly
better than Ciper on nine datasets according to the paired t-test and worse on
one dataset. The p-value calculated from the two-tailed Wilkinson signed-rank
test is 0.011 which means that Ciper-R and Ciper have significantly different
performance. The p-value calculated from the left-tailed Wilkinson signed-rank
test is 0.005 which means that the difference is not negative. We can conclude
that Ciper-R performs significantly better than Ciper.

4.2 Evaluating the New MDL Heuristic

Table 3 summarises the results of the performance comparison between Ciper-
MR and Ciper-R. We can see that Ciper-MR performs significantly better
than Ciper-R on eight datasets according to the paired t-test. The p-value
calculated from the two-tailed Wilkinson signed-rank test is 0.007 which means

Table 3. Comparison of the predictive performance of the Ciper-R algorithm and
Ciper-MR algorithm

Data set Ciper-R vs Ciper-MR

2dplanes 0.2276 0.2270
autoprice 0.4273 0.3946
baskball 0.8165 0.7737
bank32nh 0.8119 + 0.6698
bodyfat 0.1632 0.1626
cal-housing 0.5975 0.5507
cpu-small 0.4529 + 0.1626
elusage 0.4009 0.4009
fried-delve 0.1996 0.1996
house-8l 0.6097 0.5884
housing 0.4068 0.4172
kin-8nm 0.8461 + 0.4637
mv 0.0671 + 0.0314
pw-linear 0.3326 0.3339
vineyard 0.5102 0.6748
puma32h 0.8835 + 0.2453
delta-ailerons 0.6279 + 0.5652
delta-elevators 0.7567 + 0.5984
elevators 0.6756 + 0.3387
quake 1.0000 1.0000
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Table 4. Predictive performance of commonly used regression methods implemented
in Weka: linear regression (LR), model trees (MT), and regression trees (RT) compared
to Ciper-MR

Data set LR RT MT Ciper-MR

2dplanes 0.5427 + 0.2273 0.2270 0.2270
autoprice 0.4839 + 0.5642 + 0.3790 0.3946
baskball 0.7902 + 0.8819 0.7902 0.7737
bank32nh 0.6852 0.7522 + 0.6728 0.6698
bodyfat 0.1648 0.3294 + 0.1580 0.1626
cal-housing 0.6034 + 0.5153 0.4858 - 0.5507
cpu-small 0.5365 + 0.2230 + 0.1725 0.1626
elusage 0.4722 + 0.6569 + 0.4125 0.4009
fried-delve 0.5265 + 0.3573 + 0.2784 + 0.1996
house-8l 0.7878 + 0.6216 + 0.5942 0.5884
housing 0.5330 + 0.5226 + 0.4067 0.4172
kin-8nm 0.7663 + 0.6882 + 0.6070 + 0.4637
mv 0.4309 + 0.0477 + 0.0131 - 0.0314
pw-linear 0.5047 + 0.5687 + 0.3243 0.3339
vineyard 0.6645 0.8321 0.6739 0.6748
puma32h 0.8845 + 0.2897 + 0.2694 + 0.2453
delta-ailerons 0.5684 0.5766 0.5434 0.5652
delta-elevators 0.6102 + 0.6220 + 0.6003 0.5984
elevators 0.4324 + 0.5210 + 0.3221 0.3387
quake 0.9984 1.0005 0.9964 1.0000

that Ciper-MR and Ciper-R have significantly different performace. The p-
value calculated from the left-tailed Wilkinson signed-rank test is 0.003 which
means that the difference is not negative. We can conclude that Ciper-MR
performs significantly better than Ciper-R.

4.3 Comparison with Standard Regression Algorithms

Table 4 gives an overview of the predictive performance of standard regression
methods on our datasets. We see that Ciper-MR performs better than linear
regression and regression trees on most of the datasets. Also according to the
Wilkinson signed-rank test Ciper-MR is significantly better than both of them.
Compared to model trees Ciper-MR performs significantly better on three and
worse on two datasets. The p-value calculated from the two-tailed Wilkinson
signed-rank test between Ciper-MR and model trees is 0.952 which means that
the performance of the two algorithms is not significantly different.

5 Conclusion and Future Work

In this work, we focus on improving the Ciper algorithm for polynomial regres-
sion. Two key parts in the algorithm are the refinement operator on equation
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structures and the heuristic evaluation function used to compare equations. The
latter takes into account both the error and the complexity of an equation and
is based on the MDL principle.

We have proposed a new refinement operator that makes larger steps in the
refinement of structures. We have complemented this by a simplification step in
the Ciper algorithm. We have proposed a principled MDL function that replaces
the ad-hoc MDL function used in Ciper so far.

We empirically evaluate these proposed changes by applying the different
variants of Ciper on a number of standard regression datasets. The results
suggest that Ciper with the new refinement operator performs better than with
the old one. Also, using the principled MDL heuristic function is advantageous to
using the ad-hoc MDL heuristic. The new Ciper outperforms linear regression
and regression trees and is comparable to model trees.

A number of directions for further work have been identified. We focus here
on the question of producing piece-wise polynomial models, by combining tree-
based/rule-based models with polynomial equations. Such models may have bet-
ter predictive capabilities than both equations and tree-based/rule-based models.
One way of doing this is clustering the values of the attributes, followed by gen-
erating binary attributes for each cluster. We intend to investigate this in the
near future.
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Abstract. For conventional machine learning classification algorithms
handling numeric attributes is relatively straightforward. Unsupervised
and supervised solutions exist that either segment the data into pre-
defined bins or sort the data and search for the best split points. Unfor-
tunately, none of these solutions carry over particularly well to a data
stream environment. Solutions for data streams have been proposed by
several authors but as yet none have been compared empirically. In this
paper we investigate a range of methods for multi-class tree-based clas-
sification where the handling of numeric attributes takes place as the
tree is constructed. To this end, we extend an existing approximation
approach, based on simple Gaussian approximation. We then compare
this method with four approaches from the literature arriving at eight
final algorithm configurations for testing. The solutions cover a range of
options from perfectly accurate and memory intensive to highly approx-
imate. All methods are tested using the Hoeffding tree classification al-
gorithm. Surprisingly, the experimental comparison shows that the most
approximate methods produce the most accurate trees by allowing for
faster tree growth.

1 Introduction

The ability to learn from numeric attributes is very useful because many at-
tributes needed to describe real-world problems are most naturally expressed by
continuous numeric values. The decision tree learners C4.5 and CART success-
fully handle numeric attributes. Doing so is relatively straightforward, because
in the batch learning setting every numeric value is present in memory and
available for inspection.

For stream classification algorithms such as the Hoeffding tree [5] the situa-
tion is more complicated, although Domingos and Hulten claim that handling
numeric attributes is immediate. While this statement is true, the practical impli-
cations warrant serious investigation. The storage of sufficient statistics needed
to exactly determine every potential numeric threshold, and the result of split-
ting on each threshold, grows linearly with the number of unique numeric values.
A high speed data stream potentially has an infinite number of numeric values,
and it is possible that every value in the stream is unique. Essentially this means
that the storage required to precisely track numeric attributes is unbounded and
can grow rapidly.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 296–307, 2008.
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For a Hoeffding tree learner to handle numeric attributes, it must track them
in every leaf it intends to split. This is extremely expensive and necessitates the
development of an effective memory management strategy that will deactivate
some leaves in favour of more promising ones when facing memory shortages.
This may reduce the impact of leaves with heavy storage requirements but may
also significantly hinder growth.

Several approaches to handling numeric attributes during Hoeffding tree in-
duction have been suggested before, and are discussed in Section 2. Prior to this
study the methods have not been compared, so Section 3 explores the tradeoff
of accuracy versus model size by empirical comparison.

2 Numeric Attributes and Hoeffding Trees

All the methods described in this section attempt to handle numeric attributes
at each node of the Hoeffding tree, in a similar fashion to C4.5. Each approach
represents an alternative approximation of the C4.5 method.

2.1 VFML

Domingos and Hulten released working source code for a numeric handling
method in their VFML package [10]. Numeric attribute values are summarized
by a set of ordered bins. The range of values covered by each bin is fixed at cre-
ation and does not change as more examples are seen. A hidden parameter serves
as a limit on the total number of bins allowed—in the VFML implementation
this is hard-coded to allow a maximum of one thousand bins. Initially, for every
new unique numeric value seen, a new bin is created. Once the fixed number
of bins have been allocated, each subsequent value in the stream updates the
counter of the nearest bin.

Essentially the algorithm summarizes the numeric distribution with a his-
togram, made up of a maximum of one thousand bins. The boundaries of the
bins are determined by the first one thousand unique values seen in the stream,
and after that the counts of the static bins are incrementally updated.

There are two potential issues with the approach. Clearly, the method is
sensitive to data order. If the first one thousand examples seen in a stream
happen to be skewed to one side of the total range of values, then the final
summary will be incapable of accurately representing the full range of values.
The other issue is estimating the optimal number of bins. Too few bins will
mean the summary is small but inaccurate, whereas too many bins will increase
accuracy at the cost of space. In the experimental comparison the maximum
number of bins is varied to test this effect.

2.2 Exhaustive Binary Tree

This method represents the extreme case of achieving perfect accuracy at the
necessary expense of storage space. The decisions made are the same that a batch
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method would make, because essentially it is a batch method—no information
is discarded other than the observed order of values.

Gama et al. present this method in their VFDTc system [7]. It works by
incrementally constructing a binary tree structure as values are observed. The
path a value follows down the tree depends on whether it is less than, equal to or
greater than the value at a particular node in the tree. The values are implicitly
sorted as the tree is constructed.

The only way that this structure saves space over remembering the entire
sequence of values is if a value that has already been recorded reappears in the
stream. In this case the counter in the binary tree node responsible for tracking
that value can be incremented. In every other case a new node will be introduced
to the tree. Even then, the overhead of the tree structure will mean that space can
only be saved if there are many repeated values. If the number of unique values
were limited, as is the case in some data sets, then the storage requirements
will be less intensive. In all of the synthetic data sets used for this study the
numeric values are generated randomly across a continuous range, so the chance
of repeated values is almost zero. The impact of the space cost is measured in
the experimental comparison.

Beside memory cost, this method has other potential issues. Because every
value is remembered, every possible threshold is also tested when the information
gain of split points is evaluated. This makes the evaluation process more costly
than more approximate methods. This method is also prone to data order issues.
The layout of the tree is established as the values arrive, such that the value at
the root of the tree is the first value seen. There is no attempt to balance the
tree, so data order is able to affect the efficiency of the tree. In the worst case, an
ordered sequence of values will cause the binary tree algorithm to construct a list.

2.3 Quantile Summaries

Researchers in the field of database systems are concerned with accuracy guaran-
tees associated with quantile estimates, helping to improve the quality of query
optimizations. Random sampling is often considered as a solution to this prob-
lem. Vitter [15] shows how to randomly sample from a data stream, but the
non-deterministic nature of random sampling and lack of accuracy guarantees
motivate search for other solutions. Munro and Paterson [13] show how an ex-
act quantile can be deterministically computed from a single scan of the data,
but this procedure requires memory proportional to the number of elements in
the data. Using less memory means that quantiles must be approximated. Early
work in quantile approximation includes the P 2 algorithm proposed by Jain and
Chlamtac [11], which tracks five markers and updates them as values are ob-
served via piece-wise fitting to a parabolic curve. The method does not provide
guarantees on the accuracy of the estimates. Agrawal and Swami [2] propose a
method that adaptively adjusts the boundaries of a histogram, but it too fails
to provide strong accuracy guarantees. More recently, the method of Alsabti et
al. [3] provides guaranteed error bounds, continued by Manku et al. [12] who
demonstrate an improved method with tighter bounds.



Handling Numeric Attributes in Hoeffding Trees 299

The quantile estimation algorithm of Manku et al. [12] was the best known
method until Greenwald and Khanna [8] proposed a quantile summary method
with even stronger accuracy guarantees. The method works by maintaining an
ordered set of tuples, each of which records a value from the input stream, along
with implicit bounds for the range of each value’s true rank. An operation for
compressing the quantile summary is defined, guaranteeing that the error of
the summary is kept within a desired bound. The quantile summary is said to
be ε-approximate, after seeing N elements of a sequence any quantile estimate
returned will not differ from the exact value by more than εN . The worst-case
space requirement is shown by the authors to be O(1

ε log(εN)), with empirical
evidence showing it to be even better in practice.

Greenwald and Khanna mention two variants of the algorithm. The adaptive
variant is the basic form of the algorithm, that allocates more space only as
error is about to exceed the desired ε. The other form, used here, is referred
to as the pre-allocated variant, which imposes a fixed limit on the amount of
memory used. The pre-allocated method was chosen because it guarantees stable
approximation sizes throughout the tree, and is consistent with the majority of
other methods by placing upper bounds on the memory used per leaf.

When used to select numeric split points in Hoeffding trees, a per-class ap-
proach is used where a separate quantile summary is maintained per class label.
When evaluating split decisions, all values stored in the tuples are tested as
potential split points. Different limits on the maximum number of tuples per
summary are examined in the experimental comparison.

2.4 Gaussian Approximation

This method approximates the numeric distribution on a per-class basis in small
constant space, using a Gaussian (i.e. normal) distribution. Such a distribution
can be incrementally maintained by storing only a few numbers in memory (such
as the mean and variance), and is completely insensitive to data order.

Algorithm 1. is a method for incrementally computing the mean and variance
of a stream of values. The method only requires three numbers to be remembered.
It was derived from the work of Welford [16], and its advantages are studied in [4].

A method similar to this is described by Gama et al. in their UFFT system [6].
When evaluating split points, a single optimal point is computed as derived from
the crossover point of two distributions. It is possible to extend their approach
to search for split points allowing any number of classes: a set of points spread
equally across the range between the minimum and maximum values observed,
are evaluated as potential split points. The number of points is determined by a
parameter, so the search for split points is parametric, even though the under-
lying Gaussian approximations are not. For each candidate point the weight of
values to either side of the split can be approximated for each class, using their
respective Gaussian curves, and the information gain is computed from these
weights. This procedure can also cope with extreme cases like distribution with
very similar means, but different standard deviations.
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Algorithm 1. Numerically robust incremental Gaussian
weightSum = weightfirst

mean = valuefirst

varianceSum = 0
for all data points (value, weight) after first do

weightSum = weightSum + weight
lastMean = mean
mean = mean + value−lastMean

weightSum

varianceSum = varianceSum + (value − lastMean) × (value − mean)
end for

anytime output:
return mean = mean
return variance = varianceSum

weightSum−1

Fig. 1. Gaussian approximation of 2 and 4 classes

The process is illustrated in Figure 1. At the top of each figure are Gaussian
curves, each approximating the distribution of values seen for a numeric attribute
and labeled with a particular class. The curves can be described using three
values; the mean, variance, and the total weight of examples. For example, in the
leftmost figure the class shown to the left has a lower mean, higher variance and
higher example weight (larger area under the curve) than the other class. Below
the curves the range of values has been divided into ten split points, labeled A
to J. The horizontal bars show the proportion of values that are estimated to
lie on either side of each split, and the vertical bar at the bottom displays the
relative amount of information gain calculated for each split. For the two-class
example (the left figure), the split point that would be chosen as the best is
point E, which according to the evaluation has the highest information gain. In
the four-class example (the right figure) the split point C is chosen which nicely
separates the first class from the others.

A refinement of this method, found to increase precision at low cost, is used
in the final implementation. It involves additionally tracking the minimum and
maximum values of each class (the distribution cutoff points in Figure 1 depict
these values). This requires storing an extra two counts per class, but precisely
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maintaining these values is simple and fast. When evaluating split points the
per-class minimum and maximum information is exploited to determine when
class values lie completely to one side of a split, eliminating the small uncer-
tainty otherwise present in the tails of the Gaussian curves. From the per-class
minimum and maximum, the minimum and maximum of the entire range of
values can be established, which helps to determine the position of split points
to evaluate.

This simplified view of numeric distributions is not necessarily harmful to
the accuracy of the trees it produces because there will be further opportunities
during training to refine split decisions on a particular attribute by splitting again
further down the tree. The method does not have only one chance of getting the
optimal value but can have multiple attempts, where each subsequent attempt
will be in a more focused range of values based on increasingly more confident
information. In addition, the approximation may prove more robust and resistant
to noise than more complicated methods, which concentrate on finer details.

3 Experimental Comparison of Methods

Each method is tested to see how efficiently it produces Hoeffding trees. The
methods compared are all based on the basic htmc (Hoeffding Tree Majority
Class) algorithm described in [5], with only the method for handling numeric
attributes varied. Predictions are made using majority class at each leaf1.

The methods compared are listed in Table 1, including the memory limits im-
posed per numeric attribute per leaf, and with reference to the text explaining
each method. Three realistic application scenarios are envisaged where memory
for learning is limited to a pre-specified maximum. A sensor node environment
(memory limit 100K), a handheld computer environment (32MB) and a server
environment (400MB). Eighteen datasets are used (see Table 3) in the evalua-
tion. They are all generated in order to provide a proper evaluation and have all
appeared previously in the data stream literature (see for example [9] and [7]).
The experimental methodology used is consistent with other studies, particu-
larly [5], but on a larger scale. In all cases, training takes place over a period of
ten hours and testing is accomplished with a holdout set of one million examples.

Table 2 lists the final results averaged over all 18 data sources, sorted by
scenario. For the sensor environment the figures for the number of training ex-
amples are low because learning was stopped when the last active leaf in a tree
had been deactivated. In the handheld case these figures are much higher than
in the server case because the former generates smaller trees with fewer active
nodes and therefore processes examples faster. The speeds achievable are quoted
as percentages of the maximum speed at which these streams can be generated
by the experimental software and hardware.

In terms of average accuracy, the four different approaches are easily ranked
from best to worst. In all three memory environments, vfml10 is the most
1 The methods for handling numeric attributes would have a direct influence on pre-

dictions if functional leaves [6] were used.
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Table 1. Methods compared

name description memory limit section

vfml10 VFML binning method 10 bins 2.1

vfml100 VFML binning method 100 bins 2.1

vfml1000 VFML binning method 1000 bins 2.1

bintree exhaustive binary tree none 2.2

gk100 Greenwald-Khanna 100 tuples 2.3
quantile summary per class

gk1000 Greenwald-Khanna 1000 tuples 2.3
quantile summary per class

gauss10 Gaussian approximation 5 values 2.4
evaluating 10 split points per class

gauss100 Gaussian approximation 5 values 2.4
evaluating 100 split points per class

accurate on average over all data sources. The second most accurate method
in every environment is gauss10. The gkx methods are generally third, and
bintree is consistently the least accurate of the methods on average.

The default number of 1000 bins hard-coded in the original vfml implemen-
tation turns out to be the worst performer of the three vfml configurations. The
general trend is that smaller numbers of bins, sacrificing accuracy for space per
leaf, leads to more accurate trees overall. Requesting more space for numeric ap-
proximation reduces the numbers of active tree nodes that can reside in memory,
slowing tree growth in a way that impacts final tree accuracy.

The Gaussian method follows this trend, in that it is the smallest approxi-
mation tested, permitting the most tree growth and correspondingly accurate
trees. Comparing the number of split evaluations tested, it is apparent that the
finer grained exploration of gauss100 can be harmful. The gauss100 trees are
on average much deeper than any of the other methods, suggesting that splits
on certain numeric attributes are being repeated more often, because in many
cases the tree depth exceeds the number of attributes available for splitting.
These additional splits are probably very small and unnecessary refinements of
previous split choices, and they may be very skewed. This is a symptom of try-
ing to divide the range too finely based on approximation by a single smooth
curve.2The gauss10 method uses a suitably matched coarse division of only 10
possibilities, which is far less susceptible to this problem.

Comparing the quantile summary methods gk100 and gk1000, having 1000
tuples is helpful in the higher memory environments but harmful in 100KB
of memory. Lower numbers of tuples can severely hinder the quantile sum-
mary method—a parameter setting of 10 was tested but found to be much
worse than any other method, so was omitted from the final results. Figure 2
shows some examples of how much worse the 10-tuple summary can perform. In

2 Similar overfitting behaviour is produced by gauss1000 which has been omitted
from presentation here for space reasons.
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Table 2. Final results averaged over all data sources comparing the eight methods
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100KB memory limit / sensor

vfml10 87.70 21 0.00 8.13 10.6 11 70 82
vfml100 79.47 13 0.00 3.65 4.50 7 76 85

vfml1000 76.06 1 0.00 0.09 0.14 3 81 88
bintree 74.45 1 0.00 0.07 0.11 3 75 89

gk100 82.92 12 0.00 4.03 5.03 8 71 84
gk1000 74.65 1 0.00 0.08 0.13 3 60 88

gauss10 86.16 20 0.00 8.87 12.1 12 68 81
gauss100 85.33 16 0.01 8.08 11.7 20 64 79

32MB memory limit / handheld

vfml10 91.53 909 31.8 675 1009 22 16 72
vfml100 90.97 973 5.99 481 704 24 17 73

vfml1000 90.97 951 4.22 412 604 27 17 73
bintree 90.48 808 3.68 373 540 22 15 73

gk100 89.96 961 6.89 530 777 34 17 73
gk1000 90.94 937 2.66 403 581 27 16 75

gauss10 91.35 874 93.7 683 1166 24 15 69
gauss100 90.91 853 92.6 639 1167 50 14 66

400MB memory limit / server

vfml10 91.41 293 320 80.4 591 24 4 74
vfml100 91.19 142 73.9 143 316 23 4 75

vfml1000 91.12 108 19.0 127 206 22 3 79
bintree 90.50 60 13.7 92.9 147 19 2 81

gk100 89.88 158 84.0 145 346 32 4 75
gk1000 91.03 91 17.6 122 197 21 3 80

gauss10 91.21 518 540 26.8 891 28 6 73
gauss100 90.75 538 566 38.7 998 63 6 66

particular, the graph on rts (left figure) shows other settings getting very close
to 100% accuracy in contrast to the 10-tuple variant achieving less than 65%.
Like gauss100, gk10 results in excessively deep trees which strongly indicates
poor split decisions. More fine grained quantile summaries perform well but the
tradeoff between space and accuracy is not as effective as for the gaussx and
vfmlx methods. The performance of gk1000 is similar to bintree in several
situations, suggesting that it is highly accurate. At the same time, it manages
to build larger trees, suggesting that it is more space efficient.

The poor performance of bintree shows that in limited memory situations,
striving for perfect accuracy at the local level can result in lower accuracy
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Fig. 2. Examples of poor accuracy achieved by gk10 in 32MB

globally. The problem is most pronounced in the 100KB environment, where
tree growth for every data source was halted before the first evaluation took
place, some time before 1 million training examples. Similar behaviour is evi-
dent in the other two most memory-intensive methods vfml1000 and gk1000,
but bintree has the highest memory requirements of all, thus suffers the most
in tree growth and accuracy. The method is simply too greedy to support rea-
sonable tree induction in this environment. In the other environments it fares
better, but is not as successful on average as the more approximate methods.

Table 3 compares the individual final accuracies of the best two methods,
vfml10 and gauss10. Bold figures indicate a better result, in this case both
methods win 20 times each. gauss10 loses to vfml10 by a fair margin on
rtcn in 400MB, although on this dataset some of the other methods are not
much better than gauss10 and some are worse still. Some of the worst losses
for gauss10 occur on genF2 and genF5 in 100KB, where it is outperformed
by all other methods. These functions are very similar (see [1]). The function
genF2 relies on two numeric attributes salary and age, and genF5 includes
further dependency on a third numeric attribute, loan. The trees induced by
the Gaussian method were inspected to find the cause of the problem. The trees
make the mistake of choosing a discrete attribute car with many possible values
that is completely irrelevant. After making this mistake the example space is
highly segmented, so a lot of extra effort is required to make corrections further
down the tree. The Gaussian methods slowly recover to come within reasonably
close accuracy, except for the 100KB environment where the lack of space limits
any opportunity of recovering. This demonstrates a limitation of the Gaussian
method, where the high level of approximation causes the best attributes to be
underrated, although the true underlying cause of the issue is unknown. It might
relate to an unintentional bias towards certain split types that could potentially
be corrected in a style similar to Quinlan’s correction in [14].

Conversely, there are situations where the high level of approximation gives
the Gaussian method an advantage over all others. The clearest cases of this
are on the data sources rrbfs, rrbfc, wave21 and wave40. Such a bias is
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Table 3. vfml10 vs gauss10 accuracy (%)

method→ vfml10 gauss10

memory limit memory limit

dataset 100KB 32MB 400MB 100KB 32MB 400MB

rts 96.49 99.99 99.98 96.95 99.99 99.99
rtsn 75.80 78.54 78.53 75.20 78.48 78.45
rtc 61.37 83.58 83.87 62.49 83.00 83.02

rtcn 53.63 64.95 66.06 53.63 62.45 61.87
rrbfs 87.69 93.13 92.43 88.56 93.27 92.93
rrbfc 87.84 98.61 97.41 91.36 98.72 98.21

wave21 80.80 84.20 83.50 81.21 84.37 84.01
wave40 80.28 84.00 83.31 81.20 84.21 83.80
genF1 95.07 95.07 95.07 95.07 95.07 95.07
genF2 93.94 94.10 94.10 78.46 94.03 94.00
genF3 97.52 97.52 97.52 97.50 97.52 97.52
genF4 94.46 94.67 94.66 93.68 94.67 94.65
genF5 92.45 92.89 92.84 71.73 92.36 92.15
genF6 89.70 93.35 93.28 91.89 93.31 93.28
genF7 96.41 96.82 96.79 96.51 96.81 96.79
genF8 99.40 99.42 99.42 99.41 99.42 99.42
genF9 95.80 96.81 96.72 96.07 96.78 96.74

genF10 99.89 99.89 99.89 99.88 99.89 99.89

average 87.70 91.53 91.41 86.16 91.35 91.21

perhaps not surprising since the generators responsible for these streams use
numeric values drawn from random Gaussian distributions.

Analysing space complexity, the amount of memory required per leaf to track
n numeric attributes and c classes is 10n+10nc for vfml10 and 5nc for gauss10.
For vfml10 the 10n term accounts for storage of the boundary positions, while
the 10nc term accounts for the frequency counts. This simplified analysis un-
derestimates the true cost of the vfml implementation, which also retains in-
formation about the class and frequency of values that lie exactly on the lower
boundary of each bin, increasing the precision of decisions. For gauss10 the mul-
tiplying constant is 5 values per attribute and class because there are 3 values
tracking the Gaussian curve and additional 2 numbers tracking the minimum
and maximum values.

In theory, at the local level vfml10 should be very sensitive to data order,
whereas gauss10 should not be sensitive at all. Whether this translates into
poorer global decisions during tree induction is not tested by the benchmark
generators because all examples are randomly drawn uniformly from the space
of possible examples. The right hand side of Figure 3 shows a constructed ex-
ample where data order has been manipulated to expose vfml10’s weakness.
genF2 has been modified so that every sequence of one million examples drawn
from the stream has been sorted by the salary attribute. In this case the accu-
racy of gauss10 has improved while the early accuracy of vfml10 has dropped
markedly. On average gauss10 trees reach much larger sizes than the other
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Fig. 3. Effect that example ordering has on learning accuracy in 32MB on the genF2
data. Left hand side: default random order. Right hand side: modified stream where
every consecutive sequence of one million training examples has been sorted on the
value of the salary attribute.

numeric methods in the same time and space, with many more active leaves.
The ability of vfml10 to slowly recover may be partly due to additional tree
structure increasing the dispersion of examples down different paths of the tree,
reducing the degree to which values encountered at leaves are sorted.

4 Conclusion

We have presented an extension to Gama’s method of using Gaussian distribu-
tions to approximate numeric attributes encountered in tree-based classification
of data streams. In order to evaluate its efficacy we have designed an experiment
involving three realistic memory-limiting data stream environments and eighteen
datasets from previous studies. Five main approaches from the literature were
implemented, and eight final configurations of algorithm were tested, ranging
from perfectly accurate and memory intensive to highly approximate. In experi-
mental comparison, the most approximate methods produced the most accurate
trees, by virtue of allowing the most tree growth. The two methods gauss10
and vfml10 are highly competitive on most datasets. Of these, gauss10 uses
less memory and is less susceptible to data order, but is prone to choosing irrel-
evant attributes in some cases. Adding a bias to correct for this behaviour will
be explored in future work.
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Abstract. Record linkage is a central task when information from dif-
ferent sources is integrated. Record linkage models use so-called blockers
for reducing the search space by discarding obviously different record
pairs. In practice, important problems have Zipf distributed class sizes
with some large classes where blocking is not applicable any more. There-
fore we propose two novel meta algorithms for scaling arbitrary record
linkage models to such data sets. The first one parallelizes problems by
creating overlapping subproblems and the second one reduces the search
space for large classes effectively. Our evaluation shows that both scaling
techniques are effective and are able to scale state-of-the-art models to
challenging datasets.

1 Introduction

When data from different sources is collected, objects of different sources may
refer to the same underlying entity. For integration of the datasets, duplicates
have to be identified. This task is known among others as record linkage [1,2],
duplicate detection [3,4] and object identification [5]. For example a price com-
parison system collects offers from different shops that may refer to the same
product (see Table 1). Another example are citation strings that refer to the
same publication.

Recent models for solving this task rely on machine learning techniques
[6,3,5,7]. For scaling with growing problems they use blockers which restrict
the pairs that have to be regarded in time-consuming parts. The key problem
with these blockers is that they are supposed to return all positive pairs and
remove only those pairs that are obviously negative. Although this technique
might scale up for some problems with small uniformly distributed class sizes,
it cannot be utilized for other distributions of class sizes like Zipf-distribution.

The contributions of this paper are as follows: (i) We show that the class
sizes of some important linkage problems are Zipf distributed which leads to
Ω(n2/ ln2 n) positive pairs. Thus, these problems cannot be solved with standard
blocking techniques. (ii) We provide two novel scaling methods for record linkage
that efficiently scale arbitrary linkage models to Zipf distributed data sets.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 308–319, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Table 1. Example of price comparison data

Product Name Brand Price Class Label

Photosmart 435 Digital Camera Hewlett Packard 118.99 c1
HP Photosmart 435 16MB memory HP 110.00 c1
Canon EOS 300D black Kit 18-55 Canon 786.00 c2
EOS300D+EF-S18-55 unspecified 873.00 c2
Digital Camera, Olympus, E-300 Olympus 899.00 c3
Olympus Camedia IR-300 - Digital-Foto unspecified 273.00 c4

2 Related Work

The problem of record linkage was first formulated by Newcombe [8] and later
put into a mathematical model by Fellegi and Sunter [1]. Today state-of-the-
art methods use an adaptive approach based on machine learning techniques
like classifiers, clustering or markov logic networks [4,7]. Almost all models for
record linkage rely on predicting the equivalence of a pair of objects. As the
number of all different pairs is n·(n−1)

2 where n is the number of all records, even
small problems are not manageable any more. To avoid this problem, record
linkage models typically use blockers, which restrict the number of pairs by
discarding all obviously different pairs. There have been many proposals for
blocking techniques like sorted neighbourhood methods [9], Canopies [10], and
adaptive blocking [11,12]. An overview of blocking techniques is given by Baxter
et al. [13].

Blocking works fine if there are lots of classes and class sizes are small. In
fact we will show that this does not hold for some important record linkage
tasks because they have Zipf distributed class sizes which leads to Ω(n2/ ln2 n)
true pairs. This means even a perfect blocker which only returns the true pairs
would generate Ω(n2/ ln2 n) pairs. Consequentially no model exclusively relying
on blockers can scale to large problems with Zipf distributed class sizes.

There are some studies of record linkage on large datasets [2,14], but their
problems have different characteristics in terms of only two datasets to be merged
or very small class sizes. This differs from our problem setting of non-uniformly
distributed class sizes that were built up by automatically crawling many sources,
like crawling the web. A second main difference is that they use rather simple
models for record linkage. The work of Hernández and Stolfo [9] is similar to the
above discussed research in terms of small class sizes and simple record linkage
models. Similarly to our work, Hernández and Stolfo propose to use clustering
for parallelization. They propose hard-clustering in conjunction with their own
blocking method of sorted neighborhoods. Whereas inexpensive hard-clustering
might be effective for scaling when dealing with small classes, it is difficult to
provide high quality splits in problems with large classes. Moreover, parallelizing
without any further reduction step of true pairs does not tackle the problem of
having Ω(n2/ ln2 n) true pairs.
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Fig. 1. Distribution of class sizes for the Camera and Cora dataset

Reducing the size and complexity of a graph has already been studied in mul-
tilevel graph partitioning [15]. In their work a graph G0 = (V0, E0) is iteratively
coarsened to graphs Gi = (Vi, Ei) with |Vi| > |Vi+1|. Then partitioning is done
on the coarsest graph and afterwards the partitioned graph is uncoarsened. Our
proposed method for object reduction is related to coarsening as we also reduce
the number of objects, perform the expensive calculations on a the small prob-
lem and finally expand the solution. Besides this, graph partitioning and record
linkage have different problem settings. The differences to record linkage are that
in graph partitioning (1) the number of classes is known, (2) all clusters should
have roughly equal size and (3) a sparse set of vertices is given in advance.

3 Problem

Figure 1 shows the distribution of class sizes for the bibliographic Cora [10]
and the Camera dataset from a price comparison system1. Cora contains 1,295
citations to 112 different papers and has 17,184 true pairs. Camera has 15,481
offers on 608 digital cameras and has 956,957 true pairs. The classes are sorted
by size in descending order. As one can see, the class sizes for both datasets
are Zipf-like distributed. Zipf’s law2 states that the most frequent item occurs
twice as often as the next frequent one. The third one’s frequency is one third
of the most frequent class, etc. Applied to class sizes Zipf’s law states that the
class size of the i-th class is 1/i of the size of the largest class, that means
the i-th class contains about kmax

i objects where kmax is the size of the largest
class.

The potential reduction rate of all blocking-based scaling techniques depends
on the number of true pairs – that means pairs of records referring to the same
entity. In Zipf distributed problems, the number of true pairs correlates to the
size of the largest class. Thus, we want to estimate the complexity of the largest
class kmax. Because all class sizes have to sum up to the number of records n,
we can state with Zipf’s law:
1 Mentasys GmbH, Karlsruhe, Germany, http://www.mentasys.de/
2 For the sake of simplicity, we use an exponent of 1 in all Zipf formulas.
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Fig. 2. Combining parallel record link-
age with object reduction for scaling a
central model

Fig. 3. Parallel Record Linkage: A prob-
lem X is split into overlapping subprob-
lems X1, . . .Xn. The subproblems are
solved independently in parallel and after-
wards are merged to a global solution S

n =
m∑

i=1

kmax

i
= kmax ·

m∑

i=1

1
i
≈ kmax · (ln(m) + γ)

and thus kmax ≈
n

ln(m) + γ

Where m is the number of all classes, which is unknown in advance and γ is the
Euler-Mascheroni constant (γ ≈ 0.577). Now, we can estimate the complexity
of kmax. As m ≤ n also ln(m) ≤ ln(n) and so we can conclude, that kmax grows
approximately linear in n. This means, that the size of the largest class kmax is
in Ω(n/ ln n). One can conclude that there are Ω(n2/ ln2 n) true pairs in a Zipf
distributed record linkage problem.

4 Method

4.1 Scalable Framework

The objective of our framework is to scale up arbitrary record linkage models.
In general a record linkage model is a function fRL that generates a partition
fRL(X) ⊆ P(X) of a set of objects X .

We provide two meta algorithms for record linkage that decrease complexity
by splitting a problem X in many subproblems X1, . . . Xn and by reducing the
number of objects within a problem X . Both meta models need a record linkage
model for solving the modified problems. Basically, our parallelization technique
targets problems with many classes whereas our object reduction method targets
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Algorithm 1. Parallelizing by Canopy-Clustering
1: procedure CanopyClustering(X)

outputs a set P of subproblems for objects X
2: P ← ∅
3: C ← X � C is the set of possible centers
4: while C �= ∅ do
5: x← randomC
6: Canopy(x) ← {y ∈ X| sim(x, y) > θloose}
7: P ← P ∪ {Canopy(x)}
8: C ← C \ {y ∈ X| sim(x, y) > θtight}
9: end while

10: return P
11: end procedure

problems with large classes. Although both algorithms can be used separately,
we recommend to combine them so that both aspects are regarded. A useful
combination (see figure 2) would be to use parallelizing as outer model, then
use object reduction in each parallelized subproblem and solve each reduced
subproblem with the record linkage model of your choice – e.g. a classifier based
approach like we use in the evaluation chapter.

4.2 Parallel Record Linkage

In general one of the most popular approaches for scaling up systems is paral-
lelizing. Instead of solving one big problem at once, the problem is split in many
small problems. These small problems are solved separately and afterwards are
merged to a global solution. Our meta model for parallelizing record linkage
models work the same way (see figure 3). First, the problem is split into over-
lapping subproblems. Then each subproblem is solved by another record linkage
model and finally the solutions are merged.

Split into Subproblems. Parallelizing is a function fP that generates a par-
tition of overlapping sets, s.t.:

⋃

Xi∈fP (X)

Xi = X, ∅ �∈ fP (X) (1)

An optimal parallelizing function should generate a large number of subproblems,
that have few overlaps, and all objects of the same class should share at least
one subproblem.

For splitting a problem into a set of subproblems, clustering with a cheap
distance metric can be applied. We suggest to use soft-clustering instead of
hard-clustering. This way an object can be placed in several subproblems. The
main reason for using soft clustering is that parallelizing has to be fast such that
decisions have to be as simple as possible. Especially at the borders of clusters,
the degree of uncertainty is high. These serious decisions should not be made
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Fig. 4. Merge partial solutions: (1) A problem X was parallelized into overlapping sets
X1 and X2. (2) Solutions S1 for X1 and S2 for X2 are predicted in parallel. (3) The
combined solution S overlaps for objects D,E, F,G. (4) A new problem pmrg is created
for the overlaps and (5) a solution Smrg is predicted. (6) Now the overall solution S is
hard clustered.

by a fast and approximative algorithm. With soft-clustering the algorithm can
defer this decision to the more powerful central model.

A possible algorithm for parallelizing is clustering by canopies (see Algo-
rithm 1). The design of this algorithm is inspired by the canopy blocker of
McCallum et al. [10]. In contrast to the canopy blocker of McCallum et al.,
our Canopy-Clustering algorithm returns overlapping sets of objects. This
way, the space complexity is O(n) instead of O(n2). For Canopy-Clustering
a cheap distance-function like TFIDF-cosine-similarity can be used. An efficient
implementation should use an inverted index so that Canopy(x) can be calcu-
lated quickly. When training data is available, optimal values for θloose and θtight

can be found by maximizing both recall and reduction rate.

Merge Partial Solutions. Using soft-clustering for parallelizing comes to the
price, that solutions of subproblems may overlap and have to be merged. An
example can be found in figure 4. Here, parallelizing puts the object D, E, F both
in problem X1 and X2. The two central models predict different equivalences,
i.e. the predicted clusters overlap. To solve these overlaps, we suggest to identify
overlapping parts and collectively reestimate the class memberships of many
overlapping objects. In step 3 of figure 4 the solution S is unsure about the
equivalences of D, E, F and G. Thus, a new problem pmrg = {D, E, F, G} is
created (figure 4, step 4) and is solved by an expensive central model (figure 4,
step 5).

Our method for merging subsolutions iteratively eliminates overlaps until a
hard clustered solution – that is a partition – is found. Inside each iteration, first
of all overlapping regions are identified and subproblems are generated. A new
problem p is generated by picking a random object cluster c with overlaps and by
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Fig. 5. Object reduction: Problem X is reduced to Y by clustering PX and creating
representatives for each cluster. Record linkage is performed on Y to create a solution
SY . At last SY is expanded to SX .

extending it with other overlapping object clusters c′. Enlarging the problem p
is stopped as soon as no other overlaps with this problem are found or the size of
the problem extends a threshold θmrg. This threshold prevents the new problem
to become too large and ensures that it can be solved by the central record
linkage model. The set of subproblems P is extended until no more subproblems
can be found. Then the subproblems are solved separately and afterwards are
merged with the current solution. For finding maximal overlapping clusters, the
overlap coefficient can be used:

overlap(c1, c2) =
|c1 ∩ c2|

min{|c1|, |c2|}
(2)

It is easy to show that the proposed algorithm terminates and outputs a hard
clustered solution. In each iteration at least one subproblem is generated out of
two overlapping object clusters. After solving the subproblem with the central
record linkage model, the solution to this subproblem contains no overlaps. So
after each iteration the number of overlapping objects decreases.

4.3 Meta Model for Object Reduction

The second scaling technique targets large classes. If we look at problems with
lots of classes, parallelizing is an efficient way to generate many subproblems,
containing only a few different classes. But in problems with large classes, like
in problems with Zipf distributed class sizes, another reduction step is neces-
sary. The reason is that all objects of the largest class will be completely inside
one subproblem – under the assumption that parallelizing was effective. In a
problem with Zipf-distributed class sizes, the size kmax of the largest class is in
Ω(n/ ln n), so this subproblem will have Ω(n2/ ln2 n) true pairs. Thus we sug-
gest to reduce the problem size by eliminating pairs that are obviously identical.
This will be done by merging these identical objects before applying an expensive
model.
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Fig. 6. Hypothesis space for a problem with four objects: A, B, C and D. A blocker
reduces the space top-down – here the combination (A,C) is eliminated. Object reduc-
tion reduces the space bottom-up – here B and D are identified as identical. Combining
object reduction and blocking results in a much smaller hypothesis space – here only
three possibilities.

Method. The overall method for solving a problem using object reduction is
shown in figure 5. First we start with objects X . These objects are reduced to
a subset Y . For this task one can use standard clustering techniques. In our
experiments, we choose a HAC algorithm with complete-linkage and a very high
threshold. As distance measure, we use the overlap coefficient over 2-grams.
The objective of the reduction process is to produce a partition with perfect
precision.

After having clustered X to a partition PX , each cluster of PX is regarded
as an “object”. The reduced object set Y composes of these objects. When
sets of objects (= clusters of PX) should be used as objects in a record linkage
problem Y , the question arises how to represent each cluster by a single object.
We propose to randomly pick one of the objects of each cluster in PX , use it as
a representative and put it into Y . Normally a random object of a cluster might
not be a good representative because clusters might be diverse, but in our case
clusters only contain very similar objects. Another approach would be to build
prototypes, e.g. cluster centers and use them to built up Y .

Afterwards, the reduced problem Y is solved by an arbitrary record linkage
model fOI, that returns a solution on SY . The reduced solution SY is then
expanded to all objects in X , so that a solution SX results.
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Object Reduction and Blockers. When combining our object reduction
method with a blocker, the set of potential hypotheses is reduced in two di-
rections (see figure 6). The unrestricted hypothesis space contains all possible
solutions, that is all partitions of X . A blocker reduces this space top-down by
eliminating object combinations that are obviously different. Object reduction
works bottom-up and searches for pairs that are very likely identical. Combining
both reduction methods of blocking and object reduction results in a hypothesis
space that only contains non-trivial hypotheses. Only these hypotheses have to
be regarded by an expensive decision model.

Object reduction is effective particularly with regard to large classes, that
appear in problems with non-uniformly distributed class sizes. In this case, it is
very likely that many objects of a large class are very similar. This will result
in many reductions and a smaller hypothesis space. With this reduction an
expensive model can be applied to such problems.

It is important to note, that our proposed model for object reduction only
performs the bottom-up step of figure 6. The blocking of obviously false pairs
should be done by the central model of your choice. The reason is that blocking
is already a standard technique in most models.

5 Evaluation

5.1 Dataset and Model Setup

In our experiments, we evaluate methods for scaling a state-of-the-art record
linkage model. We evaluate on the Cora and the Camera dataset which are de-
scribed in section 3. As expensive central model, we use the popular approach
of training a probabilistic classifier and use it as a learned similarity measure for
clustering the objects into sets of equal objects [6,3,16,5]. Analogous to [5], the
model uses constrained hierarchical agglomerative clustering with average link-
age for collective decisions and as classifier a SVM (for Cora) and logistic regres-
sion (for Camera), respectively. As pairwise features over the textual attributes,
this model uses several heuristic similarity measures, that are TFIDF-cosine-
similarity, Overlap-coefficient over tokens, 2-grams and 3-grams; the model for
the Camera dataset additionally uses some domain specific measures.

In each experiment, we randomly label 50% of the objects with their true class
label and predict the whole dataset. We report the runtime and the F-Measure on
the pairs between unlabeled objects. All experiments were run on a single stan-
dard PC. The parallel scaling method would considerably benefit from using more
machines because each subproblem could be solved in parallel on another ma-
chine. Even though, also with the parallel scaling technique we only use one PC
and solve all subproblem sequentially one after another on the same machine.

5.2 Comparison of Scaling Techniques

In the first experiment, we compare our two novel scaling techniques to the
popular Canopy-Blocker [10]. As both parallelizing and object reduction are
meta models, they can be used in compound models. In all we have five different
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Table 2. Runtime and quality results for several scaling methods on the Cora dataset

Cora

Scaling Method F-Measure Runtime (min)

None 0.948 ± 0.008 206

Blocking 0.954 ± 0.011 121

Object Reduction + Blocking 0.948 ± 0.011 52

Parallelizing + Blocking 0.936 ± 0.011 20

Parallelizing + Object Reduction + Blocking 0.944 ± 0.009 8

scaling setups: (1) no scaling, (2) scaling by blocking, (3) scaling by parallelizing
with blocking, (4) scaling by object reduction with blocking and (5) scaling
by parallelizing and object reduction with blocking (see figure 2). We run all
experiments five times with random train/ test splits.

Table 2 shows the average F-Measure quality with standard deviation and
the average runtime for the five scaling approaches on the Cora dataset. As one
can see, the runtime decreases from 121 minutes to 8 minutes when adding par-
allelizing and object reduction to a blocker based model. This corresponds to
a speedup of 15 or in other words the runtime decreases by 93%. It is inter-
esting, that parallelizing is so effective even though all subproblems are solved
sequentially on the same machine. The reason is, that the cost of solving k small
problems of the size n/k is much less than solving one problem of the size n.

On the other hand, our proposed scaling methods are also effective in terms of
quality. Scaling the blocker based model with both parallelization and object re-
duction decreases the F-Measure only little from 95.4% to 94.4%. This difference
is not statistically significant.

5.3 Scaling a Large Dataset with Parallelizing and Object
Reduction

In the second experiment, we examine the components of the scaling framework
in more detail on the Camera dataset with 15,481 objects and 956,957 true pairs.

Canopy-Clustering returned 90 subproblems and achieves a recall of 98%.
Because a lot of these subproblems are very small, we automatically merged the
smallest subproblems, so that each subproblem contains at least 200 objects.
This is done, because we have to assure that in each subproblem is enough
labeled data for training a pairwise model. Subproblems with more than 200
objects were not modified. In total 50 subproblems remain. In each subproblem
object reduction is applied. Reduction achieved a precision of at least 98% in each
subproblem. Afterwards the central model is applied on each reduced problem.

As Canopy-Clustering produces a lot of overlaps, merging the subproblems
is no trivial task. The 50 subproblems contain in total 37, 780 objects, that means
on average each of the 15, 481 objects is mentioned in 2.4 subproblems. The local
models predict 3098 distinct classes in total for all subproblems. Still there are lots
of overlaps, that have to be resolved by the merging process described in section
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4.2. Merging needs 3 iterations to resolve all these overlaps and outputs a consistent
solution. The F-Measure for the overall solution after all merging iterations is 93%.

The overall execution time was 8 hours and 10 minutes on a single ma-
chine. The runtime for splitting the problem into subproblems using Canopy-
Clustering was about 5 minutes. Solving all 50 subproblems took 3 hours and
10 minutes. The largest subproblem was solved in less then 30 minutes. We run
all parallelized subproblems one after another on a single machine, so runtime
would decrease a lot if multiple machines were used in parallel. Theoretically
the runtime for solving the subproblems in parallel can be lowered to 30 minutes
using 7 machines of this type.

6 Conclusion and Future Work

We have shown that some important record linkage problems have Zipf-like
distributed class sizes and that the standard technique of blocking does not scale
with such problems. Thus we have proposed two techniques for scaling arbitrary
record linkage models to large problems with non-uniformly distributed class
sizes. The first one parallelizes a problem in many overlapping subproblems,
so that each subproblem can be solved independently with an arbitrary record
linkage model. Afterwards the solutions are merged by iteratively reestimating
regions with uncertainty. The second scaling technique reduces the number of
objects when dealing with large class sizes. By combining both techniques, record
linkage models scale to problems having many classes as well as large classes.
We have shown by experiments that our scaling techniques can scale a state-
of-the-art record linkage model to challenging datasets and is efficient both in
runtime and quality. As far as we know, our framework is the first approach that
is able to efficiently solve large record linkage problems with both many classes
and large class sizes.

One promising point for future work would be to develop other domain-
independent parallelization methods that generate less overlaps than Canopy-
Clustering. This might be achieved by transferring work on adaptive blocking
[11,12] to parallelizing.
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User-Centric Privacy Preservation
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Abstract. A k-means clustering with new privacy-preserving concept,
user-centric privacy preservation, is presented. In this framework, users
can conduct data mining using their private information with storing
them in their local storages. After the computation, they obtain only
mining result without disclosing private information to others. The num-
ber of parties that join conventional privacy-preserving data mining has
been assumed to be two. In our framework, we assume large numbers
of parties join the protocol, therefore, not only scalability but also asyn-
chronism and fault-tolerance is important. Considering this, we propose a
k-mean algorithm combined with a decentralized cryptographic protocol
and a gossip-based protocol. The computational complexity is O(log n)
with respect to the number of parties n and experimental results show
that our protocol is scalable even with one million parties.

Keywords: privacy, data mining, clustering, k-means, peer-to-peer.

1 Introduction

With the rapid growth of services on the Internet, a large amount of personal
information is being stored and exploited for personalized online services. For
example, online bookshops suggest that ”customers who bought this book also
bought these books”. As another example, search engines offer personalized
search services that reorder search results based on the history of past searches
to give more weight to topics that interest each searcher.

If such distributed personal information is integrated among numerous users,
variable knowledge for users would be extracted. However, it is pointed out
that the combination of personal information can identify individuals with high
probability, even when identifiers are removed from personal information[1]. As a
technology to extract valuable knowledge from distributed private data sources
without disclosure of them, privacy-preserving data mining (PPDM) has at-
tracted attention. Many well-known data mining algorithms have been modi-
fied to preserve the privacy of distributed datasets, for example, decision-tree
learning[2], association rule mining[3], and k-means clustering[4].

Conventionally, public or private organizations that collect a large amount
of personal information are assumed to be PPDM participants. They are re-
sponsible for privacy preservation and the PPDM is conducted only when these

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 320–332, 2008.
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organizations reach an agreement. We designate this framework as server-centric
privacy preservation. Server-centric privacy preservation mainly assumes com-
putations among relatively small number of participants and is well-suited to
mining between enterprises. Nevertheless, problems persist, mainly from the per-
spective of intrinsic owners of personal data.

Consider a PPDM using two databases managed by an online book shop and
an online music store. They independently manage personalized recommendation
systems based on clients’ personal preferences extracted from personal purchase
histories. Customers might want to know ”customers who bought these books
and music also bought these books and music”. However, these two shops might
not reach agreement for the PPDM because it might not benefit each other
through integration of their databases (imagine these two shops are in a com-
petitive relationship). This indicates that customers miss opportunities to enjoy
more sophisticated personalized services because individuals cannot lead PPDM
using their own personal information at their own initiative.

As a contrasting privacy preservation concept, we specifically investigate user-
centric privacy preservation. This framework assumes that users store personal
information in their local storages not in enterprise databases. If users believe
that valuable knowledge would be extracted from the collection of their personal
information, they can freely establish or join a session for PPDM and can enjoy
data mining without disclosing personal information. For this framework, we
present a novel protocol for k-means clustering in this paper. The cross-domain
personalized recommendation service is one of motivating applications of this
framework. Clustering from combinations of various personal information, such
as histories of geographical movement, purchase, web search, and web browsing,
is expected to provide more sophisticated personalized services.

Little difference separates server-centric and user-centric privacy preservation.
However, the number of parties to be processed is considered to be much larger in
user-centric model than in sever-centric model. The number of parties is typically
assumed to be two in server-centric model; however, we assume 10 ∼ 106 parties
in user-centric model. In such a large-scale network, both the scalability and the
treatment of uncertain networking environment, such as asynchronism and fault-
tolerance, are important. To overcome these difficulties, our protocol assumes a
network in which users can directly communicate with each other like Peer-to-
Peer (P2P) network. Our contribution is mainly on following two protocols:

1. private Asynchronous Average Computation (AAC): This protocol is a cryp-
tographic extension of a gossip-based protocol and computes cluster centers
privately.

2. private Nearest Cluster-center Determination (NCD): This protocol privately
computes cluster labels and the computation is decentralized over binary trees.

Based on these protocols, our protocol is constructed. The computational com-
plexity of our protocol is O(log n) with respect to the number of parties n. In
addition, the computation is decentralized over each node almost asynchronously
in a fault-tolerant manner.
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The remainder of this paper is organized as follows. In section 2, we survey
precedent studies related to privacy preserving k-means. Section 3 describes build-
ing blocks for our protocol. In sections 4 and 5, we propose two primitives: private
AAC and private NCD. The proofs of security for these primitives are also shown.
In section 6, privacy-preserving k-means is designed with these two primitives.
Experimental results are also shown. Section 7 presents our concluding remarks.

2 Related Works and Basic Strategy

Let X = {x1, ..., xn}(xj ∈ Rd) be a dataset and xj� be the �-th attribute of
vector xj . k-means clustering partitions the data into k clusters, represented by
cluster centers µi. Let Z = {zij}, zij ∈ {0, 1} be a cluster label set. If data xj

belongs to i-th cluster, cluster label zij = 1. Otherwise, zij = 0. Cluster labels
and cluster centers are updated alternately and repeatedly until convergence as
follows:

µi ←
∑n

j=1 zijxj
∑n

j=1 zij
(updating cluster center), (1)

zij =
{

1 If i = arg mink(xj − µk)T (xj − µk) (updating cluter label)
0 otherwise. (2)

Private information in k-means clustering is defined by how the dataset X is par-
titioned among nodes. Vaidya et al. have proposed a privacy-preserving k-means
for the vertically partitioned model where Xj corresponds to a subset of attributes
of all data entries[4]. Jha et al. have proposed a privacy-preservingk-means for two
parties in the horizontally partitioned model where Xj corresponds to a subset of
attributes of all data entries[5]. Jagannathan et al. proposed a privacy-preserving
k-means for two parties in the arbitrarily partitioned model where there is not nec-
essarily a simple pattern of how data are shared among parties [6].

In k-means clustering with user-centric privacy preservation, we can naturally
assume that the horizontally partitioned model with numerous parties. In this
model, privacy-preserving k-means clustering is ideally stated as follows:

Statement 1. Let there be n parties Pj(j = 1, ..., n). Party Pj holds a subset
of data Xj as the input of the protocol, where ∪jXj = X. After the protocol
execution, party Pj learns a set of cluster labels corresponding to data x ∈ Xj

and nothing else.

Jha’s protocol functions in the horizontally partitioned model. However, this
allows each party to learn cluster centers and cannot be extended to a multi-party
protocol. Jagannathan’s protocol also functions in the horizontally partitioned
model. However, the secure circuit evaluation must be repeated synchronously
O(n2) times in n-party case; consequently, it is not scalable and asynchronous.
The description above reveals that conventional protocols are not available or
are insufficiently scalable for user-centric privacy preservation.

Our protocol is basically divided into two steps: private Asynchronous Av-
erage Computation (AAC) which computes cluster centers privately among all
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nodes and private Nearest Cluster-center Determination (NCD) which privately
computes cluster labels at each node. Private AAC is a cryptographic extension
of a gossip-based protocol[7]. For private NCD, we use a protocol for private
comparison of random shares based on Yao’s secure circuit evaluation[8] as a
primitive. The same protocol is used in [6] for the same purpose.

3 Building Blocks

Gossip-based Protocol. Gossip-based protocol has been emerging as an ap-
proach that achieves scalable and fault-tolerant statistical aggregation[9]. Kowal-
czyk et al. have proposed a simple gossip-based protocol called ”newscast”, which
computes the average of values distributed over P2P networks without transfer-
ring all data to a central repository[7]. Let there be n parties P = {P1, ..., Pn} and
xj ∈ R be the input of Pj . Then, the newscast protocol is described as follows:

1. μj ← xj , t = 1,
2. Contact a node Pj′ ∈r P and receives μj′ ,

3. μj ←
μj+μj′

2 , t← t + 1. If t > T , terminate the protocol. Else, go to step 2.

∈r denotes an uniform randomly selection from a set. We call μj a local estimate
and the number of messages of each node a cycle. Let the average

∑
j xj/n be

μ. After the asynchronous execution of this protocol, it is proved that the local
estimate μj converges to μ as cycle t → ∞; the variance of μi drops on the
average by factor λ, with λ ≤ 1

2
√

e
. See [7] for details of theoretical properties.

Homomorphic Public-key Cryptosystem. The homomorphic property of
public-key cryptosystem is exploited for the computation of encrypted values
without decrypting them. The key generation algorithm generates a valid pair
(sk, pk) of private and public keys. ZN (= [0, ..., N − 1]) denotes the domain of
data. The encryption of an integer t ∈ ZN is denoted as c = Encpk

(t; r), where
r is a random integer. The decryption is denoted as t = Decsk

(c). With a valid
key pair (pk, sk), Decsk

(Encpk
(t; r)) = t is required for any t and r. In addition,

a public key cryptosystem with homomorphic property satisfies

Enc(t1; r1) · Enc(t2; r2) = Enc(t1 + t2; r1 + r2), (3)
Enc(t1; r1)t2 = Enc(t1t2; r1), (4)

where t1, t2 ∈ ZN . r1, r2 are random numbers in ZN and changed for every en-
cryption for security reasons. In what follows, Enc(·; r) is described as Enc(·) for
simplicity. These properties enable the addition of any two encrypted integers
and the multiplication of an encrypted integer by an integer. Paillier cryptosys-
tem is known as a semantically secure cryptosystem1 with homomorphism[10].

Private Comparison of Random Shares. Let x ∈ Zd
N be an integer vector

that appears in the middle of a computation. For example, x corresponds to
cluster centers at each step in our protocol.
1 A public-key cryptosystem is semantically secure when a probabilistic polynomial-

time adversary cannot distinguish between random encryptions of two elements cho-
sen by herself.
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Assume that Alice knows xA = (xA
1 , ..., xA

d ) and Bob knows xB = (xB
1 , ..., xB

d )
where xi = xA

i + xB
i mod N and xA

i , xB
i ∈r ZN for all i. Then, we say that

Alice and Bob have random shares of a value xi for all i. When Alice and Bob
have random shares of xi, xi is shared between Alice and Bob while xi itself
is unknown to both of them. Thorough the protocol of private comparison of
random shares, Alice learns an index i∗ such that i∗ = arg maxi(xA

i + xB
i ) and

nothing else. Bob learns nothing.
A few protocols for private comparison of random shares are known. One of

standard solutions is Yao’s secure circuit evaluation[8].

4 Private Asynchronous Average Computation

4.1 Protocol for Private AAC

Private AAC is a cryptographic extension of newscast. In this section, we assume
one-dimensional value xj is given to Pj . Although data xj might be rational
number, xj can be treated as positive integers by adding and multiplying some
constant without loss of generality. We also assume that the nodes and the
server behave as semi-honest parties2. Private AAC is described in figure 1. After
the computation, all nodes learn encrypted local estimates Encpk

(2T+1μj) and
nothing else, where T is the maximum of cycles. The server learns nothing.

How this protocol correctly computes Encpk
(2T+1μ) is explained. At step 2,

values in each node are encrypted by the server’s public key. At step 3, values
are sent to Pj′ which is chosen randomly. At step 4, Pj′ updates the encrypted
local estimate of Pj .

As shown before, the update of newscast is described as μj ←
μj+μj′

2 . This in-
cludes division which is not allowable in the homomorphic cryptosystem. There-
fore, this update is modified. Assume that each node works synchronously such
that all nodes keep identical cycle and updates the local estimate with an equa-
tion μj ← μj + μj′ . In this setting, the local estimate converges to 2T+1μ after
T updates because this update is equivalent to that of newscast except that the
local estimate is doubled at each update.

In actual case, two local estimates with different cycles might be exchanged.
The consistency between the cycle and the local estimate is retained if update
equations are modified as

μj ←
{

μj + 2tj−tj′ μj′ (if tj ≥ tj′ )
μj′ + 2tj′−tj μj (o.w.)

tj and tj′ are the number of updates in Pj and Pj′ , respectively. This update is
also equivalent to that of asynchronous newscast except that the local estimate
is doubled at each update. Using the homomorphic property, these update equa-
tions are rewritten with encrypted values cj = Encpk

(xj) and cj′ = Encpk
(xj′ )

as shown:
2 A semi-honest party is one who follows the protocol properly with the exception that

it maintains a record of all intermediate computations. From accumulated records,
semi-honest parties seek to learn other parties’ privacy[11].
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[Protocol for Private AAC for node Pj ]

– Input of node Pj : data xj ∈ Z�N/2T+1�, the maximum of cycle T

– Output of node Pj : encrypted average Encpk (2T+1μ)

1. Server S generates a private and public key pair (pk, sk). Pj generates a private

and public key pair (p
Pj

k , s
Pj

k ).
2. Pj : cj ← Encpk (xj). tj = 0.

3. Pj : crj ← cj ·Encpk (−rj) where rj ∈r ZN . Send (crj , Enc
j′
pk

(rj), tj) to Pj′ ∈r P .

4. Pj′ : cj ← crj ·Encpk (rj). If tj ≥ tj′ , c
r
j ← cj · cj′2

tj−t
j′ ·Encpk (−rj′), tj ← tj + 1.

Else, crj ← cj
′ · c2

t
j′ −tj

j · Encpk (−rj′), tj ← t′j + 1, where rj′ ∈r ZN . Then send
(crj , tj , Enc

j
pk

(rj′)) to Pj .
5. Pj : cj ← crj ·Encpk (rj′).
6. Pj′ : Exchange the role of Pj and Pj′ , do step 3-5, then go to step 7.
7. Pj : If tj = T , terminate the protocol. Else, go to step 3.

Fig. 1. Private AAC protocol: Encpk (·) denotes a message is encrypted by the server’s

public key pk. Encjpk
(·) denotes a message is encrypted by the public key of Pj , p

Pj

k .

cj ←

⎧
⎨

⎩

cj · c2
tj−t

j′
j′ (if tj ≥ tj′)

cj′ · c2
t
j′ −tj

j (o.w.)

In the protocol, randomizations are introduced to prevent the server from eaves-
dropping on local estimates. The local estimate is randomized by rj at step 3 and
rj′ at step 4: these randomization are resolved at step 4 and step 5, respectively.

Convergence Property: The convergence property of newscast is inherited
with these update equations. The domain of xj is set to Zd

�N/2T+1� such that
2T+1μ exists in the message space ZN . This protocol can be modified such that
the squared and the weighted mean are estimated, which are used in next section.
See Appendix in detail.

Gosship-based averaging guarantees μj − μ ≤ ε for any ε with probability
1− δ after 
0.581(log n + 2 log σ + 2 log 1

ε + 1 log 1
δ )� cycles of newscast and data

variance σ2[7]. It follows that the computational complexity of this protocol is
O(log n) with fixed ε, δ, and σ.

Even when some node leaves the network suddenly, the protocol is still pro-
cessed fault-torelant because communication between two nodes does not affect
communication between two other nodes: the theoretical convergence property
will not be followed in such a situation; however, it would give an estimate close
to the average if the number of disappeared nodes is not very large.

Security and Privacy: Finally, a theorem for the security of this protocol
is presented.

Theorem 1. Assuming the server and all nodes behave semi-honestly, private
AAC is secure.



326 J. Sakuma and S. Kobayashi

The proof should be stated following the standardized proof methodology of
secure multi-party computation as shown in [11]; however, because of the limi-
tation of the space we briefly explain why this protocol does not reveal private
information as follows:

Because all exchanged local estimates are all encrypted by the server’s public
key in this protocol, no nodes can decrypt messages related to local estimates and
no nodes can know other nodes’ private values. The server can decrypt exchanged
local estimates, however, all local estimates are randomized by rj , r

′
j at each

node at each step. Random values rj and rj′ are exchanged with encrypted by
public key of each node. It follows that the server cannot resolve randomizations
by itself. Thus, the sever never learns any knowledge related to nodes’ private
value, xj , either.

5 Private Determination of the Nearest Cluster Center

We present a protocol by which a node privately determines the nearest cluster
center by taking encrypted cluster centers as inputs. Let the i-th cluster center be
µi = (μi1, ..., μid). After the execution of private AAC, all nodes share encrypted
estimates of cluster centers and squared cluster centers (see appendix) for all i
as follows:

ci = (ci1, ..., cid) = (Encpk
(2T+1μi1), ..., Encpk

(2T+1μid)), (7)

c
(2)
i = (c(2)

i1 , ..., c
(2)
id ) = (Encpk

(2T+1μ2
i1), ..., Encpk

(2T+1μ2
id)), (8)

Now the problem for node Pj is to determine i∗ such that i∗ = arg mini d(xj , µi)
(the index of the nearest cluster center) without disclosing xj and knowing µi.
If two parties have random shares of d(xj , µi) for all i, the nearest cluster center
can be privately determined by private comparison of random shares (fig. 2, top).

First, the way to prepare random shares of these distances is described. Let
dA

ij and dB
ij denote random shares of 2T+1d(xj , µi). Given xj , ci and c

(2)
i for all

i at step 1a, node Pj computes

ci =
d∏

�=1

Encpk
(2T+1x2

j�) ·
d∏

�=1

c
−2xj�

i� ·
d∏

�=1

c
(2)
i� ·Encpk

(−dB
ij)

= Encpk
(2T+1(xT

j xj − 2µT
i xj + µT

i µi)− dB
ij) = Encpk

(2T+1d(xj , µi)− dB
ij).

Decrypting ci, the server obtains dA
ij = 2T+1d(xj , µi) − dB

ij at step 1b : both
have random shares of d(xj , µi). Then at step 2, Pj learns the nearest cluster
center using private comparison of random shares.

Assuming private comparison of random shares is secure, this protocol se-
curely and correctly determines the nearest cluster center. However, the compu-
tational time of the server is seriously large. The server must reply requests from
all nodes: the computational complexity is O(n) with respect to the number of
nodes. This would be apparently a bottleneck because we assume n is very large
in user-centric privacy-preservation.
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Considering this, a protocol in which the computation is decentralized over
binary trees is presented (fig. 2 middle and bottom). In this protocol, two kinds of
nodes, red nodes(R, R+(= RL, RR)) and blue nodes(B, B+(= BL, BR)), appear.
Red nodes function as the server and blue nodes attempt to learn the nearest
cluster center. Two binary trees of red and blue nodes are formed in which R
and B are parental node of R+ and B+, respectively.

At step 1, each node generates a key pair. Let the first red node R (the root
of the binary tree) be the server S. At step 2, R chooses a blue node B. At
step 3, R and B chooses R+(= RR, RL) and B+(= BL, BR), respectively. Then,
B encrypts random shares of cluster centers and sends it to R (step 4(a)-i). B
encrypts the random number and sends it to B+ (step 4(a)-ii). R decrypts and
re-encrypt it with R+’s public key; send it to B+ (step 4(a)-iii). Consequently,
B+ obtains cluster centers encrypted by R+’s public key (step 4(a)-iv). The
same is repeated for encrypted squared cluster centers (4(b)). Thus, R+ and B+

are ready to start private NCD. R+ and B+ becomes R and B, respectively: the
operation proceeds recursively until PB is empty set (step 3). After the binary
tree is formed over all nodes, all pairs execute private NCD (step 7). We assume
that PR and PB are managed by the server. However, this can also be distributed
among the P2P network using some protocol for this purpose.

Complexity: By this decentralization, the function of the server node is
distributed over binary trees. In theory, this recursion stops after the 
log2 n�-
th recursion at most. However, this does not work. R and B must find four
non-busy nodes (two B+s and two R+s) simultaneously in the second step. It
follows that 2�log2 n−1	+2(> n) nodes must be nominated in the 
log2 n− 1�-th
recursion. To alleviate this bottleneck, the protocol can be modified such that
R and B respectively nominates only one non-busy node to R+ and B+ after
the (
log2 n�− 3)-th recursion in practice. This modification makes the protocol
slightly slower. Nevertheless, the protocol is completed after the (
log2 n�+4)-th
recursion at most and the entire computational complexity is still kept O(log n).
The number of busy nodes after the (
log2 n� − 3)-th recursion is less than n/2.
It follows that the R and B can readily find next candidates. After forming
binary trees, nodes can asynchronously execute private NCD. If red nodes go
breakdown suddenly, the paired blue node can execute private NCD with the
server node at any timing. If blue nodes go breakdown, the paired red node can
terminate the following computation. If either of red node or blue node stops,
the pair cannot choose their descendants any more; however, the computation
is not terminated if the server and at least one pair is alive in the network. As
shown, this protocol works totally asynchronous and fault-tolerant.

Security and Privacy: A theorem for decentralized private NCD protocol
is presented.
Theorem 2. Assuming that the server and all nodes behave semi-honestly and
that private comparison of random shares is secure, decentralized private NCD
is secure.

In this paper, we omit the proof and just briefly show why this protocol does
not reveal private information as follows:
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[Private Nearest Cluster-center Determination]
– Input of node Pj : data xj ∈ Zd

�N/2T+1�, ci, c
(2)
i (i = 1, ..., k, from private AAC)

– Output of node Pj : i
∗ = arg mini d(xj ,µi)

1. For all i,

(a) Pj computes ci =
∏d

�=1Encpk(2T+1x2
j�)·
∏d

�=1 c
−2xj�

i� ·
∏d

�=1 c
(2)
i� ·Encpk (−dB

ij)

where dij
B ∈r ZN : send this to the server

(b) The server computes dA
ij = Decsk (ci)

2. Pj and the server computes private comparison of random share between
(dA

1j , ..., d
A
kj) and (dB

1j , ..., d
B
kj). Then, determine the nearest cluster center i∗.

[Decentralized private NCD over the binary tree]

1. All nodes generate a key pair (p
Pj

k , s
Pj

k ). R ← S(server node). PR,PB ← P .
2. R: R chooses B ∈r PB .
3. R and B: R and B choose RL, RR ∈r PR and BL, BR ∈r PB, respectively

(R+ �= B,B+, B+ �= R,R+). If PB = ∅, go to step 7.
4. For both pair (RL, BL) and (RR, BR) (denoted as (R+, B+)), do

(a) For all i and �,
i. B : Send EncpR

k
(2T+1μi�) · EncpR

k
(−rB) to R, where rB ∈r Zd

N ,

ii. B : Send Enc
pB+

k
(−rB) to B+

iii. R : Compute Enc
pR+

k
(2T+1μi� − rB) and send this to B+.

iv. B+ : ci� ← EncR+ (2T+1μi� − rB) · EncR+(rB)

(b) R,B and B+ : Repeat step 4(a) for Enc
pR+

k

(2T+1μ2
i�) and B+ obtains c

(2)
i�

(c) R+ and B+: PB ← PB \ {B+}, PR ← PR \ {R+}
5. R and B: R ← RL, B ← BL. Go to step 3 (recurison for the left subtree)
6. R and B: R ← RR, B ← BR. Go to step 3 (recurison for the right subtree)
7. R and B: Do private NCD. Then, B learns i∗.

step 2

      step 5
(left subtree) R B

RL BL RR BR

R B

RL BL RR BR

R

RL

B

BL RR BR

      step 6
(right subtree)

step 3
R

R+ B+

B

step 4(a)-i
EncR(2T+1uil - rB)

step 4(a)-ii
EncB+(-rB)

step 4(a)-iii
EncR+(2T+1uil - rB)

step 4(a)-iv
cil      EncR+(2T+1uil)step 7

private NCD

step 4

Fig. 2. Top: Non-decentralized private NCD; middle and bottom: Decentralized private
NCD. For simplicity, EncpX

k
is described as EncX in the bottom figure.

Messages exchanged during the protocol execution except ones related to pri-
vate comparison of random shares are denoted as
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(
EncpR

k
(2T+1μi� − rB), Enc

pB+
k

(−rB), Enc
pR+

k
(2T+1μi� − rB), Enc

pR+
k

(dA
iB+)

)
.

Assume that R, R+, B, and B+ observes all messages exchanged for protocol
execution. During step 2 in which R is engaged, R observes a randomized value
2T+1μi� − rB : the reminder of the messages are encrypted in the form that R
cannot decrypt. R+ observes two randomized values 2T+1μi�−rB and dA

iB+ ; the
reminder of the messages are encrypted in the form that R+ cannot be decrypt.
B observes a random value rB : the reminder of the messages are encrypted in
the form that B cannot decrypt. B+ observes two random values rB and dA

iB+ :
the reminder of the messages are encrypted in the form that B+ cannot decrypt.
Thus, all messages transferred in the network are randomized or encrypted in
the form that they cannot decrypt. Consequently, they learn only the result of
private comparison and nothing else.

6 k-Means Clustering Using Private AAC and NCD

k-means clustering with user-centric privacy preservation is designed with two
primitives presented in previous sections. The outline of the protocol is summa-
rized as follows:

1. Server S and node Pj generate a key pair (pS
k , sS

k ) and (pP j

k , sP j

k ).
2. All nodes join private AAC and obtain ci for i = 1, .., k.
3. All nodes and the server join decentralized private NCD : encrypted squared

mean c
(2)
i are propagated and zij for i = 1, ..., n, j = 1, ..., k are determined.

4. If termination conditions are satisfied, terminate the protocol. Else, go to
step 2.

At step 2, encrypted cluster centers ci and encrypted squared cluster centers
are privately computed. Then, at step 3, distributed private NCD is conducted:
c
(2)
i are propagated and cluster label are determined by taking ci and c

(2)
i as

inputs. Step 4 judges the convergence. The simplest termination condition is
to stop the protocol after a fixed number of iterations. As an alternative, the
convergence can be judged by sharing whether cluster labels are changed or not
among nodes. These can be computed using private AAC and the termination
protocol will be discussed in the longer version of this paper.

Here, we briefly show what the nodes and the server learn from execution
of the protocol. At step 2, nodes just obtains a sequence of encrypted cluster
centers, ci and c

(2)
i , which cannot be decrypted by nodes. As shown in theorem

1, all nodes and the server learn nothing about other nodes’ private data from
private AAC. At step 3, both nodes learn a sequence of zij that includes which
cluster center is (or was) the nearest to the node’s data. Unfortunately, this result
slightly deviates form what statement 1 in section 2 describes because statement
1 does not allow to disclose cluster labels at intermediated steps. Nevertheless,
Pj does not learn any from the protocol execution other than a series of zij .

After the execution of the protocol, computed results, such as cluster centers,
number of nodes belonging to each cluster, nodes belonging to the same cluster,
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Fig. 3. Computational time of private AAC (d = 1, left) and private NCD (d =
2, 4, 8, k = 2, right). 1024, 512 bit-key were used.

can be shared among nodes if they reach an agreement. Private sharing of these
results among nodes requires additional protocols. These issues will be discussed
in other paper, too.

Computational Analysis: To investigate the scalability, we show experi-
mental results of these protocols. As homomorphic cryptosystem, Paillier cryp-
tosystem with 512/1024-bit key was used. The server and the node program were
implemented by J2SE ver. 1.5.0. The number of nodes was varied from n = 10
to 106. Actually, the execution in the real P2P network with a million nodes is
unrealistic. Instead, we simulated the P2P network environment on a personal
computer; both the server and nodes program were run on a Xeon2.8GHz(CPU),
2GB(RAM) Windows PC.

We simulated private AAC and measured the computation time per node. In
private AAC, the computation time of encryption and decryption is much larger
than the communication time because the unit message length is at most the
length of the cipher, 512 or 1024 bit. Therefore, we only measured the overall
computation time without communications overhead.

For a unit variance dataset and a network with n = 106 nodes, 25 cycles are
required to guarantee that the local estimate μj in each node is within 10−6

from the correct average μ with 95% probability. Considering this, we set the
maximum cycle to T = 20, 40 and the dimension d = 1 in experiments. The
results are shown in figure 3 left. As shown, private AAC with a million of nodes
is completed within 50 (sec) at most.

Next, we evaluated the computation time of decentralized private NCD. In
this experiment, we did not construct a complete binary trees but partial binary
trees whose width was 2 and depth was 
log2 n�+ 4 because of the limitation of
the memory. This setting is sufficient for the evaluation of the computation time
because the number of recursions is at most 
log2 n� + 4 as shown in section 5
and the computation is executed in parallel in the P2P network environment.
We set k = 2: the computation time from the step 2 to the termination of the
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protocol was measured. In the largest setting (1024-bit key, d = 8, n = 106), it
costs 1200 ( sec)(=20 min) at most. This result includes the propagation of c(2).
Without this, the computation time is decreased by half.

Finally, the computation time of privacy-preserving k-means was evaluated.
Here, we assume two cases. Case 1 is a small-scale setting (d = 2, k = 2, n =
1000). Case 2 is a large-scale setting (d = 4, k = 4, n = 106). Both cases assume
T = 40 and 1024-bit key. For a single iteration of k-means in case 1, step 2 costs
about 180 (sec) and step 3 costs 660 (sec). From those, k-means clustering is
expected to be converged within a few hours. In case 2, step 2 costs 740 (sec)
and step 2 costs 9100 (sec). For single iteration, it costs about 2.7 hour. In this
case, clustering is expected to be completed within a couple of days.

7 Conclusion

We propose a protocol for k-means clustering with user-centric privacy preserva-
tion based on two novel protocols: private AAC and private NCD. Our protocol
is implemented totally asynchronous and fault-tolerant and is scalable even with
a million users. Computation time is dependent on that of encryption and de-
cryption strongly. With more sophisticated implementation of the cryptosystem
would improve the computation time drastically. Nevertheless, considering a mil-
lion users participate in the protocol, we can conclude that experimental results
are remarkably scalable. Other data mining algorithms with user-centric privacy
preservation is our future work.
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Appendix: Private AAC for Weighted Average

Cluster centers are computed as weighted averages as µj =
∑

j zijxj/
∑

zij ,
where zij ∈ {0, 1}. If weights zij are not mutually private, this is easily solved
by execution of private AAC only between nodes whose zij is one. However, if
the weight zij is private, this violates the privacy. Then we modify updates of
private AAC as follows:

– Step 1,2, and, 3 is the same with private AAC
– When zij = 1 and zij′ = 1, updates are executed normally
– When zij = 1 and zij′ = 0, Pj updates the local estimate of Pj′ normally.

However, Pj′ merely increments the cycle of Pj and the local estimate of Pj

is merely multiplied by 2tj−tj′+1 or 2 to retain the consistency between the
cycle and the local estimate of Pj .

– When zij = 0 and zij′ = 0, both parties merely increment the cycle of the
local estimate for each other.

The behavior of each node is controlled by zij . As a consequence of updates show
above, the update progresses only between parties with zij = zij′ = 1 without
disclosure of zij . Let the probability that two nodes whose zij is both 1 be p.
Then, T/p cycles are required to guarantee the same convergence property with
private AAC protocol.

Appendix: Private AAC for Squared Average

A protocol to compute the squared average is described. We need to use Yao’s
secure circuit evaluation for this protocol. Let xA and xB inputs of two parties,
Alice and Bob, respectively. xA and xB are random shares of x. Then, consider a
Yao’s protocol to compute yA and yB as outputs of Alice and Bob, respectively,
in which yA and yB are random shares of x2. By Yao’s protocol, squared averages
are obtained through the computation between the sever and node P1 as follows
(arbitral node is available instead of P1).
1. P1 generates a random number r1 ∈ ZN , computes ci� ·Encpk

(−r1) and send
this to the sever.

2. Server decrypts this and obtains rS = μi�− r1 (r1 and rs are random shares
of μi�).

3. Between the server and P1, run the Yao’s protocol. Then, P1 and the server
obtains y1 and yS , respectively, in which y1 and yS are random shares of μ2

i�.
4. The server compute cS ← Encpk

(yS) and send to P1.
5. P1 computes c

(2)
i� ← Encpk

(y1) · cS = Encpk
(yS + y1)

After P1 obtains c
(2)
i� for all i and �, P1 become the first blue node. Then, c

(2)
i�

can be propagated thorough the binary tree as done in figure 2.
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Abstract. When only a small number of labeled samples are available,
supervised dimensionality reduction methods tend to perform poorly due
to overfitting. In such cases, unlabeled samples could be useful in im-
proving the performance. In this paper, we propose a semi-supervised
dimensionality reduction method which preserves the global structure of
unlabeled samples in addition to separating labeled samples in different
classes from each other. The proposed method has an analytic form of the
globally optimal solution and it can be computed based on eigendecom-
positions. Therefore, the proposed method is computationally reliable
and efficient. We show the effectiveness of the proposed method through
extensive simulations with benchmark data sets.

1 Introduction

The goal of dimensionality reduction is to obtain a low-dimensional representa-
tion of high-dimensional data samples while preserving most of ‘intrinsic infor-
mation’ contained in the original data. Once dimensionality reduction is carried
out appropriately, the compact representation of the data can be used for various
succeeding tasks such as visualization and classification.

In supervised learning scenarios where data samples are accompanied with
class labels, Fisher discriminant analysis (FDA) [1] is a popular dimensionality
reduction method. FDA seeks an embedding transformation such that between-
class scatter is maximized and within-class scatter is minimized. FDA works very
well if samples in each class are Gaussian with the common covariance structure.
However, it tends to give undesired results if samples in a class form several
separate clusters or there exist outliers [1]. To overcome this drawback, local FDA
(LFDA) has been proposed [2], which localizes the between-class and within-
class scatter matrices. LFDA works well even when within-class multimodality
or outliers exist. Furthermore, LFDA overcomes critical limitation of original
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FDA in dimensionality reduction—the dimension of the FDA embedding space
should be less than the number of classes [1], while LFDA does not suffer from
this restriction in general.

However, the performance of LFDA (and all other supervised dimensionality
reduction methods) tend to be degraded when only a small number of labeled
samples are available. Thus, the supervised methods overfit embedding spaces
to the labeled samples. In such cases, it is effective to make use of unlabeled
samples which are often available abundantly, i.e., semi-supervised learning. The
book [3] showed through extensive simulations that principal component analysis
(PCA), which is an unsupervised dimensionality reduction method for preserving
the global data structure, works moderately well in semi-supervised learning
scenarios.

Although PCA is reported to work well, it may not be the best choice in semi-
supervised learning due to its unsupervised nature. In this paper, we propose a
new semi-supervised dimensionality reduction method which smoothly bridges
LFDA and PCA so that we can control our reliance on the global structure
of unlabeled samples and information brought by (a small number of) labeled
samples. We experimentally show that the proposed method, which we refer to
as semi-supervised LFDA (SELF), compares favorably with other methods. Note
that SELF maintains the same computational advantage of LFDA and PCA, i.e.,
a global solution can be analytically computed based on eigendecompositions.
Therefore, SELF is still computationally efficient and reliable.

2 Preliminaries

In this section, we formulate the linear dimensionality reduction problem and
give some mathematical backgrounds.

2.1 Formulation

Let xi ∈ Rd (i = 1, 2, . . . , n) be d-dimensional samples and let X ≡
(x1|x2| · · · |xn). Let z ∈ Rr (1 ≤ r ≤ d) be a low-dimensional representation of
a high-dimensional sample x ∈ Rd, where r is the dimensionality of the reduced
space. We focus on linear dimensionality reduction, i.e., using a d × r transfor-
mation matrix T , an embedded representation z of a sample x is obtained as

z = T�x, (1)

where � denotes the transpose of a matrix or a vector.
Many dimensionality reduction techniques developed so far involve an opti-

mization problem of the following form:

T OPT ≡ argmax
T∈Rd×r

[
tr
(
T�CT (T�CT )−1

)]
. (2)

Let {ϕk}dk=1 be the generalized eigenvectors associated with the generalized
eigenvalues {λk}dk=1 of the following generalized eigenvalue problem:

Cϕ = λCϕ. (3)
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We assume that the generalized eigenvalues are sorted as λ1 ≥ λ2 ≥ · · · ≥ λd and
the generalized eigenvectors are normalized as ϕ�

k Cϕk = 1 for k = 1, 2, . . . , d.
Note that this normalization is often automatically carried out by an eigensolver.
Then a solution T OPT is analytically given as (ϕ1|ϕ2| · · · |ϕr) (e.g., [1]):.

When addressing dimensionality reduction problems, we often face with a
matrix of the following pairwise form [2]:

S ≡ 1
2

n∑

i,j=1

Wi,j(xi − xj)(xi − xj)�, (4)

where W is some n-dimensional matrix. Let D be the n-dimensional diagonal
matrix with Di,i ≡

∑n
j=1 Wi,j , and let L ≡ D −W . Then S is expressed as

S = XLX�, which is positive semi-definite.

2.2 Principal Component Analysis (PCA)

A fundamental unsupervised dimensionality reduction method is principal com-
ponent analysis (PCA).

Let S(t) be the total scatter matrix :

S(t) ≡
n∑

i=1

(xi − μ)(xi − μ)�, (5)

where μ ≡ 1
n

∑n
i=1 xi. The PCA transformation matrix T PCA is defined as

T PCA ≡ argmax
T∈Rd×r

[
tr
(
T�S(t)T (T�T )−1

)]
. (6)

That is, PCA seeks a transformation matrix T such that scatter in the embed-
ding space is maximized. A solution T PCA is given with C = S(t) and C = Id,
where Id is the identity matrix on Rd.

2.3 Locality-Preserving Projection (LPP)

Another useful unsupervised dimensionality reduction technique is locality-
preserving projection (LPP) [4].

Let A be the affinity matrix, i.e., the n-dimensional square matrix with Ai,j

being the affinity between xi and xj . We assume that Ai,j ∈ [0, 1]; Ai,j is large
if xi and xj are ‘close’ and Ai,j is small if xi and xj are ‘far apart’. There
are several different manners of defining A, e.g., based on nearest neighbors or
the heat kernel. Through the paper, we use the local scaling heuristic [5] as the
definition of the affinity matrix A, i.e.,

Ai,j = exp
(

−‖xi − xj‖2
σiσj

)

. (7)

σi is the local scaling around xi defined by σi = ‖xi − x
(k)
i ‖, where x

(k)
i is the

k-th nearest neighbor of xi. A heuristic choice of k = 7 has benn shown to be
useful through extensive simulations [5,2].
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Let S(n) and S(l) be the normalization matrix and the local scatter matrix
defined by

S(n) ≡XD(n)X�, S(l) ≡ 1
2

n∑

i,j=1

W
(l)
i,j (xi − xj)(xi − xj)�, (8)

where D(n) is the n-dimensional diagonal matrix with D
(n)
i,i ≡ 1

n

∑n
j=1 Ai,j and

W
(l)
i,j ≡ 1

nAi,j . The LPP transformation matrix T LPP is defined as

T LPP ≡ argmax
T∈Rd×r

[
tr
(
T�S(n)T (T�S(l)T )−1

)]
. (9)

That is, LPP seeks a transformation matrix T such that nearby data pairs in the
original space Rd are kept close in the embedding space Rr. Thus, LPP tends to
preserve the local structure of the data. A solution T LPP is given with C = S(n)

and C = S(l).

2.4 Fisher Discriminant Analysis (FDA)

A popular supervised dimensionality reduction technique is Fisher discriminant
analysis (FDA) [1]. When discussing supervised learning problems, we suppose
that we have n′ labeled samples {(xi, yi)}n

′
i=1, where yi (∈ {1, 2, . . . , c}) is a class

label associated with the sample xi and c is the number of classes. Let n′
m be

the number of labeled samples in class m ∈ {1, 2, . . . , c}.
Let S(b) and S(w) be the between-class scatter matrix and the within-class

scatter matrix :

S(b) ≡
c∑

m=1

n′
m(μm − μ)(μm − μ)�, S(w) ≡

c∑

m=1

∑

i:yi=m

(xi − μm)(xi − μm)�,

(10)

where μm ≡ 1
n′

m

∑
i:yi=m xi. The FDA transformation matrix T FDA is defined

as
T FDA ≡ argmax

T∈Rd×r

[
tr
(
T�S(b)T (T�S(w)T )−1

)]
. (11)

That is, FDA seeks a transformation matrix T such that between-class scatter
is maximized and within-class scatter is minimized in the embedding space Rr.
A solution T FDA is given with C = S(b) and C = S(w).

The between-class scatter matrix S(b) has at most rank c−1 [1]. This implies
that FDA allows us to obtain at most c− 1 meaningful features; the remaining
features found by FDA are arbitrary in the null space of S(b). This is an essential
limitation of FDA in dimensionality reduction.

2.5 Local Fisher Discriminant Analysis (LFDA)

Local Fisher discriminant analysis (LFDA) is a supervised dimensionality reduc-
tion method [2] which overcomes vulnerability of original FDA against within-
class multimodality or outliers [1].
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Let S(lb) and S(lw) be the local between-class scatter matrix and the local
within-class scatter matrix defined by

S(lb) ≡
n′
∑

i,j=1

W
(lb)
i,j

2
(xi − xj)(xi − xj)�, S(lw) ≡

n′
∑

i,j=1

W
(lw)
i,j

2
(xi − xj)(xi − xj)�,

(12)

where W (lb) and W (lw) are the n′-dimensional matrices with

W
(lb)
i,j ≡

{
Ai,j(1/n′ − 1/n′

yi
) if yi = yj ,

1/n′ if yi �= yj ,
W

(lw)
i,j ≡

{
Ai,j/n′

yi
if yi = yj ,

0 if yi �= yj .
(13)

The LFDA transformation matrix T LFDA is defined as

T LFDA ≡ argmax
T∈Rd×r

[
tr
(
T�S(lb)T (T�S(lw)T )−1

)]
. (14)

Ai,j(1/n′ − 1/n′
yi

) is negative while Ai,j/n′
yi

and 1/n′ are non-negative. Thus,
LFDA seeks a transformation matrix T such that nearby data pairs in the same
class are made close and the data pairs in different classes are made apart;
far apart data pairs in the same class are not imposed to be close. Samples in
different classes are separated from each other irrespective of their affinity values.
A solution T LFDA is given with C = S(lb) and C = S(lw).

When Ai,j = 1 for all i, j (i.e., no locality), S(lw) and S(lb) are reduced to
S(w) and S(b) [2]. Thus, LFDA could be regarded as a localized variant of FDA.
The between-class scatter matrix S(b) has at most rank c − 1, while its local
counterpart S(lb) usually has full rank (given n′ ≥ d). Therefore, LFDA can be
applied to dimensionality reduction into any dimensional spaces.

3 Semi-Supervised LFDA (SELF)

In this section, we propose a new dimensionality reduction method for semi-
supervised learning scenarios. From here on, we consider the case where, among
all samples {xi}ni=1, only {xi}n

′
i=1 (1 ≤ n′ ≤ n) are labeled and the rest are

unlabeled.

3.1 Basic Idea

When only a small number of labeled samples are available, supervised dimen-
sionality reduction methods tend to find embedding spaces which are overfit-
ted to the labeled samples. In such situations, using unlabeled samples is often
effective—indeed, the book [3] showed through extensive simulations that PCA
works well on the whole; our experimental results in Section 4 also show that
PCA is sometimes better than LFDA. This means that preserving the global
structure of all samples in an unsupervised manner can be better than strongly
relying on class information provided by a small number of labeled samples.
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Fig. 1. Illustrative examples of LFDA and PCA for toy data sets. Circle/triangle sym-
bols denote samples in positive/negative classes and filled/unfilled symbols denote
labeled/unlabeled samples; solid and dashed lines denote 1-dimensional embedding
spaces found by LFDA and PCA, respectively (onto which data samples will be pro-
jected).

Figure 1 depicts 2-dimensional 2-class examples; circle/triangle symbols de-
note samples in positive/negative classes and filled/unfilled symbols denote la-
beled/unlabeled samples; solid and dashed lines denote 1-dimensional embedding
spaces found by LFDA and PCA, respectively (onto which data samples will be
projected). For the data set in Figure 1(a), both LFDA and PCA can find good
embedding spaces which well separate unlabeled samples in different classes from
each other. However, for the data set in Figure 1(b), LFDA finds an embedding
space that is overfitted to the labeled samples. On the other hand, in the case
of Figure 1(c), PCA does not work well due to its unsupervised nature.

The above result implies that LFDA and PCA can compensate for the weak-
ness of each other, i.e., LFDA can utilize label information, while PCA can
avoid overfitting. Our simulation results with benchmark data sets in Section 4
also show that LFDA and PCA work in a complementary manner. Motivated by
these facts, we propose bridging LFDA and PCA so that we can smoothly control
our reliance on the global structure of unlabeled samples and class information
brought by labeled samples. We refer to the proposed method as semi-supervised
LFDA (SELF).

The embedding transformations of LFDA and PCA can be analytically com-
puted based on the eigendecompositions. So we combine the eigenvalue problems
of LFDA and PCA and solve them together. This allows us to maintain the com-
putational efficiency and reliability of LFDA and PCA.

3.2 Definition

More specifically, we propose solving the following generalized eigenvalue prob-
lem:

S(rlb)ϕ = λS(rlw)ϕ, (15)
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where S(rlb) and S(rlw) are regularized local between-class scatter matrix and
regularized local within-class scatter matrix defined by

S(rlb) ≡ (1− β)S(lb) + βS(t), S(rlw) ≡ (1 − β)S(lw) + βId. (16)

β (∈ [0, 1]) is a trade-off parameter—SELF is reduced to LFDA when β = 0, and
SELF is reduced to PCA when β = 1. In general, SELF inherits characteristics
of both LFDA and PCA (this will be discussed in detail in Section 3.3). The
solution of SELF can be computed in the same way as LFDA or PCA.

3.3 Properties

First, we give an interpretation of S(rlb). The matrix S(rlb) can be expressed as

S(rlb) ≡ 1
2

n∑

i,j=1

W
(rlb)
i,j (xi − xj)(xi − xj)�, (17)

where W (rlb) is the n-dimensional matrix with

W
(rlb)
i,j ≡

⎧
⎪⎨

⎪⎩

(1− β)Ai,j(1/n′ − 1/n′
yi

) + β/n if yi = yj ,

(1− β)/n′ + β/n if yi �= yj ,

β/n otherwise.
(18)

The first case in Eq.(18) is negative if β <
Ai,jn(n′−n′

yi
)

Ai,jn(n′−n′
yi

)+n′n′
yi

(< 1). This implies
that SELF tries to make sample pairs in the same class close if β is small, while it
separates them from each other if β is large. Thus the local data structure in the
same class tends to be preserved when β is small, but it is no longer preserved
when β is large. The second case in Eq.(18) is always positive for any β ∈ [0, 1],
implying that SELF always tries to make sample pairs in different classes apart
for any β. This would be natural in semi-supervised learning scenarios. The
third case in Eq.(18) is always non-negative, implying that unlabeled samples
are separated from each other for preserving the global data structure.

Next, we give an interpretation of S(rlw). When β = 0, S(rlw) (= S(lw))
could be ill-conditioned—this is crucial particularly when the dimension d
of the original data space is larger than the number n′ of labeled samples.
In such situations, βId included in S(rlw) works as a regularizer and SELF
can avoid overfitting to the labeled samples. Therefore, SELF is regarded as
a regularized variant of LFDA and would be more stable and reliable than
original LFDA particularly when the number of labeled samples is small. Note
that unlike Eq.(17), S(rlw) does not have a pairwise expression since Id can not
be expressed in a pairwise form.

3.4 Numerical Examples

For illustrating how SELF behaves, let us use the Olivetti face data set1. The
data set consists of 400 gray-scale face images (40 people, 10 images per person);
1 ‘http://www.cs.toronto.edu/~roweis/data.html’
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PCA LPP SELF(β=0.5)

Fig. 2. Embedded face samples (glasses vs. non-glasses). Circle/triangle symbols are
faces with/without glasses and filled/unfilled symbols are labeled/unlabeled samples.

each image consists of 4096 (= 64 × 64) pixels and each pixel takes an integer
value between 0 and 255 as the intensity level. In this simulation, we use the
image samples of only 10 subjects (i.e., totally 100 images) for making the visu-
alization results clear. We note that the result does not change essentially (but
visually denser) when all 400 images are used.

Among 10 people used for the experiments, 3 subjects are with glasses and
other 7 are without glasses (see the top-left pictures of Figure 2). Our task is to
embed the face images into a two-dimensional space so that the subjects with
and without glasses are separated from each other. We treat 1 image per person
as labeled (i.e., totally 3 faces with glasses and 7 faces without glasses) and the
rest are treated as unlabeled. Since each class contains several different subjects,
this data set is thought to possess within-class multimodality.

The embedded results are shown in Figure 2, where circle/triangle symbols
are faces with/without glasses and filled/unfilled symbols are labeled/unlabeled
samples. The figure shows that FDA and LFDA perfectly separate the labeled
samples in different classes from each other. However, unlabeled samples tend
to be mixed due to an overfitting phenomenon. PCA and LPP tend to mix the
labeled samples in different classes due to the unsupervised nature. Consequently,
unlabeled samples in different classes are also mixed. On the other hand, SELF
with β = 0.5 clearly separates the labeled samples in different classes from each
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other, and at the same time, it also nicely separates the unlabeled samples in
different classes from each other. We note that, in this visualization simulation,
the result of SELF is not sensitive to the choice of the trade-off parameter β;
the results are almost unchanged for 0.01 ≤ β ≤ 0.99.

4 Simulations

In this section, we experimentally evaluate the performance of relevant dimen-
sionality reduction methods using standard classification benchmark data sets.

The book [3] conducted systematic experiments for comparing semi-
supervised learning methods. The results showed that each method performs
very well for a particular type of data sets. However, at the same time, it tends
to be poor for other kinds of data sets. Thus, the performance of semi-supervised
learning methods is highly dependent on the type of data sets and there seems
to be no single best method. On the other hand, 1-nearest neighbor classifier
is shown to be stable for various data sets, although it may not be the best
possible method in semi-supervised classification. For avoiding the bias caused
by the choice of the learning methods, we decided to use the 1-nearest neighbor
classifier in our experiments.

The misclassification rate is sometimes monotone increasing as the dimen-
sionality is reduced2. In such cases, if the best dimensionality is chosen, e.g., by
cross-validation, the largest dimension is mostly chosen (i.e., no dimensionality
reduction). Then we may not be able to compare the performance of dimensional-
ity reduction methods in a meaningful way. Prefixing the reduced dimensionality
r to some number is a possible option for avoiding the above problem, but the
evaluation results can significantly depend on the choice of the dimensionality.
Based on this argument, we decided to use the average misclassification rate
over reduced dimensions (or equivalently the area under the classification error
curve) as our error metric, which we believe to be reasonable in the current
experiments.

First, we employ the benchmark data sets taken from the book [3], which consist
of 9 semi-supervised data sets. We refer to them as the SSL data sets. We did not
test the SSL8 and SSL9 data sets since they are too huge. Note that the SSL6 data
set contains 6 classes, while the other data sets have 2 classes. Table 1 describes the
mean and standard deviation of the misclassification rate over repetitions. Since
we had a numerical problem when computing LFDA, we slightly regularized it and
consider SELF with β = 0.001 as LFDA. The fulfillment of the cluster assumption
[3] is described as ‘CA’, which is the correct classification rate by the 1-nearest-
neighbor classifier when both training and test labels are used for classifying all
the training and test samples. Note that CA is computed before dimensionality
reduction is applied, so it represents the fulfillment of the cluster assumption of
the original data samples. The larger the value of CA is, the more reliable the
cluster assumption would be (although the values are coarse).
2 Even so, dimensionality reduction is still useful since a compact representation of

the data can yield faster computation in the test phase.
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Table 1. Misclassification rate for the SSL data sets. The numbers in the bracket
are the standard deviation over repetitions. For each data set, the best method and
comparable ones based on the t-test at the significance level 5% are described in bold
face. ‘CA’ denotes the fulfillment of the cluster assumption. SELF(CV) denotes SELF
with β chosen by cross validation. SELF’ denotes the combination of LFDA and LPP
in a similar manner. The upper and lower halves of the table correspond to the cases
with the number of labeled samples 100 and 10, respectively.

Data CA LFDA
SELF

(β = 0.5)
PCA

SELF
(CV)

LPP
SELF’
(CV)

SSL1 0.98 14.9(1.8) 6.0(1.3) 6.2(1.1) 6.0(1.4) 27.4(1.4) 28.4(2.6)
SSL2 0.97 15.7(0.9) 9.6(1.1) 11.2(0.8) 10.3(2.4) 24.1(2.2) 21.9(1.9)
SSL3 1.00 21.1(3.9) 14.3(1.8) 15.5(1.0) 14.1(1.4) 18.0(2.4) 18.5(2.4)
SSL4 0.58 33.4(3.5) 36.6(2.4) 48.7(2.4) 33.4(3.7) 46.7(1.7) 36.0(4.7)
SSL5 0.64 27.5(2.3) 27.2(2.3) 31.0(1.9) 27.3(2.9) 37.0(1.3) 35.3(1.9)
SSL6 0.98 38.1(1.5) 35.4(2.4) 27.3(2.7) 27.0(2.7) 35.2(1.7) 36.9(3.2)
SSL7 0.68 29.4(2.4) 29.1(2.4) 29.3(1.6) 27.7(1.4) 32.0(0.9) 32.8(1.5)

# Bests 2 5 2 7 0 1

SSL1 0.98 22.9(5.1) 26.3(6.1) 19.2(4.2) 22.3(5.4) 45.9(2.3) 48.5(2.4)
SSL2 0.97 22.3(3.0) 21.3(2.9) 25.8(4.2) 21.5(2.5) 31.2(7.5) 21.4(0.8)
SSL3 1.00 42.7(2.9) 42.9(3.0) 42.7(4.2) 43.6(3.2) 40.4(4.1) 41.0(5.2)
SSL4 0.58 47.3(2.9) 47.7(2.7) 49.9(2.2) 48.3(3.3) 49.5(2.5) 48.5(1.9)
SSL5 0.64 45.4(4.4) 45.4(4.4) 36.3(5.5) 40.2(6.9) 41.2(3.3) 44.5(3.6)
SSL6 0.98 67.7(4.6) 67.0(4.0) 67.7(4.1) 67.6(4.6) 71.4(4.0) 73.7(2.9)
SSL7 0.68 43.6(5.2) 43.6(5.2) 38.9(5.7) 40.1(7.1) 40.3(4.2) 42.7(5.3)

# Bests 5 4 5 6 3 4

Table 2. Misclassification rate for the IDA data sets. The upper and lower halves
of the table correspond to the cases with the number of labeled samples 100 and 30,
respectively.

Data CA LFDA
SELF

(β = 0.5)
PCA

SELF
(CV)

LPP
SELF’
(CV)

banana 0.87 27.0(2.6) 26.6(2.1) 26.4(1.9) 26.5(2.1) 26.4(1.9) 26.5(2.0)
b-cancer 0.68 34.5(4.4) 34.4(4.4) 34.4(4.1) 34.3(4.3) 34.8(4.0) 34.7(4.1)
diabetes 0.70 32.7(2.8) 33.0(2.7) 34.4(2.7) 33.0(2.7) 34.4(2.6) 33.2(2.7)
f-solar 0.63 39.5(5.1) 40.1(5.1) 40.1(5.2) 39.7(5.2) 39.7(5.4) 39.5(5.4)
german 0.69 31.2(2.9) 31.2(3.0) 33.7(2.8) 31.5(2.9) 33.7(2.6) 32.1(3.0)
heart 0.77 22.8(2.9) 22.6(2.8) 24.1(2.7) 23.1(2.8) 23.4(2.9) 23.1(2.8)
image 0.81 17.2(1.3) 18.8(1.3) 19.9(1.5) 17.8(1.7) 18.8(2.1) 16.6(1.3)

ringnorm 0.71 28.1(1.9) 28.9(1.9) 29.1(1.6) 28.1(1.8) 27.1(1.6) 27.6(1.8)
splice 0.71 29.9(3.5) 27.8(3.5) 30.8(2.3) 27.7(3.0) 42.1(1.9) 30.1(4.6)

thyroid 0.96 4.8(2.0) 5.3(2.1) 5.5(2.1) 5.0(1.9) 5.9(2.1) 5.1(2.0)
titanic 0.68 33.2(11.9) 33.2(11.9) 33.2(11.9) 33.2(11.9) 40.0(12.3) 37.4(12.5)

twonorm 0.94 4.8(1.3) 4.5(1.2) 4.1(1.1) 4.3(1.1) 4.0(1.0) 4.5(1.2)
waveform 0.85 15.5(1.4) 14.5(1.5) 14.1(1.4) 14.2(1.7) 13.8(1.4) 14.4(1.9)
# Bests 9 9 6 11 7 9

banana 0.87 31.1(4.0) 30.6(3.5) 30.0(4.1) 29.6(3.4) 30.0(4.1) 30.3(3.6)
b-cancer 0.67 36.1(6.4) 35.4(6.2) 36.1(6.3) 35.6(6.4) 36.1(5.8) 36.0(6.2)
diabetes 0.70 35.0(4.8) 34.7(4.3) 36.0(4.1) 34.9(4.4) 35.9(3.7) 35.1(4.2)
f-solar 0.63 41.5(5.5) 42.6(5.4) 42.7(5.1) 42.0(5.4) 40.6(5.3) 40.4(5.4)
german 0.69 36.6(4.7) 32.8(3.8) 35.6(4.1) 33.9(4.3) 36.0(4.0) 34.5(4.1)
heart 0.76 25.6(5.4) 23.7(4.9) 24.4(4.1) 24.6(4.7) 24.2(4.0) 24.9(4.2)
image 0.81 24.5(3.8) 26.2(3.2) 27.6(3.8) 26.0(3.8) 27.9(4.2) 24.5(3.5)

ringnorm 0.70 35.5(4.2) 34.0(3.7) 33.8(2.8) 33.1(3.2) 31.1(3.3) 32.5(3.8)
splice 0.71 34.0(3.1) 33.1(3.1) 34.6(2.5) 33.2(2.7) 45.2(2.5) 39.9(4.6)

thyroid 0.94 9.9(4.5) 8.3(4.1) 8.4(3.6) 8.7(4.2) 8.2(3.3) 8.9(4.2)
titanic 0.68 33.9(12.1) 34.0(12.2) 34.0(12.1) 33.9(12.1) 40.8(12.3) 37.5(12.9)

twonorm 0.94 15.3(6.5) 6.3(2.0) 4.3(1.3) 6.7(3.9) 4.2(1.3) 6.9(3.8)
waveform 0.85 27.5(4.3) 16.6(3.1) 15.6(2.3) 16.9(3.2) 15.3(2.2) 17.8(3.6)
# Bests 6 9 8 9 8 7
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When the number of labeled samples is 100 (see the upper half of the table),
LFDA and PCA tend to work well in a complementary way—LFDA works well
if CA is small while PCA works well if CA is large. SELF with β = 0.5 tends
to make up the deficit of each method; moreover it can outperform both LFDA
and PCA for some cases. We also test ‘SELF(CV)’, where β in SELF is chosen
from {0, 0.25, 0.5, 0.75, 1} by 10-fold cross validation. The results shown in the
table show that SELF(CV) further improves the performance over SELF with
β = 0.5. LPP does not work so well on the whole. The combination of LFDA
and LPP in a similar way (indicated by SELF’(CV) in the table) also does not
perform as good as SELF(CV). We also tested the combination of LFDA, PCA,
and LPP, but this did not further improve the performance over SELF so we
omit the detail.

When the number of labeled samples is only 10 (see the lower half of Table 1),
the difference of the performance among the methods shrinks but SELF(CV) is
still slightly better than the other methods.

We also conducted similar experiments using the IDA data sets [6], where we
randomly extracted labeled and unlabeled samples from the pool of all samples;
we tested n′ = 100, 30. The results are summarized in Table 2, showing that
SELF(CV) still compares favorably with alternative methods.

Overall, SELFreg is shown to be a useful dimensionality reduction.

5 Conclusions and Future Prospects

Our approach to dimensionality reduction in this paper is called the filter ap-
proach, i.e., the dimensionality reduction procedure is independent of subsequent
classification algorithms. Our experimental results showed that the proposed
method, SELF, works well when it is combined with the 1-nearest-neighbor
classifier. An important future direction is to develop a wrapper method of
semi-supervised dimensionality reduction, which explicitly takes properties of
subsequent classification algorithms into account. We expect that a wrapper ap-
proach is promising in semi-supervised learning since the performance of elab-
orate semi-supervised learning methods is highly dependent on the reliability
of the assumption behind unlabeled samples such as the cluster or manifold
structure [3].

In this paper, we focused on linear dimensionality reduction. However, we can
show that a non-linear variant of SELF is obtained by employing the standard
kernel trick. This kernelized variant also allows us to reduce the dimensionality
of non-vectorial structured data such as strings, trees, and graphs [7]. However,
kernelized SELF shares the common difficulty in kernel methods, i.e., how to
choose the kernel functions. This needs to be investigated in the context of semi-
supervised dimensionality reduction. In the future work, we will also explore
semi-supervised dimensionality reduction of structured data using kernel SELF.

A remaining important issue to be discussed—which is common to all semi-
supervised learning techniques—is how to optimize tuning parameters. We may
simply employ cross-validation for this purpose, but it has two potential prob-
lems. The first problem is that the number of labeled samples is typically small
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in semi-supervised learning scenarios and thus cross-validation is not reliable
[3]. Fortunately, our experiments showed that SELF is not so sensitive to the
trade-off parameter β in small sample cases, but there is still room for further
improvement. The second problem is that labeled samples and unlabeled sam-
ples can have different (input) distributions. Such a situation is referred to as
covariate shift in statistics and ordinary cross-validation is known to be signifi-
cantly biased; importance-weighted cross-validation is unbiased under covariate
shift [8]. In the future work, we will investigate how the covariate shift adaptation
techniques could be employed in the context of semi-supervised dimensionality
reduction.

Finally, it is important to compare the performance of the proposed method
with other related methods, e.g., [9,10].
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Abstract. Finding similar substrings/substructures is a central task in
analyzing huge amounts of string data such as genome sequences, web
documents, log data, etc. In the sense of complexity theory, the existence
of polynomial time algorithms for such problems is usually trivial since
the number of substrings is bounded by the square of their lengths. How-
ever, straightforward algorithms do not work for practical huge databases
because of their computation time of high degree order. This paper ad-
dresses the problems of finding pairs of strings with small Hamming
distances from huge databases composed of short strings. By solving the
problem for all the substrings of fixed length, we can efficiently find candi-
dates of similar non-short substrings. We focus on the practical efficiency
of algorithms, and propose an algorithm running in almost linear time of
the database size. We prove that the computation time of its variant is
bounded by linear of the database size when the length of short strings
to be found is constant. Slight modifications of the algorithm adapt to
the edit distance and mismatch tolerance computation. Computational
experiments for genome sequences show the efficiency of the algorithm.
An implementation is available at the author’s homepage1

1 Introduction

These days we have many huge string data such as genome sequences, web doc-
uments, log data, etc. Since the size of data is so huge that human cannot grasp
them intuitively, they must be computationally analyzed. Finding similar sub-
strings or similar substructures is an important way of analyzing the data. The
similarity and distribution of substrings makes it possible to grasp the global or
local structures. The number of substrings in a string is at most the square of
the string length. Thus, if the distance between two substrings can be computed
in polynomial time, similar substrings can be found in polynomial time by com-
paring all substrings one by one. However, polynomial time algorithms of high
degree do not work for huge data, therefore practical fast algorithms are needed.

In the area of algorithms and computation, the problem of finding similar
strings has been widely studied. The problem is usually formulated that for two
given strings Q and S, find all substrings of S similar to Q. This formulation can
1 http://research.nii.ac.jp/˜uno/index.html

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 345–356, 2008.
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be considered as a generalization of string matching problems. When Hamming
distance is chosen as a similarity measure, a straightforward algorithm solves the
problem in O(|S||Q|) time, thus a research goal is to reduce this time complexity.
Here the length of S and Q is denoted by |S| and |Q|.

For the problem of finding substrings of S with the shortest Hamming distance
to Q, Abrahamson[1] proposed an algorithm running in O(|S|(|Q| log |Q|)1/2)
time. If the maximum Hamming distance is k, the computation time can be
reduced to O(|S|(k log k)1/2)[4]. Some approximation approaches have been also
developed. The Hamming distance of two strings of length l within (1−ε) and (1+
ε) approximation ratio with probability δ can be computed in O(log l log(1/δ)/ε)
time [6]. For edit distance, which allows insertions and deletions, algorithms pro-
posed by Muthukrishnan and Sahinalp[8,9] approximate the minimum distance
substring. Using these algorithms, the problem can be solved in shorter time but
may fail with some solutions. These algorithms take more than O(|S|2) time to
find similar substrings even for fixed length strings, Thus direct application of
these algorithms does not work in practice.

On the other hand, there are several studies for efficient data structures to
find similar substrings. The problem is formulated such that, for a given string
S, construct a data structure of not a large size such that for any query string
Q, substrings of S similar to Q can be found in short time. For the problem
of finding substring of S equal to Q, there are many efficient data structures
such as suffix array which make it possible to find all such substrings in almost
O(|Q|) time. However, allowing the errors makes the problem difficult. Existing
algorithms basically need θ(|S|) time in the worst case. This difficulty can be
observed in many other similarity search problems, such as inner product of
vectors, points in Euclidean space, texts and documents. Motivated by practical
use, there have been many studies on approximation and heuristic approaches.

Yamada and Morishita [12] proposed an algorithm for computing a lower
bound of the shortest Hamming distance from Q to a substring in S. The al-
gorithm constructs a data structure in O(|S| log |S|) time, then answers a lower
bound in O(|Q|L) time for any Q, where L is a constant no greater than |Q|.
They also proposed an efficient exact algorithm for strings with small alphabet
such as genome sequences [13].

In bioinformatics area, the problem of finding substrings of two strings which
are similar to each other is called homology search, and has been widely studied.
Because of the huge size of genome sequences, developing exact algorithms run-
ning in short time is difficult thus many heuristic algorithms have been proposed.
BLAST and FASTA[2,3,10] are widely used among these algorithms. The idea of
BLAST is to find short substrings of S and Q that are equal and check whether
there are similar substrings including them. This idea is based on the observa-
tion that two similar substrings may have common short substrings. Actually, if
the Hamming distance between two strings is no more than 9% of their length,
they always have common string of 10 letters. The disadvantage of this method
is that when the strings are long, huge number of substrings are the same, thus
a lot of comparisons must be made. Such frequently appearing strings can be



An Efficient Algorithm for Finding Similar Short Substrings 347

considered as a kind of noise in practice, thus heuristic methods ignore these
strings in the interest of practical efficiency. Another method of solving the
problem is to partition Q and S into many blocks[11]. Some statistics of the
blocks are computed, for example the number of each letter in the blocks, which
for pruning blocks will never be similar. Then a dynamic programming connects
the blocks and produces candidates of long similar substrings. The idea is that
long similar substrings are expected to be not so many.

In this paper, we focus on Hamming distance. For given a set S of strings of the
same length l, our problem is to enumerate all pairs of similar strings in S. We
consider the case in which the length l is small, and propose a practically efficient
algorithm. The idea of the algorithm is to classify the strings in several ways so
that any two similar strings are in the same group for at least one classification.
Only strings in the same group have to be compared, which reduces the cost of
the comparison. Each string is partitioned into k blocks, then any two strings
with Hamming distance at most d share at least k − d blocks. Thus they are
in the same group at least one classification based on combinations of k − d of
these blocks. By setting k to l, the Hamming distance of any two strings in the
same group is at most d. Using this fact, the time complexity is bounded by
O((

∑d
i=0 lCi)× (|S|+ dN)) = O(2l(|S|+ dN)), where N is the number of pairs

to be output. Computational experiments show its practical efficiency.
Using the algorithm makes it possible to approach the problem of finding

similar non-short substrings. We can observe that two non-short similar strings
may have several short substrings with short Hamming distance. Thus, pairs of
substrings including several such strings are candidates for similar substrings.
This approach has a certain accuracy. For example, any two strings of 3,000
letters with Hamming distance of at most 290 includes at least three substrings
of 30 letters with Hamming distance of at most two. Similar observation can be
made for edit distance. We propose an algorithm for finding representative pairs
of non-short substrings including certain similar short substrings. We compared
the human genome and mouse genome by our algorithm. The computation is
done in quite short time and we could see the homology structure figured out
by the comparison.

2 Preliminary

Let Σ be an alphabet of letters, and a string be a sequence of letters. The length
of a string S is the number of letters in S and is denoted by |S|. A sequence
composed of no letter is also a string and is called an empty string. The length
of an empty string is 0. The ith letter of a string S is written S[i], and i is called
the position of S[i]. The substring of S starting from the ith letter and ending at
the jth letter is denoted by S[i, j]. For example, when string S is ABCDEFG,
S[3] = C, and S[4, 6] = DEF . When j < i, we define S[i, j] by the empty string.
For two strings S1 and S2, the concatenation of S2 to S1 is a string S given
by concatenating S2 to S1, i.e., |S| = |S1| + |S2|, S[i] = S1[i] if i ≤ |S1|, and
S2[i− |S1|] otherwise. The concatenation of S2 to S1 is denoted by S1 · S2.
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For two strings S1 and S2 of the same length, the Hamming distance of S1

and S2 is defined by the number of positions i satisfying that S1[i] �= S2[i]. The
Hamming distance is denoted by HamDist(S1, S2). Such letters are called the
mismatch of S1 and S2, and the positions of mismatches are called mismatch
positions of S1 and S2. For string S and integers i and k, i ≤ k, we denote the
substring of S starting from (�|S|(i − 1)/k�+ 1)th letter to (�|S|i/k�)th letter,
i.e., S[�|S|(i− 1)/k�+ 1, �|S|i/k�], by B(S, k, i). B(S, k, i) is called the ith block.

For a string S, the deletion of the position i is a string given by S[1, i− 1] ·
S[i + 1, |S|]. The insertion of letter a to S at position i is a string given by
S[1, i−1] ·A ·S[i, |S|] where A is the string composed of one letter a. The change
of position i of S to a is a string given by S[1, i−1]·A·S[i+1, |S|]. For two strings
S1 and S2, the edit distance of S1 and S2 is the smallest number of combinations
of insertion, deletion and change needed to transform S1 to S2.

The problem we address in this paper is formulated as follows. Let S be a
multi set of strings of the same length. S is allowed to include more than one
same string, and every string has an ID to be distinguished from the others. The
problem is formulated as follows.

Short Hamming Distance String Pair Enumeration Problem
Input: A multi set S of strings of fixed length l, threshold value d
Output: All pairs of strings S1 and S2 such that HamDist(S1, S2) ≤ d.

Hereafter we fix the input set S of strings of length l and a threshold value d.

3 Multi-classification Algorithm

The basic idea of the algorithm is to classify the strings in several ways so
that any two similar strings are in the same group at least once. Let C(k, j)
be the set of j distinct integers taken from 1, . . . , k. For example, C(4, 2) =
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. For a string S and a set C = {i1, ...,
ik−d}, ij < ij+1 taken from C(k, k − d), we define Sig(S, C) = B(S, k, i1) ·
B(S, k, i2) · . . . ·B(S, k, ik−d). We suppose that an integer k, d < k ≤ l is chosen,
and have a look at the following property.

Lemma 1. If HamDist(S1, S2) ≤ d, at least one C ∈ C(k, k − d) satisfies
Sig(S1, C) = Sig(S2, C).

Proof. The statement is obvious from the pigeonhole principle. Suppose that
HamDist(S1, S2) ≤ d. Observe that if B(S1, k, j) �= B(S2, k, j) holds, it includes
at least one mismatch, i.e., S1[i] �= S2[i] holds for some i, �|S|(i−1)/k�+1 ≤ i ≤
�|S|i/k�. Since S1 and S2 have at most d mismatches, at most d integers j satisfy
B(S1, k, j) �= B(S2, k, j), thereby at least k − d integers h satisfy B(S1, k, h) =
B(S2, k, h). Setting C to the set of those integers h satisfying B(S1, k, h) =
B(S2, k, h) shows that Sig(S1, C) = Sig(S2, C). ��

.



An Efficient Algorithm for Finding Similar Short Substrings 349

AB CC EF
AB CD AA
AB CD EA
AB CD EF
CC AB FF
CD AB EF
FF CC EF
FF CD EA
FF CD EA

AB CD EF
CD AB EF
AB CC EF
FF CC EF
AB CD AA 
FF CD EA
CC AB FF
AB CD EA
FF CD EF

AB CD AA
AB CD EA
AB CC EF
AB CD EF
CC AB FF
CD AB EF
FF CC EF
FF CD EA
FF CD EA

CC AB FF
CD AB EF
AB CC EF
FF CC EF
AB CD AA
AB CD EA
FF CD EA
FF CD EA
AB CD EF

ABCDAA & ABCDEA

ABCDEA & ABCDEF

FFCDEA & FFCDEA

ABCCEF & ABCDEF

FFCDEA & FFCDEA

FFCDEA & FFCDEA

Fig. 1. Example of multi-classification for finding strings with Hamming distance of at
most one, by dividing strings in three blocks and classifying them by two blocks

This lemma motivates us to restrict the comparison to those pairs of strings
satisfying the condition of the lemma. To efficiently find these pairs, we focus on
the combinations of integers. For each C ∈ C(k, k− d), we classify the strings S
in S according to Sig(S, C) so that two strings S1 and S2 satisfy Sig(S1, C) =
Sig(S2, C) if and only if they are in the same group. In Fig. 1, we show an
example of this method, which we call the multi-classification method. In the
example, there are nine strings and set d = 1 and k = 3. Each block is composed
of two letters, and classifications by two blocks are done three times. For each
classification there are several groups represented by rectangles with more than
one strings, and some of them contain strings with Hamming distance of at most
one, written at the head of the arrows.

ALGORITHM. MultiClassification Basic (S:set of strings of length l, d)
1. choose k from d + 1, . . . , l
2. for each C ∈ C(k, k − d) do
3. classify all strings S ∈ S by Sig(S, C)
4. for each group K of the classification

output all pairs S1 and S2 in K satisfying HamDist(S1, S2) ≤ d
6. end for

The classification for C is done by sorting Sig(S, C) in O(l(k − d)/k × |S|)
time by a radix sort. We compute the probability that two randomly chosen
letters from strings of S are the same, and choose k such that the expected size
of each group in a classification is less than 1. Then the comparisons for a group
is not so many, and the bulk of the computation time is for radix sort. Since
l(k − d)/k is expected to be relatively small when l is small, it can be expected
that the practical performance of the algorithm will be high.
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3.1 Reducing the Cost for Radix Sort

Here we present a way to reduce the total computation time for radix sort by
unifying the sort of the prefix of Sig. Suppose that we repeatedly and recursively
add integers one by one to construct C ∈ C(k, k− d) like a backtrack algorithm.
Then, after choosing i in some iteration of the backtracking, B(S, k, i) is common
to all C generated in the recursive call, i.e., until i is removed. Thus, the radix
sort for B(S, k, i) can be done at the iteration and the result can be used in the
recursive calls. As a result, the computation time for each radix sort is reduced
to O(l/k × |S|). We describe the algorithm in the next subsection.

3.2 Avoiding Duplication without Memory

The multi-classification described above may output duplicates, i.e., output one
pair of strings many times. For example, in Fig. 1, the pair FFCDEA and
FFCDEA is output three times. A way to avoid such duplication is to store
all the pairs found in memory and check the duplication when a new pair is
found. Although this is simple, it requires a lot of memory. Here, we present a
method that does not store found pairs and thus requires no extra memory.

A pair of strings S1 and S2 is output more than once if B(S1, k, i) = B(S2, k, i)
holds more than k− d integers i. Then, Sig(S1, C) = Sig(S2, C) holds for many
C’s. For given S1 and S2, let C∗(S1, S2) be the lexicographically minimum one
among {C′|C′ ∈ C(k, k − d), Sig(S1, C

′) = Sig(S2, C
′)}. Our idea is to output

an S1 and S2 pair only when the current operating C is equal to C∗(S1, S2).
Since, C∗(S1, S2) is the collection of the k−d smallest i’s satisfying B(S1, k, i) =
Sig(S2, k, i), the computation is not a heavy task. The algorithm is the following
which requires an initial call with S, d and k, and set C = ∅.

ALGORITHM. MultiClassification (S:set of strings of length l, d, k, C)
1. if |C| = k − d then output all pairs S1 and S2 in K

satisfying HamDist(S1, S2) ≤ d and C = C∗(S1, S2) ; return
2. for each i larger than the maximum integer in C do
3. do a radix sort to classify all strings S ∈ S according to B(S, k, i)
4. for each group K of the classification with |K| > 1

call MultiClassification (K, d, k, C ∪ {i})
5. end for

Theorem 1. The computation time of algorithm MultiClassification except for
step 1 is bounded by O(l/k × |S| ×l Cd).

3.3 A Fixed Parameter Tractable Algorithm

The time complexity of the algorithm presented in the previous subsection is
still O(|S|2) since the bottle neck of the computation is actually step 1. For
example, if all strings in S are the same, HamDist(S1, S2) must be computed
lCd times for every S1 and S2 pair in S, thereby the total computation time is
O(l|S|(|S| +l Cd)). Here we will save the computation time in step 1.
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Let k = l. Then, for each i, B(S, k, i) is composed of one letter, thus
Sig(S1, C) = Sig(S2, C) immediately means HamDist(S1, S2) ≤ d. This im-
plies that the Hamming distance does not have to be computed for any pair
in each group. Another task in step 1 is avoiding duplications. We do this in
another way.

Duplicate outputs occur when HamDist(S1, S2) is strictly smaller than d.
If HamDist(S1, S2) = d, exactly one C ∈ C(k, k − d) satisfies Sig(S1, C) =
Sig(S2, C). This implies that without any check, we can output pairs with Ham-
ming distance equal to d without duplications. Thus, we change d′ from 0 to
d and output only pairs with Hamming distance equal to d′, we need no check
for duplications. We call this algorithm the complete version. For the complete
version of our algorithm, we obtain the following theorem. Note that the com-
putation of HamDist(S1, S2) is done in O(d) time if Sig(S1, C) = Sig(S2, C).

Theorem 2. The short Hamming distance string pair enumeration problem for
set S of strings of length l and distance threshold d can be solved in O((

∑d
i=0 lCi)

× (|S| + dN)) = O(2l(|S| + dN)) time where N is the number of output string
pairs.

4 Approach to Long Substrings

In this section, we consider the problem of finding all pairs of substrings of a
given string S that are similar to each other in some sense. In the sense of time
complexity, the existence of polynomial time algorithms for this kind of problem
is trivial since we have to compare only a polynomial number of pairs. However,
in a practical sense, this problem is difficult since even if if we restrict the pars
to be strings of the same length, O(|S|3) pairs of substrings must be compared.
For huge strings the computation time must be quasi linear time, thus O(|S|3)
time is far from practical efficiency.

Here we approach this problem with our algorithm. For a string S, distance
threshold value d and length l, a pair of positions (p, q), p �= q is an l-d seed if
HamDist(S[p, p + l − 1], S[q, q + l − 1]) ≤ d. We can find all l-d seeds by giv-
ing all the substrings of S of length l to our multi-classification algorithm. One
typical approach to capturing the similarity structures by using such seeds is
as follows. We partition S into non-short blocks, for example, partition a string
of 1,000,000 letters into 1,000 strings of 1,000 letters. We define the similarity
measure of blocks S[k1, h1] and S[k2, h2] by the number of l-d seeds (p, q) satis-
fying k1 ≤ p ≤ h1 and k2 ≤ q ≤ h2. We can visualize the similarity structure of
this measure by a figure such that the intensity of the color of the pixel (x, y) is
given by the number of l-d seeds in xth block and yth block. The left of Figure 2
shows an example of pictures obtained by this method. If the blocks are large,
any two blocks have a sufficiently large number of seeds, thus all pixels will be
the same color. For large scale data, we need more precise method of deleting
such noise.
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Fig. 2. Matrix showing similarity of mouse 11 chromosomes (X-axis) and Human 17
chromosome (Y-axis), with black cells on similar parts; we can see similar substructures
as diagonal lines, but the figure is noisy because of the low resolution

A pair of positions (p, q), p �= q is a normal l-d seed if (p, q) is an l-d seed
and p is a multiple of l. The normal l-d seeds can also be enumerated by our
algorithm with shorter time than the usual l-d seeds. For a width threshold w
and count threshold c, we say the pair of substrings S[k1, h1] and S[k2, h2] is a
normal (w, c, l, d) candidate if there are distinct c normal l-d seeds (p, q) satis-
fying k1 ≤ p ≤ h1, k2 ≤ q ≤ h2 and |p − q| ≤ w. A pair of similar substrings
can be considered to be a normal (w, c, l, d) candidate for non-trivial w, c, l, and
d. Especially if the Hamming distance of two substrings is short, they must be
a normal (w, c, l, d) candidate for a certain (w, c, l, d). For example, if the Ham-
ming distance of two substrings of length 3000 is at most 290, they have to be
a normal (0, 3, 30, 2) candidate. If the edit distance of two substrings of length
3000 is at most 190 and has at most 50 of insertions and deletions, then they
have to be a normal (50, 3, 30, 2) candidate. Thus, we are motivated to enumer-
ate all normal (w, c, l, d) candidates. However, for a set of c normal l-d seeds,
there would be many normal (w, c, l, d) candidates including these seeds. Thus,
the number of enumerated candidates can be large. Recall that the aim here is to
find candidates of similar substrings, or to capture the similarity structures. Not
many similar candidates are needed to represent one similar structure. Thus,
here we propose a simple algorithm to output a set of pairs of substrings such
that any normal (w, c, l, d) candidate is obtained by a slight modification of one
of the pair.

For an integer z, we consider a slit of width 2w. An l-d seed (p, q) is included
in the slit of z if z ≤ p − q ≤ z + 2w. For each multiple z of w, we find all
integers i such that there are at least c l-d seeds (p, q) included in the slit of z
such that i ≤ p + q < i + a where a is a given length, and one of them satisfies
i = p + q. For such integers i, the pair of substrings S[(i + z + w)/2, (i + z +
w)/2 + a] and S[(i − z − w)/2, (i − z − w)/2 + a] is a desired pair. We output
all such pairs. This requires sorting of all l-d seeds, but remaining process is
very light and simple. We display a figure made by this approach in the right of
Figure 2.
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5 Applications and Extensions

In the practical applications there are many variants of similar string finding
problems. In the following subsections we present several problems to which we
can apply our multi classification algorithm.

5.1 Computing Mismatch Tolerance

In real world applications, we often need to find several unique short strings
which are similar to no other strings. Such unique strings can be used as charac-
terizations, invariants of string databases, or markers of substructures. A typical
application is in microarray. A microarray is a tool for biological experiments that
can detect the existence of short strings, say 25 letters, in the genome sequence
of a species or organizations. If a unique short substring in a gene sequence is
known, the existence of the substring indicates the existence of the gene. To
allow for experimental error, the substring has to have no similar substring.

When the Hamming distance is used, one of the uniqueness measure is called
mismatch tolerance. The mismatch tolerance is the shortest Hamming distance
to the other string. More precisely, for a set S of strings of the same length
l, the mismatch tolerance of string S, denoted by mis(S,S) is defined by
min{HamDist(S, S′) | S′ ∈ S \ {S}}. If mis(S,S) is large, S has no similar
string in S in the sense of Hamming distance, thus our aim is to find the strings
having not so small mismatch tolerance. Here we define our problem.

All Mismatch Tolerance Computing Problem
Input: for a set S of strings of the same length l, distance threshold d
Output: all S ∈ S such that mis(S,S) ≤ d

This problem can be solved by solving the short Hamming distance string
pair enumeration problem. Actually, we do not have to output pairs, thus we do
not check the duplications. Moreover, in the complete version of our algorithm,
we have to execute the algorithm only for d′ = d, and omit the computation of
Hamming distance. Thus we obtain the following theorem.

Theorem 3. The all mismatch tolerance computing problem for set S of strings
of length l and distance threshold d can be solved in O(lCd|S|) = O(2l|S|) time.

5.2 General Edit Distance

In many studies and real world applications, the distance between two strings,
genomes, and documents is evaluated by edit distance. The multi classification
algorithm proposed above fails for edit distance since the position of the block
shifts by the preceding insertions and deletions. For example, the edit distance
between S1 =ABCDEFGH and S2 =ACDEFGHI is 2, obtained by deleting the
second letter of S1 and the eighth letter of S2. By setting k = 4, the strings
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are partitioned into substrings of two letters. Although there are only two posi-
tions edited, no substrings in the partitions of S1 and S2 are the same, since the
substrings in the middle are shifted by the deletion of the second letter.

For adapting to edit distance, we consider Ĉ(k, d) instead of C(k, k−d) where
Ĉ(k, d) is the set of k − d signed or unsigned integers taken from 1 to d, i.e.,
Ĉ(k, d) = {C | |C| = d, C ⊆ {1, 1+, 1−, 2, 2+, 2−, . . . , k, k+, k−}}. i+, i− and i
means an insertion, a deletion and a change at the ith block. For C ∈ Ĉ(k, d),
let sft(C, i) = |{j+ | j < i, j+ ∈ C}| − |{j− | j < i, j− ∈ C}|, and Eq(C) =
{i | i, i+, i− �∈ C}. We denote S[�|S|(i− 1)/k�+ 1 + j, �|S|i/k�+ j] by B̂(S, i, j).
Then, for string S and C ∈ Ĉ(k, d), we define Ŝig(S, C) by B̂(S, i1, sft(C, i1)) ·
B̂(S, i2, sft(C, i2))·. . .·B̂(S, ik−d, sft(C, ik−d)) where Eq(C) = {i1, . . . , ik−d}, ij <
ij+1. By using the terminology, we obtain the following lemma.

Lemma 2. If the edit distance between strings S1 and S2 is no more than d, at
least one C ∈ Ĉ(k, d) satisfies Sig(S1, Eq(C)) = Ŝig(S2, C).

The proof is omited by the page limit. Based on the lemma, we are motivated to
classify all strings by Sig(S, Eq(C)) and Ŝig(S, C) for all C ∈ Ĉ(k, d) to obtain
all the pairs of strings satisfying the condition of the lemma. By checking the
edit distance for all pairs in each group classified, we can find all pairs of strings
with edit distance at most d.

Theorem 4. The computation time of algorithm MultiClassification modified to
edit distance is bounded by O(3dl/k × |S| ×l Cd), except for that for step 1.

Theorem 5. For set S of strings of length l and distance threshold d, we can find
all pairs of strings with edit distance at most d in O(3d(

∑d
i=0 lCi)×(|S|+l2N)) =

O(2l3d(|S|+ l2N)) time where N is the number of string pairs to be output.

6 Computational Experiments

This section shows the results of computational experiments of the basic version
of our algorithm. The code was written in C, and compiled with gcc. We used
a note PC with a Pentium M 1.2GHz processor with 768 MB of memory, with
cygwin which is a Linux emulator on Windows. The implementation is available
at the author’s homepage; http://research.nii.ac.jp/˜uno/index.html.

The instance is the set of substrings of fixed length taken from the Y chro-
mosome of Homo sapiens. The length is set to 20, 50 and 300. Figure 3 shows
the results. Each line corresponds to one threshold value d. The X-axis is the
number of input substrings, and Y -axis is the computation time. Both axes use
log scales. We can see that the computation time increases slightly higher than
linear, but smaller than the square. Figure 4 shows the number of executed radix
sorts. The number increases drastically if the number of mismatches increases,
but does not increase much as the increase of input size.

We also show the increase in computation time against the increase of l with
fixed d/l. The instance is fixed to that with 2.1 million strings, and the result
is shown in the right-lower figure of Figure 3. From these results, at least for
genome sequences our algorithm is quite scalable for the increase of input string.
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Fig. 3. Increase in computation time against the increase in database size with fixed l
and d: the right-lower figure is for fixed d/l inputting a string of 2.1 million letters

Fig. 4. Number of radix sorts performed

7 Conclusion

We proposed an efficient algorithm for enumerating all pairs of strings with Ham-
ming distance at most given d from string set S. We focused on the practical
efficiency of algorithms, and proposed an algorithm based on multiple classifi-
cations according to combinations of blocks of each string. We proved that the
computation time of its variant is bounded by linear of the string length when
the length of strings in the string set is constant. A simple modification of the
algorithm adapts the edit distance, and computation of mismatch tolerance.

We also proposed a method of finding similar non-short substrings from huge
strings. We modeled similar non-short strings by two non-short strings including
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several short similar substrings. We presented an efficient algorithm for finding
those strings from huge strings. By the computational experiments for genome
sequences, we demonstrated the practical efficiency of the algorithm. On the
comparison of genome sequences, we could find similar long substrings from
human and mouse genomes in a practically short time.
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Abstract. Mining frequently appearing patterns in a database is a basic
problem in recent informatics, especially in data mining. Particularly,
when the input database is a collection of subsets of an itemset, called
transaction, the problem is called the frequent itemset mining problem,
and it has been extensively studied. The items in a frequent itemset
appear in many records simultaneously, thus they can be considered to
be a cluster with respect to these records. However, in this sense, the
condition that every item appears in each record is quite strong. We
should allow for several missing items in these records. In this paper,
we approach this problem from the algorithm theory, and consider the
model that can be solved efficiently and possibly valuable in practice.
We introduce ambiguous frequent itemsets which allow missing items in
their occurrence records. More precisely, for given thresholds θ and σ, an
ambiguous frequent itemset P has a transaction set T , |T | ≥ σ, such that
on average, transactions in T include ratio θ of items of P . We formulate
the problem of enumerating ambiguous frequent itemsets, and propose
an efficient polynomial delay polynomial space algorithm. The practical
performance is evaluated by computational experiments. Our algorithm
can be naturally extended to the weighted version of the problem. The
weighted version is a natural extension of the ordinary frequent itemset to
weighted transaction databases, and is equivalent to finding submatrices
with large average weights in their cells. An implementation is available
at the author’s homepage1.

1 Introduction

The frequent pattern mining problem is to find patterns frequently appearing in a
given database. It is one of the central tasks in data mining, and has been a focus
of recent informatics studies. Particularly, when the database D is a collection
of transactions2 where a transaction is a subset of an itemset I = {1, . . . n}, and
1 http://research.nii.ac.jp/˜uno/index.html
2 In the literature, a transaction is often defined by a pair of an item subset and its

ID. However, we omit the ID since it has no effect on the arguments in this paper.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 357–368, 2008.
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the patterns to be found are also subsets of itemsets, the problem is called the
frequent itemset mining problem[1,4,11,12].

Precisely, a transaction of D including P is called an occurrence of P , and
the set of occurrences of P is denoted by Occ(P ). we define the frequency of an
itemset by |Occ(P )|, and say an itemset is a frequent itemset if its frequency is
no less than the given threshold value σ, called minimum support. The frequency
is often called support, and σ is called the minimum support.

Frequent pattern mining is often used for data analysis. For data so huge that
humans can not get any intuition from an overview of it, the frequent pattern
mining is a useful way to capture the features of the data’s features, both in a
global sense and in a local sense. However, we often encounter difficulties in trying
to use the frequent pattern mining on real-world data. One difficulty is that data
is often incorrect or has missing parts. Such errors mean that some records that
should include a pattern P do not include it, thus P may be overlooked because
its frequency appears to be too low. A way to deal with this difficulty is to
consider an ambiguous inclusion relation whereby we consider that a transaction
T includes a pattern P if most items of P are included in T .

There are several studies on the frequent pattern mining with ambiguous
inclusions. In some contexts, these patterns are called fault-tolerant frequent
itemsets[5,7,8,9,16]. In some of these studies[16], ambiguous inclusion is defined
such that an itemset P is included in a transaction T if |P ∩ T |/|P | ≥ θ. Given
this definition, the family of frequent itemsets is not always anti-monotone, thus
the usual apriori based algorithms are not output sensitive in the sense of time
complexity. On the other hand, the authors introduced an inclusion allowing
a constant number of missing items, i.e., |P \ T | ≤ θ. This does not violate
the monotonicity, thereby admits both apriori and backtrack with many related
techniques developed for frequent itemset mining. However, it has a disadvantage
that a transaction can miss only few items of large itemsets whereas almost all
small itemsets will be frequent.

In some studies[5,7,8,9], they considered that it is a fault if an item of the
itemset is not included in a transaction, and treat mining pairs of an itemset
and a transaction set such that there are few faults between their elements. Their
algorithms find pairs with few faults, but they are not always minimum solutions.

In this paper, we address the problem from the algorithmic point of view, and
model the problem in a different way. In the other words, the goal of this paper
is to investigate the most simple and useful model of ambiguous frequency which
allows fast computation. In the existing practice-based approach, the designed
model often allows no fast algorithm. Heuristic approaches lose the complete-
ness and exactness of the algorithm. For developing fast algorithms, we consider
another model for ambiguous frequency.

For an itemset P and a transaction T , the inclusion ratio is the ratio of items
of P included in T , i.e., |T ∩ P |/|P |. For an itemset P and a transaction set
T , the average inclusion ratio of T for P is defined by the average of the inclu-
sion ratio of transactions in T , i.e., (

∑
T∈T |T ∩ P |)/(|T ||P |). By representing

the inclusion between transactions and items by matrix, the average inclusion
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A: 1,2,4

B: 1,2

C: 1,3

D: 2,3

transaction database D

Inclusion ratio of A for itemset {1,3,4,5} = 1/2

inclusion ratio of B for itemset {1} = 1

average inclusion ratio of {A,B,C} for itemset {1} = 1

for density threshold = 0.65, 

AmbiOcc({1,3}) = {A,B,C}

for density threshold = 0.65,

a maximum co-occurrence set of {1,2,3} = {A,B,C,D}

Fig. 1. Examples of average inclusion ratio and maximum occurrence sets

ratio corresponds to the density of the submatrix induced by the items and
transactions. When the average inclusion ratio is high, the items co-occur in the
transactions, or the transactions co-occur in the items. For a density threshold
θ, a transaction set of the largest size having average inclusion ratio no less than
θ is called the maximum co-occurrence set for P . Note that any maximum co-
occurrence set can be obtained by choosing transactions in decreasing order of
their inclusion ratio. The size of the maximum co-occurrence set is called the
maximum co-occurrence size of P , and is denoted by cov(P ). We denote the
lexicographical minimum maximum co-occurrence set by AmbiOcc(P ). Some
examples are shown in Figure 1.

For the minimum support threshold σ, an itemset is called an ambiguous fre-
quent itemset if its maximum co-occurrence size is no less than σ. The problem
in this paper is formulated as follows.

Ambiguous Frequent Itemset Enumeration Problem
Input: transaction database D, minimum support σ, density threshold θ
Output: all ambiguous frequent itemsets in D

We propose a polynomial delay polynomial space algorithm, and show the
practical performance by computational experiments. Note that an algorithm is
polynomial delay if the computation time between any two consecutive solutions
is polynomial in the input size.

If we represent the inclusion relation by a bipartite graph, an ambiguous fre-
quent itemset and its corresponding transaction set corresponds to a vertex set
inducing a dense bipartite subgraph, which is a quasi bipartite clique. Enumer-
ating dense subgraphs whose edge density is no less than a threshold value can
be done in polynomial delay polynomial space[14]. However, since an ambiguous
frequent itemset has a lower bound for transaction sets, and identifies the same
itemsets with different transaction sets, a direct application of the algorithm to
our problem is not polynomial delay.

The existence of a polynomial delay algorithm for the enumeration problem
of ambiguous frequent itemset is not trivial, since as we will show, simple al-
gorithms involve an NP-complete problem in each iteration. The framework of
the algorithm in this paper is motivated from the enumeration algorithm for
pseudo cliques[14]. We introduce an adjacency relation with respect to a re-
moval of an item between ambiguous frequent itemsets, and implicitly construct
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a tree-shaped traversal route on the relation. Our algorithm searches traverses
the tree in a depth-first search manner, so that the computation time is polyno-
mial delay. To best of our knowledge, this is the first result of even an output
polynomial time algorithm for this problem. The ambiguous frequency and our
algorithm can be naturally extended to a weighted version, in a straightforward
manner.

2 Polynomial Delay Algorithm

The frequent itemset enumeration problem is, from the viewpoint of complex-
ity theory, an easy problem. The reason is that the frequency has a mono-
tone property, thus obviously any frequent itemset can be obtained by itera-
tively adding items to the emptyset by passing through only frequent itemsets.
The repeated addition admits any ordering of items, hence we can efficiently
avoid the duplications by adding items only in increasing order of their indices.
Thus, we can construct a backtrack algorithm of a polynomial delay polynomial
space. Precisely, the computation time for each frequent itemset is linear in the
size of the database, i.e., O(||D||), where ||D|| is the size of database D, i.e.,
||D|| = |D|+

∑
T∈D |T |. The space complexity is optimal, that is, O(||D||).

However, the family of ambiguous frequent itemsets does not have this mono-
tone property. For the database D in Figure 1, θ = 65% and σ = 4, we can
see that cov({1, 2, 3}) = 4, as obtained by transaction set {A, B, C, D}, thereby
{1, 2, 3} is an ambiguous frequent itemset. However, the maximum co-occurrence
size of its subset {1, 3} is 3, obtained by transaction set {A, B, C}, thereby {1, 3}
is not an ambiguous frequent itemset. Since the monotonicity is not held, a
straightforward backtrack algorithm is not applicable to the enumeration.

We approach the problem in another way. For itemset P �= ∅, we define e∗(P )
by the item e ∈ P that minimizes |AmbiOcc(P )∩Occ({e})|. Ties are broken by
choosing the minimum index one. Using e∗, we introduce an adjacency relation
among ambiguous frequent itemsets, and construct an implicit traversal route.

Lemma 1. For any itemset P �= ∅, there exists an item e ∈ P satisfying cov(P \
{e}) ≥ cov(P ).

Proof. First we observe that the average inclusion ratio of AmbiOcc(P ) for P
is given by the average of |AmbiOcc(P ) ∩ Occ({e})|/|AmbiOcc(P )|, since the
average inclusion ratio of AmbiOcc(P ) for P is

∑
e∈P |AmbiOcc(P )∩Occ({e})|
(|P |−1)×|AmbiOcc(P )| . From

the observation, the average inclusion ratio of AmbiOcc(P ) for P \ {e∗(P )} is
the average of |AmbiOcc(P )∩Occ({e})|/|AmbiOcc(P )| among P \{e∗(P )}, thus
it is no less than the average inclusion ratio of AmbiOcc(P ) for P . It means that
cov(P \ {e∗(P )} is no less than cov(P ), thus e∗(P ) satisfies the condition to be
the item e in the statement. �	
For an itemset P �= ∅, we define the parent Prt(P ) of P by P \ {e∗(P )}.
From Lemma 1, P \ {e∗(P )} is an ambiguous frequent itemset. Particularly,
cov(Prt(P )) ≤ cov(P ). The cardinality of Prt(P ) is exactly one smaller than P ,
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A: 1,3,4,7

B: 2,4,5,

C: 1,2,7

D: 1,4,5,7

E: 2,3,6

F: 3,4,6

66%, = 4

1,73,4 4,51,4 4,7

1,4,71,4,5 1,3,4 3,4,7 4,5,7 1,2,7 1,3,7 1,5,7

1 2 3 4 7

1,4,5,71,2,4,7 1,3,4,7

Fig. 2. Example of an enumeration tree

thus the parent child relation induced by Prt is acyclic. Since every ambiguous
frequent itemset other than the emptyset has a parent, the relation induces a
rooted tree spanning all ambiguous frequent itemsets. We call this tree the enu-
meration tree of ambiguous frequent itemsets. An example of the enumeration
tree is shown in Figure 2. By traversing the tree, we can find all ambiguous
frequent itemsets without duplication.

To perform a depth-first search on the enumeration tree, we need to find all
children of the current visiting ambiguous frequent itemset. By recursively find-
ing the children, we can perform a depth-first search without using additional
memory on visited vertices. This ensures the polynomiality of the memory com-
plexity. The algorithm can be written as follows.

ReverseSearch(P )
1. Output P
2. for each e �∈ P
2-1. if P ∪ {e} is an ambiguous frequent itemset then
2-2. if Prt(P ∪ {e}) = P then
2-3. call ReverseSearch (P ∪ {e})

The computation of the average inclusion ratio and the parent of P ∪ {e} in
2-1 and 2-2 can be done in O(||D||) time. They are executed at most n times
in an iteration, thus the computation in an iteration except for those in the
recursive calls is bounded by O(||D||×n). This algorithm outputs an ambiguous
frequent itemset in each iteration, thus the computation time per ambiguous
frequent itemset is O(||D|| × n). The depth of the enumeration tree is bounded
by n, thus we obtain the following theorem.

Theorem 1. For given a transaction database D, minimum support threshold
σ, and density threshold θ, ambiguous frequent itemsets in D can be enumerated
in polynomial delay with polynomial space in terms of ||D||. In particular, the
computation time for one ambiguous frequent itemset is O(n||D||) where n is the
number of items included in some transactions in D.
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3 Improvements for Efficient Practical Computation

For practical huge databases, the computation time O(||D||×n) is quite long. It
is not easy to reduce the time complexity, but possible to improve the practical
efficiency by using at typical structures of actual datasets. The heavy tasks in
each iteration with respect to itemset P is the computation of cov(P ∪ {e}) and
e∗(P ∪{e}) for each e. Both need O(n||D|) time, and we will describe techniques
to reduce the computation time for each. Note that the computation of cov(P )
is maybe heavier since we have to compute e∗(P ∪ {e}) only when P ∪ {e} is an
ambiguous frequent itemset.

We define Occ=h(P ) by the set of transactions not including exactly h items
in P , i.e., Occ=h(P ) = {T | T ∈ D, |P \ T | = h}. Similarly, Occ≤h(P ) =
{T | T ∈ D, |P \ T | ≤ h}. For the computation of cov(P ∪ {e}), we have to
obtain Occ=h(P ∪ {e}) for each e and h, in increasing order of h. We can use
the following property and lemma for efficient computation.

Property 1. [13] For a transaction T included in Occ=h(P ) for some h, 0 ≤ h ≤ k,
T ∈ Occ=h(P ∪ {i}) holds if T includes i. Otherwise, T ∈ Occ=h+1(P ∪ {i}).

Lemma 2. [13] (a) Occ=0(P ∪{i}) = Occ=0(P )∩Occ({i}), and (b) Occ=h(P ∪
{i}) = (Occ=h(P ) ∩Occ({i})) ∪ (Occ=h−1(P ) \Occ({i})) for any h ≥ 1.

From these, we can see that Occ=h(P ∪ {e}) for all h are obtained by moving
transactions of Occ=h(P ) ∩ Occ({e}) to Occ=h+1(P ). This takes O(|Occ({e})|)
time, which is expected to be small when the input database is sparse. To com-
pute Occ=h(P ) ∩Occ({e}), a method called delivery is efficient[11,12,13].

We briefly explain the framework of Delivery. An example is shown in Fig. 3.
First, we prepare an empty bucket for each item e. Next, for each transaction
T in Occ=h(P ), we “insert T into the bucket of e for each item e ∈ T ”. After
performing this operation for all transactions in Occ=h(P ), the content of the
bucket of e is equal to Occ=h(P ∪{e}). The pseudo code of occurrence deliver is
described as follows. The code inputs a transaction set S, then sets bucket[e] to
S ∩ Occ({e}) for all e. We suppose that the bucket of any item e is initialized,
and thus is empty at the beginning.

Delivery(S)
1. for each T ∈ S do
2. for each i ∈ T , insert T into bucket[i]

Lemma 3. [12,11] Delivery computes S ∩Occ({e}) for all e in O(||S||) time.

Let k∗(P ) be the smallest h satisfying AmbiOcc(P ) ⊆ Occ≤h(P ).

Lemma 4. If P ∪ {e} is a child of P , k∗(P ∪ {e}) ≤ k∗(P ) + 1 holds and
Occ≤k∗(P )(P ) includes a maximum co-occurrence set of P ∪ {e}.

Proof. From Lemma 2, we have Occ≤k∗(P )(P∪{e})⊆Occ≤k∗(P )(P )⊆Occ≤k∗(P )+1

(P∪{e}). This means that Occ≤k∗(P )(P ) is constructed by taking |Occ≤k∗(P )(P )|
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transactions from Occ≤k∗(P )+1(P ∪{e}) in decreasing order of the inclusion ratio
for P ∪ {e}. If P ∪ {e} is a child of P , we have cov(P ∪ {e}) ≤ cov(P ) ≤
|Occ≤k∗(P )(P )|. Thus, Occ≤k∗(P )(P ) includes a maximum co-occurrence set of
P ∪ {e}, and k∗(P ∪ {e}) ≤ k∗(P ) + 1. �	

This lemma implies that for the computation of cov(P ∪{e}), we have to look
only at the transactions included in Occ≤k∗(P )+1(P ). This reduces the computa-
tion time to O(||Occ≤k∗(P )+1(P )||), where ||Occ≤k∗(P )+1(P )|| is the sum of the
sizes of transactions in Occ≤k∗(P )+1(P ).

We next state a lemma to determine k∗(P ∪ {e}) efficiently. Let Th(P, k) =
θ × (|P | + 1) × |Occ≤k(P )| −

∑
T∈Occ≤k(P ) |T ∩ P |. If and only if |Occ≤k(P ) ∩

Occ({e})| ≥ Th(P, k), the average inclusion ratio of Occ≤k(P ) for P ∪ {e} is
no less than θ. For any transactions T ∈ Occ=h(P ) and T ′ ∈ Occ=h+1(P ), the
inclusion ratio of T for P ∪ {e} is always no less than that of T ′ for P ∪ {e}.
Thus, we have the following property.

Lemma 5. Suppose that P ∪{e} is a child of P . Then, both |Occ({e})∩Occ≤k−1

(P )| ≥ Th(P, k − 1) and |Occ({e}) ∩Occ≤k(P )| < Th(P, k) hold if and only if
|Occ≤k−1(P )| < cov(P ∪ {e}) ≤ |Occ≤k(P )|.

Note that the statement holds for a unique k since Th(P, k) is monotone de-
creasing for the increase of k. From the above lemma, we compute |Occ({e}) ∩
Occ≤k−1(P )| in increasing order of k from k = 1, then find each item e satisfying
the condition of Property 5 with k, and check whether P ∪ {e} is a child of P
or not by computing AmbiOcc(P ∪{e}). The algorithm based on this method is
as follows.

ALGORITHM FindAllChildren(P )
1. compute Th(P, k) for each k = 0, ..., k∗(P ) + 1
2. for k = 0 to k∗(P )
3. compute Occ=k(P ) ∩Occ({e}) for each e
4. for each e s.t. |Occ({e}) ∩Occ≤k−1(P )|≥Th(P,k−1)do (for each e if k=0)
5. if |Occ({e}) ∩Occ≤k(P )| < Th(P, k) then
6. if σ ≤ |AmbiOcc(P ∪ {e})| ≤ |AmbiOcc(P )| then
7. if Prt(P ∪ {e}) = P then P ∪ {e} is a child
8. end for
9. end for

Step 6 computes AmbiOcc(P ∪ {e}), then obtain Prt(P ∪ {e}) by computing
AmbiOcc(P∪{e})∩Occ{e′} for each e′ ∈ P∪{e}. At the time of computing these
values, we already have computed Occ≤k∗(P∪{e})−1(P )∩Occ≤k∗(P∪{e})(P ∪{e}),
thus we have to compute only Occ=k∗(P∪{e})(P ) ∩Occ({e}).

Now the computation time in each iteration with respect to P is (a)
O(||Occ≤k∗(P )+1(P )||) for computing cov(P ∪ {e}) for all e, and (b)
O(||Occ=k∗(P∪{e})(P )||) for each e such that P ∪ {e} is an ambiguous frequent
itemset. In practical datasets, it is expected that P ∪ {e} is an ambiguous fre-
quent itemset only for few e’s. Otherwise the number of ambiguous frequent
itemsets is huge so that we can not enumerate them in a practically short time,
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A: 1,2,5,6,7,9

B: 2,3,4,5

C: 1,2,7,8,9

D: 1,7,9

E: 2,3,7,9

F: 2,7,9

1: A,C,D
2: A,B,C,E,F
3: B,E
4: B
5: A, B
6: A
7: A,C,D,E,F
8: C
9: A,C,D,E,F

Fig. 3. Example of delivery

and we can not deal with huge output itemsets. Therefore, we can expect that
(b) is not larger so much than (a), thus the computation time for an iteration is
O(||Occ≤k∗(P )+1(P )||), which is relatively shorter than O(n||D||).

4 Weighted Ambiguous Frequent Itemset

In practical transaction databases, items of each transaction often has several
different weights. For example, POS data includes the number or the price of
each item purchased by a customer. In experiments in industry or natural science,
each cell or item may have a kind of intensity. Such a database can be regarded
as a matrix of item columns and transaction rows such that each cell has a value.
One may be naturally motivated to find submatrices with a large average weight
of cells. These locally heavy submatrices correspond to important objects such
as clusters, and have applications in knowledge discovery and data engineering.

We define the problem as follows. We suppose that each item e of a transac-
tion T has a weight w(T, e). For an itemset P and a transaction T , we define
the average weight w(T, P ) of T with respect to P by (

∑
e∈P∩T w(T, e))/|P |.

For a set T of weighted transactions, we define the average weight w(T , P ) by
(
∑

T∈T w(T, P ))/|T |. When we are given a weight threshold θ, we define the
weighted maximum co-occurrence size of P by the maximum size of a transac-
tion set having average weight no less than θ. For a given support threshold σ,
an itemset is called a weighted ambiguous frequent itemset if its weighted maxi-
mum co-occurrence size is no less than σ. The weighted version of the ambiguous
frequent itemset enumeration problem is to output all weighted ambiguous fre-
quent itemsets. Given these definitions, we obtain a similar neighboring relation
between weighted ambiguous frequent itemsets.

Theorem 2. For given a weighted transaction database D, weight threshold θ,
and minimum support threshold σ, all weighted ambiguous frequent itemsets can
be enumerated in polynomial delay and polynomial space. In particular, the com-
putation time is O(||D||n) for each, and the space complexity is linear in the
input size, where n is the number of items in D.

The method described in the above sections is not directly applicable to improve
the practical efficiency of the weighted version of our algorithm. The reason is
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that Properties 1 and 2 are not valid for the weighted version. To compute the
weighted maximum co-occurrence size of P ∪{e}, we need to get the transactions
T in the order of w(T, P ∪ {e}). If w(T, P ∪ {e}) is large, then either w(T, P ) or
w(T, {e}) has to have a large value. Thus, by getting transactions having large
average weights with respect to either P or {e}, we can efficiently compute the
weighted maximum co-occurrence size.

5 Hardness Result for Branch-and-Bound Approaches

We show that a hardness result for simple approaches to answer the question
that why we need a sophisticated enumeration scheme. In a typical branch-
and-bound algorithm, we may choose an item e and divide the enumeration
problem into two subproblems; the enumeration problem of ambiguous frequent
itemsets including e, and the problem for itemsets not including e. The division
of the problem is done recursively until the problem includes a unique solution
(ambiguous frequent itemset). In this approach we have to know the existence
of solutions to the restricted problem, otherwise we will divide problems having
no solution recursively, thereby exponentially many times.

The following theorem states that this problem is NP-complete. Therefore, we
observe that it is hard to get a polynomial delay algorithm by typical branch-
and-bound since we have to solve an NP-complete problem in each iteration.

Theorem 3. For given a transaction database D, itemset S, density threshold
θ, and minimum support threshold σ, the problem of answering whether an am-
biguous frequent itemset including S exists or not, is NP-complete.

Proof. Suppose that we are given a transaction database D, a minimum support
threshold σ, and a constant number k, and going to check for the existence of
an itemset of size at least k that is included in at least σ transactions. This is
known to be NP-complete[17]. Let I be the set of items included in transactions
in D, and I ′ be a set of items of size |D| × |I| satisfying I ∩ I ′ = ∅. We choose
an item e∗ from I ′.

We now construct a transaction database D′ = {T ∪ (I ′ \ {e∗})|T ∈ D}. Let
X be a subset of I, T be a transaction set of D, and T ′ be the transaction set
of D′ corresponding to T . Then, X is a frequent itemset of D and T = Occ(X)
if and only if the average inclusion ratio of T ′ for X ∪ I ′ is strictly larger than
(|D|×|I|−1)/(|D|×|I|). In particular, when |X | = k, the average inclusion ratio
is (|D|×|I|+k−1)/(|D|×|I|+k). Here we set θ = (|D|×|I|+k−1)/(|D|×|I|+k).
Then, X is a frequent itemset of D of size at least k if and only if X ∪ I ′ is an
ambiguous frequent itemset of D′. Therefore we have the theorem. �	

6 Computational Experiments

In general, the practical computation time of an algorithm often differs from the
theoretical upper bound. The reason is that the computation time is dominated
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Fig. 4. Computation time and #solutions on BMS-WebView and Mushroom

Fig. 5. Comparison of accessed items on BMS-WebView and Mushroom

by the “average”, but the theoretical upper bound looks only at the worst case.
To see the gap and to be a help for the practical use, we show the results of
some computational experiments.

The C code is used for the implementation. The computer used in the exper-
iments was a notebook PC with a Pentium M 1.1GHz processor with 768MB
memory. The experiments were done on cygwin which is an emulator of Linux
environments on Windows. The implementation is a simpler version of our al-
gorithm, which compute the parent in a straightforward way. The reason is to
choose a simpler version is to see the performance of a simple implementation,
which would help for coding. The implementation is available at the author’s
homepage; http://research.nii.ac.jp/˜uno/index.html.

We examined two practical datasets taken from FIMI repository[6]. The first
is BMS-WebView2 with about 3,300 items and 77,000 transactions. The aver-
age size of transactions is 4.6, thus the dataset is quite sparse. The second is
Mushroom with about 120 items and 8,000 transactions. The average size of
transactions is 23, thus the dataset is not sparse.

We run the implementations with the thresholds θ = 0.8, 0.9 and 1.0. Since
we could not find any implementation for the ambiguous frequent itemset enu-
meration, we have no comparison to other implementations. Instead of this, we
compare the performance to that of an ordinary frequent itemset enumeration
algorithm LCM[12,11]. Since the frequent itemset enumeration is a special case
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of our problem, it can be considered as a kind of upper bound of the performance
of the ambiguous frequent itemset enumeration.

The results are shown in Fig. 4. The left is BMS-WebView2, and the right
is Mushroom. The horizontal axis is for minimum support threshold, and the
vertical axis is for computation time, computation time for 1 million (ambiguous)
frequent itemsets, and the number of output itemsets, written in log scales.

The computation time of our algorithm increases as the decrease of minimum
support, but the computation time per one million itemsets does not change
drastically. It seems to change as the change of average size of Occ({e}). Com-
paring to the ordinary frequent itemset mining algorithm, the performance of our
algorithm is not so good. One of the reason is that the cost for computing parents
of the candidate children. A simple duplication check by storing the discovered
itemsets in memory will accelerate the computation when the output itemsets
are few. The other reason is that in the ordinary frequent itemset mining, we can
use the conditional database for the current operating itemset, which includes
only items larger than the maximum item in the current operating itemset and
are frequent in the database induced by the occurrence of the current operat-
ing itemset. Usually the number of items in the conditional database is much
smaller than the number of items in the original database, thus the computation
is faster. To reduce the difference on the computation time, further techniques
for the efficient computation are still needed. The number of ambiguous frequent
itemsets increases drastically by the decrease of density threshold. In practice,
we should use a threshold slightly smaller than 1.0.

We also looked at several statistics on the experiments in Figure 5. “max”
means the ratio of ambiguous frequent itemsets and the number of maximal
ambiguous frequent itemsets to which no item addition yields an ambiguous fre-
quent itemset. “prt” shows the ratio of the number of accessed items between
a straightforward algorithm and the sophisticated algorithm proposed in this
paper, and “occ” indicates that between delivery for computing the frequencies
of all additions of items, and delivery for computing the parent. As we can see,
these ratio increase as the increase the number of solutions. Thus, we can expect
the decrease of the number of solutions by outputting only maximal ones. The
speedup is also expected by introducing our sophisticated parent computation,
but the effect will be limited. The big ratio of “occ” implies that the big gap be-
tween computation time of our algorithm and ordinary frequent itemset mining.
It also implies that more practical improvements are needed.

7 Conclusion and Future Work

We formulated the enumeration problem of ambiguous frequent itemsets, and
proposed a polynomial delay polynomial space algorithm. The algorithm is natu-
rally extended to a weighted version. The experimental performance for practical
datasets is acceptable, but improvements on practical performance is a crucial
future work. Another interesting research topic is extending the technique to
other frequent pattern mining problems.
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Abstract. This paper proposes an approach based on characteristic
descriptors for recognition of articulated and deformable human mo-
tions from image sequences. After extracting human movement silhou-
ettes from motion videos, we apply Tensor Subspace Analysis to embed
normalized dynamic silhouette sequences into low-dimensional forms of
multivariate time series. Structure-based statistical features are then ex-
tracted from such multivariate time series to summarize motion pat-
terns (as descriptors) in a compact manner. A multi-class Support Vec-
tor Machine classifier is used to learn and predict the motion sequence
categories. The proposed method is evaluated on two real-world state-
of-the-art video data sets, and the results have shown the power of our
method for recognizing human motion sequences with intra- and inter-
person variations on both temporal and spatial scales.

Keywords: motion sequence recognition, multivariate time series, ten-
sor subspace analysis, characteristic-based descriptor, SVM.

1 Introduction

There has recently been growing interest in algorithms that can extract useful
information from non-traditional data such as images and videos [1]. Human mo-
tion analysis [2] aims to discover and understand patterns of human movements
from video sequences, e.g., determining typical and anomalous motion patterns,
classifying motions into known categories (e.g., walking or riding), and discover-
ing unknown motion patterns by clustering. Human motion analysis has a wide
range of applications such as video surveillance (e.g., finding suspicious events
such as a person wandering around in a parking lot), human-machine interface
(e.g., gesture-driven control) and video understanding and summarization (e.g.,
interpretation of sport events).

This paper focuses on the analysis of short video clips consisting of individ-
ual atomic motions. One of the key challenges in the interpretation of human
motions is how to transform semantically agnostic video signals to meaningful
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feature representations (i.e., low-level feature extraction steps) that provide a
sufficient encoding of different motion structures. The resulting outputs can be
used as inputs to higher-level recognition processes. There are several issues in
this context that raise challenges for human motion analysis [3]: 1) Repeated
performance of the same motion by the same person in different instances can
vary. 2) The same motion performed by different people can vary because dif-
ferent people have different physical structures or perform motions in different
ways. 3) The same motion may have different temporal durations because of the
difference in motion speeds. 4) Different motions may have significantly different
temporal durations. We consider these variations in motions (due to different
instances, different persons with different body types and motion styles, and dif-
ferent motion speeds) as intra- and inter-person variations on both temporal and
spatial scales. The objective of this paper is to develop an approach to represent
and recognize articulated and deformable human motions while accounting for
the above spatio-temporal variations in motion execution.
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Fig. 1. Framework of characteristic-based descriptors for motion sequence recognition

To this end, this paper proposes a method based on characteristic descriptors
for recognizing human motion sequences, as shown in Figure 1. The proposed
method consists of the following steps: 1) Extract space-time silhouettes of the
moving human from the input sequence. We use normalized raw silhouettes as
visual cues, because they are simple but informative, and easy to obtain from
original video data. 2) Transform high-dimensional silhouette inputs into a low-
dimensional feature space. In particular, we use computationally efficient Tensor
Subspace Analysis (TSA) [4] for dimensionality reduction while preserving spatial
information of silhouette images. To the best of our knowledge, no previous work
has investigated its use in this context. 3) Map each motion sequence into a form
of multi-dimensional time series in the learned embedding space, from which we
extract structure-based statistical features to construct a vector-based pattern
representation (i.e., characteristic-based descriptor), which naturally converts
our temporal sequence classification into a static classification problem. 4) Learn
a multi-class Support Vector Machine (SVM) classifier [5] using labeled data,
and then use it to classify unknown motion sequences into one of a set of known
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motion categories. Experimental results on two real-world video data sets have
validated the proposed method.

The remainder of this paper is organized as follows. Section 2 briefly reviews
related work. Section 3 details each step of the proposed method. The experi-
mental results are presented in Section 4, prior to a summary in Section 5.

2 Related Work

Motion representation and recognition are central to the interpretation of human
motions. Various visual cues have been examined in current studies on human
motion analysis, e.g., optical flow [6], local descriptors [7], motion trajectories
from feature tracking [8,3], etc. For example, Schuldt et al. [7] constructed video
representations in terms of local space-time features. Efros et al. [6] proposed a
spatiotemporal descriptor based on blurred optical flow measurements to recog-
nize actions.

Image measurements in terms of optical flow or interest points can be unre-
liable in cases of smooth surfaces, motion singularities and low-quality videos.
Feature tracking is difficult due to the great variability in the appearance and
articulation of the human body. Fortunately, human motions can be regarded as
temporal variations of human silhouettes over time. The use of features derived
from silhouettes has been explored recently. For example, Blank et al. [9] utilized
properties of the solution to the Poisson equation to extract features from space-
time silhouettes for action recognition and detection. Silhouette extraction from
video is relatively easier for current imperfect vision techniques. So the method
that we present here uses (probably imperfect) space-time silhouettes as basic
cues to derive effective motion feature representations.

There are two major categories of approaches to motion recognition [2]. The
approaches based on template matching first convert time-varying features cor-
responding to a motion sequence into a static pattern, and then compare it
to pre-stored motion prototypes during recognition. In contrast, state-space ap-
proaches usually use temporal models such as Hidden Markov Models (HMMs),
Conditional Random Fields (CRFs) or their variants [10,8,11] to model and clas-
sify motions. For example, Nguyen et al. [8] learned and detected activities from
movement trajectories using hierarchical HMMs.

Temporal probabilistic models such as HMMs and CRFs usually require very
detailed mathematical and statistical modeling, which involves assumptions
about the probability distributions of variables of the dynamical model and de-
velopment of inference methods and parameter learning algorithms, which have
a high computational cost. In contrast, our proposed method converts a sequence
of silhouette images associated with a motion video into a form of multivariate
time series, from which we extract structural statistical features to summarize
motion pattern. This strategy using characteristic-based descriptors reduces our
temporal classification problem into a static classification one. Accordingly, any
of the existing efficient methods for classification can be applied for learning and
predicting motion sequence classes.
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3 Methodology

3.1 From Motion Image Sequences to Silhouette Sequences

Informative features are critical to motion characterization. The features should
be simple, intuitive and easy to extract automatically. As stated before, our
work prefers to use silhouettes as basic cues. How should we segment the moving
human region from the background image? This can usually be accomplished by
well-established motion detection techniques. Various categories of methods for
motion detection have been widely studied in the computer vision community [2]
(e.g., background subtraction and temporal differencing). Motion segmentation
is not our focus in this paper. As such, the video data sets to be used in our
experiments have already contained the segmented silhouette masks.

Given a motion video V including T image frames I, i.e., V = [I1, I2, · · · , IT ],
we can obtain an associated sequence of moving silhouettes S = [S1,S2, · · · ,ST ].
The size and position of the foreground human region in silhouette images vary
with the distance of the human from the camera, the size of the human and the
motion being performed. The silhouette images are thus centered and normal-
ized on the basis of keeping the aspect ratio property of the silhouette so that
the resulting silhouette images Ŝ = [X1,X2, · · · ,XT ] are of equal dimensions
and contain as much foreground information as possible without distorting the
motion shape.

3.2 From Silhouette Sequences to Multivariate Time Series

Human silhouettes through the duration of a motion may be generally expected
to lie on a low-dimensional manifold embedded in a high-dimensional image
space. It is well known that high dimensionality not only slows the algorith-
mic processing, but also degrades performance. Therefore we are motivated to
represent motions in a more compact subspace rather than the ambient space.

Traditional dimensionality reduction algorithms such as Principal Component
Analysis (PCA) and Linear Discriminative Analysis (LDA) [12] for image pro-
cessing usually represent an n1×n2 image by a vector in high-dimensional space
Rn(n = n1 × n2), and find a map from Rn to Rl(l < n). However, an image
is intrinsically a matrix (or a second-order tensor). Tensor-based methods have
been recently studied in the image processing community [4,13,14,15]. To repre-
sent the relationship between the row and column vectors of the image matrix,
i.e., to preserve the spatial information of silhouette images, we select TSA to
perform subspace learning of the articulated motion space [16], in which an im-
age is represented as a second-order tensor in Rn1 ⊗ Rn2 (where Rn1 and Rn2

are two vector spaces and ⊗ denotes the tensor product). TSA has been recently
proposed and demonstrated for use in static face recognition [4]. Here we extend
its application to dynamic silhouette data with highly-varied motion shapes.

Given a set of m points {X1,X2, · · · ,Xm} in Rn1 ⊗ Rn2 (e.g., normalized
silhouettes here), TSA aims to find two transformation matrices U of size n1 ×
l1 and V of size n2 × l2 that map these m points to another set of points
{Y1,Y2, · · · ,Ym} in Rl1 ⊗ Rl2(l1 < n1, l2 < n2), such that Yi = UTXiV.
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These m points can build a weighted graph G to model the local geometrical
structure of data manifold M. Let W be the weight matrix of G, and

Wij =
{

e−‖Xi−Xj‖2/τ , ifXi andXj are “close”
0 , otherwise

(1)

where “close” can be defined by the k nearest neighbors, i.e., Xi is among the k
nearest neighbors of Xj , or Xj is among the k nearest neighbors of Xi, and τ is a
suitable constant. The function e−‖Xi−Xj‖2/τ is the so called heat kernel, and ‖·‖
is the Frobenius norm of a matrix. A reasonable transformation representing the
graph structure can be obtained by solving the following optimization problem
based on the graph Laplacian [4]:

min
U,V

∑

i,j

‖UTXiV −UTXjV‖2Wij (2)

It is equivalent to the following simultaneous optimization problem [4]:

min
U,V

tr(UT (DV −WV )U)
tr(UT DV U)

and min
U,V

tr(VT (DU −WU )V)
tr(VT DUV)

(3)

where D is a diagonal matrix with Dii =
∑

j Wij , DV =
∑

i DiiXiVVT XT
i ,

WV =
∑

ij XiVVT XT
j , DU =

∑
i DiiXT

i UUT Xi, and WU =
∑

ij XT
i UUT Xj .

An iterative method is suggested in [4] to address this optimization problem. If
U is first fixed, then V can be computed by solving (DU −WU )v = λDU v.
Once V is obtained, U can be updated by solving (DV −WV )u = λDV u.
Thus, the optimal U and V can be obtained by iteratively computing the above
generalized eigenvector problems.

After learning the tensor subspace including the first l1× l2 principal compo-
nents, any silhouette sequence V can be accordingly projected into a trajectory
P in such a parametric space P = {P1,P2, · · · ,PT },Pi ∈ Rl1 ⊗Rl2 , while the
temporal order across frames is preserved explicitly. Then, we may easily con-
vert P into a form of multivariate time series with the number of dimensions
l = l1 × l2.

3.3 From Multivariate Time Series to Characteristic-Based
Descriptor

Now motion sequence recognition can be regarded as a time series classification
problem. Several alternative paradigms for time series classification have been
proposed [17]. Here we wish to extract the most informative features to sum-
marize multivariate time series so as to turn time series classification into static
vector-based classification.

In this study, we investigated various data characteristics from diverse per-
spectives related to univariate time series. A univariate time series can be rep-
resented as an ordered set of n real-valued variables Z1, . . . ,Zn. We selected
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the nine most informative, representative and easily measurable characteristics
to summarize the time series structure: Trend, Seasonality, Serial Correlation,
Non-linearity, Skewness, Kurtosis, Self-similarity, Chaotic, and Periodicity. It
can be seen that this set of characteristic metrics to represent univariate time
series and their structure-based features not only includes conventional features
(e.g., trend), but also covers many advanced features (e.g., chaos) which are de-
rived from research on new phenomena [18]. Based on these identified character-
istics, corresponding metrics are calculated for constructing the structure-based
feature vectors [19], that form a rich portrait of the nature of a time series.

In time series analysis, decomposition is a critical step for transforming the se-
ries into a format for statistical measurement [20]. Therefore, to obtain a precise
and comprehensive calibration, some measures need to be calculated on both
the raw time series data, Zt, (referred to as raw data), as well as the ‘trend and
seasonally adjusted’ time series, Z

′
t, (referred to as tsa data). Four of the nine

selected features, i.e., Serial-correlation, Non-linearity, Skewness, and Kurtosis,
are calibrated on both raw and tsa data, each of which contributes two metrics
to our family. The remaining five selected features are calibrated only on raw
data, leading to a total of thirteen metrics.

For each dimension of a l-dimensional multivariate time series, we may obtain
13 statistical features to construct the feature vector. Thus, the multivariate
time series can be summarized by a r-dimensional (r = 13 × l) vector f . We
refer to such a feature vector f as a Characteristic-based Descriptor.

3.4 From Characteristic-Based Descriptor to Motion Recognition

Motion recognition aims to classify an unknown test sequence into one of c known
motion classes. Among many available methods for static classification problems,
we adopt a multi-class SVM classifier because its performance surpasses other
competing classification methods on many benchmark data sets [21].

We are given a labeled training set T = {(f1, y1), (f2, y2), · · · , (fn, yn)}, where
yi ∈ Y = {1, 2, · · · , c} are the known class labels. The multi-class SVM involves
a set of discriminant functions gy : F ⊆ Rr →R, y ∈ Y defined as

gy(f) = 〈αy · kS(f)〉 + by (4)

where kS(f) = [k(f , s1), · · · , k(f , sv)]T is the vector of evaluations of kernel
functions centered at support vectors S = {s1, s2, · · · , sv}, si ∈ Rr which are
usually a subset of the training data, A = [α1, · · · , αc] is composed of all weight
vectors, and b = [b1, · · · , bc]T is a vector of all biases. The multi-class classifica-
tion rule q : F → Y = {1, 2, · · · , c} is defined as

q(f) = arg max
y∈Y

gy(f) (5)

Several methods to train multi-class SVM are compared in [5]. Simple One-
Against-All decomposition is adopted here, which transforms a multi-class prob-
lem into a series of c binary subtasks that can be trained by binary SVMs. Also,
we use the Radial Basis Function (RBF) k(fa, fb) = exp(−0.5 ‖fa − fb‖2 /σ2)
as the kernel in our experiments.
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4 Experiments

4.1 Evaluation Databases

There is no standard evaluation database in the domain of human motion analy-
sis. We use two state-of-the-art databases in [22] and [9] to evaluate our method.
These two databases are appreciably sized (among current databases publicly
available), in terms of the number of persons, motions and video sequences.

D-I: Data set I consists of 10 different motions performed by one person,
each comprising 10 instances, and 100 sequences in total [22]. These motions are
pick up object (Pick), jog in place (Jog), push, squash, wave, kick, bend to the
side (Bend-Side), throw, turn around (Turn), and talk on cell phone (Phone).
Examples are shown in Figure 2(a). Different instances of the same motion may
consist of varying relative speeds. This data set is used to examine the effect
of temporal execution rates (alone) on motion recognition, as well as slightly
different intra-person motion styles among different instances.

 
(a) D-I

 
(b) D-II

Fig. 2. Example images of motion data sets

D-II: Data set II consists of 90 low-resolution videos from 9 different people,
each performing 10 different motions [9]1. These motions are bend, jump jack
(Jack), jump-forward-on-two-legs (Jump), jump-in-place-on-two-legs (Pjump),
run, gallop-sideways (Side), skip, walk, wave-one-hand (Wave1), and wave-two-
hands (Wave2). Example images are shown in Figure 2(b). Except for bend,
whether the other motions are in essence periodic or not, people are asked to
1 http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeActions.html
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perform those motions multiple times in a continuously repetitive manner. From
these 90 videos, we extract 198 motion sequences for our experiments, each of
which includes a complete cycle of atomic motion. The number of sequences of
each motion is respectively 9, 23, 24, 27, 14, 22, 25, 16, 19, and 19 for bend, jack,
jump, pjump, run, side, skip, walk, wave1, and wave2. In addition to temporal
execution rates, there are inter-person differences between the same motions
since different people have different physical sizes and perform motions in differ-
ent styles and speeds. Thus this data set is more realistic for testing the method’s
robustness to motion variations at both temporal and spatial scales.

4.2 Data Processing and Classification

We adapted the “leave-one-out” cross-validation method for the experiments on
both data sets. For D-I, we partition the data set into 10 disjoint sets, each
containing one instance of every class of motion. Each time we leave one set
out for the test, and use the remaining nine sets for training. This process is
repeated 10 times for D-I. For D-II, since different motions are performed by
different people in a varied number of repeats, we decided to use the person id
to subset the data. That is, we divide the data set into 9 sets, each set including
all motions from one person. Each time we leave one set out for the test, and use
the remaining sets for training. Thus, if one video in the left-out set is classified
correctly, it must show a high similarity to a video from another different person
performing the same motion. This process is repeated 9 times for D-II.

For silhouette extraction, we directly use the silhouette masks obtained from
[22,9], even though the quality of these silhouette images is not very satisfactory,
consisting of leaks and intrusions due to imperfect segmentation. Then, we center
and normalize all silhouette images into the same dimension (i.e., 48×32 pixels).
Figure 3 illustrates the process “from a motion image sequence to an associated
sequence of normalized silhouette images”.

Motion Im
age Sequence

Centered and Norm
alized 

Silhouette Sequence

Fig. 3. Illustration to the process of silhouette extraction

When learning the tensor subspace using a given training set, we use the
k-nearest neighbors (k = 20) to construct the affinity graph. A heat function
with τ = 1000 is adopted for the weight matrix. When computing U and V ,
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the number of iterations is taken to be 15, and U is initially set to the identity
matrix. TSA significantly reduces the dimension number of the input features
from 48 × 32 to 4 × 4 (i.e., l1 = l2 = 4) (thus leading to lower computational
cost), while achieving high accuracy. Note that these parameter settings were
found empirically in a series of experiments. Each motion sequence is projected
into a 16-dimensional time series in the learned embedding space, from which we
extract 13 statistical features corresponding to each univariate time series. Then
these features from each univariate time series are joined as one 208-dimensional
(16×13) vector. Figure 4 gives several examples of motion sequences in the form
of multivariate time series after TSA transformation (in which only the first 7
dimensions, each color per dimension, are shown for simplicity and clarity).
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Fig. 4. Examples of multivariate time series forms of motions. Two different motions
performed by the same person in D-I (top), and a single motion class performed by
two different people in D-II (bottom).

There are two free parameters which need to be tuned for the SVM, namely
the regularization constant C and the argument σ of the kernel function. A com-
mon method to tune the parameters is to use cross-validation to select the best
parameter from a pre-selected set Θ = {(C1, σ1), (C, σ2), · · · , (Ca, σa)}. After the
best parameter (C∗, σ∗) is tuned, a multi-class SVM classifier is trained using
all training data available. Then it may be used to predict the class labels of
new test sequences. We use the parameter sets of (σ = 3, C = 10) for D-I and
(σ = 2.3, C = 10) for D-II in our experiments. In addition, we implement the
Nearest-Neighbor (NN) classifier as a baseline for comparison.
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4.3 Results and Analysis

The results of motion sequence recognition are summarized in Tables 1 and 2.
Note that the recognition rates reported here are measured in terms of the per-
centage of correctly classified motion sequences among all test sequences. The
results show that: 1) Dynamic silhouettes are indeed informative to encode mo-
tion information, and our feature extraction and representation methods are
effective; 2) D-I is more easily classified. This is probably because all motion
instances are from the same person, thus there are comparatively fewer changes
among time-varying silhouette shapes when the same motion is performed; 3)
In contrast, D-II is harder to classify because those motions are performed by
different people with different body builds and motion styles; and 4) SVM per-
forms better than NN. In summary, our method is demonstrated to be effective
for recognition of human motion sequences with temporal and spatial variations
due to different people.

Table 1. Recognition Rates for D-I Consisting of 100 Motion Sequences(%)

Motions Pick Jog Push Squash Wave Kick Bend-Side Throw Turn Phone Average

NN 80 100 90 90 100 30 100 70 100 80 84
SVM 90 100 100 100 100 70 100 100 100 100 96

Table 2. Recognition Rates for D-II Consisting of 198 Motion Sequences (%)

Motions Bend Jack Jump Pjump Run Side Skip Walk Wave1 Wave2 Average

NN 88.9 87 79.2 59.3 64.3 95.5 60 100 89.5 68.4 78.3
SVM 100 95.7 87.5 92.6 85.7 86.4 84 100 100 89.4 91.4

To examine and analyze which motion sequences are incorrectly classified
(and why), we show confusion matrices with respect to the two data sets in Fig-
ure 5. The elements of each row in the confusion matrix represent the probability
that a certain kind of motion is classified as other kinds of motions. From Fig-
ure 5, it can be seen that most motion sequences have perfect classification, and
only a small number of motions (e.g., Kick/Pick in D-I, Skip/Jump/Run, and
Wave2/Jack in D-II) are easily confused. In addition to poor silhouette segmen-
tation, high similarities among silhouette shapes in these motions (with locally
similar moving patterns) may contribute to these confusions.

4.4 Discussion and Future Work

Although the experiments have demonstrated that our methodology works well,
further evaluation on a larger database, with multi-varied motions, persons and
scenarios, needs to be examined. Apart from simple silhouette observations, other
visual cues could be available from raw videos. Fusion of multiple cues may be
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Fig. 5. Confusion matrices of motion sequence classification

preferable for improving accuracy and reliability. When extracting characteristic-
based descriptors, we separately process each dimension of the multivariate time
series and then simply stack these individual features together. More sophisti-
cated methods that can exploit mutual information among different dimensions
of multivariate time series can be useful.

The proposed method currently focuses on the analysis of short video clips
consisting of a single individual motion. As long-term goals, we wish to extend
our work in several ways: 1) Segmentation and localization in long videos, to
find whether a specified action exists in the observed video, and where it is in
the video; 2) Behavior profiling, to summarize which basic actions exist in the
video, from which the behavior event can be summarized; and 3) Discovering nor-
mal and abnormal motion patterns, which may be performed by automatically
clustering motion events that frequently occur over a period of time as normal
actions, whereas rare actions in comparison can be inferred as being abnormal.

5 Conclusion

This paper has described an effective method for motion sequence recognition.
It starts with extracting time-varying silhouettes from image sequences, and
then embeds dynamic silhouette sequences into low-dimensional multivariate
time series by tensor subspace analysis. Characteristic-based statistical features
are obtained from multivariate time series to characterize motion patterns. A
multi-class SVM classifier is finally adopted to learn and predict the categories
of motion patterns. Our experimental results on two state-of-the-art data sets
have validated the proposed method. As a by-product, the multivariate time
series for the two video data sets derived from our method provide two dynamic
and high-dimensional time series data sets for researchers working on time series
analysis in the data mining community.
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Abstract. Distributed association rule mining algorithms are used to
discover important knowledge from databases. Privacy concerns can pre-
vent parties from sharing the data. New algorithms are required to solve
traditional mining problems without disclosing (original or derived) in-
formation of their own data to other parties. Research results have been
developed on (i) incrementally maintaining the discovered association
rules, and (ii) computing the distributed association rules while preserv-
ing privacy. However, no study has been conducted on the problem of
the maintenance of the discovered rules with privacy protection when
new sites join the old sites. We propose an algorithm SIMDAR for this
problem. Some techniques we developed can even further reduce the cost
in a normal association rule mining algorithm with privacy protection.
Experimental results showed that SIMDAR can significantly reduce the
workload at the old sites by up to 80%.

1 Introduction

Protecting privacy is an important element in many database applications. Many
countries set up privacy laws to clearly protect privacy, e.g. Australia, United
States, United Kingdom. For example, medical records and personal information
of patients in a hospital should not be disclosed. Direct public access to private
information stored in databases is not allowed. Some traditional algorithms may
hence be rendered infeasible in practice.

In a distributed association rule mining process, branches of the same com-
panies or even different companies cooperate together to find out the global
association rules. Apart from the privacy concerns about individual records,
each party may not be willing to share its own data or even let other parties
know any derived information. Most traditional algorithms cannot work without
disclosing sensitive information like the counts of itemsets in a particular party.
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There are new approaches to handle the privacy-preserving data mining prob-
lems. One approach is to modify the database randomly so that other parties
can fully access the modified data. However, data mining algorithms can then
produce only approximate results using the modified data. Another approach is
to develop new algorithm applying cryptographic techniques so that accurate
results can be obtained without direct access to the source data. This kind of
approach is more expensive but security can be usually proved (with limited
information disclosure). [10] gives a solution to the problem of association rule
mining with privacy protection.

When new parties join, the old association rules may become out-dated and
need updates. The naive method of recomputing the association rules from
scratch is expensive. In fact, we can reduce the cost by using the old results
to incrementally update the rules. The maintenance problem of association rules
in a centralized database is studied in [5,4]. They greatly reduce the number of
candidate sets required to scan the database and hence reduce the total process
time. Our idea is to apply a similar property used in [5,4] securely, and aim to
reduce the candidate set size and so the running time.

There is a tradeoff between privacy and efficiency in privacy-preserving prob-
lems. The solutions may be even impractical when complete privacy protection
is required. In real world applications, controlled and limited information dis-
closure is usually acceptable. By lowering the restriction on privacy protection,
we can achieve a much better performance. We have developed an efficient al-
gorithm with acceptable privacy protection to maintain the association rules.
Besides, some techniques we developed can reduce the cost in the recomputa-
tion algorithm in [10].

2 Related Work

The problem of association rule mining is to find interesting patterns among
large set of data items [1]. The main focus of the problem is on mining large
itemsets. An iterative approach is usually used. The k-th iteration finds all the
large itemsets with size k. In [6], the problem is extended into a distributed
environment. Different sites hold different individual databases. The problem is
to find the global association rules. [6] points out that a globally large itemset
must be locally large in some of the sites and gives an efficient algorithm to solve
the problem.

[5] and [4] studied the maintenance problem of association rules and large
itemsets when one needs to update the database. Old large itemsets can be
used to save some effort in the new computation. [4] focuses on the maintenance
when there are new transactions. [5] is a more general solution which also con-
siders deletions of transactions. The computational cost in these maintenance
algorithms is greatly reduced compared to a recomputation.

To solve the problem of association rule mining with privacy protection, some
researchers take the data perturbutation approaches [2]. On the other hand,
[10] and [11] both proposed secure association rule mining algorithms with
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cryptographic techniques. [10] studied the problem with horizontal partitioned
databases, i.e., the databases have the same schema. [11] focuses on vertically
partitioned databases. The parties share the same set of records with the same
primary key but they have different schema. [11] can only handle the two-party
case. The multiparty case is solved in [12] using secure set intersections.

We now study the problem of maintenance of association rule mining in hor-
izontally partitioned databases using cryptographic technique. Note that none
of the above work handles the maintenance problem in distributed environment
with privacy protection. Although [10] can be also used in our problem by to-
tal recomputation but it wastes the effort that we have put in before. A more
efficient algorithm which protects privacy as well is required.

3 Problem Definition

Let I be the set of items. Each transaction K is a subset of items, i.e., K ⊆ I.
A transaction K contains an itemset X if and only if X ⊆ K. Given a support
threshold s%, an itemset X is said to be large in the database DB if and only if at
least |DB|×s% transactions contain X , where |DB| is the number of transactions
in DB. Given a confidence threshold c%, we find association rules in the form
of X ⇒ Y where X , X

⋃
Y are large itemsets and c% of the transactions that

contain X also contain Y .
Suppose there are n sites, S1, S2, ..., Sn. Each site Si has a private transaction

database DBi , where i = 1 to n, all having the same schema. Each site holds
a number of transactions, which is DBi, for i = 1 to n. We have found the
large itemsets (and the association rules) in

⋃n
k=1 DBk. There are r new sites,

Sn+1, Sn+2, ..., Sn+r to join the n existing sites. Each of the new sites owns a
private database DBi, for i = n + 1 to n + r. The goal is to find the new set of
association rules more efficiently than simple recomputation.

Definition 1. Let X.counti be the support count of X in Si. An itemset X is
said to be globally large if

∑n+r
k=1 X.countk ≥

∑n+r
k=1 |DBk| × s%. X is said to be

group large in new sites if
∑n+r

k=n+1 X.countk ≥
∑n+r

k=n+1 |DBk| × s%. X is said
to be group large in old sites if

∑n
k=1 X.countk ≥

∑n
k=1 |DBk| × s%.

Privacy preserving in necessary in our data mining process. Assume all the par-
ties are semi-honest, i.e. each party follows the protocol with the exception that
it keeps a record of all its intermediate messages during the execution of the
protocol. The formal definition of private multiparty computation in the semi-
honest model can be found in [8]. A computation is secure if at the end of the
computation, no party (site) knows anything except its own input and the re-
sults. Some limited information disclosure in allowed practice as tradeoff between
privacy and efficiency.

The input of our problem is the private databases in the sites and the old
results (e.g., old large itemsets) in the old sites. Note that the old results are
only known to each old site but not the new sites. The support and confidence
thresholds are known to all sites. The result of our solution is the new set of large
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itemsets and association rules. We should not disclose any other information to
any other parties in the mining process apart from these inputs and results (and
the limited information disclosure).

4 Secure Protocol Utilities

There are several developed secure protocols which help us solve some of our
sub-problems. More details of these protocols can be found in [7,13,9].

Secure Sum. Suppose there are n sites, {S1, S2, ..., Sn}, where n ≥ 3. Each
site Si holds a value vi. Our goal is to securely find out the sum of these values
s =

∑n
i=1 vi, which has a known upper limit m, i.e., s ≤ m. Assume S1 is

designated as the master site. First, S1 generates a random number R which is in
the range [1, m]. S1 adds its value v1 with R and sends the value (v1 +R) mod m
to S2. Then, for the remaining sites Sj , j = 2 to n, Sj receives a value from Sj−1,
which is equal to R +

∑j−1
i=1 vi. Sj then adds its own value vj to it and sends

the new value (R +
∑j

i=1 vi) mod m to Sj+1. When the process finally goes to
Sn, Sn will send the final sum R +

∑n
i=1 vi to S1. S1 then subtracts the received

value by R and gets the actual sum of all the values.
Secure Union. Each site Si holds a set of items Ii ∈ I. The goal is to find the

union of the set of items
⋃n

i=1 Ii for n sites without revealing the private items to
any parties except the owners of the items. A commutative encryption is applied
in the solution, i.e., for any permutation of order p, q, EKp1

(...EKpn
(X)...) =

EKq1
(...EKqn

(X)...). First, each site encrypts its own items. Next, the site sends
the encrypted items to another site. When a site receives an encrypted item, it
would then encrypt the item as well and send it to another site which has not
encrypted the item yet. The process keeps going until all the sites have encrypted
all items. Due to the property of commutative encryption, if the encrypted value
is the same, it means the same item, so we can remove the duplicated items.
The encrypted items will then be decrypted by the sites one by one, and we get
the result we want.

Secure Comparison. Suppose there are two parties, Alice and Bob. Each of
them holds a number, a and b respectively. The problem is to find out the larger
number without revealing the numbers to each other. Assuming the number is
bounded by n, Yao [13] suggested a generic protocol which takes a linear time
complexity O(n) to solve the problem. There is a more efficient protocol for
solving this problem [9]. The protocol takes O((lg n)2) time and can securely
find the answer without a trusted third party using one-out-of-two oblivious
transfer.The details of this protocol can be found in [9].

5 Incremental Maintenance of Association Rule Mining
with Privacy Protection

We propose our solution SIMDAR (Secure Incremental Maintenance of
Distributed Association Rules) to perform an incremental update to the found
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association rules while protecting privacy. The group large itemsets (in old re-
sults) in the old sites, denoted L, is known to all old sites but not the new sites.
Let Lk be the set with all itemsets in L with size k. No individual site knows
the exact counts of these large itemsets (we will discuss it more in Sec 5.2). We
take the Apriori algorithm as the framework and construct our algorithm using
an iterative approach. The outline of SIMDAR is shown as follow:

1. Generating the candidate sets
2. Gathering information of candidates in the new data
3. Pruning itemsets and finding large itemset
4. Repeating steps 1-3 until no more large candidates can be found
5. Checking association rules

5.1 Candidate Set Generation

The aim of candidate set generation is to get a minimized list of itemsets Ck

which may be large globally in the k-th iteration.
For the first iteration k = 1, we do not have enough information to conclude if

an itemset must be small. So we simply include all the itemsets, Ck = I where I
is the entire set of items. If k > 1, a globally large itemset must be locally large
in some new sites or it is group large in the old sites [5]. The Apriori property
says that if some of the subsets with size k − 1 of an itemset X are small, X
cannot be large (proved in [1]). So, we first generate local candidates in the new
sites, Ci

k = Apriori gen(L′
k−1

⋂
LLi

k−1) at Si where L′
k−1 is the new globally

large itemsets with size k − 1 and LLi
k−1 is locally large itemset at site Si for

the (k − 1)-th iteration. One of the old sites prepares the group large itemsets
from the old large results, Cold

k = Apriori gen(L′
k−1)

⋂
Lk. Then we perform a

Secure Union to find the candidate sets Ck =
⋃n

k=1 Ci
k

⋃
Cold

k .

5.2 Information Collection and Storage

We can determine if an itemset is large without knowing the counts of itemsets
by combining Secure Comparison and Secure Sum [10]. Suppose there are n
sites, S1 to Sn, involved in the Secure Sum process of finding count of X . S1 is
the master site holding the generated random protecting key RX . The last site
Sn gets the sum with random key added,

∑
X.counti + RX , in the last step.

Then, if we want to check if
∑

X.counti ≥ c for some c, we can perform a Secure
Comparison between

∑
X.counti + RX and RX + c at S1 and Sn respectively.

Hence we can know if X is large while
∑

X.counti is protected. Instead of
summing the support counts, excess count of each item is summed in [10].

Definition 2. Let |DBi| be the number of total transactions in DBi. The excess
count of an itemset X at site Si corresponding to a support threshold s%, denoted
as X.excessi, equals X.counti − s% ∗ |DBi|.

Each site, instead of giving X.counti, supplies X.excessi as the input to Secure
Sum. We can check for large itemsets by checking

∑
X.excessi ≥ 0 using Secure
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Comparisons. However, since we have not calculated the exact value, problems
arise if we want to reuse this value. We need to store the information in a secure
and efficient way.

A simple approach in [10] is that each site stores its local counts of globally
large itemsets on its own and we can perform a Secure Sum whenever we need
the (excess) count of an itemset. It takes both more time and space compared
to normal storage without concerning privacy. Actually, we can store the counts
securely in a more efficient way. In our case, the excess counts are all generated by
Secure Sum. The master site S1 keeps the value of random number key R and the
last site Sn stores the protected count X.excess+R. These information are some
intermediate messages which the sites may store it on its own. Thus, storing the
protected excesses and the keys does not introduce any further privacy problem.
This requires less space and less access time. Sections 5.3 and 5.4 will discuss
how we can use such protected values in the future securely.

5.3 Pruning Mechanism and Checking Large Itemsets

A globally large itemset must be locally large in some new sites or group large
in the old sites. After we have got the candidate set Ck, each new site scans
database to get the counts of candidates. We can first prune away itemsets
which are locally small in all new sites and not large in the old sites. One site
from old sites and all the new sites take part in a Secure Union process. The
inputs to the Secure Union process are the locally large itemsets of the new sites
and the originally large itemset Lk. After the Secure Union process, we have a
possibly smaller candidate itemsets, C′

k.
The handling of the old large itemsets and the new potential large itemsets

is different. This eventually requires us to partition the candidate sets into two
groups of itemsets. Define P ′

k = C′
k

⋂
Lk and Q′

k = C′
k − P ′

k. For P ′
k, we just

add the excess counts in the new sites to the stored excess counts. For Q′
k, we

first sum the excess in the new sites. If an itemset is group large in new sites, we
scan the databases in old sites. However, as new sites do not know Lk, new sites
cannot distinguish the groups P ′

k and Q′
k and we should not reveal this piece of

information to the new sites. Our idea is to make the new sites have the same
view in our algorithm for all itemsets. We perform a merged process consisting
of four phases to find large itemsets and prune unnecessary candidates.

Phase 1: Pick up participants. All the new sites will join and we will pick
two old sites to join. For itemset X ∈ P ′

k, the two old sites are the sites holding
the protected excess count and the protecting key. They can supply stored excess
count of X . If X ∈ Q′

k, the two old sites are just randomly picked among all the
old sites. These two sites are picked just to make the process looks like the same
to the new sites.

Phase 2: Collect information. We perform a Secure Sum with all the
selected participants in phase 1. One of the participants from old sites is assigned
as the master site. The other participant from old sites cannot be the second
site or the last site of Secure Sum. So, we will have a new site holding the
protected sum and an old site holding the protecting key. The new sites use
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their X.excessi as the inputs to Secure Sum. If X ∈ P ′
k, the two old sites use

their stored protected excess count and the protecting key as the inputs. For
X ∈ Q′

k, the two old sites do not have the count for X in the old sites, and will
add 0 to the sum which does not affect the sum. Let SumX be the sum from
the Secure Sum. The last site gets SumX + RX where RX is the protecting key
hold in the master site. Note that, SumX means global excess count if X ∈ P ′

k,
or excess count in new sites otherwise.

Phase 3: Pruning. We check whether SumX ≥ 0 by a Secure Comparison.
All itemsets that cannot pass this condition are pruned. If X ∈ P ′

k, we are
checking whether X is globally large. If X ∈ Q′

k, we are checking if X is group
large in new sites.

Phase 4: Final check. The itemsets which passed the pruning with the
corresponding protected summed values are passed to old sites apart from the
two old sites participated in previous phases. The remaining part will be done
by the old sites. Let C′′

k contain the candidate sets after the second pruning. For
each itemset X ∈ C′′

k , if X ∈ P ′
k, X is large already. If X ∈ Q′

k, the itemset is
broadcasted among the old sites requesting a scan for its count. Another Secure
Sum is used to get the total excess count. Suppose S1 is the master site holding
the key RX of last Secure Sum. An old site Sk receives the protected excess of
X , SumX + RX from the new sites. Secure Sum continues, starts from Sk until
the last site Sl. Sk also adds another random number R′

X to prevent the two old
sites that have joined the previous Secure Sum process from discovering a partial
excess of a group of sites. Sk sends R′

k to Sl so that Sl can find the protected
actual excess count

∑
X.excessi + RX . Finally, we can then check whether X

is a globally large itemset by comparing the protected excess and the protecting
key at Sl and S1.

Lemma 1. SIMDAR privately computes the large itemsets L′
k from a list of

candidate itemsets Ck and revealing at most:

1. the old sites know some globally small candidates which are locally small in
all new sites and group small in old sites.

2. the old sites know some globally small candidates which are group small in
the new sites.

3. the old sites know some globally small candidates which are group large in
new sites but group small in old sites.

4. the new sites know some globally small candidates which are locally small in
all new sites and group small in old sites.

5. the new sites know some globally small candidates which are group large in
new sites but group small in old sites.

Proof. According to definition of secure computation in [8], a computation is
secure if the view of each party during the execution of the protocol can be
effectively simulated given the results, the listed leaked information (which is
acceptable), and the input of that party. So, we only need to show the existence
of such a simulator for each party in our proof. Secure protocols in Section 4 are
not discussed here. They are assumed to be secure in our proof.
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Before the pruning, the sites find C′
k by a Secure Union. The old sites can

find C′
k by using a set difference on Ck and the set of itemsets in point 1. The

new sites can find C′
k by using a set difference on Ck and the set of itemsets in

point 4. We will prove the security of pruning phase by phase.
Phase 1. The only communication in this phase is to tell all the sites which two

old sites will join the later operations. Each old site, for an itemset X ∈ Lk, knows
that the process will pick the sites which hold the protected excess information
of X . Otherwise, the old site can simulate as we pick any two old sites randomly.
This random picking simulation can also be applied in the view of each new site.

Phase 2. This phase consists of a Secure Sum only.
Phase 3. C′′

k is generated by pruning some itemsets in C′
k. The old sites can

generate C′′
k by using a set difference on C′

k and the set of itemsets in point 2.
One of the old sites also receives the summed information from the new sites.
Suppose the arithmetic in Secure Sum is mod m. The site randomly chooses a
real number in [0, m). As the summed value is protected by a random number
and these two numbers also fall in the range [0, m) (after mod m), the view of
the party and the output of the simulator are computationally indistinguishable.
The probability of seeing a specific value in both is equal.

The new sites can construct a simulated C′′
k , denoted C′′

k−sim. the simulator
first add all itemsets in L′

k into C′′
k−sim. Next, it adds the itemsets in point 5 to

C′′
k−sim. This gives us a simulated C′′

k for the new sites. Note that, the simulator
in the new sites ends here.

Phase 4. After the new sites gives C′′
k to the old sites and the corresponding

protected sums, the old sites can divide C′′
k into two groups. For an itemset

X ∈ Lk, X is automatically add to the large itemsets.
For an itemset X �∈ Lk, a Secure Sum is performed followed by a Secure

Comparison. We can create a simulator for these two protocols in a similar way
as proofs in these two protocols. For X ∈ L′

k, the simulation gives a positive
result in Secure Comparison. For X in itemsets in point 3, the result in Secure
Comparison in the simulation is negative. Note that the two old sites in phase
1 also join the Secure Sum. However, as Sk will add another random number to
the sum, each party in Secure Sum gets a value which has two or more variables
in [0, m). So, the simulator (which randomly picks a number in [0, m)) gives an
indistinguishable view of a party. 	


5.4 Checking Association Rules

First, we sum up the database size in each site by a Secure Sum process. All
the new sites join in this Secure Sum. As we may have already stored the to-
tal database size in the old sites, the two old sites storing the protected total
database size can be representatives and give the protected total database size
and the protected key as input to Secure Sum. The total database size is used
to find out the confidence of an association rule from excess counts of itemsets.
Let T =

∑n+r
i=1 |DBi|. Let RT be the generated random key in the Secure Sum

process to protect the total database size. At the final stage, a site Su holds the
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value of T + RT and another site Sv holds RT . Su and Sv will not store the
protected excess count and the protecting key of an itemset.

When we check an association rule X ⇒ Y , we need to check whether
Z.count
X.count ≥ c% where Z is X

⋃
Y . However, what we have got for X and Z

are X.count− s% ∗ T + RX , RX , Z.count− s% ∗ T + RZ , and RZ . These values
are available in two to four sites. Besides, we also get T + RT and RT from Su

and Sv. We may rephrase Z.count
X.count ≥ c% as follows:

Z.count

X.count
≥ c%⇐⇒ Z.count− c% ∗X.count ≥ 0

⇐⇒ (Z.excess + RZ)− c% ∗ (X.excess + RX)−RZ + (c% ∗RX)
+s%(1− c%) ∗ (T + RT ) + (c%− 1) ∗ s% ∗RT ≥ 0

The six terms in the final inequality can be derived from the stored values
we have. Thus, we can perform a Secure Sum process to add all these six terms
together and check if the sum is greater than zero.

6 Experiments

We carried out a set of experiments to analyze (i) the efficiency of the algo-
rithm, and (ii) the overhead introduced with privacy protection. We take CPU
time as the measurement of cost and do not take idle time into account. We im-
plemented two programs for comparisons. One program, which we call it SEC,
is a simple privacy preserving mining algorithm without considering incremental
maintenance. SEC (re)computes the new set of large itemsets and association
rules securely. Efficiency of our algorithm is measured by comparing the CPU
time used by SEC and our algorithm. We present the efficiency as the reduction
ratio of SIMDAR over SEC. Another program we implemented, which we call it
MAN, is a maintenance algorithm without privacy concerns. MAN uses simple
messages for communication instead of secure protocols. Overhead of privacy
protection of our algorithm is measured as the difference between CPU time
consumed by MAN and our algorithm.

Definition 3. Let tSEC (resp. tSIM , tMAN ) be the average CPU time consumed
by sites when running SEC (resp. SIMDAR , MAN).

Let EffPP denote the efficiency of maintenance algorithm with privacy pro-
tection, represented as a ratio. EffPP = tSEC−tSIM

tSEC
.

Let OHPP be the overhead of privacy protection. OHPP = tSIM − tMAN .

In the experiments, each site was simulated using a stand-alone computer (Dell
Optiplex Gx240SD Pentium 4 1.7 GHz computers running Linux). We gener-
ated a large number of transactions using IBM synthetic data generator [3]. We
supplied three parameters to the data generator: (i) number of transactions, (ii)
number of items, and (iii) the length of maximal potentially large itemsets. We
used the default values for other parameters. In order to introduce a larger dif-
ference between the large itemsets in the old sites and that in the new sites, we
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set the length of maximal large itemsets of databases in the old sites to be 6 and
that in the new sites to be 8. We set the number of items to 1000.

We performed three sets of experiments with the following varying factors:

Database sizes. The database size varies from 200K to 1M. We have 5 old
and 5 new sites. The support threshold is set to 2%.

Support thresholds. The support threshold varies from 0.75% to 2%. We
have 5 old and 5 new sites. The database size is set to 500K.

Ratios of the number of old sites to that of the new sites. We have
in total fifteen sites. The number of old sites increases from 3 to 12 linearly
while the number of new sites decreases from 12 to 3 respectively. The support
threshold is 2%. The database size is 500K.

6.1 Database Sizes

Figure 1 shows the average CPU time in the new sites and in the old sites in this
experiment. It shows that the CPU time is approximately linear to the database
size for both new and old sites. All programs have a similar CPU time in new
sites but SIMDAR and MAN have a lower CPU time in old sites. It shows that
the incremental maintenance technique can efficiently reduce the CPU time for
old parties. EffPP varies from 59.6% to 63.8% in the old sites. MAN has the
lowest CPU time in all cases because both SEC and SIMDAR have implemented
secure protocols like Secure Comparison which induce additional cost. However,
as the major workload actually goes to the scanning of databases, the additional
cost of secure protocols is relatively low. OHPP takes 2.5% to 8.8% of the CPU
time in the new sites and 2% to 13% of the CPU time in old sites.
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Fig. 1. Average CPU time with varying database size in each site, 5 old sites and 5
new sites, 2% support threshold

6.2 Support Threshold

Figure 2 shows the average CPU time in the new sites and in the old sites in this
experiment. MAN and SIMDAR perform better than SEC in the old sites. As the
support threshold decreases, the gap between SEC and SIMDAR increases sig-
nificantly. EffPP increases from about 63.4% (3% support threshold) to about
75.4% (0.75% support threshold). When the number of large itemset increases,
the number of candidate sets generated is exponentially increased. However, a
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Fig. 2. Average CPU time with varying support threshold, 5 old sites and 5 new sites,
500K transactions in each site

large portion of candidate sets is pruned. OHPP takes 5.4% to 8.9% in the new
sites and 4.1% to 25.0% of the CPU time in the old sites.

6.3 Ratio of Old Sites to New Sites

Figure 3 shows the average CPU time in the new sites and in the old sites in
this experiment. The average CPU time decreases when the number of old sites
increases for all three programs in all sites. It is because the total number of
large itemsets in the old sites is fewer than that in the new sites. Thus, when
the majority is the old sites with fewer large itemsets, the total number of large
itemsets and candidates decreases.
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Fig. 3. Average CPU time in the old sites with varying ratio of number of old sites to
new sites, 15 sites in total, 2% support threshold, 500K transactions in each site

EffPP increases when the proportion of old sites increases. EffPP at the
ratio of 3 old sites to 12 new sites is 58.8%. When the ratio increases to 12
old sites to 3 new sites, EffPP significantly increases to 79.1%. It is because
we have already known the large itemsets of the old sites which become the
majority. When the number of old sites increases, it becomes more difficult for
new sites to add new changes to the old results.

7 Conclusions

We studied an efficient algorithm to solve the maintenance problem of adding
new sites. The developed method SIMDAR can successfully reduce the number
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of candidate sets required to be scanned in the old sites. Experimental results
showed that our algorithm SIMDAR can effectively reduce the workload of the
old sites while the cost in the new sites is almost the same as in a recomputation.
The entrance cost for a new party is not reduced much but the maintenance cost
for an old party is much lower.

After working on the case of addition of new sites, we are now studying other
cases: (i) removing sites, and (ii) updates of databases in one or more old sites. It
is also challenging to consider the combination of all these cases, which is more
likely to happen in practice.
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Abstract. This paper is concerned with the problem of mining spatial events 
from the general Web. General search engine is inconvenient when searching 
vertical information (e.g., locations, experts) since it is designed for general 
purpose. For example, when finding the battlefields of World War II, listing the 
Web pages by relevance is not enough to tell users the spatial information 
clearly. A categorized result along with a map indicating these battlefields 
would be much easier to read. To present such a result, we propose a novel al-
gorithm called Spatial Event Miner (SEM) to mine spatial event information 
from the general Web. Given a simple keyword query, SEM first collects and 
ranks a set of relevant locations from the Web. Then, to describe the events 
happened in the collected locations, SEM detects and sums up salient phrases as 
event topics from the context of these locations. For each specific location, the 
hottest event topics are also listed for quick understanding. Finally, a clear  
spatial distribution on the events of a given query is presented to the users. A 
prototype system based on SEM is also implemented. Preliminary experimental 
results on a set of 40 queries show that the proposed approach can capture the 
spatial event information effectively.  

Keywords: Location and topic extraction, spatial events mining, evaluation. 

1   Introduction 

Search engine is a great tool for people to effectively access useful information from 
vast content on the Web. Given a query, it enables navigating a list of relevant Web 
pages, which provides shortcuts to the endless Web content. Although quite helpful, it 
is still inconvenient when searching vertical information, such as spatial information, 
since it is designed for general purpose. For example, when finding the battlefields of 
World War II, listing the Web pages by relevance is not enough to tell the spatial 
information clearly. The users have to read most of the results to get a general view 
about what happened in the battlefields and where are these locations. A categorized 
list along with a map indicating the locations would be much easier to read. 

Literally, searching spatial information is a conventional task in today’s cyber 
world. Quite a lot of people have greater needs to get the knowledge of the spatial 
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distribution on a certain topic. To name a few, they can be scientists who concern 
about where greenhouse effect and ozone depletion occur, or students working on 
historical researches to find out where some famous battles take places or company 
leaders who must keep one eye on the oversea markets where their products sell best. 
All of them can save much time if there exist any spatial information search services. 

Pioneer researchers have already studied this kind of service on traditional data 
sources. For example, Smith detects events by hand with date and location informa-
tion from historical documents to facilitate the review of past events [8, 9]. 

Unfortunately, there is no such service on the Web. Since “the Web is a sensor of 
the real world” [16], a mass of information, including news and thorough discussions 
usually appear in the Web when some hot events happened in the real world. It is 
actually a better and more useful source for spatial information search task. 

Given a query, there are three tough problems when fetching spatial information 
from the general Web. 

1. How to effectively retrieve the geographic information, ranging from continents to 
specific locations, from Web content without human labeling? I.e. How to make 
computer automatically recognize locations from relevant texts? Some ad-hoc loca-
tions are not known before the event happens. The location names are also evolv-
ing. Building a gazetteer (or location dictionary) is not enough. 

2. How to approximately describe events with Web texts? Browsing all the Web 
pages to find out the events is time-consuming. Several keywords describing the 
events would be a simple and quick way for the users to know the relevant events.  

3. How to draw a clear and understandable spatial distribution of the relevant events? 
For a lot of queries, like the battlefields of World War II, there are many relevant 
locations across the world. Instead of listing these locations, there should be a vis-
ual map to show them for clarity. The key point is to locate them on the map. 

In this paper, we name the above problems as Location Identification Problem, 
Event Detection Problem and Spatial Presentation Problem, respectively. To solve the 
first two problems, we introduce a new algorithm, Spatial Event Miner (SEM), which 
is composed of two sub-algorithms, Event Location Retrieval (ELR) and Event Topic 
Mining (ETM). In ELR, a hybrid approach including gazetteer and pattern based 
method is employed by SEM to extract a set of associated locations of the input 
query, and rank them according to the correlation. For example, the successful extrac-
tion of the locations range from “America” to “World Trade Center” for the query 
“September 11 2001” demonstrates the achievements because World Trade Center is 
not relevant to the query before the day. In ETM, statistical features are applied by 
SEM to detect and sum up salient phrases as event topics from the contexts of these 
locations. The summary of “terrorist attacks” for the same query shows the achieve-
ment on Problem 2. Finally, to solve the last problem, we design an easy-to-use inter-
face with retrieved locations classified by spatial scope. With the help of illustration, 
users can understand the spatial distribution of the events completely. 

A prototype system based on SEM is implemented as shown in Figure 1. The four 
numbered components are: ○1 the event distribution classified by spatial scope. ○2 the 

hottest event topics relevant to the selected location. ○3 some event descriptions for 

the selected location. ○4 geographic information using an online map service. 
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Fig. 1. A sample snapshot of SEM on the query “PAKDD 2008”  

To evaluate the effectiveness of the SEM algorithm, 40 queries in different fields 
are collected and tested. Thousands of spatial events are discovered. The results show 
that with the help of SEM, people can understand the spatial events more effectively. 

The rest of the paper is organized as follows. Section 2 discusses the related work. 
Section 3 generally describes the proposed method. Section 4 discusses the algorithms 
of Event Location Retrieval and Event Topic Mining. The experimental results are 
presented in Section 5, followed by the discussion on conclusion and future work. 

2   Related Work 

2.1   Event Location Retrieval 

Event location retrieval, so-called geoparsing, is widely applied in various fields 
including scientific research, vertical search engine, personal annotation mining, etc.  

Most published algorithms in this category were based on various NLP heuristics.  
Li et al. presented in [5] a rigorous 5-step algorithm that was typical of many such 
publications. The authors reported a 93.8% precision on news and travel guide data. 
Improved algorithms were also proposed by Bilhaut et al. [2] and Smith et al. [10] on 
the data of French documents and digital library of historical texts respectively. The 
suggestion to apply such techniques to Web pages was first made by McCurley in [6]. 
His method, however, depends heavily on information such as postal tracts and phone 
directories that is much harder to come by in most parts of the world. 

More seriously, all the methods mentioned above can only identify locations that 
are in the gazetteer list. It would be quite absurd if “World Trade Center” was not 
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found for query “September 11 2001” only because it was not in the gazetteer. In this 
paper, a hybrid approach involving gazetteer algorithm and pattern based extraction is 
introduced into SEM for not only improving the accuracy of the identification but also 
improving the recall, i.e., finding the locations not exist in the gazetteer. 

2.2   Event Topic Mining 

Event topic mining is to find out something that happens at a particular time and 
place (by Allan et al. [1]). Since 1996, it has been well studied in the community of 
Topic Detection and Tracking (TDT). Allan et al. focused on a strict on-line setting 
[1]. Yang et al. studied the problem of retrospective and on-line event detection [13], 
a two stage method was also proposed by them for automated detection of chrono-
logically ordered documents [14]. However, as occurring in a certain location, most 
TDT systems do not directly take geographical location into account. More recently, a 
new approach of detecting event was put forward by Zhao et al. from the evolution of 
click-trough data [16]. Instead of their special event detection, we focus on detecting 
events from the general Web pages with respect to the users’ query. 

The summary of events has also been studied for a long history. The work we are 
concerned is event summarization over locations. Smith studied the subject on mining 
spatio-temporal events from historical documents [8, 9], which summarizes events 
with date and location information. Tye et al. focused on the problem of extracting 
location and event semantics for tags [12] that are assigned to photos on Flickr1, a 
popular photo sharing website. Similar subjects on mining spatio-temporal events 
were also studied from RSS feeds [3] and weblogs [7]. Differently, we use phrases 
automatically retrieved from Web pages as summaries. 

3   Algorithm Overview 

The purpose of SEM is to help users understand the spatial distribution and the detail 
information of the events relevant to a given query. The snippets returned from the 
search engine will be our data source since search engine can collect query related 
data from the Web easily and widely.  

Given a query Q, SEM will run as the stream line in Table 1. In Stage 1, since few 
geographic names can be retrieved by directly querying search engine, we expend the 
query to collect more spatial information. The details of Stage 1 will be discussed in 
Section 4.1. In Stage 2, we extract the locations from collected snippets. Some fea-
tures are introduced to rank these locations and decide m most credible locations 
where some events actually happened. The details of Stage 2 will be discussed in 
Section 4.2. In Stage 3 we first collect each location’s snippets and then take noun 
phrases in the snippets as candidate event topics. To extract those events that are most 
likely to be of interest to the user, we rank and get n most salient event topics. The 
details of Stage 3 will be discussed in Section 4.3. Finally, SEM outputs a list of clas-
sified locations, together with their associated event topics and descriptions. 

                                                           
1 http://www.flickr.com 
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Table 1. Spatial Event Miner (SEM) algorithm 

Algorithm SEM(Q) 
Input Given the search phrase as query Q. 
Stage 1 Snippet Acquisition 
i) Expand Q with prepositions, one preposition at a time. 
ii) Feed each expanded query to a search engine, store the returned snippets together. 
Return A snippet collection S = {s1, s2, …, sl}. 
Stage 2 Location Extraction 
 For each si Do 
i) Extract original location strings from si. 
ii) Rank these location strings by some correlation features and take the top m to get a 

location collection. 
Return A location collection P = {p1, p2, …, pm}, each pi has one or more contexts in S. 
Stage 3 Topic Extraction 
 For each pi Do 
i) Select all si from S which contain pi as descriptions Spi. 
ii) Extract nouns and noun phrases as candidate event topics from Spi. 
iii) Rank all the candidate topics, extract top n based on a set of statistical features. 
Return An event topic collection T = {t1, t2, …, tn}, each ti is represented by a noun 

phrase. 
Output Display to the user with the well-organized events including locations, topics and 

descriptions. 

4   Mining Spatial Event from the Web 

4.1   Data Retrieving and Query Expansion  

To prepare a data source of a given query from the Web, we use search engine. For 
example, we can directly query a search engine with “September 11 2001”, snippets 
such as “September 11, 2001 attacks - Wikipedia, the free encyclopedia” and “The 
September 11 Digital Archive” can be retrieved. 

However these snippets contain few location names. To retrieve more location 
names for a given query, we define a set of linguistic patterns for retrieving the pages 
which may contain more location information. In our common sense, geographic 
phrase often follows a preposition. Therefore, 19 frequently-used location preposi-
tions, which are divided into 3 groups as follows, are used by us to expand the query 
in total. Some example snippets are also listed for each group. 

P1: such as in, on and at which express an accurate location. 
Snippet: the history of the September 11, 2001 attacks in New York. 
P2: such as near, beside and around which express an approximate location. 
Snippet: Located near the Afghan border. 
P3: such as above and through which express other location prepositions 
Snippet: Department records of 911 calls from the World Trade Center. 

We get top l snippets for each expanded query from search engine and put them 
together to form a snippet collection S.  
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4.2   Mining Locations for a Query 

The purpose of this step is to extract the location names from the collected snippets. 
To mine the useful locations from these Web page snippets which are unstructured, 

noisy and changeful, we employ a gazetteer to recognize the common locations, and a 
pattern-based approach to recognize the locations that are not listed in the gazetteers. 

Gazetteer is used as a dictionary of common geographic vocabulary, which can 
help to extract the general locations names accurately. For example, “America” and 
“New York” can be easily extracted by gazetteer for query “September 11 2001”. 

However, it is not enough for a gazetteer to detect the whole geographic space 
since many location names are seldom known to the public or being created and 
evolving every day. In order to detect these locations more freshly and specifically, 
we utilize 117 patterns divided into 2 groups as follows to give the unmatched noun 
phrases a second chance. “World Trade Center”, for example, can also be extracted 
for the same query mentioned above while gazetteer misses it. 

Q1: man-made pattern such as XX Building, XX Hospital, XX School etc. 
Q2: nature pattern such as XX Sea, XX Island, XX Falls etc. 

Now we have collected a set of candidate locations such as “World Trade Center”, 
“Los Angeles” and “Asia”. Apparently, “Asia” is not strongly relevant to the query. It 
is extracted because some Asian media has reported the tragedy. Therefore, a ranking 
method should be employed. It should assign a higher rank to a more relevant location. 
I.e. “World Trade Center”, as where the tragedy happened, should be ranked first. “Los 
Angeles”, as the destination of the accident plane, should also be ranked high. 

Location Relevance, denoted by LR(p), is defined to calculate the correlation be-
tween the given query Q and the extracted location p. It can be expressed by: 
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where |p| means the hits number for querying p from the search engine and |Q∩p| 
means the number for querying Q and p. We place a high weight on the intersection 
size between Q and p and take the consideration of p’s size as compensation. 

Location Confidence, named as LC(p), is used to emphasize the location fre-
quently appear after the preposition. For example, given the query “September 11 
2001”, “Asia” and “World Trade Center” have similar total appearances. However, 
“World Trade Center” appears more frequently after the preposition, which indicates 
“World Trade Center” connects with the query more closely. 
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where T denotes the total times of p appearing in the snippet collection S while TAP 
means the times that p appears after the preposition. We focus more on the TAP for its 
confidence and an exponential function is used for this purpose. 

We combine these two properties with multiplication for their both necessity. 

)()()( pLCpLRpScore ⋅= . (3) 

Finally we rank all the extracted locations by their score values and pick up the top 
m to form a location collection P. 



 SEM: Mining Spatial Events from the Web 399 

4.3   Summarizing Topics for Query 

The purpose of this step is to mine the event topics from the extracted locations. Due 
to the high complexity of the condition that varied events rarely share the common 
phrases, we need acquire a better understanding of nature language to find event top-
ics. Yet, by our observations as follows, the event topics extraction can be solved by a 
salient phrase ranking method [15] based on existing data mining techniques. 

1. The pages which contain both the given query and its locations often talk about the 
event happened in this location. For example, the pages containing "September 11 
2001" and "World Trade Center" often talk about "attack" or "terrorism". 

2. The phrase which is referred to the event topic also is a salient phrase in the data 
set. For example, "attack" may have more frequency than other terms. 

3. The meaningful topics are more likely to be nouns or noun phrases. For example, 
“national commission” is a meaningful topic for "September 11 2001". 

We parse the snippets with an NLP tool and use nouns and noun phrases as our 
candidates for extracting topics. To demonstrate meaningful event topics of a loca-
tion, we extend the existing salient phrase ranking method on candidate locations by 
following the statistics features. 

Topic Frequency / Inverted Snippet Frequency (TFISF) is defined in the same 
fashion as TFIDF and could be expressed by  
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where TF(topic) is the total count of topic in all the snippets S and SF(topic) is the 
number of the snippets containing topic. 

Intra-Cluster Similarity (ICS) [15] is the average cosine similarity between 
topic’s associated snippets and their centroids. It is defined as: 
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Snippet s and O(topic) are represented as their vector forms in Vector Space 
Model.  

Cluster Entropy (CE) [15] is used to measure the distinctness of a topic. P(t|topic) 
is the probability of term t occurring in the documents where topic also occurs 
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Topic Independence (IND) is used to measure the independence of a topic in [4]. 
We confirm topic’s independence when its left and right context is random. The fol-
lowing is the equation for INDRorL which is the independence value for topic’s left or 
right context, where 0·log0 is defined to be 0: 
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Spatial Salience (SS) is implied by the correlation between variable T, the pres-
ence or absence of topic and variable P, the places contained in snippets. 

Suppose that there are no relationship between T and P. In the statistics [11] em-
ployed by SS, suppose that {p1, p2, …, pm} denote the set of locations we have ex-
tracted, ai denotes the count of snippets containing both pi and topic, bi denotes the 
count of snippets containing pi but not topic. The equation for the SS statistics is: 
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We use the linear combination of the above five properties as the salience score of 
topic t: 

)()()()()()( 543210 tSSwtINDwtCEwtICSwtPFISFwwtScore +++++= . (12) 

According to their salience scores, we sort all the candidate event topics for each 
place and select n most salient ones to form a topic collection T. 

5   Experiments 

5.1   Experimental Steps 

To evaluate the effectiveness of SEM, a prototype system is implemented based on 
SEM. To step into the experiment, some preparations are done as follows. 

1. The test query set consists of 40 queries are distributed in different fields, such as 
“iPhone”, “Formula 1”, “AIDS” and ”Yao Ming”, which reflects varied aspects of 
the utility of our system. The system collects top 100 snippets for each expanded 
query from Google. The sum of snippets is 1900 per input query for 19 different 
pre-defined patterns. Each snippet is tagged by a NLP tool, LingPipe2.  

2. To run gazetteer based extraction mentioned in Section 4.2, a gazetteer collected 
from Wikipedia3 is used by our system which contains all of the world’s continents, 
countries and many of its cities (those having 5,000 inhabitants or more). It also 
contains states and provinces as well as many natural regions. 

3. In Section 4.1, top half of the whole ranked locations are picked up. For each loca-
tion, top 10 topics are chosen in Section 4.2. To calculate the weights of the linear 
combination mentioned in Section 4.3, 5 manual labeled queries listed in Table 2 
are used which contain total 21 training topics per query and is divided into 10, 5 
and 1 scores respectively. The result for w0, w1, w2, w3, w4, and w5 are 2.720, 
37.933, -3.597, 0.195, 0.205, and 0.002, respectively. 

                                                           
2 http:// www.alias-i.com/lingpipe 
3 http://www.wikipedia.org 
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4. In the stage of topics ranking, the familiar situations that Score(t1)≥Score(t1∪t2)  
may happen while t1∪t2 can describe the event more detailedly than t1. For exam-
ple, we query “September 11 2001” and both “attacks” and “terrorist attacks” will 
be found for place “United States”. Although the former topic has a higher score, it 
should be replaced for the detailed description of the latter one. 

5. Google Maps API4 is also prepared to build a friendly interface for easy under-
standing of spatial distribution. 

More experiment data including the distribution of 40 queries, patterns for snippets 
retrieval and location identification and manual labeled queries for linear regression 
are available in online5. 

Table 2. Manual labeled queries with example marked topics 

mark\
query October 1 1949 Cloning Wright brothers PAKDD 2007 Gulf War 

10 mao zedong therapeutic flight conference oil 
5 announcement opposition innovation submissions commander 
1 flowers wisdom birthplace references joke 

5.2   Results of Place Mining 

In order to evaluate how effectively each kind of patterns defined in Section 4.2 dis-
covers the pages containing places with comparison to traditional Web searching, we 
take “World War II” as an example to check out whether the returned pages contain 
more location names. The results are shown in the following Table 3. 

Table 3. Statistics of pattern-based retrieval 

Pattern-Based Retrieval  Original 
Total P1(3) P2(5) P3(11) 

#Snippets 100 1900 300 500 1100 
#Locations 42 1563 302 504 757 
#Loc-Snip Rate 42% 82.26% 100.01% 100.01% 68.82% 

Through the experiment we can find that our approach increases the percentage of 
geographic information quantity in the returned snippets by 40%, especially with P1, 
the accurate-locations pattern and P2, the approximate locations-pattern. 

In Table 4, the experiment shows the effectiveness of pattern-based extraction of 
specific place names described in Section 4.2, which share a 4.58% rate in the 
whole location extraction, Furthermore, in Table 5, it seems that these fresh loca-
tions which missed by gazetteer are usually more sensitive to the query. On the 
other hand, more man-made places are extracted with Q1 pattern than nature places 
with Q2 pattern. 

                                                           
4 http://www.google.com/apis/maps 
5 http://apex.sjtu.edu.cn/apex_wiki/hay/sem 



402 K. Xu et al. 

Table 4. Statistics of pattern-based extraction of a query 

 Total Q1 Q2 
#Snippets 1900 1900 1900 
#Locations 87 63 24 
#Loc-Snip Rate 4.58% 3.32% 1.26% 

Table 5. Comparison between pattern-based and no pattern-based extraction (Top 5 results) 

Query September 11 2001 
Pattern World Trade Center United States New York America Washington 

No Pattern United States New York America Washington Iraq 
Query the Eight Power Allied Force 

Pattern China Beijing Summer Palace Taiwan Shanghai 
No Pattern China Beijing Taiwan Shanghai Shandong 

Table 6 demonstrates the results of location mining for 10 queries. For each query, 
at most 8 locations are displayed because of limited space. More results are also 
available online. We can see that our system is capable of discovering each input 
query’s event locations effectively and accurately. 

Table 6. Event location discovery 

September 11 2001 Berlin Wall 8848m SARS iphone 
World Trade Center 
United States 
New York 
America 
Washington 
Iraq 
Afghanistan 
Pennsylvania 

Berlin 
Berlin wall 
Germany 
Europe 
Soviet 
West Berlin 
United States 
East Germany 

Everest 
Nepal 
Mount Everest 
Kathmandu 
India 
China 
Highest Mountain 
Highest Peak 

China 
Hong Kong 
Asia 
Canada 
Beijing 
Taiwan 
United States 
Singapore 

New York 
China 
Europe 
Apple Store 
Canada 
America 
France 
Japan 

Mona Lisa World War II Korean Hostage PAKDD 2008 Atomic Bomb 
Paris 
Louvre 
France 
London 
Mona Lisa Restaurant 
Italy 
Chicago 
Amazon 

Europe 
United States 
Pacific 
America 
Germany 
Pearl Harbor 
Japan 
France 

Afghanistan 
Iraq 
Kabul 
Korea 
South Korea 
Seoul 
China 
Saemmul Church 

Japan 
Osaka 

Hiroshima 
Japan 
Nagasaki 
United States 
New York 
New Mexico
Pacific 
Manhattan 

5.3   Results of Topic Mining 

Table 7 shows event topics summary for 4 input queries. Here presents top 3 locations 
and their top event topics respectively. Results show that the terms representing the 
event are meaningful. 
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Table 7. Event topic discovery 

September 11 2001 
World Trade Center pentagon september, twin towers, memorial Web pages 
United States terrorist attacks, national commission, full resolution image 
New York archive, september 11th, real life tragedy, special reports 
Korean Hostage 
Afghanistan killed korean hostage, held hostage, developments, taliban say 
Iraq taliban thugs, militants, executed, kim sun 
Kabul afghan government, german woman kidnapped, korean hostage talks 
PAKDD 2008 
Japan pakdd 2008, pacific asia conference, 2008 osaka 
Osaka mining, data, knowledge discovery, international conference, best 
Atomic Bomb 
Hiroshima atomic bomb dropped, 6th august, peaceful world, radiation research 
Japan cause, president truman, atomic bombs, decision, drop 
Nagasaki atomic bomb survivors, atomic bomb museum, atomic bomb attack 

5.4   Case Studies 

5.4.1   Time and Domain Restriction in the Topic 
Table 8 shows that time and domain restriction for a larger-scale query can also im-
prove the result. For example, historical venues will be extracted when directly query-
ing “PAKDD”. However, if we restrict the time of “PAKDD” to “2008”, we will get 
the more accurate location: “Osaka” and “Japan”. 

Table 8. Restriction result 

PAKDD Singapore China Hong Kong Australia Asia 
PAKDD 2008 Japan Osaka    
Tourist London America India Canada Japan 
Space Tourist Space Station Russia Kazakhstan Moscow Europe 

5.4.2   Time Evaluation in Event Search 
As we know, the number of Web pages increases every minute especially when a 
topic becomes hot. Table 9 shows the location for query “Formula 1” at September 6 
and 11 respectively. In the former result, “Spain” and “Paris” become hot because of 
the change of match system, while other locations are all the recent hosts. “Monza” 
and “Italy” pop out in the latter result due to the latest F1 match in Monza, Italy. It 
has come to an end with the winner of Alonso in September 9. 

Table 9. Time evaluation result 

Formula 1(9/6) Istanbul Europe Spain Paris Turkey 
Formula 1(9/11) Monza Istanbul Paris Europe Italy 
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6   Conclusion and Future Work 

In this paper, we studied the problem of event location retrieval and event topic sum-
mary from the Web. The main contributions are: 

1. The proposal to study the problem of spatial event mining with the general Web. 
2. The proposal of SEM, for mining location information and summarizing event 

topics from the general Web in which data is unstructured, noisy and changeful.  
3. The implementation of SEM and a friendly interface with geographic support 

which offer an easy understanding for spatial distribution. 

In our future work, we plan to cluster the extracted locations more hierarchically 
and disambiguously, based on which, more experiments will be done to evaluate SEM. 
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Abstract. Alternating Decision Tree (ADTree) is a successful classifi-
cation model based on boosting and has a wide range of applications.
The existing ADTree induction algorithms apply a “top-down” strat-
egy to evaluate the best split at each boosting iteration, which is very
time-consuming and thus is unsuitable for modeling on large data sets.
This paper proposes a fast ADTree induction algorithm (BOAI) based
on “bottom-up” evaluation, which offers high performance on massive
data without sacrificing classification accuracy. BOAI uses a pre-sorting
technique and dynamically evaluates splits by a bottom-up approach
based on VW-group. With these techniques, huge redundancy in sort-
ing and computation can be eliminated in the tree induction procedure.
Experimental results on both real and synthetic data sets show that
BOAI outperforms the best existing ADTree induction algorithm by a
significant margin. In the real case study, BOAI also provides better
performance than TreeNet and Random Forests, which are considered as
efficient classification models.
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1 Introduction

Boosting procedure has been proved to be very helpful to improve the accuracy
of decision tree classifiers. AdaBoost, introduced by Freund and Schapire [1],
is the most commonly used boosting procedure. It has been successfully used
to combine with decision trees like C4.5 [2], and produces very good classifiers.
However, the output classifiers are often large, complex and difficult to inter-
pret. Freund and Mason solved this problem by proposing Alternating Decision
Tree (ADTree) [3] and an induction algorithm based on AdaBoost. ADTrees can
produce highly accurate classifiers while generating trees in small size which are
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easy to interpret. They can also provide a measure of classification which helps
to rate prediction confidence. Based on these attractive features, ADTrees have
a wide range of applications, such as customer churn prediction, fraud detection
and disease trait modeling [4,5].

Whereas ADTree is a very popular model in classification, it faces a problem
of training efficiency on huge volumes of data. The original induction algorithm
proposed by Freund and Mason performs split evaluation with a top-down strat-
egy at each boosting round. The algorithm is very expensive to apply to large
knowledge discovery tasks. Several techniques have been developed to tackle the
efficiency problem. However, there still be a large space to improve.

For very large data sets, several techniques have been developed, mainly based
on traditional decision trees. SLIQ [6] and Sprint [7] use new data structures
and processing methods to scale decision trees to large data sets. PUBLIC [8]
integrates the MDL “pruning” phase into the tree “building” phase. RainForest
[9] uses AVC-groups which are sufficient for split evaluation to speed up tree
construction. BOAT [10] provides techniques to build trees based on a subset
of data and results in faster tree construction. All these algorithms are based
on traditional decision trees, which compute the split criteria only based on the
information of the current node, and thus can not directly apply to ADTree.

With regards to the scalability of ADTree, several optimizing methods are
introduced in [11]: Zpure cutoff, merging and three heuristic mechanisms. The
former two methods gain little efficiency until reaching 50 boosting iterations.
Although the heuristic methods reduce the induction complexity obviously, they
generate trees that are different from the original trees. In [12], ADTree is up-
graded to first order logic and three efficiency improvements are proposed. The
caching optimization, which stores the success (failure) of each rule for each
relevant instance in a bit-matrix, was shown to be most effective. Neverthe-
less, the additional memory consumption grows fast in the number of boosting
rounds.

To address the efficiency challenges, we introduce a novel ADTree induction
algorithm called BOAI1 that gains great efficiency in handling large data sets
without sacrificing classification accuracy. BOAI uses a pre-sorting technique
and a bottom-up evaluation approach based on VW-group to avoid much re-
dundancy of sorting and computation in the tree building process. To validate
the efficiency of BOAI on large data sets, we conduct comprehensive experiments
on both synthetic and real data sets. We also apply BOAI to a real data min-
ing application to evaluate its performance. The results are very encouraging as
BOAI offers significant performance improvements.

The remainder of this paper is organized as follows. Section 2 describes
ADTree and its Induction algorithm. Section 3 introduces the new techniques
used in BOAI and then describes the algorithm and implementation issues. Sec-
tion 4 presents the experimental results on both real and synthetic data. Finally,
section 5 concludes the paper.

1 The acronym BOAI stands for BOttom-up evaluation for ADTree Induction.
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2 Preliminaries

2.1 Alternating Decision Tree

Unlike traditional decision trees, Alternating Decision Tree (ADTree) contains
two kinds of nodes: decision nodes and prediction nodes. Each decision node
involves a splitting test while each prediction node involves a real-valued number
(Fig. 1 shows an example). A decision node splits sets of training instances into
two parts with each part belonging to a prediction node. An instance defines a set
of paths along the tree from the root to some of the leaves. The classification of
an instance is the sign of the sum of the prediction values along the paths defined
by this instance and the sum can be interpreted as a measure of confidence. For
example, the classification of the instance (age, income) = (35, 1300) is sign(0.5-
0.5+0.4+0.3) = sign(0.7) = +1. The prediction nodes in the instance’s defined
paths are shadowed in the figure.

+0.5

Age <= 40 Income <= 1000

-0.5 +0.2 -0.6 +0.3

Income <= 1200 Age <= 50

-0.2 +0.4 +0.1 -0.1

Y N

Y N Y N

Y N

:Prediction node

:Decision node

Fig. 1. An example of ADTree

2.2 ADTree Learning with AdaBoost

Freund and Mason presented the ADTree induction algorithm with the appli-
cation of AdaBoost [3]. There are two sets maintained in the algorithm, a set
of preconditions and a set of rules, denoted as P and R respectively. C denotes
the set of base conditions. The algorithm is given as Algorithm 1. The induc-
tion procedure can be divided into two phases at each boosting iteration: Split
Evaluation and Node Partition. In the evaluation phase (line 2-5), the algorithm
evaluates all the splits basically by a top-down strategy. It traverses the tree by
a depth-first search. For each prediction node, it scans the instances at the node
to compute the total weight of the instances that satisfy each possible condi-
tion. Before the computation, the instances need to be sorted on each numeric
attribute to obtain the possible splits of the attribute. The best split is found by
minimizing Z-value of the function that measures the weighted error of the rules
(Equation 1). In the partition phase (line 6-8), a new rule is added to set R and
two prediction values are calculated. A decision node is created according to the
rule and two prediction nodes are created associated with the prediction values.
Applying the rule, the instances are split into two parts with each part propa-
gated to one of the prediction nodes. After each boosting round, the weights of
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the instances belonging to these two prediction nodes are updated, decreasing for
correctly classified instances and increasing for incorrectly classified instances.
As described above, the complexity of the algorithm mainly lies in the evaluation
phase because of the huge sorting and computational cost. They will result in
low-efficiency when training on massive data sets.

Algorithm 1. ADTree Learning with an application of AdaBoost
Input: S = {(x1,y1), . . . , (xm,ym)} | xi ∈ Rd , yi ∈ {-1,+1}}
Initialize. Set each instance’s weight wi,0 = 1.0, 1 ≤ i ≤ m. Set the rule set R1 =

{True}. Calculate the prediction value for the root node as a = 1
2

ln
W+(c)

W−(c)
, c = True.

W+(c) (resp. W−(c)) is the total weight of the positive (resp. negative) instances
that satisfying condition c. Adjust the weights of the instances at the root node as
wi,1 = wi,0e

−ayi .

1: for t = 1 to T do
2: for all c1 such that c1 ∈ Pt do
3: for all c2 such that c2 ∈ C do
4: Calculate

Zt(c1, c2) = 2(
√

W+(c1 ∧ c2)W−(c1 ∧ c2)+
√

W+(c1 ∧ ¬c2)W−(c1 ∧ ¬c2)) + W+(¬c1)
(1)

5: Select c1, c2 which minimize Z(c1, c2) and set Rt+1 = Rt ∪ {rt : precondition c1,

condition c2, two prediction values a = 1
2

ln
W+(c1∧c2)+1

W−(c1∧c2)+1
, b = 1

2
ln

W+(c1∧¬c2)+1

W−(c1∧¬c2)+1

}
6: Pt+1 = Pt ∪ {c1 ∧ c2, c1 ∧ ¬c2}
7: Update weights: wi,t+1 = wi,te

−rt(xi)yi , rt(xi) is the prediction value that the
rule rt associates with the instance xi.

3 BOAI - Bottom-Up Evaluation for ADTree Induction

In this section, we present BOAI, an efficient ADTree induction algorithm. Un-
like the original top-down mechanism, BOAI performs split evaluation using a
bottom-up approach. It gains significant efficiency of tree induction while main-
taining the classification accuracy. In addition, it can easily combine with the
optimizations in [11].

To bring down the large cost in the evaluation phase, BOAI uses a pre-sorting
technique and applies a bottom-up evaluation based on VW-group for split eval-
uation. The pre-sorting technique aims at reducing the sorting cost to linear
time. The bottom-up evaluation approach evaluates splits from the leaf nodes to
the root node. On each prediction node, the evaluation is performed on a VW-
group, which stores sufficient statistics for split evaluation. The VW-group can
be built up in linear time by a bottom-up merging process. The combination of
these techniques enables BOAI to induce ADTree efficiently on large data sets.
Following are details about these techniques.
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3.1 Pre-sorting Technique

BOAI uses a special sorting technique as a preprocessing step. It works as follows.
At the beginning of the algorithm, the values of each numeric column in the
input database are sorted separately. Suppose for attribute A, the sorting space
of its distinct values is x0, x1, . . . , xm−1. These values can be mapped into an
integer value field 0, 1, . . . , m− 1, which reflects the offset address of each value
in the sorted space. Then the original values in the data are replaced with their
mapped values in the value field. As the replaced values preserve the original
value distribution on the attribute, it will not affect the following evaluation on
the attribute. The benefit of this method is that we can easily use the actual
attribute values to index into a sorted array. The detailed analysis is given in
Sect. 3.3.

3.2 Data Structure

Note that for a prediction node p, the possible splits of an attribute A can be
evaluated separately from other attributes. Besides, the total weight of the in-
stances that satisfy each condition on each prediction node is needed to compute
for split evaluation. Let F (p) denote the instances projected onto node p. Sim-
ilar to the AVC-set structure in [9], the VW-set (The acronym VW stands for
Attribute-Value, Class-Weight) of a predictor attribute A at node p is defined to
preserve the weight distribution of each class for each distinct value of A in F (p).
Each element in a VW-set contains an attribute value field and a class-weight
field (operations on the class-weight are performed on weights of two classes (pos-
itive and negative) respectively). The class-weight field can be viewed as caching
W+(A = v) and W−(A = v) for each distinct attribute value v of A. Suppose in
F (p), v0, ..., vm−1 are the distinct values of A. If A is a categorical attribute, the
split test is of form A = vi, where 0 ≤ i ≤ m − 1. If A is a numeric attribute,
the split test is of form A ≤ (vi + vi+1)/2, where 0 ≤ i ≤ m− 2, and v0, ..., vm−1

are in sort order. For each possible condition c on A, W+(c) and W−(c) can be
easily calculated by scanning the VW-set of A at p. The VW-group of node p is
defined to be the set of all VW-sets at node p, and p can be evaluated based on
its VW-group, whose result is the same as that of being evaluated via scanning
F (p). The size of the VW-set of an attribute A at node p is determined by the
number of distinct values of A in F (p) and is not proportional to the size of
F (p).

3.3 Bottom-Up Evaluation

The great complexity in the split evaluation is due to the exhaustive explor-
ing on all possible splits at each boosting round. Since the weights of instances
change after each round, we can not simply ignore evaluating any possible split
in the following round. A fundamental observation is that there are recurrences
of instances at the prediction nodes. When evaluating the prediction nodes re-
cursively from the root to the leaves, the instances in fact have a great deal
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of computing and sorting overlap. To eliminate this crucial redundancy, we pro-
pose a bottom-up evaluation approach. The bottom-up approach evaluates splits
from the leaf nodes to the root node based on the VW-group of each node. It
uses the already computed VW-groups of the offspring nodes to construct the
VW-groups of the ancestor nodes. The approach of VW-group construction is
described as follows.

For a leaf prediction node p, it scans the instances at p to construct the VW-
set of each attribute. For a categorical attribute A, a hash table is created to
store the distinct values of A. As the attribute values in the VW-set of A are not
required to be sorted, the VW-set can be constructed by collecting the distinct
values of A from the hash table and computing the weight distributions on these
values. For a numeric attribute A, the attribute values on A need to be sorted.
With the pre-sorting technique, the sort takes linear time in most cases. Suppose
there are N instances at node p and the mapped value field on A is range from 0
to M − 1, where M is the number of distinct values of A. It takes one pass over
N instances mapping their weights into the value field of A. Then the attribute
values together with their corresponding weights will be compressed into the
VW-set of A. Fig. 2 shows the schematic for this construction process. The total
time for getting sorted attribute values in the VW-set is O(N + M). For most
cases, M is smaller than N , in which case the running time is O(N). If M is
much larger than N , the algorithm switches to quick sort.

Income Class Weight

0 0 0.8

1 0 0.8
3 1 1.2
1 0 0.8
1 1 1.2

0 0 0.8
3 1 1.2

3 0 0.8

Value PosW NegW
0 0.0 1.6

1 1.2 1.6
2 0.0 0.0

3 2.4 0.8
4 0.0 0.0

Value PosW NegW

0 0.0 1.6
1 1.2 1.6

3 2.4 0.8

instances

value space
VW-set of Income

Map into the value field compress to VW-set 

Fig. 2. Construct VW-set via scanning instances (numeric attribute): Example

For an internal prediction node p, the VW-group is constructed through a
merging process, with the VW-set of each attribute generated at a time. Each
generation only require time O(m) where m is the total number of elements in
the two merging VW-sets. Suppose Z is the VW-set of attribute A at node p and
X, Y are the VW-sets of A at node p1 and p2 which are two prediction nodes
under a decision node of p. If A is a categorical attribute, as the attribute values
in X and Y are not sorted, Z can be generated by performing hash join on the
attribute values in one pass over X and Y . If A is a numeric attribute, we can per-
form the merge procedure similar to merge sort to generate Z, and the attribute
values in Z are kept in order after merging. Fig. 3 shows this process pictorially.

Since the VW-group of each prediction node can be constructed by the bottom-
up approach, and each prediction node can be correctly evaluated based on its
VW-group, the global minimum Z-value found by evaluating all the prediction
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nodes is correct. Because the best split found at each boosting round is correct,
the tree induced by the bottom-up evaluation approach is the same as that
induced by the top-down evaluation approach.

The reduced cost by using the bottom-up evaluation is remarkable. In the
top-down evaluation, instances are sorted on each numeric attribute on every
prediction node, with each sort taking at least O(n log n) time (n is the number
of the considered instances) in the average case. While in bottom-up evalua-
tion, we focus on gaining orders of distinct attribute values whose cost is much
inexpensive. Additionally, the spectacular redundancy in computing weight dis-
tributions is eliminated since the statistics are cached in VW-group to prevent
being recomputed. Moreover, the bottom-up technique will not affect the accu-
racy of the original algorithm.

Value PosW NegW

A 0.0 1.6

B 1.2 0.8
C 1.2 1.6

VW-set of Dept. VW-set of Income
Value PosW NegW

0 0.0 2.4

1 1.2 0.0
2 1.2 1.6

Value PosW NegW

B 0.0 1.6
C 1.2 0.8

VW-set of Dept.
VW-set of Income

Value PosW NegW
1 0.0 0.8

2 1.2 0.8
3 0.0 0.8

Value PosW NegW

A 0.0 1.6
B 1.2 2.4

C 2.4 2.4

VW-set of Dept. VW-set of Income

Value PosW NegW

0 0.0 2.4
1 1.2 0.8

3 0.0 0.8
2 2.4 2.4

Y N

Fig. 3. Construct VW-set via merging: Example

3.4 Algorithm

In this section, we present BOAI algorithm. Note that the partition phase con-
tributes a little to the complexity of tree induction. BOAI shares it with Al-
gorithm 1. We just provide illustration about the evaluation phase here. Let
p-VW-group denote the VW-group at prediction node p, and p-VW-set denote
the VW-set contained in p-VW-group. The algorithm is given in Algorithm 2.
The procedure is invoked at every boosting step, with the root node r as an
input parameter. Since ADTree can have more than one decision node below
a prediction node, the instances at the prediction node can be partitioned by
different split criteria. We only consider partitions of one decision node for per-
forming merging (we always choose the first decision node in BOAI). For other
decision nodes, we view each of their prediction children as the root node of a
subtree. The evaluating process will start from these root nodes individually. In
this way, no redundant merging of VW-groups is performed. Note that when the
combination is finished, the two VW-groups being merged can be deleted.

The optimizing techniques introduced in [11] can be easily integrated in BOAI
and show better performance improvements. The Zpure calculation can be sped
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up by merging the sum of the weights of the positive (negative) instances through
the merging process of the bottom-up approach. The heuristic mechanisms can
be performed by only evaluating the tree portion included in the heuristic path.

Algorithm 2. EvaluateSplits(Prediction Node p)
1: if p is a leaf then
2: generate p-VW-group via scanning F (p)
3: else
4: /*p1 and p2 are two children of p’s first decision node*/

p1-VW-group = EvaluateSplits(p1);
5: p2-VW-group = EvaluateSplits(p2);
6: p-VW-group ⇐ Merge p1-VW-group and p2-VW-group
7: for each attribute A do
8: traverse p-VW-set of attribute A /* the value field stores v0, ..., vm−1 */
9: if A is a categorical attribute then

10: for i = 0 to m − 1 do
11: compute Z-value for test (A = vi) using class-weight associated with vi

12: if A is a numeric attribute then
13: for i = 0 to m − 2 do
14: cumulate the sum of the class-weights associated with the former i values

and vi /* the values are in sorted order */
15: compute Z-value for test (A ≤ (vi + vi+1)/2) using the cumulated sum
16: for each node s such that s is the child of p’s other decision nodes do
17: EvaluateSplits(s);
18: return p-VW-group;

4 Experiments

In this section, we perform comprehensive experiments on both synthetic and real
data sets to study the performance of BOAI. In the first experiment, we compare
efficiency of BOAI and ADT on synthetic data sets up to 500,000 instances. In
the next, we use the real data sets contained 290,000 records with 92 variables
to evaluate the efficiency of BOAI. At last, we apply BOAI to churn prediction
application, comparing to ADT, Random Forests [13] and TreeNet [14], which
are considered as accurate and efficient classification models. (TreeNet won the
Duke/Teradata Churn modeling competition in 2003 and won the KDD2000
data mining competition.)

BOAI and ADT are written in C++. The software of TreeNet and Random
forests are downloaded from the web site (http://www.salford-systems.com/
churn.html) of Salford Systems. All our experiments were performed on AMD
3200+ CPU running Windows XP with 768MB main memory.

4.1 Synthetic Databases

In order to study the efficiency of BOAI, we used the well-known synthetic data
generation system developed by the IBM Quest data mining group [15], which
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is often used to study the performance of decision tree construction [7,8,9,10].
Each record in this database consists of nine attributes. Among the attributes,
six are numeric and the others are categorical. Ten classification functions are
used to generate different data distributions. Function 1 involves two predictor
attributes with respect to the class label. Function 7 is linear depending on four
predictor attributes. We only show results of these two functions due to space
limitation, the results are similar for other functions.

First, we examined the modeling time of BOAI and ADT as the number of the
instances increases from 100,000 to 500,000. The number of boosting iterations is
set to 10. We consider the Zpure cut-off, merging and heuristic search techniques
[11] in the comparison. In the following experiments, ADT and BOAI are default
with Zpure and merging options. Fig. 4 and Fig. 5 show the results of the two
algorithms for function 1 and 7. BOAI is faster by a factor of six. Fig. 6 and
Fig. 7 show the results of employing heuristic options (the produced models
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are different from those of the original algorithm). BOAI also makes significant
gains for each heuristic option. We further investigated the cost of sorting and
computation in the split evaluation. Fig. 8 shows that the sorting cost in ADT
rises eight times faster than BOAI in function 1. Fig. 9 shows that BOAI is about
twenty-two times faster than ADT in comparison of Z-value computation cost
in function 1. As the above two cost are dominant cost during tree induction,
they can explain why BOAI outperforms ADT by a large margin.

We also examined the effect of boosting iterations on BOAI. We changed
the number of boosting iterations from 10 to 50 while fixing the number of the
instances at 200,000. Fig. 10 and Fig. 11 show the results for Function 1 and
Function 7. The results are both encouraging as BOAI grows much smoother
than ADT with the increasing number of boosting iterations.

Fig. 12 and Fig. 13 show the effect of adding extra attributes with random
values to the instances in the input database. The number of the instances
are kept at 200,000 and the number of boosting iterations is set at 10. The
additional attributes need to be evaluated but they will never be chosen as the
split attribute. Thus the extra attributes increase tree induction time while the
final classifier keeps the same. BOAI exhibits much more steady performance
with the increasing number of attributes.

4.2 Real Data sets

In order to study the performance of BOAI in real cases, we experimented with
a real data set obtained from China Mobile Communication Company. The data
refers to seven months of customer usage, from January 2005 through July 2005.
The data set consists of 290,000 subscribers covering 92 variables, including
customer demographic information, billing data, call detail data, service usage
data and company interaction data. The churn indicator attribute is the class
attribute. We first study the training time of BOAI on the real data sets. Then
we apply BOAI to churn prediction, comparing its performance to ADT, TreeNet
and Random Forests. To guarantee the prediction accuracy, we don’t consider
heuristic techniques in the comparison.
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We first compare the training time of BOAI and ADT. Fig. 14 shows the
overall running time of the algorithms as the number of the input instances
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increases from 20,083 to 219,644 and the number of boosting iterations sets at
10. BOAI is about fourteen times faster than ADT. Then we change the number
of boosting iterations from 10 to 50 with 20,083 instances. Fig. 15 shows that
BOAI offers more steady performance with the changing number of iterations.
For memory usage, the largest size of the VW-group used in induction is only
10MB for 219,644 instances (with 92 attributes), which is also a small size to
easily hold in memory.

In the next, we apply BOAI to churn prediction to study its performance. we
sampled 20,083 examples from the original data set as a calibration set which has
2.1% churn rate, and 5,062 examples as a validation set which has 1.8% churn
rate. Since the data is highly skewed, we take a re-balancing strategy to tackle
the imbalanced problem. As a pre-processing step, we multiply the weight of each
instance in the minority class by Wmaj/Wmin, where Wmaj (resp. Wmin) is the
total weight of the majority (resp. minority) class instances. In this way, the total
weights of the majority and minority instances are balanced. Unlike sampling
[16], re-balancing weights has little information loss and does not introduce more
computing power on average.

Table 1. Performance comparison on churn analysis

Models F -measure G-mean W-accuracy Modeling Time (sec)

ADT (w/o re-balancing) 56.04 65.65 44.53 75.56
Random Forests 19.21 84.04 84.71 960.00
TreeNet 72.81 79.61 64.40 30.00
BOAI 50.62 90.81 85.84 7.625

We compare the predicted accuracy of BOAI, ADT (without re-balancing),
TreeNet and Random Forests, with measures of F -Measure, G-Mean and Weight-
ed Accuracy [17], which are commonly used to evaluate performance on skewed
class problem. The modeling time of these algorithms is also given. The results,
shown in Table 1, indicate that BOAI outperforms ADT, TreeNet and RF when
evaluated in terms of G-mean and Weighted-Accuracy. More importantly, BOAI
uses the least modeling time.

5 Conclusion

In this paper, we have developed a novel approach for ADTree induction, called
BOAI, to speed up ADTree construction on large training data sets. The key
insight is to eliminate the great redundancy of sorting and computation in the
tree induction by using a bottom-up evaluation approach based on VW-group.
In experiments on both synthetic and real databases, BOAI offers significant
performance improvements over the best existing algorithm while constructing
exactly the same ADTree. We also study the performance of BOAI for churn
prediction. With the re-balancing technique, BOAI offers good prediction accu-
racy while spends much less modeling time compared with ADT, TreeNet and
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Random Forests, which are reported as efficient classification models. Therefore,
BOAI is an attractive algorithm for modeling on large data sets. It has been
successfully used for real-life churn prediction in telecommunication.

Acknowledgments. We gratefully thank Prof. Jian Pei in Simon Fraser Uni-
versity for his insightful suggestions.
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Abstract. This paper presents an algorithmic framework for feature
selection, which selects a subset of features by minimizing the nonpara-
metric Bayes error. A set of existing algorithms as well as new ones can
be derived naturally from this framework. For example, we show that
the Relief algorithm greedily attempts to minimize the Bayes error esti-
mated by k-Nearest-Neighbor method. This new interpretation not only
reveals the secret behind Relief but also offers various opportunities to
improve it or to establish new alternatives. In particular, we develop a
new feature weighting algorithm, named Parzen-Relief, which minimizes
the Bayes error estimated by Parzen method. Additionally, to enhance
its ability to handle imbalanced and multiclass data, we integrate the
class distribution with the max-margin objective function, leading to a
new algorithm, named MAP-Relief. Comparison on benchmark data sets
confirms the effectiveness of the proposed algorithms.

1 Introduction

Feature selection is a process of selecting a small number of highly predictive fea-
tures out of a large set of candidate attributes that might be strongly irrelevant
or redundant. It plays a fundamental role in pattern recognition, data mining,
and more generally machine learning tasks [6], e.g., facilitating data interpreta-
tion, reducing measurement and storage requirements, increasing predeceasing
speeds, improving generalization performance, etc.

Most feature selection methods approach the task as a search problem, where
each state in the search space is a possible feature subset. Suppose we are given
a set of input vectors {xn}Nn=1 along with corresponding targets {yn}Nn=1 drawn
i.i.d from an unknown distribution P(x,y), where xn ∈ X ⊂ RDis a training
instance and yn ∈ Y={0,1,. . . ,C-1} is its label, N , D, C denote the training set
size, the input space dimensionality and the total number of categories respec-
tively. The d-th feature of x is denoted as x(d), d=1,2,. . . ,D. The goal of feature
selection is to select a subset of M (M � D) most predictive features, i.e., to
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find a preprocessing of data τ(x):x→(x∗τ ), where τ=[τ1, . . . , τD] ∈ S = {0, 1}D,
||τ ||0 = M , (x∗ τ ) = [x(1)τ1, ..., x

(D)τD] denotes the element-wise product. Let
the feature selection criterion function be represented by J(·). Formally, the
problem of feature selection can be formalized as:

τ = arg max
τ∈S,||τ ||0=M

J(τ ) (1)

There are two basic elements in a typical feature selection method [4,8]: (i)
the search strategy, a procedure to generate candidate τ ; and (ii) the evalu-
ation criterion J(·), a measure to assess the goodness of τ . Existing search
approaches are generally divided [8] into complete (exhaustive, best first, branch
and bound, beam, etc.), heuristic (forward/backward sequential, greedy, etc.),
or random (simulated annealing, genetic algorithm, etc.). Feature weighting is
a greedy algorithm. It assigns to each feature a real valued number to indicate
its usefulness, making possible to efficiently select a subset of features simply by
searching in a continuous space. For this reason, this paper will fix the search
strategy at feature weighting and focus mainly on the evaluation criterion aspect.
However, extensions to other search schemes are straightforward.

Most of the existing evaluation criteria are based on heuristic intuitions or
domain knowledge, and therefore still lacks rigorous theoretical treatment. For
example, the Relief [9] algorithm is recently interpreted as a method to max-
imize the average margin [15,5]. However, the definition of margin is based on
heuristics. The secret behind the margin is unclear.

In this paper, we present an algorithmic (evaluation criterion) framework for
feature selection, which selects a subset of features by minimizing the nonpara-
metric Bayes error. Many existing approaches as well as new ones can be natu-
rally derived from this framework. In particular, we find that the Relief algorithm
attempts to greedily minimize the nonparametric Bayes error that is estimated
by k-nearest-neighbor (kNN) method. This new interpretation of Relief not only
reveals the secret behind the margin concept, but also enables us to identify
its weaknesses so as to establish new algorithms to mitigate the drawbacks. In
this paper, an alternative algorithm, called Parzen-Relief, is proposed, which re-
sembles the standard Relief algorithm but using the Parzen method to estimate
the Bayes error. We will show that the empirical performance of Parzen-Relief
usually outperforms Relief. In addition, we find that Relief makes an implicit
assumption that the class distribution P (c) = 1/2. This undesirable assumption
heavily limits its performance in handling imbalanced or multiclass data set. To
address this drawbacks, we propose a MAP-Relief algorithm, which incorporate
the class distribution into the margin maximization objective function. Both
Parzen-Relief and MAP-Relief are of the same computational complexity as the
standard Relief algorithm. However, both of them show significant performance
improvement compared with Relief.

The organization of this paper is as follows. Section 2 presents the algorithmic
framework. Section 3 offers a new interpretation of Relief and presents a new al-
ternative, i.e., the Parzen-Relief algorithm. Section 4 establishes the MAP-Relief
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algorithm to handle imbalanced and/or multiclass data. Section 5 presents the
comparison results and Section 6 summarizes the whole paper.

2 An Algorithmic Framework for Feature Selection

2.1 Nonparametric Bayes Error Minimization

Theoretically, two different, but closely-related, optimal evaluation criteria can
be identified. The first one [10] is based on information theory, which attempts to
model the dependence between patterns and their labels in a reduced-dimensional
space while retaining as much information as possible, i.e.,:

min
τ

KL{P (y|x)||P (y|τ(x))}
s.t. : ||τ ||0 = M,

(2)

where KL{p(x)||q(x)} = EX [p(x) log p(x)
q(x) ] denotes the KL-divergence between

two distribution p(x) and q(x). We refer this theoretical criterion as representa-
tive optimal criterion (ROC) to emphasize its aim to rule out irrelevant features.
Various practical criteria are related to ROC. Examples include the entropy or
mutual-information (MI) criterion and its variations [6], and so on.

We propose here another criterion. In contrast to ROC, this criterion is more
straightforward and pragmatic. It considers classification directly and naturally
reflects the Bayes error rate in the reduced space, i.e.:

min
τ
{inf

δ
Ex[err(δ|τ(x))] = Ex[1−max

c
P (c|τ(x))]}

s.t. : ||τ ||0 = M.
(3)

where δ denotes a decision rule, Ex{err(δ|τ(x))} is the generalization error of
δ in the reduced space, c ∈ {0, 1, ..., C − 1}. We called this optimal criterion
discriminative optimal criterion (DOC) to highlight its goal to maximize the
discriminating ability of features.

The ROC criterion has been proved powerful for its keeping as much informa-
tion for modelling the posterior distribution, which is useful for many domains
[1]. It is also closely related with the Bayes error for classification [7]. However,
for many applications where x have high dimensionality, modelling the posterior
probability with limited samples is not only risky, but also wasteful of resources.
In contrast, there are several compelling reasons for using DOC to assess the
quality of features if we only wish to make classification decisions. One justi-
fication is from Vapnik [16] that ”one should solve the problem (classification)
directly and never solve a more general problem (modelling P (y|x)) as an inter-
mediate step.”

In practical cases, we cannot compute the Bayes error exactly because the
precise distribution for generating the data is not available. Therefore, approxi-
mate methods for estimating the Bayes error is necessary. There are in general
two distinct approaches.
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• Wrapper Methods optimizes the generalization error of δ with respect to
both τ and δ:

τ, δ = arg min
δ∈H,τ

{Ex[err(δ|τ(x))]} (4)

where H denotes a hypothesis space. Clearly, this is equivalent to estimate
the Bayes risk by inf

δ∈H
{Ex[err(δ|τ(x))]}.

• Filter Methods1 estimates the Bayes risk directly without using a specific
form of classifier. For example, the estimation of Bayes risk can be obtained
by estimating the probability distribution involved in Eq.(3).

Given a set of training data, the expectation over x can be approximated by
the empirical average, i.e.:

Ex[1−max
c

P (c|τ(x))] ≈ 1
N

N∑

n=1

(
1−max

c
P (c|τ(xn))

)
. (5)

To estimate P (c|τ(xn)), there are two types of methods, namely, the parametric
and nonparametric estimation methods. When the parametric methods [1] are
concerned, one typically assumes a generative model for (x,y) and estimates
P (x, y) through, e.g., maximum-likelihood or Bayesian estimation methods.

We use non-parametric estimators to estimate P (c|τ(xn)) and approximately
minimize the Bayes error by solving the following problem:

τ = arg max
||τ ||0=M

1
N

N∑

n=1

⎛

⎝P (yn|τ(xn))−
∑

c �=yn

P (c|τ(xn))

⎞

⎠. (6)

An obvious advantage to use nonparametric estimators is that the results
will be robust to any probability distribution since the estimators do not rely
on specific distribution assumptions. However, to directly estimate P (c|τ(xn))
is practically difficult because xn is usually in a high dimensional continuous
space. Since P (c|xn) ∝ P (c)P (xn|c), we can estimate P (c) by the class ratio
and use nonparametric method to estimate P (xn|c).

2.2 Related Works

Saon et al [14] also proposed to reduce the input dimensionality by minimizing
the Bayes error. However, their methods were established for the purpose of lin-
ear feature transformation, not for feature subset selection. In addition, they used
indirect approaches to approximately minimize Bayes error, i.e., by maximizing
the average pairwise divergence or minimizing the union Bhattacharyya error
bounds. To make their approach tractable, Gaussian assumption has to be made
about the class-conditional densities, which strongly limits the performance of
their methods, because multimodality, or non-Gaussian distribution is frequently
1 Note that some filter methods are based on ROC framework, e.g., MI-based feature

ranking.
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observed in practical applications. These drawbacks are also shared by similar
methods such as the Bhattacharyya distance approach [3,19]. In the context of
vision recognition, Vasconcelos [17] proposed a feature selection approach based
on the infomax principal. Although their criterion were shown closely related to
Bayes error, it is suboptimal in the minimum Bayes error sense, too. Carneiro et
al [2] proposed a joint feature extraction and selection algorithm by minimizing
the Bayes error. However, they used Gaussian mixture models to estimate the
class-conditional distribution. A technical difficulty is that the number of mixture
components, which has a dominant importance in their method, is very difficult
to be determined in practice. Weston et al [18] proposed a learning algorithm
that achieves variable selection by minimizing the zero-norm regularization to
enforce sparseness of a kernel machine. To make the computation tractable, con-
vex loss functions, e.g., the hinge loss function used in support vector machines
(SVM), have to be employed as the optimization objective. Although the Bayes
error can be naturally reflected by the zero-one loss function, these convex sur-
rogate loss functions offer poor approximation to the zero-one loss. Therefore,
their approach does not directly minimize Bayes error, either.

3 Relief and Nonparametric Bayes Error Minimization

Among the existing feature weighting methods, Relief [9,15] is considered one of
the most successful one due to its effectiveness, simplicity and particularly the
ability to tackle dependent features [13]. Recently, Gilad et al [5] established a
new variation of Relief based on the concept of margin. This idea was further
explored by Sun [15] to provide a new interpretation of Relief as a max-margin
convex optimization problem. This new perspective simplifies the computation
significantly. However, the secret behind the success of Relief is still unclear. We
will show that Relief approximately minimizes the nonparametric Bayes error
estimated by kNN method via a greedy feature weighting search scheme.

According to [15], Relief is equivalent to a convex optimization problem:

max
∑N

n=1 wT mn

s.t. : ||w|| = 1,w ≥ 0
(7)

where w=(w1, w2, ..., wD)T , mn = |xn −M(xn)| − |xn − H(xn)| is called the
margin for the pattern xn, H(xn) and M(xn) denote the nearest-hit (the near-
est neighbor from the same class) and nearest-miss(the nearest neighbor form
different class) of xn respectively. By using the Lagrangian technique, a simple
close-form solution to Eq.(7) can be derived, i.e.:.

w = (m)+/||(m)+|| (8)

where m = 1
N

∑n
n=1 mn is the average margin, (·)+ denotes the positive part.

We now show how Relief minimizes the nonparametric Bayes error via greedy
feature weighting. Since Relief is originally established for binary classification
tasks, we first consider binary labels, i.e., yn ∈{0,1}, and will extend the results
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to multi-class scenarios in Section 4. Suppose the class distribution P(c=1)=
P(c=0)=0.5, estimating the class-conditional probability by 1-NN estimator,
we have:

P (c = yn|τ(xn))− P (c 
= yn|τ(xn))
∝ P (τ(xn)|c = yn)− P (τ(xn)|c 
= yn)
= 1/N

V (1) − 1/N
V (2)

∝ 1
||τ(xn)−H(τ(xn))||M2

− 1
||τ(xn)−M(τ(xn))||M2

(9)

where V (1) and V (2) denote the volumes of the hyper-spheres from xn to H (xn)
and to M (xn) respectively. However, to obtain the optimal τ(·), minimizing
Eq.(9) is an NP-hard combinatorial optimization problem. Therefore, heuristic
search is necessary. Considering a greedy search scheme, which searches each
dimension independently with a feature weighting scheme:

w = arg max
w≥0,||w||=1

D∑

d=1

wd

N∑

n=1

P (c = yn|x(d)
n )− P (c 
= yn|x(d)

n )

= arg max
w≥0,||w||=1

D∑

d=1

wd

N∑

n=1

1

|x(d)
n −H(x(d)

n )|
− 1

|x(d)
n −M(x(d)

n )|

≈ arg max
w≥0,||w||=1

D∑

d=1

wd

N∑

n=1

|x(d)
n −M (d)

n | − |x(d)
n −H(d)

n |

(10)

That is:

max
D∑

d=1

wd

N∑

n=1
|x(d)

n −M
(d)
n | − |x(d)

n −H
(d)
n |

s.t. : ||w|| = 1,w ≥ 0
(11)

where M
(d)
n and H

(d)
n denote the nearest-miss and nearest-hit of xn in the d -th

dimensional subspace, the last line of Eq.(10) follows from the consideration to
avoid numerical overflows. Clearly, Eq.(11) will be identical to Eq.(7) when we
approximate M

(d)
n and H

(d)
n with M (d)(xn) and H(d)(xn), which means, instead

of using D 1-dimensional nearest-miss’s M
(d)
n , we use a single D -dimensional

nearest-miss M(xn) and approximate the d -th 1-dimensional nearest-miss M
(d)
n

with the d -th element M (d)(xn) of M(xn). We now establish two alternatives
by exploring the new interpretation.

Remark 1. Parametric estimation methods are usually considered preferable
when a proper generative model (based on prior knowledge) is available. Partic-
ularly, if we consider a Näıve Bayes generative model: p(x|y) =

∏D
d=1 p(x(d)|y),

where p(x(d)|y = c) = N (x(d)|μc,d, σd,c), we will get the following algorithm:

max
D∑

d=1

wd

N∑

n=1

(
(x(d)

n −μd,1−y)2

σ2
d,1−y

− (x(d)
n −μd,y)2

σ2
d,y

)

s.t. : ||w|| = 1,w ≥ 0
(12)
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We refer this algorithm as ‘Fisher-Score-based Feature Weighting’
(FFW), since it has close similarity with the feature ranking criterion Fisher
Score: FSd =

∣
∣
∣
μd,1−μd,0

σ2
d,1+σ2

d,0

∣
∣
∣. In fact, if assuming σ2

d,1 = σ2
d,0, the order of feature

weights obtained from Eq.(12) is identical to the ranking results of Fisher score.

Remark 2. Parzen widow estimator is also applicable. Here we consider a specific
Parzen widow function, i.e., the truncated potential function:

g(x,xn) =
{

0, if||x− xn|| > ς
1

||x−xn||2 , else (13)

We have:
P (τ(xn)|c = yn)− P (τ(xn)|c 
= yn)
∝

∑

xi∈Ω
(o)
n

1/ςM
2

||xi−xn||2 −
∑

xj∈Ω
(e)
n

1/ςM
1

||xj−xn||2 (14)

where Ω(o)
n = {x : ||x−xn|| ≤ ς1, y = yn} and Ω(e)

n = {x : ||x−xn|| ≤ ς2, y 
= yn}
denote the Homogenous and Heterogeneous Neighbor Set of xn.

Following a series of similar simplification, we have a new feature weighting
method, which we called ‘Parzen-Relief ’ (P-Relief):

max
∑N

n=1 wT mp
n

s.t. : ||w|| = 1,w ≥ 0
(15)

where the margin mp
n =

∑
xi∈Ω

(e)
n

|x(d)
n −x

(d)
i |

ς1(xn) −
∑

xj∈Ω
(o)
n

|x(d)
n −x

(d)
j |

ς2(xn) .

4 Handling Imbalanced Multi-class Data Set

An undesirable assumption made by the Relief algorithm is that P (c) = 1/2 for
all the classes c = 0, 1, . . . , C. However, this is less likely the case in practice.
To address this problem, we modify the definition of the margin to include the
prior probability of each class, i.e.:

max
∑N

n=1 wT mπ
n

s.t. : ||w|| = 1,w ≥ 0
(16)

where mπ
n = P (yn)|xn−M(xn)|−(1−P (yn))|xn−H(xn)|, π= [P (0), ..., P (C−1)]

is the class distribution. We term this algorithm as MAP-Relief (M-Relief).
From our new interpretation, the rationale of this formulation is clear. In Section
5, we will show that while the performance of other algorithms in the Relief
family degrades significantly when the data set is strongly imbalanced, M-Relief
is less sensitive to such sampling bias.

Another advantage of M-Relief algorithm is its ability of handling multi-class
data. The original Relief algorithm only works for binary classification problems.
ReliefF [11] extends it to multi-class tasks by a heuristic updating rule, which
is equivalent to solve Relief with the margin vector:
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Table 1. Characteristics of Twelve UCI Data Sets

Data Set Train Size Test Size #Feature #Class

Breast 400 283 9 2
German 700 300 20 2
Ionosphere 235 116 34 2
Waveform 400 4600 21 2
Pima 400 368 8 2
Heart 170 100 13 2
Sonar 165 43 60 2
Splice 1000 2175 60 2

LRS 380 151 93 48
Glass 120 94 9 6
Ecoli 200 136 7 8
Segmentation 210 2100 18 7

mF
n =

∑

c �=yn

P (c)|xn −Mc(xn)| − |xn −H(xn)|,

where M c(xn) is the nearest miss of xn in class c, c ∈{0,. . . ,C − 1}. Therefore,
one needs to search for k -nearest-hit and k×(C−1)-nearest-miss for each sample
to solve ReliefF. However, form our new interpretation of Relief, this is clearly
unnecessary, because in general the following relationship always holds:

∑

c �=yn

P (c)P (xn|c) = P (xn, c 
= yn) = (1− P (yn))P (xn|c 
= yn)

The Iterative-Relief (I-Relief, [15]) algorithm deals with multi-class data using
a margin vector defined somewhat similar with our definition mπ

n, but with an
implicit assumption P (yn)=0.5. Obviously, this assumption is inappropriate for
problems involving (C > 3) categories. This could become more severe when C
goes larger such that the ’one-versus-rest’ splits (i.e.: {xi: yi = yn} and {xj :
yj 
= yn}) of the data set become more and more imbalanced.

It is interesting to see that M-Relief possesses advantages of both ReliefF
and I-Relief, and at the same time mitigates their drawbacks: (i) Similar with
ReliefF, M-Relief incorporates the class distribution to tackling imbalanceness;
(ii) Similar with I-Relief, M-Relief needs only one, instead of k×(C−1), nearest-
miss for each pattern. Both advantages, i.e., computational efficiency and ability
to handling imbalanceness, would become especially preferable when problems
with very large C are faced.

5 Experiments

We conduct extensive experiments to evaluate the effectiveness of the proposed
methods. Twelve benchmark machine learning data sets from UCI collection
are selected because of their diversity in the numbers of features, instances and
classes, as summarized in Table.1. To facilitate the comparison, fifty irrelevant
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Fig. 1. Comparison of P-Relief and Relief

features (known as ’probes’) are added to each pattern, each of which is an
independently Gaussian distributed random variable, i.e., N (0,20). Two distinct
metrics are used to evaluate the effectiveness of the feature selection algorithms.
One is the classification accuracy, which is estimated by the kNN classifier (in
some cases also by the Lagrangian Support Vector Machine (LSVM, [12]), an
efficient implementation of SVMs). The other metric is the Receiver Operating
Characteristic (ROC) curve [15], which can indicate the effectiveness of different
feature selection algorithms in identifying relevant features and at the same time
ruling out useless ones. To eliminate statistical deviations, all the experiments
are averaged over 20 random runs. The hyper-parameters, i.e., the number of
nearest neighbors k in kNN and the regularization parameter C in LSVM are
determined by five-fold cross validation on the training data set.

We first apply Relief and P-Relief to the eight binary classification data sets.
For this comparison, both kNN and LSVM are tested. The hyper-parameter in
P-Relief is determined based on a simple rule: ζ1(xn) = 1.2×||xn−Hn||, ζ2(xn) =
1.2×||xn−Mn||, so as to keep the running time of both methods comparable. The
top two lines of Fig.1 shows the average testing error of each selector-classifier
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Fig. 2. Comparison of Relief, ReliefF and M-Relief

combination, as a function of the number of top-ranked features. The ROC
curves are plotted in the bottom two lines of Fig.1. As a reference, the best
average classification error and standard deviation of each algorithm are also
plotted as a bar chart in Fig.3. We can see that, although P-Relief shares the
same computational complexity as Relief, it usually achieves better performance
than Relief. In particular, P-Relief outperforms Relief significantly in five (out
of eight) data sets and performs comparably on the other three when the testing
error metric is concerned. In the meanwhile, for all the eight data sets, P-Relief
has a larger area under ROC curve than Relief does.

We now compare Relief, ReliefF and the proposed M-Relief in handling im-
balanced/multiclass data. For this purpose, four binary data sets, which are
relatively more imbalanced, and four multiclass data sets are used. To facilitate
the comparison, a further bias-sampling procedure is applied to the four binary
classification data sets to make them more imbalanced, i.e., 80% of the patterns
randomly sampled from the minority class are discarded. Since Relief is orig-
inally established for binary classification, to enable it to apply to multiclass
tasks, we use the margin definition used in I-Relief. To make a fair comparison,
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Fig. 3. Best Average Testing Errors and Standard Deviations

one nearest hit and C -1 nearest misses (one for each class) are used in Reli-
efF. This configuration ensures that the differences are mainly resulted by the
strategies used to handling imbalanceness.

ReliefF is relatively more time-consuming than the other two algorithms since
it needs searching nearest miss for each class. However, the differences are not
very significant because the number of classes are not very large. For conve-
nience, only the kNN classifier is used to estimate the classification error. The
top two lines of Fig.2 show the testing error of each approach, as a function of the
number of top-ranked features. The ROC curves are plotted in the bottom two
lines. And the bar plot indicating the best average testing errors and standard
deviations are also shown in Fig.3. Note that for binary classification, ReliefF
and Relief are identical to each other. From these results, we arrive at the fol-
lowing observations: (i) the performance of Relief is degraded significantly when
the data is highly imbalanced; (ii) M-Relief, with a simple trick that does not
introduce much extra computation, improves the performance significantly. It
performs the best in six (out of eight) data sets with respect to the classification
error metric, and in seven data sets with respect to the ROC curve metric.

6 Conclusion

A natural optimal criterion for feature selection would be the Bayes error mini-
mization in the reduced space, because the generalization error of any classifier
is lower bounded by Bayes error, hence, the Bayes error only depends on fea-
tures rather than classifiers. However, this criterion is difficult in practice where
only training data is given. This paper has presented an algorithmic framework
for feature selection based on nonparametric Bayes error minimization. When
feature weighting are used as the search strategy, this framework reveals that
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the Relief algorithm greedily attempts to minimize Bayes error estimated by
kNN estimator. As an alternative, we have presented a new algorithm named
Parzen-Relief. In addition, to enhance its ability to deal with imbalanced and/or
multiclass data, we have proposed a MAP-Relief algorithm.
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Abstract. In many real-world data mining tasks, the coverage of the target con-
cept may change as the time changes. For example,the coverage of “learned
knowledge” of a student today may be different from his/er “learned knowledge”
tomorrow, since the “learned knowledge” of the student is in expanding everyday.
In order to learn a model capable of making accurate predictions, the evolution
of the concept must be considered, and thus, a series of data sets collected at
different time is needed. However, in many cases there is only a single data set
instead of a series of data sets. In other words, only a single snapshot of the data
along the time axis is available. In this paper, we show that for positive class ex-
pansion, i.e., the coverage of the target concept is in expanding as illustrated in
the above “learned knowledge” example, we can learn an accurate model from
the single snapshot data with the help of domain knowledge given by user. The
effectiveness of the proposed framework is validated in experiments.

1 Introduction

In conventional machine learning and data mining research, it is assumed, explicitly or
implicitly, that the test set is drawn from the same distribution of the training set and the
target concept, i.e. a posteriori probability of class membership p(y|x), is unchanged
[4,14]. However, in many real-world applications, we may encounter problems with
varying target concept. The following are two examples.

Example 1: A manufacturer has released a new product to replace its old prod-
uct. After an expensive mass-advertising for one week, the manufacturer got to
know that a few customers have turned to the new product. In order to reduce
the cost of advertizement, the manufacturer wants to identify target customers
who have high chance to turn to the new product based on an analysis on cus-
tomers who have already turned to the new product. Note that here, the number
of customers turning to the new product is keeping on increasing.

Example 2: A Disease Control and Prevention Center receives several fatal
cases of an unclear infectious disease. A model is urgently required to predict
who are potential victims, based on periodical physical examination database,
in order to perform effective quarantining actions. Note that here, the victims
of the disease is keeping on increasing.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 429–440, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In these examples, a common difficulty is that the training data is collected at an
earlier time point but the predictions are to be made later, meanwhile the coverage of
the target concept at different time points may be quite different. For example, in the
above Example 1, suppose there were only 10 customers who had already turned to the
new product (i.e., 10 positive examples) at the time when the data were collected; but
when the model is used to make prediction, 20 more customers have already turned to
the new product. Thus, if we only consider the original 10 positive examples, maybe
the model we build for predicting who will turn to the new product could not meet our
demand.

A possible solution to the above problem is to wait for a long period to collect a
series of training sets at a series of time points, such that the pattern of the evolution
can be considered. However, this may be infeasible in most cases since waiting for a
long period will cause, for example, great loss of benefits in the above Example 1 and
loss of human lives in the above Example 2. Moreover, data used in data mining tasks
are usually observational [7]. That is, data is usually given by other people and the data
miner could not collect more data. So, the varying target concept problem has to be
addressed when there is only a single snapshot data set instead of a series of data sets
taken at different time points.

In this paper, we propose a framework to deal with the positive class expansion prob-
lem, which has been illustrated in the above examples, with a single snapshot data set.
Our framework has two elements. The first element is the utilization of the observation
that the instances that are currently positive become positive ahead of the instances
that are currently negative, which leads to an AUC optimization problem. The second
element is the incorporation of domain knowledge expressed by user preferences of
pairs of instances. These two elements are unified as an optimization problem, which is
solved by the SGBDota (Stochastic Gradient Boosting with Double Target) approach.
The SGBDota approach achieves success in experiments, which validate the useful-
ness of our framework for dealing with positive class expansion problem with single
snapshot.

The rest of the paper is organized as follows. Section 2 formalizes the problem.
Section 3 reviews some related work. Section 4 proposes our framework. Section 5
reports on experiments. Finally, Section 6 concludes.

2 The Problem

Given a training set of i.i.d. instances D = {xi}ni=1 drawn from a distribution D. Each
instance is associated with a random variable y called class, which is determined by
p(y|x). In conventional classification problem, a learning algorithm outputs a function
f̂(·; D, p(y|x)) that minimizes the error of a loss function L:

errf̂(·;D,p(y|x)) = Ex∼DL(f̂(x; D, p(y|x)), p(y|x)).

In the scenario of varying target concept, the training set D is collected at a time point,
where we call the training set as a snapshot and the time point as training time. After
trained on the snapshot, a classifier is used to make predictions at a later time point,
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which we call testing time. From the training time to the testing time, p(y|x) changes,
while D keeps steady. The evaluation of f̂ is therefore changed

errf̂(·;D,p(y|x)) = Ex∼DL(f̂(x; D, ptr(y|x)), pte(y|x))

where ptr and pte indicate the probability functions at training and testing time, respec-
tively. The formalization of positive class expansion consists of two constraints:

1) f∗(x) ∈ {−1, +1}
2) ∀x ∼ D : pte(y = +1|x) ≥ ptr(y = +1|x),

which means there are only two classes, positive and negative, and the positive class is
in expanding.

3 Related Works

The positive class expansion problem appears to have some relationship with PU-
Learning [12,17], concept drift [9,10], and covariate shift [8,1]. But in fact it is very
different from these tasks.

In PU-Learning, i.e., learning with positive and unlabeled data, it is required to dis-
criminate positive instances from negative instances, while only positive instances are
available in training data. A large part of works addressing PU-Learning follow two
steps, e.g. [12,17]. First, strong negative instances are discovered from the unlabeled
data. Then a predictive model is built from the positive and identified negative instances.

In concept drift, an online learning environment is considered, where instances are
coming sequentially batch by batch, and the target concept may change in the coming
batch. A desired approach for concept drift problem is the one that correctly detects and
fast adapts to the drift, e.g. [9,10].

In covariate shift problem (or sample selection bias [13]) , training and test instances
are drawn from different distributions, while the a posteriori probability is unchanged.
Using the notations in the previous section, it minimizes the error:

errf̂(·;D,p(y|x)) = Ex∼DteL
(
f̂(x; D ∼ Dtr, p(y|x)), p(y|x)

)
,

where Dtr and Dte are the distributions at training and testing time, respectively. Ap-
proaches (e.g. [8,1]) addressing this problem try to correct the bias in the training in-
stances, such that minimizing error on the training instances corresponds to minimizing
error on the test instances.

The positive class expansion problem is apparently different from the above prob-
lems. In PU-Learning problem, most works make an assumption that the positive in-
stances in the training set are representative of the positive class concept. But in our
problem, the positive class is in expanding thus are not representative. We have noticed
a recent work of PU-Learning considers different training and test distributions [11].
However, that work gears heavily to text mining by using specialized mechanisms, i.e.,
it tries to synthesize samples by using additional keywords. In concept drift, it expects
a series of data sets with information for drift detection, but in our problem, there is
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no such information at all since only a single snapshot is available. In covariate shift, it
assumes the a posteriori probability is unchanged from the training time to the testing
time. On the contrary, the a posteriori changes in our problem.

The approach, we proposed to solve the optimization problem in our framework,
is derived from Gradient Boosting [5,6]. Gradient boosting is a greedy optimization
approach that avoids solving complex equations by iteratively fitting residuals of the
objective function. In order to minimize an arbitrary loss function L,

f∗ = argminf ExL(f(x), yx) ,

the approach builds an additive model F (x) =
∑T

t=0 βth(x; θt) as the solution to the
minimization problem, where θt is the parameter of h, βt and θt are decided by

(βt, θt) = argmin(β,θ) L(Ft−1 + βh(; θ)) ,

where Ft = Ft−1 + βth(; θt) and F = FT . To avoid dealing with the complex loss
function L, it first solves θt by fitting pseudo-residuals least-squarely according to

θt = arg min
θ

∑

x∈D

(

h(x; θ) +
∂L(f(x))

∂f(x)

∣
∣
∣
∣
f(x)=Ft−1(x)

)2

,

and then it solves βt according to

βt = arg minβ L(Ft−1 + βh(; θt)) .

4 The Proposed Framework

Since the positive class is in expanding, it is reasonable to assume that the instances
that are currently positive become positive ahead of the instances that are currently
negative. This assumption requires that all the positive instances should be ranked above
the negative instances, which is exactly expressed by the AUC (area under ROC curve)
[3] criterion. This assumption may imply the total information that we can obtain from
the data set per se. Thus, we use 1 minus the AUC value as the loss function to evaluate
how the information provided by the training data is utilized:

Lauc(f) = 1− 1
|D+| · |D−|

∑

x+∈D+

∑

x−∈D− I(f(x+)− f(x−)) . (1)

where D+ and D− are subsets of D that contains all of the positive and negative in-
stances, respectively, and I(a) gets 1 if a ≥ 0 and 0 otherwise.

Since the training data is not sufficient to build a good model in our problem, we
need to incorporate domain knowledge from the user. It is not hard for the user to
indicate pairwise preferences on some instances. For example, pairs of instances can
be randomly drawn from the training set, and then the user is asked to judge which
instance would become positive earlier in his/er opinion. Another possibility is to apply
a priori rules to decide which instance would become positive earlier, such as people of
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Mongoloid race may be easier to got SARS than people of Caucasoid race. Let k(·, ·)
denotes the user’s pairwise preferences, such that

k(xa, xb) =

⎧
⎪⎨

⎪⎩

+1, xa is preferred

−1, xb is preferred

0, equal or undecided

.

where “xa is preferred” means that the user thought that xa would become positive
earlier than xb. We then fit these preferences by the loss function:

Lpref (f) = 1− 1
|D|2

∑

xa∈D

∑

xb∈D
I
(
(f(xa)− f(xb)) · k(xa, xb)

)
(2)

which imposes that the sign of f(xa)− f(xb) should equal to the sign of k(xa, xb).
Our final objective function combines Eq.1 and 2 by a prior weight λ:

f̂ = argminf Lλ(f) = argminf Lauc(f) + λLpref (f) (3)

As mentioned before, we realize our framework based on Gradient Boosting [5,6]. In
the original Gradient Boosting algorithm, each instance x is associated to a target label
yx. However, in Eq. 3, each instance x is associated to two targets, one is yx while the
other is determined by k(x, ·). Therefore, we build an additive model F with two base
learners in each iteration, h1 and h2, as:

F (x) =
∑T

t=0
(βt,1h1(x; θt,1) + βt,2h2(x; θt,2)) ,

where h1 and h2 fit the residuals of Lauc and Lpref , respectively.
In the first step, we solve h1 and h2. In Eq.1 and Eq.2, I(·) is non-differentiable. We

use sigmoid function (1 + e−a)−1 to replace the identification function I(a). So the
loss functions are rewritten as:

Lauc(f) = 1− 1
|D+| · |D−|

∑

x+∈D+

∑

x−∈D−

(
1 + e−(f(x+)−f(x−))

)−1

(4)

Lpref (f) = 1− 1
|D|2

∑

xa∈D

∑

xb∈D

(
1 + e−(f(xa)−f(xb))·k(xa,xb)

)−1

(5)

The residual of Lauc for each positive instance x ∈ D+ is

ỹx = − ∂Lauc(f)
∂f(x+)

∣
∣
∣
∣
f(x)=Ft−1(x)

∝
∑

x−∈D−

e−(Ft−1(x)−Ft−1(x
−))

(
1 + e−(Ft−1(x)−Ft−1(x−))

)2 (6)

and for each negative instance x ∈ D− is

ỹx = − ∂Lauc(f)
∂f(x−)

∣
∣
∣
∣
f(x)=Ft−1(x)

∝ −
∑

x+∈D+

e−(Ft−1(x+)−Ft−1(x))

(
1 + e−(Ft−1(x+)−Ft−1(x))

)2 (7)
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The residuals of Lpref is:

k̃x = − ∂Lpref (f)
∂f(x)

∣
∣
∣
∣
f(x)=Ft−1(x)

∝
∑

xa∈D

−k(x, xa)e−(Ft−1(x)−Ft−1(x′))·k(x,xa)

(
1 + e−(Ft−1(x)−Ft−1(x′))·k(x,xa)

)2

(8)
Then, fitting to the residuals least-squarely, we have

θt,1 = arg min
θ

∑

x∈D
(ỹx − h(x; θ))2 , θt,2 = argmin

θ

∑

x∈D
(k̃x − h(x; θ))2

Next, defining β
.= (β1, β2), we solve βt,1 and βt,2 that minimize

(βt,1, βt,2) = argminβ Lλ

(
Ft−1 + β1h1(; θt,1) + β2h2(; θt,2)

)

To do the minimization, we solve

G(β) .=
∂Lλ

(
Ft−1 + β1h1(; θt,1) + β2h2(; θt,2)

)

∂β
= 0

by the Newton-Raphson iteration with one step:
⎧
⎪⎪⎨

⎪⎪⎩

∂G(β)1
∂β1

δ1 +
∂G(β)1

∂β2
δ2 + G(β)1 = 0

∂G(β)2
∂β1

δ1 +
∂G(β)2

∂β2
δ2 + G(β)2 = 0

∣
∣
∣
∣
∣
∣
∣
∣
β=β0=(1,λ)

(9)

where δ1 and δ2 are corrections of β1 and β2, respectively. Also note that G(w) is a
vector, G(w)1 and G(w)2 are its first and second elements, respectively, and (1, λ) is
set as the initial guess of β. After δ1 and δ2 have been solved, we have

β1 = 1− δ1 , β2 = λ− δ2 . (10)

Before forming the approach, There are two important issues to be dealt with. One is
that, when the indication function I(·) is replaced by the sigmoid function, there have
different behaviors between Eq.1 and Eq.4. Consider two instances xa and xb with
yxa = +1 and yxb

= −1. By Eq.1, f receives no punishment as long as f(xa) >
f(xb). However, by Eq.4, f always receives punishment even if f(xa) > f(xb). When
xa and xb are equal or very close1 according to the user’s preference, the objective
function will still pay much attention on ranking xa before xb, which makes the built
model over complex. We handle this issue by removing a part of negative instances that
are closest to the positive instances according to the user’s preference, when fitting the
model for AUC residuals.

The other issue is that some instances have either y values or preferences, but not
both. We fit the model of AUC on instances where y values are available, fit the model
for user preference on instances where preferences are available, and calculate the com-
bination weights of the two models on the intersection of the instances.

1 According to the user’s preferences, we determine how close xa is to xb by counting how
many instances that are either more preferred or less preferred than both of xa and xb.
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Table 1. The SGBDota Approach

ALGORITHM (D, T , h, λ, p, ν)
D: training data; T : number of iterations; h: base learner; λ: balance parameter
p: proposition of negative instances to be removed; ν: shrinkage

1. Dauc ← {x ∈ D|yx is available }
2. Dpref ← {x ∈ D| preference is available }
3. Dauc ← Dauc − {x ∈ D−

auc|x is in the most preferred p percent of D−
auc}

4. Db ← Dauc ∩Dpref

5. F0(x) ← 0
6. for t← 1 to T

// calculate residuals

7. ∀x ∈ Dauc : ỹx = − ∂Lauc(f)
∂f(x)

∣
∣
∣
f(x)=Ft−1(x)

by Eq.6 and 7

8. ∀x ∈ Dpref : k̃x = − ∂Lpref (f)

∂f(x)

∣
∣
∣
f(x)=Ft−1(x)

by Eq.8

// fit models
9. θt,1 ← arg minθ

∑
x∈Sample(Dauc)(h1(x; θ) − ỹx)2

10. θt,2 ← arg minθ

∑
x∈Sample(Dpref )(h2(x; θ) − k̃x)2

// calculate combination weights
11. (βt,1, βt,2) ← arg min(β1,β2) Lλ(Ft−1 + β1h1(; θt,1) + β2h2(; θt,2))

by Eq.9 and 10 on Db

// update leaner
12. Ft(.) ← Ft−1(.) + ν(βt,1h1(; θt,1) + βt,2h2(; θt,2))
13. end for
14. return FT (.)

Table 1 presents the SGBDota (Stochastic Gradient Boosting with Double Target)
algorithm. Note that in line 3, Db might be small because it contains only the instances
where y values and preferences are both available. But since Db is only used to deter-
mine the ‘step size’ of the greedy search in line 11, it is unlikely to cause a great effect,
especially when this effect will be further reduced by shrinkage parameter in line 12.
In lines 9 and 10, the base learners are trained on a sample of the training data, but not
on the training data directly, which is the essential part of Stochastic Gradient Boosting
[6]. In line 12, the shrinkage is used to prevent from overfitting.

SGBDota have several parameters. λ can be set according to the user’s confidence of
the domain knowledge, ν could be set as 0.01 [6]. We eliminate p by a simple strategy:
we run SGBDota with different p, and choose the value with which the preference is
best fitted, i.e., the minimum Lpref that SGBDota reaches. Here Lauc is not involved
in choosing of p because it contains no information about the expansion.

5 Experiments

5.1 Experimental Setting

In order to visualize the behavior of the proposed approach, we generate a 2-dimensional
synthetic data set, by sampling 1,000 instances from four Gaussian models. In order to
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evaluate the performance of the proposed approach on real-world data sets, we derive
four data sets from the UCI Machine Learning Repository [2].

There are three classes in postoperative, i.e., I: patient sent to Intensive Care Unit, A:
patient sent to general hospital floor, and S: patient prepared to go home. We use only I
as the positive class at training time, and I plus A as the positive class at testing time.

segment contains seven classes of outdoor images, i.e., brickface, sky, cement, win-
dow, path, foliage, and grass. We set grass as the positive class at training time, and
grass+foliage+path as the positive class at testing time.

veteran is the veteran’s administration lung cancer trial data. We set instances with
survival time less than 12 hours as positive at training time, and instances with survival
time within 48 hours as positive at testing time.

pcb is the data recorded from the Mayo Clinic trial in primary biliary cirrhosis, of
the liver conducted between 1974 and 1984. We set instances with living time within
365 days and 1460 days as positive at training and testing time, respectively.

On data sets postoperative, veteran, segment and pcb, we randomly split 2/3 of the
instances to be training set, and the rest 1/3 instances are used for test. Note that the class
labeling is different for training set and test set. Any learner is evaluated on the test set
using AUC criterion. The split is repeated 20 times to obtain an average performance.

We try three assumptions of “domain knowledge” for experiment. The first one as-
sumes that the positive class expands from dense positive area to spares positive area,
the second one assumes the positive class expands from dense positive area to spares
positive and spares negative area. For efficiency, the density is estimated by 200 times of
random space splits and counting instances in the local region. The third one assumes
the positive class expands along with the neighborhoods using linear neighborhoods
propagation [15] (positive label is +1 and negative label is zero). We name the SGBDota
with the three assumptions as SGBDota-1, SGBDota-2, and SGBDota-3. Nevertheless,
it is expected to incorporate real domain knowledge in real world applications.

The default parameter setting of SGBDota is: T = 50, ν = 0.01 approximately be
the log-median of the suggested range [0.005, 0.05] from [6], h is set to be a regression
tree [16] for its efficiency, λ = 1, and p is searched from {1, 0.95, 0.9, 0.6, 0.3, 0}
on training set by the search strategy mentioned before, where p = 1 means only the
negative instances with the lowest preference are kept undeleted for minimizing Lauc.

Approaches compared to SGBDota include Random Forests, PU-SVM [17], SG-
BAUC and Random. Random Forests includes 100 trees. PU-SVM uses RBF kernel.
SGBAUC is AUC optimization by stochastic gradient boosting with shrinkage 0.01 and
50 iterations. Random is the random guess approach, which serves as a lower bound.
All the other default parameters are taken from WEKA [16].

5.2 Comparison with Other Methods

First, we visualize the behavior of our approach by the synthetic data set. The data
set is plotted in Fig.1(a), the instance space is [0, 1] × [0, 1]. Four approaches, Ran-
dom Forests, PU-SVM, SGBAUC, and SGBDota-1, are trained on the data set. Then,
the ranking decision of each approach is probed by testing on every instance x =
(x1, x2) ∈ {0, 0.01, . . . , 1} × {0, 0.01, . . . , 1}, from which bitmaps are constructed
and displayed in Fig.1(b), (c), (d), and (e), using histogram equalization.
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Fig. 1. (a) The synthetic data set, where red cycles indicate positive instances; (b)-(e) show the
ranking decisions of Random Forests (b), PU-SVM (c), SGBAUC (d), and SGBDota-1 (e), re-
spectively, where the more white the more positive.

Table 2. AUC values of SGBDota, Random Forests (RF), PU-SVM, SGBAUC, and Random.
Each cell presents a mean ± standard derivation

Data set SGBDota-1 SGBDota-2 SGBDota-3 RF PU-SVM SGBAUC Random

posto .470±.131 .483±.111 .459±.132 .448±.076 .457±.107 .457±.084 .456±.148

segment .821±.031 .822±.029 .744±.025 .750±.014 .753±.020 .744±.012 .506±.018

veteran .658±.118 .650±.115 .544±.094 .637±.102 .627±.146 .658±.093 .522±.069

pbc .721±.034 .726±.032 .638±.054 .710±.043 .709±.033 .665±.041 .503±.043

Table 3. Win/tie/loss counts of SGBDota against Random Forests (RF), PU-SVM, SGBAUC,
and Random, by pairwise t-tests at 95% significance level

RF PU-SVM SGBAUC Random

SGBDota-1 1/3/0 1/3/0 2/2/0 3/1/0

SGBDota-2 2/2/0 2/2/0 2/2/0 3/1/0

SGBDota-3 0/2/2 0/2/2 0/2/2 0/2/2

In Fig.1(a), since the expansion is from regions of high positive density to low posi-
tive density, we expect that there are two expanding paths, one is from the right cluster
to the top cluster and then to the left cluster, the other is from the right cluster to the
bottom cluster. From Fig.1(b), it is observed that Random Forests does not find the
expanding path from the right cluster to the bottom cluster. From Fig.1(c), PU-SVM
does not find the expanding path from the right cluster to the top cluster. From Fig.1(d).
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SGBAUC ignores the path from the left cluster to the bottom cluster. Finally, SGBDota
concerns all the expanding paths, as shown in Fig.1(e).

Results of comparisons between SGBDota and the other methods are presented in
Table 2. Since each approach is tested 20 times on each data set, for two approaches
in comparison, we employ a pairwise two-tail t-test with significance level at 0.05 to
test if they have significant differences. A win/loss is counted SGBDota is significantly
better/worse than the comparing approach on a data set, otherwise a tie is counted.
Table3 lists the counts. It can be found that SGBDota-1 and SGBDota-2 never lose, and
are better than all the other approaches on segment. SGBDota-2 is moreover better than
all the other approaches on pbc. This indicates that, with effective domain knowledge,
our approach can exceed the-stat-of-the-arts learning approaches.

5.3 Influence of Parameters

We study the influence of the parameter p. The performances of SGBDota with p =
{1, 0.95, 0.9, 0.6, 0.3, 0}, are depicted in Fig.2, where the performance of Random
Forests, PU-SVM, SGBAUC, and Random are also plotted.

On segment and pbc, there is a large flat area where SGBDota-1 and SGBDota-2
have the best performance. On postoperative and veteran, SGBDota-1 and SGBDota-2
have less chance to be the best, which may be because the domain knowledge we used
here is not strong. We also note that postoperative is a hard data set, where Random
Forests is worse than Random, and SGBAUC can only achieve equal performance with
Random, but SGBDota-1 and SGBDota-2 have a significant chance to exceed Random.

SGBDota-1 SGBDota-2 SGBDota-3 SGBAUCPU-SVMRandom Forests Random
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Fig. 2. The influence of the parameter p on the performance of SGBDota
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Fig. 3. The influence of the parameters λ and p on the performance of SGBDota

Then, we study how the parameter λ affects the performance of SGBDota. Here we
use SGBDota-1 as a representative of the SGBDota approach. We test it by varying p
in {1, 0.95, 0.9, 0.6, 0.3, 0} and λ in {0.01, 0.05, 0.1, 0.5, 1}. Fig.3 plots the test results
of SGBDota on the four UCI data sets.

From Fig.3, it can be observed that λ = 1 is better than smaller value, which is rea-
sonable because if the used domain knowledge is useful, it should be heavily weighted,
otherwise the knowledge is probably fake. While it is hard to choose a good fixed value
of p, because when the domain knowledge is strong, p needs to be large to reduce the
side-effect of optimizing Lauc, otherwise p should be small. Therefore, in practical use,
it is convenient to let λ = 1, and set p according to user’s confidence about the domain
knowledge or leaving p be determined by the search strategy.

6 Conclusion

In this paper, we propose a framework to deal with positive class expansion problem
with single snapshot. Our framework includes two elements, i.e., the utilization of the
observation that the instances that are currently positive become positive ahead of the
instances that are currently negative, and the incorporation of domain knowledge ex-
pressed as user preferences of pairs of instances. We formulate the problem as an opti-
mization problem, and propose the SGBDota (Stochastic Gradient Boosting with Dou-
ble Target) approach which achieves success in experiments.

In our future work we will try to apply our approach to some real-world tasks which
suffer from the positive class expansion problem. We will also try to extend the pro-
posed framework to other varying target concept problems, such as the positive class
shrinking problem.
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Abstract. It is a challenging task of learning a large Bayesian network
from a small data set. Most conventional structural learning approaches
run into the computational as well as the statistical problems. We pro-
pose a decomposition algorithm for the structure construction without
having to learn the complete network. The new learning algorithm firstly
finds local components from the data, and then recover the complete
network by joining the learned components. We show the empirical per-
formance of the decomposition algorithm in several benchmark networks.

Keywords: Bayesian Networks, Graphical Models, Structure Learning.

1 Introduction

Bayesian networks (BN) [1,2] are widely used to represent probabilistic relation-
ship among random variables. They have been successfully applied in many do-
mains such as medical diagnosis, gene data analysis, and hardware troubleshooting.
Over the last decade, much progress has been made regarding structural learning in
Bayesian networks including both the score-based and the constraint-based learn-
ing methods [3,4,5,6]. The score-based method tries to optimize a scoring function
by means of a search strategy. Since finding the optimal Bayesian networks was
shown to be an NP-complete problem [7], one has to resort to some heuristic search
strategy. The other is constraint-based and infers structures through conditional
independency tests. The constraint-based is generally faster than the score-based
method and gives a trustworthy result provided there are sufficient data. We focus
on the constraint-based learning methods in this paper. Currently, with the mass-
throughput data in biomedical informatics, data analysis demands more powerful
learning algorithms that could handle data sets having thousands of variables but
with limited sample sizes. Most conventional learning methods run into the com-
putational and statistical problems in such a domain. They either can’t complete
the learning process, or produce a poor structure even when the learning is done.
Hence, in this paper, we propose a decomposition algorithm for learning a large
Bayesian network from a small amount of data.

The decomposition learning algorithm adopts the divide-and-conquer strat-
egy and contains several procedures to complete the learning task. We discover
a set of clusters from a dependency graph built directly from the data. Each
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cluster is expected to represent a local domain structure. We establish connec-
tion between clusters and learn each cluster separately. The learned clusters are
joined together to compose the complete targeted network.

The novel algorithm reduces the computational complexity since it learns
clusters instead of the complete network directly. In addition, the algorithm
learns clusters in a separated way so that the structural error(due to conditional
independency tests) that occurs in the learning of clusters does not influence
the global structure learning. Hence, the algorithm avoids the cascading effect
of incorrect statistical test results in the structural learning. We experiment the
proposed algorithm on several benchmark Bayesian networks and compare with
other typical constraint-based learning algorithms. The empirical results show
that the decomposition algorithm achieves good performance regarding both
structure learning accuracy and run times.

This paper is organized as follows. In Section 2, we discuss some related works on
structural learning. In Section 3, we present the decomposition learning algorithm
by illustrating embeded procedures. Then, we show comparison results in Section 4.
Finally, in Section 5, we conclude the paper with some hint on future work.

2 Related Work

The divide-and-conquer strategy has served as the technique of many learn-
ing algorithms that aim at recovering a large Bayesian network structure from
data [8,9,10]. The foundation of this strategy is to identify some appropriate
components in a large model. For example, in the approach of learning module
networks [9], a module is defined as a set of variables that have similar behavior.
All variables in a module share both the same parents and the same conditional
probability distribution. It seems that the module formulation is quite strict.
However, the formulation is well consistent with some domain concepts such as
genes in a cell, stocks in a stock sector, and so on. The sparse candidate al-
gorithm [8] recovers Bayesian networks by specifying the maximum number of
parents of variables in the learning process, which significantly reduces the learn-
ing complexity. Both the module learning and the sparse candidate approaches
orient score-based learning.

The most relevant work is the block learning algorithm [10] that already shows
the ability of learning a large Bayesian network from limited data. Similarly, the
block learning algorithm recovers structures through procedures of identifying
blocks and combining the learned blocks. However, the block identification pro-
cedure is incomplete since the block is composed of nodes that have at most
two-length distance from block centers. The searching largely depends on the
topology of a dependency graph and probably leads to disconnected blocks in
some domains. In addition, as shown in the previous work, a large amount of run
times are spent in learning overlapping structures. However, the extra procedure
does not have much benefit to the final (heuristic) structural combination. Our
new algorithm improves the block learning algorithm by designing more robust
and appropriate procedures.
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3 Decomposition Learning Algorithms

A constraint-based approach learns a network structure by using some statistical
hypothesis tests to detect dependency or (conditional) independency among vari-
ables or attributes in a data set. The results of several tests are combined by the
constraint-based approach in order to construct a Bayesian network structure.
The test results might be incorrect especially when insufficient data are pro-
vided. Since various test results might depend on each other in some unknown
manner, the error of the induced structure is not under control and spread in
a global way. In addition, a large number of variables lead to an increasing or-
der of conditional independency tests, which makes the learning intractable. To
circumvent these shortcomings, we propose the decomposition algorithm that
enhances the learning ability of conventional learning techniques by specifying a
modular framework.

We briefly describe the decomposition learning algorithm in Fig. 1. The algo-
rithm receives the data set D of size l 1 and the parameter ε used to control the
cluster expansion (line 4). We firstly construct the dependency graph M directly
from the data through the procedure of building a dependency graph (BDG)(line
2). The first procedure also produces two sets of edge weights, WM and WG, for the
dependency graph M and the complete graph G respectively. Then, we partition
M into several disjoint clusters using the procedure of star discovery (SD)(line
3). The procedure is highly motivated by current research work on complex net-
work [11,12] and is rather reliable to generate consistent clusters. The disjoint clus-
ters reveal some local components that shall be connected in the domain. Hence, we
expand the clusters into a set of overlapping clusters by discovering a high correla-
tion between inter-cluster memberships. The procedure of cluster expansion (CE)
uses the parameter ε to control the proportion of overlapping variables in the truly
correlated clusters (line 4). We proceed to learn a Bayesian knot for each overlap-
ping cluster separately by structuring the relation of cluster variables. The pro-
cedure of learning Baysian knots (LBK) may utilize any of available structural
learning algorithms (line 5). Finally, we use structural rules to combine the learned
Bayesian knots and recover the complete Bayesian network structure B in which
a set of nodes V B are connected with directed edges EB.

3.1 Build a Dependency Graph

Bayesian network structures exhibit the dependency among variables in a data
set. A strong dependency always gathers the variables into one local component.
In other words, the tightly linked variables are potential nodes that will be
enclosed in the same cluster. We expect to build a representative dependency
graph from which some sound clusters could be discovered. The graph must
be able to characterize a strong dependency of domain variables through their
connectivity. We select the maximum spanning tree [13] as the dependency graph
M since the tree is the smallest connected graph that optimally approximates the
1 Both the attribute xi in data set and the node or vertex vi in graphs represent variables

in the domain. They are interchangable and not further distinguished in this paper.
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Decomposition Learning Algorithm (DL)

Input: D = {x1,l, · · · , xn,l} and parameter ε

Output: A Bayesian network structure B = (V B, EB)
1: Load the data D
2: Build the dependency graph M : (M,WM ,WG) = BDG(D)
3: Partition M into a set of disjoint clusters C: C = SD(M,WM)

4: Expand C into a set of overlapping clusters OC: OC = CE(C,WG, ε)
5: Learn a set of Bayesian Knots BK: BK = LBK(OC,D)
6: Compose the final Bayesian network structure B: B = CBK(BK)

Fig. 1. The decomposition learning framework includes multiple procedures that will
be illustrated subsequently

Build a Dependency Graph (BDG)

Input: Data D = {x1,l, · · · , xn,l}
Output: M = (V M , EM ), WM , WG

1: Compute the complete Graph G = {V G, EG} with weights
WG = {wi,j = MI(vi, vj)|i, j = 1, · · · , n and i �= j}

2: k = 0, EM ← ∅, WM ← ∅ �Initialization
3: Sort EG decreasingly according to the weight wi,j ∈ WG

4: For ei,j ∈ EG ∧ k < |V M | do
5: If({ei,j} ∪EM ) do not create a cycle in M Then

6: EM ∪← {ei,j}, WM ∪← {wi,j}, k = k + 1

Fig. 2. The BDG procedure builds the maximum spanning tree as the dependency
graph M from the data D

joint distribution of domain variables. The dependency graph M = (V M , EM )
is a tree in which each edge, ei,j ∈ EM , connects a pair of nodes vi and vj (vi,
vj ∈ V M ) and the edge has the weight wi,j (wi,j ∈ WM ) measured by the
mutual information MI(vi, vj). We show the procedure of building a dependency
graph (BDG) in Fig. 2.

We compute MI(vi, vj) for all pairs of variables (for l-size samples) and con-
struct the complete graph G (line 1). We use the hash table that shows efficient
computation. The complexity of this task is in the order of O(n2). We slightly
modify the Kruskal’s algorithm to build the tree M (the original Kruskal’s al-
gorithm [14] finds the minimum spanning tree by sorting weights decreasingly
instead of increasingly) (lines 3-6). We use an union-finder data structure and a
sorted list for adding arcs into M . The complexity is in the order of O(n log n).

3.2 Discover Local Components

The output M is a minimal description of dependency among the variables.
We opt for this dependency graph because it represents the most significant
interactions in a topology that could be clustered (recall that variable clustering



A Decomposition Algorithm 445

in complex graphs is an NP-hard problem). Many clustering methods [15,16] have
appeared and shown competitive results in some domains. However, most of them
aim for different optimization problems. Moreover, they can’t generate consistent
clusters due to random selection of initial cluster modes. We are interested in
offering a robust algorithm that clusters a set of truly dependent variables by
examining a graph topology together with edge weights.

We aim to find a set of clusters C (each cluster Ci contains a set of vertices
V Ci in which one vertex vj is called as cluster center node oj) that maximize the
function in Eq. 1. In other words, we want to maximize the sum of depenency
weights (between cluster variables vi and cluster nodes oj) over multiple clusters.

C = argmax
C

∑

Ci∈C

∑

vi∈(V Ci−{oj})
wi,j (1)

where oj is the center node vj in the cluster Ci and wi,j ∈WG.
We use some sound graph operations to maximize Eq. 1 and show the Star

Discovery (SD) procedure in Fig. 3. The idea is motivated by current research
results on complex networks and evolves from the spanning star in the scale-free
networks [17]. The research characterizes domain patterns in terms of connectiv-
ity of nodes, densities of clusters of nodes, and so on. It indicates that nodes of
strong relations are always close and reside in a neigboring position. It suggests
some hidden, but natural, domain patterns could be discovered by investigating
the constructed graph topology.

We start by building a set of stars S = {S1, · · · , Sn|Si = (V Si , ESi)} (lines 2-
7). Each star Si is not a single node, but a connected sub-graph in the dependency

Star Discovery Procedure (SD)

Input: M = (V M , EM ), WM

Output: C = {C1, C2, · · · , Ck}
1: For each vi ∈ V M

2: oi←vi

3: Adj(vi)
∪← {vj} iff ei,j ∈ EM

4: Leaf(vj)
∪← {vh} iff eh,j ∈ EM ∧ vj ∈ Adj(vi)

∧eh,∗ �∈ (EM − {eh,j})
5: V Si

∪← {oi} ∪Adj(vi) ∪ Leaf(vj)

6: ESi
∪← {ei,j} ∪ {eh,j}

7: W Si =
∑

(wi,j + wh,j) � Star weights
8: While V S �= ∅
9: Ck←V Si iff Si = argmax

Si∈S
(W Si ∈W S)

10: S←(S − Si − Sj), W
S←(W S −W Si −W Sj )

iff vj ∈ Si ∧ vj = (oj ∈ Sj)

11: C
∪← Ck, V S←(V S − C)

Fig. 3. The SD procedure finds a set of disjoint clusters C from M through the building
of star graph S and avoids random initialization of clusters
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graph. We initialize each node vi as the star center node oi (line 2). The center
node oi, together with its adjacent nodes Adj(vi) and leaf nodes Leaf(vj) next
to the adjacent nodes vj (vj ∈ Adj(vi)), composes the initial n stars (lines 3-6).
In addition, we compute the star weight WSi that is the sum of weights for all
edges in Si (line 7). Then, we find a set of clusters C from the set of stars S
and each cluster Ck contains only vertices V Ci without edges (lines 8-11) 2. The
star Si that has the largest star weight WSi of all remained stars is chosen as
the cluster (line 9). When the star Si becomes a cluster it will be removed from
the set S together with the stars Sj that have the center node oj residing in the
selected star Si (line 10). Afterwards, we select the star of the second largest
weight as a new cluster. Hence, we get a set of k clusters in an iterative way
without having to specify the cluster number k in the initialization. The SD
complexity is dominated by the building of stars and takes O(n3) operations
searching for all adjacent and leaf nodes.

The SD procedure maximizes Eq. 1 through finding clusters that contain
nodes close to cluster centers in the dependency graph. We notice the SD proce-
dure avoids random initialization of clusters since it builds clusters by selecting
the star that has the largest weight among all remained stars. Consequently, we
do not need to specify the cluster number k and get consistent clusters upon one
data set. This is significantly different from other clustering methods that need
to assume a number of initial clusters at random.

3.3 Cluster Expansion

A cluster contains a set of most correlated variables that may compose a local
component in the domain. Since the SD procedure may result in disjoint clus-
ters we may lose some local correlations that link variables in separated clusters.
In addition, we need to recover the complete network structure by joining lo-
cal cluster structures. The interdependency of clusters will provide foundation
in the combination phase. Hence, we proceed to expand disjoint clusters into
overlapping clusters by discovering cluster interdependency.

We present the Cluster Expansion (CE) procedure in Fig. 4. The basic idea
is to expand clusters by including outlier variables that have most strong de-
pendency with cluster memberships. The procedure uses two phases, cluster
expansion (lines 1-6) and region expansion (lines 7-14), to generate a set of over-
lapping clusters. In the first phase, we use the parameter ε to control the number
of overlapping variables for possibly expanded clusters (line 3). For each clus-
ter Ci, we identify �|Ci| ∗ ε� (the ceil function �·�) numbers of outlier variables
vj that have the most strong dependency with cluster variables vi by measur-
ing their weights (line 4), and include these outlier varliables into the targeted
cluster (line 6). The complexity of this phase is governed by the searching of
relevant variables in k disjoint clusters and is in the order of O(ksn) where s is
the maximal cardinality of any given cluster Ci.

2 Since a cluster contains only vertices we sometimes use Ci as V Ci depending on the
context.
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Cluster Expansion Procedure (CE)

Input: C = {C1, C2, · · · , Ck}, ε ∈ (0, 1], WG

Output: OC = {OC1, OC2, · · · , OCk}
Phase 1: Cluster Expansion

1: OC←C,OV←∅ �Initialization
2: For each Ci ∈ C
3: For m = 1 to �|Ci| ∗ ε

4: vj = argmax

(vh∈Ci)∧(vj �=OVi)∧(vj∈(C−Ci))

(wh,j ∈WG)

5: OVi
∪← {vj} � Overlapping nodes

6: OCi←Ci ∪OVi

Phase 2: Region Expansion

7: R←OCk �Initialization
8: For each OCr ∈ (OC −R)
9: If (R ∩OCr) �= ∅
10: R

∪← OCr

11: If (OC −R) �= ∅
12: vj = argmax

(vi∈R)∧(vj∈(OC−R))

(wi,j ∈ WG)

13: OCi
∪← {vj}, OVi

∪← {vj} iff vi ∈ OCi

14: R
∪← OCi

Fig. 4. The CE procedure expands disjoint clusters by absorbing most relevant outlier
variables into targeted clusters

In the first phase, clusters are expanded through absorbing a limited num-
ber of outlier variables that have strong dependency with cluster memberships.
Consequently, some isolated regions that contain a set of connected clusters may
appear. For example, through the CE procedure, four disjoint clusters (C1, C2,
C3, and C4) may result in two isolated regions, (OC1 ∪OC2) and (OC3 ∪OC4).
The cluster C1 locates �|C1| ∗ ε� most relevant variables all of which reside
in the cluster C2, and the cluster C2 finds all the most relevant variables in
the cluster C1; so do the clusters C3 and C4. We need to remedy the cluster
expansion phase to ensure the cluster reachability (direct or undirect) if it is
necessary.

In the same vein as cluster expansion phase, the second phase expands isolated
regions by including (region) outlier variables that have the most dependency
with region variables. We compose the region R by connecting the clusters (from
the first phase) that have already shared some overlapping variables (lines 9-10).
Then, we detect possible isolated regions (line 11). If such regions exist we need
to connect them by adding the most relevant outlier variables vj into the targeted
cluster (lines 12-13). We also get the byproduct of a set of overlapping nodes
OVi (line 13). The complexity of the second phase is dominated by the searching
of relevant nodes in possibly isolated regions and is in the order of O(nm) where
m is the maximum number of variables within one region.
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Learning Bayesian Knots(LBK)

Input: Data D, Clusters OC
Output: BK = {BK1, BK2, · · · , BKk}
1: Load the data D
2: For each OCi ∈ OC
3: Construct BKi using any structural learning algorithm

4: BK
∪← BKi

Fig. 5. The LBK procedure learns Bayesian knots (much smaller than the complete
network) using any of available structural learning algorithms and recovers local domain
structures

3.4 Recover Bayesian Network Structures

The CE procedure expands the disjoint clusters so that each cluster is con-
nected to at least one of other clusters. We proceed to learn a set of Bayesian
Knots (BK) by structuring relations of variables in clusters. We describe the
learning Bayesian knots (LBK) procedure in Fig. 5. The procedure receives the
input of the data set D and a set of overlapping clusters OC (line 1). We apply
any of available structual learning algorithms to construct a Bayesian knot (BK)
that is a directed acyclic graph (line 3). Each BKi contains a set of nodes V BKi

connected by directed edges EBKi and could be viewed as a local structure in the
domain. The procedure complexity relies on the selected learning algorithm (line
3). For example, if the PC algorithm is used the complexity is in the order of
O(krq) for learning k clusters where q is the maximum number of parents for
a node and r is the largest cluster size. In general, a cluster contains a small
subset of domain variables (r � n). The complexity is relatively low comparing
with the order of O(nq) for learning the complete network directly.

The final procedure is to complete the learning task by joining the learned
Bayesian knots that share common variables. We show the procedure of combin-
ing Bayesian knots in Fig. 6. The procedure takes some rules to address conflict-
ing structural problems and to avoid global directed cycles in the network. The
conflict occurs when the direction of arcs connecting overlapping nodes differs
in linked knots.

We start the Bayesian network B with a complete undirected graph (line 1).
Then, we remove edges from the complete graph that do not exist in any of the
learned Bayesian knots (line 2). All the remained edges must be directed in at
least one of the Bayesian knots. We direct those edges that have already been
oriented in at most one Bayesian knot (line 4). Subsequently, we use three rules
to orient the rest undirected edges since the edges are directed differently in over-
lapping Bayesian knots (lines 5-8). The first rule is to avoid new v-structures (line
6). In most constraint-based learning methods, directions of edges participating
in v-structures are uncovered using independency tests, rather than through
structural rules afterwards. The second rule avoids directed cycles by forcing
the arc direction (line 7). Finally, if both rules can’t be applied we orient edges
randomly following directions in one Bayesian knot (line 8). The combination
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Combine Bayesian Knots(CBK)

Input: BK = {BK1, BK2, · · · , BKk}
Output: B = (V B , EB)

1: Start the global skeleton of a complete network B = {V B , EB}
2: EB←(EB − {eij}) iff eij �∈ EBKi

3: For each BKi ∈ BK
4: Orient eij ∈ EB iff eij ∈ EBKi ∧ eij �∈ (EBK − EBKi)
5: For all undirected edges eij ∈ EB

6: If vi → vj , vj and vh are adjacent, and vi, vh are not adjacent,
then orient vj − vh as vj → vh

7: If there is a directed path from vi to vj , and vi, vj are adjacent,
then orient vi − vj as vi → vj

8: Otherwise, orient vi − vj at random

Fig. 6. The CBK procedure joins Bayesian knots into the complete network through
structural rules without furthering (in)dependency tests

procedure aims for the arc orientation using structural rules instead of expensive
independency tests.

4 Experimental Results

We demonstrate the empirical performance of the decomposition learning al-
gorithm on several benchmarks : ALARM (37 nodes), Hailfinder (56 nodes),
HeparII (70 nodes), Pathfinder (109 nodes), and Andes (223 nodes). We also
compare the performance with two typical constraint-based learning methods.
One is the basic learning method of the PC algorithm [3] and the other is three
phase dependency analysis (TPDA) [18] algorithm that is the winner of 2001
KDD cup. In addition, we compare with the block learning algorithm. We gener-
ate several data sets (ranging from small to large sample sizes) and compute the
Euclidean distance (of the sensitivity and specificity from the perfect score 1) [19]
between the learned structures and the benchmarks. The Euclidean distance is
defined in Eq. 2.

distance = 2
√

(1 − sensitivity)2 + (1 − specificity)2 (2)

where the sensitivity of the algorithm is the ratio of correctly identified edges
(undirected arcs) over the total number of edges in the real network while the
specificity is the ratio of edges correctly identified as not belonging in the graph
over the true number of edges not present in the real network.

In most cases, we show that the decomposition learning algorithm outperforms
other learning algorithms and achieves lower distance values. In particular, the
new algorithm keeps a good quality structure even when the data set is reduced.
Furthermore, we obtain computational savings from using the decomposition
algorithm as indicated by the low run times.
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Fig. 7. Performance profile of the decomposition learning algorithm comparing with
other learning algorithms. The dotted lines with different colors denote the PC and
TPDA learning algorithms, the dashed lines, BL − PC and BL − TPDA, denote
the block learning algorithms configured by the PC and TPDA learning engines re-
spectively, and the solid lines, DL− PC and DL− TPDA, denote the decomposition
learning algorithms equipped with the PC and TPDA learning techniques (in the
LBK procedure) respectively.

We show the performance of the decomposition learning algorithm in Fig. 7 3.
Each data point is the average of 10 runs for different data sets of same size 4.
Both the decomposition and the block learning algorithms that are equipped with
learning engines have better performance than the PC and TPDA learning

3 We specify ε ∈ [0.40,0.60] concerning the tradeoff between the cluster size and the
overlapping set.

4 We only count successful runs of the BL algorithm when it produces connected local
structures.
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Fig. 8. Runtimes comparison (3GHz, 2GB RAM). The decomposition algorithm is
scalable in learning large domains.

algorithms regarding the distance measure. This remains true for a range of data
sets. For small domains, such as Alarm and Hailfinder networks, both the decom-
position learning algorithm and the block learning algorithm exhibit similar per-
formance of low distance. However, the decomposition algorithm has significantly
better results on the rest three large networks, especially for small data sets. We
report only the performance of the BL and DL learning algorithms on the three
larger networks since both the PC and TPDA algorithms fail.

We also observe from Fig. 7 that the decomposition learning algorithm retains
a good quality of learned structures when the sample size is noticeably reduced.
In addition, the decomposition algorithms have a lower variance than the block
learning algorithms. This is due to the DL method has a reliable clustering
method SD comparing with the incomplete block identification in BL.
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Finally, the run times in Fig. 8 are indicative of the computational savings
incurred by using the decomposition learning algorithm. The decomposition al-
gorithm achieves more savings than the block learning algorithm since the latter
needs an expensive procedure of learning overlapping structures. Using the de-
composition algorithm we were able to learn the three large domains of HeparII,
Pathfinder, and Andes, while both the PC and TPDA algorithms run out of
memory. We expect similar results of good performance without intensive com-
putation in real applications.

5 Discussion

The decomposition learning algorithm is able to learn a large Bayesian network
structure and shows good performance even when insufficient data are provided.
It significantly improves the block learning algorithm on the aspects of robust
clustering methods and well-defined combination rules. The modular design pro-
vides a way to exploit state-of-the-art of both Bayesian network learning and at-
tribute clustering techniques. In addition, the decomposition learning algorithm
offers useful intermediate clusters or Bayesian knots that represent local domain
structures and may attract interest into further study. Several issues relevant to
the decomposition learning algorithm deserves further study. We are currently
investigating an adaptive cluster expansion.
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Abstract. Among predictive models, ‘if-then’ rule sets are one of the most ex-
pressive and human readable model representations. Most of the existing ap-
proaches for rule learning focus on predicting a single target attribute�class. In
practice, however, we encounter many problems where the task is to predict not
one, but several related target attributes. We employ the predictive clustering ap-
proach to learn rules for simultaneous prediction of multiple target attributes. We
propose a new rule learning algorithm, which (unlike existing rule learning ap-
proaches) generalizes to multiple target prediction. We empirically evaluate the
new method and show that rule sets for multiple target prediction yield compa-
rable accuracy to the respective collection of single target rule sets. The size of
the multiple target rule set, however, is much smaller than the total size of the
collection of single target rule sets.

1 Introduction

Traditionally, inductive machine learning focuses on problems where the task is to pre-
dict a value of a single target attribute. However, there exist many real life problems
where the task is to predict not one, but several related target attributes. Of course,
this problem can easily be solved by constructing separate models for each target at-
tribute. If our only goal is to achieve high predictive accuracy, the resulting collection
of (single target) models should be suÆcient, provided that we have selected a suit-
able method for single target prediction. On the other hand, if, besides the predictive
accuracy, the interpretability of induced models is also important, the collection of sin-
gle target models is far less understandable than a single model that jointly predicts all
target attributes. Therefore, the research on extending machine learning methods that
produce interpretable models (such as decision trees and rules) towards multiple target
prediction is justified.

One of the possible approaches to multiple target prediction is predictive clustering,
which was originally applied to decision trees. The goal of this paper is to adopt the
predictive clustering approach in order to design a method for learning rules for multiple
target prediction; we call it predictive clustering rules.1 We focus on classification tasks
only, though the method can also be extended to regression problems.

1 An initial solution to the problem of learning predictive clustering rules has been presented in
[17]. The algorithm presented here includes an updated search heuristic, a new error weighted
covering algorithm, and extended experimental evaluation.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 454–465, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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The rest of the paper is organized as follows. Section 2 summarizes predictive clus-
tering. The algorithm for learning predictive clustering rules is presented in Section 3.
Section 4 describes the evaluation methodology, and Section 5 presents the experimen-
tal results. Last section concludes and gives some directions for further work.

2 Predictive Clustering

The predictive clustering approach [1,2] builds on ideas from two machine learning
areas, predictive modeling and clustering [9]. Predictive modeling is concerned with
the construction of models that can be used to predict some object’s target property
from the description of this object (attribute-value representation is most commonly
used for describing objects and their properties). Clustering, on the other hand, is con-
cerned with grouping of objects into classes of similar objects, called clusters; there is
no target property to be predicted, and usually no symbolic description of discovered
clusters, (though a symbolic descriptions can be added to already constructed clusters
as in conceptual clustering [13]). Both areas are usually regarded as completely di�er-
ent tasks. However, predictive modeling methods that partition the example space, such
as decision trees and rules are also very similar to clustering [10]. They partition the
set of examples into subsets in which examples have similar values of the target vari-
able, while clustering produces subsets in which examples have similar values of all
descriptive variables. Predictive clustering builds on this similarity. As is common in
‘ordinary’ clustering, predictive clustering constructs clusters of examples that are sim-
ilar to each other, but in general taking both the descriptive and the target variables into
account. In addition, a predictive model is associated with each cluster which describes
the cluster, and, based on the values of the descriptive variables, predicts the values of
the target variables. Methods for predictive clustering enable us to construct models for
predicting multiple target variables which are normally simpler and more comprehen-
sible than the corresponding collection of models, each predicting a single variable.2

So far, this approach has been limited to the tree learning methods. The method de-
scribed in the next section extends predictive clustering towards methods for learning
rules.

3 Predictive Clustering Rules

Predictive clustering rules (PCRs) include ideas from rule learning and clustering. The
learning algorithm itself is a generalization of existing rule learning approaches. The
rule evaluation function which serves as a search heuristic, however, employs tech-
niques commonly used in clustering. We start with a description of the top level of
the algorithm, while specific aspects of the algorithm, such as learning single rules and
modification of the learning set between subsequent iterations of the algorithm, are dis-
cussed in separate sections.

2 Related to multiple target prediction is Multi-Task learning [3], where a single model (neural
network) is trained for multiple target attributes (learning tasks) with a presumption that a set
of hidden submodels will emerge that are used for modeling of all learning tasks.
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Table 1. The algorithm for learning predictive clustering rules. a) ‘LearnRuleSet’, b) ‘FindCan-
didateRule’, and c) ‘ModifyLearningSet’ procedures.

a) LearnRuleSet()
Input: learning set E
R � � {rule set}
Ec � E {current learning set}
repeat

ri � FindCandidateRule(Ec)
R � R � �ri�

Ec � ModifyLearningSet(Ec � ri)
until ((ri � �) or (��Ec �� � 0))
R � R � DefaultRule(E)
return R

c) ModifyLearningSet()
Input: current learning set Ec, newly added
rule ri

case (Mmod � “Std-Covering”) do
for all (ei � Ec) do

if (ri covers ei) then
wei � 0

return Ec

case (Mmod � “Err-Weight-Covering”) do
for all (ei � Ec) do

if (ri covers ei) then
wei � wei � g(ei� ri)

if (wei � �) then
wei � 0

return Ec

b) FindCandidateRule()
Input: current learning set Ec

clast � “true”
C � Cbest � �clast�

while (C � �) do
Cnew � �

for all (c � C) do
for all (t � Tp � t � c) do

cnew � c � t
if (h(cnew) � h(clast)) then

Cnew � Cnew � �cnew�

Cbest � Cbest � �cnew�

if (�Cnew� � bw) then
Cnew � Cnew 	 arg minc�

�Cnew h(c�)
if (�Cbest � � bw) then

Cbest � Cbest 	 arg minc�
�Cbest h(c�)

clast � arg minc�
�Cbest h(c�)

C � Cnew

cbest � arg maxc�
�Cbest h(c�)

return (cbest� pbest)

3.1 Learning Algorithm

Most of existing approaches to rule learning are based on the covering algorithm [12].
Its main problem, however, is that it was originally designed for two-class (binary) clas-
sification problem domains. In addition, the rule sets produced by the original covering
algorithm are by nature ordered, unless rules for only one class value are constructed.
Our algorithm is based on the CN2 method [5,4], which uses a version of the covering
algorithm that can learn ordered or unordered rules, and is also applicable to (single
target) multi-class problems.

The algorithm for learning predictive clustering rules is presented in Table 1. Top
level procedure ‘LearnRuleSet’ (Table 1.a) starts with an empty rule set R and a set
of learning examples E. In each iteration we learn a candidate rule ri and add it to
the rule set. Next, we modify the current learning set Ec and, unless some stopping
criterion is met, repeat the loop. There are two stopping criteria; we stop adding rules
if the ‘FindCandidateRule’ procedure could not find any non-empty rule, and when the
��Ec�� becomes zero (��Ec�� is the number of examples with non-zero weights). Before the
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learning procedure is finished, we add the default rule. The default rule is a rule with
an empty condition and is used for examples that are not covered by any other rule. Its
prediction part is a cluster prototype of the complete learning set E.

The interpretation of PCRs is the same as that of CN2 rules: ordered rules are scanned
and the first one that covers the example is used; predictions of all unordered rules that
cover the example are combined into the final prediction via weighted voting, where the
weights are equal to the number of covered examples on the training data.

3.2 Learning Single Rule

The ‘FindCandidateRule’ procedure is given in Table 1.b, and is a general-to-specific
beam search algorithm, which is very similar to the one implemented in the CN2. The
input to the procedure is the learning set of examples Ec. The width of the beam bw

determines the number of partial rules maintained during the search. A set of bw best
rules (or actually conditions) found so far as evaluated by the heuristic function h is
denoted as Cbest. We start with the most general condition (“true”) that is satisfied by
all examples in the learning set Ec. Now we begin specialization of all conditions in
the current set of conditions C by conjunctively adding an extra test. Here we consider
all possible tests (Tp) that are not already in the condition that we are specializing.
Here we only consider conditions that cover at least a predefined minimal number of
examples �. Every specialization is evaluated using the heuristic function h. If any spe-
cialization is better than the worst condition in the set Cbest, we add it to this set and to
set Cnew. We remove the worst conditions if the sizes of these sets increase over their
predefined maximum sizes. When all specializations of the current set of conditions C
are examined, the set C becomes set Cnew, and the search is continued until no better
specializations can be found. At the end, the best condition from the set Cbest is coupled
with the prototype of target attributes of examples that it covers (pbest), and returned as
a candidate rule.

Search Heuristic. The crucial part of the algorithm is the search heuristic h. The
heuristic is used for the evaluation of rules under construction and basically leads the
search procedure towards rules of the desired quality. Therefore, the heuristic should
reflect the qualities we expect from each individual rule in the rule set. Typically, we
want the rules to be accurate and, at the same time, general, i.e., we want the rules to
cover as many examples as possible. More generalization means that the rule covers
more examples and in the end, it also means that the final rule set will have fewer rules
and will be more comprehensible. Unfortunately, more generalization most often also
means larger error in the model, and a compromise between the two must be found.

Normally, the accuracy measures are tailored to single target prediction, while for
predictive clustering rules we need a measure that also works for multiple target pre-
diction. We define such a measure, we call it dispersion, as follows. Let E� be the set
of N examples that are covered by a specific rule, and each example ei is represented
as a vector of K attribute values x ji, where x ji stands for the value of the attribute a j of
the example ei. The dispersion of a set of examples E� is an average of the dispersions
along each attribute

disp(E�) �
1
K

K�
j�1

disp(E�� a j)� (1)
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Here we take into account only the target attributes, although in principle, we could
include also the non-target attributes [17].

The definition of dispersion along a single nominal attribute is the average distance
of a single example from a set to the prototype of this set. Let the attribute a j have L
possible values with labels l1 to lL. The prototype of a set of examples E� of an attribute
a j is a vector of relative frequencies fk of possible values within the set

pE� � p(E�; a j) � [ f1� f2� � � � � fL]; fk �
nk

N
� (2)

where nk stands for the number of examples in the set E� whose value of attribute a j

equals lk. Accordingly, (the prototype of) a single example ei with the value of attribute
a j equal to lk is

pei � [ f �1 � f �2 � � � � � f �L]; f �k �

�
1� if x ji � lk�
0� otherwise.

(3)

The distance between the two prototypes can be measured using any of the distance
measures defined on vectors; we have decided to use the Manhattan distance. Now
the distance between an example ei with the value of attribute a j equal to lk (i.e., the
prototype pei ) and prototype of the entire set E� is

d(pei � pE� ) � �1 � fk � �
L�

m�1
m�k

� fm� � 2(1 � fk); (4)

where we have taken into account that fk � 1 and
�

fm � 1. Finally, the dispersion of
the set of examples E� along the nominal attribute a j is the normalized average distance

disp(E�� a j) �
1

2N
L

L � 1

N�
i�1

d(pei � pE� )� (5)

The normalization factor normalizes the value of dispersion to the [0� 1] interval which
is necessary, if we want the dispersions between di�erent attributes to be comparable.

The rule’s generality is typically measured by its coverage, which is defined as the
proportion of covered examples, i.e., the number of examples covered by a rule divided
by the number of all examples. This definition assumes that all examples are equally
important, i.e., they all have equal weight. As we will see later, sometimes it is useful to
introduce example weights that are not uniform. Each example ei then has an associated
weight wei. The relative coverage of rule r in this case is simply the sum of weights of
the examples covered by r divided by the sum of weights of all examples

cov(r; E�w) �

�
ei�E� wi�
eei�E wei

� (6)

Now, we have to combine the two measures into a single heuristic function. Analo-
gously to the WRAcc heuristic [11], we do this as follows. Let c be the condition of rule
r that we are evaluating, and E be the set of all learning examples. Er is the subset of
E with examples that satisfy condition c (i.e., are covered by rule r). we is the example
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weight vector. By means of example weights we can give preference to selected exam-
ples, which should more likely lead to the construction of rules covering these examples
(more on this later). The heuristic function is

h�(c) � [ddef � disp(Er)] � cov(r; E�we)�� (7)

The parameter � enables us to put more (or less) emphasis on coverage w.r.t. to dis-
persion; by default (like in WRAcc) it is set to 1. ddef is the default dispersion, i.e., the
dispersion of the entire learning set E, and the first factor of Equation 7 can be regarded
as the relative dispersion loss. Rules with larger heuristic function values are better.

3.3 Modifying the Learning Set

Within the main loop of the ‘LearnRuleSet’, the current learning set Ec must be mod-
ified, otherwise the ‘FindCandidateRule’ procedure would continuously find the same
rule. Learning set modification is done by the ‘ModifyLearningSet’ procedure presented
in Table 1.c.

The most common approach to modifying the learning set is the covering algo-
rithm [12]. The idea is that we put more emphasis on the learning examples that have
not yet been adequately covered. This should force the ‘FindCandidateRules’ procedure
to focus on these examples and find rules to describe them. In the original covering al-
gorithm (Mmod � “Std-Covering”), examples that are already covered by a rule are
removed from the current learning set. Rule learning in the next iteration will there-
fore focus only on examples that have not yet been covered. This approach is used by
the CN2 algorithm [5,4] for the induction of ordered rules, and ordered PCRs are also
induced in this manner.

The weighted covering algorithm [8], on the other hand, assigns a weight to each
learning example. Instead of removing the covered example completely, weighted cov-
ering only decreases its weight. It does this, however, only for examples that have been
correctly classified by the newly added rule. The notion of ‘correctly classified exam-
ple’ unfortunately only makes sense for single target classification problems. To over-
come this limitation, we develop a more general covering scheme, which we call error
weighted covering, that is applicable to single and multiple target prediction problems
(Mmod � “Err-Weight-Covering”). Error weighted covering is similar to ‘ordinary’
weighted covering, except that the amount by which example’s weight is reduced is
proportional to the error the newly added rule makes when predicting the example’s
target attributes’ values. The exact weighting scheme is as follows.

Let every learning example ei have an assigned weight wei. At the beginning, the
weights of all examples are set to one. Then, whenever a new rule r is added to the rule
set, the weight of each covered example ei is multiplied by the value of g(ei� r), which
is defined as

g(ei� r) � 1 � (� � 1)k(ei� r)� (8)

where k(ei� r) is the proportion of correctly classified target attributes of example ei by
rule r

k(ei� r) �
nb. corr. pred. tar. atts of ei by r

nb. all tar. atts
� (9)
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and � is the covering weight parameter, which enables us, together with the covering
weight threshold parameter �, to control the pace of removing covered examples from
the current learning set. It should take values between 0 and 1. Setting � to 0 means
that examples, whose target attributes are correctly predicted by rule r, are immediately
removed from the current learning set, i.e., their weights are set to zero. The parameter
� defines the threshold under which the example weights are considered to be too small
to be still included in the learning set; when the example weight falls below this value,
it is set to zero.

4 Experimental Setup

In the experiments, we investigate two issues. First, we compare the performance of
predictive clustering rules (PCRs) to some existing rule learning methods for single
target classification in order to show that PCRs are comparable to existing methods on
this type of problems, and can be used as a baseline in the second part of the evaluation.
For comparison we selected the CN2 rule learner [5,4] and a modification of CN2,
the CN2-WRAcc [15], because our approach is a generalization of these algorithms.
Additionally, we compare PCRs to Ripper [6] which is a more advanced rule learner;
we used the JRip implementation from the Weka data mining suite [16] which only
learns ordered rules.

Second, we compare the PCRs for single target prediction to PCRs for multiple target
prediction. The main benefit of multiple target prediction is that a collection of mod-
els (rule sets) each predicting one target attribute can be replaced by just one model
that predicts all target attributes at once. The task of the second part of experimental
evaluation is to investigate this issue.

4.1 Data Sets

In order to evaluate the performance of PCRs, we perform experiments on single target
and on multiple target problems. For single target problems, we have selected a collec-
tion of 15 data sets from the UCI Machine Learning Repository [14] which are widely
used in various comparative studies.

Multiple target classification is a relatively new machine learning task and conse-
quently there are few publicly available data sets. Nevertheless, some data sets from
the UCI Repository can also be regarded as multiple target problems (�������, �	
��,
�	��-����, and ����	��-0387). In addition, we use the following five data sets.

The ��� is a data set on electrical discharge machining with 154 examples, 16
descriptive attributes and two target attributes. The ����
 data set consists of 7953
questionnaires on the Slovene media space, has 79 descriptive attributes and 5 target at-
tributes. The �����-��� is a data set on a field study of a genetically modified oilseed
rape. It comprises 817 examples, 6 descriptive, and 2 target attributes. The �����-���
data set is also concerned with genetically modified oilseed rape, however, the data
are produced by a simulation model. The data consists of 10368 examples with 11 de-
scriptive and 2 target attributes. The ����-������ data set comprises biological and
chemical data that were collected through regular monitoring of rivers in Slovenia. The
data consists of 1060 examples with 16 descriptive and 14 target attributes.
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4.2 Evaluation Methodology

When evaluating the newly developed method, we are interested in the predictive error
of the learned rule sets and their size, i.e., the number of rules within the rule sets. The
CN2 and CN2-WRAcc as well as PCR algorithms can induce ordered or unordered
rules, therefore we perform experiments for both. JRip can only learn ordered rules.
All error rates are estimated using 10-fold cross-validation. The folds for a specific
data set are the same for all experiments. As recommended by [7], significance of the
observed di�erences in error rates and rule set sizes of two algorithms was tested with
the Wilcoxon signed-rank test.

Unless otherwise noted, all algorithm parameters were set to their default values.
CN2 can use significance testing for rule pruning, while there is no need for signifi-
cance testing in CN2-WRAcc, since the number of induced rules by this algorithm is
already much smaller. We use the p-value of 0.99 for significance testing in the CN2
algorithm.

The default parameter values for the PCR algorithm are as follows: beam width
bw�10, minimal number of examples ��2, coverage heuristic weight ��1, covering
weight ��0, and covering weight threshold ��0.1. These are set so as to emulate the
CN2 and CN2-WRAcc algorithms as closely as possible and were not tuned in any
way. Ordered rules were induced with the learning set modifying method (Mmod) set to
“Std-Covering”, while for unordered rules it was set to “Err-Weight-Covering”.

The comparison of PCRs used for multiple target prediction and PCRs used for sin-
gle target prediction is performed as follows. For each data set, we have learned one
multiple target PCR model and compared it to a collection of single target PCR mod-
els. This collection consists of the same number of models as is the number of target
attributes in a given domain. The sizes of the single target PCR rule sets for each target
attribute are summed and compared to the size of the multiple target PCR rule set. The
overall significance of di�erences is again estimated using the Wilcoxon signed-rank
test; each target attribute of each data set corresponds to one data point.

5 Experimental Results

5.1 Comparison to Existing Methods

First, we present the results of the comparison of predictive clustering rules (PCRs) to
the CN2, CN2-WRAcc, and JRip methods. Table 2.a gives the significances of di�er-
ences for pairs of algorithms for ordered rules and unordered rules. Except for the JRip,
we also compared ordered vs. unordered rules. Due to space limits, we have left out the
table with complete results for each data set.

For ordered rules, we can see that there are no significant di�erences between the
CN2, CN2-WRAcc, and PCR algorithms in terms or error, but rule sets induced by
CN2-WRAcc have a significantly smaller number of rules. JRip rules are better in
terms of error than ordered PCRs, but the di�erence is below the significance threshold.
Next, if we compare unordered rules, we see that PCRs have a significantly smaller
error than the two CN2 algorithms. However, the PCR rule sets are much larger than
the CN2-WRAcc rule sets. There is no significant di�erence between (ordered) JRip
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Table 2. Significances (p-values) of di�erences in error rates and rule set sizes for the pairs of
algorithms: CN2, CN2-WRAcc (��2�), JRip, and PCR for ordered (��) and unordered (��) rules.
The sign � (�) right of a p-value means that the first (second) algorithm tends to induce rule
sets with smaller error rate or size. Significant di�erences are typeset in bold. a) Single target
classification, b) Single target vs. multiple target classification.

a)
C���	�
� 	�������� 
���� ���


�-�	��
 �-�	��

��2 �� : ��2� �� 0.188 � �0.001 �

��2 �� : ��� �� 0.978 � 0.151 �

��2� �� : ��� �� 0.359 � 0.003 �

���� �� : ��� �� 0.073 � 0.934 �

��2 �� : ��2� �� 0.762 � �0.001 �

��2 �� : ��� �� 0.002 � 0.804 �

��2� �� : ��� �� 0.003 � �0.001 �

���� �� : ��� �� 0.847 � 0.007 �

��2 �� : ��2 �� 0.144 � 0.359 �

��2� �� : ��2� �� 0.524 � 0.804 �

��� �� : ��� �� 0.018 � �0.001 �

b)
C���	�
� 	�������� 
���� ���


����
 : �������
 �-�	��
 �-�	��

��� �� 0.066 � �0.001 �

��� �� 0.067 � �0.001 �

rules and unordered PCRs in terms of error, but JRip tends to produce significantly
smaller rule sets than the latter. Finally, if we compare ordered and unordered rules
induced by each algorithm, the only significant di�erence is in the case of PCRs; un-
ordered PCRs have a significantly smaller error, but this accuracy comes at a price, since
their size is much larger. From these results, we can conclude that the performance of
PCRs on single target problems is comparable to the performance of the CN2 and CN2-
WRAcc algorithms for ordered rules, and better for unordered rules. In terms of error,
ordered PCRs are somewhat worse than JRip, while unordered PCRs are comparable to
JRip.

5.2 Comparison of Single to Multiple Target Prediction

The significances of di�erences between single target and multiple target PCRs are
given in Table 2.b, while error rates and rule set sizes are presented in Table 3.

From the Table 2.b we can conclude that ordered multiple target prediction models
tend to be less accurate than the single target prediction models. In the case of unordered
rules, however, the situation is reversed: multiple target prediction models are better
than the single target prediction models. In both cases the di�erence is almost significant
(p-value � 0.07). The di�erence in the rule set sizes, however, is very significant; the
size of single target rule sets is roughly twofold in the case of unordered rules, and
more than threefold in the case of ordered rules. These results suggest that the multiple
target PCRs indeed outperform single target PCRs in terms of rule set size, while the
accuracy of both types of models is comparable. In addition, multiple target prediction
setting somewhat improves the accuracy of unordered rule sets.
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Table 3. Comparison of error rates of ordered (��) and unordered (��) PCRs used for single
target and multiple target classification. For each data set, the average error rate over all target
attributes is given first, and then for each target attribute separately. Sizes of single target predic-
tion rule sets and summed and compared to multiple target prediction rule set. In each row, the
smallest error rate of ordered and unordered rules is typeset in bold. The final row (next page)
gives the average error rate over all target attributes of all data sets and the average rule set size
over all data sets.

�	�	 �
� ��� �� ����
 ��� �� �������
 ��� �� ����
 ��� �� �������


�	�. 	��. % 
���� # ���
 % 
���� # ���
 % 
���� # ���
 % 
���� # ���


����
� 35.0 34 40.5 7 37.3 36 32.2 12
�-��-� 19.4 
14.1 4 24.7 
0.0 19.4 
14.1 4 10.6 
8.7
�	�
��	� 21.6 
13.5 6 20.0 
10.1 26.5 
17.8 6 18.8 
10.4
��	� 31.8 
14.9 6 43.5 
11.3 35.2 
13.3 6 40.0 
11.0
�
�-� 47.5 
21.5 7 44.7 
0.0 46.5 
20.6 8 35.3 
15.7
���
 54.9 
17.2 11 69.4 
0.0 58.8 
12.7 12 56.5 
0.0

�� 24.7 17 25.0 9 28.2 16 29.2 11
�-���� 13.6 
15.5 7 11.7 
8.1 16.2 
15.2 7 12.3 
9.0
�-	� 35.7 
11.8 10 38.3 
8.2 40.3 
0.0 9 46.1 
13.4
�
��	�	 18.2 1297 17.2 271 20.1 1505 16.6 685
�
	�-�
�� 23.1 
0.9 306 22.0 
1.5 24.0 
1.3 353 21.7 
1.2
�
	�-��
���� 21.9 
1.2 436 16.6 
1.4 20.4 
1.7 493 15.4 
0.9
�
	�-
���	 9.2 
0.9 296 7.1 
0.8 7.4 
0.9 362 6.3 
0.8
�
	�-��-��� 26.3 
1.4 100 28.8 
1.1 38.0 
4.6 100 29.2 
0.9
�
	�-�
�
� 10.3 
1.7 159 11.6 
0.9 10.5 
1.1 197 10.4 
1.0
����� 3.3 39 21.7 4 17.5 40 23.5 10
����-1 0.0 
0.0 7 30.1 
9.1 11.1 
4.9 7 17.6 
7.3
����-2 10.0 
6.4 28 33.1 
8.0 33.3 
13.1 29 35.9 
5.9
����-3 0.0 
0.0 4 1.9 
3.0 8.1 
7.2 4 17.1 
5.4
���
	-�
	� 24.8 76 24.9 38 24.5 91 24.9 72
��� 26.1 
5.4 52 24.5 
5.2 26.2 
5.8 60 25.1 
4.6
��� 23.5 
6.1 24 25.3 
3.8 22.8 
5.3 31 24.6 
3.3
���
	-��� 0.7 14 2.1 3 1.2 15 2.1 4
����-�	�
 1.4 
0.4 12 4.3 
0.7 2.4 
0.7 13 4.3 
0.7
����-�

�� 0.0 
0.0 2 0.0 
0.0 0.0 
0.0 2 0.0 
0.0
���	�-��	�
 11.1 58 11.0 23 13.1 79 10.4 39
�-��	�� 15.8 
7.6 25 15.2 
6.7 18.3 
8.2 36 13.6 
6.9
�-��	�� 13.0 
3.7 19 14.6 
4.7 15.8 
4.0 27 14.9 
4.6
�-��	�� 4.6 
4.1 14 3.1 
3.2 5.3 
5.3 16 2.8 
3.4
�������-0387 1.8 666 2.4 497 2.1 727 2.5 560
���
�-����� 2.0 
0.5 107 2.5 
0.6 1.7 
0.5 115 2.5 
0.5
����-����� 0.9 
0.4 53 3.1 
0.8 2.4 
0.7 40 3.7 
0.5
����-���� 2.9 
0.8 135 3.2 
0.8 3.0 
0.6 157 3.4 
0.6

�-�
	��� 2.6 
0.8 125 3.6 
0.6 3.0 
0.7 134 2.7 
0.9
�
��-��
��� 2.1 
0.5 129 2.1 
0.4 2.2 
0.7 148 3.0 
0.8
	��������-�� 0.3 
0.2 24 0.3 
0.2 0.4 
0.2 24 0.4 
0.2
����-�
����� 1.6 
0.3 93 2.0 
0.5 2.1 
0.6 109 2.0 
0.6

Continued on the next page.
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Table 3. (continued)

�	�	 �
� ��� �� ����
 ��� �� �������
 ��� �� ����
 ��� �� �������


�	�. 	��. % 
���� # ���
 % 
���� # ���
 % 
���� # ���
 % 
���� # ���


�	�
�-��	���� 32.1 736 33.3 89 33.9 788 31.8 153
��	�-�� 38.5 
3.7 31 39.5 
5.6 39.9 
4.9 28 40.4 
4.9
��-��� 34.4 
4.2 64 29.5 
3.6 39.2 
6.6 77 28.4 
3.2
�
��-�� 29.8 
3.6 62 29.7 
4.5 30.9 
4.7 78 29.9 
5.1
��
-�
� 25.1 
2.6 80 23.2 
4.6 23.9 
4.8 83 20.8 
2.4
�
��-�	� 34.2 
4.0 30 41.7 
4.8 38.9 
3.3 27 41.4 
3.7
����-�	� 29.6 
3.0 23 31.3 
2.3 30.0 
4.8 25 30.6 
4.3
	���-��	 30.5 
5.0 88 29.3 
5.0 30.8 
5.9 90 24.2 
5.2

���-��� 31.7 
3.7 75 29.0 
2.6 32.7 
4.3 79 26.5 
3.3
	��-���� 32.3 
3.8 27 38.1 
4.5 33.0 
5.9 23 37.8 
3.7
�	
�-���� 32.0 
4.8 49 31.8 
3.1 33.5 
5.4 57 32.5 
2.4
�����-�� 34.9 
4.5 29 39.1 
4.6 39.1 
4.2 33 38.2 
4.9
���	-�� 29.1 
4.4 59 36.1 
5.5 32.8 
4.2 69 30.8 
6.8
����-�� 37.6 
4.5 59 38.5 
5.5 39.3 
4.6 55 37.3 
4.7
����-�� 29.2 
3.8 60 28.8 
4.0 31.0 
3.9 64 27.1 
3.1

A�
�	
 20.3 326.3 22.6 104.6 22.7 366.3 21.4 171.8

6 Conclusions and Further Work

A new method for learning rules for multiple target classification, called predictive
clustering rules, is proposed in this paper. The method combines ideas from supervised
and unsupervised learning and extends the predictive clustering approach to methods
for rule learning. In addition, it generalizes rule learning and clustering.

The newly developed method is empirically evaluated in terms of error and rule set
size on several single and multiple target classification problems. First, the method is
compared to some existing rule learning methods (CN2, CN2-WRAcc, and JRip) on
single target problems. These results suggest that PCRs’ performance on single target
classification problems is good, and they can be used as a baseline in the next part of
the evaluation.

The comparison of multiple target prediction PCRs to the corresponding collection
of single target prediction PCRs on multiple target classification problems shows that in
the case of ordered rules, the single target prediction models are better, while in case of
unordered rules, the multiple target prediction PCRs are better. The di�erences in both
cases are almost (but not quite) significant. The di�erence in the rule set sizes, on the
other hand, is very significant. Multiple target prediction ordered and unordered rule
sets are much smaller than the corresponding single target prediction rule sets.

The new method therefore compares favorably to existing methods on single target
problems, while multiple target models (on multiple target problems) o�er comparable
performance and drastically lower complexity than the corresponding collections of
single target models.

Let us conclude with some guidelines for further work. We have only discussed clas-
sification problems in this paper. By defining the dispersion measure used in the search
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heuristic for numeric attributes, it should be possible to extend the presented algorithm
towards regression problems also. Since there are not many methods for learning re-
gression rules, we see this as a worthwhile direction for further research. In addition,
there exist several newer methods, e.g., Ripper [6]; incorporating the ideas from these
methods into predictive clustering rules could lead to improved performance.
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Abstract. This paper addresses the issue of identifying persons with expertise 
knowledge on a given topic. Traditional methods usually estimate the relevance 
between the query and the support documents of candidate experts using, for 
example, a language model. However, the language model lacks the ability of 
identifying semantic knowledge, thus results in some right experts cannot be 
found due to not occurrence of the query terms in the support documents. In this 
paper, we propose a mixture model based on Probabilistic Latent Semantic 
Analysis (PLSA) to estimate a hidden semantic theme layer between the terms 
and the support documents. The hidden themes are used to capture the semantic 
relevance between the query and the experts. We evaluate our mixture model in 
a real-world system, ArnetMiner1. Experimental results indicate that the pro-
posed model outperforms the language models. 

1   Introduction 

Expert finding, aiming at answering the question: “Who are experts on topic X?”, is 
becoming one of the biggest challenges for information management [15]. Recent 
years, expert finding has attracted much attention due to the rapid flourish of the Web 
2.0 applications and the advancement of information retrieval technologies from the 
traditional document-level to the object-level [20]. Many challenging questions arise, 
for example, How to find the most appropriate collaborators for a project? How to 
find the important scientists on a research topic? How to find an expertise consultant?  

Much research work has been done to deal with the challenges. For example, 
[2][21] propose using conventional language models for finding experts from an en-
terprise corpora or a domain-specific document collection. TREC has provided a 
common platform for researchers to empirically assess methods and techniques de-
vised for expert finding. The task can be described as follows: given a set of docu-
ments, a list of candidate names, and a set of topics, the goal then is to find experts 
from the list of candidate names for each of these topics.  

Previously, the language model like method or information retrieval based method 
is usually used for finding experts for a topic. A relevance score is calculated by  
                                                           
* The work is supported by the National Natural Science Foundation of China (90604025, 

60703059), Chinese National Key Foundation Research and Development Plan 
(2007CB310803), and Chinese Young Faculty Research Funding (20070003093). 

1 http://www.arnetminer.org 
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combining relevance scores between the query and different support documents re-
lated to each expert candidate. Based on the combination methods, the approach can 
be again classified into two categories: ‘composite’ and ‘hybrid’. Composite combines 
the scores of different documents by aggregation and hybrid integrates the scores of 
different support documents into a single formula (cf. Section 3 for details of the two 
methods). However, preliminary experiments show that simply applying these two 
categories of models on the task of expert finding does not achieve satisfactory re-
sults. In traditional IR models, documents are taken as the retrieval units and the con-
tent of documents are considered reliable. However, the reliability assumption is no 
longer valid in the expert finding context. This is because:  

(1) Composite model (cf. Section 3.2.1) suffers from the limitation that all the 
query terms should occur in each support document. 

(2) Hybrid model (cf. Section 3.2.2) is a bit more flexible. However, it still re-
quires that all the query terms should occur in the support documents.  

The language model-based methods are lexical-level and suffer from lacking se-
mantics. A question, thus, arises: “Can we search for experts in a semantic-level?”. 

In this paper, we focus on the above problems. We propose a mixture model based 
on Probabilistic Latent Semantic Analysis (PLSA) [16] for the expert finding task. In 
this model, we do not model the relevance between a query and a document directly. 
Instead, we propose to use a hidden theme layer to model the semantic relations be-
tween the query and the support documents of candidate experts. In this way, an ex-
pert whose support documents associated with the same themes as that of a query can 
be ranked higher, although they may not contain the query terms. We evaluated the 
proposed approach in ArnetMiner system. We compared our approach with the tradi-
tional language models for expert finding. We also carried out the comparison with 
several existing systems. Experimental results show that our proposed approach per-
forms better than the baseline methods and also outperforms the existing systems. 

Our contributions in this paper include: (a) formalization of the expert finding 
problem in a semantic-level, (b) proposal of a mixture model to the problem based on 
Probabilistic Latent Semantic Analysis (PLSA), and (c) empirical verification of the 
effectiveness of the proposed approach. To the best of our knowledge, no previous 
work has been done on a semantic-level model for expert finding. 

The rest of the paper is organized as follows. In Section 2, we formalize the task of 
expert finding. In Section 3, we briefly introduce the language model and propose our 
mixture model for expert finding. In Section 4, we give the experimental results and 
in Section 5, we introduce the related work. We conclude the paper in Section 6.  

2   Expert Finding Description 

We denote a candidate expert as e and a query as q. A general process of expert find-
ing is to estimate the probability of a person being an expert for a given query, i.e, 
P(e|q), and then return the experts with the highest probabilities on the top.  

Based on the Bayes rule, we can obtain the following formula: 

( )( | ) ( )
( | ) ( | ) ( | ) ( )

( )
P q is uniformP q e P e

P e q P e q P q e P e
P q

  = ⎯⎯⎯⎯⎯→ ∝
 

(1) 
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where P(q|e) is the generating probability of a query q given an expert e. P(e) and 
P(q) respectively denote the prior probability of an expert e and a query q. P(q) is 
usually viewed as uniform and thus can be ignored. The probability P(e) reflects the 
query-independent expertise. A variety of techniques can be used to compute P(e), for 
example, we can simply use the number of one’s publications to estimate the  
probability; more complicated, we can calculate it by using a propagation scheme like 
the state-of-the-art PageRank algorithm. Also, some work assumes it uniformly and 
only focuses on estimating the probability P(q|e) using language models [2] [21]. 

Figure 1 shows an example of expert finding. The left part of the figure gives three 
queries: “semantic web”, “machine learning”, and “natural language processing” and 
the right part of the figure shows the found experts for each query.  

Expert Search 
Engine

natural language processing 

natural language  
processing

semantic web

machine learning

queries

Timothy W. Finin
1. Integrating ecoinformatics resources on the 
semantic web. In Proceedings of WWW'2006
2. A Semantic Web Services Architecture. 
IEEE Internet Computing, 2005

semantic web Li Ding
1. Characterizing the Semantic Web on the 
Web. In Proceedings of ISWC'2006
2. Integrating ecoinformatics resources on the 
semantic web. In Proceedings of WWW'2006

semantic web

Pat Langley
1. Learning Process Models with Missing 
Data. In Proceedings of ECML'2006
2.Improved Rooftop Detection in Aerial 
Images with Machine Learning. Machine 
Learning, 2003

machine learning Peter Stone
1. Learning Predictive State Representations. 
In Proceedings of ICML'2003
2. Machine Learning for On-Line Hardware 
Reconfiguration. In Proc. of IJCAI'2007

machine learning

Dan Roth
1. A Pipeline Framework for Dependency 
Parsing. In Proc. of ACL'2006
2.Named Entity Transliteration and 
Discovery from Multilingual Comparable 
Corpora. In Proc. of  HLT-NAACL'2006

natural language processing Dragomir R. Radev
1.  Adding Syntax to Dynamic Programming 
for Aligning Comparable Texts for the 
Generation of Paraphrases. In Proc. of 
ACL'2006
2.  News to go: hierarchical text 
summarization for mobile devices 
. In Proc. of HLT-NAACL'2006

natural language processing 

 

Fig. 1. An example of expert finding 

3   Models for Expert Finding 

In this section, we will first briefly introduce the language model and then describe 
several existing language models for expert finding, namely a hybrid model and a 
composite model. Finally, we propose a mixture model for finding experts. 

3.1   Language Models for Document Retrieval 

In document retrieval, language model describes the relevance between a document 
and a query as the generating probability of the query from the document’s model: 

( | ) ( | ) ( )P d q P q d P d∝  (2) 

For a query q, we usually assume that terms appear independently in it, thus: 

( | ) ( | )
i

i
t q

P q d P t d
∈

= ∏
 

(3) 

where ti is the i-th term in q and P(ti|d) represents the probability of generating term ti 
from the language model of document d. A common method for estimating P(ti|d) is 
maximum likelihood estimation and Dirichlet smoothing [1], as follows: 

( , ) ( , ) | |
( | ) (1 ) ,

| | | | | |
i i

i

tf t d tf t D d
P t d

d D d
λ λ λ

μ
= ⋅ + − ⋅ =

+  
(4) 
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where |d| is the length of document d; tf(ti, d) is the term frequency of term ti in d; |D| 
is the number of documents in the document collection D; tf(ti, D) is the term fre-
quency of term ti in D; λ is a parameter ranging in [0, 1] and is often set based on the 
length of document d; µ is another parameter and is commonly set as the average 
document length in D. 

3.2   Language Models for Expert Finding 

The simplest method to apply language model for expert finding is to merge all sup-
port documents of a candidate expert together and treat them as a virtual document, 
then employ the language model described in Section 3.1 to estimate the relevance 
between the virtual document and the query. However, this model has obvious disad-
vantages: it cannot differentiate the contributions of different support documents. 
Based on the consideration, two extended language models have been proposed (we 
call them as composite language model and hybrid language model). 

3.2.1   Composite Language Model 
Let De ={dj} denotes the collection of support documents related to a candidate e. In 
the composite language model, each support document dj is viewed as a unit and the 
estimations of all the documents of a candidate e are combined. We have: 

( | ) ( | ) ( | )
j e

j j
d D

P q e P q d P d e
∈

= ∑
 

(5) 

The model consists of two components: 1) a document that is related to a candidate 
is selected with probability P(dj|e); and 2) the query q is generated from the selected 
document with probability P(q|dj). The former actually indicates how a document dj 
characterizes the candidate e. The probability is often viewed as identical in many 
language modeling applications. That is, set P(di|e) to be 1 if expert e is the author of 
document di, otherwise 0. Let q={ti}, the probability P(q|di) is estimated by Equation 
(3) and (4) based on the independent assumption. Finally, we obtain: 

( | ) ( | ) ( | )
j e i

j i j
d D t q

P q e P d e P t d
∈ ∈

= ∑ ∏
 

(6) 

We call this model as composite model because it first integrates the probability of 
document dj generating each term ti and then combines the different document models 
together. The nature of the composite model is that it views documents as a “hidden” 
variable separating the query from a candidate such that the candidate is not directly 
modeled. It is based on the assumption that terms are independent in dj. Accordingly, 
the model emphasizes the co-occurrence of all the query terms in the same document 
and gives penalty to the document that does not match the whole query [2] [21]. As 
for the example in Figure 1, the composite model can find the two experts for the 
query “semantic web”. However, it does not work well for the other two queries “ma-
chine learning” and “natural language processing”. 

3.2.2   Hybrid Language Model 
The hybrid language model (cf. Equation (7)) is similar to the composite model, ex-
cept that it describes each term ti using a combination of support documents models 
and then uses a language model to integrate them together. 
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( | ) ( | ) ( | )
j ei

j j
d Dt q

P q e P t d P d e
∈∈
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 (7) 

The two models are not equivalent mathematically since the product and the sum 
cannot be interchanged. The nature of the hybrid model is that it collects all terms 
information from all documents associated with the given candidate and models the 
candidate directly. It is based on the assumption that terms are independent in all sup-
port documents of e. Thus the model does not care much about the co-occurrence of 
the query terms in the same support document [2] [21].As for the example in figure 1, 
the hybrid model works well for both the queries “semantic web” and “machine learn-
ing”, as the query terms appear in the support documents of experts. Unfortunately, it 
cannot find the two experts for “natural language processing” because it is still based 
on lexical-level relevance assumption. 

3.3   A Mixture Model for Expert Finding 

We propose a mixture model for expert finding. We assume that there is a hidden 
‘semantic’ theme layer Θ={θ1, θ2, …, θk} between query q and document dj. Each 
hidden theme θm is semantically associated with multiple queries and support docu-
ments. Similarly, each support document or query is also associated with multiple 
themes, respectively. In this way, given a query and a support document, we do not 
directly model the relevance between them. Instead, we use the hidden themes associ-
ated to them as the bridge to model the relevance. More accurately, we have: 

1

( | ) ( | ) ( | )
k

j m m j
m

P q d P q P dθ θ
=

=∑
 

(8) 

Here, P(q|θm) denotes the probability of generating a query given a theme and 
P(θm|d) denotes the probability of generating a theme given a document. 

We assume that a query q and a document d are conditional independent given a 
theme θm. Then the problem becomes, for each document, how to estimate the prob-
ability P(θm|dj) and for each query, how to estimate the probability P(q|θm), called 
parameter estimation. Following we introduce the method for parameter estimation.  

Let T as all terms occurring in the whole document collection D. Suppose there are 
k hidden themes. The generative process of the data set can be described as: 

(1) Select a document d with probability P(d); 
(2) Pick a latent theme θm with probability P(θm|d); 
(3) Generate a term t with probability P(t|θm). 

As a result, we obtain an observed pair (t, d) without θm. 
The above generative process can be expressed as a joint probability model: 

1

( , ) ( ) ( | ), ( | ) ( | ) ( | )
k

m m
m

P t d P d P t d where P t d P t P dθ θ
=

=  =∑
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Equation (9) sums over all θm from which the observations could have been gener-
ated, which is based on the assumption that t and d are conditional independent on θm. 
We use Bayes’ formula to transform Equation (9) to get its symmetric form: 
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 A Mixture Model for Expert Finding 471 

In order to explain the observations (t, d), we need to estimate P(t|θm), P(d|θm) and 
P(θm) by maximizing of the log-likelihood function: 

1

( , ) log ( | ) ( | ) ( )
k

m m m
d D t T m

L n d t P t P d Pθ θ θ
∈ ∈ =

=∑∑ ∑
 

(11) 

where n(d, t) denotes the co-occurrence times of d and t. 
We use Expectation-Maximization (EM) algorithm [5] to estimate the maximum 

likelihood. The EM algorithm begins with some initial values of P(t|θm), P(d|θm), and 
P(θm) and runs an iterative process to obtain new values based on updating formulas. 
The update formulas contain expectation (E) step and maximization (M) step.  

In E-Step, we aim to compute the posterior probability of latent theme θm, based on 
the current estimates of the parameters: 
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In M-Step, we aim to maximize the expectation of the log-likelihood of Equation 
(11). By introducing Lagrange multipliers and solving partial derivative, we can ob-
tain the following equations for re-estimated parameters: 
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The E-step and M-step run iteratively until the log-likelihood function converges to 
a local maximum. Then we obtain the parameters: P(t|θm), P(d|θm), and P(θm).  

3.4   Find Experts Using the Model 

We can make inferences based on the estimated probabilities. Given a query, the 
probability P(q|θm) can be estimated by  

( | ) ( | )m m
t q

P q P tθ θ
∈

= ∏
 

(16) 

Then Equation (8) can be rewritten as: 
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Therefore we obtain Equation (18) by substituting P(q|dj) into Equation (5): 
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1
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where P(θm|dj) can be estimated by Bayes’ formula: 

( | ) ( )
( | ) ( | ) ( )

( )
j m m

m j j m m
j

P d P
P d P d P

P d

θ θ
θ θ θ=

 
(19) 

Now, we get the probability P(q|e). We can further obtain P(e|q) by P(e|q)∝ 

P(q|e) P(e), where P(e) is often viewed as uniform in previous work such as [3]. 
However, we have found that final results sometimes are sensitive to the probability. 
In this work, we employ the propagation approach we have proposed in [25] to esti-
mate P(e). The approach is based on the social relationship analysis. The basic idea 
is that if a person knows many experts on a topic or if the person’s name co-occurs 
many times with the known experts, then it is more likely that he/she is an expert  
on the topic. Finally we obtain P(e|q) for each candidate and sort the candidates  
accordingly. 

4   Experiments 

In this section, we first introduce the experimental setting. Then we present the ex-
perimental results. Finally we give some discussions. 

4.1   Experimental Setting 

We evaluate the work in the context of ArnetMiner[22]. ArnetMiner contains 448,289 
researchers and 725,655 publications extracted from the Web database, pages, and 
files. As performing PLSA on the full data collection will take an extreme long time, 
we created a subset of the data for evaluation purpose. Specifically, we first selected 
the most frequent queries from the log of ArnetMiner (by removing the specific que-
ries or too long queries, e.g., ‘A convergent solution to tensor subspace learning’). We 
also removed the similar queries (e.g., ‘web service’ v.s. ‘web services’). Then we 
obtained seven queries: ‘information extraction’ (IE), ‘machine learning’ (ML), ‘se-
mantic web’ (SW), ‘natural language processing’ (NLP), ‘support vector machine’ 
(SVM), ‘planning’ (PL), and ‘intelligent agents’ (IA). Next, for each query, we gath-
ered the top 30 persons from Libra author search , Rexa authors search, and Arnet-
Miner1. We merged all the persons together by removing ambiguous names (e.g., L. 
Liu) and names that do not exist in ArnetMiner. Finally we got 421 person names. We 
collected 14,550 publications of the 421 persons from ArnetMiner as the support 
document collection. 

For evaluation, it is difficult to find a standard data set as the ground truth. As a re-
sult, we use the method of pooled relevance judgments [8] together with human 
judgments. Specifically, for each query, we first pooled the top 30 results from the 
above three systems (Libra, Rexa, and ArnerMiner) into a single list. Then, one fac-
ulty and two graduates, from the authors’ lab, provided human judgments. Assess-
ments were carried out mainly in terms of how many publications he/she has  
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published, how many publications are related to the given query, how many top con-
ference papers he/she has published, what distinguished awards he/she has been 
awarded. Finally, the judgment scores were averaged to construct the final ground 
truth. The data set is available on line.  

We conducted evaluation in terms of P@5, P@10, P@20, P@30, R-prec, Mean 
Average Precision (MAP) and P-R curve [8] [10].  

We used the language models introduced in Section 3.2 as baselines. Hereafter, we 
respectively call them CM and HM. For comparison purpose, we also report the re-
sults obtained by Libra and Rexa. 

We implemented our proposed model (shortly MM) in two stages. In the first 
stage, we use PLSA algorithm (equations (12)-(15)) to estimate the probabilities 
P(t|θm), P(d|θm), and P(θm) for each document, term, and theme. Here, documents de-
note publications. Terms are extracted from the titles and conference names of the 
publications after word segmentation and stop words filtering. We empirically set the 
number of themes as 300 (cf. figure 3 for the effect of the number of themes). In  
the second stage, we rank experts using equation (18) for each query.  

4.2   Experimental Results of Expert Finding 

Table 1 shows the performances on the 7 queries by our proposed model, the two lan-
guage models, and the two systems (Libra and Rexa). Figure 2 shows the average 11-
point precision recall curves on the 7 queries for the different approaches. We see that 
in terms of most of the measures, the proposed model outperforms the two baseline 
language models. We also present top 9 example experts for “natural language proc-
essing” ranked by different approaches in Table 2.  

4.3   Discussions 

(1) Improvements Over Baselines. Our proposed model outperforms the two lan-
guage models in terms of P@5, P@10 and MAP. From the PR curve, we can also see 
that our model outperforms the language models in most of the 11 points, which con-
firms the effectiveness of our approach. The proposed model can retrieve experts 
whose support documents do not contain the query terms but ‘semantically’ related to 
the query, therefore our approach can improve the performance significantly. For ex-
ample, in Table 2, our model MM ranks higher for “Raymond J. Mooney” than the 
language models. This is because many of Mooney’s papers do not exactly contain 
the query terms although they are related to “natural language processing”. We rank 
higher for “Dan Roth” and “Dragomir R. Radev” due to the similar reason.  
(2) Effect of the Number of Themes. The best number of themes is difficult to de-
termine. In our experiment, we tried to tune the parameter to get better performance. 
As Figure 3 shows, the number of themes systematically varies from 10 to 100 with 
interval 10 and from 100 to 1000 with interval 100. In general, the best results were 
obtained when setting the number of themes as 300.  

An intuitive explanation to Figure 3 is that when the number of theme is small, the 
estimated mixture model prefers to very general queries; with the number increasing,  
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the model prefers to specific queries. The number 300 seems to be a best balance in 
our setting. Table 3 show two themes with the representative words, respectively for 
#theme=10 and #theme=300.  
(3) Language Models. We also analyze the retrieval results of two language models. 
From table 1, we see that for queries “SW”, “IE” and “SVM”, CM performs better 
than HM, because the word “web”, “information” and “machine” may slightly drive 
the topic of documents drift away when using HM. For the queries of “PL”, “IA”, 
“ML”, and “NLP”, HM performs better than CM, due to the limitation in CM that all 
the query terms should co-occur in one document.  

Table 1. Performances of different expert finding approaches (%) 

Query Approach P@5 P@10 P@20 P@30 R-pre MAP 
Libra 80.00 70.00 80.00 66.67 60.00 71.28 
Rexa 80.00 60.00 55.00 43.33 37.78 52.65 
CM 80.00 80.00 75.00 70.00 62.22 76.70 
HM 80.00 80.00 85.00 76.67 60.00 69.25 

SW

MM 100.00 100.00 75.00 60.00 57.78 72.20 
Libra 100.00 60.00 50.00 36.67 50.00 67.76 
Rexa 60.00 60.00 45.00 36.67 45.00 51.88 
CM 80.00 70.00 65.00 56.67 65.00 73.16 
HM 80.00 70.00 60.00 56.67 60.00 71.96 

IE 

MM 100.00 70.00 60.00 56.67 60.00 75.03 
Libra 60.00 30.00 25.00 30.00 32.26 37.22 
Rexa 60.00 60.00 40.00 36.67 35.48 43.75 
CM 100.00 90.00 75.00 66.67 64.52 79.47 
HM 100.00 100.00 80.00 60.00 58.06 76.61 

SVM 

MM 100.00 100.00 80.00 63.33 61.29 81.56 
Libra 60.00 60.00 65.00 53.33 48.57 57.02 
Rexa 60.00 70.00 60.00 46.67 42.86 52.50 
CM 80.00 70.00 65.00 56.67 54.29 70.14 
HM 100.00 90.00 75.00 60.00 54.29 73.07 

PL 

MM 80.00 90.00 70.00 60.00 54.29 74.04 
Libra 80.00 50.00 40.00 26.67 26.67 49.63 
Rexa 60.00 40.00 35.00 40.00 40.00 43.90 
CM 80.00 70.00 60.00 53.33 53.33 70.06 
HM 100.00 80.00 65.00 60.00 60.00 78.18 

IA 

MM 100.00 100.00 70.00 50.00 50.00 82.29 
Libra 60.00 40.00 35.00 30.00 29.27 33.88 
Rexa 80.00 70.00 60.00 46.67 34.15 52.52 
CM 60.00 60.00 50.00 46.67 46.34 54.96 
HM 60.00 60.00 60.00 56.67 53.66 60.07 

ML

MM 80.00 80.00 65.00 53.33 51.22 66.70 
Libra 40.00 30.00 35.00 43.33 36.59 40.49 
Rexa 20.00 20.00 30.00 26.67 24.39 26.29 
CM 40.00 70.00 65.00 50.00 0.00 61.76 
HM 80.00 70.00 55.00 60.00 48.78 68.93 

NLP 

MM 100.00 80.00 65.00 60.00 48.78 76.07 
Libra 68.57 48.57 47.14 40.95 40.48 51.04 
Rexa 60.00 54.29 46.43 39.52 37.09 46.21 
CM 74.29 72.86 65.00 57.14 49.39 69.46 
HM 85.71 78.57 68.57 61.43 56.40 71.15 

AVE

MM 94.29 88.57 69.29 57.62 54.76 75.41  
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Table 2. Top 9 experts for “natural language processing” by five expert finding approaches 

MM CM HM Libra Rexa 
Raymond J. Mooney Rebecca F. Bruce Janyce Wiebe Eric Brill W. Addison Woods 

Dan Roth Janyce Wiebe Michael Collins Christopher D. Manning Klaus Netter 
Michael Collins Veronica Dahl Aravind K. Joshi Adam L. Berger Yorick Wilks 
Janyce Wiebe Robert J. Gaizauskas Raymond J. Mooney Stephen Della Pietra Kavi Mahesh 

Aravind K. Joshi Kevin Humphreys Rebecca F. Bruce Vincent J. Della Pietra Robert H. Baud 
Rebecca F. Bruce Aravind K. Joshi Veronica Dahl David D. Lewis Kevin Humphreys 

Veronica Dahl Philippe Blache Robert J. Gaizauskas Kenneth Ward Church Philippe Blache 
Claire Cardie Eric Brill Thomas Hofmann Hinrich Schutze Victor Raskin 
Oren Etzioni Raymond J. Mooney Eric Brill Lillian Jane Lee Lorna Balkan  

(4) Decline Over Baselines. In terms of p@20, p@30 and R-prec, we must note that 
our model underperforms the two language models. The reason lies in that our model 
may also bring some noises when estimating the probabilities P(t|θm), P(d|θm), and 
P(θm) in the first stage.  
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Fig. 2. Average Precision-recall curves of five expert finding approaches for 7 queries 
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Fig. 3. The effect of the number of themes 

Table 3. Example themes discovered by PLSA with #themes=10 and #themes=300. Each 
theme is shown with 10 representative words. 

#Themes = 10
Theme #2 information design framework intelligent ontology management based semantic systems web 

Theme #3 KDD neural from text selection networks Time data mining using 

#Themes = 300
Theme #12 spelling roadmap ebl correction scoring question Directions answering ICGA syntax 

Theme #64 zero variance manifolds predictionsprincipaltransformation ICPR  matrix clustering words  
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5   Related Work 

5.1   Language Model for Expert Finding 

With the launch of expert finding task in TREC 2005, more and more researchers 
begin focusing on the research topic. Previous work for expert finding usually makes 
use of language models. For example, Cao et al. [9] propose a two-stage language 
model which combines a co-occurrence model to retrieve documents given a query, 
and a relevance model to find experts in those documents. Balog et al. [2] propose a 
model which models candidate using support documents directly and another model 
which is similar to the model of Cao. [3] studies the expert finding problem in a 
sparse data environments and proposes several advanced models based on the  
characteristics of the dataset. Petkova et al. analyze and compare different language 
models proposed for the task of finding experts [21]. They argue that all the models 
are probabilistically equivalent and the differences lie in the independent assumptions. 
As far as we know, expert finding by using latent semantic analysis has not been in-
vestigated previously. 

5.2   Probabilistic Latent Semantic Analysis and Its Applications 

The idea of using latent semantic structure in information retrieval traces back to [13]. 
They propose latent semantic analysis (LSA) method, which is mostly used in auto-
matic indexing and information retrieval [4]. The main idea is to map data using Sin-
gular Value Decomposition (SVD) from a high-dimensional vector space repre 
sentation to a reduced lower representation, also called latent semantic space. 

A new approach to discover latent variables is Probabilistic latent semantic analy-
sis (PLSA) proposed by Thomas Hofmann [16]. The difference between LSA and 
PLSA is that the latter one is based on the likelihood principle and defines a proper 
generative model of the data; hence it results in a more solid statistical foundation. 
The core of PLSA is a statistical model called aspect model, which assumes there 
exists a set of hidden factors underlying the co-occurrences among two sets of ob-
jects. Expectation Maximization (EM) algorithm [5] is used to estimate the probabili-
ties of the hidden factors generating the two sets of objects. 

Probabilistic Latent Semantic Analysis has been used to solve problems in a vari-
ety of applications on account of its flexibility. Such applications include information 
retrieval [16], text learning and mining [6] [7] [14] [18] [24], co-citation analysis [11] 
[12], social annotation analysis [23], web usage mining [17] and personalize web 
search [19].  

6   Conclusion 

In this paper, we have proposed a mixture model for expert finding. We assume that 
there is a latent theme layers between terms and documents and employ the themes to 
help discover semantically related experts to a given query. A EM based algorithm 
has been employed for parameter estimation in the proposed model. Experimental 
results on real data show that our proposed model can achieve better performances 
than the conventional language models. As future work, we plan to investigate how to 
automatically determine the number of themes based on the input query. 
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Abstract. Traditional research on preserving privacy in data mining
focuses on time-invariant privacy issues. With the emergence of time
series data mining, traditional snapshot-based privacy issues need to be
extended to be multi-dimensional with the addition of time dimension.
We find current techniques to preserve privacy in data mining are not
effective in preserving time-domain privacy. We present data flow separa-
tion attack on privacy in time series data mining, which is based on blind
source separation techniques from statistical signal processing. Our ex-
periments with real data show that this attack is effective. By combining
the data flow separation method and the frequency matching method, an
attacker can identify data sources and compromise time-domain privacy.
We propose possible countermeasures to the data flow separation attack
in the paper.

1 Introduction

With the popularity of data mining, privacy issues have been a serious concern.
Most research on privacy issues in data mining focuses on privacy preserving
data mining, i.e., how to mine data while protecting the identity of data owners.
Various approaches have been proposed to conduct data mining without breach-
ing of privacy [1,2,3,4]. However, privacy issues studied in previous research are
on time-invariant data which do not change over time.

Time series data mining becomes popular recently. The goal of time series
data mining is to find pattens contained in time series data [5,6,7,8,9,10,11,12].
In time series data mining, the data to be mined is labeled with timestamps.
One example is the daily stock price. For time series data, because of the special
nature of the data, its privacy goes beyond the protection of data. In this paper,
when the meaning of privacy is unclear from context, we call the privacy in
time-invariant data mining snap-shot privacy, and the privacy in time series
data mining time series privacy.

We focus on time series privacy issues in this paper. As snap-shot privacy
issues arise from snap-shot based data mining, time series privacy issues arise
from time series data mining. Time series privacy issues concern about changes
in data over time. We need to protect data, as well as its properties in time and
frequency domains. For example, sales data on a car model changes over time, but

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 479–493, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



480 Y. Zhu, Y. Fu, and H. Fu

the manufacturer of the car model will worry about sharing the sales data with
data miners because the sales data may indicate changes in financial situation
or marketing strategies of the manufacturer over time. Another example is that
a store may not be willing to share its sales data because a data miner may find
out promotion periods of the store by checking periodicities contained in the
data provided by the store. We argue that privacy in time series data involves
protection of properties in time domain such as peak, trough, and trend, and
properties in frequency domain, such as periodicity. Such properties reveal lots
of information, even though they do not reveal data.

Two common approaches have been proposed to preserve snap-shot privacy
in data mining. One approach is data perturbation in which data to be mined
is modified to protect privacy. The other approach is data partitioning in which
data is split among multiple parties and each party only see its share of the data.
One method in data perturbation approach is aggregation in which time series
data from different sources are aggregated and given to data miners. This can
prevent data miners from finding private information about individual sources.
For example, auto manufacturers usually do not want to publish daily, monthly
or yearly sales data of individual car model because too much sensitive infor-
mation is contained in the time series data. Instead, trusted market research
companies aggregate sales data of different car models made by different auto
manufacturers and publish these aggregated data. These time series data can be
aggregated in different ways such as according to vehicle types or vehicle features
for different purposes.

In this research, we found that current techniques to protect snap-shot privacy
were largely ineffective under data flow separation attack, which can separate
aggregated data and separate noise from original data. The data flow separa-
tion attack employs the blind source separation model [13], which was originally
defined to solve cocktail party problem: blind source separation algorithms can
extract one person’s voice given the mixtures of voices in a cocktail party. Our
experiments show that data flow separation can separate independent time series
data generated by different sources.

The contributions of this paper can be summarized as follows:

– We introduce the concept of privacy in time series data mining. Because
of the nature of time series data, privacy issues in time series data mining
go beyond these in snap-shot data mining, especially privacy in time and
frequency domains. We believe it is important to preserve privacy in time
series data as well as in snap-shot data.

– We present data flow separation attack and show that aggregation is not
always enough to protect time series privacy. We use experiments on real
data to show that data flow separation attacks are effective.

– We present frequency matching attack, a further attack based on data flow
separation attacks, which can fully disclose sensitive information of data
sources.

– We discuss the pros and cons of countermeasures to data flow separation
attacks.
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The rest of the paper is organized as follows: Section 2 reviews the related
work in privacy preserving data mining and time series data mining. We list
time series privacy issues in Section 3. Section 4 outlines the threat model. In
Section 5, we introduce the data flow separation attack. We will also describe
frequency matching that can be used as further attacks. In Section 6, we use
experiments on real stock data to show the effectiveness of the data flow separa-
tion attack. Section 7 discusses countermeasures for data flow separation attack.
We conclude this paper in Section 8, with remarks on extensions of this work.

2 Related Work

2.1 Privacy Preserving Data Mining

The main approaches to privacy-preserving data mining can be categorized into
two categories: data perturbation and data partitioning.

In data perturbation approaches, original data is modified by data obscura-
tion or by adding random noises. An example of data obscuration is replacing
values of a continuous variable with ranges. Distributions of random noises are
usually known, such as even distribution or normal distribution. The modified
data is given to data miners. Algorithms have been developed to mine decision
tree [1] and association rules [2] in data with noise. Techniques for improving
randomization are also proposed [14].

In data partitioning approaches to privacy preserving data mining, the orig-
inal data is distributed among multiple parties, either by the partitioning of
centralized data or by the nature of data collection. The data mining process
is split into local computation at individual sites and global computation. Dur-
ing the process, each party does not see other party’s data, but cooperates to
find global patterns. In almost all cases, secure multi-party computation [15]
and encryptions are employed. Secure algorithms for decision tree construction
[3], association rules mining [4], k-means clustering [16], and Bayesian network
learning [17] have been proposed. In these algorithms, all parties were assumed
to be semi- honest. That is, every party would faithfully follow the protocol or
algorithm, but tried to learn as much as possible about others.

As discussed above, past research in privacy preserving data mining focuses
on privacy of raw data. Though privacy of derived data has been mentioned [14],
we are not aware of any research in time series privacy. We hope to raise the
awareness of time series privacy issues in this paper.

2.2 Time Series Data Mining

Because time series data is usually large and noisy, direct application of data
mining algorithms on raw data is time-consuming and gives unreliable results.
A lot of attentions have been paid on preprocessing techniques that facilitate
data mining tasks. Research in time series data mining mostly focuses on data
preprocessing techniques, such as discretization and transformation [10], feature
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extraction and feature reduction [12]. Work has been also been done in related
techniques such as representation [11] and similarity metric [18].

The data mining tasks studied by researchers include subsequence matching
[5], classification [7], clustering [8], time series modeling [9], and association rule
mining [6].

It is clear that most research in time series data mining does not address pri-
vacy issues, let alone time series privacy issues. While current privacy preserving
techniques can be applied to preserve snap-shot privacy in time series data, they
are inadequate for protecting time series privacy.

3 Time Series Privacy Issues

We identify privacy issues for time series data in addition to traditional privacy
issues in data mining. Time series data from a data source can be regarded
as a time-domain signal. All the characteristics of a time-domain signal can be
potentially regarded as private information by the data provider. Below, we list
common characteristics in time series data that a data provider may need to
keep confidential.

– Amplitude: Amplitude indicates the strength of a signal, like the raw data
in traditional privacy research.

– Average: The average signal strength over time. For example, for a series of
sales data, average amplitude indicates the average sales.

– Peak and trough: Peak and trough indicate extreme situations. They are usu-
ally confidential as they may disclose extreme changes in underlying causes
such as difficult cash flow.

– Trend: By observing trends of time series data, an adversary may predict fu-
ture changes of time series data. Thus trend information should be protected
from competitors as well.

– Periodicity: Periodical changes in time series data indicate existence of pe-
riodically changing factors. For sales data of a store, the factor can be peri-
odical changes in marketing strategies such as promotions which are usually
regarded as confidential information for stores. Unlike the previous charac-
teristics which are in time domain, periodicity is in frequency domain.

There are other characteristics which may be regarded as confidential by some
data providers. However, as an initial study on time series privacy, we focus on
the common characteristics listed above. Since data flow separation attack aims
to recover original signal, the attack may be effective to disclose these common
characteristics.

4 Threat Model

In this paper we assume that data providers care about the sensitive informa-
tion contained in their time series data. To protect their privacy, data providers
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Fig. 1. An Example for Data Flow Model

will only supply their data to trusted research companies. Research companies
will aggregate time series data provided by different data providers according to
different criteria. An example of aggregating sales data provided by auto manu-
facturers is shown in Figure 1. In Figure 1, there is only one aggregation layer.
In practice there can be many layers of aggregation because some research com-
panies may aggregate data provided by other research companies or aggregate
data provided by both original data providers and research companies.

We assume research companies will publish aggregated data for profit or for
public usage. The research companies will disclose criteria used in aggregation,
but not the information of data sources, specifically identities of data providers
to protect the privacy of data providers.

We assume adversaries to have capabilities summarized as follows:

– Adversaries can obtain aggregated data from research companies free or for
a small fee.

– Adversaries can not obtain data generated from original data sources because
of lack of trust with original data sources. This assumption excludes the
possibility of an original data provider being a privacy attacker. We do not
study the case of compromised data provider in this paper. But obviously
the data flow separation attack will be more effective if an adversary, being
a provider of original data, can know part of original data aggregated by
research companies.

– Adversaries can obtain data aggregated according to different criteria.
– Research companies have various data providers as their data sources and

research companies do not want to disclose the composition of data sources.
It is similar to an investment company does not want to disclose the com-
position of stocks in possess.

The threat model M can be represented as M =< F, G, O >, where F is a
set of original data sources, G is a set of aggregation operations, and O is a set
of observations available to adversaries. Though observations are obtained by
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applying aggregation operations to data sources, i.e., O = G(F ), aggregation
operations G and data sources F are unknown to adversaries.

The model assumed in our paper is realistic. Many research companies com-
pile weekly or monthly sales of large items, such as cars, TVs, computers, etc,
from retailers or manufacturers. Each research company has its own sources and
publishes its reports with aggregated totals. Since these reports are available
with a small fee, someone can collect all these reports and try to separate data
to recover original data. Manufacturers want to protect their data from third
parties, but would like to see the aggregated data to understand their industry.

5 Data Flow Separation Attack

In this section, we will first define the problem in the context of blind source
separation and then describe how to apply the data flow separation attack in
practice.

5.1 Blind Source Separation

Blind source separation is a methodology in statistical signal processing to recover
unobserved “source” signals from a set of observed mixtures of the signals. The
separation is called “blind” to emphasize that the source signals are not observed
and that the mixture is a black box to the observer. While no knowledge is avail-
able about the mixture, in many cases it can be safely assumed that source signals
are independent. In its simplest form [19], the blind source separation model as-
sumes n independent signals F1(t), · · · , Fn(t) and n observations of mixture O1(t),
· · · , On(t) where Oi(t) =

∑n
j=1 aijFj(t). The goal of blind source separation is to

reconstruct the source signals Fj(t) using only the observed data Oi(t), with the
assumption of independence among the signals Fj(t). The common methods em-
ployed in blind source separation are minimization of mutual information [20],
maximization of nongaussianity [21] and maximization of likelihood [22].

5.2 Data Flow Separation as a Blind Source Separation Problem

In this paper, we define an individual data flow as a series of time-stamped
data generated by an original data source. An aggregate data flow is defined as
the aggregate of individual data flows. Aggregate data flows are generated by
research companies. If not specified, the phrase data flow in the remaining of
this paper means the individual data flow for brevity.

For an attacker who is interested in sensitive information contained in indi-
vidual data flow, it will be very helpful to separate the individual data flows
based on the aggregate data flows. Because the separation of the data flows can
recover the pattern of data flows, they can be use for further attack such as
frequency matching attack described in Section 5.3.

In this paper, we are interested in patterns carried in the time series data.
For example, in Figure 1, the attacker can get a time series O1 = [o1

1, o
1
2, · · · , o1

n]
of aggregate data flow from Research Company A. We call n as the sample
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size in this paper. The attacker’s objective is to recover the time series Fi =
[f i

1, f
i
2, · · · , f i

n] for each individual data flow.
In general, with l research companies and m individual data flows, we can

rewrite the problem in vector-matrix notation,
⎛

⎜
⎜
⎜
⎝

O1

O2

...
Ol

⎞

⎟
⎟
⎟
⎠

= Al×m

⎛

⎜
⎜
⎜
⎝

F1

F2

...
Fm

⎞

⎟
⎟
⎟
⎠

(1)

where Al×m is called the mixing matrix in blind source separation problems.
Data flow separation can be achieved using blind source separation tech-

niques. The individual data flows are independent from each other since they
are from different sources. Given the observations O1, O2, · · · , Ol, blind source
separation techniques can be used to estimate the independent individual flows
F1, F2, · · · , Fm by maximizing the independence among the estimated flows.

The issues about the blind source separation method are summarized as
follows.

– Basic blind source separation algorithms require the number of observations
to be greater than or equal to the number of independent sources. For data
flow separation, it means l ≥ m. Furthermore, we assume m = l in this paper
since it is fairly straightforward to extend our idea to cases where l > m.

– The l observations may have redundancy. In other words, the row vectors of
the mixing matrix may be linearly dependent. The cost of the redundancy
will be that some independent data flows are not separated.

– The data flow estimations by blind source separation algorithms are usually
lifted, scaled versions of the actual data flows. Sometimes, the estimated data
flow may be of different sign than the actual data flow. However, the attacker
can still find characteristics of the actual data flow from the estimated data
flow. Also, heuristic approaches can be used to fine tune the estimation,
which is an interesting topic for further research.

5.3 Frequency Matching Attack

After the data flows have been separated, a number of data flows, each with a
given time series, have been determined to be included in the aggregate.

We choose frequency spectrum matching to do further attack. Frequency spec-
trum can be generated by applying Discrete Fourier Transform on time series
data as below

X(k) =
∑N−1

j=0
f ′

je
− 2πikj

N (2)

where f ′
j denotes the jth data point in the time series data and N denotes the

length of the time series and then calculating the magnitude of transformed data.
We match frequency spectrum by correlation.

The rationale for the use of frequency matching is two-fold: First, the dynam-
ics of many data flows, such as sales, stock price, and weather, are characterized
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by their periodicities. By matching the frequency spectrum of a known data flow
with the frequency spectrum of estimated data flows obtained by blind source
separation techniques, we can identify corresponding flows with high accuracy.
Second, frequency matching can easily remove the ambiguities introduced by the
lifting and scaling in the estimated time series by removing the zero-frequency
component.

Frequency matching can be applied to match data flows separated from differ-
ent attacks. After collecting a set of aggregate data flows according to different
criteria, an attacker can select arbitrary subsets as groups and apply data flow
separation techniques on the groups to recover individual data flows. If a data
flow separated from one group matches a data flow separated from another group,
then these two data flows should be generated from the same source. Moreover,
the source generating these two data flows should satisfy at least one aggregation
criteria in each group. If the attacker can match a data flow with data flows sepa-
rated from several groups, the attacker can largely reduce the anonymity or possi-
bly determine the identify of the source generating the data flow since the source
should satisfy at least one criteria in each of these groups of aggregate flows. To
better utilize the data, the attacker can try all possible combinations to group
available aggregate data flows and then match the data flows separated from
these groups. Of course, when the number of aggregate flows in a group is too
small, the data flow separation technique can not separate all data flows because
the number of observations is smaller than the number of independent sources.

6 Evaluation

In this section, we will evaluate the performance of data flow separation. We
use the blind source separation algorithm proposed in [23] to separate the data
flows. The accuracy of separation will be measured using correlation with actual
flows. In our experiments, real stock market data [24] is used.

6.1 Performance Metrics

In the following, we will adopt two metrics to evaluate the accuracy of data flow
separation. Both metrics are based on a comparison of the separated data flows
with the actual data flows.

As first performance metric, we use mean square error (MSE), a widely used
performance criterion in blind source separation research. Let FA = [fA

1 , fA
2 , · · · ,

fA
n ] represent the time series of the actual data flow and FB = [fB

1 , fB
2 , · · · , fB

n ]
represent the time series estimated by the blind source separation algorithm. To
match the time series FA with FB, we first need to scale and lift FB so that they
have the same mean and variance.

F ′
B =

std(FA)
std(FB)

· (FB −mean(FB) · [1, 1, · · · , 1]) + mean(FA) · [1, 1, · · · , 1] , (3)
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Fig. 2. Example of Data Flow Separation

where std(F ) and mean(F ) denote the standard deviation and the average of
time series F , respectively. The mean square error, εA,B, is defined as follows:

εA,B =
‖FA − F ′

B‖
2

n
. (4)

Since the times series FB can also be a flipped version of FA, we also need to
match FA with −FB .

As the second metric, we use correlation, RFA,FB , between the separated flow
FB and the corresponding actual flow FA defined as follows:

RFA,FB =
∑

i(f
A
i −mean(FA))(fB

i −mean(FB))
std(FA)std(FB)

(5)

6.2 A Small Example

In this experiment, four time series of stock price selected from [24] are mixed
into four aggregates. Figure 2(a) and Figure 2(b) show the actual data flows and
separated data flows from the aggregates.

We can observe for data flows 1, 2, and 3, the separated data flows are flipped,
scaled and lifted versions of the corresponding actual data flows. We can also
observe the resemblance between separated flow and the corresponding actual
flow for data flow 4.

Figure 3 shows the performance of data flow separation in terms of metrics
introduced in Section 6.1. As shown in Figure 3(a), the separated data flows are
highly correlated to actual data flows. In Figure 3(b), both the separated data
flow and its flipped time series are compared against the actual flows and the
mean square error for each data flow shown in the figure is the smaller one. From
Figure 3(b), we can observe that the reconstructed data flows are off by around
10% in comparison with the actual data flows. Both metrics indicate that the
data flow separation is successful. In the following we will use correlation only
to evaluate performance because the lifting and scaling in the mean square error
metrics may introduce error.
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Fig. 3. Performance of Data Flow Separation on a Small Example

6.3 Mixing Degree

In this set of experiments, we would like to study the effect of mixing degree on
the performance of data flow separation. We define mixing degree as follows:

Dmix =
average number of individual data flows mixed in aggregates

number of individual data flows
. (6)

It is equivalent as

Dmix =
number of non-zero entries in Al×m

l ×m
. (7)

Ten time series selected from stock data [24] are mixed randomly in this
experiment to create ten aggregates. Totally, 10000 randomly-generated full-
rank binary mixing matrices were used in this experiment.

Figure 4(a) shows the effect of mixing degree on the performance of data flow
separation. We plot statistics of both average correlation and worst case correla-
tion. In this paper average correlation is defined as mean of correlation between
separated data flows and actual data flows for each trial. We use worst case to
refer to the most accurately separated data flow in each trial. It corresponds to
worst privacy compromising in each trial.

From Figure 4(a), we can observe that data flow separation is effective since
the separated flows are highly correlated to actual flows especially for the worst
case. We can also observe that the performance of data flow separation is not
sensitive to mixing degree for full-rank mixing matrices. This experiment indi-
cates that countermeasure to data flow separation attack by simply increasing
mix degree is not effective.

6.4 Redundant Aggregate Data Flows

In this set of experiments, we focus on the cases with redundant aggregate data
flows. In our setting, redundant aggregate data flows mean that some aggregate
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Fig. 4. Effect of Mixing Degree and Redundant Observations (Lower bar: 25 percentile,
Upper bar: 75 percentile)

data flows are linear combinations of other aggregate data flows. Redundant
aggregate data flows will reduce the number of effective aggregate data flows.
Redundant aggregate data flows are caused by rank deficient mixing matrices.

To study the effect of redundant observations, we randomly generate 1000
mixing matrices for each possible rank. Ten data flows randomly selected from
the stock data are mixed using the randomly-generated mixing metrics of differ-
ent ranks.

Figure 4(b) shows the performance of data flow separation with redundant
observations. We can observe that the performance of data flow separation de-
creases as the number of redundant observations increases. The performance
degrades because the number of knowns decreases. When the number of aggre-
gate data flows is larger than the number of individual data flows, the data flow
separation problem becomes an over-complete base problem in blind source sep-
aration literature. In general an over-complete base problem is harder to solve.

6.5 Dependence between Individual Data Flows

In this set of experiments, we study the effect of dependence between individual
data flows on data flow separation performance. We did this series of experiments
because of the fact that most blind source separation algorithms assume relative
independence between actual signals.

Groups of ten data flows are randomly picked from the stock data [24]. These
groups have different average correlations among data flows in the same group.
The time series in each group are mixed randomly and we apply data flow
separation technique on the generated aggregates.

Figure 5 shows that the performance of data flow separation technique de-
creases when the dependence among individual data flows increases. It is because
blind source separation algorithms used in data flow separation assume indepen-
dence between underlying components. Even for the blind source separation
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algorithm [23] which takes advantage of both independence and timing structure
of underlying signals, the dependence among individual data flows can still de-
grade the performance of data flow separation attack. We can also observe that
worst case correlation is not sensitive to the dependence between individual data
flows.

6.6 Frequency Matching

In this subsection, we show the performance of frequency matching attack pro-
posed in Section 5.3. In this experiment, two groups of ten data flows each are
formed by selecting data flows from the stock data. Three data flows in both
groups are the same. These two groups of data flows are mixed randomly to form
two groups of aggregate data flows. Data flow separation is performed on the
two groups of aggregate data flows. We identify common flows in both groups
by matching frequency spectrum of separated data flows in two different groups.

Figure 6 shows the correlation between three identified separated data flows
in one group and the ten separated data flows in the other group. As shown in
Figure 6, we can easily find out the data flows common to both groups.
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7 Discussion

From the experiments in Section 6, it is apparent that aggregation methods
are not sufficient to effectively counter data flow separation attacks. Additional
measures are needed.

One naive countermeasure is adding different noises to a data flow to be
supplied to different research companies so that research companies will receive
different copies of the data flow. It may not work if the noise and the original
data flow are independent, and thus can be separated by blind source separation.

According to our experiments, following countermeasures will be effective
against data flow separation attacks:

– Increase the dependence among data flows by adding dependent noises to the
data flows. Further research is needed to investigate how to optimally add
noise so that privacy can be preserved and the performance of time series
data mining will not be significantly affected.

– Limit the number aggregate data flows that can be obtained by an adver-
saries so that the number of observations is much less than the number of
independent components. This countermeasure requires cooperation among
research companies and it is hard to be enforced.

– Data sources should know from research companies about how the supplied
data to be aggregated and restricted the usage of supplied data.

Also, research in blind source separation shows most blind source separation algo-
rithms fail when the signals mixed are Gaussian distributed. Therefore, another
countermeasure against data flow separation attack is padding each aggregate
data flow so that the distribution of the aggregated data is Gaussian.

As mentioned in [25], aggregation is a major technique used to preserve pri-
vacy in data mining. Since data flow separation attack can separate individual
data flows from aggregates, aggregation technique based privacy-preserving data
mining systems are potentially vulnerable to data flow separation attacks.

8 Conclusion

In this paper, we introduce the concept of privacy in time series data mining. We
present a new attack against privacy in time series data mining, called data flow
separation attack, which can be used either alone or in conjunctions with other
attacks to significantly reduce the effectiveness of privacy-preserving techniques
in data mining. Our experiments show that the attack is effective. With the aid
of further attack such as frequency matching attack, data flow separation attack
can be used to determine data sources of separate data flows.

We discuss countermeasures against data flow separation attack. Our future
work will focus on countermeasures to balance privacy-preserving and perfor-
mance of data mining.
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Exploiting Propositionalization Based on

Random Relational Rules for Semi-supervised
Learning

Grant Anderson and Bernhard Pfahringer
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Abstract. In this paper we investigate an approach to semi-supervised
learning based on randomized propositionalization, which allows for ap-
plying standard propositional classification algorithms like support vec-
tor machines to multi-relational data. Randomization based on random
relational rules can work both with and without a class attribute and
can therefore be applied simultaneously to both the labeled and the un-
labeled portion of the data present in semi-supervised learning.

An empirical investigation compares semi-supervised propositionaliza-
tion to standard propositionalization using just the labeled data portion,
as well as to a variant that also just uses the labeled data portion but
includes the label information in an attempt to improve the resulting
propositionalization. Preliminary experimental results indicate that
propositionalization generated on the full dataset, i.e. the semi-
supervised approach, tends to outperform the other two more standard
approaches.

Keywords: semi-supervised, propositionalization, randomization.

1 Introduction

In supervised classification, training is performed on a set of examples with
assigned class labels, and the resulting model is then evaluated on the accuracy
of the class labels it assigns to unlabeled data. Semi-supervised classification
differs from supervised classification in that additional unlabeled data is available
for the algorithm to use in model construction [4]. Krogel and Scheffer [13], for
example, experiment with using unlabeled data to augment experiments on the
KDD Cup data, and SSVA [17] uses unlabeled data to enhance a support vector
machine.

Propositional learning algorithms represent examples as single objects with
values for a given set of attributes. This can make it difficult to represent relation-
ships between objects. Relational learning employs richer concept descriptions
(such as restricted forms of first-order logic, e.g. like the one used in Foil [18])
to overcome this limitation and allow those relationships to be explicitly rep-
resented and used in learning. However, this increased expressivity also causes
higher computational cost, resulting in learning algorithms with an exponential
time complexity.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 494–502, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Exploiting Propositionalization Based on Random Relational Rules 495

Propositionalization [12] – the process of converting a relational representa-
tion of data into a propositional one – aims to preserve the relationships within
the data while producing a representation for the data that can be used with
efficient propositional classification algorithms. This paper presents a two-tiered
approach to semi-supervised relational classification that allows for the applica-
tion of standard propositional learning algorithms to multi-relational data. In
the first stage we propositionalize the relational data using randomly generated
first-order rules (similar to the relational association rules generated by WarmR
[10]), which are then converted into boolean features, based on their coverage.
The generation process tries to ensure that generated rules are likely to be useful
for classification. This is done by requiring that rules cover a certain number of
examples within user-specified minima and maxima, thus avoiding both overly
specific and overly general rules. Alternatively, in a class-sensitive setting where
class labels are actually present, rules can be selected based on their class-specific
coverage similar to the “enrichment” property of stochastic discrimination [11].
In either setting all rules are turned into boolean attributes generating a propo-
sitional representation for the second stage, where the resulting propositional
dataset is classified using any standard propositional classifier, such as SMO [16]
or others.

This procedure holds promise for semi-supervised learning, as one of the main
explanations for the success of semi-supervised learning is the so-called cluster as-
sumption [4]. The unlabeled data enables better estimation of cluster boundaries
and can therefore also improve classification accuracy. In [1] random relational
rules have been shown to work well for the clustering of relational data. Thus
their usefulness for semi-supervised learning is investigated in this paper. There
does not currently appear to be any directly related work on semi-supervised
propositionalisation, which means that there is no outside standard with which
the experimental results in this paper could be meaningfully compared.

The next section describes the algorithms in more detail, Section 3 explains
and discusses experiments and the final section draws conclusions and outlines
future work.

2 Method

The RRP (Randomized Relational Propositionalization) algorithm is composed
of two tiers: a first stage generates random rules and a second stage transforms
these rules into Boolean features for a propositional representation, which can
be used as input for a propositional classification algorithm.

RRP generates definite clauses, which comprise both predicates containing
variables and so-called theory constants, as well as tests on and comparisons be-
tween these variables and theory constants. Functors and recursion are forbidden.
For example, the Mutagenesis dataset comprises the following three predicates:

molecule(MoleculeID, Class)
atom(MoleculeID, AtomID, ElementType, QuantaType, Charge)
bond(MoleculeID, AtomID1, AtomID2, BondType)
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A molecule is described by two parameters: a unique identifier and a class label
(active or inactive). An atom is described by five parameters: the identifier of
the Molecule it belongs to, a unique identifier, its element type, its quanta type,
and its electrical charge. A bond is described by four parameters: the identifier
of the molecule that it belongs to, the unique identifiers for the two atoms it is
linking, as well as its own bond type. An example of a rule generated on that
dataset is:

active(MolID):-
atom(MolID,_,_,_,Charge),
Charge >= 0.078,
bond(MolID,_,AtomID1,BondType1),
bond(MolID,_,AtomID2,BondType2),
BondType1 != BondType2,
AtomID1 = AtomID2.

This rule describes all compounds that contain an atom with a charge above
0.078 and two bonds of different types that both include a particular atom.
Underscores are used here for clarity, to denote variables not used in this rule.

Such random rules are generated in the following way: at each stage a predi-
cate or test is chosen uniformly at random with the following restrictions: for a
predicate exactly one variable (or parameter) must already appear in the rule;
all other variables are new. This ensures that clauses are linked. Tests on the
other hand may not add any new variables. Tests include the usual equal and
not-equal comparisons to other variables or theory constants, as well as range
comparisons for numeric arguments.

To ensure that the generated rules allow for classification, constraints are
imposed on the generation process. For class-blind rule generation, only rules are
accepted that cover more than a user-defined minimum number of instances, and
also cover less than a user-defined maximum. This prevents both overly specific
and overly general rules. For class-sensitive rule generation, rules are required
to be ‘enriched’, as per Kleinberg’s definition [11], where a rule is enriched for a
particular class if it covers a greater proportion of examples of that class than it
does of the other classes:

A rule is enriched if
#coveredtarget

#totaltarget
>

#coveredother

#totalother
(1)

The above constraints operate on individual rules. In addition to this, each
example should be covered by roughly the same number of rules. This constraint
operates at the ruleset level. This “uniformity of coverage” is produced by gen-
erating the random rules in small batches, and then adding the most uniformity-
preserving non-zero subset of each batch of rules to the current ruleset. In our
experiments the batch size was set to five rules. The coverage of each instance
is tracked as rules are added to the ruleset, and the subset that, when added to
the current ruleset, gives the smallest standard deviation of instance coverages
is determined to be most uniformity-preserving. Algorithm 1. details RRP.
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Algorithm 1. Pseudocode for the RRP algorithm
while Number of rules in ruleset is less than the minimum do

while Number of rules in batch is less than the minimum do
Generate a rule
if Rule is acceptable with regard to coverage constraints then

Add rule to rule batch
end if

end while
Calculate the most uniform subset of rules in the current rule batch
Add those rules to the ruleset

end while
Use ruleset to generate boolean-valued propositional dataset
Apply any propositional classification algorithm

The final propositional dataset comprising solely boolean attributes is gen-
erated by evaluating each rule on each example in the original dataset. If an
example is covered by the rule, the corresponding boolean attribute is set to
true, otherwise it is set to false.

The complexity of RRP is the sum of the complexity of both stages. Usually,
when using propositionalization in ILP, the propositionalization stage dominates
the total complexity, and this is true for RRP as well. Even though generating
a random rule is extremely fast, its coverage still has to be determined both
for checking the coverage constraints and uniformity of coverage, as well as to
generate the propositional dataset. In the worst case this coverage computation
requires time exponential in the length of the rule [8]. The complexity of proposi-
tional classification algorithms on the contrary is generally polynomial at worst.
Still, in practice we find that RRP enjoys very acceptable runtimes.

3 Experiments

An evaluation of RRP on several datasets has been conducted. Rule generation
was performed using three different setups:

– Semi-supervised Class-blind - generating rules on the full dataset (labeled
and unlabeled) with coverage-range as the criterion (RRP-SS, Algorithm 2)

– Standard Class-blind - generating rules only on the labeled training data,
again with coverage-range as the criterion (RRP-CB, Algorithm 3)

– Standard Class-sensitive - generating rules only on labeled training data with
enrichment as the criterion (RRP-CS, Algorithm 4)

The propositionalization stage of RRP-SS is the same as that of RRC, de-
scribed in [1]. RRP-CB and RRP-CS differ from RRC in that the propositional-
ization is generated on a portion of the data and then applied to the remaining
data. RRP-CS differs further in its use of enrichment instead of coverage range.

The resulting propositional data was classified as described in Algorithms 2.-
4. – using SMO [16], with the ’complexity constant’ parameter determined by
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Algorithm 2. RRP-SS process
Generate propositional representation Dp on the full dataset D,
using coverage-range as the coverage criterion
Apply SMO on the labeled portion of Dp to generate a model
Evaluate the model on the unlabeled portion of Dp

Algorithm 3. RRP-CB process
Generate a propositional representation D1p using the labeled training data D1,
using coverage-range as the coverage criterion
Apply SMO on D1p to generate a model
Apply the rules generated from D1 to D2 to produce D2p

Evaluate the model on D2p

internal ten-fold cross-validation on the training data. All experiments involved
random stratified 50 : 50 splits, i.e. 50% of the data was labeled, and 50% was
unlabeled. Twenty repetitions were computed for each setup to produce stable
average results. Linear support vector machines were used because they proved
to be efficient and effective for this type of problems, which comprise at most
2000 examples, but also 1000 attributes, as all setups generated 1000 random
rules. Algorithms that are non-linear in the number of attributes (e.g. logistic
regression) turned out to be less effective. Competitive alternative algorithms
included Random Forests [2] and Alternating Decision Trees [7].

The following standard ILP datasets were used: Mutagenesis (with and with-
out regression-unfriendly instances) [19], Musk1 [5], Cancer [20], and Diterpenes
[6]. Mutagenesis and Cancer only had access to low-level structural information
as represented by atoms and bonds; additional information such as global prop-
erties lumo or logP , or predefined functional groups were not included. They
are known to improve classification accuracy significantly, thereby potentially
masking the relational performance of the investigated algorithms.

For the Diterpenes dataset, as the ‘enrichment’ procedure is currently limited
to two-class problems, in addition to using the full 23-class dataset with RRP-
SS and RRP-CB, three additional two-class versions were generated: all pairwise
combinations of the three largest classes (called 3, 52 and 54), which could be
used with all three algorithms.

For RRP-SS and RRP-CB, several different ranges for rule coverage were
investigated: 0.05-0.5, 0.1-0.5, 0.25-0.5 and 0.25-0.75, as well as “extreme”, which
denotes a coverage range limited only by being required to cover at least two

Algorithm 4. RRP-CS process
Generate a propositional representation D1p using the labeled training data D1,
using enrichment as the coverage criterion
Apply SMO on D1p to generate a model
Apply the rules generated from D1 to D2 to produce D2p

Evaluate the model on D2p
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Fig. 1. Accuracy for coverage range 0.05-0.5

instances, and to not cover all instances. All numbers are proportions of the size
of the training set.

The results of this evaluation for the 0.05-0.5 coverage range are shown in
Figure 1. All other coverage ranges displayed similar properties, except for the
“extreme” setting which performed substantially worse than the other ranges
on some of the datasets, particularly the Diterpenes subsets. The poorer per-
formance of RRP-CS relative to RRP-CB on Diterpenes is probably related to
the poor performance of the “extreme” coverage setting – RRP-CS requires that
rules be enriched, but places no other restrictions on their coverage, so its rules
have the same coverage limits as the “extreme setting”, and it seems to produce
similar results. RRP-SS enjoys a small advantage over both RRP-CB and RRP-
CS for Musk1, Cancer and both versions of the Mutagenesis dataset. However,
on the Diterpenes datasets, RRP-CB occasionally outperforms RRP-SS.

A possible explanation for this unexpected behavior on the Diterpenes dataset,
and in particular the derived two-class subsets thereof, is the fact that they seem
to be easier to classify, as the generally high accuracies obtained in classifica-
tion show. This indicates that the number of labeled examples is sufficient to
induce strong classifiers. Additional unlabeled data has previously been found
to be either irrelevant or even detrimental under such circumstances [4]. To test
this potential explanation, additional experiments were conducted with smaller
numbers of labelled training examples: 10%, 4%, 2%, and 1%, and the remainder
of the dataset in each case used as test examples. The results for twenty random
train-test splits on Diterpenes(52,54) are depicted in Figure 2, in which the error
bars show the standard deviations for the accuracy.
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Fig. 2. Accuracy for train-test splits with varying proportions of training data

First of all it is surprising that even 1% of the data used for training (eight
examples) can produce a model with 68% or even 74% accuracy, depending on
the algorithm. The default accuracy for this problem is 55%. Secondly, when
comparing mean accuracies, the semi-supervised approach RRP-SS enjoys the
biggest advantage for the smallest number of labeled examples. Furthermore,
with larger numbers of labeled data the standard algorithm RRP-CB quickly
catches up with the semi-supervised variant.

4 Summary and Future Work

This paper has described a two-tiered approach to semi-supervised relational
learning, based on randomized propositionalization and an arbitrary proposi-
tional classification algorithm and compared the results to standard train-test
learning. The experimental results indicate that the usefulness of the extra infor-
mation gained from semi-supervised learning in this case depends on the dataset,
and that datasets that are already straightforward to classify with smaller pro-
portions of labeled training instances do not benefit greatly from additional
unlabeled data. On the other hand, for harder-to-classify datasets and smaller
numbers of labeled data the semi-supervised approach RRP-SS enjoys a small,
but consistent advantage over both standard learning algorithms RRP-CB and
RRP-CS.

There are multiple avenues for future work. The propositionalization phase
of RRP could be replaced by other propositionalization tools like RSD [22], or
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class-blind variants of relational rule learners like Foil or Progol [14]. It should
also be possible to further exploit the unlabeled data in learning: after the gener-
ation of the propositional model the mutual coverage of each boolean feature in
the train and test set could be computed and compared and taken into account
when inducing the propositional classifier. Preliminary experiments have shown
that attributes with large differences in coverage between the training and the
test set have a detrimental influence on classification accuracy. Such attributes
could either be removed from the data, or down-weighted for algorithms capable
of dealing with attribute weights.

One of the anonymous reviewers has suggested a intriguing fourth approach:
calculating enrichment (which is class-sensitive) on the labeled data, but then
determining uniformity on the labeled and unlabeled data. Future work will ex-
plore this approach. Contrary to other relational learning algorithms that strive
to induce the best possible set of rules, not all random rules have to be evaluated.
If rule evaluation time were to exceed a pre-specified time limit, the evaluation
could be aborted and the respective rule discarded. Again, future work will ex-
plore this efficiency versus potential loss of information trade-off in more detail.

Furthermore, after propositionalization, any standard semi-supervised learn-
ing algorithm is applicable to the resulting propositional problem, i.e. the method
described in this paper is orthogonal to any such method like, e.g., LLGC [23, 15].
If one were to apply standard semi-supervised learning algorithms, which usually
rely on some notion of distance or similarity, directly at the relational representa-
tion instead of the propositionalization approach put forward in this paper, then
relational notions of distance and similarity [21, 9] will need to be exploited. For
clustering applications propositionalization has been found to outperform more
direct approaches [1], but that may not be the case for semi-supervised learning,
and will therefore also be explored in future work.
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Abstract. Finite mixture modeling have been applied for different data
mining tasks. The majority of the work done concerning finite mixture
models has focused on mixtures for continuous data. However, many ap-
plications involve and generate discrete data for which discrete mixtures
are better suited. In this paper, we investigate the problem of discrete
data modeling using finite mixture models. We propose a novel mixture
that we call the multinomial generalized Dirichlet mixture. We designed
experiments involving spatial color image databases modeling and sum-
marization to show the robustness, flexibility and merits of our approach.

1 Introduction

Discrete data appear in many machine learning and data mining applications.
In this work, we are motivated by the need to construct powerful statistical ap-
proaches to model, analyze and cluster this type of data. Different statistical
models have been proposed and were generally dedicated to text classification
and language processing. It is well-known that the multinomial distribution per-
forms well in the case of discrete data modeling. However, recent researches have
shown that even this distribution has some drawbacks such as considering that
the events to model are independent [1,2,3]. Different smoothing techniques have
been proposed to overcome these problems. The most successful approach is the
use of the Dirichlet distribution as a prior to the multinomial which results in a
completely formal statistical model [1,3]. This is due to the fact that the Dirich-
let is a conjugate prior to the multinomial. Despite this conjugacy property,
the consistency of its estimates as a prior, its flexibility and its ease of use, the
Dirichlet has a very restrictive negative covariance structure which makes its use
as a prior in the case of positively correlated data inappropriate [4,5].

In this paper, we present a discrete finite mixture model based on both a gen-
eralization of the Dirichlet distribution and the multinomial. The choice of the
generalized Dirichlet is motivated by the excellent results obtained when we have
used it as a parent distribution in different pattern recognition and computer vi-
sion tasks [5]. The estimation of the parameters of our mixture model is based on
the maximum likelihood estimation by invoking the expectation maximization
(EM) approach. The proposed mixture model is applied to an important prob-
lem in computer vision which is the introduction of spatial constraints in color
histograms. Indeed, we propose a generative model for this task. Our generative
model is used for image databases categorization.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 503–510, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 The Multinomial Generalized Dirichlet Mixture

Let X = (X1, . . . , XD) be a discrete vector which means that each element Xl,
l = 1, . . . , D in X is discrete and takes on values 1, 2, . . . , V . Then, the joint
probability of X is given by

p(X|P ) =
D∏

d=1

V∏

v=1

P δ(Xd=v)
v =

V∏

v=1

P fv
v (1)

where δ(Xd = v) is an indicator function, P = (P1, . . . , PV ) is the parameter
vector, Pv = p(Xd = v),

∑V
v=1 Pv = 1, and fv =

∑D
d=1 δ(Xd = v). Using Eq. 1,

the samples will be used to set the probabilities, obtaining

P̂w =
fw

∑V
v=1 fv

(2)

which gives poor estimate [1]. Then, the majority of the researchers assign a sin-
gle Dirichlet or a Dirichlet mixture prior to the parameter vector of multinomial
distribution to moderate the extreme estimates given by Eq. 2 [1]. The Dirichlet
distribution with V parameters α = (α1, . . . , αV ) is defined by

p(P |α) =
Γ (

∑V
v=1 αv)

∏V
v=1 Γ (αv)

V∏

v=1

Pαv−1
v (3)

The Dirichlet distribution depends on V parameters α1, . . . , αV , which are all
real and positive. In spite of its flexibility and the fact that it is conjugate
to the multinomial, the Dirichlet has a very restrictive covariance matrix [4].
Another restriction of the Dirichlet distribution is that the variables with the
same mean must have the same variance as shown in [6]. All these disadvantages
can be handled by using the generalized Dirichlet distribution. The generalized
Dirichlet pdf is defined by

p(P |ξ) =
V −1∏

v=1

Γ (αv + βv)
Γ (αv)Γ (βv)

Pαv−1
v (1−

v∑

l=1

Pl)γv (4)

where ξ = (α1, β1, . . . , αV −1, βV −1) ,αv > 0, βv > 0, γv = βv − αv+1 − βv+1 for
v = 1 . . . V −2 and γV −1 = βV −1−1. Note that the generalized Dirichlet distribu-
tion is reduced to a Dirichlet distribution with parameters (α1, . . . , αV −1, αV =
βV −1) when βl = αl+1+βl+1. Thus, the generalized Dirichlet includes the Dirich-
let as a special case. Comparing to the Dirichlet, the generalized Dirichlet has
V − 2 extra parameters which is a very important advantage. Indeed, as the
Dirichlet has V parameters, when constructing a Dirichlet prior and if the mean
probabilities of the variables have been fixed, it remains only one degree of free-
dom (by fixing the value of

∑V
v=1 αv) to adjust the distribution [7]. For the

generalized Dirichlet, however, it remains V −1 degrees of freedom which makes



On Discrete Data Clustering 505

it more flexible for several applications [5]. The mean of the generalized Dirichlet
distribution is given by [8]

E(Pv) =
αv

αv + βv

v−1∏

k=1

βk

αk + βk
(5)

In addition to this property, the generalized Dirichlet is conjugate to the multi-
nomial distribution and we can easily show that the joint distribution of X and
P is

p(X, P |ξ) =
V −1∏

v=1

Γ (αv + βv)
Γ (αv)Γ (βv)

P
α

′
v−1

v (1 −
v∑

l=1

Pl)γ
′
v (6)

where α
′
v = αv + fv and β

′
v = βv + fv+1 + . . . + fV for v = 1, . . . , V − 1,

γ
′
v = β

′
v − α

′
v+1 − β

′
v+1 for v = 1, . . . , V − 2 and γ

′
V −1 = β

′
V −1 − 1. Integrating

over P , we obtain the marginal distribution of X

p(X |ξ) =
∫

P

p(X, P |ξ)dP =
V −1∏

v=1

Γ (αv + βv)
Γ (αv)Γ (βv)

V −1∏

v=1

Γ (α
′
v)Γ (β

′
v)

Γ (α′
v + β′

v)

We call this density the multinomial generalized Dirichlet distribution (MGD).
Then, the posterior is given by

p(P |X, ξ) =
p(X, P |ξ)
p(X |ξ)

=
V −1∏

v=1

Γ (α
′
v + β

′
v)

Γ (α′
v)Γ (β′

v)
P

α
′
v−1

v (1−
v∑

l=1

Pl)γ
′
v (7)

which is a generalized Dirichlet with parameters (α
′
1, β

′
1, . . . , α

′
V −1, β

′
V −1). Then,

by taking the generalized Dirichlet as a prior to the multinomial and according
to Eq.5 and Eq.7, we obtain

P̂w = E[Pw|X; ξ] =
αw + fw

αw + βw + nw

w−1∏

l=1

βl + nl+1

αl + βl + nl
(8)

where nl = fl + fl+1 + . . . + fV . When βl = αl+1 + βl+1, it is straightforward to
verify that this equation is reduced to

P̂w = E[Pw|X; ξ] =
αw + fw

∑V
v=1(αv + fv)

=
fw + αw

D +
∑V

v=1 αv

(9)

where αV = βV −1, which represents the expectation when we consider a Dirichlet
distribution, with parameters (α1, . . . , αV ), as a prior.

Suppose now that we select a generalized Dirichlet mixture as a prior to the
multinomial. A generalized Dirichlet mixture with M components is defined as

p(P |Θ) =
M∑

j=1

p(P |ξj)pj (10)
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where pj (0 < pj ≤ 1 and
∑M

j=1 pj = 1) are the mixing proportions and p(P |ξj)
is the generalized Dirichlet. The symbol Θ = (ξ1, . . . , ξM , p1, . . . , pM ) refers to
the entire set of parameters to be estimated. With a mixture prior, the marginal
distribution of X is

p(X|Θ) =
∫

P

p(X, P |Θ)dP =
M∑

j=1

pj

V −1∏

v=1

Γ (αjv + βjv)
Γ (αjv)Γ (βjv)

V −1∏

v=1

Γ (α
′
jv)Γ (β

′
jv)

Γ (α′
jv + β

′
jv)

We call this density the multinomial generalized Dirichlet mixture (MGDM).
And we can easily show that

P̂w = E[Pw|X; Θ] =
M∑

j=1

p(j|X ; ξj)
α

′
jw

α
′
jw + β

′
jw

w−1∏

k=1

β
′
jk

α
′
jk + β

′
jk

where p(j|X; ξj) = pjp(X|ξj)∑
M
j=1 pjp(X|ξj)

and represents the posterior probability.

3 Maximum Likelihood Estimation

Given a set of independent vectors X = {X1, . . . , XN}, the log-likelihood cor-
responding to an M -component MGDM is given by

L(X , Θ) =
N∑

i=1

log
( M∑

j=1

pjp(Xi|ξj)
)

(11)

The maximization defining the ML estimates is subject to the constraints 0 <
pj ≤ 1 and

∑M
j=1 pj = 1. To obtain the ML estimates of the mixture parameters

we have used the EM algorithm [9]. In EM, the “complete” data are considered
to be Yi = {Xi, Zi}, where Zi = (Zi1, . . . , ZiM ) with

Zij =
{

1 if Xi belongs to class j
0 otherwise (12)

constituting the “missing” data. The EM algorithm is based on the Q-function
(the conditional expectation) of the complete-data log-likelihood

Q(Θ; Θ(t)) =
N∑

i=1

M∑

j=1

Ẑij log(pj) (13)

+
N∑

i=1

M∑

j=1

Ẑij log
( V −1∏

v=1

Γ (αjv + βjv)
Γ (αjv)Γ (βjv)

V −1∏

v=1

Γ (αjv + fiv)Γ (βjv + niv+1)
Γ (αjv + βjv + niv)

)

where Θ(t) is the value of Θ at iteration t and

Ẑij = p(Zij = 1|Xi; Θ(t)) =
p
(t)
j p(X i|ξ(t)

j )
∑M

j=1 p
(t)
j p(Xi|ξ(t)

j )
(14)
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The first term in Eq. 13 can be maximized by updating pj as following

p
(t+1)
j =

∑N
i=1 Ẑ

(t)
ij

N
(15)

The maximization of the second term, however, does not yield to a closed form
solution. Thus, we have used Newton-Raphson method which is based on the
computation of the first and second derivatives. The iterative scheme of the
Newton-Raphson method is given by the following equation:

ξ
(t)
j = ξ

(t−1)
j −H(ξ(t−1)

j )−1 ∂Q(Θ; Θ(t−1))

∂ξ
(t−1)
j

(16)

where H(ξ(t−1)
j ) is the hessian matrix.

4 Experimental Results

Color histograms are widely used as features vectors for images summarization
and retrieval [10] and are used in different systems. This can be explained by
the fact that histograms provide a stable object recognition in the presence of
occlusions and over views change [10]. However, histograms do not include any
spatial information which is an important issue in human visual perception.
Different approaches have been proposed to integrate spatial information with
color histograms [11,12]. In the following, we propose a statistical model based
on the MGDM to introduce the spatial information into color histograms. The
proposed model is then applied to images databases summarization.

Suppose that we have N labeled images Ii, i = 1, . . . , N classified in R classes
and that the number of labeled images in each class r is equal to nr (

∑R
r=1 nr =

N). By associating a distribution and a weight to each class in the training set,
we can suppose that each image Ii is generated by a mixture of R distributions
with parameters π = (π1, . . . , πR): p(Ii|π) =

∑R
r=1 p(r)p(Ii|πr). The problem

now is the determination of p(Ii|πr). For this, let us introduce some notations. An
L×K image Ii is considered to be a set of pixels {Xilk

, l = 1, . . . , L; k = 1, . . . , K},
where Xilk

is the pixel in position (l, k) of image Ii. The colors in Ii are quantized
into C colors c1, . . . , cC . The distribution p(Ii|πr) can be described in terms of the
features of the image. In our case, the features are the pixels. In order to introduce
the spatial information, the probability of a pixel should be conditioned on its
neighborhood. By taking the neighborhood consisting of the pixels at a distance
d ∈ D = {d1, . . . .dD} measured using the L∞ norm, p(Ii|πr) will be given by

p(Ii|πr) =
D∏

d=1

L∏

l=1

K∏

k=1

p(Xilk
|πr; Xil′k′ , d) (17)

where |(l, k)−(l′, k′)| = max{|l−l′|, |k−k′|} = d. Note that Eq. 17 will represent
the classic image histogram, if we suppose that each pixel Xilk

is independent
of its neighborhood, which is actually the standard naive Bayes assumption.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 1. Sample images from each group. (a) Class1, (b) Class2, (c) Class3, (d) Class4,
(e) Class5, (f) Class6, (g) Class7, (h) Class8, (i) Class9, (j) Class10.

According to Eq. 17 the parameters of an individual mixture component are a
multinomial distribution over the C ×C possible color pairs and can be written

as πct1 ,ct2 ,d|r, where t1, t2 = 1, . . . , C and πct1 ,ct2 ,d|r = p

(

Xilk
= ct1 , Xil′k′ =

ct2

∣
∣|(l, k) − (l′, k′)| = d

)

, l, l′ = 1, . . . , L, k, k′ = 1, . . . , K, which is the prob-

ability that a pixel of color ct1 has at a distance d a pixel of color ct2 . Then,

Eq. 17 could be written as follows p(Ii|πr) =
∏D

d=1

∏C
ct1=1

∏C
ct2=1 π

fct1 ,ct2 ,d

ct1 ,ct2 ,d|r,

where fct1 ,ct2 ,d ≡ Card
{

(Xilk
, Xil′k′ ) = (ct1 , ct2)

∣
∣|(l, k) − (l′, k′)| = d

}
, where

Card{} refers to the number of elements of a set. Learning our model con-
sists of estimating the parameters πct1 ,ct2 ,d|r using the nr labeled images in
class r. By noting that we can associate a C2-dimensional vector of frequencies
f i,d = (fc1,c1,d, . . . , fc1,cC ,d, . . . , fcC ,c1,d, . . . , fcC,cC ,d) to each image Ii for each
distance d, the parameters are estimated using Eq. 11.

For our experiments, we used a database containing 45100 images. This data-
base contains 10 homogeneous classes (see Figure 1). We divided the database
on two sets. A data set containing 22550 images used for training. The remaining
images were used for testing. We considered the RGB space with color quanti-
zation into 512 colors (8× 8× 8) and the set of distances D = {1, 3, 5, 7, 9, 11}.
Besides, we have considered only probabilities of pixels having same colors in
order to reduce zero frequencies, which is a common approach and used, for
instance, in the case of the autocorrelogram proposed by Huang et al. [12]. The

Table 1. Confusion matrix for image classification using spatial color information
modeled by MGDM

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 1961 89 21 45 28 22 14 27 20 23
C2 32 2168 21 89 17 33 45 37 22 36
C3 18 71 2632 23 37 22 28 31 84 54
C4 51 35 14 1700 26 12 15 18 19 10
C5 29 17 21 52 1775 13 14 18 37 24
C6 13 25 7 10 10 1925 31 49 5 25
C7 17 55 16 19 20 23 2033 27 6 34
C8 23 36 4 8 12 25 17 2047 8 20
C9 23 7 3 15 25 2 4 3 1949 19
C10 9 21 9 5 13 12 10 32 18 2171
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Table 2. Confusion matrix for image classification using spatial color information
modeled by MDM

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 1739 123 43 81 49 41 29 53 41 51
C2 49 1918 49 145 47 51 86 62 39 54
C3 37 118 2347 48 67 37 56 60 135 95
C4 89 67 26 1575 37 17 21 23 28 17
C5 48 29 36 80 1674 18 19 21 46 29
C6 17 39 13 17 19 1822 48 66 16 43
C7 30 79 23 31 29 36 1927 45 8 42
C8 41 57 7 13 23 46 29 1932 15 37
C9 44 11 7 27 46 5 9 15 1859 27
C10 20 43 21 12 25 25 21 59 28 2046

Table 3. Confusion matrix for image classification using spatial color information
modeled by multinomial mixtures

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 1670 131 49 86 55 44 36 61 53 65
C2 53 1858 54 169 51 58 86 67 47 57
C3 43 132 2247 53 76 45 67 72 153 112
C4 98 72 29 1515 45 23 25 29 37 27
C5 51 31 39 89 1624 21 29 25 57 34
C6 26 44 23 25 24 1742 61 78 23 54
C7 37 91 36 42 41 49 1819 63 16 56
C8 44 61 12 17 28 52 35 1877 23 51
C9 56 14 11 31 46 13 14 18 1812 35
C10 27 51 27 17 36 37 29 71 49 1956

accuracy classification produced by our classifier was measured by counting the
number of misclassified images, yielding a confusion matrix. In this confusion
matrix, the cell (i, j) represents the number of images from category i which
are classified as category j. The number of images misclassified when we used
MGDM, was 2189, which represents an accuracy of 90.29 percent (See Table 1).
Table 2 represents the confusion matrix when we use Multinomial Dirichlet mix-
tures (MDM) (3711 misclassified images which represents an accuracy of 83.54
percent). Table 3 shows the confusion matrix when we use multinomial mix-
tures. In this case, the accuracy was 80.35 percent (4430 misclassified images).
Note that the improvement achieved by the MGDM, comparing to MDM and
multinomial mixtures, is highly statistically significant.

5 Conclusion

We have proposed, discussed and evaluated a novel finite mixture to model
discrete data. This mixture model is based on both the generalized Dirichlet
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and the multinomial distributions. The recently proposed multinomial Dirichlet
mixture has turned out to be a special case. The proposed model is powerful and
flexible enough to be adapted to a broad variety of applications where discrete
data play an important role such as information retrieval and filtering, natural
language processing and bioinformatics.
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Abstract. Linking records from two or more databases is an increas-
ingly important data preparation step in many data mining projects, as
linked data can enable studies that are not feasible otherwise, or that
would require expensive collection of specific data. The aim of such link-
ages is to match all records that refer to the same entity. One of the main
challenges in record linkage is the accurate classification of record pairs
into matches and non-matches. Many modern classification techniques
are based on supervised machine learning and thus require training data,
which is often not available in real world situations. A novel two-step
approach to unsupervised record pair classification is presented in this
paper. In the first step, training examples are selected automatically, and
they are then used in the second step to train a binary classifier. An ex-
perimental evaluation shows that this approach can outperform k-means
clustering and also be much faster than other classification techniques.

Keywords: data linkage, entity resolution, clustering, support vector
machines, data mining preprocessing.

1 Introduction

With massive amounts of data being collected by many businesses and govern-
ment agencies, techniques that enable efficient sharing of large databases between
organisations are of increasing importance in many data mining projects. Data
from various sources often has to be linked in order to improve data quality and
integrity, or to enrich existing data with additional information [12]. Linking en-
tities is often challenged by the lack of entity identifiers, and thus sophisticated
linkage techniques, using the available record attributes, are required [7].

For large databases, it is not feasible to compare each record from one database
with all records from another database, as this process is computationally too
expensive [7]. Blocking techniques are employed to reduce the number of record
pair comparisons [1]. They group records into blocks, and candidate record pairs
are then generated only from the records within the same block. Assuming there
are no duplicate records in the databases to be linked, then the majority of can-
didate pairs are non-matches, as the maximum possible number of true matches
corresponds to the number of records in the smaller of the databases. Classifying
record pairs is thus often a very imbalanced problem.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 511–518, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Name Address
R1 : Christine Smith 42 Main Street
R2 : Christina Smith 42 Main St
R3 : Bob O’Brian 11 Smith Rd
R4 : Robert Bryce 12 Smythe Road

WV(R1,R2): [0.9, 1.0, 1.0, 1.0, 0.9]
WV(R1,R3): [0.0, 0.0, 0.0, 0.0, 0.0]
WV(R1,R4): [0.0, 0.0, 0.5, 0.0, 0.0]
WV(R2,R3): [0.0, 0.0, 0.0, 0.0, 0.0]
WV(R2,R4): [0.0, 0.0, 0.5, 0.0, 0.0]
WV(R3,R4): [0.7, 0.3, 0.5, 0.7, 0.9]

Fig. 1. The left side shows four example records and the right side the corresponding
weight vectors resulting from their comparisons (based on Fig. 2 from [5])

Candidate record pairs are compared using similarity functions applied to
selected record attributes. These functions can be as simple as an exact string
or a numerical comparison, can take typographical variations into account [2],
or they can be specialised, for example, for date or time values. Each similarity
function returns a numerical matching weight, often normalised such that 1.0
corresponds to exact similarity and 0.0 to total dissimilarity. For each compared
record pair a weight vector is formed that contains the pair’s matching weights.
Using these weight vectors, record pairs are then classified into matches, non-
matches, and possible matches, depending upon the decision model used [7].

A record pair that has equal or very similar attribute values will likely refer to
the same entity, as it is very unlikely that two entities have very similar or even
the same values in all their record attributes. The matching weights calculated
when comparing such a pair will be 1 (or close to 1) in all weight vector elements.
On the other hand, weight vectors that contain matching weights of only 0 (or
values close to 0) in all vector elements were with high likelihood calculated when
two different entities were compared, as it is highly unlikely that two records that
refer to the same entity have different values in all their attributes.

Based on these observations, it is normally easy to accurately classify a can-
didate record pair as a match when its weight vector contains only matching
weights close to or equal to 1, and as a non-match when its weights are all close
to or equal to 0. It is however much more difficult to correctly classify a pair that
has some similar and some dissimilar attribute values. In the examples shown in
Fig. 1, records R1 and R2 are very similar to each other, and thus very likely
refer to the same person. On the other hand, R3 and R4 are more different from
each other, and it is not obvious if they refer to the same person.

It follows that it is possible, in a first step, to automatically select weight
vectors that correspond to good quality training examples. For example, of the
weight vectors shown in Fig. 1, WV(R1,R2) can be selected as a match training
example, and WV(R1,R3), WV(R2,R3), WV(R1,R4) and WV(R2,R4) as non-
match examples. These training examples can then be used in a second step to
train a binary classifier for classification of all weight vectors.

This two-step approach to record pair classification has first been proposed by
the author in [5], with initial experiments indicating its feasibility. The contri-
bution of this paper is the investigation of a potential improvement to the basic
approach, namely to randomly include additional weight vectors for training.
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2 Related Work

In recent years, various techniques have been explored for record pair classifica-
tion [7]. Among the supervised learning techniques used are decision trees [8,11]
and support vector machines [10], while another approach is adaptive string simi-
larity functions [2]. While supervised techniques normally achieve better linkage
quality than unsupervised ones, their major drawback is the lack of training
data (record pairs with known true match and non-match status) in many real
world situations, as manual preparation of training data is time consuming and
expensive. Active learning aims to overcome this problem through manual clas-
sification of only the most difficult record pairs to classify automatically [11].

Three classification approaches were compared in [8]: decision trees; k-means
with three clusters (matches, possible matches and non-matches); and a hybrid
approach that first clusters a sub-set of weight vectors (again into three clusters),
and then uses the match and non-match clusters for decision tree induction
learning. The supervised and hybrid approaches both outperformed k-means.

Methods similar to the proposed two-step approach have been developed for
text and Web page classification [9,13], where often only a small number of pos-
itive training examples is available besides many unlabeled documents. The aim
is to learn a binary classifier from positive and unlabeled examples. PEBL [13]
iteratively trains a support vector machine (SVM) using the positive and neg-
ative documents furthest away from the decision boundary, while the S-EM [9]
approach includes ‘spy’ documents, positive labeled examples, into the set of
unlabeled documents to get a more realistic model of their distribution to be
used in the EM algorithm. This is similar to the idea of randomly including
additional weight vectors into the training sets as presented in this paper.

3 Two-Step Classification

In the first step of the proposed approach, weight vectors that with high likeli-
hood correspond to true matches and true non-matches are selected as training
examples. In the second step, these training examples are used to train a binary
classifier, which is then employed to classify all weight vectors into matches and
non-matches.

3.1 Training Example Selection

There are two different approaches on how to select training examples: threshold
or nearest based [5]. In the first approach, weight vectors that have all their vector
elements within a certain distance threshold to the exact similarity or total
dissimilarity values, respectively, will be selected. For example, using the weight
vectors from Fig. 1 and a threshold of 0.2, only WV(R1,R2) will be selected
as match training example, and WV(R1,R3) and WV(R2,R3) as non-match
training examples. The remaining three weight vectors will not be selected, as
at least one of their vector elements is larger than the 0.2 distance threshold.
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The second approach is to sort weight vectors according to their distances
from the vectors containing only exact similarities and only total dissimilarities,
respectively, and to then select the respectively nearest vectors. In Fig. 1, vector
WV(R1,R2) is closest to the exact similarities vector, followed by WV(R3,R4).
Vectors WV(R1,R3) and WV(R2,R3) only contain total dissimilarity values,
and WV(R1,R4) and WV(R2,R4) are the next vectors closest to them.

The notation used below is a follows. It is assumed that candidate record pairs
are compared using d similarity functions (with d ≥ 1), resulting in a set W of
weight vectors wi (1 ≤ i ≤ |W|) of length d, with | · | denoting the number of
elements in a set. All comparison functions are assumed to return normalised
matching weights between 0 (total dissimilarity) and 1 (exact similarity), i.e. 0 ≤
wi[j] ≤ 1, 1 ≤ j ≤ d, ∀wi ∈W. The weight vector containing exact similarities
in all vector elements (i.e. corresponding to an exact match) is denoted by m
(with m[j] = 1, 1 ≤ j ≤ d), and the vector with only dissimilarities by n (with
n[j] = 0, 1 ≤ j ≤ d). In the training example selection step, weight vectors
from W will be inserted into the match training example set, WM , and the
non-match training example set, WN . Generally, not all weight vectors from W
will be selected for training, thus it is likely that (|WM |+ |WN |) < |W| holds.

Threshold-based Selection. One distance threshold for matches, tM , and one
for non-matches, tN (with 0 < tM , tN < 1), are used to select weight vectors that
have all their similarity values either within tM of the exact match value m, or
within tN of the total dissimilarity value n. Formally, weight vectors from W will
be inserted into WM and WN , according to: WM = {wi ∈W : (m[j]−wi[j]) ≤
tM , 1 ≤ j ≤ d}, and WN = {wi ∈W : (n[j] + wi[j]) ≤ tN , 1 ≤ j ≤ d}.

Nearest-based Selection. In this approach, the xM weight vectors closest to
m are selected into WM , and the xN weight vectors closest to n are selected into
WN . Both xM > 0 and xN > 0 must hold. The training sets WM and WN are
formed according to: WM = {wi ∈W,wk /∈WM : dist(m,wi) < dist(m,wk)},
and WN = {wi ∈W,wk /∈WN : dist(wi,n) < dist(wk,n)}, with dist being a
distance function (like Euclidean distance), xM = |WM |, and xN = |WN |.

Given the number of true non-matches in W is often much larger than the
number of true matches [7], more weight vectors are selected into WN than into
WM . An estimation of the ratio r of matches to non-matches is calculated using
the number of records in the two data sets to be linked, A and B, and the total
number of weight vectors |W|: r = min(|A|, |B|)/(|W| −min(|A|, |B|)).

3.2 Random Inclusion of Additional Training Examples

The training examples selected in the first step are likely linearly separable, be-
cause WM and WN only contain weight vectors that are either close to m or
close to n, and also because usually not all weight vectors from W are selected for
training. This will likely result in a ‘gap’ between the training sets, as illustrated
in Fig. 2 (a). Similar to the inclusion of ‘spy’ documents for semi-supervised
text classification [9], adding a small number of randomly selected weight vec-
tors from this ‘gap’ into WM and WN should improve classification accuracy, as
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Matchesmatches
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Matchesmatches
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0.0 1.0

(b) Uniform random sampling

(d) Exponential random sampling

Matchesmatches
Non−

0.0 1.0

Matchesmatches
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(a) No random sampling

(c) Linear random sampling

Fig. 2. Possible methods for random sampling of additional weight vectors (assumed
to be 1-dimensional vectors)

the training sets will then contain a more realistic distribution of weight vectors.
The random sampling of weight vectors should be done such that vectors closer
to m are more likely included into WM , while vectors closer to n are more likely
selected into WN . Besides no random sampling, the three different sampling
methods illustrated in parts (b) to (d) of Fig. 2 are to use either uniform sam-
pling, or a linear or exponential mapping function to randomly sample weight
vectors. These sampling methods will be evaluated experimentally below.

3.3 Weight Vector Classification

In the second step of the proposed record pair classification approach, the train-
ing sets WM and WN , as generated in the first step, will be used to train
a binary classifier. Once trained, this classifier is then employed to classify all
weight vectors in W. In the experiments presented below, a SVM classifier [3]
will be evaluated, because this technique is known to be robust to noisy data.

4 Experimental Evaluation

The proposed two-step approach will be compared with three other classification
methods. The first is an ‘optimal threshold’ classifier that has access to the
true match status of all weight vectors in W and can thus find a classification
threshold that minimises both false matches and false non-matches. The second
is a supervised SVM which also has access to the true match status of all weight
vectors. Nine SVM variations were evaluated, three kernels (linear, polynomial
and RBF) and three values for the cost parameter, C [3]. The third method is
k-means, with the weight vectors being clustered into matches and non-matches.
Three distance measures (Manhattan, Euclidean and Linf) were evaluated. All
experiments were conducted using 10-fold cross validation.

All classifiers were implemented in the Febrl [6] open source record linkage
system, which is written in Python. The libsvm library was used for the SVM
classifier [3]. All experiments were run on a Pentium 3 GHz CPU with 2 GBytes
of main memory, running Linux 2.6.20 and using Python 2.5.1.
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Table 1. Data sets used in experiments. See Sect. 4 for more details.

Data set Number of Task Pairs Reduction Number of
records completeness ratio weight vectors

Census 449 + 392 Link 1.000 0.988 2,093
Restaurant 864 Dedup 1.000 0.713 106,875

DS-Gen-A 1,000 Dedup 0.957 0.995 2,475
DS-Gen-B 2,500 Dedup 0.940 0.997 9,878
DS-Gen-C 5,000 Dedup 0.953 0.997 35,491
DS-Gen-D 10,000 Dedup 0.948 0.997 132,532

As summarised in Table 1, experiments were conducted using two real data
sets from the SecondString toolkit1 and four synthetic data sets containing names
and addresses created with the Febrl data set generator [4]. The synthetic data
sets are based on real-world frequency tables, and contain 60% original and 40%
duplicate records (with randomly generated duplicates [5]). Standard blocking [1]
was applied to reduce the number of record pair comparisons, and the Winkler
string comparator [12] was used for comparing name and address values.

The quality and complexity of the compared record pairs is shown in Table 1
using the measures pairs completeness (number of true matched record pairs
generated by blocking divided by the total number of true matched pairs) and
reduction ratio (one minus the number of record pairs generated by blocking
divided by the total number of pairs) [7,8]. The F-measure, the harmonic mean
of precision and recall, is used to measure classifier performance, as accuracy
is not suitable for evaluating record pair classification due to the imbalanced
distribution of matches and non-matches [7]. The quality of the training example
sets generated in step one, as shown in Table 2, is calculated as the percentage of
correctly selected weight vectors in the training example sets, i.e. (|true matches
in WM |/|WM |) and (|true non-matches in WN |/|WN |).

4.1 Training Example Quality

As Table 2 shows, the quality of WM and WN is very good in most cases. For
the threshold based approach, setting tM , tN = 0.5 achieved the best results,
while a lower threshold can produce empty training sets (denoted by ‘–’), if
all weight vectors have at least one matching weight with a similarity value
above the selected threshold Nearest-based selection overcomes this problem,
and generally results in very good quality training example sets [5].

4.2 Classification Performance

Figure 3 shows the F-measure results of two data sets (due to limited space not
all results can be shown) over the parameter settings described in Sect. 4. The
1 http://secondstring.sourceforge.net
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Table 2. Quality of training examples generated in the first step, adapted from [5].
Each pair of result values shows the quality of WM / WN as percentages of correctly
selected training examples. ‘–’ denotes an empty training set.

Data sets Thresholds Nearest

0.3 0.5 0.7 1% 5% 10%

Census 100/– 96.2/100 73.4/100 100/100 100/100 100/100
Restaurant 98.5/– 4.5/100 0.19/100 100/100 76.7/100 58.6/100

DS-Gen-A 100/100 100/100 100/99.0 100/100 100/95.9 100/95.5
DS-Gen-B 100/100 100/100 99.8/99.4 100/99.0 100/98.4 100/98.2
DS-Gen-C 100/100 100/100 98.0/99.7 100/99.7 100/99.7 100/99.6
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Fig. 3. F-measure results (averages and standard deviations). ‘TS’ stands for two-
step, with ‘ne’ for nearest and ‘th’ for threshold based training example selection. ‘RS’
denotes the random selection: ‘U’ for uniform, ‘L’ for linear and ‘E’ for exponential.

four random selection methods described in Sect. 3.2 are shown for the two-step
classifier (with both 1% and 10% randomly added weight vectors evaluated). As
expected, both supervised classifiers (optimal threshold and SVM) performed
best. The two-step classifier outperformed k-means only without random selec-
tion of additional weight vectors. Contrary to expectations, all random inclusion
methods worsen the quality of the training sets and result in significantly re-
duced classification performance for the two data sets shown (for other data
sets, slightly better classification results were achieved for linear or exponen-
tial random selection compared to no random selection). These results indicate
that, unlike the random inclusion of ‘spy’ documents for semi-supervised text
classification [9], inclusion of additional randomly selected weight vectors in the
two-step approach is not improving record pair classification.

Given that normally only a portion of all weight vectors from W are used for
training in the two-step classifier, the training time will be reduced. For example,
if only 10% of all weight vectors are selected for training, then the training step
should be around ten times faster compared to using all weight vectors in W,
improving the scalability of record pair classification for large data sets.
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5 Conclusions and Future Work

The discussed two-step approach allows unsupervised record pair classification
with often better linkage quality than k-means clustering. Contrary to expec-
tations, the inclusion of randomly selected additional weight vectors did not
increased classification performance. Future work will include the evaluation of
an approach that iteratively refines the training example sets by including the
strongest classified matches and non-matches in each iteration, similar to the
PEBL classifier developed for text and Web page classification [13].
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Abstract. Many machine learning applications like finance, medicine, and risk
management suffer from class imbalance: cases of interest occur rarely. Further
complicating these applications is that the training and testing samples might dif-
fer significantly in their respective class distributions. Sampling has been shown
to be a strong solution to imbalance and additionally offers a rich parameter space
from which to select classifiers. This paper is concerned with the interaction
between Probability Estimation Trees (PETs) [1], sampling, and performance
metrics as testing distributions fluctuate substantially. A set of comprehensive
analyses is presented, which anticipate classifier performance through a set of
widely varying testing distributions.

1 Introduction

Finance, medicine, and risk management form the basis for many machine learning ap-
plications. A compelling aspect of these applications is that they present several chal-
lenges to the machine learning community. The common thread among these challenges
persists to be class imbalance and cost-sensitive application, which has been a focus of
significant recent work [2, 3]. However, the common assumption behind most of the
related works is that the testing data carries the same class distribution as the training
data. This assumption becomes limiting for the classifiers learned on the imbalanced
datasets, as the learning usually follows a prior sampling stage to mitigate the effect of
observed imbalance. This is, effectively, guided by the premise of improving the predic-
tion on the minority class as measured by some evaluation function. Thus, it becomes
important to understand the interaction between sampling methods, classifier learning,
and evaluation functions when the class distributions change.

To illustrate, a disease may occur naturally in 15% of a North American population.
However, an epidemic condition may drastically increase the rate of infection to 45%,
instigating differences in P (disease) between the training and testing datasets. Thus,
the class distribution between negative and positive classes changes significantly. Scalar
evaluations of a classifier learned on the original population will not offer a reasonable
expectation for performance during the epidemic. A separate, but related problem oc-
curs when the model trained from a segment of North American population is then
applied to a European population where the distribution of measured features can po-
tentially differ significantly, even if the disease base-rate remains at the original 15%.
This issue becomes critical as the learned classifiers are optimized on the sampling dis-
tributions spelled out during training to increase performance on minority or positive
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class, as measured by some evaluation function. If sampling is the strong governing
factor for the performance on imbalanced datasets, can we guide the sampling to have
more effective generalization?

Contributions: We present a comprehensive empirical study investigating the effects
of changing distributions on a combination of sampling methods and classifier learn-
ing. In addition, we also study the robustness of certain evaluation measures. We con-
sider two popular sampling methods for countering class imbalance: undersampling and
SMOTE [2,4]. To determine the optimal levels of sampling (under and/or SMOTE), we
use a bruteforce wrapper method with cross-validation that optimizes on different eval-
uation measures like Negative Cross Entropy (NCE), Brier Score (Brier), and Area
Under the ROC Curve (AUROC) on the original training distribution. The former fo-
cuses on quality of probability estimates and the latter focuses on rank-ordering. The
guiding question here is – what is more effective – improved quality of estimates or
improved rank-ordering if the eventual testing distribution changes? We use the wrap-
per to empirically discover the potentially best sampling amounts for the given classi-
fier and evaluation measure. This allows us to draw observations on the suitability of
popular sampling methods, in conjunction with the evaluation measures, on evolving
testing distributions. We restrict our study to PETs [1] given their popularity in the lit-
erature. This also allows for a more focused analysis. Essentially, we used unpruned
C4.5 decision trees [5] and considered both leaf frequency based probability estimates
and Laplace smoothed estimates. We also present an analysis of the interaction between
measures used for parameter discovery and evaluation. Is a single evaluation measure
more universal than the others, especially in changing distributions?

2 Sampling Methods

Resampling is a prevalent, highly parameterizable treatment of the class imbalance
problem with a large search space. Typically resampling improves positive class ac-
curacy and rank-order [6, 7, 8, 2]. To our knowledge, there is no empirical literature
detailing the effects of sampling on the quality of probability estimates; however, it is
established that sampling improves rank-order. This study examines two sampling meth-
ods: random undersampling and SMOTE [9]. While seemingly primitive, randomly
removing majority class examples has been shown to improve performance in class
imbalance problems. Some training information is lost, but this is counterbalanced by
the improvement in minority class accuracy and rank-order. SMOTE is an advanced
oversampling method which generates synthetic examples at random intervals between
known positive examples. [2] provides the most comprehensive survey and comparison
of current sampling methods.

We search a large sampling space via wrapper [10] using a heuristic to limit the
search space. This strategy first removes “excess” negative examples by undersampling
from 100% to 10% in 10% steps and then synthetically adds from 0% to 1000% more
positive examples in 50% increments using SMOTE. Each phase ceases when the wrap-
per’s objective function no longer improves after three successive samplings. We use
Brier, NCE, and AUROC [11, 12] as objective functions to guide the wrapper and
final evaluation metrics. Figure 1 shows the Wrapper and Evaluation framework.
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Fig. 1. Wrapper and Evaluation Framework

Table 1. Dataset Distributions. Ordered in an increasing order of class imbalance.

Dataset Examples Features Class Balance

Adult [13] 48,840 14 76:24
E-State [9] 5,322 12 88:12

Pendigits [13] 10,992 16 90:10
Satimage [13] 6,435 36 90:10

Forest Cover [13] 38,500 10 93:7
Oil [14] 937 49 96:4

Compustat [10] 10,358 20 96:4
Mammography [9] 11,183 6 98:2

3 Experiments and Results

We consider performance on different samplings of the testing set to explore the range
of potential distributions by exploring samplings for which
P (+) = {0.02, 0.05, 0.1, 0.2, 0.3, ..., 0.9, 0.95, 0.98}. For example, suppose a given
dataset has 2000 examples from class 0 and 1000 examples of class 1 in the testing set.
To evaluate on P (+) = 0.5, 1000 class 0 examples are randomly removed from the
evaluation set. We experimented on eight different datasets, summarized in Table 1.

We explore visualizations of the trends in NCE and AUROC as P (+) is var-
ied. Each plot contains several different classifiers: the baseline PET [1]; sampling
guided by Brier (called Frequency Brier Wrapper for frequency based estimates and
Laplace Brier Wrapper for Laplace based estimates); sampling guided by NCE; and
finally sampling guided by AUROC (the latter two using similar naming convention as
Brier). In Figures 2 to 9, NCE and AUROC are depicted as a function of increasing
class distribution, ranging from fully negative on the left to fully positive on the right.
A vertical line indicates the location of the original class distribution. Brier trends are
omitted as they mirror those of NCE.
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Figures 2 through 9 show the experimental NCE and AUROC trends as the class
distribution varies. Despite the variety of datasets evaluated, some compelling general
trends emerge. Throughout, we note that wrappers guided by losses generally improve
NCE at and below the natural distribution of P (+) as compared to AUROC wrap-
pers This implies that loss does well in optimizing NCE when the testing distribution
resembles the training conditions. It is notable that in some cases, such as Figures 2, 3,
5, 6, 7, 8, & 9, that the baseline classifier actually produces better NCE scores than at
least the frequency AUROC wrapper, if not both AUROC wrappers. The frequency
AUROC wrapper selected extreme levels of sampling. The reduction in NCE at low
P (+) indicates that using loss measures within the wrapper lowers the loss estimates
for the negative class examples. That is, while the loss from the positive class may
actually increase, the lower overall losses are driven by better calibrated estimates on
the predominantly occurring majority class. On the other hand, classifiers learned from
the AUROC guided wrappers do not result in as well-calibrated estimates. AUROC
favors the positive class rank-order, while Brier and NCE tend to treat both classes
equally, which in turn selects extreme sampling levels. Thus, if NCE optimization is
desired and the positive class is anticipated to occur as rarely or more rarely than in the
training data, sampling should be selected according to either Brier or NCE.

However, the environment producing the data may be quite dynamic, creating a shift
in the class ratio and causing the minority class to become much more prevalent. In a
complete paradigm shift, the former minority class might become larger than the for-
mer majority class, such as in an epidemic. Invariably, there is a cross-over point in
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each dataset after which one of the AUROC wrappers optimizes NCE values. This is
logical, as AUROC measures the quality of rank-order in terms of the positive class —
extra emphasis is placed on correctly classifying positive examples and is reflected by
the higher selected sampling levels. As the positive examples eventually form the ma-
jority of the evaluation set, classifiers producing on average higher quality positive class
probability estimates will produce the best NCE. Therefore, if a practitioner anticipates
an epidemic-like influx of positive examples sampling methods guided by AUROC are
favored.

Improvement to AUROC under varied testing distributions is not as uniform. We
observe that at least one loss function wrapper generally produces better AUROC val-
ues in Figures 2, 3, & 4, but that an AUROC wrapper is optimal in Figures 6, 7, &
9. It is difficult to declare a champion in Figures 5 & 8. It is of note that datasets with
naturally larger positive classes tend to benefit (in terms of AUROC) from a loss wrap-
per, while those with naturally smaller positive classes benefit more from the AUROC
wrapper. As seen before, AUROC guides a wrapper to higher sampling levels than
Brier or NCE. In the cases of relatively few positive examples (such as Forest Cover,
Oil, and Mammography), a heavy emphasis during training on these few examples pro-
duces better AUROC values. For the datasets with a larger set of positive examples (as
in Adult, E-State, and Pendigits) from which to naturally draw, this over-emphasis does
not produce as favorable a result. Therefore, in cases where there are very few positive
examples, a practitioner should optimize sampling according to AUROC. Otherwise,
Brier or NCE optimization is sufficient.
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The difference of characteristics between the trends in NCE and AUROC is note-
worthy. The NCE trends appear stable and linear. By calculating the loss on each class
at the base distribution, it appears that one is able to project the NCE at any class distri-
bution using a weighted average. AUROC trends are much more violent, likely owing
to the highly perturbable nature of the measure. Adding or removing a few examples
can heavily impact the produced ranking. As a measure, AUROC is characteristically
less predictable than a loss function.

We also note that sampling mitigates the need of application of Laplace smoothing
at the leaves. We can see that the baseline classifier benefits from smoothing, as also
noted by other works. However, by treating the dataset for class imbalance first, we
are able to counter the bias and variance in estimates arising from small leaf-sizes.
The wrapper essentially searches for the ideal training distribution by undersampling
and/or injecting synthetic minority class instances that lead to a reduction in loss or
improvement in ranking.

Throughout Figures 2 to 9, we also note that Brier and NCE loss wrappers tend
to perform similarly across measures and datasets. This is not surprising as the shape
of Brier and NCE values are similar. We observe that the optimal sampling levels
found by Brier and NCE are similar, certainly more similar than to those samplings
of AUROC. In general, NCE maintains a slight performance edge. If in the interests
of time a practitioner may only experiment using one loss measure, then this study
recommends using NCE, although the results found here may not apply to all domains
and performance metrics.
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4 Conclusions

The main focus of our paper was to empirically explore and evaluate the interaction be-
tween techniques for countering class imbalance, PETs, and corresponding evaluation
measures under circumstances where training and testing samples differ. In light of the
questions posited in the Introduction, we make the following key observations.

– We demonstrated that it is possible to identify potentially optimal quantities of
sampling by optimizing on quality of estimates or rank-order as calculated by AU-
ROC. Almost all the wrappers demonstrated significant improvements in AUROC
and reductions in losses over the baseline classifier, irrespective of the dataset. As
an evaluation measure, NCE is much more stable and predictable as compared
to AUROC. We observe NCE to change almost linearly as a function of P (+),
while AUROC tends to change as P (+) changes.

– There is a strong inter-play between undersampling and SMOTE. The wrapper de-
termines an interaction between both the approaches by searching undersampling
parameters before oversampling via SMOTE.

– It is much more difficult to anticipate the effects of a class distribution shift on
AUROC than it is on probability loss functions. When a dataset is highly im-
balanced, we recommend guiding sampling through AUROC as this places the
necessary emphasis on the minority class. When class imbalance is much more
moderate, NCE tends to produce an improved AUROC.
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– While Laplace smoothing has a profound effect in improving both the quality of
estimates and ranking for the baseline classifier, the advantage diminishes with
sampling methods. The combination of SMOTE and undersampling improves the
calibration at the leaves and thus we observed that wrapper based sampling methods
are able to improve performance — lower losses and higher ranking — irrespective
of smoothing at the leaves.
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Abstract. Principal Component Analysis, when formulated as a prob-
abilistic model, can be made robust to outliers by using a Student-t
assumption on the noise distribution instead of a Gaussian one. On the
other hand, mixtures of PCA is a model aimed to discover nonlinear
dependencies in data by finding clusters and identifying local linear sub-
manifolds. This paper shows how mixtures of PCA can be made robust
to outliers too. Using a hierarchical probabilistic model, parameters are
set by likelihood maximization. The method is shown to be effectively
robust to outliers, even in the context of high-dimensional data.

1 Introduction

Principal Component Analysis (PCA) is a well-known data analysis and visu-
alization tool. It provides a simple, algebraic way to choose axes in the data
space that most fit the data, i.e. that maximize the variance after projection on
the subspace spanned by these axes, or alternatively that minimize the projec-
tion error. A lower-dimensional representation of data is obtained by selecting
a restricted number of the principal axes. However, maximal variance and min-
imal projection error are quadratic measures: a few outliers may dramatically
influence the direction of principal axes, especially in high-dimensional spaces.

Probabilistic PCA [10,13] is a way to formalize the PCA problem as a latent
variable model into a probabilistic framework. One of the nice features of the prob-
abilistic framework is that non-traditional assumptions can easily be added to the
model, the only price to pay being that the optimization of the model may reveal
more difficult. For example, the traditional Gaussian noise hypothesis leads to the
above detailed quadratic measures of errors and variances; replacing this hypoth-
esis by, for instance, a Student-t noise distribution leads to a robust version of
PCA [2]. In contrast to other robust approaches to PCA which usually require to
optimize several additional parameters, the probabilistic formalism only requires
to choose the dimension of the projection space, the other parameters being set
automatically by maximum likelihood (ML). Another advantage is that the prob-
abilistic model provides likelihood measures, which can be used to compute pos-
terior probabilities and eventually to construct a Bayes classifier.
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Mixtures of (local) PCA may be used to uncover nonlinear manifolds in data,
and are also nicely formalized into a probabilistic framework [12]. The principle
is to attribute each observed data to a specific (unknown) local model (or com-
ponent), through an indicator variable, and then to mix the local models. An
expectation-maximization algorithm can be used to set the parameters of the
model, including these indicator variables. An advantage of mixtures of PCA,
compared to other mixtures models (a.o. Gaussian mixtures), is that the full-
rank, possibly ill-conditioned covariance matrices are approximated by low-rank
covariance matrices, without having to neglect the correlations between the (lo-
cal) principal directions to avoid numerical instabilities. The other way to avoid
ill-conditioned covariance matrices is to constrain them to be diagonal, leading
to suboptimal axis-aligned components [1]. Besides nonlinear manifold uncov-
ering, mixtures models can be used in a straighforward way for clustering, and
probability density estimation. In both cases the same limitations related to
ill-conditioned covariance matrices apply though.

Mixtures of probabilistic PCA [3] can be made robust to atypical observa-
tions by using a Student-t noise distribution hypothesis. This paper shows the
complete probabilistic learning procedure for this model. It is shown that all
parameters (with the exception of the number of components and their dimen-
sionality) may be easily optimized by an Expectation-Maximization procedure,
without additional complexity with respect to the non-robust version.

The following of this paper is organized as follows. The next section first
reminds the Probabilistic PCA model and its robust extension, and then intro-
duces the Mixtures of Robust Probabilistic PCA model. Section 3 details how
the parameters of the model may be optimized, and Section 4 illustrates the
robustness of the model to atypical observations.

2 Robust Probabilistic PCA and Mixtures

PCA can be formulated as the search for an optimal linear projection mini-
mizing a reconstruction error. The principal components are derived from the
observations by projecting them on the principal directions. In the probabilis-
tic formulation, the view is inverted in the sense that the observations {yn}Nn=1

where yn ∈ IRD, are assumed to be generated from a low dimension latent
representation {xn}Nn=1, where xn ∈ IRJ , J < D.

The principle of probabilistic modeling is to express the uncertainty about
(some of) the parameters of the model by prior distributions. Probabilistic PCA
(PPCA) was proposed in [10,13]; Gaussian priors are used in PPCA. Maximising
the likelihood of the observations in PPCA leads to principal axes that are
equivalent to the principal axes found by the standard PCA, up to a rotation
and a scaling [13]; the same subspace is thus spanned.

PCA and PPCA are sensitive to atypical observations and observations not
well confined in a low-dimensional subspace, because of their quadratic criterion
and Gaussian noise model respectively. The robust probabilistic PCA [2] extends
PPCA to make it applicable on datasets containing atypical samples. Instead
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Fig. 1. Left: Probability density functions of a Gaussian (−) and a Student-t with
ν = 2 (−−). Right: Negative log-likelihood of these same distributions.

of the Gaussian noise assumption, the randomness in observations is modeled
by a Student-t distribution with an additional parameter ν (called the number
of degrees of freedom), which regulates the thickness of the distribution’s tail.
Figure 1(left) shows unit-variance Gaussian and Student-t distributions (ν = 2).
Figure 1(right) shows the corresponding negative-log-likelihood which appears
in the training criterion of probabilistic models. We see that when ν is small, the
Student-t attributes a much smaller cost than the Gaussian to points lying far
from the mean. The sensitivity to atypical observations is therefore reduced.

PPCA makes the assumption that atypical samples might come either from
the generation of latent vectors x or from the noise contribution. This is expressed
by Student-t distributions on the prior of the latent vectors and on the condi-
tional distribution of observations: P (x) = St(x|0, IJ , ν), P (y|x) = St(y|Wx +
μ, τ−1ID, ν). Note that in the traditional PPCA model, the Student-t distri-
butions are replaced by Gaussian ones. To simplify the parameterization, both
distributions are attributed the same degree of freedom ν. This choice will be
commented below. The Student-t distribution can be reformulated as an infinite
mixture of Gaussian distributions St(y|μ, Σ, ν) =

∫ ∞
0
N (y|μ, 1

uΣ) Ga(u|ν2 , ν
2 )

du, ν > 0, where Ga(u|·, ·) is a Gamma distribution over the precision factor u.
Making use of this factorization, the generative model can be represented with
an additional level in the hierarchy where the latent precision u appears:

P (u) = Ga(u|ν2 , ν
2 ) (1)

P (x|u) = N (x|0,
1
u
IJ ) (2)

P (y|x, u) = N (y|Wx + μ,
1
uτ

ID) . (3)

From this generative formulation, we see that the uncertainty about the obser-
vation (i.e. expressed by the variance in (3)) can be amplified by a small latent
precision variable u, shared by the x and y conditional distributions. According
to intuition, this constraint implies that outliers y in the observation space are
also considered as outliers x in the latent space so their contributions to the
identification of the latent space are down-weighted.

For robust PPCA, the marginal distribution of the observations is tractable:
P (y) =

∫ ∞
0

∫
X P (y|x, u) P (x|u) P (u) dx = St(y|μ, Σ, ν) where Σ ≡WW� +
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τ−1ID. The training procedure consists in maximizing this (marginal) likelihood
with respect to θ ≡ (W, μ, τ, ν).

In contrast with previous robust approaches to the PCA (see for example [15]
and [7], and the references therein), this probabilistic formalism only requires to
select the dimension of the projection space (see Section 3), the other parameters
being estimated by the maximum likelihood criterion.

Even in its robust and probabilistic versions, PCA is not adequate for repre-
senting clusters or nonlinear dependencies in the data. The mixture of PPCA [12]
may solve this problem, but is again too sensitive to atypical samples limiting
its use on many real world datasets. It is thus natural to look for a robust for-
mulation of the mixture of PPCA.

The probability distribution of a sample generated from a mixture of K robust
PPCA is defined as P (y)=

∑
k πkPk(y) where {πk}Kk=1 is the set of positive

mixture proportions, with
∑

k πk = 1; the Pk(y) are defined as single robust
PPCA components Pk(y) = St(y|μk, Σk, νk) in which Σk ≡WkW�

k + τ−1
k ID.

The set of parameters of this model is θ ≡ {(Wk, μk, τk, νk, πk)}Kk=1.
Using a latent indicator variable z = [z1, . . . , zK ] (with zk = 1 if the kth com-

ponent generated the observation y, otherwise zk = 0) simplifies the derivation
of an EM algorithm. The factorized mixture of robust PPCA is then

P (z) =
∏

k πzk

k , (4)
P (u|z) =

∏
k Ga(uk|νk

2 , νk

2 )zk , (5)

P (χ|u, z) =
∏

kN (xk|0, 1
uk

IJ)zk , (6)

P (y|χ,u, z) =
∏

kN (y|Wkxk + μk, 1
ukτk

ID)zk , (7)

where u = [u1, . . . , uK ] and χ = {x1, . . . ,xK}; the different components could
also have different latent dimensionalities {Jk}Kk=1.

Increasing the robustness by replacing Gaussian densities with Student-t ones
was also proposed for finite mixture models [8,1]. The main advantage of mixtures
of PPCA resides in the fact that the full-rank, possibly ill-conditioned covariance
matrices are approximated by constrained covariance matrices Σk, strongly re-
ducing the number of free parameters per component. By contrast, constraining
the covariance to be diagonal leads to axis-aligned components which does not
take the dominant correlations into account [1].

3 Learning Procedure

The factorization of the model (4)-(7) allows us to derive an exact Expectation-
Maximization (EM) algorithm. Note that this algorithm encompasses the op-
timization of the (mixture of) probabilistic PCA: one only needs to add the
constraint νk = ∞ (for all k) such that the Student-ts are in fact Gaussian
distributions.

We seek an optimum of the marginal distribution of the observations to esti-
mate the parameters θ ≡ {(Wk, μk, τk, νk, πk)}Kk=1. The simplest way to proceed
is by deriving an EM algorithm [6] on the factorised distribution (4)-(7). The
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starting point of the algorithm is to bound the marginal likelihood (making use
of the Jensen’s inequality):

log P ({yn}) ≥ EQ {log P ({yn}, {χn}, {un}, {zn})}
−EQ {log Q ({χn}, {un}, {zn})} . (8)

Equation (8) is valid for any distribution Q. The bound is tight when the dis-
tribution over the latent variable Q({χn}, {un}, {zn}) coincides with the poste-
rior distribution. Fortunately, the posterior distribution of the mixture of robust
PPCA model is still tractable. Indeed, applying the Bayes formula, one can show
that the posterior is

P ({χn}, {un}, {zn}|{yn}) =
∏

n

∏

k

P (xnk|unk, znk = 1,yn)

· P (unk|znk = 1,yn)P (znk = 1|yn) (9)

where the factor distributions are

P (xnk|unk, znk = 1,yn) = N (xnk|τkCkW�
k (yn − μk),

1
unk

Ck) (10)

P (unk|znk = 1,yn) = Ga(unk|αk, βnk) (11)

P (znk = 1|yn) =
πkSt(yn|μk, Σk, νk)

∑
k πkSt(yn|μk, Σk, νk)

(12)

and where we have defined C−1
k = τkW�

k Wk + IJ , αk = (D + νk)/2 , and
βnk = ((yn − μk)�Σ−1

k (yn − μk) + νk)/2. Notice that there is only a single
observation yn appearing in each of these posterior factor distributions.

The EM algorithm then consists in two successive and repeated steps. The
E-step consists in fixing Q to the distribution given by (9) and developing (8)
accordingly. Note that only the first term of (8) (called the log-complete likeli-
hood) has to be computed, as the second one does not depend on the values of
the parameters. This leads to a somewhat complex expression, not detailed here
for simplicity. Its evaluation necessitates to compute the following expectations:

ρ̄nk ≡ EQ{znk} = πkSt(yn|μk,Σk,νk)∑
k πkSt(yn|μk,Σk,νk) , (13)

ūnk ≡ EQ{unk} = αk

βnk
, (14)

log ũnk ≡ EQ{log unk} = ψ (αk)− log (βnk) , (15)

x̄nk ≡ EQ{xnk} = τkCkW�
k (yn − μk), (16)

S̄nk ≡ EQ{znkunkxnkx�
nk} = ρ̄nkCk + ω̄nkx̄nkx̄�

nk, (17)

where ω̄nk ≡ ρ̄nkūnk and ψ(·) ≡ Γ ′(·)/Γ (·) is called the digamma function.
The log-complete likelihood of course depends on the model parameters; the

M-step then consists in maximizing it with respect to the parameters, leading
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to a set of update rules for all k (tr{·} is the trace operator):

πk ← 1
N

∑
n ρ̄nk (18)

μk ←
∑

n ω̄nk(yn−Wkx̄nk)
∑

n ω̄nk
(19)

Wk ←
(∑

n ω̄nk(yn − μk)x̄�
nk

) (∑
n S̄nk

)−1 (20)

τ−1
k ← 1

DNπk

∑
n

(
ω̄nk‖yn − μk‖2 − tr{WkS̄nkW�

k }
)

. (21)

In these updates rules, the contribution of each data point is weighted ac-
cording to ω̄nk, which accounts for both the effect of the responsibilities ρ̄nk and
the expected latent precision variables ūnk. The latter ensures robustness as its
value is small for yn lying far from μk, such that the contribution in the M-step
is small. For the non robust formulation (νk →∞) we have ūnk = 1 for all n and
all k. Note also that these updates are coupled: one could cycle through these
updates between each E-step until the M-step has converged.

There is no closed form update for {νk}Kk=1. Nevertheless, a solution can be
computed by line search at each EM iteration [2]. Alternatively, a heuristic was
proposed by Shoham [11] in the context of mixture modeling.

As the marginal likelihood of mixture models has local optima, it is recom-
mended to repeat the optimization with different initializations. A good strategy
to initialize the components is to set the centers μk with a quantization algorithm
and initialize the subspace orientation Wk from the first Principal directions in
the Voronoi region of μk.

Two hyper-parameters still need to be set: the number of components and the
dimensionalities of the latent representations. They can be set in a traditional
way by cross-validation, or added in a Bayesian way to the probabilistic for-
mulation; in the latter case however MCMC sampling techniques [9] or (mean
field) variational approximation [14,4] must be used instead of the exact EM
algorithm. Finally Automatic Relevance Determination was used in [5] to select
the dimensionality of latent subspaces.

4 Experiments

In this section, the (robust) probabilistic models are applied first on two artifi-
cial examples, and then on the USPS high-dimensional real dataset, using the
software available from http://www.ucl.ac.be/mlg/.

Figures 2(a)-(b) show an example where samples have been generated along
a one-dimensional manifold, with higher density in the right end and higher
noise at the other end. The PPCA estimates a global principal direction; the
mean of the component lies in an empty region and is thus not representative
of typical samples. On the other hand, the robust PPCA discards samples in
order to concentrate on the higher density region of the manifold. Using three
components in the model (Figures 2(c)-(d)), both the mixture of PPCA and
robust PPCA estimate quite well the local principal directions. However one of
the components of the mixture of PPCA (Figure 2(c)) tries to account for the
noisy samples, forcing its mean to move away from the manifold.
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Fig. 2. Samples generated along a 1-dimensional manifold with additional atypical
points. (a) Probabilistic PCA, (b) robust probabilistic PCA, (c) 3 components mixture
of PPCA, (d) 3 components mixture of robust PPCA. The sizes of the markers represent
their contribution to the estimation of the component parameters.
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Fig. 3. (a) Synthetic example with 3 Gaussian clusters. The squares represent outliers.
(b) Negative log likelihood of a validation set with respect to the number of components
K and the dimensionality of the latent space (◦: J = 1, �: J = 2). Dashed line:
standard. Plain line: robust. (c) Negative log likelihood with respect to the number
of outliers. (d) Degree of freedom parameters for the three components in the robust
mixture model with respect to the number of outliers.

The next example consists in data arranged in three 3-dim. Gaussian clusters
(see Figure 3(a)), with diagonal covariance matrices equal to diag{[5, 1, 0.2]}
before rotation around the second coordinate axis. Each component lies on an
intrinsic two dimensional space as the variance in the third direction is signifi-
cantly smaller. The two outer clusters make an angle of ±30 degrees with the
middle one and are respectively shifted by ±5 units along the axis of rotation.
For the first experiment, 30 data are generated for each cluster. The generalisa-
tion performances, measured as the log likelihood on a validation set averaged
on 50 experiments, are plotted in Figure 3(b) for K ∈ {1, . . . , 12} components
and J ∈ {1, 2} latent space dimensions. As expected, the true model with K = 3
and J = 2 performs the best. Interestingly, we see that the standard and ro-
bust mixture models have comparable performances when the model underfits
the data (i.e. K < 2) while the robust mixture has the edge when K increases.
Overfitting is thus reduced with the robust formulation.
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(a) Standard (b) Robust

Fig. 4. Mixture of 2 component PPCAs with 1-dimensional latent space to cluster
USPS digit 2 and 3, and outliers digit 0. (a) standard; (b) robust.

For the second experiment, K is set to 3 and J to 2 (their optimal values); we
look at the sensitivity of the model to the number of outliers. The outliers are
generated uniformly in the [−10, 10]3 box. Again, 30 points are generated from
each component; 1 to 60 outliers are added. The performances measured on a
validation set without outliers, and averaged over 50 repetitions as above, are
shown on Figure 3(c). Again, we see the increased robustness of the proposed
model, in particular when there are few outliers. When the number of outliers
increases to a significant proportion of the learning data the down-weighting of
the outliers in the robust model is reduced, and the gap between the perfor-
mances decreases. Figure 3(d) shows the average value of the degree of freedom
parameters (νk for k = 1 . . . 3). We note that the down-weighting of the outliers
obtained with small value of νk, comes mainly from a single component.

The last example illustrates the robustness of the proposed method on high-
dimensional data. The USPS handwritten digit dataset consists in 16×16 pixels
images of digits (0 to 9). Only the (respectively 731 and 658) images of digits
2 and 3 are kept (they form the two dominant clusters), as well as 100 (ran-
domly chosen) images of digit 0. We compare the mixtures of PPCAs and of
robust PPCAs in their ability to find the two main clusters (thereby identifying
the 0 as outliers) and to identify the main variability in these clusters with a
one-dimensional latent space. Figure 4 shows sample images close to the one-
dimensional subspace. The mixture of robust PPCAs completely ignores the
smaller cluster of digits 0. On the other hand, the mixture of PPCAs cannot
down-weight the contribution of the digits 0, influencing the two components.

5 Conclusion

This papers introduces the Mixtures of Robust Probabilistic PCA. The method is
aimed to represent nonlinear manifolds and possibly identify clusters in data. All
parameters of the method, with the exception of the number of clusters and the
dimensionality of the latent space, are learned trough the use of a probabilistic
latent formulation, and the optimization of the likelihood of the data. Compared
to its non-robust parent, the method shows a strongly reduced sensitivity to
outliers, even in high-dimensional spaces.
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Abstract. Real-life datasets often contain small clusters of unusual sub-
populations. These clusters, or ‘hot spots’, are usually sparse and of spe-
cial interest to an analyst. We present a methodology for identifying hot
spots and ranking attributes that distinguish them interactively, using
visual drill-down Self-Organizing Maps. The methodology is particularly
useful for understanding hot spots in high dimensional datasets. Our ap-
proach is demonstrated using a large real life taxation dataset.

Keywords: self-organizing maps, hot spot analysis, attribute ranking,
imbalanced data, interactive drill-down visualization.

1 Introduction

The complexity of knowledge contained in large datasets is often easier to explore
by grouping similar entities together, which is known as cluster analysis. For ex-
ample, clustering of customers sharing similar characteristics generally makes it
easier to devise marketing strategies. Self-Organizing Maps (SOMs) [1] are popu-
larly used in cluster analysis for several reasons. First, SOMs topologically map
high-dimensional data into a two-dimensional map with similar entities being
placed close to each other. Second, SOMs produce a smaller but representative
dataset that exhibits the distribution of the original dataset. Third, SOMs offer
various map visualizations that allow non-technical users to explore a dataset.

In real datasets cluster sizes are normally not equal and clusters do not have
the same level of interest for a user. The cluster distribution is often very skewed
with interesting clusters being a small fraction of the full dataset. Also, variance
of the items at the tail/margin of the normal distribution of a population is also
larger compared to the center of the distribution. Thus it is common to find
large dense clusters for common sub-populations, and small sparse clusters that
might be of interest. In a taxation context, for example, this could be a small
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group of tax entities who have unusual tax debts, while in an insurance context
this may be a small group of high claiming clients.

Hot Spots aims to identify important or interesting groups in very large
datasets [2] using a combination of clustering and rule induction. By under-
standing attributes that distinguish these small and interesting clusters (hot
spots), businesses can improve their processes, such as the choice of treatment
strategies for ensuring tax compliance. We advance the hot spots methodology
using attribute selection measurement and visualization. With our methodology,
analysts can identify and understand distinguishing characteristics of hot spots
through interactive visualizations and by performing drill-down exploration.

2 Hot Spots Analysis

Hot Spots data mining identifies key areas in very large datasets that are inter-
esting to an analyst [2]. A dataset is clustered to identify between 10 and 1,000
clusters. Each entity is then labelled with the cluster it is assigned to. Supervised
learning (e.g., tree induction) is used to generate distinguishing descriptions for
each cluster. The resulting tree is pruned and transformed into a rule set. Finally,
the interestingness of the clusters are evaluated. As it is difficult to formalize in-
terestingness, this is domain dependent and therefore, such an analysis is often
exploratory and evolutionary [3].

There are several drawbacks with the Hot Spots methodology. When corre-
lated attributes exist in a dataset only one of them will be used in the rule set to
describe a cluster, reducing the description of the clusters. Also, the supervised
learning step is highly dependent on the results of the previous clustering step,
and also on the clustering technique employed (usually k-means). When a large
number of clusters is chosen some clusters might have quite similar characteris-
tics, yet a small number of clusters would reduce the required detail extracted
from the dataset. Exploring for the right number is difficult.

3 Self-Organizing Maps

A SOM is an artificial neural network that performs unsupervised competi-
tive learning [1]. Importantly, SOMs can be visualized and be used to explore
high-dimensional data spaces through a non-linear projection onto a lower-
dimensional manifold, most commonly a 2-D plane [4]. Artificial neurons are
arranged on a low-dimensional grid, with each neuron represented by an n-
dimensional prototype vector (with n the dimension of the input data) and
connected to its neighbouring neurons.

Exploring for Hot Spots we find that interesting clusters are usually located
at the border of the map because of the topological ordering property. However,
SOMs have a border effect problem [4] where the neighbourhood definition is not
symmetric at the borders of the map—the number of neighbours per unit on the
borders and corners of the map is not equal to the number of neighbours in the
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middle of the map. As the density estimation for the border units is different
to the units in the middle of the map, the tails of the marginal distributions of
variables (normally located at border units) are less well represented than their
centers [4]. A visual drill-down approach using a SOM can alleviate this [5]. Here,
several nodes of a region can be selected by an analyst for interactive drill down
to target regions of interest.

Furthermore, SOMs tend to merge small sparse clusters. This further reduces
the detail in the analysis. Increasing the map size of a SOM gives a better
resolution map but with significant additional computational cost.

4 SOM Hot Spot Profile Analysis Methodology

The contribution of this paper is the development of a methodology to perform
profile analysis of hot spots. We present this as data pre-processing, map training,
hot spots identification, profile analysis, drill-down, and sub-map analysis.

4.1 Data Pre-processing and Map Training

Data pre-processing is important prior to training any maps [5]. SOMs only
handle numeric attributes—each non-numeric (categorical) attribute is trans-
formed into a set of numeric attributes, encoding each categorical value into a
binary indicator (1 or 0). Normalization of the numeric attributes ensures that at-
tributes with larger ranges won’t have an unduly larger influence on the distance
calculations [6].

Linear initialization is recommended for initialising a SOM, resulting in an
order of magnitude improvement in time taken for learning compared to random
initialization [4]. Also, we train a SOM in two phases using batch training [4].
This combined linear initialization and batch training produces the same map
each time the learning process is repeated (random initialization might produce
different orientations of the map). Batch training can also utilize multi-processor
environments to speed up the training process. The map size, training length,
initial and final radius are chosen by considering a best practice approach [7].

4.2 Identifying Hot Spots in Self-Organizing Maps

Hot spots in SOMs can be identified by two approaches: first by using the dis-
tance matrix visualizations and second by analysts’ feedback based on com-
ponent plane visualizations. Noting that entities in hot spots are usually less
homogeneous because they are often located at the tail of distributions, these
regions can be identified using the distance matrix. Distance-matrix based vi-
sualizations, such as u-matrix visualization [8], show distances between neigh-
bouring nodes using a colour scale representation on a map grid. As shown in
Fig. 1, white indicates a small distance between a node and its neighbouring
nodes while black indicates a large distance between a node and its neighbours1.

1 SOM graphics are best in colour but printing requirements necessitated gray scale.



Exploratory Hot Spot Profile Analysis 539

(a) Whole dataset
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(b) The sub-map of region ‘C’

Fig. 1. Distance matrix (median of a node to its neighbours [5]) visualization

The distance matrix visualization can be used to identify borders between clus-
ters. Large distances that show highly dissimilar features between neighbouring
nodes divide clusters, i.e. the dense parts of the map with similar features (white
regions) [8].

Distance-matrix visualizations can be used to acquire the initial cluster struc-
ture of the dataset. By using this visualization, an analyst can see the cluster
structure of the dense part of a map. An example is the cluster in the center
of the map (marked ‘A’) in Fig. 1(a). However, it is difficult to see the cluster
structure of the sparse regions of the lower-right and the upper-left corners of
the map (marked ‘B’ and ‘C’).

The distance matrix visualizations in Fig. 1 show homogeneous (low varia-
tion) groups with smaller neighbour distances (white regions) and high variation
groups (dark regions). Regions with larger neighbour distances can be further
investigated through component plane visualizations. In Fig. 1(a) two hot spots
are identified according to the above criteria (the regions marked ‘B’ and ‘C’).

4.3 Profile Analysis of Hot Spot

Descriptive statistics (e.g., average values) of entities mapped to a hot spot
provides a simple characterization. However, this approach does not provide an
analyst with insight, as it is difficult to find the average value with respect to
the spread of the values of the whole dataset.

Component plane visualizations can be used to show the spread of values
of a certain component of all prototype vectors in a SOM [9]. The value of
a component in a node is the ‘average’ value of entities in the node and its
neighbours according to the neighbourhood function. The colour coding of the
map is created based on the minimum (white) and the maximum values (black)
of the component of the map. When analyzing the characteristics of hot spots in
high dimensional datasets, it is difficult to identify components which distinguish
hot spots from the remaining population by visualizing all component planes,
except by ranking their importance, as shown in Fig. 2(a).

An analyst is supported in our methodology by sorting the component planes
by the importance of the attributes that distinguish a hot spot from the rest
of the population. This ranking can be done using an attribute selection mea-
sure [6], such as information gain or gain ratio. As attributes in a SOM are
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(a) Unsorted component planes (b) Top six component planes
sorted based on region ‘C’

Fig. 2. Component planes. Six of 90 attributes are shown.

numeric, a supervised discretization measure [6], such as entropy-based dis-
cretization, should be applied to the numeric attributes before ranking. To rank
attributes by their importance, the nodes of the selected region are labeled as
‘hot spot’ and the rest as ‘non-hot spot’. An analyst can then choose an attribute
selection measure for attribute importance based on the prototype vectors. The
component planes are then ordered by this rank. Fig. 2(b) shows the sorted com-
ponent planes of the hot spot of region ‘C’ in Fig. 1(a) using the Gain Ratio.
With this ordering, an analyst is able to identify the attributes that distinguish
a hot spot from the rest of the population.

As a SOM produces a smaller but representative dataset, the prototype vec-
tors can be used as an approximation of the whole dataset. Efficient computation
allows an analyst to explore the profile of any region of the map interactively.

4.4 Drill Down and Visualizing Hot Spots

The analyst has chosen the region of the top level map of interest, allowing a
sub-map to be trained to gain more detail for these sparse regions. In training
the sub-map, consistency of interpretation of the visualization of the sub-map
needs to be preserved while maintaining the sub-map quality with respect to the
sub-population [5].

For consistent interpretation of the visualization of the sub-map, the orien-
tation of the map is preserved and the colour coding is made consistent [5]. A
drawback of using linear initialization for the sub-map based on the entities in
the sub-map is that its orientation might be different to the orientation of the
top level map. For example, entities located at the bottom-right corner of the
top level map might be located at the top-left corner as we drill down, partic-
ularly when the two largest principal components of the whole population and
the sub-population are different.

We propose that the top level map be used as the initial map of the sub-
map [5]. The radius of the rough phase training must be wide enough to avoid
subregions of the map becoming empty. We find that setting the initial radius
of the rough phase to be half of the longest side and the initial radius of the fine
tune phase to be a quarter of the longest side works well.
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4.5 Visualization and Analysis of the Sub-map

Sub-maps are also visualized using the distance matrix and component plane
visualizations introduced above. To display the distribution of values of the sub-
map with respect to the whole population, we use the colour map for the whole
population to visualize the component planes of the sub-map. In other words,
black in the sub-map visualizations is used for the maximum value of the compo-
nent of the top level map, not necessarily the maximum value of the component
of the sub-map. As the sub-map has better quality in terms of quantization error
(more homogeneous within a node), the component value in the sub-map might
exceed the maximum value of the top-level map. The colour for such values are
also black and this needs to be kept in mind in reviewing the visualization.

With sub-regions consisting of considerably fewer data vectors the training
of the sub-map is considerably faster. An analyst is thus able to interactively
explore hot spots once the top level map has been trained. The sub-map can be
further explored using the methods introduced in Sects. 4.2 and 4.3.

5 Results and Discussion

Our new visual SOM drill-down approach has been applied to the task of ex-
ploring taxpayer compliance for the Australian Taxation Office (ATO), using
a de-identified taxpayer dataset. Here, we provide aggregate indicative results
that demonstrate the effectiveness of our methodology, without breaching the
confidentiality of the data or the discoveries made.

The analysis is motivated by the need to understand the logic and structures
that drive taxpayers’ compliance behaviour (behavioural archetypes). The idea
is to construct ‘psychographic groups’ [10] by using data mining. Understanding
the difference between low and high risk taxpayers is important.

The dataset consists of 6.5 million entities with 90 attributes that reflect tax-
payer behaviour. The attributes can be categorized into: income profile (details
of income sources), propensity to lodge correctly and on time (lodgement profile),
propensity to pay (debt profile), market segments, demographics, socio-economic
indicators for areas (SEIFA) [11], and participation in tax avoidance schemes.
These attributes were selected by domain specialists. The dataset was normal-
ized and categorical attributes were transformed into numerical attributes.

A map size of 15x20 units with a hexagonal lattice structure [4] was chosen.
The initial radius of the rough phase was 8 and for the fine tuning phase it was 4.
The training length for the rough phase was 6 iterations and for the fine tuning
phase 10 iterations. The training of the top-level map took about 5 hours under
Debian GNU/Linux with two AMD64 dual-core 3GHz processors and 16 GB
memory using our Java-based SOM Toolbox.

In interpreting multiple visualizations it must be understood that the visual-
izations are linked by position or by colour. A visualization of the same map is
linked by position so that the position of each entity remains the same in each
visualization. Figs. 1(a), 3(a), and 3(b) are linked by position. The visualization
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(a) ‘Number of debt cases’
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(b) ‘Number of debt cases paid’

Fig. 3. Component plane of the whole population [5]

of the top-level map is linked by colour to the sub-map so that the colours of
the top level map are directly used for the sub-maps.

The visualization of the dataset distance matrix can be seen in Fig. 1(a). The
‘common’ population in real life datasets is usually located in the center of a
map. In Fig. 1(a), the entities in the center of the map of the whole population
are relatively homogeneous. According to the criteria presented in Sect. 4.2, there
are two hot spots, located in the top-left corner (‘B’) and in the bottom-right
corner (‘C’). Based on the ranking of the component planes (Sect. 4.3) using
gain ratio as the attribute selection measure, hot spot ‘C’ can be distinguished
by the following attributes in decreasing importance: existing debt, total num-
ber of problem income tax returns, participation in tax avoidance schemes, net
capital gain tax, activity statement lodgement behaviour, and the balance of
the tax return (Fig. 2(b)). Hot spot ‘B’ can be distinguished by the attributes:
allowances, dividends, and total income. Based on these rankings, ‘C’ is more
interesting, and further explored.

The entities in ‘C’ have highly dissimilar characteristics (Fig. 1(a)). How-
ever, at this level, it is difficult to differentiate the debt behaviour, as shown in
Figs. 3(a) and 3(b). Therefore, to see the debt behaviour in detail, we drill down
into the lower-right corner of the top level map (Sect. 4.4).

At this level we can also use the distance matrix visualization (Fig. 1(b)) to
highlight the hot spots in this sub-map, which are located along the bottom of
the map. It is also interesting to note that the hot spot of the sub-map consists
of entities that are involved in tax avoidance activities. Furthermore, this group
has characteristics of longer debt age, higher levels of compliance enforcement,
and lower percentage of cases paid.

6 Conclusion and Future Work

We have introduced a methodology for understanding characteristics of hot spots
in large real world datasets, such as from the taxation domain. Based on our
experiments, the methodology is effective for hot spots exploration, offering in-
teractive visualizations that are easy to understand. An analyst is able to identify
discriminating characteristics of hot spots. As a SOM produces a considerably
smaller-sized set of prototype vectors, it allows an efficient use of attribute se-
lection measurements. In using the methodology introduced here analysts have
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the flexibility to explore regions or clusters based on map visualization, and are
able to drill-down into sparse regions or clusters. Analysts are now able to select
regions or clusters based on their business needs.

This work is part of a larger research project where we are interested in
observing the dynamics of hot spots over time, such as to find entities who are
moving in or out of hot spots. Such knowledge will be valuable as an analyst can
derive strategies to encourage or deter moves in or out of the hot spots (which
might be regions of non-compliance or of high compliance). It can also be used
to evaluate the effectiveness of such business strategies over time.
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Abstract. In the batch learning setting it suffices to take into account
only a reduced number of threshold candidates in discretizing the value
range of a numerical attribute for many commonly-used attribute evalu-
ation functions. We show that the same techniques are also efficiently ap-
plicable in the on-line learning scheme. Only constant time per example is
needed for determining the changes on data grouping. Hence, one can ap-
plymulti-way splits, e.g., in the standard approach todecision tree learning
from data streams. We also briefly consider modifications needed to cope
with drifting concepts. Our empirical evaluation demonstrates that often
the reduction in threshold candidates obtained is high for the important
attributes. In a data stream logarithmic growth in the number of potential
cut points and the reduced number of threshold candidates is observed.

1 Introduction

By a data stream one refers to a learning model in which the training examples
arrive on-line. One usually assumes that the examples are received one at a
time. However, it is common to update the hypothesis and compute the required
sufficient statistics not following each new example, but only after gathering a
small set of new examples [1,2]. Thus, the data stream could also be bursting. In
any case, the stream can be considered to be infinite, because it is unimaginable
that all data received could be stored into the main memory of a computer.

One of the basic knowledge representations of machine learning, decision trees,
is among the first formalisms learning of which has been studied in this setting
[1,2,3,4,5]. The streaming data received contains successive training examples
each of which consists of values for a pair of random variables 〈X, Y 〉. The k
elements of the instance vector X are called attributes ; X = 〈A1, . . . , Ak〉. An
attribute may be nominal- or continuous-valued (numerical). The class labels
Y usually come from a small nominal set. The aim is to maintain an adaptive
anytime model of determining the value of Y based on the attribute values X.
One is allowed to process the data only in the order that it arrives without
storing (all of) it. As the intention is to operate in real time, only constant time
per example may be used to update the statistics sufficient to determine which
attribute is the appropriate one to be tested in a node of the evolving tree.

Usually there is a training phase in which a model of the data is built based
on examples, and an application phase in which the model is used to classify

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 544–553, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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instances whose class is not known. These phases can also overlap and, therefore,
we want to have an anytime model. Also the case in which there is no single final
concept to be learned, but it changes over time, has been tackled [3,5].

In decision tree learning an attribute evaluation function is used to decide
which attribute’s value to test in a node of the evolving tree. For a nominal
attribute one simply grows a subtree for each of the few separate values that the
attribute may take. Numerical attributes with (infinitely) many possible values,
on the other hand, need to be processed somehow. It is common to discretize
the continuous value range into a small number of disjoint intervals. We will
demonstrate that one can efficiently maintain sufficient statistics for obtaining
an optimal multi-way split for the value range of the attribute in question in the
on-line data stream model even if the data cannot be stored. Optimality in this
context means that we need to guarantee that the attribute evaluation function
can attain its best value on the data even after the modifications done.

Multi-way splitting of numerical attributes has not often been applied in the
streaming data context. Previous work has mostly relied on recursive binariza-
tion of the numerical value range. The notable exception is the recent work of
Gama and Pinto [6] in which two-layer histogram discretization was introduced.
Gama et al. [2] also applied multi-way splits consisting of ten equal-width bins in
the leaves of a tree in their VFDTc system. The leaves in VFDTc decision trees
are functional — i.e., contain a näıve Bayes classifier— but the internal nodes
use the standard binarization approach for numerical attributes.

Our work continues the cut point analysis of optimal splitting originally ini-
tiated by Fayyad and Irani [7]. This line of research has been continued later in
the batch learning setting [8,9,10,11]. We will recapitulate the main ideas of this
work in Section 3. In the data stream model Jin and Agrawal [4] have examined
reducing the number of cut point candidates that need to be taken into account.

2 Learning Decision Trees from Data Streams

Domingos and Hulten [1] introduced the VFDT system, which learns Hoeffding
trees — decision trees with a similarity guarantee to those learned by conven-
tional batch algorithms such as CART [12] and C4.5 [13]. The standard Hoeffd-
ing inequality is used to show that the attribute chosen to a node in a tree is,
with a high probability, the same as the one that would have been chosen by the
batch learner with access to all of the data. VFDT chooses an attribute to the
root based on n first examples, after which the process continues recursively in
the leaves down to which the succeeding examples are passed. Hoeffding bounds
allow to solve the required n for reaching the user-requested confidence level.

Domingos and Hulten [1] did not elaborate on how to handle numerical at-
tributes in Hoeffding trees. They just proposed that the commonly-used thresh-
olded binary splitting of the numerical value range be applied; i.e., only tests of
the form Ai < tj are used. The value range of a numerical attribute may get
multi-way splitted through subsequent binary splits of the induced subintervals.

Gama et al. [2] put forward an instantiation of VFDT in which Information
Gain function (IG) of C4.5 was used to evaluate attributes. For each numerical
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attribute Ai a (balanced) binary search tree (BST) is maintained. It records for
every potential threshold tj the class distribution of the binary partition induced
by the test Ai < tj . Exhaustive evaluation over the tests is used to choose the
one to be placed to the evolving decision tree. However, all threshold candidates
for one attribute can be evaluated during a single traversal of the BST.

Obviously, updating the BST takes O(lg V ) time, where V is the number of
different values that the attribute in question takes. This price needs to be paid
in order to be able to choose the best binary split. One has to sort the values
and— as the value range is unknown from the outset— a time proportional to
the number of potential cut points needs to be paid per example, unless one is
willing to risk finding the optimal cut point.

Jin and Agrawal [4] proposed an approach for pruning intervals from the
range of a numerical attribute. They first discretize a numerical value range
into equal-width intervals after which a statistical test decides which intervals
appear unlikely to include a split point and can, thus, be pruned. In addition
they showed that Hoeffding bounds can be reached for IG and Gini function
[12] with a lesser number of samples than in the original VFDT.

Gama et al. [2] also used functional leaves in the tree instead of the simple
majority class strategy. Before the algorithm has decided which attribute test to
assign to a leaf in the evolving tree, Näıve Bayes can be used to give predictions
for instances that arrive needing to be classified. For numerical attributes the
common approach of discretization into ten equal-width bins (when possible) is
used in the näıve Bayes classifiers.

CVFDT [3] adapts the VFDT system to concept drift. With the concept
changing over time, it is necessary to incrementally update the model built for
the examples. The real-time operation requirement does not allow to rebuild
the model for examples in a sliding window from scratch. Instead, Hulten et al.
[3] proposed to build an alternative subtree for those nodes that do not pass
the Hoeffding test in light of the sufficient statistics maintained for a sliding
window of examples. When the alternate subtree’s performance on new examples
overtakes that of the old one, it is inserted to the tree. To grow the shadow tree
one uses the standard techniques of VFDT, thus ensuring real-time operation.

In the UFFT system [5] concept drift is detected through the reducing accu-
racy of the näıve Bayes classifier installed into an internal node. Whenever, a
change in the target concept is identified, the subtree rooted at the corresponding
node and its associated statistics is pruned into a (functional) leaf, and build-
ing of a new subtree may begin anew. Numerical attributes are handled using
the common normality assumption. The sufficient statistics for each numerical
attribute in this case are simply the mean and variance per class.

Gama and Pinto [6] use histograms for data stream discretization. They induce
either an equal-width or an equal-frequency discretization for the value range.
The approach uses two layers of intervals; layer 1 maintains statistics for an
excessive number of intervals and layer 2 composes the final discretization based
on these statistics. Layer 1 is maintained on-line by updating the counters in
the appropriate interval whenever a new example is received. If a user-defined
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condition is met, an interval may be split in two; e.g., to keep the intervals of
approximately equal width. Layer 2 produces, on need basis, the final histograms
by merging intervals of layer 1. Building of the second level discretization is
confined on the cut points of layer 1, and may thus be inexact.

3 Optimal Multi-way Splits for Numerical Attributes

The shortcomings of recursive binary splitting of the value range of a numerical
attribute could potentially be avoided if one-shot multi-way splits were used
instead [14,15]. However, multi-way splitting can be computationally expensive.
Hence, the most popular approaches are based on multi-way splitting through
successive binary splits [14,15]. Such partitions cannot, though, be guaranteed
to be optimal with respect to the attribute evaluation function being used.

Without loss of generality, let us consider only one real-valued attribute X .
A training sample S = { (x1, y1), . . . , (xn, yn) } consists of n labeled examples.
For each (x, y) ∈ S, x ∈ R and y is the class label of x in C = { c1, . . . , cm }.
A k-interval discretization of the sample is generated by picking k − 1 interval
thresholds or cut points T1 < T2 < · · · < Tk−1. Let T0 = −∞ and Tk = ∞,
then the set of k − 1 thresholds defines a partition

⊎k
i=1 Si of the set S so that

Si = { (x, y) ∈ S | Ti−1 < x ≤ Ti } �= ∅ for all 1 ≤ i ≤ k.
The simplest attribute evaluation function is Training Set Error (TSE ). Let

δj(Si) denote the error, or the number of disagreements, with respect to class cj

in the set Si. That is, if all instances in Si were predicted to belong to class cj ,
we would make δj(Si) errors. Furthermore, let δ(Si) denote the minimum error
on Si. A class cj ∈ C is one of the majority classes of Si, if predicting class cj

leads to minimum number of errors on Si, i.e., δj(Si) = δ(Si).
Given a k-interval partition

⊎k
i=1 Si of S, where each interval is labeled by

a majority class, its TSE is the minimum number of training instances falsely
classified in the partition. The global minimum error discretization problem is
to find a partition

⊎k
i=1 Si that has the minimum attribute evaluation function

value over all partitions of S. The maximum number of intervals k may also be
given as a parameter. Then the problem is to find the optimal partition among
those that have at most k intervals. This is called bounded-arity discretization.

If one could make its own partition interval out of each data point, this dis-
cretization would have zero training error. However, one cannot discern between
all data points. Only those that differ in their value of X can be separated from
each other. E.g., in the data set shown in Fig. 1 there are 27 integer-valued in-
stances of two classes; α and β. Interval thresholds can only be set in between
those points where the attribute value changes. Therefore, one can process the
data into bins, one for each existing attribute value. Within each bin we record
its class distribution. This information suffices to evaluate the goodness of the
partition; the actual data set does not need to be maintained.

The sequence of bins has the minimal attainable misclassification rate for
TSE. However, the same rate can usually be obtained with a smaller number of
intervals. Fayyad and Irani’s [7] analysis of the entropy function has shown that
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α α α α β β β β β β α α α β β β β β β β β β α α α β β

1 2 3 4 5 6 7 8 9

1/– 2/– 1/2 2/4 1/4 –/1 –/3 1/1 2/2

1 2 3 4 5 6 7 8 9

Fig. 1. A sequence of examples sorted according to their numerical values (above).
The class labels (α and β) of the instances are shown. The sequence of data bins with
their respective class distributions (below). The blocks (black rectangles) and segments
(black and white rectangles) in the sample.

cut points embedded into class-uniform intervals need not be taken into account,
only the end points of such intervals— the boundary points — need to be con-
sidered to find the optimal discretization. Thus, optimal splits of Average Class
Entropy and IG fall on boundary points. Hence, only they need to be examined
in optimal binary partitioning of the value range of a numerical attribute.

Elomaa and Rousu [10] showed that the same is true for many commonly-
used evaluation functions. By this analysis we can merge together adjacent class
uniform bins with the same class label to obtain example blocks (see Fig. 1).
The boundary points of the value range are the borders of its blocks. Block
construction still leaves all bins with a mixed class distribution as their own
blocks. A dynamic programming algorithm lets one find optimal arity-restricted
multi-way partitions efficiently in these cases [8,9,10].

Subsequently, a more general property was also proved for some evaluation
functions [11]: segment borders —points that lie in between two adjacent bins
with different relative class distributions— are the only points that need to be
taken into account. It is easy to see that segment borders are a subset of boundary
points. Example segments are easily obtained from bins by merging together
adjacent bins with the same relative class distribution (see Fig. 1).

4 Maintaining Sufficient Statistics On-Line

Let us now consider how bins, blocks, and segments may change when new
examples are received from a data stream. We need to maintain exact counts
on instances of different classes observed for each numerical attribute. Prior
to observing the data we do not have any knowledge of the value range of a
numerical attribute; what are its extreme values?, which values in the range are
actually observed?, etc. Therefore, it is necessary to maintain a BST recording
the observed values and class counts for each numerical attribute as proposed
by Gama et al. [2]. The worst-case update time requirement per example is
O(lg V ), where V is the number of bins (observed so far). Truly constant-time
update would require giving up on recording exact bin counts (cf. [6]).

Effectively, the BST sorts the observed examples. Hence, we have access to
bins and through them to segments also within the streaming data model. In the
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α

1/– 2/– 1/2 2/4 1/4 –/1 –/3 1/1 2/2

1 2 3 4 5 6 7 8 9

Fig. 2. A new example changes the class distribution in one of the bins leading to the
bin being merged together with an adjacent (the left one) segment. Cf. Fig. 1.

BST of Gama et al. [2] class frequencies are stored into the internal nodes of the
tree. They only want to find the optimal binary split of the value range. Hence, it
suffices to know the class distributions at both sides of the split. We, on the other
hand, need to know class frequencies for all bins, which is easier to implement
by storing relevant information only to the leaves. This modification does not
change the asymptotic time requirement of BST processing; the maximum path
length remains at O(lg V ). For segments a linked list with appropriate pointers
to and from the BST is a suitable data structure.

Bins are atomic intervals in multi-way splits — they cannot be divided further
in univariate discretization. A new example received from the data stream can
fall into one of the existing bins, in which case its class distribution changes,
except when the bin happens to be class uniform and the new example is of
the same class. In any case the bin counts (in the BST) need to be updated.
Otherwise, the new example falls outside of the existing bins and makes up a
new bin with a trivially uniform class distribution. The new bin may also be the
first or the last one observed in the value range.

We can consider bins to correspond to the first layer of intervals in Gama and
Pinto’s [6] histogram discretization. However, for exact bin counting we need to
maintain the BST instead of being able to just use a simple matrix. For anytime
prediction, we need to cover the whole value range of a numerical attribute
through binning. In particular, empty intervals are not permitted. Therefore,
when we have observed values only sparsely from the range, we need to extend
the actual bins to cover the whole range. Such intervals, of course, may get
divided contrary to actual bins.

Blocks and segments, then, correspond to the second layer of intervals which
can be constructed by merging together intervals of the first layer. In the follow-
ing let us talk about segments instead of blocks and segments. Both are class
coherent in any case and blocks are a special (uniform) case of segments.

What changes do updates on bins bring to segments? Let us consider a bin
that made up a segment by itself without being merged together with any of the
other bins. The changing class distribution of the bin makes it a candidate for
being merged together with one of its neighbor segments. Hence, the distribution
in the two adjacent segments needs to be checked. In the best case, the two
neighbors and the changing bin all three merge together to make up a new
segment. However, the merging cannot propagate further as only the middle
bin’s class distribution has changed. The differences that existed between the
adjacent segments and their neighbors remain unchanged (see Fig. 2).
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1/– 2/– 1/2 2/4 2/4 –/1 –/3 1/1 2/2

1 2 3 4 5 6 7 8 9

Fig. 3. A new example changes the class distribution in one of the bins leading to the
splitting of the segment into which the bin used to belong. Cf. Fig. 2.

In the second scenario the bin that receives the new example belongs to a
segment. As the bin’s class distribution now changes, it can no longer belong
to the same segment as before. Therefore, the bin needs to be taken out of the
segment. If it was in the middle of the segment, the segment breaks into three
new ones (see Fig. 3). On the other hand, if the bin was the head or the tail
bin of the segment, we have to check whether it can be merged together with its
other neighbor (if one exists) now that the class distribution has changed.

Because bins are extended to cover the whole value range, a new example
cannot actually fall outside of the existing intervals. The interval that receives
the previously unseen attribute value, though, splits into two (extended) bins
and the relation of class distribution in these two with their adjacent segments
needs obvious checking.

In summary, in all the possible cases only local changes to segments are needed
due to receiving a new example from the data stream; at most two adjacent seg-
ments have to be examined. Hence, the required updates only take a constant
time. Prior to these changes, though, the example is directed down the BST at
the cost of O(lg V ). Our subsequent experiments will also examine the signifi-
cance of this cost in real-world domains.

Quite often there is no single concept to track from the data stream, but
rather the target changes over time [3]. Then it does not suffice to keep stack-
ing incremental changes to the decision tree, but at some point one needs to
forget old examples that are not instances of the current concept. The simplest
approach is to have a sliding window of length W of the most recent examples
and maintain a decision tree consistent with them. The overhead for using such
a window is constant. Let us consider this scenario without paying attention to
details of window length selection and updating. We only consider what changes
from the point of view of bin and segment maintenance.

The straightforward approach is to delete from the BST the oldest example
in the window before (or after) inserting a new example to the BST. Deletion
of an example causes similar changes to bins and segments as insertion of an
example. Hence, the deletion can be handled with local changes in constant
time. Of course, we now traverse the BST twice doubling the time requirement
of an update. Asymptotically, though, updates are as efficient as in single concept
decision trees. Finally, let us point out that in a window of length W there can
be at most W different values for a numerical attribute. Thus, in this scenario
the maximum overhead for using the BST is a constant of the order O(lg W ).
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Fig. 4. The relative fraction of segments (bars) out of the bins observed for numerical
attributes (the figures on right) for eleven UCI domains. The figures on top denote the
number of training examples (without missing numerical values) in the domain.

5 Empirical Evaluation

Let us now experiment with some larger data sets from the UCI repository
which contain truly numerical values. Some data sets— like the letter and digit
recognition domains— include seemingly numerical attributes, which in reality
are nominal ones. In our evaluation we disregard attributes labeled as numerical
if they have less than ten different values. We also overlook those examples that
have missing values for numerical attributes. We report results individually for
all numerical attributes rather than consider the average results (cf. [11]).

Fig. 4 shows for eleven UCI domains the reduction in cut points obtained
by moving from bins to segments. The figures on right are the attributes’ bin
counts and the bars represent the relative fraction of resulting segments. It is
immediate that truly continuous attributes are rare. Usually the number of bins
is (clearly) less than 10% of the number of examples. The exceptions are found
from domains Abalone, German, and Segmentation. The highest BST search
cost that these segment counts yield is lg 5 827 ≈ 12.5 (Covertype).

The reduction percentage varies from 80% to 0%. Usually for attributes with
a high number bins large reductions are obtained by moving to operate on



552 T. Elomaa and P. Lehtinen

500

750

1 000

1 250

103 104 105 106 107 n

V

Fig. 5. Evolution of bin and segment counts for three attributes of Waveform as more
data is generated. Bin counts are denoted by the solid curves and the dashed ones
under them are the related segment counts. Note the logarithmic scale of the x-axis.

segments (see e.g., Adult and Segmentation). However, in domains Abalone,
Covertype, and Yeast only quite small reductions are recorded for all attributes.

The domains Euthyroid and Hypothyroid are equivalent except for labeling
of examples. Hence, the attribute bin counts are the same for these two domains.
Nevertheless, there are notable differences in the numbers of segments in the two
domains. This, of course, follows from the fact that bins only depend on attribute
values, while segments also depend on the class distribution.

Our second test monitors for the change of bins and segments using the
Waveform data generator [12]. Fig. 5 displays for three attributes the evolution of
the number of bins and segments when the number of examples grows from one
thousand to ten million. The curves eventually stabilize to be more or less lin-
ear. Because the x-axis is in logarithmic scale, the true growth rate for bins and
segments is also logarithmic. Hence, this experiment indicates that the cost of
using the BST to sort the examples by their attribute values is only of the doubly
logarithmic order in the number of examples (c. 10 ≈ 2 lg lg 107 for our largest
stream size). Segments slightly lose their advantage as more and more examples
are received; the relative fraction of segments grows closer to the number of bins.
Quite understandably, when segments contain many examples, the probability
that two adjacent bins have exactly the same class distribution reduces.

6 Conclusion

This work has extended the applicability of cut point analysis [7] to the streaming
data context. However, our method only allows to solve the unbounded case
efficiently. When an arity bound needs to be enforced, the approach would seem
to require quadratic processing [8,9,10]. Some form of relaxation is needed to
overcome this computational burden.

Our empirical evaluation showed that for some attributes blocks and seg-
ments can be of much help with only meager costs. On the other hand, some
attributes —even whole domains— resist taking advantage of cut point analysis.
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Abstract. High utility itemsets mining extends frequent pattern mining to discover 
itemsets in a transaction database with utility values above a given threshold. How-
ever, mining high utility itemsets presents a greater challenge than frequent itemset 
mining, since high utility itemsets lack the anti-monotone property of frequent 
itemsets. Transaction Weighted Utility (TWU) proposed recently by researchers 
has anti-monotone property, but it is an overestimate of itemset utility and therefore 
leads to a larger search space. We propose an algorithm that uses TWU with pat-
tern growth based on a compact utility pattern tree data structure. Our algorithm 
implements a parallel projection scheme to use disk storage when the main mem-
ory is inadequate for dealing with large datasets. Experimental evaluation shows 
that our algorithm is more efficient compared to previous algorithms and can mine 
larger datasets of both dense and sparse data containing long patterns.  

Keywords: High Utility Mining, Pattern Growth. 

1   Introduction 

The goal of frequent itemset mining [1] is to find items that co-occur in a transaction 
database above a user given frequency threshold, without considering the quantity or 
weight such as profit of the items. However, quantity and weight are significant for 
addressing real world decision problems that require maximizing the utility in an or-
ganization. The high utility itemset mining problem is to find all itemsets that have 
utility larger than a user specified value of minimum utility. Yao et al [2, 3] proposed 
a framework for high utility itemset mining. Recent research has focused on improv-
ing the efficiency of high utility mining. Liu et al. [4] proposed a TwoPhase algorithm 
based on Apriori [1] to mine high utility itemsets, using a transaction weighted utility 
(TWU) measure to prune the search space. Their algorithm is suitable for sparse data 
sets with short patterns. We recently developed an algorithm named CTU-Mine [5] 
based on the pattern growth approach [6] that was efficient on dense data with rela-
tively longer patterns. In [7], we proposed an algorithm named CTU-PRO for efficient 
mining of both dense and sparse data sets that fit into main memory.  

In this paper, we propose an algorithm named CTU-PROL for mining high utility 
itemsets from large datasets using the pattern growth approach [6]. The algorithm first 
identifies the large TWU items in the transaction database and if the dataset is relatively 
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small, it creates a Compressed Utility Pattern Tree (CUP-Tree) for mining high utility 
itemsets. For data sets too large to be held in main memory, the algorithm creates subdi-
visions using parallel projections that can be subsequently mined independently. For each 
subdivision, a CUP-Tree is used to mine the complete set of high utility itemsets. The 
anti-monotone property of TWU is used for pruning the search space of subdivisions in 
CTU-PROL, but unlike TwoPhase of Liu et al. [4], our algorithm avoids a rescan of the 
database to determine the actual utility of high TWU itemsets. The performance of CTU-
PROL is compared against the implementation of the TwoPhase algorithm [4] available 
from [8] and also with CTU-Mine [5]. The results show that CTU-PROL outperforms 
previous algorithms on both sparse and dense datasets at most support levels.  

2   Terms and Definitions 

In this Section, we define the basic terms of high utility itemset mining based on [1, 2, 
9]. Let I={i1,i2,…,im} be a set of items and D={T1,T2,…,Tn} be a transaction database 
where the items of each transaction Ti  is a subset of I. The quantity of an item ip in a 
transaction Tq is denoted by o(ip,Tq). The external utility s(ip) is the value of a unit of 
item ip in the utility table, (e.g., profit per unit). The utility of item ip in transaction Tq, 
denoted by u(ip,Tq) is defined as o(ip,Tq) × s(ip). A set X is called an itemset if X is a 
subset of I. The utility of X in transaction Tq, denoted by u(X,Tq) is defined as: 

∑ ∈
=

Xi qpq
p

TiuTXu ),(),(  (1) 

The utility of itemset X in the database, denoted by u(X) is defined as:  

∑ ⊆∧∈
=

qq TXDT qTXuXu ),()(  (2) 

The task of high utility itemset mining is to find all itemsets that have utility above 
a user-specified min_utility. Since utility is not anti-monotone, Liu et al. [4] proposed 
the concepts of Transaction Utility (TU) and Transaction Weighted Utility (TWU) to 
prune the search space of high utility itemsets. Transaction Utility of a transaction, 
denoted tu(Tq) is the sum of the utilities of all items in Tq: 

∑
∈

=
qp Ti

qpq TiuTtu ),()(  (3) 

Transaction Weighted Utility of an itemset X, denoted as twu(X) is the sum of the 
transaction utilities of all the transactions containing X: 

∑
⊆∧∈

=
qq TXDT

qTtuXtwu )()(  (4) 

As shown in [4], any superset of a low TWU itemset is also a low TWU itemset, 
and so we can prune all supersets of low TWU itemsets. However, since TWU is an 
over-estimation of the real utility value, high TWU itemsets will need to be pruned 
further. Consider a transaction database of a retailer as shown in Fig. 1(a), with exter-
nal utility of each item as in Fig. 1(b). The values in each row of Fig. 1(a) shows the 
quantities of items bought in a transaction, and the last column contains the transac-
tion utility with the total transaction utility of the database shown in the last row. 
From this sample data, we can compute, u(3 4, t1) = $60, u(3 4, t3) = $60, u(3 4, t5) = 
$60, u(3 4) = $180 and twu(3 4)=$262.  
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(a) Transaction Database (b) Utility Table 

Fig. 1. An example transaction database and utility table 

3   Mining High Utility Itemsets in Large Datasets 

In this section, we describe the CTU-PROL algorithm for mining large datasets, consist-
ing of the following steps: (1) Create a GlobalItemTable by scanning the database to 
identify items of high TWU, (2) Subdivide the database by parallel projection of trans-
actions with high TWU items, and (3) Mine each subdivision for high utility itemsets 
after constructing a Compressed Utility Pattern-Tree (CUP-Tree) for the subdivision.  

3.1   Creating Global ItemTable  

A GlobalItemTable is constructed as explained in [5] and maps the item-ids to inte-
gers in the descending order of their TWU values. Fig. 2 gives the GlobalItemTable 
for the database of Fig. 1, with a minimum utility of 10% of the total transaction util-
ity (=129.9). Note that item 6 with TWU of 99 is pruned. The mapped new index of 1 
to 5 correspond to the original items 5, 1, 2, 4, and 3 respectively. The terms mapped 
item id and item index are used synonymously in the rest of the paper. 

GlobalItemTable

 

Fig. 2. GlobalItemTable of database of Fig. 1 

3.2   Database Subdivision by Parallel Projection 

We adapt the concept of parallel projection reported in [10] for datasets that are too 
large for the corresponding CUP-Tree to fit into main memory. Using the Glob-
alItemTable of Fig. 2, the original database is transformed into the mapped transac-
tion database. Concurrently the parallel projection scheme is constructed. Fig. 3  
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illustrates the process for the database of Fig. 1 using the corresponding GlobalItem-
Table. For item index i ≥ 2, every transaction t with positive quantity of items up to 
item i is written into the subdivision pi with the corresponding quantities and TWU. 
So there are five entries in p2 from transactions t6, t7, t8, t9 and t10. Similarly, in p3, we 
have entries for item index 1 and/or 2 that occur before index 3 in the transactions t2, 
t4, t8 and t10. The third subdivision (p4) is from transactions t1, t3, t6 t8, and t9, and the 
last subdivision from transactions t1, t2, t3, and t5.  

 

Fig. 3. Parallel projection of transaction database  

Once the subdivisions are created, each subdivision pi is mined separately for high 
utility patterns.  

3.3   Mining Subdivisions Using Compressed Utility Pattern Tree  

The Compressed Utility Pattern Tree (CUP-Tree) originally proposed by us in [7] is a 
variant of CFP-Tree [11] and CTU-Tree [5] data structures. In this paper for a given 
subdivision pi of the database, we construct the corresponding Compressed Utility 
Pattern Tree (CUP-Tree) exactly in the same way as in [5]. Fig. 4 illustrates the CUP-
Tree and the GlobalItemTable for subdivision p5 of the database given in Fig. 1. More 
explicitly, the first row of subdivision p5 has mapped item-ids (pattern) 2, 4 and 5 (for 
the original items 1, 3 and 4) with respective quantities 2, 1, and 1. This pattern is 
inserted into the tree with the TWU (80) and a pointer to the array of quantities 2, 1 
and 1 (node labeled  in Fig. 4). The nodes which represent the current subdivision 
p5 (index 5) are linked by node links to facilitate the traversal in the mining process. 
All the transactions will be inserted similarly, giving the CUP-Tree of Fig. 4.  

Now mining for the subdivision p5 is initiated using the CUP-Tree of Fig. 4 as in-
put. Traversing the nodelink of index 5 (Fig. 4.) the associated items are recorded in 
the projection tree named ProCUP-Tree. The information for extracting high utility 
items is recorded in a High Utility Pattern Tree (HUP-Tree) with mapped item id 5 as 
its root (labeled A in Fig. 6 which shows the ProCUP-Tree and HUP-Tree of subdivi-
sion p5). The mining of a subdivision consists of three steps: (1) Construction of 
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ProItemTable, (2) Construction of ProCUP-Tree, and (3) Mining by traversing Pro-
CUP-Tree. These steps are explained below using subdivision p5 as an example. 

 

Fig. 4. CUP-Tree and ItemTable for projection p5  

Step 1. Construction of ProItemTable. Traversing the node link of index 5 (Fig. 4), 
the associated items are arranged as ProItemTable in the descending order of the 
TWU values. This table is constructed in the same manner as the GlobalItemTable ex-
plained in [5] restricting attention to linked nodes of index 5 in p5. 

For example, traversing of the linked nodes provides the following indexes and TWU 
values column 1 (110) from , 2 (310) from ( , , ), 3 (195) from , and 4 (190) 
from ( , ). Since our min_utility is 129.9, index 1 is pruned and indexes 2,3,4  (item 
ids: 1,2,4) are locally hTWU in ProItemTable (see Fig. 6). The mapping of the Glob-
alItemTable item index to the proItemTable item index and the corresponding original 
item-ids are provided in Fig. 5. Concurrently the level 1 children of the HUP-Tree root 
are recorded (indicated by label B in Fig. 6). Furthermore, note that the proItemTable 
includes a column giving the cumulative quantity of the projection item 5. 

 

Fig. 5. Mapping projection of index 5 using ProItemTable 

Step 2. Construction of ProCUP-Tree. Retraversing the node-link in the CUP-Tree 
and using the mapping in ProItemTable (see Fig. 5), we construct the ProCUP-Tree. 
Note that ProCUP-Tree is expressed using the proItemTable index.  

 
Step 3. Mining by ProCup-Tree Traversal. For each item in proItemTable, the path 
to the root is traversed computing the other items that are together with the current 
item. In Fig. 6, traversing the node-link of item index 2 will return index 1, and since it 
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has high TWU, the real utility value will be calculated by multiplying the appropriate 
quantity with the utility value in GlobalItemTable. The quantity at that node is 2 1 1 
corresponding to the local pattern of 1 2 5 (original item ids, 1 2 3). So the utility value 
for the pattern would be (2 × 10) + (1 × 150) + (1 × 25) = 195. An entry is created and 
attached as the child of index 2 (indicated by label C in Fig. 6) in the HUP-Tree.  

 

Fig. 6. ProCUPTree and HUP Tree  

By traversing the HUP-Tree we can print the real utility of itemsets containing item 
3 (index 5) as follows: 3 (100), 3 4 (120), 3 2 (175), 3 2 1 (195) 3 1 (125). Since the 
threshold is 129.9, only itemsets 3 2 and 3 2 1 are reckoned as high utility itemsets. 
The mining process is continued with the remaining subdivisions p4, p3, p2. The com-
plete high utility itemsets (after mapping back to the original item-ids) are obtained as 
the following: {2(600), 4(175), 5(300), 12(490), 14(200), 15(245), 23(175), 24(185), 
25(560), 45(300), 123(195), 124(195), 125(355), 145(255), 245(195), 1245(205)}. 

4   Performance Study 

In this Section, the performance of CTU-PROL is empirically compared with the im-
plementation of TwoPhase downloaded from [8] and CTU-Mine [5]. CTU-PROL is 
written in C++ and compiled using g++ version 4.1.0. The experiments were per-
formed on a Pentium Core Duo, 3 GB RAM, with Linux operating system. We used 
the real datasets Retail and BMSPOS available from the FIMI Repository [12]. We 
also generated the synthetic datasets T10N5D100K and  T5N5DXM using our  
program and IBM Quest data generator [13] to test the scalability of our algorithm. 
Table 1 shows the characteristics of the datasets. Since all these datasets are normally 
used for traditional frequent itemset mining, we had to add quantity and item utility 
values to the datasets. We generated utility values from a suitable log-normal distribu-
tion, and the quantities randomly from numbers one to ten. 

Results of our experiments are shown in Fig. 7. For high thresholds in the Retail 
dataset, TwoPhase runs slightly faster compared to CTU-PROL, but when the utility 
threshold becomes lower, CTU-PROL outperforms TwoPhase. For very low utility 
thresholds, the performance of TwoPhase got worse. This is due to the limitations of 
the generation-and-test approach of TwoPhase that has to traverse the database many 
times to enumerate and compute the large number of possible itemsets of high trans-
action weighted utility. As our algorithm is based on pattern growth using a compact 
tree, repeated traversal of the database is avoided.  
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Table 1. Characteristics of Datasets 

Dataset # of Trans # of different. item Size of file (MB)
Modifed Retail 88,162 1,658 8
Modifed BMSPOS 515,597 16,470 30
T10N5D100K 100,000 100 5
T5N5DXM 1,000,000 – 5,000,000 100 35 – 200  

Note that for relatively large datasets, CTU-Mine ran out of memory and hence 
CTU-PROL is compared with only TwoPhase. On the synthetic dataset T10N5D100K, 
we tested CTU-Mine, CTU-PROL and TwoPhase. When the utility threshold is low, 
TwoPhase is unable to complete within a 10,000 seconds time limit. For scalability, we 
tested TwoPhase and CTU-PROL using T10N5DXM datasets with min_utility 0.05% 
of total utility. In general, the results show that CTU-PROL outperforms CTU-Mine 
and TwoPhase for various utility thresholds and transaction volumes. 
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Fig. 7. Execution time with varying minimum utility thresholds and number of transactions on 
real and synthetic datasets 

5   Conclusion 

In this paper, we have presented the CTU- PROL algorithm to mine the complete set 
of high utility itemsets from both sparse and relatively dense datasets with short or 
longer high utility patterns. Our data structure and algorithm extend the pattern 
growth approach, taking into account the lack of anti-monotone property for pruning 
utility based patterns. We have compared the performance of CTU-PROL against the 
recent TwoPhase algorithm [4] and CTU-Mine [5]. The results show that CTU-PROL 
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works more efficiently than TwoPhase and CTU-Mine. Our algorithm adapts to large 
data by constructing parallel subdivisions on disk that can be mined independently. 
The experiments show that CTU-PROL is scalable for larger datasets.  

Since TWU is an overestimation real utility, resources used are possibly high for 
these pattern growth algorithms. Further research is needed to determine how the 
thresholds for TWU may be varied from the user specified utility to reduce this over-
estimate. As the data for mining is very large in general, we plan to study sampling 
based approximations to reduce the computation.  
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Abstract. Discovering the Markov blanket of a given variable can be viewed as 
a solution for optimal feature subset selection. Since 1996, several algorithms 
have been proposed to do local search of the Markov blanket, and they are 
proved to be much more efficient than the traditional approach where the whole 
Bayesian Network has to be learned first. In this paper, we compare those 
known published algorithms, including KS, GS, IAMB and its variants, PCMB, 
and one newly proposed called BFMB. We analyze the theoretical basis and 
practical values of each algorithm with the aim that it will help applicants to de-
termine which ones to take in their specific scenarios.   

Keywords: Markov blanket, feature subset selection, local learning. 

1   Introduction 

In data mining, a classifier is a function that maps instances described by a set of 
attributes to a class label of the target variable T  of interest. In modern large scale 
applications, how to identify the minimal, or close to minimal, subset of variables that 
best predicts T is critical to the success, and this procedure is known as feature subset 
selection. 

A principle solution to the feature selection problem is to determine a subset of fea-
tures that can render the rest of whole features independent of the variable of interest 
[1,2,3]. Koller and Sahami (KS) [2] first showed that the Markov blanket (MB) of a 
given target variableT is the theoretically optimal set of features to predict T ’s value, 
although Markov blanket itself is not a new concept and can be traced back to the work 
of Pearl[11]. In other words, the Markov blanket of T  is the minimal set of variables 
conditioned on which all other variables are probabilistically independent of the tar-
getT , denoted as ( )MB T . Based on the findings that the full knowledge of ( )MB T  is 
enough to determine the probability distribution of T  and that the values of all other 
variables become superfluous, we normally can have a much smaller group of vari-
ables in the final classifier, reducing the complexity of learning and resulting with a 
simpler model, but without scarifying classification performance[2, 3, 4].  
                                                           
* Some of this work was done during the author’s time in SPSS Inc. 
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Since KS’s work in 1996, there are several attempts to make the learning procedure 
more efficient and effective, including GS (Grow-Shrink) [5], IAMB (Iterative Asso-
ciative Markov Blanket) and its variants [1, 3,4,6], MMPC/MB (Max-Min Parents 
and Children/Markov Blanket)[3], HITON-PC/MB [7], PCMB(Parent-Child Markov 
Blanket learning) [1] and the more recent one BFMB (Breadth-First search of Markov 
Blanket) [8]. To our knowledge, this list contains all the published algorithms. In this 
article, we will discuss these MB local learning algorithms in terms of theoretical and 
practical considerations, based on our experience gained from both academic research 
and industry implementation.  

In section 2, a brief introduction to these local learning algorithms is presented. 
Then, in section 3, we choose some of them, and go a little deeper by comparing their 
characteristics and pointing out relative merits. We conclude with a short conclusion 
and what our choice in one project is in SPSS Inc.  

2   Brief Review of Related Algorithms 

Pearl is the first one to define the concept and study the property of Markov blanket in 
his early work on Bayesian network [10]. Following this work, Koller and Sahami 
proved that the Markov blanket of a given variable is the theoretically optimal set of 
features to predict its value [2]. They also proposed an information entropy-based 
searching algorithm (generally denoted as KS by their initials) which accepts two 
parameters: (1) the number of variables to retain, and (2) the maximum number of 
variables the algorithm is allowed to condition on. Obviously, it is a heuristic and 
approximate algorithm in its nature, and provides no theoretical guarantees [1,3]. 
Therefore, although they two pointed out a promising direction, the algorithm itself is 
not guaranteed to succeed.  

The GS algorithm [5] was proposed to induce the Bayesian network (BN) via the 
discovery of local neighbours. The authors aim to construct a BN by first identify-
ing each node’s Markov blankets. Like the constraint-based learning algorithms, 
e.g. PC[9], GS depends on two basic assumptions, faithfulness(see Definition 1 
below) and correct or reliable conditional independence (CI) test. Here, the second 
assumption is required in practice since only when the number of observations is 
enough, the result of statistical testing would be trustable. More discussion on this 
can be found in Section 3.3. Actually, these two assumptions are also the basis of 
the following algorithms. As its name indicates, GS proceeds in two steps, growing 
greedily first then shrinking by removing false positives. It is the first algorithm 
proved correct, but it is not efficient and can’t scale to large scale applications. 
However, the correctness of the algorithm makes it a proven subject for future  
research.  
 
Definition 1 (Faithfulness). A Bayesian Network G and a joint distribution P are 
faithful to one another, if and only if every conditional independence relationship 
encoded by G is also present in P [9]. 
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IAMB [4], was proposed in 2003 for classification problems in microarray research 
where thousands of attributes are quite common. It is an algorithm based on the same 
two assumptions of GS, sound in theory and especially simple in implementation. 
IAMB actually is a variant of GS, consisting of two phases – grow and shrink, but it 
reorders the set of attributes each time a new attribute enters the blanket in the grow-
ing phase based on updated CI testing results, which allows IAMB to perform better 
than GS since fewer false positives will be added during the first phase [3,6].  

In spite of the improvement, IAMB is not data efficient since its CI tests may con-
dition on the whole ( )MB T  (see more discussion in section 3.3). This point is also 
noticed by its authors, and several variants of IAMB were proposed, like interIAMB 
and IAMBnPC [4], for a smaller conditioning set, in its maximum, by interleaving the 
growing-shrinking phases or using PC for the backward phase, respectively. Empiri-
cal study shows that IAMB and its variants outperform GS on average in accuracy 
[4]. Fast-IAMB [6] is another published known work by the author of GS, but there is 
only gain in speed as reported, no fundamental difference. Among all the algorithms 
for local learning of MB, IAMB is the most referred one among the family of MB 
local search algorithms, which can be explained by the fact that only after its success, 
more attention was attracted to this topic. 

Although several IAMB’s variants were proposed to improve IAMB’s limit on 
data efficiency, none of them are known as thorough solution with impressive per-
formance. This situation was finally changed upon the introduction of MMPC/MB 
and HITON-PC/MB, which work differently from IAMB by including the underlying 
topology into consideration. As we know, given two nodes of a Bayesian network, 
e.g. T  and someone ( )X MB T∉ , if they are conditional independent, i.e. d-separated 
[9], the necessary conditioning set or separating set rarely have to be the whole 

( )MB T . IAMB doesn’t recognize this, so the conditioning set may be uselessly big 
even when the underlying graphical model is just a tree. MMPC/MB and HITON-
PC/MB make full use of the topology by dividing the search procedure into finding 
T ’s parents/children first, and then discover the remaining variables belonging to 

( )MB T , i.e. spouses ofT . Unfortunately, both algorithms are demonstrated not al-
ways correct by [1], but they do suggest a correct approach for following work. 
PCMB [1] and BFMB [8] are examples of this work.  

Following the idea of MMPC/MB and HITON-PC/MB, PCMB was also proposed 
to conquer the data efficiency problem of IAMB, and, more importantly, it is proved 
correct theoretically. Like IAMB, PCMB can scale well to thousands of features [1], 
but it is known as much more time-consuming [8]. Along with PCMB, another de-
rived IAMB algorithm is proposed by the same authors, called KIAMB. It requires no 
faithfulness assumption, and works in a stochastic manner by allowing users to trade 
off between greediness and randomness in the search procedure [1].  

BFMB is the most recent progress reported on this topic, aiming at even better per-
formance than PCMB. It has a similar framework to MMPC/MB, HITON-PC/MB 
and PCMB by recognizing firstly all T ’s parents and children; then, it repeats the 
search with each node found as target, looking for their own parents and children 
which contain the spouses ofT . Its name comes from the nature of its search proce-
dure, finding T ’s neighbours and then the neighbours’ neighbours. In an empirical 
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study [8], BFMB is demonstrated to outperform PCMB, not only on data efficiency 
but also on speed. Though it is the latest work in this direction, it is thought as an 
interesting progress, so we include it in this study as well.  

Traditionally, given the faithfulness assumption, a whole Bayesian network (BN) 
can be learned over T and all other features first, from which we can get the ( )MB T . 
This has long been known as tedious procedure that is fought with a number of dec-
ades [1,3,4,8], say nothing of making them to scale well in large applications. For 
instance, the publicly available version of the PC[9] and TPDA[12] algorithms accept 
datasets with only 100 and 255 variables respectively, indicating their expectations on 
the scalability. By contrast, these local learning algorithms, like IAMB, PCMB and 
BFMB, all claim to scale well to thousands of attributes. So, this is a meaningful work 
worthy of researchers’ effort, and it is very promising in real applications.  

3   Tradeoff Analysis 

In the previous section, we briefly cover the known published algorithms for local 
learning of Markov blanket in a chronological order, as an introduction to the topic. In 
this section, a comprehensive and detailed comparison on some of these algorithms 
will be presented, including their relative advantages. We leave out the algorithms 
that are not proved correct (KS, MMPC/MB, HITON-PC/MB). IAMB and its variants 
will be grouped together but still denoted as IAMB in the remaining text because they 
are not theoretically different and no obvious gain from IAMB’s variants, with the 
exception of KIAMB since it relies on different assumption. Therefore, our discussion 
will contain IAMB, PCMB, BFMB and KIAMB, and the content will cover their 
theoretical assumption, time efficiency, data efficiency, and scalability.  

3.1   Theoretical Assumption 

IAMB, PCMB and BFMB are built on two assumptions: (1) faithfulness and (2) cor-
rect CI test. These two assumptions also construct the basis for all CI test based learn-
ing algorithms for BN. Different from them, KIAMB only requires correct CI test.  

Given the faithfulness assumption, there will be a unique Markov blanket corre-
sponding to given variable T [1, 3, 10]. By removing this assumption, the Markov 
blanket of T doesn’t have to be unique, and KIAMB was proposed to work in such 
condition where higher complexity is expected due to the introduction of additional 
uncertainty. It works by choosing the candidate in the growing phase in a random 
way, not like in IAMB where the best one will always be selected in each iteration. 
Although its authors say that KIAMB outperforms IAMB and PCMB in their study, 
we feel skeptical on this result. The algorithm will return different ( )MB T , but, as we 
understand, this will only happen when the size of data is not large enough to support 
correct CI tests with whole ( )MB T  as conditioning set. Its random choice will indeed 
allow it to discover a larger number of true positives, because possibly attributes with 
smaller number of categories can be selected first and this will reduce the number of 
degree of freedom of the conditioning set and therefore allow the algorithm go further 
given the same amount of data. In extreme condition, where correct CI test is not a 
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problem because of enough data, KIAMB will produce the same outcome like IAMB. 
Actually, KIAMB may work with worse result than IAMB sometimes if, unfortu-
nately, attributes with bigger number of categories may be selected first. Besides, we 
can’t see that KIAMB can outperform PCMB through such a stochastic manner since 
it is not a fundamentally different solution from IAMB to solve the data efficiency 
problem.  

We reach this conclusion based on our analysis on the algorithm’s design. Though 
it is not completely consistent with that as reported, KIAMB is believed to be an in-
teresting variant to IAMB, and it is expected to have better performance than IAMB 
averagely.  

 
Conclusion 1: KIAMB can be viewed as a stochastic variant of IAMB, and it is ex-
pected to work with more accurate result, by average, than IAMB when the data is 
limited. Its requirement of no faithfulness assumption is valuable progress.  

3.2   Time Efficiency 

Time efficiency is normally measured in terms of the real length of time consumed, 
but this measure is known as machine- and implementation-dependent. Therefore, 
researchers of CI-based learning algorithms often employ the number of CI tests con-
sumed as a measure of time complexity [11]. Among those articles about local learn-
ing of Markov blanket, this measure is selected only in [9], plus the number of data 
passes (“# rounds” in the original paper) required when the authors study the relative 
time complexity of IAMB, PCMB and BFMB. We believe these two measures are 
more valuable reference to applicants for reference considering that: 

1. They are machine-independent, and are mostly determined by the design of al-
gorithms (though implementation may influence them somewhat); 

2. Number of data passes, although rarely be referred, can be much more influen-
tial to an algorithm’s time complexity than number of CI tests when the data 
size becomes large; 

3. Ideally all necessary statistics can be collected in one data pass, and be cached 
for future reference, this may cost huge amount of storage space when the 
number of attributes and the their categories increase; 

4. If it exceeds the memory limit, some have to be placed in second-level storage 
equipment, which will decrease, instead increase as expected, the speed be-
cause of (1) the frequent happenings of page missing and switching operation 
and (2) much slower accessing speed when visit external equipments.  

Therefore, in real implementation, we choose to collect the statistics in successive 
steps with the learning going on, and try to judge and collect whatever we need in 
each data pass based on the current status. Considering that every additional time of 
scanning can be very time-consuming, an algorithm requiring fewer data passes 
should be preferred. Our comparison of IAMB, PCMB and BFMB here will based on 
these two indexes, number of data passes and CI tests required to finish the learning 
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of the ( )MB T . Among them two, the number of data passes should be given more 
attention based on our discussion above.  

IAMB’s algorithm is quite simple, not only in theory but in implementation. In its 
growing phase, it repeatedly adds the most promising candidates into ( )MB T in a 
greedy way. In the shrinking step, it iteratively checks if there is ( )X MB T∈  that is 
independent with T conditioned on ( ) /{ }MB T X , removing it if found. A new data 
pass is needed to add a new positive in the growing phase since ( )MB T changes, so 
for the CI tests; and only one data pass is necessary for the shrinking step because we 
can collect all statistics for each possible triple ( , , ( ) \{ })T X MB T X . So, the total 
number of data passes that IAMB needs scales linearly with the number of true posi-
tive in ( )MB T , and how many false positives are wrongly recognized in the growing 
phase.  

PCMB is known more data efficient than IAMB because the algorithm use the 
knowledge of underlying topology, given the faithfulness assumption.  Readers can 
refer the original paper for the full algorithm specification, and we will directly use 
the original function names here for convenience [1]. PCMB firstly depend on 

( )GetPC T  to retrieve all the parents and children of T , i.e. those nodes directly con-
nected to T . It calls GetPCD to find those candidate parents/children of T , of which 
some possibly are false positive. Within GetPCD , the algorithm repeatedly checks the 
existing of false positives along with the choice of best candidates, which are quite 
data-pass consuming operation considering possible conditioning sets ranging  
from 0 to some particular size, and it is not good idea to collect all possible statistics 
in one data pass. For each candidate X ∈ ( )GetPCD T , it has to be double checked if 
T ∈  ( )GetPCD X  too, which prevents false positives from entering ( )PC T , par-
ents/children of T . So, for a particular ( )PC T , at least | ( ) | 1PC T + times of 

()GetPCD  are called assuming no false positives are found, and each ()GetPCD is 
known to be time consuming. If we continue this analysis, we find that for a specific 

( )MB T , exactly | ( ) | 1PC T + times of GetPC are needed in total, then we can esti-
mate the time complexity of PCMB to be at least 2(| ( ) | 1)PC T + the time of 

()GetPCD .  
BFMB’s whole framework is quite similar to MMPC/MB, HITON-PC/MB and 

PCMB since they follow the same strategy, finding ( )PC T first, then iteratively look 
for PC for each ( )X PC T∈ since some of them are the remaining part of final 

( )MB T , i.e. spouses of T , who are directly connected to T ’s children and  depend-
ent with T by conditioning a set including their common children with T [1, 3, 8, 9]. 
Different from PCMB, BFMB’ GetPC procedure, RecognizePC as named by the au-
thor, works in a smart way by borrowing an idea from known the PC algorithm [9]. It 
realizes that those directly connected to T areT ’s parents/children, so it tries to filter 
out those nodes which are not directly connected to T by conditional independence 
test with conditioning set starting from size 0. Those which remain linked to T  are 

( )PC T . Since BFMB always conditions on the smallest set first when does CI test to 
determine if some X  is conditionally independent ofT , its required statistics can be 
expected when the conditioning set size is specified, so we can collect all we need in 
one data pass. Comparing with PCMB, BFMB filters out as many as possible true  
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negatives given different conditioning set size with one data pass, not several data 
passes to recognize each single true positive separately as in PCMB. Thus, BFMB is 
expected to require much fewer number of data passes and CI tests, which is proved 
by [8] and our work. In summary, BFMB also needs at least 2(| ( ) | 1)PC T +  calls to 
RecognizePC, like PCMB, but each RecognizePC is known to be much more time 
efficient than GetPC .  

Though BFMB is much more time efficient than PCMB, it still looses to IAMB on 
this point. However, as we will see in next section, BFMB is much more data efficient 
than IAMB, reaching a higher accuracy rate of learning than IAMB over the same 
data set [8]. Besides, low data efficiency “helps” IAMB to run “faster” in practice 
because it has to quit from learning when the conditioning set increases to a certain 
size and the data available is not enough for reliable CI tests, but PCMB and BFMB 
can postpone this happening due to their data efficiency, doing more CI tests and 
going further (see more discussion in section 3.3).  

 
Conclusion 2: IAMB is the most time efficient, and KIAMB is somewhat slower than 
IAMB due to its stochastic procedure. Comparing with PCMB, BFMB is more time 
efficient by requiring much fewer data passes and CI tests. Though IAMB works fast, 
it doesn’t bring as high accuracy as PCMB and IAMB.  

3.3   Data Efficiency 

All these Markov blanket learning algorithms require correct CI test. In practice, these 
algorithms will perform a test if the CI test is reliable and skip it otherwise [1,3,4,8]. 
Following the approach in [9], this criteria requires that the number of instances in 
dataset is at least five times the number of degrees of freedom in the test. This means 
that the number of instances required by IAMB to identify ( )MB T is at least exponen-
tial in the size of ( )MB T  since the number of degrees of freedom in a test is exponen-
tial to the size of the conditioning set and some tests will be conditioned on at least 

( )MB T . However, depending on the underlying topology, for example if it is a tree, 
( )MB T can be identified by conditioning on sets much smaller than ( )MB T . There-

fore, IAMB is not data efficient because its data requirements can be high. It is re-
flected by the fact that IAMB will stop the learning at an early time when the size of 

( )MB T is still small relative to the true set, given limited data in practice.  
IAMB’s shortcoming is recognized by its authors, which drove more research work 

on IAMB’s variants, MMPC/MB, HITON-PC/MB, PCMB, and BFMB. [1,3,7,8]. 
Although MMPC/MB and HITON-PC/MB are the first efforts to propose data effi-
cient algorithm by considering the topology, e.g. a tree, PCMB is the first one that is 
proven correct. BFMB follows this approach by putting the topology knowledge into 
consideration during learning, but does even better than PCMB. As we explain in 
Section 3.2, BFMB always conditions on the smallest set to remove false positives, so 
it is demonstrated more data efficient than PCMB in [8], where BFMB achieves high-
est accuracy than PCMB and IAMB by recognizing more correct elements belonging 
to ( )MB T , given the same amount of data.  
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Conclusion 3: BFMB is the most data efficient; PCMB is much efficient than IAMB 
on this point, which is consistent with the finding reported in [1]. KIAMB, by average, 
will beat, or at least tie with, IAMB.  

3.4   Scalability 

GS was proposed to learn the BN via the recognition of local neighbours of each 
variable, aiming at better performance than global learning. IAMB was directly pro-
posed for the microarray research where thousands of attributes are quite common, so 
did its variants. In [4], we can see the empirical study with 1000 variables involved, 
among GS, KS, IAMB and its variants. PC is compared to other ones only when the 
number of variables is 50, which reflects that global learning really can’t scale to 
large problem. Although the cardinality of MB in their empirical studies is quite 
small, only 6, it still has reference value because filtering out (up to) 994 non-MB 
elements (or true negatives) within acceptable time itself is a success.  

In [1], PCMB is applied to a problem of KDD Cup 2001 in which there are 139351 
features. Based on its feature selection result, a Naïve Bayes model is built, and a 
comparative classification accuracy is reported. IAMB is covered in that comparison 
as well, producing poorer results than PCMB but in a shorter timing length, which 
matches the conclusion made in Section 3.2 and 3.3.  

BFMB, the latest proposed algorithm, is reported to have highest data efficiency 
comparing with all previous algorithms of this family; besides, it also runs faster than 
PCMB [8]. Although no large scale testing is conducted in the study [8], BFMB is 
expected to have, at least, same scaling ability as PCMB.  

 
Conclusion 4: IAMB, KIAMB, PCMB and BFMB are all scalable to large scale of 
applications.  

3.5   Summary 

Although IAMB, PCMB, BFMB and KIAMB are all proved correct theoretically, 
they still demonstrate relative strength or weakness when put them together for a 
comparison study.  

For practical applicants, based on our experience, IAMB is strongly recommended 
if there are enough data because it is easy to implement and fast in speed. The need 
for large data samples increases quickly (actually, exponentially) when the number of 
variables and/or the number of levels per variable increase.  

In most cases today, we often face the embarrassing problem of insufficient data, 
or we are not sure if the data available is enough for reliable analysis. When this hap-
pens, PCMB or BFMB appears as the best choice. Among them, BFMB is further-
more suggested because displays greater data and speed efficiency.  

In one project done in SPSS Inc(the first author once spent some internship time in 
SPSS in 2007), we finally chose BFMB as the local learning algorithm of Markov 
blanket after thorough prototype testing and analysis among IAMB, PCMB and 
BFMB. IAMB initially appeared the most promising, but it performed quite poorly in 
most tests due to the limit of data efficiency. Then, we turned to PCMB, and gave it 
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up finally since it requires too many data passes to collect the statistics data. When the 
training data is large in size, this is a quite time-consuming procedure. Its design does 
not leave much room for optimization. Finally, we decided to take BFMB though it is 
quite new. It works quite well since the testing began couples of weeks as of the writ-
ing of this paper. Actually, after our optimization, BFMB requires now even much 
fewer number of data passes and CI tests than that mentioned in [9], without sacrific-
ing accuracy. For example, with the same settings and testing data (Alarm network) 
like the experiments done in [8], BFMB needs only about two times the number of 
data pass needed by IAMB, as shown in Table 1 where we attach the refined perform-
ance of BFMB through our test but directly refer the results of IAMB and PCMB 
from [8].  

Table 1. Comparison of time efficiency of IAMB, PCMB and BFMB with data simulated from 
Alarm network containing 37 features 

Instances Algorithms # rounds # CI test 
5000 IAMB 211±5 5603±126 
5000 PCMB 46702±6875 114295±28401 
5000 BFMB 446±15 34073±1996 
10000 IAMB 222±4 6044±119 
10000 PCMB 46891±3123 108622±13182 
10000 BFMB 452±12 37462±1502 
20000 IAMB 238±10 6550±236 
20000 PCMB 48173±2167 111100±9345 
20000 BFMB 460±9 40374±1803 

Conclusion 5: (1) Given faithfulness and correct CI tests, BFMB is most preferred to 
IAMB and PCMB overall because of its highest data efficiency and moderate time 
efficiency; (2) If abundant data is available, IAMB and KIAMB will be the first 
choice; (3) KIAMB can be viewed a candidate in the exploratory phase.  

4   Conclusion 

In this paper, we reviewed those known algorithms to do local learning of Markov 
blanket, which is known as an optimal solution for feature subset selection. Compar-
ing with traditional global learning algorithms, these local learning algorithms are 
known as much more efficient and able to scalable to large problems. By filtering out 
those without sound theory basis, we select IAMB, PCMB, BFMB and KIAMB for 
comparison, in terms of theory basis, time efficiency, data efficiency, and scalability. 
Empirical studies from published papers and our own experience tell that BFMB is an 
ideal choice by summarizing those four factors, which explains why it is selected by 
us in SPSS Inc. as the feature selection algorithm in one of our projects. Of course, 
when data is not a problem any more, IAMB or KIAMB will be the first choice.  
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Abstract. In this paper, we introduce a Computational Intelligence
(CI)-based method to model an hourly air pollution forecasting system
that can forecast concentrations of airborne pollutant variables. We have
used a hybrid approach of Hidden Markov Model (HMM) with fuzzy
logic (HMM-fuzzy) to model hourly air pollution at a location related
to its traffic volume and meteorological variable. The forecasting perfor-
mance of this hybrid model is compared with other common tool based
on Artificial Neural Network (ANN) and other fuzzy tool where rules
are extracted using subtractive clustering. This research demonstrates
that the HMM-fuzzy approach is effectively able to model an hourly air
pollution forecasting system.

Keywords: Urban air pollution, forecasting, hidden Markov model
(HMM), fuzzy logic.

1 Introduction

Urban air pollution (UAP) [1], [2], [3] has great impact on health and lives in
society. It is getting a lot of attention because of it is actually changing the
environment as we watch. Over the last decade, it has been studied in terms
of measurements, physics, chemistry and modeling. The modeling approach is
an important tool to study pollution in an urban air shed, and specifically, to
measure the air pollution control policies [4]. In most instances, the deterioration
of health can be traced back to air pollution [1]. This makes it imperative that
air pollution be stopped, or at least, controlled. An effective forecasting tool that
can accurately help us control pollution and keep it within acceptable levels is a
dire necessity. In order that air quality does not deteriorate any further, scientific
plans for analytical methods and pollution control are needed.

Different techniques exist that can forecast environmental events, though only
a few have been applied to forecasting air pollution. Air quality phenomena have
been traditionally modelled using physical reality as a start, and, for instance,
this information has been coded into differential equations. Methods of Com-
putational Intelligence (CI) [5] are a paradigm shift from the current approach
which puts a model together based only on measured data. CI is fairly new to

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 572–581, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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the environmental scientists and engineers, which is based on the hypothesis that
reasoning can be realised using computation [6]. Methods used in computational
intelligence include a number of forms of computation, the most famous of which
are neurocomputing and fuzzy logic. Neurocomputing works on principles that
were discovered studying the brain and its organizational structure [7], whereas
fuzzy logic is based on the fuzzy set theory, which extends traditional bivalent
logic into continuous group membership with truth values between 0 and 1 [8].

Challenges: Amongst the major challenges in forecasting UAP, the prediction
of episodes with high pollutant concentration in urban areas in order that author-
ities can provide appropriate means to counter potential problems. Authorities
and the public demand precise forecasts of urban air quality, especially during
episodes where the pollution levels are above the threshold values of acute health
effects, and this demand has turned into an outcry during the last few years af-
ter the introduction of higher air quality standards (EC/92/72, EC/96/62 and
EC/99/33, for example) [2]. Authorities in many European cities have estab-
lished emergence preparedness systems that handle air pollution episodes and it
is quite likely that we shall see more such systems in times to come.

UAP forecast quality depends mainly on three factors: the mapping of emis-
sions, the UAP model and the quality of meteorological forecast data.

Contribution: Our study presented here aims at attaining a better under-
standing of phenomena associated with air pollution at a location related to its
traffic volume and meteorological variable. The objective is to show how Hidden
Markov Model (HMM) [9] along with fuzzy logic [10] can be used to create a
model that can forecast concentrations of airborne pollutant variables.

Organization: The remainder of the paper is organized as follows. In Section 2,
we briefly discuss work related to this area. Our model is formally described in
Section 3. Section 4 provides a description of the dataset, design of the exper-
iment carried out in this study and the result of the experiment. Finally in
Section 5, we discuss the results and conclude the paper.

2 Related Work

Artificial Neural Networks (ANNs) are a common tool used in most of the similar
applications. For instance, neural models for ozone concentrations have been
constructed [11] and a model that predicts hourly NOx and NO2 concentrations
has been successfully applied [12]. Most of the work has focused on comparing
feed-forward ANN, especially multi-layer perceptrons (MLP), with traditional
methods such as the ARIMA model and linear regression. The results show in
general that neural models perform as well as these methods if not better [13].
When applied, however, such ‘black box’ modeling offers too little support for
understanding the physical phenomena that are being considered.

Kolehmainen et al. [1] introduced a model using the Self-Organizing Map
(SOM) algorithm, Sammon’s mapping and fuzzy distance metrics. The MLPs
were used to forecast environmental pollution. Actual levels of individual
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pollutants were then computed using a combination of MLP models which were
appropriate in that situation. Neagu et al. [3] presented a unified approach that
integrated implicit and explicit knowledge in neurosymbolic systems as a com-
bination of neural and neuro-fuzzy modules.

3 HMM-Fuzzy Model

We introduce a novel HMM-based fuzzy rule generation tool: HMM-fuzzy model1

here. In our model, a HMM is used to sort the data vectors in the multivariate
dataset and divide the input space into a number of subspaces to form fuzzy
rules.

The model comprises three phases:

– Phase 1: The HMM is used to partition the input dataset based on the
ordering of the calculated HMM-loglikelihood values.

– Phase 2: An iterative top-down(divide and conquer) algorithm is used to
generate the minimum number of fuzzy rules to meet the pre-defined mean
square error(MSE) for the training dataset.

– Phase 3: A gradient descent method is applied to fine tune the obtained
model parameters.

It should be noted that, before using the HMM to partition the input data
vectors, the HMM is trained using the Baum-Welch algorithm [15] and available
training data vectors.

3.1 Sorting Training Dataset

To partition the input dataspace, we first sort the data vectors/patterns using
a single HMM based on the similarities among the patterns. The initial HMM
was built by using random parameter values. Our approach of sorting the data
patterns differs from the usual approach using HMM. Therefore, a detailed ex-
planation is presented in the following subsection.

HMM as a data-pattern sorting tool
In our model, a single HMM has been used to sort the available training data
based on the HMM-loglikelihood value.

Lemma 1. For a given HMM λ = (A, B, π), the probability of a k-dimensional
vector is Pr(X|λ) where, xi ∈ X. A single HMM generates a scalar value for
each of the vectors such that

Pr(X |λ) =
∑

all S
Pr(X |S, λ) Pr(S|λ)

=
∑

S1,S2,....,Sk

πS1aS1S2aS2S3 ....aST−1ST bS1(x1)bS2(x2)......bST (xk) (1)

1 A prototype of the model was initially developed in our previous study [14].
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The generated scalar value known as the log-likelihood value, determines the sim-
ilarity between two data patterns of k-dimensional vectors is used for sorting the
data patterns.

Proof. According to Rabiner [9], after training the HMM, which acts a reference
point, it becomes suitable to compute the probability that the vector was produced
by the model. They have also shown that the probability acts as an indicator for
how well a given model matches a given vector. Therefore, any vector can be
transformed into a scalar log likelihood value.

Consider the log-likelihood value for the three data vectors are l1, l2 and l3.
If the values of l1 and l3 are close within a tolerance level, the data vectors that
correspond to these two log-likelihood values are similar. If the value of l3 is not
close to the value of l1 and l2, it indicates that data vector corresponding to l3
is not similar to the data vectors corresponding to l1 and l2. Thus, data values
with similar log-likelihood values would belong to same group. �

Here, the HMM was used as a pattern matching tool only, where no time depen-
dency is assumed among the data variables (features). Each data vector fed into
the HMM are formed using a number of distinct variables. Given the HMM the
probability of generating a k-dimensional data pattern, 〈x1, x2, x3, x4, . . . , xk〉,
is calculated using the following set of equations [9]:

Pr(X |λ) =
∑

Q

Pr(X |Q, λ) Pr(Q|λ) (2)

where, Q = State sequence q1, q2, ..., qk (for a k-state HMM),
λ = The HMM model,
X = Input data vector x1, x2, x3, ..., xk (Observation Sequence).

The values of Pr(X |Q, λ) and Pr(Q|λ) is calculated using the following equa-
tions [9]:

Pr(X |Q, λ) =
k∏

i=1

Pr(xi|qi, λ) (3)

= b1(x1)b2(x2)...bk(xk)

where, bi(xi) = Emission probability of the feature xi from state i.

Pr(Q|λ) = π1.a1,2.a2,3...ak (4)

where, π = Prior probability matrix,
ai,j = Transition probability from state i to state j.

Bucketing to group similar data vector
The range of log-likelihood values (l1 to lm, where li = log-likelihood value
produced for the ith data vector and m=total data vectors) is split into equal
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sized buckets. The data vecotrs in each bucket produce similar log-likelihood
values. Each of the bucket has a start point and an end point corresponding to
the log-likelihood values. The size of the bucket, θ, is a parameter of the model
that is used to guide the rule extraction process. These buckets were generated
so that they can be used to generate fuzzy rules at a later phase.

3.2 Fuzzy Rule Generation

In this phase of the model, we divide the dataset using the buckets and a di-
vide and conquer approach to generate appropriate number of fuzzy rules. To
begin with, we create only one fuzzy rule that represents the entire input space
of the training dataset. At this point, all log-likelihood values contained in the
individual buckets may be perceived as belonging to one global bucket. In the
process of rule generation, we calculate the mean μxi and standard deviation
σxi to define the membership function for each features xi in the dataset as
follows:

Mxi = e
− 1

2 (
xi−μxi

σxi
)2 (5)

The prediction error for the training data vectors is calculated using the gener-
ated fuzzy rule. A mean squared error (MSE) is used to quantify the performance
of the developed model for the training dataset. If the prediction error for the
training dataset is less than or equals a threshold value ξ the algorithm is ter-
minated and no further rules are extracted. On the other hand, if the prediction
error is greater than ξ then the input space is split into two parts with the
help of buckets produced in previous section. The splitting of the input space is
done by dividing the total buckets into two equal parts. Data in the respective
parts constitute the splitted input space. Each splitted partition has individual
rules created for it. Finally, the total number of rules is increased by one. The
prediction error for the training dataset is recalculated using the extracted rule
set. Should the error threshold ξ not be reached then the buckets containing
the datasets responsible for the left part of the rule are divided into two rules,
and the process is iterated. Again, if the error threshold ξ is still not met, the
right part of the rule is partitioned and the process undertaken again. This cycle
continues until either the error threshold ξ is met or the number of rules equals
the number of buckets.

3.3 Optimization of Extracted Fuzzy Rules

The parameters of the generated fuzzy rules are further fine tuned using a gradi-
ent descent algorithm and training dataset. At this stage, the mean and standard
deviation for each of the membership functions of all fuzzy rules are fixed more
precisely so that it can predict with better accuracy. We follow the gradient
descent methodology as in ANFIS [16].
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4 Experiment and Result

4.1 Dataset

The dataset used are a subsample of 500 observations from a dataset that was
originally put together as part of a study on air pollution related to traffic vol-
ume and meteorological variables on a road, conducted by the Norwegian Pub-
lic Roads Administration. The response variable (column 1) comprised hourly
values of the logarithm of the concentration of PM10 (particles) measured at
Alnabru in Oslo from October 2001 to August 2003. The predictor variables
(columns 2 to 8) are the logarithm of the number of cars per hour, wind speed
(m/s), temperature 2 meters above the ground (℃), the temperature deference
between 25 and 2 meters above ground (℃), wind direction (within the range of
0°-360°), hour of day and day number as counted from October 1, 2001.

4.2 Experiment Design

The experiment was designed using the HMM-fuzzy model. The size of a bucket
was chosen to be, θ = 0.5 (while the bucketing was done using log-likelihood
values) and the desired MSE was chosen to be 0.001. To optimize the extracted
rules, 500 epochs were chosen while executing the gradient descent algorithm.

In this experiment, the number of states in HMM was chosen to be 7 based on
a previous study by Hassan et al. [14]. For the HMM, the initial values of transi-
tion probability matrix and the prior probability matrix were chosen randomly.
As time series datasets are continuous, the observation emission probability ma-
trix of HMM is considered to follow normal distributions where the means and
variances are initially chosen randomly. HMM-fuzzy model tool was executed in
10-fold cross validation (CV).

4.3 Results of HMM-Fuzzy Model

Various numbers of rules were generated in each fold of the execution of HMM-
fuzzy model. There were an average of 2.9 ± 1.3703 rules with confidence level
of 95% or over.

Figure 1 shows the effect of fuzzy rules in the dataspace. In Fig. 1(a), we see
how the dataspace is being divided by the generated rules (figure with respect
to the first three attributes only); while in Fig. 1(b), we can see the fuzzy rule
that actually divides the dataspace shown in Fig. 1(a). Figure 1(c) shows a
membership function of the first attribute shown in Fig. 1(b).

4.4 Results Comparison

We used two other tools in order to compare the results generated by our HMM-
fuzzy model. All the tools were executed in 10-fold CV.

As ANNs are commonly used in similar applications, we try to minimize the
MSE of ANN as far as possible. We have empirically chosen the architecture of
ANN that has the smallest MSE in training data. The ANN had 7 nodes in the
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(a) Two groups in the dataspace after using HMM-bucketing (plotted with
respect to the first 3 attributes only)

(b) Two fuzzy rules for dividing the dataspace shown in Fig. 1(a)

(c) Membership function of the first attribute
shown in Fig. 1(b)

Fig. 1. Effect of fuzzy rules in the dataspace
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Table 1. Comparison of Performance of the Tools using 10-fold CV

Technique MSE Number of fuzzy rules

HMM-fuzzy Model 0.0097 2.9 ± 1.3703
Fuzzy model following subtractive clustering 0.0102 5.5 ± 1.5811
ANN 0.0216 —

input layer, 21 nodes in the hidden layer and 1 node in the output layer. We
used the LM algorithm along with tan-sigmoid activation function. The epochs
and training goal were chosen to be 500 and 0.001, respectively. The average
training error occurred for the ANN was only 0.002.

We have also generated a forecasting model using the subtractive clustering-
based fuzzy model reported in [17]. In this approach, we must provide the radius
of the cluster before generating fuzzy rules from the available dataset. Based on
the given parameter, i.e., the cluster radius, the model generates a number of
clusters in an unsupervised way. We have empirically chosen the cluster radius
to be 0.6. Each cluster obtained corresponds in generating a fuzzy rule, i.e., each
fuzzy rule relates a region in the input space to an output class.

MSE of HMM-fuzzy model is compared with the MSE and the number of
fuzzy rules with confidence level of 95% or over of two other techniques using
10-fold CV is presented in Tab. 1.

5 Discussion and Conclusion

This study has demonstrated that HMM-fuzzy approach technique followed by
gradient descent method is effectively able to model an hourly air pollution
forecasting system that can predict concentrations of airborne pollutants. This
hybrid technique clearly outperforms the other popular tools, such as ANN and
fuzzy rule extraction (see Tab. 1). Moreover, the HMM-fuzzy approach generates
a significantly fewer number of rules than the technique described in [17].

This system has reduced complexity and simultaneously improved forecasting
accuracy. This is most likely because HMM’s accuracy in identifying similari-
ties within air pollutant data sequences (i.e. traffic volume and meteorological
variables on a road) that consequently provides improved partitions in the input
space. Besides, while partitioning the input space using HMM, the similarities
among the feature attributes are identified by HMM in terms of fluctuations in
magnitude. The end result is an improved set of fuzzy rules that can predict the
concentration of PM10 particles.

To determine the efficiency of the HMM-fuzzy model proposed in this paper,
it is vital to compare it with other well-performed fuzzy rule finding methods, for
instance [17]. From the comparison, it is evident that other techniques consider
the individual input features to be independent of each other and, this may
generate extra rules making the overall system complex. The increased number
of rules without taking into consideration the interdependencies among the input
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variables does not always lead to a more effective model. Experimental results
presented in this paper support this observation.

This paper demonstrates that the hybrid HMM-fuzzy model has the poten-
tial to achieve high levels of performance when it designs an hourly air pollution
forecasting system that can effectively track and forecast concentrations of air-
borne pollutant variables. We recommend that higher sample sizes and various
meteorological variables should be used in continual research along these lines.
The results will forecast air pollution, extrapolate its effects and can help decide
on a proper course of action to combat the problem.
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Abstract. This paper extends the bottom-up relational miner Mapix[9].
It takes a relational database consists of multiple relational tables includ-
ing a target relation, and enumerates patterns with which a large part
of instances in the target relation match. The patterns are given as logi-
cal formulae. Although a well-known system Warmr generates and tests
possible patterns, it has limitation in its efficiency. Mapix took a bottom-
up approach and gained efficiency at the cost of variety of patterns. It
searches and propositionalizes features appeared in instances. Patterns
produced is only simple combinations of attributed. The proposed algo-
rithm EquivPix (an equivalent-class-based miner using property items
extracted from examples) keeps the merits of bottom-up approach, i.e.
time-efficiency and prohibition of duplicated patterns, and it widens pat-
tern variation. EquivPix introduces equivalent classes on properties ex-
tracted and also two combination operators of them.

1 Introduction

Relational pattern mining is discussed in the framework of multi-relational min-
ing and it is suitable to use the technique of inductive logic programming (ILP).
Warmr[2,3,4] is a representative algorithm of this context.

Warmr generates candidate patterns (queries) in top-down way from simple
to complex in level-wise. Then it cuts down unnecessary patterns using a saved
infrequent query set. The set has a similar function to the principle used in
Apriori[1]. In spite of the cut-down procedure it has limitation, because of the
exponentially growing space of hypothesis with respect to the length of patterns
and the number of relations. Mapix acquired much efficiency at the sacrifice
of the variety of patterns. It only finds patterns as combination of attributes,
which are dynamically constructed as a set of first-order literals from given target
instances. It is bottom-up in the sense that attributes are not given in advance
but are constructed from given instances. It first constructs first-order features,
called property items, appeared in target instances. Then it applies Apriori-like
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procedure for the property items. It succeeded to prohibit duplication of patterns
in the sense of logical equivalence.

The bottom-up construction restricts the range of patterns in ones appeared
in instances. This paper studies to construct a large variety of patterns by com-
bining attributes. The method becomes truly first-order. The variety approaches
to full enumeration in keeping the efficiency.

2 Preparations

Familiarity on logic programming is assumed. We use Datalog, a Prolog without
functors, to represent data and patterns. A Datalog clause is a universally quan-
tified formula of the form, ∀(h ← b1 ∧ . . . ∧ bn). ∀ is omitted when understood.
For c = h← b1 ∧ . . . ∧ bn, head(c) denotes h and body(c) denotes b1 ∧ . . . ∧ bn.
When n = 0 a clause is called a fact. θ = {v1/t1, . . . , vn/tn} means a substitution
and Pθ for a formula P means replacing every variable vi in P with a term ti.

For our mining task a Datalog DB R is given. A predicate corresponds to
a relation. A predicate p is extensional when every formula whose head uses p
is a ground (no variable) fact in R, otherwise intensional. One of extensional
relations is specified as a target (It corresponds to the concept key of Warmr).
A fact of the target relation is called a target instance.

A query is existentially quantified conjunct form ∃(b1 ∧ . . .∧ bn). A query ∃Q
is said to succeed wrt R when R |= ∃Q.

Definitions bellow are brought from [3] with slight modification.

Definition 1 (pattern). A pattern is a Datalog clause whose head is of the
target predicate. For a target instance e and a pattern P , P (e) denotes a query
∃(body(P )θ) where θ is the mgu (most general unifier) of e and head(P ). The
mgu θ is called a target instantiation of e to P . When P (e) succeeds we say that
e possesses P .

Definition 2 (frequent pattern). The frequency of P is the number of target
instances which possess P . supp[P ] = (The frequency of P )/N and is called the
support of P , where N is the number of all target instances. P is frequent if
supp[P ] > supmin for a given minimal support supmin.

Example 1 (running example). Consider a DB Rfam (Fig. 1), including relations,
p(x, y) meaning x is a parent of y, f(x) for female x, m(x) for male x, and gf(x)
meaning x is someone’s grandfather. Let gf be a target and ε = gf(taro) is a
target instance. The following formula is a pattern.

P = gf(A)← m(A) ∧ p(A, B) ∧m(B)

P (ε) denotes a query, P (ε) = ∃((m(A)∧ p(A, B) ∧ m(B))θ) = ∃( m(taro) ∧
p(taro, B) ∧m(B)), where θ is the target instantiation of ε to P . P (ε) succeeds
by assigning jiro to B then e possesses P . ��

In order to discuss for equivalence of patterns we use θ-subsumption.
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gf (grandfather)

taro
· · ·

p (parent)

taro ichiro
taro jiro
taro yoko

hanako ichiro
· · · · · ·

m (male)

taro
ichiro
jiro
· · ·

f (female)

yoko
kyoko
· · ·

taro hanako

ichirokyoko jiro yoko koichi

yoichi yojiken'ichi

*

**

Fig. 1. A family example Rfam, including four relations. The gf is target.

Definition 3. Let ∃C and ∃D be patterns, i.e. C and D are conjunctions and
are regarded as sets of conjunct atoms. When C ⊇ Dθ, we say that C subsumes
D which is denoted by C	D. If C	D and D	C, then we say that C and D is
subsumption-equivalent and write C∼D.

The 	 coincides with logical implication when patterns have no recursion.
Many ILP algorithms assumes modes for arguments of predicates to restrict

patterns. Some arguments have a role as input and others as output. For example
modes for the predicates mentioned are given as p(+,−), m(+), and f(+), where
+/− means an input/output mode.

We distinct two classes of predicates obeying [6]. Predicates with at least one
〈−〉-arg. are called path predicates, e.g. p(+,−), and have a role like a function
generating a term from others. Predicates without 〈−〉-arg. are called check pred-
icates, e.g. m(+) and f(+), and have a role describing a property of given terms.
An instance of a path/check predicate in DB is called a path/check literal. We
do not give mode for target.

3 Outline of Mapix Algorithm

The outline of Mapix algorithm is as follows:

1. It samples target instances from a target relation.
2. For each sampled instance it collects things (properties) hold on DB.
3. By generalising the properties it generates first-order attributes (which cor-

respond to items in association rule mining), called property items.
4. It executes Apriori-like level-wise frequent pattern mining algorithm by re-

garding the satisfaction of a property item as possession of it.

For an instance ε = gf(taro) we may find a thing hold on it,

{p(taro, ichiro), p(ichiro, ken), m(ken)}.

It may be read that taro has a grandson and regard it a property of ε. By replacing
terms by variables and giving a head we have a pattern,

gf(A)← p(A, B) ∧ p(B, C) ∧m(C). (1)
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Table 1. Properties and property items of ε = gf(taro)

pr1={p(taro, ichiro),m(ichiro)} i1=gf(T )←p(T,I)∧m(I)
pr2={p(taro, ichiro), p(ichiro, ken),m(ken)} i2=gf(T )←p(T,I)∧p(I,K)∧m(K)
pr3={p(taro, jiro).m(jiro)} i3=gf(T )←p(T,J)∧m(J).
pr4={p(taro, yoko), f(yoko)} i4=gf(T )←p(T,Y )∧f(Y )
pr5={p(taro, yoko), p(yoko, yoichi),m(yoichi)} i5=gf(T )←p(T,Y )∧p(Y,X)∧m(X)

The concepts of path and check literals reveal the structure. A path literal leads
a term from a term, e.g. p(taro, ichiro) leads ichiro from taro. Terms lead from a
term in a target instance make a chain, e.g.taro, ichiro, and ken, and it stops by
a check literal, e.g. m(ken).

Path literals have a function referring an object (an attribute) of an instance,
and a check literal describes its character (an attribute value). We assume all
interesting features have this two-part (a referential part and a description part)
form. Similar ideas have appeared in first-order features in LINUS[7] and 1BC[5]
and a search used in pathfinding[8].

When a target instance possesses a pattern yielded from a property as in (1),
we can regard the pattern as an item of the instance. To find combinations of
items that are frequently appeared in instances are a standard task in association
rule mining. This was the idea of Mapix.

4 Difficulties in Mapix and the Idea to Them

Again consider the example and ε = gf(taro). ε has properties pr1, . . . , pr5 as
shown in Table 1 and then it has property items i1, . . . , i5. To see the structure
a variable is given for positions occupied by a term.

Mapix has difficulty that it can not treat patterns that cross more than one
item. When Mapix treats a combination of items it just concerns if an instance
has the two items independently. For pr1 and pr2, which are connected on ichiro,
the itemset {i1, i2} is treated as a pattern,

gf(T )←p(T,I) ∧m(I) ∧ p(T,I ′) ∧ p(I ′,K) ∧m(K).

This is possessed by ε but we may expect another straight pattern,

gf(T )← p(T, I) ∧m(I) ∧ p(I, K) ∧m(K),

which is obtained when we unify I and I ′ according as I and I ′ are occupied
by a term ichiro in the original properties. A strategy is suggested to obtain a
pattern according to occurrence of terms.

We face another difficulty when we adopt this strategy and also are interested
in producing a pattern only once in the sense of logical equivalence. We see
i1∼i3 and i2∼i5. We can discard i3 because it relates to no other items but when
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we throw away i5 we can not obtain the pattern by combining it and i4. The
i2 can not be dropped either since it relates to i1. Keeping necessary items all
causes large inefficiency, because the number of itemsets grows exponentially
on the number of items and also because kept equivalent items produce many
equivalent patterns.

Now we describe our idea. Let think of a pattern by combining the equivalent
items i2 and i5 just as in an itemset of Mapix.

gf(T )← p(T, I) ∧ p(I, K) ∧m(K) ∧ p(T, Y ) ∧ p(Y, X) ∧m(X). (2)

We can see that this is equivalent to i2 and also to i5. It is convenient that a
simple union of this pattern and i1,

gf(T )← p(T, I) ∧ p(I, K) ∧m(K) ∧ p(T, Y ) ∧ p(Y, X) ∧m(X)∧ m(I).

yields an equivalent pattern produced by combining i1 and i2,

gf(T )← p(T, I) ∧ p(I, K) ∧m(K) ∧ m(I).

We can also find that combination of the pattern (2) and i4 yields,

gf(T )← p(T, I) ∧ p(I, K) ∧m(K) ∧ p(T, Y ) ∧ p(Y, X) ∧m(X)∧ f(Y ).

and it is equivalent to the pattern,

gf(T )← p(T, Y ) ∧ p(Y, X) ∧m(X) ∧ f(Y ).

Taking conjunction of equivalent items, such as in (2), as a single item, combining
with other items produces patterns no more than once.

5 Properties, Property Items and Two Operators of
Them

We introduce concepts including ones used in [9] with some extensions.

Definition 4 (property). A property of a target instance e on a check literal
c wrt DB R is a minimal set L of ground atoms in R satisfying

1. L includes exactly the one check literal c, and
2. L can be given a linear order where every term in an input argument of a

literal in L is occurred in some precedent literals in the order or the target
instance e.

Definition 5 (variablization). For a ground formula α a formula β is a vari-
ablization of α when

1. β does not include any ground term, and
2. there exists a substitution θ = {v1/t1, · · · , vn/tn} that satisfies

(a) α = βθ and (b) t1, . . . , tn in θ are all different terms in α.
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We assume to use new variables never used before when variablizing.

Definition 6. For a set L = {l1, · · · , lm} of ground literals and a target instance
e var(e← L) denotes a variablization of e← l1 ∧ . . . ∧ lm.

When L is a property of e, var(e← L) is called a property item (an item in
short) of e. Possessing P by e and a query P (e) are said as in Definition 1.

Example 2 (cont.). The set L = {p(taro, ichiro), p(ichiro, ken), m(ken)} is a prop-
erty of ε on m(ken). Then i1 = var(ε← L) = gf(A)← p(A, B)∧ p(B, C)∧m(C)
is possessed by ε, i.e. Rfam |= i1(ε). ��

Here we give combination operators of properties to produce patterns.

Definition 7. When IL = {L1, . . . , Ln} is a set of some properties of a target
instance e and Pi = var(e← Li) for i = 1, . . . , n, an independently combined
pattern (or i-pattern) for IL on e, denoted by ind(e← IL ), is the pattern P such
as head(P ) = head(P1)ρ and body(P ) = (body(P1) ∧ . . . ∧ body(Pn))ρ, where ρ is
the mgu unifying head(P1)ρ = · · · = head(Pn)ρ.

When P = ind(e← IL ) and Pi = var(e← Li) for a set of properties IL =
{L1, . . . , Ln} of e, it holds for any target instance e′ R |= P (e′) iff for all i (1 ≤
i ≤ n) R |= Pi(e′).

Definition 8. When IL = {L1, . . . , Ln} is a set of some properties of e, a struc-
turally combined pattern (or s-pattern) for IL on e, denoted by str(e← IL ), is
the pattern P = var(e← (L1 ∪ . . . ∪ Ln)).

Example 3 (cont.). For IL 1 = {pr1, pr2} of the example, its i-pattern is,

P1 = ind(ε← IL 1) = gf(T )← p(T, I) ∧m(I) ∧ p(T, I ′) ∧ p(I ′, K ′) ∧m(K ′).

The s-patterns of IL 1 and also of IL 2 = {pr4, pr5} are as follows.

P2 = str(ε←IL 1)=var(ε←pr1∪pr2)=gf(T )←p(T,I)∧m(I)∧p(I,K)∧m(K).
P3 = str(ε←IL 2)=var(ε←pr4∪pr5)=gf(T )←p(T,Y )∧f(Y )∧p(Y,X)∧m(X).

We realize that P2 and P3 can be combined like i-pattern, that is,

P4 = gf(T )←p(T,I)∧m(I)∧p(I,K)∧m(K)∧p(T,Y )∧f(Y )∧p(Y,X)∧m(X),

which is another different pattern from others. ��

We denote the pattern P4 by ind({P2, P3}). Here ind() is extended for a set of
patterns IP = {P1, . . . , Pn}, that is, ind(IP) is a pattern P satisfying head(P ) =
head(P1)ρ and body(P ) = body(P1)ρ ∧ . . . ∧ body(Pn)ρ for the mgu ρ unifying
head(P1)ρ = . . . = head(Pn)ρ.

Move to treat the equivalence among items. We have i2 = var(ε← pr2) ∼ i5 =
var(ε← pr5). In that case we can be aware of



588 N. Inuzuka et al.

P5 = var(ε←pr2∪pr5) ∼ var(ε← pr2) ∼ var(ε← pr5).

The union pr2∪pr5 can be taken as a compound property. Not only it is equivalent
to pr2 and pr5 but it has the same role to make s-pattern.

str(ε← {pr2 ∪ pr5, pr1}) = var(ε← (pr2 ∪ pr5 ∪ pr1))
= gf(T )← p(T, I) ∧m(I) ∧ p(I, K) ∧m(K) ∧ p(T, Y ) ∧ p(Y, X) ∧m(X)
∼ str(ε← {pr2, pr1}) = gf(T )← p(T, I) ∧m(I) ∧ p(I, K) ∧m(K)

Similarly str(ε← {pr2 ∪ pr5, pr4})∼ str(ε← {pr5, pr4}). We consider a class of
equivalent properties as a compound property.

Definition 9. Let Ψ be the set of all properties of a target instance e of a given
R. Then ≈ is a relation on Ψ defined as,

pri ≈ prj iff var(e← pri) ∼ var(e← prj) for pri, prj ∈ Ψ.

Then for an equivalent class E ∈ Ψ/ ≈,
⋃

pr∈E pr is a compound property and
a pattern str(e← E) = var(e← ∪pr∈E pr) is called a compound property item
caused by E.

Example 4 (cont.). i2∼i5 and then pr2 ≈ pr5. Hence E = [pr2]≈ = [pr5]≈ =
{pr2, pr5} yields a compound property item,

⋃

pr∈E

pr = pr2 ∪ pr5 = {p(taro, ichiro),p(ichiro, ken),m(ken),
p(taro, yoko),p(yoko, yoichi),m(yoichi)},

str(ε←E) = gf(T )←p(T,I)∧p(I,K)∧m(K)∧p(T,Y )∧p(Y,X)∧m(X).
��

6 The Mining Algorithm

We are ready to describe the algorithm. Unlike Mapix an equivalent class of
properties, i.e. E = Ψ/≈, is an item. A pattern is made from a subset of E using
ind() and str(). It has a sense to use str() for classes only when they share terms
not appeared in the target instance. Otherwise their s-pattern is equivalent to
their i-pattern. So another components, binders, are used. bindi,j designates to
use str() for Ei and Ej in E .

B =
{

bindi,j

∣
∣
∣
∣
∃pr ∈ Ei, ∃pr′ ∈ Ej , pr and pr’ share a term not appeared
in the target instance

}

.

Example 5 (cont.). The example has equivalent classes E = {E1, E2, E3} where
E1 = {pr1, pr3}, E2 = {pr2, pr5}, E3 = {pr4} and binders B = {bind1,2, bind2,3},
because pr1 ∈ E1 and pr2 ∈ E2 share ichiro and pr5 ∈ E2 and pr4 ∈ E3 share
yoko. (We omit bind2,1 and bind4,2.) ��
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A subset S ⊆ E ∪B makes sense when for every bindi,j ∈ S Ei and Ej are also in
S. In this case we call S valid. For a valid S ⊆ E ∪ B a subset S′ ⊆ S is called a
bind-maximal if S′ is a maximal subset s.t. it includes a binder bindi,j for every
pair of Ei, Ej ∈ S′.

Definition 10. When S1,. . ., Sm are all of the bind-maximal subsets of a valid
S⊆E∪B, the pattern represented by S, denoted by pat(e← S), is

pat(e← S) = ind(str(e← (S1 − B)), . . . , str(e← (Sm − B))).

Example 6 (cont.). Let us think of {E1, E2, E3, bind1,2} ⊆ E ∪ B. Its bind-
maximal subsets are {E1, E2, bind1,2} and {E3}. Then this set represents

pat(ε←{E1, E2, E3, bind1,2}) = ind(str(ε←{E1, E2}), str(ε←{E3}))
= ind(str(ε← {pr1 ∪ pr3, pr2 ∪ pr5}), str(e← {pr4}))
= gf(T )← {p(T, I) ∧m(I) ∧ p(I,K) ∧m(K) ∧ p(T,J) ∧m(J)

∧ p(T,Y ) ∧ p(Y,X) ∧m(X)} ∧ {p(T, Y ′) ∧ f(Y ′)}
∼ gf(T )← p(T, I) ∧m(I) ∧ p(I, K) ∧m(K) ∧ p(T, Y ′) ∧ f(Y ′).

Another subset {E1, E2, E3, bind1,2, bind2,3} ⊆ E ∪B has bind-maximal subsets
{E1, E2, bind1,2} and {E2, E3, bind2,3} and represents a pattern,

pat(ε← {E1, E2, E3, bind1,2, bind2,3})
∼ gf(T )←p(T,I)∧m(I)∧p(I,K)∧m(K)∧p(T,Y ′)∧f(Y ′)∧p(Y ′,X ′)∧m(X ′).

All patterns are listed in (E ,B)-form : {E1}, {E2}, {E3}, {E1, E2},
{E1, E3}, {E2, E3}, {E1, E2, bind1,2}, {E2, E3, bind2,3}, {E1, E2, E3},
{E1, E2, E3, bind1,2},{E1, E2, E3, bind2,3},{E1, E2, E3, bind1,2, bind2,3} ��

Table 2 shows the algorithm, EquivPix (an equivalent-class-based miner using
property items extracted from examples), which enumerates all of subsets of
E ∪ B that represent frequent patterns. The main routine simply obeys Apriori.
Candidate has differences from the original. Since EquivPix uses binders it can
not have a linear order on items. Therefore it has to check if a new candidate has
not nominated yet. It introduces binders at the second level in Line 7. As Mapix
does EquivPix also checks the subsumption in Line 8 to prohibit duplicate
patterns.

Properties and binders have to be from a single instance in principle. This
is partially solved. If a single instance includes all structure appeared in in-
stances the instance is enough to produce all patterns. The idea is to integrate
all instances to a single instance. It is done by making an isomorphism from
an instance to another. Then all terms are replaced by terms mapped by the
morphism. This overlapping yields a single large instance and it is reduced by
the subsumption equivalence. Unfortunately this integration do not keep all of
properties before the integration.
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Table 2. An outline of the proposing algorithm EquivPix

EquivPix(R, T , supmin):
input R : a DB; T : target relation; supmin: minimum support threshold;
output Freq : all subsets of E ∪ B representing frequent patterns;
1. Select a target instance e ∈ T ; (or build an instance by integrating all in T )
2. Ψ :=the set of properties of e wrt R; E :=Ψ/≈; B :=the set of binders for E ;
3. Remove every E ∈ E s.t. str(e← E) is not frequent from E ;
4. k := 1; F1 := {{E} | E ∈ E}; Freq := F1;
5. while Fk �= ø do
6. Ck+1 :=Candidate(Fk); Fk+1 :={S∈Ck+1| supp[pat(e←S)] ≥ supmin};
7. Freq := Freq ∪ Fk+1; k := k + 1;
8. Return Freq;

Candidate(Fk):
input Fk : set of frequent itemsets of a level;
output Ck+1 : the set of candidate itemsets of the next level;
1. Ck+1 := ø
2. For each S1, S2 ∈ Fk s.t. |S1 ∩ E − S2 ∩ E| = |S2 ∩ E − S1 ∩ E| = 1 do
3. if S1 ∪ S2 �∈ Ck+1 then Ck+1:=Ck+1 ∪ {S1 ∪ S2};
4. For each S ∈ Ck+1 do
5. For each Ei ∈ S do
6. if S − ({Ei} ∪ {bindi,j ∈ B|j = an index for any Ej ∈ E}) �∈ Fk

7. then delete S from Ck+1;
8. If k = 1 then for each {Ei, Ej} ∈ C2 do
9. if bindi,j ∈ B then C2:=C2 ∪ {Ei, Ej , bindi,j};
10. if (str(e←Ei)
str(e←Ej) or str(e←Ej)
str(e←Ei)) delete S from C2;
11. Return Ck+1;

Table 3. Results of experiment with dataset Bongard with supmin = 5%

algorithms runtime (A) (B) (A) = the number of produced patterns.
EquivPix 237.7 625 625 (B) = the number of produced patterns
Mapix 142.6 160 160 which is not equivalent with
Warmr 1098.5 5480 782 other patterns.

7 An Experiment and Concluding Remarks

EquivPix is implemented using SWI-Prolog on PC of Xeon 2.8GHz. We con-
veyed a simple experiment to compare with Mapix and Warmr using a dataset
Bongard. Its language bias is modified to test algorithms appropriately. As in
Table 3 EquivPix produced 625 patterns while Warmr, a complete enumera-
tor, produced 782 patterns, a part of total 5480 outputs including duplication.
Runtime was less than double of Mapix.

EquivPix includes ideas: (1) two combination operators for properties ex-
tracted from samples; (2) equivalence of properties to make compound prop-
erties, which keeps efficiency and prohibits duplicated patterns; and (3) the
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heuristics to integrate instances. The number of patterns output by EquivPix
approached to Warmr compared to Mapix.
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Abstract. When performing predictive modeling, ensembles are often utilized 
in order to boost accuracy. The problem of how to maximize ensemble accuracy 
is, however, far from solved. In particular, the relationship between ensemble 
diversity and accuracy is, especially for classification, not completely under-
stood. More specifically, the fact that ensemble diversity and base classifier  
accuracy are highly correlated, makes it necessary to balance these properties 
instead of just maximizing diversity. In this study, three standard techniques to 
obtain implicit diversity in neural network ensembles are evaluated using 14 
UCI data sets. The experiments show that standard resampling; i.e. dividing the 
training data by instances, produces more diverse models, but at the expense of 
base classifier accuracy, thus resulting in less accurate ensembles. Building en-
sembles using neural networks with heterogeneous architectures improves test 
set accuracies, but without actually increasing the diversity. The results regard-
ing resampling using features are inconclusive, the ensembles become more di-
verse, but the level of test set accuracies is unchanged. For the setups evaluated, 
ensemble training accuracy and base classifier training accuracy are positively 
correlated with ensemble test accuracy, but the opposite holds for diversity; i.e. 
ensembles with low diversity are generally more accurate. 

1   Introduction 

The main objective of all predictive modeling is to create a model likely to have high 
accuracy on unseen data. A technique commonly used to maximize generalization 
accuracy is to utilize ensembles of models, i.e. somehow combining a number of 
individual models. The main reason for the success of ensemble approaches is the 
fact that combining several models will eliminate uncorrelated base classifier errors; 
see e.g. [1]. This, however, requires that the base classifiers commit their errors on 
different instances; i.e. ensemble diversity has an effect on ensemble accuracy. The 
problem of how to maximize ensemble accuracy is unfortunately far from solved, 
though. In particular, the relationship between ensemble diversity and accuracy is 
not completely understood, making it hard to efficiently utilize diversity for ensem-
ble creation.  
                                                           
* Ulf Johansson and Tuve Löfström are equal contributors to this work. 
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2   Background and Related Work 

Krogh and Vedelsby in [2] derived the result that ensemble error depends not only on 
the average accuracy of the base models, but also on their diversity (ambiguity). More 
formally, the ensemble error, E, is: 

E E A= −                                                             (1) 

where E  is the average error of the base models and A  is the ensemble diversity, meas-
ured as the weighted average of the squared differences in the predictions of the base 
models and the ensemble. Since diversity is always positive, this decomposition proves 
that the ensemble will always have higher accuracy than the average accuracy obtained 
by the individual classifiers. The two terms are, however, normally highly correlated, 
making it necessary to balance them instead of just maximizing the diversity term. 

Brown et al. in [3] introduced a taxonomy of methods for creating diversity. The 
main distinction made is between explicit methods, where some metric of diversity is 
directly optimized, and implicit methods, where the method is supposed to produce 
diversity without actually targeting it. All standard resampling techniques are by nature 
implicit since they randomly sample the training instances for each base classifier.  

For artificial neural network (ANN) ensembles, the most obvious method to intro-
duce implicit diversity is to randomize the starting weights. Starting from randomized 
weights is, of course, a standard procedure for most ANN training. Many methods 
strive for diversity by splitting the training data in order to train each base classifier 
using a slightly different training set. Such resampling techniques can divide the 
available data either by features or by instances. For ANN ensembles, it is also possi-
ble to use ANNs with different architectures in the ensemble. If the base classifiers 
are standard, fully-connected, feed-forward ANNs, the number of hidden layers and 
the number of units in each layer can be varied.  

According to Brown et al., random initialization of weights is generally ineffective 
for producing diverse ANNs. The reason is that ANNs often converge to the same, or 
very similar optima, in spite of starting in different parts of the space; see e.g. [4]. 
Brown et al. also state that manipulation of ANN architectures most often turns out to 
be quite unsuccessful. Regarding resampling, finally, Brown et al. say that the view is 
that it is more effective to divide training data by feature than by instance. In addition, 
Duin and Tax in [5] found that using one type of classifier on different feature sets 
was far more effective than using different classifiers on one feature set. Still, it 
should be noted that Duin and Tax conclude that best performance is achieved by 
combining both different feature sets and different classifiers. 

In [6], Kuncheva and Whitaker studied ten statistics measuring diversity among binary 
classifier outputs; i.e. correct or incorrect vote for the class label. In the experimentation, 
all diversity measures evaluated showed low or very low correlation with test set accu-
racy. In our previous study, we followed up the Kuncheva and Whitaker study, empiri-
cally evaluating the ten diversity measures using ANN ensembles and 11 publicly avail-
able data sets; see [7]. The main result was again that all diversity measures showed very 
low correlation with test set accuracy. With these results in mind, the situation is that 
although theory suggests that diversity is beneficial for ensemble accuracy, we currently 
do not know how to efficiently utilize diversity or even what measure to use. 

The purpose of this paper is to empirically evaluate some standard techniques for in-
troducing implicit diversity in ANN ensembles. More specifically, the study compares 
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resampling techniques and the use of different architectures for base classifier ANNs 
against a baseline setup. The baseline setup combines a number of ANNs with identi-
cal architectures that were trained individually, using all available training data. The 
most important criterion is of course generalization accuracy; i.e. accuracy on a test set, 
but it is also interesting to compare the levels of diversity produced by the different 
methods. In addition, the study examines how diversity and generalization accuracy 
co-vary, depending on the technique used to introduce the diversity.  

3   Method 

In the main experiment, three standard techniques for introducing implicit diversity are 
evaluated using ANN ensembles and 14 data sets from the UCI repository [8]. All possi-
ble combinations of the three standard techniques are evaluated, resulting in 12 different 
setups. For each setup, 16 ANNs are trained and then all possible ensembles consisting of 
exactly 11 ANNs from the pool are formed, resulting in 4368 different ensembles. For 
actual evaluation, standard 10-fold cross-validation is used; i.e. results reported for a 
specific setup and data set are mean test set accuracies obtained by the 4368 ensembles 
over the ten folds of the data set. The standard techniques used in the different setups are: 

 

• Bootstrapping: Here each ANN is trained using individual training sets. Every 
training set (called bootstrap) has the same size as the original training set, and is 
created by repeated sampling (according to a uniform distribution) of training in-
stances. Since sampling is done with replacement, some instances may appear sev-
eral times, while others are omitted. On average, a bootstrap sample contains ap-
proximately 63% of the original training instances. 

• Resampling using features: Each ANN is again trained using individual training 
sets. Here, however, each training set uses all available training instances, but a 
certain proportion of the features are removed. Which features to remove is ran-
domly decided when creating the training set for individual ANNs; i.e. each ANNs 
is trained using a randomized feature set. In the experimentation, two different lev-
els of feature reduction are evaluated; keeping 80% or 90% of available features. 

• Varied architectures: In this study, only fully-connected feed-forward ANNs are 
used. When using varied architectures, eight ANNs have one hidden layer and the 
remaining eight have two hidden layers. The exact number of hidden units is based 
on data set characteristics, but is slightly randomized for each ANN. For this ran-
domization, we used the same formulas as in the previous study, see [8]. When the 
architecture is not varied, each ANN has an identical architecture with one hidden 
layer. The initial weights are, of course, still randomized, though. 

  

Table 1 below summarizes the 12 setups evaluated. The baseline setup is S1. 

Table 1. Setups evaluated 

Setup Bootstrap Features 
Varied  

architectures Setup Bootstrap Features
Varied  

architectures 
S1 No 100% No S7 Yes 90% No 
S2 No 100% Yes S8 Yes 90% Yes 
S3 Yes 100% No S9 No 80% No 
S4 Yes 100% Yes S10 No 80% Yes 
S5 No 90% No S11 Yes 80% No 
S6 No 90% Yes S12 Yes 80% Yes 
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The data sets are summarized in Table 2 below. Ins. is the total number of in-
stances in the data set. Con. is the number of continuous input variables and Cat. is 
the number of categorical input variables. 

Table 2. Data set characteristics  

Data set Ins. Con. Cat. Data set Ins. Con. Cat. 
Bupa liver disorder 345 6 0 Iono 351 34 0 
Cleveland heart 303 6 7 Labor 57 8 8 
Crx 690 6 9 Sick 2800 7 22 
Pima Indian diabetes 768 8 0 Thyroid 3163 7 18 
German credit 1000 7 13 Tictactoe 958 0 9 
Hepatitis  155 6 13 Wisconsin breast cancer 699 10 0 
Horse colic  368 7 15 Votes 435 0 16 

4   Results 

Table 3 below shows the test set accuracies obtained by the different setups. Using a 
standard Friedman test (α=0.05), the only statistically significant difference is that 
S10 (i.e. 80% features, varied architectures, and no bootstrap) performs better than 
S11 (80% features, homogenous architecture and bootstrap) and S12 (80% features, 
varied architecture and bootstrap). The most interesting observations are, however, 
that the varied architecture is almost always beneficial, while bootstrapping generally 
decreases the accuracy. Specifically, the three best setups all use varied architectures 
and no bootstrapping but different proportions of features. The overall results regard-
ing resampling using features are inconclusive, so it is not obvious how the proportion 
of features used affects the performance. 
 

Table 3. Accuracy 

Bootstrap No No Yes Yes No No Yes Yes No No Yes Yes
Features 100% 100% 100% 100% 90% 90% 90% 90% 80% 80% 80% 80%
Var. Architect. No Yes No Yes No Yes No Yes No Yes No Yes 
Bupa .702 .716 .698 .716 .706 .709 .713 .699 .724 .727 .704 .718 
Cleveland .823 .831 .796 .825 .818 .825 .820 .827 .822 .829 .813 .823 
Crx .859 .860 .864 .868 .861 .862 .860 .851 .871 .860 .860 .860 
Diabetes .764 .773 .776 .774 .773 .770 .770 .772 .768 .774 .768 .769 
German .764 .765 .762 .756 .761 .765 .767 .760 .761 .766 .754 .760 
Hepatitis  .828 .837 .839 .828 .808 .838 .816 .822 .826 .853 .842 .815 
Horse colic  .834 .835 .817 .844 .813 .838 .833 .819 .810 .833 .821 .836 
Iono .922 .928 .919 .926 .941 .939 .931 .930 .935 .936 .935 .925 
Labor .893 .900 .912 .920 .924 .911 .912 .903 .905 .938 .907 .919 
Sick .967 .968 .966 .964 .966 .967 .966 .966 .966 .967 .966 .966 
Thyroid .982 .983 .983 .982 .982 .983 .981 .984 .982 .983 .983 .981 
Tictactoe .886 .871 .855 .826 .875 .866 .853 .843 .860 .834 .847 .823 
WBC .965 .964 .959 .962 .962 .963 .960 .968 .965 .966 .962 .963 
Votes .959 .962 .954 .960 .953 .952 .961 .960 .958 .961 .954 .954 

Mean .8676 .8710 .8643 .8680 .8674 .8705 .8674 .8645 .8680 .8733 .8653 .8653
Mean Rank 7.21 4.43 7.36 6.36 6.86 5.21 7.14 7.36 6.50 3.21 8.43 7.93  
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Table 4 below shows the mean test set accuracies for the base classifiers in each 
setup. Here it is very obvious that the use of bootstrapping lowers the accuracy of the 
base classifiers significantly. On the other hand, the use of varied architectures is 
always favorable. Finally, resampling using features, as expected, also lowers base 
classifier accuracy. 

Table 4. Mean base classifier accuracy 

Bootstrap No No Yes Yes No No Yes Yes No No Yes Yes 
Features 100% 100% 100% 100% 90% 90% 90% 90% 80% 80% 80% 80% 
Var. Architect. No Yes No Yes No Yes No Yes No Yes No Yes 
Bupa .687 .689 .674 .677 .664 .663 .652 .637 .662 .675 .646 .647 
Cleveland .784 .795 .751 .776 .778 .775 .754 .757 .775 .779 .744 .761 
Crx .850 .849 .832 .829 .833 .830 .825 .814 .840 .829 .818 .815 
Diabetes .760 .760 .755 .744 .750 .751 .738 .738 .756 .752 .737 .739 
German .726 .722 .704 .704 .719 .718 .700 .699 .717 .721 .698 .702 
Hepatitis .785 .795 .787 .799 .771 .802 .773 .780 .780 .810 .783 .787 
Horse colic .770 .780 .742 .773 .750 .774 .734 .744 .751 .766 .739 .747 
Iono .891 .895 .884 .881 .903 .900 .882 .886 .898 .894 .881 .887 
Labor .871 .888 .835 .850 .870 .865 .854 .843 .868 .883 .840 .851 
Sick .965 .964 .961 .960 .960 .962 .957 .959 .961 .962 .959 .958 
Thyroid .981 .981 .980 .979 .980 .980 .979 .979 .981 .981 .979 .978 
Tictactoe .813 .794 .761 .743 .789 .775 .750 .736 .778 .763 .745 .730 
WBC .954 .955 .946 .950 .954 .953 .947 .951 .952 .956 .946 .952 
Votes .941 .946 .931 .942 .928 .928 .930 .933 .929 .936 .918 .928 

Mean .8413 .8437 .8245 .8290 .8320 .8339 .8196 .8183 .8319 .8361 .8167 .8202 

Mean Rank 2.71 1.93 7.57 6.79 5.57 5.14 9.71 9.64 5.57 3.79 10.57 9.00 

Table 5 below shows the mean ensemble diversity for each setup. In this study, di-
versity is measured using the disagreement measure, which is the ratio between the 
number of instances on which one classifier is correct and the other incorrect, to the 
total number of instances. The disagreement between two base classifier is calculated 
using (2). If the output of each classifier Di is represented as an N-dimensional binary  
vector yi, where yj,i=1 if Di recognizes correctly instance zj and 0 otherwise, the nota-
tion Nab means the number of instances for which yj,i=a and yj,k=b.  
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For this pairwise diversity measure, the averaged value over the diversity matrix, 
which is the one used in this study, is calculated using (3). 
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As seen in Table 5, using either a subset of features or bootstrapping clearly raises 
diversity. Varied architectures, on the other hand, does not seem to significantly affect 
the diversity.  
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Table 5. Disagreement 

Bootstrap No No Yes Yes No No Yes Yes No No Yes Yes 
Features 100% 100% 100% 100% 90% 90% 90% 90% 80% 80% 80% 80% 
Var. Architect. No Yes No Yes No Yes No Yes No Yes No Yes 
Bupa .146 .168 .241 .240 .252 .271 .320 .325 .243 .255 .321 .327 
Cleveland .194 .165 .248 .218 .210 .216 .255 .255 .215 .219 .267 .244 
Crx .079 .088 .130 .137 .126 .134 .147 .156 .114 .137 .161 .167 
Diabetes .101 .112 .170 .176 .143 .151 .196 .204 .135 .157 .200 .197 
German .221 .226 .273 .273 .234 .238 .283 .283 .238 .239 .287 .281 
Hepatitis .194 .180 .202 .183 .218 .180 .221 .204 .207 .171 .218 .186 
Horse colic .218 .208 .268 .237 .254 .234 .292 .267 .255 .249 .288 .278 
Iono .101 .103 .123 .129 .100 .111 .130 .127 .105 .113 .132 .123 
Labor .105 .090 .182 .179 .129 .134 .171 .172 .130 .119 .195 .173 
Sick .017 .023 .026 .028 .024 .026 .031 .033 .023 .026 .030 .033 
Thyroid .006 .012 .011 .015 .010 .014 .015 .017 .009 .013 .013 .017 
Tictactoe .218 .236 .284 .290 .253 .271 .302 .312 .262 .266 .305 .308 
WBC .039 .036 .051 .046 .041 .040 .053 .051 .042 .039 .059 .043 
Votes .054 .046 .074 .054 .082 .075 .084 .073 .083 .071 .098 .077 
Mean .1211 .1210 .1630 .1574 .1483 .1497 .1786 .1770 .1471 .1480 .1839 .1752 
Mean Rank 11.07 10.93 5.93 6.14 8.29 7.57 3.00 3.29 8.14 7.86 2.21 3.57 

Ultimately we would like to have a method for selecting or searching for a specific 
ensemble based on training or validation performance. With this in mind, we decided 
to look into how ensemble test accuracy varies with ensemble training accuracy, base 
classifier mean training accuracy and ensemble training diversity. More specifically, 
the 4368 ensembles were first sorted based on these three measures and then divided 
into ten groups. Finally, the average test set accuracy for each group was calculated. 

When considering single data sets, the picture is sometimes quite clear; see the left 
plot in Figure 1 below. Here, both high ensemble training accuracy and high base classi-
fier accuracy are beneficial for test set accuracy. It should be noted, however, that high 
diversity is, on the other hand, detrimental. For other data sets, the picture is, however, 
completely different; see the right plot in Figure 1. Here, it is actually favorable to pick 
ensembles with lower training accuracy, or consisting of less accurate base classifiers.  
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Fig. 1. Test set accuracy vs. ensemble training accuracy, base classifier mean training accuracy 
and ensemble training diversity. Thyroid and German data sets, 80% features, varied architec-
ture and no bootstrap. 
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It is of course slightly awkward to average accuracies over several data sets with-
out adjusting for the different accuracy levels, but Figure 2 below shows the overall 
pictures for setups S10 and S2.  
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Fig. 2. Test set accuracy vs. ensemble training accuracy, base classifier mean training accuracy 
and ensemble training diversity. 80% and 100% features, varied architecture and no bootstrap. 
Averaged over all data sets. 

Although it should be no surprise, it is interesting to note that it is usually advanta-
geous to select ensembles with high training accuracy or consisting of highly accurate 
base classifiers. The most important observation is, however, that it is generally better 
to select an ensemble with low diversity. 

5   Conclusions 

In this paper, several measures to introduce implicit diversity in neural network en-
sembles were evaluated. The main conclusion is that although several setups outper-
formed the baseline setup, not all methods for producing implicit diversity are success-
ful. In this study, bootstrapping increased diversity but also lowered base classifier 
accuracy, leading to an overall decrease in ensemble accuracy. Using heterogeneous 
ensembles, on the other hand, produced more accurate ensembles but without increas-
ing diversity. Resampling using features, finally, lowers base classifier accuracy and 
increases diversity, but how this affects ensemble accuracy is not clear. The experi-
ments also show that although implicit diversity is often beneficial, it is rarely wise to 
select a highly diverse ensemble. As a matter of fact, in this study where ANN ensem-
bles are used, it is for most setups better to pick one of the least diverse ensembles. 
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Abstract. In this paper, we introduce a parallel-free episode that al-
ways has an arc between vertices with the same label and a serially
constructible episode that is embedded into every parallel-free episode
containing all of the serial episodes occurring in it. Then, we show that
an episode is parallel-free if and only if it is serially constructible.

1 Introduction

It is one of the important tasks for data mining to discover frequent patterns
from time-related data. For such a task, Mannila et al. [4] have introduced the
episode mining to discover frequent episodes in an event sequence. Here, the
episode is formulated as an acyclic labeled digraphs of which label is an event
type and of which edges specify the temporal precedent-subsequent relation in an
event sequence, which proposes a richer representation of temporal relationship
than a subsequence in sequential pattern mining (cf., [5]).

Then, Mannila et al. [4] have designed an algorithm to construct episodes
from a parallel episode as a set of events and a serial episode as a sequence of
events. Note that their algorithm is general but inefficient. In order to avoid
such inefficiency, Katoh et al. have introduced the specific forms of episodes,
that is, sectorial episodes [2], diamond episodes [3] and elliptic episodes [1], and
designed efficient algorithms to extract them. Such efficiency follows from the
construction of episodes from just information for occurrences of serial episodes
in an event sequence, which is obtained by scanning an event sequence just once.
On the other hand, there has remained an open problem of what form of episodes
is constructible from just information for occurrences of serial episodes.

Consider the event sequence W consisting of a pair (e, t) of an event type e
and the occurrence time t of e described as Figure 1 (upper left), where all of
the serial episodes occurring in W are described as Figure 1 (upper right). Also
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consider the episodes D1, D2 and D3 described in Figure 1 (lower) as acyclic
labeled digraphs. Note first that all of Di are embedded into W .

Since D2 is not embedded into W with distinguishing an event type a in D2,
D2 is not constructible from just information for occurrences of serial episodes in
D2. On the other hand, while D3 is embedded into W with distinguishing every
event type in D3, D3 is not constructible from just information for occurrences of
serial episodes in D3, because all of the serial episodes occurring in D3 coincide
with ones in a serial episode bcab in W underlined in Figure 1 (upper right).

0 1 2 3 4

a a
b b b

c c

⎧
⎪⎪⎨

⎪⎪⎩

a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc,
aab, aba , abb, abc, aca , acb, acc, bab, bba , bbb, bbc, bca , bcb, bcc, cab, ccb,
abab, abbb, abbc, abca , abcb, abcc, accb, bbab, bbcb, bcab, bccb,
abbab, abbcb, abcab, abccb

⎫
⎪⎪⎬

⎪⎪⎭

b

c c

a

b b

c a

a

b b

c a

c

b

D1 D2 D3

Fig. 1. An event sequence W (upper left), all of the serial episodes occurring in W
(upper right), and episodes D1, D2 and D3 (lower)

In order to solve the problem of what form of episodes is constructible from
just information for occurrences of serial episodes with capturing the above
situations, we formulate both an episode and an event sequence as an acyclic
transitive labeled digraph (ATL-digraph, for short) of which label is an event
type. We say that an ATL-digraph D is parallel-free if D always has an arc
between vertices with the same label. Also we say that an ATL-digraph D is
serially constructible if D is embedded into every parallel-free ATL-digraph con-
taining all of the serial episodes occurring in D. Hence, we show that an episode
(as an ATL-digraph) is parallel-free if and only if it is serially constructible.

2 Episodes as Acyclic Transitive Labeled Digraphs

Let E be a set of event types . Then, a pair (e, t) is called an event , where e ∈ E
and t is a natural number which is the (occurrence) time of the event. For a set
E ⊆ E of event types, we denote {(e, t) | e ∈ E} by (E, t). An event sequence
S on E is a triple 〈S, Ts, Te〉, where S = 〈(E1, t1), . . . , (En, tn)〉 is an ordered
sequence of events such that Ei ⊆ E (1 ≤ i ≤ n) and Ts ≤ t1 < · · · < tn ≤ Te. A
window in S = (S, Ts, Te) is an event sequence W = (w, ts, te) such that ts < Te,
Ts < te and w consists of all of the events (e, t) in S for ts ≤ t < te.

While Mannila et al. [4] have formulated an episode as an acyclic labeled
digraph, we formulate it as an acyclic transitive labeled digraph as follows.

A digraph (or a directed graph) D = (V, A) consists of a finite, nonempty set
V of vertices and a (possibly empty) set A of ordered pairs of distinct vertices.
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We sometimes denote V , A and |V | by V (D), A(D) and |D|, respectively. A
digraph (∅, ∅) is called empty and denoted by ∅. An element of A is called an
arc. For an arc (u, v) ∈ A, u is said to be adjacent to v and v is adjacent from
u. For a digraph D and a vertex v ∈ V , the outdegree of v in D, denoted by
odD(v), is the number of vertices adjacent from v in D and the indegree of v in D,
denoted by idD(v), is the number of vertices adjacent to v in D. Then, we define
ini(D) = {v ∈ V | id(v) = 0} and fin(D) = {v ∈ V | od(v) = 0}. Hereafter, we
refer digraphs (V, A), (V1, A1) and (V2, A2) to D, D1 and D2, respectively.

We denote a digraph (V1 ∪ V2, A1 ∪A2) by D1 ∪D2. For W ⊆ V , we denote a
digraph (V −W, A−{(v, u) ∈ A | v ∈ W or u ∈ W}) by D −W . Also we denote
in(D, W ) = {v ∈ V | (v, w) ∈ A, w ∈ W} and out(D, W ) = {v ∈ V | (w, v) ∈
A, w ∈ W}. Furthermore, D1 is a subgraph of D2 if V1 ⊆ V2 and A1 ⊆ A2. For
S(	= ∅) ⊆ V , the subgraph of D induced by S, denoted by 〈S〉D, is the maximal
subgraph of D of which vertices is S, that is, 〈S〉D = (S, {(u, v) ∈ A | u, v ∈ S}).

A walk in D is an alternating sequence w = v0a1v1 · · · anvn of vertices and
arcs, beginning and ending with vertices, such that ai = (vi−1, vi) for 1 ≤ i ≤ n,
and refer to w as a v0-vn walk. For vertices u and v in V , u is accessible to v (in
D) if there exists a u-v walk in D. A digraph D is acyclic if there exists no v-v
walk in D. A digraph D is transitive if, for u, v, w ∈ V , it holds that (u, w) ∈ A
whenever it holds that (u, v) ∈ A and (v, w) ∈ A. For a set L of labels, a digraph
D is labeled (by L) if every vertex v ∈ V has a label l(v) ∈ L. We call an acyclic
transitive labeled digraph an ATL-digraph. For an ATL-digraph D = (V, A), D−

denotes an acyclic labeled digraph with a minimal number of arcs satisfying that
D = (D−)∗, where (D−)∗ = (V, {(u, v) ∈ V × V | u is accessible to v in D−}).
Note that D− is uniquely determined for every ATL-digraph D.

Two ATL-digraphs D1 and D2 are isomorphic, denoted by D1
∼= D2, if

there exists a bijection ϕ from V1 to V2 such that (u, v) ∈ A1 if and only if
(ϕ(u), ϕ(v)) ∈ A2, and l(v) = l(ϕ(v)) for every v ∈ V1. An ATL-digraph D1

is embedded into an ATL-digraph D2, denoted by D1 � D2, if there exists an
injection from V1 to V2 such that (ϕ(u), ϕ(v)) ∈ A2 whenever (u, v) ∈ A1, and
l(v) = l(ϕ(v)) for every v ∈ V1.

In this paper, we formulate an episode as an ATL-digraph of which label is an
event type. Also we formulate a serial episode a1 · · · an [4] as an ATL-digraph
S = ({v1, . . . , vn}, {(vi, vj) | 1 ≤ i < j ≤ n}) such that l(vi) = ai. We denote
the set of all serial episodes embedded into D by se(D). We deal with an event
sequence S as an ATL-digraph d(S) = (V, A) satisfying the following conditions.

1. For every event (e, t) ∈ S, there exists a vertex ve,t ∈ V such that l(ve,t) = e.
2. For every pair ((e, t), (e′, t′)) ∈ S × S of events, (ve,t, ve′,t′) ∈ A iff t < t′.

It is obvious that, for an event sequence S, d(S) is determined uniquely.

3 Parallel-Free and Serially Constructible Episodes

In this section, we newly introduce a parallel-free and a serially constructible
ATL-digraphs. Then, we show the main result of this paper that an episode as
an ATL-digraph is parallel-free if and only if it is serially constructible.



A Simple Characterization on Serially Constructible Episodes 603

Definition 1 (Katoh & Hirata [1]). Let W and D be ATL-digraphs W =
(V1, A1) and D = (V2, A2), respectively. Then, we say that D is parallel-free in
W if for every pair (u, v) ∈ V2 × V2 such that u 	= v and l(u) = l(v), it holds
that either (u, v) ∈ A1 or (v, u) ∈ A1. Also we say that D is parallel-free if D is
parallel-free in D itself.

For example, every serial episode is parallel-free. Also d(S) for an event sequence
S is parallel-free. Furthermore, if an ATL-digraph D is parallel-free, then D is
parallel-free in an ATL-digraph W such that D � W .

Definition 2 (Katoh & Hirata [1]). An ATL-digraph D is serially con-
structible if it holds that D � W for every parallel-free ATL-digraph W such
that se(D) ⊆ se(W ).

Definition 2 requires that, for ATL-digraphs D and W , every serial episode in
W is corresponding to exactly one serial episode in D. Hence, by regarding D as
an episode and W as a window, Definition 2 claims that a window W contains
the information of occurrences of serial episodes in D without duplication.

Example 1 (Katoh & Hirata [1]). Every serial episode is serially constructible.
On the other hand, let D and W be ATL-digraphs such that D− and W− are de-
scribed as Figure 2. Then, it holds that W is parallel-free and se(D) = se(W ) =
{a, b, c, ab, bb, bc, abc, bbc, abbc}. However, there exists no injection from V (D)
to V (W ), so D 	� W . Hence, D is not serially constructible.

a

b b

b

c

a b b c

D− W−

Fig. 2. D− and W− in Example 1

For three digraphs Di = (Vi, Ai) (i = 1, 2, 3) (that are possibly empty) such that
Vi ∩ Vj = ∅ (1 ≤ i < j ≤ 3) and two sets B1 ⊆ {(u, v) | u ∈ V1, v ∈ V2} and
B2 ⊆ {(u, v) | u ∈ V2, v ∈ V3} of arcs, D1 ⊕B1 D2 ⊕B2 D3 denotes a digraph
(V, A) such that V = V1 ∪ V2 ∪ V3 and A = A1 ∪ A2 ∪ A3 ∪ B1 ∪ B2.

Definition 3. Let D = (V, A) be an ATL-digraph.

1. We say that D has a serial decomposition if there exist ATL-digraphs Di =
(Vi, Ai) (i = 1, 2, 3) and sets Bi (i = 1, 2) of arcs such that D− = D−

1 ⊕B1

D−
2 ⊕B2 D−

3 . In this case, we denote D by [D1, D2, D3].
2. We say that D has a diamond decomposition if there exist ATL-digraphs

Di = (Vi, Ai) (i = 1, 2, 3, 4) and sets Bi (i = 1, 2, 3, 4) of arcs such that
D− = (D−

1 ⊕B1 D−
2 ⊕B2 D−

4 ) ∪ (D−
1 ⊕B3 D−

3 ⊕B4 D−
4 ) and D2 ∪ D3 is

parallel-free in D. In this case, we denote D by [D1, 〈D2, D3〉, D4].
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Lemma 1. Let W be an ATL-digraph. Also let D and E ATL-digraphs embedded
into W having serial decompositions [D1, D2, D3] and [E1, E2, E3]. If D1

∼= E1,
D3

∼= E3 and D2 ∪ E2 are parallel-free in W , then there exists an ATL-digraph
F that is parallel-free in W , embedded into W and has a diamond decomposition
[F1, 〈FD, FE〉, F3] satisfying the following conditions. See Figure 3.

1. [F1, FD, F3] ∼= [D1, D2, D3] and [F1, FE , E3] ∼= [E1, E2, E3].
2. F1

∼= D1(∼= E1) and F3
∼= D3(∼= E3).

3. FD
∼= D2 and FE

∼= E2.
4. For every v ∈ V (F1), it holds that either v ∈ V (D1) or v ∈ V (E1).
5. For every v ∈ V (F3), it holds that either v ∈ V (D3) or v ∈ V (E3).

D1

D2

D3 E1

E2

E3 F1

FD

FE

F3

D E F

Fig. 3. Intuitive figures of D, E and F in Lemma 1

Proof. We show the statement by induction on |D1| and |D3|.
If |D1| = |D3| = 0, that is, D1 and D3 are empty, then E1 and E3 are empty

since D1
∼= E1 and D3

∼= E3. Then, for empty digraphs F1 and F3, the condition
1 holds. Since D2∪E2 is parallel-free, it holds that [∅, 〈D2, E2〉, ∅] is parallel-free.

Suppose that the statement holds for |D1| = |E1| < n and |D3| = |E3| < m,
and consider the case that |D3| = |E3| = m. Let ϕ be a bijection on D1

∼= E1 and
D3

∼= E3. Also let v1 be a vertex in fin(D3) and v2 be ϕ(v1) ∈ E3. It is obvious
that v2 ∈ fin(E3). Let D′

1 = D1, D′
2 = D2, D′

3 = D3 − {v1} and D′
4 = 〈{v1}〉D3 .

Then, we can write D as Figure 4. Here, for a set Ai,j = {(u, v) ∈ A(D) | u ∈
Di, v ∈ Dj} (1 ≤ i < j ≤ 3) of arcs in D, every set A′

i,j of arcs from V (D′
i) to

V (D′
j) in D (1 ≤ i < j ≤ 4) satisfies the following statements.

A′
1,4 = A1,3 ∩ {(v, v1) ∈ A(D) | v ∈ V (D1)}, A′

1,3 = A1,3 − A′
1,4, A′

1,2 = A1,2,
A′

2,4 = A2,3 ∩ {(v, v1) ∈ A(D) | v ∈ V (D2)}, A′
2,3 = A2,3 − A′

2,4,
A′

3,4 = {(v, v1) ∈ A(D) | v ∈ V (D3)}.

Also let E′
1 = E1, E′

2 = E2, E′
3 = E3 − {v2} and E′

4 = 〈{v2}〉E3 . Then, we
can write E as Figure 4. Here, for a set Bi,j = {(u, v) ∈ A(E) | u ∈ Ei, v ∈ Ej}
(1 ≤ i < j ≤ 3) of arcs in E, every set B′

i,j of arcs from V (E′
i) to V (E′

j) in E
(1 ≤ i < j ≤ 4) satisfies the following statements.

B′
1,4 = B1,3 ∩ {(v, v2) ∈ A(E) | v ∈ V (E1)}, B′

1,3 = B1,3 − B′
1,4, B′

1,2 = B1,2,
B′

2,4 = B2,3 ∩ {(v, v2) ∈ A(E) | v ∈ V (E2)}, B′
2,3 = B2,3 − B′

3,4,
B′

3,4 = {(v, v2) ∈ A(E) | v ∈ V (E3)}.

Let D′ = D − {v1} and E′ = E − {v2}. Then, it holds that D′ = [D′
1, D

′
2, D

′
3]

and E′ = [E′
1, E

′
2, E

′
3]. Since |D′

3| = |E′
3| < m and by induction hypothesis, there

exist ATL-digraphs F ′
1 and F ′

3 such that F ′ = [F ′
1, 〈F ′

D, F ′
E〉, F ′

3] is parallel-free
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D′
1

D′
2 D′

3

v1

E′
1

E′
2 E′

3

v2

D E

Fig. 4. Intuitive figures of D and E, where the dashed boxes denote D3 and E3

and embedded into D, and the statements from 1 to 5 replaced FD, FE , Fi, Di

and Ei with F ′
D, F ′

E , F ′
i , D′

i and E′
i hold.

It is sufficient to show how to construct F3 satisfying the statements. Note
that v1 and v2 satisfy (a) v1 = v2, (b) (v1, v2) ∈ A(W ) or (c) (v2, v1) ∈ A(W ).
We denote A′

1,4∪A′
2,4∪A′

3,4 and B′
1,4∪B′

2,4∪B′
3,4 by A′

∗,4 and B′
∗,4, respectively.

F ′
1

F ′
D

F ′
E

F ′
3

v1

(v2)
F ′

1

F ′
D

F ′
E

F ′
3

v1

v2
F ′

1

F ′
D

F ′
E

F ′
3

v2

v1

(a) (b) (c)

Fig. 5. Intuitive figures of F , where the dashed box is F3 and we omit the arcs from
F ′

1, F ′
D and F ′

E to v1 and v2

(a) In the case that v1 = v2, construct the following ATL-digraph F3.

F3 = (V (F ′
3) ∪ {v1}, A(F ′

3) ∪ {(v, v1) ∈ A(W ) | v ∈ V (F ′
3)}).

See Figure 5 (a). We denote an ATL-digraph by adding arcs A′
∗,4 ∪ B′

∗,4 to
[F ′

1, 〈F ′
D, F ′

E〉, F3] by F . Since F ′ is parallel-free, so is F . Since [F ′
1, F

′
D, F ′

3] ∼= D′

and [F ′
1, F

′
E , F ′

3] ∼= E′, it holds that [F ′
1, F

′
D, F3] ∼= D and [F ′

1, F
′
E , F3] ∼= E,

which implies the condition 1. By induction hypothesis, the conditions 2, 3 and
4 also hold. For every v ∈ V (F3), if v 	= v1, then either v ∈ V (D′

3) or v ∈ V (E′
3).

Since D′
3 = D3 − {v1} and E′

3 = E3 − {v1}, it holds that either v ∈ V (D3) or
v ∈ V (E3). If v = v1, then it holds that v1 ∈ V (D3), since v1 ∈ fin(D3). Hence,
for every v ∈ F3, either v ∈ V (D3) or v ∈ V (E3), which implies the condition 5.

(b) Consider the case that (v1, v2) ∈ A(W ). Since F ′
3

∼= D′
3

∼= E′
3 and D3

∼= E3,
(v, v1) ∈ A(D3) if and only if (ϕ(v), v2) ∈ A(E3), where v2 = ϕ(v1). Since
either v ∈ V (D′

3) or v ∈ V (E′
3) for every v ∈ V (F ′

3), there exists a vertex
v ∈ V (F ′

3) such that either (v, v1) ∈ A(D3) or (v, v2) ∈ A(E3). For the former
case, if (v, v1) ∈ A(D3), then there exists an arc (v, v2) ∈ A(W ), since W is
transitive and (v1, v2) ∈ A(W ). Hence, there exists a vertex v ∈ V (F ′

3) such that
(v, v2) ∈ A(W ), so construct the following ATL-digraph F3, see Figure 5 (b).

F3 = (V (F ′
3) ∪ {v2}, A(F ′

3) ∪ {(v, v2) ∈ A(W ) | v ∈ V (F ′
3)}).

We denote an ATL-digraph by adding arcs A′∗,4 ∪ B′∗,4 to [F ′
1, 〈F ′

D, F ′
E〉, F3] by

F . Then, we can check that F satisfies the conditions as similar as the case (a).
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(c) For the case that (v2, v1) ∈ A(W ), there exists a vertex v ∈ V (F3) such
that (v, v1) ∈ A(W ), so construct the following ATL-digraph F3, see Figure 5 (c).

F3 = (V (F ′
3) ∪ {v1}, A(F ′

3) ∪ {(v, v1) ∈ A(W ) | v ∈ V (F ′
3)}).

We denote an ATL-digraph by adding arcs A′
∗,4 ∪ B′

∗,4 to [F ′
1, 〈F ′

D, F ′
E〉, F3] by

F . Then, we can check that F satisfies the conditions as similar as the case (a).
We can give the similar proof of the case that |D1| = |E1| = n. ��

Theorem 1. Every parallel-free ATL-digraph is serially constructible.

Proof. For a parallel-free ATL-digraph F , we show the statement by induction
on |F |. If |F | ≤ 1, then F is a serial episode, so the statement holds.

Suppose that the statement holds for |F | < n and consider the case that
|F | = n and F is not a serial episode. Then, there exist vertices u and v in
F such that (1) (u, v) 	∈ A(F ) and (2) (v, u) 	∈ A(F ). Let acc(F, v) = {v} ∪
in(F, {v})∪out(F, {v}). Since F is transitive, u ∈ acc(F, v) implies that either u
is accessible to v in F or v is accessible to u in F . Then, for this v, we construct
the following ATL-digraphs F1, F2, F3 and F4:

F2 = 〈V (F ) − acc(F, v)〉F ,
F1 = 〈in(F, {v}) ∩ in(F2, {v})〉F ,
F4 = 〈out(F, {v}) ∩ out(F2, {v})〉F ,
F3 = 〈V (F ) − (V (F1) ∪ V (F2) ∪ V (F4))〉F .

For example, consider an ATL-digraph F such that F− is described in Figure 6
(left). Suppose that v ∈ V (F ) in Figure 6 (left) satisfies the above condition.
Then, we obtain F−

i (i = 1, 2, 3, 4) as the dashed boxes in Figure 6 (right).

v
F−

1

F−
2

F−
3

F−
4v

Fig. 6. ATL-digraphs F− (left) and F−
i (i = 1, 2, 3, 4) (right)

Then, from F , we can construct the ATL-digraphs X = [F1, F2, F4] and Y =
[F1, F3, F4]. By the construction of Fi, it is obvious that v ∈ V (F3) and u ∈
V (F2), so it holds that |X | < n and |Y | < n. Also it holds that se(X) ⊆ se(F )
and se(Y ) ⊆ se(F ). Since F is parallel-free, F2 ∪ F3 is also parallel-free.

Let W be a parallel-free ATL-digraph such that se(F ) ⊆ se(W ). Then, it
holds that se(X) ⊆ se(W ) and se(Y ) ⊆ se(W ). Since X and Y are serially
constructible and by induction hypothesis, it holds that X � W and Y � W .

By regarding X and Y as D and E in Lemma 1, there exists an ATL-digraph
Z = [F1, 〈FD, FE〉, F4] that is parallel-free in W and embedded into W . Since
F ∼= Z, it holds that F � W . Hence, F is serially constructible. ��

Theorem 2. Every serially constructible ATL-digraph is parallel-free.
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Proof. It is sufficient to show that, for every ATL-digraph D = (V, A) having
a pair (u, v) ∈ V × V such that u 	= v, l(u) = l(v) and (u, v), (v, u) 	∈ A, there
exists an ATL-digraph W such that se(D) ⊆ se(W ) but D 	� W .

Let Au and Au→v be the following sets of arcs.

Au = {(w, u) ∈ A | w ∈ in(D, {u})} ∪ {(u, w) ∈ A | w ∈ out(D, {u})},
Au→v = {(w, v) | w ∈ in(D, {u})} ∪ {(v, w) | w ∈ out(D, {u})}.

Also let W be an ATL-digraph (V − {u}, (A − Au) ∪ Au→v). Then, D − {u}(=
(V − {u}, A − Au)) is a subgraph of W .

Let Sn
k (u) = v1 · · · vk−1uvk+1 · · · vn and Sn

k (v) = v1 · · · vk−1vvk+1 · · · vn be
serial episodes containing u and v at k with length n (n ≥ 1, 1 ≤ k ≤ n). Then,
for every Sn

k (u) embedded into D, there exists an Sn
k (v) embedded into W . Since

l(u) = l(v), it holds that Sn
k (u) ∼= Sn

k (v). Since D − {u} is a subgraph of W ,
every serial episode not containing u and embedded into D is embedded into W .
Then, it holds that se(D) ⊆ se(W ). However, since |W | = |D| − 1, there exists
no injection from V (D) to V (W ), which implies that D 	� W . ��

4 Conclusion

In this paper, we have shown that an episode is parallel-free if and only if it is
serially constructible. This equivalence result gives a simple characterization on
serially constructible episodes, and then concludes that a parallel-free episode is
one of the theoretical limitations on efficiently constructing episodes.

It is a future work to design an efficient algorithm to extract parallel-free
episodes from an event sequence. Also it is an important future work to extend
a parallel-free and serially constructible episodes to subsequences [5].
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Abstract. Support Vector Machine (SVM) results in a good generaliza-
tion performance by employing the Structural Risk Minimization (SRM)
principle. However, one drawback is O(n3) training time complexity. In
this paper, we propose a pattern selection method designed specifically
for Support Vector Regression (SVR). In SVR training, only a few pat-
terns called support vectors are used to construct the regression model
while other patterns are not used at all. The proposed method tries to se-
lect patterns which are likely to become support vectors. With multiple
bootstrap samples, we estimate the likelihood of each pattern to be-
come a support vector. The proposed method automatically determines
the appropriate number of patterns selected by estimating the expected
number of support vectors. Through the experiments involving twenty
datasets, the proposed method resulted in the best accuracy among the
competing methods.

1 Introduction

Support Vector Machines (SVM), developed by Vapnik based on the Structural
Risk Minimization (SRM) principle [1], has performed with a great generalization
accuracy [2]. Support Vector Regression (SVR), a regression version of SVM, was
developed to estimate regression functions [3]. SVM is capable of solving non–
linear problems, but, has relatively high training time complexity O(n3) and
training memory span O(n2) where n is the number of training patterns.

Such algorithms as Chunking, SMO, SVMlight and SOR have been proposed
to reduce the training time with time complexity T · O(nq + q) where T is the
number of iterations and q is the size of working set [4]. However, their training
time complexities are still strongly related to the number of training patterns.
Another direction of research focused on selecting important patterns from the
training dataset directly with minimum accuracy loss. SVM–KM [5], NPPS [6],
Cross–Training based method [7] and Linear SVM based method [8] have been
proposed. However, the binary class labels of training data are used to implement
those approaches, which makes those approaches suitable for the classification
problems, but not for the regression problems.

Recently, pattern selection methods designed especially for SVR such as HSVM
[9] and Sun’s method [10] have been proposed. However, both HSVM and Sun’s
� Corresponding author.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 608–615, 2008.
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method have a couple of critical parameters which are to be empirically de-
termined. A stochastic pattern selection method was proposed which estimates
the margin space of ε–insensitive tube (ε–tube) [11] and was successfully ap-
plied to a response modeling problem [12]. However, those three methods tend
to degrade accuracy when they train high dimensional datasets. Moreover the
number of patterns selected was manipulated with parameters or thresholds to
be determined by users without any guidelines.

In this paper, we propose a bootstrap based pattern selection method. For
better performances, we have focused on selecting support vectors. SVR can
construct the same regression model with only support vectors. The proposed
method tries to identify patterns which are likely to become support vectors.
Since support vectors are always located outside the ε–tube under the ε–loss
function. by multiple bootstrap samples, the number of times a pattern located
outside the ε–tube are calculated, which is used as the likelihood of a pattern to
become a support vector. On the other hand, the number of patterns selected is
the most critical parameter. The proposed method does not leave the number
of pattern selected as a parameter, but determines by itself. We estimate the
expected number of support vectors, which is used as the appropriate number of
patterns selected. In our experiments, twenty datasets were used while HSVM,
Sun’s method and random sampling were adopted as benchmark methods. We
compared their results in terms of the training time and Root Mean Squared
Error (RMSE).

The remaining of this paper is organized as follows. In Section 2, we provide
the main idea of the proposed method and state the algorithm. In Section 3, we
present details of datasets and parameters for experiments as well as the result.
In Section 4, we summarize the results and conclude the paper with a remark
on limitations.

2 Pattern Selection for Support Vector Regression

SVR can train the same regression model even if input patterns were only sup-
port vectors. Hence, in some sense, support vectors are an ideal subset to be
selected. However, before training, there is no way to identify support vectors
from all training patterns. In this paper, we propose a bootstrap approach which
estimates a likelihood of each pattern to become a support vector.

We construct k bootstrap samples Dj = {(xj
i , y

j
i )}l

i=1 (j = 1, · · · , k) of
size l (l � n) from the original dataset D = {(xi, yi)}n

i=1. We then train an
SVR with each bootstrap sample Dj and obtain k SVR regression functions fj

(j = 1, · · · , k). Every pattern xi in the original dataset D is evaluated by each
regression function fj , whether it is located inside or outside the ε–tube. If pat-
tern xi is located outside the ε–tube of fj, the pattern is marked, i.e. mij = 1.
We then calculate Li =

∑k
j=1 mij , the number of total markings of the pattern

xi, which is used as the estimated likelihood of xi to become a support vec-
tor. At the same time, we calculated the expected number of support vectors
S = 1

k

∑k
j=1 sj , (where sj =

∑n
i=1 mij) by averaging the number of patterns
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Fig. 1. (a) Original dataset and an SVR trained on it, (b) a bootstrap sample and an
SVR trained on it, (c) original dataset patterns outside the ε–tube marked as red and
the others as blue and (d) selected patterns and the resulting SVR trained using them

marked by fj. After calculating Li and S, we select S patterns deterministically
with largest Li. Or, we select S patterns stochastically based on the probability

Li∑ n
i=1 Li

. Finally, an SVR is trained again with the selected patterns. Fig. 1 shows
an example of the proposed method with a toy dataset while Fig. 2 presents the
algorithm.

The number of patterns selected is a key factor of the proposed method. In the
proposed method, a pattern located farther from the regression function is more
likely to be selected. If the number of patterns selected is much smaller than the
necessary number, only noisy patterns can be selected. On the other hand, if the
number of patterns selected is much larger than the necessary number, pattern
selection falls into a meaningless effort. By introducing S, we get a guideline of
the number of patterns selected.

3 Experimental Results

Our experiments were conducted on twenty datasets including four artificial
datasets and sixteen real world benchmark datasets. Real world benchmark
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ALGORITHM

1. Initialize the number of bootstrap samples, k
Initialize the number of patterns in each bootstrap sample, l

2. Make k bootstrap samples of size l, Dj for j = 1, · · · , k, from the original dataset D
by random sampling without replacement

3. Train SVR fj with Dj , ∀j

4. Evaluate the original dataset D by fj , ∀j

5. mij = 1, if a pattern xi is found outside the ε–tubes of fj (otherwise mij = 0)

6. Calculate Li =
∑k

j=1mij

7. Calculate S = 1
k

∑k
j=1 sj , where sj =

∑n
i=1mij

8. Select S patterns deterministically with largest Li,

or select S patterns stochastically without replacement according to Li∑n
i=1 Li

.

9. Train final SVR with S selected patterns

Fig. 2. The algorithm of the proposed method

datasets including time series datasets were gathered from Delve datasets1, Time
Series Data Library (TSDL)2, Statlib3 and Korean Stock Market4. All datasets
are summarized in Table. 1.

Artificial dataset 1 was originally introduced from [13] based on a mathemat-
ical function, y = sin πx

πx + ξ where x ∈ [−3, 3] and ξ ∼ N(0, 0.52). Artificial
dataset 2 introduced from [11] was generated based on y = 2 cos (15x)+(ξ1 +ξ2)
where x ∼ Beta(1.5, 1), ξ1 ∼ N(0, 0.52) and ξ2 ∼ N(0, sin 2(x + 1)2). Artificial
dataset 3 is newly generated from a mathematical function, y = sin (2x) + ξ
where x ∈ [0, 5] and ξ ∼ N(0, 0.52). Add10 dataset is another artificial dataset
gathered from the Delve datasets. We used only five relevant input features ex-
cluding five noise terms. Time series datasets were re–formulated as regression
problems by using the previous 10 values to estimate the following one value,
which is a typical way to solve time series problems. The Foreign Exchange
dataset was re–formulated as a regression problem to estimate British/US ex-
change rate by using other 6 nations’ exchange rates while the wind dataset was
re–formulated to estimate the wind speed of Dublin station using observed other
11 stations’ wind speed. For evaluating performances, the original dataset was
randomly split into training and test data. The hyper–parameters of SVR were
determined by cross–validation with C × ε = {0.1, 0.5, 1, 3, 5, 7, 10, 20, 50, 100}×
{0.01, 0.05, 0.07, 0.1, 0.15, 0.3, 0.5, 0.7, 0.9, 1}. RBF kernel was used as a kernel
function and the kernel parameter σ was fixed to 1.0 for all datasets. All datasets
were normalized.

HSVM, Sun’s method and random sampling were implemented to be com-
pared. For HSVM, the partitioning parameter was set to 10 and similarity
threshold was set to be the average value of similarities of all patterns. For

1 Delve Datasets: http://www.cs.toronto.edu/∼delve/data/datasets.html/
2 TSDL: http://www-personal.buseco.monash.edu.au/∼hyndman/TSDL/
3 Statlib: http://lib.stat.cmu.edu/datasets/
4 Korean Stock Market: http://www.kse.or.kr/

http://www.cs.toronto.edu/~delve/data/datasets.html/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://lib.stat.cmu.edu/datasets/
http://www.kse.or.kr/
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Table 1. Summary of the datasets used in the experiments

Numb. Name � Train � Test � Attribute Origin Feature
1 Artificial Dataset 1 1000 1000 1 [13] Artificial
2 Artificial Dataset 2 1000 1000 1 [11] Artificial
2 Artificial Dataset 3 1000 1000 1 Generated Artificial
4 Add10 2000 2000 5 Delve Datasets Artificial
5 Santa Fe A 2000 2000 10 Santa Fe Competition Time series
6 Santa Fe D 2000 2000 10 Santa Fe Competition Time series
7 Santa Fe E 1500 500 10 Santa Fe Competition Time series
8 Sun Spot 1500 500 10 TSDL Time series
9 Melbourne Temperature 2000 1000 10 TSDL Time series
10 Gold 700 300 10 TSDL Time series
11 Daily IBM 2000 1300 10 TSDL Time series
12 KOSPI 200 2000 1000 10 Korean Stock Market Time series
13 S&P 500 2000 1000 10 TSDL Time series
14 Foreign Exchange 2000 2000 7 TSDL Non–time series
15 Wind 2000 2000 11 Statlib Non–time series
16 Abalone 2000 2000 10 Delve Datasets Non–time series
17 Bank 2000 2000 8 Delve Datasets Non–time series
18 Census House 2000 2000 8 Delve Datasets Non–time series
19 Computer Activity 2000 2000 12 Delve Datasets Non–time series
20 Pumadyn Family 2000 2000 8 Delve Datasets Non–time series

Sun’s method, the k of k–NN was fixed to 5 and the number of patterns selected
was set to be similar to S from the proposed method. The parameters of the
proposed method, k and l, were fixed to 10 and 10% of n, respectively. We eval-
uated the performances of each method by RMSE and training time (sec.). All
experimental results were averaged over 30 repetitions.

Fig. 3 shows the experimental results of artificial datasets including three ar-
tificial datasets and Add10 dataset from the Delve datasets. The pairs of RMSE
and training time in seconds are plotted corresponding to each method. The
closer a result is plotted to the origin, the better the method performs. The solid
line indicates the results of the random sampling from 10% to 100% of n. Marked
squares and marked circles are experimental results of the proposed method
with the deterministic selection (DET) and the stochastic selection (STO), re-
spectively. The results of random samples were polynomially decreased as the
number of patterns selected goes smaller. As Fig. 3 shows, the propose method
shows competitive results. The proposed method resulted better performances
than benchmark methods in terms of pairs of RMSE and training time. Random
sampling resulted the best for artificial dataset 1. In this case, artificial dataset
1 was so easy that random sampling can handle it sufficiently.

Table 2 shows the experimental results of sixteen real world datasets in terms
of RMSE. ‘ � Dataset’ represents the index number of datasets given in Ta-
ble 1 while ‘R30’, ‘R50’ and ‘R70’ represent the random sampling with 30%,
50% and 70% of original patterns, respectively. The deterministic selection of
the proposed method resulted the best accuracy among the benchmark meth-
ods for fifteen datasets. Table 3 shows the observed training time. Each cell of
Table 3 represents the percentage of training time of a method compared to orig-
inal training time. HSVM and the stochastic selection of the proposed method
ranked 1st for eight datasets and for five datasets, respectively. The deterministic
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Fig. 3. Experimental results of artificial datasets

Table 2. Experimental results of sixteen real world datasets (RMSE)

� Dataset R30 R50 R70 HSVM Sun’s Proposed Proposed

Method (DET) (STO)

5 0.0458 0.0368 0.0321 0.0368 0.0352 0.0313 0.0318

6 0.3457 0.3058 0.2817 0.2861 0.2839 0.2693 0.2827

7 0.5595 0.5457 0.5379 0.5352 0.5439 0.5297 0.5316

8 0.6575 0.6325 0.6092 0.6002 0.5906 0.5840 0.5932

9 0.7359 0.7226 0.7175 0.7226 0.7201 0.7112 0.7115

10 0.2007 0.1865 0.1785 0.1630 0.1756 0.1668 0.1691

11 0.0707 0.0687 0.0665 0.0693 0.0694 0.0681 0.0690

12 0.0887 0.0862 0.0829 0.0843 0.0832 0.0826 0.0839

13 0.4456 0.4414 0.4237 0.4017 0.4709 0.3958 0.4284

14 0.0991 0.0821 0.0755 0.0814 0.0735 0.0721 0.0745

15 0.3735 0.3302 0.2977 0.3060 0.2807 0.2704 0.2821

16 0.7011 0.6819 0.6718 0.6841 0.6802 0.6647 0.6667

17 0.9299 0.9054 0.8909 0.9069 0.8922 0.8748 0.8789

18 0.7871 0.7616 0.7419 0.7608 0.7410 0.7312 0.7387

19 0.5720 0.5227 0.5001 0.5329 0.4829 0.4745 0.4852

20 0.8065 0.7672 0.7415 0.7623 0.7590 0.7164 0.7230

selection of the proposed method used much training time than HSVM, but, still
used only around 15∼50% of original training time.
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Table 3. Experimental results of sixteen real world datasets. Each cell indicates the
percentage of training time of a method compared to original training time.

� Da- HSVM Sun’s Proposed Proposed � Da- HSVM Sun’s Proposed Proposed

taset Method (DET) (STO) taset Method (DET) (STO)

5 69.83 79.64 45.40 44.52 13 23.57 31.94 2.91 3.10

6 26.56 38.58 40.29 33.67 14 35.25 38.85 46.07 40.51

7 23.49 26.79 24.81 27.68 15 22.76 47.67 52.26 48.10

8 24.85 20.14 17.43 14.58 16 33.46 20.83 17.46 15.38

9 15.48 16.54 14.97 14.41 17 21.59 27.70 37.47 34.40

10 29.95 98.01 16.15 17.60 18 20.61 27.65 30.47 27.11

11 23.64 18.19 20.69 16.74 19 17.76 27.93 36.29 28.57

12 28.69 27.62 41.78 35.55 20 22.22 27.77 42.65 40.10

Table 4. Summary of the experimental results

HSVM Sun’s Method Proposed (DET) Proposed (STO)

Frequency of ranking 1st 2 0 18 0

Averaged Std. 0.0100 0.0085 0.0055 0.0091

Averaged - - 87.78 73.44

Sensitivity (%) (73.44∼96.96) (54.12∼84.45)

Comparison to RMSE Increased (%) 8.63 7.36 2.58 5.16

train all patterns Training Time Used (%) 28.58 49.3 30.35 26.75

All the experimental results are summarized in Table. 4. Compared to bench-
mark methods, the deterministic selection of the proposed method, which showed
the smallest standard deviation, ranked 1st for eighteen datasets over twenty
datasets in terms of RMSE. Averaging over all experimental results, the pro-
posed method with the deterministic selection can train SVR using 30.35% of
original training time with only 2.58% of increased error. The proposed method
with the stochastic selection increases RMSE about 2.5% than the proposed
method with the deterministic selection, but it was still competitive. The sen-
sitivity analysis shows that the proposed method selected on average 87.78%
deterministically and 73.44% stochastically of the actual support vectors.

4 Conclusion

This paper provides a new pattern selection method to reduce training time
of SVR. Only those patterns that were likely to become support vectors were
selected and used for training. The proposed method automatically determined
the number of patterns selected, which was a key factor of obtaining good results.
Twenty datasets including sixteen real world datasets were analyzed. The results
showed that the generalization performance of the proposed method was better
than other benchmark methods. It performed well for diverse datasets.

Another strong point of the proposed method is that it has fewer critical pa-
rameters than benchmark methods. Several parameters such as similarity thresh-
old and the number of patterns selected affect the accuracy but are ambiguous to
users. Not only is there no guideline for those parameters, but also a parameter
set determined best to a certain dataset is rarely best to other datasets. However,
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the proposed method only needs to set k and l which do not affect the accuracy
directly. In this paper, the proposed method showed good performances even
though we used only one fixed parameter set.

There are limitations of the current work. The result of the proposed method
can be largely affected by the number of support vectors. This method may select
too many patterns for some applications that have a lot of support vectors.
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Abstract. Participants in on-line discussion forums and decision mak-
ers are interested in understanding real-time communications between
large numbers of parties on the internet and intranet. As a first step
towards addressing this challenge, we developed a prototype to quickly
identify and track topics in large, dynamic data sets based on assign-
ment of documents to time slices, fast approximation of cluster centroids
to identify discussion topics, and inter-slice correspondence mappings of
topics. To verify our method, we conducted implementation studies with
data from Innovation Jam 2006, an on-line brainstorming session, in
which participants around the globe posted more than 37,000 opinions.
Results from our prototype are consistent with the text in the postings,
and would have required considerable effort to discover manually.

Keywords: discussion mining, topic detection and tracking.

1 Introduction

The past decade has witnessed the proliferation of computers and an explosive
growth in electronically stored data. Contributions by the data mining commu-
nity have been helpful for managing data archives, however, some traditional
approaches are inadequate, because the volume of output from analyzing mas-
sive archives is too large for human understanding. Temporal analysis of dynamic
databases has added another dimension to an already difficult technical prob-
lem. Nevertheless, impressive progress has made in understanding dynamic text
documents sets. Examples of work in this area include analysis of news articles1,
Web search logs, e-mails, blogs2, customer call center data, and US patent data.
Recently, researchers have successfully identified and tracked the evolution of
topics in massive archives of text documents – over 100 years of journal archives
[1]; 9 months of personal e-mail, 17 years of Neural and Information Processing
Systems, and over 200 years of presidential state-of-the-union addresses [7]. The
works are detailed and accurate, but require extensive computations.

The focus of our work is to develop computationally fast methods to perform
real-time analysis of the content of very large and dynamically evolving sets of
1 National Inst. of Standards & Technology Text REtrieval Competition: trec.nist.gov
2 blogpulseTM is a trademark of Nielsen BuzzMetrics, Inc.: www.blogpulse.com

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 616–625, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Tracking Topic Evolution in On-Line Postings 617

unformatted text data, such as on-line discussion records, internet postings, and
e-mail. Detailed analysis is forsaken for speed since prospective participants need
a quick means for browsing topics and catching up on on-going discussions.

Two works that are very closely related to ours analyzed on-line discussion
data from a different perspective. Spangler et al. [6] developed a system to help
human analysts in interactive text mining using vector space models (VSMs)
and a k-means algorithm to generate the classes for postings from three on-line
discussion sessions, each of which produced thousands of postings by thousands
of participants around the world over a 72-hour period: ValuesJam (2003), IBM
WorldJam (2004), and HabitatJam (2005). The goal of our work is not just to
aid, but replace human labor as much as possible.

Murakami et al. [4] developed a system to analyze a dataset from Innovation
Jam (2006) by creating network graphs of relationships between postings and
the importance values of individual postings. Graphs of postings (nodes) and
their relationships (edges, lines) are based on data from the ”reply to” feature.
Phrases that express opinions about previous postings (e.g., ”I like this idea”
or, ”I disagree”) are extracted as a first step for evaluating the importance of a
posting. Five types of opinions are identified using pattern dictionaries: applause,
agreement, disagreement, suggestion, and fact indication. Opinions that are a
direct reply to a posting are given greater importance weight than opinions that
are a reply to a reply to a posting. Users can quickly spot a posting that is central
to discussions since the size of a node is proportionate to its importance value.

We developed a prototype to quickly and automatically identify topics and
track their flow during on-line discussions, i.e., unedited text postings by thou-
sands of different people. The system identifies topics through computationally
inexpensive and fast approximation of cluster centroids. To track the evolution of
topics, documents are assigned to overlapping slices of manageable size, based on
time stamp information. Documents on a topic of interest that lie in an overlap
are used to find similar documents in the subsequent slice (Section 2). We tested
our method through implementation studies using our prototype and real-world
data from I-Jam, a world-wide on-line discussion session (Section 3). The final
section proposes some directions for future research (Section 4).

2 Topic Identification and Tracking

This section introduces algorithms for identifying and tracking topics. We present
an overview of steps performed by our prototype before details of the algorithms.

To enable fast processing, our system divides a large set of documents into
overlapping time slices, each of which contains several thousand documents
(Fig. 1). Next, it applies a text parser [5] and automatically constructs a VSM
with term frequency-inverse document frequency (tf-idf) weighting for each time
slice since topics and word usage change over time. We use the cosine of the
angle defined by vectors to determine document similarity. When the collec-
tion of documents is large, principal component analysis (PCA) will be used
to address the curse of dimensionality problem. The VSM will be projected
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onto a subspace spanned by the first few hundred principal components of the
document-keyword matrix. PCA-based dimensional reduction also resolves some
difficulties caused by noise (e.g., misspellings, acronyms, slang), synonymy and
polysemy and reduces the need for constructing domain-specific dictionaries for
unedited, unstructured text.

Our system applies a topic identification algorithm (Algorithm 1) to the first
time slice to find sets of documents on similar topics. Documents in the overlap
between the first and second time slices are identified by their document num-
bers, which are assigned in chronological order with respect to posting time. Doc-
uments that lie in the overlap help track a topic. Their corresponding document
vectors in the second time slice are input as seeds (queries) to find documents
on similar topics that were posted during the latter half of the second time slice
(Fig. 1). The system carries out an analogous procedure to identify and track
topics in subsequent time slices.

Topic Identification and Tracking

1. Assign documents in collection to overlapping time slices.
2. Construct a vector space model for each time slice.
3. Apply Algorithm 1 to the first time slice to identify topics.
4. Use Algorithm 2 and documents in the overlap between the first

and second time slices to track the evolution of topics.
5. Follow an analogous procedure for subsequent time slices.

.  .  .

.  .  .

1              8000        8001              16000                         32000                  37037       

      4000            12000                              28000           36000  36001 37037

Fig. 1. Assign data to overlapping slices of 8000 posts each. Identify documents on
similar topics in a slice (represented by ovals), then use documents in slice overlaps as
seeds to find documents on similar topics in the next time slice.

Our prototype uses principal components as queries because the vectors point
in directions with the most information about the contents of a database. Ini-
tial steps of a clustering algorithm identify sets of documents on a topic [2].
The algorithm must be a soft clustering algorithm (i.e., it permits cluster over-
laps), because topics that appear in postings may be inter-related. Since our
goal is to find topics (not clusters), our system navigates around the difficulty
of determining borders of clusters and the cohesiveness of clusters by using only
documents that lie in the core of clusters to estimate the centroid. The centroid
vector gives a keyword description of topics covered in the cluster. Empirical ob-
servations from implementations indicate that using 20 to 30 documents in the
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cluster core is sufficient for computing a good approximation of the centroid for
topic identification. Our system does not automatically use 30 top ranking doc-
uments to approximate a centroid, because some small clusters may have fewer
than the default number. To check the cluster size, our prototype computes the
plot of document relevancy (vertical axis) as a function of document relevancy
ranking (horizontal axis). If the slope undergoes a large change before the 30th
ranked document, the system only considers documents left of the change point
to approximate the centroid (Fig. 2).

Algorithm 1: Topic Identification

1. Make vector space model of documents.
2. Compute principal components of document vectors.
3. Perform dimensional reduction (if necessary).
4. Find documents on the same topic.

- Find documents along principal components.
- Use a high ranking document as query.
- Retrieve documents with high relevancy ranking.

5. Find set of documents to approximate centroid of topic.
- Sort documents (from highest to lowest relevancy).
- Plot sorted documents as a function of relevancy.
- Compute rate of change in relevancy.
- Check for sudden changes before 30th document (Fig. 2).

6. Compute weights of keywords for centroid
- Sum weights for all keywords in top 30 documents
(or all documents for smaller clusters).

- Divide by number of documents.
- Order keywords (from largest to smallest weight).

To track the evolution of topics, divide the document set into overlapping
time slices, and construct a new VSM for each time slice since keywords may
become obsolete, and important new keywords may be introduced over time.
Identify topics and relevant documents for the first time slice using Algorithm 1.
To track a topic to the second time slice, use Algorithm 2. Identify documents
that lie in the slice overlap using document identification numbers that have
been assigned in chronological order, according to the posting time. Documents
that lie in the latter half of a time slice are used to find similar documents and
topics in next slice (Fig. 1). An analogous process for identifying and tracking
topics is carried out for subsequent time slices.

Algorithm 2: Topic Tracking

1. Assign docs to overlapping time slices (Fig. 1).
2. Perform VSM of docs for each time slice.
3. Identify topics and relevant docs in first time slice (Alg. 1).
4. Track topic from the first to second time slice by identifying

docs in slice overlap. Use them to find similar topics in
second time slice (Fig. 1).
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Fig. 2. Identify topics covered by a set of document vectors close to document 2141 by
computing an approximation for the centroid. Up to 30 documents close to document
2141 are used. If the relevancy ranking curve experiences a sharp drop before the
30th document, only documents to the left of the drop are used for approximating the
centroid. In this example, the top 12 documents are used to approximate the centroid.

5. Find new topics in second time slice (as in Step 3)
6. Track topic in subsequent time slices using analogous procedure

(Steps 4-5).

3 Implementation Studies

We conducted implementation studies with real-world data to identify and track
topics in a collection of opinions (text) that were posted during the first phase
of 2006 Innovation Jam (I-Jam), an on-line brainstorming session organized
by IBM Corporation3 [6]. Participants could post new trains of thought or re-
ply to existing postings in any one of several categories, known as forums. Al-
though postings were more formal than chat rooms, they still contained mate-
rial not commonly found in edited text (e.g., typos, grammatical errors, slang,
emoticons). Participants were permitted but not required to read posts by
others.

During the first Jam, participants were asked to rate ideas in postings, help
analyze events, and communicate findings to other participants. This arrange-
ment led to an unintentional bias favoring ideas introduced early on. Over suc-
cessive Jams, text mining technologies were introduced to help analyze postings.
However, the number and rate of postings has increased so much that a new
generation of more powerful tools are needed to:

3 www.globalinnovationjam.com/get started2006/
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– find and identify topics under discussion;
– determine the discussion set to which each untagged posting4 belongs;
– analyze and format results in near real-time during a Jam so people can

understand enough to begin participating at any intermediate time5;
– analyze postings in-depth after conclusion of a Jam for deeper understanding

and insight about opinions and views of participants.

Data analysis software reduces labor and is relatively free of unintentional human
bias. We believe that systems, such as ours, that can analyze large collections of
text documents in (almost) real-time, with low associated hardware costs, will
interest Jam organizers and decision-makers for large organizations.

3.1 2006 Innovation Jam Data Set

The 2006 I-Jam consisted of two distinct phases. The aim of the first was to create
new ideas, then concrete proposals for design and implementation of prototypes.
The ideas were reviewed off-line to determine a set of top proposals. The focus
of the second phase was testing and refining the top proposals. We analyzed over
37,000 opinions posted during the first phase over a 78 hour period [4] on four
pre-selected subjects:

– Going Places - transforming travel, transportation, recreation & entertainment;
– Finance & Commerce - the changing nature of global business and commerce;
– Staying Healthy - the science and business of well-being; and
– A Better Planet - balancing economic and environmental priorities.

Omission of 200-300 postings in languages other than English, left a final set of
37,037 documents. We divided the data set into overlapping time slices consisting
of 8000 documents each. Each slice had 50% overlap with those directly preceding
and following it so that all documents belong to one overlap, with the exception
of those in the first half of the first time slice and the latter half of the last time
slice. For larger data sets, more documents may be assigned to each slice with
a different degree of slice overlap, depending on the intended use, properties of
the data, hardware requirements, and financial constraints.

A shallow parser extracted keywords (nouns, verbs, adjectives) and conducted
parts-of-speech tagging [5]. Standard and domain specific stopwords were deleted,
as were words that appeared less than 10 times in a slice. If a larger number
of documents are assigned to each slice, then the cutoff point for removing rare
terms should be set higher. Principal components of the document vectors in
each slice were computed using SVDLIBC, version 1.346. Each slice contained
8000 documents and approximately 3000 keywords. Given extracted keywords
and their frequency counts, the computations to determine the tf-idf VSM and
all 8000 principal components took about 10 minutes with no special tuning
4 The posting has not been marked by the authors as a ”reply-to” another posting.
5 Recent participants have commented on the difficulty of joining discussions once the

Jam has started since there are too many back postings to read.
6 SVDLIBC: www.tedlab.mit.edu:16080/d̃r/SVDLIBC/
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for each time slice on an IBM ThinkPad T42, model 2373-J8J with 1.0 GB of
main memory. We can expect much faster performance in a working system
since only the first several hundred (not all) components will not be computed.
Computations will be easily under a minute with tuning and increase in the
main memory.

Table 1. Results from query using 2nd principal component (PC)

doc. # dist to PC title

2141 0.168724 Generating power for the plants

1932 0.267695 Saving energy

2251 0.249761 Generate solar to consume less fossil fuels

2542 0.153877 IBM can go GREEN

4083 0.145951 IBM becoming a role model

4597 0.136097 More solar energy

4607 0.134192 Maximizing existing resources ...

3.2 Experimental Results

To find topics in the first time slice, principal components were input as queries,
and the most relevant documents were used as a queries to identify important
topics. Typical results from experiments are given in Table 1 for the second prin-
cipal component, which consists of major keywords: energy, solar, power, panel,
fuel, electricity, water, electric, car, and heat in the positive direction and pa-
tient, doctor, medical, and health in the negative direction. The relevancy ranking
curve for document distances to the second principal component experiences a
sharp drop-off just after the tenth ranked document (Fig. 2), so we use it as the
cut-off point for approximating the centroid (note the 30 document default). A
number of interesting topics were seen to evolve over ten time slices, as shown
by two representatives examples below: food, health, exercise and methods for
payment.

Topic 1: food, health & exercise. The weights of twelve predominant key-
words had relatively large changes during discussions: junk, vegetable, cancer,
diet, eat, calorie, healthy, cook, exercise, fat, nutritional, and price. Tracking
three keywords (eat, healthy, exercise) with relatively large changes over 10 time
slices shows the flow of topics in the postings (Fig. 3). During the sixth time
slice, curves for healthy and exercise have local maxima, while eat has a local
minimum. However, by the eighth time slice, eat has its global maximum, while
healthy and exercise are in decline. Samples of unedited quotations from the sixth
and eighth time slices (marked with 6 or 8), with typos, acronyms, and facial
icons, are consistent with these findings:
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(6) Title: Healthy Living! (7/25/06 11:41 PM) ... Finally someone who nows
and takes care about health c We should enjoy our lives and work ...
(6) Title: Healthy Living Day Every Month (7/25/06 10:28 PM) ... we need
to step up on providing and urging IBMers into a better and healthy lifestyle ...
This might include exercises, games, healthy foods, etc. A healthy IBMer will
definitely contributes better than an unhealthy one!!=)
(6) Title: Need for Gym! (7/26/06 4:22 AM) Yes, we needs a Gym at IBM.
This will keep us healthy and fresh ...
(8) Title: How about checking before eating (7/27/06 12:25 AM) Why check
after eating? Why not before eating?
(8) Title: Education on Nutrition (7/27/06 2:16 AM) Yes i agree, being active
is just as important as eating the right food when it comes to staying healthy
.but what really are the best foods for us to eat.
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Fig. 3. Weight of keywords eat, exercise, and healthy (y-axis) in the centroid as a
function of the time slice (x-axis)

Topic 2: Methods for payment & security. The weights of four keywords
had relatively large changes over 10 time slices: cash, payment, security and
signature (Fig. 4). During the third time slice, payment and security dominate
the discussion. By the fifth time slice, the discussion shifts to signature and
methods for authentication. There is another shift in the discussion by the eighth
time slice to security issues. Some samples of unedited postings from the third,
fifth, and eighth time slices that support the findings using our system are:

(3) Title: Share credit card trasaction data (7/25/06 1:19 AM) ... many people
owns multi credit cards of different banks, if the data of these transaction data
can be shared between banks, bank and credit card owner will both benefit. of
cause, there may be some privacy and security issues ...
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(5) Title: Change signature to finger print/eye identity (7/25/06 8:58 PM) I
think we need alternative signature when we use our credit card. If your arm
broken and you canft sign, how can we use our credit card? How about using
our finger print or eye identitiy? ...
(8) Title: Some issues (7/26/06 10:07 PM) ... There are however issues that
have to be considered specifically: 1. Who will administer the card? 2. Addi-
tional equipment may be required in order to use the card properly (or rather,
will available equipment be able to read it?) 3. If the card is lost/stolen, the
replacement process may not be so trivial ...
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Fig. 4. Weight of keywords money, payment, security, and signature (y-axis) in the
centroid as a function of the time slice (x-axis)

4 Conclusions and Directions for Future Work

We developed and implemented a prototype to automatically identify and track
topics in a text data set consisting of time-stamped postings from on-line dis-
cussions. The prototype divides the dataset into overlapping time slices and au-
tomatically computes a vector space model and principal components for each
time slice. Principal components are used as queries to find postings on impor-
tant topics. Postings in the overlap of time slices are used to track topics from the
earlier time slice to the subsequent time slice. Our prototype shows the evolution
of topics in discussions by displaying changes in the contributions of keywords
in relevant documents in each time slice. The results can help users understand
the overall flow of a discussion without having to read individual postings.

In future work, our first task is to develop methods to speed up computa-
tions and automate tuning for arbitrary data sets, for example, determining the
minimum number of principal components to find topics and the ”right size” for



Tracking Topic Evolution in On-Line Postings 625

time slices. Small time slices enable fast computation during PCA. However, they
may not reliably find slowly evolving topics or minor topics. Large time slices
are better for finding major and minor topics, but incur a higher computational
cost, especially if PCA-based dimensional reduction is needed.

A second area to explore is use of supplementary information such as the
”reply-to” feature input by users in on-line postings and e-mail. The reliability
of reply-to information depends on the reliability of participants who post and
may be inaccurate. Merging information output by our prototype graph-based
analysis systems is likely to be highly beneficial.

A third area of interest is improvement of the GUI. We conducted some pre-
liminary studies with a real-time binary k-means-based method for displaying an
overview of related topics in the database [3]. The bird’s eye, macroscopic view
is useful for a quick overview of results for users who do not have a clear idea of
what to search and need to browse before zooming in on a topic of interest.

A fourth area to investigate is refinement of the mathematical model for doc-
uments. Currently, a very good shallow parser extracts terms for vector space
modeling. We would like to incorporate advanced natural language processing
technologies, such as key phrase extraction and identification of patterns that
express sentiments (e.g., positive, negative, neutral opinions).

Acknowledgments. The authors thank the IBM Natural Language Processing
team at the TJ Watson Lab for use of their English parser and A. Murakami at
IBM Research, Tokyo for providing data and helpful technical discussions.
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Abstract. Due to the growing threat of network attacks, detecting and measur-
ing the network abuse are increasingly important. Network intrusion detection 
is the most frequently deployed approach. Detection frequently relies on only 
signature matching methods, and therefore suffers from lower accuracy and 
higher false alarm rates. This investigation presents a data-mining model 
(PAID) that constructs a packet header anomaly detection system with a Bayes-
ian approach. The model accurately and automatically detects new malicious 
network attempts. On the DARPA evaluation data set, our method yields an ac-
curacy of over 99.2% and a false positive rate of 0.03% for a DoS attack. Ex-
perimental results validate the feasibility of PAID to detect network intrusion. 

Keywords: Data Mining, Intrusion Detection, Network Security, Machine 
Learning. 

1   Introduction 

Intrusion detection (ID) techniques are fundamental components of a security infra-
structure adopted to detect and stop intruders. ID techniques are conventionally cate-
gorized as either misuse detection or anomaly detection. Misuse detection (also called 
signature-based detection) strives to detect well-known attacks by characterizing the 
rules. Misuse detection has a low false alarm rate but cannot identify any new attacks 
without pre-defined rules. In anomaly detection, each user has a profile within the 
system. Any deviation from the user profiles is regarded as an anomaly attack. Anom-
aly detection can detect new attacks but suffer from more false alarms than misuse 
detections. 

Data mining methods extract rules from large datasets and use these rules to iden-
tify new instances in similar data. This investigation attempts to identify attacks by 
examining packet headers but not their contents. An anomaly detection model that 
learns the rules from data packet header fields at the network link is presented. The 
detection model is created by a data mining algorithm trained over a given set of 
training data. The proposed model does not examine application-layer protocols like 
HTTP or SMTP, and hence does not directly detect application-layer attacks, rather 
may detect attempts hidden in application layer connections. The proposed model can 
recognize not only well-known attacks but also new attacks. 

This investigation presents a novel anomaly detection model (PAID) using packet 
header analysis. We also propose a mechanism to transform and aggregate continuous 
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features into buckets. The proposed mechanism is then applied with naive Bayes to 
perform intrusion detection. 

This investigation concentrates mainly on network based intrusion detection, which 
monitors traffic at source and destination hosts. A network based intrusion detection 
system is an independent platform that is able to not only identify intrusions by exam-
ining network traffic but also monitor multiple hosts. The network-based system de-
tects denial of service (DoS), probes, and remote-to-local (R2L) attacks. Host-based 
intrusion detection comprises an agent on a host that identifies intrusions by analyzing 
system calls, logs, file system modifications, and other host activities. The host-based 
system detects user-to-root (U2R) and R2L attacks. 

To evaluate the performance of PAID, this work presents a comprehensive evalua-
tion based on a large set of intrusion training and test data provided by DARPA intru-
sion detection evaluation dataset, which is a conventionally adopted dataset.  
Simulation results reveal that the proposed model is very effective, achieving over 
99.2% accuracy with 0.03% false positive rate for DoS attacks. 

The rest of this paper is organized as follows. Section 2 discusses related work in 
anomaly detection. Section 3 then presents an approach that adopts Bayesian methods 
to train the classifiers using packet headers. Section 4 presents the experimental re-
sults. Conclusions are finally drawn in Section 5. 

2   Related Work 

Network intrusion detection is typically signature based (i.e., misuse detection). Rules 
to identify any connection addressed to a nonexistent host or service are easy to write 
in SNORT [10]. However, this approach is vulnerable to novel attacks. In addition, it 
is also difficult to keep the rules or patterns up to date. An alternative approach is the 
anomaly detection, which classifies normal and suspicious traffics. 

Various techniques have been proposed for modeling anomalous detection. Anom-
aly detection systems such as NIDES [6], SPADE [7], PHAD [11], ALAD [12] and 
SVM [15] model network traffic and generate an alarm when a deviation from the 
normal model is detected. These systems differ from one to another in the features 
extracted from available audit data and the particular algorithms they apply to derive 
the normal models. Most features are obtained from the packet headers. SPADE, 
ALAD and NIDES model the distribution of the source and destination IP addresses, 
port numbers, and the TCP connection state. PHAD adopts 34 attributes, which is 
much more than the other approaches. These attributes are obtained from the packet 
headers of the Ethernet, IP, TCP, UDP and ICMP packets. Lakhina et al. [2] proposed 
to use entropy as a measure of distributions of packet features to identify and classify 
anomaly network traffic volumes. Cardenas et al. [1] proposed a framework for IDS 
evaluation by viewing it as a multi-criteria optimization problem. 

PHAD (Packet Header Anomaly Detector) [11] monitors the headers of Ethernet, 
IP, and the transport layer without any preconceptions. PHAD constructs profiles for 
34 different fields from these headers by looking at attack-free traffic and then clus-
ters them. A new value that does not fit into any of the clusters is considered as a new 
cluster, and the closest two clusters are merged. 
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Kruegel et al. describe a service specific intrusion detection system [3], which 
combines the type, length, and payload distribution of the request as the features to 
calculate an anomaly score. The 256 ASCII characters are grouped into six segments: 
0, 1–3, 4–6, 7–11, 12–15 and 16–255. A uniform distribution model of these 6 seg-
ments is then computed for all requests to each service. 

Bayes network is one of the most widely adopted graphical models for presenting 
uncertain data [4]. It is a directed acyclic graph (DAG) in which vertices represent 
events, and edges denote the relations between events. The numerical component 
quantifies the different links in the DAG according to distribution of the conditional 
probability of each node in the context of its parents. Bayes networks have been 
widely used to create models for anomaly intrusion detection. Puttini et al. [14] pre-
sented a behavior model using Bayes to obtain the model parameters. Goldman [13] 
proposed a model that simulates an intelligent attacker using Bayes networks to gen-
erate a plan of goal-directed actions. 

3   Packet Analysis for Anomaly Intrusion Detection (Paid) 

3.1   Packet Header Analysis 

Network packet headers are streams of bytes. Network packet data contain parameters 
with values ranging among very large sets. A difficulty in anomaly detection is the 
choice of features. 

In this paper, we propose a data mining system PAID to detect the network intru-
sions. Fig. 1 illustrates the process of analyzing network traffic using PAID. The data 
preprocessor in both training and testing procedures only filters packet headers infor-
mation for further analysis. The following five attributes of packet header in PAID is 
monitored: duration, protocol, service, packet length, and connection flag. Duration is 
the elapsed time of the same connection. Protocol is network protocol, such as TCP, 
UDP, etc. Service is the port number on the destination, such as HTTP port number 
80, telnet port number 23, etc. Packet length is total packet length. Connection flag is 
the flag of packets, such as normal or error. These attributes are obtained easily from 
real network traffic. 

In the training procedure, when data fields are extracted, the system inspects every 
value to determine whether it is continuous. The continuous value is defined by data 
type. For instance, the packet length is an integer with the range from 0 to 
4294967295, where PAID treats it as continuous value. The protocol is also an integer 
with the range from 0 to 300, and PAID treats it as discrete value. PAID will prede-
fine types of features. For example, duration is continuous, protocol is discrete, ser-
vice is discrete, packet length is continuous, and connection flag is discrete. The 
transformation procedure is performed if the value is continuous. The system subse-
quently attempts to place the transformed value into the pre-arranged bucket array 
that is managed dynamically. If no appropriate bucket is available for a new value, or 
the bucket array is full, then the system attempts to perform the bucket data aggrega-
tion to release additional bucket for later application. The feature extraction procedure 
is performed repeatedly until all training data are inserted into buckets. Training pro-
cedure will produce trained buckets after the entire training data are processed. 
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Fig. 1. Architecture of packet header analysis 

In the testing procedure, the arriving data are filtered and transformed as described 
in the training procedure. The naive Bayes classifier is applied following the data 
transformation. 

Bucket array is an input as a naive Bayes parameter, and the system computes the 
probability of the incoming packet headers. The output of the classifier is the highest 
probability class for a given set of packets. Since two classes, benign and malicious, 
are adopted, the output of our system labels test data as benign or malicious. The 
labeled test data can be inserted into trained buckets, and then the PAID can perform 
dynamic analysis of real-time network. 

3.2   Data Transformation and Aggregation 

To identify network attacks, information needs to be collected and aggregated from a 
large number of network packets. Since the attributes in network packets vary, this 
operation must be more sensitive to received packets. PAID provides methods for 
such transformation and aggregation with the details described as follows. The fields 
in the packet header are integer values with lengths from one to four bytes. The values 
of some fields could range from 0 to 4294967295, and storing every value of every 
packet needs much memory. Moreover, holding each continuous value of the testing 
dataset may result in difficulties when receiving new values not observed in the train-
ing dataset. To avoid the problems with continuous data, these continuous values have 
to be transformed into several data buckets. The number of data buckets is limited and 
predefined. 
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For continuous data, each value is placed into an individual bucket if the limit of 
buckets is not reached. If the limit is reached, we perform the aggregation procedure. 
First, the aggregation procedure separates all buckets into several groups according to 
the sign of volume of bucket. The volume of bucket is derived from subtract mali-
cious from benign. Afterward, the procedure calculates the square measure of each 
group. We also derive the maximum square measure of bucket groups, max_group. 
Fig. 2(a) shows the first step of the aggregation procedure. After the first step is per-
formed, the max_group will be the gray area in Fig. 2(a). 

In some cases, the group size may be small but the volume of the bucket is very 
high. The bucket increases if these buckets in the group are combined. The group will 
become one bucket, and the max_group will always point to that big bucket. Finally, 
the system will stop. To prevent this drawback, if the bucket number in sign group is 
one (less then two), aggregation procedure will try to find the maximum bucket num-
ber in one group (longest group) and change max_group to this longest group.  
Fig. 2(b) shows that there are only a few buckets between point A and point B, but 
this group of buckets has very high volume. The second step will find out maximum 
size (longest group) of groups. For instance, in Fig. 2(b), the longest group is between 
point B and point C. 

  
(a) (b) 

Fig. 2. (a) Aggregation procedure step one (b) Aggregation procedure step two 

After max_group from step one or step two is obtained, the aggregation procedure 
tries to find out two buckets and combine them. The final step of aggregation proce-
dure finds the maximum volume of two joint buckets. These two joint buckets will be 
combined, and a new bucket with the arriving value is appended. Fig. 3(a) shows the 
final step of aggregation procedure. The gray area in Fig. 2(a) is selected in first step. 
In the gray area of Fig. 2(a), the maximum volume of two joint buckets is left peak of 
the area. After final step is performed, the combined buckets are the gray area in  
Fig. 3(a), and we append a new bucket with the coming value. 

For the discrete data, each value obtains a separate bucket, and transformation is 
thereby merely a mapping. When new value comes but does not match any existing 
bucket, PAID allocates a new bucket for the new value. If the number of discrete 
values exceeds the limit of buckets, we perform the above aggregation procedure. The 
model treats the discrete data as continuous data if the number of discrete values is 
larger than the limit of buckets. 
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Although transforming data into buckets causes some loss of information for con-
tinuous values, it increases the practicality of the model. This approach saves not only 
the memory but also the execution time. The training procedure with the whole 
DARPA dataset needs only 30 seconds with Intel Core 2 Duo 1.8GHz CPU in our 
implementation. 

The PAID system may also avoid problems from predicting new values not exist-
ing in the testing dataset. When new values come in the data transformation of testing 
procedure, the data transformation finds the proper value according to the slope. Con-
sider Fig. 3(b) as an example. It shows that there are no existing training data set 
between point A and point B. The data transformation finds proper value according to 
the slop around point A and B. 

 
(a) (b) 

Fig. 3. (a) Final step of aggregation procedure (b) Guessing of brand new value 

4   Evaluation 

The data set used in our experiment originates from MIT Lincoln Laboratory, and has 
been developed for IDS evaluations by DARPA [9]. The network was operated like a 
real environment, being blasted with multiple attacks. In each connection, various 
quantitative and qualitative features were extracted and form a new data set. The 
processed data are available known as KDD cup 1999 dataset [8]. 

This experiment focuses on Network and DoS datasets. Fig. 4 shows the ROC (Re-
ceiver Operating Characteristic) curve of the relationship between the false positive 
and detection rates. In each of these ROC plots, the x-axis represents the false positive 
rate, derived as the percentage of normal connections classified as intrusions, and the 
y-axis denotes the detection rate, obtained as the percentage of intrusions detected. A 
data point in the upper left corner corresponds to the optimal performance, namely a 
low false positive rate with high detection rate. Fig. 4 plots the curves with the differ-
ent bucket sizes as mentioned in Subsection 3.2. 

The first experiment involved the network dataset containing DoS and Probing at-
tacks. Fig. 4(a) reveals that we achieve over 94.8% accuracy with 0.08% false posi-
tive rate for DoS attacks with a bucket size of 40. Fig. 4(a) plots five lines,  
corresponding to bucket sizes 20, 30, 40, 50 and 60. The figure demonstrates that the 
detection model performs best with a bucket size of 40. The detection rate falls rap-
idly with decreasing bucket size. If we increase the buck size, the detection rate will 
also decrease. 
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Fig. 4(b) shows that PAID performed well in the DoS attack dataset. We achieve 
over 99.2% accuracy with a 0.03% false positive rate for DoS attacks. Additionally, a 
99.35% accuracy resulted in a 0.08% false positive rate. Again, bucket size 40 had the 
best performance. 

Fig. 4 indicates that the best bucket size for this experiment is approximately 40. 
Reducing the bucket size causes the aggregation procedure to be invoked frequently. 
Aggregating very many buckets causes significant loss of information in the features 
and lowers the detection rate while maintaining the same false positive rate. In con-
trast, raising the bucket size cause continuous values to be divided into more buckets, 
thus possibly separating connections belonging to the same class into different buck-
ets. Therefore, it decreases the accuracy with the same false positive rate. 
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Fig. 4. ROC curves for (a) network dataset (b) DoS dataset 

The experimental results are as expected because PAID is employs statistical de-
tection. The experimental results indicate that the R2L and U2R attacks do not have 
frequent patterns, unlike most of the DoS and Probing attacks. This is because the 
DoS and Probing attacks involve many connections to same hosts in a very short time, 
whereas the R2L and Probing attacks are potentially enveloped in the data portions of 
the packets. Therefore, each attack generally involves only a single connection. 

5   Conclusion 

In this paper, we present an anomaly detection model using packet header analysis. 
The proposed model, PAID, transforms and aggregates the continuous packet header 
fields, and applies them to a naive Bayes classifier. A series of evaluation tests is also 
performed on our approach using the KDD dataset, and the experimental results reveal 
that this model is effective at detecting network attacks. The KDD dataset achieves an 
accuracy of over 99.2% and a false positive rate of 0.03% for DoS attacks, and over 
94.7% with 0.03% false positive rate for network attacks. Furthermore, PAID also 
achieves balanced performance for popular patterns and an averagely shorter detection 
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time for every attack, which can meet the time requirements for on-line intrusion de-
tection. Compared with the conventional signature-based approach, the proposed statis-
tical-based model of the naive Bayes classifier has a much higher accuracy and  
effectiveness than other tested schemes, particularly for DoS attacks. Since PAID only 
inspects packet headers only, it has a very low intrusion detection cost in large net-
works. Our model is an efficient and reliable mechanism for intrusion detection. 
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2 Université Lyon, Laboratoire ERIC, Lyon 2, Lyon, France
stephane.lallich@univ-lyon2.fr

3 INRIA Futurs/LRI, Université de Paris-Sud, Orsay, France
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Abstract. In data mining, large differences in prior class probabilities
known as the class imbalance problem have been reported to hinder
the performance of classifiers such as decision trees. Dealing with imbal-
anced and cost-sensitive data has been recognized as one of the 10 most
challenging problems in data mining research. In decision trees learning,
many measures are based on the concept of Shannon’s entropy. A major
characteristic of the entropies is that they take their maximal value when
the distribution of the modalities of the class variable is uniform. To deal
with the class imbalance problem, we proposed an off-centered entropy
which takes its maximum value for a distribution fixed by the user. This
distribution can be the a priori distribution of the class variable modal-
ities or a distribution taking into account the costs of misclassification.
Others authors have proposed an asymmetric entropy. In this paper we
present the concepts of the three entropies and compare their effective-
ness on 20 imbalanced data sets. All our experiments are founded on the
C4.5 decision trees algorithm, in which only the function of entropy is
modified. The results are promising and show the interest of off-centered
entropies to deal with the problem of class imbalance.

Keywords: Decision trees, Shannon entropy, Off-centered entropies,
Imbalance class.

1 Class Imbalance Problem

In supervised learning, the data set is said to be imbalanced if the class prior
probabilities are highly unequal. In the case of two-class problems, the larger
class is called the majority class and the smaller the minority class. Real-life two-
class problems have often minority class prior under 0.10 (e.g. fraud detection,
medical diagnostic or credit scoring). In such a case the performances of data
mining algorithms are lowered, especially the error rate corresponding to the
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minority class, even though the minority class corresponds to positive cases
and the cost of misclassifying the positive examples is higher than the cost of
misclassifying the negative examples. This problem gave rise to many papers,
from which one can cite papers from [1], [2] and [3]. Dealing with imbalanced
and cost-sensitive data has been recognized as one of the 10 most challenging
problems in data mining [4]. As summarized by the review papers of [5], [6] and
[7] or by the very comprehensive papers of [8] and [9], solutions to the class
imbalance problems were proposed both at the data and algorithmic level.

At the data level, these solutions change the class distribution. They include
different forms of re-sampling, such that over-sampling [3] [10] or under-sampling
[11], on a random or a directed way. A comparative study using C4.5 [12] decision
tree show that under-sampling beat over-sampling [13]. At the algorithmic level,
a first solution is to re-balance the error rate by weighting each type of error
with the corresponding cost [14]. A study of the consistency of re-balancing
costs, for misclassification costs and class imbalance, is presented in [15]. For a
comparison of a cost sensitive approach and a sampling approach one can see
for example [16]. In decision trees learning, other algorithmic solutions consist
in adjusting the probabilistic estimates at the tree leaf or adjusting the decision
thresholds. [17] propose to use a criterion of minimal cost, while [18] explore
efficient pre-pruning strategies for the cost-sensitive decision tree algorithm to
avoid overfitting. At both levels, [19] studied three issues (quality of probabilistic
estimates, pruning, and effect of preprocessing the imbalanced data set), usually
considered separately, concerning C4.5 decision trees and imbalanced data sets.

Our contribution belongs to the second category. We propose to replace the
entropy used in tree induction algorithms by an off-centered entropy. That is
to say that we work at the split level of decision trees learning taking into
account an entropy criterion. The rest of the paper is organized as follows. In
Section 2, we first review splitting criteria based on Shannon’s entropy. We first
recall basic considerations on Shannon’s entropy and then briefly present our off-
centered entropy and the asymmetric entropy. Then, we compare the entropies’
performance on 20 imbalanced data sets in Section 3. Finally, Section 4 draws
conclusions and suggests future work.

2 From Shannon’s Entropy to Non-centered Entropies

In this section we first recall basic considerations on Shannon’s entropy and
then present the two families of non-centered entropies. For both of them we
mainly present the boolean case and mention the results in the general case.
Experiments presented in Section 3 are done in the boolean case.

2.1 Usual Measures Based on Shannon’s Entropy

In supervised learning of induction tree on categorical variables, many learning
algorithms use predictive association measures based on the entropy pro-
posed by Shannon [20]. Let us consider a class variable Y having q modalities,
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p = (p1, . . . , pq) be the vector of frequencies of Y , and a categorial predic-
tor X having k modalities. The joint relative frequency of the couple (xi, yj)
is denoted pij , i = 1, . . . k; j = 1, . . . q. What is more, we denote by h(Y ) =
−

∑q
j=1 p.j log2 p.j the a priori Shannon’s entropy of Y and by h(Y/X) =

E(h(Y/X = xi)) the conditional expectation of the entropy of Y with respect
to X .

Shannon’s entropy, is a real positive function of p = (p1, . . . , pq) to [0..1],
verifying notably interesting properties for machine learning purposes:

1. Invariance by permutation of modalities: h(p) does not change when
the modalities of Y are permuted;

2. Maximality: the value of h(p) reaches its maximum log2(q) when the dis-
tribution of Y is uniform, i.e. each modality of Y has a frequency of 1/q;

3. Minimality: the value of h(p) reaches its minimum 0 when the distribution
of Y is sure, centered on one modality of Y , the others being of null frequency;

4. Strict concavity: the entropy h(p) is a strictly concave function.

Amongst the measures based on Shannon’s entropy, particularly studied in
by [21] and [22], we especially wish to point out:

– the entropic gain [23], which values h(Y )− h(Y/X);
– the u coefficient [24] is the relative gain of Shannon’s entropy i.e. the entropic

gain normalized on the a priori entropy of Y , and values h(Y )−h(Y/X)
h(Y ) ;

– the gain-ratio [12] which relates the entropic gain of X to the entropy of X ,
rather than to the a priori entropy of Y in order to discard the predictors
having many modalities. It values h(Y )−h(Y/X)

h(X) ;
– the Kvalseth coefficient [25], which normalizes the entropic gain by the mean

of the entropies of X and Y . It then values 2(h(Y )−h(Y/X))
h(X)+h(Y ) .

The peculiarity of these coefficients is that Shannon’s entropy of a distribution
reaches its maximum when this distribution is uniform. Even though it is the
entropic gain with respect to the a priori entropy of Y which is used in the
numerator part of the previously mentioned coefficients, the entropies of Y and
Y/X = xi used in this gain are evaluated on a scale for which the reference
value (maximal entropy) corresponds to the uniform distribution of classes. The
behavior of Shannon’s entropy is illustrated in Fig. 1 in the boolean case.

It would seem more logical to evaluate directly the entropic gain through the
use of a scale for which the reference value would correspond to the a priori
distribution of classes. The above-mentioned characteristic of the coefficients
based on the entropy is particularly questionable when the classes to be learned
are highly imbalanced in the data, or when the classification costs differ largely.

2.2 Off-Centered Entropy

The construction of an off-centered entropy principle is sketched out in the case
of a boolean class variable in [26] and [27]. In these previous works we proposed
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a parameterized version of several statistical measures assessing the interest of
association rules and constructed an off-centered entropy.

Let us consider a class variable Y made of q = 2 modalities. The frequencies
distribution of Y for the values 0 and 1 is noted (1−p, p). We wish to define an off-
centered entropy associated with (1− p, p), noted ηθ(p), which is maximal when
p = θ, θ being fixed by the user and not necessarily equal to 0.5 (in the case of a
uniform distribution). In order to define the off-centered entropy, following the
proposition described in [26], we propose that the (1− p, p) distribution should
be transformed into a (1−π, π) distribution such that: π increases from 0 to 1/2
when p increases from 0 to θ, and π increases from 1/2 to 1 when p increases from
θ to 1. By looking for an expression of π as π = p−b

a , on both intervals 0 ≤ p ≤ θ

and θ ≤ p ≤ 1, we obtain: π = p
2θ if 0 ≤ p ≤ θ, π = p+1−2θ

2(1−θ) if θ ≤ p ≤ 1.
To be precise, the thus transformed frequencies should be denoted as 1 − πθ

and πθ. We will simply use 1− π and π for clarity reasons. They do correspond
to frequencies, since 0 ≤ π ≤ 1. The off-centered entropy ηθ(p) is then defined
as the entropy of (1− π, π): ηθ(p) = −π log2 π − (1− π) log2(1 − π).

With respect to the distribution (1 − p, p), clearly ηθ(p) is not an entropy
strictly speaking. Its properties must be studied considering the fact that ηθ(p)
is the entropy of the transformed distribution (1− π, π), i.e. ηθ(p) = h(π). The
behavior of this entropy is illustrated in Fig. 1 for θ = 0.2.

The off-centered entropy preserves various properties of the entropy, among
those studied in particular by [28] in a data mining context. Those properties
are easy to prove since ηθ(p) is defined as an entropy on π and thus possess
such characteristics. It can be noticed that ηθ(p) is maximal for p = θ i.e. for
π = 0.5. Invariance by permutation of modalities property is of course voluntarily
abandoned. Proofs are given in detail in [29].

Following a similar way as in the boolean case we then extended the definition
of the off-centered entropy to the case of a variable Y having q modalities,
q > 2 [29,30]. The off-centered entropy for a variable with q > 2 modalities
is the defined by ηθ(p) = h(π∗) where: π∗

j = πj∑ q
j=1 πj

(in order to satisfy the

normalization property), 0 ≤ πj ≤ 1,
∑q

j=1 πj = 1 (πj should be analogous to

frequencies), πj = pj

qθj
if 0 ≤ pj ≤ θj , πj = q(pj−θj)+1−pj

q(1−θj)
if θj ≤ pj ≤ 1.

2.3 Off-Centered Generalized Entropies

Shannon’s entropy is not the only diversity or uncertainty function usable to
build coefficients of predictive association. [31] already proposed a unified view
of the three usual coefficients (the λ of Guttman, the u of Theil and the τ of
Goodman and Kruskal), under the name of Proportional Reduction in Error co-
efficient. In a more general way we built the Proportional Reduction in Diversity
coefficients, which are the analogue of the standardized gain when Shannon’s
entropy is replaced by whichever concave function of uncertainty [32].

One of the particularities of the off-centering we here propose, compared to
the approach proposed by [33] is that rather than defining a single off-centered
entropy, it adapts to whichever kind of entropy. We thus propose a decentring
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framework that one can apply to any measure of predictive association based on
a gain of uncertainty [30].

2.4 Asymmetric Entropy

With an alternative goal, directly related to the construction of a predictive
association measure, especially in the context of decision trees, [34] proposed a
consistent and asymmetric entropy for a boolean class variable. This measure
is asymmetric in the sense that one may choose the distribution for which it
will reach its maximum; and consistent since it takes into account n, the size
of the sampling scheme. They preserve the strict concavity property but alter
the maximality one in order to let the entropy reach its maximal value for a
distribution chosen by the user (i.e. maximal for p = θ, where θ is fixed by
the user). This implies revoking the invariance by permutation of modalities.
They propose: hθ(p) = p(1−p)

(1−2θ)p+θ2 . It can be noticed that for θ = 0.5, this
asymmetric entropy corresponds to the quadratic entropy of Gini. The behavior
of this entropy is illustrated in Fig. 1 for θ = 0.2.

In [33], the same authors extend their approach to the situation where the
class variable has q > 2 modalities. What is more, since one may only make
an estimation of the real distribution (pj)j=1,...,q with an empirical distribution
(fj)j=1,...,q, they wish that for same values of the empirical distribution, the
value of the entropy should decrease as n rises (property 5, a new property called
consistency). They thus are led to modify the third property (minimality) in a
new property 3′ (asymptotic minimality): the entropy of a sure variable is only
required to tend towards 0 as n→∞. In order to comply with these new prop-
erties, they suggest to estimate the theoretical frequencies pj by their Laplace
estimator, p̂j = nfj+1

n+q . They thus propose a consistent asymmetric entropy as:

hθ(p) =
∑q

j=1
p̂j(1−p̂j)

(1−2θj)p̂j+θ2
j
.
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Fig. 1. Off-centered, asymmetric and Shannon’s entropies
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3 Experiments with More or Less Imbalanced Data Sets

In our experiments, we compare the behaviors of decision tree algorithms to
classify imbalanced data sets using our proposed off-centered entropy oce, the
Shannons entropy se and the asymmetric entropy ae. To achieve the evaluation
we added oce and ae to the decision tree algorithm C4.5 [12]. In these experi-
ments, in each node the distribution for which oce and ae are maximal is the
a priori distribution of the class variable in the considered node.

The experimental setup used the 20 data sets described in Table 1 (column
1 indicates the data set name, the numbers of cases and of attributes), where
the first twelve ones are from the UCI repository [35], the next six are from
the Statlog repository [36], the following data set is from the DELVE repository
(http://www.cs.toronto.edu/∼delve/), while the last one is from [37].

In order to evaluate the performance of the considered entropies for classify-
ing imbalanced data sets, we pre-processed multi-class (more than two classes,
denoted by an asterisk) data sets as two-class problems. The columns 2 and 3 of
Table 1 show how we convert multi-class to minority and majority classes. For
example, with the OpticDigits data set, the digit 0 is mapped to the minority
class (10%) and the remaining data are considered as the majority class (90%).
For the 20-newsgroup collection, we pre-processed the data set by representing
each document as a vector of words. With a feature selection method which uses
mutual information, we get a binary data set of 500 dimensions (words).

The test protocols are presented in the column 4 of Table 1. Some data sets are
already divided in training set (trn) and testing set (tst). If the training set and
testing set are not available then we used cross-validation protocols to evaluate
the performance, else k-fold cross validation is used. With a data set having less
than 300 data points, the test protocol is leave-one-out cross-validation (loo).
It involves using a single data point of the data set as the testing data and the
remaining data points as the training data. This is repeated such that each data
point in the data set is used once as testing data. With a data set having more
than 300 data points, k-fold cross-validation is used to evaluate the performance.
In k-fold cross-validation, the data set is partitioned into k folds. A single fold
is retained as the validation set for testing, and the remaining k-1 folds are used
as training data. The cross-validation process is then repeated k times. The k
results are then averaged. The columns 5 to 9 of Table 1 present the results
according to each entropy in terms of tree size, global error rate, error rate
on the minority class and on the majority class (best results are in bold). The
synthetic comparisons two by two are presented in Table 2.

For these first comparisons, we recall that the rule of prediction is the majority
rule. The definition of another rule of prediction, better adapted to non-centered
entropies, is one of the enhancements which we intend to accomplish.

We can conclude that the non-centered entropies, particularly the off-centered
entropy, outperform the Shannon’s entropy. These both entropies significantly
improve the MinClass accuracy, without penalizing the MajClass accuracy,
where MinClass (MajClass) accuracy is the proportion of true results in the
minority (majority) class.
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Table 1. Experiments on 20 imbalanced data sets

Base Class Min. Class Maj. Valid. Method Tree size Acc. MinClass acc. MajClass acc.

Opticdigits* 10%(0) 90%(rest) trn-tst se 27 99.39 96.63 99.69
5620 ae 21 99.83 100.00 99.81
64 oce 21 99.67 99.44 99.69

Tictactoe 35%(1) 65%(2) 10-fold se 69 93.33 87.50 96.49
958 ae 89 93.65 89.52 95.82
9 oce 89 94.17 90.43 96.15

Wine* 27%(3) 73%(rest) loo se 5 95.51 89.58 97.69
178 ae 5 97.19 95.83 97.69
13 oce 5 97.19 95.83 97.69

Adult 24%(1) 76%(2) trn-tst se 123 86.25 60.85 94.11
48842 ae 171 85.67 60.02 93.61

14 oce 107 85.70 61.61 93.15

20-newsgrp* 5%(1) 95%(rest) 3-fold se 9 98.59 73.31 99.95
20000 ae 13 98.65 74.49 99.95
500 oce 13 98.65 74.49 99.95

Breast Cancer 35%(M) 65%(B) 10-fold se 18 94.04 90.43 96.31
569 ae 11 94.39 90.40 96.90
30 oce 13 93.33 90.45 95.20

Letters* 4%(A) 96%(rest) 3-fold se 67 99.47 91.48 99.81
20000 ae 99 99.35 90.00 99.75

16 oce 105 99.44 92.59 99.73

Yeast* 31%(CYT) 69%(rest) 10-fold se 52 71.76 47.95 82.66
1484 ae 65 71.82 48.82 82.26

8 oce 34 72.34 47.00 84.02

Connect-4* 10%(draw) 90%(rest) 3-fold se 4141 83.25 57.02 91.72
67557 ae 4013 83.46 57.59 91.81

42 oce 4037 84.07 60.09 91.82

Glass* 33%(1) 67%(rest) loo se 39 77.10 72.41 80.32
214 ae 23 78.97 72.86 81.94
9 oce 21 86.45 78.57 90.28

Spambase 40%(spam) 60%(rest) 10-fold se 250 93.00 90.94 94.31
4601 ae 269 93.22 91.52 94.28
57 oce 225 93.35 91.21 94.67

Ecoli* 15%(pp) 85%(rest) 10-fold se 11 94.55 74.68 98.19
336 ae 14 94.24 76.50 97.43
7 oce 11 95.45 81.93 97.80

Pima 35%(1) 65%(2) 10-fold se 25 74.94 62.79 81.42
768 ae 20 75.71 64.30 81.82
8 oce 20 75.19 63.15 81.62

German 30%(1) 70%(2) 10-fold se 39 74.27 40.00 88.36
1000 ae 40 73.54 40.07 86.95
20 oce 43 74.48 44.40 86.45

Shuttle* 20%(rest) 80%(1) trn-tst se 27 99.99 99.93 100.00
58000 ae 19 99.80 99.90 100.00

9 oce 11 99.99 99.97 100.00

Segment* 14%(1) 86%(rest) 10-fold se 7 99.22 95.78 99.79
2310 ae 18 99.31 95.91 99.85
19 oce 19 99.31 96.75 99.75

Satimage* 24%(1) 90%(rest) trn-tst se 99 97.35 94.36 98.25
6435 ae 103 98.00 96.10 98.57
36 oce 93 97.95 95.23 98.77

Vehicle* 24%(van) 76%(rest) 10-fold se 41 94.81 88.49 95.70
846 ae 31 94.94 90.66 96.33
18 oce 32 95.18 88.95 97.10

Splice* 25%(EI) 75%(rest) 10-fold se 72 96.37 92.74 97.62
3190 ae 62 96.40 93.23 97.50
60 oce 24 96.40 93.69 97.33

All-Aml 35% (AML) 65%(ALL) loo se 3 91.18 92.86 90.00
72 ae 3 91.18 92.86 90.00

7129 oce 3 91.18 92.86 90.00
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Table 2. Comparison of Shannon entropy (se), Off-centered entropy (oce) and Asym-
metric entropy (ae)

oce vs. se Tree size Acc. MinClass acc. MajClass acc.

Mean (oce-se) -9.900 0.76% 1.94% 0.44%
Mean Std. dev. (oce-se) 6.318 0.47% 0.53% 0.53%
Student ratio -1.567 1.621 3.673 0.830
p-value (Student) Non sign. Non sign. 0.0016 Non sign.

oce wins 12 16 18 7
Exaequo 3 1 1 5
se wins 5 3 1 8
p-value (sign test) Non sign. 0.0044 0.0000 Non sign.

ae vs. se Tree size Acc. MinClass acc. MajClass acc.

Mean (ae-se) -1.750 0.25% 1.04% -0.01%
Mean Std. dev. (ae-se) 7.500 0.14% 0.37% 0.14%
Student ratio -0.233 1.746 2.808 -0.048
p-value (Student) Non sign. 0.0970 0.0112 Non sign.

ae wins 8 14 15 8
Exaequo 2 1 1 4
se wins 10 5 4 8
p-value (sign test) Non sign. Non sign. 0.0192 Non sign.

oce vs. ae Tree size Acc. MinClass acc. MajClass acc.

Mean (oce- ae) -8.150 0.51% 0.90% 0.45%
Mean Std. dev. (oce- ae) 4.563 0.38% 0.49% 0.44%
Student ratio -1.786 1.330 1.846 1.014
p-value (Student) 0.0901 0.1991 0.0805 0.3234

oce wins 8 11 11 8
Exaequo 6 5 3 4
ae wins 6 4 6 8
p-value (sign test) Non sign. Non sign. Non sign. Non sign.

Indeed, compared to Shannon’s entropy se, the off-centered entropy oce im-
proves the MinClass accuracy 18 times out of 20, with 1 defeat and 1 equality,
which corresponds to a p-value of 0.0000. The corresponding average gain in
accuracy is close to 0.02 (p-value = 0.0016 according to a paired t-test). The
accuracy of the MajClass is not significantly modified, but the global accuracy
is improved 16 times out of 20, with 3 defeats and 1 equality (p-value = 0.0044),
while the average corresponding gain is close to 0.008. Moreover, the trees pro-
vided by oce have often a more reduced size, but this reduction is not significant.

The asymmetric entropy ae gives slightly less significant results when com-
pared to Shannon’s entropy se. It improves 15 times out of 20 the MinClass ac-
curacy (p-value = 0.0192), with an average gain close to 0.01 (p-value = 0.0112).
However, the improvement of the global accuracy is not significant: ae wins 14
times out of 20, with 1 equality and 5 defeats, while the increase of the global ac-
curacy is only 0.002. In the same way, the performance for the MajClass accuracy
is comparable (ae wins 8 times, se wins 8 times, and 4 equalities). Furthermore,
for the size of the tree, the performance is also comparable (ae wins 8 times, se
wins 10 times, and 2 equalities).

When comparing the two non-centered entropies oce and ae, one can observe
a slight but not significant superiority of the off-centered entropy oce for each
criterion. Particularly, a gain of 1 point on the MinClass error rate and 0.5 point
on the total error rate must be noticed.
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4 Conclusion and Future Works

In order to deal with imbalanced classes, we proposed an off-centered split func-
tion for learning induction trees. It has the characteristic to be maximum for the
distribution a priori of the class in the node considered. We then compare, in
the boolean case on 20 imbalanced data bases, the performances of our entropy
with the entropy of Shannon and an asymmetric entropy. All our experiments
are founded on C4.5 decision trees algorithm, in which only the entropy is mod-
ified. Compared to Shannon’s entropy both non-centered entropies, significantly
improve the minority class accuracy, without penalizing the majority one. Our
off-centered entropy is slightly better than the asymmetric one, but this is not
statistically significant. However one major advantage of our proposal is that it
can be applied to any kind of entropy, for example to the quadratic entropy of
Gini used in the CART algorithm [38]. We plan to improve the pruning scheme
and the criterion to affect a class to a leaf. Indeed, these two criteria such as
defined in C4.5, do not well support the recognition of the minority class. We
then can hope for an improvement of our already good results. It could be also
valuable to take into account a cost-sensitive matrix.
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Abstract. Since its introduction, frequent itemset mining has been the subject of
numerous studies. However, most of them return frequent itemsets in the form of
textual lists. The common cliché that “a picture is worth a thousand words” ad-
vocates that visual representation can enhance user understanding of the inherent
relations in a collection of objects such as frequent itemsets. Many visualization
systems have been developed to visualize raw data or mining results. However,
most of these systems were not designed for visualizing frequent itemsets. In this
paper, we propose a frequent itemset visualizer (FIsViz). FIsViz provides many
useful features so that users can effectively see and obtain implicit, previously
unknown, and potentially useful information that is embedded in data of various
real-life applications.

1 Introduction

Frequent itemset mining [1,10,11,12,13] plays an essential role in the mining of vari-
ous patterns (e.g., association rules, correlation, sequences, episodes, maximal itemsets,
closed itemsets) and is in demand for many real-life applications. Mined frequent item-
sets can answer many questions (examples of which are shown in Fig. 1) that help users
make important decisions. Hence, numerous frequent itemset mining algorithms have
been proposed over the last decade. However, most of them return a collection of fre-
quent itemsets in textual form (e.g., a very long unsorted list of frequent itemsets). As a
result, users may not easily see the useful information that is embedded in the data.

To assist users in gaining insight into massive amounts of data or information, re-
searchers have considered many visualization techniques [7,16]. Visualization systems
like Spotfire [2], VisDB [8] and Polaris [17] have been developed for visualizing data
but not the mining results. For systems that visualize the mining results, the focus has
been mainly on results such as clusters [9,15], decision trees [3], social networks [4] or
association rules [5,6]—instead of frequent itemsets. Showing a collection of frequent
itemsets in graphical form can help users understand the nature of the information and
show the relations embedded in the data.

Recently, researchers have shown interests in visualizing frequent itemsets. For in-
stance, Munzner et al. [14] presented a visualization system called PowerSetViewer
(PSV), which provides users with guaranteed visibility of frequent itemsets. However,
PSV does not show the relationship between related itemsets (e.g., not easy to know that
itemsets {apples, bananas} and {apples, bananas, cherries} are related—the former is a
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T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 644–652, 2008.
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Q1. Store managers may want to find answers to the following questions:
(a) What kinds of fruits (e.g., {apples, bananas}) are frequently purchased by customers?
(b) How frequently items are purchased individually (e.g., 70% of customers purchased

apples)?
(c) How frequently items are purchased together (e.g., only 30% of customers purchased

apples and bananas together)?
(d) What items are frequently purchased together with cherries (e.g., {apples, bananas,

cherries, dates})?
(e) Which itemset has the highest cardinality (e.g., a basket containing 30 different kinds

of fruits)?
(f) Which is the most frequently purchased 3-itemset (e.g., {apples, bananas, cherries})?

Q2. University administrators may want to know which popular elective courses (e.g.,
{Astronomy 101, Biology 102, Chemistry 100}) are taken by students?

Q3. Internet providers may want to figure out what Webpages are frequently browsed by Internet
users in a single session?

Q4. Bookstore owners may want to know which books are also bought by customers who bought
a particular data mining book?

Fig. 1. Sample questions answered by frequent itemset mining

subset of the latter). Yang [18] also developed a system that can visualize frequent item-
sets. However, his system was primarily designed to visualize association rules, and it
does not scale very well in assisting users to immediately see certain patterns among a
very large number of items/itemsets.

Hence, some natural questions to ask are: Can we design a system that explicitly
shows relationships among frequent itemsets? Can we help users find satisfactory an-
swers to important questions that could lead to critical business decisions?

To this end, we present a visualizer to enhance the data mining process of the user
by providing answers to some important business questions. The key contribution of
our work is a novel interactive system, called FIsViz, for visualizing frequent itemsets.
This visualizer provides users with clear and explicit depictions about frequent itemsets
that are embedded in the data of interest. Hence, FIsViz enables users—at a glance—to
infer patterns and answers to many questions (e.g., Q1-Q4 in Fig. 1); it also provides
interactive features for constrained and interactive mining. Moreover, with FIsViz, users
can efficiently find closed itemsets and can easily formulate association rules from the
displayed frequent itemsets.

This paper is organized as follows. Next section describes related work. In Section 3,
we introduce our FIsViz and describe its design as well as features. Section 4 shows
evaluation results. Then, we briefly discuss, in Section 5, the scalability of FIsViz with
respect to large datasets. Finally, conclusions are presented in Section 6.

2 Related Work

Yang [18] designed a system mainly to visualize association rules—but can also be used
to visualize frequent itemsets—in a two-dimensional space consisting of many vertical
axes. In the system, all domain items are sorted according to their frequencies and are
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evenly distributed along each vertical axis. A k-itemset is then represented by a curve
that extends from one vertical axis to another connecting k such axes. The thickness
of the curve indicates the frequency (or support) of such an itemset. However, such a
representation suffers from the following problems: (i) The use of thickness only shows
relative (but not exact) frequency of itemsets. Comparing the thickness of curves is not
easy. (ii) Since items are sorted and evenly distributed along the axes, users only know
some items are more frequent than the others, but cannot get a sense of how these items
are related to each other in terms of their exact frequencies (e.g., whether item a is
twice as frequent as, or just slightly more frequent than, item b). (iii) Although Yang’s
system is able to show both association rules and frequent itemsets, his system does
not provide users with many interactive features, which are necessary if a large graph
containing many items to be displayed.

PowerSetViewer (PSV) [14] is designed specifically for displaying frequent item-
sets in the context of the powerset universe. With PSV, frequent itemsets are first
grouped together based on cardinality (each represented by a different background
color) in a two-dimensional grid; itemsets of the same cardinality are then mapped
into grid squares. When the number of k-itemsets exceeds the number of allocated grid
squares, PSV maps several frequent itemsets into one square. A square is highlighted if
it contains at least one frequent itemset. This provides users with guaranteed visibility
of itemsets. While PSV is truly designed for visualizing frequent itemsets, it also suf-
fers from the following problems: (i) As a highlighted grid square may contain many
frequent itemsets, it is not easy to find out which one or more itemsets (among all the
itemsets represented by such a square) are frequent. (ii) PSV does not tell the exact fre-
quencies of frequent itemsets. (iii) It is difficult to grasp the relationships between two
related itemsets (e.g., {a, b} is a subset of {a, b, c, d}).

3 FIsViz: Our Proposed System for Visualizing Frequent Itemsets

In this section, we show basic representation and demonstrate features of our proposed
frequent itemset visualizer (FIsViz).

3.1 Basic Representation of FIsViz

FIsViz shows frequent k-itemsets in a two-dimensional space. The x-axis shows the
n domain items, which are arranged in non-ascending frequency order (by default) on
the x-axis. The y-axis, which can be in logarithmic-scale or normal-scale, shows the
frequencies of itemsets. A connecting edge between two items suggests that the two
items appear together in the dataset. In this way, a non-singleton itemset (e.g., {apples,
bananas, cherries}) is represented by a polyline (series of consecutive edges) ended with
a left-pointing triangle. Each singleton itemset (e.g., {apples}) is represented by a circle.
See Fig. 2(a) for a snapshot of the basic representation of FIsViz. Observations (Fig. 3)
of this snapshot reveal the following properties associated with this basic representation
of FIsViz:

1. FIsViz provides users with a quick intuitive overview about the frequency of each
individual domain item (indicated by a circle) with frequency clearly indicated by
its y-position.
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(a) Basic representation of FIsViz (b) Visualization of itemsets from mushroom data

Fig. 2. Snapshots of our proposed FIsViz

1. Items a and b frequently occur individually (with sup(a)=100% and sup(b)=90%), but their
combination {a, b} does not occur that frequently (with sup({a, b})=20%).

2. The leftmost item is a (which has the highest frequency) and the rightmost item is d (which
has the lowest frequency). Moreover, sup(a)=100% ≥ sup(b) ≥ sup(c) ≥ sup(d)=50%.

3. sup({a, b}=20%, sup({a, b, c, d})=10% and sup({c, d})=40%. Knowing this information,
users can easily obtain the support, confidence and lift of association rule {a, b}⇒{c, d}
using sup({a, b, c, d}), sup({a,b,c,d})

sup({a,b}) and sup({a,b,c,d})
sup({a,b})×sup({c,d}) respectively. More-

over, observing that sup({a, b}) = sup({a, b, d}), users can easily determine that
conf ({a, b}⇒{d})=100%.

4. When moving along the polyline representing {a, b, c, d}, itemset {a, b} appears to the left
of {a, b, c} (as the former is a prefix of the latter). Similarly, {a, b, c, d} appears to the
right of {a, b, c} (as the former is an extension of the latter). Moreover, sup({a, b})=20%
≥ sup({a, b, c}=10% ≥ sup({a, b, c, d})=10%.

5. All subsets of {a, c, d} appear to the left and above {a, c, d}.
6. All supersets of {a, c} appear to the right and below {a, c}.
7. {a, c} is a closed itemset, but {b, c} is not because sup({b, c}) = sup({b, c, d}).

Fig. 3. Observations on Fig. 2(a)

2. The most frequently occurring item (which with the highest frequency) appears on
the left side and the least frequently occurring one appears on the right side.

3. Each k-itemset (where k > 1) is represented by a polyline, and its frequency is
the frequency of the right-end item node of the polyline. The frequency is clearly
indicated by the y-position of left-pointing triangle.

4. All prefixes of any k-itemset α appear on the left of α along the polyline that repre-
sents α, whereas all extensions of α appears on the right of α along such a polyline.
Moreover, due to the Apriori property [1], it is guaranteed that the frequency of any
prefix of α ≥ the frequency of α ≥ the frequency of any extension of α. When
one moves along the polyline from right to left, the frequencies of prefixes of α are
non-decreasing. Furthermore, users can see how the frequency of α changes when
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(i) truncating some items to form a prefix or (ii) appending some items to form an
extension.

5. All the nodes representing subsets of an itemset α appear to the left and above
the node representing α. Knowing this property is useful because this reduces the
search space (to only the left and above the node representing α) if one wants to
search for all subsets of α.

6. Similarly, all the nodes representing supersets of an itemset α appear to the right
and below the node representing α. Again, this property helps reduce the search
space.

7. In addition to finding frequent itemsets (and their frequencies), users can also find
closed itemsets (and their frequencies) effectively.

3.2 Features of FIsViz

Feature 1 (Query on frequency). With our FIsViz, users can easily find all frequent
items and/or frequent itemsets (i.e., with frequencies exceeding the user-specified mini-
mum frequency threshold minsup) by ignoring everything that lies below the “threshold
line” y=minsup (i.e., ignoring the lower portion of the graph). To a further extent, the
representation of itemsets in FIsViz can lead to effective interactive mining. To elabo-
rate, with FIsViz, users can easily see what (and how many) itemsets are above a certain
frequency. Based on this information, users can freely adjust minsup (by moving the
slider—which controls minsup—up and down along the y-axis) and find an appropri-
ate value for minsup. See Fig. 2(b), which shows itemsets with frequencies ≥ minsup.
Moreover, FIsViz also provides two related features: (i) It allows users to interactively
adjust minsup and automatically counts the number of itemsets that satisfy minsup. By
doing so, users can easily find top-N frequent itemsets. (ii) It also allows users to pose
a range query on frequency (by specifying both minimum and maximum frequency
thresholds minsup and maxsup) and then shows all itemsets with frequencies falling
within the range [minsup, maxsup].

Feature 2 (Query on cardinality). In FIsViz, itemsets of different cardinalities are
drawn in different color, and itemsets with higher cardinality are drawn over those with
the lower cardinality. This helps users find closed itemsets and maximal itemsets. More-
over, FIsViz also allows users to pose a range query on cardinality so that only those
frequent itemsets with cardinality k within the user-specified range [kmin, kmax] are
drawn.

Feature 3 (Query on itemsets). FIsViz also allows users to interactively select cer-
tain items of interest (e.g., promotional items in a store) and to pose the queries on
itemsets. Examples of these queries include (i) “find all itemsets containing some of
selected items”, (ii) “find all itemsets containing at least all of the selected items”, and
(iii) “find all itemsets not containing any of the selected items”. See Fig. 2(b), in which
selected itemsets are highlighted.

Feature 4 (Details-on-demand). Details-on-demand consists of techniques that pro-
vide more details whenever the user requests them. The key idea is that FIsViz gives
users an overview of the entire dataset and then allows users to interactively select
parts of the overview for which they request more details—by hovering the mouse over
different parts of the display. Specifically, FIsViz supports details-on-demand in the
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following ways: (i) When the mouse hovers on an edge/polyline connecting two nodes
(say, representing items x and y), FIsViz shows a list of itemsets containing both x
and y. Selecting an itemset in the list instantly highlights the specific edge it is con-
tained in, as well as both of its connecting nodes, so that users can see where the edge
starts and ends. (ii) When the mouse hovers over a node, FIsViz shows a list of all
itemsets contained in all the edges starting or ending at this node. Selecting an itemset
from the list instantly highlights the edge it is contained in. (iii) When the mouse hov-
ers over a pixel in the display (even if it is not part of the graph), a small box appears
showing the frequency and itemsets encoded by the mouse position. This is particularly
useful when users need to see among the vast array of edges what a particular point in
the display refers to.

Feature 5 (Formation of association rules). For many existing systems for visualiz-
ing association rules (which only shows the support and confidence of the rule A⇒C),
it is not easy to obtain the frequencies of itemset A and of C. In contrast, our FIsViz
displays the information needed to infer and compute these rules. For instance, one can
form a rule and then compute its support as well as confidence based on the frequen-
cies of A and C. See Observation 3 in Fig. 3. Moreover, FIsViz provides an additional
benefit that users can compute other metrics such as lift.

Feature 6 (Ordering of domain items). By default, FIsViz arranges the domain
items (on the x-axis) in non-ascending frequency order. However, FIsViz also provides
users with an option to arrange items other orders. Having such an option is useful
for constrained mining, in which users may want to arrange the items according to
some constraints (e.g., put items of interest—say, promotional items—on the left and
other items on the right of the screen). With this item ordering, the following property
is preserved: Frequencies of prefixes of the k-itemsets remain non-decreasing when
moving from right to left.

4 Evaluation Results

We conducted two sets of evaluation tests. In the first set, we tested functionality of our
FIsViz by showing how it can be applicable in various scenarios or real-life applications.
In the second set, we tested performance of our FIsViz.

4.1 Functionality Test

In the first set of evaluation tests, we compared our FIsViz with existing systems like
Yang’s system [18] and PSV [14]. We considered many different real-life scenarios. For
each scenario, we determined whether these systems can handle the scenarios. If so, we
examined how these system display the mining results. The evaluation results show
that our FIsViz was effective in all these scenarios. A few samples of these scenarios
are shown in Fig. 4.

4.2 Performance Test

In the performance test, we used (i) several IBM synthetic datasets [1] and (ii) some
real-life databases (e.g., mushroom dataset) from UC Irvine Machine Learning
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For Q1(a) in Fig. 1, frequently purchased fruits are itemsets with high frequency. With PSV, users
may not be able to easily see the content of the itemsets because several itemsets may be mapped
into a grid square. In contrast, our FIsViz shows all frequent itemsets by polylines, which are
easily visible.

For Q1(b) and Q1(c), Yang’s system shows frequencies of itemsets, but it does not give users
the exact frequencies of itemsets because frequencies are represented by the thickness of curves.
In PSV, the brightness of a grid square shows its density (i.e., the number of itemsets that were
mapped into that square) but not its frequency. In contrast, users can easily obtain the frequencies
of itemsets from our FIsViz.

For Q1(d), PSV does not provide the linkage or relationship between related itemsets. In
contrast, our FIsViz provides users with a feature of handling queries on itemsets containing one
specific item (in this scenario, cherries).

For Q1(e), PSV shows itemsets with highest cardinality on the bottom of the screen. Our
FIsViz allows users to query on cardinality. Hence, itemsets with highest cardinality (i.e., poly-
lines with the most number of nodes) can be displayed.

For Q1(f), with FIsViz, users can first pose a query on cardinality to find only 3-itemsets, and
then picks the itemset with the highest frequency.

Fig. 4. Sample scenarios and evaluation results for the functionality test

Depository. The results produced are consistent. Fig 2(b) shows a screenshot of using
the real-life mushroom dataset.

In the first experiment, we varied the size of databases. The results showed that the
runtime (which includes CPU and I/Os) increased linearly with the number of transac-
tions in the database.

In the second experiment, we varied the number of items in the domain. The results
showed that the runtime increased when the number of domain items increased.

In the third experiment, we varied the user-defined frequency threshold. When the
threshold increased, the number of itemsets that satisfy the threshold (i.e., itemsets to
be displayed) decreased, which in turn leads to a decrease in runtime.

5 Discussion: Scalability of FIsViz

Recall that our FIsViz presents items on the x-axis. If each item is displayed by one
pixel, then eventually the visualizer is limited by the number of items it can display
within the user viewpoint. To overcome this limitation, we are developing the follow-
ing approaches: (i) We apply multi-resolution visualization, with which we show the
overall structure at one resolution and present details (upon the user request) at a dif-
ferent resolution. (ii) We span some of the displays beyond the viewpoint by carefully
embedding FIsViz with navigation facilities (e.g., scrolling, panning) so that users can
view items that are off-screen with minimum effort and without losing connectivity in-
formation from the lines in the display. (iii) We condense the large dataset by creating
taxonomies on domain items based on their properties (e.g., item type) so that a large
number of items can be coalesced onto a data point, which can then be opened for more
details (or closed for fewer details) by users.
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6 Conclusions

Most of frequent itemset mining studies return a collection of frequent itemsets in tex-
tual forms, which can be very long and difficult to comprehend. Since “a picture is worth
a thousand words”, it is desirable to have visual systems. However, many existing vi-
sual systems were not designed to show frequent itemsets. To improve this situation,
we proposed and developed a powerful frequent itemset visualizer (FIsViz), which pro-
vides users with explicit and easily-visible information among the frequent itemsets.
Specifically, FIsViz gives a quick intuitive overview of all the itemsets and their fre-
quencies (e.g., visual clues show which individual items are most frequent and how the
items or itemsets are distributed); it also provides in-depth details of interesting item-
sets (e.g., itemsets of a certain frequency and/or cardinality) through human interaction
like mouse hover. Evaluation results showed the effectiveness of FIsViz in answering a
board range of questions for real-life applications. These answers helps users in making
appropriate business decisions.
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of research grants.
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Abstract. Many frequent pattern mining algorithms find patterns from tradi-
tional transaction databases, in which the content of each transaction—namely,
items—is definitely known and precise. However, there are many real-life situ-
ations in which the content of transactions is uncertain. To deal with these sit-
uations, we propose a tree-based mining algorithm to efficiently find frequent
patterns from uncertain data, where each item in the transactions is associated
with an existential probability. Experimental results show the efficiency of our
proposed algorithm.

1 Introduction

Over the past decade, there have been numerous studies [1,2,3,6,7,8,9,11,12,13,14,15]
on mining frequent patterns from precise data such as databases of market basket trans-
actions, web logs, and click streams. In these databases of precise data, users definitely
know whether an item (or an event) is present in, or is absent from, a transaction in the
databases. However, there are situations in which users are uncertain about the presence
or absence of some items or events [4,5,10]. For example, a physician may highly sus-
pect (but cannot guarantee) that a patient suffers from flu. The uncertainty of such sus-
picion can be expressed in terms of existential probability. So, in this uncertain database
of patient records, each transaction ti represents a visit to the physician’s office. Each
item within ti represents a potential disease, and is associated with an existential prob-
ability expressing the likelihood of a patient having that disease in ti. For instance, in
ti, the patient has an 80% likelihood of having the flu, and a 60% likelihood of having
a cold regardless of having the flu or not. With this notion, each item in a transaction ti
in traditional databases containing precise data can be viewed as an item with a 100%
likelihood of being present in ti.

Since there are many real-life situations in which data are uncertain, efficient al-
gorithms for mining uncertain data are in demand. To mine frequent patterns from
uncertain data, Chui et al. [4] proposed an algorithm called U-Apriori. Although they
also introduced a trimming strategy to reduce the number of candidates that need to be
counted, their algorithm is Apriori-based (i.e., relies on the candidate generate-and-test
paradigm). Hence, some natural questions to ask are: Can we avoid generating candi-
dates at all? Since tree-based algorithms for handling precise data [8,13] are usually
faster than their Apriori-based counterparts [1,9], is this also the case when handling
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uncertain data? In response to these questions, we did a feasibility study [10] on using
a tree for mining uncertain data. The study showed that the tree can be used for uncer-
tain data mining. Hence, in the current paper, we propose an efficient tree-based algo-
rithm for mining uncertain data. The key contributions of our work are (i) the proposal
of an effective tree structure—called a UF-tree—for capturing the content of trans-
actions consisting of uncertain data, (ii) the development of an efficient algorithm—
called UF-growth—for mining frequent patterns from the proposed tree, and (iii) two
improvements to the proposed UF-growth algorithm for mining frequent patterns from
the UF-tree. Experimental results in Section 5 show the effectiveness of our proposed
algorithm in mining frequent patterns from uncertain data.

This paper is organized as follows. The next section gives related work and back-
ground. In Section 3, we introduce our UF-growth algorithm for mining frequent pat-
terns from uncertain data. Improvements to this UF-growth algorithm are described in
Section 4. Section 5 shows experimental results. Finally, conclusions are presented in
Section 6.

2 Related Work and Background

Both the Apriori algorithm [1] and the FP-growth algorithm [8] were designed to handle
precise data—but not uncertain data. A key difference between precise and uncertain
data is that each transaction of the latter contains items and their existential probabil-
ities. The existential probability P (x, ti) of an item x in a transaction ti indicates the
likelihood of x being present in ti. Using the “possible world” interpretation of uncer-
tain data [4,5], there are two possible worlds for an item x and a transaction ti: (i) W1

where x ∈ ti and (ii) W2 where x �∈ ti. Although it is uncertain which of these two
worlds be the true world, the probability of W1 be the true world is P (x, ti) and that of
W2 is 1 − P (x, ti). To a further extent, there are many items in each of many transac-
tions in a transaction database TDB. Hence, the expected support of a pattern (or a set of
items) X in TDB can be computed by summing the support of X in possible world Wj

(while taking in account the probability of Wj to be the true world) over all possible
worlds:

expSup(X) =
∑

j

⎡

⎣sup(X) in Wj ×
|TDB|∏

i=1

⎛

⎝
∏

x∈ti in Wj

P (x, ti) ×
∏

y �∈ti in Wj

(1 − P (y, ti))

⎞

⎠

⎤

⎦ (1)

=

|TDB|∑

i=1

(
∏

x∈X

P (x, ti)

)

. (2)

With this setting, a pattern X is considered frequent if its expected support equals or
exceeds the user-specified support threshold minsup.

To handle uncertain data, Chui et al. [4] proposed the U-Apriori algorithm, which
is a modification of the Apriori algorithm. Specifically, instead of incrementing the
support counts of candidate patterns by their actual support, U-Apriori increments the
support counts of candidate patterns by their expected support (using Equation (2)). As
indicated by Chui et al., U-Apriori suffers from the following problems: (i) Inherited
from the Apriori algorithm, U-Apriori does not scale well when handling large amounts
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of data because it also follows a levelwise generate-and-test framework. (ii) If the ex-
istential probabilities of most items within a pattern X are small, increments for each
transaction can be insignificantly small. Consequently, many candidates would not be
recognized as infrequent until most (if not all) transactions were processed.

3 Our Proposed UF-Growth Algorithm

In this section, we propose a tree-based algorithm, called UF-growth, for mining un-
certain data. The algorithm consists of two main operations: (i) the construction of
UF-trees and (ii) the mining of frequent patterns from UF-trees.

3.1 Construction of the UF-Tree

As with many tree-based mining algorithms, a key challenge here is how to represent
and store data—in this case, uncertain data—in a tree? For precise data, each item in a
database transaction TDB is implicitly associated with a definite certainty of its presence
in the transaction. In contrast, for uncertain data, each item is explicitly associated with
an existential probability ranging from a positive value close to 0 (indicating that the item
has an insignificantly low chance to be present in TDB) to a value of 1 (indicating that the
item is definitely present). Moreover, the existential probability of the item can vary from
one transaction to another. Different items may have the same existential probability.

To effectively represent uncertain data, we propose a UF-tree which is a variant of
the FP-tree. Each node in our UF-tree stores (i) an item, (ii) its expected support, and
(iii) the number of occurrence of such expected support for such an item. Our proposed
UF-growth algorithm constructs the UF-tree as follows. It scans the database once and
accumulates the expected support of each item. Hence, it finds all frequent items (i.e.,
items having expected support ≥ minsup). It sorts these frequent items in descending
order of accumulated expected support. The algorithm then scans the database the sec-
ond time and inserts each transaction into the UF-tree in a similar fashion as in the
construction of an FP-tree except for the following:

– The new transaction is merged with a child (or descendant) node of the root of the
UF-tree (at the highest support level) only if the same item and the same expected
support exist in both the transaction and the child (or descendant) nodes.

With such a tree construction process, our UF-tree possesses a nice property that the
occurrence count of a node is at least the sum of occurrence counts of all its children
nodes. See Example 1 for an illustration on constructing a UF-tree.

Example 1. Consider the following transaction database TDB consisting of uncertain
data:

Transactions Contents

t1 {a:0.9, d:0.72, e: 23
32

=0.71875, f :0.8}
t2 {a:0.9, c:0.81, d:0.71875, e:0.72}
t3 {b: 7

8
=0.875, c: 6

7
≈0.85714}

t4 {a:0.9, d:0.72, e:0.71875}
t5 {b:0.875, c:0.85714, d:0.05}
t6 {b:0.875, f :0.1}
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(c:0.85714):2

(b:0.875):3(a:0.9):3

(d:0.72):2

(e:0.71875):2 (d:0.05):1

(c:0.81):1

(d:0.71875):1

(e:0.72):1

(a:0.9):3

(d:0.71875):1 (d:0.72):2

0.72 0.71875

(a:0.9):3

0.5175

(a) The UF-tree for TDB (b) The UF-tree for (c) The UF-tree for
{e}-projected DB {d, e}-projected DB

Fig. 1. The UF-trees

Here, each transaction contains items and their corresponding existential probability
(e.g., the existential probability of item a in transaction t1 is 0.9).

Let the user-specified support threshold minsup be set to 1. The UF-tree can be con-
structed as follows. First, our UF-growth algorithm scans TDB once and accumulates
the expected support of each item. Hence, it finds all frequent items and sorts them in
descending order of (accumulated) expected support. Items a, b, c, d and e are frequent
(i.e., expected support of each of these items ≥ minsup), with their corresponding ac-
cumulated expected support of 2.7, 2.625, 2.52429, 2.20875 and 2.1575. Item f having
accumulated expected support of 0.9 < minsup is removed because it is infrequent.

Then, UF-growth scans TDB the second time and inserts each transaction into the
UF-tree. The algorithm first inserts the content of t1 into the tree, and results in a tree
branch 〈(a:0.9):1, (d:0.72):1, (e:0.71875):1〉. It then inserts the content of t2 into the
UF-tree. Since the expected support of a in t2 is the same as the expected support of a
in an existing branch (i.e., the branch for t1), this node can be shared. So, UF-growth
increments the occurrence count for the tree node (a:0.9) to 2, and adds the remainder
of t2 as a child of the node (a:0.9):2. As a result, we get the tree branch 〈(a:0.9):2,
(c:0.81):1, (d:0.71875):1, (e:0.72):1〉. Afterwards, UF-growth inserts the content of t3
as a new branch 〈(b:0.875):1, (c:0.85714):1〉 because the node (b:0.875):1 cannot be
shared with the node (a:0.9):2. Remaining three transactions (t4 to t6) are then inserted
into the UF-tree in a similar fashion. Consequently, at the end of the tree construction
process, we get the UF-tree shown in Fig. 1(a) capturing the content of the above TDB
of uncertain data. ��

3.2 Mining of Frequent Patterns from the UF-Tree

Once the UF-tree is constructed, our UF-growth algorithm recursively mines frequent
patterns from this tree in a similar fashion as in the FP-growth algorithm except for the
following:

– Our UF-growth uses UF-trees (instead of FP-trees) for mining.
– When forming a UF-tree for the projected database for a pattern X , we need to

keep track of the expected support (in addition to the occurrence) of X .
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– When computing the expected support of an extension of a pattern X (say, X∪{y}),
we need to multiply the expected support of y in a tree path by the expected support
of X .

See Example 2 for an illustration on how the UF-growth algorithm finds frequent pat-
terns from the UF-tree.

Example 2. Once the UF-tree for Example 1 is constructed, our proposed UF-growth
algorithm recursively mines frequent patterns from this tree with minsup=1 as fol-
lows. It starts with item e (with expSup({e}) = 2.1575). UF-growth extracts from
two tree paths—namely, (i) 〈(a:0.9), (c:0.81), (d:0.71875)〉 occurs once with (e:0.72)
and (ii) 〈(a:0.9), (d:0.72)〉 occurs twice with (e:0.71875)—and forms the {e}-projected
DB. Then, expSup({a, e}) = (1 × 0.72 × 0.9) + (2 × 0.71875 × 0.9) = 1.94175, and
expSup({d, e}) = (1 × 0.72 × 0.71875) + (2 × 0.71875 × 0.72) = 1.5525. So, both pat-
terns {a, e} and {d, e} are frequent. However, {c, e} is infrequent because
expSup({c, e}) = 1 × 0.72 × 0.81 < minsup. Thus, c is removed from the {e}-
projected DB. The UF-tree for this {e}-projected DB is shown in Fig. 1(b).

Then, the UF-growth algorithm extracts from the UF-tree for the {e}-projected DB
to form the {d, e}-projected DB, which consists of {a} (which represents the frequent
pattern {a, d, e}) with expSup({a, d, e}) = 3 × 0.5175 × 0.9 = 1.39725, where 0.5175
= 0.71875×0.72 represents expSup({d, e}) in this projected DB. The UF-tree for this
{d, e}-projected DB is shown in Fig. 1(c).

Next, UF-growth deals with items d, c and b (and finds all frequent supersets of {d},
{c} and {b}) in a similar fashion. Consequently, by applying our proposed UF-growth
algorithm to the UF-tree that captures the content of uncertain data in Example 1, we
find frequent patterns {a}, {a, d}, {a, d, e}, {a, e}, {b}, {b, c},{c}, {d}, {d, e} and {e}.

��

4 Improvements to Our Proposed UF-Growth Algorithm

The UF-tree above may appear to require a large amount of memory. Due to nature of
uncertain data, the UF-tree is often larger than the FP-tree. This is because the FP-tree
merges nodes sharing the same item whereas the UF-tree merges nodes sharing both
the same item and the same expected support, where the expected support is in the
domain of real numbers in the range of (0,1]—which can be infinitely many. Hence, the
chance of sharing a path in the FP-tree is higher than that in the UF-tree. However, it
is important to note that, even in the worst case, the number of nodes in a UF-tree is
the same as the sum of the number of items in all transactions in the original database
of uncertain data. Moreover, thanks to advances in modern technology, we are able to
make the same realistic assumption as in many studies [3,7,15] that we have enough
main memory space in the sense that the trees can fit into the memory.

A natural question to ask is: Can we reduce the memory consumption? In this section,
we discuss how we improve our proposed UF-growth algorithm.

Improvement 1. To reduce the memory consumption and to increase the chance
of path sharing, we discretize and round the expected support of each tree node up
to k decimal places (e.g., 2 decimal places). By so doing, we reduce the potentially
infinite number of possible expected support values—in the domain of real numbers in
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(c:0.86):2

(b:0.88):3(a:0.90):3

(d:0.72):2

(e:0.72):2 (d:0.05):1

(c:0.81):1

(d:0.72):1

(e:0.72):1
(a:0.90):3

0.52

(a) The improved UF-tree for TDB (b) The improved UF-tree for {e}-projected DB

Fig. 2. The improved UF-trees (with Improvement 1)

the range of (0,1]—to a maximum of 10k possible values (e.g., at most 100 possible
expected support values ranging from 0.01 to 1.00 inclusive when k = 2). Thus, sizes
of the UF-trees for the original TDB and subsequent projected databases are reduced.
Fig. 2 shows some of these smaller UF-trees when Improvement 1 is applied.

Improvement 2. Inspired by the idea of the co-occurrence frequent-itemset tree [6],
we modify and improve the mining procedure in our proposed UF-growth algorithm so
that UF-trees are built only for the first two levels (i.e., for the original TDB and for
each singleton pattern). In other words, the improved UF-growth does not need to build
subsequent UF-trees for any non-singleton patterns (e.g., not need to build a UF-tree
for the {d, e}-projected database). Specifically, the improved UF-growth systematically
extracts relevant paths from the UF-tree built for each singleton, enumerates all subsets
of each extracted tree path, summing the expected support of patterns extracted from
these paths to find frequent patterns. See Example 3 for an illustration on how the
improved UF-growth algorithm finds frequent patterns from the UF-tree.

Example 3. Similar to Example 2, the improved UF-growth builds a UF-tree for the
original TDB (as illustrated in Example 1), finds frequent singleton patterns (e.g.,
{a}, {b}, {c}, {d} and {e}), forms a projected DB and builds a UF-tree for each of
these singletons starting with singleton {e}. From the {e}-projected DB, the improved
UF-growth does not build any subsequent trees such as {d, e}-projected DB. Instead,
the algorithm first extracts the tree path 〈(a:0.9):3, (d:0.71875):1〉 that occurs once with
(e:0.72), enumerates all its subsets and obtains {a, e}, {a, d, e} & {d, e} (with their
expected supports equal 0.648, 0.46575 & 0.5175 so far), and then decrements the
occurrence counts of all nodes in this path. The algorithm then extracts the tree path
〈(a:0.9):2, (d:0.72):2〉 that occurs twice with (e:0.71875), enumerates all its subsets
and obtains {a, e}, {a, d, e} & {d, e} (with their accumulative expected supports equal
1.94175, 1.39725 & 1.5525), and then decrements the occurrence counts of all nodes in
this path. Afterwards, all the nodes have occurrence counts equal to 0. We find frequent
patterns {a, e}, {a, d, e} & {d, e} and their expected supports, directly from the UF-
tree representing the {e}-projected DB and without forming any subsequent UF-trees
for non-singletons. Our improved UF-growth applies this technique to other UF-trees
for singletons and finds other frequent patterns in a similar fashion. As a result, it finds
the same set of frequent patterns as in Example 2 but requires less memory space. ��
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Note that Improvement 2 can be applied independently or in conjunction with Improve-
ment 1 (i.e., rounding expected support values).

5 Experimental Results

We conducted the following experiments using various databases including the IBM
synthetic datasets [1], real-life databases from the UC Irvine Machine Learning De-
pository, as well as datasets from the Frequent Itemset Mining Implementation (FIMI)
Dataset Repository. The experimental results were consistent. Hence, for lack of space,
we only show below the experimental results on the IBM datasets, which contain 100k
records with an average transaction length of 10 items and a domain of 1,000 items. We
assigned an existential probability from the range (0,1] to each item in each transac-
tion. All experiments were run in a time-sharing environment on a 1 GHz machine. The
reported results are based on the average of multiple runs. Runtime includes CPU and
I/Os; it includes the time for both tree construction and frequent pattern mining steps.
In the experiments, we mainly evaluated the efficiency of the proposed algorithm.

First, we tested the effect of minsup. Theoretically, (i) the runtime decreases when
minsup increases and (ii) our UF-growth algorithm (which does not rely on the candi-
date generate-and-test paradigm) requires much less runtime than the U-Apriori algo-
rithm [4] (which relies on the candidate generation process). Experimental results (as
shown in Fig. 3(a)) confirmed that, when minsup increased, fewer patterns had expected
support ≥ minsup, and thus shorter runtimes were required. Moreover, our tree-based
mining algorithm (UF-growth) outperformed its Apriori-based counterpart (U-Apriori).

Second, we tested scalability of our proposed UF-growth algorithm. Theoretically,
UF-growth should be scalable with respect to the number of transactions. Experimental
results (as shown in Fig. 3(b)) confirmed that mining with our proposed algorithm had
linear scalability.

Third, we tested the effect of the distribution of item existential probability. The-
oretically, when items take on many different existential probability values, UF-trees
(for the original TDB, projected databases for singletons as well as for non-singletons)
become larger and times for both UF-tree construction and frequent pattern mining
become longer. On the other hand, when items take on a few unique existential prob-
ability values, the runtime becomes shorter. This is confirmed by experimental results
(as shown in Fig. 3(c)). Note that we can reduce the number of unique existential prob-
ability values by applying Improvement 1.

Fourth, we measured the number of nodes in UF-trees. Theoretically, our proposed
UF-growth described in Section 3 builds UF-trees for the original TDB and projected
databases for singletons as well as for non-singletons. The total number of nodes in
the UF-tree representing the original TDB is no more than the total number of items
in all transactions in TDB. The size of this tree, as well as other UF-trees, built for
UF-growth with Improvement 1 is the same—and usually smaller than—that without
improvement. Moreover, UF-growth with Improvement 2 builds only UF-trees repre-
senting the original TDB and projected databases for singletons; it does not build any
UF-trees representing projected databases for non-singleton patterns. See Table 1 and
Fig. 3(d). The graph shows the reduction in tree size when k=2 decimal places were
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Fig. 3. Experimental results on our proposed UF-growth algorithm

Table 1. Comparison on the sizes of UF-trees for variants of the UF-growth algorithm

UF-trees for... UF-growth w/ Improvement 1 w/ Improvement 2 w/ Improvements 1 & 2

TDB #nodesTDB ≤ #nodesTDB #nodesTDB ≤ #nodesTDB

singletons #nodessing ≤ #nodessing #nodessing ≤ #nodessing

non-singletons #nodesns ≤ #nodesns 0 0

used. More savings were observed when a lower k (e.g., k=1 decimal places) was used
for Improvement 1.

6 Conclusions

Most existing algorithms mine frequent patterns from traditional transaction databases
that contain precise data. However, there are many real-life situations in which one
needs to deal with uncertain data. To handle these situations, we proposed (i) the UF-tree
to effectively capture the content of transaction databases consisting of uncertain data
(in which each item in every transaction is associated with an existential probability)
and (ii) a tree-based mining algorithm called UF-growth to efficiently find frequent
patterns from UF-trees. When compared with U-Apriori, our proposed UF-growth al-
gorithm is superior in performance. In addition, we also presented two improvements
(which can be applied independently or simultaneously) to UF-growth. The rounding
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of expected support values and the elimination of UF-trees for projected databases for
non-singleton patterns both contribute to the reduction of the amount of required mem-
ory and further speed-up of the mining process. Hence, with our tree-based approach,
users can mine frequent patterns from uncertain data effectively.

Acknowledgement. This project is partially supported by NSERC (Canada) in the form
of research grants.
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Abstract. Advances in data acquisition have allowed large data collec-
tions of millions of time varying records in the form of data streams. The
challenge is to effectively process the stream data with limited resources
while maintaining sufficient historical information to define the changes
and patterns over time. This paper describes an evidence-based approach
that uses representative points to incrementally process stream data by
using a graph based method to cluster points based on connectivity and
density. Critical cluster features are archived in repositories to allow the
algorithm to cope with recurrent information and to provide a rich his-
tory of relevant cluster changes if analysis of past data is required. We
demonstrate our work with both synthetic and real world data sets.

1 Introduction

Stream mining is an increasingly important area of research that aims to discover
interesting information from continually evolving data sets whose size, combined
with limitations in available memory and computational resources, typically con-
strains our ability to perform timely batch processing of the data. Instead, we
desire means by which to incrementally maintain current and historical models
of the data with which to perform queries. Stream data mining has been heavily
investigated in the past five years with most efforts concentrated on the cluster-
ing aspect of the problem. Of the algorithms developed, however, only a small
number can handle difficult clustering tasks without expert help, typically pro-
vided in the form of the number of partitions expected or the expected density
of clusters. Moreover, none of these attempt to build a selective history to track
the underlying changes in the clusters observed.

We present a sparse-graph based stream mining approach that employs repre-
sentative cluster points to incrementally process incoming data. The graph based
description is used because it allows us to model the spatio-temporal relation-
ships in a data stream more accurately than is possible via summary statistics. A
critical aspect of our research has been to avoid rediscovery of previously learned
patterns by reusing useful cluster information. For this reason, a repository of
knowledge is used to capture the history of the relevant changes occurring in the
clusters over time. The use of the repository offers two major benefits.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 662–672, 2008.
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First, the algorithm can handle recurrent changes in the clusters more effec-
tively by storing a concise representation of persistent and consistent cluster
features. These features assist in the classification of new data points belonging
to historical cluster distributions within an evolving data stream. The retention
of such features is important as they permit the algorithm to discard older data
points in order to adhere to constraints in available memory and computational
resources while continuing to store useful cluster features.

Second, the repository provides a concise knowledge collection that can be
used to rebuild a cluster’s overall shape and data distribution history. It is there-
fore possible to archive core cluster features for future off-line analysis when a
recall of historical changes is desired.

2 Related Work

Several important stream mining algorithms have been introduced in recent
years. One of the first data stream mining methods to consider the archival
of cluster information was CluStream [1]. The algorithm uses microclusters to
capture and record statistical summary information suitable for off-line analysis.
CluStream is, however, best suited to situations in which clusters are spherical,
reducing the algorithm’s suitability to many real world data sets.

HPStream, a modification of CluStream to enable clustering of high dimen-
sional data, was proposed in [2]. The algorithm employs a data projection method
to reduce the dimensionality of the data stream to a subset of dimensions that
minimise the radius of cluster groupings. However, the underlying assumption
remains that clusters in the projected space remain spherical in nature.

Most recently, a multi-density clustering technique that extends the DB-
SCAN [3] density-based clustering approach to stream mining was proposed
in [4]. The algorithm, DenStream, extends DBSCAN by adapting the original
density based connectivity search to a microcluster approach.

An incremental version of the DBSCAN was earlier proposed in [5]. As with
DBSCAN, the algorithm obtains groupings based on the nearest neighbour-
hood connectivity of points within an a priori defined radius known as the ε-
neighbourhood. Incremental DBSCAN is limited to keeping only the most recent
data points in memory and is therefore likely to discard possibly reusable cluster
information without consideration towards its value.

A well known algorithm, Chameleon [6] uses the hMeTiS [7] multilevel graph
partitioning algorithm to recursively divide a sparse graph into micro-clusters.
These clusters are then iteratively merged based on user specified thresholds for
measures of relative interconnectivity and closeness.

None of the algorithms mentioned provide a means to selectively archive
historical information. Those algorithms that facilitate archiving instead tend
to store summary statistics with which general changes in clusters can be
revisited.
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3 Clustering Stream Data Via Representative Points

Our cluster representation involves the use of dynamically updated sparse graphs
that, when used in conjunction with a repository of representative vertices, allows
us to rebuild a cluster’s history and to rapidly adapt to significant changes previ-
ously observed. The RepStream algorithm that we propose aims to capture such
change in order to recall it at some future time should the change reoccur. Rep-
Stream is a single phase incremental algorithm that updates two sparse graphs
of k-nearest neighbour connected vertices in order to identify clusters among
data points. The first graph captures the connectivity relationship amongst the
most recently seen data points and to select a set of representative vertices. The
second graph is used to track the connectivity between the chosen representa-
tive vertices. The connectivity of the representative vertices on both graphs then
forms the basis for the algorithm’s clustering decision making.

The representatives we use offer two major advantages. First, since represen-
tative vertices typify a set of nearby data points, decisions made at this level
improves performance by requiring only a subset of the data to be considered.
Second, representative vertices are associated with a measure of usefulness which
allows the algorithm to selectively retain highly valued representatives as his-
torical descriptors of the cluster structures. This retention allows the algorithm
to accurately classify new data points arriving within a region of the clustering
space where the non-representative vertices have since been retired.

3.1 Preliminaries

Given a data stream P of time ordered points P = {p1, . . . p|P |}, we wish to
find groupings of points sharing similar properties. We define a cluster c to be
a set of points c = {p1 . . . p|c|} where each point pi is a multidimensional vector
pi = {pi,1 . . . pi,D} of D dimensions. Let C be the set of clusters C = {c1 . . . c|C|}.

Let the set G = {g1 . . . g|P |} be the ideal cluster assignments for points P

such that the jth element gj correctly labels point pj . We aim to assign labels to
data points such that each point is correctly classified or any misclassification is
minimised. The distance between point pi and point pj is given as D (pi, pj).

Points are inserted into a directed k-nearest neighbour (K-NN) sparse graph
SG (V, E) of vertices V = {v1, . . . v|V |} and edges E = {e1, . . . e|E|} such that the
ith vertex vi corresponds to point pi ∈ P . Each edge is an ordered pair 〈u, v〉
of vertices such that u, v ∈ V . The sparse graph representation is used as it
provides a rich representation of relationships that is otherwise not available by
only labelling data points.

Updates to the sparse graph requires knowledge of each vertex’s nearest neigh-
bours. Let NN (vi) be a function that provides an ascending distance ordered
array of the nearest neighbours of a vertex vi and let NN (vi, j) be a function
that gives the jth nearest neighbour of vi. Let RC(vi) be a function that provides
a set of vertices reciprocally connected to a vertex vi. We also let IE(vi) be a
function for determining the incoming edges directed at vertex vi.
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Let R = {r1, . . . r|R|} be a set of representative vertices on SG such that
∀x, rx ∈ V and let RSG (W, F ) be a directed k-nearest neighbour repre-
sentative sparse graph which links the vertices W = {w1, . . . w|W |} via edges
F = {f1, . . . f|F |}. An edge in F is an ordered pair 〈u, v〉 of vertices such that
v, u ∈ R. Let NNR(ri), NNR (ri, j) and RCR(ri) be functions that provide the
nearest neighbours, the nearest jth neighbour and the set of vertices that are
reciprocally linked to a representative vertex ri on RSG.

Definition (predictor). Let a representative ri be a predictor if ri satisfies the
condition that |IE(ri)| < k

2 .

Definition (exemplar). Let a representative ri be an exemplar if ri satisfies the
condition that |IE(ri)| ≥ k

2 .

Definition (representative vertex). Representative vertices represent at most k
non-representative vertices on the sparse graph SG. A vertex vi is made repre-
sentative if at any time �j, vj ∈ RC(vi), vj ∈ R, that is, if it is not reciprocally
connected to an existing representative. Representatives are further categorised
into a set of exemplar representatives RE = {rE

1 , . . . rP
|RE |} and predictor repre-

sentatives RP = {rP
1 , . . . rP

|RP |} such that RP ∪ RE = R and RP ∩ RE = ∅.

Clustering decisions in RepStream are made via vertices representative of regions
within the cluster space. At each time step a new point pi is observed in the data
stream and added to the sparse graph SG(V, E) as vertex vi. A new vertex joins
an existing cluster if it is reciprocally connected to a representative vj ∈ R.
Should no such representative vertex exist then vi is itself made representative.
The creation of the new cluster may trigger an immediate merge with an existing
cluster if the conditions for merging are met.

3.2 Merging and Splitting Clusters

Cluster splits and merges are made by monitoring both the reciprocal connectiv-
ity of vertices on the representative sparse graph as well as their relative density
based on the proximity of their nearest neighbours on SG. The trigger condition
for either of these events is the creation or removal of density-related links.

Definition (relative density). The density of representative vertex ri ∈ R is
determined by the function RD (ri) = 1

|NN(ri)|
∑|NN(ri)|

j=1 D (ri, NN (ri, j)).

Definition (density-related). Given a density scaler α, two representatives ri

and rj are density-related if: D (ri, rj) ≤ RD (ri) · α, and D (ri, rj) ≤ RD (rj) · α
and rj ∈ RCR (ri).
Merges are therefore triggered when an update to the connectivity of vertices
on RSG sees the creation of a new reciprocal connection that is also density-
relate or when the addition or removal of a vertex affects the density of two
existing representatives that are reciprocally connected such that their density-
related status is altered. Monitoring the connectivity and relative density of
representatives enables the algorithm to evolve with changes in the data.
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Split checks are executed when the loss of a density-related link between two
vertices on RSG is detected. A standard O(n2) region growing algorithm that
follows the density-related links of the representative vertices was employed to
perform split checks.

3.3 Knowledge Repository

A significant aim of RepStream is to retain those representative vertices that
prove, over time, to be useful in representing the shapes and distributions of
clusters. Such vertices are retained for as long as possible (subject to available re-
sources) via a repository defined as an ordered vector of vertices S =

〈
s1, . . . s|S|

〉

sorted in ascending usefulness.

Definition (representative usefulness). The usefulness of a representative ver-
tex ri is defined by the decay function: usefulness(ri, count) = log(λ) · (current
time − creationTime(ri) + 1) + log(count + 1). Here λ is a user specified decay
rate and count is the representative vertex’s reinforcement count. This count is
incremented when an incoming vertex is found to be a nearest neighbour of ri.
The decay function ensures a monotonic ordering of vertices in the repository
with respect to the passing of time. In our implementation of RepStream we
chose to index the repository using a AVL binary search tree [8]. Updating the
reinforcement count of a representative vertex that has already been added to
the repository requires only two tree operations: the removal of the vertex and
then its subsequent reinsertion following an increment to its reinforcement count.
The least useful representative vertex can be rapidly found by traversing to the
AVL tree node with the lowest usefulness score.

New additions to the repository are made whenever a new representative
vertex is created until resource constraints have been reached. At this point only
the most useful repository members are retained. This is achieved by comparing
the least useful repository member with other non-repository representatives
whenever their reinforcement count is incremented. Vertices retired from the
repository are immediately unlinked from both graphs and archived to disk.

3.4 Singularities

The occurrence of many identical points within a data stream is captured via
singularities, a special case of representative vertices intended to succinctly and
efficiently represent such occurrences.

Definition (singularity). A representative vertex ri ∈ R is termed a singularity
when

∑k
j=1 D (ri, NN (ri, j)) = 0 and |NN (ri)| = k.

Singularities represent a collection of identical points that offer no new informa-
tion to the clustering process, yet whose inclusion in the sparse graphs would
require the retirement of otherwise useful vertices. New points that are identical
to a singularity are therefore immediately deleted in order to avoid the overhead
of unnecessary sparse graph updates and to maintain the information value of
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the repository. The occurrence of identical points is not lost, however, as they
are represented by a singularity’s reinforcement count.

Singularities are unable to be assigned non-zero density measures and as such
do not lose their singularity status once it is acquired. This ensures that the
presence of a singularity is permanently captured by the algorithm even though
its nearest neighbours may be retired over time. Representative vertices are
unable to form density-related links to singularity vertices.

3.5 Data Retirement

Processing and memory constraints require the algorithm to discard information
over time. This is accomplished by prioritising the disposal of data such that the
least useful information for clustering is removed first. Non-representative ver-
tices are queued on a first in, first out basis and removed whenever resource
limitations are reached. Representative vertices that are not stored in the repos-
itory are considered to have little retentive value and are also removed via the
deletion queue. All other representative vertices remain in memory; their deletion
is instead managed via the repository update procedure.

The removal of a vertex requires updates to the sparse graph and the repre-
sentative sparse graph. Graph updates are made to ensure that any vertices with
edges directed at the removed vertex are updated with a new nearest neighbour.
Representative vertices are also updated to ensure that their local density is
adequately maintained.

4 Experimental Results

The performance of RepStream was evaluated using synthetic and real world
data sets. Our real world data sets consisted of the KDD-99 Cup network intru-
sion data and the forest canopy type data described in [9]. The synthetic data
was designed to test the algorithm’s capacity to cluster a difficult set contain-
ing a variety of arbitrarily shaped clusters of different densities. The real world
data sets, in contrast, were selected to investigate the practical application of
the approach on large evolving data streams.

Cluster purity [10] was used to measure how well data is classified over a
horizon of the previous h data points. The purity of a cluster ci is defined as:
CP(ci) = 1

|ci| maxk(
∑|ci|

j=1 r(vj , k)) where r(vj , k) is 1 if class(vj) = k, else 0.
The total clustering purity is then found by averaging over all clusters via:

TCP(C) = 1
|C|

∑|C|
i=1 CP(ci).

The algorithm was constrained to using only 10 MiB of memory and the decay
factor used in all experiments was set to λ = 0.99. The chosen purity horizons
were selected to correspond with previous work in clustering data streams [1,2].
The KD-Tree [11] was used to perform nearest neighbour searches.

4.1 Synthetic Data

The clustering quality of RepStream was first compared against an incremental
version of DBSCAN [5] using the hand crafted synthetic data set. DBSCAN
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(a) (b)

Fig. 1. RepStream clustering of the synthetic data highlighting the performance dif-
ference between a neighbourhood connectivity of (a) k = 4 and (b) k = 5 when α = 4.0

(a) (b)

Fig. 2. DBSCAN clustering of the synthetic data set with (a) ε = 15 and (b) ε = 16

was selected for comparison as this algorithm employs a density based method
of clustering known to perform well with arbitrarily shaped clusters. However,
DBSCAN is limited to operating at a single density and is therefore expected
to exhibit difficulties when dealing with this data set. As DBSCAN relies on a
priori knowledge of the optimal cluster density, we repeated each of the DBSCAN
experiments using a variety of values for ε. The minimum number of points
required to form a cluster was set to 5. The data was presented to the algorithms
using a randomised point ordering and the Manhattan distance was used to
compute the similarity between points.

Figure 1 depicts the RepStream clustering of the data using the optimal pa-
rameter set k = 4 and α = 4.0. These results show that the algorithm was
able to cluster the arbitrarily shaped clusters well. The discovered clusters are
sub-optimal, however, with some minor fragmentation evident. The separate
clustering of these points is not considered an error, however, as their location
and density suggests that these points may, indeed, belong to separate clusters
when compared to the remaining points.

Increasing the density scaler from α = 4.0 to a higher value of α = 6.0 did not
correct this clustering. Decreasing the scaler did, however, result in increased
fragmentation. An increase of the neighbourhood connectivity successfully over-
came the fragmentation issue as shown in Figure 1(b).
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In contrast, DBSCAN was found to produce well formed higher density clus-
ters with an ε-neighbourhood parameter of ε = 15. The lower density clusters,
however, were found to be highly fragmented with the presence of a significant
number of unclustered points as shown in Figure 2(a). Decreasing the density
with ε = 16 marginally decreased the cluster fragmentation, as seen in Fig-
ure 2(b), though at the expense of the incorrect merging of the two top left
triangular clusters.

4.2 Network Intrusion Data

The KDD Cup-99 data set features 494,020 network connection records derived
from seven weeks of raw TCP logs consisting of both regular network traffic as
well as 24 types of simulated attacks within a military local area network. Of
the dimensions available, 34 continuous valued features were used for clustering
and a single outlier point was removed.

RepStream was tested using a purity horizon of h = 1, 000. The Manhattan
distance function was used to compute the similarity of data points from features
that were normalised on-the-fly. A point pi = {pi,1 . . . pi,D} of D dimensions
was normalised in each dimension d using the formula p′i,d = pi,d

∑ |P |
j=1 pj,d

where

|P | refers to the number of points in memory at any given time. The nearest
neighbourhood connectivity was set to k = 9 with α = 1.5.

The purity results in Figure 3 show that RepStream is able to accurately dif-
ferentiate between different types of attack connections. The accuracy of Rep-
Stream was also evaluated against published results reported on the same data
set for the HPStream, DenStream and CluStream algorithms. The results of the
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Fig. 4. Purity measures of RepStream, HPStream and CluStream using available pub-
lished results on the KDD Cup 1999 data set with (a) h = 200 and (b) h = 1, 000
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Fig. 5. Purity measures of RepStream, DenStream and CluStream using available pub-
lished results on the KDD Cup 1999 data set with (a) h = 200 and (b) h = 1, 000

comparisons, depicted in Figure 4 and in Figure 5, shows that in most cases
RepStream was able to classify network connections as well as or with higher
accuracy than HPStream, DenStream and CluStream. The data stream sample
times were chosen to match those reported in [1,2].

4.3 Forest Cover Data

The forest cover data set contained 581,012 records consisting of a total of 54
geological and geographical features that describe the environment in which
trees were observed. Records also included the ground truth as to which of seven
different types of canopy were present on the trees. Attributes consisted of a
mixture of continuous and Boolean valued data, the latter taking values from
the set {0, 1}. Dimensions were normalised as described in Section 4.2 and the
Manhattan distance function was used to measure the similarity between points.
Parameters used on this data set were k = 9 and α = 1.5.

Figure 6 shows the purity measured over the data stream with h = 1, 000.
RepStream is seen to classify the canopy types with an accuracy typically ≥ 85%.
The jagged appearance of the purity plots suggest that the algorithm is coping
with a more dynamic data set than compared to the network intrusion experi-
ment in Section 4.2; a premise confirmed through inspection of the data. Rep-
Stream’s purity measurements were evaluated against HPStream and CluStream
using the results published in [2]. Figure 7 depicts the result of this comparison,
showing that the algorithm was able to classify the tree data with consistently
more accuracy than the competing algorithms.
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Fig. 7. Purity measures of RepStream, HPStream and CluStream using available pub-
lished results on the forest tree cover data set with (a) h = 200 and (b) h = 1, 000

4.4 Scale-Up Experiments

We investigated the execution time of the algorithm with respect to neighbour-
hood connectivity and the length of the data stream. Scale up experiments were
executed on Mac OS 10.4 running on an Intel 2.33GHz Core 2 Duo processor.

A near linear relationship between connectivity and execution time was discov-
ered in the network intrusion results in Figure 8a. The forest data set produced
a similar relationship as shown in Figure 8b. Execution time with respect to the
length of the data stream is shown in Figure 9.
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Fig. 8. Execution time of RepStream clustering (a) the network intrusion data and (b)
the forest canopy data as the k-nearest neighbours are increased
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the forest canopy data as the stream length is increased
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Whereas the tree data set in Figure 9b shows an expected linear relationship
between the number of points processed and the execution time, the network data
set in Figure 9a displays significant flattening out due to efficient processing of
identical points within the stream. Connectivity was set to k = 5 and a density
scaler of α = 1.5 was used to process both data sets.

5 Conclusions

This paper has introduced a graph-based incremental algorithm for clustering
evolving stream data. Experimental results demonstrated that the algorithm
was able to effectively classify both synthetic and real world data sets. The
algorithm was compared against an incremental implementation of DBSCAN
and shown to robustly handle clusters of complex shapes, sizes and densities.
DBSCAN, in contrast, was shown to be hampered by a static density threshold
ill suited towards stream processing. Results on real world data sets showed that
RepStream was able to more accurately classify well known network intrusion
and forest canopy data sets than three of the most popular stream data clustering
algorithms: DenStream, HPStream and CluStream.
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Abstract. Most existing personalization systems rely on site-centric
user data, in which the inputs available to the system are the user’s
behaviors on a specific site. We use a dataset supplied by a major audi-
ence measurement company that represents a complete user-centric view
of clickstream behavior. Using the supplied product purchase metadata
to set up a prediction problem, we learn models of the user’s probabil-
ity of purchase within a time window for multiple product categories
by using features that represent the user’s browsing and search behav-
ior on all websites. As a baseline, we compare our results to the best
such models that can be learned from site-centric data at a major search
engine site. We demonstrate substantial improvements in accuracy with
comparable and often better recall. A novel behaviorally (as opposed to
syntactically) based search term suggestion algorithm is also proposed
for feature selection of clickstream data. Finally, our models are not pri-
vacy invasive. If deployed client-side, our models amount to a dynamic
“smart cookie” that is expressive of a user’s individual intentions with a
precise probabilistic interpretation.

1 Introduction

Clickstream data collected across all the different websites a user visits reflect the
user’s behavior, interests, and preferences more completely than data collected
from one site. For example, one would expect that it would be possible to better
model and predict the intentions of users who we knew not only searched for a
certain keyword on a search engine S but also visited website X and the website
Y , than if we knew only one of those pieces of information. The complete data
set is termed user-centric data [8], which contains site-centric data as a subset.
Most existing research on clickstream data analysis is based on site-centric data.

For the important task of personalization we seek to demonstrate rich, predic-
tive user models induced from user-centric data, and quantify their advantages
to site-centric approaches. We use a dataset supplied by a major audience mea-
surement company that represents a complete user-centric view of clickstream

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 673–680, 2008.
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behavior. The main contribution of our work is the first demonstration that ac-
curate product category level purchase prediction modeling (regardless of the
site of purchase) can be done from user-centric data. Using the supplied product
purchase metadata to set up a prediction problem, we learn models of the user’s
probability of purchase within a time window for multiple product categories
by using features that represent the user’s behavior on all websites. Our model
outperforms a reasonable and commercially meaningful baseline model learned
from site-centric data restricted to a major search engine. We also propose a
novel behaviorally (as opposed to syntactically) based search term suggestion
algorithm which was an effective part of the feature selection strategy we used.
Additionally, we explicitly consider the issue of prediction latency and show that
even when predictions are made with long lead times, effective predictions can
still be made. Finally, our models are not privacy invasive and we propose the
idea of “smart cookies” motivated by our results. The success of our clickstream
modeling approach should point the way to more personalization applications
driven by clickstream modeling.

We first review the related background work in clickstream modeling and
current research on personalization in Section 2. We then introduce our proposed
online product purchase model and describe our experimental data in Section 3.
Section 4 provides the experimental design and results.

2 Related Work

In the computer science literature, two main motivations have driven research on
clickstream analysis: personalization and caching. Caching and prefetching to im-
prove web server performance is obviously an important task and so site-centric
clickstreams from web server logs have been analyzed to improve performance [4].
This line of work has emphasized the use of Markov models to predict page ac-
cesses. Despite a broad and deep interest, little direct work has been done on
mining user-centric clickstream data for personalization. Site-centric personal-
ization efforts have used clickstream analysis to cluster users [1,2] which enables
site-specific content recommendation within user clusters. Additional work has
been done in the marketing science literature [6] and [7]. User-centric clickstream
data has been used in web personalization tasks such as personalized search [10],
where clickstream data was part of the data used to help re-rank search results.
Padmanabhan, et al. [8] demonstrated the predictive value of user-centric data
versus site-centric data. Their work attempted to provide predictions of “pur-
chase” or “no-purchase” at a given website (regardless of specific product cate-
gory) based on user or site-centric data as inputs. In our work, we focus on the
more widely useful and more difficult task of predicting specific product category
purchases at any website. Furthermore, we consider search data as an important
feature whose value as a prediction variable we are able to quantify and which
was not used in this prior work.
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3 Purchase Intent Model

This work focuses on developing general models that can effectively learn and
predict users’ online purchase intent. In these models, user-centric data is col-
lected and stored in a database. After data preprocessing, features reflecting user
online purchase intentions are constructed. The search terms that users input
into general search engines, and the search terms they use on the leading online
shopping stores are considered as indications of their purchasing interests (see
[5] for more details). Then algorithms, such as decision trees, regression pre-
diction algorithms are applied for predicting online purchase intent for various
product categories on the processed data composed of the constructed features.
We further explain the experimental dataset used, a search term suggestion algo-
rithm, data preprocessing, feature construction and evaluations for the modeling
process in the rest of this section.

3.1 Experimental Data

Nielsen Online MegaPanel data 1 is used as our testbed for purchase intent mod-
eling. Nielsen is an online audience measurement company, which is a premier
provider of high-quality internet data. The MegaPanel data is raw user-centric
clickstream data, which includes, for example, online search behavior on leading
search engines (such as Google, Yahoo) and shopping websites (such as Ama-
zon, BestBuy). The data collection is processed to make the average customer’s
online behaviors consistent with a representative sampling of internet users. All
personally identifying data is filtered from our dataset by Nielsen.

The data collected over 8 months amounted to approximately 1 terabyte from
more than 100, 000 households. For each URL there are time stamps for each
internet user’s visit. Retailer transaction data (i.e. purchase metadata) contains
more than 100 online leading shopping destinations and retailer sites. These data
records show for a given user who makes a purchase online, the product name,
the store name, the timestamp, the price and so on. Users’ search terms can also
be inferred from the URL data, which are collected from top search engines and
comparison shopping sites (more details are given in [5]).

3.2 Behavior Based Search Term Suggestion Algorithm

Automatic discovery of relevant search terms can help construct features to dis-
tinguish buyers from non-buyers given a product category. The search terms
users input into websites are indications of their purchasing intent, but it is a
challenge to determine automatically which terms are relevant for a given prod-
uct category. Current keyword suggestion tools are syntactically based, typically
suggesting variations of queries that include a given seed search term. For ex-
ample, for the purchase of “laptop”, suggested keywords may include “laptops”.
Our approach is behaviorally based, does not use any information about syntactic

1 http://www.nielsen-netratings.com/



676 R. Lukose et al.

Table 1. a) Top 10 Significant Terms for Sample Product Categories, b) Decision Table
for Classifications

Apparel Auto- Books Child Watch Computer Computer
motives BabyCare & Jewelry Hardware Software

granby rotonda amazon thum Seiko dell cafepress
coupon civic barnes cravens watches dotnetnuke panel
centreville rotundra books aod ebay ati hdtv
coupons hfp noble mysterie811 movado radeon flat
shirts ep3 goya hohider overstock.com behringer scripps
wrightsville rechenberg miquelon strollers watche agp plasma
clothing bove annapolis pomade xbox laborer kingman
pajamas exhaust diseases dragonflies Timex hp software
transat switchers autograph toolady Watchband breakin scroll
shirt ifinder griffie gumball Necklaces blau 1080i

User ID Condition Attributes Decision Attribute
28 Features {buyer, non-buyer}

ID G1a G1b . . . G14c G11 G16 {buyer, non-buyer}
1 Yes 2 . . . 7 5200 No buyer

2 Yes 5 . . . 2 413 Yes non-buyer

3 No 0 . . . 0 622 No buyer

. . . . . . . . . . . . . . . . . . . . . . . .

83,635 Yes 3 . . . 0 342 No buyer

(a) (b)

variation of queries, and does not even require seed terms. For example, related
keywords under this method may include brand names such as “HP laptop”,
“Dell” and “Lenovo” with no syntactic relationship to “laptop”.

We used the following algorithm to automatically generate a set of represen-
tative search terms. First, given a product category, we counted the frequencies
of all the search terms observed from buyers over a certain period of time. Then
we found which search terms are significantly different in frequency within the
buyer population of our training data from the search terms which appear in the
general population of buyers and non-buyers by using a Z-value test on each of
the 26 product categories.

December 2005 data is used as our experimental data. We list the top 10
significant terms for sample product categories 2 in Table 1(a). This algorithm [5]
was used for constructing useful features for our models in an automated way, but
is also effective as a search term suggestion algorithm in more general contexts.
For example, as can be seen in Table 1(a), this method identifies terms that do
not include, and have no syntactic similarity to the word “watch” such as simple
brand names like“seiko”, “movado”, and “timex” as well as misspellings such as
“watche” and even other terms like “necklace”.

3.3 Feature Construction

We focus on constructing features that can reflect the users’ browsing and search-
ing behaviors across multiple websites using user-centric data. There are 26 on-
line product categories available in our experimental data. In this experiment,
we consider the online purchasing product category to be personal computers,
including both desktops and laptops.

We construct 28 features that are used in the following experiments for pre-
dicting purchase of personal computers. Such features include “whether searched
laptop keywords before purchasing on Google”, “ # of sessions this user searched
laptop keywords before purchasing”, “whether this user made a purchase (of any
product category) in the past month” and so on (all features are listed in [5]).
December 2005 data is used for this experiment.

2 Note that random characters sequences are removed from the results.
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4 Experiments

We discuss briefly the input data, experimental design, and evaluation metrics
for the classification algorithms.
Input Data for Prediction. December 2005 data is used for this experiment.
We consider the 28 features as condition attributes, and whether a person is
a buyer or non-buyer for personal computers as the decision attribute. For a
decision table T = (C, D), C = {28 features}, D = {buyer, non-buyer}. With
83, 635 users and 28 features, we create a decision table as shown in Table 1(b)
as input to prediction algorithms for discovering users purchasing intent.
Experiment Design. For the complete data in the form of a decision table
83635×29 as shown in Table 1(b), we performed 10-fold cross validation through
all the experiments.
Evaluation Metrics. We use the following evaluation metrics to evaluate clas-
sification performance. An individual can be classified as a buyer (denoted as
P) or non-buyer (denoted as N). A classification is either correct (denoted as T)
or false (denote as F). Thus, an individual who is an actual buyer but is clas-
sified as non-buyer is denoted by FN; an actual buyer and classified as a buyer
is denoted as TP; an actual non-buyer but classified as buyer is denoted as FP;
an actual non-buyer and classified as non-buyer is denoted as TN. Therefore,
we have Recall = TP

TP+FN , Precision = TP
TP+FP , TruePositiveRate = TP

TP+FN ,
and FalsePositiveRate = FP

FP+TN .

4.1 Classification Experiments

In order to accomplish the prediction task, we conducted the following experi-
ments using classification algorithms including decision trees, logistic regression
and Näıve Bayes.
Decision Tree. Decision trees can be used to construct classifiers for predic-
tions. We assume only buyer or non-buyer as the two classes in our discussion.
C4.5 decision tree [9] implementation is used for classification rule generation.
We obtained precision 29.47%, and recall 8.37% for decision tree learning.
Logistic Regression. We use Weka’s 3 logistic regression implementation for
creating the classifier. By measuring the capabilities of each of the independent
variables, we can estimate the probability of a buyer or non-buyer occurrence.
The default cutoff threshold of predicting a buyer is p = 0.5. The precision is
18.52% and recall is 2.23%. Figure 1(a) shows the precision and recall curve for
the user-centric classifier generated by logistic regression.

Figure 1(b) shows the ROC curve for the user-centric classifier generated by
logistic regression. Figure 2(a) shows the tradeoff between the cutoff threshold
and precision/recall for the user-centric classifier generated by logistic regression.
This plot can be used for determining the suggested cutoff threshold in order to
reach a satisfied precision and recall towards certain classification applications.
3 Downloaded from http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 2. Experimental Results

Näıve Bayes. Previous studies have shown that a simple Näıve Bayesian clas-
sifier has comparable classification performance with decision tree classifiers [3].
We use Weka’s Näıve Bayes classifier implementation for our experiments [11].
We obtained the classification results as precision 3.52% and recall 23.2%.

Discussions. The classification experimental results demonstrate effective prod-
uct level prediction. Classifiers can be created based on user-centric features to
predict the potential buyers. From our experiment on predicting product pur-
chases, we observed that decision tree algorithm can obtain the highest predic-
tion precision. The branching nodes in the tree splitting a potential buyer and
non-buyer can be detected and used for suggesting personalized relevant content.
Logistic regression can be used as a flexible option to adjust the precision and
recall for the classifiers.

4.2 Site and User-Centric Comparison Experiments

To help quantify the benefits of user-centric classifiers for this task, we compare
the performance of a decision tree classifier based on 28 user-centric features to
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the best site-centric feature as a single classifier from a major search engine (i.e.
“users who searched laptop keywords on Google before purchasing and searched
more than one session”). The precisions for the user-centric and site-centric
classifiers are 26.76% vs. 4.76%, and recall are 8.48% vs. 0.45%. The comparison
figures is shown in Figure 2(b).

The result indicates that user-centric classifiers provide a much higher predic-
tion precision (without loss of recall) than site-centric classifiers for predicting
purchasing intent. Indeed, our discussions with industry experts indicate that
even ∼ 5% precision is an extremely good number in online marketing cam-
paigns executed through search advertising. The fact that our models can in-
crease precision, often with an increase in recall as well, demonstrates the rich
value contained in user-centric data for widely applicable prediction problems.

4.3 Prediction Latencies

A key question for models of user intent is the prediction latency, defined as the
period of time before the intended action that a prediction can be made. It may
not be useful for many applications if good predictions can only be made over
very short latent periods (e.g., a purchase prediction 10 seconds before it hap-
pens). To address this concern we performed latency experiments using Novem-
ber and December 2005 data. We used the feature “whether searched laptop
keywords on all NNR before purchasing a personal computer”, to make predic-
tions using SQL aggregations. The experimental results indicate that 20.15%
of computer transactions can be predicted by this feature. Among these pre-
dicted transactions, only 15.59% transactions have the latent period less than
one day (we call this same-day-purchase) and 39.25% transactions have 1-7 days
of latent period (we call this first-week-purchase). This experiment shows that
online-shopping customers usually do not just come and immediately buy. They
spend some time (mostly, more than one day) doing research before their fi-
nal purchase decisions, which gives time to detect purchasing interests based on
behaviors, make predictions, and suggest information.

4.4 Smart Cookies

Our results indicate that useful models of intent can be learned from offline panel
data and could be deployed client-side through simple classification algorithms.
Client-computed outputs such as “the probability that the user will purchase
product type P within the next month” could be used as intentional signals for
a variety of personalization tasks such as personalizing search or serving relevant
advertising in a variety of contexts. These models need not be privacy invasive.
A dynamic, intentionally expressive “smart cookie” could be one mechanism to
deploy our models on the client-side. Whereas browser cookies often contain
simple information such as identities, etc., we imagine an implementation using
models such as the ones we have demonstrated which can augment the cookie
data with intentional data. (See [5] for more details).
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For example, Google now employs a feature called “web history”, which auto-
matically collects and stores on central servers the entire clickstream of partic-
ipating users. Presumably, some users would be more comfortable than others,
and our methods show how to learn useful models from such data which can be
deployed client-side on users who do not participate in such collection.

5 Conclusion

We demonstrated very effective product category level purchase prediction mod-
els (regardless of the site of purchase) for user-centric clickstream data. Com-
parison experiments show that the such models strongly outperform site-centric
models, and predictions can be made ahead of time. Our models are fully au-
tomatable, and can be thought of as key enabling functionality for a “smart
cookie” mechanism which could be deployed client-side and therefore would mit-
igate privacy concerns. It is worth noting that the baseline we established, the
site-centric view of the search engine Google, was, by industry standards, quite
good at predicting. Nevertheless, the user-centric models we created were able
to outperform that important baseline by wide margins.
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Abstract. Language modelling is new form of information retrieval that
is rapidly becoming the preferred choice over probabilistic and vector
space models, due to the intuitiveness of the model formulation and its
effectiveness. The language model assumes that all terms are indepen-
dent, therefore the majority of the documents returned to the ser will
be those that contain the query terms. By making this assumption, re-
lated documents that do not contain the query terms will never be found,
unless the related terms are introduced into the query using a query ex-
pansion technique. Unfortunately, recent attempts at performing a query
expansion using a language model have not been in-line with the lan-
guage model, being complex and not intuitive to the user. In this article,
we introduce a simple method of query expansion using the näıve Bayes
assumption, that is in-line with the language model since it is derived
from the language model. We show how to derive the query expansion
term relationships using probabilistic latent semantic analysis (PLSA).
Through experimentation, we show that using PLSA query expansion
within the language model framework, we can provide a significant in-
crease in precision.

Keywords: query expansion, language model, näıve Bayes.

1 Introduction

Many information retrieval systems make use of the assumption that each term
is independent of each other in order to achieve fast query times and small
storage. Unfortunately, this assumption also reduces the quality of retrieval.
By using the assumption that every term is independent of each other term,
we cause the retrieval system to disregard the term relationships. This implies
that only those documents that contain the query terms will be retrieved, even
if other documents are relevant to the query. Therefore, by making the term
independence assumption, we are placing a large importance on the process of
user query term selection. If the wrong terms are chosen for the query, the wrong
documents will be retrieved.

An effective method of introducing term relationships to these fast retrieval
systems is to modify the query before a search takes place. Query expansion is

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 681–688, 2008.
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a method of introducing related terms into the users query, in order to retrieve
documents containing the related terms that would have otherwise not been
found. Query expansion was first introduced to the vector space model [1], and
later applied to the probabilistic model of information retrieval [2] due to its
simplicity and effectiveness.

Language models for information retrieval [3] are a new method of informa-
tion retrieval that have found recent attention due to the intuitiveness of their
formulation. To date, there have been several attempts at applying query expan-
sion to language models, but they have only caused an increase in the language
model complexity.

In this article, we introduce a new form of query expansion that is derived
from within the language modelling framework. We show how to use the query
expansion and also how we can generate the term relationships to use for the
expansion. This article makes the following contributions:

– a method of query expansion for language models, using the näıve Bayes
assumption, that fits the language modelling framework (section 3.1)

– the application of PLSA term-term probabilities for query expansion in lan-
guage models (section 3.2)

– an introduction to query term compensation during query expansion
(section 4)

The article will proceed as follows: Section 2 will provide a brief description
of language models and their use for information retrieval, section 3 describes a
simple new method of query expansion for language models and provides meth-
ods of computing term-term probabilities to use within it. Section 4 shows a
problem that is inherit in deriving probabilistic term relationships and provides
simple methods to overcome it. Finally, section 5 contains the experimental per-
formance of the language model query expansion and a discussion of the results.

2 Language Models for Information Retrieval

Rather than computing the relevance of a document when given a query, the
language modelling approach to information retrieval is to compute the proba-
bility of a query being generated from a given document model. By assuming
term independence, we are able to decompose the language modelling method
into the product of query term probabilities:

P (Q|Md) =
∏

ti∈Q

P (ti|Md)

The value P (ti|Md) is the probability of generating the term ti using document
model Md, therefore it is a measure of the similarity of term ti to document d.
The language modelling approach stats that every document is generated using
a document model. The text within document d is sampled from the document
model, based on the probability distributions within the model. Therefore, for
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us to provide P (ti|Md), we must estimate the distribution of the terms in the
document model Md. To do so, must must use the term frequency values within
the document collection; the only evidence that we have of the term distributions
within the document model.

By simply using the term frequencies (fd,t) to compute P (ti|Md), we limit
our probability estimations to the sampled terms within the document and we
also assign a zero probability to those terms that were not sampled from the
document model. This constraint is not valid, since there is a chance that there
are many terms that are found in to document model Md, but not found in this
particular sample. To obtain a more global term probability, we could observe
the frequency of the term in the document collection; this value provides us
with a measure of the rarity of the term, but is not specific to the document.
Therefore, to obtain a better approximation of the term distributions within the
document model, a mixture of the document term frequency and the collection
term frequency is used to compute P (ti|Md):

P (ti|Md) = λP (ti|d) + (1 − λ)P (ti|C) (1)

where λ ∈ [0, 1] is the smoothing parameter, P (ti|d) is the probability of choosing
term ti from document d.

3 Query Expansion within Language Models

The language modelling framework provides us with a method of computing
the probability of a document generating a query, even if the query terms do
not exist within the document. We showed in the previous section that this is
possible by observing the global document collection term probability as well as
the local document specific term probability.

Unfortunately, this method of term probability computation does not take
into account the relationship of the term to any other term in the document set.
The probabilities are computed based only on the frequency of the term itself.
By ignoring term relationships, the language modelling approach will provide
high probability to those queries who’s terms appear in the given document and
low probability to queries who’s terms do not appear in the given document,
regardless of the content of the document. Therefore the document retrieval
process requires the user to use the right query terms, even though the user
is likely to be unfamiliar to the requested information. As a simple example, a
search for corn will retrieve documents containing the term corn, but not the
equally relevant documents containing the word maize.

In order to retrieve documents containing related term, we must be able to:

1. use the term relationships as a query expansion within the retrieval process,
and

2. identify the term relationships to use as a query expansion

There have been attempts to include query expansion in the language modelling
retrieval process [4,5], but they greatly increase the complexity of the model and
hence negated the simplicity that makes the language modelling method desirable.
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In this section we will deduce a simple method of including a query expansion
within the language modelling framework by applying the näıve Bayes assump-
tion, and we will explore two methods of computing the term relationships from
the document collection.

3.1 Query Expansion Using Näıve Bayes

In order to use term relationships within the language modelling framework, we
must be able to derive a model that reflects the simplicity of a language model.
A query expansion process computes the set of terms that are related to the
query and then uses those terms to perform the retrieval. Put into the language
model framework, we compute the probability of generating the query, given the
expansion terms and the document model.

To compute the set of term probabilistic relationships, we will use the doc-
ument set statistics. If we choose to use the joint probability values, we would
over fit our term relationships to the document set. Therefore, to generalise the
relationship modelling and hence remove the over fitting, we use näıve Bayes
modelling to remove the dependence of the terms on the set of documents.

To obtain the probability of generating term ti, given term tj and document
model Md, we use the following equation:

P (ti|Md) =
∑

tj∈T

P (ti, tj |Md)

=
∑

tj∈T

P (ti|tj , Md)P (tj |Md)

=
∑

tj∈T

P (ti|tj)P (tj |Md) (2)

where P (ti|tj , Md) = P (ti|tj), using the näıve Bayes assumption that ti and Md

are conditionally independent given tj , and T is the set of unique terms. Using
this equation, we can compute the probability of document model Md generating
term ti from the probability of document model Md generating term tj and the
probability of term ti given term tj .

Equation 2 provides us with a query expansion method for language models,
where P (ti|tj) is used to compute the relationship of each term to the query
term and hence the query expansion, and P (tj |Md) is the language model term
probability shown in equation 1, which is used to compute the probability of
generating the expansion terms give the document model.

Note that although we use Dirichlet smoothing throughout this article, the
above derived query expansion within the language modelling framework can be
used with any smoothing method.

3.2 Computing the Query Expansion

Now that we have set up a general framework for query expansion within the
language modelling method of information retrieval, we will examine methods of
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computing the term relationships that are needed in order to perform the query
expansion. In this section, we present two forms of query expansion; the first is
based on the probabilities produced using language models, and the second is
based on the probabilities produced using probabilistic latent semantic analysis.

Probabilistic latent semantic based query expansion. Probabilistic la-
tent semantic analysis (PLSA) [6] is a probabilistic method of discovering hid-
den topics withing a document collection using maximum likelihood. Given the
estimated probability of document di and term tj as:

P̂ (di, tj) =
fdi,tj∑

d∈D

∑
t∈T fd,t

we want to compute the actual probability of a term and a document, given the
model:

P (d, t) =
∑

z

P (d|z)P (z)P (t|z)

where P (d|z) and P (t|z) are the probability of document d given topic z and
the probability of term t given topic z respectively, and P(z) is the probability
of topic z.

It was recently shown that PLSA information can be used effectively as a
query expansion by observing only the P (t|z) and P (z) values [7]. We can show:

P (ti|tj) =
∑

z∈Z

P (ti, z|tj)

=
∑

z∈Z

P (ti|z, tj)P (z|tj)

=
∑

z∈Z

P (ti|z)P (z|tj)

=
∑

z∈Z

P (ti|z)P (tj|z)P (z)/P (tj)

=
∑

z∈Z P (ti|z)P (tj |z)P (z)
∑

z∈Z P (tj |z)P (z)
(3)

where P (t|z) and P (z) are computed using PLSA, and P (ti|z, tj) = P (ti|z)
using the näıve Bayes assumption that term ti and term tj being conditionally
independent given topic z.

4 Query Term Compensation

The set of probabilities of terms T are disjoint when given term tj This can be
seen by the property that: ∑

i

P (ti|tj) = 1
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Table 1. PLSA query expansion within the language model framework, using PLSA
add compensation with various values for the compensation factor α on the Associ-
ated Press document collection. The baseline measure (language model without query
expansion) provides a MAP of 0.2749. The * and ** shows a statistically significant
change in MAP at the 0.1 and 0.05 levels, compared to the language model without
query expansion.

Compensation (α) 0 0.1 0.3 0.5 0.7 0.9 1

MAP 0.0669** 0.2715 0.2797 0.2803** 0.2793** 0.2788** 0.2788**

Given that P (ti|tj) > 0, we find that P (ti|tj) < 1 for all i and j, including the
case where i = j. From this we can see that the probability of a term given itself
is less than one. We may also find that the P (ti|tj) where i �= j is greater than
P (ti|ti), implying that other terms are more related to the term than the term
itself.

The effect of a term having a low probability given itself, may cause problems
during a query expansion. We may find that other terms introduced from the
expansion have a higher probability than the original query terms. Therefore the
query terms may become lost in the expansion.

To compensate for this reduction is query term probability, we have explored
the method of adding 1 to the computed probability of a term given itself. This
compensation is as though we have included the original query in the query
expansion, where the add method adds the expansion probability of the query
terms in the expansion to the query terms.

Therefore, using the PLSA-based query expansion, we provide the following
methods of compensation for the conditional probabilities:

PLSA add: P (ti|tj) =

{ ∑
d P (ti|Md)P (tj |Md)∑

d P (tj |Md) if i �= j
∑

d P (ti|Md)P (tj |Md)
∑

d P (tj |Md) + α if i = j

where α is the compensation factor, and the probability for i �= j is taken from
our derivation earlier in equation 3.

5 Experiments

Our set of experiments examines PLSA query expansion using add query com-
pensation within the language model framework on a collection of 84, 678 doc-
uments from the associated press found in TREC disk 11. Experiments were
performed using the values 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1 for the compensation
factor (α). The results are shown in table 1.

We can see from the results that the MAP peaks at α = 0.5 and that the
results are statistically significant at the 0.05 level for larger values of α. We can
also see that the result for α = 0 is very poor. Using the add query compensation,
1 http://trec.nist.gov
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where α = 0 is equivalent to using no query compensation, so we can see that it
is essential to use query compensation on large and small document sets.

The significant increase in MAP shows that using PLSA query expansion with
query compensation is a useful addition when used within the language model
framework.

6 Conclusion

Within the field of information retrieval, language models have shown to be
competitive with other models of retrieval, while offering an intuitive and sim-
ple formulation. To simplify the model, language models include the assump-
tion that all terms are independent. This assumption places great importance
on the user’s choice of query terms. To introduce term relationships into the
language modelling framework others have applied query expansion, but the
complexity of the expansion removed the simplicity from the language model
formulation.

In this article, we introduced a method of query expansion for language models
which uses the näıve Bayes assumption to produce generalised probabilistic term
relationships. To compute the term relationships, we examined a probabilistic
latent semantic analysis (PLSA) method. Experiments on a document collection
showed us that the the PLSA query expansion within the language modelling
framework provided a significant increase in precision over the language model
with no expansion. Therefore the PLSA query expansion was also effective for
larger document sets.
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Abstract. In this paper we propose an algorithm for the on-line main-
tenance of the joint probability distribution of a data stream. The joint
probability distribution is modeled by a mixture of low dependence
Bayesian networks, and maintained by an on-line EM-algorithm. Mod-
eling the joint probability function by a mixture of low dependence
Bayesian networks is motivated by two key observations. First, the prob-
ability distribution can be maintained with time cost linear in the number
of data points and constant time per data point. Whereas other meth-
ods like Bayesian networks have polynomial time complexity. Secondly,
looking at the literature there is empirical indication [1] that mixtures
of Naive-Bayes structures can model the data as accurate as Bayesian
networks. In this paper we relax the constraints of the mixture model
of Naive-Bayes structures to that of the mixture models of arbitrary
low dependence structures. Furthermore we propose an on-line algo-
rithm for the maintenance of a mixture model of arbitrary Bayesian net-
works. We empirically show that speed-up is achieved with no decrease in
performance.

1 Introduction

In recent years, the emergence of applications involving massive data sets such
as customer click streams, telephone records, multimedia data, has resulted in
extensive research on analyzing data streams within the field of data mining
[2]. The computational analysis of data streams is constrained by the limited
amount of memory and time.

Furthermore the process, which generates the data stream, is changing over
time. Consequently the analysis should cope with changes in the data distribution.

Probability distribution estimation is used widely as a component of descrip-
tive analysis, outlier -and change detection, etc. Thus, it is a necessarily com-
ponent in almost any data stream analysis system. Popular models used for
representing the joint probability distribution are Bayesian networks, depen-
dency models, mixture models, markov models and wavelets.

In this paper we restrict ourselves to the following models: dependency models,
Bayesian networks and mixture of Bayesian networks. The optimal dependency
tree can be found efficiently using the The Chow-Liu [3] algorithm. Bayesian

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 689–696, 2008.
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network exhibit more expressive power than dependency tree, but learning is
more expensive. So, on the one hand, we have a simple model which can be
maintained efficiently and on other hand a powerfull model but with larger
maintenance cost. Our solution, namely mixture models, provides a powerfull
model and a less demanding estimation procedure. The parameters are learned
by an online EM-algorithm and the structure is adjusted by randomly adding
components and dependencies.

The paper is structured as follows. First we report on related work on online
EM-algorithms and joint probability distribution estimation. Hereafter we define
the problem as well the batch and online algorithm. Experiments on synthetic
data show the performance of the system compared to two baseline models,
namely dependency trees and Bayesian networks.

2 Related Work

In reporting on related work we restrict ourselves to the topics of the estimation of
the joint probability distribution in the context of data stream mining and on-line
or one-pass versions of the EM-(Expectation Maximization) algorithm [4].

A major part of the research on on-line versions of the EM-algorithm like [5]
is based on stochastic approximation and can be seen as special types of the
Robbins-Monro algorithm.

In [6] a one-pass EM algorithm is proposed for the estimation of Gaussian
mixtures in large data sets. Data points are compressed into sufficient statistics
or discarded based on their clusterness. The method seems scalable in the number
of records and more accurate than sampling.

In [7] a method is proposed to sequentially update the dependency structure
of a Bayesian network. The Bayesian network is updated using a search buffer
for possible neighborhood structures.

In [8] a density estimation procedure is proposed based on kernel estimation.
A buffer is maintained in which kernels over data point are stored. The buffer
is compressed whenever it reached the maximum buffer size. The procedure has
linear time complexity.

In [9] the wavelet density estimation technique is adapted to the context of
data streams. The wavelet density estimators require fixed amount of memory
and is updated in an on-line manner.

In [1] the joint probability distribution is estimated using mixtures of Naive-
Bayes models. The Naive-Bayes basis model is a Bayesian network with the
constraint of independence between all ’non-target’ variables given the ’target’
variable. The mixture model was comparable in accuracy to Bayesian networks.

3 Problem Description

We define a data stream s as a possibly infinite sequence of random variables
Xd

i , . . . , Xd
n from the discrete nominal domain Nd. The objective is to have

an any time up-to-date accurate estimate of the underlying joint probability
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distribution of s. Furthermore, the estimation is constrained by time and space
and must have low time and space complexity.

We translate this problem to finding the probability mass function F which
maximized L(Xt, F ) indexed by t. The likelihood function L is defined as:
L(Xi..n, F ) =

∏n
i F t=i(Xi).

In this paper, Bayesian networks, mixture models, dependency trees and mix-
ture of independence models constitute for F . In the on-line setting we want to
optimize L(Xi..n, F t), the likelihood over the sequence Xi, . . . , Xn, where F t is
the probability mass function at time t.

4 Mixture Models

A mixture model is a convex combination of k probability mass function: P (Xi)=
∑k

s=1 αsPs(Xi). A d-dimensional mixture of arbitrary Bayesian networks is a
probability mass function on Nd that is given by a convex combination of k
Bayesian networks: Ps(Xi) =

∏d
j Ps(Xj

i |parents(Xj
i )), where parents ⊂ ∪dX

d

and the underlying dependency structure of the data distribution does not con-
tain loops. The Likelihood of a data record i given a Bayesian network is equal
to the product of local probabilities. Xj

i is the j-th attribute of record i. Note
that dependency trees are Bayesian models only with an extra constraint on the
dependency structure.

Given a set D = {X1, . . . , Xn} of independent and identically distributed
samples from P(X), the learning task is to estimate the parameter vector Θ =
{αs, CPTk,i}k

s=1 components that maximizes the log-likelihood function
L(Θ; D) =

∑k
i=1 log P (Xi). Maximization of the data log-likelihood L(Θ) is

usually achieved by running the EM-algorithm. The standard batch-EM algo-
rithm starts with parameters set to some initial values, and then iteratively
repeats two steps (the E-step and the M-step) trying to improve the value of
L(Θ) by adjusting. It terminates after a pre-specified number of iterations, or
when the improvement rate drops below a certain threshold. In the E-step, the
EM-algorithm finds the contributions qi(s) of the points Xi to all mixture com-
ponents, qi(s) = p(sj |Xi).

4.1 Estimating Mixture Models Using On-Line EM

In [10] improvements are investigated such as block-EM. In block-EM both the E
and M-step are performed over blocks of data. Per block the sufficient statistics
are stored and replaced when it is used to update the model. This enables the
model to incorporate information faster.

In this paper we extend the work of [10] by exponentially weighting sufficient
statistics. We update the model after observing a buffer of b data points. Then
the formulas become: S

b,α
(t+1)
k

=
∑

xεb P (sk|xt+1), S
b,θ

(t+1)
v,k

=
∑

xεb Pv(sk|xt+1
v )

and αk,b = (1−λ)αk,t +λSt+1
αb,k

, θk,b = (1−β)θk,t +βSt+1
θb,k

. Sα, Sθ are sufficient
statistics for α and θ(=CPT).
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The advantage of updating the model after b points is two-fold. Firstly, it
saves computational effort by not having to update the model parameters after
each point, but only after each b points. Secondly, because of the more reliable
estimates of the expectations improvement of the performance is more stable
and faster.

4.2 Adapting Model Structure

To facilitate faster adaptation to changes in the true data distribution we use
four different techniques: adding and deleting components and, adding and delet-
ing dependencies in basis models. Components are added by probability depen-
dent on the number of components in the mixture model and is bounded by
a maximum. In practice the formula equals: P (add component|ncomp=n) =
η(1 − n

nmax
) It follows that if n = nmax, the probability of adding a component

is 0. The new component is a full-independence model with uniform random pa-
rameters. The prior of the new component is set equal to priorαmin. The priors
of the remaining basis models are adjusted relatively, such that

∑
αi = 1.

A Component is deleted when its prior drops below some threshold t. To
ensure that components are not deleted immediately after insertion, deletion is
constrained by minage. After deletion the priors α. are normalized.

The structure of individual basis models is changed by removing and adding
dependencies in the Bayesian model. Dependencies are added randomly from the
set of eligible dependencies. The maximal number of parents is 1. The proba-
bilities of the new dependency is set such the marginal distribution is equal the
distribution before adding. Assuming dependencies which are not supported by
the data can be harmful.

We represent every conditional probability table (CPT) by a mixture model of
two components, CPTX|Y = P (X |Y ) = λP̂ (X) + (1 − λ)P̂ (X |Y ). This mixture
representation is only used in the on-line mixture model. Parameters are esti-
mated using the EM-algortihm. We interchange P (X |Y ) by P (X), when λ > h.
This corresponds to the deletion of the dependency X |Y , the prior is set to zero
and the dependency deleted.

4.3 Bayesian Networks and Dependency Trees

Dependency trees and Bayesian networks are use as a reference to our methods.
Learning in Bayesian networks is divided into two tasks: structure learning and
parameter estimation. Structure learning is the learning of the optimal topology
of the network. All parameters can be estimated by determining frequencies
of combinations of variable values. Examples of structure learning algorithms
are: K2, MCMC, etc.. We use the K2 algorithm [11]. Dependency trees can
be constructed more efficiently than Bayesian networks. A dependency tree is
a Bayesian network with the extra constraint that each variable has only one
parent. The optimal tree can be constructed in polynomial time [3].
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4.4 Time Complexity

The complexity of the Chow-Liu algorithm is O(nd2 + d2c2), of K2 it is
O(n max2

p d2c), Batch EM for mixture of Bayesian networks: O(iknd+ ikcnd
b ) and

On-line EM for mixture of Bayesian networks: O(knd + kcnd
b ) . The variables n,

d, i, c, maxp correspond to the number of data points, the dimensionality, the
number of iterations of the EM-algorithm, the maximum number of values per
variable and the maximum number of parents.

The advantage of the on-line EM-algorithm is the spread of the computational
effort over the data points, resulting in an O(kdc/b) average time complexity per
data point. The parameter b corresponds to the number of data points between
two model updates. In the experiments b = 50.

5 Experiments

In the first experiment we investigate the performance of the different methods
on different kind of stationary artificial data sets. In the second experiment we
explore the performance on dynamic data.

The models that are compared are: dependency trees, Bayesian networks and
the proposed on-line EM-algorithm for arbitrary low complexity Bayesian net-
works as well as the batch EM variant. Performance is measured by the log
likelihood on a test set.

We generated 50 different data sets differing in cardinality, complexity and
dimensionality. The cardinality, the number of different values per variable is,
2, 5 and 10 values and equal for all variables. The complexity of the underlying
Bayesian models is expressed in the number of dependencies. The number of
dependencies in the experiments is set to 1, 3 and 5. If the complexity is 1,
a variable has one parent, if no loops are present, consequently when 3 then
three parents. The adjacency matrix and the probabilities of the conditional
probability tables are generated at random.

The Bayesian networks are build using the Murphy toolbox [12] for Matlab
using K2. The K2-algorithm was constraint by a maximum of 3 parents. We
called the algorithm 10 times with different order on the variables and selected
the network with the highest log likelihood on the training set.

In case of the batch-EM algorithm, the algorithm is stopped when 100 itera-
tions of E and M-steps are performed or when the log likelihood did not improve
significantly. The structure as well the number of the basis models is fixed after
initialization.

The online-EM algorithm is initialized in the same way as the batch variant.
Note that in the case of the online variant we use a basis model which represents
the conditional probability table as a mixture of the full probability table and
the marginal probabilities. The online-EM calculates sufficient statistics over
blocks of 50 data points. Every 100 data points components and dependencies are
pruned and added. Components are pruned when the prior < 1

50k . Components
are added by probability p = (ncompmax − ncompmodel)/(2 · ncompmax). The
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learning rate is uniformly decreased from 1 to 0.01. Dependencies are removed
when the prior of the marginal distribution is larger than 0.5. Dependencies are
added at random when possible, thus not creating loops and not exceeding the
maximum number of parents.

In the experiments the performance is determined using different sizes of data
streams and different number of components. The number of components used
are: 5, 10, 15 and 20 components and the sizes are: 1.000, 10.000, 20.000, 30.000,
40.000, 50.000 data points. The data dimensionality is 10 or 20.
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Fig. 1. The performance of Bayesian networks, dependency trees and mixture models
using batch EM an on-line EM on 9 different data sets as a function of different data
sizes. The data sets have 10 dimensions and differed on the number of different values
per variable and the complexity of the underlying Bayesian network. The mixture
models contained 20 basis model components.

6 Results

In Figure 1. is shown the typical behavior of the different algorithms on the data
stream. We generated more data sets than shown, however these figures show
the typical behavior. The figure shows the results of the mixture models with 20
components. A common picture, except for batch EM, is, the more components
the better the performance. In case of batch-EM, the more components the
slower the improvement. The online-EM did not seem to suffer from this. The
batch EM-variant performed best on data streams with complexity of at least 3,
on which the on-line variant and Bayesian networks are comparable.

Whenever the cardinality of the variables was 10 the ’convergence’ of the
basic-EM was relatively slow. This seems to hold for all complexity data sets
with cardinality of 10. Both mixture models seem to perform relatively worst in
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Fig. 2. From left to right: 1. The number of components as a function of the size of
the data stream. The data is generated from a dependency tree. 2. The maximum and
mean number of correct dependencies per component in the case of 3 different data
streams. 3. The Log Likelihood as a function of a changing data stream as well the
standard deviation over 10 runs initialized by 10 different structures.

the case complexity 1. The online variant approaches the highest accuracy when
the cardinality is 5 and 10 and complexity is 1. This is due random search over
the dependencies.

In Figure 2.1. is shown the number of components as a function of the data
stream from data sets with complexity 1. There is a clear linear trend in the
number of components and the size of the data stream. Probably the priors of
the better fitting mixture components are growing faster than others.

In Figure 2.2. is shown the number of correctly estimated dependencies, we see
an large improvement when the complexity is 1. When the number of correct de-
pendencies is one, every basis component has the same dependency structure as
the underlying Bayesian network. We plotted the maximum and average number
of correct dependencies over the total number of basis models. The maximum
approaches almost 1, and the average to 75 percent correct.

In the second experiment the data distribution is changed abruptly at data
point 50.000. As we can see in Figure 2.3. the Log Likelihood drops and recovers.
The top line is the performance of a Bayesian network build on 50.000 data
points. The data is generated from Bayesian networks of complexity 2.

7 Conclusion and Future Work

We proposed a fast online-EM algorithm for the mixture of arbitrary Bayesian
networks. The method iteratively changes the structure of the basis components
in search of better structures. It outperforms the batch variant with respect to
speed and in some cases improves on accuracy. Our method is comparable to
the Bayesian network structure finding algorithm K2. When the dimensionality
increases the Bayesian network is outperforming both methods. Our method
outperforms the other methods with respect to speed in case the number of
components are of reasonable size. In case of dynamic data streams the online-
EM algorithm recovers from a change in the underlying data stream.
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Random structure does not always effectively search the space. If the space
grows the usefulness of random search will decrease. Thus, possible future work
is a more directed randomized search procedure at the same computational cost,
constraining the space of structures or using the Chow-Liu algorithm.
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Abstract. The k nearest neighbor (k-NN) classifier has been a widely used non-
parametric technique in Pattern Recognition. In order to decide the class of a new 
prototype, the k-NN classifier performs an exhaustive comparison between the 
prototype to classify (query) and the prototypes in the training set T. However, 
when T is large, the exhaustive comparison is expensive. To avoid this problem, 
many fast k-NN algorithms have been developed. Some of these algorithms are 
based on Approximating-Eliminating search. In this case, the Approximating and 
Eliminating steps rely on the triangle inequality. However, in soft sciences, the 
prototypes are usually described by qualitative and quantitative features (mixed 
data), and sometimes the comparison function does not satisfy the triangle ine-
quality. Therefore, in this work, a fast k most similar neighbour classifier for 
mixed data (AEMD) is presented. This classifier consists of two phases. In the 
first phase, a binary similarity matrix among the prototypes in T is stored. In the 
second phase, new Approximating and Eliminating steps, which are not based on 
the triangle inequality, are presented. The proposed classifier is compared against 
other fast k-NN algorithms, which are adapted to work with mixed data. Some ex-
periments with real datasets are presented. 

Keywords: Nearest Neighbors Rule, Fast Nearest Neighbor Search, Mixed 
Data, Approximating Eliminating search algorithms. 

1   Introduction 

The k-NN [1] rule has been a widely used nonparametric technique in Pattern Recog-
nition. However, in some applications, the exhaustive comparison between the new 
prototype to classify and the prototypes in the training set T becomes impractical. 
Therefore, many fast k-NN classifiers have been designed to avoid this problem. 

Some of these fast k-NN algorithms can be classified as exact methods, because 
they find the same NN that would be found using the exhaustive search. Some other 
algorithms are approximate methods, because they do not guarantee to find the NN to 
a query prototype among the training set, but they find an approximation faster than 
the exact methods.  

To avoid comparisons between prototypes during the search of the NN, different 
techniques have been developed: Approximating Eliminating algorithms [2-5],  
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Tree-based algorithms [4,6-8]. In particular, in this work, the proposed algorithm is 
based on an Approximating Eliminating approach. 

One of the first approaches that uses approximating and eliminating steps is AESA 
(Approximating Eliminating Search Algorithm), proposed by Vidal [2]. In a preproc-
essing phase, this algorithm creates a matrix of distances between the prototypes in 
the training set. Given a new prototype Q to classify; a new candidate is approxi-
mated, compared against Q and, supported on the triangle inequality, those prototypes 
that can not be closer that the current NN are eliminated from the set T. The process 
finishes when all prototypes in T have been compared or eliminated. 

Using AESA, good results have been obtained. However, a drawback of AESA is 
its quadratic memory space requirements. For this reason, in [3] an improvement 
(LAESA), which requires linear memory space, is proposed (LAESA). LAESA algo-
rithm is focused on reducing the amount of information stored, but this algorithm 
increases the number of comparisons between prototypes. In [5] an improvement on 
the Approximation step is proposed, for approximating a better candidate and, there-
fore reducing the number of comparisons between prototypes even more than AESA. 

AESA, LAESA and iAESA are exact methods to find the k-NN. However, in [5] a 
probabilistic approach [9] to find approximate k NN’s is also proposed. In order to 
reduce the amount of work, the search is stopped when certain percentage of the data-
base has been evaluated, this method is called Probabilistic iAESA.  

In [4] TLAESA algorithm is proposed. In TLAESA, a binary tree and a matrix of 
distances between the prototypes in T and a subset of T, are used. In [10] an im-
provement of TLAESA is presented. 

All these methods based on Approximating and Eliminating search, were designed 
to work with quantitative data when the prototype comparison function satisfies the 
triangle inequality. However, in soft sciences as Medicine, Geology, Sociology, etc., 
the prototypes are described by quantitative and qualitative features (mixed data). In 
these cases, sometimes the comparison function for mixed data does not satisfy the 
triangle inequality and therefore, we can not use most of the methods proposed for 
quantitative prototype descriptions. Therefore, in this paper we introduce a fast ap-
proximate k most similar neighbor (k-MSN) classifier for mixed data, based on new 
Approximating and Eliminating steps, which are not based on the triangle inequality 
property of the comparison function.  

This paper is organized as follows: in Section 2 the comparison function used in 
this work is described. In Section 3 our fast k-MSN classifier (AEMD) is introduced. 
Finally, we report experimental results (Section 4) and conclusions (Section 5). 

2   Comparison Functions for Mixed Data 

In this work, in order to compare prototypes described by mixed data, the function F 
[11], which does not fulfil the triangle inequality, was used. Let us consider a set of 
prototypes {P1, P2, …, PN}, each of them described by d attributes {x1, x2, …, xd}. 
Each feature could be quantitative or qualitative. The function F is defined as follows:  

{ }
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For quantitative data Ci(xi(P1), xi(P2)) is defined as follows: 

⎪
⎩

⎪
⎨

⎧ <−
=

otherwise0

valuemissingais

)(nor)(neitherand|)()(|If1

))(),((
2121

21

PxPxPxPx

PxPxC
iiiii

iii

σ
 

(3) 

Where, σi is the standard deviation of the attribute xi. Using the function F, the most 
similar neighbor (MSN) of a prototype P, is the one that minimizes the function.  

3   Proposed Classifier 

In this section, an approximate fast k-MSN classifier, which considers prototypes 
described by mixed data, is introduced. The classifier consists of two phases: preproc-
essing and classification. 

3.1   Preprocessing Phase 

In this phase, AEDM computes the following: 

1. Similarity Matrix (SM). In this work, we proposed to compute and store an array of 
similarity per attribute among the prototypes in the training set (T), where 
SM[Pa,Pb,xi]=1 if, according to certain criterion, we can conclude that the prototypes 
Pa and Pb are similar considering the attribute xi and SM[Pa,Pb,xi]=0, in other case; 

[ ]Nba ,1, ∈  and [ ]di ,1∈  (see figure 1). In this work, the similarity criterion described 

in Section 2, was used.  

Number of prototypes in T

Number of attributes 

1      1     0     0     1
1      1     0     0     1
0      0     1     0     1
0      0     0     1     0
1      1     1     0     1

Number of prototypes in T  

Fig. 1. SM matrix 

The required space to store SM matrix is N x N x d but each element is a bit, there-
fore, the needed space is N x N words of d bits.  

2. A representative prototype per class (RPc). In order to obtain a first approximation 
during the classification phase, we propose to use a representative prototype per class, 
taking advantage of the class information. To compute RPc, let Classc be the set of 
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prototypes in T, which belong to the class c. Then, for each prototype
ca ClassP ∈ , the 

following function is computed: 
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AvgSim evaluates the average of similarity between a fixed prototype (Pa) and the 
rest of the prototypes that belong to the same class. Thus, the representative prototype 
for class c (RPc) is the most similar on average (or the one that minimizes AvgSim 
function): 

|]|,1[)),(( cac ClassaPAvgSimArgminRP ∈∀=  (5) 

This process is repeated for every [ ]Cc ,1∈ , where C is the number of classes in 

the training set. 

3. Similarity threshold between prototypes (SimThres). The average value of the simi-
larity between the prototypes belonging to the same class in T, is used as a confidence 
threshold to make decisions during the classification phase. This value can be a pa-
rameter given by the user. However, in this section three options to compute the con-
fidence threshold are proposed. 

To define the similarity threshold for each class c, the average of similarity, among 
the prototypes belonging to the same class, is computed as follows:  
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Finally, the similarity threshold is selected following (7), (8) and (9): 

],1[),Argmin( CcassAvgValueClSimMinSimThres c ∈∀==  (7) 

],1[,1 Cc
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SimAvgSimThres

C
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],1[),Argmax( CcassAvgValueClSimMaxSimThres c ∈∀==  (9) 

3.2   Classification Phase  

Given a new prototype Q to classify, SM, RPc and SimThres, computed during the 
preprocessing phase, are used to avoid comparisons among prototypes. The classifica-
tion phase of the proposed algorithm (AEMD) is based on Approximating and Elimi-
nating steps, which are not based on the triangle inequality. 
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Initial approximation step. At the beginning of the algorithm, the prototype Q is com-
pared against the class representative prototypes to obtain a first approximation to the 
most similar prototype MSN and its similarity value SMSN. 

],1[)),,((ArgMin CcRPQFMSN c ∈∀=  (10) 

The current MSN is eliminated from the set T. If SMSN ≥ SimThres (where SimThres is 
a confidence value of similarity between prototypes belonging to the same class in T), 
the prototype MSN is used to eliminate prototypes from T (Eliminating step). 

Eliminating step. In this step, given a fixed prototype (MSN) to eliminate prototypes 
from T, a binary representation (BR) contains the similarity per attribute, between Q 
and MSN is created as follows: 

],1[)),(),((),( diMSNxQxCMSNQBR iiii ∈∀=  (11) 

Thus, BRi(Q, MSN)=1 if Q and MSN are similar in the attribute xi and BRi(Q, 
MSN)=0, in other case. Using BR, those prototypes in T, which are not similar to MSN 
at least, in the same attributes in which MSN is similar to Q, are eliminated from T 
(using TPPMSNSM aa ∈∀),,( ). 

For example, supposed that P0, P1, Q and MSN, are such that BR(Q, MSN) = 
[1,1,0,1,1,1,0,0], SM(MSN, P0)=[1,1,1,1,1,1,0,1] and SM(MSN, P1)=[1,0,0,0,0,1,0,1]. 
Then, according to this criterion, P0 is not eliminated because is similar to MSN in the 
same attributes, where MSN is similar to Q (attributes 1, 2, 4, 5 and 6). But P1 is 
eliminated, without have explicitly compared it to Q, because P1 is not similar in the 
same attributes, where MSN is similar to Q (MSN is similar to Q in attribute 2, but P1 
is not similar to MSN in this attribute). The similarity per attribute between MSN and 
P0 (SM(MSN, P0)) and the similarity per attribute between MSN  and P1 (SM(MSN, 
P1)) are known (because these similarities were computed in the preprocessing 
phase). The similarity between MSN and Q, has already been computed. 

After the Initial approximation and the Eliminating steps, if T is not empty, the ap-
proximation step is performed. 

Approximating step. In this step, a new prototype MSN’∈T is randomly selected, 
compared against Q (SMSN’), eliminated from T and used to update the current MSN. If 
SMSN’ < SimThres a new MSN’ is randomly selected (Approximating step). Otherwise, 
if SMSN’ ≥ SimThres (where SimThres is a confidence value of similarity between pro-
totypes belonging to the same class in T), the prototype MSN’ is used to eliminate 
prototypes from T (Eliminating step). This process is repeated until the set T is empty. 
After finding the MSN, its class is assigned to Q. 

4   Experimental Results 

In this section, the performance of the proposed classifier (AEMD) is evaluated. In 
order to compared AEMD; the exhaustive search [1], AESA [2], LAESA (|BP|=20% 
of the objects in the dataset) [3], iAESA [5], Probabilistic iAESA (using 70% as per-
centage threshold of the data set) [5], TLAESA [4] and modified TLAESA [10] algo-
rithms were evaluated using the same comparison function (F, described in Section 2) 
instead of using a metric. To do the experiments, 10 datasets from the UCI repository 
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[12] were used (Mixed datasets: Hepatitis, Zoo, Flag and Echocardiogram. Qualitative 
datasets: Hayes, Bridges and Soybean-large. Quantitative: Glass, Iris and Wine).  

In order to compare the different classifiers, the accuracy (Acc) and the percentage 
of comparisons between prototypes (Comp), were considered. The accuracy was 
computed as follows: 

NoTestObj

bjNoCorrectO
Acc =  

(12) 

Where, NoCorrectObj is the number of correctly classified prototypes in the test 
set and NoTestObj is the size of the test set. The percentage of comparisons between 
objects was computed as follows: 

      
ObjNoTraining

ClassNoCompFast
Comp

100*
=              

(13) 

Where, NoCompFastClass is the number of comparisons done by the fast classi-
fier, and NoTrainingObj is the size of the training set. According to (13), for the ex-
haustive classifier, the 100 % of the comparisons is done. In all the experiments, k=1 
in k-MSN, was used. 

As first experiment, the proposed algorithm (AEMD) was evaluated. To use 
AEMD algorithm, SimThres, which corresponds to a confidence value of similarity, 
was tested with the values SimThres = 40, 60 and 80 (see table 1). 

Table 1. Obtained results using AEMD, according to different values of SimThres 

Exhaustive k-NN 
classifier 

AEMD 
(SimThres=40%) 

AEMD 
(SimThres=60%) 

AEMD 
(SimThres=80%) Datasets 

Acc Comp Acc Comp Acc Comp Acc Comp 

Hepatitis 81,66 100 74,65 7,45 80,65 17,37 81,63 23,17 
Zoo 96,00 100 78,42 8,83 94,01 9,63 95,30 28,80 
Flag 54,67 100 45,15 4,11 53,85 7,62 52,08 13,11 
Echocardiogram 82,44 100 80,15 7,44 81,06 9,04 81,70 25,23 
Hayes 81,24 100 78,23 8,19 80,21 12,52 81,05 18,57 
Soybean-large 85,40 100 65,74 7,32 84,12 8,65 83,07 8,11 
Bridges 57,85 100 38,52 3,55 53,54 9,20 56,78 11,19 
Glass 68,26 100 62,58 9,11 67,35 13,66 67,90 16,45 
Iris 93,30 100 45,52 8,50 91,01 10,29 93,30 12,99 
Wine 90,90 100 58,42 7,17 90,90 13,58 89,63 13,18 

General average 79,17 100 62,74 7,17 77,67 11,16 78,24 17,08 

 
As we can see from table 1, the bigger the value of SimThres, the higher the ob-

tained accuracy. However, the percentage of comparisons is also increased. Besides, 
for some datasets (Echocardiogram and Hayes), good results were obtained using 
SimThres=40, while for other datasets (Flag and Soybean-large) good results are ob-
tained using SimThres=60. From these results, we can not conclude an optimal value 
for SimThres. For this reason, the criteria, described in section 3.1, to establish a value 
for SimThres, were used. Thus, AEMD algorithm was evaluated with SimThres= 
SimMin, SimAvg and SimMax (see table 2). From table 2, we can observe that using 
SimThres=SimAvg, good results are obtained, for all the datasets. 
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Table 2. Obtained results using AEMD, according to different values of SimThres 

Exhaustive k-NN 
search 

AEMD 
(SimThres=SimMin) 

AEMD 
(SimThres=SimAvg) 

AEMD 
(SimThres=SimMax) Dataset 

Acc Comp Acc Comp Acc Comp Acc Comp 
Hepatitis 81,66 100 80,03 11,95 81,63 13,52 81,66 82,46 
Zoo 96,00 100 94,10 9,31 94,00 24,76 96,00 91,00 
Flag 54,67 100 52,60 16,87 52,05 17,41 54,67 56,32 
Echocardiogram 82,44 100 81,05 13,56 81,70 18,50 82,44 85,60 
Hayes 81,24 100 81,16 13,80 81,05 12,97 81,24 79,40 
Soybean-large 85,40 100 84,21 15,70 83,07 23,46 85,40 57,55 
Bridges 57,85 100 56,12 15,21 57,00 12,54 57,85 66,75 
Glass 68,26 100 66,74 12,50 67,92 11,17 68,26 95,33 
Iris 93,30 100 93,30 15,04 93,30 12,52 93,30 93,20 
Wine 90,90 100 89,63 13,77 89,63 16,32 90,90 78,62 
General average 79,17 100 77,89 13,77 78,14 16,32 79,17 78,62 

Table 3. Obtained results using different classifiers 

Exhaustive k-NN 
search 

AESA LAESA i AESA Dataset 
Acc Comp Acc Comp Acc Comp Acc Comp 

Hepatitis 81,66 100 80,57 52,96 80,54 61,86 81,03 52,78 
Zoo 96,00 100 96,00 23,50 96,00 15,26 96,00 19,36 
Flag 54,67 100 51,45 28,02 51,45 25,73 51,36 27,65 
Echocardiogram 82,44 100 81,77 62,04 81,77 68,23 81,05 63,62 
Hayes 81,24 100 81,24 24,82 81,24 23,32 80,77 17,62 
Soybean-large 85,40 100 85,40 2,51 85,40 4,49 85,40 1,96 
Bridges 57,85 100 57,85 25,62 57,85 36,10 57,85 25,07 
Glass 68,26 100 66,45 14,02 67,92 20,83 66,34 12,62 
Iris 93,30 100 93,30 9,22 93,30 6,86 93,30 7,54 
Wine 90,90 100 89,01 15,46 90,90 25,26 90,01 10,62 
General average 79,17 100 78,30 25,82 78,64 28,79 78,31 23,88 

Table 4. Obtained results using different classifiers 

PROPOSED CLASSIFIER Probabilistic i 
AESA TLAESA Modified TLAESA AEMD  

(SimThres= SimA) 
Dataset 

Acc Comp Acc Comp Acc Comp Acc Comp 
Hepatitis 80,64 32,44 81,33 87,54 81,66 72,65 81,63 13,52 
Zoo 94,00 17,51 96,00 42,74 96,00 23,95 94,00 24,76 
Flag 49,62 26,41 52,84 48,41 52,09 32,95 52,05 17,41 
Echocardiogram 80,06 63,08 81,77 71,58 82,44 44,62 81,70 18,50 
Hayes 80,07 16,74 80,54 46,42 81,06 24,05 81,05 12,97 
Soybean-large 82,15 2,04 85,40 47,51 85,40 16,85 83,07 23,46 
Bridges 56,95 25,064 56,74 46,75 57,23 38,74 57,00 12,54 
Glass 66,21 12,06 67,92 62,47 67,72 22,85 67,92 11,17 
Iris 93,30 8,01 93,30 41,51 93,30 11,65 93,30 12,52 
Wine 90,90 10,54 90,90 39,75 90,90 12,64 89,63 16,32 
General average 77,39 21,39 78,67 53,47 78,78 30,10 78,14 16,32 

 
In order to compare the classifiers proposed in this work, different classifiers, 

based on Approximating and Eliminating, were considered. In table 3 and 4, the ob-
tained results are shown. 

Form table 3 and 4, we can observe that when the comparison function does not 
satisfy the triangle inequality, AESA, LAESA, iAESA, TLAESA and modified 
TLAESA algorithms are inexact methods (the obtained results are not the same as 
using the exhaustive search). However, the percentage of comparisons is, on average, 
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reduced from 100%, done by the exhaustive search, to 25.82 %, 28.79 %, 23.88%, 
53.47 % and 30.10%, respectively. 

5   Conclusions 

In this work, a fast approximated k-MSN classifier for mixed data, based on Approxi-
mating and Eliminating approach, applicable when the comparison function does not 
satisfy metric properties was proposed. In order to compare our method, AESA, 
LAESA, iAESA, probabilistic iAESA, TLAESA, modified TLAESA algorithms were 
implemented using the same prototype comparison function for mixed data. Based on 
our experimental results, it is possible to conclude that, our classifier (AEMD) obtained 
competitive accuracy, but with a smaller number of comparisons between prototypes.  

As future work, we are going to look for an strategy to reduce the memory space 
required to store the similarity matrix (SM). 
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Abstract. Conveying information about who, what, when and where is a pri-
mary purpose of some genres of documents, typically news articles. To handle
such information, statistical models that capture dependencies between named
entities and topics can serve an important role. Although some relationships be-
tween who and where should be mentioned in such a document, no statistical
topic models explicitly addressed the textual interactions between a who-entity
and a where-entity. This paper presents a statistical model that directly captures
dependencies between an arbitrary number of word types, such as who-entities,
where-entities and topics, mentioned in each document. We show how this mul-
titype topic model performs better at making predictions on entity networks, in
which each vertex represents an entity and each edge weight represents how a
pair of entities at the incident vertices is closely related, through our experiments
on predictions of who-entities and links between them.

1 Introduction

The primary purpose of the documents that report factual events, such as news articles,
is to convey information on who, what, when and where. For this kind of documents,
statistical entity-topic models [8] were proposed to capture dependencies between who/
where (i.e. named entities such as persons, organizations, or locations) and what (i.e.
topics) mentioned in each article. In spite of the fact that each entity type has different
characteristics and so it has different distribution, these models represented all types
of entities as a single class. This paper attempts to directly capture dependencies be-
tween multiple types of entities, such as who-entities (i.e. persons, organizations, or
nationalities) and where-entities (i.e. locations, geographical/social/political entities, or
facilities), and general words.

In this paper, we review a series of graphical models that extended a statistical topic
model called Latent Dirichlet Allocation (LDA) [4] to explicitly model entities men-
tioned in text. As in [8] we take advantage of recent developments in named entity
recognition to identify entities mentioned in articles. We then develop a multitype topic
model that can explicitly capture dependencies between an arbitrary number of word
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c© Springer-Verlag Berlin Heidelberg 2008



706 H. Shiozaki, K. Eguchi, and T. Ohkawa

types, such as who-entity type, where-entity type and general word type. We demon-
strate that our model can predict who-entities more effectively, comparing with two
other different topic models. We also exhibit that links between entities can be effec-
tively predicted using our model.

2 Related Work

Statistical topic models (e.g., [7,4,11,6,10]) are based on the idea that documents are
mixtures of topics, where a topic is a probability distribution over words. Blei et al. [4]
proposed one of the topic models called Latent Dirichlet Allocation (LDA), introducing
a Dirichlet prior on multinomial distribution over topics for each document. To estimate
the LDA model, they used Variational Bayesian method. Instead of using the Variational
Bayesian method, Griffiths et al. [6] applied the Gibbs sampling method to estimate the
LDA model.

More recently, Newman et al. [8] proposed several statistical entity-topic models,
extending the LDA model. Those models attempted to capture dependencies between
entities and topics, where the entities are mentioned in text; however, the models did not
distinguish specific types of entities, such as who-entities and where-entities. Therefore,
those models are hardly sufficient to represent an event that consists of multiple types
of entities. On the other hand, our goal is to model the events that are mentioned in text.
As a step towards this goal, this paper develops a multitype topic model by extending
the models mentioned above to represent dependencies between an arbitrary number
of word types, such as who-entity type, where-entity type and general word type. To
estimate our model, we use the Gibbs sampling method, following [6].

3 Models

In this section we describe three graphical models. We start with LDA, followed by
SwitchLDA and GESwitchLDA. The LDA is a popular model that can automatically
infer a set of topics from a collection of documents [4]. The SwitchLDA was modeled
by extending the LDA to capture dependencies between entities and topics, and its
prediction performance was shown to be stable over different corpora [8]. The third
model, GESwitchLDA is our model that aims to better fit multi-class textual data, such
as of who-entities, where-entities and general words, by generalizing the SwitchLDA
model. We use the LDA [4] as a baseline model for comparing with our GESwitchLDA
in the experiments in Section 4. We also use the SwitchLDA as another baseline model.

Here we introduce the notation used in graphical models, generative processes and
Gibbs sampling equations in the rest of this paper: D is the number of documents, T
is the number of topics, Nd is the total number of words in document d, α and β are
Dirichlet prior hyper-parameters, γ is a Beta or Dirichlet prior hyper-parameter, θ is the
topic-document distribution, φ is the word-topic distribution, zi is a topic, and wi is a
word or entity. In the case of the SwitchLDA, a tilde mark is used to denote the entity
version of a variable. In the case of the GESwitchLDA, a tilde mark and a hat mark are
used to denote the who-entity version and where-entity version, respectively.
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Fig. 1. LDA Fig. 2. SwitchLDA Fig. 3. GESwitchLDA

3.1 LDA

To explain the differences between the three graphical models, let us start with the LDA
model shown in Fig.1. The LDA’s generative process is:

1. For all d documents sample θd ∼ Dirichlet(α)
2. For all t topics sample φt ∼ Dirichlet(β)
3. For each of the Nd words wi in document d:

(a) Sample a topic zi ∼Multinomial(θd)
(b) Sample a word wi ∼Multinomial(φzi)

Some estimation algorithms were applied to the LDA [4,6]. Following [6], we use the
Gibbs sampling to estimate the LDA model. Note that the LDA does not distinguish
specific types of words, and so this distinction was made at post-processing stage (i.e.
outside of the model) when we made predictions about who-entities in Section 4.

3.2 SwitchLDA

SwitchLDA model shown in Fig.2 was introduced in [8], extending the LDA model.
In this model, an additional Binomial distribution ψ (with a Beta prior of γ) was in-
corporated to control the fraction of entities in topics. The generative process of the
SwitchLDA is:

1. For all d documents sample θd ∼ Dirichlet(α)
2. For all t topics sample φt ∼ Dirichlet(β), φ̃t ∼ Dirichlet(β̃) and ψt ∼ Beta(γ)
3. For each of the Nd words wi in document d:

(a) Sample a topic zi ∼Multinomial(θd)
(b) Sample a flag xi ∼ Binomial(ψzi)
(c) If (xi = 0) sample a word wi ∼Multinomial(φzi)
(d) If (xi = 1) sample an entity wi ∼Multinomial(φ̃zi)
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The estimation algorithm for the SwitchLDA followed the Gibbs sampling approach,
as described in [8]. Note that the SwitchLDA does not distinguish more specific types
of entities, and so this distinction was made at post-processing stage (i.e. outside of the
model) when we made predictions about who-entities in Section 4.

3.3 GESwitchLDA

In our GESwitchLDA model shown in Fig.3, we generalize the SwitchLDA to han-
dle an arbitrary number (M ) of word types. Therefore, we redefine ψ as Multinomial
distribution with the Dirichlet prior γ. The generative process of the GESwitchLDA is:

1. For all d documents sample θd ∼ Dirichlet(α)
2. For all t topics:

(a) Sample ψt ∼ Dirichlet(γ)
(b) For each word type y ∈ {0, · · · , M − 1}, sample φy

t ∼ Dirichlet(βy)
3. For each of the Nd words wi in document d:

(a) Sample a topic zi ∼Multinomial(θd)
(b) Sample a flag xi ∼Multinomial(ψzi)
(c) For each word type y ∈ {0, · · · , M − 1}:

– If (xi = y) sample a type-y word wi ∼Multinomial(φy
zi

)

We use the Gibbs sampling approach to estimate the GESwitchLDA model using the
equations in Appendix.

In the experiments in Section 4, we divided entities into two classes, who-entity
and where-entity, and thus the number of word types M = 3 in this case. The
GESwitchLDA’s generative process when M = 3 is:

1. For all d documents sample θd ∼ Dirichlet(α)
2. For all t topics sample φt ∼ Dirichlet(β),̃φt ∼ Dirichlet(β̃), φ̂t ∼ Dirichlet(β̂)

and ψt ∼ Dirichlet(γ)
3. For each of the Nd words wi in document d:

(a) Sample a topic zi ∼Multinomial(θd)
(b) Sample a flag xi ∼Multinomial(ψzi)
(c) If (xi = 0) sample a word wi ∼Multinomial(φzi)
(d) If (xi = 1) sample a who-entity wi ∼Multinomial(φ̃zi)
(e) If (xi = 2) sample a where-entity wi ∼Multinomial(φ̂zi)

4 Experiments

4.1 Data Sets

We used the TDT2 and TDT3 collections [1] that were tagged by the BBN Identi-
finder [3] for our experiments. They originally contained a mix of broadcast news and
newswire stories. We used for the experiments only the English stories in these collec-
tions, but not the stories in other languages or the metadata such as pre-defined topics
or categories. We used the TDT2 for training and the TDT3 for testing. Statistics for
the data sets are summarized in Table 1. We removed the 418 stopwords included in the
stop list used in InQuery system [5], and also removed words and entities that occurred
in less than 10 documents.
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Table 1. Statistics for data sets

TDT2 TDT3

Documents 45,260 26,770
Unique Words 27,685 21,954
Unique Who-entities 7,300 4,591
Unique Where-entities 1,637 1,121
Total Words 7,634,722 4,583,162
Total Who-entities 600,638 378,725
Total Where-entities 343,432 199,760

Table 2. Who-entity prediction results example. The top row shows an excerpt from an article,
with redacted who-entities indicated by XXXXX. Middle row shows the list of relevant who-
entities. The bottom row shows the predicted who-entity list ordered by likelihood.

The XXXXX accord and XXXXX Camry are the most popular for buyers and auto thieves.
More on that from XXXXX . The latest XXXXX figures show that auto thefts were down overall
in , 1997 . By 4% , in fact. But that is little solace for the owners of the cars that
topped the national insurance crime bureau’s list of most stolen automobiles in the United
States. The XXXXX accord and XXXXX Camry occupy the number one and two spots on the list.

actual who-entity list: Honda, Toyota, Charles Feldman, FBI, CNN

predicted who-entity list: Italian, U.N., General Motors, Pakistani, GM, Chrysler ,
Americans , Indian , American , Ford , Supreme Court , Smith , U.S. , VOA ,
Congress , Annan , United Nations , Japanese , *FBI, *CNN, Volkswagen , *Honda,
European , BMW , Security Council , *Toyota

4.2 Who-Entity Prediction

Estimation. For who-entity prediction task, the three models: the LDA, the SwitchLDA
and the GESwitchLDA are first trained on words, who-entities, and where-entities. The
models then make predictions about who-entities using just words or both words and
where-entities. We need to set hyper-parameters for the LDA [4,6], as well as for the
SwitchLDA, and the GESwitchLDA. For all of the experiments, we set the number of
topics T = 100, 200, and 300 for each of the three models. We fixed Dirichlet priors
α = 50/T and β = 0.01, which were reported to be appropriate for various collec-
tions [10]. The other hyper-parameters were empirically determined using the training
data, as described in the rest of this section.

Prediction. We evaluated all three models on a specific who-entity prediction task. For
this task, the models were first trained on words, who-entities, and where-entities using
the TDT2. The model then makes predictions about who-entities over the TDT3 in the
following two ways:

1. using words and where-entities(w+e).
2. using only words(w).
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Fig. 4. Examples of topics captured by GESwitchLDA. In each topic, we list most likely words
and their probability at the top, who-entities at the middle, and where-entities at the bottom.

The likelihood of an entity in each test document is calculated by p(e|d) =
Σtp(e|t)p(t|d), where p(e|t) is estimated during training, and the topic mixture in the
test document p(t|d) is estimated by resampling both all words and all where-entities
(or by resampling only all words) using learned word distribution p(w|t) and where-
entity distribution p(o|t). We estimated p(t|d) using Gibbs sampling.

We illustrate the process of the who-entity prediction in Table 2 using an example
from the TDT data. The first row shows an excerpt from an article of TDT3, with who-
entities indicated by XXXXX. Middle row shows the list of actual who-entities. The
bottom row shows the predicted who-entity list ordered by likelihood computed using
both words and where-entities (or using only words). Some examples of the topics
captured by GESwitchLDA are shown in Fig. 4.

Evaluation Metrics. Using the model parameters estimated in training, the models
computed the likelihood of every possible entity, and then listed the who-entities in
order of the likelihood. We computed MAP (mean average precision) [2], and GMAP
(geometric mean average precision) [9], as well as average best rank and average me-
dian rank. The average best rank is defined as the average of the best rank of relevant
who-entities, and the average median rank is the average rank of who-entities at median
of relevant who-entity ranked list.
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Table 3. Best results of who-entity prediction (without name identification)

model MAP GMAP avg best rank avg median rank
LDA (w+e, T=300) 0.1998 0.0818 118.10 482.93
SwitchLDA (w+e, T=300) 0.2036 0.0816 119.78 484.38
GESwitchLDA (w+e, T=300) 0.2048 0.0833 119.08 480.64

LDA (w, T=200) 0.1565 0.0558 135.13 549.86
SwitchLDA (w,T=300) 0.1603 0.0568 136.98 565.48
GESwitchLDA (w, T=300) 0.1595 0.0569 135.55 560.18

Results. The best results for LDA, SwitchLDA and GESwitchLDA are shown in Ta-
ble 3. To obtain the best results, we determined through experiments that T = 300 was
the best parameter for all three models, except the case of the LDA using only words.
We determined that T = 200 was the best parameter for the LDA using only words.
We determined the best parameters β̃ = β̂ = 0.01 for both the SwitchLDA and the
GESwitchLDA, γ = 5.0 for the SwitchLDA, and γ = 4.0 for the GESwitchLDA.

Given the best parameters in our experiments, our GESwitchLDA model gave
the best results, in terms of both MAP and GMAP, over the other two models in the
case of using both words and where-entities for prediction. In terms of MAP, the
GESwitchLDA gave 2.5% improvement in this case1, comparing with the best results of
the LDA model under the same condition. We further performed the Wilcoxon signed-
rank test (two-tailed) to the pair of GESwitchLDA - LDA and the pair of GESwitchLDA
- SwitchLDA. In terms of MAP, the resulting p-values of these pairs were less than
0.01 in the case of using both words and where-entities. It means the the performance
improvement of the GESwitchLDA over both the SwitchLDA and the LDA was sta-
tistically significant, in this case. As for the case of using only words, the improve-
ment of the GESwitchLDA over the LDA was also statistically significant at 0.01 level;
however, that over the SwitchLDA was not. In terms of average best rank and average
median rank, we observed that few very bad results made performance values unfairly
poor. In contrast, MAP was observed to be more stable in this sense.

We also calculated likelihood of who-entities in the manner of not using resampling.
In detail, we calculated the topic mixture in a test document as p(t|d) = Σwp(t|w)
p(w|d). In this manner we can predict who-entities incrementally for a given document.
The results using the GESwitchLDA are shown in Table 4. The results show that the
model can predict who-entities even for incoming streams of documents, keeping fairly
good prediction performance. Furthermore, we also applied some heuristics for name
identification at pre-processing stage, such as, when only the first name of a person
appears in a document, replacing it with his/her full name found by searching backward
in the document. The results of the GESwitchLDA are shown in Table 5, where the
performance was improved by applying the name identification processing.

1 It looks relatively small, although the improvement of our model turned out to be statistically
significant, as described later. We believe one reason is that the evaluation values were aver-
aged all over a large number of test documents, as shown in Table 1; and another reason is that
all predicted entities that did not appear in a document were deemed to be irrelevant even if
some of those were closely related to the document content.
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Table 4. Best results of who-entity prediction without resampling (without name identification)

model MAP GMAP avg best rank avg median rank
GESwitchLDA (w+e, T=300) 0.1970 0.0784 110.17 461.82
GESwitchLDA (w, T=300) 0.1554 0.0613 120.72 516.01

Table 5. Best results of who-entity prediction with name identification of GESwitchLDA

model MAP GMAP avg best rank avg median rank
GESwitchLDA (w+e, T=300) 0.2141 0.0893 114.21 439.21
GESwitchLDA (w, T=300) 0.1611 0.0605 128.28 505.01

Table 6. Results of who-entity link prediction with name identification

model MAP accuracy
LDA (T=100) 0.6062 0.5393
SwitchLDA (T=100) 0.6235 0.5551
GESwitchLDA (T=100) 0.6257 0.5564

Fig. 5. Examples of predicted who-entity networks
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4.3 Entity Link Prediction

We further carried out experiments on who-entity link prediction. We computed affinity
of a pair of who-entities ei and ej by p(ei|ej)/2 + p(ej |ei)/2, and then listed entity
pairs in order of the affinity, where p(ei|ej) = Σtp(ei|t)p(t|ej) is estimated during
training in the same manner in the previous section. Following [8], we generated two
sets of entity pairs: (1) the true pairs that contain pairs that were never seen in any train-
ing document but were seen in test documents; and (2) false pairs that contain pairs that
were never seen in any training or test document. The number of true pairs Nt and false
pairs Nf were 104,721 and 98,977, respectively. The results can be seen in Table 6.
We used a couple of evaluation metrics: mean average precision (MAP) and accuracy
at top-ranked Nt predicted result. Our GESwitchLDA modestly outperformed the other
two models: the LDA and the SwitchLDA, in terms of both MAP and accuracy. The
maximum improvement was 3.2% in the case of MAP. Some examples of predicted
who-entity networks are shown in Fig. 5, where each vertex represents an entity and
each edge length represents strength of affinity between a pair of entities at the incident
vertices. Although the networks of who-entities were discussed above, more specific
social networks (e.g. person-entity networks) or where-entity networks can also be pre-
dicted in the same manner.

5 Conclusions

We developed a graphical model GESwitchLDA, generalizing for an arbitrary number
of word types such as words, who-entities (i.e. persons, organizations, or nationalities)
and where-entities (i.e. locations, geographical/social/political entities, or facilities), in
order to enable to capture dependencies between them. We compared this model with
two other models on who-entity prediction task and entity link prediction task, using
real data of news articles. We showed that the GESwitchLDA achieved significant im-
provement over the previous models in terms of some measures that are well-accepted
in information retrieval research area, by distinguishing multiple types of entities: in
this case, who and where. Using our model, entity networks, such as social networks,
can be effectively constructed from textual information.

This model can also be applied to other multiple types of words. For example, we
can use this model to capture multiple types of entities in bio-medical articles, such
as protein names, gene names and chemical compound names, even if more than two
entity types are involved. In another direction of future work, we plan to extend the
model to incorporate a temporal aspect of events.
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Appendix

Gibbs Sampling Equations for GESwitchLDA

In the following equations. α and β are Dirichlet priors, and γ is another Dirichlet prior.
βy corresponds to Dirichlet prior for type-y words. The notation CPQ

pq represents counts
from respective count matrices, e.g. count of words in a topics, or counts of topic in a
document.
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Abstract. Decision trees and self organising feature maps (SOFM) are fre-
quently used to identify groups. This research aims to compare the similarities 
between any groupings found between supervised (Classification and Regres-
sion Trees - CART) and unsupervised classification (SOFM), and to identify in-
sights into factors associated with doctor-patient stability. Although CART and 
SOFM uses different learning paradigms to produce groupings, both methods 
came up with many similar groupings. Both techniques showed that self per-
ceived health and age are important indicators of stability. In addition, this 
study has indicated profiles of patients that are at risk which might be interest-
ing to general practitioners. 

Keywords: Doctor-patient stability (MCI), Classification and Regression Trees 
(CART), Self Organising Feature Maps (SOFM or SOM), supervised learning, 
unsupervised learning. 

1   Introduction 

Two of the most popular methods for classifying and clustering data are decision trees 
and self-organising maps [1]. Classification and regression tree (CART) is used to 
classify the data while Kohonen’s self-organising map (SOFM) is to cluster. These 
techniques differ in their approach to grouping patients in that CART [2] uses a su-
pervised learning approach that requires a target variable to guide its groupings, 
whereas SOFM [3] uses an unsupervised learning approach by grouping patients 
without the need to specify the desired output. 

This paper compares the similarities between any groupings found between super-
vised and unsupervised techniques, and to identify insights into factors associated 
with doctor-patient stability. 
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Long-term doctor-patient stability is an important aspect to achieving continuity of 
care [4] Continuity of care has many benefits. It has been shown to build patients’ 
personal trust in doctors [5], to increase the knowledge of doctor and patient about 
each other which in turn promotes an increased understanding of the social context of 
the patient [6] and has been shown to be vital to patient satisfaction [7].  

Overall, research in this area of doctor-patient stability mostly treats patients as a 
single homogenous group [8, 9]. The factors are typically treated as having a one-to-
one linear relationship to the outcome doctor-patient relationship stability variable. 

An additional objective of this paper is to investigate the groups of patients pro-
duced by CART and SOFM and to evaluate these groups in terms of predicting doc-
tor-patient stability. 

This paper is organized as follows: Section 2 describes the study design; research 
methodology is discussed in Section 3; Sections 4 and 5 present SOFM and CART  
results respectively; Section 6 demonstrates how the results are validated; Section 7 
describes the key profiles and comparisons between SOFM and CART, while the con-
clusions are made in Section 8. 

2   Study Design 

The data is obtained from a survey of randomly selected general practices in the NSW 
Central Coast, Australia. This region is estimated to have up to 230,000 people and 
ranks as top ninth highest population in Australia [10]. The practices in the area 
(n=93), were stratified into five classes according to their size, which is categorized 
into solo, 2, 3 to 4, and 5 and over, doctors. 100 consecutive patients are selected from 
the five practices of each of the five classes. In total, twenty of the sixty-one doctors 
(which constitute about 33 per cent) agreed to participate. Due to the high demand 
placed on doctors and their patients, eight doctors who initially agreed withdrew from 
the study. Information about 1,122 patients and their respective doctors was collected. 
Data collection occurred between February and November 1999. 

Table 1. Data dictionary and average characteristics of the items contained in the questionnaire 

Section Abbreviation Mean Everywhere except for the Age variable, 
the score of  “1” means that… 

Time 0.75 Doctor always has enough time for me 
Age 49.98 Age (years) 

Knowdo 0.68 Knows doctor well 
Health 0.74 Patient perceived to be in excellent health 
Psysym 0.52 Psychological distress 

Soc 0.48 Social distress 

Pre-consultation items 

Morbidity 0.15 Poly-morbidity 

Condif 0.28 Most difficult consultations 
MCI 0.68 Most stable doctor-patient relationship Consultation items 
Consl 0.87 Longer Consultations 

Commun 0.6 Excellent communication with doctor 
Enable 0.31 Highest enablement Post consultation items 

Satisf 0.8 Highest satisfaction 
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The questionnaire is divided into three parts: the first were answered by the doctor, 
the second by the patients before consultation and the final part by the patients after 
consultation. The questionnaires obtained information about the health service envi-
ronment, the doctor’s characteristics and perceptions about the patient, patient charac-
teristics, information about the consultation process and the outcome. Only relevant 
variables are shown in Table 1 which indicates the average mean values of each ques-
tionnaire variables and describes the abbreviation used. 

Doctor-patient stability variable is measured as modified continuity index (MCI). 
MCI is developed by Godkin and Rice and it indicates the frequency and intensity of 
the relationship by dividing the number of different doctors visited by the number of 
visits in a time period [11]. It is a continuous number between 0 and 1 and is the fre-
quency visit to a dominant doctor over the number of visits in a year. Values close to 
0 would indicate poor doctor-patient stability and 1, high doctor-patient stability. 

3   Research Methodology 

The research design contains the following stages: 

Stage 1: Application of CART and SOFM using the training data sets. 
At the first stage, about 20 per cent of patients were randomly allocated into 

evaluation set and the rest into training set. Both data mining techniques (CART and 
SOFM) were applied separately to group the general practice patients based on demo-
graphics and clinical variables using the training data set. For SOFM, a software 
package called Viscovery was used to model the data [12]. 

Stage 2: Validation of the CART and SOFM models using evaluation set (holdout 
sample). 

The models generated in the training set were then applied to the relevant evalua-
tion set. If the models were generalisable then the performance of the evaluation sets 
were analogous to the training period. To make the comparison, Mean absolute devia-
tion (MAD) [13] and the coefficient of multiple determination (R2) were used.  

Stage 3: An analysis and comparison of the results from supervised and unsupervised 
data mining techniques. 

4   SOFM Clusters 

This section describes the application of SOFM onto the training data set of which 
SOFM generated 10 clusters (Stage 1) which were then renumbered in ascending or-
der of MCI. There were three broad groups of clusters: those with MCI of 0.5 to 0.6, 
MCI of 0.6 to 0.76 and MCI over 0.76. When the clusters were created, the stability 
variable was left out as inputs. This was to see how well other variables were able to 
predict stability. 

There seems to be a strong correlation between age and stability. If the patient’s 
age is between 30 to 38, they are likely to group in Cluster 1 to 4 and are likely to 
have MCI between 0.5 to 0.58.  
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There also seems to be a separation between two main groups of patients. Those 
groups (Cluster 5-10) whose average stability is 0.73 and above (high stability) and 
those (Cluster 1-4) whose average stability is 0.58 and below (low stability). The fol-
lowing describes those clusters: 

Table 2. Summary of SOFM clusters based on MCI  

Low stability High stability
Variables

1 2 3 4 5 6 7 8 9 10
Age 31 35 39 32 53 63 63 57 69 69

Health Good Good Good Good Poor Good
Morbidity Complex Social Psychological Complex Physical

Condif Difficult Easy Easy Difficult Easy Easy Easy

MCI 0.53 0.54 0.55 0.58 0.73 0.76 0.76 0.81 0.81 0.83

Consl Shortest Long Longest Short Long
Commun Good Good Poor Poor Good Good
Enable Lowest Good Poor Poor Poor Good
Satisf Good Good Poor Poor Good Good Good Good

Cluster
Total

47 114 130 63 44 54 96 84 106 73
 

After the profiles of the stability clusters were examined, SOFM was used as a 
prediction tool. The MAD and R2 in the training set were 0.1622 and 0.2356  
respectively. 

5   CART Results 

This section describes the results obtained from applying CART onto the training data 
set (Stage 1). A separate study was conducted on the patient stability variable for 
which CART generated 7 terminal nodes. Figure 1 shows the CART tree diagram of 
stability when it was run on the training data set. Terminal node 1 has the lowest sta-
bility, as measured by the MCI index, while Terminal node 7 has the highest. 

CART uses three patient variables: patient’s age, knowledge of the doctor and per-
ception of their health. In general, patients whose average age is 46.5 and less tend to 
have lower doctor-patient stability. Patients who consider themselves in poor health 
tend to have more stable doctor-patient relationships. In addition, younger and health-
ier patients (represented in Terminal node 1) have a lower MCI score compared with 
younger but not-healthier patients (represented in Terminal node 4). 

Patients with a high level of knowledge of their doctor are correlated with high sta-
bility. Terminal node 5 (with good knowledge of their doctor) has a higher stability 
score than Terminal node 2 (with poor knowledge of their doctor) even though both 
represent ages between 46.5 to 64.5 and good self-perceived health. 

Like SOFM, there also seems to be a separation between two main groups of pa-
tients which are those groups (Cluster 5-10) whose stability is above 0.69 and those 
(Cluster 1-4) whose stability is 0.69 and below. Age, health and knowledge of doctor 
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Fig. 1. CART tree of doctor-patient stability in primary care 

variables can also be used to separate those 2 groups. Patients age 46.5 years and be-
low, and also those who consider their health to be good but do not have a good 
knowledge about their doctor has a low stability. Once the profiles of the CART 
nodes were examined, CART was used as a prediction tool. The MAD and R2 in the 
training set were at 0.1227 and 0.3591 respectively. 

6   Validation of SOFM and CART Groupings 

A comparison was made between the training and evaluation data sets to establish the 
generalisability of both the SOFM and CART grouping models of patient stability. A 
significantly higher MAD and lower R2 in the evaluation set, compared to the training 
set, would indicate poor applicability of the model. Table 3 shows the comparison be-
tween MAD and R2 of training and evaluation set of both SOFM and CART. Using 
an unpaired two-tailed t-test and the alpha level of .05, the null hypothesis that the 
MAD of the training and evaluation sets is statistically similar could not be rejected. 
The p-value was above 0.05 for both SOFM and CART.  

Both these measures provide evidence that the SOFM model of clusters and the 
CART rules produced could be generalisable in creating patient groups that reflect 
doctor-patient stability. 

Table 3. Comparison of MAD and R2 for stability variable 

MAD R2

Variable Method
Training

set
Evaluation

set
2 tail P-

value
Training

set
Evaluation

set
SOFM 0.1622 0.1827 0.0684 0.2356 0.2438

Stability
CART 0.1227 0.1346 0.1394 0.3591 0.3977  
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7   Similarities between Supervised and Unsupervised 

Guthrie and Wyke state that for some groups of patients stability is more important 
[14]. They list an example of a more serious morbidity group of patients that requires 
higher doctor-patient stability compared with the healthier groups. Thus, the interest-
ing groups would be patients who have serious morbidity but for some reason choose 
not to have a usual general practitioner. These SOFM groupings are: 

Cluster 1: Young patients (average 31.5 years) with complex morbidity and poor 
communication with their doctor, who have the lowest doctor-patient stability. They 
are the least enabled and most dissatisfied with their consultations. They represent the 
highest proportion that judge themselves in excellent health. Doctors find consulta-
tions with this group the most difficult. 

Cluster 4: Young patients (average 32.0 years) in social distress who are dissatisfied 
with their consultations. This cluster has one of the lowest rates of enablement and 
satisfaction. Although they consider themselves in good health, they are oblivious to 
their social distress and are unable to understand and communicate with their doctor. 
They also have the second shortest consultation times and felt their doctor does not 
spend enough time with them. 

Cluster 6: Older patients (average 62.6 years) who have negative attitudes towards ho-
listic health care with combinations of morbidity. They have problems communicat-
ing with their doctor and have amongst the shortest consultations. They feel not en-
abled by and were dissatisfied with their consultation. 

Those findings are to some extent consistent with CART which ranks age, self per-
ception of health and social morbidity highly as important primary or surrogate  
splitters. 

In addition, a comparison using Cohen Kappa[15] seems to show that SOFM and 
CART produced similar groupings. As mentioned earlier in Section 4 and 5, both 
CART and SOFM came up with two groupings of high and low stability groupings. 
An average of MCI 0.69 can be considered as a threshold for the broad groupings. 

An assessment of inter-rater reliability using Cohen Kappa is shown in the tables 
below. Both SOM and CART are considered as the "raters" of the two categories 
based on high doctor-patient stability (above MCI 0.69) and low doctor-patient stabil-
ity (MCI 0.69 and below). 

Table 4. Degree of agreement between SOFM and CART 

SOFM Clusters 1-4 Clusters 5-10 Total
CART Avg MCI <0.69 Avg MCI >0.70

Nodes1-4 Avg MCI <0.69 325 56 381

Nodes5-7 Avg MCI >0.70 29 401 430

Total 354 457 811
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Table 5. Expected values in each cell if it were due by chance 

SOFM Clusters 1-4 Clusters 5-10 Total
CART Avg MCI <0.69 Avg MCI >0.70

Nodes1-4 Avg MCI <0.69 166.31 214.69 381
Nodes5-7 Avg MCI >0.70 187.69 242.31 430

Total 354 457 811  

The total agreement between CART and SOFM is 726 compared with the agree-
ment if it were due to chance of 408.61. The Cohen Kappa in this case is 0.79 
which seems to indicate that both SOFM and CART is similar to broadly group 
doctor-patient stability. If the groupings were due to chance, Cohen Kappa would 
be 0. 

8   Summary and Conclusions 

This paper has discussed the use of CART and SOFM to classify patients accord-
ing to their stability of doctor-patient relationship. The contribution of this re-
search is to identify groups of patients that are at different levels of stability. By 
doing this, it reveals key variables and profiles that are associated with the stability 
outcome and highlight high risk groups. There were groupings of patients with 
combinations of morbidity who, for some reason, consider themselves to be in 
good health. They do not have a principal general practitioner who can provide 
continuous care for them. 

In addition, this research compares the performance of supervised and unsupervised 
learning. Both are able to come up with similar groupings based on Cohen Kappa and 
key attributes which are age, self perception of health and social morbidity. 

There are limitations to this research. It is arguable whether the results could be 
applied outside the New South Wales Central Coast. In general, the central coast re-
gion tends to have patients who are predominantly native speakers of English, with 
less social mobility and with less availability of doctors. 

Furthermore, the data on doctors and the general practice are limited. There are 
only twelve doctors that took part in the survey. A larger sample size of doctors and 
general practice would enable more association of their variables to patients. It is also 
probable that particular groups of doctors or even patients may be omitted from the 
final results because they did not participate in the survey when sampled.  

Future research might include open ended questions targeting dissatisfied patients 
and in particular those unable to communicate with their doctors. These questions 
may elicit the reasons underlying the poor communication, such as poor doctor train-
ing, patient not being able to voice their opinion and doctors who felt rushed to com-
plete as many consultations as possible. 
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Abstract. This paper considers a rough set approach for the problem of
finding minimal jumping emerging patterns (JEPs) in classified transac-
tional datasets. The discovery is transformed into a series of transaction-
wise local reduct computations. In order to decrease average subproblem
dimensionality, we introduce local projection of a database. The novel al-
gorithm is compared to the table condensation method and JEP-Producer
for sparse and dense, originally relational data. For a more complete pic-
ture, in our experiments, different implementations of basic structures are
considered.

Keywords: jumping emerging pattern, transaction database, local
reduct, rough set, local projection.

1 Introduction

Pattern mining is one of key tasks in contemporary knowledge discovery. Al-
though recent years have brought a wide spectrum of pattern types, discovery
algorithms still follow common strategies such as Apriori, operations on concise
representations ([1]), pattern trees ([2]). Regardless of a particular method, pro-
cessing may involve exponentially large item set collections, which makes overall
feasibility very sensitive to input data. Therefore, in our opinion, it is crucial to
study, how to approach datasets of certain characteristics.

Here, we look at the problem of finding jumping emerging patterns (JEPs) in
classified transaction databases. A JEP refers to an itemset that is supported in
one class and absent from others. This highly discriminative idea was introduced
in [3], and, since then, it has been successfully applied to business and gene
expression problems. Because all JEPs constitute a convex space, the task is
often perceived as finding minimal patterns. In fact, these patterns have found
valuable applications to classification and clustering ([3]).

Among known algorithms, JEP-Producer ([1]) is believed to be the most ef-
ficient solution for finding a complete space of JEPs. It operates on concise
representation of convex collections and employs a border differentiation opera-
tion to obtain a result set. In our previous works ([4]), it has been demonstrated
� The research has been partially supported by grant No 3 T11C 002 29 received from
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that reducts from the rough set theory ([5]) are closely related to JEPs. Algo-
rithms based on these relations appeared superior in experiments for relational
data ([6]). Moreover, even if data is originally given in a transactional form, a
condensed decision table can be efficiently obtained by finding an approximate
graph coloring in an item-conflict graph ([7]).

Following successful results for dense, originally relational data, we decided
to examine opportunities for reduct-based methods against a popular class of
sparse transaction databases. Note that, for large datasets, table condensation
may likely deal with adverse item distribution in transactions, which results
in low dimensionality reduction and inefficient discovery. The method of local
projection that is put forward in this paper ascertains average dimensionality
to depend only on average transaction length, not on item distribution in a
database. The problem is decomposed into a series of per transaction local reduct
computations in a locally projected decision table. For each subproblem only
objects and attributes substantial for reduct induction are taken into account,
which significantly improves overall efficiency. In addition, we propose several
optimization to decrease a construction overhead of discernibility matrices.

Our experiments covered efficiency comparison between JEP-Producer, table
condensation and local projection with different reduct computation methods.
Approaches were tested against originally relational and sparse datasets. Since
actual performance depends strongly on implementation, different structures to
represent an attribute/item set were tested.

Section 2 provides fundamentals of emerging patterns and border representa-
tion. In Sect. 3, we present basic elements of the rough set theory. Local projec-
tion is introduced and proved correct in Sect. 4. In Sect. 5 the novel algorithm is
described. It also discusses optimizations for discernibility matrix computation
and impact of different implementations of main structures. Section 6 covers
testing procedure and experimental results. The paper is concluded in Sect. 7.

2 Emerging Patterns

Let a transaction system be a pair (D, I), where D is a finite sequence of trans-
actions (T1, .., Tn) (database) such as Ti ⊆ I for i = 1, .., n and I is a non-
empty set of items (itemspace). The support of an itemset X ⊆ I in a sequence
D = (Ti)i∈K ⊆ D is defined as suppD(X) = |{i∈K:X⊆Ti}|

|K| , where K ⊆ {1, .., n}.
Let a decision transaction system be a tuple (D, I, Id), where (D, I ∪ Id) is

a transaction system and ∀T∈D|T ∩ Id| = 1. Elements of I and Id are called
condition and decision items, respectively. Support in a decision transaction
system (D, I, Id) is understood as support in the transaction system (D, I ∪Id).

For each decision item c ∈ Id, we define a decision class sequence Cc =
(Ti)i∈K , where K = {k ∈ {1, .., n} : c ∈ Tk}. For convenience, the nota-
tions Cc and C{c} are used interchangeably. Note that each of the transactions
from D belongs to exactly one class sequence. In addition, for a database D =
(Ti)i∈K⊆{1,..,n} ⊆ D, we define a complementary database D′ = (Ti)i∈{1,..,n}−K .
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Given two databases D1, D2 ⊆ D, in particular decision classes, we define a
jumping emerging pattern (JEP) from D1 to D2 as an itemset X ⊆ I such as
suppD1(X) = 0 and suppD2(X) > 0. A set of all JEPs from D1 to D2 is called
a JEP space and denoted by JEP (D1, D2).

JEP spaces can be described concisely by borders ([1]). For c ∈ Id, we use a
border < Lc,Rc > to uniquely represent a JEP space JEP (C′

c, Cc). Members
of the left bounds are minimal JEPs, whereas member of the right bounds are
maximal JEPs, i.e. distinguishable transactions.

The problem of JEP discovery can be defined as computing {< Lc,Rc >}c∈Id

for a decision transaction system (D, I, Id). Since finding of right bounds is
trivial ([1]) and not interesting from a practical point of view, we focus on the
collection of left bounds {Lc}c∈Id

.

3 Rough Sets

Let a decision table be a triple (U , C, d), where U (universum) is a non-empty,
finite set of objects, C is a non-empty finite set of condition attributes and d
is a decision attribute. A set of all attributes is denoted by A = C ∪ {d}. The
domain of an attribute a ∈ A is denoted by Va and its value for an object u ∈ U
is denoted by a(u). In particular, Vd = {c1, .., c|Vd|} and the decision attribute
induces a partition of U into decision classes {Uc}c∈Vd

. Hereinafter, we use the
term attribute to denote a condition attribute.

Consider B ⊆ A. An indiscernibility relation IND(B) is defined as IND(B)=
{(u, v) ∈ U × U : ∀a∈B a(u) = a(v)}. Since IND(B) is an equivalence relation
it induces a partition of U denoted by U/IND(B). Let B(u) be a block of the
partition containing u ∈ U . A B-lower approximation of a set X ⊆ U is defined
as follows: B∗(X) = {u ∈ U | B(u) ⊆ X} and a B-positive region with respect
to a decision attribute d is defined as POS(B, d) =

⋃
X∈U/IND({d}) B∗(X).

A local reduct for an object u ∈ U is a minimal attribute set B ⊆ C such
that ∀c∈Vd

(C(u) ∩ Uc = ∅ =⇒ B(u) ∩ Uc = ∅). It means that the object u can
be differentiated by means of B from all objects from other classes as well as
using C. The set of all local reducts for an object u is denoted by REDLOC(u, d).

4 Local Projection

In order to apply the rough set framework to transactional data, transformation
to a respective relational form is required. We consider two representations:
a binary decision table, which already found an application to negative pattern
discovery ([4]), and a locally projected form - introduced in this paper for efficient
finding of positive patterns.

Hereinafter, we assume that our input data is represented by a decision
transaction system DTS = (D, I, Id), where D = (T1, .., Tn), I = {I1, .., Im},
Id = {c1, .., cp}, K = {1, .., n}.
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A binary decision table for a decision transaction system DTS is a decision
table BDTDTS = (U , C, d) such that U = {u1, .., un}, C = {a1, .., am}, Vd =

{c1, .., cp}; aj(ui) =
{

0, Ij 	∈ Ti

1, Ij ∈ Ti
, ∀i∈1..n,j∈1..m; d(ui) = Ti ∩ Id, ∀i∈1..n.

Local reducts in a binary decision table correspond to jumping emerging pat-
terns with negation (JEPNs, [4]). JEPNs constitute a convex space that contains
JEPs for the same transaction system. Note that, although {e, g} and {d, f} are
both local reducts for u1, the pattern eg is a minimal JEP, whereas df is not,
since it is not supported by the respective transaction.

Solving a problem of a double dimensionality and filtering positive patterns is
most often expensive, thus, the idea of a table condensation was proposed ([7]).
Before local reduct computation, binary attributes are aggregated into multi-
valued attributes by means of an approximate graph coloring. This approach is
efficient for originally relational datasets, however, remains sensitive to a distri-
bution of items in transactions.

The table condensation leads to an alternative representation of a decision
transaction system. However, one may get much higher complexity reduction if
transformation is performed independently for every transaction. The following
structure demonstrates how we may limit our interest only to items that are
indispensable to compute complete discernibility information for a transaction.

A locally projected decision table for: DTS, a decision transaction system,
and Ti ∈ D, where i = 1, .., |D|, a transaction, is a binary decision table
LPDTDTS,Ti = BDTDTSi,Ti , where DTSi = (Di, Ti, Id) and Di = (Tk ∩Ti)k∈K .

Hardness of an input decision system DTS can be characterized by average
(maximal) dimensionality of subproblems, i.e. a locally projected decision table
for distinguishable transactions, namely avgDim(DTS) = {|T | : T ∈ Rc ∧ c ∈
Id}/

∑
c∈Id
|Rc| and maxDim(DTS) = maxT∈Rc∧c∈Id

|T |. Note that, when all
transactions are distinguishable, these parameters refer to an average (maximal)
transaction length DTS.

For the sake of convenience, we use the notation: itemPattDTS,Ti(u, B) =
{Ik ∈ Ti : ak ∈ B ∧ ak(u) = 1 ∧ k ∈ M ′}, where u ∈ U , B ⊆ Ci = {ak}k∈M ′ ,
LPDTDTS,Ti = (U , Ci, d) is a locally projected decision table and a transac-
tion Ti = {Ik}k∈M ′ , M ′ ⊆ {1, .., m}. Note that |itemPattDTS,Ti(ui, B)| = |B|.
Whenever a decision transaction system is known from the context, the respec-
tive subscript is omitted.

The following theorem states that the complete JEP space for the DTS and
a given class can be obtained by finding a locally projected tables for each
distinguishable transaction and generating patterns for the respective objects
and any attribute set in the respective table.

Theorem 1. ∀c∈Id
{itemPattDTS,Ti(ui, R) : i ∈ K∧LPDTDTS,Ti = (U , Ci, d)∧

ui ∈ POS(Ci, d) ∩ Uc ∧R ⊆ Ci} = JEP (C′
c, Cc).

The respective left bound of a JEP space can be found by applying local reducts
for a given object instead of any attribute sets.
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Theorem 2. ∀c∈Id
{itemPattDTS,Ti(ui, R) : i ∈ K∧LPDTDTS,Ti = (U , Ci, d)∧

ui ∈ POS(Ci, d) ∩ Uc ∧R ∈ REDLOC(ui, d)} = Lc.

The proofs are omitted here due to space limitations.

5 JEP Computation

Minimal jumping emerging patterns in DTS = (D, I, Id) can be computed by
local reduct computation in locally condensed tables for all transactions. The
actual procedure is straightforward and fully based on Theorem 2.

1: Lc = ∅ for each c ∈ Id

2: for (k = 1; 1 <= |D|; k + +) do
3: Construct a locally projected decision table LPDTDTS,Tk

4: Compute REDLOC(uk, d) in LPDTDTS,Tk

5: Lc = Lc ∪ {itemPattDTS,Tk(uk, R) : R ∈ REDLOC(uk, d)}, c = Tk ∪ Id

6: end for

Identification of minimal patterns by means of local reduct induction is the
most complex part of our approach. It is normally addressed with methods used
for global reducts ([5]). Unfortunately, all known exact solutions are pessimisti-
cally exponential.

Here, we look at two algorithms that employ a discernibility matrix. The first
one reduces the problem to finding prime implicants of a monotonous boolean
functions ([5], RedPrime). It loops over elements of a matrix and extends a
collection of reducts for rows seen so far, so that they are sufficient to discern the
current row as well. The second algorithm traverses a lattice of all subsets of an
attribute space using the apriori scheme ([8], RedApriori). Successive collections
of candidates are pruned basing on a degree of attribute set dependence, which
is calculated by means of a discernibility matrix. Also, in order to optimize this
stage, one may eliminate transactions that are not maximal JEPs and group
transactions by their classes.

6 Experimental Results

Experiments focused on efficiency of the new algorithm, table condensation and
JEP-Producer for synthetically generated sparse data and dense data obtained
from relational tables. Each result was averaged over several executions.

The testing environment and algorithms were coded in Java 5. Since the rough
set methods and JEP-Producer differ significantly, it is not possible to come up
with one single dominant operation for time complexity representation. There-
fore, in order to provide reliable time measurements, we based their implemen-
tations on mostly the same structures. In particular, all the studied approaches
process large collections of attribute/item sets. To obtain results possibly in-
dependent from what a data structure was used to represent such a set, three
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implementations were tested. The first two are characteristic vectors of an at-
tributes/item space, one based on a regular byte array (Array) and the other
one - on java.util.BitSet (BitSet). The third structure is a balanced binary tree
implemented by means of java.util.TreeSet (TreeSet). Array is generous in mem-
ory allocation, but assures the most efficient access. Bit and dynamic structures
are slower, however, they may take precedence for large attribute/item spaces
when a high number of sets is created.

Table 1. Synthetic dataset summary with problem hardness characteristics

No Trans Items Classes MaxTrans JEPs avgDim maxDim

1 2000 20 2 326 539 5,09 9,00
2 2000 40 3 1075 5967 6,33 14,00
3 2000 60 3 1551 19140 6,79 16,00
4 2000 80 2 1858 71250 9,37 19,00
5 5000 50 2 2918 20088 6.25 15.00
6 10000 50 3 4119 18673 5.57 12.00
7 15000 50 2 7920 94252 7.57 18.00
8 20000 50 2 10300 126162 7.63 18.00

Sparse Data. In this test local projection and JEP-Producer are compared for
sparse datasets. Since itemspaces are commonly much larger than average trans-
action size, this kind of data is substantial for practical tasks. Unfortunately, it
is hard to find publicly available classified sparse datasets, thus, the test was per-
formed against synthetic data. Transaction databases were produced by means
of the IBM generator ([9]) and, then, the CLUTO package was used to classify
transactions (Tab. 1). The density of each database was set up at 5-15% of a
respective item space. We studied behavior of the algorithms when a size of a
database or an item space increases. In order to describe the actual hardness of
each problem, additional measures were provided, in particular, a total number
of JEPs over all classes, number of maximal transactions and average (maximal)
dimensionality.

The local projection algorithm was tested with two different reduct compu-
tation methods: RedPrime ([5]) and RedApriori ([8]). JEP-Producer was imple-
mented according to the scheme and optimizations described in [1]. To optimize
all computations a database is always reduced to contain only maximal trans-
actions. Measurements for all the algorithms were taken for the aforementioned
implementations of an attribute/item set.

Table 2 shows that the rough set approach outperforms JEP-Producer. In par-
ticular, for RedApriori and Array, there is a difference of 1-2 orders of magnitude.
In general, all the methods perform well for Array. Reduct computations are
performed for locally projected tables with small attribute spaces, thus, slower
structures significantly affect the overall performance. For example, for TreeSet,
efficiency of RedPrime and JEP-Producer remain very close. On the other hand,
JEP-Producer is sensitive to the size of a whole item space, therefore, BitSet led
to slightly better results in almost all the cases.
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Table 2. Execution time comparison for sparse datasets between local projection and
JEP-Producer for different implementations of an attribute/item set

No
RedPrime RedApriori JEP-Producer

Array BitSet TreeSet Array BitSet TreeSet Array BitSet TreeSet

1 297 484 797 138 218 470 594 640 1296
2 4906 8938 19063 1796 3196 10262 14375 13469 28547
3 20453 34860 78406 4553 8120 29351 53281 47250 93562
4 202328 323296 810360 48469 77129 340541 217796 164594 346265
5 26532 45219 95203 6573 10669 36239 118453 97735 200094
6 28750 55906 104812 4071 7608 21565 215250 190906 390937
7 671390 1123562 2739329 162874 263418 1033108 1311203 1169141 2623266
8 877655 1468744 3582734 243205 393338 1490587 2153109 1982421 4316875

Originally Relational Data. Earlier tests demonstrated that, for dense, orig-
inally relational datasets, condensation successfully reduces dimensionality and
performs better that JEP-Producer ([6]). Here, it is contrasted with local projec-
tion. Due to space limitations, results for RedPrime and Array-based attribute
set implementation are presented. Transactional databases for this test were
generated from relational tables from UCI Repository. Average time and dimen-
sionality is given for each of the methods.

According to the results in Tab. 3, table condensation and local projection lead
most often to the same subproblem dimensionality. Since databases are reduced
in an analogical way, both methods achieve similar efficiency. Nevertheless, the
former strongly relies on optimality of graph coloring solution. An overhead of
generation and filtering of additional patterns is visible for mushroom.

Table 3. Execution time comparison for originally relational datasets between table
condensation and local projection with RedPrime and Array-based implementation

Dataset Trans Items Class JEPs
Table Condensation Local Projection
avgDim Time avgDim Time

lymn 148 59 4 6794 18.00 13156 18.00 8359
house 435 48 2 6986 16.00 27218 16.00 21141

balance 625 20 3 303 4.00 671 4.00 406
tic-tac-toe 958 27 2 2858 9.00 9203 9.00 7578

car-mod 1728 21 4 246 6.00 4109 6.00 3985
mushroom 8124 117 2 3635 23.00 608546 22.00 440656

nursery 12960 27 5 638 8.00 477484 8.00 495375
krkopt 28056 43 18 21370 6.00 1754469 6.00 1728782

7 Conclusions

In this paper we have proposed a rough set approach to discovery of jumping
emerging patterns (JEPs) in classified transaction databases. The problem is
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decomposed into a series of local reduct computations performed for locally
projected decision tables for each transaction.

Main benefit of our approach is that only the transactions and items neces-
sary for each computation are considered, which results in potentially significant
dimensionality reduction of subproblems. In this case, additional processing can
be a significant factor. The way of discernibility matrices construction can be
optimized by caching of partial per-attribute results in complementary form.

Experiments have proved that the method outperforms JEP-Producer, the
most popular solution for the considered problem, for sparse, synthetically gen-
erated datasets. The high efficiency is a result of a dramatic decrease in average
dimensionality. This fact was observed independently from a reduct computation
method. Nevertheless, the algorithm based on attribute set dependence behaves
much better than the classical one searching for prime implicants and is faster
than JEP-Producer by 1-2 orders of magnitude. On the other hand, for dense,
originally relational data the new approach achieves at least the same dimen-
sionality gain as the previously proposed method of table condensation and gives
similar overall efficiency.

The future research will extend our method to look for derivative types of
patterns and confront its efficiency with existing tree-based strategies.

References

1. Dong, G., Li, J.: Mining border descriptions of emerging patterns from dataset pairs.
Knowl. Inf. Syst. 8(2), 178–202 (2005)

2. Li, J., Liu, G., Wong, L.: Mining statistically important equivalence classes and
delta-discriminative emerging patterns. In: KDD 2007, pp. 430–439 (2007)

3. Li, J., Dong, G., Ramamohanarao, K.: Making use of the most expressive jumping
emerging patterns for classification. Kn. In. Sys. 3(2), 1–29 (2001)

4. Terlecki, P., Walczak, K.: Jumping emerging patterns with negation in transaction
databases - classification and discovery. Information Sciences 177, 5675–5690 (2007)

5. Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wroblewski, J.: Rough set algo-
rithms in classification problem. Rough set methods and applications: new develop.
in knowl. disc. in inf. syst., 49–88 (2000)

6. Terlecki, P., Walczak, K.: Local reducts and jumping emerging patterns in relational
databases. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen,
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Abstract. Word-based relations among technical documents are im-
mensely useful information but often hidden in a large amount of scien-
tific publications. This work presents a method to apply latent
semantic indexing in frequent itemset mining to discover potential rela-
tions among scientific publications. In this work, two weighting schemes,
tf and tfidf are investigated with the exploitation of latent semantic in-
dexing. The proposed method is evaluated using a set of technical doc-
uments in a publication database by comparing the extracted document
relations with their references (citations). To this end, the paper uses
order accumulative citation matrices to evaluate the validity (quality) of
discovered patterns. The results also show that the proposed method suc-
cessfully discovers a set of document relations, comparing to the original
method that uses no latent semantic indexing.

1 Introduction

Fast increasing of research publication has caused the difficulty for researchers
to grasp movement or change in their area of interest. Such information overload
becomes serious hindrance for researchers to position their own works against
existing ones, or to find useful relations (or connections) among them. Although
the publication of each work may include a list of related articles (documents) as
its reference (called citation), it is still impossible to include all related works due
to either intentional reasons (e.g., limitation of paper length) or unintentional
reasons (e.g., näıvely unknown). Enormous meaningful connections that perme-
ate the literatures may remain hidden. Recently, there have been two different
approaches to find relations among research documents. As the first approach,
the citation-based method uses expansion of bibliography or citation informa-
tion in scientific publication to find indirect relations, including measurement
of impact factor [1], characterization of the citation [2], support of browsing
citation graph [3] and so forth. For the task of relation discovery, two basic
properties of citation, called bibligraphic coupling [4] and co-citation [5], can
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be focused. Those previous works stated that any two documents tend to have
relation with each other if they are citing to one or more documents in common
(bibliographic coupling) or they are both cited by one or more documents in
common (co-citation). As the second approach, the word- or term-based method
exploits words or terms in a document as potential clues to detect relations
between the document and other related documents. This method (later called
word-based approach) discovers a set of documents with similar contents (topics)
using either word co-occurrences or shared vocabularies, such as done in infor-
mation retrieval, text categorization and text clustering. However, the process
to find relations among two documents is computationally expensive since all
combinations need to be considered for any possible relation [6]. Towards this
problem, some recent works [7,8] have applied association rule mining (ARM)
techniques to find n-ary document relations where a support can be set to avoid
exploring all document combinations. Even such works could achieve discovery
of high-quality relations to some extents, they still have some limitations due to
direct use of words and terms in documents.

In this paper, we propose a method to apply latent semantic indexing in
the process of discovering hidden relations among two documents. Two main
objectives are (1) to study how well the word-based approach with different
weighting (tf and tfidf) performs in finding relations among documents using
ARM techniques, and (2) to study how much latent semantic indexing improves
the conventional approach in finding useful hidden relations.

2 Frequent Itemset Mining

In the past, association rule mining (ARM) and frequent itemset mining (FIM)
was known as a process to find co-occurrences (frequent patterns) in a database.
In general, the conventional transactional database is presented in the term of
item existences in the transaction. Although most ARM works deal with a this
kind of databases, there are some attempts to extend the original framework to
be able to assign the weights for items or transactions in the database, called
weighted association rule mining [9]. In those works, items or transactions are
independently weighted regarding to which type of discovered rules we would like
to find. The higher weighted items or transactions will obtain higher priority for
user interests. However, this approach gives a fixed weight to each item regardless
of the transaction such item occurs. Unlike those works, our approach utilizes
the term-document orientations, where the discovered frequent itemset is a set
of documents which share a large number of terms as done in [7,8]. Note that
a transaction corresponds to a term while an item corresponds to a document.
Therefore, a “docset” (document set) is used in place of the term “itemset” in the
traditional FIM approaches. The discovered results can be assumed as a term-
based relation among documents where the relation is introduced by coincident
terms. In Figure 1, two examples of the real-valued databases are defined in the
form of well-known vector space model (VSM). The left part indicates how often
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d1 d2 d3 d4
t1 4 2 0 0
t2 4 2 4 0
t3 2 0 2 2
t4 0 4 0 1

d1 d2 d3 d4
t1 4× log 4/2 = 1.20 2× log 4/2 = 0.60 0× log 4/2 = 0.00 0× log 4/2 = 0.00
t2 4× log 4/3 = 0.50 2× log 4/3 = 0.25 4× log 4/3 = 0.50 0× log 4/3 = 0.00
t3 2× log 4/3 = 0.25 0× log 4/3 = 0.00 2× log 4/3 = 0.25 2× log 4/3 = 0.25
t4 0× log 4/2 = 0.00 4× log 4/2 = 1.20 0× log 4/2 = 0.00 1× log 4/2 = 0.30

Fig. 1. the term-document database with tf (left) and tfidf (right) term weightings

a term occurs in each document (called term frequency - tf) while the right part
shows term frequency multiplied by the inverse document frequency (tfidf).

Traditionally, the support of a docset is defined by a ratio between the number
of terms that exist in all documents in the docset and the total number of
distinct terms in a database. To expand this concept to a real-valued database,
the definition of support is generalized as follows. Let D be a set of documents
(items) where D = {d1, d2, ..., dm}, and T be a set of terms (transactions) where
T = {t1, t2, ..., tn}. Also let w(di, tj) represent a weight of a term tj in a document
di. A subset of D is called a docset whereas a subset of T is called a termset.
Furthermore, a docset Xk = {x1, x2, ..., xk} ⊂ D with k documents is called
k-docset. The support of Xk is defined as follows.

sup(Xk) =
∑ n

j=1 mink
i=1w(xi,tj)∑

n
j=1 maxm

i=1w(di,tj)

By representing the data to be mined as shown in Figure 1, the new definition
of support employs the min operation to find the weight of each term for a
docset by selecting a minimum weight of such term among all documents in
the docset. The max operation is applied for finding the maximum weight of
each term in the database. The support of a docset will then be calculated
from the ratio between the sum of all term weights for a docset and the sum
of maximum weights of all terms in the database. While this definition can be
applied for general real-valued databases, it also can used for the traditional
FIM on boolean-valued databases with the same result. An example of docsets
and their supports, for tf and tfidf databases, can be computed as shown in
Figure 2. Besides support, a so-called confidence is used for generating confident
association rules. Here, the confidence is left since it is out of scope in this work.
Note that similar to conventional ARM, these generalized supports preserve two
closure properties, i.e., downward closure property (“all subsets of a frequent
itemset are also frequent”), and upward closure property (“all supersets of an
infrequent itemset are also infrequent”). For example, sup(d1) ≥ sup(d1d2) and
sup(d2) ≥ sup(d1d2). The mathematical proof can be found in [8].

3 Representation and Latent Semantic Indexing

To represent document representation, term weighting can be performed to set
importance level of a term in a document. This work uses two most common non-
binary weightings: term-frequency (tf) and term-frequency-inverse-document-
frequency (tfidf). Moreover, latent semantic indexing is applied to reveal hidden
meaning in a document or a query. In this latent semantic space, a query and a
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Docset Generalized support Docset Generalized support
tf tfidf tf tfidf

{d1} 10/14 = 0.71 1.95/3.15 = 0.62 {d2d3} 2/14 = 0.14 0.25/3.15 = 0.08
{d2} 8/14 = 0.57 2.05/3.15 = 0.65 {d2d4} 1/14 = 0.07 0.30/3.15 = 0.10
{d3} 6/14 = 0.43 0.75/3.15 = 0.24 {d3d4} 2/14 = 0.14 0.25/3.15 = 0.08
{d4} 3/14 = 0.21 0.55/3.15 = 0.17 {d1d2d3} 2/14 = 0.14 0.25/3.15 = 0.08
{d1d2} 4/14 = 0.29 0.85/3.15 = 0.27 {d1d2d4} 0/14 = 0.00 0.00/3.15 = 0.00
{d1d3} 6/14 = 0.43 0.75/3.15 = 0.24 {d2d3d4} 0/14 = 0.00 0.00/3.15 = 0.00
{d1d4} 2/14 = 0.14 0.25/3.15 = 0.08 {d1d3d4} 2/14 = 0.14 0.25/3.15 = 0.08

{d1d2d3d4} 0/14 = 0.00 0.00/3.15 = 0.00

Fig. 2. Docsets and their generalized supports (tf vs. tfidf)

document may have high cosine similarity even if they do not share any common
words or terms but their terms are semantically similar. Applied the concept
of Singular Value Decomposition (SVD), LSI can also be viewed as a method
for dimensionality reduction by a least-squared method [10]. SVD (also LSI)
translates an input matrix A and represents it as A

′
in a lower dimensional space

such that the ’distance’ between the two matrices as measured by minimizing
the 2-norm (Euclidean distance), ||A − A

′ ||2. It is possible to project an n-
dimensional space of word-document matrices onto a k-dimensional space where
n is the number of word types in the collection and k is relatively very small
compared to n, say 100 and 150. The SVD projection is done by decomposing a
document-by-term matrix At×d into the product of three matrices, Tt×n, Sn×n

and Dd×n as follows.

At×d = Tt×n × Sn×n × DT
d×n

Here, t is the number of terms, d is the number of documents, n = min(t, d),
T and D have orthonormal columns, i.e. T × T T = I and DT × D = I, and
S is a diagonal matrix, where si, j = 0 for i �= j. Moreover, in some situations
rank(A) = r where r ≤ n. In these situations, the diagonal elements of S are
σ1, σ2, ..., σn where σi > 0 for 1 ≤ i ≤ r and σi = 0 for r < i ≤ n. For details
of how to derive Tt×n, Sn×n and Dd×n, can be found in [10]. In this work, we
investigate the best combination of the four schemes.

4 The Evaluation Method

To evaluate the result, we introduce an automatic evaluation where citation
graph is used to evaluate our system based on its ability to find the relations
that exist in the citation graph. Although human judgment is the best method
for evaluation, it is a labor-intensive and time-consuming task. To do this, a
citation graph is applied. Conceptually citations among documents in scientific
publication collection form a citation graph, where a node corresponds to a
document and an arc corresponds to a direct citation of a document to another
document. Based on this citation graph, an indirect citation can be defined using
the concept of transitivity. The formulation of direct and indirect citations can
be given in the terms of the u-th order citation and the v-th order accumulative
citation matrix as follows.
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doc. d1 d2 d3 d4 d5 d6

d1 1 1 0 0 0 0
d2 1 1 1 0 1 0
d3 0 1 1 1 1 0
d4 0 0 1 1 0 1
d5 0 1 1 0 1 0
d6 0 0 0 1 0 1

1-OACM

doc. d1 d2 d3 d4 d5 d6

d1 1 1 1 0 1 0
d2 1 1 1 1 1 0
d3 1 1 1 1 1 1
d4 0 1 1 1 1 1
d5 1 1 1 1 1 0
d6 0 0 1 1 0 1

2-OACM

doc. d1 d2 d3 d4 d5 d6

d1 1 1 1 1 1 0
d2 1 1 1 1 1 1
d3 1 1 1 1 1 1
d4 1 1 1 1 1 1
d5 1 1 1 1 1 1
d6 0 1 1 1 1 1

3-OACM

Fig. 3. The 1-, 2- and 3-OACMs

Definition 1 (the u-th order citation). For x, y ∈ D, y is the u-th order
citation of x iff the number of arcs in the shortest path between x to y in the
citation graph is u (≥ 1). Conversely, x is called the u-th order citation of y.

Definition 2 (the v-th order accumulative citation matrix). Given a set
of n distinct documents, the v-th order accumulative citation matrix (for short,
v-OACM) is an n × n matrix, each element of which represents the citation
relation δv between two documents x, y where δv(x, y) = 1 when x is the u-
th order citation of y and u ≤ v, otherwise δv(x, y) = 0. Note that δv(x, y) =
δv(y, x) and δv(x, x) = 1.

For example, given a set of six documents d1, d2, d3, d4, d5, d6 ∈ D and a set of
six citations d1 to d2, d2 to d3 and d5, d3 to d5, and d4 to d3 and d6, d2 is the first,
d3 and d5 is the second, d4 is the third, and d6 is the fourth order citations of
the document d1. The 1-, 2- and 3-OACMs can be created as shown in Figure 3.
The 1-OACM can be straightforwardly constructed from the set of the first-
order citation (direct citation). The (v + 1)-OACM (mathematically denoted by
a matrix Av+1) can be recursively created from the operation between v-OACM
(Av) and 1-OACM (A1) according to the following formula.

av+1
ij = ∨n

k=1(av
ik ∧ a1

kj) (1)

where ∨ is an OR operator, ∧ is an AND operator, av
ik is the element at the i-th

row and k-th column of the matrix Av and a1
kj is the element at the k-th row

and j-th column of the matrix A1. Here, a v-OACM is a symmetric matrix.
The shorter the specific range is, the more restrict the evaluation is. With the

concept of v-OACM stated in the previous section, we can realize this general-
ized evaluation by a so-called v-th order validity (for short, v-validity), where
v corresponds to the specific range mentioned above. The formulation of the
v-validity of a docset X (X ⊂ D), denoted by Sv(X), is defined as follows.

Sv(X) =
maxx∈X(

∑
y∈X,y �=x δv(x, y))

|X | − 1
(2)

Here, δv(x, y) is the citation relation defined by Definition 2. In the equation,
we can observe that the v-validity of a docset is ranging from 0 to 1, i.e., 0 ≤
Sv(X) ≤ 1. The v-validity achieves the minimum (i.e., 0) when there is no
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citation relation among any document in the docset. On the other hand, it
achieves the maximum (i.e., 1) when there is at least one document that has
a citation relation with all documents in a docset. Intuitively, the validity of a
bigger docset tends to have lower validity than a smaller one. Moreover, given a
set of discovered docsets F , its v-validity (later called set v-validity)), denoted
by Sv

(F), can be defined as follows.

Sv
(F) =

∑
X∈F wX × Sv(X)

∑
X∈F wX

(3)

where wX is the weight of a docset (X). In this work, wX is set to |X | − 1, the
maximum value that the validity of a docset X can gain. For example, given
the 1-OACM in Figure 3 and F = {d1d2, d1d2d3}, the set 1-validity of F (i.e.,
S1

(F)) equals to (1× 1
1 )+(2× 2

2 )

1+2 = 3
3 = 1.

5 Experimental Settings and Results

A set of experiments are made to investigate how efficiently universal frequent
itemset mining helps in discovering document relation among scientific research
publications. In this work, an evaluation material is constructed from a collection
of scientific research publications in the ACM Digital Library1. This dataset was
originally used in [7]. As a seed of evaluation dataset, 200 publications are re-
trieved from each of the three computer-related classes, coded by B (Hardware),
E (Data) and J (Computer) classes. Then the publications referred by these
newly collected publications are also gathered and appended into the dataset. In
total there are 10,817 publications collected as the evaluation material and used
to generate citation graph under 1-OACM. As the result, only 36,626 citation
edges are remained with an average of 7 citations (including both cite to and
cited from other publications) per publication. For mining, we applied FP-tree
algorithm, originally introduced in [11] and used the BOW library [12] as a tool
for constructing an attribute-value database. The 524 stopwords and terms with
very low frequency (less than 3 times) are omitted. Table 1 shows the validity
of discovered document relations when either tf or tfidf are considered and LSI
is applied with a thresholds of either 0.5, 0.7 or 1.0.

From the result shown in Table 1, some interesting characteristics can be
observed. First, in most cases of the original space (w/o LSI), tfidf performs
better than tf even there are few exceptions. The result implies that tfidf helps
us obtain good representation for document relation discovery. Moreover, the
result of 1-OACM becomes lower when N increases. This implies that better
relations are located at higher ranks. In addition, with a higher-OACM, the
method can achieve up to 90-100 % validity and has the same trend that the
validity drops when N increases. Second, for both tf and tfidf, the 1-OACM
performance of discovering document relations improves from 14.29 % to around
40 % for top-1000 documents when LSI is applied. Focusing on the 2-OACM and
1 http://www.portal.acm.org
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Table 1. Set validity of top-N rankings of discovered docsets when either tf or tfidf is
used and LSI is applied with a thresholds of either 0.5, 0.7 or 1.0

1-OACM 2-OACM 3-OACM
Methods N tf tfidf tf tfidf tf tfidf

1000 14.29 25.00 85.71 100.00 100.00 100.00
5000 37.59 38.03 87.23 95.77 95.62 97.18

w/o LSI 10000 18.22 38.97 58.94 87.66 87.13 93.81
50000 6.16 16.24 35.91 60.52 75.68 94.05

100000 4.37 14.36 31.22 55.83 74.49 93.08
1000 41.51 42.86 90.57 85.71 94.34 91.43
5000 23.80 25.90 66.47 67.94 84.01 83.76

LSIδ=0.5 10000 19.92 23.01 64.44 67.26 86.06 85.02
50000 14.12 17.89 59.80 64.13 90.15 89.13

100000 11.40 14.48 56.81 60.57 90.39 90.13
1000 47.14 44.15 90.00 80.32 95.71 85.64
5000 25.95 28.28 69.09 70.86 85.98 85.72

LSIδ=0.7 10000 22.26 25.59 67.80 70.64 87.52 86.95
50000 14.77 19.91 60.76 66.72 91.43 91.27

100000 12.09 16.06 57.51 61.73 91.52 90.98
1000 44.68 45.42 85.11 81.25 90.43 87.08
5000 26.55 28.95 70.23 71.42 86.86 86.43

LSIδ=1.0 10000 23.67 27.85 69.27 72.66 88.54 89.15
50000 15.27 19.79 61.05 66.58 91.75 91.29

100000 12.53 16.45 57.35 62.03 91.67 91.90

3-OACM performance, LSI is helpful to improve the validity of the discovered
relations, especially for the cases of tf. In the cases of tfidf, LSI is helpful to
improve validity of discovered document relations especially in the case of the
1-OACM. However, it is not useful for the 2-OACM and 3-OACM performance.
This implies that LSI is helpful to increase the performance of discovering direct
citations but not indirect citations. One implication is that the tfidf seems to
be a good representation. Third, a stronger LSI (LSI with a higher threshold)
performs better than a softer LSI (LSI with a lower threshold). This implies that
LSI is useful to grasp the semantics of documents and then help increasing the
discovery performance.

6 Conclusions

This work presents a new approach to discover document relations using asso-
ciation rule mining techniques with latent semantic indexing. Extended from
the conventional frequent itemset mining, a so-called generalized support is pro-
posed. The generalized support can serve a mining process of frequent itemsets
from an attribute-value database where the values are weighted by real values,
instead of boolean values as done in conventional methods. The quality of dis-
covered document relations is measured under the concepts of the u-th order
citation and the v-th order accumulative citation matrix. By experiments, we
found out that tfidf seems better than tf and latent semantic indexing is helpful
in discovering meaningful document relations. As future works, it is necessary
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to explore other suitable term weightings and normalization techniques. More
explorations are needed for different data collections.
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Abstract. As data mining having attracted a significant amount of re-
search attention, many clustering methods have been proposed in past
decades. However, most of those techniques have annoying obstacles
in precise pattern recognition. This paper presents a new clustering
algorithm termed G-TREACLE, which can fulfill numerous clustering
requirements in data mining applications. As a hybrid approach that
adopts grid-based concept, the proposed algorithm recognizes the solid
framework of clusters and, then, identifies the arbitrary edge of clusters
by utilization of a new density-based expansion process, which named
“tree-alike pattern”. Experimental results illustrate that the new al-
gorithm precisely recognizes the whole cluster, and efficiently reduces
the problem of high computational time. It also indicates that the pro-
posed new clustering algorithm performs better than several existing
well-known approaches such as the K-means, DBSCAN, CLIQUE and
GDH algorithms, while produces much smaller errors than the K-means,
DBSCAN, CLIQUE and GDH approaches in most the cases examined
herein.

Keywords: data clustering, data mining, hybrid clustering algorithm.

1 Introduction

Cluster analysis in data mining is a critical business application, which has re-
cently become a highly active topic in data mining research [1]-[7]. Most of
existing clustering techniques have high computational time, or may have pat-
tern recognition problems when using large databases. To solve limitations of the
previous existing clustering methods, this work presents a new algorithm named
“Grid-based and TREe-Alike Clustering technique for Large databasEs” (G-
TREACLE) by integrating with grid-based, density-based and hierarchical clus-
tering approaches. Performance studies show that the proposed G-TREACLE
approach is a highly robust clustering technique.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 739–748, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Preliminaries

Several clustering algorithms regarding this work are described as follows.
K-means is the one of popular partitional algorithm [4]. It takes the input

parameter, k, and partitions a set of n objects into k clusters. K-means always
converges to a local optimum and it can not filter noise.

The grid-based clustering algorithm defines clusters as a multisolution grid
data structure. It quantizes the object space into a finite number of cells that
form a grid structure on which all of the operations for clustering are performed.
The major advantage of the approach is its fast processing time. CLIQUE is one
of the most famous grid-based techniques [7]. However, its cluster boundaries
are either horizontal or vertical, due to the nature of the rectangular grid.

To identify clusters with arbitrary shape, density-based clustering approaches
have been proposed. Those typically regard clusters as dense regions of objects in
the data space that are separated by regions of low density (representing noise).
DBSCAN is the one of well-know density-based approaches. Although it can
accurately recognize any arbitrary pattern and different size clusters, and filters
noise [5]. However, the time complexity of DBSCAN is high when the database
size is large.

GDH integrates the idea of grid-based, density-based and hierarchical clus-
tering methods, developed by Wang [2]. GDH refers the conception of density
function and gradient decrease and concept of sliding window [2]. Although GDH
can significantly eliminate the problem of indentation boundaries resulted from
traditional grid-based algorithms, it may fail in grouping objects to the right
position if two clusters are the same time in the populated hypercube.

3 The Proposed G-TREACLE Clustering Algorithm

This section describes the concepts of the proposed new G-TREACLE clustering
algorithm. Ideally, the G-TREACLE algorithm creates a feature space through
“hypercubes map constructing” in which all of objects are located on appropriate

Fig. 1. In the 2-D hypercubes map, the hypercubes with dark colors are termed pop-
ulated hypercube [6]
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Fig. 2. Sample of solid framework recognizing in 1-D feature space

position. Then, “recognizing solid framework” is employed to fleetly identify the
framework of clusters, and subsequently adopt “tree-alike pattern” within “edge
shaping” to discover “blurred region”, which may contain noises and cluster
objects. Finally, the parts resulted from the above concepts will be integrated to
acquire the complete clusters. The implemented details of concepts are illustrated
with four parts as follows:

(1) Hypercubes map constructing: Reducing the number of searching
spaces is the main idea of this step. Initially, G-TREACLE constructs a hy-
percubes map by splitting the feature space in accordance with a hypercube’s
length. Then, each object is assigned to an appropriate hypercube. If the to-
tal number of objects in the hypercube is greater than the threshold Hd, this
hypercube is named “populated hypercube” [6]. Fig. 1 illustrates the concept.
The searching expansion through the initial point will be performed. Notably, a
populated hypercube is called “initial point” of search space if it has the highest
number of objects among all populated hypercubes.

(2) Recognizing solid framework: This investigation adopts the “dynamic-
gradient-threshold” as a measure of hypercube-volume, namely the number of
objects in the populated hypercube, detecting preprocesses to discover the solid
framework of clusters excluding the blurred region. The dynamic-gradient-
threshold is obtained as follows:

DGT = |HC| × PSV (1)

where |HC| indicates the number of objects in the most populated hypercube
HC in the cluster, and PSV is the percentage of the submontane value, which
is an input parameter. Fig. 2 depicts an example of the usage of dynamic-
gradient-threshold. Every bar in Fig. 2 indicates the number of objects in each
populated hypercube. Since every bar within a cluster may be different, dynamic-
gradient-threshold can dynamically determine whether a populated hypercube
can be treated as the solid framework of clusters in which every object can be
assigned to a cluster without calculation. In Fig. 2, NC1, NC2 and NC3 rep-
resent the complete cluster. After computing the dynamic-gradient-threshold,
such as DGT 1, DGT 2 and DGT 3 in Fig. 2, for each cluster, the solid frame-
work of clusters will be identified and assigned directly to a cluster but excluding
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the “blurred region” representing the areas whose number of objects is under
dynamic-gradient-threshold, given as IC1, IC2, IC3 and the areas between the
clusters. Subsequently, the edge shaping step has to be utilized to detect those
“blurred region”, as displayed on populated hypercubes A, B, D, F and G of
Fig. 3.

Fig. 3. Illustration of border objects for edge shaping in 2-D hypercubes map

Fig. 4. Concept of searching expansion through the tree-alike pattern. (a) The original
datasets (b) The neighbor-area set (c) The tree-alike pattern.

(3) Edge Shaping: The aim of this step is to define accurately the blurred
region of a cluster. In this work, the new density-based clustering method is
proposed. In contrast to conventional density-based clustering algorithms, e.g.,
DBSCAN, the proposed density-based method processes searching expansion
through a “tree-alike pattern” comprising many centroids for each cluster, thus
decreasing time complexity. Fig. 4 displays the procedure of how does the pro-
posed density-based method work. In the 2-D hypercubes map, displayed in the
diagram (a) of Fig.4, there is a given original data set D = {x1, x2, ..., xm}, and
a centroid set C = {c1, c2, ..., cn}. For an object xj picked from D, the centroid
ci choosing process is defined as:

ci = {xj , if C = φ} (2)

or

ci = {xj , if d(xj , cp) > w, cp ∈ C, p = 1, ..., i − 1} (3)
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where w is the radius of the search circle and the distance function d(xj , cp) is
the Euclidean distance function:

d(xj , cp) =

√
√
√
√

k∑

r=1

(xjr − cpr)2 (4)

where k represents the dimension. If the centroid set C is empty or the distance
between the object xj and each centroid cp in C is greater than w, the object
xj is chosen as new centroid. Otherwise, the object xj is assigned to its closest
centroid cp in C. As displayed in the diagram (b) of Fig. 4, each zone surrounded
by dotted circle is termed “neighbor-area” in which the largest point is illustrated
as centroid. And the neighbor-area NAp must satisfy:

NAp ⊃ {xj ∈ D, cp ∈ C : d(xj , cp) ≤ w} (5)

where cp is the centroid of NAp. Subsequently, we need to identify which
neighbor-area consisting of noise. In order to achieve this purpose, the den-
sity of every neighbor-area NAp is determined by deriving density function [6]
rather than directly counting the number of objects contained in the neighbor-
area. The assumption is that the density value of the neighbor-area (namely
region) comprising noise is generally lower than that of the populated neighbor-
area containing normal clusters objects since its distribution is always sparser
than that of the populated neighbor-area [6]. In other words, this means that
although the neighbor-areas consisting of noise have the same number equivalent
to the ones consisting of normal clusters objects, but the derived density value of
former generally lower than that of latter. Consider some neighbor-areas within
the clusters displayed in the diagram (b) of Fig. 4 that are not surrounded com-
pletely by dotted circle, those areas consist of fewer normal objects but cannot be
labeled as noise-area since the density of those areas is greater than the density
of noise-areas that not belong to any cluster.

In [6], influence function is defined as a mathematical description that the
influence of an object has within its neighborhood, while the density function is
defined as the sum of influence function of all objects in the region, and can be
any arbitrary function. For simplicity, this work applies the Euclidean density
function and Gaussian representation. The Gaussian density function is given
by [6]:

fD
Gauss(x) =

N∑

i=1

e−
d(xi,xj)2

2σ2 , (6)

where N represents the number of objects within the region, d(xi, xj) denotes the
distance between xi and xj , and σ is the standard deviation. If derived density
value of the neighbor-area is greater than the threshold MinDensityV al, it
will be preserved as a “node”. Otherwise, the neighbor-area will be pruned and
labeled as noise-area.

After the pruning process, each node searches its neighbor nodes and links
them through the virtual edges, which are illustrated in the diagram (c) of Fig. 4.
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The connection between the nodes means that their distance is less than twice
the w stated above. After neighbor nodes searching recursively, a “tree-alike
pattern” can be constructed as a cluster mapping. On the other hand, a broken
connection between the patterns makes them into different clusters or noises.
The complete algorithm is described as follows.

TAClustering(PartialDataSets,Width,MinDensityVal)
NeighborAreaSet = null;
FOR i FROM 1 TO PartialDataSets.Size DO

Object = PartialDataSets.get(i);
IF NeighborAreaSet.Size <> Empty

FOR j FROM 1 TO NeighborAreaSet.Size DO
NeighborArea = NeighborAreaSet.get(j);
IF Object.isCloseToCentroid(NeighborArea,Width) == TRUE

Object.assignTo(NeighborArea);
Object.isAssigned = TRUE;
break;

END IF
END FOR
IF Object.isAssigned == FALSE

NeighborAreaSet.setCentroid(Object);
END IF

ELSE
NeighborAreaSet.setCentroid(Object);

END IF-ELSE
END FOR

FOR i FROM 1 TO NeighborAreaSet.Size DO
IF NeighborAreaSet.get(i).DensityValue < MinDensityVal

NeighborAreaSet.prune(i);
END IF

END FOR

FOR i FROM 1 TO NeighborAreaSet.Size DO
Centroid = NeighborAreaSet.getCentroid(i);
searchNeighborNode(Centroid,2*Width,NeighborAreaSet);

END FOR
END TAClustering

PartialDataSets represents a partial dataset. Width is a search radius, and
MinDensityVal denotes the minimal density threshold value in the region.

The neighbor node searching process searchNeighborNode() is as follows:

searchNeighborNode(CCentroid,DWidth,NeighborAreaSet)
FOR i FROM 1 TO NeighborAreaSet.Size DO

NCentroid = NeighborAreaSet.getCentroid(i);
IF NCentroid.PROCESSED == FALSE && NCentroid.isCloseTo(CCentroid,DWidth) == TURE

NCentroid.linkTo(CCentroid);
NCentroid.PROCESSED = TURE;
searchNeighborNode(NCentroid,DWidth,NeighborAreaSet);

END IF
END FOR

END searchNeighborNode

After running the new density-based clustering method TAClustering(), a
set of sub-clusters can be gained from the populated hypercube that not be-
longs to the solid framework of the cluster. These populated hypercubes may
contain objects belonging to two different clusters, as mentioned above and
depicted on populated hypercubes F and G in Fig. 3. Border objects of sub-
cluster and noise can be recognized at the same time [5]. In order to produce the
precise combination, the proposed algorithm connects sub-cluster resulted from
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TAClustering() run with the solid framework of cluster through the border
objects of sub-cluster. Border objects are redefined as objects resulting from a
TAClustering() run that are close to the populated hypercube’s border. This
redefinition shortens the computational time in TAClustering(). The light color
objects (on the border) on populated hypercubes A, B, D, F and G of Fig. 3
indicate border objects.

(4) Consolidation stage: After the edge shaping stage, the algorithm merges
the parts resulted from method TAClustering()with the solid framework of the
cluster, depending on which border objects are close to the solid framework of
cluster. The proposed algorithm repeats the process to recognize all clusters.

The complete clustering algorithm described as follows:

G_TREACLE(DataSets,Cl,PSV,Hd,Width,MinDensityVal)
Initialization();
ClusterId = 1;
constructHCubeMap(Cl);
PopulHCubeSet = getPopulHCubeSet(DataSets,PSV,Hd);
WHILE(TRUE) DO

IPHCube = getInitialPoint(PopulHCubeSet);
IF IPHCube == NULL

END ALGORITHM
END IF
DGT = IPHCube.ObjcetNumber * PSV;
changeClusterId(IPHCube,ClusterId);
searchNeighborHCubes(IPHCube,ClusterId,DGT);
ClusterId++;

END WHILE
END G_TREACLE

DataSets is an entire database. Cl represents the length of a hypercube,
PSV denotes the percentage of the submontane value, and Hd is the threshold
of the populated hypercube’s volume. Width represents a search radius, and
MinDensityVal denotes the minimal density threshold value in the region.

The neighbor searching process searchNeighborHCubes() is as follows:

searchNeighborHCubes(HCube,ClusterId,DGT)
NeighborHCubes = getNeighborHCubes(HCube);
WHILE NeighborHCubes.Size <> Empty DO

CurrHCube = getHighestVolumeNeighborHCubes(NeighborHCubes);
IF CurrHCube.ObjectNumber > DGT

changeClusterId(CurrHCube,ClusterId);
searchNeighborHCubes(CurrHCube,ClusterId,DGT);

ELSE
NCs = TAClustering(CurrHCube,Width,MinDensityVal);
FOR i FROM 1 TO NCs.Size DO

IF NCs.getSubCluster(i).Borders.areNear(HCube) == TRUE
changeClusterId(NCs.getSubCluster(i),ClusterId);

END IF
END FOR
searchNeighborHCubes(CurrHCube,ClusterId,DGT);

END IF-ELSE
NeighborHCubes.deleteNeighborHCube(CurrHCube);

END WHILE
END searchNeighborHCubes

The process is repeated to construct the entire cluster.
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Fig. 5. The original datasets for experiment

4 Performance Studies

In this study, G-TREACLE was implemented in a Java-based program, and
run on a desktop computer with 256MB RAM, an Intel 1.5GHz CPU on Mi-
crosoft MS Windows XP professional Operational System. For simple visual-
ization, seven synthetic 2-D datasets were utilized to evaluate the performance
of the proposed algorithm [3]. Among these datasets, the patterns of dataset
1, 2 and 4 were sampled from [2] and [5], Fig. 5 shows the original datasets.
The results of the proposed algorithm were compared with DBSCAN, K-means,
CLIQUE and GDH. Four kinds of data sizes in seven synthetic 2-D datasets, with
11,500, 115,000, 230,000 and 575,000 objects in seven synthetic 2-D datasets,
and all with 15% noise, were employed in this experiment. For clustering per-
formance comparisons, the clustering correctness rate (CCR) and noise filtering
rate (NFR) are introduced. Notably, CCR represents the percentage of cluster
objects correctly recognized by algorithm, while NFR denotes the percentage
of noise objects correctly filtered by algorithm. Due to the computational time
of DBSCAN increases significantly as the number of databases increases, hence
Table 1 does not list the simulation results for DBSCAN (N/A means that the
simulations were not performed). Table 1 shows the clustering experimental re-
sults with G-TREACLE, K-means, DBSCAN, CLIQUE and GDH by utilizing
575,000 object datasets. Owing to the limitation of length, not all experimen-
tal results are shown. It is observed that G-TREACLE can handle arbitrary
patterns for clustering, while K-means cannot recognize arbitrary shapes. Al-
though CLIQUE and GDH could handle the complex patterns in Dataset 4
to 7, CLIQUE could not smoothly identify clusters’ edge due to the nature of
the rectangular grid, and then it caused in inaccurate results. Additionally, the
gradient decrease function in GDH placed some clusters the wrong position if
the populated hypercubes were neighbors but the gradient decrease between the
populated hypercubes was too high. In complex datasets such as DataSets 4, 5,
6 and 7, GDH and CLIQUE need to set small capacity of populated hypercube
for distinction between cluster’s borders that are close to each other. Therefore,
the time cost of GDH and CLIQUE raises with increasing numbers of populated
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Table 1. Comparisons with G-TREACLE, K-means, DBSCAN, CLIQUE and GDH
using 575,000 objects data sets with 15% noise; item 1 represents time cost (in seconds);
item 2 denotes the CCR (%), while item 3 is NFR (%).

Algorithm Item DataSet-1 DataSet-2 DataSet-3 DataSet-4 DataSet-5 DataSet-6 DataSet-7

1 18.531 16.391 36.625 59.437 43.203 7.828 19.906
K-means 2 49.925% 51.149% 25.887% 60.837% 57.612% 50.007% 54.49%

3 0% 0% 0% 0% 0% 0% 0%

1 N/A N/A N/A N/A N/A N/A N/A
DBSCAN 2 N/A N/A N/A N/A N/A N/A N/A

3 N/A N/A N/A N/A N/A N/A N/A

1 5.016 8.031 8.906 12.281 30.094 31.219 46
CLIQUE 2 98.763% 99.104% 98.615% 95.926% 97.274% 95.647% 93.547%

3 95.92% 98.149% 97.568% 99.305% 99.608% 99.79% 99.805%

1 8.188 9.516 10.063 13.359 31.75 26.297 51.469
GDH 2 99.213% 99.642% 98.884% 98.299% 98.153% 96.456% 96.4%

3 96.618% 97.477% 97.387% 98.932% 99.408% 99.736% 99.71%

1 6.156 5.594 6.547 7.766 8.469 10.64 15.75
G-TREACLE 2 99.392% 99.511% 99.138% 98.376% 99.767% 99.754% 99.127%

3 98.694% 99.051% 98.998% 98.894% 98.377% 98.74% 98.949%

hypercubes to be searched and processed. As shown in Table 1, G-TREACLE
usually yields more accurate results and performs fast than K-means, DBSCAN,
CLIQUE and GDH.

5 Conclusion

This work develops a new clustering algorithm named G-TREACLE for data
mining. It can accurately identifies large patterns that are close to each other by
using tree-alike pattern and is capable of successfully eliminate edge indention,
so that it may improve the clustering performance of large databases as well as
eliminate outliers. In addition, simulation results demonstrate that the proposed
new clustering approach performs better than some existing well-known methods
such as the K-means, DBSCAN, CLIQUE and GDH algorithms.
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A Clustering-Oriented Star Coordinate Translation 
Method for Reliable Clustering Parameterization  
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Abstract. When conducting a clustering process, users are generally concerned 
whether the clustering result is reliable enough to reflect the actual clustering 
phenomenon. The number of clusters and initial cluster centers are two critical 
parameters that influence the reliability of clustering results highly. We propose 
a Clustering-Oriented Star Coordinate Translation (COSCT) method to help 
users determining the two parameters more confidently. Through COSCT all 
objects from a multi-dimensional space are adaptively translated to a 2D star-
coordinate plane, so that the clustering parameterization can be easily 
conducted by observing the clustering phenomenon in the plane. To enhance 
the cluster-displaying quality of the star-coordinate plane, the feature weighting 
and coordinate arrangement procedures are developed. The effectiveness of the 
COSCT method is demonstrated using a set of experiments.  

Keywords: Clustering, Data visualization, Star coordinate, Gaussian mixture 
model, Expectation maximization, Particle swarm optimization.  

1   Introduction 

Clustering aims at grouping objects into clusters so that objects in a cluster are similar 
to each other and are different from objects in different clusters. Users always raise 
their question whether the generated clustering results are reliable enough to reflect 
actual clustering phenomenon. They first ask themselves how many clusters are 
proper to reveal the actual clustering phenomenon [1]. Generally, the number of 
clusters is decided based on various cluster validity indexes through a trial-and-error 
validation process. However, how to adopt an appropriate index could be a dubious 
and data-dependent problem. Besides, the initial cluster centers are regarded as 
another critical parameterization factor that influences the reliability of clustering 
results. Typically, random initial-center generation is the most common method. 
However, it tends to lead the clustering result converge to a local optimum.  

We propose a Clustering-Oriented Star Coordinate Translation (COSCT) method 
to solve the above two drawbacks. Similar to the Star Coordinate Translation (SCT) 
method [2], COSCT is further enhanced in many aspects. SCT is a data visualization 
method translates objects from a multi-dimensional space into points in a 2D star-
coordinate plane. By observing the visualizing result displayed in the plane, users can 
infer the clustering phenomenon existing in the original multi-dimensional space.  
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Fig. 1. The translation result of 
SCT which maps objects from a 
nine-dimensional space into a star-
coordinate plane [2]. Five clusters 
displayed in the plane can be 
recognized confidently.  

Fig. 1 shows the translation result of SCT that 
maps objects from a nine-dimensional space into 
a star-coordinate plane. For each recognized 
cluster, moreover, the points close to its cluster 
center are also discerned roughly, so that the 
location of the cluster center in original multi-
dimensional space is inferred from the locations 
of these near points in the original space. 
However, it is still hard for users to manipulate 
SCT since adjustments for the rotation angle and 
length of each coordinate axis could be time-
consuming and tedious. Only when the lengths 
and rotation angles are adjusted well as shown 
in Fig. 1, the visualizing result in the plane just 
reveals a meaningful clustering phenomenon.  

Therefore, the purpose of COSCT is to make 
the star-coordinate plane show real clustering 
phenomenon without human manipulation. That 
is, the constructed plane will be clustering-oriented. Different to SCT, COSCT involves 
two new procedures: feature weighting and coordinate arrangement. In the feature 
weighting procedure, a weight measure that evaluates the importance of each feature to 
clustering is developed from the Gaussian mixture model of data dissimilarity. The 
evaluated weight of each feature represents the unit length of its corresponding 
coordinate axis so as to solve the length adjustment problem. In the coordinate 
arrangement procedure, the rotation angle arrangement is modeled as an optimization 
problem systematically, and is solved by the Particle Swarm Optimization (PSO) 
algorithm [3] efficiently. Finally, all objects are translated into points in the star-
coordinate plane constructed by COSCT. Therefore, users can be more confident of 
deciding the number of clusters and initial cluster centers by observing the plane, so that 
it makes clustering algorithms yield good clustering results successfully.  

2   The Clustering-Oriented Star Coordinate Translation Method  

2.1   Feature Weighting Procedure  

A dataset X={xi|i=1,…,I} contains I objects and a feature set F={fm|m=1,…,M} 

comprises M features. Each object xi=(xi1,…,xim,…,xiM) is described by the M feature 
values in F where xim is the feature value of xi in terms of the feature fm. For a feature 
fm, its I feature values of all objects must be normalized in advance for unifying the 
scales of all M features. In this paper, a weight measure that evaluates the importance 
of each fm to clustering is developed from the dissimilarities of all pairs of objects in 
fm. The dissimilarity between xi and xj in terms of fm is formulated as: 
Dissimilaritym(xi,xj)=|xim–xjm|. We can obtain N = I(I–1)/2 dissimilarities for each fm. 
Let the nth calculated dissimilarity in fm be 

m

ndiss  where n = 1,2,…,N. All N 

m

ndiss values are considered as the samples drawn from a mixture consisting of two 
Gaussian distributions 

m

1G  and 

m

2G  which represent the “intra-cluster” and “inter-
cluster” dissimilarity variables respectively. Assume m

1μ  and 

mvar1  are the mean and 
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variance associated with 

m

1G , and 

m

2μ  and 

mvar2  are the mean and variance for 

m

2G . The 
mixture probability density function of 

m

ndiss , )( m

ndissp , is expressed as:  
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where 
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1α  and 

m

2α  are the occurrence proportions of 

m

1G and 

m

2G  respectively, and 

0, 21 ≥mm αα ; 121 =+ mm αα . Given the N 

m

ndiss
 

values in fm, the logarithm transform for 
the likelihood function of } ,,,,,{ 212111

mmmmmm varvarμμαα≡Φ  is shown as Eq. (2). 
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We use the expectation maximization (EM) algorithm [4] to infer Φ so that 

logL(Φ) can be maximized. For each 

m

ndiss , let 

m

np 1  and 

m

np 2  be the likelihood from the 
two distributions 

m

1G and 

m

2G  where 121 =+ m

n

m

n pp . So, Eq. (2) can be expressed as Eq. 
(3):  
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To infer the optimal Φ, the expectation (E) step and maximization (M) step are 
alternately performed in EM. Let )}(),(),(),(),(),({)( 212121 tvartvarttttt mmmmmm μμαα=Φ  be 
the estimate of Φ at the iteration t. Initially, i.e. t=0, Φ(0) is generated randomly. At the 
iteration t, the E step computes the expectations of likelihood )(1 tpm

n  and )(1 tpm

n , 
n=1,2, …,N, by including the current Φ(t) into Eq. (3), which are shown as Eq. (4) and Eq. 
(5) respectively. Then, the M step infers Φ(t+1) which will be used at the next iteration 
(t+1) by including )(1 tpm

n  and )(1 tpm

n  at the current iteration t into Eq. (3). The Eq. (6), Eq. 
(7), and Eq. (8) are used to calculate the six parameters in Φ(t+1). The E and M steps are 
alternately repeated until |logL(Φ(t+1))–logL(Φ(t))| ≤ ε where ε is the stop criteria. When 
EM is stopped at the iteration t, the estimate Φ(t) serves as the optimal Φ.  
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Each of the N 

m

ndiss
 

values in fm can be decomposed as two components. One is the 
“intra-cluster” dissimilarity with a relative small value, which means the two objects 
could be in the same cluster. Another is the “inter-cluster” dissimilarity with a relative 
large value, which means the two objects should be in different clusters. Further, the 
mean of the N “intra-cluster” dissimilarities in fm, 

m

1μ , and the mean of the N “inter-
cluster” dissimilarities in fm, 

m

2μ , are both known from the optimal Φ after performing 
EM. When 

m

1μ  is smaller and 

m

2μ  is larger simultaneously, the importance of fm to 
clustering quality should be higher. Hence, we can define a weight measure used to 
evaluate the importance of fm to clustering as Eq. (9). After this procedure, the unit 
length of each coordinate axis can be represented by its corresponding feature weight, 
so that the length adjustment problem occurred in SCT can be solved.  
 

Mmfw mm

m ,,1for     )( 12 L=−= μμf  (9) 

2.2   Coordinate Arrangement Procedure  

The procedure aims at finding the optimal arrangement for the rotation angles of all 
coordinate axes in the star-coordinate plane. The influence of the included angle of 
two axes on the cluster-displaying quality is first analyzed systematically. Then, it is 
modeled as the coordinate arrangement optimization problem and solved by PSO.  

2.2.1   Influence of the Included Angle of Two Coordinate Axes on the Cluster 
Displaying Quality  

Let SC={SCm|m=1,…,M} be the set of M coordinate axes associated with the M 
features in F where SCm is the coordinate axis associated with fm. In addition, 
θ={θm|m=1,…,M} be the set of the rotation angles of M coordinate axes in SC where 
θm, 0o ≤ θm < 360o, is the rotation angle of SCm turning from the positive x-direction in 
the Cartesian coordinate system. Therefore, the included angle of SCm and SCn can be 
formulated as: Ang(θm,θn)=|θm–θn|. Let the cosine value for Ang(θm,θn) be termed as 
cos(Ang(θm,θn)). When 0o ≤ Ang(θm,θn) < 90o

 or 270o < Ang(θm,θn) < 360o, Ang(θm,θn) is 
acute so that 0 < cos(Ang(θm,θn)) < 1. On the other hand, when 90o

 < Ang(θm,θn) < 270o, 
Ang(θm,θn) is obtuse so that -1 < cos(Ang(θm,θn)) < 0. If Ang(θm,θn) = 90o or 270o, 
cos(Ang(θm,θn)) = 0. The correlation coefficient between fm and fn, ρ(fm,fn), can 
describe the distribution of objects in terms of fm and fn, which is defined as Eq. (10):  
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where mx  and nx  are the means of the all feature vaules of the I objects in terms of fm 
and fn respectively, and -1 ≤ ρ(fm,fn) ≤ 1. If 0 < ρ(fm,fn) ≤ 1, fm and fn are correlated 
positively; If -1 ≤ ρ(fm,fn) < 0, fm and fn are correlated negatively. If ρ(fm,fn) = 0, fm and fn 
are independent. By adjusting the included angle Ang(θm,θn) between SCm and SCn, 
we observe the following situations that can enhance the cluster-displaying quality:  
 
 If 0 < ρ(fm,fn) ≤ 1, shown as Fig. 2(a), and we tighten Ang(θm,θn) as an acute angle, 

shown as 45o in Fig. 2(b), the two clusters are separated more distinctly.  
 If -1 ≤ ρ(fm,fn) < 0, shown as Fig. 3(a), and we loosen Ang(θm,θn) as an obtuse angle, 

shown as 135o in Fig. 3(c), the two clusters are separated more distinctly.  



 A Clustering-Oriented Star Coordinate Translation Method 753 

 If ρ(fm,fn) = 0, shown as Fig. 4(a), no matter Ang(θm,θn) becomes an acute or obtuse 
angle, shown as Fig. 4(b) and Fig. 4(c), it is unable to enhance the cluster-
displaying quality.  

 

(a) Right angle       (b) Acute angle        (c) Obtuse angle 

Fig. 2. If 0 < ρ(fm,fn) ≤ 1, let Ang(θm,θn) be acute to enhance the cluster-displaying quality 

 

(a) Right angle        (b) Acute angle            (c) Obtuse angle 

Fig. 3. If -1 ≤ ρ(fm,fn) < 0, let Ang(θm,θn) be obtuse to enhance the cluster-displaying quality 

 
(a) Right angle         (b) Acute angle           (c) Obtuse angle  

Fig. 4. If ρ(fm,fn) = 0, no matter Ang(θm,θn) is acute or obtuse does not enhance the cluster-
displaying quality  

According to the above analysis, the adjustment for the rotation angles between 
SCm and SCn for optimizing the cluster-displaying quality of the visualizing result can 
be modeled as an optimization problem:  

( )[ ] 2 ),(cos),(   nmnm AngMinimize θθρ −ff  (11) 

subject to 0o ≤ θm, θn < 360o. Similarly, we extend it as an optimization problem in 
which the rotation angles of all M coordinate axes in SC are taken in account 
simultaneously. In addition, the M corresponding feature weights are also considered. 
That is, the coordinate arrangement of all coordinate axes for optimizing the cluster-
displaying quality of the visualizing result can be modeled as:  
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subject to 0o ≤ θm < 360o for m=1,2,…,M. The coordinate arrangement procedure aims 
at finding out the optimal angle set θ={θ1,…,θm,…,θM} that minimizes Eq. (12).  

2.2.2  Using the PSO Algorithm for Optimizing the Coordinate Arrangement  
In the coordinate arrangement procedure, we adopt the particle swarm optimization 
(PSO) algorithm [3] to find the optimal angle set θ={θ1,…,θm,…,θM} for Eq. (12). In 
PSO, all particles in a swarm are evolved by cooperation and competition among 
themselves through generations. Let a swarm G={pr|r=1,…,R} consist of R particles. 
Each particle pr=(θr1,…,θrm,…,θrM) represents a feasible solution for θ where θrm is 
the rotation angle of the mth coordinate axis found in the rth particle. Initially, the 
value of θrm in pr is randomly generated such that 0o

 ≤ θrm < 360o for m=1,2,…,M. 
Moreover, the current flying velocity of pr is represented as vr=(vr1,…,vrm,…,vrM) in 
which the initial value of each velocity vrm is randomly generated such that -10o ≤ vrm 

≤ 10o for m=1,2,…,M. The fitness of pr, termed as fitness(pr), is defined as:  
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During the overall iterations, each pr maintains its optimal M rotation angles, 

),,,,( bestbestbest

1

best

rMrmrr θθθ LL=p , that generate the individual maximum fitness when 

best

rp  is taken into Eq. (13). Similarly, the swarm G also maintains the optimal M 
angles, termed as ),,,,( bestbestbest

1

best

Mm θθθ LL=g ,  found by all particles during the 
overall iterations. That is, we can obtain the global maximum fitness among all 
particles when taking 

bestg  into Eq. (13). At each iteration, each vrm in vr of pr must be 
updated using Eq. (14). The ratio for the self-cognition and social interaction parts, c1 
and c2 in Eq. (14), should be one [3]. Therefore, we set c1=c2=2 in this study. In 
addition, each new new

rmv  obtained by Eq. (14) must obey the restriction of Eq. (15) to 
prevent violent movement for particles. Similarly, each θrm in pr must be updated 
using Eq. (16) at each iteration, and each new new

rmθ  must obey the restriction of Eq. 
(17) to prevent new

rmθ  from being infeasible. At each iteration, after pr has changed its 
position using Eq. (16), if its fitness is larger than the fitness of 

best

rp , 

best

rp  will be 
replaced by pr. Further, if its fitness is also larger than the fitness of bestg , 

bestg  will be 
also replaced by pr. PSO will stop when reaching the maximum number of iterations 
Niter. At the moment, ,,,( bestbest

1

best

mθθ L=g  ), best

MθL  is considered as the optimal 
rotation angles of the M coordinate axes. The pseudo-code of PSO is shown as Fig. 5.  
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2.3   Star Coordinate Translation Procedure  

After the feature weighting and coordinate arrangement procedures, the star 
coordinate translation procedure is activated to translate all objects from a multi-
dimensional space into 2D points in the star-coordinate plane. When considering the 
feature weights (i.e. the unit lengths of coordinate axes), the point position of a object 
xi in the star-coordinate plane, <X(xi),Y(xi)>, is defined as Eq. (18) and Eq. (19). 
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Fig. 5. The pseudo-code of PSO for optimizing the coordinate arrangement 
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where fw(fm) is the feature weight of fm in F, 
and θm is the rotation angle of SCm 
associated with fm. Fig. 6 shows an example 
of translating an object from a five-
dimensional space into a point in the plane. 
Through COSCT, all I objects are translated 
as 2D points, which makes users observe 
clearly whether any clustering phenomenon 
of these points displays in the star-
coordinate plane.  
 
 
 
 

Fig. 6. Translating a 5-dimensional object 
as a point in the star-coordinate plane 



756 C.-Y. Tsai and C.-C. Chiu 

3   Demonstrations  

3.1   Determining the Cluster Numbers  

The Breast cancer, Iris, and Wine datasets got from [5] are used to demonstrate 
whether determining the number of clusters and initial cluster centers through COSCT 
are reliable. Principle Component Analysis (PCA) [6] and Multi-dimensional Scaling 
(MDS) [7], two common data dimension reduction methods, serve as the comparisons 
with COSCT. With PCA, the first two components are extracted to construct a 2D 
plane. Similarly, only two dimensions are retrieved from MDS to form a 2D plane. 
The number of particles R is set as 100 and the maximum number of iterations Niter is 
set as 200 in COSCT for all experiments.  

Fig. 7 shows the cluster-displaying results using the three methods for the Breast 
cancer dataset. In each result, obviously, a small and dense cluster is easily observed 
while a large cluster grouped from other distributed points. No matter which methods 
are used, the two clusters can be clearly identified. Then, the cluster-displaying results 
using the three methods for the Iris dataset are shown in Fig. 8. With PCA and MDS, 
the identified number of clusters is two by observing Fig. 8(a) and Fig. 8(b). Although 
the suggestion is reasonable, no additional information can reveal the larger cluster 
could be further partitioned into two smaller clusters. On the contrary, the result 
outputted by COSTC reveals the number of clusters could be set as 2 or 3, depending 
on whether the larger cluster is partitioned into two smaller clusters. In this case, 
COSCT can provide more information for determining the number of clusters, which 
should cause more reliable clustering results. Finally, the cluster-displaying results  
 

(a) PCA  (b) MDS  (c) COSCT   

Fig. 7. The cluster-displaying results using the three methods for the Breast cancer dataset 

   

(a) PCA  (b) MDS  (c) COSCT  

Fig. 8. The cluster-displaying results using the three methods for the Iris dataset 
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Fig. 10. Identifying the neighbors 
of the cluster centers for the three 
identified clusters in Fig. 9(c) 
using three blue circles  

 

   
(a) PCA  (b) MDS  (c) COSCT  

Fig. 9. The cluster-displaying results using the three methods for the Wine dataset 

using the three methods for the Wine dataset are shown in Fig. 9. The three clusters 
can be recognized most clearly using COSCT, shown in Fig. 9(c), since the 
discrimination among clusters are the most obvious. It means determining the number 
of clusters through the proposed COSCT method is reliable. 

3.2   Determining the Initial Cluster Centers  

After recognizing all clusters in the star-coordinate 
plane, the possible location of each cluster center in 
the plane can be roughly identified using the sense 
of sight. For each cluster, we draw a circle around 
the middle of the cluster to include a number of 
points. That is, the points within the circle can be 
considered as neighbors with the cluster center. Fig. 
10 shows the neighbor identification result for the 
three identified cluster centers in Fig. 9(c) using 
three blue circles. Hence, the location of a cluster 
0center in the original multi-dimensional space is 
obtained by averaging the locations of these 
within-circle objects in the original multi-
dimensional space.  

4   Conclusions  

The COSCT method is presented to determine the number of clusters and initial 
cluster centers, which is more reliable than the ones decided through the trial-and-
error validation process. No clustering algorithm is employed in the parameterization 
process, so that it can be a common preprocess for all clustering algorithms. The 
effectiveness of COSCT is superior to PCA and MDS through our demonstrations.  

The reliability of knowledge discovery can be affected by data oriented, knowledge 
oriented, and algorithm oriented factors [8]. By observing the cluster-displaying result 
in the star-coordinate plane, two data oriented factors for clustering reliability, 
including the number of clusters and initial cluster centers, is conducted in this paper. 
In the future, we will study how to retrieve more useful information from the  
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cluster-displaying result in the star-coordinate plane for evaluating objectively 
whether a clustering algorithm is appropriate. It will be useful for users to manage the 
algorithm oriented factors for achieving more reliable clustering results.  
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Abstract. Constrained clustering algorithms have the advantage that domain-
dependent constraints can be incorporated in clustering so as to achieve better 
clustering results. However, the existing constrained clustering algorithms are 
mostly k-means like methods, which may only deal with distance-based 
similarity measures. In this paper, we propose a constrained hierarchical 
clustering method, called Correlational-Constrained Complete Link (C-CCL), 
for gene expression analysis with the consideration of gene-pair constraints, 
while using correlation coefficients as the similarity measure. C-CCL was 
evaluated for the performance with the correlational version of COP-k-Means 
(C-CKM) method on a real yeast dataset. We evaluate both clustering methods 
with two validation measures and the results show that C-CCL outperforms  
C-CKM substantially in clustering quality.  

Keywords: Hierarchical Clustering, Constrained Clustering, Gene Expression 
Mining, Micorarray analysis. 

1   Introduction 

Clustering analysis has been a widely-used tool for in-silico analysis of microarray or 
gene expression data [9]. In real applications, however, some constraints on which 
genes can or cannot reside in the same cluster are often known from background 
knowledge. COP-k-Means [11] is a constrained version of k-Means, while COP-
COBWEB [10] is a constrained version of COBWEB [6]. Constrained-k-Means [1] is 
a constrained version of Seeded-k-Means, which is a semi-supervised clustering 
algorithm. Constrained Complete-Link (CCL) [8] utilizes triangle inequality to adjust 
the proximity matrix according to the pair-wise constraints and then supplies the 
adjusted matrix to Complete-Link (CL) hierarchical agglomerative clustering. 
Davidson and Ravi [5] presented a constrained version of k-Means that attempts to 
minimize the proposed constrained vector quantization error. Although some 
constrained clustering algorithms have been proposed, they are mostly k-means-like 
methods. Consequently, they can process data with distance-based similarity 
measures and can not process data with non-distance-based similarity measures like 
correlation coefficients, which are popularly used for gene expression analysis. 

In this paper, we propose a new constrained clustering method, namely 
Correlational-Constrained Complete Link (C-CCL), to improve the quality of 
hierarchical clustering for microarray data analysis with consideration of pair-wise 
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constraints among genes, while using correlation coefficients as similarity measure. 
The main idea of C-CCL is based on the Constrained Complete-Link (CCL) 
algorithm proposed by Klein et al. [8]. The proposed method, C-CCL, was evaluated 
for the performance with the correlational version of CKM (C-CKM) on a real yeast 
microarray dataset. The evaluations show that C-CCL outperforms C-CKM 
substantially in terms of clustering quality. 

The rest of the paper is organized as follows: In section 2, we demonstrate our 
proposed method for constrained clustering in detail. Experimental evaluations of the 
proposed methods are illustrated in section 3. Finally, conclusions and future work are 
stated in section 4. 

2   The Proposed Method 

2.1   Imitative Triangle Inequality with Respect to Correlation Coefficient  

Given a normalized gene expression matrix,
nmkgeE ×= ][ ,
, over a set of m genes and n 

microarray experiments. Each element eg,k means the expression value of gene g at 
microarray experiment k. Let X and Y denote two gene expression vectors, which are 
represented by <ex,1, ex,2, …, ex,n> and <ey,1, ey,2, …, ey,n>, respectively. The Euclidean 
distance between vectors X and Y is defined as follows: 
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The Pearson’s correlation coefficient between vectors X and Y is defined as follows: 
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where X  and Y  denote the sample means of the entries of vectors Χ and Υ, 
respectively. Pearson’s correlation coefficient only measures the degree of linear 
relationship between two vectors. The correlation takes values ranging from -1 
(perfect negative correlation) to 1 (perfect positive correlation). The value 0 of 
correlation means that there is no linear relationship between two genes. 

The uncentered correlation coefficient is similar to the Pearson’s correlation 
coefficient, but is evaluated without centering: 
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A summary of other types of distance and similarity measure can be found in [7]. 
The Euclidean distance measure satisfies the triangle inequality: 

WYXWXY ddd +≤  (4) 
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It means that the distance between two points is the shortest distance along any path. 
Klein et al. utilized this property to adjust the proximity matrix according to the pair-
wise constraints [8]. However, none of the correlation-based similarity functions 
satisfy the triangle inequality and hence are known as semi-metric. Therefore, we 
shall define an imitative triangle inequality with respect to the Pearson’s correlation 
and the uncentered correlation coefficients in the following. 
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correlation coefficient (Equation 2) can be rewritten as follows: 
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the uncentered correlation coefficient (Equation 3) can be rewritten as Equation 5. By 
substituting (5) into (1), we have the form of square of Euclidean distance as follows: 

)1(2

22

2

)2(

)(

**

**

1

**

1

**

1

2*

1

2*

1

2***2*

1

2**2

YX

n

k kk

n

k kk

n

k k

n

k k

n

k kkkk

n

k
kk

YX

r

YX

YXYX

YYXX

YXd

−=

−=

−+=

+−=

−=

∑
∑∑∑

∑
∑

=

===

=

=

 

(6) 

By substituting (4) and (6) into (2), we have the form of Pearson’s correlation and 
the uncentered correlation coefficients as follows: 
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Therefore, the imitative triangle inequality with respect to the Pearson’s correlation 
and the uncentered correlation coefficients is defined as follows: 
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2.2   Algorithm of Correlational-Constrained Complete-Link (C-CCL) 

The main idea of the proposed C-CCL method is based on Constrained Complete-
Link (CCL) algorithm [8], which utilizes triangle inequality with respect to Euclidean 
distance to adjust the proximity matrix according to the pair-wise constraints. We 
extend the principle of CCL to meet the requirement for using the Pearson’s 
correlation or the uncentered correlation coefficients as similarity measure. First, we 
adjust the similarity matrix on the basis of the constraints and their implications. 
Second, we supply this adjusted matrix to a hierarchical clustering algorithm named 
Complete-Link (CL) hierarchical agglomerative clustering for obtaining the final 
clustering results. 

There are two steps in the adjusting process. The first step is to impose the 
constraints and the second step is to propagate the constraints. In the first step, we 
specify genes known in the same class as very similar, while two genes in different 
classes should be very dissimilar. In the second step, we further distort other entries in 
the similarity matrix to reflect the following two arguments: 

1. If genes X and Y are very similar, then genes that are very similar to gene X are 
similar to gene Y. 

2. If genes X and Y are very dissimilar, then genes that are very similar to gene X are 
dissimilar to gene Y. 

The pseudo-code of constraining an input similarity matrix is shown in Figure 1. In 
case of must-link constrains, we impose the constraints by increasing the correlation 
between the must-linked pair to 1. This means that the genes in the must-linked pair 
are equivalent. Hence, the edge directly connecting two genes is a longest path 
between those genes. Notice that the weight of the edge indicates the correlation 
between those genes. 

After imposing the constraints, we might incur violations on the imitative triangle 
inequality with respect to the Pearson’s correlation coefficient and the uncentered 
correlation. For example, genes that were previously dissimilar may now become 
more similar along some path which skips through the constrained pairs. Therefore, 
we can run an all-pairs-longest-paths algorithm to adjust the imposed matrix. Some 
simple modifications on the Floyd-Warshall algorithm [4] allow us to do the all-pairs-
longest-paths computation. Notice that the path must satisfy the imitative triangle 
inequality, i.e. equation 8. 

For cannot-link constrains, we impose the constraints by setting the correlation 
between the cannot-linked pair as -1, meaning that the genes in the cannot-linked pair 
are most dissimilar. However, we will probably violate the imitative triangle 
inequality, i.e. Equation (8). Therefore, we must adjust the imposed matrix to satisfy 
the imitative triangle inequality. Unfortunately, it is a NP-complete problem to 
determine whether a satisfying assignment exists when cannot-links are present [8]. 

Hence, we choose an algorithm that implicitly produces the same effect during the 
clustering process. The Complete-link (CL) hierarchical agglomerative clustering 
algorithm provides a good solution, which merges clusters in order of similarity such 
that the more similar clusters are merged earlier. After each merging process, CL 
computes similarities between the new cluster and each of the old clusters. Since CL  
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Fig. 1. The pseudo-code of constraining an input similarity matrix 

defines the similarity between two clusters as the minimum similarity from any 
member of one cluster to any member of the other clusters, the propagation of the 
cannot-link constraints can be implied through the merging. 

3   Experimental Evaluations 

We conducted a series of experiments to evaluate the accuracy of the C-CCL by 
testing a real gene expression dataset, namely the yeast sporulation data set [3]. The 
C-CCL is compared with the C-CKM (Correlational COP-K-Means) [11], which was 
extended from CKM so that it can process correlational data. The major modification 
is that the Pearson’s correlation coefficient is used as similarity measure when 
assigning each gene to its most similar cluster. For C-CCL, we also use the Pearson’s 
correlation coefficient as similarity measure for all experimental datasets. The quality 
of clustering results was measured by using Rand index and Jaccard index. 

The tested yeast sporulation data set [3] consists of expression data of 6118 yeast 
genes, which were sampled at seven different time points during sporulation. 
According to their sequential induction patterns during sporulation, Chu et al. 
identified and grouped some genes in the data into seven groups, namely Metabolic 
(52 genes), Early I (61 genes), Early II (45 genes), Early-Mid (95 genes), Middle  

ImposeCannotLinks (Matrix S, Constraints 
C) 

for (i, j) ∈ Ccannot 

Sij = Sji = -1 
for (i, k) ∈ Cmust 

Sik = Ski = -1 
for (j, k) ∈ Cmust 

Sjk = Skj = -1 
for (i, k) ∈ Cmust, for (j, l) ∈ Cmust 

Skl = Slk = -1 
 

PropagateCannotLinks (Matrix S, 
Constraints C) 

(done implicitly by Complete-Link) 
 

FastAllPairsLongestPaths (Matrix S, 
Constraints C) 

// find valid intermediates 
I = {i: ∃j ≠ i, (i, j) ∈ Cmust} 
// modified Floyd-Warshall 
for k ∈ I, for i ∈ {1 : m}, for j ∈ {1 : m} 

Sij = Sji  
= max {Sij, 2)11(1 kjik SS −+−− } 

Input: an m-by-m similarity matrix S, a 
constraint set C 
Output: the constrained-based similarity 
matrix S 
 
ConconstrainSimilarities (Matrix S, 
Constraints C) 

ImposeMustLinks (S, C) 
PropagateMustLinks (S, C) 
ImposeCannotLinks (S, C) 
PropagateCannotLinks (S, C) 
 

ImposeMustLinks (Matrix S, 
Constraints C) 

for (i, j) ∈ Cmust 
Sij = Sji = 1 
for k ∈ {1 : m} 

Sik = Ski = Sjk = Skj = max {Sik, Sjk}
 

PropagateMustLinks (Matrix S, 
Constraints C) 

S = FastAllPairsLongestPaths (S, C) 
for (i, j) satisfy Sij = 1 

Cmust = Cmust ∪ {(i, j)} 
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(158 genes), Mid-Late (62 genes), and Late (4 genes). We take these 477 genes as the 
tested data and the seven groups as the standard for the clustering results.  

For the C-CCL and the C-CKM, the input parameters k (cluster number) is set as 7. 
We tested several different mixtures of constraints, including 1) 100% must-links 
(ML), 2) 100% cannot-links (CL), 3) Equal proportion (Equal Prop.) and 4) 
Proportion to the relative number of pair types (Data Prop.). We first obtain all must-
link and cannot-link constraints for all data pairs, then we generate the tested 
constraint sets by randomly choosing constraints from all must-link and cannot-link 
constraints according to the proportion of different mixed types. The same experiment 
was done for 10 times and the average was taken for a statistical purpose. 

Figure 2 and 3 show the results of the C-CCL and the C-CKM for several different 
constraint mixes, respectively. It is observed that there is no sizable improvement 
over the unconstrained accuracy in all cases of the C-CKM. It means that C-CKM 
fails to take advantage of the constraints over a wide range of mix types. For C-CCL, 
the accuracy assessed by the Rand index rises quickly, as constraints are added in all 
cases except “Must-Link Only”. And the C-CCL’s accuracy assessed by the Jaccard 
index rises quickly, as constraints are added in cases of “Equal Proportion” and “Data 
Proportion”. Especially, the Jaccard index rises sharply in case of “Equal Proportion”.  

By comparing all cases of the C-CCL in Figure 2 and 3, we infer that “Equal 
Proportion” might be the best mix type and “Data Proportion” is the next best mix 
type for this yeast sporulation data set. “Must-Link Only” and “Cannot-Link Only” 
may not be appropriate mix types, because the problem of inappropriate merging 
described previously might take place. It is shown that the C-CCL takes advantage of 
the constraints more efficiently than C-CKM. Moreover, the correlational propagation 
of C-CCL allows it to substantially outperform C-CKM. 
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Fig. 2. The accuracy of C-CCL clustering on yeast data set over different constraint mixes 



 Constrained Clustering for Gene Expression Data Mining 765 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

Number of Constraints

A
v
e
r
a
g
e
 a
c
c
u
r
a
c
y

ML Only Rand

CL Only Rand

Equal Prop. Rand

Data Prop. Rand

ML Only Jaccard

CL Only Jaccard

Equal Prop. Jaccard

Data Prop. Jaccard

 

Fig. 3. The accuracy of C-CKM clustering on yeast data set over different constraint mixes 

4   Conclusions 

In this paper, we propose a new constrained clustering method, namely C-CCL, to 
improve the quality of hierarchical clustering for microarray data analysis in the 
presence of pair-wise gene constraints, while using correlation coefficients as 
similarity measure. Through empirical evaluations on a real yeast dataset, C-CCL was 
shown to utilize the given gene-pair constraints effectively such that the clustering 
accuracy is highly enhanced in terms of the Rand and Jaccard indexes.  

In the future, we will explore some further issues. First, we will seek an imitative 
triangle inequality or a method to adjust the proximity with respect to the absolute 
correlation coefficients. Second, we will extend the C-CCL to capture the pattern 
structure embedded in the gene expression data sets. This might provide more insights 
for the functional relationships between genes. 
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Abstract. We propose a method for automatically discovering reactive motifs, 
which are motifs discovered from binding and catalytic sites, which incorporate 
information at binding and catalytic sites with bio-chemical knowledge. We in-
troduce the concept of mutation control that uses amino acid substitution groups 
and conserved regions to generate complete amino acid substitution groups. 
Mutation control operations are described and formalized using a concept lat-
tice representation. We show that a concept lattice is efficient for both represen-
tations of bio-chemical knowledge and computational support for mutation  
control operations. Experiments using a C4.5 learning algorithm with reactive 
motifs as features predict enzyme function with 72% accuracy compared with 
67% accuracy using expert-constructed motifs. This suggests that automatically 
generating reactive motifs are a viable alternative to the time-consuming proc-
ess of expert-based motifs for enzyme function prediction.  

Keywords: mutation control, concept lattice, sequence motif, reactive motif, 
enzyme function prediction, binding site, catalytic site. 

1   Introduction 

There are many statistic-based motif methods for enzyme function prediction capable 
of high accuracy; however, most of these methods [2,3,4,5] avoid the direct usage of 
motifs generated from binding and catalytic sites to predict enzyme function predic-
tion. These methods use other resources from surrounding sites that contain very few 
sequences of binding and catalytic sites. In certain applications, it is necessary to 
understand how motifs of binding and catalytic sites are combined in order to perform 
enzyme function prediction. This is a reason why the statistic-based motifs cannot 
completely replace expert-identified motifs. In this paper, we develop a method to 
predict enzyme functions based on direct usage of binding and catalytic sites. Motifs 
discovered from binding and catalytic sites are called reactive motifs. The principal 
motivation is that different enzymes with the same reaction mechanism at binding and 
catalytic sites frequently perform the same enzyme function. In previous work [16], 
we introduced a unique process to discover reactive motifs using block scan filtering, 
Mutation Control, and Reactive Site-Group Definition. The main step in reactive 
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motif discovery is mutation control whose objective is to determine a complete substi-
tution group for each position in the sequences, such that the substitution group con-
tains all possible amino acids that can be substituted.  

In this paper, we show that the concept lattice provides an efficient representation 
of various types of bio-chemical background knowledge and efficient computational 
support for the operations of mutation control. We propose a method to construct an 
amino-acid property context from background knowledge which is Taylor Physico-
Chemistry table [8]. From the amino-acid property context, the concept lattice repre-
senting a hierarchy of amino-acid substitution groups sharing the same properties is 
constructed. Each concept represents a substitution group; lattice operators are applied 
to obtain complete substitution groups. Reactive motifs generated from the concept-
lattice mutation control step are used as input to the C4.5 learning algorithm to obtain 
the enzyme prediction model. The reactive motifs and PROSITE [1] motifs separately 
are used as training data for the C4.5 learning model, which is then evaluated using a 
test dataset containing 19,258 amino acid sequences of 235 known enzyme functions. 
The learning algorithm using reactive motifs as training data accurately identified 
72.6% of the test sequences, compared to 67.25 % accuracy for PROSITE.  

The overall process of reactive motif discovery is described in section 2. Section 3 
gives details of the concept lattice-based mutation control; experimental results are 
presented in section 4, and conclusions are given in section 5.  

2   Reactive Motifs Discovery with Mutation Control 

In this section, we present an overall process of reactive motif discovery, consisting of 
three steps: data preparation and block scan filtering, mutation control, and reactive 
site-group definition. More details of reactive motif discovery process can be found  
in [16]. 

2.1   Data Preparation and Block Scan Filtering  

In the data preparation step, we use an enzyme sequence dataset [10,11] that covers 
19,258 enzyme sequences of 235 functions. Within this enzyme sequence dataset, we 
use sequences containing binding or catalytic sites. Designating the binding or cata-
lytic site position as the center, binding or catalytic site sub-sequences are retrieved, 
each of length 15 amino acids, as shown in Fig. 1. These binding and catalytic site 
sub-sequences form a binding and catalytic site database. Sub-sequences in the bind-
ing and catalytic site database are then clustered into subgroups based on their reac-
tion descriptions. There are in total 291 subgroups. 

 

Fig. 1. Sequence with length of 15 amino acids around the binding and catalytic site 
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The purpose of the block scan filtering step is to alter each record of the binding 
and catalytic site database. For each binding or catalytic site sub-sequence, the dataset 
is scanned for all other sequences having the same site description, and a sequence 
similarity score is computed using amino-acid similarity scores such as BLOSUM62 
[12]. The sequences are ranked according to similarity scores; then a block member 
filtering method [13] is applied. A block is designated as high quality when each site 
in the block has at least 3 positions presenting the same type of amino acids, as shown 
in Fig. 2. 

 

Fig. 2. Block member filtering to obtain a high quality block 

2.2   Mutation Control 

An enzyme mechanism can be represented by several binding or catalytic site subse-
quences. Therefore specific positions in sequences that control the properties of the 
enzyme mechanism have common or similar properties. Some positions in all se-
quences contain the same type of amino acids; these positions are called conserved 
regions. Other positions may have many types of amino acids, but having similar 
properties. All amino acids in the same position are grouped with respect to the muta-
tion in biological evolution and the resulting group is called a substitution group. 
Therefore, a substitution group is a set of amino acids having common or similar 
properties that can be substituted at a specific position in a block. There are two kinds 
of substitution groups, represented by patterns as in the PROSITE motifs: 

(1) A group of amino acids having some common properties; the substitutable 
amino acids are listed in brackets, for example [HT].   

(2) Amino acids having prohibited properties cannot be included at a position  
in the group. Prohibited amino acids are listed in braces, for example {P}, 
meaning any amino acid except P. 

Mutation control constructs a motif consisting of the complete substitution group 
or conserved region from each position in the sequence. Using the results of the block 
scan filter step, all amino acids in the same position are compared and analyzed.  
Mutation control extends each amino acids substitution group to include all amino 
acids having common characteristics, identified using the Taylor physico-chemistry 
table (Table 1), to create a complete substitution group. This extension process is 
described next. 
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Table 1. Physico-chemistry table representing background knowledge of amino acids 
properties 

 

A complete substitution group is constructed by examining both the common prop-
erties and boundary properties at a given position. In some positions, there may be 
many types of amino acids that yield the same enzyme reaction mechanism. These 
amino acids have common or similar properties. For example, the amino-acids substi-
tution group [HT] has Polar and Hydrophobic as common properties, which are nec-
essary for an enzyme mechanism to function. 

The prohibited properties are all the properties that are not found by any member 
of the substitution group. For example, the prohibited properties of [HT] are Tiny, 
Negative, and Aliphatic. The boundary properties set is the complement of the pro-
hibited properties. The boundary properties and common properties are used together 
to identify the complete substitution group. 

To be certain that a given substitution group contains all possible amino-acids that 
can be substituted, the mutation control extends each substitution group to include all 
amino acids that have all the common properties and only properties in the boundary 
set (i.e. no prohibited properties). For example, complete substitution group for [HT] 
is [HTWYK]. This is the greatest amino acid substitution group that has all common 
properties and the only properties they have are boundary properties. This complete 
substitution group is determined at all other positions of the quality block to produce a 
motif. For the quality block in Fig. 2, we obtain the motif [HTWYK] [CDENQST] 
[CNST] P H [KNQRT] [DNP] R [FILMV] [DENQS] [ACDGNST] . . .  

The source of background information can be used in block scan filtering and mu-
tation control should be the same. For example, if the BLOSUM62 table is used as the 
similarity score table in block scan filtering step, the amino acids properties table 
transformed from BLOSUM62 should be used in the mutation control step. More 
details about background knowledge transformation can be found in [16]. 

2.3   Reactive Site – Group Definition  

From the previous step, motifs produced from different records of the same binding or 
catalytic functions are, by definition, redundant. They are grouped together and repre-
sented as one reactive motif in a grouping process called reactive site–group defini-
tion. Although motifs are retrieved from the same original binding or catalytic sites in 
the same subgroup of the binding and catalytic site database, they can have different 
binding structures to the same substrate. In other words, there are many ways  
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to “fit and function”. As a result of this step, 1,328 reactive motifs are constructed 
using the BLOSUM62 data and 1,390 using the Taylor physico-chemistry table. 

3   Concept Lattice–Based Mutation Control for Complete 
Substitution Group Discovery 

In this section, we apply concept lattice theory [17,18] to mutation control in order to 
determine complete substitution groups. From the amino acids context, the concept 
lattice is generated, where concepts are constructed as amino acids substitution groups 
sharing common properties. The generated concept lattice represents hierarchy of 
amino acids substitution groups sharing common properties. From this lattice, muta-
tion control operations are performed to determine complete amino-acid substitution 
groups. We start by giving some basic definitions of concept lattices as applied to 
mutation control. Then, concept lattice-based mutation control operations are defined. 

3.1   Basic Definitions 

Amino acid properties context: An amino acid properties context is a triple (∑, Ρ, 
R), where ∑ and Ρ are finite sets of amino acids and properties, and R ⊆ ∑ x Ρ is a 
binary relation. eRp denotes that the amino acid e ∈ ∑ is in relation R to the property 
p ∈ Ρ, if e has the property p (or e verifies property p).  

 
Concept: A concept is a pair (Extent, Intent) where Extent ⊆ E, Intent ⊆ Ρ and 
f(Extent)=Intent and g(Intent) =Extent. Let L be a set of all concepts formed from the 
context (∑, Ρ, R), and let c ∈ L. Hence, c is formed by two parts: an extent represent-
ing a subset of ∑ (here, amino acids), denoted as Extent(c), and an intent representing 
the common properties between this subset of amino acids, denoted as Intent(c). For 
example, ({A,C,G},{small, tiny, hydrophobic}) is a concept of the context in Table 1. 
This means that there are no more than three amino acids possessing at least all proper-
ties in {small, tiny, hydrophobic} and sharing at most these properties in common. The 
concept’s extent is an amino-acid substitution group sharing similar properties. 

 
Amino acid properties concept lattice: An amino acid properties concept lattice is a 
concept lattice L = (L,≤ ) of an amino acid properties context (∑ , Ρ , R) , is a com-
plete lattice of concepts derived from the amino acid  properties context. The lattice 
structure imposes:  

- a partial ordering on concepts such that for concepts c1, c2 ∈ L, c1 ≤ c2, iff Ex-
tent(c1) ⊆ Extent(c2) or, equivalently, Intent(c2) ⊆ Intent(c1). 

- any concept subset of L has one greatest subconcept (the Meet element) and one 
least superconcept (the Join element). 

 
Theorem. Let (∑,Ρ,R) be a  context, let L be a concept lattice of  concepts derived 
from  (∑,Ρ,R) and S ⊆ L. The Meet(S) and Join(S) elements are given as follows: 

 UI
ScSc

cIntentgfcExtentMeet(S)
ε

))(((,)((
∈

=                                (1) 
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 ))()),(((()( U I
Sc Sc

cIntentcExtentfgSJoin
ε ∈

=    (2) 

3.2   Complete Amino-Acids Substitution Group Discovery 

In this section, we present a method for finding complete amino acid substitution group 
at a given position of a block of amino acids resulted from the block scan filtering step 
(section 2.1). Our method works in 4 steps. First, it starts by finding smallest object 
concept for each amino acid in the amino acid-properties lattice. Then, it uses those 
concepts to find candidate substitution groups having the greatest common properties 
and having the greatest boundary properties. Finally, it returns the common amino 
acids of both substitution groups as the complete amino-acid substitution group.  

3.2.1   Finding Amino Acid Concepts 
Each amino acid in the same position of a block is used for finding its introduction 
concept in the amino acid-properties lattice called amino-acid concept [19]. Consider-
ing Fig. 3, ({H}, {aro,hyd,cha,pol,pos}) and ({T,C} ,{hyd,sma,pol}) are introduction 
concepts of amino-acids H and T.  

 

Fig. 3. Shows two candidate-substitution groups of amino acids {H, T} which are represented 
by gray nodes. The black node represents candidate substitution group having the greatest 
common properties, derived from the gray edges, while candidate substitution group having the 
boundary properties, represented by dotted node, can be derived from the dotted edges.  
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3.2.2   Finding Candidate Substitution Group Having Common Properties 
According to an important characteristic of a substitution group (described in  
section 2.2), complete substitution group should have common properties. In order to 
determine the substitution group having common properties at most or greatest set of 
common properties, the lattice operator Join(S) is applied where S is a set of amino-
acid concepts derived from the previous section. Join(S) returns a concept whose 
intent contains greatest common properties of S and whose extent is a candidate sub-
stitution group. 

In the following, we show how the greatest common properties of amino acids 
{H,T} and its candidate substitution group can be determined. From the previous step, 
we obtained ({H},{aro,hyd,cha,pol,pos}) and ({T,C} ,{hyd,sma,pol}) as amino-acid 
concepts represented as gray nodes in the Fig. 3. Then, we use them as input to the 
Join(S) operator. ({W,H,Y,K,T,C},{hyd,pol}) is the result of Join(S) whose extent 
represents candidate substitution group of amino acids {H,T}. 

3.2.3   Finding Candidate Substitution Group Having Boundary Properties 
According to the definition of a substitution group (described in Section 2.2), a com-
plete substitution group should exclude any amino acid having the prohibited proper-
ties that prevent the enzyme mechanism function. The substitution group having the 
greatest set of boundary properties is the result of the union of the extent of all super-
concept of the lattice operator Meet(S), where S is a set of amino-acid concepts as 
described in Section 3.2.1. In the case that Meet(S) produces a concept whose intent 
contains any prohibited properties, a virtual boundary concept will be used instead. 
The intent of the virtual boundary concept includes only the greatest boundary proper-
ties and its extent is an empty set. A virtual boundary concept can be formally defined 
as follows:  

Definition: Let (∑,Ρ,R) be a  context, L be a concept lattice derived from  (∑,Ρ,R), 
and S ⊆ L. A concept ))(,( U

Sc

cIntent
∈

∅  is called a virtual boundary concept if Meet 

(S) = (∅, I)  and I ⊄ U
Sc

cIntent
∈

)( . 
 

In the following, we show how the greatest set of boundary properties of amino acids 
{H,T} and their candidate substitution group can be determined. From Section 3.2.1, 
we obtain S = {({H},{aro,hyd,cha,pol,pos}), ({T,C} ,{hyd,sma,pol})} as a set of 
amino-acid concepts represented by gray nodes in the Fig. 3. Then, Meet(S) results 
the bottom concept ({},{sma,tin,aro,neg,ali,hyd,cha,pol,pos}). In this case, the intent 
of result concept contains prohibit properties such as {tin, pros, neg, ali}. Thus, a 
virtual boundary concept ({},{aro,hyd,cha,pol,pos,sma}) is created. We then link it as 
the immediate predecessor concept of the bottom concept. Then, we determine its 
immediate predecessor concepts by choosing the immediate predecessor concepts of 
the bottom concept having no prohibited properties, which is the set of concepts 
{({H},{aro,hyd,cha,pol,pos}), ({T,C},{hyd,cha,pol,pos})}, represented by a dashed 
node in Fig. 3. Finally, from the set of super-concepts of the virtual boundary concept, 
we select only object concepts. Then, the union of the extent of those object concepts 
is the substitution group having boundary properties {H,T,W,Y,F}. 
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3.2.4   Complete Amino Acid Substitution Group 
Once both candidate substitution groups are extracted from the previous step, a com-
plete amino acid substitution group can be determined by finding the common amino 
acids appearing in both substitution groups. From Fig. 3, amino acids having common 
properties are {W,H,Y,K,T,C}; while amino acids having the boundary properties are 
{H,T,W,Y,F}. Thus, the amino acids that appear in both substitution groups form the 
complete substitution group {H,T,W,Y} of amino acids {H, T}, as required. 

4   Experimental Results 

We performed experiments using a dataset containing 19,258 protein sequences that 
covers 235 enzyme functions, using the C4.5 learning algorithm with a 5-fold cross 
validation.  

The accuracy of the enzyme function prediction models is shown in Table 2. Each 
prediction model is constructed using reactive motifs generated from different back-
ground knowledge. The model constructed with reactive motifs generated using 
BLOSUM62 is called BLOSUM – reactive motif. The model constructed with reactive 
motifs generated using Taylor’s physico-chemistry table is called physico-chemistry – 
reactive motif. The reference model, called conserved amino acid – reactive motif, is 
constructed using reactive motifs without a substitution group. These reactive motifs 
are generated from conserved regions using BLOSUM62. In case the conserved re-
gion-group definition step is not applied, the BLOSUM – reactive motifs model gives 
the best results with 68.69% accuracy. The prediction model using physico-chemistry 
– reactive motifs with application of conserved region-group definition gives the best 
accuracy, 72.58%; however, the accuracies of all models are very close. 

Table 3 shows the prediction accuracy of enzyme function prediction model, with 
respect to different class members using PROSITE motifs. The accuracy of the pre-
diction model retrieved from PROSITE motifs gives the best accuracy of 67.25%.  

Table 2. Accuracy comparison among function prediction models using reactive motifs 

Reactive motifs 
Conserved amino acid BLOSUM Physicochemistry 

 
Reactive site– group definition 

#  
motif 

C4.5  
(%) 

#  
motif 

C4.5  
(%) 

#  
motif 

C4.5  
(%) 

From Binding and Catalytic Site Database 291 60.84 291 68.69 291 64.38 
Conserved region – group definition 1324 70.57 1328 71.66 1390 72.58 

Table 3. Accuracy of function prediction models using PROSITE motifs 

 
#Members 

# Func-
tions 

# 
Motifs 

# 
Sequences 

C4.5 
(%) 

Between 10 and 1000 42 36 2579 37.15 
Between 5 and 1000 76 65 2815 67.25 
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5   Conclusions and Discussion 

In this paper, we show that concept lattice is an efficient representation of bio-
chemistry background knowledge and an efficient computational support for mutation 
control operations. To obtain an enzyme prediction model, reactive motifs generated 
from the concept lattice based mutation control step are used as the input to C4.5 
learning algorithm. Our enzyme prediction model yields good results (~70% accuracy 
of enzyme function prediction) and can overcome problems such as lack of protein or 
enzyme functional information; only about ~5.8% in our dataset contain information 
about binding and catalytic sites. The reactive motifs using physico-chemistry back-
ground knowledge give the best results; although the coverage value is not satisfied, 
the number of reactive motifs found per enzyme sequence is very good.  It indicates 
the motifs are very specific.  

The limited improvement in accuracy observed when using the conserved region 
group definition indicates that the details of the mechanism descriptions need further 
improvement. Improving the quality of the descriptions of binding and catalytic sites 
would, in the authors' view, further increase the accuracy of enzyme function predic-
tion using reactive motifs. 
 
Acknowledgement. Thanks to J. E. Brucker for his reading and comments of this 
paper. 
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Abstract. Association rule mining is one of the key issues in knowledge dis-
covery. In recent years, negative association rule mining has attracted remark-
able attention. This paper presents a notion of validity for both positive and 
negative association rules, which is considered intuitive and necessary. Then, a 
mining algorithm to find all rules in light of completeness is proposed. In doing 
so, several pruning strategies based on the upward closure property are devel-
oped and incorporated into the algorithm so as to guarantee the computational 
efficiency.  

Keywords: Negative association rules, upward closure, Apriori, data mining. 

1   Introduction 

As one of the promising areas of research for knowledge discovery, association rule 
mining (ARM) attempts at finding the relationships between the different items in 
databases [1-3]. Researchers have extended the association rule (AR) concept —
originally specific to binary data tables— to a multitude of domains, involving quanti-
tative, hierarchical, fuzzy, and many other kinds of databases. The main characteristic 
of the efforts is to predict the presence of some data items (itemsets) from the pres-
ence of other data items. In other words, the focal point of interest is the positive 
association of itemsets, namely, a presence-to-presence relationship. On the other 
hand, in many real applications, negative associations (i.e., the relationship between 
the presence and the absence of itemsets, or the absence and the absence of itemsets) 
are meaningful and therefore attracting more and more attention nowadays (e.g., [4-
13]). For example, “office workers who did NOT buy cars turned to rent homes near 
subway stations”, and “customers who were NOT interested in big screen mobile 
phones would NOT buy other value-added services (e.g., games, web connections, 
etc.)”. These kinds of ARs reflect certain negative patterns of data items and are usu-
ally referred to as negative ARs.  

Mining negative ARs, however, raises a number of critical issues [13]. First, the 
density of data in databases becomes much higher. Second, the computational cost 
may skyrocket when each item in the database and its corresponding negated item 
(indicating absence of the original item) are considered, since the mining complexity 
may increase significantly in terms of the number of data items. Moreover, negative 



778 H. Wang, X. Zhang, and G. Chen 

ARs may invalidate some important pruning strategies used to restrict the search 
space and guarantee efficiency in classical ARM algorithms. 

In order to address these issues and explore efficient algorithms, a number of ef-
forts have been made to develop improvements and extensions. Savasere et al. [5] and 
Yuan et al. [8] incorporate domain knowledge (taxonomy structure) into the algo-
rithms. These approaches compare expected support or confidence of an itemset 
(based on itemsets’ positions in the taxonomy structure) with the actual value of these 
measures. The limitations of these approaches are: first, negative ARs are mainly 
restricted to relative negative ARs compared with other sibling itemsets; and second, 
the domain knowledge (taxonomy structure) needed may often not be readily avail-
able. Wu et al. [12] and Antonie et al. [9] focus on certain notions of negative ARs 
(such as X Y¬ ⇒ , X Y⇒ ¬ , X Y¬ ⇒ ¬ ) and present approaches to mine them. 
However, it is found that their approaches can hardly guarantee to generate a com-
plete set of valid rules, that is, some valid negative ARs defined may not be obtained 
using their algorithms [13]. Furthermore, Brin et al. [4], and Cornelis et al. [13] con-
centrate on similar notions of negative ARs and provide algorithms to generate all 
rules of concern. However, their notions are, though meaningful, restrictive in seman-
tics and deemed necessary to extend.  

In this paper, another notion of validity for both positive and negative ARs is pre-
sented, which reflects semantics in a broader sense and appears to be intuitive. Then, 
a mining algorithm is proposed, which is sound and complete in terms of generating 
all rules of interest. Pruning strategies based on the upward closure property are de-
veloped and incorporated into the algorithm so as to guarantee the computational 
efficiency. 

2   Valid Association Rules 

In association rule mining, two measures, namely the Degree of Support (supp) and 
the Degree of Confidence (conf), are used to define a rule [2-3]. According to [9, 12-
13], In the case of the negation of a set of items (itemset) X, denoted by X¬ , the de-
gree of support is: ( ) 1 ( )supp X supp X¬ = − . A rule of the form X Y⇒ is called a 

positive rule, whereas rules of the other forms ( X Y¬ ⇒ , X Y⇒ ¬ , X Y¬ ⇒ ¬ ) are 
negative rules. Specifically, the degrees of support and the degrees of confident are 
defined as follows: 

( ) ( )supp X Y supp X Y⇒ = ∪  

( ) ( ) ( )supp X Y supp Y supp X Y¬ ⇒ = − ∪  

( ) ( ) ( )supp X Y supp X supp X Y⇒ ¬ = − ∪
( ) 1 ( ) ( ) ( )supp X Y supp X supp Y supp X Y¬ ⇒ ¬ = − − + ∪  

1 2
1 2

1

( )
( )

( )

supp C C
conf C C

supp C

⇒
⇒ =  

where 1 2, { , }, { , }X Y C X X C Y Y∩ = ∅ ∈ ¬ ∈ ¬ . Subsequently, we have definition 1 

for valid association rules. 
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Definition 1 (valid association rule). Let X and Y be itemsets. A valid association rule 
(AR) is an expression 1 2 1 2, { , }, { , },C C C X X C Y Y X Y⇒ ∈ ¬ ∈ ¬ ∩ = ∅ , such that 

1 2( ) 1posbound C C⇒ =  and 1 2( ) 1negbound C C⇒ = , where posbound and neg-

bound are mappings from the set of possible ARs to {0, 1} with: 

1 2

1 2 1 2

0  ( )  or ( )

( )        or ( )  or ( )

1 

if Supp C C ms Supp X ms

posbound C C Supp Y ms conf C C mc

otherwise

∪ < <⎧
⎪⇒ = < ⇒ <⎨
⎪
⎩

 

2 1
1 2

0    and  ' , . . ( ') 1
( )   

1  

if C Y Y Y s t posbound C Y
negbound C C

otherwise

= ¬ ∃ ⊂ ⇒ ¬ =⎧
⇒ = ⎨

⎩
 

It is worth mentioning that, according to the definition, if 1C Y⇒ ¬ is valid, then 

there should not exist 'Y Y⊂ such that 1 'C Y⇒ ¬ is also valid.  This is based on the 

fact that, if 1( ') 1posbound C Y⇒ ¬ = , then 1( ) 1posbound C Y⇒ ¬ =  is always true, 

for all 'Y Y⊂ . Moreover, it is important to note that several useful properties hold as 
follows, which can be used in pruning strategies for efficiency and to guarantee the 
completeness of the proposed AR mining algorithm that will be discussed in the next 
section. 

Property 1 
(1.1) ( ) ( ')supp X supp X≥ , for all 'X X⊆ (downward closure) 

(1.2) ( ') ( )supp X supp X¬ ≥ ¬ , for all 'X X⊆ (upward closure) 

Property 2 
(2.1) 1 1( ) ( ')supp C Y supp C Y⇒ ≥ ⇒  , for all 'Y Y⊆ . 

(2.2) 2 2( ' ) ( )supp X C supp X C¬ ⇒ ≥ ¬ ⇒ , for all 'X X⊆ . 

(2.3) 1 1( ') ( )supp C Y supp C Y⇒ ¬ ≥ ⇒ ¬ , for all 'Y Y⊆ . 

Property 3 
(3.1) 1 1( ) ( ')conf C Y conf C Y⇒ ≥ ⇒  , for all 'Y Y⊆ . 

(3.2) 1 1( ') ( )conf C Y conf C Y⇒ ¬ ≥ ⇒ ¬ , for all 'Y Y⊆ . 

Property 4 

Let 
( )

( )
1 ( )

supp Y
conf X Y

supp X
¬ ⇒ =

−
 then,  

(4.1) ( ) ( )conf X Y conf X Y¬ ⇒ ≥ ¬ ⇒ . 

(4.2) ( ) ( ')conf X Y conf X Y¬ ⇒ ≥ ¬ ⇒ , for 'Y Y⊆ . 

3   Generating Valid Association Rules 

As can be seen in previous discussions, all valid association rules of concern, namely 
the AR space, are composed of four types of ARs. In other words, the AR space could 
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be partitioned into four parts: Part I:   positive valid ARs, in forms of X Y⇒ ; Part II:  
negative valid ARs, in forms of X Y¬ ⇒ ; Part III: negative valid ARs, in forms of 
X Y⇒ ¬ ; and Part IV: negative valid ARs, in forms of X Y¬ ⇒ ¬ . 

The mining process, therefore, constitutes four major steps to generate all frequent 
itemsets and all valid ARs in part I, all negative valid ARs in part II, III and IV re-
spectively. For part I, all frequent itemsets and valid ARs could be generated using 
the Apriori-type approaches etc. While the effective Apriori’s pruning strategy based 
on downward closure property (Property 1.1) still pertains in generating part I, it does 
not suit in generating parts II, III, and IV. Hence, new pruning strategies, say, based 
on upward closure property (Property 1.2) and other properties mentioned in  
section 2, need to be developed so as to enable an effective and efficient generation of 
all negative valid ARs.  

3.1   Pruning Strategies 

In addition to property 1.1 used as a pruning strategy to generate positive valid ARs, 
other pruning strategies are needed in generating negative valid ARs. According to 
properties 1, 2 and 3, an important property (Property 5) can be derived, which is 
downward-closure-like and could be incorporated in the mining process for part II as 
a pruning strategy. Furthermore, in discovering valid ARs in forms of 1C Y⇒ ¬ (i.e., 

valid ARs in parts III and IV), another proven property (Property 6) is important as 
well.  

Property 5. If 'X Y¬ ⇒ is valid, then X Y¬ ⇒ ( 'Y Y⊂ ) is valid.  

Property 6. If 1C Y⇒ ¬ is valid, then 1 'C Y⇒ ¬ ( 'Y Y⊂ ) is not valid.  

 
Property 5 enables us to generate valid ARs of the form X Y¬ ⇒ by extending the 
consequents of already obtained valid ARs and prune candidate ARs by examining 
their consequents’ (k-1)-length sub-itemsets in valid ARs (k is the length of their con-
sequents). Property 6 enables us to use potential ARs (not valid ARs, but having po-
tential to generate valid rules by extending their consequents) to generate valid ARs 
by extending the consequents of them and prune candidate ARs by examining their 
consequents’ (k-1)-length sub-itemsets in potential ARs.  

Notably, the difference between the Apriori-type approach and the proposed ap-
proach for parts II, III and IV is that the former uses frequent itemsets to generate and 
prune candidate itemsets, whereas the latter uses valid ARs to generate and prune 
candidate ARs for part II, and uses potential ARs for parts III and IV. More details are 
presented in the following subsection. 

3.2   Algorithmic Details 

The following notations are used in discussing algorithmic ideas. 

,X Y : positive itemsets;  

| |,| |X Y : the number of items in X, Y 
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I( )L P : frequent itemsets in part I; 

I( )kL P : k-length frequent itemsets in part I; 

( )iVR P : valid ARs in part i;  

,( )i k pVR P : valid ARs with k-length antecedent and p-length consequent in part i; 

( )iNR P : potential ARs; not valid ARs, but having potential to generate valid rules by 

extending its consequent in part i. It is used to generate ( )iCR P  for parts III and IV.  

( )iCR P : candidate ARs in part i, including ( )iVR P and ( )iNR P .  

( )iS P : positive itemsets whose support needs to be calculated via DB scan in part i; 

(analogously: ,( )i k pNR P , ,( )i k pCR P , ,( )i k pS P ). 

 
Procedure 1. Generate all Negative Valid ARs in Parts II, III and IV (with minimal 
confidence mc) 

1: ( )iVR P = ∅  

2: 
I 1

1,1 I 1

I 1

{ | , ( ) , , ( ) }  for =II

( ) { | , ( ) , }  for  =III

{ | , ( ) , }  for =IV
i

X Y X Y L P X Y conf X Y mc i

CR P X Y X Y L P X Y i

X Y X Y L P X Y i

⎧ ¬ ⇒ ∈ ∩ = ∅ ¬ ⇒ ≥
⎪

= ⇒ ¬ ∈ ∩ = ∅⎨
⎪ ¬ ⇒ ¬ ∈ ∩ = ∅⎩

 

3: for ,1{ 1; ( ) ; }i kk = CR P k≠ ∅ + +  do  

4:   for ,{ 1; ( ) ; }i k pp = CR P p≠ ∅ + +  do 

5:     generate ,( )i k pS P  

6:     compute support of all itemsets in ,( )i k pS P  

7:     generate ,( )i k pVR P and ,( )i k pNR P  

8:     ,( ) ( ) ( )i i i k pVR P VR P VR P= ∪  

9:     generate , 1( )i k pCR P +  

10:     delete ,( )i k pNR P for IIi ≠  

11:   end for  
12:   

I 1 I 1

1,1 I ! I 1

I 1 I 1

{ | ( ) , ( ) , , ( ) }  for =II

( ) { | ( ) , ( ) , }  for =III

{ | ( ) , ( ) , }  for =IV

k

i k k

k

X Y X L P Y L P X Y conf X Y mc i

CR P X Y X L P Y L P X Y i

X Y X L P Y L P X Y i

+

+ +

+

⎧ ¬ ⇒ ∈ ∈ ∩ = ∅ ¬ ⇒ ≥
⎪

= ⇒ ¬ ∈ ∈ ∩ = ∅⎨
⎪ ¬ ⇒ ¬ ∈ ∈ ∩ = ∅⎩

 

13: end for 
 
Procedure 1 first generates candidate, valid and potential ARs with k-length ante-

cedents and 1-lengh consequents, then generates candidate, valid and potential ARs 
with k-length antecedents and p+1-lengh consequents from valid ARs (for part II)  
or from potential ARs (for parts III and IV) with k-length antecedents and p-lengh  
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consequents. More concretely, let us consider certain lines of algorithmic treatments 
in Procedure 1 as follows, whereas corresponding (sub-) procedural codes are omitted 
due to the limitation of space. 

For line 5, ,( )i k pS P is positive itemsets, the support of any element in it is un-

known. It is needed in the computation of pospound for generating ,( )i k pVR P and 

,( )i k pNR P . Line 6 computes itemsets in ,( )i k pS P  via database scan. For line 9, 

, 1( )i k pCR P +  from ,( )i k pVR P for part II and from ,( )i k pNR P for parts III and IV are 

generated, in that pruning strategies discussed in subsection 3.1 are used for 

, 1( )i k pCR P + .  

Note that the generation of , 1( )i k pCR P +  is only related to ,( )i k pVR P (for part II) or 

,( )i k pNR P  (for parts III and IV), the generation of , 1( )i k pCR P + can start after the gen-

eration of ,( )i k pVR P (for part II) or ,( )i k pNR P (for parts III and IV), and do not have to 

wait generations of other ARs with ˆ-lengthk antecedents ( k̂ k≠ ). This is a very good 

feature that parallel computing may be possible, where dynamically specified cores 
(or processors) could be executed for Procedure 1 from lines 4 to 12 with certain 
parallel computing algorithms. 

Importantly, it can be proven that the above-mentioned algorithm will generate a 
complete set of all positive and negative valid ARs. That is, the proposed approach 
(and the corresponding algorithm) is both sound and complete. It is also easy to show 
that the proposed approach in this paper is considered advantageous over existing 
ones (e.g., [4-5], [8-9], [12-13]) in terms of meaningfulness in rule validity and com-
pleteness in rule generation. 

4   Experiment Results 

To study the effectiveness of our approach, we have performed data experiments based 
on synthetic databases generated by IBM Synthetic Data Generator for Associations 
and Sequential Patterns (http://www.cse.cuhk.edu.hk/~kdd/data_collection.html). In 
the experiments, we used C++ on a Lenovo PC with 3G of CPU and 4GB memory. 
The main parameters of the databases are as follows. The total number of attributes is 
1000; the average number of attributes per row is 10; the number of rows is 98358, 
approximately 100K; the average size of maximal frequent sets is 4.  

The experiments were to illustrate that, though data-dependent, there are much 
more negative ARs than positive ones due to the nature of negation of data items 
semantically, and that the proposed approach (namely Algorithm VAR) is effective in 
generating negative ARs in terms of throughput rate (number of rules per time unit), 
which is higher than that of Apriori algorithm [3] (namely Apriori) for generating 
positive ARs. Table 1 shows the results. 
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Table 1. Running time (seconds) and numbers of positive and negative ARs 

  Positive rules (generated by Apriori) Negative rules (generated by VAR) 
Ms Mc Time Number Number /Time  Time Number Number /Time 
0.001 0.6 41 91045 2221  1868 17345516 9286  
0.001 0.7 40 86004 2150  1863 17346435 9311  
0.001 0.8 40 68654 1716  1890 17357488 9184  
0.001 0.9 40 37438 936  1913 17367665 9079  
0.015 0.6 24 6211 259  307 5573850 18156  
0.015 0.7 24 5947 248  309 5572996 18036  
0.015 0.8 24 5488 229  309 5569366 18024  
0.015 0.9 24 4092 171  313 5554373 17746  

 
Moreover the advantage became larger with the increase in minimal support ms. 

The fact that Number/Time in VAR decreased with the increase in minimal confi-
dence mc is because larger mc made the negative ARs’ negative consequents to be-
come longer to satisfy it. For example, if 1( )supp C Y ms⇒ ¬ ≥  and 

1( )conf C Y mc⇒ ¬ < , in our algorithm, we may generate some 'Y , 'Y Y⊆ such 

that 1( ')supp C Y ms⇒ ¬ ≥  and 1( ')conf C Y mc⇒ ¬ ≥ . This process costs a litter 

more time when mc increases, however, the minimal Number/Time of VAR is still 
advantageous over the maximal of Apriori. 

5   Conclusion 

Negative association rules are considered useful in many real world applications. This 
paper has proposed a notion of valid association rules and developed an effective 
approach, along with the corresponding algorithm, to mining all positive and negative 
ones in a sound and complete manner. Several rule properties have been investigated 
and incorporated into the mining process as pruning strategies in order to gain algo-
rithmic efficiency. The main advantage of the proposed approach over others could be 
characterized in terms of meaningfulness in rule validity and completeness in rule 
generation. 
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Abstract. In the manufacturing industry, the key to retaining a competitive 
advantage lies in increased yield and reduced a number of reworks. Determining 
the optimal parameters for the process so that the quality characteristics can meet 
the target is an important strategy. Traditional statistical techniques such as 
response surface methodology and analysis of variance, whose basic 
assumptions must be met, are generally used in this regard. In recent years, 
artificial intelligence has reached a sufficient level of maturity and is extensively 
being used in various domains. This paper proposes a system based on the 
modified particle swarm optimizer (PSO) and the adaptive network-based fuzzy 
inference system (ANFIS) to determine the process parameters. A perturbed 
strategy is incorporated into the modified PSO. The application of this system is 
then demonstrated with the determining of parameters in the wire bonding 
process in the IC packaging industry. Moreover, the performance of the modified 
PSO is evaluated with testing functions. The results show that the modified PSO 
yielded a superior performance to traditional PSO. In the optimization of the 
process parameter, the modified PSO is able to find the optimal solution in the 
ANFIS model. 

Keyword: wire bonding process, determination of process parameters, modified 
particle swarm optimizer, adaptive network-based fuzzy inference system. 

1    Introduction 

Businesses in the high-tech industry are faced with increasing competition. Given the 
high cost of raw materials, the key to survival in this industry lies in increased yield. As 
far as optimizing the process parameters is concerned, the engineers’ priority has 
become using efficient and convenient methods to adjust controllable parameters in 
                                                           
∗ Corresponding author. 
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order to bring quality characteristics close to the desired target. Traditional statistical 
techniques such as analysis of variance and response surface methodology are 
generally used to determine the process parameters ([1], [2], [3], [4], [5], [6], [7]). 
However, if such techniques are to be applicable, their basic assumptions must be met. 
This paper proposes an artificial intelligence-based system in determining the process 
parameters. 

The particle swarm optimizer (PSO) was an evolutionary computation first proposed 
by [8]. Like bird flocking, fish schooling, and swarm theory, PSO was inspired by the 
social behavior of animals. In executing the PSO, every individual particle moves in 
accordance with a randomized velocity in the flying experience of itself and 
others in the same swarm. Unlike traditional genetic algorithms, PSO possesses 
memory, so the optimal solution for the swarm in execution will be memorized. 
Individual particles will also memorize the personal best solution. The velocity of 
every particle will be updated accordingly. PSO, when used in the optimization of 
process parameters, is deemed a very useful approach ([9], [10]). Trelea [11] analyzed 
how the selection of parameters in PSO affected convergence and the performance of 
finding the solution through dynamic system theory. 

The adaptive network-based fuzzy inference system (ANFIS) is basically a fuzzy 
neural network. First proposed by [12], ANFIS systematically generate fuzzy rules 
from the training data of input and output. This is a supervised neural network based on 
fuzzy theory, which has been in extensive use in the prediction and control domain. Cai 
et al. [13] used ANFIS to predict the state-of-charge of high power in a rechargeable  
 

Multiple
ANFIS

Learning model 

Controllable
parameters 

Quality  
characteristics

PPSO

Optimum parameter 

Optimization model 

 

Fig. 1. The framework of the proposed method 
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battery, whose performance was then compared with the back-propagation artificial 
neural network (BPN). In this simple testing, it is found that ANFIS outperformed 
BPN. Mar and Lin [14] used ANFIS to formulate rules in controlling the speed of cars 
to avoid collisions. ANFIS were used in other areas by [15], [16], [17], [18]. 

This paper, therefore, proposes a system for determining the process parameters by 
using ANFIS as the simulation model. A modified PSO is then used to determine the 
optimal process parameters. A perturbed strategy is also incorporated into the modified 
PSO to better avoid caving into the local optimum. This method is therefore called 
PPSO. The application of the method is then demonstrated and tested with the finding 
of process parameters for the second bonding process, which is an important step in the 
IC packaging industry. Figure 1 is the framework of the proposed method. 

2   The Architecture of the Proposed Approach  

2.1   The Integrated System 

Figure 1 shows that the learning process of the proposed method is multiple ANFIS, its 
trained input being the controllable parameters of the process, and the output being the 
quality characteristics. Once the input/output is established by multiple ANFIS, PPSO 
algorithm is then used to find the optimal process parameters. 

2.2   PPSO Algorithm 

The procedure for the algorithm is shown in figure 2. Since the quality characteristic of 
this example is the larger-the-better case, PPSO is basically a maximum problem. The 
PPSO algorithm, unlike traditional PSO algorithms, includes the perturbed strategy. Its 
implementation is as follows: 

Step 1. (Initial solution): Randomly generate L initial solutions. 
Step 2. (Update the velocity): The calculation of every particle in the PPSO algorithm is 

moved by two sets of information, which are the current optimal solution and 
the optimal solution for individual particles. PPSO algorithm moves the whole 
group of particles toward the optimal solution through the global optimum 
(gbest). Individual particles perform the calculation in accordance with their 
personal memory. The particles update their velocity as follows: 

( ) ( )1
1 1 2 2

k k k k
ij ij ij ij j ijv wv c rand pbest s c rand gbest s+ = + − + −            (1) 

where k
ijv  is the velocity of particle i at controllable parameter j at iteration k. w 

is the inertia weight within the range [0, 1]. 1c and 2c  are two constants; rand1 

and rand2 represent the uniformly random value between 0 to 1. k
ijs  is the 

position (solution) of particle i at controllable parameter j at iteration k. pbestij is 
the value of the optimal solution of particle i at controllable parameter j. gbestj 
is the value of the global optimum at controllable parameter j. The initial 
velocity is generated randomly. 
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Step 3. (Update position): The update of the solution for every particle is as follows: 

1 1k k k
ij ij ijs s v+ += +                                 (2) 

Step 4. (Obtain quality characteristic): The quality characteristics are obtained through 
a model learned by ANFIS.  

Generate randomly 
the initial solution 

Generate quality characteristics 
by ANFIS, and let gbest and pbest

Let k = 2 

Let i = 1 

Update the velocity 
for particle i

Change position 
for particle i

i = i + 1 

i = L ? 

r < mr ? 

Execute perturbed 
strategy 

Generate quality characteristics 
by ANFIS, and update gbest and 

pbest

k = K ? 

k = k + 1 

End

No

Yes 

Yes 

No

No

Yes 

 

Fig. 2. Flow chart of the PPSO 

Step 5. (Perturbed strategy): This is the key step in the modified PSO. When a random 
value between [0, 1] r < the perturbed rate pr, the perturbed strategy is executed. 
Its procedure is as follows: 
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begin 
   if r < pr 
      for i = 1 to L 

         { }|k k
ij iv j E∈ ← a random value between [a, b]; 

      end for 
   end if 
end 
where a and b are adjustable parameters. A controllable parameter of particle 

i, k
iE , is chosen randomly at iteration k.  

3   Proposed Algorithm Test 

This section compares the performance of the PPSO proposed by this paper and the 
PSO through the testing functions, the objective being maximum equations (3)-(6).  
The algorithm is run on every function 100 times; the initial solution is generated with 
the uniform random number between [–5, 5]. The parameter of the algorithm is w = 0.7, 
the number of particles = 200, and the number of iterations = 7000. Moreover, 
parameters c1 = 1.2 and c2 = 1.2 are used in equations (3)-(5). Parameters c1 = 1.2 and  
c2 = 0.7 are used in equation (6). 

(a) (b) 

(c) (d) 
 

Fig. 3. Convergence process of PPSO and PSO in the (a) f1, (b) f2, (c) f3, and (d) f4 
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1
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f z
=

= −∑                                                                (3)  

   ( ) ( )
1 2 22

2 1
1

1 100 1
N

i i i
i

f z z z
−

+
=

⎡ ⎤= − × − + −⎢ ⎥⎣ ⎦∑                                    (4) 

  ( )2
3

1

1 10 10COS 2
N

i i
i

f N z zπ
=

⎡ ⎤= − × + −⎣ ⎦∑                                   (5) 

Table 1. Result of the algorithm test 
g

1. Tested function Optimal solution 
 Equation (3) 

iz =0 f1 (zi) = 1 

 PSO PPSO 

 Min. Avg. Max. a Min. Avg. Max. 
N = 3 1.000 1.000 1.000 100 1.000 1.000 1.000 100
N = 6 1.000 1.000 1.000 100 1.000 1.000 1.000 100
N = 9 1.000 1.000 1.000 100 1.000 1.000 1.000 100
N = 12 1.000 1.000 1.000 100 1.000 1.000 1.000 100
2. Tested function Optimal solution 
 Equation (4) 

iz =1 f2 (zi) = 1 

 PSO PPSO 

 Min. Avg. Max. Min. Avg. Max. 
N = 3 1.000 1.000 1.000 100 1.000 1.000 1.000 100
N = 6 1.000 1.000 1.000 100 1.000 1.000 1.000 100
N = 9 –2.986 0.798 1.000 92 1.000 1.000 1.000 100
N = 12 –3.320 –0.589 1.000 16 –2.987 0.920 1.000 98
3. Tested function Optimal solution 
 Equation (5) 

iz =0 f3 (zi) = 1 

 PSO PPSO 

 Min. Avg. Max. Min. Avg. Max. 
N = 3 0.005 0.970 1.000 97 1.000 1.000 1.000 100
N = 6 –4.970 –0.264 1.000 28 1.000 1.000 1.000 100
N = 9 –10.940 –3.447 1.000 3 1.000 1.000 1.000 100
N =1 2 –17.904 –9.029 –0.990 0 1.000 1.000 1.000 100
4. Tested function Optimal solution 
 Equation (6) 

iz =0 f4 (zi) = 1 

 PSO PPSO 

 Min. Avg. Max. Min. Avg. Max. 
N = 3 1.000 1.000 1.000 100 1.000 1.000 1.000 100
N = 6 0.988 0.999 1.000 85 1.000 1.000 1.000 100
N = 9 0.988 0.998 1.000 73 1.000 1.000 1.000 100
N = 12 0.975 0.994 1.000 48 0.993 1.000 1.000 99
a: is the number of optimal solutions obtained  
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Table 1 shows that in all 100 runs, except for when N = 12, PPSO is able to find the 

global optimum for every testing functions, and yielded superior performance to the 
PSO. Figure 3 shows the improvement of the average best solution for equations 
(3)-(6). The results indicate that the perturbed strategy can effectively prevent this 
algorithm from caving into the local optimum. 

4   Example Application of the Approach 

This section demonstrates the applicability of the proposed method through the 
optimization of parameters for the second bonding process. 

4.1   The Wire Bonding Process 

In semi-conductor manufacturing, the wire bonding process is the key technology in 
the packaging industry. The goal is to connect the chip with the inner lead in the lead 
frame with a fine gold wire so that the electronic signals of the IC chips can be 
transmitted. The bonding point should be firmly secured, or the IC chip will not 
function. Therefore, the wire bonding process plays a pivotal role in the whole IC 
packaging industry, the key point being the finding of the optimal parameter for the 
wire bonding process. During the bonding process, the tip of the gold wire is first 
molten into a small ball, and then pressed onto the first bonding point. The gold wire is 
then placed in the designated path, and pressed onto the second bonding point, as 
shown in figure 4. 

The data used in this paper is the actual process output [19]. The main controllable 
parameters in the second bonding process include: bonding force, bonding time, the 
intensity of ultrasonic power. Its quality characteristic is wire pull. 

Second bond 

First bond 

Gold wire 
Hollow capillary

Clamp

Inner lead 
Bond pad  

Fig. 4. A typical wire bonding process 
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4.2   The Learning Result of ANFIS 

In order to enhance the learning of ANFIS, the controllable parameters and quality 
characteristics are first pre-processed. This means normalizing the original data so as to 
avoid overlooking the importance of variables of a smaller range if the range of the 
variables in the trained data became wider. This will prevent the entire network 
learning being dominated by variables with a greater range, and also affect the entire 
learning result of ANFIS. Therefore, this experiment normalized the quality 
characteristics and the parameters between [0, 1]. 

Table 2. The learning result of ANFIS 

 Membership function Number of 
membership 

 Triangle Trapezoid Bell-shaped 
  Training 

error
Testing 
error

Training
error

Testing 
error

Training 
error

Testing error

3-3-3  0.083153 0.15436 0.083241 0.16392 0.083241 0.12689 
4-6-4  0.038244 0.21061 0.061158 0.09495 0.049367 0.11436 

6-4-6  0.037719 0.34165 0.061158 0.44553 0.049267 0.42281 
 

The parameters of ANFIS learning include: membership function and the number of 
memberships among the variables. In terms of membership function, triangle, trapezoid 
and bell-shape are chosen for testing. There are also three sets of numbers chosen as the 
number of membership among the variables. Table 2 shows that when the membership 
function is a trapezoid and the numbers of memberships are [4-6-4], the root mean 
square error (RMSE) is the smallest. Therefore, this paper adopts this model. Figure 5 
shows the response output for quality characteristic in ANFIS. 

(a) (b)  

Fig. 5. The response surface showing the effect of (a) bonding force and the intensity of 
ultrasonic power, (b) bonding force and bonding time on the wire pull 
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4.3   The Proposed Algorithm Implementation 

In the packaging industry, the larger the quality characteristic of the second bonding 
process, the better. This paper uses the PPSO algorithm to find the largest wire pull for 
the gold wire. 

Table 3 shows the result of PSO and PPSO algorithm in 30 runs at the second 
bonding process. The result indicates that the PPSO algorithm is able to generate the 
near-optimal parameters for the manufacturing process under the ANFIS-trained model 
in all 30 runs. 

Table 3. Result of the optimization algorithm for the example 

Algorithm  Max. Min. Avg. Standard 
deviation 

PSO  1.0000 0.9583 0.9917 0.0167 

PPSO  1.0000 1.0000 1.0000 0.0000 

5   Conclusion 

Manufacturing in the high-tech industry is a complex undertaking. Designing an 
efficient and easy decision-making system to determine the parameters for processing 
is, therefore, of paramount importance. Traditional statistical techniques may be 
restrained by basic assumptions. Therefore, this paper proposes a system for 
determining the optimal parameters for the process based on artificial intelligence. 

This paper uses an adaptive network-based fuzzy inference system to construct the 
simulation model for the process. A modified particle swarm optimizer algorithm is 
then used to determine the optimal parameter for the process. This paper then tested the 
performance of the PPSO algorithm with testing functions, the result of which shows 
that the perturbed strategy used by PPSO is effective at avoiding caving into the local 
optimum. This paper further demonstrated the application of the proposed approach 
with the second bonding process in the IC packaging industry. As far as the optimal 
parameter in this example is concerned, figure 5 shows that a local optimum exists in 
the relationship model of controllable parameters and quality characteristics. The result 
of the testing also shows that this PPSO algorithm is able to find the global optimum 
under the ANFIS model.  
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Abstract. In recent years, the wireless sensor network (WSN) is employed a 
wide range of applications. But existing communication protocols for WSN ig-
nore the characteristics of collected data and set routes only according to the 
mutual distance and residual energy of sensors. In this paper we propose a 
Data-Aware Clustering Hierarchy (DACH), which organizes the sensors based 
on both distance information and data distribution in the network Furthermore, 
we also present a multi-granularity query processing method based on DACH, 
which can estimate the query result more efficiently. Our empirical study shows 
that DACH has higher energy efficiency than Low-Energy Adaptive Clustering 
Hierarchy (LEACH), and the multi-granularity query processing method based 
on DACH brings more accurate results than a random access system using same 
cost of energy. 

Keywords: wireless sensor network, communication protocol, data distribution, 
multi-granularity query. 

1   Introduction 

In recent years, the wireless sensor network.(WSN) [1, 2] is employed a wide range of 
applications in military security, environmental monitoring, and many other fields. 
Except some high accuracy required applications (for example, applications in  
military), most applications of WSN are cost driven. Users want to acquire more in-
formation with less energy cost. In order to minimize the energy consumption and 
maximize the life span of the network, clustering techniques based on data fusion [3] 
such as LEACH [4], LEACH-C [5], BCDCP [6] etc. have been proposed.  

All above cluster-based protocols try to find the shorter routes for data transmis-
sion and spread energy consumption around all the sensors more evenly. The sensors 
are organized into clusters according to the mutual distance and residual energy of 
them. In such scheme, the process of data collection is independent with the charac-
teristics of collected data. But in many applications of WSN, data collected from 
some adjacent sensors are similar. The sensing field can be divided into regions with 
different characteristics. For example, in a building site, the temperature data col-
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lected from indoor sensors and outdoor sensors may be similar respectively. However, 
during the running of the wireless sensor network, we can estimate data distribution in 
the network using some data mining methods. And based on this information, the 
clusters can be organized not only according to the mutual distance, but also the char-
acteristics of collected data. We can build the clusters so that data collected from 
sensors in a same cluster are similar. This method can compress data volume more 
efficiently after data fusion and prolong the network’s life span further. Users can 
acquire more information from the network with less energy cost. 

In this paper, we propose a Data-Aware Clustering Hierarchy (DACH), which is 
not only energy-efficient, but also capable of obtaining data distribution from the 
network. In DACH, data distribution is estimated by a data mining process based on 
collected data and the sensors are distributed into a clustering hierarchy according to 
the discriminations between the collected data. Furthermore, we introduce a multi-
granularity query processing method based on DACH to estimate the query results 
using a few sensors’ data instead of all of them. 

Our Contributions 
1. We propose a data mining method to estimate the data distribution in wireless sen-
sor network, and based on it we introduce a new clustering structure and also a new 
communication protocol for WSN. 
2. We propose a multi-granularity query processing method based on DACH to esti-
mate the query results using a few sensors’ data instead of all of them. 

2   Data-Aware Clustering Hierarchy 

2.1   Data Distribution in Wireless Sensor Network 

In many applications of wireless sensor network, the sensing field can be divided into 
a series of regions with different characteristics. In the example mentioned in section 
1, the whole building site contains the indoor regions and the outdoor regions, and the 
space inside a building still can be divided into different building stories, rooms and 
areas. It is possible that the temperature is very different between some regions (for 
example, the indoor regions and the outdoor regions). And on the other hand, it is 
similar in some regions (for example, the areas in a same room). We refer to this 
property as the “Regional Property”. 

As the regional property of the sensing field, data collected from sensors deployed 
in the field also have the regional property. In above example, data collected from 
outdoor sensors may be very different from data collected from indoor sensors, as the 
difference of the physical conditions between outdoor and indoor regions. And in the 
mean time, data collected from sensors in a same room may be similar. 

Based on the regional property, we can estimate the data distribution by the dis-
crimination between data collected from different sensors or sensor sets (discrimina-
tion of sensors or discrimination of sensor sets for short). We can consider data  
collected from each sensor as a time series and define the discrimination of sensors by 
the discrimination of the time series. In this paper, the time series, denoted by TS, 
with length n is: TS=TS1, TS2, …, TSn. 
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Def 1: Discrimination of sensors: Data collected from a sensor in a time interval 
compose a time series. We use Euclidean distance to define the discrimination be-
tween sensors. Furthermore, the value of the discrimination is divided by n1/2 to 
eliminate the influence of the length of time series:  
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Moreover, we can estimate the discrimination between two sensor sets by the dis-
crimination between centroids of corresponding time series of sensors in each set. 

2.2   Data-Aware Clustering Hierarchy 

As an example to illustrate our motivation, we use a sensor network to monitor the 
temperatures of a building site as shown in figure 1a. The gray region indicates out-
door regions, and the white part indicates indoor ones. Using traditional clustering 
methods, the clustering structure in a certain round may be organized as Figure 1b [4]. 
It shows that there are 17 nodes in the cluster A, nine of which are in the gray region 
and other eight are in the white one. Data collected from sensors in this cluster may be 
very different between each other.  

An ideal clustering structure is shown in figure 1c. It still contains 5 clusters. The 
difference from figure 1b is that each cluster represents a section of outdoor or indoor 
regions. So this structure is more data-aware. Data collected from sensors in same 
clusters are similar. Based on this property, we can acquire more information from 
WSN using less energy. We can compress data volume more efficiently after data 
fusion and prolong the network’s life span further. Moreover, in some applications of 
approximate queries, we can only query a few sensors’ data instead of all of them. 

 

Fig. 1. (a) A region where we deployed wireless sensors to monitor temperature; (b) The clus-
tering structure in a certain round using traditional cluster method; (c) The clustering structure 
based on data distribution; (d) The clustering structure on the higher level; (e) A data-aware 
clustering hierarchy. 
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In the figure 1d, similar clusters in figure 1c are merged to larger clusters respec-
tively. The left cluster contains all the sensors in the outdoor regions, and the right 
one contains sensors in the indoor regions. The cluster structures in these two figures 
constitute a clustering hierarchy showed in figure 1e.  

2.3   Algorithm for Building Data-Aware Clustering Hierarchy 

In this section we propose an algorithm for building the data-aware clustering hierar-
chy based on topological structure of network and data distribution. To facilitate our 
discussion, we first give some general definitions: 

Def.2 Relay: The indirectly transmission from node A to node B through node C is 
called Relay. The node C is called Relay node. 

Def.3 Relay Region: Given a node s and a relay node r, the relay region of s with 
respect to r is defined as follows: 

}|{),(, crxsrsxxrsR c ++>= ααα
α  . (2) 

where ||xy|| denotes the distance between node x and node y, α and c are two constant 
parameters which equal to 4 and ETX/εamp respectively according to the above radio 
model. Obviously, the nodes in the relay region of s with respect to r can be reached 
with least energy by relaying r. 

Def.4 Neighbor: The node not in any relay region of s is called neighbor of s. For-
mally, we define it as follows: 

)},(,|{)( ,, rsRurusN cc αα ∉∀=
 . (3) 

Furthermore, two sensor sets A and B are called neighborhood sets if there are two 
neighborhood sensors a and b, where sensor a is in the set A and b is in set B. 

Before building a k-level clustering hierarchy, we define a series of thresholds, δ0, 
δ1, …, δk-2 satisfying δk-2>δk-1>…>δ1>δ0=0. The thresholds can be specified according 
to the sensing scenarios. For example, in a temperature monitoring system, the 
thresholds can be specified as 0, 0.5, 1, 2, 4 (℃).  

Assume that the base station save data collected from every sensors as a time se-
ries. In the lowest level (level 0), we initialize a set for each sensor in the network and 
compute the discrimination between each pair of sets using following equation:  
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Then, we build clusters on higher level in a bottom-up way by following steps: 

1. Find the pair of sets with minimum mutual discrimination dmin; 
2. If dmin is larger than the threshold δi, output current sets as the clustering struc-

ture of level-i; 
3. Combine these two sets into a new set, compute the centroid of all the time se-

ries in the new set and update its discrimination with other sets 
4. Repeat steps 1-3 until the minimum discrimination is larger than the maximum 

threshold δk-2 
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5. Combine all the remaining sets into an only set as the cluster on the highest 
level, which contains all the sensors in the network. 

After that, we obtained a clustering hierarchy. Every set on every level contains a 
series of subset on the lower level which is called as “descendent sets”. And in the 
mean time, it is also a part of a set on the higher level which is called as “ancestor 
set”. 

3   A Communication Protocol Based on DACH 

Based on the DACH proposed in last section, we introduce a novel communication 
protocol for WSN. We also call this communication protocol as DACH for short in 
the context of not leading to any ambiguity. DACH operates in three phases: initiali-
zation, setup and data transmission.  

Initialization Phase: When the sensors are deployed on the field or the topological 
structure of the network is changed (e.g. when the energy of some sensors is ex-
hausted or the properties of the circumstance are changed), the network enters the 
initialization phase. 

During the initialization phase, the base station receives data from all sensors in a 
given period and generates a time series for every sensor. Based on these time series, 
the base station computes the discriminations between each pair of sensors and builds 
the clustering hierarchy using the method proposed in section 2.3. 

Setup Phase: When the system is initialized, the network enters the setup phase. The 
main task in this phase is to generate routing path and schedule for each node.  
The base station receives information of the current energy status from all the nodes 
in the network. Based on the feedback and the clustering hierarchy, base station gen-
erates the routing path in a bottom-up way. 

For each cluster, the algorithm selects one node as the cluster-head. For level 0, 
since each cluster only contains one node, each node is a cluster-head. For each clus-
ter C on level-i (i>0), the cluster-head must satisfy following two conditions: 

1) It is a cluster-head of one of its children clusters; 
2) Its residual energy is the highest among cluster-heads of all its children clusters. 

Now the routing path of each sensor node can be obtained easily. It first transmits 
data to the corresponding cluster-head which subsequently transmits data to the clus-
ter-head of its parent cluster. This process continues until the data is transmitted to the 
only cluster-head on the highest level. And the data is sent to the base station finally. 

The cluster-head of a level-i cluster and all the cluster-heads in its children cluster 
compose a sub-network. To improve the energy efficiency, in this sub-network the 
sensors transmit data using a multi-hop method. 

Data Transmission Phase: The data transmission phase consists of three major activi-
ties: data gathering, data aggregation and data routing. Using the scheme described 
above, each sensor node transmits sensed data to its corresponding cluster-head. For 
each cluster-head, once receiving data from all contained nodes, it aggregates the col-
lected data into a data of smaller volume and sends it to cluster-head on higher level. 
The cluster-head on highest level transmits the aggregated data to the base station. 
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For spreading energy consumption between sensors more evenly, after a period of 
data transmission phase, the network will enter the setup phase again, reselect the 
cluster-head and regenerate the routing path for every sensor. 

4   Multi-granularity Query Processing Method Based on DACH 

In most performance-driven application, WSN may have less stringent performance 
requirements and can be implemented at much lower cost. J. Frolik proposed random 
access techniques to help facilitate such requirements [9]. In [9] the quality of service 
(QoS) measures application reliability with a goal of energy efficiency. According to 
the user-defined quality of service, the random access system selects a proportion of 
sensors for data gathering. These sensors are called “active sensors”. But as the active 
sensors are selected randomly, the data collected by a random access system may not 
be able to simulate the whole data set appropriately. 

In this section, we discuss our multi-granularity query processing method based on 
DACH for cost-driven applications. Since in each cluster, the data of all nodes are 
similar, we can execute the query on the cluster-heads on certain level instead of all 
sensor nodes. 

The multi-granularity queries have the following basic structure: 

 SELECT expr1, expr2… 
 FROM network 
 WHERE pred1 [and|or] pred2 
 LEVEL ON levelNum 

The SELECT, FROM and WHERE clauses are defined as the standard SQL. The 
LEVEL ON clause specifies the level of the query. From the definition of clustering 
hierarchy, it can be seen that the data of all nodes are similar in a certain cluster, and 
the lower the level, the number of the cluster-heads is larger and the data are more 
similar. In other words, the user can specify the number of active sensors and the 
approximate estimating error using the LEVEL ON clause. 

Assume the levelNum be k, the cluster-heads on level k estimate the data of the 
sensors in the same cluster based on its own data. That is, the query is processed on 
the cluster-heads on level-k. 

Because of the similarity of data collected from sensors in the same cluster, our 
method can estimates the query result accurately. Data gathered by the random access 
system may omit data of sensors in some small and special region because the prob-
ability of sampling data in it is relatively low. On the contrary, our method will not 
ignore these regions. 

5   Performance Evaluations 

To test the performance of DACH and the multi-granularity query processing method, 
we simulate an environment temperature monitoring system. Using this simulated 
system, we compare the energy efficiency of DACH with LEACH and the estimating 
accuracy of the multi-granularity query processing method with the random access 
system presented in [9]. All the algorithms are implemented in JAVA. The test  
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environment is PC with AMD Athlon processors 3000+, 1GB of RAM, and running 
Windows XP Professional. 

We use the network model and radio model discussed in [4, 5, 6] and simulate the 
temperature information using a bitmap. The system generates the coordinates of  
the sensors randomly and set the parameters of temperature based on RGB colors of 
the corresponding pixels. The value of R/10 represents the average temperature in one 
day. The value of G/10 represents the maximum temperature in one day. And the 
value of B/10 represents the time of the maximum temperature. We simulate  
the intraday temperature by sinusoid. The temperature on point (x, y) at time t is  
denoted by: 

)12/)610/sin((10/)(10/ ),(),(),(),(),,( π⋅+−⋅−+= yxyxyxyxtyx BxRGRT  . (5) 

We assume that the base station locates at point (-20, -20). Each node is assigned 
an initial energy of 2J. The number of data frames transmitted for each round is set at 
10; the data message size for all simulations is fixed at 500 bytes, of which 25 bytes is 
the length of the packet header. 

 

Fig. 2. (a) The average residual energy of sensors of DACH and LEACH at different number of 
operation rounds. (b) The number of nodes that remain alive at different number of rounds. (c) 
The estimating errors of the multi-granularity query processing method and that of the random 
access system corresponding to percentages of sensors in service. 

In the first experiment we compare the energy efficiency of DACH and LEACH. 
We simulate a 50m×50m network with 200 sensors. Figure 2a shows the average 
residual energy of sensors of DACH and LEACH at different number of operation 
rounds. It can be seen that DACH has more desirable energy efficiency than LEACH.  

Figure 2b shows the number of nodes that remain alive at different number of 
rounds. After 100 rounds, the sensors in the LEACH die more quickly than DACH. 
And when all sensors are dead in the LEACH, more than 150 sensors in the DACH 
remain alive. It indicates that DACH distributes the energy load among the sensors in 
the network more efficiently. 

In the second experiment, we compare the accuracy of the query results between 
the multi-granularity query processing method based on DACH and the random ac-
cess system. We simulate a 50m×50m network with 100 sensors and compute the 
average temperature in the network. The figure 2c shows that our method always 
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processes the query more accurately than the random access system. On average, our 
method reduces the estimating error by 0.5 degrees. 

6   Conclusions 

In this paper we proposed a data-aware clustering hierarchy for wireless sensors net-
work (DACH) and a multi-granularity query processing method based on DACH. 
DACH divides the sensors into clusters according to the data distribution as well as 
mutual distance between sensors. Using the similarity of data collected from sensors 
in same clusters, the multi-granularity query processing method estimates the query 
result only by the data from cluster-heads on certain level. The simulation results 
show that DACH has much higher energy efficiency than LEACH. And the estimat-
ing errors of the multi-granularity query processing method are less than random 
access approach. 
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Abstract. Locally linear embedding is a popular manifold learning algorithm for 
nonlinear dimensionality reduction. However, the success of LLE depends 
greatly on an input parameter - neighborhood size, and it is still an open problem 
how to find the optimal value for it. This paper focuses on this parameter, pro-
poses that it should be self-tuning according to local density not a uniform value 
for all the data as LLE does, and presents a new variant algorithm of LLE, which 
can effectively prune “short circuit” edges by performing spatial search on the 
R*-Tree built on the dataset. This pruning leads the original fixed neighborhood 
size to be a self-tuning value, thus makes our algorithm have more topologically 
stableness than LLE does. The experiments prove that our idea and method are 
correct. 

Keywords: LLE, Manifold Learning, Nonlinear Dimensionality Reduction, 
R*-Tree, Neighborhood size. 

1   Introduction 

Dimensionality reduction is introduced as a way to overcome the curse of dimen-
sionality when dealing with high-dimensional data and as a modeling tool for such 
data. There are usually two kinds of methods for dimensionality reduction: linear and 
nonlinear methods. Linear subspace methods are the most popular linear methods, 
including PCA (Principle Component Analysis), FLA (Fisher Linear Analysis), and 
ICA (Independent Component Analysis). However, we will only concentrate on the 
nonlinear methods in this paper because these methods pay more attention to 
nonlinearity in the dataset, and nonlinearity is more universal than linearity in the real 
world.  

Recently, some manifold learning methods have been proposed to perform nonlinear 
dimensionality reduction, including LLE (Locally Linear Embedding) [1][8], ISOMAP 
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[2], and Eigenmaps [3]. All the above nonlinear algorithms share the same framework, 
consisting of three steps: 

1. Constructing a K nearest neighborhood graph over the dataset. 
2. Constructing a “normalized” matrix M. 
3. Calculating spectral embedding based on the eigenvectors of M. 

The neighborhood size K which has to be specified manually in the first step plays 
an important role in constructing a reasonable neighborhood graph for nonlinear di-
mensionality reduction. A large value of K tends to introduce “short circuit” edges [4] 
into the neighborhood graph, while a too small one may lead to an unconnected graph, 
both cases will distort the results of nonlinear dimensionality reduction. [5] and [6] 
tried to select the optimal value for K automatically based on a predefined cost func-
tion. Two main issues arise in this approach. First, it is an enumeration method in fact, 
and very time consuming. Second, the cost function is very difficult to define, and we 
do not think the cost functions used in [5] and [6] are reasonable and effective. We will 
give our explanation and proof in Section 3 and Section 5.  

In this paper, we focus on the selection of neighborhood size in manifold learning 
methods for nonlinear dimensionality reduction, and concentrate on LLE without loss 
of generality. We propose that K should be self-tuning according to local density not a 
uniform value for all the data, and present a new variant algorithm of LLE, which can 
effectively prune “short circuit” edges by performing spatial search on the R*-Tree [7] 
built on the dataset. This pruning leads the original fixed neighborhood size to be a 
self-tuning value, thus makes our algorithm have more topologically stableness than 
LLE does.  

2   Background 

2.1   LLE Algorithm 

Locally Linear Embedding [1][8] tries to find meaningful low-dimensional structure 
hidden in high-dimensional data. It maps a dataset 1{ ,..., }NX X X= , D

iX ∈ , to a data 

set 1{ ,..., }NY Y Y= , d
iY ∈ , where d D . Formally the algorithm consists of three 

steps: 
Step 1. For each data point iX , find its K nearest neighbors set 

{ | , }ji i iNE X j J J K= ∈ = . 

Step 2. Compute the weights ijW  that best reconstruct each data point iX  from its K 

nearest neighbors by solving a least squares problem as follows. 
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Step 3. For each data point iX , compute the vector iY  which best fits the recon-
struction weights by solving the optimization problem as follows. 
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This optimization problem can be solved by calculating the non-zero bottom d ei-
genvectors of matrix ( ) ( )TM I W I W= − − , these eigenvectors form rows of matrix Y. 
We also list two properties the matrix M satisfies as follows, and these properties will 
help us to understand some results of LLE in Section 3. 

1. M is symmetric and positive semi-definite. 
2. M has N non-negative, real-valued eigenvalues 2 1... 0Nλ λ λ≥ ≥ ≥ = , and the cor-

responding eigenvector to 0 is the constant one vector 1 . 

2.2   R*-Tree 

Since 1984 when Antonin Guttman first proposed R-Tree, it has become one of the 
most popular spatial index mechanisms which can help retrieve spatial data more ef-
ficiently according to their spatial locations. During these years, researchers and prac-
titioners have applied R-Tree everywhere, from CAD and GIS to Multimedia Infor-
mation Retrieval, and have made many variations including R+-Tree, R*-Tree, 
TV-Tree, X-Tree, Pyramid-Tree. Details about R-Tree and its variations can be found 
in [9]. 

R*-Tree [7] which is used in our topologically stable LLE algorithm, is also a variant 
of R-Tree. It deals with the problem as follows. Given a spatial dataset: 1{ ,..., }nS s s= , 

m
is ∈ , and a m-dimensional bounding box represented by 1 2( , ,..., )mI I I I= , iI  is a 

closed bounded interval [ , ]i ia b , using what spatial index mechanism can we retrieve the 

data { | ,i i iR r r S r= ∈ locates in }I  quickly and precisely? Based on the R*-Tree built on S, 

we can do the retrieval very easily. Particularly, we construct I in our algorithm as 
follows. Given any location 1( ,..., ) m

k k kml l l= ∈  and a positive real-valued range ε , iI  

is a closed bounded interval [ , ]ki kil lε ε− + . 

3   Problem Formation and Related Work 

As we can see, LLE has one free parameter -K- the number of neighbors used in Step 1. 
K controls the range of neighbors based on which we reconstruct a data point, and we 
think the optimal K should satisfy two requirements at the same time: 

1. The local linearity is preserved in K nearest neighbors. 
2. K is as large as possible. 

The first requirement is easy to understand, as for requirement 2, we can see that 
the larger K is, the more information the neighbors can provide for reconstruction in 
Step 2. But it is very difficult to select the optimal K satisfying the two requirements 
manually. A small K can divide a continuous manifold into unconnected 
sub-manifolds. Fig. 1a-c illustrate the result of LLE performing on modified S-Curve 
dataset with a small K. 



806 T. Xia et al. 

 

Fig. 1. (a) A broken S-Curve dataset with 2000 points. (b) The corresponding neighborhood 
graph on the broken S-Curve where K=7. (c) The result of LLE over the broken S-Curve where 
K=7. (d) A S-Curve dataset with 2000 points. (e) The corresponding neighborhood graph on 
S-Curve where K=20, the edges circled by a ring are “short circuit” edges. (f) The result of LLE 
over S-Curve where K=20. 

Fig. 1a-c show that LLE performs very badly when K is not large enough to make 
the entire graph a connected one. We can interpret this situation when considering the 
properties of matrix M which are mentioned in Section 2.1. Considering M consists of 
C connected components (C=2 in Fig. 1), without loss of generality, we assume that the 
data points are ordered according to the connected components they belong to. In this 
case, M has a block diagonal form: 

1( ,..., )CM diag M M= . Note that each block iM  has the 

same properties as M. Thus, we know that M has eigenvalue 0 with multiplicity C, and 
the corresponding eigenvectors are the indicator vectors of the connected components 
with 1 at the positions of one block and 0 at the positions of the other blocks. LLE 
assumes the multiplicity of eigenvalue 0 of M is 1, so it performs badly when the 
multiplicity is lager than 1.  

In contrast, a large K tends to violate the requirement 1 through introducing “short 
circuit” edges [4] into the neighborhood graph. Fig. 1 d-f show the failure caused by 
“short circuit” edges. 

Some work [5][6] focused on choosing the optimal K automatically. They usually 
choose an interval of possible values of K firstly, then determine the optimal K by 
calculating the predefined cost function for each candidate in the interval. These 
methods are computationally demanding as a result of enumerating every candidates of 
K. And the cost function measuring the quality of input-output mapping is hard to 
define. [2] proposed to use the residual variance to evaluate the mapping. The residual 
variance in [2] is defined as 21

M YD D
ρ− , where YD  is the matrix of Euclidean distances in 

the low-dimensional embedding, MD  is a best estimate of the intrinsic manifold dis-
tances MD , and ρ  is the standard linear correlation coefficient. But how to compute 

MD  which is a good estimate of real manifold distances MD , especially for data in real 

world, is a very hard problem. [5] and [6] used 2arg min(1 )
X Yopt D D

K
K ρ= −  to specify the 

optimal K. where XD  is the matrix of Euclidean distances in the high-dimensional 

input space. It is obviously wrong to take XD  as an estimate of MD , it even doesn’t 

work on S-Curve and Swiss-Roll datasets, we will demonstrate this by experimental 
results in Section 5. 
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In fact, we can calculate the exact MD  on some artificial datasets, such as S-Curve 

and Swiss-Roll. We ignore the dimensionality of height, and only discuss the compu-
tation of arc length on two-dimensional S-Curve and Swiss-Roll. The two dimensional 
S-Curve consists of connected two pieces of circular curves with opposite rotation 
orientations, the arc length between two points with angles 1θ  and 2θ  (measured in 

radians) is simply: 1 2*s r θ θ= − , where r is the radius. 

In polar coordinates, two-dimensional Swiss-Roll is defined as r θ= . So the arc 
length is: 

2

1

2
2 dr

s r d
d

θ

θ
θ

θ
⎛ ⎞= + ⎜ ⎟
⎝ ⎠∫ 22 2

1

1
1 ln 1

2 2

θθ θ θ θ
θ

= + + + +  (3) 

We use 21
M YD Dρ− to evaluate LLE over artificial datasets in the following sections.  

4   Our Solution Based on R*-Tree 

As we can see in Section 3, it is not only difficult to specify the optimal K automati-
cally, but also unreasonable to assume that each data point share the same number of 
neighbors. In fact, LLE ignores the effect of local scaling [11], when the dataset in-
cludes subsets with different statistics there may not be a single value of K that works 
well for all the data.  

Actually, every data point should have its own optimal K, not a uniform value. The 
individual optimal K should subject to the two constraints proposed in Section 3, it 
means that for each data point, K should be as large as possible without introducing the 
“short circuit” edges into the neighborhood graph. Investigating into the “short circuit” 
edge, we can find that it usually passes by a low-density area in which very sparse data 
points are located. We can detect and prune the “short circuit” edges based on this 
property. [10] proposed the pruned-ISOMAP algorithm, which first constructs an 
neighborhood graph with a relative large K, then prunes “short circuit” edges existed 
possibly in the graph based on kernel density estimation. But the pruning based on 
kernel density estimation in [10] is computationally demanding, and needs to specify 
manually two elaborate parameters which depict the kernel function. In fact, if we just 
want to prune “short circuit” edge, we need not to know the exact local density at the 
edge, the computation of which is very time consuming. Based on a spatial index built 
on the dataset, we can do the pruning more efficiently. In this paper we use R*-Tree to 
do the pruning.   

4.1   “Short Circuit” Edge Pruning Based on R*-Tree 

As we discussed in Section 2.2, given a data point and a range, R*-Tree helps us re-
trieve its neighbors efficiently. So we can detect “short circuit” edge by counting the 
number of its neighbors based on R*-Tree. As for an edge ( , )i jE X X  connecting two 

data points iX  and jX , and , n
i jX X ∈ . We sample the bisecting point on the edge for 

the consideration of computing efficiency: ( ) / 2ij i jX X X= + . For the sample point 



808 T. Xia et al. 

1( ,..., )ij nX x x= , we perform a R*-Tree search for the neighbors of ijX  in a 

n-dimensional bounding box represented by 1 2( , ,..., )nI I I I= , where mI  is a closed 

bounded interval [ , ]m ij m ijx xε ε− + . ijε  is an important value that will be discussed later 

in this section. Now we denote the number of neighbors retrieved by the R*-Tree 
search as ijC , {0,1,2,...}ijC ∈ , and we define a metric ij ijE C=  on the edge ( , )i jE X X . A 

small ijE  means there are sparse data points located in the neighborhood of the edge, 

and it is very likely to be a “short circuit” edge, while a large ijE  means the opposite. 

ijE  is a simple and effective metric which helps us prune the “short circuit” edges 

simply by setting a threshold on it. We set 0 as the threshold in our algorithm, it means 
edge ( , )i jE X X  is recognized as a “short circuit” edge if ijE  equals 0, a normal edge if 

ijE  is larger than 0. Fig. 2 illustrates the histograms of ijE  on two neighborhood 

graphs, and shows that it is suitable for us to set the threshold to be 0. 

 

Fig. 2. (a) Neighborhood graph on S-Curve with N=2000, K=20. (b) Neighborhood graph on 
S-Curve with N=2000, K=10. (c) Histogram of ijE  on neighborhood graph in a. (d) Histogram of 

ijE  on neighborhood graph in b. 

As for ijε  which confines the searching range, it should deal with the effect of local 

scaling [11], otherwise it tends to recognize the edges in large scale as “short circuit” 
edges. It means that ijε  should be self-tuning according to the local scales, dense dis-

tribution fits to a small ijε , while sparse distribution fits to a large one. We define ijε  

for edge ( , )i jE X X  as follows. 

min( ( ), ( ))ij i jS X S Xε = , 
( )

1
( )

k n i

i i k
X NE X

S X X X
n ∈

= −∑  (4) 

Where ( )n iNE X  is the n nearest neighbors set of iX , and n=2 in our algorithm.  

4.2   The More Topologically Stable LLE Algorithm 

In summary, we propose a more topologically stable LLE algorithm as follows. 
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1. Choose a relative large K with which the neighborhood graph is connected at least 
(1%-5% of total number of data points is recommended). Then construct a K nearest 
neighborhood graph on the dataset based on Euclidean metric. 

2. Prune the “short circuit” edges. 
2.1. Create an R*-Tree on the dataset. 
2.2. For every edge ( , )i jE X X  in the K nearest neighborhood graph. 

2.2.1 Specify the bisecting point ijX . 

2.2.2 Calculate the searching range ijε  in Eq. (4). 

2.2.3 Compute ijE  by performing a R*-Tree search for the neighbors 

of ijX within ijε . 

2.2.4 Prune the edge if its ijE  equals 0. 

3. Run LLE on the pruned neighborhood graph. 

5   Experimental Results 

In this section, we present several examples to illustrate the performance of our algo-
rithm that we name as R*-Tree LLE for brevity. We give both subjective and objective 
results: visualization of output data and residual variance metric which is discussed in 
Section 3. The test datasets include S-Curve and Swiss-Roll [8].  

First, we compare R*-Tree LLE to LLE on uniformly sampled S-Curve and 
Swiss-Roll under different neighborhood sizes to illustrate the topologically stableness 
of our algorithm. Fig. 3 and Fig. 6a illustrate the comparison on 2000-point uniformly 
sampled S-Curve. Fig. 4 and Fig. 6b illustrate the comparison on 2000-point uniformly 
sampled Swiss-Roll. The residual variance in Fig. 6 is obtained by Eq. (5). 

RV_Y1M
1

21
M YD Dρ= −   RV_Y2M

2

21
M YD Dρ= −   RV_Y1X

1

21
X YD Dρ= −  (5) 

Where MD  is the matrix of manifold distances which is discussed in Section 3, 1YD  

and 2YD  are the matrices of Euclidean distances in the output low-dimensional em-

beddings of LLE and R*-Tree LLE separately. XD  is the matrix of Euclidean distances 

in the input high-dimensional space. From these figures, we can see R*-Tree LLE has 
more reasonable visual results and lower residual variances than LLE does, especially 
when the neighborhood size is large. But we also find that the performances of the two 
algorithms are similar when the neighborhood size is small. That is because the 
2000-point S-Curve and Swiss-Roll are sampled uniformly from two smooth mani-
folds, thus each data point has nearly the same optimal neighborhood size as it has 
nearly the same local linearity in its neighborhood. Meanwhile, it is not likely to in-
troduce the “short circuit” edges into the neighborhood graph when the neighborhood 
size is small. In Fig. 6a, we also show the residual variance RV_Y1X used in [5] and 
[6], it is obvious to see RV_Y1X is an improper evaluation metric for LLE as we know 
in Section 3.  
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Fig. 3. (a) Results of LLE on 2000-point uniformly sampled S-Curve under different 
neighborhood sizes. (b) Results of R*-Tree LLE on 2000-point uniformly sampled S-Curve 
under different neighborhood sizes. 

 

Fig. 4. (a) Results of LLE on 2000-point uniformly sampled Swiss-Roll under different 
neighborhood sizes. (b) Results of R*-Tree LLE on 2000-point uniformly sampled Swiss-Roll 
under different neighborhood sizes. 

Then, we give the following example to illustrate a self-tuning neighborhood size 
used in R*-Tree LLE is more reasonable than a uniform neighborhood size used in 
LLE. We generate the data points from part of Swiss-Roll with a missing rectangle 
strip, as Fig. 5a illustrates. So the resulting modified Swiss-Roll is not sampled uni-
formly, and has different densities at different locations. In this case, a self-tuning 
neighborhood size has more superiorities over a uniform one. From Fig. 5 and Fig. 6c, 
we can see R*-Tree LLE performs much better than LLE at all the candidate 
neighborhood sizes, including at the optimal value for LLE. 

 

Fig. 5. (a) 450-point non-uniformly sampled Swiss-Roll. (b) Results of LLE on 450-point 
non-uniformly sampled Swiss-Roll under different neighborhood sizes. (c) Results of R*-Tree 
LLE on 450-point non-uniformly sampled Swiss-Roll under different neighborhood sizes. 
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Fig. 6. (a) Residual variances on 2000-point uniformly sampled S-Curve under different 
neighborhood sizes. (b) Residual variances on 2000-point uniformly sampled Swiss-Roll under 
different neighborhood sizes. (c) Residual variances on 450-point non-uniformly sampled 
Swiss-Roll under different neighborhood sizes. 

Finally, we give the execution time of the R*-Tree operations in our algorithm 
which is the necessary time price we pay for higher performance compared to LLE. 
Implemented in C++ on a personal computer with Pentium-4 3.40 GHz CPU, 1 GB 
Memory, and MS Windows XP Professional SP2, it takes around 250 ms to create an 
R*-Tree over 2000 data points, and 0.4 ms to perform a search operation over 
2000-point R*-Tree. 

6   Conclusion 

In this paper, we explore the selection of neighborhood size in LLE, and propose that 
the neighborhood size should be self tuning according to the local density. Based on 
this idea, we propose a new variant of LLE which use self tuning K through pruning 
“short circuit” edges based on R*-Tree.  

There are, however, some open problems. In our algorithm, we test every edge while 
do pruning, in future work, we plan to accelerate the pruning process by a two-step 
pruning, the first step pruning is based on global information, and the second one de-
pends on local density. The first step is very time efficient, and largely reduces the 
edges for the second step pruning. We also plan to use other spatial indices, such as 
TV-Tree and X-Tree, to substitute for R*-Tree, these indices outperforms R*-Tree in 
indexing high dimensional data. Finally we plan to extend our method to spectral 
clustering which also needs to construct a neighborhood graph in its algorithm.    
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Abstract. The success of many learning algorithms hinges on the re-
liable selection or construction of a set of highly predictive features.
Kernel-based feature weighting bridges the gap between feature extrac-
tion and subset selection. This paper presents a rigorous derivation of
the Kernel-Relief algorithm and assesses its effectiveness in comparison
with other state-of-art techniques. For practical considerations, an online
sparsification procedure is incorporated into the basis construction pro-
cess by assuming that the kernel bases form a causal series. The proposed
sparse Kernel-Relief algorithm not only produces nonlinear features with
extremely sparse kernel expressions but also reduces the computational
complexity significantly.

1 Introduction

Reducing the dimensionality of the raw data is an important preprocessing step
in data mining. It plays a fundamental role in practices for a variety of reasons [4].
In the literature, there are two major types of methods: while feature selection
(FS) methods identify a subset of useful features and discard others, feature
extraction (FE) approaches construct new features out of the original ones.

Traditional feature selection algorithms are conducted in the original input
space. Therefore they cannot satisfactorily capture the inherent nonlinear struc-
tures in the data. Quite recently, Cao et al [2] proposed a kernel-based feature
weighting algorithm based on the Relief algorithm [5,7]. By conducting feature
selection in the kernel space, Kernel-Relief (K-Relief) [2] actually bridges the
gap between FS and FE, i.e., it achieves the purpose of FE through FS in a
nonlinear space. Although the idea is quite interesting, the problems occurred
in their mathematic derivations and numerical comparisons strongly weakened
the reliability of their study. In addition, an practical shortcomings of K-Relief
is that the nonlinear features constructed by this algorithm has a non-sparse
kernel expression, which could become prohibitive in practice especially when
large scale problems are concerned (see Section 4 for details).

In this paper, we first revisit the K-Relief algorithm proposed by [2] both
theoretically and empirically. In particular, detailed rigorous derivations are pro-
vided to produce reliable formulations. And numerical evaluations are carried out
� This work is supported in part by NSFC (#60275025, #60121302).
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under more reliable configurations. Furthermore, an online greedy sparsification
method was proposed to achieve very sparse expressions of the features while
preserving their effectiveness as much as possible.

The organization of the rest parts of the paper is as follows. Section 2 briefly
introduce the key ideas of K-Relief algorithm. Section 3 revisits the algorithm
and provides a detailed rigorous derivation. Section 4 proposes a sparsification
procedure to build sparse K-Relief. Section 5 presents the empirical studies, and
Section 6 concludes the whole paper.

2 Kernel-Based Relief

Suppose we are given a set of input vectors {xn}Nn=1along with corresponding tar-
gets {yn}Nn=1, where xn ∈ X ⊂ RDis a training instance and yn ∈ Y={0,1,. . . ,C-
1} is its label, N , D, C denote the training set size, the input space dimension-
ality and the total number of categories respectively, and the d-th feature of
x is denoted as x(d), d=1,2,. . . ,D. The Relief algorithm [5] ranks the features
according to the weights wd’s obtained from the following equation [7]:

w = arg max
∑N

n=1 wTmn

s.t. : ||w|| = 1, wd ≥ 0, d = 1, 2, ..., D
(1)

where w=(w1, w2, ..., wD)T , mn = |xn −M(xn)| − |xn − H(xn)| is called the
margin for the pattern xn, H(xn) and M(xn) denote the nearest-hit (the near-
est neighbor from the same class) and nearest-miss(the nearest neighbor form
different class) of xn respectively.

Traditional linear feature selection methods are not appropriate for non-
linearly separable classification problems. Cao et al [2] established an algorithm
that allows Relief to be approximately carried out in the kernel space. Suppose
the data have been mapped from the original input space RD to a high (usually
infinite) dimensional feature space F through an implicit mapping function φ:
RD → F , which is induced by the kernel function k(x,x′)=〈φ(x), φ(x′)〉, Cao et
al [2] proposed to implement the kernel-based Relief (K-Relief) by the following
procedures:

(a) Construct an orthogonal basis set {v(l) =
∑N

j=1 αljφ(xj)|l = 1, 2, ..., L} of
the feature space by kernel Gram-Schmidt process, where L ≤ rank(K);

(b) Apply Relief to the space spanned by the constructed basis set and select
features based on the feature weights.

Though the idea is very interesting, some problems occurred in their study:
(i) They failed to provide a rigorous theoretical derivation of the algorithm. As a
result, several key formulas in both procedure (a) and (b) are incorrect, making
their algorithm unreliable. (ii) The configuration of their comparison study is
problematic, which makes the empirical performance of K-Relief unclear. Firstly,
if one wishes to compare different DR methods using the classification accuracy
as the evaluation metric, it is necessary to fix the classifier. However, in their
study, this discipline is defied. Secondly, to fairly assess K-Relief, one needs to
compare it with some state-of-art feature extraction techniques.
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3 Kernel-Relief Revisiting

In this section, we provide a rigorous derivation of K-Relief algorithms as follows:
(a) Kernel Gram-Schmidt Process (GP). Suppose the l-th orthogonal

basis can be expressed as v(l) =
∑N

n=1 αlnφ(xn). Denote the design matrix in
the feature space as Φ = (φ(x1), φ(x2), ..., φ(xn))T , let α(l) = (αl1, ..., αlN )T ,
and e(l) be the l−th standard basis of the Euclidean space (the vector with l−th
component be 1 and all others be zero). Applying the Gram-Schmidt orthogo-
nalization process we have:

v(l) = φ(xl)−
∑l−1

k=1
〈φ(xl), v(k)〉 v(k)

= 〈e(l),Φ〉 − 〈
(∑l−1

k=1
〈φ(xl), v(k)〉α(k)

)

,Φ〉

= 〈
(

e(l) −
∑l−1

k=1
α(k)

∑N

j=1
αkjk(xl,xj)

)

,Φ〉

(2)

To get an orthogonal basis set, we need to normalize each basis.

|| v(l)||2 =
∑N

j=1

∑N

k=1
αljαlkk(xj ,xk) (3)

Therefore, we have the l-th basis: v(l) = 〈(α(l)),Φ〉 =
∑N

j=1 αljφ(xj), where:

α(l) =
e(l) −

∑l−1
k=1 α(k)

∑N
j=1 αkjk(xl,xj)

√
α(l)T Kα(l)

(4)

(b) Applying Relief in Kernel Space. We are now ready to project the
data into the space spanned by the basis set that we have constructed.

φ(xn) ≈
∑L

l=1
〈φ(xn), v(l)〉 v(l) (5)

or equivalently:

ψ(xn) =

⎛

⎝
ψ1(xn)
...
ψL(xn)

⎞

⎠ =

⎛

⎝
〈φ(xn), v(1)〉
...

〈φ(xn), v(L)〉

⎞

⎠ =

⎛

⎜
⎝

∑N
j=1 α1j〈φ(xn), φ(xj)〉

...
∑N

j=1 αLj〈φ(xn), φ(xj)〉

⎞

⎟
⎠

= A× kn

(6)

That is, the design matrix in F can be expressed as:

Ψ = (ψ(x1), ..., ψ(xn))T = AT ×K (7)

where ψ : RD → F, F = {
∑L

l=1 λl v(l)|λl ∈ R} is the subspace spanned by the
basis set, A = (αln)L×N , and kn denotes the n-th column of K. This approximate
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Algorithm 1. Kernel-Relief based on Gram-Schmidt basis (K-Relief)
Input: Gram matrix K, label vector y
Output: A set of M nonlinear features {ψm(x)|m = l1, l2, ..., lM}
for l=1 to L

calculate α(l) by Eq.(4)
end for
Calculate feature weights by Eq.(9)
Select l1,l2,...,lM based on the rank of weights
Project the data set by {ψm(x)|m = l1, l2, ..., lM}, where ψm is defined by Eq.(6)

expression of Φ makes it possible to apply Relief algorithm in the kernel space.
In particular, Relief in F solves the following optimization problem:

max
∑N

n=1 wTmn

s.t. : ||w|| = 1, wl ≥ 0, l = 1, 2, ..., L
(8)

where w=(w1, ..., wL)T , mn = |ψ(xn)−M(ψ(xn))| − |ψ(xn)−H(ψ(xn))|, and
H( ψ(xn)) and M(ψ(xn)) denote the nearest-hit and nearest-miss of xn in F
respectively, which can be found based on the distance dF (x,x′) = 〈φ(x) −
φ(x′), φ(x)− φ(x′)〉 = k(x,x) + k(x′,x′)− 2k(x,x′).

Eq.(2) has an explicit solution:

w = (z)+/||(z)+|| (9)

z =
∑N

n=1
(|ψ(xn)−M(ψ(xn))| − |ψ(xn)−H(ψ(xn))|). (10)

The K-Relief algorithm is described as Algorithm 1. Note that several key
formulas in [2], such as Eq.(4), (9) and (10), are incorrect.

Once the feature weights are obtained from Eq.(9), one can select a preferable
subset of M (M � L) features {ψm(x)|m = l1, l2, ..., lM} according to the
ranking of the weights. Then one either applies the selected feature mapping
{ψm(x)|m = l1, l2, ..., lM} according to Eq.(6) and builds a classifier directly
based on these features, or else, one can compute a kernel matrix Kw and build
a kernel machine based on Kw, where Kw(x,x′) =

∑M
m=1 ψlm(x)ψlm(x′).

4 Sparse Kernel-Relief

A fundamental problem with the K-Relief algorithm is that the nonlinear feature
has a non-sparse kernel expression, which may not be eliminated even when
sparse kernel machines, such as SVM and RVM, are applied to the tasks because
each feature is expressed as a linear combination of kernel functions centered at
all the training data points (see Eq.(6)). In practice, this could cause severe
over-fitting and would also become a crucial computation prohibition especially
when we are facing large scale problems or online learning requirements, because
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both the memory for storing the kernel matrix and the training & testing time
are typically proportional to the number of support patterns1 (denote as Nsp).

The non-sparseness stems from the basis construction process. Therefore, if
we can construct a set of orthogonal bases which has a sparse kernel expression,
i.e., which can be expressed as a linear combination of a small set of the kernel
vectors, then we can easily achieve a sparse K-Relief algorithm. Clearly, the
sparse kernel PCA (SKPCA, [8]) satisfies this requirement. Here however, we
shall establish an online sparsification procedure for the kernel Gram-Schmidt
process.

Our goal is to recursively select L (M � L� N) out of N kernel vectors to
construct a set of L orthogonal bases. Denote {kj : j = i1, i2, ..., iL} the selected
kernel vector subset (dictionary), the samples in {xj : j = i1, i2, ..., iL} are the
support patterns. Clearly, if we have obtained all of the L support patterns,
it would be straightforward to apply Gram-Schmidt process on the sub-matrix
KL = (k(xj ,xk)|j, k ∈ {i1, ..., il})L×L. However, compared to this offline ap-
proach, an online construction would be more preferable.

The proposed sparse Gram-Schmidt process starts with a randomly chosen
kernel vector ki1 . Denote ind(l)={i1,i2,. . . ,il−1} the index set of support pat-
terns at l-th step, Ind={1,2,. . . ,N} the full index set, and K (:,ind(l)) the matrix
comprised by the ind(l)-indexed columns of the Gram matrix K. Suppose at l-
th step, we have collected a dictionary Kind=K (:,ind (l)), the major operating
procedures from l-th to (l+1)-th step can be summarized as follows.

(1) Choose a new pattern. Randomly choose il from Ind -ind (l).
(2) Approximate linear dependence (ALD) test [3]. The new candidate

basis kil
can be viewed to be approximately expressed by linear combination of

Kind, if the ALD condition is satisfied, i.e.:

ε(l) = min ||
∑

j∈ind(l)
ujkj − kil

||2 ≤ ξ (11)

There exists a close form solution to Eq.(6).

ε(l) = ||kil
− uT Kind||2, where u = (KT

indKind) - 1
KT

indkil
(12)

and ξ is a small constant which determines the sparsity degree. If ALD condition
satisfies, kil

will not be added to the dictionary; else, we need to add il to ind(l)

and construct a new basis vector based on Kind.
(3) Construct the l-th orthogonal basis. Suppose the bases form a causal

series, i.e., l-th basis can be expressed as the linear combination of the previously
selected (l-1) support patterns, i.e.: v(l) =

∑
k∈ind(l) βlkφ(xk). Applying the

Gram-Schmidt process, we have:

v(l) =
φ(xil

)−
∑l−1

k=1 〈φ(xil
), v(k)〉 v(k)

|| v(l)|| (13)

1 With a slight abuse of terminology, here the patterns that appear in the expression
of the basis set are called support patterns.
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Algorithm 2. K-Relief based on Sparse Gram-Schmidt basis (SK-Relief)
Input: Gram matrix K, label vector y , ξ, ind (0) = ∅, Ind={1....,N }
Output: A set of M nonlinear features with sparse kernel expressions
for l=1 to L

Randomly choose il from Ind -ind (k).
ALD test: Eq.(11)(12)
if (Not ALD)

Add to Dictionary: ind (l)= ind (l)
⋃

{il }
Construct a new basis v(l): Eq.(13)

end if
end for
Calculate the linear combination coefficients matrix: Eq.(15)
Calculate feature weights by Eq.(9)
Select M features based on the rank of weights
Project the data set by {ψm(x)|m = l1, l2, ..., lM}, where ψm is defined by Eq.(6)

Solving βik from Eq.(13), we have:

β(l) =
e(l) −

∑l−1
k=1 β(k)∑k−1

j=1 βkjk(xil
,xj)

∑
j∈ind(l)

∑
k∈ind(l) βljβlkk(xj ,xk)

(14)

where e(l) is an l-by-1 sized vector with the last element be 1 and all others equal
to zero, β(l) = (βl1, ..., βll)

T is also an l-by-1 sized vector. This means that the
linear combination coefficients defined in Eq.(6)form a lower triangular matrix:

Al = (αij)l×l =

⎛

⎜
⎜
⎜
⎜
⎝

β11 0 0 ... 0
β21 β22 0 ... 0
... ... ... ... ...
βl−1,1 βl−1,2 ... βl−1,l−1 0
βl1 βl2 ... βl,l−1 βll

⎞

⎟
⎟
⎟
⎟
⎠

(15)

The derived algorithm is described as Algorithm.2. Note that the computation
complexity has been reduced from O(N2) to O(NspL).

5 Experiments

In this section, we conduct extensive experiments to evaluate the effectiveness
of the proposed methods in comparison with several state-of-art kernel-based
FE techniques. Six benchmark machine learning data sets from UCI collection
are selected because of their diversity in the numbers of features, instances and
classes. The information of each data set is summarized in Table 1. To eliminate
statistical deviation, all the results are averaged over 20 random runs. The kNN
classifier is tested and the testing accuracy is used to evaluate the performances
of different FE methods. In all experiments, Gaussian RBF kernels are used. The
hyper-parameters, i.e., the number of nearest neighbors and the kernel width,
are both determined by five-fold cross validation.
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Table 1. Characteristics of six UCI data sets

Data Set Train Size Test Size #Feature #Class

Breast 400 283 9 2
Ringnorm 1400 6000 20 2
Pima 400 368 8 2

LRS 380 151 93 48
Ecoli 200 136 7 8
Glass 120 94 9 6
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Fig. 1. Comparison of kernel-based dimensionality reduction methods

Baseline methods in our comparison include the famous classical techniques
such as KPCA [6] and GDA [1], and recently developed ones like KANMM
[10], and KMFA [11]. The average testing error of KNN for each FE method,
as a function of the number of projected dimensions, is plotted in Fig.1. As
a reference, the best results of each algorithm, along with the corresponding
number of features (the value in bracket) and the number of support patterns
(the value in square bracket) used in K-Relief and SK-Relief, are reported in
Table 2. From these experimental results, we arrive at the following observations:

1. K-Relief is a competitive feature extraction method. It has much lower com-
putation complexity [2] yet performs comparably with other state-of art
methods in most cases.

2. The performance of SK-Relief is very similar to K-Relief. However, the num-
ber of support patterns has been significantly reduced. Compared with K-
Relief, only around 10% of samples are used in SK-Relief, which means
that most of the training patterns can be discarded after the classifier being
trained. This is clearly an advantage of SK-Relief over K-Relief, especially
when a large data set or an online mining task is faced.
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Table 2. Comparison of kernel-based feature extraction methods. The value in each
entry is the lowest average testing error, the number in () is the corresponding number
of features, the value in [ ] denotes Nsp. The best results are highlighted in bold.

Data Kpca Gda Kanmm Kmfa Krelief SKrelief

Brea 0.036(3) 0.039(1) 0.037(12) 0.034(18) 0.034(8)[400] 0.035(16)[48]

Ring 0.035(8) 0.089(1) 0.018(12) 0.080(12) 0.071(4)[1400] 0.079(9)[85]

Pima 0.309(28) 0.310(1) 0.301(46) 0.316(60) 0.324(48)[400] 0.323(58)[35]

Ecol 0.198(7) 0.255(7) 0.189(8) 0.254(29) 0.231(18)[200] 0.231(15)[18]

Glas 0.353(30) 0.351(5) 0.373(15) 0.351(16) 0.371(28)[120] 0.384(29)[21]

Lrs 0.598(22) 0.598(46) 0.614(8) 0.613(30) 0.613(48)[380] 0.598(60)[32]

6 Conclusion

In this paper, we provide a rigorous derivation for the K-Relief algorithm. To
achieve sparse kernel-based nonlinear features, we assume the kernel bases form
a causal series and incorporate a greedy online sparsification procedure into the
basis construction process, leading to an SK-Relief algorithm. Gram-Schmidt
process is in no way the only method to construct orthogonal bases in the kernel
space. An obvious alternative is KPCA. However, besides such unsupervised
approaches, there are various supervised approaches. Therefore, an interesting
investigation would be to explore how these different basis construction methods
affect the performance of K-Relief.
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Abstract. Most previous research focus on organizing news set into flat collec-
tions of stories. However, a topic in news is more than a mere collection of sto-
ries: it is characterized by a definite structure of inter-related events. Stories 
within a topic usually share some terms which are related to the topic other than 
a specific event, so stories of different events are usually very similar to each 
other within a topic. To deal with this problem, we propose a new event identi-
fication method based on the term committee. We first capture some tight term 
clusters as term committees of potential events, and then use them to re-weight 
the key terms in a story. The experimental results on two Linguistic Data Con-
sortium (LDC) datasets show that the proposed method for event identification 
outperforms previous methods significantly.  

1   Introduction 

Topic Detection and Tracking (TDT) [1] has given the definitions of news Topic and 
news Event. A Topic is defined as “a seminal event or activity, along with directly 
related events and activities” [2]. An Event is defined as “something (non-trivial) 
happening in a certain place at a certain time” [3]. For instance, when an oil tanker 
sinks in an ocean, it is the seminal event which triggers the topic. Other events within 
the topic may include salvaging efforts, environmental damage and so on.  

Nallapati et al. first presented the concepts of event identification within news top-
ics [4]. In their work, cosine formula was used to compute news story similarity. Fi-
nally agglomerative clustering was employed to identify news events. However, the 
methods widely used in Topic Detection (e.g. agglomerative clustering) can hardly 
achieve satisfying accuracy in event identification. Based on analysis of data, we have 
two observations: (1) within the same topic, even two stories describing different 
events may have a good portion of overlapping terms (topic related); (2) each event 
usually only has a small number of key terms which are strongly related to the event 
other than the whole topic. Therefore document similarity contributed by event key 
terms is usually drowned out by the similarity contributed by topic related terms.  

This paper aims at resolving the problems described above, and has the following 
contributions: (1) We define term committee to represent event key terms. (2) We 
propose a clustering based method to discover term committees of difference events 



822 K. Zhang et al. 

within a topic. We compute the similarity between terms according to the set of sto-
ries containing the terms at first. Then we discover a set of tight term clusters (high 
intra-group similarity), that are well scattered in the similarity space (low inter-group 
similarity), as term committees of potential events. (3) We propose to use the term 
committees to adjust story representation and similarity computing in event identifica-
tion. The experimental results show that our proposed event identification method 
improves 16.7% in accuracy compared to the method used in paper [4].  

2   Related Work 

Yang [5] employed an agglomerative clustering algorithm named Group Average 
Clustering to identify events. Li [6] believed that news stories are always aroused by 
events; therefore, they proposed a probabilistic model to incorporate both content and 
time information in a unified framework. Gabriel [7] used some probabilistic models 
to identify burst features within a time window at the first step, then group the burst 
features and use them to determine the hot periods of the bursty events. Although 
these methods are called “event identification”, their concept of “event” is more like 
the concept of “topic” in TDT, bigger than the concept of “event” in TDT. For exam-
ple, the methods can detection a topic “Winter Olympic Game 1998”, but they are not 
good at identifying and differentiating two events within a topic: “the open ceremony 
of Olympic Game” and “a hockey match in Olympic Game”. 

Another related work is a new clustering algorithm named CBC (Clustering By 
Committee) [8]. Our method is different from CBC: the committee elements are terms 
(features) in our algorithm, while the committee elements are documents (samples) in 
CBC. And we use term committee to re-weight the representation of stories. 

3   Problem Definition and Analysis 

We use the same definition of event identification as paper [4]: 

Event Identification (EI): event identification detects events within a news topic. Let 
D(T)={d1, d2,…, dn} be the entire story set of a certain topic T, where n is the number 
of stories in topic T. Each news story d is represented by a 2-tuple (v, t), where v is 
the document vector and t is the publication time. The results of event identification is 
E(T)={e1, e2, …, em}, where each element is a set of stories describing the same event 
in topic T. And the elements have the following constrains: 

ⅰ φ≠⊆∀ ii eei  ),(TD      

ⅱ φ=∩→≠∀ ji eejiji      ,  

ⅲ lili eded ∈∈∃∀   s.t.       )(TE  

Event identification is more challenging than traditional TDT tasks, because stories 
of different events are usually too similar to each other within a topic. We use the 
corpus of TDT2 from LDC to make an investigation about the similarities between 
stories from the same events or different events.  

In table 1, we use S-event to represent the average similarity of all pairs of stories 
in the same events and use D-event to represent the average similarity of all pairs of 
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stories belonging to different stories. S-event(de) and D-event(de) denote the similar-
ity obtained by using time decay according to the difference between two story’s 
publication time. The time decay method is defined as follows: 

T

tdtd

D eddsimddsim
|'..|

)',()',(
−−

=
α

                                       (1) 

where sim(d,d’) is the cosine similarity of documents d and d’, d.t means the publica-
tion time of story d, and T is the time difference between the earliest and the latest 
story in the given topic. α  is the time decay factor and set to 1 here. From table 1, we 
can see that the difference between S-event and D-event is not significant in most 
topics. Even when time decay is used, the difference between S-event(de) and D-
event(de) is still not significant.  

Table 1. Average story similarities in the same and different events for some topics in TDT2  

TopicID S-event D-event 
D-event/ 
 S-event S-event(de) D-event(de) 

D-event(de)/ 
 S-event(de) 

20012 0.250 0.240 96.00% 0.220 0.179 81.36% 
20022 0.345 0.310 89.86% 0.283 0.236 83.39% 

20026 0.355 0.315 88.73% 0.294 0.249 84.69% 

20033 0.183 0.125 68.31% 0.143 0.094 65.73% 

20056 0.233 0.171 73.39% 0.206 0.137 66.50% 

20077 0.268 0.195 72.76% 0.243 0.147 60.49% 

20087 0.238 0.188 78.99% 0.202 0.123 60.89% 

Average 0.267 0.220 82.48% 0.227 0.166 73.22% 

In Table 2, we give the average story similarities of all pairs of stories in the same 
topics and different topics. From the statistics, we can see that, stories in different 
topics tend to have low similarities. Obviously, traditional method for topic detection 
is not suitable for event identification. 

Table 2. Average story similarities in the same and different topics in TDT2 and TDT3 corpus 

 S-topic D-topic D-topic/S-topic Topic-number 

TDT2 0.1927 0.0685 35.55% 28 
TDT3 0.2082 0.0793 38.09% 25 

By analyzing the data, we have classified the terms into three classes: 

ⅰ.Term class A (non-key terms): terms that are not strongly related to the topic 
nor a specific event. Terms of this class should be given low weights. 

ⅱ.Term class B (topic key terms): terms that occur frequently in the whole topic. 
They are strongly related to the topic other than a specific event. Obviously, terms of 
this class should be assigned low weights too. 

ⅲ.Term class C (event key terms): terms that occur frequently in an event and in-
frequently in other events. They are strongly related to a specific event. Through data 
analysis, we found an event usually only have a small number of event key terms.  
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To decrease the similarity contributed by term class A and B, we have to find event 
key terms and increase their weights. A term committee is defined as a set of key 
terms (term class C) of the corresponding event. Term committees are captured at first 
and then used for later event identification steps. 

4   Our Approach 

In this section, we describe our approach to event identification. Our event identifica-
tion method consists of three phases. At the first phase, we preprocess the news sto-
ries and generate the vector representation for each news story. At the second phase, 
we discover a set of tight term clusters (high intra-group similarity), called term 
committees, that are well scattered in the similarity space (low inter-group similarity). 
At the third phase, we use the term committees to help re-weight key terms in stories, 
and agglomerative clustering is used for events identification. The details of this ap-
proach are given by subsequent subsections. 

4.1   News Story Representation 

Preprocessing is needed before generating story representation. For preprocessing, we 
tokenize words, recognize abbreviations, normalize abbreviations, and remove stop-
words, replace words with their stems using K-stem algorithm [9], and then generate 
word vector for each news story. 

Thus, each story d is represented as follows: 

))},,(),...,,(),,(({( 21 twdweightwdweightwdweight, td n→→ )v  

where t is the publication time of news story d, and n means the number of distinct 
terms in story d. And ),( wdweight means the weight of term w in story d: 

∑
∈

+++
+++=

dw

wdfNwdtf

wdfNwdtf
wdweight

'

))5.0)'(/()1log((*)1)',(log(

))5.0)(/()1log((*)1),(log(
),(                      (2) 

where N means the total number of news stories, and tf(d,w) means how many times 
term w occurs in news story d. And df(w) is the number of stories containing term w. 

4.2   Term Committee Discovery 

For each term w, we create a story set at first: 

F(w)={d | d contains term w}                                           

The similarity of two terms wi and wj is defined as follows: 

|)F(||)F(|

|)F()F(|
),(

ji

ji
ji

ww

ww
wwsim

×

∩
=                                     (3) 

The details of term committee discovery algorithm are presented in Figure 1. 
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Input:    Term set W={w| | F(w)|>1 }, threshold θ1 

Step 1:   Put all terms in W into a list of residues R. 

Step 2:   Let C be a list of committees, and set C=Φ.  

Step 3:   Cluster the terms in R using average-link clustering. 

For each term cluster c created in the clustering process 

Compute the following score: log(|c|)×avgsim(c), where |c| is the number of terms in c and 
avgsim(c) is the average pairwise similarity between terms in c. 

Step 4:  If cluster c has the highest score, and c’s similarity to each committee previously added to C is 
below the threshold θ1, then add c to C.  

Step 5:  Remove all the terms in c from residues R. 

Remove all the terms in R whose similarity with c is above threshold θ1. 
Step 6: If R is empty, then we are done and return C. Otherwise, go to step 3. 

Output: A list of term committees C 

Fig. 1. Term committee discovery algorithm 

Because the number of terms that only appear in a single news story is very large, 
and these terms can not provide useful information for event identification, we just 
use the terms appear in at least two stories as the input of this phase. At step 1, we put 
all the input terms into a term set R. And then initiate a term committee set C as an 
empty set. At step 3, we use agglomerative clustering algorithm to cluster the terms in 
R until all the terms belong to a single cluster, and we compute the score log(|c|) × 
avgsim(c) for each temporary cluster c created during the clustering procedure. The 
factor log(|c|) reflects a preference for bigger term sets, while the factor avgsim(c) 
reflects a preference for tighter term sets. Step 4 selects the cluster c with the highest 
score at first. If the similarity between cluster c and each previous term committee in 
C is smaller than threshold θ1, then add c to C. Step 5 remove all the terms in c from 
residues R, and remove all the terms in R whose similarity with c is above threshold 
θ1. If R is empty then return term committee set C as result, otherwise the algorithm 
jumps to step 3. 

4.3   Event Identification 

To reduce the similarity contributed by term class A and B, we use term committees 
for potential events to re-weight terms in similarity calculation. For two stories d and 
d’, their similarity is defined as follows: 

)),',((max)',( cddsimddsim
Cc∈

=                                         (4) 

where C is the term committee set of the current topic obtained in the last phase, and 
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Here γ is an empirical parameter (bigger than 1). Terms in a committee c are the 
key terms of the corresponding potential event. Therefore, the more overlapping terms 
two stories have in the same committee c, the more probable that the two stories be-
long to the same event.  

At last, we also use agglomerative clustering method for event identification. Simi-
larity between two clusters cl1 and cl2 is computed using average link: 

)

),',(

(max),(
21

1 2'
21 clcl

cddsim

clclsim cld cld

Cc ⋅
=

∑ ∑
∈ ∈

∈
                                   (5) 

where |cl| is the number of stories in cluster cl. 

5   Experiments 

5.1   Datasets 

The datasets include 28 topics selected from TDT2 corpus, and 25 topics selected 
from TDT3 corpus [10]. Nallapati et al. annotated event membership for each selected 
story, and then created a training set of 26 topics and a test set of 27 topics by merg-
ing the 28 topics from TDT2 and 25 from TDT3 and then splitting them randomly. 
Table 3 shows some statistics for the training and test datasets. There are more details 
about the annotation spec in paper [4]. 

Table 3. Statistics of the training and test datasets 

Features Training set Test set 
Number of Topics 26 27 

Average Number of Stories/Topic 28.69 26.74 
Average Story Length 64.6 64.04 

Average Number of Stories/Event 5.65 6.22 
Average Number of Events/Topic 5.07 4.29 

5.2   Evaluation Metric 

We use the same evaluation metrics as paper [4]. For an automatically generated 
event model )','(' ψE=M  and a true event model (annotated by human) ),( ψE=M , 
we examine a pair of stories at a time and verify whether the generated model and the 
true model agree on their event membership. The related metrics and definitions are 
given in detail as follows: 

 Event pairs C(M): This set includes all the unordered pairs (di, dj) of stories di 
and dj that are belong to the same event given a model M. Formally, 

)}( s.t.,|),{()( edededdddMC jijiji ∈∧∈∈∃∧∈=  ED           (6) 

 Event Precision EP: this is the probability that a pair of two randomly selected 
stories belongs to set C(M) given that it belongs to C(M’). 
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)'(|)'()(| MCMCMCEP ∩=                                  (7) 

 Event Recall ER: this is the probability that a pair of two randomly selected sto-
ries belongs to set C(M’) given that it belongs to C(M). 

)(|)'()(| MCMCMCER ∩=                                   (8) 

And the well known F1-measure is used to combine the above measures: 

)/(2 EREPEREPEF +⋅⋅=                                        (9) 

5.3   Experimental Results 

We implemented and tested four systems. SYSTEM 1 and SYSTEM 2 are two previ-
ous systems with which we want to compare.  SYSTEM-3 is based on topic-specific 
stopword removal and SYSTEM-4 is based on our approach. 

SYSTEM-1: This system uses cosine distance as the similarity of stories, and em-
ploys agglomerative clustering based on average-link to identify events. This system 
is used as baseline system. [4] 

SYSTEM-2: This system is the same as SYSTEM-1, except that it uses formula (1) 
to adjust similarities according to time difference between news stories. [4] 

SYSTEM-3: this system is based on topic-specific stopword removal. The idea was 
firstly presented in paper [11]. Since topical common terms (term class A) cause 
events in the same topic to be mutually confusing, a natural choice is to remove those 
terms. We obtained a stopword list for each topic by thresholding on the training set 
document frequency of a term t in Ti: 

β>
)(

),(

i

i

Tn

Ttn
                                                      (10) 

where n(Ti) is the number of documents on topic Ti; n(t, Ti) is the number of docu-
ments containing term t and on topic Ti; and parameterβis empirically chosen on 
training set. The story similarities are also adjusted by time difference the same as 
SYSTEM-2. 

SYSTEM-4: This system is implemented based on our approach. It has three 
phases: story preprocessing, term committee discovery, event identification. 

The results of the four systems on training set and test set are shown in Table 4 and 
Table 5 respectively. Each value in the tables is the average score over all topics. P-
value that is marked by * means that it is a statistical significant improvement over 
the compared system (95% confidence level, one tailed T-test). The results of SYS-
TEM-1 and SYSTEM-2 listed in these tables are obtained from paper [4]. 

Table 4. Comparison of event detection algorithms (on training set) 

System EP ER EF P-value/Improvement 
SYSTEM-1[4] 0.39 0.67 0.46 - 
SYSTEM-2[4] 0.45 0.70 0.53 2.9e-4*/+15.2%(to SYSTEM-1) 

SYSTEM-3 0.44 0.73 0.54 - 
SYSTEM-4 0.48 0.78 0.62 1.5e-3*/+17.0%(to SYSTEM-2) 
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Table 5. Comparison of event detection algorithms (on test set) 

System EP ER EF P-value/Improvement 
SYSTEM-1[4] 0.44 0.67 0.50 - 
SYSTEM-2[4] 0.48 0.70 0.54 0.014*/+8.0% (to SYSTEM-1) 

SYSTEM-3 0.47 0.71 0.52 - 
SYSTEM-4 0.56 0.77 0.63 4.1e-3*/+16.7% (to SYSTEM-2) 

For SYSTEM-3, we tested it on the test set with the optimal parameterβobtained 
from training set. For SYSTEM-4, we tested our method on the test set with the two 
parameters θ1 and γ fixed at their optimal values learned from training set.  

When tested on training set, SYSTEM-3 is slightly better than SYSTEM-2. How-
ever, it is even worse than SYSTEM-2 on test set. By analyzing the cases of SYS-
TEM-3, we found that there are two main reasons: (1) the parameter β is hard to 
determine. Ifβ is set to a relative small value, some terms of class C (related to a big 
event) may be removed falsely. Otherwise, if β is set to a relative great value, most 
of the terms of class B cannot be removed. (2) when some terms of class B and C are 
removed, terms of class A will get heavier weights and make more noise. 

The EF result of SYSTEM-4 on training set is 0.62 which is 34.8% higher than 
SYSTEM-1, and 17.0% higher than SYSTEM-2. On the test set, SYSTEM-4’s EF 
value is 26.0% higher than SYSTEM-1 and 16.7% higher than SYSTEM-2. On both 
training and test sets, SYSTEM-4 shows statistically significant improvement com-
pared to SYSTEM-2 which performs the best in paper [4].  

6   Conclusions 

Most of the previous work, such as TDT, organizes news stories by topics which are 
flat collections of news stories. However, this paper aims to model events within a 
news topic. Due to the high similarity between stories of different events within the 
same topic (usually stories within a topic share lots of terms about the topic), we pro-
posed an event identification method based on term committee. We first capture some 
tight term clusters as term committees of potential events, and then use them to re-
weight key terms in a story. The experimental results show that our approach for 
event identification has significant improvement over previous methods.  
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Abstract. This paper proposes an online-learning neural model which maps 
nonlinear data structures onto mixtures of low-dimensional linear manifolds. 
Thanks to a new distortion measure, our model avoids confusion between local 
sub-models common in other similar networks. There is no local extremum for 
learning at each neuron. Mixtures of local models are achieved by competitive 
and cooperative learning under a self-organizing framework. Experiments show 
that the proposed model is better adapted to various nonlinear data distributions 
than other models in comparison. We further show a successful application of 
this model to discovering low-dimensional manifolds of handwritten digit im-
ages for recognition. 

1   Introduction 

Previous research has demonstrated that image variations of many objects can be ef-
fectively modeled by low-dimensional manifolds embedded in the high-dimensional 
data space [1, 2]. The embedded manifolds are generally nonlinear and can be ap-
proximated by mixtures of linear models [2, 3]. Some methods have been proposed to 
coordinate pre-learned mixture models [4] or propagate pre-learned manifolds to new 
data points [5]. However, a universal coordinate system may not be applicable when 
separate manifolds are involved. 

State-of-the-art mixture models usually treat the input data in a batch mode, and 
estimate model parameters by using the expectation-maximization (EM) algorithm. 
However, when the input data are not all available at once, only online algorithms can 
be used, which also have advantages including adaptability, low storage requirement, 
and fast training. The adaptive-subspace self-organizing map (ASSOM) proposed by 
Kohonen [6] is able to discover online an ordered set of linear subspaces. It extends the 
self-organizing feature map (SOFM) [7] by replacing the single weight vector at each 
neuron with a set of basis vectors spanning a subspace. However, the ASSOM may not 
be adequate when data distributions are deviated from the origin. As an improvement, 
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the adaptive-manifold self-organizing map (AMSOM) proposed by Liu [8] learns mean 
vectors of local models in addition to the conventional subspaces. The linear manifold 
self-organizing map (LMSOM) proposed by Zheng et al. [9] learns the offsets of local 
models by using a stochastic gradient-descent algorithm. Nonetheless, since local 
subspaces extend infinitely in the data space, confusion between local models is 
common in these mixture models, which is harmful for dimension reduction and data 
compression because the variance observed by local models could be larger than nec-
essary and data are more likely to be assigned to the wrong prototypes. 

In order to achieve truly local representation, in this paper, we propose a mixture 
model which implements a new distortion measure between the input data and local 
linear manifolds. The objective function at each neuron has not local extremum, and the 
mean vector and the local principal subspace is the only global minimum solution. 
Adaptive online learning of local linear manifolds is then achieved through a stochastic 
gradient-descent algorithm. Mixture of local models is realized through competitive 
and cooperative learning. We demonstrate by experiments that: 1) our model largely 
alleviates ambiguity of local linear manifolds; 2) it can be effectively used to map 
highly nonlinear manifolds, including separate manifolds. As a potential real-world 
application, this model is also used to discover low-dimensional manifolds in hand-
written digit images and shows promising results. 

2   The Locally Linear Online Mapping Algorithm 

Let x be the input, L be an H-dimensional local linear manifold with an offset vector m 
and orthonormal basis vectors {b1, b2, …, bH}. The proposed distortion measure is: 

e(x, L) = 2~
Lx  + α 2ˆ Lx , (1) 

( )( )T

1

ˆ
H

h h
h=

= −∑x x m b bL
, ˆ= − −x x m x% L L , 

(2) 

where x̂L  and %xL  are respectively the projection of x on L and the residual of projec-

tion. Compared to the usual reconstruction error, equation (1) has the extra α 2ˆ Lx , 

where 0 ≤ α ≤1 is a parameter which shall be shown to control the desired extension of 
the local model. From the probabilistic point of view, if we define a Gaussian likeli-
hood ( | , ) ∝p x m B ( )( )exp ,−e x L , where ∝  represents equivalence up to a normali-

zation constant, B = [b1 b2 … bH], then reducing e(x, L) would be equivalent to in-
creasing the data likelihood. This would eventually correspond to two conditionally 
independent Gaussian distributions according to equation (1), one in L and the other 
one in the residual subspace orthogonal to L. 

Now let us investigate the equi-distortion surface defined by e(x, L) = C2 for C > 0. 
We consider 1-D linear manifold L in the 2-D space first. When α = 0, e(x, L) is the 
usual reconstruction error, and the equi-distortion surface is the two infinitely extend-
ing lines l1 and l2 in Fig. 1. When 0<α <1, the equi-distortion surface turns into an 

ellipse as shown in Fig. 1, whose major axis lies on L with length 2C/ α , and whose 

minor axis is perpendicular to L with length 2C. The larger α  is, the shorter the major 
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axis will be, and therefore the more local the representation along the linear manifold L 
will be. When α = 1, e(x, L) degenerates to the usual Euclidean distance from x to the 
prototype m, and the ellipse in Fig. 1 degenerates to a circle centered at m. The dis-
cussion can be easily generalized to higher dimensional cases. 

l1

C
C α

m

l2  

Fig. 1. Equi-distortion surface of the proposed measure function e(x, L) 

Let x(1), …, x(N) be N samples available to a neuron for learning. The objective of 
learning at the neuron is to minimize the average distortion measure 

J(m, B) = ( )

1

1
( , )

N
i

i

e
N =
∑ x L  (3) 

with respect to m and B. For 0<α <1, the linear manifold L minimizing J(m, B) would 
satisfy: 1) m is the average of the samples; 2) the basis vectors {b1, b2, …, bH} span the 
principal subspace of the samples. This is because J(m, B) is also the implied objective 
function of principal component analysis (PCA): 

( )

1

1
( , )

N
i

i

e
N =
∑ x L  = 2 2( ) ( )

1 1

1N N
i i

i iN N

α α
= =

−− +∑ ∑x m x% L . (4) 

PCA minimizes 
2( )

1

N i

i=
−∑ x m  by setting m to be the average of the samples, and 

minimizes 
2( )

1

N i

i=∑ x% L  by setting {b1, b2, …, bH} to be the principal eigenvectors of the 

sample covariance matrix. It can be proved that all the stationary points of J(m, B) 
except the global minimum are saddle points, i.e. J(m, B) has no local extremum. Due 
to limited space, rigorous proofs will be presented elsewhere. 

We use Robbins-Monro stochastic approximation [10] to optimize J(m, B). Com-
pared to their deterministic counterparts, stochastic algorithms have the advantages of 
higher computing efficiency at lower memory cost, better suitability to sequentially 
acquired data, and stronger robustness to local extrema or saddle points due to “noisy” 
presentation of input samples. Therefore, we aim to minimize a “sample” objective 
function J (t)(m, B) of the input x(t) at instant t through stochastic gradient descent while 
maintaining orthonormality of {bh; h = 1, 2, …, H} 

J (t)(m, B) = e (x(t), L) = 
2( )tx% L  + α 2( )ˆ txL

. (5) 

( )
( ) ( )( , )

ˆ2 2
t

t tJ α∂ = − −
∂

m B
x x

m
% L L

, (6) 
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( ) ( )( )( )
T( ) ( )( , )

2 1  
t

t t
h

h

J α∂ = − − −
∂

m B
x m b x

b
% L

. (7) 

The stepwise updating rules of m and bh are as follows: 

( 1) ( ) ( ) ( )ˆ( ) ( )t t t tt tλ αλ+ = + +m m x x% L L , (8) 

( ) ( )( )T( 1) ( ) ( ) ( ) ( ) ( )1 ( )  t t t t t t
h h htα λ+ = + − −b b x m b x% L . (9) 

where )(tλ > 0 is a learning-rate parameter and should satisfy 
0

( )
t

tλ∞

=
= ∞∑  and 

2

0
( )

t
tλ∞

=
< ∞∑  for convergence of the algorithm. The ( )ˆ txL  term in equation (8) can be 

regarded as a force moving m along the linear manifold L towards the projection of x. 
Its average effect in the stochastic process is to find the mean vector m. When α  = 0, 
the ( )ˆ txL  term diminishes, and m is no more guaranteed to move to the center, which is 

the case of the LMSOM [9]. The basis vectors should be orthonormalized after equa-
tions (8) and (9) have been applied. The solution obtained through stochastic optimi-
zation converges in probability to the optimal solution. 

For mixture of local models we use a self-organizing network. Such networks are 
biologically plausible in the sense that, as a learning system, our cerebral cortex has 
also been observed to consist of self-organized areas each being specialized in certain 
tasks. Self-organizing maps have been extensively and successfully applied to various 
areas of machine learning [7]. In particular, our model first partitions the data space to a 
number of regions corresponding to the neurons, and then learns local models at neu-
rons. The partition and learning is performed online for the input at each time instant in 
a competitive and cooperative way. For the input sample x(t) at the t-th instant, the 
network determines the winning neuron c via competition: 

c = 
Qq∈

minarg e (x(t), Lq), (10) 

where Q is the set of neurons and Lq the linear manifold of the q-th neuron. 
The winner and the neurons in its neighborhood then update their local linear 

manifolds following the previously developed stochastic optimization algorithm. The 
updating “force” of the neighboring neurons of the winner is attenuated by a 
neighborhood function v(t)(c, q), which is a decreasing function of the distance between 
neurons c and q. v(t)(c, q) = 1 when q = c. For q ≠  c, v(t)(c, q) should also be a decreasing 
function of the learning step t, and v(t)(c, q) →  0 when t →  ∞ . So at the final stage of 
learning, each neuron only learns the data in its partition. The updating formulae for 
each local model q∈Q are: 

( )( 1) ( ) ( ) ( ) ( )ˆ( , ) ( )
q q

t t t t t
q q v c q tλ α+ = + +m m x x% L L

, (11) 

( ) ( )( )T( 1) ( ) ( ) ( ) ( ) ( ) ( )1 ( , ) ( )  
q

t t t t t t t
qh qh q qhv c q tα λ+ = + − −b b x m b x% L , (12) 

where mq is the mean vector of the q-th neuron and bqh the h-th basis vector of the q-th 
neuron, for h = 1, 2, …, H. 
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The locally linear online mapping (LLOM) algorithm is summarized as follows: 

1. Initialize the parameters (m, B) of all the neurons in the network (e.g. in a random 
way), with the columns of B being orthonormal; 

2. For the input sample x(t) at instant t, the winner c of the neurons is determined ac-
cording to equation (10); 

3. Update the local linear manifold Lq at each neuron q ∈  Q according to equations 
(11) and (12) and then orthonormalize the basis vectors; 

4. Repeat steps 2 and 3 until certain stop criterion is met, e.g. when some predeter-
mined maximum learning steps have been met (when there are not sufficient sam-
ples, the bag of samples should be repeatedly presented). 

3   Experimental Results on Manifold Mining 

Different networks are trained to learn three 1-D linear manifolds corresponding to the 
three clusters in Fig. 2. Each cluster contains 600 samples. Each network has three 
neurons. The number of learning steps T = 10,000. The neighborhood function is 
Gaussian. The learning-rate parameter is ( )0( ) 99t T T tλ λ= + with 

0λ  = 1. The specific 

value of α  is not crucial when it is in the range (0, 1) according to our experiments, and 
α  = 0.1 is used here. As shown in Fig. 2, the ASSOM can not learn these clusters 
sufficiently. The mean vectors learned by the AMSOM have been “attracted” away 
from the cluster centers due to confusion between the local models. The orientations of 
the linear manifolds learned by the LMSOM have evident deviation from the local 
principal directions of the clusters. The LLOM has shown the best result. 
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Fig. 2. Learning multiple linear manifolds with (a) the ASSOM, (b) the AMSOM, (c) the 
LMSOM, and (d) the LLOM. Large black dots represent the learned mean vectors (the ASSOM 
does not learn mean vectors). Dotted lines represent the learned 1-D linear manifolds (shorter for 
the LLOM to emphasize local representations). 

We have also compared the classification accuracies of the different networks. Each 
neuron of a network is labeled with the cluster whose samples the neuron wins the most 
during the training phase. In the test phase, each input sample compares its label to the 
label of the winning neuron. The training and test were repeated 20 times. Each time all 
the data were regenerated and all the networks re-initialized with different random 
seeds. Table 1 summarizes the mean values and the standard deviations of the accura-
cies for different networks. The LLOM shows obviously better performance than the 
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other networks. We remark that while the linear discriminant analysis (LDA) may also 
correctly separate these clusters, it does not give a faithful representation of the data as 
shown in Fig. 2(d). 

Table 1. Classification accuracies of the three clusters in Fig. 2 by using different networks. In 
the table, TR denotes the training set and TS the test set. μ  is the mean value of accuracies and 
σ  the standard deviation. 

 ASSOM AMSOM LMSOM LLOM 
 TR TS TR TS TR TS TR TS 

μ  67.43% 66.96% 66.71% 66.46% 86.71% 86.92% 99.997% 99.997% 
σ  6.5× 10-3 8.2× 10-3 1.5× 10-2 1.3× 10-2 5.4× 10-2 5.3× 10-2 1.2× 10-4 1.2× 10-4 

Figure 3 shows the results of mapping a 2-D spiral of 1,000 samples onto mixtures of 
1-D linear manifolds by using the different networks. Each network contains 15 neu-
rons. T = 20,000 and α  = 0.5 are used. While a smaller α  corresponds to more  
extending linear manifolds and therefore could provide stronger data generalization, 
according to our experiments, a larger α  such as the one used here seems necessary for 
a more local learning of highly nonlinear manifolds. The other parameters are defined  
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Fig. 3. Mapping a spiral by using (a) the ASSOM, (b) the AMSOM, (c) the LMSOM, and (d) the 
LLOM 
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Fig. 4. Mapping separate nonlinear manifolds by using the LLOM 

in the same way as in the previous experiment. The LLOM shows obviously the best 
performance thanks to the local property of neurons. It can also map separate nonlinear 
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manifolds as shown in Fig. 4, where both of the distributions contain 30,000 samples. 
Note that many nonlinear dimensionality reduction algorithms, e.g. the locally linear 
coordination (LLC) algorithm [4], do not work in such cases since a universal 
low-dimensional coordinate system does not exist. 

We have also applied the LLOM to mining low-dimensional manifolds embedded in 
the MNIST handwritten digit images [11] for recognition. The MNIST database con-
tains 60,000 training images and 10,000 test images. Our system consists of ten LLOM 
networks Nk, k = 0, 1, …, 9, each containing n× n, n = 3, 4, …, 8 neurons under a 
rectangular topology. The dimension of local linear manifolds is H = 1, 2, 3. The 
neighborhood function and the learning-rate parameter are defined in the same way as 
in previous experiments. T = 30,000 and α = 0.1. For each input digit image x, we 
construct an “episode” composed of three images x(s), s ∈  S (|S| = 3): the original 
image, the image variant rotated -10˚, and the image variant rotated 10˚. 

For n = 3 and H = 2, each network has learned 3×3 2-D linear manifolds (defined by 
the mean vectors mkq, basis vectors bkq1 and bkq2) embedded in the high- dimensional 
distributions of handwritten digit images, as shown in Fig. 5. In this way, the LLOM 
also helps to visualize the underlying low-dimensional structures. 

0     1     2     3      4     5      6       7       8      9   

mkq

bkq1

bkq2
 

Fig. 5. Handwritten digit image manifolds learned by the LLOM 

For recognition of an input image x, each network Nk builds a reconstructed image 
)(ˆ s

kNx for each variant x(s) of x. The network with the minimum average error de-

termines the class of x. )(ˆ s
kNx  is reconstructed from all the projections of x(s) on local 

models of Nk [9]. The recognition accuracy of the LLOM networks on the MNIST 
database is summarized in Fig. 6. The accuracy increases with the number of neurons 
and the dimension of the local linear manifolds, which reaches 98.26% on the training 
set and 97.74% on the test set. For a comparison, the system based on the LMSOM 
achieved 98% on the training set and 97.3% on the test set [9]. 

Although the accuracy of handwritten digit recognition could be further improved 
by using more specific methods to character recognition [11], in this paper our interest 
is not limited to the specific task, but in a general application of the LLOM to automatic 
feature extraction through manifold mining. The LLOM has the potential to be applied 
to many other areas where nonlinear dimensionality reduction is desirable. 
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Fig. 6. Recognition accuracy (a) on the training set, and (b) on the test set of the MNIST database 
by using the LLOM networks 

4   Conclusions 

The neural model proposed in this paper is able to discover low-dimensional nonlinear 
manifolds embedded in data online through mixtures of local linear models. It can be 
applied to areas where nonlinear dimensionality reduction is desirable. The key prop-
erty of this mixture model is the truly local representation of each sub-model resulted 
from a new distortion measure, which has largely alleviated confusion between local 
sub-models, as demonstrated by experiments. The objective function based on the new 
distortion measure does not contain local extremum, which is also desirable. Some 
related issues to be addressed in the future include learning temporally dependent data 
and automatically determining the number of sub-models. 
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Abstract. Due to inherent sparse, noise and nearly zero difference characteris-
tics of high dimensional data sets, traditional clustering methods fails to detect 
meaningful clusters in them. Subspace clustering attempts to find the true dis-
tribution inherent to the subsets with original attributes. However, which sub-
space contains the true clustering result is usually uncertain. From this point of 
view, subspace clustering can be regarded as an uncertain discursion problem. 
In this paper, we firstly develop the criterion to evaluate creditable subspaces 
which contain the meaningful clustering results, and then propose a creditable 
subspace labeling method (CSL) based on D-S evidence theory. The creditable 
subspaces of the original data space can be found by iteratively executing the 
algorithm CSL. Once the creditable subspaces are got, the true clustering results 
can be found using a traditional clustering algorithm on each creditable sub-
space. Experiments show that CSL can detect the actual creditable subspace 
with the original attribute. In this way, a novel approach of clustering problems 
using traditional clustering algorithms to deal with high dimension data sets is 
proposed. 

1   Introduction 

Clustering is a powerful exploration tool capable of uncovering previously unknown 
patterns in data [1].A cluster is a collection of data objects that are similar to one an-
other within the same cluster and are dissimilar to the objects in the other clusters. 
Recently, many conventional clustering algorithms, such as k-means [2], CLA-
RANS[3,4],BRICH[5],CURE[6],DBSCAN[7] etc, have been represented. Those conven-
tional clustering algorithm have sufficient effect to low dimension data sets and fail to 
detect the meaningful result in high-dimensional space, due to the characteristic of the 
high dimensional data set, such as inherent sparse, noise and zero difference. Most 
real world data set was represented by high-dimensional vectors. So the clustering 
problem, which can find the natural structure of high-dimensional data set, has be-
come the hot and difficult topic. The notion of subspace clustering and CLIQUE[8] 
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algorithm were both first introduced by Agrawal et al, in 1999.CLIQUE is a grid-
based algorithm using an Apriori-like method to recursively navigate through the set 
of possible subspace in a bottom-up way. The data space is first partitioned by an 
axis-parallel grid into equi-sized blocks of width ξ  called units. Only units whose 
densities exceed a threshold τ  are retained. Both ξ  and τ  are input parameters of 
CLIQUE. The bottom-up approach of finding such dense units starts with 1-
dimensional dense units. The recursive step from ( 1)k − -dimensional dense units to k -
dimensional dense units takes ( 1)k − -dimensional dense units as candidates, and gen-
erates the k -dimensional units by self joining all candidates having the first ( 2)k − -
dimensional in common. Generated candidates which density doesn’t exceed τ , are 
eliminated. For efficiency reasons, a pruning criterion called ‘coverage’ is introduced 
to eliminate dense units lying in less ‘interesting’ subspaces as soon as possible. For 
deciding whether a subspace is ‘interesting’ or not, the Maximum Description Length 
principle is used. Naturally, this pruning bears the risk of missing some small and 
significant results. After generating all ‘interesting’ dense units, clusters are found as 
a maximal set of connected dense units. And then give a DNF interpret. ENCLUS[9] is 
a slight modification of CLIQUE, and the major difference is the criterion used for 
subspace selection. The criterion of ENCLUS is based on entropy computation of a 
discrete random variable. The entropy of any subspace S  is high when the points are 
uniformly distributed in S  whereas it is lower the more closely the points in S  are 
packed. Subspaces with entropy below an input parameter ω  are considered as good 
for clustering. MAFIA[10] is another modification of CLIQUE. An adaptive grid sizes 
are used, which reduces computation cost and improves the clustering quality by 
concentrating on the portions of the data space which have more points and thus more 
likelihood of having clusters. All of grid-based methods have a big drawback that 
they heavily depend on the position of the grids, and only get the axis-parallel results. 
SUBCLUS[11] is an density-based subspace clustering algorithm. The essential idea of 
SUBCLUS is redefined the notion of DBSCAN to adapt to subspace clustering re-
quirement. So it has the same drawbacks of DBSCAN, that is the input parameter ε  
and m . The global parameter makes SUBCLUS can not deal with data sets, which 
have no uniform density subspace. 

Those classical subspace clustering algorithm almost use a local search method to 
detect subspace and its clusters. But, which subspace contain cluster results is not 
ascertain, that is one don’t know which attribute subset can contain interesting result. 
In this paper, we regard subspace clustering as the uncertain discursion problem, 
which was bought by ‘unknown’. Based on D-S evidence theory, we firstly develop 
the criterion to evaluate creditable subspaces which contain the meaningful clustering 
results. All subsets of the original attribute space have a hypothesis:

0
H : subset of 

attribute contain cluster and 
1

H subset of attribute not contain cluster. So a frame of 

discernment { }1
H HΘ

0
＝ , is established and the state of it is described by probability 

assignment function. For finding meaningful clustering result, the probability assign-
ment function must sufficiently capture the distribution of subspace. KNN kernel 
density estimation can efficiently capture the local characteristic and density distrib-
ute, so we use it as the probability assignment function of { }1

H HΘ
0

＝ , .and the Belief 

of subset S  is calculated by the probability assignment function. If the Belief exceeds 
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the user parameter σ , then we call the subset S  is a Creditable Subspace. Secondly, 
we also propose a Creditable Subspace Labeling (CSL) to detect those Creditable 
subspaces, which embedded in the original attribute space. CSL generates a candidate 
creditable subspace set based on the belief value of each { }, 1, 2,...,S j j d= = . And then 
we use the Dempster rule to combine different candidate creditable subspaces. The 
Belief values of new candidate creditable subspace is calculated and for deciding keep 
or discard it. Iteratively executing those steps until finding all the creditable subspaces 

SC of the original space. At last, a conventional clustering algorithm which meets the 
users’ requirement is processed on each creditable subspace of SC .Experiences on 
amounts simulation data sets show that CSL can find true subspace of original attrib-
ute space. This method proves a new path to deal with high dimension data set clus-
tering problem, using conventional clustering algorithm. 

The remainder of the paper is organized as follows. In Section 2, we introduce the 
background of D-S evidence theory. A Creditable Subspace Labeling Method based 
on D-S Evidence Theory and the framework of CSL are presented in Section 3. A 
broad experimental evaluation of CSL based on artificial data sets is presented in 
Section 4. Section 5 draws conclusions and points out our future work. 

2   Background of D-S Evidence Theories 

D-S evidence theory was presented by Dempster in 1967[12]. Shafer, Dempster’s stu-
dent, has developed it which has become a whole theory of mathematic reasoning 
nowadays. D-S theory can be seen as a general extent of classical reasoning theory 
within the finite domain. The major character of D-S theory is that it supports the 
description of different level precision and directly introduces the description of un-
certain. It supports possibility reasoning, diagnosis, risk analysis, decision-making 
etc, and has been applied in multi sensors network, diagnosis of hospital areas. 

D-S theory is built on no-empty finite domain Ω . Ω is the frame of discernment 
(FOD), denotes finite system state { }1 2

, ,...,
n

θ θ θ . The hypothesis of system state 
i

H is a 

subset of Ω , which is one element of the power set of Ω -- ( )P Ω . The aim of D-S 
theory is to educe all the current system states based on some observation of the sys-
tem states

1 2
, ,...,

m
E E E ,which couldn’t uniquely confirm some system states, but is only 

the behave of the uncertain of system state. As the fundamental notion of D-S evi-
dence theory, the probability function of some evidence to support a system sate is 
proposed first.  

Definition 1: Assume function : ( ) [0,1]m P Ω → , and satisfy: 

( ) 0m ∅ =    ( ) 1
A

m A
⊆Ω

=∑  

Then, m is called as probability function of ( )P Ω . 
 

Definition 2: Belief Function : ( ) [0,1]Bel P Ω → is defined as: 

( ) ( )
B A

Bel A m B
⊆

=∑  for all A ⊆ Ω . 

( )Bel A  denotes the belief of A is true. 
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In real application, different probability distribute function will be defined from 
different sources. So Dempster rule is used to combine those functions. 

Definition 3: Suppose 1m  and 2m are two probabilities distribute function which 

come from different sources, then the Dempster rule 1 2m m m= ⊕ satisfies: 

              ( ) 0m ∅ =  

              1

1 2
( ) ( ) ( )

x y A
m A K m x m y−

∩ =
= × ×∑  

Where: 
1 2 1 2

1 ( ) ( ) ( ) ( )
x y x y

K m x m y m x m y
∩ =∅ ∩ ≠∅

= − × = ×∑ ∑ . 

Dempster rule of d different sources probability distributes is defined as:  
1

1,... 1 1 2 2
( ) ( ) ( ),..., ( )

d d dx Ad i i
m A K m x m x m x−

∩ =
= × ×∑  

When A ≠ ∅  
1 1 2 2
( ) ( ),..., ( )

d d dx Ai i
K m x m x m x

∩ ≠
= ×∑ . 

3   A Creditable Subspace Labeling Method Based on D-S Evidence 
Theory 

In this section, the definitions of KNN kernel density estimate and Creditable Sub-
space are proposed first. And then a framework of CSL is given.   

3.1   Relevant Define 

Given a data set 1 2{ , ,..., } d
n iD x x x x= ∈ℜ . 1 2{ , ,..., }dAttr a a a= is the attribute set of D , and the 

range of ( 1,2,..., )ia i d= is [0, ],Range Range +∈ℜ . Any subset S Attr⊆ ,is called a subspace. 

The cardinality of S  is called the dimensionality of S . There are two common steps 
in the subspace clustering algorithm: first to confirm the subspace and then to evalu-
ate whether it has interesting cluster or not. For a given subset S Attr⊆ , there is an 
proposition: 

         
0

H : subset S  contains cluster. 

         
1

H : subset S  not contains cluster. 

According to the definition of D-S theory, the frame of discernment Ω  is denoted 
as { }0 1

,H H and
0 1

H H∩ = ∅ . Simultaneously the power set of Ω is defined 

as
0 1 0 1

( ) { , , , ( , )}P H H H HΩ = ∅ , where ( ) 0m ∅ = . Subspace clustering has such character: 

in a given subspace, there are may be contain clustering result SC , or not. Based on 

this character we define
0 1

( , ) 0m H H = . In this paper, the frame of discernment only 

contains two mutex elements. In the quotation [13], Dempster rule is proved as an 
NP-hard problem. But, the time complex of Dempster rule is ( )O d , since the frame of 
discernment only contains mutex element[14]. 

Local character and density distribution of data set can be captured by KNN kernel 
density estimate. So we use the KNN kernel density to denote the probability distribu-
tion of subspace S . 
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Definition 4: Let 1 2{ , , ..., } d
n iD x x x x= ∈ ℜ , ( )dK x be a d -dimensional probability 

function, 
1 2

[ , ,..., ]
d

x x x
xH h h h=  be the d -dimensional window-width vector around xV . Then 

denote: 

      
1

1
( ) (( ). / )

n

d i xn i
x

f x K x x H
nV

∧

=
= −∑  

as a multi-dimensional KNN kernel density estimate, where 
1 i

d x
x i

V h
=

= ∏ . 

KNN kernel density estimate method has some characters, such as smoothly esti-
mate result, adaptive window-width etc. so it can capture the true distribution of the 
data set. 

Note 1

ˆ ( )
_ ( )

n

n ii
f x

m ea n p d f S
n

== ∑  as the mean KNN kernel density of all data points 

in the subset S .
1

ˆ( ) ( ( ) _ ( ))
n

n ii
Count S f x mean pdf S

=
= ≥∑ . ( )Count S  reflects the local 

character of data, due to it is described by k neighbors of point. Simultaneously, the 
kernel radius of KNN kernel density estimate is flexible, so that it can represent the 
situation, which the density is not uniformity. In this paper, we denote 

0
( ) ( )

S
m H Count S= and

1
( ) 1 ( )

S
m H Count S= − , to represent the belief of 

0
H  and unbelief 

of 
0

H respectively. We give the definition of Belief Subspace under this denotation.        
 

Definition 5: Given a subspace S , if ( ) ( )
B S

Bel S m B σ
⊆

= ≥∑ , then S is a Belief Sub-

space, or Creditable Subspace. 

3.2   CSL Algorithm 

3.2.1   The idea and Frame of CSL 
Fig1 shows the basic framework of CSL. Give a data set D , nearest neighbor num-
ber k , kernel density function kernal  and the belief parameter σ . CSL can find all 
Creditable Subspace and return Creditable Subspace set SC .Firstly step of CSL is to 
initialize the Creditable Subspace set  SC  and its candidate sets candidate . Secondly, 
for each dimension j Attr∈  of the data set D , denoting { }, 1, 2,...,S j j d= = . Generating a 
nearest neighbor table 

n k
T ×

 after finding k nearest neighbor of each
i

x D∈ . The value 

of KNN kernel density estimation of each 
i

x is calculated through
n k

T × . And then 

( )Count S is calculated as
1

ˆ( ) ( ( ) _ ( ))
n

n ii
Count S f x mean pdf S

=
= ≥∑ .we obtain the probability 

distribution about the hypothesis of 
0

H  and 
1

H  within each dimension, by 

set
0

( ) ( )
S

m H Count S=  and 
1

( ) 1 ( )
S

m H Count S= − respectively. After calculating the 

Belief value of each { }, 1, 2,...S j j d= = , one will be hold which ( )Bel S σ≥  as candidate 
Creditable subspace, candidate candidate S= ∪ .As shown in the for loop of the CSL. The 
last step of CSL iteratively selects two different candidates Creditable Subspace to 
combine using Demspter rule and generate new subspace. The Belief value of new 
subspace is calculated and adds to candidate Creditable Subspace set. The algorithm 
must span all the possible subsets to obtain the best combination, but this step needs 
exhaust compute time. Due to it, we give a greedy search to find the local solution. 
Step 3 in fig1 is a while loop to accomplish this search method. If candidate ≠ ∅ , then 
select a subset S , and make a Demspter rule with 'S candidate S∈ − . The max m  is  
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selected as '( )S Sm max m m= ⊕ ,and then recalculates the belief of new sub-

space
'

( ') ( )
B S S

Bel S S m B
⊆ ∪

∪ =∑ . If ( ')Bel S S σ∪ ≥ , then { } { '}candidate candidate S S= − − , 

{ } { '}S S S← ∪ , { }candidate candidate S= ∪ . When there no new subset appends to S , let 
S SC C S= ∪  and { }candidate candidate S= − . Iteratively operate this process un-

til candidate = ∅ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.2.2   Algorithm Complexity 
In the for loop, the primary function of _ _ ( , )find knn neighbor D k is to find k nearest 
neighbor of each 

i
x D∈  on each dimension. The time complexity of this function  

 

Algorithm 1: CSL 
Input: data set D , nearest neighbor number k , kernel function kernal and belief pa-

rameter σ . 
Output: Belief Subspace set SC  

1. SC = ∅ ; candidate = ∅  
2. for  1:j d=  
   2.1. T = ∅ ; dft = ∅ ; 

2.2. _ _ ( , );T find knn neighbor D k=  
2.3. _ ( , , );dft caculate kernal D T kernal=  
2.4 ( ) _ ( );m j gernerate paf dft=  
2.5 ( ) _ ( );Bel j cacluate bel m=  
2.6 ( ) { }if Bel j candidate candidate jσ≥ = ∪  

end  
3. ( )while candidate ≠ ∅  
  3.1. _ ( );S get first candidate=  

  3.2. C S= ； 

 3.3. ( )while candidate S− ≠ ∅  
      3.3.1. ' ;S candidate C∈ −  
      3.3.2. ( ') _ ( , ');m C S orthognal operator C S∪ =  
      3.3.3. ( ') _ ( );Bel C S cacluate bel m∪ =  
      3.3.4. ( ')if Bel C S σ∪ ≥  
                     'S C S= ∪ ; 

;candidate cadidate S= −  
end  

         end  
3.3.5. ;S SC C S= ∪  

3.3.6. ;candidate candidate S= −  
end  

                     Fig. 1. CSL Algorithm 
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is 2( )O n . But if a k d− tree structure is used, the time complexity will be reduced to 
( )O nlogn .Thus, the time complexity of _ _ ( , )find knn neighbor D k is less than or equal 

to 2( )O n . Analogously the time cost of _ ( , , )caculate kernal D T kernal , _ ( )gernerate paf dft  
and _ ( )cacluate bel m is ( )O n  respectively. So the whole time complexity of for loop 
is 2( ( 3 ))O d n n+  at most. In while loop, the Dempster rule is used to combine probabil-
ity distribution which comes from different sources, and calculates the belief of new 
subspace. As fore discussion, the cost of calculate d  different probability  
distribution is 2( )O d . Thus, the whole time complexity of CSL is 

2 2 2 2( ( 3 )) ( ) ( ( 3 ) )O d n n O d O d n n d+ + = + + . 

4   Results and Analysis 

We evaluated precision and efficiency of CSL using several synthetic data sets. All 
experiments were run on a workstation with a 1.7GHz processor and 2G RAM. The 
proposed CSL algorithm is implemented in matlab 6.5. 

The synthetic data sets were generated by a self-implemented data generator. It 
permits to control the size and structure of the generated data sets through parameters, 
such as the size and dimensionality of data set, the dimensions of the subspace, the 
number of clusters and the range ( [0, ],Range Range +∈ℜ ) of each dimension. For the 
simple, we use the same label method, which was represented in [14], to express data 
set. ‘B’,’C’,’D’,’S’ denote the records of data set, the number of clusters, the dimen-
sions of data set and subspace respectively. For example, B10000C10D50S15 ex-
presses a data set that contains 10000 records, each record has 50 dimensions, and 
there are 10 clusters through 15 dimensions. In this paper, we evaluate LCS from the 
precision and efficiency aspects. 

(1) Precision of CSL 
We denote SD contain the true subspace of D , and then define | | | |S Sprecision C D=  as 

the precision of the CSL. We perform CSL、CLIQUE�ENCLUS and SUBCLUS on 
B30000C10D50S5, B30000C10D50S10, B30000C10D50S15, B30000C10D50 S20, 
B30000C10D50S25, B30000C10D50S30, B30000C10D50S35, and compare their 
precision. Experiment results as shown in fig2. The parameter of CLIQUE�ENCLUS 
and SUBCLUS is the same as given in the quotation. Otherwise, the parameter of 
CSL is set as k n⎡ ⎤= ⎢ ⎥ , ( )*0.80m Sσ = . From fig2, we observe that the precision of CSL 

is higher than others, because CSL is based on KNN kernel density estimate. This 
character makes CSL can capture the local distribute of data set, and easy to find the 
density units location. The precision of SUBCLUS is the lowest, because its idea is 
the concept of DBSCAN, and can not do well without the parameter’s influence. 

(2) Efficiency of CSL. 
We evaluate the Efficiency of CSL from three aspects: the size and the dimensions 

of data set, the dimensions of subspace. Experience of evaluating the scalability of 
CSL against the size of dataset was performed on D5000C6D20S5, D10000C6D20S5, 
D15000C6D20S5, D20000C6D20S5, 15000C6D20S5, D30000C6D 20S5,  
 



846 Y. Zong et al. 

D35000C6D20S5, D40000C6D20S5, D45000C6D20S5. On data sets: D20000C6 
D10S5, D20000 C6D15S5, D20000C6D20S5,D20000C6D25S5, D20000C6 D30S5, 
we evaluate the scalability of CSL against the dimensions of data set. Analogously, we 
also evaluate the scalability of LCS against the dimensions of subspace on 
D30000C6D50S2, D30000C6D50S4, D30000C6D50S6, D30000C6D50S8, and 
D30000C6D50S10. 

  

Fig. 2. Precision comparison on synthetic 
dataset 

Fig. 3. Scalability of CSL against the size of 
dataset 

Fig 3, 4, 5 show the experiment of three aspects respectively. From these figure, 
we observe that CS L has better scalability of the size and dimensions of data set, the 
dimensions of subspace. 

  

Fig. 4. Scalability of CSL against the di-
mensions of dataset 

Fig. 5. Scalability of CSL against the di-
mensionality of the subspace 

5   Conclusion 

Subspace clustering is an important method to deal with high-dimensional clustering 
problem, because conventional clustering algorithm (algorithms) can not detect the  
 



 A Creditable Subspace Labeling Method Based on D-S Evidence Theory 847 

true data distribution in high-dimensional space. Subspace clustering tries to find the 
true clusters embedded in subset of original attribute. But, which subset of attribute 
contains interest cluster is uncertain. So we regard subspace clustering as an uncertain 
reasoning problem, which arisen by ‘unknown’. In this paper, a Label Creditable 
Subspace method based on D-S evidence theory is proposed. Simultaneously, we also 
give the definition of Belief Subspace and its evaluation criterion. LCS iterative finds 
all the belief subspace of original space. According to the application domain, use a 
conventional clustering algorithm on the subspace set to get the results. Experiments 
show that LCS can find the true subspace of data set and has better scalability of the 
size and dimensions of data set, the dimensions of subspace. The method of this paper 
shows a new way to use conventional clustering algorithm to deal with high-
dimensional data set. 
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Abstract. The design of new materials is a major issue in many domains
(electronics, environment and so on). A large number of databases have been
developed in order to help scientists to design new materials. Databases of ex-
perimental results can be used to learn prediction models of each property. Data
mining methods, can be applied on such databases to discover empirical rules and
predict properties.

In this paper we propose a method for discovering new orders of the chemical
elements. This reorganization of the chemical elements can be used to improved
prediction accuracy of classification methods and to enhance similarities between
elements. A genetic algorithm is used to find a satisfying solution according to
several evaluation criteria through a Pareto-based multi-objective approach.

We carried out several experiments of prediction of compound formation
(ternary chalcopyrite compounds ABX2, where X is either S , Se or Te ). The
first results showed that distance-based evaluation seems promising, as it has
been possible to discover groups of similar elements regarding the task.

Keywords: Supervised classification, Order discovery, Genetic algorithm, Mate-
rial design.

1 Introduction

The design of new materials is a major issue in many domains (electronics, environ-
ment and so on). However, material design is a difficult task. Therefore, a large number
of databases have been developed in order to help scientists to design new materials.
Databases of experimental results can be used to learn prediction models of each prop-
erty. Data mining methods can be applied on such databases to discover empirical rules
and predict properties in order to restrain the research of new material to the more
promising cases.

We are interested to know if accurate predictions can be realized using only basic
information of the periodic table. In this paper, we propose a method for discovering
new orders of the chemical elements. This reorganization of the chemical elements can
be used to improved prediction accuracy of classification method and to understand the

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 849–857, 2008.
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physics beyond the predictions. The proposed method uses two types of information:
labeled instances from the dataset and the position of the elements in the periodic ta-
ble (atomic number, chemical group, etc.). A genetic algorithm is used to explore the
possible orders of elements.

In Sec. 2, we will present the new order discovering method and results are shown in
Sec. 3.

2 Method

In this section, we will present the genetic algorithm used for order discovery. We will
first present the data representation (Sec. 2.1) and the goals of chemical elements order-
ing (Sec. 2.2). Then, we will detail the method (Sec. 2.3) and the fitness functions that
can be used (Sec. 2.4).

2.1 Data Representation

In this paper, we will focus on two-classes problems. The datasets concern the formation
of specific compound types according to a set of elements. A possible problem can be
described as follow: considering the set of elements E = {A , B , C} is it possible to
create a compound XYZ2, where X ∈ E, Y ∈ E, Z ∈ E, X �= Y , X �= Z and
Y �= Z .

We consider only information based on the position of the elements in the periodic
table and the labeled instances of the dataset. Datasets are composed of a list of in-
stances, described by the atomic number of each element of the potential compound
and the class label (formation or non formation).

Definition 1. A distance measure can be defined between two instances, using the min-
imum Euclidean distance among all permutations of elements of the instances. For in-
stance, considering two instances a = (a1, . . . , an) and b = (b1, . . . , bn) the distance
can be defined by:

d (a, b) = min
σ∈S

⎛

⎝

√
√
√
√

n∑

i=1

(
d
(
ai, bσ(i)

))2

⎞

⎠ ,

where n is the number of elements, ai (resp. bi) is the order rank (e.g. atomic number)
of the i-th element of the instance a (resp. b), d (ai, bj) = |ai − bj | and S is the set of
all permutation of numbers from 1 to n.

2.2 Ordering of Elements

The most common order of the chemical elements is the atomic number. However, this
order does not give enough information about the properties of the elements. Elements
with close atomic numbers may not have close properties (e.g. H and He are elements
1 and 2, but have very different chemical properties), whereas some elements with very
different atomic numbers (e.g. elements of a same group) have similar properties.



Discovering New Orders of the Chemical Elements 851

In [1], a new order of the elements has been defined to predict the formation of one
type of crystal structure of binary compounds. In this order, elements with close ranking
have close properties regarding the crystal structure. Moreover, elements of a same
group are close to each other. This order of elements inspired other orders (Periodic
Numbers, also called Mendeleev Numbers), defined by running through the periodic
table group by group. These orders have been used in [2].

Periodic Numbers are more consistent with the chemical properties of the elements.
However, it could be interesting to define orders adapted to specific properties, as was
the order proposed in [1]. In this paper, we propose an algorithm able to discover new
orders of the elements. If we consider the chemical elements up to the actinide series
(i.e. the 103 first elements), there is 103!

2 different possible orders. Thus, the algorithm
must be able to discover satisfying solution among the whole set of orders. This is a
difficult task as there are linear and non linear relation between the element and the
properties of the compounds.

2.3 Genetic Algorithms for Order Discovery

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization
problem. A traveling salesman must find the shortest route to visit several towns. This
problem is known to be NP -complete and has been widely studied. The problem of
ordering the chemical elements is similar to the TSP.

Genetic algorithms have been proposed to find good enough solution [3]. Each indi-
vidual is an order that will be evaluated according to the function to optimize. However,
it is not trivial to define a representation of the solutions and crossover and mutation op-
erators for orders. Several representations and operators have been defined in literature.
The most common representation for orders is an ordered list of the items. However in
the case of order of chemical elements, we uses the dual representation: the genotype is
an array where the first element of the array is the rank of the first chemical element (H)
in the new order, the second element of the array is the rank of the second chemical el-
ement (He), and so on. This dual representation does not change the crossover and mu-
tation operators, but facilitate the implementation of the data transformation. We tested
several crossover and mutation operators. First experiments seemed to show that the
crossover operator POS and the mutation operator EM and SIM provide the best results.

2.4 Evaluation of Orders

As other data transformation methods (attribute selection, attribute weighing, attribute
construction), the evaluation of the quality of an order can be performed through a filter
approach or through a wrapper approach [4].

In the filter approach, the order is evaluated according to some statistics based on
the properties of the data. In this paper, we used distance based measures: intraclass
distance and interclass distance. These two evaluation criteria can be used with the
distance measure defined in Def. 1. In this definition, the distance between two elements
is the difference between their ranks in the order. However, as there are no available data
for some elements, we defined another measure where elements with no data will not
affect the distance measure (Def. 2). In a wrapper approach the quality of an order can
be evaluated by the accuracy of a classification algorithm after the data transformation.
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Definition 2. The modified distance between two elements of ranks ai and bj (with
ai < bj) in an order ord is defined by:

dm (ai, bj) = 1 +
∑

ai≤c≤bj

Nb (c) ,

where Nb (c) = card (o ∈ D | o = {o1, o2, . . . , on} and ∃i, oi = c), i.e. Nb (c) is the
number of instances containing the element of rank c in the order ord.

These criteria can be used to evaluate the quality of an order based on the dataset. To
order correctly elements with no information, we should also take into account some
knowledge about the elements. We know that elements of a same group (same column
of the periodic table) and elements of a same series (transition metals, metalloids, etc.)
have similar properties. According to this knowledge, elements of the same group or
series must be close so each other in the order. Thus, we can define a scattering cost of
an order according to the periodic table.

Definition 3. The scattering cost scat can be defined by:

scat (ord) =
∑

A ,B∈E

max (G (A , B) , S (A , B)) × (ord (A) − ord (B))2

dM (A , B)
,

where G (A , B) = 1 iff A and B are in a same group, S (A , B) = 1 iff A and B are
in a same series and dM is the distance between two elements in the Mendeleev table.

The algorithm will use a Pareto-based approach for multi-objective optimization [5,6].
Two criteria will be used at the same time: one data criterion (distance based or accuracy
based) and the scattering cost.

3 Experiments

We carried out a series of tests in order to evaluate the feasibility of chemical element
ordering. In Sec. 3.1, we will present the datasets used in our experiments. In Sec. 3.2
are show some experimental results.

We used a population of 100 individuals and run the algorithms for 2500 generations.
We used an elitist strategy (all individuals on the Pareto front are conserved without any
modification). The remaining individuals are created by crossover followed by a muta-
tion (70%), mutation of one individual (25%) and new individuals (5%). Tournament
selection is used to select parents. On the Pareto front, a priority is accorded to the data-
based criterion. The algorithm has been designed in Java language using the GEAL
library (http://dpt-info.u-strasbg.fr/~blansche/en/geal.html).

3.1 Data

In this paper, we will focus on the prediction of formation of ternary chalcopyrite
compounds ABX2, where X is either S , Se or Te . ABX2 compounds are promising
for electronic applications because of semiconducting and nonlinear optical properties

http://dpt-info.u-strasbg.fr/~blansche/en/geal.html


Discovering New Orders of the Chemical Elements 853

[7,8]. This dataset was extracted from the databases on inorganic substance properties
of the A.A. Baikov Institute of Metallurgy and Materials Science [9].

As element X can take only a few number of values, the complete dataset has been
divided into three partial datasets, corresponding to the different prediction tasks ABS2,
ABSe2 and ABTe2. In the three partial datasets, there are only two variable elements,
so the new order result can easily be plotted on a grid for visual interpretation. Because
of space restrictions, results on the ABSe2 dataset are not shown here. There are 240
positive instances (compound formation) and 49 negative instances (compound non-
formation) in the ABS2 dataset, and 109 positive instances and 85 negative instances
in the ABTe2 dataset.

3.2 Results

For each datasets, we tested four versions of our algorithm, using each time two eval-
uation criteria: intraclass distance and scattering cost, interclass distance (standard or
modified) and scattering cost, or accuracy (using the Nearest Neighbor algorithm) and
scattering cost. Only representative results are shown in this paper.

The datasets can be plotted on symmetric two-dimensions grids. Each row and each
column corresponds to one element. The order of rows and columns is defined by the
order of the elements (from left to right, from top to bottom). Each square of the grid
is associated to a potential compounds ABX2 colored in dark grey in case of non
formation of compounds, in medium gray in case of formation, and in light grey when
no data are available.

On Fig. 1 and 2 are shown the projections of the ABX2 datasets using the atomic
number. One can see that there is no clear separation between formation and non for-
mation of compounds.

On Fig. 3 and 4 are shown the results obtained using the intraclass distance and
the scattering cost as evaluation criteria. On the projection of the ABS2 dataset, most
of the formation instances are grouped together into two (symmetric) clusters. The rest
of the instances (formation and non formation) are distributed in the middle of the
grid. On the projections of the ABTe2 dataset, all instances are grouped together into a
compact cluster. Some parts of this cluster are mainly composed of formation instances,

Fig. 1. Projection of ABS2 (atomic number) Fig. 2. Projection of ABTe2 (atomic number)
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Fig. 3. Projection of ABS2 (intraclass distance) Fig. 4. Projection of ABTe2 (intraclass dis-
tance)

others of non formation instances, but it is difficult to see any clear separation between
formation and non formation.

On Fig. 5 and 6 are shown the results obtained using the interclass distance and the
scattering cost. It is easier to see a separation between formation and non formation.
Two types of elements appears: low rank elements (L) and high rank elements (H). On
the ABS2 dataset, L elements seem to be able to form LBS2 (or ALS2) compounds
with almost any other element, whereas formation (or non formation) is difficult to
predict for HH’S2 compounds. The ABTe2 dataset can be divided into four clusters.
LL’Te2 are non formation instances, HH’Te2 are formation instances. It is difficult to
predict the formation of HLTe2 and LHTe2 compounds. One should note that most of
the data appears on the borders of the grid.

On Fig. 7 and 8 is shown the result obtained using the accuracy (obtained by the
Nearest Neighbor algorithm) and the scattering cost as evaluation criteria. Formation in-
stances are grouped together into several line-shaped clusters. Non formation instances

Fig. 5. Projection of ABS2 (interclass distance) Fig. 6. Projection of ABTe2 (interclass dis-
tance)
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Fig. 7. Projection of ABS2 (accuracy) Fig. 8. Projection of ABTe2 (accuracy)

are distributed among the grid, forming mostly very small clusters of less than six in-
stances. This structure is not very helpful to understand the data.

On Fig. 9 and 10 are shown the results obtained using the interclass distance with the
modified distance and scattering cost. These results are similar to the results obtained
using the standard interclass distance, but the obtained clusters are not too compact, the
data are more distributed all over the grid.

These results seems to show that it is possible to perform an automatic reordering
of the chemical elements. Evaluation measure based on interclass distance seems more
promising to reach interesting results. Using this evaluation measure, groups of chemi-
cal elements with similar properties have been detected on the three datasets. However,
it seems difficult to order correctly elements with few data available.

While using a standard distance, the separation between formation and non forma-
tion is clear but instances are forming compact clusters without incorporating similar
elements not present in the dataset. When the modified distance is used, it seems possi-
ble to order every elements more correctly.

Fig. 9. Projection of ABS2 (interclass dist.,
modified)

Fig. 10. Projection of ABTe2 (interclass dist.,
modified)
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Even on the best results, some inconsistancies still appear. For instance, on Fig. 10,
in the upper-left part, one can see a non formation instance in the middle of a cluster
of formation instances. This instance corresponds to the non formation of CeTlTe2.
The Tl element appears in a large number of instance, but there are only two instances
containing Ce . It would have been more logical to give a high rank to the element Ce
for this dataset. This show that it will probably be necessary to refine the result after the
end of the genetic algorithm. A local optimization method should be developed in order
to improve the results.

4 Conclusion

In this paper, we presented a method for discovering new orders of elements through
a genetic approach. Two criteria, one data-based and one knowledge-based, are used
through a Pareto-based multi-objective approach. New orders of the elements can be
used to predict the formation of compounds more efficiently. Moreover, new orders
can help to enhance similarities between elements. The first results presented in this
paper showed that accuracy-based evaluation does not provides interesting results, at
least for the Nearest-Neighbor classification method. Distance-based approach seems
more promising, as it has been possible to discover groups of similar elements elements
regarding the formation of a specific compound type.

However, there are still improvement to do as elements with few information seem
hard to order correctly. Other evaluation function or “intelligent” operators (such as
order perturbation inside a group or a series of elements, or at the group or the se-
ries level) should be developed in the future. As a further work, we should also apply
the proposed method on other datasets. We applied our method only on binary prob-
lems (formation or non formation), but it could be interesting to test it on multi-classes
problem like the discrimination between several crystal structures. Moreover, we only
applied our method on two elements problems and should now be tested with datasets
of compounds of three or more elements. On more complex datasets, cluster analysis
would be useful to discover groups of similar elements.
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Abstract. The standard, transactional setting of pattern mining as-
sumes that data is subdivided in transactions; the aim is to find patterns
that can be mapped onto at least a minimum number of transactions.
However, this setting can be hard to apply when the aim is to find graph
patterns in databases consisting of large graphs. For instance, the web,
or any social network, is a single large graph that one may not wish
to split into small parts. The focus in network analysis is on finding
structural regularities or anomalies in one network, rather than finding
structural regularities common to a set of them. This requires us to revise
the definition of key concepts in pattern mining, such as support, in the
single-graph setting. Our contribution is a support measure that we prove
to be computationally less expensive and often closer to intuition than
other measures proposed. Further we prove several properties between
these measures and experimentally validate the efficiency of our measure.

Keywords: graph mining, pattern mining, network analysis.

1 Introduction

The traditional transactional setting of pattern mining is popular for many types
of data with well-known examples being basket analysis [1], or molecular frag-
ment mining [10]. As stated in the abstract, the single-graph setting introduces
problems that do not appear in the transactional setting; the most prominent
one being the definition of the support of a pattern. Näıve definitions of support
have the problem that they are not anti-monotonic; thus they cannot be used ef-
fectively in pattern mining, as anti-monotonicity is required to prune the search
space. To address this problem, Kuramochi and Karypis [7] as well as Fiedler
and Borgelt [5] studied anti-monotonic support measures based on computing
maximum independent sets (MIS ) in overlap graphs.

Anti-monotonicity is however not the only requirement for efficient frequent
pattern mining. It is also important that the frequency measure can be evaluated
efficiently. We argue that the computation of overlap-based support measures is
not feasible in many graph databases, and that more scalable support measures
are needed to enable the use of frequent graph mining algorithms on network
data. We propose a new support measure, and provide practical and theoreti-
cal evidence that this measure is more scalable, more general and more widely
applicable than the support measures mentioned earlier. We show how this mea-
sure, and the overlap-graph based measures, relate to each other, thus providing
deeper understanding in support measures for graph mining.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 858–863, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 The Support of a Pattern

A labeled graph g = (Vg, Eg, λg) consists of a set of nodes Vg, a set of edges
Eg ⊆ Vg×Vg and a labeling function λg : Vg ∪Eg → Σ that maps each element
of the graph to an element of the alphabet Σ. Let GΣ be the set of all graphs
over the alphabet Σ. We define support as a function σ : GΣ ×GΣ → N.

As stated earlier, minimum support needs to be anti-monotonic to allow effi-
cient search. This means that for all graphs g, p and p′, where p is a subgraph of
p′, it must hold that σ(p, g) ≥ σ(p′, g). Anti-monotonicity is quite easily upheld
in the transactional setting, but is more tricky for the single-graph setting. The
cause of this problem is that it is not clear what exactly should be counted.

Occurrence of a Pattern. Given a pattern p = (Vp, Ep, λp) and a data graph
g = (Vg, Eg, λg), an occurrence is a function ϕ : Vp → Vg mapping the nodes
of p to the nodes in g such that (I) ∀v ∈ Vp ⇒ λp(v) = λg(ϕ(v)) and (II)
∀(u, v) ∈ Ep ⇒ (ϕ(u), ϕ(v)) ∈ Eg. The image of a set of nodes in an occurrence is
denoted ϕ(Vp) = {ϕ(v)|v ∈ Vp}; similarly, we define the image of a set of edges.

The problem of the support measure on a single graph is explained in Figure 1.
p1 has one occurrence in g, and p2 is a specialization of p1. What is the support of
p2 in g? In the transactional setting every instance with at least one occurrence
counts. This is undesirable in the single-graph setting, since every graph would
have a support of either zero or one. A näıve measure that assigns a support of
2 in our example, would not be anti-monotonic.

Single Graph Support Measures. For the support measure introduced in
[7], all possible occurrences ϕi of a pattern p in the graph g are calculated. An
overlap-graph is constructed where each occurrence ϕi corresponds to a node and
there is an edge (ϕj , ϕk) iff ϕj(Ep)∩ϕk(Ep) 
= ∅ (i.e.: ϕj and ϕk share an edge).
The support for the pattern p is defined as the size of the maximum independent
set (MIS ) of the overlap-graph. For example, in Figure 2 there would be four
occurrences of the pattern p in the graph g. Even though [7] defined overlap in
terms of edges, the concept can also be applied to vertices. For this case, we
formalize the following binary relationship:

Definition 1. A simple overlap of occurrences ϕ and ϕ′ of pattern p exists if
ϕ(Vp) ∩ ϕ′(Vp) 
= ∅.
We denote the support measure based on simple overlap as σ•. It can be shown
that this support measure is anti-monotonic. However, solving a MIS problem
is NP-complete.

A refinement of the simple overlap based support measure was introduced in
[5] and named harmful overlap. We will denote this by σ◦. The basic idea of this
measure is that some of the simple overlaps can be disregarded without harming
the anti-monotonicity of the support measure. As before, an overlap graph is
constructed and the support is defined as the size of the MIS. Different is the
definition of overlap:

Definition 2. A harmful overlap of occurrences ϕ and ϕ′ of pattern p exists if
∃v ∈ Vp : ϕ(v), ϕ′(v) ∈ ϕ(Vp) ∩ ϕ′(Vp).
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Note that both simple overlap σ• and harmful overlap σ◦ are based on shared
nodes here. However, all measures can be used either based on edges or on nodes.

Both measures rely on computing an overlap graph, and subsequently solving
a MIS problem. We propose a measure of support, which avoids potentially
expensive MIS computations1. It is based on the number of unique nodes in the
graph g = (Vg, Eg) to which a node of the pattern p = (Vp, Ep) is mapped.

Definition 3. The minimum image based support of p in g is defined as

σ∧(p, g) = min
v∈Vp

|{ϕi(v) : ϕi is an occurrence of p in g}|

By taking the node in p which is mapped to the least number of unique nodes
in g, we can ensure the anti-monotonicity of σ∧. From our definition of support,
we can deduce several computational benefits: (i) instead of O(n2) potential
overlaps, where n is the possibly exponential number of occurrences, we only
need to maintain a set of data vertices for every node in the pattern, which can
be done in O(n); (ii) we do not need to solve an NP complete MIS problem; (iii)
it is not necessary to compute all occurrences: it is sufficient to determine for
every pair of v ∈ Vp and v′ ∈ Vg if there is one occurrence in which ϕ(v) = v′.
The computational burden can be reduced further by taking into account the
automorphisms of the pattern graph.

Relationships and Dependencies. All measures introduced are based on the
occurrence of patterns, but they can give different results on the same data. An
example for how the three measures work and that they give different results
can be found in Figure 2.

Nevertheless, several relationships between these measures hold. We can show
that our measure σ∧ is an upper bound for the harmful overlap measure σ◦, which
is in turn an upper bound for the simple overlap based measure σ•.

Theorem 1. σ∧ is an upper bound for σ◦: ∀p ∈ P : σ∧(p, T ) ≥ σ◦(p, T ).

Proof. Let v∗ = arg min
v∈Vp

|{ϕi(v) : ϕi an occurrence of p in T }|. Then we know

that ∀ϕ, ϕ′ : ϕ(v∗) = ϕ′(v∗) there is a harmful overlap of ϕ and ϕ′ and hence at
most one of the occurrences ϕ and ϕ′ can be a member of the MIS. From this
the claim follows. �
Theorem 2. σ◦ is an upper bound for σ•: ∀p ∈ P : σ◦(p, T ) ≥ σ•(p, T )

Proof. We know that for all ϕ, ϕ′ such that ϕ and ϕ′ overlap harmfully, there
is a simple overlap. Hence the overlap graphs for both measures have the same
nodes, and the edges for the harmful overlap are a subset of the edges for the
simple overlap. Thus, the harmful overlap contains less constraints for the MIS,
and the set is at least as big as for the simple overlap. �
Finally it is easy to see that all described measures are bounded by the real
number of pattern occurrences in the graph.
1 This paper is an extended version of a paper presented at a workshop without

publications [2].
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Fig. 2. A graph with four different occurrences of a
pattern. The three discussed measures evaluate to
σ• = 1 < σ◦ = 2 < σ∧ = 3.

Table 1. Details of the computations needed to determine the MIS support measures.
MIS could not be computed for pattern 11 and above.

Pattern 1 2 3 4 5 6 7 8 9 10
Nodes in Pattern 2 2 3 3 3 4 4 4 4 5
Image-based support 110 110 100 95 77 97 68 77 64 82
# Occurrences 432 418 1696 1606 815 5428 7380 2254 816 15878
Time for Occurrences ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s
Edges in overlap-graph 3825 8714 328925 226886 167026 6662049 8362729 1401907 265249 66155623
Time for MIS 1s 1s 31s 57s 4s 958s 2456s 73s 2s >45m
Size MIS 69 92 42 65 36 24 45 32 62 -

Pattern 11 12 13 14 15 16 17 18 19 20
Nodes in Pattern 5 6 7 8 9 10 11 12 13 14
Image-based support 68 80 69 69 66 66 63 63 62 62
# Occurrences 7988 44254 116580 287954 658540 1386328 2711828 5039624 9125850 16409046
Time for Occurrences ≈ 0s 2s 7s 22s 1m4s 2m56s 7m34s 18m57s 46m14s 110m49s
Edges in overlap-graph 9332671 - 47804219 - - - - - - -

3 Experiments

To compare with the overlap-based support measures from [7,5] we obtained the
datasets Aviation and Credit described in [7] from the SUBDUE website2. We
used the same thresholds as used in [7] and obtained for all three measures the
same sets of frequent patterns as reported in [7]. A closer look revealed that both
datasets are rather transactional than single graphs, consisting only of sets of
trees of depth one. In the Credit dataset all trees have 21 nodes. A traditional
transactional graph miner [10] yields identical results; no additional information
on this data can be discovered using single graph mining.

The WebKB dataset3 does not have this drawback and consists of four large
graphs that correspond to the hyperlink structure of web pages from a computer
science department. Nodes are labeled according to the seven types of web-page
that they represent. Edges are unlabeled. Figure 4 summarizes the character-
istics of the datasets. Table 1 lists details of the computation of the MIS for
all patterns found on the Cornell dataset using our measure with a minimum
support threshold of 61. QUALEX-MS [3]4, a state of the art (approximative)
MIS solver [8] was used to calculate the MIS. The table shows that for larger
patterns, the number of occurrences is prohibitive; we were not able to compute

2 http://cygnus.uta.edu/subdue/databases/index.html
3 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
4 http://www.stasbusygin.org/
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the overlap graph, and consequently could not solve the MIS problem. As usually
bigger patterns are of interest, this is a problem for the overlap-based measures.

The results of the experiments on the WebKB datasets are summarized in
Figure 3. They suggest a relationship between the size of the database and the
computational costs of the frequent pattern extraction. Expressing the support
relative to the number of nodes in the data graphs, most datasets show the same
behavior, except for Washington, where lower relative supports were feasible.

Moreover, we applied our algorithm to a life science database with up to
18.000 nodes and 24.000 edges [9]. However, these results require more research.

4 Conclusions and Future Work

We introduced a new support measure for mining frequent subgraphs in large
single graphs and compared it experimentally and theoretically with existing
measures. Existing measures are based on constructing overlap graphs, which
soon grow impractically large; this makes solving the subsequent NP complete
problem impossible. Since the proposed new measure does not suffer from this
problem, it can be evaluated in cases where the old measures cannot be evaluated.
Furthermore we showed that the new measure is an upper bound for the other
measures, allowing us to guarantee a superset of patterns. We believe there are
no clear advantages or disadvantages with respect to the interpretability of any
of the measures.

We only compared with complete frequent (single)subgraph miners. Further
applications may be found in heuristic single graph miners, of which SubDue [6]
is an example, and graph miners dealing with additional constraints [4].

The proposed support measure is extendible in multiple ways. We present one
example here. Our measure was introduced as a node-based support measure and
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is easily turned into an edge-based measure. More interestingly, it is possible to
generalize our measure to more general substructures than nodes or edges.

Given a parameter k, we can define a support measure based on determining
where each connected subgraph with k nodes of the pattern can be matched to.

Definition 4. For a pattern p, a graph g, and a parameter k, the minimum
k-image based support is defined as:

σ∧(p, g) = min
V ⊆Vp,|V |=k,V connected

|{{ϕi(V )} : ϕi is an occurrence of p in g}|

Intuitively, we obtain a measure which achieves counts that are closer to the total
number of occurrences of a pattern, while the counts are still anti-monotonic.
Especially in larger patterns, it is sometimes more intuitive to allow for more
overlap between occurrences than when only single nodes or edges are used.
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Abstract. In the past, we proposed an algorithm for extracting appropriate mul-
tiple minimum support values, membership functions and fuzzy association 
rules form quantitative transactions. The evaluation process might take a lot of 
time, especially when the database to be scanned could not totally fed into main 
memory. In this paper, an enhanced approach, called the Cluster-based Genetic-
Fuzzy mining approach for items with Multiple Minimum Supports 
(CGFMMS), is thus proposed to speed up the evaluation process and keep 
nearly the same quality of solutions as the previous one. Experimental results 
also show the effectiveness and the efficiency of the proposed approach. 

Keywords: Data mining, fuzzy set, genetic algorithm, genetic-fuzzy mining,  
k-means clustering, multiple minimum supports, requirement satisfaction. 

1   Introduction 

Data mining is commonly used for inducing association rules from transaction data 
[1]. In real applications, different items may have different criteria to judge their im-
portance and quantitative data may exist. We thus divide the fuzzy data mining  
approaches into two kinds, namely Single-minimum-Support Fuzzy-Mining (SSFM) 
[2, 7, 9] and Multiple-minimum-Support Fuzzy-Mining (MSFM) problems [10]. 
However, the membership functions were usually assumed to be known in advance in 
the above problems. 

For SSFM problems, Kaya et al. proposed a GA-based approach to derive a prede-
fined number of membership functions for getting a maximum profit within an inter-
val of user specified minimum support values [8]. Hong et al. also proposed a  
genetic-fuzzy data-mining algorithm for extracting both association rules and mem-
bership functions from quantitative transactions [6]. For MSFM problem, Chen et al. 
proposed a genetic-fuzzy approach for extracting minimum support values, member-
ship functions and fuzzy association rules from quantitative transactions [3]. It evalu-
ated each chromosome by the criterion of requirement satisfaction which was  
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composed of the number of 1-itemsets and the suitability of membership functions. 
Although the evaluation only by 1-itemsets was much faster than that by all itemsets 
or interesting association rules, it was still time-consuming since the database had to 
be scanned once for each chromosome.  

In this paper, the clustering technique is thus used to reduce the execution time in 
solving the MSFM problem. An enhanced approach, called the cluster-based genetic-
fuzzy mining algorithm for items with multiple minimum supports (CGFMMS), is 
proposed to speed up the evaluation process and keep nearly the same quality of solu-
tions as that in [3]. The well-known clustering approach, k-means, is used to achieve 
this purpose [11]. Experimental results also show the effectiveness of the proposed 
approach. 

2   The Proposed Framework 

The proposed cluster-based genetic-fuzzy mining framework for items with multiple 
minimum supports (CGFMMS) is shown in Fig. 1.  
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Fig. 1. The proposed CGFMMS framework 

It can be divided into two phases, respectively for mining multiple minimum sup-
ports and membership functions and for mining fuzzy association rules. In the first 
phase, the proposed framework maintains a population of sets of minimum support 
values and membership functions, and uses genetic algorithm to automatically derive 
the resulting one. Data preprocessing is first done to get initialization information. 
Initial minimum support values and membership functions are then generated accord-
ing to the initialization information. The clustering technique is next used to gather 
similar chromosomes into groups. All the chromosomes then use the requirement 
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satisfaction derived from the representative chromosomes in the clusters and their 
own suitability of membership functions to calculate their fitness values. Since the 
number for scanning a database decreases, the evaluation cost can thus be reduced. 
The evaluation results are utilized to choose appropriate chromosomes for mating. 
The offspring sets then undergo recursive evolution until a good set has been ob-
tained. Finally, the derived minimum support values and membership functions are 
used to mine fuzzy association rules in the second phase. The approach proposed by 
Lee et al. [10] is used here to achieve this purpose. 

3   Clustering Chromosomes 

In order to develop a good set of minimum support values and membership functions 
from an initial population, the genetic algorithm selects parent chromosomes for mat-
ing in a probabilistic way. An evaluation function is thus used to qualify the derived 
minimum support values and membership functions. The fitness function of a chro-
mosome Cq is defined as follows: 

)(

)(
)(

q

q
q CySuitabilit

CRS
Cf =                                             (1) 

where RS(Cq) is the requirement satisfaction defined as the closeness of the number of 
derived large 1-itemsets for chromosome Cq to its required number of large 1-itemsets 
(RNL).The RNL is a criterion used to reflect the user preference on the derived knowl-
edge. The details for calculating RS values can be found in [3]. On the other hand, 
suitability(Cq) is used to measure the shape suitability of the membership functions. It 
consists of two factors, namely coverage factor and coverage factor, which is used to 
reduce the two bad types of membership functions, too redundant and too separate. 
However, since the transactions must be scanned once for each chromosome to get its 
requirement satisfaction, it is thus time-consuming. In the past, we proposed a method 
based on the clustering technique to reduce the evaluation time of large 1-itemsets [4] 
for SSFM problem. In this paper, we thus modify the previous approach to solve the 
MSFM problem. Since in the MSFM problem, each item has its own minimum sup-
port, using only the two attributes (coverage factor and overlap factor) as used in [4] 
for clustering is not enough. The average minimum support values of items (called the 
support factor) will be used as an additional attribute for clustering chromosomes. 
That is: 

m
Cfactorsupport

m

j
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q

∑
== 1

*100
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α
                                    (2) 

where m is the number of items and αj is the minimum support value of item Ij. The 
clustering process is then executed according to the above three attributes. For each 
cluster, the chromosome which is the nearest to a cluster center is thus chosen as the 
representative and used to derive its requirement satisfaction. Each chromosome then  
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estimates its requirement satisfaction by the requirement satisfaction of its representa-
tive chromosome. The estimated requirement satisfaction of chromosome Cq which 
belongs to the cluster clusterg is defined as: 

)()( gq RepChroRSCSEstimatedR =                                        (3) 

where RepChrog is the representative chromosome of clusterg, and RS(RepChrog) is 
the requirement satisfaction of RepChrog. Finally, each chromosome uses its esti-
mated requirement satisfaction and its own suitability of membership functions to 
calculate its fitness value. 

4   The Proposed Mining Algorithm: CGFMMS 

The proposed cluster-based genetic-fuzzy mining algorithm for items with multiple 
minimum supports (CGFMMS): 

Step 1: Generate a population of P individuals. 
Step 2: Calculate the coverage, overlap and support factors of each chromosome. 
Step 3: Divide the chromosomes into k clusters by the k-means clustering approach 

based on the three attributes. For each cluster g, find the chromosome which 
is the nearest to the cluster as the representative RepChrog, 1 ≤ g ≤ k. 

Step 4: Calculate the requirement satisfaction of each representative chromosome by 
the following substeps. 

Substep 4.1: For each transaction datum Di, i=1 to n, and for each item Ij, j=1 to m, 
transform the quantitative value vj

(i) into a fuzzy set fjk
(i) represented as: 
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using the corresponding membership functions represented by the 
chromosome, where Rjk is the k-th fuzzy region (term) of item Ij, fjl

(i) is 
vj

(i)’s fuzzy membership value in region Rjk, and l is the number of lin-
guistic terms for Ij. 

Substep 4.2: For each item region Rjk, , 1 ≤ j ≤ m, calculate its scalar cardinality on 
the transactions as follows: 

.
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=

=
n

i

i
jkjk fcount  

Substep 4.3: For each Rjk, 1 ≤ j ≤ m and 1≤ k ≤ l, check whether its countjk is larger 
than or equal to the minimum support value represented in the chromo-
some. If Rjk satisfies the above condition, put it in the set of large 1-
itemsets. 

Substep 4.4: Set the requirement satisfaction of each representative chromosome. 
Step 5: Calculate the requirement satisfaction of the representative chromosomes. 

Calculate the estimated requirement satisfaction of the other chromosomes 
by Formula (3). 

Step 6: Calculate the fitness value of each chromosome by the following formula: 
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Step 7: Execute the crossover operation on the population. 
Step 8: Execute the mutation operation on the population. 
Step 9: Calculate the fitness values of chromosomes by using STEPs 2 to 6. 
Step 10: Use the selection operation to choose individuals for the next generation. 
Step 11:  If the termination criterion is not satisfied, go to Step 7; otherwise, do the 

next step. 
Step 12: Find the chromosome with the highest fitness value. Get the set of minimum 

support values and membership functions contained in it. 
Step 13: Mine fuzzy association rules using the set of minimum support values and 

membership functions. 

5   Experimental Results 

In this section, experiments made to show the performance of the proposed approach 
are described. 64 items and 10000 transactions were used in the experiments. The 
population size was set at 50, the crossover rate was set at 0.8, and the mutation rate 
was set at 0.001. The parameter d of the MMA crossover operator was set at 0.35 
according to Herrera et al.’s paper [5]. The percentage of the required number of large 
1-itemsets was set at 0.8. Experiments were made to compare the proposed method 
(CGFMMS) with our previous one (GFMMS) [3] for showing the effect of using clus-
ters in evaluation. The average fitness values of the chromosomes along with different 
numbers of generations for different numbers of clusters are shown in Fig. 2. 
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Fig. 2. The comparison between the proposed and the previous approaches 

From Fig. 2, it can be observed that the average fitness values by the proposed ap-
proach were a little less than those by the previous one. They were close when  
the number of clusters increased. The results were reasonable since the proposed 
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approach just estimated the requirement satisfaction of chromosomes. The compari-
sons for the execution time of the two approaches with different numbers of clusters 
were also made. The results showed that the proposed approach ran much faster than 
the previous one. It can thus be concluded that the proposed approach can get a good 
trade-off between accuracy and execution time. 

6   Conclusion and Future Works 

In this paper, we have proposed a cluster-based genetic-fuzzy mining algorithm for 
extracting multiple minimum support values, membership functions and fuzzy associa-
tion rules from quantitative transactions. The evaluation cost can be significantly re-
duced due to the time-saving in finding requirement satisfaction. The experimental 
results show that using the clustering technique to speed up the evaluation process can 
not only get nearly the same fitness values as the previous approach, but can also sig-
nificantly reduce execution time. In the future, we will continuously enhance the cluster-
based genetic-fuzzy mining framework for more complex problems. 
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Abstract. Classifiers based on feature selection (selective classifiers) are a kind 
of algorithms that can effectively improve the accuracy and efficiency of classi-
fication by deleting irrelevant or redundant attributes of a data set. Due to the 
complexity of processing incomplete data, however, most of them deal with 
complete data. Yet actual data are often incomplete and have many redundant 
or irrelevant attributes. So constructing selective classifiers for incomplete data 
is an important problem. With the analysis of main methods of processing in-
complete data for classification, a selective classifier for incomplete data named 
RBSR (ReliefF algorithm-Based Selective Robust Bayes Classifier), which is 
based on the Robust Bayes Classifiers (RBC) and ReliefF algorithm, is pre-
sented. The proposed algorithm needs no assumptions about data sets that are 
necessary for previous methods of processing incomplete data in classification. 
This algorithm can deal with incomplete data sets with many attributes and in-
stances. Experiments were performed on twelve benchmark incomplete data 
sets. We compared RBSR with the very effective RBC and several other classi-
fiers for incomplete data. The experimental results show that RBSR can not 
only enormously reduce the number of redundant or irrelevant attributes, but 
greatly improve the accuracy and stability of classification as well. 

1   Introduction 

Selective classifiers are a kind of algorithms that can effectively improve the accuracy 
and efficiency of classification by deleting irrelevant or redundant attributes of a data 
set. Due to the complexity of processing incomplete data, however, most of them deal 
with complete data. Yet actual data are often incomplete and have many redundant or 
irrelevant attributes. So methods about constructing selective classifiers for incom-
plete data deserve more attention. In order to do some research on this problem, we 
begin with a review of main methods for processing incomplete data in classification.   

Classifiers such as Naïve Bayes classifiers [1] and C4.5 [2] often take two simple 
methods to deal with incomplete data: ignoring the instances with unknown entries or 
ascribing these unknown entries to a specified dummy state. Both methods are known 
to incur potentially dangerous biases in the estimates, see [3] for a detail. 

Another method of dealing with incomplete data in classification that can avoid the 
dangerous biases is to use the EM algorithm [4], Gibbs sampling [5] or gradient  
descent [6]. But this method relies on the assumption that data are Missing at Random 
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(MAR) [7] and there is no way to verify that a particular data set is actually MAR. 
Furthermore, this method will suffer of a dramatic decrease in accuracy of estimation 
when this assumption is violated, which makes the performance of the resulting clas-
sifier degenerate [8]. Recently, Williams etc. proposed a method for classifying in-
complete data with logistic regression [9]. This method can avoid imputation for the 
missing data, but it also relies on the MAR assumption.  

To avoid the MAR assumption, Ramoni et al. introduced the Robust Bayes Classi-
fier (RBC) [10] that needs no assumption about missing data mechanism. RBC uses 
intervals bounding all the estimates of related probabilities that can be obtained from 
all the possible completions of an incomplete data set. So it can avoid to some extent 
potentially dangerous biases in the estimates. As a whole, RBC performs better than 
classifiers above-mentioned, but it makes the assumption that attributes are independ-
ent in each class, which can degrade the performance of classification when violated.  

By analyzing the methods above-mentioned, we present a selective classifier for 
incomplete data: RBSR. An important part of RBSR is the selective Robust Bayes 
classifier (SRBC), which is described in Section 2. Section 3 describes RBSR. To 
show its effectiveness, Section 4 presents experiments on twelve benchmark incom-
plete data sets. At last, conclusions are given in Section 5. 

2   SRBC 

To construct SRBC on an incomplete data set D whose attribute set is },...,,{ 21 NAAAA =  

is to establish a RBC on a selected attribute subset that can improve the performance 
of classification most. This selected attribute subset is acquired by searching the space 
of attribute subsets of D . In the search process, we evaluate each alternative attribute 
subset S  in terms of the accuracy )(Sf  of the RBC constructed on S . We also adopt 
the forward best first search method [11] to get a better search result with lower com-
putational complexity. In the search process a queue Q  is kept to hold attribute sub-
sets that had ever been the best or is currently the best. Whether the search process is 
terminated depends on a threshold T . Specifically, if continuously extending head 
notes of Q  for T times can not improve the current best performance yet, then termi-
nate search. The process of constructing SRBC is described as follows: 

(1)Initialization: 

Initialize T ; 0←t ; sA })}({{maxarg
1

i
Ni

Af
≤≤

← ; Set the current 

best attribute subset bS }{ sA← ;Set the current best 

performance maxf })({ sAf← ;Add bS as a new node to Q ; 

(2)If Tt < ,perform step 3),4)and 5),otherwise, go to 6);  
(3)Take out the head node ofQ  denoted hS ; added false← ;  

For each attribute hi SAA −∈  
{ 
if }{ ih AS ∪  has not been evaluated and max}){( fASf ih >∪   
{  
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trueadded ← ; 0←t ; }{ ihb ASS ∪← ; }){(max ih ASff ∪← ;add 

}{ ih AS ∪  as a new node to Q ;  
} 

} 
(4)If the value of added  is still false , 1+← tt ;  
(5)Return to step (2);  
(6)Construct RBC on the final best attribute subset bS . 

In the process of constructing SRBC, once an attribute subset is evaluated, a RBC 
needs to be constructed on it. So the computational complexity of SRBC is often high, 
especially when the number of attributes or the number of instances of an incomplete 
data set is larger. In the following section, the more efficient RBSR is presented. 

3   RBSR 

The key of RBSR is to combine SRBC with ReliefF algorithm that is an extension of 
Relief. As the space is constrained, we refer readers interested in details of ReliefF to 
[12]. ReliefF can efficiently delete attributes irrelevant to class variable. However, it 
does not help with removing redundant attributes [13]. On the other hand, SRBC can 
effectively select attribute subsets with little redundancy, but its computational com-
plexity is high. So, if firstly irrelevant attributes are deleted with ReliefF and then 
redundant attributes are removed with SRBC, not only the selected attribute subset by 
ReliefF can be refined, but also the efficiency of SRBC can be improved. This is the 
key idea of RBSR. Denote the distance between values of iA  for instances 1e  and 2e  

as ),,( 21 eeAd i , the process of establishing RBSR can be described as follows: 

(1)Initialization: 

Set the number n of instances to be randomly se-
lected, the number of nearest neighbors k and the 
number N of attributes to be selected with ReliefF. 
For each attribute iA ,set its weight 0.0)( ←iAW ; set 

variable 0←t ; 
(2)If nt ≥ ,go to step(4),otherwise do the following op-

eration: Randomly select an instance r ;Find k nearest 
neighbors jh in the class of r ;From each class )(rclassc ≠   

find k nearest neighbors )(cm j , kj ,,2,1 K= ;For each iA ,let 

)( iAW )( iAW← ∑
= ×

−
k

j

ji

kn

hrAd

1

),,(
 ∑∑

=≠
⎥
⎦

⎤
⎢
⎣

⎡

×
×

−
+

k

j

ji

rclassc kn

cmrAd

rclassP

cP

1)(

))(,,(

))((1

)(
;  

(3) 1+← tt ; return to step (2); 
(4)Select the attribute subset NS  consisting of N  at-

tributes with largest weights;  
(5)Construct SRBC on NS .  
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It should be pointed out that RBC (So, SRBC and RBSR) deals only with nominal 
attributes. Continuous attributes need to be discretized in advance. 

4   Experimental Results 

In order to testify the validity of RBSR we carried out experiments on twelve bench-
mark data sets all with missing data. These data sets can be downloaded from the UCI 
machine learning repository [14]. Description of these data sets is given in Table 1. 

Table 1. Data sets used in the experiments 

Names Instances Classes Attributes Names Instances Classes Attributes 

Annealing 798 5 38 Cylinder 512 2 39 
Arrhythmia 452 16 279 Echocardiogram 132 2 12 
Audiology 200 2 70 Horse-colic 368 2 27 
B.cancer 699 2 10 L.cancer 32 3 56 
Bridges 108 6 12 Mushroom 8124 2 22 
Credit 690 2 15 Vote 435 2 16 

All our experiments were implemented in the weka system [15]. The implementa-
tion was performed on an Intel Pentium IV CPU running at 2.93 GHz and 1GB RAM. 
Numerical attributes were discretized with “weak.filters.Discritizefilter”.  

In all the experiments, the parameters T and k are set to their default values in weak 
system. Each attribute subset is evaluated with a 5-fold cross validation. The parame-
ters n and N are decided experimentally. On most data sets n is set to 30 except on 
Arrhythmia where n is set to the number of all instances and on Horse-colic set to 200.  
 

Table 2. The average accuracy of RBC, SRBC and RBSR 

Data sets RBC SRBC RBSR 
Annealing 95.96 ± 0.31 91.59 ± 0.12 96.31 ± 0.33 
Arrhythmia 72.77 ± 0.89 75.01 ± 0.62 74.66 ± 0.62 
Audiology 67.99 ± 0.79 76.53 ± 0.41 77.24 ± 0.48 
B.cancer 97.11 ± 0.16 97.31 ± 0.11 97.31 ± 0.11 
Bridges 61.62 ± 2.20 66.10 ± 1.02 66.10 ± 1.02 
Credit 86.18 ± 0.40 86.65 ± 0.30 86.17 ± 0.22 
Cylinder 71.36 ± 0.48 76.02 ± 0.55 75.80 ± 0.51 
Echocardiogram 98.36 ± 0.87 97.26 ± 0.00 97.95 ± 0.72 
Horse-colic 85.20 ± 0.59 88.09 ± 0.39 88.58 ± 0.09 
L.cancer 56.13 ± 1.67 80.32 ± 3.86 88.06 ± 2.18 
Mushroom 95.96 ± 0.02 99.68 ± 0.04 99.68 ± 0.04 
Vote 90.25 ± 0.19 96.31 ± 0.00 96.31 ± 0.00 
Average 81.57 ± 0.71 85.91 ± 0.62 87.01 ± 0.53 
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N is set to 54 +aT  on most data sets except on B.cancer where N is set to 74 +aT and 

on Horse-colic set to 104 +aT . Here aT represents the number of attributes of each 

data set. Although some of these configurations may not be optimal, RBSR can still 
significantly improve the performance of RBC and that of SRBC. 

In order to compare the performance of RBC, SRBC and RBSR, we run 10 repli-
cates of a 10-fold cross validation on each data set. The average classification accu-
racy on each data set and corresponding standard deviation are listed in Table 2.  

Table 3. The runtime and number of selected attributes of RBSR and SRBC 

Selected attributes  Runtime (second) 
Data sets 

Total  
attributes SRBC RBSR SRBC RBSR 

Annealing 38 8 11 69.91 19.84 
Arrhythmia 279 11 9 676.75 181.05 
Audiology 70 12 14 269.66 15.86 
B.cancer 10 9 9 8.70 7.03 
Bridges 12 6 6 3.02 1.20 
Credit 15 10 6 15.77 4.31 
Cylinder 39 8 4 61.44 10.27 
Echocardiogram 12 3 3 2.33 1.49 
Horse-colic 27 5 6 13.59 10.03 
L.cancer 56 5 6 4.16 2.48 
Mushroom 22 3 3 110.81 47.70 
Vote 16 3 3 3.11 1.67 
Summation 602 83 80 1239.3 302.93 

As shown in Table 2, on most of the twelve data sets the classification accuracy of 
RBSR is much higher than that of RBC and SRBC. Especially on L.cancer, its classi-
fication accuracy is 31.93% higher than that of RBC and 7.74% higher than that of 
SRBC. The Average of all accuracies of RBSR on twelve data sets is 5.44% higher 
than that of RBC and 1.1% higher than that of SRBC. In addition, it can be seen that 
the standard deviation of RBSR is lower than that of RBC and SRBC as a whole. This 
shows that RBSR performs more stably than RBC and SRBC. 

The most important is that the efficiency of RBSR is much higher than that of 
SRBC. Table 3 presents the runtime and the number of selected attributes of these two 
classifiers on each of the 12 data sets. 

From Table 3 it can be seen that on each of the twelve data sets the runtime of 
RBSR is much less than that of SRBC. It can also be seen that both SRBC and RBSR 
can sharply reduce the number of irrelevant attributes on all the twelve data sets, and 
so can greatly simplify the data sets and classifiers. Especially on Arrhythmia, the 
number of attributes is reduced from 279 to 11 by SRBC and to 9 by RBSR. The 
number of all attributes selected by RBSR on these 12 data sets is 80 and that by 
SRBC is 83. 

It should be pointed out that RBSR was also compared with other two classifiers: 
the one combining ReliefF with RBC and the one proposed in [9], and it still performs 
better than these two. For the space constraint we omit the details.  
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5   Conclusion 

The problem of constructing selective classifiers for incomplete data is important and 
deserves more attention. By analyzing main methods that have been proposed for 
processing incomplete data in classification, this paper presents a selective Bayes 
classifier for incomplete data. At first, the selective classifier SRBC is described. 
Then, based on SRBC and ReliefF algorithm, the more effective selective classifier 
RBSR is presented. The proposed RBSR needs no assumption about data sets that are 
necessary for previous methods of processing incomplete data in classification. Ex-
periments on twelve benchmark incomplete data sets show that RBSR can greatly 
improve the accuracy and stability of classification. Furthermore, it can also sharply 
reduce the number of irrelevant or redundant attributes.  
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Abstract. Near-duplicates are abundant in short text databases. Detecting and 
eliminating them is of great importance. SimFinder proposed in this paper is a 
fast algorithm to identify all near-duplicates in large-scale short text databases. 
An ad hoc term weighting scheme is employed to measure each term’s dis-
criminative ability. A certain number of terms with higher weights are seletect as 
features for each short text. SimFinder generates several fingerprints for each 
text, and only texts with at least one fingerprint in common are compared with 
each other. An optimization procedure is employed in SimFinder to make it more 
efficient. Experiments indicate that SimFinder is an effective solution for short 
text duplicate detection with almost linear time and storage complexity. Both 
precision and recall of SimFinder are promising. 

Keywords: duplicate detection, short text, term weighting, optimization. 

1   Introduction 

The rapid technological improvements in Internet and telecommunication have led to 
an explosion of digital data. A large proportion of such data are short texts, such as 
mobile phone short messages, instant messages. It is reported that more than 1.58 
billion mobile phone short messages are sent each day in Mainland China [1]. Tencent 
QQ has attracted more than 430 million users, and billions of instant messages are sent 
each day [2]. 

Duplicates are abundant in short text databases. In our investigation, more than 40% 
mobile phone short messages have at least one identical duplicate, and an even larger 
proportion of them are near-duplicates. Detecting and eliminating these duplicate short 
messages is of great importance for other short text language processing, such as 
clustering, opinion mining, topic detection and tracking, community uncovering. 
Identical duplicate short texts are easy to detect by standard hashing schemes. Identi-
fication of near-duplicate short texts is much more difficult because of the following 
reasons: First of all, a single short text contains usually less than 200 characters, which 
makes it difficult to extract effective features. Second, there are usually a huge number 
of texts in a short text database. Third, Informal abbreviations, transliterations and 
network languages are prevailing in short text databases [2]. 
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In this paper, an algorithm called SimFinder is presented to detect near-duplicates in 
large-scale short text databases. An ad hoc weighting scheme is employed in SimFinder 
to make duplicate measure more precise. Only a few terms with higher weights are 
extracted as features. Fingerprints are generated from these features, and only short 
texts with the same fingerprint will compare with each other. An optimization solution 
is also proposed to reduce comparisons further. 

2   Related Work 

A variety of techniques have been developed to identify academic plagiarism [3,4,5,6], 
web page duplicates [7,8,9,10], duplicate database records [11,12]. Brin et al. have 
proposed a prototype system called COPS (COpy Protection System) to safeguard 
intellectual property of digital documents [3]. Shivakumar et al. have developed SCAM 
(Stand Copy Analysis Mechanism) as a part of the Stanford Digital Library project [4]. 
Broder finds it sufficient to keep each document a “sketch” of “shingles” to compute 
the resemblance of two documents. Any document pair with at least one common 
shingle is examined whether it exceeds the threshold for resemblence. Broder’s shin-
gling method works well on duplicate detection in AltaVista search engine [8]. 

Lyon et al. have investigated the theoretical background to automated plagiarism 
detection [5]. They observe that independently written texts have a comparatively low 
level of matching trigrams. The Ferret plagiarism system counts matching trigrams of a 
pair of documents [5,6]. Shivakumar presents two approaches to compute overlap 
between all web document pairs simultaneously. Both of them assume that only when 
document di and dj share more than k fingerprints can they be candidate near-duplicates, 
where k is a predefined threshold [7]. 

Manku et al. show that Charikar’s simhash [13] is practically useful for identifying 
near- duplicates in large-scale web page repository [9]. Simhash is a fingerprint tech-
nique enjoying the property that fingerprints of near-duplicates differ only in a small 
number of bit positions [9,13]. If the simhash fingerprints of two documents are similar, 
they are deemed to be near-duplicates. 

3   SimFinder 

As for a large-scale short text database, it is imporssible to detect near-duplicates by 
comparing texts with each other. A certain number of fingerprints are extracted from 
each text in SimFinder, and only short texts sharing same fingerprints are possible to be 
near-duplicates. 

3.1   Term Weighting and Duplicate Degree 

Terms play different roles in texts. Generally speaking, nouns, verbs and adjectives are 
more discriminative than adverbs, connectives, pronouns and numerals. It is improper 
to assign a same weight to all terms [14]. Since few terms will occur more than one time 
in a single short text, the traditional tf-idf scheme is inappropriate for short texts. 

As for each set G of terms with the same part-of-speech, an empirical weight interval 
[a,b] is associated in SimFinder, where a and b are the minimal and maximal weight 
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that may be assigned to terms in G respectively. Let weight interval of G be [a,b] , a 
simple linear interpolation is used to compute the weight of each term Gt ∈  as fol-
lows: 

a
FF

FtFab
tW +

′−
′−−= ))()((

)(                                  (1) 

Where F(t) is the frequency of term t in the background database, F and F′ denote the 
frequency of the most and least frequently used term in G respectively. The weighting 
scheme of Equation 1 does not take term length into account. We notice that longer 
terms are usually more important than shorter terms. Let |t| denote the length of term t, 
the long-term-preferred weighting scheme can be defined as follows: 
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Duplicate degree is a measure of similarity between two texts. Texts with duplicate 
degree higher than a predefined threshold θ are considered as near-duplicates. Let A 
and B be two texts, the standard duplicate degree called Jaccard similarity is defined as 
follows: 
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Where S(A) and S(B) are the set of terms contained in text A and B respectively. All 
terms are considered as equal importance in Equation 3. Let w(ti) be the weight of term 
ti, the weighted variant of duplicate degree can be defined as follows: 
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3.2   Feature Extraction and Optimization 

Since there are no blanks to mark words in Chinese texts, SimFinder segments each 
short text into a serial of terms. Terms are then sorted in descending order of their 
weights. Terms with higher weights are called discriminative terms and selected as 
features. 

Remark 1: In real short text databases, when two short texts A and B are 
near-duplicates, most discriminative terms occur in both A and B. Near-duplicates 
differ usually only in connectives, pronouns, numerals, and punctuations. 

Each N contiguous features (or called N-gram) are hashed into an integer as fin-
gerprint. If two short texts A and B have no fingerprints in common, they are impossible 
to be near-duplicates. As a result, numerous unnecessary comparisons can be avoided. 
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As for text A with m terms, no more than Nk +=λ  terms are necessary to be selected 
as features, where k is the minimal integer satisfying the following inequality: 
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Where w(ti) denotes the weight of term ti and θ is the duplicate degree threshold. 

Definition 1: Let },...,,{ 21 nTTTD =  be the text database, and ArB denote A is  

duplicated to B, then },,|),{( DBDAArBBAR ∈∈=  is called a duplicate relation  

on D. R is called a transitive duplicate relation if and only if 
RCARCBRBA ∈⇒∈∈∀ ),(),(,),( . 

Remark 2: In real short text databases, duplicate transitivity holds in almost all cases. 
In other words, if ArB and BrC, A and C are near-duplicates in almost all cases. 

If ArB and BrC, A and C are called a potential duplicate pair. In traditional text da-
tabases, duplicate relation does not always observe transitivity. While almost all short 
text databases satisfy Remark 2. With Remark 2, potential duplicate pairs can be safely 
regarded as near-duplicates, so the computation of duplicate degree is unnecessary. 

4   Experiments and Evaluations 

Various experiments have been conducted with two short text databases. One is a  
short message corpus composed of 12 million mobile phone short messages (735 
megabytes), the other is a BBS title corpus with 5 million BBS titles (157 mega-
bytes). 

 

 

 

Fig. 1. The precision on short message corpus Fig. 2. The precision on BBS title corpus 

Before we verify the effectiveness of SimFinder, a proper duplicate degree threshold 
must be determined. For each duplicate degree )101(05.050.0 ≤≤+= iid , 200 pairs 

of candidate duplicate short texts with duplicate degree in interval [ ]dd ,05.0−  are  
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selected randomly and are checked manually whether they are near-duplicates. The 
precision of Equation 3 and Equation 4 are shown in Figure 1 and Figure 2. Experi-
ments indicate that Equation 4 is more effective than Equation 3. The duplicate degree 
0.65 is selected as the threshold because the precision is acceptable in both the short 
message corpus and the BBS title corpus. 

A base-line algorithm is employed to generate all possible near-duplicate pairs. 
Texts with at least two continuous words in common are compared with each other. 
One million short messages with no identical duplicates have been used to choose gram 
size and feature number. The recall of algorithm A is defined as the ratio of the number 
of duplicate text detected by algorithm A to the number of duplicate text detected by the 
base-line algorithm. Figure 3 shows the effect of gram size on recall, and Figure 4 
shows the effect of gram size on efficiency. N=3 is selected in SimFinder because the 
recall is acceptable and the efficiency is promising. 

Let λ=k+N, where k is defined in Ineqation 5, and N has been determined to be 3. 
Figure 5 and Figure 6 show the effect of feature number on recall and efficiency re-
spectively. As can be seen that the feature number computed as Inequation 5 is feasible 
since the recall is almost 1. More features are unnecessary because the recall increases 
very little. 

 

Fig. 3. The effect of gram size on recall Fig. 4. The effect of gram size on comparison 
number 

 

Fig. 5. The effect of feature number on recall Fig. 6. The effect of feature number on com-
parison number 

Ten thousand potential duplicate pairs are selected randomly to verify the correct-
ness of Remark 2. For each potential duplicate pair (A,B), duplicate degree d(A,B) is 
computed using Equation 4. Only 23 of them are less than 0.65, So the optimization  
has very little negative effect on precision. As for the short message corpus, if no 
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Fig. 7. Run times on short message corpus Fig. 8. Run times on BBS title corpus 

Fig. 9. Storage consumption on short message 
corpus 

Fig. 10. Storage consumption on BBS title 
corpus 

optimization procedure is included, the duplicate degree of 642,404,813 duplicate pairs 
must be computed using Equation 4. When optimization procedure is included, only 
120,725,627 comparisons are needed. The optimization procedure increases the effi-
ciency of SimFinder more than 4 times. 

The SimFinder has been implemented in C++. We use a dawning server S4800A 
with 4 CPUs and 8G bytes of memory to test the performance of SimFinder. Figure 7 
and Figure 8 show the run time of SimFinder on short message corpus and BBS title 
corpus respectively. Figure 9 and Figure 10 show the storage consumption of Sim-
Finder. As can be seen that both run time and storage consumption are almost linear 
correlated with the size of corpus. 

5   Conclusion 

SimFinder is an effective and efficient algorithm to detect and eliminate duplicates in 
large-scale short text databases. Three techniques have been included in SimFinder: the 
ad hoc term weighting technique, the discriminative-term selection technique, the 
optimization technique. Experiments have shown that SimFinder is an encouraging 
solution for large-scale short text duplicate detection. 
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Abstract. Customer churn in considered to be a core issue in telecom-
munication customer relationship management (CRM). Accurate pre-
diction of churn time or customer tenure is important for developing
appropriate retention strategies. In this paper, we discuss a method based
on ordinal regression to predict churn time or tenure of mobile telecom-
munication customers. Customer tenure is treated as an ordinal outcome
variable and ordinal regression is used for tenure modeling. We compare
ordinal regression with the state-of-the-art methods for tenure prediction
- survival analysis. We notice from our results that ordinal regression
could be an alternative technique for survival analysis for churn time
prediction of mobile customers. To the best knowledge of authors, the
use of ordinal regression as a potential technique for modeling customer
tenure has been attempted for the first time.

1 Introduction

Customer churn is a significant problem in many firms operating on contractual
or subscription business setting, like telecommunication operators, Internet ser-
vice providers, and cable services operators. In a study focusing on the role of
satisfaction to model customer length of stay with the telecom service provider,
Bolton [5], finds that customer satisfaction is positively correlated with their
tenure. First, the tenure is longer for customers who have high levels of cumu-
lative satisfaction, and second, the effect of perceived losses (for e.g., transac-
tion failures, bad service quality) on the tenure is negative. New customers are
particularly vulnerable and if their experiences are not satisfactory, the relation-
ship is likely to be short. Customers who are satisfied with the service provider
tend to stay for longer durations. Ordinal regression (OR) is a type of learning
when the response variable comes from a finite ordered (i.e., ordinal) set. Sim-
ilar to modeling customer satisfaction (which is not observable!) on a ordinal
scale, we can model customer tenure as an ordinal response variable to predict
customer tenure. In section 2 we explain the use of classical tenure modeling

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 884–889, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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approach - survival analysis. In section 3 we explain ordinal regression for mod-
eling customer churn times. In section 4 we discuss our empirical results on a
real world mobile telecom dataset. In section 5 we conclude our work.

2 Classical Approaches for Tenure Modeling

Traditionally, tenure modeling or length of stay modeling belongs to a branch
of statistics called Survival Analysis. Survival analysis (SA) is concerned with
analyzing the time to occurrence of an event (e.g., time to churn) in the presence
of censored observations [2]. In SA, we begin observing a set of customers at some
well-defined point of time (called the origin time) and then follow them for some
substantial period of time, recording the times at which customer churn occurs.
Some customers may churn after the end of study period, i.e., after censoring
time. Such cases are called right censored observations [3]. Several parametric,
semi-parametric, and non-parametric survival regression techniques are available
as commercial products and is already part of the telecommunication CRM
process. Allison [2], gives a good insight into the use of survival analysis for
modeling time-to-event data using a commercial statistical package SAS R© [4].

In SA, survival function and hazard rate functions are used to describe the
status of customer survival during the tenure of observation. The survival time T
is considered as a random variable. The survival function S(t) gives the probabil-
ity of survival to time t, that is, S(t) = Pr(T > t) = 1−P (t), where P (t) is the
c.d.f of survival time T . The hazard function h(t) is defined as the conditional
likelihood that a customer will churn at time t, given that churn did not occur in
the interval (0, t), and can be computed from S(t) using h(t) = − d

dtS(t). Thus
we can compute survival and hazard probabilities for a customer xi at each time
point tk in the study. By sorting all customers in ascending survival probabilities,
at a specified time tk, the customers with lowest predicted survival probabilities
will have highest likelihood to churn at that time [3].

3 Ordinal Regression for Tenure Modeling

In OR, we arrange customer tenure on a ordinal scale such that t1 ≺ t2 ≺ ... tk
≺ . . . ≺ tM . Chu & Keerthi [6], formulate the OR problem as a generalization of
support vector machines by determining M −1 thresholds (parallel discriminant
hyperplanes) for M ranks by dividing the real line into M consecutive intervals,
one for each rank. Alternatively, Frank & Hall [7] decompose the original OR
problem into a set of binary classification problems. For a review of other OR
formulations see [6]. We have implemented the OR formulation proposed in
[7] for the results in this paper. The original M -class OR problem with ranks
{t1, t2, . . . , tM}, is converted into M −1 nested binary classification problems by
using the ordering of the original ranks. Training starts by deriving new datasets
from the original dataset, one for each of the M − 1 new binary classes. Each
derived dataset contains the same number of samples as the original, with the
same attribute values for each sample, except the class value. In the next step,
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each of the M−1 classifiers will generate a model for each of the new datasets. For
each sample (customer) we estimate the probability that it belongs to a target
class (i.e., churn probability at that time) as follows: Pr(t = t1) = 1 − Pr(t =
t2 ∨ t = t3 . . . ∨ t = tM ) = Pr(t > t1), Pr(t = tk) = Pr(t > tk−1) − Pr(t > tk)
k = 2, 3, . . . , M − 1, and Pr(t = tM ) = Pr(t > tM−1). To predict the churn
time of a customer with unknown churn time, the sample is processed by each
of the M − 1 classifiers and the class with maximum probability is assigned to
that customer.

In our experiments, we first start by grouping tenures into ranks such that
(ta, tb] ≺ (tb, tc] ≺ (tc,∞), where ta < tb < tc < ∞. It is important to note
that this grouping into ranks could come from domain experts, like for example,
finding a set of customers who are likely to churn in 6-12 months period or finding
set of customers who are likely to stay for more than one year or two years.
In the next step, we repeat OR experiments on each rank, with a preference
level attached between each atomic time unit (that is, at month level). This
hierarchical way is taken to overcome the problem of large number of classes
present in the current problem.

4 Experiments and Results

We demonstrate results on the Churn Modeling Tournament data obtained from
The Center for Customer Relationship Management at Duke University [1]. The
data were provided by a major wireless telecommunications company using its
own customer records. We used calibration dataset which consists of 100, 000
customers for whom there were 169 independent variables, a unique identifier
for each customer and the churn label (0 for churn and 1 for no-churn).

4.1 Data Preparation

The churn modeling tournament data cannot be directly used for tenure mod-
eling experiments. We need to represent the data in a manner suitable for our
experiments. X = {xi : i = 1, 2, . . . , N} denote customers, aij denotes jth

feature value for ith customer. In churn modeling data, number of months in
service is one of the feature and churn is the output label. Customers who are
active at the time of sampling are treated as censored observations and churners
are considered as complete observations. Months in service becomes the output
variable. Only right-censoring is considered in the present study. Since all cus-
tomers in our dataset are at least 7 months old on the network, this becomes
the origin time for our experiments. We choose a study period window of 25
months. Therefore the censoring time will be at 31st month. Hence, customers
with tenure 7 ≤ t < 32 are considered to be complete observations. Customers
whose tenure t ≥ 32 months are considered to be censored observations (right
censoring). We bin tenure into five ranks such that A≺B≺C≺D≺E. Customers
who churned in time periods (in months) [7, 11], [12, 15], [16, 21], [22, 31], and
[32,∞) are assigned ranks A, B, C, D, and E respectively. Note that censored
observations are assigned to last rank.
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4.2 Data Preprocessing

All attributes which had more than 30% of missing values and those that are
summation of two or more variables are also removed. Information gain and
chi-squared statistic tests [3] are then used for feature selection. Both methods
generate ranking for features. We conduct experiments with top 30, 40, 50 and
99 ranked features. Model with 40 top ranked features selected from information
gain criterion seems to give the best result and hence only this result is reported.
The dataset is randomly split into to halves, one for training and the other testing
purpose. Both the data sets have approximately 25,000 samples. We use the open
source data mining package Weka version 3.5.5 [8] for our experiments.

4.3 Empirical Results

First, we compare OR with multi-class classification (MC). The output consists
of 5 labels {A,B,C,D,E}. For both the classifiers C4.5 decision tree is used as
the base learner. OR is compared with one-against-all multi-class classification
scheme. In case of OR we have a preference level attached between output labels.
This information is absent in MC setting. The classification accuracy obtained
from OR and MC is 86.21% and 83.8% respectively. Mean absolute error (MAE)
for OR and MC is 0.066 and 0.2512 respectively. MAE is an important parameter
for comparison between OR and MC [6]. So far the model is able to predict only a
coarse time of churn (for example, between 12 and 15 months) of customers. We
repeat our experiments for each rank to predict churn time at month level. MAE
values are given inside the parenthesis. Accuracy and MAE results for ranks A,
B, C, and D for OR is 67.51% (0.1339), 70.15% (0.162), 56.85% (0.1488) and
39.57% (0.1262) respectively. Accuracy and MAE results for ranks A, B, C, and
D for MC is 64.45% (0.4548), 63.93% (0.3047), 54.58% (0.2449) and 39.53%
(0.1726) respectively. We notice that OR is consistently more accurate than
MC in generating predictions. We note that MAE is consistently lower for OR
compared to MC.

Next, we compare OR with Cox proportional hazards (PH) model, [9], for
predicting customer tenure at month level. We use the PROC PHREG proce-
dure available in SAS/STAT R© software for Cox PH model [4]. Cox PH model is
a semi-parametric survival regression technique using partial likelihood estima-
tion. Cox PH model is useful when the form of survival distribution and hazard
function are not known in advance. The results are reported using cumulative lift
curve [1]. Figure 1 shows the cumulative lift curves by OR and PROC PHREG
for 7 through 11 months. We notice that PROC PHREG captures 30-60% of
churners in the top decile. Whereas, OR captures only about 20-40% of churners
in the top decile. Figure 2 shows the cumulative lift curves by OR and PROC
PHREG for 12 through 15 months. Here we notice that PROC PHREG is able
to capture at most 20% of churners in the top decile. Whereas, OR captures
about 20-45% of churners in the top decile. Top decile plots of ordinal regression
and PROC PHREG for 16 though 21 months and 22 through 31 months are not
presented here because of space limitations. However, the results from PROC
PHREG for these time periods are worse relative to ordinal regression. Full set
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Fig. 1. Cumulative lift curve by OR model (left) and PROC PHREG by
SAS/STAT R©(right) for customers who churned at month 7 through 11
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Fig. 2. Cumulative lift curve by OR model (left) and PROC PHREG by
SAS/STAT R©(right) for customers who churned at month 12 through 15

of results comparing OR and SA is given in our technical report [10]. We notice
that PROC PHREG is able to make good predictions about customer churn
when their tenure is short (7 to 11 months), where as when tenure prediction is
desired for customers who have stayed for a considerably longer time with the
service provider, PROC PHREG seems to drastically decrease its accuracy. OR
on the other hand is seen to make predictions more uniformly. We anticipate
this is due to the balanced datasize of training samples given for training ordinal
regression units for each rank.

5 Conclusion and Future Work

In this paper we discussed the use of ordinal regression for modeling tenure of
mobile telecommunication customers. Ordinal regression is compared with multi-
class classification and is seen to perform better. Next we compared ordinal
regression with state-of-the-art method for tenure modeling, survival analysis
technique (Cox PH model). Ordinal regression is seen to make more uniform
predictions about customer tenure compared to Cox’s model. We would like to
emphasize here that ordinal regression is seen to perform better than survival
analysis only on the Duke university data. Due to difficulty in getting real world
data from telecommunication operators, we are unable to conduct experiments
on some more datasets. In future we wish to model tenure of customers at other
places where customer satisfaction plays an important role, like insurance and
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banking industry. We also wish to compare ordinal regression with parametric
survival regression models and different ordinal regression learning schemes on
tenure modeling data.
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Abstract. This study presents a rough-fuzzy hybridization method to generate 
fuzzy if-then rules automatically from a medical diagnosis dataset with quanti-
tative data values, based on fuzzy set and rough set theory. The proposed 
method consists of four stages: preprocessing inputs with fuzzy linguistic repre-
sentation; rough set theory in finding notable reducts; candidate fuzzy if-then 
rules generation by data summarization, and truth evaluation the effectiveness 
of fuzzy if-then rules. The main contributions of the proposed method are the 
capability of fuzzy linguistic representation of the fuzzy if-then rules, finding 
concise fuzzy if-then rules from medical diagnosis dataset, and tolerance of im-
precise data.  

Keywords: Knowledge discovery in databases, fuzzy if-then rules, soft com-
puting, fuzzy sets, rough sets. 

1   Introduction 

Medical data often contain imperfect information, while uncertainties, impreciseness 
and missing values are co-exist. The analysis of medical data thus requires dealing 
with incomplete and inconsistent information, and manipulates various levels of data 
representation. However, soft computing techniques are based on quite strong as-
sumptions. They cannot derive conclusions from incomplete knowledge, or manage 
inconsistent information. The idea of rough set was as a useful mathematical tool to 
deal with vague concepts and to represent ambiguity, vagueness and uncertainty.  

Rough set algorithms [1] do not need membership functions and prior parameter 
settings. It can extract knowledge from the data itself by means of indiscernibility 
relations, and generally needs fewer calculations than that of other soft computing 
techniques. Decision rules extracted by rough set are concise and valuable, which can 
benefit medical experts by revealing hidden knowledge in the medical dataset. The 
limitation of traditional rough set theory is concerned with discrete data; quantitative 
valued had to be discretized for rough set algorithms, which may result in some loss 
of information. Many researchers proposed the hybridization of fuzzy set and rough 
set [2-6]. By these approaches, the comparison among objects turned from elements’ 
indistinguishability into their similarity, and the similarity represented by a fuzzy 
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equivalence relation. This study concentrates on automatically extracting the relevant 
fuzzy if-then rules in a medical dataset using fuzzy set and rough set theory. As  
 

depicted in Fig. 1, a four-stage 
rough-fuzzy hybridization proc-
ess for learning fuzzy if-then 
rules in datasets was proposed. 

The rest of this study is  
organized as follows. Section 2 
describes the analytical method-
ology of this study, and gives an 
overview of the linguistic sum-
marization of databases and its 
application in extracting fuzzy if-
then rules. Section 3 describes in 
detail the proposed rough-fuzzy 
hybridization method in con-
structing fuzzy rule-base, and 
shows an example of the ability 
to extract fuzzy if-then rules in a 
fuzzy database exhibiting lin-
guistic summaries. The final 
section draws conclusions. 

2   Assessing Soft Computing Techniques for Generating Fuzzy  
if-Then Rules  

2.1   The Experimental Dataset 

The experimental dataset used in this study is a breast cancer diagnosis database ob-
tained from the UCI machine learning repository at http://www.ics.uci.edu/~mlearn/ 
databases/breast-cancer-wisconsin/. The Wisconsin diagnostic breast cancer (WDBC) 
dataset was collected at different periods of time with different characteristic of at-
tributes. The data values of each attribute are quantitative. Several studies are based 
on this dataset. Setiono [7] proposed a rule extraction technique to generate concise 
and accurate classification rules in a trained neural network. Tan et al. [8] proposed a 
two-phase hybrid evolutionary classification technique to extract classification rules 
to be applied in clinical practice for better understanding and prevention of unwanted 
medical events. Chou et al. [9] used neural network and MARS techniques to discover 
the breast cancer pattern.  

2.2   Automatically Transform Quantitative Data Values Into Linguistic Terms 

Most algorithms for learning rules from examples only accept categorical values, or 
sharp divide quantitative values into intervals. However, the sharp division of quantita-
tive values either ignores or over-emphasizes the elements near the interval boundary  
 

Fig. 1. A four-stage for generating fuzzy if-then rules 
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during data mining. In this study, fuzzy set theory was employed for linguistic repre-
sentation of quantitative data, thereby producing a fuzzy granulated of the attribute 
domain. A self-organizing map (SOM) algorithm was used to obtain k midpoints of the 
granular feature space from each quantitative attribute domain. Next, using fuzzy lin-
guistic representation technique, each attribute domain was characterized as a trapezoi-
dal fuzzy set with individually linguistic terms. The transformed terms are more 
closely than the linguistic meaning of quantitative data. Moreover, the extracted fuzzy 
if-then rules can be represented the learned knowledge in terms of human thinking, and 
tolerated imprecise information more robustly.  

The steps for automatically finding fuzzy sets from a given dataset are described 
herein. Assume that the domain of a quantitative attribute ranges from v1 to v2, and 
{m1, m2,…,mk} denote the k midpoints obtained by the SOM algorithm. Using these k 
midpoints, k/2+1 linguistic terms or membership functions can be determined for a 
trapezoidal fuzzy set. The first membership function is computed as: 
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The core of rough set theory is finding reducts. A reduct contains a clump of ob-
jects in the universal of discourse drawn together by the indistinguishability relation. 
The reduction step in rough set evolutional processes keeps only those attributes 
which preserve the indiscernibility relation. Therefore, minimal subsets of attributes 
that induce the partitions on the same target attributes with higher support are con-
cerned. However, rough set theory can only handle precise values. Therefore, the 
trapezoidal fuzzy sets were binalized according to their membership values. For ex-
ample, the trapezoidal fuzzy set {(Low,0.8), (Medium,0.6), (High,0.3)} is binalized as 
“100”, then the binalized objects are processed by Rough Sets. 

2.3   Using Fuzzy Truth Value to Evaluate the Confidence of Fuzzy if-Then Rules 

As stated by Yager [10], the linguistic summary is a linguistically quantified proposition 
containing meta-knowledge about a set of particular objects, and is useful in knowledge 
discovery. This study aims to consider the notable subsets of tuples in the medical data-
set, and to construct linguistic summaries in which attribute values are fuzzy linguistic 
labels describing each subset of tuples. Thus, for each notable linguistic summary “Q X  
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objects in DB are S”, the attributes S were determined using rough set theory to the class 
of objects X, and the validation process is to test the truth of the association between the 
X and S with respect to the quantifier, Q.  

The fuzzy logic based calculus provides the interpreting and validating of the truth 
statement involving complex linguistic quantifiers, such as “many”, “some” and 
“few”. Let “Q {t1,…,tn} are S” denotes a linguistically quantified statement, and let 
{t1,…,tn} denotes a set of fuzzy tuples in the medical  dataset, DB. The procedure for 
determining the truth value of a linguistically quantified statement is as follows. If the 
summary S involves an attribute A, and ti denotes a tuple that satisfies the summary S, 
then the membership value of ti to S is given by: 

 ( )
 

( ) max ( , )i EQ k k
k

S t a bμ
∀

= , for all ak∈ti[A], bk∈S,  

where S(ti) denotes the degree to which ti satisfies the summary S, and the  
function ( , ) 0EQ k ka bμ =  if and only if ( ) ( ( ) 0)k k k k ka b a b bμ≠ ∨ = ∧ = ; 

( , ) 1 ( ) ( )EQ k k k ka b a bμ μ μ= − −  if and only if ( ( ) 0)k k ka b bμ= ∧ ≠ . Then, the 

individual truth value of “{t1,…,tn} are S” for an attribute A over DB is computed as:  

 Truth({t1,…,tn} are S) =
1

1
( )

n

ii
S t

n =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ . 

 
Fig. 2. The procedure for obtaining the truth value of the linguistic summaries  
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Moreover, when the linguistic summaries are distributed over m attributes with 
ANDed conditions, that is, S = S1 ∧ … ∧ Sm, then the total truth value Truth({t1,…,tn} 

are S) = 1 1min ( ({ ,..., } are )m
j n jTruth t t S= . When the linguistic summaries are distrib-

uted over m attributes with ORed conditions, that is, S = S1 ∨ … ∨ Sm, then the total 
truth value Truth({t1,…,tn} are S) = 1 1max ( ({ ,..., } are )m

j n jTruth t t S= . Finally, T = 

Q(Truth({t1,…,tn} are S)) denotes the truth value of the linguistically quantified 
statement “Q {t1,…,tn} are S” to the fuzzy quantifier Q in agreement. Fig. 2 shows the 
procedure in obtaining the truth value of the linguistic summaries. 

With the judgment standards of support and total truth value, Table 1 shows the 
fuzzy if-then rules generated by the proposed rough-fuzzy hybridization process. 
Suitable linguistic quantifier can be employed to interpret linguistic confidence. 

Table 1. The fuzzy if-then rules generated by the rough-fuzzy hybridization method 

ID IF THEN Support Accuracy 
Total Truth 

Value 
1 Area(Low) AND Concave_points(Low) benign 0.3304 100% 0.601 

2 
Perimeter(Low) AND Con-

cave_points(Low) 
benign 0.2689 100% 0.852 

3 Radius(Low) AND Concave_points(Low) benign 0.2742 100% 0.928 

4 
Perimeter(Low) AND Smooth-

ness(Normal) AND Compactness(Normal)
benign 0.0580 100% 0.852 

5 
Area(Normal) AND Concavity(Normal) 

AND Symmetry(Low, Normal) 
malignant 0.0053 100% 0.805 

 … … …  … 

3   Conclusion 

This study proposes a rough-fuzzy hybridization method for learning informative 
and concise fuzzy if-then rules from examples. The quantitative/categorical inter-
face provided by fuzzy set theory is used for the linguistic representation of exam-
ples, and balances the expert perception and system automation. Besides, the re-
ducts provided by rough set theory were found to be a useful tool for finding candi-
date linguistic summaries. Hence, the discovery of fuzzy if-then rules is similar to 
the validation of the corresponding linguistic summaries, and the generated fuzzy 
if-then rules are on the basis of equivalence relation to enhance its readability. 
Moreover, this study proposed to use fuzzy truth value to evaluate the confidence of 
fuzzy if-then rules.  
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Abstract. Consider an MxN matrix, where the (i,j)th entry represents the affinity 
between the i_th entity of the first type and the j_th entity of the second type. 
Co-clustering is an approach to simultaneously cluster both types of entities, 
using the affinities as the information guiding the clustering. Co-clustering has 
been found to achieve clustering and dimensionality reduction at the same  
time, and therefore it is finding application in various problems. Bregman 
co-clustering algorithm, which has been recently proposed, converts the 
co-clustering task to the search for an optimal approximation matrix. It is much 
more scalable but memory-based implementations have a severe computational 
bottleneck. In this paper we show that a significant fraction of computations 
performed by the Bregman co-clustering algorithm naturally map to those per-
formed by an on-line analytical processing (OLAP) engine, making the latter a 
well suited data management engine for the algorithm. Based on this observation, 
we have developed a version of Bregman co-clustering algorithm that works on 
top of OLAP. Our experiments show that this version is much more scalable, 
achieving an order of magnitude performance improvement over the mem-
ory-based implementation. We believe this unlocks the power of this novel 
technique for application to much larger datasets. 

Keywords: Bregman co-clustering, data cube, OLAP, SQL. 

1   Introduction 

Clustering is an unsupervised learning technique used to group a set of data samples 
with similar attributes such that the coherence inside a cluster is higher than that be-
tween clusters. Co-clustering is an approach which provides two or more simultaneous 
clusterings of the data samples. It is an emerging research topic relative to standard 
clustering, which has been widely used for years. Traditionally, clustering algorithms 
measure the degree of coherence by optimizing various kinds of objective functions 
defined to minimize the distance between samples. Co-clustering, on the other hand, 
has attracted great attention because it simultaneously measures the degree of coher-
ence in samples and in attributes. The recently proposed Bregman co-clustering algo-
rithm [2, 3] has shown significant promise, both for the quality of clusterings produced 
and its computational efficiency. Theoretically, the algorithm is scalable, but practi-
cally, the scalability is restricted by the memory space available. For example, when the 
dataset does not fit entirely in main memory, existing co-clustering algorithms spend a 
significant fraction of their time in wasteful disk I/O. 
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In this paper, we address the issue of I/O scalability of co-clustering algorithms. 
Specifically, we consider the general framework proposed in [3] and propose an ap-
proach that utilizes an underlying database to improve its performance. In [5], Chen et 
al. emphasize the importance of implementing efficient and scalable algorithms that 
can work on large datasets stored in a database. A key observation in our approach is 
that co-clustering algorithms require the computation (and often recomputation) of a 
number of basic summary statistics. This cost can be significantly reduced by using an 
online analytical processing (OLAP) [8] engine to compute the summary statistics, 
used to help build the approximation matrix. We contribute to the mapping between the 
data access operations of the Bregman co-clustering algorithm and those of OLAP. To 
our knowledge, this topic has not been explored before. Moreover, recent studies [1, 3] 
have been very successful in applying co-clustering to various applications. Thus, we 
believe that the techniques presented here will go a long way in making co-clustering 
applicable to large-scale datasets. 

The rest of this paper is organized as follows. Section 2 briefly introduces the 
Bregman co-clustering algorithm, and Section 3 presents the mapping from the algo-
rithm and OLAP. Section 4 presents experimental results, while Section 5 discusses 
related works. Finally, conclusions and future work are given in Section 6. 

2   Co-clustering and the Bregman Co-clustering Algorithm 

Co-clustering, like traditional clustering, uses attributes to group samples. However, 
unlike traditional clustering, co-clustering clusters rows and columns simultaneously if 
we use a contingency matrix where a row represents a sample and a column represents 
an attribute. By grouping similar attributes, co-clustering implicitly achieves dimen-
sionality reduction. This feature reduces the running time and also leads to more in-
formative clusters. 

Co-clustering gives accuracy comparable to state-of-the-art approaches in a variety 
of applications. [3] compares four approaches: SVD [15], NNMF [10], a correlation 
based method, and co-clustering for collaborative filtering. The mean absolute errors 
(MAEs) on MovieLens dataset1 for the above four approaches are 0.7721, 0.7636, 
0.8214, and 0.7608, respectively. Furthermore, [1] incorporates the statistics about 
users and movie content, and uses Bregman divergences to find a co-clustering that 
provides most accurate prediction with the adjustment of covariates. 

The Bregman co-clustering algorithm associates a co-clustering task with a matrix 
approximation task, and the quality of the result is evaluated by the approximation error 
[3]. Generally, any Bregman divergence can be used for the matrix approximation 
problem. [3] views a co-clustering task as the search for an optimal approximation 
matrix, where the approximation is based on the co-clustering so that a better 
co-clustering leads to a better matrix approximation. The optimality is determined by 
the minimum Bregman information (MBI) principle [3].  

The algorithm builds an approximation matrix according to a user-specified Breg-
man co-clustering basis, a set of summary statistics. Table 1 summarizes six bases  
                                                           
1 GroupLens, http://www.grouplens.org/ 
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defined in [3]. U is a set of rows and ρ, or ρ(U), maps m rows to k row clusters, while V 
is a set of column and γ, or γ(V), maps n columns to l column clusters. For example, C2 
represents a set of statistics obtained from co-clusters, i.e., k × l blocks, of row and 
column clusters, while C5 corresponds to co-clusters, rows and columns. 

Table 1. Definition of six Bregman co-clustering bases [3] 

Basis C1 C2 C3 C4 C5 C6 

Def. }}{},{{ γρ  }},{{ γρ  }}{},,{{ Uγρ  }}{},,{{ Vγρ  }}{},{},,{{ VUγρ  }},{},,{{ VU ργ  

In [3], a set of summary statistics is defined as a set of random variables, i.e., 
SA={Z’|E[Z|c]=E[Z’|c], for all c in C}, where C is a basis and Z’ preserves the sum-
mary statistics. The co-clustering problem is described as follows. Given an m-by-n 
matrix Z, a Bregman divergence dφ, the number of row clusters k, the number of column 
clusters l, and a co-clustering basis C, the goal is to find an (ρ, γ) that minimizes the 
expectation of the Bregman divergence between Z and the approximation matrix 
Ẑ which is the Z’ giving the minimum Bregman information. It is an optimization 
problem and the solution is obtained by solving the following equation: 

∑
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Note that w presents the weight and Λ* is an optimal Lagrange multiplier [3]. 
The iterative update approach [3], as in Fig. 1, is a technique to find a locally optimal 

solution for this NP-hard problem. Initially, for each row (column) the algorithm ran-
domly assigns a row (column) cluster. Next, it calculates the summary statistics ac-
cording to a user-specified co-clustering basis. When handling row (column) clusters, it 
treats column (row) clusters as known information and builds an approximation matrix. 
Subsequently it evaluates and updates row (column) clusters with the best approxima-
tion matrix (w. r. t. MBI), i.e., it updates row (column) clusters with the best ap-
proximation matrix. 

Computing the summary statistics is a key step, and obtaining the Lagrange multi-
pliers for a specified basis is the goal of the computation. The computation requires 
significant effort, regardless of whether the Bregman divergence corresponds to a 
closed form solution. Since [3] guarantees a closed form solution for the Lagrange 
multipliers in terms of the summary statistics for the squared Euclidean distance and 
I-Divergence, computing the summary statistics is the main bottleneck. The time 
complexity of the Bregman co-clustering algorithm is relative to the number of 
non-zero elements in Z [3]. One naive implementation is to adopt a pure memory-based 
solution, e.g., Matlab. However, such an implementation is under the memory con-
straint especially when datasets are too large to fit into main memory. 
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Fig. 1. Bregman co-clustering algorithm [3] 

3   Use OLAP to Achieve Scalability 

For an efficient implementation, we need advanced secondary storage management 
techniques, which are major functions of relational databases. Furthermore, SQL is 
superior is providing set-oriented operations, and an OLAP engine prepares the sum-
mary statistics inside the database, so we do not need to read all data into memory for 
the computation. 

The first design issue is how to store sparse matrices for OLAP. Three data struc-
tures are generally used to store sparse matrices: coordinate storage (COO), com-
pressed sparse row (CSR), and compresses sparse column (CSC). CSR requires much 
less storage space than COO does but the difference of processing time is not signifi-
cant [6]. We employ COO to store matrices, because it corresponds to a denormalized 
table and others are normalized ones while querying one denormalized table is gener-
ally faster than querying and joining two normalized ones. 

In addition, we use star schema to create the data cube used in our implementation. A 
data cube consists of all combinations of hierarchical relationships [8], and hence it can 
be represented in a lattice form, as Fig. 2, where a node will give a smaller data cube or 
a table that contains aggregates along all possible combinations of specified dimen-
sions. To build the approximation matrix based on C2, for example, we need the 
weighted average of elements in each block, i.e., average of each interaction of column 
and row clusters, while aggregates along all combinations of row and column clusters 
can be obtained from Node 9 in Fig. 2. As another example, C5 requires the summary  
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Fig. 2. Mapping Bregman co-clustering bases to the data cube 

Table 2. Bregman co-clustering bases and the corresponding nodes in the data cube lattice 

Basis Way to build 
jiZ ,

ˆ  for squared Euclidean distance Nodes 

C1 }][{)}]([{)}]([{ ,,, jijjiiji ZEVZEUZE ∀∀∀∀ −∈+∈ γρ
2 12,15,16 

C2 )}]()([{ ,, jjiiji VZUZE γρ ∈∧∈ ∀∀
 ( ∧  presents the logic AND) 9 

C3 )}]([{}][{)}]()([{ ,,,, ijiijijjiiji UZEUZEVZUZE ργρ ∈−∈+∈∧∈ ∀∀∀∀
 9,12,13 

C4 )}]([{}][{)}]()([{ ,,,, jjijjijjiiji VZEVZEVZUZE γγρ ∈−∈+∈∧∈ ∀∀∀∀
 9,14,15 

C5 )}]([{)}]([{}][{

}][{)}]()([{

,,,

,,,

jjiijijji

ijijjiiji

VZEUZEVZE

UZEVZUZE

γρ
γρ

∈−∈−∈+

∈+∈∧∈

∀∀∀

∀∀∀  9,12,13, 
14,15 

C6 )}]()([{

)}]([{)}]([{

,,

,,,,

jjiiji

ijijjijjiiji

VZUZE

UZVZEVZUZE

γρ
ργ

∈∧∈−

∈∧∈+∈∧∈

∀∀

∀∀∀∀  
7,9,10 

statistics from Node 9, 12, 13, 14, 15. Table 2 summarizes the mappings between 
Bregman co-clustering bases and the data cube lattice. 

4   Performance Evaluation 

Our implementation is built in C# with Microsoft SQL Server 2005 as the backend 
database. We evaluate it by comparing it against the Matlab implementation for all 
Bregman co-clustering bases. Fig. 3 illustrates experimental results. 
                                                           
2 For I-Divergence, we replace + and - with * (multiplication) and / (division), respectively. The 

MBI problem has a closed form solution in both cases even though for a general Bregman di-
vergence the solution is not necessarily in a closed form [3]. 



 I/O Scalable Bregman Co-clustering 901 

5 10 15 20 25 30
0

100

200

300

400

500

600

700

(a) Basis 1 M atlab im plementation

Our im plementation

5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

500

(b) Basis 2
Matlab implem entation

Our implem entation

5 10 15 20 25 30
0

100

200

300

400

500

600

(c) Basis 3
M atlab implem entation

Our im plementation

5 10 15 20 25 30
0

100

200

300

400

500

600

(d) Basis 4
M atlab implem entation

Our im plementation

5 10 15 20 25 30
0

100

200

300

400

500

600

(e) Basis 5
M atlab im plementation

Our im plementation

5 10 15 20 25 30
0

50

100

150

200

250

300

350

(f) Basis 6 M atlab im plementation

Our implem entation

 

Fig. 3. Experimental results. The horizontal axis shows the number of non-zero elements (x 103) 
in a data matrix. All datasets are different in size. The vertical axis presents the average running 
time in seconds, including the I/O. A vertical bar indicates the standard deviation. 

Matrices used here (i.e., gre_1107, nnc1374, pores_2, dw2048, zenios, lnsp3937, 
and e20r5000, ordered by size) are available on http://math.nist.gov/MatrixMarket/. 
Both k and l are set to 10, and we allow at most 20 iterations in a run. For each dataset 
(except the largest one) and for each basis, we run each implementation (with the 
squared Euclidean distance function) 10 times. Fig. 3 presents that both implementa-
tions produce similar shapes of curves but ours achieves a slower growth of the curve. 
As the number of non-zero elements increases, their differences also increase. For the 
memory consumption, the Matlab implementation requires more than 800M bytes of 
memory for the second largest dataset and it can not even process the largest one, but 
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ours processes the largest dataset without difficulties. Since this is an I/O-bound 
problem, differences from compilers and languages are not the main issue. 

5   Related Work 

One example for integrating data mining algorithms into OLAP is DBMiner [9] Using 
OLAP to quickly collect properties of clusters for advanced analyses, DBMiner [9] 
supports classification, association rules mining, and cluster analysis; in contrast, we 
employ data cubes to implement the Bregman co-clustering algorithm. [7] extends SQL 
to compute the summary statistics for classification, whereas we follow standard op-
erations and enjoy higher portability and flexibility. [11] discusses the vertical, hori-
zontal, and hybrid table schemas for implementing EM algorithm in SQL. The vertical 
table schema is a flexible design even though it comes with the highest overhead. Our 
schema acts as the vertical one because mapping the vertical table schema to COO is 
straightforward. Nevertheless, our schema does not suffer from the overhead since 
there are less join operations used to create a cube. Furthermore, the approach proposed 
in [11] is not as flexible as ours, because the number of dimensions it can handle is 
restricted to the length of a SELECT statement. [12] argues that integrating clustering 
algorithms into a database is practical, while [13] proposes a pure SQL-based approach 
to perform the K-means clustering over large datasets. However, it is not the nature of 
SQL to compute the loss function for each sample for each cluster. Thus, we compute 
the Bregman divergences in memory. For implementations of the K-mean algorithm, 
[14] compares SQL to C++ and concludes that the SQL implementation presents a 
slower growth. We present a similar phenomenon. [16] proposes a system, WekaDB, to 
help Weka3 handle large datasets. WekaDB is slower than Weka but it can handle much 
larger datasets. In some cases, WekaDB is faster than a pure SQL-based approach. We 
agree with the conclusion: Using a database as a backend and main memory as a buffer 
would provide higher scalability. 

6   Conclusions and Future Work 

In this paper, we proposed a novel and efficient implementation for the Bregman 
co-clustering algorithm, which has been proven to generate substantially better 
co-clustering results than other algorithms. Our implementation utilizes an OLAP en-
gine to obtain the summary statistics used for the construction of approximation ma-
trices, and then it reads data from a database to memory for the computation of 
Bregman divergences. This paper contributes to the mapping between Bregman 
co-clustering bases to the data cube, and we also demonstrate that a database can act as 
an effective computation engine for data mining. Experimental results show that our 
implementation provides higher scalability by using OLAP. Future work includes the 
study of index structures and the extension to multi-dimensional co-clustering [4]. 

                                                           
3 http://www.cs.waikato.ac.nz/ml/weka/ 
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Abstract. In this paper we propose an application of jumping emerging
patterns (JEPs) to the classification of images. We define of a new type of
patterns, namely the jumping emerging patterns with occurrence count
(occJEPs), which allow reasoning in transaction databases with recur-
rent items. Such data is a frequently used representation of images, for
which classification is one of the most important data mining problems
that needs to be solved accurately and efficiently. We provide a formal
definition of the new type of patterns, an outline of an algorithm for
finding occJEPs and a comparison with other rule- and pattern-based
classifiers for a selection of sample images.

1 Introduction

In this article we address the problem of discovering JEPs and using them for
supervised learning in image databases, where the images are described by multi-
sets of features. This is an enhancement of the transactional database represen-
tation, where instead of a binary relation between items and database records,
an occurrence count is associated with every item in a set. We propose a new
type of JEPs to accomplish this task, the jumping emerging patterns with oc-
currence count (occJEPs), show an outline of an algorithm for finding occJEPs
and compare their discriminative value with other recent classification methods.

2 Jumping Emerging Patterns in Transaction Databases

The concept of discovering jumping emerging patterns efficiently and using them
in the classification of transactional datasets has been introduced in [1]. Such
patterns have proved to be a very accurate alternative to previously proposed
rule- and tree-based classifiers.

Formal Definition. We restrict further discussion on emerging patterns to trans-
action systems [2]. A transaction system is a pair (D, I), where D is a finite se-
quence of transactions (T1, . . . , Tn) (database), such that Ti ⊆ I for i = 1, . . . , n
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Polish Ministry of Education and Science.
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and I is a non-empty set of items (itemspace). A support of an itemset X ⊂ I in
a sequence D = (Ti)i∈K⊆{1,...,n} ⊆ D is defined as suppD(X) = |{i∈K: X⊆Ti}|

|K| .
Given two databases D1, D2 ⊆ D we define an itemset X ⊂ I to be a jumping

emerging pattern (JEP) from D1 to D2 if suppD1
(X) = 0 ∧ suppD2

(X) > 0. A
set of all JEPs from D1 to D2 is called a JEP space and denoted by JEP (D1, D2).
A minimal JEP is a jumping emerging pattern X, such that no proper subset of
X is a JEP.

3 Jumping Emerging Patterns with Occurrence Count

We propose an extension of the definition of a transaction system that is nec-
essary for the introduction of emerging patterns with occurrence count. The
primary motivation for introducing this new type of JEPs is to allow a wider
range of problems being directly approachable by means of pattern analysis. Al-
though there are many possibilities of transforming data to a transactional form,
it may not be a feasible solution due to unacceptable enlargement of attribute
space, information loss or limited possibility of transformed data interpretation.
For example, a relational dataset containing numbers of similarly colored ob-
jects visible on an image, may be directly transformed to a transactional form
by populating the itemspace with all the possible attribute values or by dis-
cretization and creating items for each of the resulting discrete ranges. The first
solution is in most cases impractical because of the itemspace size, while the
second always introduces some loss of information. In both cases the possibility
of relating to data semantics is limited in the transactional form of data, as for
example discovering patterns between image classes that differ in the number of
colored objects by a certain value.

Formal Definition. Let a transaction system with recurrent items be a pair
(Dr, I), where Dr is a database and I is an itemspace (the definition of itemspace
remains unchanged). We define database Dr as a finite sequence of transactions
(T r

1 , . . . , T r
n) for i = 1, . . . , n. Each transaction is a set of pairs T r

i = {(ti, pi); ti ∈
I}, where pi : I → N is a function, which assigns the number of occurrences to
each item of the transaction. Similarly, a multiset of items Xr is defined as a set
of pairs {(x, q); x ∈ I}, where q : I → N. We say that x ∈ Xr ⇐⇒ q(x) ≥ 1
and define X = {x : x ∈ Xr}. We will write Xr = (X, Q) to distinguish X as
the set of items contained in a multiset Xr and Q as the set of functions, which
assign occurrence counts to particular items.

The support of a multiset of items Xr in a sequence Dr = (T r
i )i∈K⊆{1,...,n} ⊆

Dr is defined as suppr
D(Xr, θ) =

∑
i∈K

φ(Xr, T r
i , θ)

|K| , where φ is a function of
three arguments: a multiset Xr = (X, Q), a transaction T r = (T, P ) and an
occurrence threshold θ ≥ 1: φ(Xr, T r, θ) = 1 ⇐⇒ ∀x∈I p(x) ≥ θ · q(x) and
φ(Xr, T r, θ) = 0 otherwise. The occurrence threshold allows for differentiating
transactions containing the same sets of items with a specified tolerance margin
of occurrence counts.
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Let a decision transaction system [2] be a tuple (Dr, I, Id), where (Dr, I ∪Id)
is a transaction system with recurrent items and ∀T r∈Dr |T ∩ Id| = 1. Elements
of I and Id are called condition and decision items, respectively. A support
for a decision transaction system (Dr, I, Id) is understood as a support in the
transaction system (Dr, I ∪ Id).

For each decision item c ∈ Id we define a decision class sequence Cc = (T r
i )i∈K ,

where K = {k ∈ {1, . . . , n} : c ∈ Tk}. Notice that each of the transactions
from Dr belongs to exactly one class sequence. In addition, for a database D =
(T r

i )i∈K⊆{1,...,n} ⊆ Dr, we define a complement database D′ = (T r
i )i∈{1,...,n}−K .

Given two databases D1, D2 ⊆ Dr we call a multiset of items Xr a jumping
emerging pattern with recurrent items (occJEP) from D1 to D2, if
suppD1

(Xr, 1) = 0 ∧ suppD2
(Xr, θ) > 0, where θ is the occurrence threshold.

A set of all occJEPs with a threshold θ from D1 to D2 is called an occJEP
space and denoted by occJEP (D1, D2, θ). We distinguish the set of all minimal
occJEPs as occJEPm, occJEPm(D1, D2, θ) ⊆ occJEP (D1, D2, θ). Notice also
that occJEP (D1, D2, θ) ⊆ occJEP (D1, D2, θ − 1) for θ ≥ 2. In the rest of the
document we will refer to multisets of items as itemsets and use the symbol Xr

to avoid confusion.

Finding occJEPs. We will now give an outline of the algorithm to discover a set
of occJEPs in a given decision transaction system with recurrent items. Let Cc

be a decision class sequence of a database Dr for a given decision item c and C′
c

a complement sequence to Cc. We define D1 = C′
c, D2 = Cc and the aim of the

algorithm to discover occJEPm(D1, D2, θ).
At first, notice that only the patterns, which are not supported in D1 are

possible candidates for occJEPs. In case of single-item patterns Xr = (X, Q),
where X = {x}, x ∈ I it is the case, when ∀T r=(T,P )∈D1 q(x) > p(x). In case of
multi-item patterns at least one of the item counts of the candidate pattern has
to be larger than the corresponding item count in the database. We can write this
as: Xr = (X, Q) is an occJEP candidate ⇐⇒ ∀T r=(T,P )∈D1 ∃x∈X q(x) > p(x).

The first step of the algorithm is then to create a set of conditions in the form
of [q(ij) > p1(ij) ∨ . . . ∨ q(ik) > p1(ik)] ∧ . . . ∧ [q(ij) > pn(ij) ∨ . . . ∨ q(ik) >
pn(ik)] for each of the candidate itemsets Xr = (X, Q), X ⊆ 2I , where j and
k are subscripts of items appearing in a particular Xr and n is the number of
transactions in D1. Solving this set of inequalities results in its transformation
to the form of [q(ij) > rj ∧ . . .∧ q(ik) > rk]∨ . . .∨ [q(ij) > sj ∧ . . .∧ q(ik) > sk],
where r and s are the occurrence counts of respective items. The counts have to
be incremented by 1, to fulfill the condition of suppr

D1
(Xr, θ) = 0.

As both the itemspace and database sizes may be large enough to make the
solution of the above set of inequalities difficult in practical implementations,
we propose the following two countermeasures. Firstly, as the purpose of dis-
covering the patterns is to use them in a classifier, we limit the search to only
minimal occJEPs. This way we can eliminate all multi-item conditions, for which
a condition with a lesser number of items and the same or lower number of item
occurrences exists. The second possibility of ensuring a limited-time solution to
this problem is introducing a maximum pattern size parameter. We reduce the
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problem of finding all possible occJEP candidates, such that X ⊆ 2I , to itemsets
not larger than a specified size δ.

Having found the minimum occurrence counts of items in the candidate item-
sets, we then calculate the support of each of the itemsets in D2 with a threshold θ.
The candidates, for which suppr

D2
(X, θ) > 0 are the minimal occJEPs(D1, D2, θ).

For the example given by Table 1 we can see that the support of candidate
patterns suppr

D2
(Xr

1, 3) = 0, suppr
D2

(Xr
2, 2) > 0 and suppr

D2
(Xr

3, 1) > 0. Xr
2 and

Xr
3 are thus minimal occJEPs with threshold values θ = 2 and θ = 1 respectively.

By the definition of occJEPs, Xr
2 is also an occJEP for θ ∈ [1, 2].

Table 1. Finding occJEPs in a transaction database with recurrent items. Calculating
the support count of candidate itemsets in complementary database. Xr

1 = {3 · i1},
Xr

2 = {4 · i1, 3 · i3}, Xr
3 = {2 · i1, 2 · i2, 2 · i3}.

D2 p(i1) p(i2) p(i3)

T r
1 4 9 2
T r

2 3 5 7
T r

3 8 1 6

φ(Xr
1, T

r, 3) φ(Xr
2, T

r, 2) φ(Xr
3, T

r, 1)

0 0 1
0 0 1
0 1 0

suppr
D2

= 0 suppr
D2

= 1/3 suppr
D2

= 2/3

The outline of the complete algorithm is then as follows: (a) formulate mini-
mum occurrence conditions for all δ-sized subsets of items of D1; (b) solve the
inequalities, while eliminating non-minimal candidates; (c) count the supports of
the resulting candidate itemsets in D2, using threshold θ and having occurrence
counts incremented by one; (d) return itemsets with support greater than zero
as minimal occJEPs.

4 Tile-Based Image Representation

We use a symbolic, color and texture-based representation of images divided
into tiles, to capture enough information to be able to reason about their un-
derlying content. The symbolic representation also allows for direct discovery of
the proposed occJEPs in databases of images and performing a pattern-based
classification.

The images are uniformly divided into a grid of x × y pixel tiles, where x
is the number of rows and y is the number of columns, and for each of the
tiles the color and texture features are calculated. This initial procedure may
be performed during the database indexing phase and is not tied to the actual
classification process. The next step is creating a dictionary of typical feature
values. This is performed by clustering all available feature vectors of the tiles
of the learning database to find a chosen number of group centroids, which then
become elements of the dictionary. The tiles of images are then labeled with
identifiers of the most similar entries present in the dictionary. The representa-
tion of a particular image consists of a list of all identifiers associated with its
tiles, with or without the occurrence counts.



908 �L. Kobyliński and K. Walczak

5 Experimental Results

To assess the performance of the proposed jumping emerging patterns with oc-
currence count in classification we have a chosen a test dataset of images made
available by the authors of the SIMPLIcity CBIR system [4]. Presented here
are the results of classification between the following classes: flower, food, ele-
phant and mountain. The accuracy of both the approach described above and
the method of classification with class association rules proposed earlier in [3]
has been compared with C4.5 classifier and a classifier based on regular JEPs.
We have used ten-fold cross-validation to reduce any influence imposed by the
partition of the available dataset into training and test images.

The occJEP-based classifier has been created by discovering all minimal oc-
cJEPs to each of the classes present in the test data. We can formally define
the set of patterns in a classifier occJEP θ

C for a given occurrence threshold θ
as: occJEP θ

C =
⋃

c∈Id
occJEPm(C′

c, Cc, θ), where Cc ⊆ Dr
L is a decision class

sequence for decision item c and C′
c is a complementary sequence in a learning

database Dr
L. Classification of a particular transaction in the testing database

Dr
T is performed by aggregating all minimal occJEPs, which are supported by

it, similarly as in [1].
Classification results of each of the dataset pairs are presented in Table 2. We

have performed experiments for threshold θ ∈ [1, 3] and a selection of three values
for which the accuracy was the highest is shown here. In most cases θ = 1.5 gave
the best results, in one case there was no improvement of accuracy for θ > 1.
The maximum length of discovered occJEPs was set at δ = 3. The images were
partitioned into 8× 8 tiles and the dictionary size was set at 8 values.

Table 2. Classification accuracy of the four test datasets

θ accuracy (%)
flower/ flower/ flower/ food/ food/ elephant/

food elephant mountain elephant mountain mountain

1 96.84 98.47 95.84 91.50 96.00 92.50
1.5 98.47 99.47 96.37 93.50 95.00 93.50

2 96.37 98.95 96.89 90.50 95.00 94.00

The comparison of classification performance of the C4.5 algorithm, class as-
sociation rules, an occJEP- and JEP-based classifiers is presented in Table 3. For
occJEPs, we have set the threshold θ to a value which had previously proved to
give the best results (compare with Table 2), while δ = 3. Apart from classifica-
tion accuracy, we also note the average number of found occJEPs, JEPs, CARs
and the size of the generated tree, in case of the C4.5 classifier. We can see that
in all three test cases the classification accuracy of the proposed method was
the highest, as is the number of found patterns. A possible explanation of the
poor CARs performance is its too strict rule selection method, as only a few are
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used during the actual classification. The possibility to adjust the occurrence
threshold value is a distinguishing feature of the occJEP classifier and surely
accounts for its accuracy.

Table 3. Comparison of classifiers

accuracy (%) patterns/rules/tree size
datasets occJEP JEP CAR C4.5 occJEP JEP CAR C4.5

flower/food 98.47 89.67 91.10 96.32 1443.8 8.5 4.2 6.6
flower/elephant 99.47 92.16 93.26 97.42 391.7 20.2 8.8 8.8

flower/mountain 96.89 89.83 91.15 92.21 139.5 28.2 9.3 10.0

6 Conclusions

We have presented a concept of extending the definition of a jumping emerging
pattern to include occurrence counts of its items and use such patterns for classi-
fication. Jumping emerging patterns with occurrence count (occJEPs) carry the
same highly discriminative information as regular JEPs, but also allow reasoning
in databases with transactions of recurrent items. We have proposed a general-
ization of a decision transaction system, where each transaction is a multiset of
items, and a new method of counting supports in such databases.

We have experimentally shown that occJEP-based classifiers may outperform
the accuracy of other current classification methods, appropriate for relational
or recurrent transactional data. The presented method has an advantage over
classifying discretized data with currently used algorithms of a reduced itemspace
and allowing the user to adapt the classification process to differences between
classes by changing the threshold parameter.
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3. Kobyliński, �L., Walczak, K.: Class Association Rules with Occurrence Count in
Image Classification. TASK Quarterly 11, 35–45 (2007)

4. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive integrated
matching for picture libraries. IEEE Trans. on Patt. Anal. and Machine Intell. 23,
947–963 (2001)



Mining Non-coincidental Rules without a User Defined
Support Threshold

Yun Sing Koh

School of Computing and Mathematical Sciences,
Auckland University of Technology, New Zealand

ykoh@aut.ac.nz

Abstract. Traditional association rule mining techniques employ the support and
confidence framework. However, specifying minimum support of the mined rules
in advance often leads to either too many or too few rules, which negatively im-
pacts the performance of the overall system. Here we propose replacing Apriori’s
user-defined minimum support threshold with the more meaningful MinAbsSup
function. This calculates a custom minimum support for each itemset based on
the probability of chance collision of its items, as derived from the inverse of
Fisher’s exact test. We will introduce the notion of coincidental itemsets; given a
transaction dataset there is a chance that two independent items are appearing to-
gether by random coincidence. Rules generated from these itemsets do not denote
a meaningful association, and are not useful.

1 Introduction

The two major problems with traditional association rule mining are the high cost of
generating association rules and the large number of excess rules that are generated.
Traditional association rule mining algorithms, such as Apriori [1], use the support
confidence framework, which requires a user defined support threshold. In light of this,
there has been much research into developing techniques [2,3,4] to find a meaningful
support threshold. Setting a hard support threshold is no longer sufficient. If the support
threshold is set too high, we produce rules which are of common knowledge and we
may prune rare itemsets which have a high confidence and have valuable information.
However setting the minimum support threshold too low would produce many trivial
rules. It also does not guarantee a strong association. Strongly associated rules have
more predictive power, and are more useful.

We propose to use the minimum absolute support (MinAbsSup) function[5] that gen-
erates a minimum absolute support value for each candidate itemset. This replaces the
original minimum support threshold in Apriori. When the support of an itemset is be-
low its minimum absolute support value we assume that it is occurring due to random
coincidence and it is pruned. This method proposed is statistically more meaningful
compared to other methods used to arbitrarily choose a minimum support threshold.
MinAbsSup function was proposed to eliminate the occurrences of itemsets that occur
due to some random process. These itemsets are occurring together by coincidence are
not strongly associated or statistically significant. We call this the coincidental itemset
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problem. These are important because itemsets that have high support and high confi-
dence may be appearing so frequently in a transaction database that they cannot help
but appear together, while itemsets that have a low support but high confidence may be
occurring due to chance and could be considered as “noise.” In these rare cases a high
confidence value may not be sufficient to determine a valid rule. When dealing with
rare cases we are dealing with low support, thus even a small variation in the support of
an itemset would dramatically effect its confidence value.

2 Preliminaries and Related Work

The following is a formal statement of association rule mining for transaction databases.
Let I = {i1, . . . , im} be the universe of items. A set X ⊆ I of items is called an item-
set. A transaction t = (tid , X) is a tuple where tid is a unique transaction ID and X is
an itemset. A transaction database D is a set of transactions. The support of an itemset
X in D, denoted by supp(X), is the proportion of transactions in D that contain X . The
rule X → Y holds in the transaction set D with confidence where conf(X → Y ) is
the proportion of transaction that contain X also containing Y . There has been a lot of
research into developing efficient algorithms for mining itemsets with a variable mini-
mum support threshold [2,3,6,4]. These algorithms are exhaustive in their generation of
rules, and so spend time looking for rules with high support and high confidence. If the
varied minimum support value is set close to zero, they will take a similar amount of
time to that taken by Apriori to generate low-support rules in amongst the high-support
rules. These methods generate all rules that have high confidence and high support. To
include rare items, the minsup threshold must be lower, which consequently generates
an enormous set of rules consisting of both frequent and infrequent items. A uniform
minimum support threshold is not effective for datasets with a skewed distribution be-
cause they tend to generate many trivial patterns or miss potential low-support patterns.
Hence another approach is to use association rule mining without support threshold, but
it usually introduces another constraint such as similarity or confidence pruning. How-
ever none of these researches have directly considered the coincidental itemset problem.
There has been some research that is relevant to the coincidental itemset problem. In
order to improve the support-confidence framework, some have proposed using an ad-
ditional measure [7,8,9,10]. Brin et al. (1997) proposed a pruning method based on the
chi-square model. They use the chi-square test to prune out the insignificant rules by
using it to test whether the antecedent and the consequent of the rule are statistically
associated. A rule is significant if and only if it is statistically associated. However the
chi-square test is only an approximation of the true level of association and does not
work well with rare itemsets, which are genuinely associated and have low support and
high confidence.

3 Coincidental Itemset Problem

There are two types of candidate itemsets: non-coincidental itemsets and coinciden-
tal itemsets. Non-coincidental itemsets are generated by some non-random process.
Whereas, there are two different circumstances in which a coincidental itemset may
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occur. Items within an itemset may be appearing so frequently that they cannot help
but appear together and in turn generate a non-coincidental rule. For example, in an ob-
stetrician medical dataset, we may generate a rule {pregnant = yes} → {female} with
support of 0.95 and confidence 1.00. This particular rule would not be interesting as
it is of common knowledge. Itemsets with low support but high confidence may seem
interesting, but some of these rules may in fact be occurring due to chance, and should
be considered as noise. For example, in a general medical dataset we may generate a
rule {meningtitis} → {leg fracture} with support of 0.01 and confidence 1.00. A real
dataset will contain noise, which usually occurs at levels of low support. In Apriori,
setting a high minimum support threshold would cut the noise out but also prune out
interesting rare rules. Inherently we want to be able to detect these expensive rare rules
with low support. We are interested in finding a method to filter out noise from inter-
esting items, and detecting non-coincidental occurrences of itemsets. However up until
now there has not been a method that allows us to distinguish itemsets that are occurring
by coincidence. This is called the coincidental itemset problem.

We are interested in finding rules without having to set an ad-hoc support threshold.
Here we introduce the use of the minimum absolute support function which replaces
the user-defined minimum support threshold in the original Apriori algorithm. This is
used to prune out the rules for itemsets that are likely occurring together due to chance.
Previously, the minimum absolute support (MinAbsSup) function was introduced by
Koh et al. (2006) to differentiate noise and valid itemsets in rare rule mining. Here we
extend the usage of the function to the area of pruning coincidental frequent itemsets.

3.1 Apriori with the MinAbsSup Function

In this section we look at how MinAbsSup is used in Apriori as shown in the algorithm
below. Only candidate itemsets whose support is above their calculated MinAbsSup
value will be extended. As the MinAbsSup value is generated on-the-fly for each candi-
date itemset, we no longer need to use a user-defined minimum support threshold. Note
that only rules with support larger than their MinAbsSup value will be kept, the rest
are pruned just as if their support was less than the user-defined minimum support in
standard Apriori.

Apriori with MinAbsSup pruning algorithm
Input: Transaction database D, universe of items I,

threshold θ
Output: Non-coincidental frequent itemsets
N ← |D|
Idx ← invert(D, I)
k ← 1
Lk ← {{i}|i ∈ dom Idx , count({i}, Idx) ≥ 1}
while (Lk �= ∅)

k ← k + 1
Ck ← {x∪y|x, y ∈ Lk−1, |x∩y| = k − 2}
Lk ← {c|c ∈ Ck,MinAbsSup check(c, Lk−1, N, Idx , θ)}

end while
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return
⋃k−1

t=2 Lt

MinAbsSup check, MinAbsSup check(c, L, N, Idx , θ)
Input: Itemset c, Level L, Size of dataset N, Inverted

Index Idx, threshold θ
Output: True or False
i← argmin{j �→ count(j, Idx )|j ∈ c}
a→ count({i}, Idx)
b→ count(c\{i}, Idx)
return (∀x ∈ c|c\{x} ∈ L) AND count(c, Idx ) > MinAbsSup(N, a, b, θ)

4 Experimental Results and Performance Study

We compared the performance of the MinAbsSup function and the standard Apriori al-
gorithm on eleven different datasets from the UCI Machine Learning Repository [11].
Table 1 displays the results from our implementation of Apriori with MinAbsSup, and
normal Apriori. Each row of the table represents an attempt to find rules from the
database named in the left-most column. In the experiments, minconf is set to 0.90.
For the Apriori algorithm, this involves setting minimum support to include itemsets
that occur more than once. To give an indication of the amount of work Apriori is doing
to find low-support rules, we set a time constraint of ten thousand seconds to process
each dataset.

Table 1. Experiment results

Dataset MinAbsSup Function (minconf = 0.90) Apriori (minconf = 0.90)
Rules Pass Avg Freq

Itemsets
Time (s) Minsup Rules Pass Avg Freq

Itemsets
Time (s)

Lenses 1 3 4 0.1 0.000 83 5 34 0.1
LiverDis. 3 3 79 11.4 0.000 5286 8 312 9.4
TeachingEval. 12 4 19 0.7 0.000 5519 272 7 2.1
Bridges 93 6 21 1.2 0.000 632257 13 3000 105.3
Solar-Flare 144 6 27 1.0 0.000 7098832 14 20304 1079.0
Flag 592 7 82 13.1 0.078 35999090 16 150995 10052.9
Anneal 3146 8 232 13.6 0.003 162534621 17 129172 20981.6
Zoo 4029 8 84 2.6 0.050 79028358 18 32587 11352.0
Soybean-Large 121884 11 571 73.4 0.380 166877116 17 38237 21728.2
House-Vote 604948 15 1648 815.3 0.010 40173819 18 98444 10101.4
Mushroom 1560134 13 9492 1959.3 0.110 22748820 16 9948 10336.7

When Apriori with MinAbsSup is compared against Apriori, the reduction in the
number of rules (with all possible consequent lengths) generated is drastic. The reduc-
tion ranges from a factor of 15 to 60809, depending on the particular dataset. By setting
the arbitrary threshold too low we may be flooded with many trivial rules. We would
need wade through the rules to find those that may be of some interest. However set-
ting the support too high we may miss out useful rules. To take the Lenses dataset as
an example, normal Apriori finds 83 rules. The list below shows a subset of the rules
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found using normal Apriori with its confidence and lift value. We concentrate on this
particular subset because they contain similar a consequent. The rest of the rules in the
subset were not found as the itemsets could not be differentiated from noise.

{astigmatic = 1} → {tear production rate = 3} 1.00, 1.60
{astigmatic = 1, classes = 1} → {tear production rate = 3} 1.00, 1.60
{astigmatic = 1, classes = 1, spectacle = 1} → {tear production rate = 3} 1.00, 1.60
{astigmatic = 1, classes = 1, spectacle = 2} → {tear production rate = 3} 1.00, 1.60
{astigmatic = 1, classes = 2} → {tear production rate = 3} 1.00, 1.60
{astigmatic = 1, classes = 2, spectacle = 1} → {tear production rate = 3} 1.00, 1.60
{astigmatic = 1, classes = 2, spectacle = 2} → {tear production rate = 3} 1.00, 1.60
{astigmatic = 1, classes = 3} → {tear production rate = 3} 1.00, 1.60
{astigmatic = 1, classes = 3, spectacle = 1} → {tear production rate = 3} 1.00, 1.60
{astigmatic = 1, classes = 3, spectacle = 2} → {tear production rate = 3} 1.00, 1.60
{astigmatic = 1, spectacle = 1} → {tear production rate = 3} 1.00, 1.60
{astigmatic = 1, spectacle = 2} → {tear production rate = 3} 1.00, 1.60
{age = 1, astigmatic = 1} → {tear production rate = 3} 1.00, 1.60
{age = 1, astigmatic = 1, classes = 1} → {tear production rate = 3} 1.00, 1.60
{age = 1, astigmatic = 1, classes = 2} → {tear production rate = 3} 1.00, 1.60
{age = 1, astigmatic = 1, classes = 3} → {tear production rate = 3} 1.00, 1.60
{age = 1, astigmatic = 1, spectacle = 1} → {tear production rate = 3} 1.00, 1.60
{age = 1, astigmatic = 1, spectacle = 2} → {tear production rate = 3} 1.00, 1.60
{age = 2, astigmatic = 1, classes = 1} → {tear production rate = 3} 1.00, 1.60
{age = 2, astigmatic = 1, classes = 2} → {tear production rate = 3} 1.00, 1.60
{age = 2, astigmatic = 1, classes = 3} → {tear production rate = 3} 1.00, 1.60
{age = 2, astigmatic = 1, spectacle = 1} → {tear production rate = 3} 1.00, 1.60
{age = 2, astigmatic = 1, spectacle = 2} → {tear production rate = 3} 1.00, 1.60

From this particular grouping Apriori with MinAbsSup finds {astigmatic = 1} →
{tear production rate = 3}. Note that our algorithm did not find the rest of the rules.
Note that all these rules have the same lift and confidence value. All of the rules have
the same consequent {tear production rate = 3}. From the set below, we did not find
trivial rules. Trivial rules are rules whose antecedents cover exactly the same records as
one of their parent rules. From the list the rules found the rule {astigmatic = 1} → {tear
production rate = 3} is considered as the parent rule.

Note that the set of rules generated by normal Apriori in this section should not be
considered as the most compact set of rules. In order to obtain a compact set of rules,
we require some form of post-pruning method to eliminate trivial and redundant rules.
Some plausible pruning techniques have been previously researched[12,9]. However,
for experimental purposes we are evaluating the performance of our algorithm without
other pruning techniques. The results here show that MinAbsSup reduces the need for
post-pruning, and this in turn reduces time and space requirements.

5 Conclusion

Setting a suitable minimum support threshold has been investigated by many researchers.
In this paper, we introduced the MinAbsSup function which replaces the fixed mini-
mum support threshold of standard Apriori. This calculates a custom minimum support
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for each itemset based on the itemset’s probability of chance collision, preventing co-
incidental rules from being generated. Here we show that MinAbsSup efficiently finds
rules which are non-coincidental without using arbitrary support thresholds. In this pa-
per we are only concerned about setting a suitable threshold. To produce non-trivial and
non-redundant rules we still would benefit from some form of post pruning technique.
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Abstract. Transaction clustering has received a great deal of attention in the past
few years. Its functionality extends well beyond traditional clustering algorithms
which basically perform a near-neighbourhood search for locating groups of sim-
ilar instances. The basic concept underlying transaction clustering stems from the
concept of large items as defined by association rule mining algorithms. Clusters
formed on the basis of large items that are shared between instances offer an
attractive alternative to association rule mining systems. Currently, none of the
techniques proposed offer a good solution to scenarios where large items over-
lap across clusters. In this paper we overcome the aforementioned limitations by
using cluster seeds that represent initial centroids. Seeds are generated from sets
of transaction items that occur together above a certain threshold and such seeds
may overlap in their itemsets across clusters.

1 Introduction

Clustering is the process of finding naturally occurring groups in data. Clustering is one
of the most widely studied techniques in the context of data mining and has many ap-
plications, including disease classification, image processing, pattern recognition, and
document retrieval. Traditional clustering techniques deal with horizontal segmenta-
tion of data, whereby clusters are formed from sets of non-overlapping instances. Many
efficient algorithms exist for the traditional clustering problem [1,2,3,4]. In contrast,
transaction clustering has fundamentally different requirements, and has been gaining
increasing attention in recent years. Unlike traditional clustering, transaction clustering
requires that transactions be partitioned across clusters in such a manner that instances
within a cluster share a common set of large items, where the concept of large follows
the same meaning attributed to frequent items in association rule mining [5]. Thus it is
clear that transaction clustering requires a fundamentally different approach from the
traditional clustering techniques. Compounding the level of difficulty is the fact transac-
tion data is known to have high dimensionality, sparsity, and a potentially large number
of outliers [6].

Current research in both data mining and information retrieval suggests that transac-
tion clustering functionality needs to extend well beyond a near-neighbourhood search
for similar instances [7,8]. In this paper we propose a new approach to the problem
of transaction clustering based on an initial seeding of cluster centroids. Our approach
consists of two phases: a seed generation phase followed by a transaction allocation
phase.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 916–922, 2008.
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2 Related Work

In the recent past there has been an increasing level of interest in transaction clustering.
All such approaches have employed quite different methods when compared to tradi-
tional clustering methods. Wang et al. (1999) utilised the concept of large items [5] to
cluster transactions. Their approach measures the similarity of a cluster based on the
large items in the transaction dataset. Each transaction is either allocated to an existing
cluster or assigned to a new cluster based on a cost function. The cost function mea-
sures the degree of similarity between a transaction and a cluster based on the number of
large and small items shared between that transaction and the given cluster. To speed-up
the method proposed above, Yun et al. (2001) introduced a method called SLR (Small-
Large Ratio). Their method essentially uses the measurement of the ratio between small
to large items to cluster transactions. Both the large item [7] and SLR [9] method suffer
a common drawback. In some cases, they may fail to give a good representation of the
clusters. Xu et al. (2003) proposed a method using the concept of a caucus. The basic
idea of introducing a caucus to cluster transactions is motivated by the fact that cluster
quality is sensitive to the initial choice of cluster centroids [6]. Fundamentally different
from most other clustering algorithms, their approach attempts to group customers with
similar behaviour. In their approach they first determine a set of background attributes
from the dataset that are significant. A set of caucuses, consisting of different subsets
of items is then constructed to identify the initial cluster centroids. The main drawback
of this method is that it requires the user to define the initial centroids which is difficult
as it requires some form of prior knowledge about the dataset.

3 Transaction Clustering by Seeding

Let D = {t1, ....tn} be a set of transactions. Each transaction is a set of items {i1, ....im}.
C is a partition of the transaction, {C1, ....Ck} of {t1, ....tn}. Each Ci is called a cluster.
Overall the clustering is divided into two main phases: seed generation and allocation
phases.

3.1 Seed Generation Phase

We start by describing a method for finding the optimal number of clusters. Our initial
choice of seeds are the large items in the dataset and we thus begin by setting a minimum
support threshold, θ , where 0 < θ < 1. Any item in the dataset that has support above
|D| ∗ θ is considered a large item. Let Li denote the set of large items or large itemsets.
We now allow the items Li to be extended to itemsets Li+1 in the same way as Apriori
generates candidate frequent itemsets. For a large itemset to be considered a cluster
seed the frequency of co-occurrence of all pairs of subsets within the seed must occur
together with a frequency above a threshold value at a given significance level. This
effectively ensures that cluster seeds of size≥ 2 have items that co-occur together at a
frequency that is statistically significant. In addition, we require that all cluster seeds
satisfy an improvement constraint when they are extended. We first define the concept
of relative support.
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Definition 1 (Relative Support). The relative support of an itemset Xk of size k is
defined to be the ratio of the support of Xk to the support of Yk−1 which is that (k−1)-
sized subset of Xk with the maximum support. Thus,

RS(Xk) =
supp(Xk)

supp(Yk−1)

Definition 2 (Extension of a Seed). Given two existing seeds,Xk−1 and Yk−1, Xk−1

is extended to a new seed Xk−1 ∪ Yk−1 if and only if:

φ(Xk−1, Yk−1) > χ2
c ,

RS(Xk−1 ∪ Yk−1) − RS(Xk−1) > σ , and
RS(Xk−1 ∪ Yk−1) − RS(Yk−1) > σ

where φ denotes the chi square correlation coefficient, χ2
c , the chi square cut-off thresh-

old at the c% confidence level and σ is a user-defined threshold.
The rationale behind extension lies in the fact that the new itemset to be added to the

seed has a statistically strong correlation with the existing seed and that the inclusion
of the new itemset will improve the relative support of the seed above a user defined
minimum threshold. The algorithm for the seed clustering phase is shown below.

Algorithm Seed Generation Phase
Input: Transaction database D, θ value, σ value, universe of items I
Output: Cluster Seeds, S = {s1 . . . sk}
k ← 1
sk ← {{i}|i ∈ I, count({i}) ≥ |D| ∗ θ}
while lk �= ∅ do

k ← k + 1
lk ← {x∪y|x, y ∈ sk−1, |x∩y| = k − 2}
sk ← {x∪y|x∪y ∈ lk, φ(x, y) ≥ χ2

c, RS(x∪y) −RS(y) > σ,
RS(x∪y) −RS(x) > σ}

end while
return

⋃k−1
t=1 st

3.2 Allocation Phase

The seeds produced in the initial phase are considered as the initial centroids for the
clusters. In this phase, transactions are assigned to clusters on the basis of similarity
to cluster centroids. In order to measure similarity we use a modified version of the
Jaccard similarity coefficient [10]. For each transaction, t, we calculate the similarity
between t and the existing centroid, ck. The similarity, sim, is between t and the ck is
calculated as:

sim(t, ck) =
|t ∩ ck|

|t ∪ ck| − |t ∩ ck| + 1

Given t1 = {{a}, {b}, {c}, {d}, {e}} and c1 = {{b}, {c}}, here t1 ∩ c1 = {{b}, {c}}
and t1 ∪ c1 = {{a}, {b}, {c}, {d}, {e}}. Using our measure, the similarity between t1
and c1 is calculated as 2/(5 − 2 + 1) = 0.5. The greater the overlap between t and Ck,
the greater the value of sim coefficient.
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Algorithm Allocation Phase
Input: Transaction database,D={t1, . . . , tn},Cluster Seed, S={s1, . . . , sk}
Output: Cluster, C = {C1, . . . Ck}
Jprev ← 0
C ← {Ck ← ∅|k ∈ S}
/* Assign transactions to clusters with the highest similarity */
C ← {Ck ∪ t| arg max{k 
→ sim(t, sk)|sk ∈ S}, t ∈ D}
C ← {Ck|Ck �= ∅, Ck ∈ C} /* Removes the empty clusters */

Jcurr ← 1
|C|

∑|C|
j=1

∑
t∈Cj

sim(t,Cj)

|Cj |
/* Refine clusters */
while Jprev < Jcurr do

Jprev ← Jcurr

c← {ck|{i|i ∈ Ck, count({i}, D) ≥ |D| ∗ θ}, Ck ∈ C}
C ← {Ck ∪ t| arg max{k 
→ sim(t, ck)|ck ∈ c}, t ∈ D}
C ← {Ck|Ck �= ∅, Ck ∈ C}

Jcurr ← 1
|C|

∑|C|
j=1

∑
t∈Cj

sim(t,cj)

|Cj |
end while
return C

Once all transactions are allocated to clusters, further refinement is accomplished by
recomputing the centroids which may need to be updated with large items belonging
to transactions allocated to a given cluster but not presently part of its centroid. The
updating of centroids will result in the need for reorganisation of the clusters, thus the
process of centroid update and cluster reorganisation will need to be repeated in tandem
until a suitable point of stabilisation is reached. In order to determine the point at which
stabilisation is reached, we use a fitness function adapted from particle swarm optimi-
sation approach was proposed to find the optimal clusters. For all cluster {C1, . . . Ck},
the fitness function is calculated as:

J =
1
k

k∑

j=1

∑
t∈Cj

d(t, cj)

|Cj |

Typically, we want to maximise the fitness value generated. The fitness measure cal-
culates the average similarity between every transaction in a cluster to its centroid. We
show the algorithm for allocation phase as Algorithm 2 above.

4 Experimental Results

In order to evaluate the effectiveness of our seed based approach to transaction clus-
tering we conducted an experimental comparison with the large item approach [7]. We
used seven different real world datasets taken from the UCI Machine Learning Repos-
itory [11]. The first stage of analysis involved an overall comparison of cluster quality.
Secondly, we selected one dataset, namely the Congressional Vote and conducted a
more in depth analysis of the properties of the clusters produced by the two approaches.

In this section we report on cluster quality, as measured by the Root Mean Square
Standard Deviation or RMSSTD index [12]. Table 1 below shows that our Cluster Seed-
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ing approach outperforms Large Items across all datasets tested. In terms of cluster qual-
ity the cluster seeding algorithm consistently returned lower RMSSTD values than its
Large Item counterpart. With respect to processing time the Cluster Seeding approach
returned run times that were consistently lower, with the difference in timing between
the two approaches widening with increasing database size, as evidenced with the soy-
bean and mushroom dataset. Thus we can conclude that the cluster seeding approach
scales better with respect to dataset size.

Table 1. Experiment results

Dataset No Trans Cluster Seeding Large Item

No Clusters RMSSTD Index Time(s) No Clusters RMSSTD Index Time(s)

Zoo 101 7 21.2 4.4 7 24.9 13.7
Bridges 108 8 17.2 3.1 7 18.7 4.3
Hepatitis 155 8 25.9 3.6 8 26.5 23.1
Flag 194 8 40.8 16.7 10 41.7 188.3
Soybean-Large 307 5 44.8 15.1 5 45.2 239.2
Congressional Votes 435 5 19.9 15.8 4 20.6 155.6
Mushroom 8124 8 28.5 972.78 6 30.0 28684.0

The Congressional Votes dataset consists of the United States Congressional Voting
Records in 1984. Each record represents one Congressman’s vote on 16 different issues.
In order to make the comparison between the algorithms fair, we ran both algorithms
with settings that resulted in the same number of clusters. Both algorithms produced
4 clusters, out of which three had the vast majority of instances labelled as Democrat
while the other had a clear majority of instances with the Republican label. However,
an investigation of the homogeneity within the clusters revealed significant differences
in the formation of the clusters. Table 2 shows these differences.

Table 2. Comparison between Seed Clustering and Large Items on the Votes dataset

Cluster Seeding Large Item

Clus Cluster Label Coverage
No of Non-

Homogeneous
Attributes

Clus Cluster Label Coverage
No of Non-

Homogeneous
Attributes

0 Republican (95.1%) 46.6% 3 0 Republican (96.3%) 46.9% 3
1 Democrat (96.8%) 26.7% 4 1 Democrat (96.5%) 33.6% 7
2 Democrat (94.3%) 15.1% 3 2 Democrat (100%) 9 .9% 10
3 Democrat (92.6%) 11.6% 5 3 Democrat (100%) 9.6% 8

The Cluster Label column indicates the party label belonging to the majority of in-
stances in a given cluster, with the number beside it denoting the percentage of instances
in that cluster that contain the label. The Coverage column tracks the percentage of in-
stances falling into a given cluster. For each cluster we record the support received
by each attribute; if this support falls below 70% then we consider the attribute to be



Transaction Clustering Using a Seeds Based Approach 921

non-homogeneous. The most significant differences between the two approaches are
apparent when we compare the number of non-homogeneous attributes. It is clear from
Table 2 that the Cluster Seeding approach produces clusters with a much higher degree
of homogeneity with an average value of 3.75 for the number of non-homogeneous
attributes, versus 7.0 for the Large Items approach.

In order to further quantify the differences between the two approaches we focused
on the three clusters containing Democrats as the two algorithm performed very sim-
ilarly for the Republican cluster. Ideally, a clusterer should show sharp differences
in voting patters between the three Democrat clusters. We used the set symmetric
operator to assess the difference in voting patterns amongst Democrats. We evaluate
Ci ⊕ Cj = (Ci − Cj) ∪ (Cj − Ci) for pairs of values (i, j) in the range [1 . . . 3] for
each of the two clusters. Table 3 summarises the results. The larger the value of the
set symetric operator the larger the contrast or difference between the clusters involved.
Table 3 shows that the Cluster Seed algorithm produces a better differentiation between
the Democrat clusters with an overall set symmetric cardinality of 25 as opposed to 14
for the Large Item approach.

Table 3. Summary of differences in voting patterns across different combinations of Democrat
clusters

Cluster Seeding Large Item

Cluster Combination Set Symmetric Cardinality Cluster Combination Set Symmetric Cardinality

C1, C2 4 C1, C2 7
C2, C3 11 C2, C3 4
C1, C3 10 C1, C3 3

5 Conclusion

In this paper we proposed a new approach to the problem of transaction clustering. Our
approach differed from previous work in that we used seeds containing frequent items
to guide the allocation of transactions to clusters. Our seeds were generated in such
a fashion to actively promote the presence of frequent items across different clusters.
Our experimentation on several real world datasets showed that our approach produced
clusters with a much higher degree of homogeneity when compared to the current state-
of-the-art algorithm.
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Abstract. This paper studies rank aggregation by using ontology-based
user preferences in the context of Web search. We introduce a set of
techniques to combine the respective rank lists produced by different
attributes of user preferences. Furthermore, the learned user preferences
are structured as a taxonomic hierarchy (a simple ontology). We use
the learned ontology to store the attributes such as, the topics that a
user is interested in and the degrees of user interests in these topics. The
primary goal of our work is to form a broadly acceptable rank list among
these attributes by making use of rank-based aggregation. Experiment
results on a real click-through data set show that our user-centered rank
aggregation techniques are effective in improving the quality of the Web
search in terms of user satisfaction.

1 Introduction

Nowadays, it becomes increasingly difficult for users to retrieve desired informa-
tion due to the continued rapid growth in data volume and the ambiguity of short
queries in Web searches. As we know, different users have different intentions
for a same query. In order to satisfy the diverse needs of users, search engines
should be adaptive to the individual contexts in which users submit their queries.
Lawrence et al. [6] addressed an overview of the context of the Web search. User
preferences are a kind of useful contexts. Shen et al. [11] developed a client-side
Web search agent to perform implicit feedback and inferred user model from
short-term search contexts to improve Web searches. The user preferences can
be represented by a bag of words or a taxonomic hierarchy. The bag of word rep-
resentation does not consider term correlations because terms in user preferences
are considered in isolation from one another. The taxonomic hierarchy can over-
come this drawback and has been widely accepted [2, 7, 10]. It is also the basic
structure of modeling our user preferences. Furthermore, user preferences consist
of a number of attributes, such as what kind of topics that users are interested
in, and how much users are interested in each topic. Each attribute describes
a user’s favorite in different aspects. In most cases, any individual attribute is
deficient in accurately representing user preferences. Combining user knowledge
depicted by each attribute can help us understand user preferences well, which
finally results in an effective rank mechanism in the Web search. To leverage
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Fig. 1. Hierarchical Model of User Preferences

the rankings produced by the different attributes, rank aggregation intends to
form a single rank list supported by a broad consensus among these attributes.
There are two approaches: score-based and rank-based. The score-based rank
aggregation merges the values of the attributes [2, 12]. However, it is important
to observe that if the rank mechanism is score-based, the sequence implied by
the scores makes it more meaningful than the actual scores themselves. On the
other hand, the rank-based rank aggregation fuses the rank lists produced by
the values of the attributes and has been studied and employed in many appli-
cations in the last half century [4, 9, 14]. Renda et al. [9] compared rank and
score based methods without training data in the context of metasearch, and
showed that Markov chain rank-based methods compete with score-based meth-
ods. Dwork et al. [4] developed the theoretical groundwork for describing and
evaluating rank aggregation methods. Their main point is to effectively combat
spam. In this paper we introduce methods to effectively improve the Web search
in a context-aware manner.

In the rest of this paper, Section 2 describes rank-based rank aggregation,
including how to produce and fuse user-centered rank lists. We report the exper-
imental results in Section 3, and draw conclusions in Section 4 . From now on, the
term “rank aggregation” means “rank-based” rank aggregation for simplicity.

2 Rank Aggregation

In the following part, we will discuss how to get the respective rank lists from
the learned use preferences and the proposed rank aggregation methods.

2.1 Hierarchical Similarity Measures

Our user preferences are structured as a semantic hierarchy shown in Figure 1.
Technical details about how to learn and update user preferences from click-
through data are in our previous work [7]. For an effective rank mechanism,
the more similar a search result is to user preferences, the higher position it
will be put in the final rank list. To produce such a new rank list, hierarchical
similarity measures are needed to assess the relatedness between user preferences
and search results. We choose five content-ignorant measures from [8] because
we want to see how much we can benefit from the hierarchical structure. The
measures are defined as

S1(i, j) = 2 · M − l , (1)
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S2(i, j) = αS1(i, j) + βh (α = 0.05, β = 1) , (2)
S3(i, j) = e−α·l (α = 0.25) , (3)

S4(i, j) =
eβ·h − e−β·h

eβ·h + e−β·h (β = 0.15) , (4)

S5(i, j) = e−α·l · eβ·h − e−β·h

eβ·h + e−β·h (α = 0.2, β = 0.6) , (5)

where h means the depth of the subsumer (the deepest node common to two
nodes), l is the näıve distance (the number of edges or the shortest path length
between two nodes), i and j are nodes (topics) in Figure 1, and M is the maxi-
mum depth of topic directory possessed by user preferences. The values in paren-
theses are the optimal values of parameters [8].

2.2 Rank Lists Produced by Ontology-Based User Preferences

The above five content-ignorant measures can evaluate the hierarchical similarity
between search results and user preferences. The degree of user preferences has
effect on the similarity as well. There are various ways of combining the two kinds
of similarity scores dependent on applications. Their product is commonly used
in classic IR like our previous work. However, as we mentioned in Section 1, the
ranking implied by the scores has more sense than the actual scores themselves.
In the following discussion we calculate two user-centered rank lists plus the
result list returned by Google for rank-based fusion, as distinguished from the
traditional score-based combination.

(1) Hierarchical Semantic Similarity. User preferences include a number
of topics (nodes) in Figure 1. We further define the semantic similarity between
one search result and one user as the maximum value among all the values
computed by any one of Equations 1-5. The search results then are re-ranked
and form a rank list in order of one attribute of user preferences (i.e., the topics
a user is interested in). The priori work [2], however, just selected one of them
without analyzing their differences.

The five measures have their own features from their definitions. For example,
compared to Equation 1, Equation 3 also uses the näıve distance alone, but
makes use of a nonlinear function. Equation 2 is a linear combination of the
näıve distance and the depth. Different from Equation 2, Equation 5 transfers
the näıve distance and the depth by a nonlinear function, respectively, and then
combines them by multiplication. Equation 4 is the transformation of the depth
of the subsumer through a nonlinear function. Based on these differences, we
think that it is necessary to experimentally compare their performances when
they are applied in the context of the Web search and no priori work has done
it. The experimental results are reported in Section 3.

(2) Degree of User Interests. We find that Equations 1-5 are not round in
re-ordering search results. With the help of Figure 1, let us explain the problem
clearly. The näıve distance between node A and node C (i.e., 3) is the same as
that between node B and node F , and the subsumer of A and C (i.e., “root”) is
the same as that of B and F as well. As a result, computed by any equation from
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Equations 1-5, the similarity score between A and C is equal to that between
B and F . In this situation, these measures cannot order the two pairs. Our
solution for this problem is intuitive that the degree of the user interests in a
topic (node) can alleviate this problem. The more times a user clicks one topic,
the more interested the user is in it. The user’s clicked times can produce a
complementary rank list of search results.

(3) Google List. Google applies its patented PageRank technology on the
Google Directory to rank the sites. To keep our rank aggregation from missing the
high quality Web pages in Google, we also consider the original rank list of Google
Directory Search. As we know, there is a PageRank value accompanied with each
search result, representing the popularity or authority of results. It certainly
could be used to weigh the topics associated with results. Unfortunately, these
values are not publicly available for the present, but the ordering of search results
can be easily obtained. From this point of view, our rank-based aggregation
is suitable in this situation since it is exactly good at processing rank lists.
Certainly, it is reasonable for us to guess the approximate values of PageRank
if we favor the score-based combination, but this topic is out of the scope of
this paper. In our methods the original rank lists as inputs can intactly and
unbiasedly reflect Google’s standpoint.

2.3 Rank Aggregation Methods

We study the problem of combining sets of rank lists from different attributes
of user preferences into a single rank list. Voting provides us with a traditional
class of algorithms to determine the aggregated rank list. The most common
voting theory, named after its creator, is known as Borda’s rule [1] which argues
that the majority opinion is the truth, or at least the closest that we can come
to determining it [13]. However, the problem with Borda’s rule is that it does
not optimize any criterion. We make use of Footrule distances [3] to weigh edges
in a bipartite graph and then find a minimum cost matching. This method was
proved in [4] to approximate the optimal ranking that approximately minimizes
the number of disagreements with the given inputs.

Modified Borda’s Rule. Borda’s rule is a single winner election method in
which voters rank candidates in order of preferences. The winner of an election
is determined by giving each candidate a certain number of points corresponding
to the position in which she is ranked by each voter. Once all points have been
counted, the candidate with the most points is the winner.

Our idea is that we treat each attribute of user preferences as a voter. It means
that each attribute re-orders the search results in the same way as each voter
selects a list of candidates. Let A = a1, a2, · · · , am be the set of positions in the
rank list, and let the attributes of user preferences plus the result list of Google
be named by elements of n (i.e., n voters in an election). We shall assume for
the present that every element of n can be expressed by a linear order in the
position set A. We denote a linear order by a sequence Ai = ai1 , ai2 , · · · , aim

where for j < k, aij is preferred to aik
. For each voter, the ranked results
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should be given some points. The closer a search result is to the top of the list,
the more points it will be given. Especially in the context of the Web search,
the top search results have much higher possibility to be clicked than others.
Most Web search users just browse the top 10 or 20 results. If they do not find
the desired information, they will modify their queries to start a new search,
instead of continuing checking the results. Therefore, modified Borda’s rule is
applied here. The voter awards the first-ranked candidate with one point (i.e., 1).
The second-ranked candidate receives half of a point (i.e., 1/2), the third-ranked
candidate receives on a third (i.e., 1/3), etc. This kind of point distribution gives
more weights to the top results. When all elements of n have been counted, and
each Ai can be thought of as a position vector, we sort the search results by
several formulas, defined as

L1(ak) =
n∑

i=1

1/aik
, L2(ak) =

√
√
√
√

n∑

i=1

(1/aik
)2 , (6)

GM(ak) = (
n∏

i=1

1/aik
)1/n . (7)

Equation 6 represents the L1 norm and the L2 norm of these position vectors,
and the geometric mean of the n points is expressed in Equation 7. We take
into consideration the median of the n points as well. Borda’s rule is commonly
classified as a positional voting system because from each voter, candidates re-
ceive a certain number of points. Computationally it is very easy, as it can be
implemented in linear time.

Bipartite Graph. Borda’s rule does not assure us that it can find the optimal
rank list because it does not optimize any criterion. A graph theory based method
is proposed here, to approximate the optimal ranking. We define a weighted
balanced bipartite graph G = (V1 ∪ V2, W ). V1 = r1, r2, · · · , rm is a set of search
results to be ranked. V2 = p1, p2, · · · , pm is the m available positions in the rank
list. For any two vertices r ∈ V1 and p ∈ V2, rp is an edge in G; thus G is
also a complete bipartite graph. The weight W (r, p) = is the total distance of
a ranking value that places r at position p. The task of rank aggregation is to
minimizes the number of disagreements with the respective lists. Therefore, if
all the search results are put in proper positions, the total distance (i.e., the
number of disagreements) should be the smallest. Now we meet two difficulties
in achieving this goal. One is how to compute the distance. The other one is
what kind of approaches can minimize the distance.

To weigh the edges in G, according to Diaconis et al. [3], the two distance
measures that we consider are:

Footrule D(π, σ) =
n∑

i=1

| π(i) − σ(i) | , Footrule S(π, σ) =
n∑

i=1

(π(i) − σ(i))2 ,

(8)
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where π and σ are regarded as rank lists. Diaconis et al. [3] also suggest two other
measures. One roughly seems similar to Footrule D, and the other is unsuitable
for general use, having very small variance about a mean that is very close to
its maximum value. Therefore, we choose Footrule D and Footrule S here. We
then adjust the two measures to compute the total distance that is the weight
in an edge, now defined as

∑n
i | Ai(r) − p | or

∑n
i (Ai(r) − p)2. Minimizing the

total distance to n could be solved by the well-known Hungarian algorithm that
finds a minimum cost perfect matching in the bipartite graph. A matching in
a graph is a set of edges where no two of which share an endpoint. The most
similar work to ours is Dwork et al. [4] who only used Footrule D as the distance
measure. However, our experiments compared the two measures and observed
that Footrule D performed the worst among all the methods, even inferior to
the score-based method. The largest improvement is reached by Footrule S. In
addition, their main application is to effectively combat spam while we study
the rank aggregation in terms of user preferences to improve the Web search.

3 Experiments

3.1 Dataset and Evaluation Metrics

Given a query, Google API offered us the top 20 search results. In order to
collect the real click-through data, we randomized the order of the results before
returning them to 12 invited users and asked them to evaluate whether the
clicked results are relevant or not. After the data were collected over a ten-day
period (From October 23nd, 2006, to November 1st, 2006), we had a log of
about 300 queries averaging 25 queries per subject and about 1200 records of
the clicked Web pages in total. The evaluation metrics are listed as follows.

(1) AvgRank indicates the average rank of search results, defined as:

AvgRank(q) =
∑

p∈S

R(p)/|S| . (9)

Here S denotes the set of search results selected by a subject for query q,
R(p) is the position of p in the result list, and |S| is the cardinality of the
set S. A smaller AvgRank represents a better quality.

(2) DCG [5] gives more weight to highly ranked search results, defined as:

DCG(i) =

{
G(1) if i = 1
DCG(i − 1) + G(i)/log(i) otherwise

(10)

By averaging over a set of test queries, the average performance of our meth-
ods can be analyzed. In the experiments, we used G(i) = 2 for highly relevant
Web pages, G(i) = 1 for relevant Web pages, and G(i) = 0 for non-relevant
search results. A larger DCG means a better quality.
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Fig. 2. Depth of Hierarchical User Preferences

3.2 Experimental Results

Depth of Topic Directory for User Preferences. The first step is to deter-
mine how deep the depth of topics is when modeling user preferences. We did a
preliminary performance analysis on different depths. The re-ranking mechanism
is addressed in [7]. Measured by AvgRank in Equation 9, Figure 2 illustrates
the improvement over Google Directory Search per similarity measure versus the
depths considered in learning user preferences.

It shows that the deeper the topic directory we process, the bigger improve-
ment is generally reached. If our algorithm stores the whole topic directory, the
biggest improvement is over 40%. In addition, we observed that when the depth
is set to 1 (2 or 3), the five similarity measures performed almost the same. The
reason is that in our dataset, most of the relevant and non-relevant search re-
sults share the same subsumer in a very low depth of the hierarchy. We need to
store the deeper topic directory to tell the relevant results from the non-relevant
ones. Furthermore, from Figure 2 when the depth of topic directory increases to
3, the improvement is big, from 5% to above 25%. However, when the depth is
increased continually from 3 to 6, the improvement changes slowly. Due to this
observation and the large size of the whole Google Directory1, only the top 4
topic directory is encoded into the user preferences in the following experiments,
which is a trade-off between accuracy and storage memory.

Effect of Similarity Measures and Rank Aggregation Methods. Figure 3
illustrates the performances of rand aggregation methods and the five similarity
measures defined in Equations 1- 5. The Score-Based method in the figure is
the same as that in [7]. From this figure, the highest improvement over Google
Directory Search is about 13%, produced by Footrule S. L1 norm, L2 norm, and
Footrule S performed better than Score-Based, while the qualities of Median

1 Google uses ODP as basis for its Google Directory service, and ODP has more than
590,000 categories.
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Fig. 3. Effect of Similarity Measures and Rank Aggregation Methods

and Footrule D are inferior to that of Score-Based. Although Borda’s Rule nei-
ther optimizes any criterion nor satisfies the Condorcet property [13], this kind
of method outperformed the score-based combination. The Hungarian algorithm
based on the Footrule distance that finds a minimum cost perfect matching in
the bipartite graph showed the best results obtained by the distance measure
Footrule S in Equation 8. In addition, we know that S2, S4, and S5 perform
similarly, while S1 and S3 perform similarly as well. The reason is that the for-
mer three measures give much more weight on depth than length, and the latter
two measures only consider length. Given the same length and depth, the five
measures will compute different values due to different transformation functions.
Thus the score-based method is easily influenced by the selected function. On
the other hand, the rank-based methods are robust. Even the transformation
function is different, as long as the measures take into account the same in-
formation, they will produce similar performance. Moreover, in the rank-based
methods, S2, S4, and S5 performed slightly better than S1 and S3, which tells
us that the depth of subsumbers carry more useful information than the näıve
distance in our dataset. Note that S4 uses the depth alone, but competes with
S2 and S5. In the score-based method, however, S5 is the winner, much better
than the other measures.

4 Conclusions

In this paper we proposed a set of techniques for rank aggregation. Experimental
results on a real click-through data set demonstrate the effectiveness of our meth-
ods. We observed that some rank-based aggregation methods performed better
than the Socre-Based method and the Footrule S method performed best in
our evaluation. Furthermore, we analyzed the influence of the topic depth of
the ontology-based user preferences on the quality of the Web search, and com-
pared the performances of five similarity measures. If the measures utilize similar
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information from users, they will perform similarly regardless of what kind of
transformation functions is being used. But the score-based combination is sen-
sitive to the selected function. In the future we plan to put these methods into
larger datasets, and further mine more user-centered information and optimize
Web searches in terms of user’s satisfaction.
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Abstract. Stock data, which is among the most complicated time series, is 
difficult to analyze and mine. Neural network has been a popular method for 
data mining in financial area since last decade. In this paper, we explore the use 
of Echo State Networks (ESNs) to perform time-series mining on stock 
markets. The Hurst exponent is applied to adaptively determine initial transient 
and choose sub-series with greatest predictability before training. With the 
capability of short-term memory provided by ESN, a stock prediction system is 
built to forecast the close price of the next trading day based on history prices 
and technical indicators. The experiment results on S&P 500 data set suggest 
that ESN outperforms other conventional neural networks in most cases and is a 
suitable and effective way for stock price mining. 

Keywords: Echo State Network, Neural networks, Stock data mining, Short-
term price prediction. 

1   Introduction 

Data mining on stock markets has received focus from investors and researchers for a 
long time due to its potential profits. Artificial neural networks (ANNs) are the most 
widely used approach on stock markets and show good performance in many cases. 
Among ANNs, back-propagation neural network (BPNN), time delay neural network 
(TDNN) and recurrent neural network (RNN) are popular. However, they have their 
own limitations. BPNN can learn only an input-output mapping of static patterns that 
is independent of time [1]. The fixed time delays of a TDNN take a risk of a 
mismatch between the choice of time-delay values and temporal location of important 
information in the input patterns [1]. RNN is difficult to develop [2]. 

Echo State Network (ESN) is a novel RNN whose basic idea is to use a large 
“reservoir” RNN as a supplier of interesting dynamics from which the desired output is 
combined [4]. The “reservoir” contains information about the past input history in a 
way which reflects the recent history well and decays with the delay time, which is 
consistent with stock markets. ESN is good at chaotic time-series forecast and obtained 
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the best result in Mackey-Glass series prediction. Because it is simple to develop, ESN 
has been utilized in wireless communication [3], robot control [5], speech recognition 
[6, 7], etc. Unfortunately, there is no application of ESN in financial area. 

This paper investigates the effectiveness of ESN to predict daily stock price 
through history data. The Hurst exponent is utilized to choose a persistent sub-series 
with the greatest predictability for training. We test nearly all the stocks in S&P 500 
and compare the results of ESN with BPNN, Elman neural network and radial basis-
function neural network (RBFNN). The experiments demonstrate that ESN 
outperforms other neural networks in most cases and is an effective way in short-term 
stock time-series prediction. 

The rest of the paper is organized as follows: Section 2 introduces ESN and our 
prediction system. Section 3 describes experiments and shows the results. Section 4 
makes a conclusion and proposes some advice for future research. 

2   Echo State Network and Stock Prediction System 

2.1   Architecture of ESN 

Our stock prediction system is based on a standard ESN (See Figure 1) with 600 
internal units, only 5% of which are interconnected. The internal connection weight 
matrix is rescaled to a spectral radius of 0.1 to ensure the echo state property. The 
activation of internal state ( 1)x n +  at time step 1n +  is updated according to  

( 1) 1/(1 exp( ( ( 1) ( ) ( )) ))in backx n W u n Wx n W y nα υ+ = + − × + + + +  (1) 

where inW  is input connections sampled from a uniform distribution between 

[ 0.1,0.1]− ; W  is internal connections sampled from a uniform distribution between 

[ 1,1]− ; backW  is feedback connections sampled from the uniform distribution 

between [ 5,5]− ; ( 1)u n +  is the input at time step 1n + ; ( )y n  is the output at time  
 

 

Fig. 1. The Architecture of ESN [8] 
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step n ; υ  is noise randomly sampled from 5 5[ 10 ,10 ]− −−  and 5α = .The output of 

ESN is computed according to  

( 1) ( ( 1), ( 1), ( ))outy n W u n x n y n+ = + +  (2) 

where outW  is output connections. In ESN, only outW  should be modified during 
training. The topology of the hidden layer and other weight matrixes remain 
unchanged. Here we use least-squares algorithm to train an ESN. 

2.2   Hurst Exponent 

Before training, an initial transient should be dismissed first so that after the transient 
time the internal network state is determined by the preceding input history [5]. Here 
we apply the Hurst exponent [9] to decide initial transient.  

The Hurst exponent provides a measure for the long-term memory and fractality 
of a time series [10]. If its value H is between 0.5 and 1, it indicates a persistent 
series that the history influences the future. The closer H is to 1, the stronger the 
impact is. Hurst exponent can be computed according to rescaled range analysis (R/S 
analysis) [10].  

We extract a set of close price sub-series from training samples, which all end at 
the last day but begin from different points, and calculate their Hurst exponent. The 
sub sample whose length is larger than the testing size and whose Hurst exponent is 
the closest to 1 is the final training set. 

2.3   Data Preparation  

Because in short-term prediction, the influence of macroeconomic environment and a 
company’s financial conditions is negligible, we only consider raw prices and 
technical indicators in our system. We tried various kinds of combination to find the 
optimal one. All the input data are listed as follows and linearly normalized to [-1,1]. 

 High: the maximum price of a stock ticker during the intra-day trading. 
 Low: the minimum price of a stock ticker during the intra-day trading. 
 Open: the first price of a stock ticker during the intra-day trading. 
 Close: the final price of a stock ticker during the intra-day trading. 
 5-day High: the highest High Price during the past 5 days. 
 5-day Close Moving Average: the average of Close in the past 5 days. 

3   Experiments and Results 

In our experiments, the stock information between Dec., 6th, 2001 and Nov., 25th, 
2005 (the first 1000 days for training and the last 100 days for testing) of 491 stocks 
in S&P 500 is adopted. We also applied BPNN, Elman network and RBFNN (using 
Matlab Neural Network Toolbox) on the same task for comparison. Note that their 
topology and parameters are chose by manual experiments to guarantee satisfying 
results on most stocks. Average percent error (APE, See Equation 3) is the criteria to 
judge all networks. 
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ˆ ˆ/ 100%t t tAPE y y y= − ×  (3) 

where ty  is the actual output and ˆty  is the desired one. Table 1 lists some prediction 

results that are randomly chosen. 

Table 1. Stock Prediction Results (Next-Day Close Price Prediction) 

Stock  ESN BPNN Elman RBF 
ACE 1.15% 3.87% 3.75% 3.09% 
AHC 1.69% 8.77% 10.06% 9.15% 
AMD 1.94% 2.66% 2.54% 2.99% 
BBT 0.84% 0.87% 0.83% 0.91% 
CIEN 3.81% 3.55% 3.68% 2.48% 
GD 0.65% 2.07% 3.25% 1.32% 
JCP 1.58% 2.04% 2.01% 2.26% 

KMG 1.51% 5.18% 6.37% 8.25% 
NBR 1.78% 6.55% 6.11% 4.27% 
NSC 1.12% 2.66% 2.31% 2.48% 
PSA 0.97% 2.31% 2.70% 1.75% 
RHI 1.61% 6.41% 6.28% 9.99% 
SFA 1.53% 3.47% 3.22% 3.21% 
USB 0.79% 0.75% 0.74% 0.79% 

Statistically, ESN performs the best in 57.03% cases, especially much better than 
others in some cases such as AHC, KMG, NBR and RHI. BPNN performs the best in 
14.87% cases; Elman performs the best in 20.16% cases and RBFNN performs the 
best in 7.94% cases. Moreover, in 138 out of 211 stocks where ESN does not perform 
the best, it gives results very close to the optimal one (the gap is smaller than 0.5%).  
 

 

Fig. 2. The close price of NBR between Dec., 6th, 2001 and Nov. 25th, 2005 
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Only in a few cases (16/491), ESN gives very bad results. But by adjusting the 

parameters such as maxλ , backW  and υ , the accuracy can be improved.  

Qualitative observation finds that in many cases, if second half of the training 
samples approximately share the same trend with the first half of testing set (See 
Figure 2), ESN tends to outperform other networks. It coincides with the short-term 
memory ability of ESN.  

Table 2 lists the average elapse time of every neural network to train and predict 
one stock on a Core 2 CPU T5500 1.0G computer. Obviously, it takes the most time 
for ESN to predict stock prices. But further experiments find that the process to 
calculate the Hurst exponent spends most of the time.  

Table 2. Average Performance of Neural Networks 

ESN (with Hurst 
exponent)  

ESN (fixed 
transient) 

BPNN Elman RBF 

55.05s 6.86s 17.68s 23.91s 3.27s 

4   Conclusions 

In this paper, we applied Echo State Network in short-term stock data mining and 
compare its predictive accuracy with BPNN, Elman network and RBFNN. The Hurst 
exponent is used to guide transient selection before training an ESN. The experiments 
demonstrate that ESN is an effective model to predict stock time-series and 
outperform other conventional neural networks in most cases.  

However, ESN is a young discrete model for chaotic time-series mining that needs 
further studies. First, which type of data ESN is suitable for is worth study. Our 
preliminary observation indicates that the price trend may influence prediction 
accuracy, but further exploration is required. Second, finding an optimal architecture 
and transfer functions with genetic algorithms (GAs) for each stock is under 
consideration. Finally, whether ESN has the ability of long-term stock data mining is 
still of interest. 
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Abstract. Compared to the traditional text categorization, automated categori-
zation for domain- specific web pages poses new research challenges because of 
the noisy and diverse nature of the pages and the fine and complex category 
structure. For multilingual web pages, it also needs to be considered that how to 
extract the terms of different languages exactly. Using a dataset of hybrid Chi-
nese-English chemical web pages, a new dictionary-based multilingual text 
categorization approach is proposed in this paper to try to classify the pages into a 
hierarchical topic structure more accurately. By using an automatic encoding 
detection and integration method, the approach can properly recognize and in-
tegrate the web page encodings. This makes the feature extraction more precise 
for the multilingual pages. The approach can also intensify the domain concepts 
in the web pages based on a chemistry dictionary. The experimental results show 
that the proposed approach has the better performance than the traditional  
categorization method when classifying the multilingual web pages in specific 
domain. 

Keywords: Text categorization, Encoding detection and integration, Do-
main-related dictionary. 

1   Introduction 

In order to help users to find relevant information in Internet accurately and quickly, 
Text Categorization (TC) might be desirable to automatically classify web pages 
according to their topics and to show them in a category interface [1]. A wide range of 
statistical classification and machine learning techniques [2, 3, 4] have been applied to 
TC, including Rocchio classifiers, nearest neighbor classifiers, decision trees, Bayesian 
classifiers, support vector machines (SVMs), and so on. According to the research [3, 5, 
6] comparing the performance of these techniques, the k-nearest neighbor (kNN) clas-
sifier is a learning method that is simple to implement, easy to scale up, relative robust 
and has good performance. In this paper, a modified kNN classifier is applied to clas-
sify the web pages of specific domain into a hierarchical topic structure. 

Compared to the traditional text categorization, text categorization for do-
main-specific web pages poses new research challenges because of the diversity and 
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noisy nature of the web pages[2] and the fine and complex category structure. A dic-
tionary is constructed to represent the domain knowledge that can be used to intensify 
the domain concept in the pages, and a new text categorization approach based on the 
dictionary is proposed to attempt to classify the domain-specific web pages more  
efficiently. 

Amounts of Chinese web pages in Internet include English or other language words. 
For the hybrid multilingual web pages, it is essential to recognize the different language 
characters and extract the information accurately from the pages with diverse language 
encoding schemes. An automatic encoding detection and integration method is applied 
in the dictionary-based text categorization method to extract Chinese and English text 
information precisely from the hybrid bilingual Chinese-English pages.  

2   Text Categorization 

In this paper, we use the kNN classifier to classify the web pages for its robust and 
effective performance [5, 6]. Before classification, Feature extraction should be done to 
select the informative terms from the documents to form the vector space that will be 
used in the classifier. In this paper, both training and test documents are converted from 
the original format to the final vectors through the following steps. First, useless tags and 
stop words [7] are removed from the documents and word stemming is performed using 
the Porter stemmer. Then, term weights are computed [7] to represent the documents as 
term vectors. Since not every document contains all terms, the feature vector space is 
usually very large and sparse. Both feature selection and re-parameterization [8] are 
performed to reduce the original feature dimensionality. 

Based on the vector space, kNN classifier is used to perform the multi-label 
classification. Given an test document, the kNN classifier ranks its nearest neighbours 
among training documents according to the corresponding cosine value, and uses the 
categories of the k top-ranking neighbours to predict the categories of the test. The 
cosine value of each neighbour is used as the weight of its categories, and the sum of 
category weights over the k nearest neighbours are used for category ranking. Those 
categories with a rank score higher than a threshold value are finally assigned to the test.   

3   Dictionary-Based Multilingual Text Categorization 

In spite of the fact that many Internet standard protocols designate Unicode as the 
default encoding, there still exist many encoding schemes on the Internet for a variety 
of reasons [9]. Without the right encoding information, the web pages are sometimes 
regarded as “garbage” or “unreadable” text during feature extraction by the classifier. 
To extract the features more exactly from the bilingual Chinese-English web pages, an 
automatic encoding detection and integration method is proposed to get the encodings 
of the different pages and integrate multiple encodings into a uniform encoding.  

Compared with English characters, it is tougher to recognize Chinese characters 
because the commonly used encodings, such as GB2312, Big5 and UTF-8, have 
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different code-point ranges for them. To detect the language encoding of web pages, we 
try to get the encoding by extracting the charset information from the Meta HTML tags 
of the input pages. For the pages without explicit charset declaration, we apply a 
Character Distribution Method [9], which identifies the encoding based on the code 
point distribution statistics in the pages. Since different encoding schemes may have 
different code points for the same character, it is necessary to integrate them into a 
uniform encoding to make the pages with different encodings but same meaning have 
the same represented vector in the classifier. In this paper, we use GB2312 as the 
uniform encoding. GB2312 covers both the English and commonly used Chinese 
characters and it is easy to separate the bi-byte Chinese characters and single-byte 
English characters. After encoding detection and integration, all the Chinese-English 
pages with different encodings are integrated and can be represented accurately in the 
classifier.  

For the domain-specific web pages, the semantic similarity between them brings 
more difficulties when retrieving the k nearest neighbors by identifying the differences 
among the documents to rank them, which makes the kNN classifier perform poor as 
the following experiments show. This motivates us to build a domain-related dictionary 
to represent the domain knowledge which could be helpful to extract the domain 
information more exactly from the web pages. Then based on the dictionary, a new text 
categorization approach is proposed. 

In order to classify the chemical web pages more accurately in this paper, a 
machine-readable chemistry dictionary (ChemDict) is built. ChemDict has total 
172,786 Chinese terms and 173,895 English terms. ChemDict includes large amounts 
of phrase Chinese and English terms consisting of more than one word. Longest 
substring matching algorithm is adopted to match the dictionary terms. Then these 
matched terms are inserted into the documents where they appear when indexing to 
intensify the chemical concepts and improve the semantic presentation.  

In the dictionary-based multilingual text categorization system, encoding detection 
and integration described is first performed on the web pages, and then longest 
substring matching algorithm is run to extract dictionary terms for document 
expansion. After that, feature extraction as presented in section 2 is performed to 
produce the final vectors. In this process, the stop word list consists of 548 English 
terms and 1,068 Chinese terms and the stemming step is ignored for Chinese terms. 
Based on the training vector space, the kNN classifier finds the k nearest neighbors of 
the test document, and the relevant categories of the test are finally obtained.  

4   Experiments 

This section describes the experiments for comparing the dictionary-based multilingual 
text categorization approach with the traditional method in detail. Results are also 
provided and discussed. 

To test the text categorization method on the real domain-related web pages, we 
constructed a labeled dataset from the chemical resources collected by ChIN [10] 
editors. ChIN is a comprehensive Chinese-English chemistry resource directory and 
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uses a hierarchical chemical categorization scheme adopted by Natural Science 
Foundation of China. It is a three level hierarchical topic structure and has total 341 
categories. Each chemical resource in ChIN is manually classified into one or more 
categories of this structure. We used a subset of the ChIN resources to construct the 
ChIN-Page dataset. This dataset includes both Chinese and English chemical web pages 
collected based on the ChIN resource links from the Internet by a real-time crawler. 

To compare the text categorization performance on the chemical web pages with that 
on the normal documents, we also use the popular Reuters-21578 [11] collection as the 
second dataset. 

The category distributions in the datasets are shown in Table 1. Close observation 
will find that the datasets are all uneven or skewed multi-label datasets, while the 
category complexity and the number of categories per document of ChIN-Page are 
much larger than Reuters. Consequently, the categorization is more difficult to learn as 
the following experimental results show. Table 2 shows the document distributions in 
the datasets, where Reuters use the “ModApte” split [11] and ChIN-Page dataset is split 
according to the ChIN indexed date of each page. The documents that are unlabeled or 
have no text besides the tags are removed from both datasets. The distributions of 
Chinese documents in Chin-Page are put in parentheses. 

Table 1. Category distributions in the datasets 

Dateset
Hierarchical

Level

Total

Categories

Categories

Having More than

One Documents

Categories

Having More than

20 Documents

Number of

Categories

per Document

Reuters 1 135 120 57 1.2

ChIN-Page 3 341 257 71 3.1
 

Table 2. Document distributions in the datasets 

Dateset Total Documents
Documents

in Training Set

Documents

in Test Set 

Reuters 9805 7063 2742

ChIN-Page 2337(295) 1635(255) 702(40)
 

For evaluating the average performance of a classifier over multiple categories, we 
followed the traditional macro-averaging and micro-averaging method [6]. 
Micro-averaged scores tend to be dominated by the performance of the system on 
common categories, while macro-averaged scores tend to be dominated by the 
performance on rare categories if the majority of categories in the task are rare [2]. For 
the uneven category distributions (Table 1.) in our tasks, providing both types of 
evaluation scores gives a clearer picture than considering either type alone. In the 
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following experiments, the micro-averaged F1 and macro-averaged F1 are used to 
evaluate the classifier average performance. 

It is obvious that the classification performance is highly dependent on the dataset 
used. In the experiments, we first test the traditional text categorization method on the 
Reuters and the chemistry-related ChIN-Page dataset. Then the proposed diction-
ary-based multilingual text categorization approach is used to observe its effect on 
classification performance.  

4.1   Effect of Dataset on Classification Performance 

The traditional text categorization method described in section 2 is separately per-
formed on the Reuters and ChIN-Page dataset. To show the effect of the category 
structure on the classification performance, we also classify the ChIN-Page web pages 
using different categorization schemes, that is only using the top-level categories 
(1-level), the top and the second level categories (1.2-level) and all the categories 
(all-level) in the 3-level hierarchical category structure. The experimental results are 
listed in the Table 3, where bold font marks the best performance of each column. The 
second column shows the actual total category number that the test documents are 
assigned in the experiments. For the top level categorization scheme of ChIN-Page, the 
performance of 10 most frequent categories is substituted by that of all the 7 categories.  

The column-wise comparison in Table 3 shows that the performances on Reuters are 
often much better than that on ChIN-Page for Reuters has fewer noisy data and coarser 
classification scheme than ChIN-Page, while the macro-averaged F1 of all the catego-
ries on Reuters is worse than that on ChIN-Page with the top-level scheme because 
Reuters has more and skewed category distributions. For the ChIN-Page, the more fine 
and complex categorization scheme induces the more inferior performance.  

Table 3. Classification performances of the traditional text categorization on the datasets 

All Categories 10 Most Frequent Categories 
Dataset Category Number

MicroAvg F1 MacroAvg F1 MicroAvg F1 MacroAvg F1

Reuters 94 0.7974 0.3636 0.8908 0.8058

7 (1-level) 0.5709 0.5953 0.5709 0.5953

72 (1.2-level) 0.4418 0.2424 0.5479 0.5509ChIN-Page

206 (all-level) 0.3871 0.0526 0.5258 0.5074
 

From the row-wise comparison in Table 3, we can observe that the macro-averaged 
F1 is often lower than the micro-averaged F1 for the skewed category distribution in 
each dataset. The results also show that the averaged performances on the 10 most 
frequent categories are always superior to that on all the categories. 



 Text Categorization of Multilingual Web Pages in Specific Domain 943 

4.2   Effect of Dictionary-Based Multilingual Text Categorization on 
Classification Performance 

The dictionary-based multilingual text categorization approach described in section 3 is 
performed on ChIN-Page with the 3-level hierarchical category structure to extract the 
chemistry information more exactly. The encoding detection and integration method 
without dictionary is also tested in the traditional text categorization to observe its 
effect. The results are shown in Table 4, where the second column shows the feature 
number in the training documents after feature extraction.  

Table 4. Classification performances of the different text categorization methods on ChIN-Page 
dataset 

All Categories 10 Most Frequent Categories Text Categoriztion 

Method

Feature

Number MicroAvg F1 MacroAvg F1 MicroAvg F1 MacroAvg F1

Traditional 11,517 0.3871 0.0526 0.5258 0.5074

Encoding Detection 

and Integration
13,739 0.4166 0.0899 0.5598 0.5525

Dictionary-based

multilingual
18,054 0.428 0.0904 0.5715 0.5502

 

From the results, we can see that the proposed encoding detection and integration 
method can extract precise and uniform Chinese features from web pages, and can 
improve the classification performance. We can also find that the dictionary-based 
multilingual text categorization approach can further improve the micro-averaging 
performance while not notably influence the macro-averaging performance. The reason 
may be that the classifier can’t extract enough chemical terms to properly classify the 
test documents in the small categories that have scarce training documents. 

From the performance comparison of the dictionary-based multilingual text cate-
gorization with the traditional method, we can observe that the proposed approach can 
notably improve the classification performance on the ChIN-Page web pages. For the 
micro-averaged F1 on all the categories, we can obtain about 11% improvement over 
the traditional method. 

5   Conclusions 

Text Categorization for domain-specific web pages poses new research challenges for 
the noisy and diverse nature of the pages and the fine and complex category structure of 
the specific domain. The proposed dictionary-based multilingual text categorization 
approach in this paper can effectively improve the categorization performance on the 
real chemistry-related web pages in the ChIN-Page dataset.  
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Future research is needed on the issues, such as strategy optimization of expanding a 
document by matched dictionary terms and utilizing the hyperlink and other web page 
characteristics to improve the classification performance for domain-specific web 
pages. 
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Abstract. Prior works have elaborated on the problem of joint cluster-
ing in the optimization and geography domains. However, prior works
neither clearly specify the connected constraint in the geography do-
main nor propose efficient algorithms. In this paper, we formulate the
joint clustering problem in which a connected constraint and the number
of clusters should be specified. We propose an algorithm K-means with
Local Search (abbreviated as KLS) to solve the joint clustering problem
with the connected constraint. Experimental results show that KLS can
find correct clusters efficiently.

1 Introduction

A joint clustering problem over the geography domain and the optimization
domain is that given a set of data objects with their attributes in both the
geography domain and the optimization domain, we should partition objects
into several groups such that objects in the same group are connected in the
geography domain while minimizing the dissimilarity of the data objects in the
optimization domain.

In this paper, we formulate a joint clustering problem with the connected
constraint. Then, an algorithm KLS (standing for K-means with Local Search)
is proposed. KLS consists of three phases: the transformation phase, the coarse
clustering phase and the fine clustering phase. First, given the connected con-
straint required and the attributes of objects in the geography domain, grid-cells
data structure is used to efficiently derive ConGraph (standing for CONnected
Graph), where each vertex is a data object and an edge exists between two
objects if their distance in the geography domain is within a given threshold.
In light of ConGraph, we exploit the concept of K-means and local search to
coarsely cluster objects into several groups. Based on the clustering results de-
rived, we could further fine tune clusters to minimize the dissimilarity in the
optimization domain. Our experimental evaluation demonstrates that algorithm
KLS is indeed able to efficiently derive cluster results.

The joint clustering problem were proposed in [3,6,4]. Moreover, the cluster-
ing problem with constraints are addressed in [7,1,2]. Although prior works have
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elaborated on the joint clustering problem, the connected constraint in the geog-
raphy domain is not clearly defined, let alone proposing efficient algorithms for
large scale of objects given. These features distinguish our study from others.

The rest of the paper is organized as follows. Preliminaries are given in Sec-
tion 2. The proposed algorithm is presented in Section 3. Performance evaluation
is conducted in Section 4. This paper concludes with Section 5.

2 Preliminaries

Objects considered in this paper have two domains of attributes. The two do-
mains are the optimization domain and the geography domain. To facilitate the
presentation of this paper, an object i is denoted as oi. The corresponding set of
attributes of oi in the optimization domain is expressed by Si, the jth attribute
in Si is represented as sj

i , and the dimension of the optimization domain is dS .
Similarly, the definitions of Li, lji and dL are respected to the geography do-
main. The Euclidean distance between two objects is used as the dissimilarity
measurement. For two objects oi and oj , the distance in the optimization domain

is formulated as: distopt(oi, oj) =
√∑dS

k=1(sk
i − sk

j )2. Similarly, the one in the
geography domain is denoted as distgeo(oi, oj).

Let a cluster Cj have a set of objects (o1, o2, . . . , o|Cj|). The cost of cluster Cj

in the optimization domain is formulated as:
g(Cj) = 1

|Cj|
∑|Cj |

i=1 distopt(oi, cenj), where cenj is the centroid of Cj .
Consequently, given a set of clusters SC=(C1, C2, ..., Ck), the average cost of

SC is defined as: f(SC) =
∑k

i=1
|Ci|
n g(Ci), where n =

∑k
i=1 |Ci|. The constraint

in the geography domain is used to cluster objects such that their distance
in the geography domain is within a threshold required such that objects in
the same cluster are connected. The definition of the connected constraint is
defined as:

Definition 1. (Connected constraint on cluster) Given a clusters Ct, where
|Ct| > 1, and a threshold r, ∀oi, oj ∈ Ct ∧ oi �= oj, distgeo(oi, oj) ≤ r or there is
a sequence of objects ou1, ou2, . . . , oun ∈ Ct such that
distgeo(oi, ou1) ≤ r, · · · , and distgeo(oun, oj) ≤ r. Ct fits the constraint inher-
ently when |Ct| = 1.

From the definitions above, the problem in this paper is that given the number
of clusters k, a distance threshold r, n objects o1, o2, ..., on with their attributes
in the optimization and geography domain, the goal is to derive a set of clusters
SC = (C1, C2, ..., Ck) such that (1) each object oi belongs to only one cluster
Cj , (2) objects in the same cluster are connected, and (3) the average cost (i.e.,
f(SC)) is minimized.

3 Algorithm KLS: K-Means with Local Search

We propose algorithm KLS consisting of three phases: the transformation phase,
the coarse clustering phase, and the fine clustering phase. In the transformation
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phase, ConGraph (standing for CONnected Graph) is derived for efficiently ver-
ifying the connected constraint. Then, in the coarse clustering phase, rough
clusters are efficiently derived via ConGraph. The number of clusters is greater
than or equal to k and the clusters may lose some qualities due to the efficiency
consideration. Finally, the rough clusters are iteratively merged according to
f(SC) until the number of clusters is k.

3.1 Transformation Phase

In this phase, given a set of objects, the goal is to derive ConGraph that captures
the connected features among objects in the geography domain. The definition
of ConGraph is as follows:

Definition 2. (ConGraph) Given O = {o1, . . . , on} and a threshold r, a Con-
Graph is a graph G = (V, E), where vertex vi is object oi and an edge e(vi, vj)
between vi and vj exists if distgeo(oi, oj) ≤ r.

We divide the geography domain into equaled sizes of cells. Objects are hashed
into cells according to their attributes in the geography domain. Through cells,
given an object oi, we are able to quickly find out possible objects nearby oi.
Since the threshold of the connected constraint is set to r, the length of a cell
size can be set to 2r such that only 2dL neighbor cells are required to explore
when retrieving the neighbor nodes of a vertex. Therefore, the generation of
ConGraph is efficient in that only a limited amount of objects are accessed.

3.2 Coarse Clustering Phase

Same as in K-means, we first select k vertices as initial centroids. Adapting the
concept of local search [5], these vertices are used as the represented objects for
their clusters. Then, those neighbors of these represented objects are extracted.
The distance of these neighbors to the corresponding centroid in the optimization
domain are calculated. Then, only the neighbor with the smallest distance value
will be selected into the nearest cluster and the centroid of the corresponding
cluster will be updated. Moreover, the represented object for the corresponding
cluster is replaced by the new neighbor. The above procedure will be repeated
until there is no unclustered neighbor. After this procedure, the unclustered
objects are assigned to the nearest cluster if the connected constraint is not
violated.

3.3 Fine Clustering Phase

Before explaining the fine clustering method, the connectivity of two clusters is
defined as follows:

Definition 3. (Connected constraint among clusters) Two clusters Ci and Cj

are connected if ∃ot ∈ Ci and ∃ou ∈ Cj such that distgeo(ot, ou) ≤ r.
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The goal of this phase is to merge clusters until the number of clusters is k. To
minimize the average cost, we adapt the agglomerative hierarchical clustering
with the mean distance. The fine clustering phase is to recursively merge two
connected clusters with the smallest distance between their centroids until the
number of clusters is k.

4 Performance Study

We generate synthetic data with attributes in the two domains. The dimensions
of the optimization and geography domain are three and two, respectively. Our
generator requires parameters k and r, where k indicates how many clusters
should be generated, and r is the threshold of the connected constraint. The
shapes of objects are composed of mainly horizontal and vertical lines in the ge-
ography domain. After generating attributes in the geography domain, attribute
in the optimization domain are then determined at random similar to [3]. We
use r − 1 as the parameter of the data generator in order to make objects closer.
The other parameter k, the number of clusters, is different among test scenarios.

For comparison purposes, we implement one naive algorithm Connected K-
means (abbreviated as CK-means) which has three phases as KLS does. The
only difference is that in the coarse clustering phase of CK-mean, objects are
first partitioned by K-means with the attributes in the optimized domain only.
After clusters OC are derived by K-means, we generate a new graph G′ = (V, E′),
where E′ = {e(vi, vj) | e ∈ E∧vi, vj ∈ Ct, Ct ∈ OC}. We exploit BFS to traverse
G′ and get connected subgraphs G1, G2, . . . , Gk′ . Then each connected subgraph
is an equivalent cluster which fits the connected constraint. Therefore, k′ ≥ k
clusters are found.

(a) Average cost (b) F-measure (c) Precision & Recall

Fig. 1. Overall results between CK-means and KLS

Figure 1 shows the results of the experiments with our algorithms. We use 2k
as the number of seeds in KLS instead of k. This small modification increases
the precision of clusters found by KLS since it is hard to choose the correct seeds
even a useful heuristic method is used. Then, the fine clustering phase iteratively
merges clusters until the number of clusters is k.

According to Fig. 1(a) and 1(b), CK-means performs worse than KLS. Spe-
cially, when the number of clusters increases, CK-means performs much worse
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(a) CK-means (b) KLS

Fig. 2. Performance comparisons of CK-means and KLS

than KLS. Fig. 1(c) shows the corresponding value of the overall precision and
recall that show CK-means performs worse due to its low precision.

As shown in Fig. 2, CK-means is slower than KLS. In Fig. 2(a), the execution
time of the fine clustering phase dominates the overall time of CK-means since
CK-means generated too many clusters in the coarse clustering phase. On the
other hand, in Fig. 2(b), the transformation phase dominates the execution time.

5 Conclusion

In this paper, we formulated the joint clustering problem in which a connected
constraint and the number of clusters should be specified. We propose algorithm
KLS that consists of three phases: the transformation phase, the coarse cluster-
ing phase, and the fine clustering phase. In the transformation phase, we only
consider the connected constraint and then derive ConGraph. Thus, in the coarse
clustering phase, by exploring local search in ConGraph, rough cluster results
are derived. In the fine clustering phase, these clusters are able to further merged
to optimize the objective of the joint clustering. Experimental results show the
effectiveness and efficiency of our proposed algorithm.
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Abstract. Active learners can significantly reduce the number of la-
beled training instances to learn a classification function by actively
selecting only the most informative instances for labeling. Most exist-
ing methods try to select the instances which could halve the version
space size after each sampling. In contrast to them, we try to reduce
the volume of the version space more than half. Therefore, a sampling
criterion of misclassification is presented. Furthermore, in each iteration
of active learning, a strong classifier was introduced to estimate the tar-
get function for evaluation of the misclassification degree of an instance.
We use a modified popular ensemble learning method DECORATE as
the strong classifier which was enhanced by the unlabeled instances with
high certainty by the current base classifier. The experiments show that
the proposed method outperforms the traditional sampling methods on
most selected datasets.

1 Introduction

The standard setting of supervised learning assumes that a previously labeled set
of instances is available. However, in a large number of real world applications,
obtaining labeled instances may be expensive or time-consuming. Therefore, re-
ducing the number of labeled instances that are necessary to learn a classification
function becomes important. Active learning methods [1] allow classifiers choose
the most informative instances and ask the experts to label them. Thus the
burden of labeling large number of instances could be alleviated.

The whole process of the pool-based active learning can be described as fol-
lows. Initially, the active learner has access to a pool of unlabeled instances and
owns a set of labeled instances. Then, the active learner trains a base classifier
on the set of labeled instances. Afterwards, an instance is sampled for labeling
according to a certain criterion and is added into the labeled set. Then the active
learner trains a new base classifier on the updated labeled set. The whole pro-
cess runs repeatedly until the error rating of the current base classifier is below
a preset value.

Depending on the criterion used to select instances for labeling, the current re-
search falls under several categories: uncertainty reduction, expected-error min-
imization and version space reduction [2]. The uncertainty reduction approach
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[1,3] selects the instances on which the current classifier has the least certainty of
prediction. The expected-error minimization approach [4] samples the instances
that minimize the future expected error rate on the test set. The version space
reduction approach [5,6], including QBC [5], QBag [7], QBoost [7] and Active
DECORATE [8], tries to select the instances that can reduce the volume of
version space by half which based on the idea of binary searching. Query-by-
Committee is a representative method of this approach that constructs a com-
mittee consisting of randomly selected hypotheses from the version space and
selects the instances on which the disagreement within the committee is the
greatest.

Choosing an efficient criterion for instance selection is the most important
step in active learning. Most existing methods use the idea of binary searching in
version space reduction process [5,7]. The binary searching idea assumes that all
hypotheses in the version space have equal probability to be the target function.
However, the assumption can not hold in most tasks.

We aim to accelerate the version space reduction process more than what
binary searching does. We propose a sampling criterion which tries to keep only
the most accurate hypotheses in the version space when sampling. Thus we
propose a sampling method MSDEEUI(Misclassification Sampling Using Diverse
Ensembles Enhanced by Unlabeled Instances) that tends to select the instances
with the largest prediction difference between a strong classifier and the current
base classifier. In this paper, the strong classifier is generated by the ensemble
method DECORATE trained on the current labeled set and enhanced by the
unlabeled instances with high certainty predicted by the current base classifier.
The experiments show that the proposed method outperforms the traditional
sampling methods on most selected datasets.

The rest of the paper is organized as follows. Section 2 introduces the basic
notations. Section 3 presentes the proposed active learning method MSDEEUI
in details. Section 4 shows the experimental results of the MSDEEUI method as
well as other methods on selected data sets. Section 5 draws the conclusion.

2 Preliminary

2.1 Notations

The instance space X is a nonempty set containing several instances. Each in-
stance xi is a feature vector. Let Y = {y1, y2, · · · , yl} be the set of possible labels.
For simplification, we focus on 2-value classification problems in the paper. Thus
Y = {0, 1}. The target function c to be learned is a function c : X → Y that
classifies any x ∈ X as a member of Y . The notion < x, c(x) > denotes a labeled
instance, < x, ? > denotes an unlabeled instance where ? ∈ Y and D denotes a
set of labeled instances for training. The hypothesis space H is a nonempty set
containing functions that map from X to Y . Providing a set of labeled instances,
the task of learning is searching a function f such that ∀x ∈ X, f(x) = c(x) in
the the hypothesis space H . The version space VSHD denotes the largest subset
of hypotheses in H that satisfies ∀h ∈ VSHD, ∀x ∈ D, h(x) = c(x).
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3 The Proposed MSDEEUI Method

3.1 Efficiency of Instances for Version Space Reduction

To visualize the process of version space reduction, we define hypothesis-instance
matrix HIMmn as a binary matrix whose rows are indexed by the hypotheses
h1, h2, · · · , hn from the hypothesis space H and whose columns are indexed by
the instances x1, x2, · · · , xm from the instance space X , and whose (i, j) entry
is 1 if hi(xj) = c(xj) and otherwise 0. We define an operation TRN(xj) on the
hypothesis-instance matrix HIMmn as follows: when the operation TRN(xj) is
executed, HIMmn removes all the ith rows that satisfy the entry (i, j) being 0.

Then the process of active learning can be viewed as that providing a sequence
of instances x1, x2, · · · , xt, HIMmn execute the operation of TRN(x1), TRN(x2),
· · · , TRN(xt) one by one. Furthermore, the current version space can be denoted
by the rows of the current HIMmn (after executed several TRN operations).

When HIMmn executes TRN(xi), many rows would be removed. The more
rows are removed, the faster the version space size is reduced. Therefore we
define the efficiency of TRN(xi) as

Exi =
#{hj |hj ∈ VSHD, hj(xi) �= c(xi)}

#VSHD
(1)

Exi is the proportion of the hypotheses which misclassify xi to the version
space VSHD and can also be viewed as the probability of the instance xi being
misclassified by the version space.

Exi indicates the ability of xi to distinguish the hypotheses with high accuracy
from the hypotheses with low accuracy. An instance x with high Ex implies that
x is hard to be classified correctly and most of the hypotheses may misclassify
x. Therefore if we choose the instance x with the highest Ex for labeling, the
version space will decrease to several the most accurate hypotheses. Therefore
Exi is a more efficient criterion than the criterion based on binary searching (e.g.
uncertain sampling, QBC etc.).

3.2 Constructing the Strong Classifier Based on Modified
DECORATE

The criterion Exi can not be calculated directly. Then we assume the base clas-
sifier could represent the whole version space. Thus Exi can be rewritten as:
Exi = P (hD(xi) �= c(xi)) where hD is the current base classifier trained on the
labeled set. Then Exi is the probability of the unequal decisions on xi made by
hD and c.

The target function c is unknown yet. Then we estimate it by constructing a
strong classifier by using ensemble methods and enhance the strong classifier by
unlabeled instances on which the current base classifier has high certainty.

An ensemble of classifiers is a set of classifiers whose individual decisions are
combined to classify new instances [9]. As Hansen and Salamon had pointed
out, an ensemble can be more accurate than its component classifiers when each
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component classifier outputs independently and has an accuracy over 1/2 [10].
An important property of a good ensemble for committee-based active learning
is diversity [8].

We select DECORATE [11] to generate the ensemble. The DECORATE
method generate the ensemble iteratively, learning one new classifier in each
iteration and adding it to the current ensemble. It trains a classifier on the
given data initially. In each iteration, artificial training instances called diversity
instances are generated based on the data distribution. Class labels for these ar-
tificial instances are chosen so as to differ maximally from the current ensemble’s
predictions. Then it trains a new classifier on the union of the original training
instances and the diversity instances. If adding this new classifier to the current
ensemble increases the ensemble training error, then this classifier is rejected,
else it is added to the current ensemble. This process repeated until the desired
committee size is reached or a maximum number of iterations is exceeded.

However, errors would be introduced into the ensemble if the artificial in-
stances are not consistent with the target function. In current research, unlabeled
instances could augment classifiers trained on labeled instances. Such ideas in-
spired the research on semi-supervised learning. Thus we modified the standard
DECORATE method by incorporating the unlabeled instances into the artificial
training instances. In each iteration of DECORATE, a few unlabeled instances
on which the current ensemble has high certainty are chosen, prelabeled by the
current ensemble, and added into diversity instances. Note that these prelabeled
instances are just used to train the stronger classifier in the current iteration and
still stay in the unlabeled set with no label waiting for active sampling. Those
prelabeled instances could prevent the ensemble from overfitting problem and
provide distribution information for the ensemble. Therefore, the DECORATE
method could preserve its diversity and accuracy.

3.3 Sampling Criterion

Based on the efficiency of instances for version space reduction, we specify the
sampling criterion as

Rxi = −
∑

y∈Y

‖P ∗
D(y|xi)− PD(y|xi)‖ log ‖P ∗

D(y|xi)− PD(y|xi)‖ (2)

where P ∗
D(xi) denotes the probability distribution of class label predicted by the

modified DECORATE trained on unlabeled set D, PD(xi) denotes the proba-
bility distribution of class label predicted by the current base classifier trained
on D. Then Rxi is the entropy of the difference between these two probability
distributions.

Therefore, the process of MSDEEUI method is given in Algorithm 1.

4 Experiments

To evaluate the performance of our MSDEEUI method, we ran a series of ex-
periments. Five different active learning algorithms were tested: the Random
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Algorithm 1. the MSDEEUI method
Input: an initial labeled set L, an unlabeled set UL, a classifier I , a stopping criterion
S, and an integer M which specify the number of instances sampled in each iteration.
Begin:
Train the classifier I on L;
repeat

1.Generate the ensemble h∗
L using the modified DECORATE method on L En-

hanced by high certain instances in UL;
2.For each instance xi ∈ UL compute

L(P ∗
L(xi), PL(xi)) = −

∑

y∈Y

‖P ∗
L(y|xi) − PL(y|xi)‖ log ‖P ∗

L(y|xi) − PL(y|xi)‖

3.Select a subset A of size M from UL in which instances xi have the largest
L(P ∗

L(xi), PL(xi));
4.Remove A from UL;
5.Label all instances in A;
6.Add A into L;
7.Train the classifier I on L.

until the stopping criterion S is satisfied
End.
Output:The classifier I trained by the final labeled set L.

sampling, the Uncertainty sampling [1], QBC [5], Active DECORATE [8] and the
MSDEEUI sampling. The experiments were done on 16 representative datasets
from machine learning repository provided by UCI [12]. The committee size were
set to 5. Naive bayes was selected to be the base classifier. 10-fold cross-validation
was used to obtain the target accuracy of the base classifier on the 16 datasets.
The target accuracy is defined as the accuracy obtained by the base learning
method trained on the whole dataset. All results presented were averages of ten
runs. For each dataset, we divided it into 10 equal partitions at random and
each in turn is used for testing and the remainder was used as the sampling set.
Before the test started, the sampling set was divided into two parts: one is the
labeled set and another is the unlabeled set. The labeled set contains only one
instance selected randomly and the unlabeled set contains all the rest. When
the test started, the active learner sampled 1 instance from the unlabeled set for
labeling in each iteration. While the active learner reached the target accuracy,
the test stopped.

We summarized the data utilization of the different active learners in Table 1.
We define data utilization as the number of instances an active learner requires to
reach the target accurate rate. In Table 1, the least data utilization is marked in
bold in each row and the number of wins is presented in the last row. In the head
of Table 1, the Uncertainty method is denoted by UC, the Active DECORATE
method is denoted by AD and Target Accuracy is denoted by TA.

According to Table 1, it shows that our MSDEEUI method has a superior
performance than other sampling methods on most datasets. Based on these
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Table 1. Data utilization of the different active learners

Data set Random UC QBC AD MSDEEUI TA(%)

car 148.9 83.8 134.0 87.6 74.5 80.11
mushroom 2598.1 38.1 28.3 34.9 37.4 95.00
vote 172.3 74.8 107.2 117.9 90.5 95.01
waveform-5000 42.0 84.5 32.7 39.0 47.0 76.08
nursery 98.7 71.9 221.5 166.7 70.7 84.74
anneal 254.7 271.4 243.8 233.4 197.5 84.28
balance-scale 51.6 283.6 53.7 57.0 37.2 80.89
colic 220.8 350.9 236.3 56.0 41.8 76.61
credit-g 157.2 393.2 211.6 254.9 217.3 75.02
kr-vs-kp 163.0 48.7 84.8 67.0 156.3 84.22
mfeat-fourier 192.0 153.1 138.6 147.3 121.7 72.10
mfeat-pixel 154.9 86.2 157.6 74.2 79.4 88.97
segment 142.1 291.3 92.0 89.2 126.4 77.63
soybean 262.0 229.1 206.4 298.3 241.9 91.47
splice 136.7 91.6 118.4 414.7 169.9 88.21
vowel 227.8 300.0 169.0 244,3 110.3 61.66

No. of Wins 1 3 3 2 7

results, we may conclude that MSDEEUI is more likely to reduce the size of
version space as much as possible.

Figure 1 and Figure 2 show the results on the datasets of car and vowel,
respectively. In all these figures, the vertical axis shows the accuracy of the
classifier and the horizontal axis shows the number of labels.
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Fig. 1. Average testing accuracy on car Fig. 2. Average testing accuracy on vowel

In Figure 1, the Active DECORATE method achieves its maximal accuracy
83.67% at about the 291th sampling. Our MSDEEUI method requires 251 sam-
pling to obtain the same accuracy. In Figure 2, the Active DECORATE method
gets its highest accuracy, about 64.23%, after 291 sampling while the MSDEEUI
method reaches the same accuracy at the 161th sampling. Furthermore, the other
methods even can not get the accuracy of 64.23% before the 300th sampling.
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5 Conclusion

Focusing on the sampling question in pool-based active learning, we visualize the
process of version space reduction by proposing the Hypothesis-Instance matrix
and its operation TRN(x). Then we propose the MSDEEUI method, which sam-
ples the instances with the largest prediction difference between a strong clas-
sifier, generated by the DECORATE method enhanced by unlabeled instances
with high prediction certainty, and the current base classifier. Experiments show
that the MSDEEUI method is efficient and practical.

We would like to pursue following directions: finding a better function to ob-
tain a more precise estimate of the target function and providing the theoretical
proof of the converging speed of the version space using the MSDEEUI method.

Acknowledgments. This research was supported by the National Natural Sci-
ence Foundation of China (No. 60603015, 60603062).
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Abstract. An approach to automatic image annotation is proposed.
Generally, the relation between visual characteristics and the annota-
tion label is estimated from the annotated corpus and is used to predict
label for new test image. Unfortunately, when limited number of im-
ages are annotated, with possible multiple labels per image, this relation
cannot be reliably estimated. To cope with this problem, we propose tak-
ing into account information derived directly from other images in the
dataset. This method extends naturally to semi-supervised setting where
un-annotated images are also used select annotation labels. Experiment
shows that the proposed method yields promising results.

1 Introduction

The phrase “A picture is worth a thousand words.” clearly depicts the difficulty
in image annotation. The objective of this work is to build a system that can
automatically provide an annotation that describes the input image.Table 2
shows example of annotated images used in this work.

Common approach to solve the image annotation problem (e.g. [1,2,3,4,5])
consists in partitioning the whole image into regions. From this segmentation, a
set of local descriptors is extracted from each region to describe its visual and
texture characteristics. From a pool of local features extracted from all images,
a clustering algorithm, usually K-means algorithm, is applied to select the set
of features that will be used to represent the image. Indeed, each image will
be represented by the set of these selected features or visterms in an analogous
manner to the bag of words representation used in textual information retrieval.

Next, a learning technique is used to capture the relation between these blobs
or visterms and the annotation label. Indeed, the annotation model computes
the probability of a given label being present in the annotation, or label posterior
for short, of an input image. In [1], the conditional probability of label given blob
is trained using EM algorithm from all annotated images. We consider this as a
global approach. When limited number of images is annotated the resulting model
cannot efficiently capture all information. Moreover, not every object or region
that appears in the image is annotated and on the other hand several labels
may be used to annotate the same image. Annotated objects may also appear

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 958–963, 2008.
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on complex background. The probability estimated on this type of corpus is
therefore noisy. As consequent, the annotation model should not rely on the
global information solely.

The Cross-Media Relevance Model (denoted as CMRM hereafter) [2] and sim-
ilar models [2,3,6], apply a smoothing technique to combines the global probabil-
ity function with the probability function computed locally on each annotated
image. Integrating this local information allows better estimation of the label
posterior leading to a more accurate annotation.

This work also relies on the similar idea, but pushing a bit further. Indeed,
we expand the computation of local information from each image, to include
its neighborhoods images as well. In fact, we compute the label posterior of
an image as a function of three quantities namely; the label posterior on other
images in the dataset, the similarity between other images and the input image,
and the probability of label being assigned to this image if we know that it has
also been assigned (or not) to other images. This framework can take advantage
of un-annotated images in the training corpus as described in the next section.

Besides, it is easier to collect new images rather than annotating them. There-
fore, it is interesting to see how to exploit these un-annotated images in the
annotation model. This idea is shared by several semi-supervised learning algo-
rithms. Another objective of this work is then to integrate these un-annotated
images into the annotation model and to investigate how this additional data
can improve the performance of the system.

In the following, Section 2 presents our image annotation system. Section 3
and 4 presents the experimental results and the conclusion respectively.

2 Proposed Method

Given an un-annotated image, we want to automatically select a set of annotation
labels from a set of known labels that best describe this image. An annotation
model is constructed for each label independently. This allows integrating new
label easily. We follow the common approach describe in previous section by first
segment the image into regions, extract local descriptors and use bag-of-visterms
representation. Indeed, each image is represented by a normalized histogram of
visterms. This histogram along with the histogram intersection are used as a
building block to compute different probabilities involved in our system.

2.1 Image Annotation with Global Information

In this subsection, we present a simple global image annotation model. The cal-
culation used for this model is also used later in our proposed annotation model
described in next subsection. For each label L, two histograms are computed
from the set of annotated images namely Lyes from images having this label in
the annotation and Lno from images without this label in the annotation. As
these two histograms are computed from all annotated images, we consider it as
global information.
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For each image Ii, i = 1, ..., n in the training set, let Li denote the presence of
label L in the annotation of this image. For an image Ii, the posterior probability
of having the label for Ii using this global information or PG(Li = yes/Ii) can
be computed by

PG(Li = yes/Ii) =
P (Li = yes, Ii)

P (Li = yes, Ii) + P (Li = no, Ii)
(1)

=
Lyes ∩ xi

(Lyes ∩ xi) + (Lno ∩ xi)
(2)

where ∩ denotes the histogram intersection operation.

2.2 Image Annotation Model Using Local Information

For each image Ii, i = 1, ..., n in the training set, let Li denote the presence of
label L in the annotation of this image. For an image Ii, the posterior probability
of having the label for Ii or P (Li = yes/Ii) can be computed by

P (Li = yes/Iu) =
n∑

j=1

∑

Lj∈{yes,no}
P (Li = yes, Ij , Lj/Ii) (3)

We further assume that the join probability P (Li = yes, Ij , Lj/Ii) can be fac-
torized into

P (Li = yes, Ij , Lj/Ii) = P (Li = yes/Ij, Lj , Ii)P (Lj/Ij)P (Ij/Ii) (4)

To simplify the notation, let

fi = P (Li = yes/Ii) (5)
aji = P (Ij/Ii) (6)

bji(yes) = P (Li = yes/Ij , Lj = yes, Ii) (7)
bji(no) = P (Li = yes/Ij , Lj = no, Ii) (8)

The equation 3 may be rewritten as

fi =
∑

j

aji (bji(yes)fj + bji(no)(1 − fj)) (9)

The last equation is used to update the label posterior for un-annotated images
iteratively. For an annotated image Ii, if the given label has been assigned to Ii

then fi is set to 1 and 0 otherwise. For an un-annotated images Ii the value fi

after convergence will be used to select the set of labels for Ii.
The transition probability (aji in the equation 6) can be computed using the

simple histogram intersection operation, i.e.

aji =
Ii ∩ Ij∑
k Ik ∩ Ii

(10)
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To compute the local posterior probability (bji in equations 7, and 8), we
first notice that bji(yes) = P (Li = yes/Ij , Lj = yes, Ii) can be interpreted in
the following way; We know that Ij has label L and we want to compute the
probability of Ii having label L too. If we consider the distribution of visterms for
the class of images having the label, then around Ij this distribution should be
more similar to the distribution that represents Ij rather than Lyes. Therefore,
we propose computing P (Li = yes/Ij, Lj = yes, Ii) in an analogous manner to
PG(Li = yes/Ii) (equation 2), but with a distribution that is biased toward Ij .
To this end, we define

Lj,yes = αIj + (1 − α)Lyes (11)
Lj,no = αIj + (1 − α)Lno (12)

where α is a trade-off coefficient between local and global information, and
bji(yes), bji(no) are computed as follow:

bji(yes) =
Lj,yes ∩ Ii

(Ii ∩ Lj,yes) + (Ii ∩ Lno)
(13)

bji(no) =
Lyes ∩ Ii

(Ii ∩ Lyes) + (Ii ∩ Lj,no)
(14)

3 Experiments

3.1 Experimental Setup

To construct the dictionary of visterms, each image is first partitioned into 10x10
pixels regions. The mean and standard deviation of three color channels R, G,
and B were computed from each region. Four Gabor filters were applied to the
image, the mean and standard deviation of these response were also computed.
In total 14 features were used in this work. In the quantization step, K-means
algorithm was used with K=1000. The trade-off parameter α was experimentally
set to 0.9. The average precision (AP) which is as the average value of maximum
precision of this system at different recall rates is computed for each label. The
mean of AP for every label is used to measure the performance of the annotation
model.

The experiments were performed on a set of 2360 photography images1. Every
image is manually annotated. Fifty most frequent labels were retained for the ex-
periment. Table 2 shows some images and their given annotations. This dataset
is randomly split into a development set of 1860 images and a test set of 500 im-
ages. To investigate how un-annotated images may help improving the system’s
accuracy, we randomly selected 20% of development set (372 images) as training
data with annotation. Then we randomly add 30% and 80% more images from
the development set into the training set, but without their annotation. This
evaluation was repeated 10 times.
1 http://www.stat.psu.edu/~jiali/index.download.html
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3.2 Results

The median of the mean AP with the confidence interval from the CMRM model
[2], the simple annotation model with only global information and the proposed
model are shown in Figure 1. From this figure, we can see that the CMRM

Fig. 1. Results from different models with 20% annotation, and different size of devel-
opment set used in the construction of models (see text for more detail)

Table 1. Results from different model using all development set as training set

model mean of average precision
CMRM 32.68%

simple global model 31.77%
proposed model 58.72%

Table 2. Example of images and its annotations both manual and automatically using
the proposed model

manual flower leaves tree, lawn, house
automatic flower plant tree, lawn

manual boat, reflexion,
water

ocean, rock, people water, tree, grass,
boat

automatic reflexion, water,
fishing, house, tree

rock, ocean tree, greece, boat
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model outperforms the simple global model. We believe this is due to the use of
local information in CMRM. The proposed model outperforms both the CMRM
model and the simple global model. Moreover, the performance of the proposed
model increases as the size of available training data increases, even without
given annotation. The Table 1 presents the results of the these models trained
with all development data as training data. These results also underline the
superiority of our model compared to the two others.

To annotate an image using this model, let L be the set of selected labels, its
conditional probability given an input image I may be written as

P (L/I) =
∏

L∈L
P (L = yes/I) ×

∏

L/∈L
(1 − P (L = yes/I)) (15)

Using this equation, we may choose the set L of labels with maximum probability
as the annotation for input image I. This strategy determines automatically the
length of the annotation. Table 2 shows some example of annotation provide by
the proposed model.

4 Conclusion and Future Works

An image annotation model is proposed. The proposed model integrates local
information extracted from each image and its neighborhood within a proba-
bilistic framework. This model can be used to select appropriate labels for an
input image. The evaluation of this method on a more standard database like
the Corel dataset will be investigated in our future work.
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Abstract. In this paper, we propose a method for composing templates
of lung sound classification. First, we obtain a sequence of power spec-
tra by FFT for each given lung sound and compute a small number of
component spectra by ICA for each of the overlapping sets of tens of
consecutive power spectra. Second, we put component spectra obtained
from various lung sounds into a single set and conduct clustering a large
number of times. When component spectra belong to the same cluster in
all clustering results, these spectra show robust similarity. Therefore, we
can use such spectra to compose a template of lung sound classification.

1 Introduction

Real-world problems provide various spectral data. We often regard a given set
of such spectra as a mixture of elementary spectra, which can be computed by
some spectral unmixing method. In this paper, we apply independ component
analysis (ICA) [5] to lung sound power spectra and approximate a set of tens
of power spectra with a mixture of a small number of spectra which we call
component spectra. Further, we filter out less effective component spectra by
conducting clustering a large number of times on a set of component spectra
obtained from various lung sounds. Component spectra belonging to the same
cluster over all clustering results can be regarded as robustly similar with each
other and may show an outstanding feature of a specific type of lung sounds.
Therefore, we regard only such component spectra as efficient ones and use them
to make templates for lung sound classification.

The rest of the paper is organized as follows. Section 2 provide the results
of previous researches. Section 3 describes details of our method. In Section 4,
we show the settings and the results of our evaluation experiment. Section 5
concludes this paper along with our future works.

2 Previous Work

We are experiencing a new wave of lung sound analysis due to the import of
various machine learning techniques in recent years [1]. However, there seem no
researches applying ICA not to lung sounds but to their power spectra obtained
by FFT. Güler et al. [3] reduce the feature space dimension to two and provide
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a visual classification of lung sounds drawn in two-dimensional space. Pelletier
[9] regards each power spectrum as a histogram and provides a reduction of
the number of bins with principal component analysis. In contrast, we do not
reduce the dimention of power spectra. We assume that the number of compo-
nent spectra, which are mixed to produce a given set of power spectra, is small
and obtain a set of such component spectra by applying a spectral unmixing.
Other research fields provide this type of approaches. In the field of remote sens-
ing, we obtain a compact representation of a hyperspectral image by extracting
component spectra, called endmember spectra [8]. Our research follows this line.

3 Details of Our Method

First of all, we obtain power spectra from a given lung sound by using FFT with
Hanning window. In other sets of experiments, whose results are not included in
this paper, we confirm that Hamming window also gives similar results, but that
flattop window is not effective. We make any two consecutive windows share
the half of their lengths. Let each window include 2T data points. When the
sampling frequency is f Hz, each window corresponds to an interval of length
2T/f sec. In this paper, we set T = 2048. Two key modules are described below.

Spectral Unmixing. We call a set of N consecutive windows frame. Since
two consective windows overlap by one-half the window length, each frame is of
length (N + 1)T/f sec. In this paper, we set N = 32. We make two consecutive
frames share 3N/4 windows. N power spectra obtained from each frame are
approximated by a linear mixture of M (M � N) spectra, called component
spectra. We use fastICA algorithm [5] to obtain component spectra. The update
formula proposed in [4] is employed to achieve stable convergence. Since this
paper is intended to reveal basic characteristics of our method, we choose the
most simple set up for M . That is, we set M = 2. We call a pair of component
spectra extracted from each frame component pair.

Component Spectra Clustering. In our setting, we can obtain many com-
ponent pairs from a lung sound. We put component spectra taken from various
lung sounds into a single set and conduct clustering over this set a large number
of times. In this paper, we conduct k-means 100 times. We use no information
about which two of component spectra come from the same component pair.
If two component spectra from the same component pair belong to the same
cluster in many of the 100 clustering results, we can conclude that the unmixing
method we adopt is not effective, because a large number of executions of cluster-
ing provide a robust estimation of similarities between component spectra. We
write q ∼ q′ when two component spectra q and q′ belong to the same cluster
over all clustering results. We call this relation coupling. Let (q1, q2) and (q′

1, q
′
2)

be two component pairs obtained from different frames. q1 ∼ q2 and q′
1 ∼ q′

2

are undesirable, because component spectra from the same component pair are
obtained by ICA and thus are expected to be dissimilar. We call this type of cou-
plings malicious. When we use NMF algorithm in [6] in place of fastICA, a large
number of couplings turn out to be malicious. This result shows the low quality



966 T. Masada, S. Kiyasu, and S. Miyahara

of this version of NMF unmixing. By excluding malicious couplings, we have the
following cases of similarity between component pairs (q1, q2) and (q′

1, q
′
2):

1. Both q1 ∼ q′1 and q2 ∼ q′2 hold, or both q1 ∼ q′2 and q2 ∼ q′
1 hold.

2. Either q1 ∼ q′1 or q2 ∼ q′2 holds, or either q1 ∼ q′2 or q2 ∼ q′1 holds.

For Case 1, we say that both couplings are perfect. The couplings in Case 2
are called imperfect. Perfect couplings tell a strong similarity between the two
frames corresponding to the two component pairs (q1, q2) and (q′

1, q
′
2).

4 Experiment

Settings. We use lung sounds recorded in the CD accompanying a textbook for
nurses [2]. After identifying different sound data corresponding to lung sounds of
the same type, we have lung sounds splitted into 39 categories shown in Table 1.
When we use each power spectrum in their full range, many malicious couplings
are obtained. High-frequency part seems to have an undesirable effect to our
method. Therefore, we eliminate high-frequency part and test the following set-
tings for the range of spectra: 1˜256, 1˜512, 257˜512, and 257˜1024. Recall that
T = 2048. As for the last two cases, we also eliminate low-frequency part. How-
ever, the third setting results in a few malicious couplings. This shows that the
range 513˜1024 has some importance when we discard the range 1˜256.

At the initialization of k-means, we set the number of clusters to 100. In the
course of the execution of a clustering, some clusters eventually get empty. For
example, we obtain from 59 to 79 clusters and 69.7 clusters in average for 100
executions of k-means when we use 1st to 512th entries of power spectra.

Results. Table 1 includes the results when we use 1st to 512th entries of power
spectra. Column A presents the number of frames obtained from the lung sounds
of each category. The total number of frames is 3,357. Since ICA provides two
component spectra for each frame, we obtain a set of 6,714 component spectra.
The results of 100 executions of k-means induce perfect and imperfect couplings.
Column B shows the number of frames giving imperfect or perfect couplings.
Column C shows the number of frames giving perfect couplings. When the value
in Column B is small, we have some trouble in processing the lung sounds of the
corresponding category, because we can expect that component spectra from the
lung sounds of the same category form at least imperfect couplings. For example,
the category of ID 35 has a small value in Column B. This may be due to the fact
that the sound is in small volume. It is, however, beyond our scope to propose
preprocessing methods appropriate for our method.

Column D (resp. Column E) gives the number of imperfect (resp. perfect)
couplings which include at least one component spectra from the corresponding
category. All numbers in Column E are even, because every perfect coupling
comes with another perfect coupling. When a coupling includes two component
spectra from the same category, we call such a coupling correct. Otherwise, a
coupling is called incorrect. For the category of ID 10, all of 10812 perfect cou-
plings turn out to be correct. That is, each of these perfect couplings consists
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Table 1. Experimental results obtained when we apply Hanning window in FFT and
use 1st to 512th entries of power spectra

ID lung sound type A B C D E

01 normal vesicular breath sounds 525 391 210 17233 8748
02 normal bronchovesicular breath sounds 84 81 67 3522 716
03 normal tracheal breath sounds 44 42 18 896 206
04 decreased breath sounds (atelectasis) 129 114 63 4882 358
05 absent breath sounds (hemothorax) 134 59 34 973 220
06 increased breath sounds 154 148 108 8678 4280
07 bronchial sounds in abnormal locations 73 36 2 333 2
08 low pitched rhonchi 146 103 40 951 114
09 high pitched rhonchi 60 44 10 851 10
10 fine crackle 179 174 157 2423 10812
11 coarse crackle 201 192 118 7958 1988
12 spontaneous pneumothorax 29 15 0 151 0
13 normal vocal sounds (to be compared with 14) 27 22 10 169 58
14 spontaneous pneumothorax (vocal sounds) 30 25 17 123 80
15 pleural effusion (effusion side) 43 28 2 1021 2
16 pleural effusion (non-effusion side) 38 23 0 1239 0
17 asthma 136 133 88 3029 444
18 asthma (partial recovery) 56 36 5 412 8
19 asthma (nearly complete recovery) 45 28 6 704 10
20 pulmonary edema 100 82 52 967 938
21 pulmonary edema (nearly complete recovery) 33 27 8 290 24
22 chest drain sound 202 142 47 496 138
23 tracheal stenosis 56 41 9 183 12
24 tracheal stenosis (partial recovery) 75 39 15 123 56
25 pneumonia 115 93 22 1815 92
26 pneumonia (partial recovery) 59 46 19 802 106
27 pneumonia (nearly complete recovery) 43 26 5 200 8
28 pleuritis 118 115 101 2285 4796
29 congestive heart failure (early stage) 45 33 2 210 2
30 congestive heart failure (late stage) 31 15 0 156 0
31 congestive heart failure (late stage, mouth breathing) 24 22 12 87 30
32 congestive heart failure (recovered) 62 62 50 2511 992
33 congestive heart failure (recovered, mouth breathing) 32 21 7 164 20
34 sputum collection tube (before sputum collection) 31 15 5 246 20
35 sputum collection tube (after sputum collection) 34 6 0 5 0
36 air leak around tracheal tube (before adding air) 41 31 12 240 26
37 air leak around tracheal tube (after adding air) 23 21 19 71 142
38 subcutaneous emphysema 40 21 7 98 10
39 pneumothorax 60 28 2 182 2

of two component spectra taken from the lung sounds of this category. We can
conclude that this category exhibits a strong self-similarity. In contrast, cate-
gories of ID 12, 16, 30 and 35 provide no perfect couplings. Among these four
categories, the sounds of categories 12 and 35 are in small volume. Further, the
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lung sounds of category 16 have an irregularly long respiration cycle. These cate-
gories require appropriate preprocessing methods, which is our important future
work. The lung sounds of category 30 seem to show rapid changes in the same
respiration cycle. We may need to try other settings for T or for the overlapping
widths of windows. The category of ID 17 provides interesting results. While all
444 perfect couplings are correct, the number of imperfect couplings is 3,029,
far larger than 444. Moreover, 2,330 among these 3,029 imperfect couplings are
correct. We may explain these results by the fact that the lung sounds of this
category show poor periodicity. Stable characteristics is reflected by one half of
each component pair, and changeable characteristics is reflected by another.

Evaluation of Results. We can make equivalence classes by regarding per-
fect coupling as an equivalence relation. These equivalence classes are, in a sense,
“meta-clusters” constructed based on multiple clustering results. Each equiva-
lence class can provide a powerful clue to form templates useful in classification
of unknown lung sounds. It is an important future work to devise a procedure
of template composition for the categories giving no perfect couplings, e.g. cat-
egories of ID 12, 16, 30 and 35, because we can have no meta-clusters for these
categories. Table 2 presents an evaluation of this meta-clustering. The number
of categories which give at least two perfect couplings is shown in the column
marked by “∗” for each setting. The number in the column marked by “†” refers
to the number of component spectra which are taken from the corresponding
category and, at the same time, are included in at least one perfect couplings.
Table 2 also presents an evaluation of meta-clustering. We use 39 categories
presented in Table 1 as the ground truth. The evaluation measures are microav-
eraged/macroaveraged precision, microaveraged/macroaveraged recall and their
harmonic mean. These measures are often used in the evaluation of clustering
and are defined as follows. The dominating category of a cluster is the category
providing the largest number of component spectra to that cluster. The precision
of a cluster is equal to the number of component spectra from the dominating
category divided by the cluster size, i.e., the number of component spectra in-
cluded in the cluster. The recall of a cluster is the number of component spectra
from the dominating category divided by the number of all component spec-
tra from that category. We can summerize the precisions and the recalls of all
obtained clusters by microaveraging or by macroaveraging. Microaveraged preci-
sion is equal to the sum of the numerators of all precisions divided by the sum
of the denominators of all precisions. We can obtain microaveraged recall in the
same manner. Macroaveraged precision (resp. macroaveraged recall) is computed
simply as an arithmetic mean of all precisions (resp. all recalls).

In all settings, we have high precisions and low recalls, because the numbers of
clusters, shown in the last column, are far larger than the number of categories.
However, our method is designed for template composition in classification task.
Therefore, each category can have several templates. The number of dominating
categories is shown in the column “∗∗”. When this number is smaller than that
presented in the column “∗”, there exist categories which can dominate no clus-
ters. We have no meta-clusters also for such categories. Only when we use 1st
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Table 2. Evaluation of “meta-clusters” induced by perfect couplings

range ∗ † precision recall harmonic mean ∗∗ # of
micro macro micro macro micro macro clusters

1-256 37 1276 0.9561 0.9473 0.0778 0.1500 0.1438 0.2590 36 228

1-512 35 1349 0.9711 0.9688 0.0680 0.1343 0.1272 0.2358 35 252

257-512 31 1017 0.5320 0.9365 0.0816 0.1519 0.1416 0.2614 28 130

257-1024 31 657 0.8706 0.9637 0.0546 0.1236 0.1028 0.2191 30 208

to 512th entries of power spectra, every category dominates at least one cluster.
We also have the best precision, i.e., 0.9711, for this setting.

5 Conclusion and Future Work

In this paper, we propose a method for detecting robust similarities between
short intervals taken from various lung sounds. The results of evaluation show
that we can obtain equivalence classes of component spectra with high precision.
However, some types of lung sounds do not provide meaningful similarities. We
need to propose preprocessing methods for such lung sounds. Further, in the
near future, we will provide the procedures for composing templates and will
devise a method for comparing unknown lung sounds with the templates.
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tique des Sibilants. Master Thesis, Université du Québec à Rimouski (2006)
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Abstract. Traditionally, feature selection methods work directly on la-
beled examples. However, the availability of labeled examples cannot be
taken for granted for many real world applications, such as medical diag-
nosis, forensic science, fraud detection, etc, where labeled examples are
hard to find. This practical problem calls the need for “semi-supervised
feature selection” to choose the optimal set of features given both la-
beled and unlabeled examples that return the most accurate classifier
for a learning algorithm. In this paper, we introduce a “wrapper-type”
forward semi-supervised feature selection framework. In essence, it uses
unlabeled examples to extend the initial labeled training set. Exten-
sive experiments on publicly available datasets shows that our proposed
framework, generally, outperforms both traditional supervised and state-
of-the-art “filter-type” semi-supervised feature selection algorithms [5] by
1% to 10% in accuracy.

Keywords: feature selection, semi-supervised learning.

1 Introduction

Feature selection is an important data processing step in high dimensional data
learning tasks. Traditionally, feature selection methods use information from
“labeled data” to find the most informative or most useful feature subsets [1,2],
but the information in the “unlabeled” data is not used. When the size of the
“labeled” data is limited, it is difficult to select an ideal feature subset only
on “labeled” data. Recently, there have seen considerable interests in learning
with labeled and unlabeled data [3]. In many learning tasks, the effectiveness
of semi-supervised learning has been demonstrated [4]. Zhao and Liu [5] intro-
duced a semi-supervised feature selection algorithm based on spectral analysis.
Later, they exploited intrinsic properties underlying supervised and unsuper-
vised feature selection algorithms, and proposed a unified framework for feature
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selection based on spectral graph theory [6]. Yet these algorithms are “filter”
models which 1) do not select feature subset for specific learning method and
2) sample selection bias is ignored. It is important if one can employ certain
strategy to extend the initial training set with unlabeled data to overcome the
biased distribution problem, and in the same time, perform a “wrapper type”
feature selection for specific learning model.

In this paper, we introduce a “wrapper-type” forward semi-supervised feature
selection framework. It uses the mechanism of random selection on unlabeled
data to form new training sets, and the most frequently selected feature is added
to the result feature subset in each iteration. With the introduction of randomly
selected data with predicted labels, the sufficiency and diversity of the training
sets can be improved, which in return helps to choose the most discriminative
features.

In order to evaluate the effectiveness of our framework, we give formal anal-
ysis as well as conduct extensive experimental study on the algorithm. First,
bipartite graph has been employed to formally show that unlabeled data is help-
ful in feature selection. Secondly, we have conducted extensive experiments with
extremely few labeled instances (such as, only 6 labeled instances) which can re-
flect the scenario of data limitation. The results of these experiments show that
the proposed “wrapper-type” framework, generally, outperforms the traditional
feature selection method and state-of-the-art “filter-type” semi-supervised fea-
ture selection algorithms [5] by 1% to 10% in accuracy. It performs especially
well when the size of the labeled data set is very small.

2 The Framework

Supervised sequential forward feature selection (SFFS) is one of the most widely
used feature selection algorithms. Conceptually, it is an iterative process starting
with an empty feature subset. In each iteration, one feature is chosen among the
remaining features. To determine which feature to add, it tests the accuracy of
a model built on the incremented feature subset. The feature that results in the
highest accuracy is selected. Normally, the process terminates when no additional
features could result in an improvement in accuracy or the feature subset already
reaches a predefined size. Since this process can be easily implemented and is
usually quite effective, it remains one of the widely adopted supervised feature
selection methods. In this work, we extend it to take unlabeled data into account.

2.1 Our Approach

We propose a new framework of forward feature selection, which performs feature
selection on both labeled and unlabeled data. Our algorithm uses SFFS and
wrapper model to select startfn features initially, then the startfn features
are used to train a classifier, the classifier is then used to predict the labels of
the unlabeled data. Then the randomly selected samplingRate% unlabeled data
with predicted labels is combined with labeled data to form a new training set.
Afterwards, the new training dataset is used to select fnstep features based on



972 J. Ren et al.

Input: L, U , sizeFS, samplingRate, samplingT imes, maxIterations,
startfn, fnstep

Output: resultfs
Perform feature selection on L using SFFS, select startfn features to1

form the current feature subset currentfs;
ReducedL ← L ∗ currentfs;2

ReducedU ← U ∗ currentfs;3

for iteration ← 1 to maxIterations do4

Predicted ← classifier(ReducedL, ReducedU);5

for rand ← 1 to samplingTimes do6

Randomly select samplingRate% of instances from Predicted,7

and add it into L to form a new dataset NewDataset;
Perform feature selection on NewDataset using SFFS, select8

fnstep features to form feature subset fs[rand];
end9

Count the frequency of every feature in fs, add the most frequent10

and not in currentfs feature into currentfs;
ReducedL ← L ∗ currentfs;11

ReducedU ← U ∗ currentfs;12

if SIZE(currentfs) == sizeFS then break;13

end14

resultfs ← currentfs;15

Fig. 1. Forward semi-supervised feature selection (FW-SemiFS)

SFFS and the learner. The random selection and feature selection process repeat
samplingT imes times and samplingT imes groups of features are selected. And
we count the frequency of every feature in the samplingT imes groups of features,
and the one with the most frequency is added to form a new feature subset. This
process repeats until the size of the feature subset reaches a predefined number.

The algorithm is described in detail in Figure 1. L denotes the labeled data,
U denotes the unlabeled data; sizeFS denotes the predefined number of se-
lected features; samplingRate denotes the sampling rate according to the un-
labeled data with predicted labels; samplingT imes denotes the randomly sam-
pling times; maxIterations denotes the max iteration times; startfn denotes the
start feature number; fnstep denotes the number of features selected in every
step. resultfs denotes the output feature subset. In our algorithm, “*” denotes
the features reduction operator.

2.2 Method Analysis

The classifier “wrapped” in the feature selection algorithm is used to predict
the labels of the unlabeled instances as well as to evaluate the effectiveness
of the chosen feature subset. Obviously, a more accurate classifier can select
more effective feature subsets to represent the target distribution. Next, we will
demonstrate why the use of unlabeled data can improve the “accuracy” of the
classifier at each step of feature selection.
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Feature selection can be formulated as: f1(X ′) = f(X) subject to make X ′

as small as possible, where f1 and f are the target functions on chosen feature
subset X ′ and full feature set X , respectively. When unlabeled examples are
used in feature selection, its process is similar to “co-training”, where X ′ and X
are interpreted as the two “views” in co-training. The classifier constructed in
one view is expected to be helpful for the other.

Now we can adopt the bipartite graph model to facilitate our interpretation on
why “wrapper classifier” with unlabeled examples can improve the performance
of feature selection. The training process can be regarded as a bipartite graph
GD(X ′; X) [7]. In Figure 2, each node on the left-hand side denotes one instance
in X ′ view and the one on the right-hand side denotes the same instance in X
view. Any two instances in the labeled dataset will be connected by an edge if
they belong to the same class, and those edges are shown in solid lines. Let S
be a finite dataset that consists of the labeled dataset, then GS is a bipartite
graph in S whose components show the concept distribution in GS . In the case
of unlabeled instances, each vertex on the left, depending on the its prediction
on X ′ view, will be connected to a vertex on the right. Thus, it is connected to
the most probable category.

Next, we analyze why unlabeled data can improve the generalization accu-
racy of the classifier on the platform of bipartite graph. Let GD be the bipartite
graph in the all-real-data distribution D. As we know, the components in GD

reflect the concept distribution on the real dataset, and we can achieve com-
pletely correct prediction if we get the components in GD. But it is impossible
to achieve this when the dataset D is infinite. The work of co-training model
is to find components that are much “similar” to those in GD by the use of
unlabeled data. Given S, as the predictions on the unlabeled data increase, the
edges will be added to the bipartite graph and the number of components will

(a) (b)

Fig. 2. Graphs GD and GS

drop as components merge together. In-
tutively, the components in GS are more
similiar to the components in GD, lead-
ing to a more accurate prediction on unla-
beled data. For example, as demonstrated
in Figure 2, vertex 1 and 2 represent la-
beled instances with the same true la-
bels, vertex 5, 6 and 7 represent labeled
instances with the same true labels but
different from 1 and 2. On the other
hand, vertex 3 and 4 represent unlabeled
instances. Before knowing the predicted
labels of 3 and 4, there are four compo-
nents in Figure 2(a). But by introducing
the predicted labels of vertex 3 and 4 (for

example, vertex 3 has a predicted label the same as vertex 2, and vertex 4 has a
predicted label the same as vertex 5), unlabeled vertex 3 can be connected to ver-
tex 1 and 2 to form a new component, and unlabeled vertex 4 can be connected
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to vertex 5, 6 and 7 to form another new component. Then the number of com-
ponents is reduced to 2, as illustrated in Figure 2(b). Blum and Mitchell [7] had
demonstrated that the components in GS will be similar to those in GD if the
unlabeled set is large enough. Thus, they capture the real concept distribution
of the real dataset and give the classifier higher prediction accuracy.

Based on the above analysis, it is clear that the accuracy of the wrapper
classifier can be improved by the iteration process of FW-SemiFS. In other words,
the effectiveness of FW-SemiFS can be improved by applying unlabeled data.

3 Experiment

In order to evaluate the effectiveness of our proposed algorithm, we have con-
ducted extensive experiments on several datasets. Table 1 summarizes the infor-
mation of the datasets that we used. In our experiment, the labeled data and
unlabeled data are randomly selected from the whole dataset, and the left is
used as testing data.

3.1 Experiment Settings and Evaluation Method

In FW-SemiFS experiments, the parameters startfn, fnstep, samplingRate,
and samplingT imes are set to 5, 6, 50%, and 10, respectively. For compari-
son, SFFS and Semi-supervised Laplacian Score (called SLS for short) are also
conducted. SFFS is a supervised feature selection algorithm described in the
previous section; and SLS is a semi-supervised feature selection algorithm which
is similar to Zhao and Liu’s algorithm [5], but it uses Laplacian score as its rank-
ing criterion. We chose three machine-learning models, NaiveBayes, NNge, and
k-NN, to evaluate the effectiveness of the algorithms. Specifically, NNge is the
nearest neighbor like algorithm using non-nested generalized examples; k-NN is
k nearest neighbor classifier whose parameter k is set to 5.

Table 1. Dataset summary

Dataset #Labeled #Unlabeled #Testing #Features #Classes
German 6 100 294 20 2
Ionosphere 6 100 245 34 2
Mushroom 6 100 294 22 2
Sonar 6 100 102 60 2
Waveform 6 100 294 21 3
wdbc 6 100 463 30 2
ColonTumor 6 30 26 2000 2

For FW-SemiFS and SLS, we employ both the labeled dataset and unlabeled
dataset to perform semi-supervised feature selection. But for SFFS approach, we
only employ the labeled dataset to perform feature selection. After selecting the
feature subset ResultFS, we construct the classifier only with the labeled dataset
and ResultFS, and then the unseen testing dataset is employed to evaluate the
classification accuracy.



Forward Semi-supervised Feature Selection 975

3.2 Empirical Results

Table 2 shows the experiment results of the SFFS, SLS and FW-SemiFS methods
when the size of the selected feature subset is 10, as well as the classification
accuracy without feature selection (denoted as “Full” in the table). The numbers
are shown in bold when it is the highest one among “Full”, “SFFS”, “SLS” and
“SemiFS”. From table 2, we could find that the accuracies of FW-semiFS are
higher than that of two other feature selection algorithms in 13 out of 21 cases.

For further view of the algorithm comparison, we conduct statistical analysis
of the experiment results. For every dataset and every learning algorithm, we
run SFFS, SLS and FW-SemiFS respectively according to 16 different feature
subset sizes (from 5 to 20), and then get 16 groups of feature subsets and related
accuracies. Each group has three feature subsets and three related classification
accuracies according to SFFS, SLS and FW-SemiFS, respectively. After that, we
calculate the mean and standard deviation of these 16 accuracies for each group,
which are listed in table 3.

From Table 3, we can see that the mean of the classification accuracies of
FW-SemiFS are higher than that of two others most of the time. On German

Table 2. The accuracy comparison between SFFS, SLS, and FW-SemiFS

Dataset NaiveBayes NNge k-NN
Full SFFS SLS SemiFS Full SFFS SLS SemiFS Full SFFS SLS SemiFS

German 52.72 54.08 51.59 55.44 67.01 65.65 58.84 70.41 64.63 63.61 60.20 67.01
Ionosphere 73.47 73.47 67.76 75.51 71.84 71.43 65.04 74.15 72.38 70.61 52.93 73.61
Mushroom 89.80 86.73 91.50 85.71 86.28 83.45 82.54 84.35 65.31 63.95 62.24 69.05
Sonar 52.94 52.61 48.37 59.15 68.63 70.59 70.59 70.59 56.86 61.76 59.80 63.73
Waveform 38.44 46.94 39.80 40.48 61.90 69.39 58.84 69.39 42.52 51.70 51.36 52.72
wdbc 82.72 77.97 87.90 82.51 90.28 92.87 91.79 91.58 92.22 89.85 85.31 87.04
ColonTumor 39.74 76.92 53.85 84.62 37.18 47.44 55.13 35.90 53.85 35.90 58.98 41.03

Table 3. Means and standard deviations of accuracies

Dataset Method NaiveBayes NNge k-NN
Mean StDev Mean StDev Mean StDev

SFFS 54.49 2.16 66.14 1.43 62.35 4.98
German SLS 52.99 0.89 63.14 5.35 62.86 2.45

SemiFS 55.93 2.22 69.26 2.77 63.82 3.92
SFFS 72.32 1.48 72.50 1.08 71.51 1.07

Ionosphere SLS 68.98 2.78 65.17 3.17 60.50 6.28
SemiFS 74.64 0.99 74.46 1.00 73.92 0.53
SFFS 88.65 3.17 84.76 0.84 61.31 4.68

Mushroom SLS 88.80 2.44 82.41 3.78 63.39 5.53
SemiFS 87.33 3.28 85.06 0.54 61.78 4.68
SFFS 53.29 2.41 71.57 1.13 56.25 4.85

Sonar SLS 50.51 2.27 68.20 2.91 58.09 3.07
SemiFS 58.58 0.98 70.10 0.72 61.21 4.64
SFFS 43.47 3.21 62.48 3.53 50.30 6.74

Waveform SLS 40.18 1.22 60.89 3.65 51.79 3.84
SemiFS 41.71 3.17 63.58 3.13 52.42 6.06
SFFS 79.70 3.24 91.28 0.90 85.12 5.50

wdbc SLS 85.81 3.34 91.20 0.60 86.00 0.73
SemiFS 82.82 1.11 91.62 0.66 87.39 1.04
SFFS 52.31 4.34 44.27 2.51 39.06 1.80

ColonTumor SLS 43.42 3.14 57.78 3.00 61.45 2.89
SemiFS 54.02 1.99 40.00 1.95 53.85 5.24
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and Ionosphere datasets, the means of FW-SemiFS are the highest ones for
NaiveBayes, NNge, and k-NN learners, along with small standard deviation;
Although, for German dataset, the standard deviation is larger than that of two
other algorithm, the mean of FW-SemiFS is much higher than that of two others.
The similar phenomena can be also observed for Sonar and wdbc datasets.

4 Conclusion and Future Work

We have explored the use of unlabeled examples to facilitate “wrapper-type”
forward semi-supervised feature selection. The proposed algorithm works in an
iterative procedure. In each step, unlabeled examples receive labels from the
classifier constructed on currently selected feature subset. Then a random sam-
ple of now “labeled” unlabeled examples is concatenated with the training set
to form a “joint” dataset, where a wrapper-based feature selection is performed.
Experiment results show that the proposed approach, generally, can obtain 1%
to 10% higher accuracy than other supervised and semi-supervised feature se-
lection algorithms.

Future Work. The work discussed in this paper represents techniques based on
random selection mechanism. In the future, we plan to extend the techniques by
using prediction confidence as a criterion to select those unlabeled data which is
most probable to have correctly predicted labels.
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Abstract. This paper proposes a method to automatically extract ba-
sis expressions that indicate economic trends from newspaper articles by
using a statistical method. We also propose a method to classify them
into positive expressions that indicate upbeat, and negative expressions
that indicate downturn in economy, respectively. It is important for com-
panies, governments and investors to predict economic trends in order
to forecast revenue, sales of products, prices of commodities and stock
prices. We considered that basis expressions are useful for the companies,
governments and investors to forecast economic trends. We extracted
basis expressions, and classified them into positive expressions or nega-
tive expressions as information to forecast economic trends. Our method
used a bootstrap method that was minimally a supervised algorithm for
extracting basis expressions. Moreover, our method classified basis ex-
pressions into positive expressions or negative ones without dictionaries.

1 Introduction

It is important for companies, governments and investors to predict the economic
trends in order to forecast revenue, sales of products, prices of commodities and
stock prices. The diffusion index1 is one of indices concerning economic trends,
and is computed every three months, and provides economic trends during prior
period. However, it is difficult to forecast the business performance accurately
by using diffusion indices, as it can not indicate current economic trends.

These indices are computed using numeric data. However, some qualitative
language data that reflect economic trends may not be quantified straightfor-
wardly. For example, an opinion “Economy seems to recover” in a newspaper
article is hard to be quantified, as “Economy seems to recover” is a sense of the
writer.

Nakajima et al.[1] proposed a method for extracting articles concerning eco-
nomic trends from newspaper articles and classifying them into positive articles
1 The diffusion index is a summary measures designed to facilitate the analysis and

forecast of business cycles by combining the behavior of a group of economic indi-
cators that represent widely differing activities of the economy, such as production
and employment, and that correspond closely to turning points.
http://www.esri.cao.go.jp/en/stat/di/di2e.html

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 977–984, 2008.
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that indicate upbeat in economy and negative ones that indicate downturn in
economy. However, Nakajima’s method can not classify articles having two dif-
ferent opinions. For example, an article that indicates economy in Aichi prefec-
ture is upbeat while that in Gifu prefecture is downturn, includes two different
opinions about different areas, and can not be treated by Nakajima’s method.

We propose a method to extract basis expressions that indicate economic
trends from newspaper articles concerning economic trends and to classify basis
expressions into positive or negative expressions. We considered that opinions
concerning economic trends can be extracted by using basis expressions, which
enable us to distinguish two different types of opinions in the same articles. Our
method used a bootstrap method that was minimally supervised algorithm for
extracting basis expressions. Moreover, our method classified basis expressions
into positive expressions or negative ones without dictionaries.

2 Related Work

As related work for extracting phrases that have a particular meaning,
Kanayama et al. proposed a method for extracting a set of sentiment units by us-
ing transfer-based machine translation engine replacing the translation patterns
with sentiment patterns[5]. However, to construct a complete list of complex
rules or patterns manually, which is the case of the above methods, is a time-
consuming and costly task. In contrast, our method uses statistical information
and only one initial clue phrase as an initial input. The domain-specific dictio-
naries, predetermined patterns, complex rules made by hand are not needed.

Wilson et al. proposed a method for determining whether an expression is
neutral or polar[6]. In their research, the expressions are extracted manually and
the method needs dictionaries. In contrast, our method automatically extracts
expressions and does not need dictionaries.

Sakai et al. proposed a method for extracting cause information from Japanese
financial articles concerning business performance[3]. Their work is probably
most closely related to ours. However, our method extracts basis expression
concerning not performance of each company but economic trends. Moreover,
our method also classifies basis expressions into positive and negative ones.

3 Extraction of Basis Expressions

As a preprocessing, our method extracts articles concerning economic trends
from newspaper corpus by using Support Vector Machine(SVM)[4]. We applied
a method proposed by sakai et al.[2] for extracting them. As a result, 10,027
newspaper articles concerning economic trends were extracted from Nikkei news-
papers published from 1990 to 2005.

Here, a basis expression is a part of a sentence consisting of some “bunsetu’s”
(a bunsetu is a basic block in Japanese composed of several words). Our method
extracts basis expressions by using clue phrases, i.e. phrases frequently modified
by basis expressions. For example, a basis expression frequently modifies clue
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phrase ”(no eikyou: influenced by)” in Japanese. Our method extracts an ex-
pression that consists of a clue phrase and a phrase that modifies it as a basis
expression. Hence, if many clue phrases effective for extracting basis expressions
are acquirable, basis expressions are extracted automatically. However, it is hard
to acquire sufficient clue phrases effective for extracting basis expressions man-
ually. Hence, our method also acquires such clue phrases automatically from a
set of articles concerning economic trends.

Our method for extracting basis expressions is as follows.

Step 1: Input an initial clue phrase ”(no eikyou: influenced by)” and acquire
phrases that modify them.

Step 2: Extract phrases appearing frequently in a set of the phrases acquired
in Step 1 (e.g. (sekai keizai: world economy)). In this paper, such a phrase
extracted in Step 2 is defined as a “frequent phrase”.

Step 3: Acquire new clue phrases modified by the frequent phrases.
Step 4: Extract new frequent phrases from a set of phrases that modify the

new clue phrases acquired in Step 3. This step is the same as Step 2.
Step 5: Repeat Steps 3 and 4 until they are executed predetermined times or

neither new clue phrases nor new frequent phrases are extracted.
Step 6: Extract basis expressions by using extracted frequent phrases and ac-

quired clue phrases.

3.1 Extraction of Frequent Phrases

The method for extracting ”frequent phrases” from a set of phrases that modify
clue phrases is described below.

Step 1: Acquire a bunsetu modifying a clue phrase and eliminate a case particle
from the bunsetu. Here, the bunsetu is denoted by c.

Step 2: Acquire frequent phrase candidates by adding bunsetu modifying c to
c. (See Figure 1.)

Step 3: Calculate score Sf (e, c) of frequent phrase candidate e containing c by
the following Formula 1.

Step 4: Adopt e assigned the best score Sf (e, c) among the set of frequent
phrase candidates containing c as a frequent phrase.

Score Sf (e, c) is calculated by the following Formula 1:

Sf (e, c) = −fe(e, c)fp(e) log2 P (e, c), (1)

where P (e, c) is the probability that frequent phrase candidate e containing c
appears in the set of articles concerning economic trends. fe(e, c) is the number
of frequent phrase candidate e’s containing c in the set of articles concerning
economic trends. fp(e) is the number of bunsetu’s that compose e. P (e, c) is
calculated by the following Formula 2.

P (e, c) =
fe(e, c)
Ne(c)

, (2)

where Ne(c) is the total number of frequent phrase candidates containing c in
the set of articles concerning economic trends.
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Fig. 1. Examples of frequent phrase candidates

3.2 Selection of Frequent Phrases

The frequent phrases extracted from a set of phrases that modify clue phrases
may contain inappropriate ones. Hence, our method selects appropriate frequent
phrases from them. Here, our method calculates entropy H(e) based on P (e, s)
and selects frequent phrases assigned entropy H(e) larger than a threshold value
calculated by Formula 5. P (e, s) is the probability that frequent phrase e modifies
clue phrase s. Entropy H(e) is used for reflecting “variety of clue phrases modified
by frequent phrase e”. If entropy H(e) is large, frequent phrase e modifies various
kinds of clue phrases and such a frequent phrase is an appropriate frequent
phrase. Entropy H(e) is calculated by the following Formula 3.

H(e) = −
∑

s∈S(e)

P (e, s) log2 P (e, s), (3)

where

P (e, s) =
f(e, s)

∑
s′∈S(e) f(e, s′)

. (4)

Here, S(e) is the set of clue phrases modified by frequent phrase e. f(e, s) is the
number of frequent phrase e’s that modifies clue phrase s in the set of articles
concerning economic trends. The threshold value is calculated by the following
Formula 5.

Te = α log2 |Ns|, (5)

where Ns is the set of clue phrases used for extracting frequent phrases and α
is a constant (0 < α < 1).
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3.3 Acquisition of Clue Phrases

The method for acquiring new clue phrases from frequent phrases is as follows.

Step 1: Extract a bunsetu modified by frequent phrase e.
Step 2: Acquire clue phrase s by adding a case particle contained in the frequent

phrase e to the bunsetu.
Step 3: Calculate entropy H(s) based on the probability P (s, e) that clue

phrase s is modified by frequent phrase e.
Step 4: Select clue phrase s assigned entropy H(s) larger than a threshold value

calculated by Formula 7.

Here, entropy H(s) is introduced for selecting appropriate clue phrases and is
calculated by the following Formula 6.

H(s) = −
∑

e∈E(s)

P (s, e) log2 P (s, e), P (s, e) =
f(s, e)

∑
e′∈E(s) f(s, e′)

. (6)

Here, E(s) is the set of frequent phrases that modify clue phrase s, and f(s, e) is
the number of clue phrase s’s modified by frequent phrase e in the set of articles
concerning economic trends. The threshold value is calculated by the following
Formula 7.

Ts = α log2 |Ne|. (7)

Here, Ne is the set of frequent phrases used for extracting clue phrases. α is the
same constant that in Formula 5.

3.4 Extraction of Basis Expressions by Using Frequent Phrases and
Clue Phrases

Finally, our method extracts basis expressions by using frequent phrases and
clue phrases. A basis expression consists of a phrase that modifies the clue
phrase. Moreover, the phrase that modifies the clue phrase contains some fre-
quent phrases. For example, “(yusyutu no gennsyou wo haikei ni: under decreas-
ing export)” is a basis expression since phrase “(yusyutu no gennsyou: decreasing
export)” modifies clue phrase “(wo haikei ni: under)” and the phrase contains
frequent phrase “(gensyou: decreasing)”.

4 Classification of Basis Expressions

Our method classifies extracted basis expressions into positive expressions and
negative expressions. However, extracted basis expressions contain some of inap-
propriate basis expressions. As a result, our method extracted basis expressions
into positive expressions, negative expressions and other expressions. Other ex-
pressions are extracted basis expressions that are neither positive nor negative
expressions.
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For example, “(doujikakudai wo tudukeru sekaikeizai: world economy continu-
ing simultaneous expansion)” is a positive expression. Thus positive expressions
indicate that Japanese economy is upbeat. For example, “(setubitoushi ya kojin-
syouhi no donka: slowdown of business investment and personal consumption)”
is a negative expression. Thus negative expressions indicate that Japanese econ-
omy is downturn. For example, “(tyousataisyouhenkou: change of objective for
survey)” and “(keiki no nobinayami: stagnation of economy)” are other expres-
sions. We define expressions that cite Japanese economy are inappropriate as
basis expressions, because our goal is extraction of basis expressions.

We develop two classifiers by using one-versus-rest method and Support Vec-
tor Machine(SVM)[4]. The one classifies extracted basis expressions into positive
expressions and the others. Here, a positive expression is defined as a correct
expression and the other is defined as an incorrect expression. The other one
classifies extracted basis expressions into negative expressions and the others.
Here, negative expression is defined as a correct expression and the other is de-
fined as an incorrect expression. The classifiers use character N-gram and word
N-gram as features.

5 Evaluation

In this section, we evaluate our method. Our method extracted basis expressions
from 10,027 newspaper articles concerning economic trends and classify them
into positive and negative.

First, we evaluated our method for extracting basis expressions. We employ
CaboCha2 as a Japanese parser. We manually extracted 75 basis expressions
from 100 articles concerning economic trends performance as a correct data set.
Moreover, we extracted basis expressions by our method from the same 100 arti-
cles and calculated precision and recall. Here, a basis expression extracted by our
method is correct if it contains a basis expression extracted as the correct data
set. The precision, recall and F-measure3 calculated by the following formulas.

Precision =
|Sb ∩ Ab|
|Sb ∩ Nb| , Recall =

|Sb ∩ Ab|
|Ab| ,

where Sb is the set of basis expressions extracted by our method from 100 articles
concerning economic trends. Ab is the set of basis expressions contained in the
correct data set. Nb is the set of expressions modifying clue phrases in the 100
articles concerning economic trends. The results are shown in Tabel 1.

Next, we evaluated our method for classifying basis expressions. We employ
ChaSen4 as a Japanese morphological analyzer, and SV M light5 as an imple-
mentation of SVM. We extracted 1620 basis expressions by our method with α
0.6 and iteration count 3. 1620 basis expressions were manually annotated with
2 http://chasen.org/˜taku/software/cabocha/
3 F −measure = (2 × Precision×Recall)/(Precision+Recall).
4 http://chasen.aist-nara.ac.jp/hiki/ChaSen/
5 http://svmlight.joachims.org
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Table 1. Precision, Recall and F-measure of basis expressions extraction

α Precision Recall F-measure num. of basis expression

0.9 1.000 0.160 0.276 650

0.6 0.714 0.333 0.455 1620

0.5 0.042 0.573 0.078 49293

Table 2. Precision, recall and F-measure of basis expression classification with char-
acter N-gram feature

num. of frequent features Precision Recall F-measure

Positive 9021 0.800 0.615 0.695

Negative 9021 0.843 0.855 0.849

“positive”, “negative” or “others”. The annotated basis expressions were divided
into two sets. The first (1120 expressions) were a training data, used for feature
selection and modeling. We used the second set (500 expressions) as a test data
set. We calculated precision, recall and F-measure from the test data set. The
precision and recall are calculated by the following formulas.

Precision =
|E ∩ C|

|E| , Recall =
|E ∩ C|

|C| .

Here, E is the set of basis expressions annotated with correct expressions in the
test data set. C is the set of correct expressions contained in the test data set.
The results are shown in Tables 2 and 3.

6 Discussions

In Table 1, precision rises from α 0.5 to 0.6, while recall drops. When low α
value is assigned, inappropriate clue phrases and frequent phrases were found
in a set of extracted clue phrases and extracted frequent phrases. Furthermore,
new inappropriate ones are extracted by extracted inappropriate phrases. As a
result, our method acquires many inappropriate ones. This happens when α is
between 0.5 and 0.6.

In Tables 2 and 3, focusing on recall, it is interesting to note that negative
classifiers perform better than positive ones. This is due to the fact that 1620

Table 3. Precision, recall and F-measure of basis expression classification with word
N-gram feature

num. of frequent features Precision Recall F-measure

Positive 6450 0.769 0.545 0.638

Negative 6450 0.833 0.867 0.845
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basis expressions contain negative expressions far more than positive ones. We
consider that cause for few positive expressions is due to recession in Japan
during the period of the corpus.

In Tables 2 and 3, focusing on precision, character N-gram feature classifier
is the highest of all. This is due to the fact that characters play a key role in
classifying expressions in Japanese, because Chinese characters that are one of
the Japanese characters have meanings.

7 Conclusion

We proposed a method for extracting basis expressions that indicate economic
trends from Japanese newspaper articles concerning economic trends. First, our
method extracts basis expressions from them by using statistical information and
initial clue phrases. Next, our method classifies basis expressions into positive
expressions, negative expressions and other expressions. This method can also
be applied to other tasks such as extracting reputations for specific items.
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Abstract. Ontology learning from text is considered as an appealing
and a challenging approach to address the shortcomings of the hand-
crafted ontologies. In this paper, we present OLEA, a new framework for
ontology learning from text. The proposal is a hybrid approach combin-
ing the pattern-based and the distributional approaches. It addresses key
issues in the area of ontology learning: low recall of the pattern-based
approach, low precision of the distributional approach, and finally ontol-
ogy evolution. Preliminary experiments performed at each stage of the
learning process show the pros and cons of the proposal.

1 Introduction

Given the many difficulties related to the encoding of “semantic” ontologies
today, an appealing and challenging approach is to build such ontologies au-
tomatically from wealthy resources like texts. This led to the emergence of the
field of ontology learning from text [6]. In this paper, we present OLEA (Ontology
LEArning), a new framework for ontology learning from text1. The general ar-
chitecture of OLEA is illustrated in Figure 1. The proposal is a hybrid approach
that aims to deal with key issues in the area:

On Low Recall of the Pattern-Based Approach. The pattern-based ap-
proach [5], though yealding “‘acceptable” precision, suffers from very low recall
since detecting relations depends on the appearance of a set of rigid lexico-
syntactic patterns (e.g., NP such as {NP,NP..}). Our framework deals with this
drawback, and proposes a technique able to capture and match more “flexible”
patterns in text.

On Low Precision of the Distributionnal Approach. This approach con-
sisting mainly of clustering terms basing on their similarities, lacks generally
1 The accomplished work concerns though the concepts and the concepts hierarchies

learning, so we will rather refer to the task as taxonomy learning.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 985–991, 2008.
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Fig. 1. OLea: General Architecture

from low precision. This is due to two main reasons: (1) The commonly used hi-
erarchical methods are not quiet adaptive [2,4,1] since they provide binary trees
of crisp clusters. (2) Methods lack of reliability since they rely, in most cases,
on a single semantic relation (e.g., synonymy). That is, we present a learning
procedure involving more semantic relations, and thus supplying us with more
reliable decisions while building the concepts hierarchy.

On Ontology Evolution. It is known that an ontology should be subject of
continuous refinements in order to adapt it to new users’ requirements. However,
existing approaches either ignore this issue, or require regular human interven-
tions, which is a tedious task [3,7]. That is, we propose a preliminary approach
that places the learned taxonomy at the core of a search engine, in order to
adapt the taxonomy to users’ vision over text, without any manual effort.

2 Estimating Semantic Relations

The overall technique for estimating relations more “flexibly” is described as
follows. Each pair of terms occurring in a corpus is represented by a set of lexico-
syntactic features. Pairs that could be matched in WordNet will be augmented
by confidence rates for each of their semantic relation. This will construct the
learning base that will serve to predict the semantic relation rates between pairs
uncovered by WordNet.

Calculating Relations between Concepts. For pairs of terms that could
be matched in WordNet (concepts), we calculate a confidence rate for each of
their semantic relations basing on the semantic structure of the taxonomy. What
we are seeking at the end, is statements assessing, for instance, that “object”
and “car” are 0.1-synonyms, 0.8-hypernyms, and 0-meronyms. The calculation
of such rates depends on the target relation. While hypernymy confidence re-
lies on the edges count along the shortest path separating two concepts, con-
fidences for antonymy and meronymy are boolean, depending simply on the
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presence/absence of such relations. Synonymy relations are calculated by means
of our semantic distance measure proposed in [10].

Mining Relations between Terms. The obtained rates from the previous
step are used as a “reference” for predicting semantic relations between the un-
covered pairs in WordNet2. The assumption is that terms pairs appearing in
similar contexts tend to have similar semantic relations. Relations’ confidence
rates for an uncovered pair P are calculated by means of the confidence rates
of its K Nearest Neighbors (KNN). Each context is characterized by a set of
lexico-syntactic features (e.g., head word, partial path, path length). In order
to compare two contexts, distances between the different features can be ei-
ther a simple integer/string comparison, or based on the Waterman alignment
algorithm [11] (for path features).

Consider a relation r for a pair P . Finding the best K confidence rates de-
pends on how much we can “optimize” the distance between a pair of contexts.
These distances can be optimized when reaching a maximal correlation with
distances between pairs of semantic relations (response variables). That is, we
applied a multiple linear regression model to find the coefficients (weights) that
optimize the correlation between them. Then, we apply the optimal coefficients
on the previous equation in order to find more accurately the KNN. A relation’s
confidence is finally calculated by means of the weighted average of the K-nearest
relations confidences.

Evaluation and Results. Our experiments was carried out on a benchmark
composed of 1000 documents picked from the Reuters corpus3 along with the
WordNet taxonomy. The goal is to check how far can semantic relations between
terms approach the “gold standard” semantic relations between concepts. For
this, we divided the set of concept pairs into 80% for the training set, and
20% for the test set. Obtained results illustrated in Figures 2,3 show that K
has no significant effect on performance, depending more on the obtained R2.
Without using the linear model we obtained a best correlation ratio of 0.32 for
synonymy. However, when incorporating the regression model with KNN, we
could dramatically increase correlation, attaining an interesting rate of 0.82 for
synonymy.

3 Taxonomy Learning

In this section, we present a two-phases procedure that takes as an input the
semantic relations rates, and provides as an output a hierarchy of concepts. It
includes concepts learning, and concepts hiearchy learning.

Concepts Learning. The goal here is to group terms into a set of sense-bearing
units which will be regarded as concepts. Hence, we define a soft hierarchical-
based clustering algorithm able to deal with polysemous words (see Algorithm
2 Each semantic relation is treated separately.
3 Reuters corpus, volume 1, English language, release date: 2000-11-03.
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Fig. 2. Effect of K variation on the fi-
nal correlation rate for each regression
model

Fig. 3. Effect of R2 on the final correla-
tion rate for each semantic relation

1)4. Rather than clustering terms by relying solely on semantic similarity which
is error-prone, our algorithm offers more reliable decisions by taking into account
a larger set of relations. The point is that two related clusters will be merged only
if they are found “purely” synonyms, therefore do not have any other relation
with a confidence rate greater than a specified threshold.

Algorithm 1. Concept Learning Process
Require: parameters θ1 and θ2
1: Initialize each term ti in the set T as a cluster ci in the set C
2: repeat
3: Identify the closest pair P of clusters cp and ck in C having synonymy exceeding a threshold

θ1 and having no other relation exceeding a threshold θ2
4: Create a new cluster cn containing the instances of cp and ck

5: if cp is not basically a term then
6: Remove cp from C
7: end if
8: if ck is not basically a term then
9: Remove ck from C

10: end if
11: for all other clusters oc in C do
12: if oci ⊂ cn OR cn ⊂ oci then
13: continue
14: end if
15: Compute relations Ri between cn and oci

16: if Ri(synonymy) is above θ1 and all other Ri are below θ2 then
17: Merge oci instances in cn

18: if oci is not basically a term then
19: Remove oci from C
20: end if
21: end if
22: end for
23: Mark cp and ck as a considered pair (to not be considered again)
24: until P is empty
25: return the set of created clusters

Concepts Hierarchy Learning. Following concepts learning, we present Al-
gorithm 2 which aims to learn taxonomic is-a relations. As hypernyms occur
rarely between pairs of terms, lot of concepts will remain unlinked. To overcome

4 An experimental comparison between different soft algorithms is out of scope of this
paper.
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this shortcoming, we defined a measure that aims at finding the most appropriate
place for an unlinked concept in a given hierarchy.

At the end of this phase, we obtain a fuzzy taxonomy in the sense that related
terms within a concept are assigned a synonymy confidence between each others,
and that concepts are related to each others by an ’is-a’ relation being assigned
a hypernymy confidence as well.

Algorithm 2. Taxonomic-Relations Learning Process
Require: parameters α1 and α2
1: Let P be the set of concepts pairs with their relations confidence obtained from the previous

phase
2: Define direct-hypernymy confidence dirhyp(cpi) for a concept pair cpi in P as

synonymy(cpi)*hypernymy(cpi)
3: repeat
4: Identify the concept pair cpk with the highest absolute(dirhyp(cpk)) that must be above a

threshold α1 and having the other relations confidence (except synonymy and hypernymy)
below a threshold α2

5: Create a hypernymy link for cpk

6: until cpk is empty
7: for each remaining concept cr sharing no link with any other concept do
8: find the K closest concepts for cr by means of synonymy
9: for each close concept ci do

10: calculate a score si as a function of synonymy(cr, ci) and synonymy(cr, hyponyms(ci))
11: end for
12: create a hypernym link between cr and the ci with the highest score MAX(ci)

13: end for

Evaluation and Results. Actually, ontology learning community lacks com-
mon frameworks for evaluation and comparison. Concerning our work, we per-
formed a preliminary evaluation against a “reference” taxonomy. Typically, after
specifying the actual context of newspapers, we asked a human subject to group
and organize in one or many trees a set of 50 terms. Finally, we compare the
human-made tree with our learned tree in terms of precision and recall by consid-
ering the number of correct vs incorrect learned relations. Concerning concepts
learning, since precision and recall depends on θ1 and θ2, we altered θ1 in the
range of [0.88, 0.97], while fixing θ2to 0.05. As we can see in Figure 4, while
precision tends to drop dramatically when reducing θ1, recall tends to be some-
how stable. Concerning taxonomic-relations learning, we consider the number of
correct vs incorrect links between validated concepts by the user. We fixed the
parameter θ1 at 0,95, since it gave the optimal trade-off between precision and
recall. Then, we applied Algorithm 2 by altering α1 in the interval [0.1, 0.2] and
fixing α2 at 0.05. Results illustrated in Figure 5 show interesting performance,
especially from a recall point of view.

4 Improving Taxonomy with Relevance Feedback

Involving human subjects in the learning process, although extremely benefic,
can be a very tedious and time-consuming task [3,7]. What we propose here is
to add supervision to the learning process without any manual effort: Since our
taxonomy seeks essentially to integrate a IR environment, we placed our learned
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Fig. 4. Concept learning performance in
terms of precision and recall with differ-
ent parameter values

Fig. 5. Taxonomic-relations learning
performance in terms of precision and
recall with different parameter values

Fig. 6. Performance evolution along queries using Relevance Feedback

taxonomy at the core of our IR system [9]. Keywords queries will be expanded
to other related terms by means of the synonymy and hypernymy relations.
Then, users interactions with the system are taken into account to update the
taxonomy by means of a relevance feedback mechanism [8]. For instance, given
a query term q expanded with another term t. As a respond, a document d was
presented to the user by its outline o. if o contains both q and t, and d was clicked
by the user, the relation between q and t will be strengthen by a parameter β
that we define. Such feedbacks will enable the system to take more subjective
decisions about accepting or rejecting a specific expansion term in future queries.

Evaluation and Results. To evaluate the effect of relevance feedback on tax-
onomy learning, we took as a starting point the results given by the learned
taxonomy obtained using the optimal parameters. Next, 100 keywords queries
(related to the selected hierarchy for evaluation) are sent consecutively to the
system. At the end of session of each query, clicked and unclicked documents
are considered for the feedback. Taxonomy is updated at the end of each set of
20 queries in order to be reevaluated against the hand-built taxonomy. Figure
6 shows the precision and recall values for both concepts and relations learning
along the 100 queries. We can notice the slight but sure improvement in the final
results (especially in precision). Yet, we argue that the improvement can be seen
more clearly with larger set of queries.
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5 Conclusion and Future Works

To wrap up, we presented in this paper OLea, a framework for learning ontology
from a text corpus. It has the advantage of addressing the main drawbacks of the
pattern-based and distributional approaches. However, a comparison with other
methods is still needed to assess the added-value of our proposal. This is not an
easy task though. We argue that a better evaluation is task-oriented. That is,
we are intending to perform other evaluations in environments like Information
Retrieval and Document Clustering.
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Abstract. In this paper, we propose a framework that maps categorical data into
a numerical data space via a reference set, aiming to make the existing numerical
clustering algorithms directly applicable on the generated image data set as well
as to visualize the data. Using statistics theories, we analyze our framework and
give the conditions under which the data mapping is efficient and yet preserves a
flexible property of the original data, i.e. the data points within the same cluster
are more similar. The algorithm is simple and has good effectiveness under some
conditions. The experimental evaluation on numerous categorical data sets shows
that it not only outperforms the related data mapping approaches but also beats
some categorical clustering algorithms in terms of effectiveness and efficiency.

Keywords: Clustering, Data mapping, Categorical data.

1 Introduction

Clustering is to partition data points into groups, which makes data points in the same
group more similar to one another than to those out of the group. Clustering algorithms
are categorized by the data types they fit for. There are roughly two data types including
numerical and categorical, and a data set may have mixed types. We take the internet
traffic data as an example: protocols and operation systems are categorical data, while
packet sizes and packet numbers are numerical data. Researchers have designed various
clustering algorithms for these two data types. The categorical clustering algorithms are
mostly based on pair-wise similarities or information theory etc. such as those proposed
in [4,9], most of which suffer from quadratic complexity or combinational explosion
problems. Clustering algorithms for numerical data [5,6] are quite different from those
for categorical data. In numerical data space, coordinates based linear reference frame
is available so that many concepts, like means, and mean square distance etc., could
be defined to compress the numerical data and make the clustering algorithms more
efficient. Moreover, data visualization, which helps to understand the data intuitively, is
easier to be implemented in the numerical space than in the categorical space.
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Some applications such as internet traffic data based intrusion detection need an
efficient clustering strategy which can handle the mixed data types and integrated with
data visualization. Intuitively, mapping the categorical data sets into numerical ones can
cover these requirements, since the mixed-typed data are naturally turned into numeri-
cal data when their categorical parts become numerical ones. It can also employ some
efficient numerical clustering algorithms such as K-means and can be easily visualized.
There’re some traditional approaches [8,10] that can map data into a new space based
on the pair-wise similarity matrix. The most important issue of data mapping is what
data property has been preserved during the mapping. Traditional techniques concern
different data properties such as the distance between each pair of data points [10] or
the neighborhood of each data point [8]. These algorithms employ complex processes
on the similarity matrix to preserve these strict properties.

We hereby propose a model to establish a data mapping for clustering and visual-
izing only for categorical data since in the proposed strategy handling the mixed-type
data is essentially handling the categorical data. The mapping is based on calculating
similarities between data points and a sample set called reference set. Mapping data
via calculating similarity is not new and nor is the concept of reference points. Our
most significant contribution is that we propose to preserve a more flexible data prop-
erty specific to the goal of clustering, i.e. the expectation of intra-cluster similarities is
higher than that of inter-cluster similarities. We find that under some conditions, which
are easily to satisfy in practice, this property can be preserved by directly treating the
similarities with points in the reference set as the image data. This simplicity makes
our mapping algorithm efficient and the preservation of the clustering property makes
it effective for clustering categorical data. Because of the existence of the reference set,
we’ll call this mapping framework R-map.

1.1 Related Works

Mapping data into a new numerical data space by calculating a similarity matrix1 is
not a new approach. Traditional techniques include Multidimensional Scaling (MDS)
[1] and Locally Linear Embedding (LLE) [8] among which Landmark MDS (LMDS)
[10] is most closed to the model proposed in this paper. The input of MDS is a distance
matrix between objects. MDS produces a coordinate vector for each object in a new
numerical space whose dimension is user-specified. This process is called embedding.
The goal of MDS is to minimize a quadratic cost function between the new embedding
coordinates and the original coordinates that created the distance matrix. Visualization
and clustering can be performed on the resulting embedding coordinates. The original
MDS technique is not appropriate for large data sets nowadays. The author of [7] com-
pared some scalable MDS approaches and the experimental results show that is more
accurate than the others with roughly the same computational cost. LMDS is efficient
because it only calculates distances to a set of data points which are called landmarks.

However, we found the operation after generating a reference set can be simpler
while keeping the effectiveness. In this paper, we propose a mapping framework that

1 Some techniques calculate a distance matrix and we won’t differentiate similarity or distance
matrix in statements since there is no essential difference between them, i.e. high similarities
are equivalent with small distances.
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directly treats the similarity matrix as the image data. The key novelty of our framework
is that we propose a new data property to preserve and demonstrate the effectiveness of
model based on a statistical foundation. Our embedding process preserves some cluster-
ing property, which is more flexible than to preserve the distance or neighborhood. This
makes our algorithm much simpler and more efficient than the traditional ones while
the effectiveness of clustering after the mapping isn’t worse but even better under some
conditions which will be analyzed in Section 2.1.

2 The R-Map Framework

The main steps of R-map are very simple:

Given a categorical data set and a similarity measure:
Step 1: Randomly sample r data points as a reference set.
Step 2: Calculate the similarity between each data point and reference point to

compose a similarity matrix.
Step 3: Apply PCA on the similarity matrix (optional), then clustering and

visualization.

Some issues should be resolved to accomplish this algorithm such as what kind of
categorical data is appropriate for this framework, how does the measure selection im-
pact the framework and what is the detailed sampling strategy? We’ll discuss these three
issues in the following subsection.

2.1 Analysis of the Framework

Some notations used in this paper are summarized as follows.

SYMBOL DESCRIPTION SYMBOL DESCRIPTION
Aj /A′

j the j-th attribute/image attribute n number of data tuples
ti/t′i the i-th data object/image data object m number of attributes (dimension)
Dk domain of attribute Ak dmax maximum domain size
dkl the l-th value of domain Dk c number of clusters
Cj the j-th cluster p number of major principal components
D the categorical data space

Issue 1: Definition of Categorical Cluster. The R-map framework is based on a
specific cluster definition. The clusters C1, C2, . . . , Cc in categorical data are defined in
a generative way, i.e. we assume the data points in the categorical space are generated
by a set of discrete distributions. Formally, let Mk(pk) denote a discrete distribution
over Dk. pk = (pk1, pk2, . . . , pk|Dk|) are the probabilities of taking the values in Dk

and we have
∑|Dk|

l=1 pkl = 1, where pkl ≥ 0.

Definition 2.1 (Cluster). A cluster Cj is generated from a set of discrete distributions:
M j = (M j

1 (pj
1), M

j
2 (pj

2), . . . , M
j
m(pj

m)), (j = 1, 2, . . . , c). Therefore, the distribu-
tion of the whole data space is a mixture of M j: c1M

1 + c2M
2+, . . . , +ccM

c, where
ck is the mixture coefficient means the probability of a data object belonging to the k-th
cluster.
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Note that the discrete distribution is general and it can be any specific discrete distri-
bution such as multinomial distribution. Moreover, the distributions on each attribute
needn’t be independent to each other. Therefore, most categorical data that have clus-
ters satisfy this assumption. Suppose data objects t1, t2 are generated from M i and t3
is generated from M j . Following Definition 2.1, on the k-th dimension t1k, t2k can be
viewed as generated from a subspace cluster M i

k(pi
k) and t3k from M j

k(pj
k).

Issue 2: The Property Preserved in the Mapping. As mentioned in Section 1, a data
object should be more similar to the objects in the same cluster than to those out of this
cluster. We formulate this clustering property as an inequation between the expectation
of intra-cluster and inter-cluster similarities (denoted as s(•)).

Definition 2.2 (Clustering Property)
For ∀Ci, Cj , i �= j, t1, t2 ∈ Ci, and t3 ∈ Cj , we have

E[s(t1, t2)] ≥ E[s(t1, t3)] (1)

This definition is a reasonable assumption because it is nearly impossible to do dis-
tance/similarity based clustering analysis if the intra-cluster and inter-cluster distances/
similarities can not be differentiated. We claim that this property can be preserved by the
mapping of our framework, as is formalized in Lemma 1, if we use the Simple-Match
(SM) similarity defined as

SM(t1, t2) :=
∑m

k=1(δ(t1k, t2k)), where δ(a, b) := {1 a=b
0 a�=b.

Lemma 1. Suppose ox is a reference object each attribute of which is uniformly and
independently generated from the attribute domains respectively. The definition of t1,2,3

follows Definition 2.2. Denote random variable X1 = SM(t1, ox), X2 = SM(t2, ox)
and Y = SM(t3, ox). We have E[(X1 − X2)2] ≤ E[(X1 − Y )2], when i �= j.

Proof: We omit the proof due to lack of space.2.
Note that the squared Euclidian distance between two objects t′i, t

′
j in IDM is

∑r
k=1[IDM(i, k) − IDM(j, k)]2. Followed by Kolmogorov’s Strong law of Large

Numbers, it is consistent to E(Xi − Xj)2 as r increases, where Xi and Xj denote the
random variables that generates ti, tj ∈ D. Lemma 1 deems that the objects in the same
cluster with high SM similarities in the original data will have small squared Euclid-
ian distances in the image data, i.e. the clustering property defined in Definition 2.2 is
preserved.

Issue 3: Sampling Strategy and Similarity Measure. As analyzed above, the key
point of the R-map is the inequality between the expectation of intra-cluster similar-
ity and inter-cluster similarity and we’ve demonstrate this inequality will be preserved
using a simple distance definition and a reference set uniformly sampled from the back-
ground data space. Now we come to discuss the impact of different sampling strategies
and different similarity measures.

If we directly sample the reference set from the original data points. Such sampling
will cause dependence on the attributes of the reference points. But the impact of this

2 The pdf file of this proof can be found in the web-page:
http://myfreefilehosting.com/f/b909a376b9 0.04MB
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dependence is not negative. Actually, under most conditions, the dependence among
the attributes makes the SM values between intra-cluster data points smaller and those
between inter-cluster data points larger. The inequation in Lemma 1 will not be signifi-
cantly impacted. Other similarity measures such as normalized simple match or Jaccard
coefficient will not change the distance orders between objects, so the inequality can
also be preserved. We have practically examined these discussions and the clustering
effectiveness is similar to these different settings. We sample the reference set directly
from the data points and use the SM measure in our experiments. Other sampling strate-
gies and similarity measures are viewed as optional settings of our model.

3 Experimental Evaluation

The experiments are performed on a PC platform, with a Pentium(R) 4 3.2GHz CPU,
and 1Gb Ram. The procedure of our framework’s execution environment is Matlab(R)
R14. We use numerous clustering evaluation measures for the clustering results includ-
ing Accuracy (AC), Precision (PR), Recall (RE), Information Gain (IG), Normalized
Mutual Information (NMI) and Adjusted Rand Index (ARI).

3.1 Experiments for Effectiveness Comparison with Related Works

In this part we experiment with real life categorical data sets taken from the UCI ma-
chine learning repository [3] for a overview of the effectiveness and efficiency compari-
son. There are totally 22 categorical data sets in the MLDB of the UCI machine learning
repository. We remove some redundant ones and some have more than 1000 data objects
for simplicity. On the remaining 14 data sets, we apply K-means clustering after vari-
ous data mapping strategies including R-map, LMDS and LLE. We also compare our
framework with K-modes clustering algorithm [4] and spectral clustering [2]. Since K-
modes algorithm simulates K-means in the categorical data and spectral clustering is a
clustering strategy based on pairwise distance matrices, these comparisons make sense.

The results of this part are shown in Figure 1 and Figure 2 using scatter plots. Fig-
ure 1 reveals the comparison of clustering effectiveness. Each sub-figure reveals the
comparison between our framework and a related work (labeled on the Y-axis). Dif-
ferent marker types represent different clustering evaluation measures and each marker
type has 14 instances which represent the results on 14 data sets. R-map outperforms
LLE, spectral clustering and K-modes on these data sets and obtains similar effective-
ness to LMDS. Figure 2 compares the efficiency of algorithms. The values are loga-
rithmic because some relate works cost so long time that the scatter points assemble
onto the Y-axis. In this scatter figure, different marker types represent different related
algorithms and each point with the same marker represents a data set. R-map outper-
forms all the related algorithms on efficiency. It seems that only LMDS is comparable
to R-map on clustering these data sets on effectiveness, so we’ll pay more attention to
this algorithm in the following parts.

3.2 Experiments for Scalability on Synthetic Data Sets

Since our model is most related to LMDS and the computational complexity with
these two works can not be exactly compared, we empirically compare their scalability
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Fig. 1. Clustering effectiveness comparison:spec
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Fig. 4. Visualization for Mushroom. Note that
the coordinates values are directly generated
from the procedures and normalization on them
doesn’t significantly affect the visualization ef-
fectiveness

using synthetic data. We generate the synthetic data sets by a data generator imple-
mented by ourselves, which can generate categorical data sets with optional n, m, dmax

and c. The generation of clusters follows Definition 2.1. We compare the scalability of
the mapping process between R-map and LMDS. Since the synthetic data sets can have
optional n, m, dmax and c. We fix three of them and increase the remaining one. The
average time costs of 50 rounds on each step are recorded to exam the scalability of
our framework on each data scale. The results are shown in Figure 3, where each sub-
figure is the scalability performance on one data scale (labeled on X-axis). The real line
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represents our framework and the dashed line represents the LMDS as a comparison.
We find R-map outperforms LMDS especially on the number of data objects.

3.3 Experiment for Visualization

Data visualization uses the first three Principle components of the image data space and
the experiment data is the well-known Mushroom data set from MLDB. The left plot of
Figure 4 is the visualization of Mushroom data using R-map. We can see there are about
20 clusters from this visualization. This number is exactly the cluster number on which
most distance based clustering approaches get excellent results. Moreover, the cluster
sizes also accord with the results proposed by those previous clustering approaches such
as reported in [9]. Compared with the right plot of Figure 4 which is visualization based
on LMDS, R-map has better cluster aspects.

4 Conclusions

In this paper we introduce a simple and effective framework to map categorical data
into a numerical space for visualization and clustering, which has theoretical guaran-
tee and empirical demonstration. The key point of our model is a flexible data property
which is preserved during the mapping, i.e. the difference between the inter-cluster sim-
ilarities and the intra-cluster similarities. The theoretical analysis demonstrates that this
property will be preserved if the data is categorical data, the clusters at which can be
modeled by a set of discrete distributions.
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60421001.
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Abstract. Obtaining sufficient competitive intelligence is a critical factor in 
helping business managers gain and maintain competitive advantages. Patent 
data is an important source of competitive intelligence that enterprises can use 
to gain a strategic advantage. Under existing approaches, to detect changes in 
patent trends, business managers must rely on comparing two patent analysis 
charts of different time periods, it requires human effort and time. In this paper, 
we propose a patent trend change mining (PTCM) technique that can identify 
changes in patent trends without the need for specialist knowledge. We apply 
the PTCM approach to Taiwan’s semiconductor industry to discover changes in 
four types of patent trends: the R&D activities of a company, the R&D activi-
ties of the industry, company activities in the industry and industry activities 
generally. The change mining approach generates competitive intelligence to 
help managers develop appropriate business strategies based on their findings.  

Keywords: change mining, patent trend, competitive intelligence. 

1   Introduction 

Technological innovation is one of the critical success factors in business today. By 
analyzing patent data, managers can evaluate and understand trends in the develop-
ment of technologies and plan suitable strategies [10]. Competitive intelligence helps 
enterprises measure the competition’s potential, technological capabilities, and inno-
vation performance in order to develop strategies for increasing revenue.  

Changes in patent trends represent movements in the direction of technological in-
novation.  It is important for business managers to be sensitive to changes in patent 
trends. There has been a great deal of research on patent data, and several applications, 
have been developed [1, 2, 3, 4, 5, 8]. Most of these studies/tools use statistical meth-
ods to analyze patent data in a specific period, and represent patent trends by visualiza-
tion graphs and tables. However, these tools cannot express changes in patent trends 
over two time periods. In practice, experts usually identify changes in patent trends by 
comparing charts/tables for different periods, this requires human effort and time.  

To capture changes in patent trends in different periods more efficiently and effec-
tively, we propose a novel technology that can identify such changes without the need 
for specialist knowledge, and report the changes to analysts by ranking the degree of 
change. We combine association rule change mining with patent indicators to develop 
a technique called patent trend change mining (PTCM), which transforms patent 
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documents into a rule format and then identifies frequent rules among the rules. The 
frequent rules represent a patent trend in a specific period; thus, we can observe 
changes in patent trends by comparing the frequent rules of two time periods. In this 
study, we divide patent trends into four levels for analysis, and mine changes in dif-
ferent levels to help managers develop appropriate business strategies. 

The remainder of this paper is organized as follows. In the next section, we review 
literature relevant to this research. Section 3 provides an overview of our PTCM tech-
nique. In Section 4, we describe the methods for mining changes in patent trends. In 
Section 5, we investigate changes in patent trends in Taiwan’s semiconductor indus-
try. Then, in Section 6, we present our conclusions.  

2   Background and Related Work 

- Association rule mining 
Association rule mining is a data mining technique used in various applications, 

such as market basket analysis. The technique searches for interesting associations or 
relationships among items in a large data set. Different association rules express dif-
ferent regularities that exist in a dataset; and two measures, support and confidence, 
are used to determine whether a mined rule is a regular pattern [6]. In this work, we 
apply association rule mining to patent data to find patent patterns (rule patterns). 

- Patent analysis 
Several software tools and services have been developed in the patent field [1, 5]. 

These tools analyze patents by classification, clustering, and statistical methods to 
find the relationships between patents with similar content. The results of patent 
analysis are usually presented as graphs or tables. Although existing patent analysis 
tools can provide various results, analysts still need to compare the results of two 
periods to identify changes over time. The motivation of this study is to discover 
changes in the patent trends of different time periods without the need for expert 
knowledge, and report changes to business managers by ranking the degree of change. 

- Patent Indicators 
Since the value of patents is rarely observable, scholars and research organizations 

have defined a number of patent indicators to determine the value of patents [2, 4, 8, 
11]. The common patent indicators are described below [2, 4, 8, 11]: 

Patent age: the age of a patent. 

Originality: it indicates the diversity of cited patents, i.e., the patents cited by the 
target patent. The measure is based on the distribution (ratio) of cited patents over 
classes.  

 patents. cited of classes ofset   the:,
patents cited ofNumber 

j Class  tobelonging patents cited ofNumber 

1 2

Bj

BSj

j

SB

ByOriginalit

=

−= ∑
∈  

(1) 

Generality: it indicates the diversity of citing patents, i.e., the patents that cite the 
target patent. The measure is based on the distribution (ratio) of citing patents over 
classes. 
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Technology Cycle Time (TCT): it is the median age of the patents cited by the tar-
get patent. It is a measure of technological progress. 

3   Patent Trend Change Mining 
Technique 

As shown in Fig. 1, the proposed patent 
trend change mining (PTCM) technique 
comprises four components: a patent 
fetcher, a patent transformer, a patent 
indicator calculator, and a change detec-
tion module.  

Patent fetcher: The patent fetcher 
module uses a keyword search strategy 
to retrieve patents for analysis. Patent 
fetcher acquires patent documents from 
the patent website and stores them into 
the patent document pool.  

Patent transformer: This module 
transforms the raw patent document 
from HTML format into a text format, 
stores it in the database, filters out ir-
relevant content, and extracts required 
patent content, including the patent 
number, International Classification (IPC) et al. The extracted content is stored in the 
database for further processing to compute patent indicators. 

Patent indictor calculator: This module calculates the patent indicators for each 
patent to determine the patent’s value. In this study, we use the citation index (CI), 
originality, generality and technology cycle time (TCT) as indicators to analyze patent 
documents.  

4   Detecting Changes in Patent Trends 

4.1   Patent Trend Mining 

Before describing the patent trend mining module, we define four kinds of patent 
trends and classify them into two levels for analysis: company-level and industry-
level trends. 

♦ company-level patent trends: these trends provide information about a company’s 
technological development. 

Fig. 1. An overview of the PTCM technique 
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Trends in the R&D activities of a company: these changes can be determined by 
comparing the relations between technological fields (IPC) and four patent indicators 
over two time periods. 

♦ industry-level patent trends: these trends provide information about the technologi-
cal development of an industry. 

Trends in the R&D activities of an industry: these changes can be determined by 
comparing the relations between the technological fields (IPC) and four patent indica-
tors over two time periods. 

Trends in the technological competitiveness of companies: we identify these 
changes by comparing the relations between a patent’s assignee (company) and the 
four patent indicators over two time periods; the patent indicators reflect the techno-
logical competitiveness of a company. 

Trends in the technological competitiveness of companies in a specific technologi-
cal field: these changes can be observed by comparing the relations between both a 
patent’s assignee and technological fields (IPC) and four patent indicators over two 
time periods. 

We apply association rule mining to patent data to identify patent trends (frequent 
association rule patterns). The mined frequent patterns can be regarded as trends ex-
tracted from patent documents.  

4.2   Patent Trend Comparison 

After the patent trends of different time periods have been discovered, the trends (in 
rule format) are compared to identify changes. 

Before we describe the rule matching process used to discover changes in patent 
trends, the types of change should be clarified. 

Types of change: 
Based on previous research [7, 9], we define four types of change in patent trends. 

(1) Emerging patent trends: an emerging patent trend is a rule pattern whose support 
increases significantly from one dataset to another. 

(2) Unexpected changes in patent trends: unexpected changes in patent trends can be 
found in newly discovered patent trends whose consequent parts of the rule pat-
terns are different from those of the previous patent trend. 

(3) Added patent trends: an added patent trend is a new rule, i.e., a rule not found in 
previous rule patterns.  

(4) Perished patent trends: a perished patent trend is the opposite of an added rule, as 
it is only found in previous rule patents. 

Rule matching: 
We use rule matching method to compare the patent trends of different time  

periods [7, 9].  

Identifying the type of change: 
Table 1 shows the measures used to determine each type of event change; the 

measurements are adopted from [7, 9]. The four types of event change can be classi-
fied according to the two judged factors, i.e., the similarity measure Sij and the  
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difference measure ∂ij, and three predefined thresholds: θem for emerging patterns, θun 
for unexpected changes, andθa/p for added and perished rules (θem >θun >θa/p). The 
process of identifying the types of changes follows a pre-determined sequence.  

4.3   Evaluating the Degree of Change  

As a large number of changes occur in a competitive business environment, managers 
need to focus on the most important changes. To do this, it is necessary to evaluate 
the degree of change, and rank the changed rules according to their importance.  

Table 1 also shows the simple formulations for measuring the degree of change. 
The formulations, which are adopted from [7], measure the degree of change. After 
calculating the degrees of change, the most important changes are reported to business 
managers, who then analyze the changes in patent trends over different time periods 
and use the information to understand the changing business environment and plan 
appropriate strategies. 

Table 1. Measurement and degree for each type of change 

Type of Change  ( t
ir ,

kt
jr +

) Measurement Degree of Change 

Emerging Pattern 

ijS  ≥ 
emθ  ( ijijij QCS ×= ), 

ijC : similarity degree of the conditional parts  

ijQ : similarity degree of the consequent parts. 

( ) ( )
( )i

t

i
t

j
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+

×
−  

Added Patent trend paj /θς <  (
ijij Smax=ς ) ( ) ( )j

kt
j rSupport +×−ς1  

Perished Patent trend pai /θς <  (
ijji Smax=ς ) ( ) ( )i

t
i rSupport×−ς1  

5   Changes in Patent Trends in Taiwan’s Semiconductor Industry 

We used a keyword-based approach to select a subset of the Taiwan semiconductor-
related patents from the USPTO patent database for the period 2001-2004. The 
dataset contains 4,310 unique patents is divided into two periods. The first part 
contains 2,352 patent documents for the period 2001 to 2002, while the second part 
contains 1,958 patent documents for the period 2003 to 2004. Table 2 lists some 
changes in patent trends in Taiwan’s Semiconductor Industry between 2001 and 
2004. 

- Changes in the R&D activities of Taiwan Semiconductor Manufacturing Co. Ltd:  
From patent trend (1) in Table 2, we observe the rapid growth (57%) of the company 
in terms of high originality in H01L29/788. This information shows that, during the 
period under study, TSMC exhibited a high degree of inventiveness in the technologi-
cal field H01L29/788. 
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- R&D activities of Taiwan’s semiconductor industry: 
In Table 2, the emerging patent trend (2) shows that companies in the industry in-
vested in H01L29/76 consistently throughout the period under study. The high growth 
rate (131%) indicates that companies focused their R&D activities on the technologi-
cal field. However, the low CI indicates that the companies lacked pioneer patents and 
basic patents in these technological fields. 
- Technological competitiveness of companies in Taiwan’s semiconductor industry: 
The added patent trends (4) shows new assignee of semiconductor patents, which 
means that new company (AOC) entered the semiconductor industry during 2003-
2004.  
- Technological competitiveness of companies in specific technological fields: 
The perished patent trend (5) shows that UMC’s technological competitiveness with 
medium CI in H01L21/336 declined, which may imply a change in UMC’s innovative 
activities.  

Table 2. Some changes in patent trends in Taiwan’s Semiconductor Industry (2001-2004) 

Patent trend Change degree 

(1) Emerging patent trends IPC=H01L29/788  Originality= High 0.57 

(2) Emerging patent trends IPC=H01L29/76  CI= Low 1.31 

(3) Unexpected changes in 
patent trends 

2001-2002: 
Assignee=Siliconware Precision Industries Co., Ltd.  Originality= High 
2003-2004: 
Assignee=Siliconware Precision Industries Co., Ltd.  Originality= Low 

0.03 

(4) Added patent trends Assignee=Au Optronics Corp.  CI= Low 0.04 
(5) Perished patent trends IPC=H01L21/336, Assignee= United Microelectronics Corp.  CI= Mid 0.02 

6   Conclusions  

Conventional patent analysis approaches and tools are based on statistical methods 
and analyze patent data in a given time period. Patent analysts discover changes in 
patent trends by comparing two patent analysis charts belonging to different periods. 
The comparison requires human effort and time. Moreover, the degrees of change can 
not be discovered intuitively; they must be calculated and ranked by analysts. We 
have proposed a patent trend change mining (PTCM) technique that captures changes 
in patent trends without the need for specialist knowledge and reports changes to 
business managers by ranking the degrees of change. We applied the proposed PTCM 
to Taiwan’s semiconductor industry for the period 2001-2004 to discover changes in 
four types of patent trends. Competitive intelligence about business is derived by an 
automatic change mining approach that business managers can modify and develop 
appropriate strategies according to their findings. 
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Abstract. In this paper we address a novel sentiment analysis task of
rating inference. Previous rating inference tasks, which are sometimes
referred to as “seeing stars”, estimate only one rating in a document.
However reviewers judge not only the overall polarity for a product but
also details for it. A document in this new task contains several ratings
for a product. Furthermore the range of the ratings is zero to six points
(i.e., stars). In other words this task denotes “seeing several stars in a
document”. If significant words or phrases for evaluation criteria and
their strength as positive or negative opinions are extracted, a system
with the knowledge can recommend products for users appropriately. For
example, the system can output a detailed summary from review docu-
ments. In this paper we compare several methods to infer the ratings in a
document and discuss a feature selection approach for the methods. The
experimental results are useful for new researchers who try this new task.

Keywords: Sentiment analysis, Rating inference, Review mining.

1 Introduction

As the World Wide Web rapidly grows, a huge number of online documents are
easily accessible on the Web. Finding information relevant to user needs has
become increasingly important. The most important information on the Web is
usually contained in the text. We obtain a huge number of review documents
that include user’s opinions for products. Buying products, users usually sur-
vey the product reviews. More precise and effective methods for evaluating the
products are useful for users. Many researchers have recently studied extraction
and classification of opinions [6, 10, 11, 12, 14, 15].

There are many research areas for sentiment analysis; extraction of sentiment
expressions, identification of sentiment polarity of sentences, classification of
review documents and so on. In this paper we address a new sentiment analysis
task of review documents. Most of existing studies for classification of review
documents have handled two polarities: positive and negative opinions [10, 12].
On the other hand, several researchers have challenged not only p/n classification
but also rating inference, namely seeing stars in a review document [8, 9]. We
also handle a rating inference task in this paper.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 1006–1014, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The previous studies, p/n classification and rating inference, contain a prob-
lem; a document includes only one polarity (or stars). They did not discuss a task
handling several polarities in a document. However, reviewers judge not only the
overall polarity for a product but also details for it. For example, they are “per-
formance”, “user-friendliness” and “portability” for laptop PCs and “script”,
“casting” and “music” for movies.

In this paper we deal with a document containing several sentiment polarities.
It is a new task for sentiment analysis: seeing several stars in a document. This
is a primary experiment for the task. To estimate several ratings in a document
is beneficial for users. Furthermore it is important for sentiment analysis tasks
to extract words or phrases that relate to each polarity (evaluation criteria).
Zhuang et al. have reported a method of movie review mining and summariza-
tion using the discovered p/n information [15]. If significant words or phrases for
an evaluation criteria and their strength as positive or negative opinions are ex-
tracted, a system with knowledge that consists of them can recommend products
for users appropriately. For example, the system can output a detailed summary
from review documents: it generates not only a simple summary “This movie is
good”, but also a more detailed summary “The story of this movie is excellent
(five stars), but the music might be substandard (two stars)”.

In this paper we compare several methods for the rating inference task. Also
we compare some feature sets for SVR in this task and discuss solutions for the
improvement of accuracy. The experimental results are useful for new researchers
who try this new task.

2 Task

There are many review documents of various products on the Web. In this paper
we handle review documents about game softwares. Figure 1 shows an example
of a review document. The review documents consist of evaluation criteria, their
ratings, positive opinions, negative opinions and comments for a product. The
number of evaluation criteria is 7: “Originality”, “Graphics”, “Music”, “Addic-
tion”, “Satisfaction”, “Comfort”, and “Difficulty”. The range of the ratings, e.g.
stars, is zero to six points.

We extract review documents from a Web site1. The site establishes a guide-
line for contributions of reviews. In addition, the reviews are checked by the
administrator of the site. As a result, the reviews unfitting for the guideline are
rejected. Therefore the documents on the site are good quality reviews.

3 The Methods and Features

3.1 The Methods

In this section we describe 4 methods, which are SVM, SVR, Maximum entropy
and a similarity based method, for inferring the ratings in a document.
1 http://ndsmk2.net

http://ndsmk2.net
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Evaluation criteria and their values:
           Originality: 2 pts, Graphics: 4 pts, ...

Positive opinions are written in this area

Negative opinions are written in this area

Comments are written in this area

Fig. 1. An example of a review document

SVM and SVR. SVMs are a machine learning algorithm that was introduced
by [13]. We expand the binary SVMs into a multi-classifier by using one-
versus-one methods. Also we employ linear support vector regression (SVR).
This is one of straightforward methods for this task. Related studies also used
SVR for the rating inference task. We use the SVMlight package2 for training
and testing, with all parameters set to their default values [4].

ME. Maximum entropy modeling (ME) is one of the best techniques for natural
language processing [1]. In this paper we use Amis3, which is a parameter
estimator for maximum entropy models. We estimate parameters by using
the generalized iterative scaling algorithm.

SIM. The 4th method is based on a similarity measure. We use the cos measure
for the similarity calculation as follows:

sim(trx, tey) =
∑N

i=1 xi · yi
√∑N

i=1 x2
i ×

∑N
i=1 y2

i

(1)

where tr and te are a document in training data and a document in test
data respectively. xi and yi are the value of a word i in tr and tr re-
spectively. Next we extract documents of which the similarity exceeds a
threshold. For the extracted documents, we compare the average values of
each evaluation criterion. Finally we output the values as the result of the
method.

2 http://svmlight.joachims.org
3 http://www-tsujii.is.s.u-tokyo.ac.jp/amis/index.html

http://svmlight.joachims.org
http://www-tsujii.is.s.u-tokyo.ac.jp/amis/index.html


Seeing Several Stars: A Rating Inference Task 1009

3.2 Feature Selection

For the features of the methods, we use words appearing in positive and negative
opinions in review documents. We do not use words in comment areas because
the accuracy with them in a preliminary experiment was lower than that without
them. Here we distinguish words in the positive opinion areas and the negative
opinion areas. In other words, for a word wi, the word in the positive opinion
areas is wp

i and the word in the negative opinion areas is wn
i . A vector of an

evaluation criterion y for a document dx is as follows:

dxy = {wp
1 , wp

2 , ...., wp
j , wn

1 , wn
2 , ...., wn

j }

where j is the number of words appearing in review documents. We select words
belonging to “noun”, “verb”, “adjective” and “adverb”. We use ChaSen for the
morphological analysis4. The value of the features is based on the word frequency.

Next we consider two extensions for the feature selection. One approach is to
use more complex information. In this paper, we use a word sequential pattern
between two words in each sentence, namely cooccurrence. In the pattern ex-
traction, we allow a skip between words. We extract word pairs within a length
that we define. For example, we obtain the patterns ”Fighting::WiFi, Fight-
ing::excited, Fighting::me, WiFi::excited, WiFi::me, excited::me” from a sentence
”Fighting with WiFi excited me.”

Another approach for improvement of the accuracy of a classifier is to select
effective and significant features for the feature space. Furthermore it seems un-
likely that all words in a document contribute to all evaluation criteria. In other
words some words that are significant to estimate the rating of an evaluation
criterion exist in a review document. To extract the words, we compute a confi-
dence measure of each word. The confidence measure in this paper is variance of
words concerning each evaluation criterion. We measure whether a word appears
frequently with the same point regarding an evaluation criterion. It is computed
as follows:

var(wcj ) =
1
m

n∑

i=0,w∈di

(real(di, cj) − ave(wcj ))2 (2)

where cj is an evaluation criterion. m and n are the document frequency (df) of
a word w (or a word pair) and the number of documents respectively. real(di, cj)
and ave(wcj ) are the actual rating of cj in di and the average score of w for cj .
We use w of which the var is a threshold or less.

Furthermore we apply two conditions to the feature selection.

Frequency (F). The frequency of a word is n times or more.
Evaluation value (E). If a word w appears in “positive opinion area”, the

actual rating of the evaluation criterion have to be 3 points or more. If a word
w appears in “negative opinion area”, the actual rating of the evaluation
criterion have to be 3 points or less.

4 http://chasen.naist.jp/hiki/ChaSen/

http://chasen.naist.jp/hiki/ChaSen/
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4 Experiment

In this section, we explain datasets and criteria for the experiment first. Then
we evaluate our method with a dataset and discuss the experimental results.

4.1 Dataset and Criteria for the Experiment

We evaluated this new sentiment analysis task with a dataset that consists of
1114 review documents that consist of different kinds of game softwares such
as RPGs and action games of Nintendo DS, namely a mixed dataset. In this
experiment we evaluated the dataset with 5-fold cross-validation.

In this experiment, we evaluated the outputs of each method with the follow-
ing criteria: the mean squared error (MSE) between actual ratings and outputs
of each method, the standard deviation (SD) of the MSE, and the accuracy .
The mean squared error (MSE) is computed as follows:

MSEj =
1
n

n∑

i=1

(out(dij) − real(dij))2 (3)

where i and j denote a review document and an evaluation criterion in the
document respectively. out and real are the output of a method and the actual
rating in a document respectively. We converted the outputs of the SVR and
the similarity based method into integral value with half adjust because it was
continuous. The MSE is one of important criteria for the rating inference task
because not all mistakes of estimation with the methods are equal. For example,
assume that the actual rating of a criterion is 4. In this situation, the mistake
of estimating it as 3 is better than the mistake of estimating it as 1.

In this experiment, we used two types of accuracy. The first accuracy is simple
accuracy, that is to say the correspondence between real ratings and outputs. The
second one is PNN accuracy (Positive-Neutral-Negative). For the PNN accuracy,
we defined 4 and 5 points as “Positive”, 3 points as “Neutral” and 0, 1, 2 points
as “Negative”.

4.2 Results

First we compared the methods with bag-of-words (Bows) features only. We
ran the SVR and SVM with all default parameters in this experiment. For the
Maximum entropy we estimate parameters by using the generalized iterative
scaling algorithm.

Table 1 shows the result. “All-3” in the table is the MSE in the assumption
that the ratings of all criteria are 3. “Ave” is the MSE computed from actual
ratings and average values of each evaluation criterion in the training data.
The average values are discretized for the MSE computation. These MSEs are
baselines for this task. As you can see, all methods outperformed the baselines5.
5 We evaluated the Naive Bayes classifier and C4.5 with the same dataset. However,

the MSEs of them were larger than the average-based baseline.
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Table 1. Comparison with baselines

All-3 Ave SVR SVM ME SIM

MSE Originality 1.26 1.54 0.88 0.91 0.98 1.03
Graphics 1.03 0.85 0.74 0.78 0.82 0.84
Music 1.21 0.79 0.70 0.69 0.75 0.77

Addiction 1.89 1.89 1.21 1.54 1.44 1.45
Satisfaction 1.97 1.77 1.22 1.54 1.57 1.42

Comfort 1.29 1.29 1.13 1.24 1.35 1.27
Difficulty 1.74 1.17 1.22 1.23 1.35 1.18
Average 1.48 1.33 1.02 1.13 1.18 1.14

SD 0.17 0.24 0.12 0.19 0.19 0.20

Accuracy 26.60 37.69 41.37 41.76 40.23 39.47

PNN Accuracy 26.60 51.98 57.41 58.43 57.05 55.71

Table 2. The effectiveness of var

var 0.25 0.5 0.75

MSE (Ave) 0.99 0.99 0.99

MSE (SD) 0.12 0.12 0.12

Accuracy 41.40 41.59 41.56

PNN Acc 57.49 57.49 57.46

In this experiment, the SVMs produced the best accuracy. However the MSE
of the SVR was the smallest of them. The SD of the SVR was also small. As a
result, we arrived at the conclusion that the SVR was the most suitable in this
experiment because the MSE is the most important criterion in this task.

Next we compared the results concerning the extensions for the feature se-
lection, namely word sequential patterns and a confidence measure var based
on the variance. In this experiment, we used the SVR only for the evaluation.
Here we applied the extension with var to word sequential patterns only. Table
2 shows the comparison of the value of var. In this experiment, the length for
the pattern extraction was 4. The value of the condition of the frequency (F) in
Section 3.2 was 16. Table 3 shows the comparison of the length for the pattern
extraction. The value of the var was 0.5. As you can see, there is no difference
in the MSE and the accuracy.

Here we need to discuss a problem for this task. In this task, there is a possi-
bility that humans even can not infer a rating in a document because a document
contains many evaluation criteria. In other words, words or phrases for an evalua-
tion criterion do not exist in a document occasionally. Therefore we inquired into
30 documents selected from review documents randomly. We judged whether we
could infer each criterion in the documents or not. The criterion of the judg-
ment was whether the document contained words or phrases for an evaluation

6 Although we compared several conditions of the frequency (F) in this experiment,
there is no difference in the MSE and the accuracy.
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Table 3. The effectiveness of the patterns

Length 1 2 6

MSE (Ave) 1.02 1.00 0.99

MSE (SD) 0.12 0.12 0.13

Accuracy 41.39 41.39 41.46

PNN Acc 57.08 57.34 57.26

criterion or not7. As a result, approximately 75% of all criteria could be inferred
by humans. We think that this is one reason that the accuracy was low. However,
the judgment of the possibility of inference was examined by one test subject
only. We need to discuss the reliability of the judgment process with some test
subjects by using a concordance rate such as the Kappa coefficient [2].

4.3 Discussion

In this section we discuss this task on the basis of the experimental results. The
accuracy in the experiment was insufficient; approximately 41% for the 5-fold
cross-validation. These results show the difficulty of this “seeing several stars”
task (6 grades for 7 criteria). We need to discuss the improvement of the accuracy
and the MSE. We think that dictionaries obtained from opinion extraction or
word polarity estimation tasks [5, 6, 14] are useful to infer the ratings in our
task.

In this experiment, we used SVR to estimate the ratings in a document. The
SVR is often utilized in rating inference tasks [8, 9]. However Koppel and Schler
[7] have discussed a problem of use of regression for multi-class classification
tasks and proposed a method based on optimal stacks of binary classifiers. Pang
et al. [9] have proposed a method based on a metric labeling formulation for
the rating inference problem. The results of these studies denote that SVR is
not always the best classifier for this task. We need to consider other methods
for the improvement of the accuracy. We have proposed high accuracy classi-
fiers for a p/n classification task [11]. The method incorporated three classifiers:
SVMs, Maximum Entropy and score calculation. In the movie review classifica-
tion task [10], this multiple classifier improved the accuracy as compared with
the single classifiers. Applying this method to this task is one of our future
work.

The size of the dataset in this experiment was not large: 1114 documents.
To generate a high accuracy classifier, we need a large amount of training data.
Goldberg and Zhu [3] have argued the significance of training data acquisition
from unlabeled data. As an additional experiment, we evaluated the SVR-based
method with bows and patterns based on the value of var computed from 1114

7 Here we did not consider the correctness of ratings estimated by us. For example,
if we could infer an evaluation criterion by reading the positive opinion area in the
case that the rating was 4 or 5, we judged that the evaluation criterion could be
inferred.



Seeing Several Stars: A Rating Inference Task 1013

review documents8. As a result, the accuracy increased by 11%9. We think that
one reason for the improvement is the increase of training data for the var
calculation. Therefore, we need to consider a training data extraction method.

5 Conclusion

In this paper we described a novel sentiment analysis task of rating inference.
The documents in this task include 7 evaluation criteria that contain 6 rating
points: seeing several stars in a document. As a primary experiment for this task
we inferred the ratings in each document and compared some machine learning
techniques. As a result, the support vector regression (SVR) produced the best
performance. We also explained the feature selection based on variance of words
and the use of word sequential patterns. The experimental results show that
this is a difficult task of sentiment analysis and we need more training data.
Future work includes (1) extraction of more effective features for a classifier, (2)
evaluation with other classification methods.
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Abstract. In this paper, we propose hierarchical transformations of tra-
ditional social networks based on structural expansion values of nodes
in the network. The hierarchical visualization clusters or groups nodes
with similar structural expansion values in the network. It is a comple-
ment to traditional network visualization and gives users the ability to
quickly understand how structure is distributed throughout the network.
After describing our approach, we analyze a real world social network,
highlighting the benefit of a network structure-based hierarchical trans-
formation for visual exploration of this network.

1 Introduction

It can be difficult to understand and interpret data mining results. One of the
goals of visual mining is to combine visual and analytic approaches to give users
the ability to manipulate the data and better understand the data space. When
investigating large social networks, a need exists to identify common structures
in the network. For example, if we know that an individual in the network has
an important role in the network, we may be interested in finding others that
play a similar role in the network. The role may be based on relationships to
others in the network (one or more graph invariants), as well as on features of
the individual.

In this paper, we propose an alternative view of traditional social networks
based on hierarchies that support the exploration goals of visual data mining.
While hierarchies have been used extensively for visualization of ’top down’ se-
mantic relationships, they have not been used to identify structural similarity
based on node expansion within social networks. The hierarchical visualization
clusters or group together nodes with similar structural properties in the net-
work. It is a complement to traditional network visualization and gives users the
ability to quickly understand how structure is distributed throughout the net-
work. Further, the structural similarity is based on a node’s view of the entire
network, not just it relationship to its immediate neighbors. We will illustrate
that determining this structural similarity using the traditional graph view is a
complicated visual exploration task, particularly if the network contains more
than a handful of nodes. By considering a complementary hierarchical view of
the network, the similarities are more apparent to the user.
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There are a number of important benefits to these hierarchies including a
easily interpretable clustering based on expansion vectors of structural properties
associated with network nodes, a simple construction algorithm, and interactive
exploration using both a hierarchical and a traditional graph representation of
the social network. Finally, the contributions of this paper are twofold. First,
we introduce a novel network structure-based hierarchical transformation of a
graph that is based on expansion vectors. Second, we demonstrate the utility of
this transformation by using it within a visual mining tool to explore real world
social networks.

The paper is organized as follows. Section 2 begins with a motivating example
and background that describes when our hierarchical transformation is benefi-
cial for analysis. We describe the hierarchy semantics and clusters in section 3.
Section 4 presents a brief visual mining case study using the Invenio network
mining software. Finally, Section 5 presents conclusions and final observations.

2 Social Network Background and Motivation

2.1 Social Network Graph Models

When analyzing social networks, both attribute data and relationship data are
important for gaining insight about the dynamics or patterns within the network.
Examples of social networks include blog networks, email networks, disease trans-
mission networks, and communication networks. Typically, a social network is
modeled as a graph, G = (V, E). Here, the actors are represented as a set of
n vertices or nodes, V = {v1, v2, ...vn}, and the relationships between actors
are represented as m edges or links between the nodes, E = {(vi, vj) | vi,vj ∈
V, i �= j, i ≤ n, j ≤ n}. While we can use hierarchical transformations on multi-
mode graphs with multiple node types, we will focus our discussion on uni-mode
networks with a single node type.

We further extend this representation to include attributes or features asso-
ciated with each actor or relationship. If we consider V to be a relation and
each node in V to be an instance of a tuple, then we can specify the relation as
V (vid, a1, a2, . . . , ak), where vid is the node id and a1 . . . ak is the set of attributes
associated with each node in V . We will refer to this attribute data as semantic
content since it is domain specific. Similarly, we can specify a set of attributes
for the edges E, where E is an associative relation. Here, E = {eid, b2, . . . , bl}
and each edge is an instance of a tuple in E.

We will refer to social network measures or graph invariants that are calculated
using the topology of the network as structural properties. Some well known
centrality structural properties include: (1) Degree degree(aego) - the number of
nodes directly connected to aego. (2) Betweenness between(aego) - the number
of shortest geodesic paths that pass through aego. (3) Eigenvector ev(aego) - The
number of ’important’ nodes connected to aego is used to measure the importance
of aego. We refer you to Wassermann and Faust for a detailed discussion of these
and other centrality social network metrics [5].
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2.2 Expansion Values for Centrality Measures

One extension of any centrality measure is to take the average value of the
measure for all the nodes in the network. Instead, we investigate a different
extension we call expansion. Informally, expansion is a node’s view of the network
at different distances. The view is based on the calculation of some centrality
measure of a node and its neighbors. The node has a value for the measure, the
node’s neighbors have a value of the measure, the neighbor’s neighbors have a
value of the measure, etc. Expansion aggregates this measure for all the neighbors
at a particular distance from the node to create a vector of centrality values.

To make our discussion more concrete, we will focus on a particular expan-
sion value, hop expansion, an expansion vector for node degree. The centrality
measures previously described give little insight into the connectivity patterns
or landscape of subgraphs in the network. The landscape can be seen more easily
using the hop expansion measure because it is not a single scalar value, but a
vector of values. For hop expansion, it is a measure of the number of nodes at
different distances from a particular node, aego. We refer to the evaluation of a
centrality measure at different distances from each node in the network as an
expansion vector.

Definition 1. The φ-hop level of a node aego is the set of nodes Nφ(aego) =
{v1, ..., vj} for which the shortest path between any vi ∈ Nφ(aego) and node aego

has length φ. Formally,

Nφ(aego) = {vi| distance(aego, vi) = φ ,

1 ≤ φ ≤ diam(G),
aego �= vi, vi ∈ V }

We refer to the size of this set as a node’s hop degree, Hφ(aego), where
Hφ(aego) = |Nφ(aego)|. We then define H(aego) as the set of ordered pairs
(φ, Hφ(aego)) for all hop levels up to the diameter of the network:

H(aego) = {(φ, Hφ(aego))} ∀ φ ≤ diam(G)

This measure shows us the hop expansion for a node in the network. Each
element in the vector is a pair of values, the hop level and the hop degree.
Hop expansion is an extension of degree and gives insight about the network
connectivity of the entire graph from a single nodes perspective. This measure
captures the influence of other nodes on aego. Is aego surrounded by a tightly
bound network (characterized by early large values) or does it go through several
medium increases?

The vector for each node contains up to diam(G) elements, the diameter of
the network. It has been shown that the degree distribution of social networks
is not random. Instead, many large graphs, including the web, follow a power
law distribution and have a small diameter (� 50) [1]. Therefore, the size of
H(aego) is small relative to the size of the network. Also, the calculation is
straightforward and can be completed by calculating all-pairs shortest path. We
are investigating alternative heuristics for this sparse data set.
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Definition 2. The hierarchical transformation approximation G∗ is based on
the set of hop expansion vectors for every node in the network, G. Formally,
G∗ = {H(vi) ∀ vi ∈ V }.

G∗ is the set of hop expansion values for every node in G. This transformation is
potentially very powerful. We will use this new representation as a way to create
hierarchies of the original network. We note, that while we have illustrated the
concept of ’expansion’ using ’hop expansion’, any centrality measure can be used
as the basis for the expansion vector. If the centrality measure is a real value,
then rounding and/or binning ranges of values is an option.

2.3 Motivation

Traditional visual analytics tools let us filter this network based on attribute val-
ues or centrality measure, e.g. display nodes with degree greater than 3. While
this provides some insight, we are still not able to readily identify nodes with
structural similarity based on a node’s ’view’ of the other nodes in the net-
work. If instead we had a rooted graph approximation that contained centrality
aggregate values for neighborhoods a particular distance away, nodes with the
same expansion vectors could be represented as the leaves of the same branches
of a tree. With this structural similarity information clearly illustrated, social
scientists can investigate questions such as:

– How do nodes with the most influence compare structurally and semanti-
cally?

– How does information propagate through the network?
– Do nodes with a similar structural position have similar attribute values?
– How diverse is the structural landscape of the network?

Therefore, in this paper, we propose giving users the ability to create hier-
archical transformations of the original network based on structural properties
of the nodes in the network. Each level of the hierarchy approximates a level
of neighborhood structural information. For example, suppose that we build a
hierarchy based on the hop expansion values of each node in the network. If two
nodes have the same hop expansion vector, then their overall view of the network
is similar, e.g. the two nodes have the same number of neighbors; their neighbors
have the same number of neighbors; their neighbor’s neighbors have the same
number of neighbors, etc. Using this information, sociologists can then compare
these nodes semantically by coloring based on attribute value(s). They can also
use this information to help identify potential similar community clusters in the
network.

3 Semantics of Structure-Based Hierarchical
Transformation

When investigating large social networks, a need exists to identify common struc-
tures in the network. We accomplish this by transforming the traditional node
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Fig. 1. Example - Left: social network; Right: hierarchical transformation

and edge graph representation to another meaningful structure, hierarchies that
approximate a structural property in the network. However, unlike the hier-
archies proposed in previous literature [3], these structural hierarchies take a
traditional network structural property, e.g. degree, and show the expansion of
that property across the network, where expansion is defined in Section 2. These
hierarchies can be viewed as path prefix trees containing ego network structure
vectors for each node in the network.

Once the hierarchy is built, nodes with similar structural properties are chil-
dren of the same branches. Each level of the hierarchy maps to a distance level
φ for the actors in G. Each node label in the hierarchy corresponds to a hop
degree, Hφ, of one or more nodes in G. The value associated with each key in
the tree is the number of nodes in the social network with the prefix.

We will now go through an example for hop expansion of the toy social network
illustrated in Figure 1. In that network, there are 5 nodes. The hop expansion
values for node A are H1(A) = 2, H2(A) = 2, and H(A) = {(1, 2), (2, 2)}.
Figure 1 shows the hierarchy for our example graph. For clarity of the example,
we show the node label mapping to the hop expansion vectors in the hierarchy
at the leaf nodes. The nodes have two structural paths P1(21, 22) and P2(31, 12)
in the hierarchy, p = 2. Each node in the hierarchy contains the number of nodes
with the prefix hop expansion vector. Also, since the network contains a single
connected component, the sum of key values for each path from the root to a
leaf node is n − 1. For our example, the sum of each path is 4.

For this example, nodes A, D, and E have the same structural hop expansion
vector. This means that nodes A, D, and E connect to the same number of
nodes and their respective neighbors also connect to the same number of nodes.
Therefore, A, D, and E are said to have the same ’hop expansion’ position in
the network.

4 Visual Mining Case Study

For this case study, we used a coauthorship network of scientists studying net-
works. The data set was created in 2006 and contains 1589 scientists and 2742
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Fig. 2. Interactive mapping between hierarchy and social network

edges [2]. The network is shown in Figure 3 on the left size of the window using
the Invenio visual mining interface [4]. Invenio is a visual mining tool for interac-
tive exploration of social networks. To incorporate the hierarchical transforma-
tion, we implemented a dual screen that allows a user to explore the hierarchical
representation and see the results of the exploration on the full social network.

Using the traditional social network graph layout, we can highlight nodes with
certain degree values. We then select the nodes of interest to us of a particular
degree. At that stage, we can look at the neighborhoods of our neighbors and
see how they compare. This process can continue iteratively until we feel that
the view of the network is similar for the nodes being analyzed.

The process of analysis using hierarchical transforms begins with the user
selecting an option to build a hierarchical transform of the graph using expansion
values. The user then selects the structural measure that will be used for the
transformation and the maximum distance of interest. The tool then uses the
selections, generates an expansion vector and places each node in the hierarchy
based on the vector values. We use a classical tree layout where children nodes
are positioned below their common ancestor.

The screen is then split so that both the hierarchy and the original network
can be seen. Initially, only the root of the structural hierarchy is expanded. Then
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the user can focus on different parts of the hierarchy by selecting them and seeing
where the nodes are in the original graph. For this example, we follow one branch
multiple levels and then highlight the nodes in the original graph as shown in
Figure 2. The larger nodes in the original graph correspond to the nodes with
the shown expansion subbranch. We see that the nodes with expansion vector
3 and 3 in G∗ appear in different parts of the full network G. A sociologist can
use this as evidence that like regions or structural redundancy exist in different
areas on the network. Various ’macro’ level pieces of information can be gathered
from the hierarchy. For example, if the different branches of the hierarchy have
similar hop expansion values, then information flow is relatively even thoughout
the network.

5 Conclusions and Future Directions

Hierarchies have been used to analyze networks containing parent child rela-
tionships. Here, we consider using hierarchies to understand the structural re-
lationship that exists among actors in traditional social networks. We build the
hierarchy based on graph invariants of different actors or nodes in the network.
We are then able to easily identify like structures across a network.

There are a number of future extensions including merging branches next to
each other to create larger bins of similar nodes and incorporating attribute
semantics into the hierarchy expansion process.
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Abstract. FP-growth algorithm using FP-tree has been widely studied for fre-
quent pattern mining because it can give a great performance improvement 
compared to the candidate generation-and-test paradigm of Apriori. However, it 
still requires two database scans which are not applicable to processing data 
streams. In this paper, we present a novel tree structure, called CP-tree (Com-
pact Pattern tree), that captures database information with one scan (Insertion 
phase) and provides the same mining performance as the FP-growth method 
(Restructuring phase) by dynamic tree restructuring process. Moreover, CP-tree 
can give full functionalities for interactive and incremental mining. Extensive 
experimental results show that the CP-tree is efficient for frequent pattern min-
ing, interactive, and incremental mining with single database scan. 

Keywords: Data mining, data stream, frequent pattern, association rule. 

1   Introduction 

Finding frequent patterns (or itemsets) plays an essential role in data mining and 
knowledge discovery techniques, such as association rules, classification, clustering, 
etc. A large number of research works [1], [7], [5], [3] have been published presenting 
new algorithms or improvements on existing algorithms to solve the frequent pattern 
mining problem more efficiently. FP-tree based FP-growth mining technique proposed 
by Han et. al. [5] has been found one of the efficient algorithms using the prefix-tree 
data structure. The performance gain achieved by FP-growth is predominantly based 
on the highly compact nature of FP-tree, where it stores only the frequent items in a 
frequency-descending order. During mining this item arrangement not only enables it 
to avoid global infrequent node deletion process from each conditional tree but also 
reduces the search space to find next frequent item in item list to one item. However, 
construction of such FP-tree requires two database scans and prior knowledge about 
support threshold, which are the key limitations of applying FP-tree in data stream 
environment, incremental, and interactive mining.  

The prefix-tree based approach may suffer from the limitation of memory size 
when it tries to hold whole database information. However, as the currently available 
memory size becomes more than GBytes, several prefix-tree data structures capturing 
partial (with an error bound) [4] or whole [6], [3] database information have been 
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proposed for mining frequent patterns. AFPIM [4] algorithm performs incremental 
mining mainly by adjusting the FP-tree structure. Therefore, it requires two database 
scans. CATS tree [6] is a single-pass solution but it still suffers from complex tree 
construction process. The above two limitations are well-addressed in CanTree [3] 
that captures the complete information in a canonical order of items from database 
into a prefix-tree structure in order to facilitate it for incremental and interactive min-
ing using FP-growth mining technique. Although CanTree offers a simple single-pass 
construction process, it usually yields poor compaction in tree size compared to FP-
tree. Therefore, it is storage and runtime inefficient causing higher mining time since 
the items in the tree are not stored in frequency-descending order.  

In this paper, we propose a novel tree structure, called CP-tree (Compact Pattern 
tree), that constructs a compact prefix-tree structure with one database scan and pro-
vides the same mining performance as the FP-growth technique by efficient tree re-
structuring process. Our comprehensive experimental results on both real-life and 
synthetic datasets show that frequent patterns mining, interactive and incremental 
mining with our CP-tree outperforms the state-of-the-art algorithms in terms of both 
execution time and memory requirements.  

The rest of the paper is organized as follows. Section 2 describes the structure and 
restructuring process of CP-tree. We report our experimental results in Section 3. 
Finally, Section 4 concludes the paper. 

2   Overview of CP-Tree: Construction and Performance Issues 

Let L = {i1, i2, … , in} be a set of literals, called items that have ever been used as a 
unit information of an application domain. A set X = {ij, … , ik}⊆L, (j ≤ k and 1 ≤ j, k 
≤ n) is called a pattern. A transaction T = (tid, Y) is a couple where tid is a transac-
tion-id and Y is a pattern. If X⊆Y, it is said that T contains X or X occurs in T. A 
transactional database DB over L is a set of transactions and |DB| be the size of DB, 
i.e. total number of transactions in DB. The support of a pattern X in DB is the number 
of transactions in DB that contains X. A pattern is called frequent if its support is no 
less than a user given support threshold min_sup, ∂, with 0≤∂≤|DB|. Given ∂ and a 
DB, discovering the complete set of frequent patterns in DB, say FDB is called the 
frequent pattern mining problem. 

We discuss the preliminaries and step-by-step construction mechanism of our CP-
tree here. In general, CP-tree achieves a frequency-descending structure by capturing 
part-by-part data from the database and dynamically restructuring itself after each part 
by using efficient tree restructuring mechanism. Like FP-tree, to facilitate the tree 
traversal it maintains an item list, say, I-list. The construction operation mainly con-
sists of two phases: Insertion phase, that inserts  (similar to FP-tree technique) trans-
action(s) into CP-tree according to current sort order of I-list and updates frequency 
count of respective items in I-list; and Restructuring phase, that rearranges the I-list 
according to frequency-descending order of items and restructures the tree nodes 
according to new I-list. These two phases are executed alternatively; starting with 
Insertion phase (with the first part of DB) and finishing with Restructuring phase 
(after the last insertion) at the end of DB.  
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Fig. 1 shows a transaction database and step-by-step construction procedure of CP-
tree. For the simplicity of description we assume that the Restructuring phase is exe-
cuted after inserting every three transactions and the first Insertion phase will follow 
item-appearance order of items. For simplicity of figures we do not show the node 
traverse pointers in tree, however, they are maintained in a fashion like FP-tree does. 

Fig. 1(b) shows the exact structures of the tree and I-list after inserting transac-
tions 10, 20, and 30 in item-appearance order. Since the tree will be restructured 
after every three transactions, the first Insertion phase ends here initiating the first 
Restructuring phase. The Restructuring phase, at first, rearranges the items in the I-
list in frequency-descending order then, restructures the tree according to that order 
as shown in Fig. 1(c). It can be noted that items having higher count value are ar-
ranged at the upper most portion of the tree; therefore, CP-tree at this stage is a fre-
quency-descending tree. The next Insertion phase (for transactions 40, 50, 60) will 
follow the I-list order of {a, b, d, c, e, f} instead of previous order of {c, a, e, b, d, f}. 
Fig. 1(d) and Fig. 1(e) respectively present the trees after second Insertion phase and 
Restructuring phase. The final frequency-descending CP-tree we get by performing 
the Insertion phase and Restructuring phase for last three transactions as shown in 
Fig. 1(g). 

Fig.1(h) shows a lexicographic CanTree containing more nodes with respect to CP-
tree for the same dataset. Usually databases share common prefix patterns among the 
transactions; therefore, the size of CP-tree tree is usually much smaller than its DB 
and bounded by the size of DB. Since CanTree does not guarantee of a frequency-
descending tree, generally the size of CP-tree will be smaller than that of CanTree. 
Once CP-tree is constructed, using FP-growth mining technique FDB can be mined for 
any value of support threshold ∂ by starting from the bottom most item in I-list having 
count value ≥ ∂.  

One of the two primary factors to affect the performance of CP-tree is effectively 
switching to Restructuring phase. Too much or too few restructuring operations both  
 

 
Fig. 1. Construction of CP-tree and CanTree 
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may lead to poor performance. Therefore, it can be initiated (i) after each user-given 
fixed sized slot, or (ii) when combined displacement of top-K items in I-list exceeds a 
given threshold.  

2.1   Tree Restructuring 

The other performance factor is tree restructuring mechanism. Existing Path adjusting 
method (PAM), proposed in [4], sorts nodes of a prefix-tree by using bubble sort 
technique. Any node may be split when it needs to be swapped with any child node 
having count smaller than that node. Otherwise, simple exchange operation between 
them is performed.  

We propose a new tree restructuring technique called Branch sorting method 
(BSM) that, unlike PAM, restructures by sorting unsorted paths in the tree one after 
another and the I-list in frequency-descending order. We revisit the prefix-tree of 
Fig. 1(b) constructed based on first three transactions of Fig. 1(a), where I-list order 
{c:1, a:2, e:1, b:2, d:2, f:1} is not in frequency-descendent order. To restructure the 
tree to such order, the I-list is sorted first to {a:2, b:2, d:2, c:1, e:1, f:1} order. Sec-
ondly, tree restructuring starts with the first path in the first branch say, 
{c:1→a:1→e:1}. Since the path is not sorted according to new I-list order, it is 
removed from the tree, sorted (using merge sort technique) into a temporary array 
and then again inserted into tree in {a:1→c:1→e:1} order. All unsorted paths in 
other remaining branches are processed using the same technique. If any path is 
found sorted (e.g., the path of the last branch), it is not sorted, rather merged with 
previously processed common sorted path (if any). Thus, with the processing of the 
last path the restructuring of the tree is completed and we get the frequency-
descending tree of Fig. 1(c). 

The performance of PAM largely depends on degree of displacement (DD) 
among items between two I-lists, since swapping two nodes takes bubble sort cost 
of O(n2), where n is the number of nodes between them. On the other hand, BSM 
uses merge sort approach with a complexity of O(nlog2n) (n being the number of 
items in path), therefore, the DD is immaterial on its performance. Hence, it is not 
suitable to use PAM when the DD is reasonably high. However, BSM might be a 
better candidate in such cases, since it performs almost evenly on variations of DD. 
Moreover, its sorted path handling feature reduces not only the number of sorting 
operations but also the size of data to be sorted. In summary, during tree restructur-
ing a somewhat dynamic manner can initiate the switching between two methods 
based on the value of DD. 

3   Experimental Results  

We performed comprehensive experimental analysis on the performance of CP-tree 
on several synthetic and real datasets. However, in the remaining part of this section, 
due to the space constraint we only report the results on two real dense (chess and 
mushroom) and one synthetic sparse (T10I4D100K) datasets. All programs are written 
in Microsoft Visual C++ 6.0 and run on a time sharing environment with Windows 
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XP operating system on a 2.66 GHz machine with 1 GB of main memory. Runtime 
includes tree construction, tree restructure (for CP-tree only) and mining time.  

Table 1 shows required time for both BSM and PAM on increase of DB size and 
that of sorting frequency for T10I4D100K and chess datasets. Results indicate that the 
overall restructuring efficiency notably increases on increase of DB size in BSM and 
when applied phase-by-phase (i.e. slotted) on DB in PAM. However, the combined 
approach outperforms each approach in phase-by-phase progress. Therefore, we adopt 
the combined approach where switching depends on the value of DD.  

Since it has been shown in [3] that CanTree outperforms other similar algo-
rithms say, AFPIM, CATS tree, we only state the performance comparison of CP-
tree with CanTree. To generalize the performance comparison we compare CP-tree 
with three versions of CanTree; lexicographic order (CTl), reverse lexicographic 
order (CTr), and appearance order (CTa). As shown in Table 2 for both datasets 
T10I4D100K and mushroom, restructuring time for CP-tree appears to be an over-
head. However, in spite of this cost, CP-tree significantly outperforms all versions 
of CanTree on overall runtime due to dramatic reduction in mining time. Fig. 2 
reports that CP-tree significantly outperforms CanTree on overall runtime for vari-
ous min_sup values.  

The last row of Table 2, that shows memory consumption of the algorithms, indi-
cates that size of CanTree varies on data distribution in transactions and order of 
items in tree. However, size of CP-tree is independent on such parameters and it is 
much smaller than all versions of CanTree designed in our experiments.  

Table 1. Tree restructuring approach comparison (required time in second) 

chess  T10I4D100K  

DB size (K) 
No. of slots 

(slot size = 1K)
DB size (K) 

No. of slots  
(slot size = 20K) 

Restructure 
approaches 

1 2 3 1 2 3 20 60 100 1 3 5 
BSM 1.02 2.50 4.20 1.02 3.0 6.5 5.86 28.59 65.19 5.86 24.98 60.66 
PAM 1.34 3.50 6.98 1.34 1.53 1.89 11.83 69.78 157.41 11.83 15.41 21.05 
Combined -- -- -- 1.02 1.22 1.56 -- -- -- 5.86 9.47 15.14 

Table 2. CP-tree Vs CanTree time and memory comparison 

 T10I4D100K (∂ = 0.04) mushroom (∂ = 0.15) 
 CTa CTl CTr CP-tree CTa CTl CTr CP-tree 

Construction time (s) 58.88 61.67 57.09 61.86 5.66 4.83 4.58 5.72 
Restructure time (s) -- -- -- 19.11 -- -- -- 1.89 
Mining time (s) 218.25 679.56 824.22 0.44 40.53 62.77 53.19 20.67 
Total time (s) 277.11 741.23 881.31 81.41 46.19 67.59 57.77 28.28 
Memory (MB) 14.51 14.97 14.99 14.29 0.95 0.70 0.56 0.50 
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4   Conclusions 

We have proposed CP-tree that dynamically achieves frequency-descending prefix-
tree structure with a single-pass by applying tree restructuring technique and consid-
erably reduces the mining time. We also proposed Branch sorting method, a new tree 
restructuring technique, and presented guideline in choosing the values for tree re-
structuring parameters. We have shown that despite additional insignificant tree re-
structuring cost, CP-tree achieves a remarkable performance gain on overall runtime.  
Moreover, the easy-to-maintain feature and property of constantly capturing full data-
base information in a highly compact fashion facilitate its efficient applicability in 
interactive, incremental and stream data. 
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Abstract. Entity recognition has been studied for several years with good re-
sults. However, as the focus of information extraction (IE) and entity recogni-
tion (ER) has been set on biology and bioinformatics, the existing methods do 
not produce as good results as before. This is mainly due to the complex nam-
ing conventions of biological entities. In our information extraction system for 
biomedical documents called OAT (Ontology Aided Text mining system) we 
developed our own method for recognizing the biological entities. The differ-
ence to the existing methods, which use lexicons, rules and statistics, is that we 
combine the context of the entity with the existing knowledge about the rela-
tionships of the entities. This has produced encouraging preliminary results. 
This paper describes the approach we are using in our information extraction 
system for entity recognition.  

Keywords: entity recognition, entity classification, information extraction,  
bioinformatics. 

1   Introduction 

One important problem in recent years in the field of information extraction has been 
how to classify, i.e., recognize, the found entities. A lot of research has been done in 
this area with very good results in different domains. However, in difficult domains 
such as biology there is still room for improvement.   

There are three main reasons why entity recognition (ER) is a real problem in biol-
ogy. First, it is not possible to use simple text matching algorithms since there is no 
dictionary which contains a comprehensive set of biological entities. Second, in biology 
the same word can mean different things depending upon the context. For example, 
ferritin can refer to a biological substance and a laboratory test. Third, many biological 
entities have synonyms (e.g., PTEN and MMAC1 refer to the same gene). [2] 

The methods that tackle these problems are generally based on three different ap-
proaches: lexicons, rules and statistics. Lexicon-based methods use large dictionary 
which contains as comprehensive set of relevant names as possible. Hanisch et al. [3] 
describe a lexicon-based method which uses a large dictionary of gene and protein 
names and semantically classified words that tend to appear in context with these 
names. Rule-based methods usually use part-of-speech (POS) tagger, which is con-
sidered as the most basic form of linguistic corpus annotation. The POS information 
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can be used for rule conditions along with morphological clues and indicator words. 
Tanabe and Wilbur [4] describe their rule-based method called AbGene which is 
considered as one of the most successful rule-based system [2]. Chang et al. [1] pre-
sent a statistical approach they used when creating the GAPSCORE system. They 
used syntax, appearance, morphology and context in their method by quantifying 
them for each gene and non-gene as a numerical vector. They used the vectors to train 
a classifier which was used to identify new words by scoring them based on the simi-
larities to the previously observed training set. Cohen and Hersh have written a survey 
[2] of current work in biomedical text mining in which they give more extensive 
overview of these ER methods.  

The method presented in this paper differs considerably from other ER methods as 
it does not use natural language processing techniques or other commonly used ER 
techniques. Instead, our method uses both existing knowledge and the context of  
the entity.  

The method has some characteristics of the existing methods: it reminds of the 
lexicon-based method described by Hanisch, et al. [3] as we use the knowledge base 
partly as a lexicon. Also, the use of the context has been studied in ER in some extent. 
The major difference is the way we use the lexicon and the context: instead of only 
using the dictionary for finding matching names we use also the knowledge how the 
entities are related to each other in the knowledge base. In this process the context of 
the entity plays an integral part. 

This approach has benefits compared to other ER solutions. First, it does not use 
complex natural language processing techniques making it simpler. Second, this 
method is easy to implement. And third, in the case of several entities sharing the 
same name, our approach can identify the entities more precisely. 

We have done preliminary tests in the domain of type 1 diabetes. As the knowl-
edge base is still fairly small, more complete tests cannot be done yet. However, the 
early results are encouraging as our method can recognize the entities most of the 
time if they can be found from the knowledge base. 

In order to fully understand our approach the Ontology Aided Text mining system 
OAT is described in next Section. Section 3 gives a full description of our method for 
entity recognition, which is then evaluated in Section 4. Finally, in Section 5 we give 
a conclusion. 

2   Background 

We developed Ontology Aided Text mining system (OAT) to assist biologists to 
automatically collect knowledge about biological entities relevant to their studies. The 
goal was to create a knowledge base which describes these biological entities and 
their relationships to one another. By presenting the relationships between the entities 
the knowledge base can be used for finding interesting paths from one entity to an-
other making the knowledge usable for example for drug discovery. Figure 1 shows 
an example of the knowledge that can be found from the OAT knowledge base. 

The knowledge is extracted from scientific articles using OAT’s information ex-
traction module. The module extracts subject–predicate–object–triplets that hold rele-
vant information about the domain.  



1030 M. Timonen and A. Pesonen 

 
 

Fig. 1. Example of the knowledge stored to the OAT knowledge base 

After information extraction, the triplets are manually checked and verified as be-
ing correct or false. This phase is needed because some of the knowledge IE process 
produces may be noisy and incorrect. Some of the knowledge could be automatically 
reasoned to be correct or incorrect by using existing knowledge but it is impossible to 
do this to all the new entities OAT collects. That is why we need to get input from an 
expert who in this case is a biologist.  

If the biologist accepts a triplet he must classify the entities in the triplet to con-
cepts in the ontology, i.e., recognize the entities. This classification is important be-
cause it affects the later usability of the knowledge base.  

Even though experts can recognize the entities quite well they misclassify them 
surprisingly often. This problem is present especially with genes that have several 
names and when a name or a symbol can refer to several genes [3]. In order to make 
the job easier for biologists we developed a method that narrows down the list of 
possibilities and suggests the most probable concept from the ontology. This method 
is described in detail in the following section. More complete description of OAT is 
given in [5]. 

3   Entity Recognition 

The main focus of OAT is to extract biological knowledge from different data sources 
and store them to a knowledge base called OAT knowledge base (OATkb). OATkb 
consists of instances of concepts that are defined in an ontology called OAT ontology 
(OATo). OATo consists of four components: biological concepts, taxonomy which 
organizes the concepts into a parent-child hierarchy, relationships which define how 
the instances of the concepts can relate to one another, and axioms which are used for 
reasoning. When new entities are added to the knowledge base they must be identi-
fied, i.e., mapped to a concept described in the ontology. 

The method we have developed for identification of entities gives scores to possi-
ble classifications (concepts) for the entity. As a result, the method produces a set of 
concepts described in the ontology, which all have scores to portray the belief that the 
entity is of that concept.  



 Combining Context and Existing Knowledge 1031 

The intuition behind our method is that the unclassified entity is likely to be similar 
with the previously classified entities that are similarly related to the context entity. 
Here, the context entity refers to the entity which appears in the same triplet, i.e., in 
the context, with the unclassified entity. If we know the concepts of the entities di-
rectly related to the context entity, i.e., its neighbors1, we can use these concepts to 
deduce the concept of the unclassified entity. For example, if we have a triplet 
TNFAlpha–decrease–PPARGamma and from the knowledge base we can find that all 
the neighbors of TNFAlpha with decrease relationship are Proteins, it is highly likely 
that the unclassified entity PPARGamma is also a Protein. 

The process of entity recognition can be divided into three tasks which all produce 
results that are used later in the ER process. First step is to check the lexicon for the 
given entity. This lexicon is the knowledge base we have populated with the triplets 
from previous processes. The query produces a set of concepts that have been previ-
ously assigned to the entity of the same name. We call this set a lexicon set. As the 
problem of homonyms is relevant in biology, the set may hold several different con-
cepts. Now, we can calculate the distribution of the concepts. For example, if the 
entity e has been assigned to a concept X 65 times, concept Y 20 times and concept Z 
15 times, the distribution is (e, X) = 0.65, (e, Y) = 0.2, (e, Z) = 0.15. 

As the type of the relationship and its direction are relevant, we must take them into 
consideration when calculating the score for possible concepts for unclassified entities. 
For instance, if we have several facts that state entity A inhibits entities of Protein, and 
activates entities of Vitamin, and the triplet is A activates B, the score of B for Vitamin 
should be higher than score for Protein. Also, the direction of the relationship is rele-
vant; if the unclassified entity is the object in the triplet we should use only in-
neighbors2 and if it is the subject, only out-neighbors should be taken into considera-
tion. In other words, the triplets are not symmetric, i.e., it does not apply that if entities 
have a relationship a → b there would automatically be a relationship a ← b.  

The second step is to check the neighborhood of the context entity. For instance, if 
we have the example triplet TNFAlpha–decrease–PPARGamma and we want to clas-
sify PPARGamma, we will check the neighborhood of the context entity TNFAlpha. 
When checking the neighborhood the method takes into consideration only the enti-
ties that are TNFAlpha’s out-neighbors and are related to it with decrease link. This 
produces a set of concepts which is called a neighborhood set.  

The final step is to combine the results of the lexicon set and the neighborhood set. 
For this, we use the following equation: 

te

wlcnc
Conceptscore

++×= α
)( ,              (1) 

where )/()( tlctnclcncw +×= , nc is entity count in the neighborhood set for the 

given concept, lc is the entity count from the lexicon set for the given concept, and te 
is the total entity count for all the concepts in both of the sets. The total entity count 

                                                           
1 Neighborhood of an entity consists of entities that are directly related to the entity in the 

knowledge base. For instance, if A → B then A is in B’s neighborhood and vice versa. 
2 Formally, an in-neighbor c of a has a directed link c → a and an out-neighbor c of a has di-

rected link c ← a. For example, in Figure 1 the neighbors of TNFAlpha are out-neighbors. 
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tlctncte +×= α , where tnc is total count of entities in the neighborhood set and 
tlc is total count of entities in the lexicon set. The equation uses the constant α  to 
multiply nc and tnc because we want to give more emphasis to the context. This vari-
able can be changed depending on how much emphasis is given. In our tests we are 
using 2=α . w is used to give more emphases for the cases where the entity is found 
both from the lexicon and the neighborhood sets. 

For example, if we are calculating the result for the entity concept pair 
(PPARGamma, Protein), and from the knowledge base we get nc = 15 (context en-
tity’s neighborhood has 15 entities of Protein), lc = 30 (PPARGamma has been classi-
fied as Protein 30 times), tnc = 50 (there are 50 entities in the neighborhood set), and 
tlc = 50 (the entity PPARGamma has been classified 50 times). We get the following 
result: 

 

score(Protein) 45.0
50502

5.730152 =
+×

++×= . 

It should be noted that the equation takes the volume of knowledge into considera-
tion. In other words, if there are a lot of entities in the lexicon set and few in the 
neighborhood set, the score is based mainly on the distribution of concepts in the 
lexicon.  

4   Evaluation 

We have done a set of preliminary tests which are for the most part theoretical. Table 1 
shows a few test cases which we have used to assess the scores for entity concept pair 
(e, C) in different theoretical situations.  

Table 1. Results for different theoretical cases for entity e and concept C pair (e,C). In these 
calculations tnc = 100 and tlc = 100. 

 Case 1. 2. 3. 4. 5. 6. 7. 8. 9. 
nc 20 80 80 0 50 25 75 65 0 
lc 80 20 0 80 50 100 0 50 50 
Score 0,4267 0,6267 0,53 0,267 0,542 0,542 0,5 0,654 0,167 

In cases 1 and 2 we demonstrate how our method emphasizes the context: in both 
cases there are the same total amount of entities in the sets but the score differs quite a 
lot. In case 1, we can see that in most cases the entity has been classified as C (80% of 
the times) but it has appeared with the context entity in the given context only 20% of 
the times. In case 2, we can see that when the entity appears in the given context,  
it has been usually classified as C (80% of times). Case 2 gets a higher score as it  
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conforms to our assumption: the unclassified entity is likely to be similar with the 
previously classified entities located in the context entity’s neighborhood. 

The same can be seen from cases 3 and 4. They show how the score changes when 
there are no entities in either of the sets. This represents again how we consider the 
context more important factor than the lexicon. However, this approach brings also 
problems. Some may argue that the case 4 should get higher score than the case 3. In 
other words, the lexicon should be valued higher than the context since there are not 
any instances of this concept in the neighborhood but in the lexicon the entity has 
been assigned to that concept most of the time. 

In the cases 5 and 6 there is quite a lot of evidence from both neighborhood and the 
lexicon which makes the concept a good candidate. However, in the case 7, there is 
no evidence from the lexicon, i.e., the entity has never been classified to that concept 
but the entities in the context’s neighborhood are mainly of that concept. In this case, 
intuitively the case 6 should receive higher score than case 7. This presents why we 
introduced the variable w. 

Finally, the cases 8 and 9 show an example situation of two entities sharing the 
same name. As there are 100 instance of the entity in the lexicon and it has been as-
signed to two different concepts both 50 times, it is impossible to know without the 
context which the correct classification is. But, in the case 8 there are 65 entities of 
the concept in the neighborhood set which makes that concept much more probable 
over the concept in case 9. 

5   Conclusions and Future Work 

We have described a novel method for entity recognition which utilized existing 
knowledge about the relationships and the context of the entities. This method does 
not use complex natural language processing techniques which are difficult to imple-
ment and not always that reliable. In contrast, this method is quite simple and easy to 
implement. Also, the method tackles the problem of complex naming conventions in 
biology, especially the problem of several entities sharing the same name. As we take 
the context and the existing knowledge about relationships into consideration, we can 
classify the entities more precisely 

In the future, we are planning to introduce improvements to our entity recognition. 
In the early stages of operational knowledge base there might be situations when the 
entities cannot be found from the knowledge base and therefore cannot be recognized. 
But as the knowledge base grows this situation becomes less and less common. Also, 
as we use the context, it is more likely that at least one of the entities in the triplet can 
be found from the knowledge base making the identification easier.  

The method itself could also be improved. We could introduce a taxonomy for predi-
cates which can be utilized when the neighborhood set is created. For instance, if a 
triplet has an increase relationship, the similar and closely related relationships in the 
neighborhood (e.g., increment, multiplicate, etc.) should be taken into consideration 
also. In this case, we could lower the score as the similarity of predicates decreases. But 
the first thing is to do complete tests to verify our theory in practice. 
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Abstract. In this paper, we propose a novel approach for semantic video anno-
tation through integrating visual features and speech features. By employing 
statistics and association patterns, the relations between video shots and human 
concept can be discovered effectively to conceptualize videos. In other words, 
the utilization of high-level rules can effectively complement the insufficiency 
of statistics-based methods in dealing with broad and complex keyword identi-
fication in video annotation. Empirical evaluations on NIST TRECVID video 
datasets reveal that our proposed approach can enhance the annotation accuracy 
substantially. 

1   Introduction 

Recent advanced multimedia capturing technologies enable the recordings of our 
colorful living. To support multimedia retrieval applications, video annotation is an 
important issue for searching the huge amount of multimedia data in the repositories. 
Typically, a video can be divided into several scenes/stories and each scene contains a 
set of shots composed of time-split/similarity-split image frames. From these sequen-
tial frames, a representative image frame is defined as a key-frame. Due to the rela-
tions and rich contents of these sequential images, the annotation method for a video 
is very different from that for a single image [6].  

In past studies, association rules were used to annotate a video but the effects are 
not satisfactory since the generated association rules may be too specialized to fit for 
a wide range of videos. That is to say, if the rule set is too small, we may not get suf-
ficient matching rules to support video annotation. Hence, annotations by using only 
the specialized association rules will possibly lead to high errors. With more consid-
erations than association rules, the work in [8][9][10] took account of temporal conti-
nuity and used event detection to index and explore sequential association rules in the 
sequential key-frames. However, the results of sequential association rules are also 
limited with the range of video types. In addition to rule-based solutions mentioned 
above, CRM (Continuous Relevance Model) [1][4] is a classic statistics-based method 
for annotating videos. It segments each sequential key-frame into several rectangle 
regions and then extracts the referred visual features from these segmented regions. 
The annotations of each image are yielded soon after calculating the related probabili-
ties with Gaussian Mixture Function. By exploiting the temporal continuity of video 
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sequences and assuming Markovian property between image frames, DBNs (Dynamic 
Bayesian Networks) proposed by Luo et al. [5] projected low-level features onto 
high-level concept space. In [6][7], Tseng et al. proposed hybrid methods for video 
annotation by integrating statistics-based and rule-based methods. 

In this paper, we present a hybridized solution for semantic video annotation by 
exploiting multi-contents of videos, namely visual features and speech features. The 
major contribution of the proposed method is that visual features and speech features 
are considered simultaneously to enhance the accuracy of video annotation. The em-
pirical evaluations reveal that the proposed approach can effectively assign the rele-
vant keywords to the video shots. The rest of this paper is organized as follows. In 
section 2, we demonstrate our proposed method for annotating videos in great detail. 
Experimental evaluations of the proposed methods are illustrated in section 3. Finally, 
conclusions and future work are stated in section 4. 

2   Proposed Method 

The proposed method is basically extended from the work in [6][7]. As illustrated in 
Figure 1, the whole procedure contains two types of prediction models: Rule-based 
model (ModelVseq, ModelVasso and ModelSasso) and Statistics-based model (ModelCRM). 
The details are described as the following subsections. 

Visual
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ModelSasso
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Annotated
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Preprocessing

Visual
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Fig. 1. Workflow of the proposed approach 

2.1   Preprocessing Operation 

Functionally, the preprocessing operation can be viewed as a foundational stage that 
generates the necessary information used in the training phase and prediction phase.  

 Visual Preprocessing. This process is primarily for visual-based models. First, we 
perform shot detection to divide a video and combine several sequential shots to form 
a scene. Then, the representative key-frame of each shot is determined. Second, each  
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shot of a video has to be further divided into m*n rectangle regions. These regions 
will be the basic elements for ModelCRM. Third, scalable color and homogeneous 
texture are extracted from both the un-segmented shots and the segmented regions.  

 Speech Preprocessing. This is a process for constructing speech-based model. 
First, after the scene division, automatic speech recognition (ASR) [2] is triggered to 
transform audio features into text descriptions shot by shot for each divided scene. 
Second, IR techniques including Removing stop-words and Stemming words are 
employed to filter the usable speech words. Third, we utilize JwordNet [3] to project 
these filtered keywords onto the specific keyword space regulated by NIST. 

2.2   Training Phase 

This phase is primarily concerned with the generation of four major models, namely 
ModelCRM, ModelVasso, ModelVseq and ModelSasso. In this phase, three rule-matching 
matrices for building ModelVasso, ModelVseq and ModelSasso and a keyframe-matching 
matrix for building ModelCRM are yielded by visual association rules, speech associa-
tion rules and visual features, respectively.  

 Construction of ModelSasso. The first task in this model [7] is to establish a trans-
action table for ModelSasso based on a presetting “shot window”. A shot window con-
tains a sequence of shots, and the window slides along the scene. The target keywords 
(annotations) of each central shot of each sliding shot window can be used to form a 
transaction with the speech keywords of each shot of each sliding shot window. As-
sume that a shot window consists of 2z+1 shots where z≧0 and win0 is the central 
shot. Then the target keywords annotated in win0 and the speech keywords to left z 
shots and right z shots form 2z+1 transactions.  

 Construction of ModelVseq. In this model [6], we first discover the frequent item-
sets from the scene-transaction table. These generated frequent itemsets can be 
viewed as association rules directly since temporal continuities are inherent in them. 
For example, the sequential association rule (A→B) can be derived from frequent 
sequential itemset {A, B}. Next, each generated frequent itemset is used to seek for its 
associated keywords and the frequencies of keywords referred each frequent itemset 
are used to form the rule-matching matrix PLX→W. 

 Construction of ModelVasso. As mentioned above, the major difference between 
ModelVasso and ModelVseq is that ModelVasso ignores the temporal continuities of the 
frequent patterns [6]. In other words, the duplicate items have to be pruned in each 
tuple of scene-transaction table.  

2.3   Prediction Phase 

As stated in the training subsection, three visual matching matrices are derived from 
three visual-based models that can represent the relations between key-frames and 
keywords and those between rules and keywords. Besides, speech association rules 
can reflect the relatedness between speeches and keywords. These derived matrices 
and rules, actually, can offer video annotation a great support.  

 Prediction by ModelCRM. This model is mainly based on the CRM method [1][4]. 
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 Prediction by ModelVseq. As soon as the scenes containing a sequence of unknown 
shots are sequentially received in our method, each shot within a scene has to be en-
coded first by computing the similarity (Eucilid Distance) between the shot and the 
clusters generated in the training phase. The prediction algorithm is discussed in [6].  

 Prediction by ModelVasso. In some cases, the temporal continuity of shots is not an 
essential factor for video annotation since we can get the better results without con-
sidering the temporal continuity. Moreover, due to the temporal continuity is skipped, 
the related rule-matching matrix derived from ModelVasso differs from that derived 
from ModelVseq. The results are accordingly changing [6].  

 Prediction by ModelSasso. In our method, ModelSasso can really convey more im-
portant information than those of the other models since embedded speeches are al-
ways stably related to the referred shots. In this prediction [7], each shot is first pre-
processed to generate its own speech keyword set. Next, these shots are sequentially 
predicted by looking for the relevant rules which left-hand itemsets are matched with 
the speech keywords within a specified sliding window. Finally, the average confi-
dence of each annotation for each shot is generated. 

 Prediction by Fusion Models. To integrate different viewpoints on four special 
prediction models, we design multiple fusion approaches to examine the annotation 
accuracy. Basically, the design of each fusion model is to take ModelCRM as the foun-
dational model and the others as the auxiliary models. Due to the high variations of 
videos, it is hard to represent all kinds of video just by the finite rules. Hence, the 
primary aim of this design is to avoid the missing-rule problem in rule-based models. 
In other words, by employing ModelCRM, we can annotate any shot with at least one 
keyword whether joining with the rule-based models or not. Finally, the derived result 
of each prediction model is on the basis of its normalized Z-probability. The fusion 
models are defined as follows:  

Fusion 1 = ModelCRM + ModelVseq 
Fusion 2 = ModelCRM + ModelVasso 
Fusion 3 = ModelCRM + ModelVseq + ModelVasso 
Fusion 4 = ModelCRM + ModelVseq + ModelSasso 
Fusion 5 = ModelCRM + ModelVasso+ ModelSasso 
Fusion 6 = ModelCRM + ModelVseq + ModelVasso+ ModelSasso  

3   Empirical Evaluation 

The experimental data came from the collection of TREC Video Retrieval Evaluation 
(TRECVID) provided by the National Institute of Standards and Technology (NIST). 
From the TREC videos, we chose four CNN and four ABC news videos as our ex-
perimental data. The total duration of the experimental data is around 233 minutes and 
the data size is about 3158MB. Moreover, there are 161 scenes and 1414 shots split in 
this experimental data set. The evaluation was investigated in terms of precision. In 
our experiments, we adopted the 8-fold approach to carry out the evaluations. That is, 
seven videos took turns as a testing video and the others were taken as training vid-
eos. Figure 2 shows that all of rule-based models, ModelVseq ModelVasso and Model-
Sasso, outperform CRM in terms of the precision, and ModelSasso performs better than 
any other model on average. This indicates that the speech rule-based models can 
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effectively capture the intra-relations or inter-relations among the shots as we expect. 
In contrast, annotations by using only visual features encounter higher difficulty in 
dealing with high variations of visual features in the videos. Figure 3 reveals that the 
precisions for fusing visual features and speech features are significantly better than  
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Fig. 2. The precisions of CRM, ModelVseq, ModelVasso and ModelSasso 
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those of the models that consider only visual features or considering speech features 
individually. In other words, higher precision relies on the integration of all involved 
individual models. On average, our proposed fusion method, Fusion 6, exhibits the 
improvements over CRM for about 335% on precision. Figure 4 reveals that Fusion 6 
performs stably and outperforms the other hybrid fusion models under different Z 
thresholds. This delivers that correct answers are adequately strengthened by the inte-
gration of all individual models. 

4   Conclusions and Future Work 

In this paper, we propose a novel method to exploit visual features and speech fea-
tures for video annotation by integrating statistics and association patterns. The utili-
zation of high-level patterns can effectively complement the insufficiency of visual-
based methods in dealing with complex and compound videos. As a result of the ex-
periments, the proposed approach is shown to be very promising for video annotation 
through the integration of visual features and speech features. In the future, we will 
further investigate an adaptive fusion method by tuning the weight of each model. 
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Abstract. Finding outliers is an important task for many KDD applications. We 
developed a cell-based outlier detection algorithm (short for CEBOD) to detect 
outliers in large dataset. The algorithm is based on LOF; major difference is 
CEBOD can avoid large computations on the majority part of dataset by filter 
the initial dataset. Our experiment shows that CEBOD is more efferent than 
LOF, and can find outliers in large datasets fast and accurately. A large dataset 
is loaded into memory by blocks, and the data are placed into appropriate cells 
based on their values. Each cell holds a certain number of data, which repre-
sents the cell's density. Data locate in high density cells and have no nearness 
relationship with local outlier factor calculation are filtered. And we record 
these cells' density for the next block of data fill in. The final calculation will be 
done on those data in low density cells. In this way, we can handle a large data-
set which can’t be loaded into memory once, improving the algorithm's effi-
ciency by reducing many useless computations. The time complexity of CE-
BOD is O(N). 

Keywords: Outlier Detection, Cell density filtering, Large Datasets. 

1   Introduction 

An outlier is an observation that deviates so much from other observations as to 
arouse suspicions that it was generated by a different mechanism [1]. Outlier detection 
is an outstanding data mining task, methods to find outliers can be classified into four 
categorizes: statistics based[2], distance based[3][4][5], density based[6][7][8][9] and cluster 
based[10].  

To detect different type of outliers efficiently, many algorithms are presented. 
Knorr and Ng[3] proposed FindAllOutsD algorithm to handle distance based outlier 
which has a linear complexity w.r.t. N. Ramaswamy[4] proposed a partition-based 
algorithm for mining outliers based on the distance of a point from its k-th nearest 
neighbor. Bay[11] found that the nested loops algorithm in conjunction with randomi-
zation and a pruning rule can achieve a nearly linear time performance. Jin[7] proposed 
a Micro-cluster-based algorithm, which use a clustering algorithm to compress the 
data.  
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2   Problem Formulations 

Outlier detection is more concern about small patterns on minority part of a dataset. 
To find outliers efficiently, we can do compression on the initial dataset; focus on the 
minority of dataset. This can avoid large computations.  

Following this idea, we developed our CEBOD algorithm to detect outlier from 
large datasets. The outliers we found are density based, because calculations to detect 
these outliers are most concern about their neighbor objects; abandon other objects 
which have no nearness relationship will not affect the result much. Moreover, cell 
based approaches are used to identify an object's density, also to find its k nearest 
neighbors very fast.  

Data space is divided into cells, and the number of data locating in a cell is used to 
identify a cell's density, and those data's density factor. We use a positive number k to 
set the threshold of each cell's density. If a cell contains more then k objects, it's a 
High-Density Cell; otherwise Low-Density Cell. Then we filter the high density data 
which have no relationship to the outlier detection calculation. The computation fo-
cuses on the rest data which will be very smaller than the original one. 

Some definitions should be given, which can assure the accuracy of result. 

Definition 1. temporal-Outlier (t-Outlier) 
Let p be an object in the dataset D, and C1,C2,…,Cn be a partition of Dataset. For any 
positive integer k, p is a t-Outlier only if:∀p∈Ci, Ci.density< k. Here, Ci.density is the 
number of objects to contained in Ci 

Definition 2. non-Outlier (n-Outlier) 
An object p is in the dataset D is an n-Outlier only if: ∀p∈Ci, Ci.density< k. Com-
pared with t-Outliers, n-Outliers are distributes in high density areas of dataset. All t-
Outliers together with all n-Outliers are the whole dataset. 

Definition 3. real-Outlier (r-Outlier) 
Let an object p in D and the set T be the unit of all t-outliers, p is an r-Outlier only if: 
∀p∈T, p.lof > LOF. Here, p.lof is the local outlier factor of object p, and LOF is a 
positive input parameter. Although r-Outliers belong to t-Outliers, their local density 
factors are bigger than LOF. 

Definition 4. relative-non-Outlier (r-n-Outlier) 
Let any object p in dataset D, O be the unit of all n-outliers and p be from the set T, p 
is an r-n-Outlier only if: ∀p∈O, p∈q.knn. Noting that q.knn is the unit of all objects 
nearest to the object q. An r-n-Outlier is still a n-Outlier, but it has a nearness rela-
tionship with t-Outliers. 

Definition 5. absolute-non-Outlier (a-n-Outlier) 
Let any object p in dataset D, O be the unit of all n-outliers and p be from the set T, 
the object P is an a-n-Outlier only if: ∀p∈O, p∉q.knn. Compared with r-n-Outliers, a-
n-Outliers are objects that have no nearness relationship with those t-Outliers. They 
always surrounded by the High-Density Cells, and can be filtered in the first data 
scan. All r-n-Outliers combined with all a-n-Outliers are the whole n-Outliers. 
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Definition 6. remain-Dataset(r-Dataset) 
Let the set A be the unit of all the a-n-outliers, the r-Dataset R={p|∀p∈D, p∈!A }. 
The r-Dataset is the set of remaining data in D where all absolute non-outliers are 
removed from, after the first data scan.  

We use Fig 1 to illustrate the definitions above. 188 points in Fig 1 are partitioned by 
cells. The density threshold k equal to 5, cells have more then 5 points are identified 
as high density ones, otherwise low density cells. Then, we can divide the dataset into 
three parts: a-n-Outliers, r-n-Outliers and t-Outliers. 44 data in the center four cells 
are a-n-Outliers. They are surrounded by high density cells, and have no relationship 
with the outlier calculation. 83 data in the middle cells around the former four cells 
are r-n-Outliers. Cells around them contain low density cells. 61 data in the low den-
sity cells and labeled as solid square blocks are t-Outliers. On the further computation, 
some of them may become r-Outliers. So after filtering all the a-n-Outliers, nearly a 
quarter of data are deleted. And the real computations focus on just one third of the 
whole dataset, later experiments show the compression of data is always around one 
third. 

                            

    Fig. 1. Example data set                             Fig. 2. Two data structures used in CEBOD  
                  algorithm 

3   Algorithm Description and Complexity Analysis 

3.1   Algorithm Description 

We first introduce the data structures used in this algorithm and the construction of 
cells. The algorithm constructed two arraylists of arr_pt and arr_cell, respectively for 
Point and Cell. Arr_pt is used to store data objects, and arr_cell is used to store cell 
objects. The structures of Point and Cell are shown in Fig 2. Take two dimensional 
attributes for example, a Cell’s length, row_cnt and col_cnt can be calculated as blow:  

The domain's D_length = max_x - min_x, D_width = max_y - miny; 

⇒D_Area = D_length * D_width.  
The cell's total number m = [N/k]+1; 
⇒Cell's length = square(D_Area/m), 
⇒Cell's row_cnt = (height/Cell.length)+2, 
⇒Cell's col_cnt = (width/Cell.length)+2. 

The algorithm receives as input a dataset DB of N points (with two dimensional at-
tributes for easy explanation), the domains of each attributes in (min_x, miny, max_x, 
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max_y), the number b_size represents the size of data loaded into memory one time, 
the number k of neighbors to consider. And the algorithm contains three major parts 
shown in Fig 3:  

(1) Loading each data into cells by blocks,  
(2) Using cells to filter the dataset and mark each t-Outlier,  
(3) Calculate each t-Outlier's local outlier factor.  

 

Fig. 3. Pseudocode of CEBOD algorithm 

For every data remains and marked outlier, procedure 5 lrdCalculation and 6 lof-
Calculation calculate their local reachability density and local outlier factor. In CE-
BOD, different from LOF, objects identified as a-n-Outliers are deleted before calcu-
lation, we can’t get the local reachability density of the r-n-Outliers nearby them, also 
the local outlier factor of the t-Outliers nearby can' not be calculated. To make com-
pensation, we initialize each r-n-Outlier's local reachability density to 0. 

3.2   Complexity Analysis 

The time complexity of CEBOD is O(N), which is the same as LOF when it uses cell 
structure. But as the calculation in CEBOD only concerned to about one third of the 
dataset, so its efficiency is better than LOF several times. 

Because the expensive system I/O costs, we must minimize the number of pass 
over the dataset and page exchange operations, because the expensive system I/O 
costs. In CEBOD algorithm, if cell space is divided into m parts, the number of data-
set passes can be calculated as: 1 + (m-1)/m + (m-2)*m + … + 1/m = (m+1)/2. For 
example, m=3, then the pass over number is two. 

The page exchange operations are not exist in CEBOD algorithm, because each 
time when doing computations, relative data are all exist in the memory. 
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4   Experiment 

We implemented the algorithm using Java. The experimental platform is a Pentium 
IV 2.66GHz-based machine with 512MB main memory. 

4.1   Comparison of Accuracy with LOF Algorithm 

We use a synthetic dataset which has 1600 two dimensional tuples to test CEBOD’s 
accuracy. The distribution of this dataset is shown in Table 1 (in the second column), 
and can be roughly divided into four clusters with some outliers around them. Our 
purpose is to find the top n% outliers in the dataset.  

Table 1. Accuracy compare between LOF and CEBOD 

Outlier LOF CEBOD similarity 
5% 70% 

Experiments prove that two algorithms’ results have a high similarity, especially 
finding 1% and 2% outliers in a dataset. The 5% outliers result picture is shown in 
Tab 1. As we adjust the value of local outlier factor, there is an decreasing similarity. 
LOF found some outliers locate in the middle area of each cluster, which seems a 
little disorder, but it gives a good demonstration of its ability to find local outliers in 
different density areas. While, CEBOD is more apt to find outliers locate in the edge 
area of each cluster, because the central objects of a cluster is filtered before calculat-
ing, and its results show a more clear deviation of four clusters.  

4.2   Influence of k Value and Data Size on Algorithm Performance 

Figure 4 gives an exciting result that different k values have little effect on CEBOD 
algorithm. Further analysis shows that two factor lead to this. First, the filter operation 
before k-nn query can filter about 2/3 of the whole data. The k-nn queries in high 
density areas needs more calculation, more comparison and more sorting operations, 
especially when k is larger, as LOF shows in Figure 2. Second reason is the cells we 
divide the datasets. As the increasing of k, cell’s number is decreasing. This decreas-
ing does not affect the filter operation. On the contrary, it can reduce the scan time 
when calculating k-nn queries. 

Then we ran our algorithm on a dataset from kdd99[12], which contains 250 thou-
sand records. Figure 5 shows the CEBOD has a nearly linear complexity. We didn’t 
give the LOF’s time cost for large dataset, because in these experiments, the cost time 
of LOF algorithm is up to thousand second. 
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Time cost CEBOD vs. LOF
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          Fig. 4. Runtime of LOF and CEBOD                  Fig. 5. Time cost for large dataset 

5   Conclusions and Future Works 

In this paper, we proposed a novel cell based algorithm CEBOD for finding density 
based outliers. The strength is it avoids computation for most objects. Experimental 
results prove CEBOD has high accuracy in finding outliers, and can be used for large 
dataset’s outlier detection efficiently.  

In ongoing work, we will extend CEBOD to distributed dataset. As far as we 
know, only distance based methods exist for distributed outlier detection. We will 
also make comparison between distance based and density based methods. 
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Abstract. We address a novel semi-supervised learning strategy for
Web Spam issue. The proposed approach explores graph construction
which is the key of representing data semantical relationship, and em-
phasizes on label propagation from multi views under consistency crite-
rion. Furthermore, we infer labels for the rest of the unlabeled nodes in
fusing spectral space. Experiments on the Webspam Challenging dataset
validate the efficiency and effectiveness of the proposed method.

1 Introduction

Detecting spam is one of the most important problems for improving the quality
of search engine [3] [4]. Starting with the topology of the web, one can view the
Web Pages as a connected directed large-scale graph on which Web Spam can
be detected via the properties of the link-spam structure. On the other hand,
the Web Pages can be represented as Vector Space Model(VSM) to capture
their semantical information, such as Email spam filter in classical text mining
community. In general, these techniques are independent each other. Moreover,
how to fuse these dual prior information into a unified framework to reinforce
detecting system is an interesting issue.

In this paper, we present a novel fusing strategy to boost the performance of
the spam detection system via exploring the two aspects of Web Pages: that is,
link features from hyperlink and semantical features from the k-way graph Lapla-
cian based on content information. Our main contributions include: 1) Construct
a similarity graph (Gsim) to measure the similarity relationship via combining
constraint graph (Gc) and nearest neighborhood graph (GNN ). 2) Label
the most confident nodes from multi-view graph under the consistency criterion
for improving the robustness of detection system. 3) Construct a new spectral
space to integrate content features and link information. The rest of this paper
is organized as follows: Section 2 describes the related work. Section 3 depicts
our proposed strategy for learning on the Web graph with partial labeled nodes.
� This work is partially supported by Natural Science Foundation of China under

grant No. 60275025 and No. 60121302.
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The detailed experimental results on ECML challenge dataset are presented in
Section 4. We draw a conclusion for this paper in Section 5.

2 Related Work

In this section, we give a brief review on Web Spam studies. Methods for the
detection of link-based spam explore link structures and spam link form on
the graph, then re-rank score on the revised graph, such as propagating trust
or distrust through links [4], or deleting links that look suspicious from the
statistics characters. On the other hand, some statistics on link structures on
web graph can be considered as the characters of the related pages in bag-of-
word fashion. Hence, It is easy for us to transform a link spam detection problem
into a typical machine learning issue.

For the purpose of going further to boost the performance of the learned clas-
sifier, Castillo et al. proposed a spam detection system that combines link-based
and content-based features [3]. They apply stacked graphical model obtained by
base classifier to implement some topology analysis.

Recently, Zhou et al. considered discrete analysis on directed graph for de-
tecting web spam, and constructed a discrete analogue of classical regularization
theory via discrete analysis with different transductive methods [6]. In the lit-
erature [5], Kamvar et al. presented a spectral learning algorithm with some
constraints for clustering or classification. Their work demonstrated that the
compacted spectral space offers a new powerful representation for data. In this
paper, we will focus on spam detection on graph in semi-supervised fashion.

3 Our Algorithm

To describe conveniently, Web Spam detection problem is defined as follows:

Problem Statement 1. Given a set of hosts(pages) {vi}n
1 ∈ V, the corre-

sponding link graph Glink from the hyperlinks and label set VL = {vi}l
1; YL ∈ Y.

for each host(pages), we know its low-level content information in bag-of-words
manner. The detection goal is to predict labels YU ∈ Y = {1, −1} for the rest
hosts(pages) VU ∈ V.

Following Zhou et al. work [6], we model the data relation as two typical graphs,
which capture content-based features and link-based features respectively. Dif-
fering from Zhou’s work in which a markov mixture was constructed from multi
views [6], we focus on the graph construction itself and then implement a co-
training phase from multi views.

As aforementioned in the introduction, our method can be divided into three
stages: 1) Construct two informative graphs, 2) Label some unlabeled data with
a very high level of confidence and under the consistency criterion, 3) Analyze
the rest of unlabeled data in the fusing spectral space.
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3.1 Construct an Informative Similarity Graph

In our approach, the nodes in Link-Graph Glink and Similarity-Graph Gsim are
the page objects. In general, A Link-Graph is available directly by crawling sys-
tem and the edges in the Link-Graph are obtained from hyperlinks. A natural
question raising here is how to create an appropriate graph to incorporate the
content information in our detecting system. Let a tuple Gsim = (V, ES , WS) de-
note a semantical Similarity-Graph, where WS = [wij ]N×N is the weight matrix
with the (i; j)-th element wij indicating the strength of immediate connectivity
between vertices vi and vj . For the purpose of data classification, the vertex
set vi coincides with the set of data points (labeled or unlabeled), and wij is a
quantitative measure of the closeness of data points vi and vj .

Similar to Graph-based algorithm in semi-supervised learning, the edges in
the Similarity-Graph measure the similarities between nodes. To capture the lo-
cal and global semantical structure, the k-nearest neighbor graph is a common
selection. Generally, there are two techniques to determinate the nearest neigh-
bor: k-NN and ε-NN. For the simplification, we only consider k-NN graph in this
paper. It should be mentioned that they are not symmetric on measure space,
sometimes we force it to be a symmetric graph for computation convenience. Let
N (vi) be the set of the vi nearest neighbors,then the edge e

(N )
ij is defined by

e
(N )
ij =

{
1 if vj ∈ N (vi)
0 otherwise (1)

On the other hand, noticing the importance of the label propagation in within-
classes, we construct a with-class constraint graph G(C) to depict the label prop-
agation in the same class. the edge e

(C)
ij is defined by

e
(C)
ij =

{
1 if vi and vi belong to the same class.
0 otherwise (2)

In contrast to GNN , GC is bidirectional and symmetric.
Now, A weight Similarity-Graph can be written as: Gsim = λGNN ⊕(1−λ)GC ,

where the symbol ⊕ depicts the Entry-wise sum, that is,

wij = λw
(N )
ij + (1 − λ)w(C)

ij ∀e
(N )
ij = e

(C)
ij = 1 (3)

and λ is a trade-off factor. In practice, we choose the parameter λ using cross
validation trick( it is set as 0.5 in this paper). A strength of this model lies in
the fact that it incorporates labeled data to alleviate the noise effect, whereas
the majority of graph deal strictly with the spatial relationship in unsupervised
learning.

3.2 Label Propagation under the Consistency Criterion

The motivation for this phase is driven by the fact that the more labeled train-
ing data we have, the better performance is achieved. So, why not label some
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unlabeled data with high confidence to improve the preformance of the detec-
tion system? On the other hand , the idea of our algorithm is consist with the
common semi-supervised learning assumptions: 1) nearby points are likely to
have the same label; 2) points on the same structure (such as a cluster or a
sub-manifold) are likely to have the same label.

Inspired by the success of co-training method, we conduct belief propagation
on the multi view graphs. If one node is labeled the same class label from the dif-
ferent graphs, we call it as confidence node and label its class label assuredly. To
implement label propagation on the similarity graph, we apply spectral cluster-
ing on the Gsim in this phase. The benefit from spectral clustering is that it can
capture multi-topical distribution if we choose an appropriate cluster number.
However, it is harder to determinate the optimal cluster number in principle. For
webspam detection task, we select a number bigger than 2 in our experiments.
Then, we category unlabeled data according to clustering results and labeled
data in the corresponding cluster.

For Link-Graph, we can conduct TrustRank algorithm [4] to score each node,
and category all unlabeled nodes into spam and good hosts(pages). From the
results of above procedure, we continue to find all confidence nodes in term of the
consistency criterion. Let Lcon denote the confident nodes set. We can rearrange
a new labeled set L̂ = L ∪ Lcon and a new unlabeled one Û = U\Lcon by label
propagation, then we get a new Similarity Graph Ĝsim combining GNN and new
constrain graph ĜC . For the rest of unlabeled data, we infer their class label on
the fusing spectral space which is conducted by the new Similarity-Graph Ĝsim

and Link Graph.

3.3 Spectral Space Analysis

So far, we have a Similarity Graph Ĝsim, Link Graph Glink and the new labeled
set L̂ to represent the data information. Now, we conduct a fusing framework
to capture these useful prior information. Remember that the spectral vectors
encode the fidelity of a cluster, we can utilize these graph matrices to build a
compressing spectral space.

For Link Graph, we calculate the TrustRank scores and SpamRank Scores [2]
using the new labeled set L̂. Let A be an n × n adjacency matrix for a given
web graph such that Aji = 1 if page i links to page j and Aji = 0 otherwise, a
TrustRank [4] is defined as

Ptrust = αTPtrust + (1 − α)d (4)

where T is a stochastic matrix which is related to the adjacency matrix A,
α ∈ [0, 1] is a given scalar and d is a non-negative, L1 normalized, personalized
vector. The vector Ptrust can be computed by the power iteration and is the
stationary distribution vector of Link Graph with a biased random walk.

Similar to the TrustRank algorithm, we can get spam score vector Pspam

using a different personalized vector and propagation direction according to in-
link directionality. Actually, both Ptrust and Pspam are the different attributions
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in spectral space for the special nodes. Recall that new Similarity-Graph Ĝ de-
scribes the semantical characters, we can resort to Laplacian operator to measure
the semantical attribution in the spectral space.

Finally, the discussion above allow us to integrate these attributes of each node
into a unitary vector. New low-dimensionality representation contains sufficient
discriminative information for detecting spam. Consequently, we can detect spam
in the new space using the classical classification algorithm or something else.
In summary, we give the corresponding algorithm below:

Algorithm 1. Spectral Space Analysis
Semantical representation:

1: Given Ĝ, form the Laplacian matrix L ∈ Rn×n = D − W where D be the
diagonal matrix with Dii =

∑
j Wij

2: Find x1, . . . , xk, the k smallest eigenvector of L and form the matrix
X = [x1, . . . , xk] ∈ Rn×k

3: Normalize the rows of X to be unit length.
Link Analysis:

4: Given Glink and labeled set L̂, form the corresponding Compute personalized
vector v and compute the TrustRank vector rtrust.

5: Similar to step 4, reckon rspam based on SpamRank algorithm.
Spectral space combination and clssification:

6: Combine the k-way vectors, the TrustRank vector rtrust and the SpamRank
vector rspam as a new representation. So, construct the matrix

X̂ = [x1, . . . , xk, rtrust, rspam].
7: Classify unlabeled points in Rk using any reasonable classifier.
8: Assign the data point i the class C that Xi was assigned.

4 Experiments

To illustrate the effectiveness of our algorithm, we conduct the proposed algo-
rithm on the corpus 1 from the ECML/PKDD Web spam challenge(see [1] for
more details). In our experiments, firstly, we apply feature selection processing
for the purpose of reducing problem size. By applying information gain scor-
ing on the labeled data, 9862 features are selected from the original 4,924,007
features as a concise representation.

All parameters related Link-Graph are configured by the default value, such as
the parameter α in TrustRank/SpamRank is chosen as 0.85. For the simplicity,
we apply the standard KNN classification to infer the remained unlabeled data
in the last phase of our method on the low-dimensionality spectral space.

Since there are about four times as many non-spam hosts as spam hosts in
Webspam challenge data,, spam detection is a highly unbalanced classification is-
sue. In addition, as a cost-sensitive problem, classifying a normal host into spam
is much worse than classifying a spam host into normal. Hence, we need to mea-
sure algorithmic performances via precision, recall and classification accuracy,
rather than a single evaluation index.
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Table 1. Summary of Classifier Performance for the Corpus 1. The table shows the
effectiveness of the proposed algorithm.

Methods Features
Evaluated

Precision Recall Accuracy
Data Sets

SVM (baseline) Content
Validation 1.00 .031 .791

Test .936 .042 .797

Spam/TrustRank Link
Validation .848 .200 .820

Test .827 .212 .824

Transductive
Con/Link

Validation .793 .409 .845
learning Test .774 .421 .837

Our approach Con/Link
Validation .801 .412 .915

Test .766 .462 .868

For a comparison purpose, we firstly use a standard SVM classifier, based
on content features, as one baseline classifier in supervised learning manner;
we also report the result of the fusing SpamRank and TrustRank strategy for
Webspam detection, this method is based on Link-Graph; as a comparison of
the performance, a Transductive learning algorithm on the multi-view graph is
applied the same dataset. Experimental results is reported in Table 1.

From Table 1, we observe that the baseline classifier obtains the highest pre-
cision, but it is difficult to accept that the recall is less than 10 percent. It
also means that content features are useful for detecting Webspam. Compara-
bly, the semi-supervised learning outperforms the supervised learning according
to accuracy index and the classifier based combining features perform well. Our
proposed algorithm utilizes both link and content features and improves the
overall performance of the detection system.

5 Conclusion

The proposed method integrates unlabeled data and labeled data into a uni-
fied learning framework. Empirical studies show that it is competitive with the
start-of-the-art detecting system in terms of some standard evaluation indexes.
For future work, we will extend the proposed algorithm to the out-of-sample
case and explore an efficiency approximation algorithm to alleviate computation
complexity.
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2. Benczúr, A.A., Csalogány, K., Sarlós, T., Uher, M.: Spamrank – fully automatic
link spam detection. In: AIRWeb, pp. 25–38 (2005)

http://webspam.lip6.fr/wiki/pmwiki.php


Fighting WebSpam: Detecting Spam on the Graph 1055

3. Castillo, C., Donato, D., Gionis, A., Murdock, V., Silvestri, F.: Know your neighbors:
Web spam detection using the web topology. In: Proceedings of SIGIR, Amsterdam,
Netherlands, pp. 423–430. ACM Press, New York (2007)
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Abstract. A spatio-temporal cohesive network represents a social net-
work in which people often interact closely in both space and time. Spa-
tially and temporally close people tend to share information and show
homogeneous behavior. We discuss modeling social networks from spatio-
temporal human activity data, and alternative interest measures for esti-
mating the strength of subgroup cohesion in spatial and temporal space.
We present an algorithm for mining spatio-temporal cohesive networks.

1 Introduction

The recent revolution in mobile aware technology, e.g., GPS, mobile phones,
and in-car navigation systems, has allowed rich data to be collected about the
activities of individuals. The daily activity data can form complex and dynamic
networks of spatial and spatio-temporal interactions of people. Spatial social
science [1] recognizes the key role that spatial concepts, such as location, dis-
tance, proximity, neighborhood, and region, play in human society. Spatially and
temporally close social groups tend to share information and have homogeneous
behavior in space and time. The identification of the interesting patterns can
provide important insights into many application domains such as homeland
defense, public health, ecology, business and education.

Social networks, in the most general sense, refer to relationships that shape a
society’s social interaction [11]. Sociologists have long studied spatially complete
social networks based on local interaction [5,2,13]. However, there are very few
theoretical works that study space and time simultaneously. In the data mining
literature, there is increasing interest in mining social networks. Most works have
concentrated on identifying social networks based on non spatial context. In other
hand, [4] views the movements of people among specific locations as a spatial in-
teraction problem. [7] worked on mining social networks using spatio-temporal
events. However, the event is defined to a semantic event which is any social collec-
tivity of actors, e.g., conferences and games, not having actual geographic location.

One of the key problems in mining spatio-temporal social networks is how
to appropriately model human activity data to find social networks. We discuss
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Fig. 1. Spatio-Temporal Semantic Model

the two approaches, spatio-temporal semantic model and spatio-temporal loca-
tion model. In this paper, we focus on the problem to discover spatio-temporal
cohesive networks based on the spatio-temporal location model. One important
cohesive network is a clique [8]. A clique refers to a network in which there is a re-
lationship between any two people. Our spatio-temporal cohesive network could
be interpreted as one in which has a relationship with everyone in his/her spatial
neighborhood within a time interval. Another important problem for discover-
ing the patterns is to use proper interest measures for estimating the strength
of subgroup cohesion in spatial and temporal space. We present alternative in-
terest measures and compare them. Spatio-temporal cohesive network mining
also presents computational challenges since the activity objects are embedded
in continuous space and time. We extend our algorithm proposed for mining
co-located itemsets in space [12] to discover spatio-temporal cohesive networks
from spatio-temporal datasets.

The remainder of the paper is organized as follows. Section 2 discusses social
network models of spatio-temporal human activity data. Section 3 defines the
problem of mining spatio-temporal cohesive networks and presents the algorithm.
Section 4 is concluded with future work.

2 Social Network Modeling

We first discuss two different approaches for modeling social networks from
spatio-temporal human activity data. Then we define spatio-temporal cohesive
networks and present the interest measures.

2.1 Spatio-temporal Semantic Model

The spatio-temporal semantic model considers the visit activity of people to
specific places and time (intervals). Figure 1 (a) shows an example of visited
places {P1, P2, P3} of four persons {A, B, C, D}. A place means a semantic
location which is visited by people. For instance, a conference is an example
of a semantic place in which researchers gather and exchange their work and
thought. A name of a locality and a ZIP code are another example of semantic
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location. The places can be different geographic locations or can be the same
location with different time intervals of visit. In Figure 1 (a), each visit activity
is represented by the visitor and an unique activity id per person, e.g., A.1.

People-to-Place. An individual and a place have a relationship if the person
visits the place in a time interval. Bipartite graphs are often used to model people
and place relations [3]. In a bipartite graph, vertices are divided into two disjoint
sets, e.g., a set of people and a set of places, as Figure 1 (b). An edge may be
labeled by an activity event to link its people and place. A bipartite network can
be transformed into a one-mode social network which depends on the emphasis
of a specific type of interaction, i.e. people to people or place to place.

People-to-People. In a people-to-people model, the people are linked in a
social network based on their common visits to places. The number of common
visits can be used as the weight of each link. For example, in Figure 1 (c), people
A and B are linked with a weight of 2 due to their visits to places P1 and P2.

Place-to-Place. In a place-to-place network, two places are connected if they
share at least one visitor. Figure 1 (d) shows the weight of connection between
two places which is defined by the number of visitors.

2.2 Spatio-temporal Location Model

The spatio-temporal semantic models are limited to interactions based on spe-
cific semantic places rather than the contact of people in arbitrary geographic
location. In contrast, the spatio-temporal location model captures the interaction
of people in the geographic context with time. For example, suppose Figure 2
(a) shows a simplified example of people moving in space and time. An activity
event can be defined with a geographic location where people stay for a while.
For example, an activity event can be modeled as a tuple < person, event, lo-
cation (x, y), time (or time interval), other attributes >, where person is an
individual who engages in an event and event is a distinguished event per per-
son, x and y represent a geographic location where the event happens, and time
is the start time (optionally including duration) of the event. The activity event
can also include non spatial and temporal attributes, e.g., activity type. Figure 2
(b) shows the spatio-temporal event location points from Figure 2 (a).
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Location-to-Location. The activity events in spatial and temporal space can
be connected by a spatial relationship, e.g., metric relationship (e.g., Euclidean
distance), topology relationship (e.g., within, nearest), and a temporal relation-
ship, e.g., before, overlap, contain. Figure 2 (c) shows a network of location-
to-location in spatial and temporal space. Two events (e.g., A.1 and B.1) are
connected because they occur close to one another within a spatial distance and
a temporal distance.

2.3 Spatio-temporal Cohesive Network

We model our spatio-temporal cohesive social network based on the spatio-
temporal location model. Despite the variability in semantics, social networks
share a common structure in which social entities are generally termed actors
and the relationships between a pair of social entities are known as ties [9]. Let
us suppose that A is a set of actor and E is a set of spatio-temporal events of
the actors. We define a spatio-temporal cohesive network as follows.

Definition 1. A spatio-temporal cohesive network N is a subset of ac-
tors, N ⊆ A, whose events I ⊆ E often form cliques using a spatial neighbor
relationship and a temporal neighbor relationship.

We introduce two different interest measures for measuring cohesion of networks.
First, cohesive index represents a probability that makes cliques from all possible
events of the actors.

Definition 2. The cohesive index CI(N)of a network N = {a1, . . . , ak} is
defined as |cohesive instances of N |

Πk
i=1|events of ai| , where ai is an actor of N and Π is the multi-

plication function.

In the definition, the cohesive instance of a network N is a subset of events,
I ⊆ E, that includes the events of all actors in the network N and forms a clique
using a spatial relationship and a temporal relationship.

Definition 3. The participation index PI(N) of a network N = {a1, . . . , ak}
is defined as minai∈N{ |πai

(cohesive instances of N)|
|events of ai| }, where πai is selection of dis-

tinct events of actor ai.
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The participation index was first introduced for spatial co-location mining in [10].
We adopt the measure for measuring the cohesion of objects in space and time.
The participation index considers the ratio of actor events who participate in
a cohesive network. A high cohesive index or participation index indicates that
the actors in the social network likely have ties together through their activities.
However, the two interest measures have different characteristics. Figure 3 shows
a comparison of them. In the case of Figure 3 (a), each event of actor A (or B)
has a neighbor relationship with the corresponding event of actor B(or A). The
participation index seems to perfectly capture the co-occurrence relationship
with the value 1. In contrast, the cohesive index shows a low strength value
since only four pairs among all possible 16 pairs have neighbor relationships.
Next, let us consider the case of Figure 3 (b). The cohesive index reflects the
strength of neighbor relationships with the increase of neighbor pairs. In contrast,
the participation index does not reflect the strength well. In both datasets, the
participation index shows the same prevalence values. The choice of interest
measure leaves to the application.

3 Spatio-temporal Cohesive Network Mining

We define the problem of mining spatio-temporal cohesive networks as follows.
Given a set of actor A = {a1, . . . , an}, a set of spatio-temporal events E =
E1 ∪ . . . ∪ En, where Ei(1 ≤ i ≤ n) is a set of events of an actor ai, a spatial
distance neighbor relationship, a temporal distance neighbor relationship, and a
minimum prevalent threshold, we want to fine spatio-temporal cohesive networks
whose prevalence values (CI or PI) are greater than the prevalence threshold.

Spatio-temporal cohesive network mining presents computational challenges
since the event objects are embedded in continuous space and time. It is hard
to transactionize a spatial-temporal dataset to apply traditional data mining
techniques. Another way is to find all spatio-temporal neighboring object pairs
from the input dataset, represent them to a neighborhood graph, and then find all
cohesive instances from the graph for calculating the prevalence values. However,
finding all cliques from the graph is NP-complete in the graph-theory. It is also
non-trivial to reuse subgraph mining [6]. The subgraph mining was used to find
frequent subgraphs in a large graph database(i.e., a set of graphs). We extend our
algorithm proposed for mining co-located feature sets in space [12] to discover
spatio-temporal cohesive networks from spatio-temporal datasets. The following
shows the pseudo code of the algorithm.

4 Conclusion

This paper presents a framework for mining cohesive networks to study the
interaction of people in space and time. We need detail optimization of the
proposed algorithm according to spatial and temporal characteristics of data,
and the evaluation of the scalability with large real datasets. In the future, we
also plan to explore more relaxed structures as well as clique as spatio-temporal
cohesive subgroups, and develop the mining algorithm.
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Inputs
A:a set of actors, E:a spatio-temporal event dataset
SR:a spatial neighbor relationship, TR:a temporal neighbor
relationship, min prev: minimum prevalence threshold
Output
Spatio-temporal cohesive networks whose prevalence ≥ min prev
Variables
NR: a neighborhood relation table, Ck:a set of size k candidate
networks, CIk:candidate cohesive instances of size k networks, TIk:true
cohesive instances of size k networks, Pk:a set of size k prevalent
spatio-temporal cohesive networks
Method
1) NR=gen star neighborhood relation table(E, SR, TR);
2) P1=A; k = 2;
3) while (not empty Pk−1) do
4) Ck=gen candidate networks(Pk−1);
5) for r ∈ NR do
6) CIk=filter star instances(Ck , r);
7) end do
8) if k = 2 then TIk = CIk
9) else do Ck=filter coarse prev networks(Ck , CIk, min prev);
10) TIk=filter clique instances(Ck , CIk);
11) end do
12) Pk=find prev cohesive networks(Ck , T Ik, min prev);
13) k=k+1;
14) end do
15) return

⋃
(P2, . . . , Pk);
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Abstract. Distinguishing patterns represent strong distinguishing knowledge
and are very useful for constructing powerful, accurate and robust classifiers.
The distinguishing graph patterns(DGPs) are able to capture structure differ-
ences between any two categories of graph datasets. Whereas, few previous stud-
ies worked on the discovery of DGPs. In this paper, as the first, we study the
problem of mining the complete set of minimal DGPs with any number of posi-
tive graphs, arbitrary positive support and negative support. We proposed a novel
algorithm, MDGP-Mine, to discover the complete set of minimal DGPs. The em-
pirical results show that MDGP-Mine is efficient and scalable.

Keywords: Graph Mining, Distinguishing Pattern, Distinguishing Subgraph.

1 Introduction and Formulation

1.1 Motivation

Distinguishing patterns are those whose frequencies change significantly from one
dataset to another. They are able to capture regions of high differences between two
classes of data and emerging trends in business or demographic data, and can be used
to construct accurate and robust classifiers. Like other patterns or rules composed of
conjunctive combinations of elements, distinguishing patterns can be easily understood
and used directly by people. Emerging pattern is such a kind of distinguishing pattern.
Emerging patterns show strong distinguishing knowledge and have been shown to be
very successful for constructing accurate and robust classifiers[3], as well as providing
intuitive description of sharp differences between classes of data. They have also been
used in bioinformatics applications, like predicting the likelihood of diseases such as
acute lymphoblastic leukemia and discovering knowledge in gene expression data[2].
The authors of [1] introduced the concept of a distinguishing subsequence, which is a
subsequence that appears frequently in one class of sequences, yet infrequently in an-
other. Distinguishing subsequences can be applied to the comparison of proteins, design
of microarrays, characterization of text and the building of classification models.
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Basic Research Foundation of Tsinghua National Laboratory for Information Science and
Technology (TNList), and Program for New Century Excellent Talents in University, State
Education Ministry of China under Grant No. NCET-07-0491.
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Furthermore, since graphs can represent more complicated relationships among dif-
ferent objects, distinguishing graphs have raised great interest and played a significant
role in the mining of distinguishing patterns. There are many situations where DGPs
can be applied, such as comparing structural differences between chemical compounds.

1.2 Preliminary Concepts

To simplify our discussion, in the following we introduce some preliminary concepts
and notations. The problem of mining minimal DGPs is also formulated.

In this paper, we consider only simple graphs, i.e., undirected graphs without multi-
edges and self-loops. An undirected labeled graph G can be represented by a 6-tuple,
G=(V, E, Lv, Le, Fv, Fe), where V ={v1, v2, ..., vk} is the set of vertices, E⊆V×V is
the set of edges in G, Lv and Le are the sets of vertex labels and edge labels respectively,
Fv:V→Lv and Fe:E→Le are mapping functions assigning the labels to the vertices and
edges respectively. A graph G1 is graph isomorphic to another graph G2 iff there ex-
ists a bijection f :V1→V2 such that for any vertex v∈V1, f(v)∈V2∧Fv(v)=Fv(f(v)),
and for any edge (u, v)∈E1, (f(u), f(v))∈E2∧Fe(u, v)=Fe(f(u), f(v)). G1 is a sub-
graph of another graph G2 iff V1⊆V2 and E1⊆E2∩(V1×V1). Equivalently, G2 is the
supergraph of G1. If G1 is graph isomorphic to a subgraph g of G2, we say G1 is
subgraph isomorphic to G2 and g is an instance of G1 in G2.
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Fig. 1. A running example of graph database d0 containing dp and dn

An input graph database D is a set of input graphs, the number of graphs in D is
denoted by |D|. Given a database D, the number of graphs that contain at least one
instance of g is called the support of g w.r.t. D, denoted by sup(g, D). Assume we
have a database D defined upon a set of input graphs and a partition of D into two
sets, the positive class of input graphs(denoted by Dp) and the negative class of in-
put graphs(denoted by Dn). The supports of g w.r.t. Dp and Dn(i.e., sup(g, Dp) and
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sup(g, Dn)) are named as positive support and negative support, respectively. While
the context is clear, we will omit the dataset names and use psup(g) and nsup(g) in-
stead of sup(g, Dp) and sup(g, Dn), respectively.

Definition 1. (Distinguishing Subgraph Pattern) Given a database which consists of
a positive dataset Dp and a negative dataset Dn, the positive support threshold α and
the negative support threshold β (α, β ∈ [0, 1], α>>β), a distinguishing subgraph
pattern(abbreviated as DGP) is a subgraph g satisfying the following two constraints:
(1) psup(g)/|Dp| ≥ α, (2) nsup(g)/|Dn| ≤ β. Furthermore, g is a minimal DGP if
no proper-subgraph of g is a DGP.

In the following, by default we assume the input graph database D consists of two
classes of graphs, one is positive and the other is negative. The set of positive graphs is
denoted by Dp, while the set of negative graphs is denoted by Dp.

Problem Statement: Given an input graph database D which is composed of a positive
dataset Dp and a negative dataset Dn, a positive support threshold α and a negative
support threshold β (α, β ∈ [0, 1], α >> β), we study the problem of mining the
complete set of minimal DGPs from the database D.

2 Related Work

Distinguishing pattern mining has been extensively studied in recent years, such as
emerging pattern and emerging rule mining, distinguishing subsequence discovery[1],
contrast graph mining[4] and so on. However, no existing work can be directly used
to enumerate interesting differences between classes of graphs. Contrast graphs intro-
duced in [4] is defined as the graph structure appears in one positive input graph but
never appears in the negative input graphs, which is a special case of DGP on the con-
dition that |Dp|=1, α=1 and β=0. Thus, the algorithm they proposed in [4] cannot
be applied widely and popularly. DGPs proposed in this paper, however, does not have
these restrictions. Therefore, algorithms for mining minimal DGPs can be applied more
widely and popularly. Whereas, no previous work were done on this issue and it is
urgent to devise new algorithms for mining minimal DGPs.

To our best knowledge, in this paper we propose the first algorithm for mining mini-
mal DGPs from two classes of graph datasets. According to the definition of DGPs, we
can get a rudimentary solution for mining DGPs. Firstly, we can discover the complete
set of frequent subgraphs in Dp, denoted by Sp. Secondly, we can mine the complete
set of frequent subgraphs in Dn, denoted by Sn. Finally, the set Sp−Sn is the result
of DGPs and the minimal DGPs can be generated from it. Apparently, this approach
is rather brute-force and will take an unacceptable time. To improve the efficiency of
the above method, we use an enumeration strategy to inspect the frequent subgraphs
w.r.t. the support threshold α in Dp. Once inspect a frequent subgraph g in Dp, we
check the support of this subgraph in Dn. If sup(g, Dn)/|Dn|≤β, we can say that g is
a DGP. Together with other techniques, we can determine whether g is a minimal DGP
or not.
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3 The MDGP-Mine Algorithm

3.1 Enumeration of Positive Frequent Subgraphs

Many previous work were done on mining frequent graph patterns, typical examples
include gSpan[6], CLAN[5], Cocain*[7] and so on. As shown in previous research, to
discover and enumerate the frequent graph patterns in the graph dataset, we need to
handle two basic problems discussed in this section.
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Fig. 2. The DFS Code Tree for the frequent subgraphs in dp in Figure 1 with support 100%

The first problem is to find a canonical representation of graphs s.t. if two graphs
have identical canonical representations, they are isomorphic. The DFS Code intro-
duced in [6] is a popular representation of graphs which is widely used in recent years.
Minimum DFS code has a nice property: two graphs g and g′ are graph isomorphic iff
min(g)=min(g′) (min(g) represent the minimum DFS code of the graph g). More-
over, with the help of minimum DFS codes, the problem of mining frequent subgraphs
is reduced to mining frequent minimum DFS codes which are sequences. After finding
a canonical representation for graphs, we need an enumeration strategy to guarantee
that we can discover the complete set of frequent subgraphs. Based on the minimum
DFS code, DFS Code Tree enumeration strategy was proposed in [6], whose advan-
tage and efficiency are verified by the experimental results on both real and synthetic
datasets. Therefore, this efficient enumeration strategy is also adopted in this work. Fig-
ure 2 shows the DFS Code Tree for the frequent subgraph patterns with support 100%
in dp in our running example shown in Figure 1.

3.2 Discovery of Minimal DGPs

Lemma 1. (Early Pruning) If g is a DGP w.r.t. the positive and negative datasets, then
all descendants of this pattern in the DFS Code Tree will not be minimal DGPs.

Proof. Since g is a DGP, sup(g,Dp)
|Dp| ≥α and sup(g,Dn)

|Dn| ≤β. Assume g′ is a descendant of
g in the DFS Code Tree, g′ must be a proper-supergraph of g, according to the property
of Frequency Antimonotone[6], sup(g′,Dn)

|Dn| ≤β. No matter g′ is frequent or infrequent
in dp, g′ must be not a minimal DGP. This is because even g′ is frequent and is a DGP
pattern, it will not be a minimal DGP as one of its proper-subgraph, g, is a DGP.
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According to Lemma 1, we can prune unpromising parts of search space. However,
we still cannot determine whether a DGP is minimal or not. Even if the current subgraph
is a DGP, but we cannot state it is minimal. Therefore, while a DGP is discovered,
two operations should be performed. The first one(CHK1) checks whether the current
pattern is a proper-supergraph of other already discovered DGPs. If so, just discard it.
The second(CHK2) checks whether the current pattern is a proper-subgraph of already
discovered DGPs. If so, remove these patterns and insert this DGP to the result set.

Fortunately, if a DGP p is a proper-supergraph of another DGP p′ which is discovered
before, p will not be enumerated. If p is a descendant of p′ in the DFS Code Tree, p must
be pruned according to Lemma 1; otherwise, if p is generated from other paths, the DFS
Code of p must be not minimal and will be pruned by the s 	=min(s)). Consequently,
we do not need to do the operation CHK1.

3.3 Algorithms

In this section, we will describe the algorithms used in our solution by integrating vari-
ous techniques discussed earlier.

ALGORITHM 1: MDGP-Mine(Dp, Df , α, β)

INPUT: (1) Dp – the input positive graph dataset; (2) Dn – the input negative graph dataset;
(3) α – the positive support threshold; (4) β – the negative support threshold.

OUTPUT: rs – the set of DGPs.
BEGIN
1. Scan the positive graph dataset Dp to get the frequent edge set Ef ;
2. Remove the edges from Dp and Dn which is not in Ef ;
3. Remove the edges from Ef , Dp and Dn which satisfy sup(e, Dp) ≤ β and insert these edges to rs;
4. Sort the edges in Ef ;
5. For each edge e in Ef

6. DGP-Enum(e);
END

MDGP-Mine Algorithm. At first, we introduce ALGORITHM 1 MDGP-Mine which
can discover the complete set of minimal DGPs. We first scan Dp to get frequent edge
set Ef of Dp(line 1). After then, we remove the edges which are not in Ef from both
Dp and Dn(line 2). Thirdly, we find the edges in Dn which satisfy the negative support
constraint. Since these single edges are DGPs and all supergraphs which contain one
of them will be not minimal. Therefore, we insert them to the result set directly and
remove them from the datasets and Ef (line 3). After then, we sort the edges remaining
in Ef , and call DGP-Enum for each edge to discover minimal DGPs(lines 4-5).

SUBALGORITHM 2: DGP-Enum(d)

INPUT: d – a DFS code representing a subgraph pattern.
OUTPUT: rs – the set of valid extensible candidates w.r.t. g.
BEGIN
07. If d �= min(d)
08. return;
09. if sup(d, Dp) ≥ α and sup(d, Dn) ≤ β

10. Insert d to rs according to the minimal checking scheme;
11. return;
12. Get the extensible DFS edge set E for g;
13. Sort the edges in E;
14. For each edge e ∈ E

15. DGP-Enum(d � e);
END
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DGP-Enum Algorithm. Whereafter, SUBALGORITHM 2 DGP-Enum for inspecting
the frequent subgraphs in Dp and mining minimal DGPs will be introduced. First, we
check whether current DFS code d is minimal or not, if not we can stop growing d(lines
07-08). Second, we determine whether d is a DGP, if so we insert d to the result ac-
cording to the minimal checking scheme and stop growing d in term of Lemma 1(lines
09-11). Meanwhile, if d is not a DGP, we get the extensible DFS edge set E for d(line
12) and sort them(line 13). For each DFS edge e in E, we add e into d to get a new DFS
code and enumerate it(lines 14-15).

4 Experiments and Conclusion

We conducted comprehensive experiments to evaluate MDGP-Mine. All experiments
were performed on a PC running FC 4 Linux and with 1.8GHz AMD CPU and 1GB
memory. Datasets are generated by a synthetic generator. The parameters accepted by
the generator are the same as described in [7]. In Figure 3 a) we fixed the size of positive
input graphs |Dp| at 40k and varied the size of negative input graphs |Dn| from 50k to
100k. While in Figure 3 (b) we fixed |Dn| = 50k and varied |Dp| from 50k to 100k.
The results in Figure 3 show that the runtime of MDGP-Mine has a linear relationship
with both |Dp| and |Dn|. Therefore, the algorithm MDGP-Mine is scalable.
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Fig. 3. Efficiency and Scalability

In this paper, we firstly studied the problem of mining the complete set of minimal
DGPs and proposed a novel algorithm MDGP-Mine. Comprehensive experiments show
that MDGP-Mine is efficient and scalable.
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Abstract. This paper proposes an algorithm to discover novel asso-
ciation rules, combined association rules. Compared with conventional
association rule, this combined association rule allows users to perform
actions directly. Combined association rules are always organized as rule
sets, each of which is composed of a number of single combined associa-
tion rules. These single rules consist of non-actionable attributes, action-
able attributes, and class attribute, with the rules in one set sharing the
same non-actionable attributes. Thus, for a group of objects having the
same non-actionable attributes, the actions corresponding to a preferred
class can be performed directly. However, standard association rule min-
ing algorithms encounter many difficulties when applied to combined
association rule mining, and hence new algorithms have to be developed
for combined association rule mining. In this paper, we will focus on rule
generation and interestingness measures in combined association rule
mining. In rule generation, the frequent itemsets are discovered among
itemset groups to improve efficiency. New interestingness measures are
defined to discover more actionable knowledge. In the case study, the
proposed algorithm is applied into the field of social security. The com-
bined association rule provides much greater actionable knowledge to
business owners and users.

1 Introduction

Association rule mining aims to discover relationships among data in huge
database. These relationships may provide some clues for business users to per-
form actions. In recent years, researchers [6,9] have focused on discovering more
actionable knowledge. However, conventional association rules can only provide
limited knowledge for potential actions. For example, in the Customer Relation-
ship Management (CRM) field, association rule mining can be used to prevent
churning. One possible rule is “Demo : D ⇒ Churning ”. With this rule, busi-
ness users may take some actions on the customers with “Demo : D” to prevent
churning. However, from the mined rule, business users cannot get knowledge
on what action should be taken to retain these customers, though there might
be many candidate actions.

We have previously defined combined association rule [11] to mine actionable
knowledge. However, in [11], all of the attributes are treated equally when finding
the frequent itemsets. The algorithm is time-consuming when a large number of
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attributes are in database. In this paper, we differentiate the attributes and find
the frequent itemsets on groups of itemsets. Furthermore, since data imbalance
is often encountered in data mining tasks, we will also tackle data imbalance
problem in combined association rule mining.

The paper is organized as follows. Section 2 gives the definition of combined
association rule and its characteristics. Section 3 proposes the interestingness
measures and algorithm outline. Section 4 introduces a case study. Section 5
presents some related work. Section 6 is the summary of this paper.

2 Definition of Combined Association Rule

Let T be a dataset. In this dataset, each tuple is described by a schema S =
(SD1, . . . , SDm, SA1, . . . , SAn, SC), in which SD = (SD1, SD2, . . . , SDm) are m
non-actionable attributes, SA = (SA1, SA2, . . . , SAn) are n actionable attributes,
and SC is a class attribute. Note that the data for combined association rule is
not limited to one dataset. In fact, different kinds of attributes are often from
multiple datasets [11].

Combined association rule mining is to discover the association among the
‘attribute-value’ pairs. For the convenience of description, we call an ‘attribute-
value’ pair an ‘item’. Suppose itemset D ⊆ ID, ID is the itemset of any items
with attributes (SD1, SD2, . . . , SDm), itemset A ⊆ IA, IA is the itemset of any
items with attributes (SA1, SA2, . . . , SAn), C is 1-itemset of class attribute, a
combined association rule set is represented as

⎧
⎪⎪⎨

⎪⎪⎩

D + A1 ⇒ Ck1

...
D + Ai ⇒ Cki

(1)

Here, “+” means itemsets appearing simutaniouly. Since one action may result in
different classes while one class may correspond to different actions, Ck1 . . . Cki

rather than C1 . . . Ci are used in Eq. 1.

3 Combined Association Rule Mining

In order to make the combined association rules in a rule set containing the same
non-actionable itemset, it is important to firstly discover frequent non-actionable
itemsets. Once these itemsets are discovered, the relationships of frequent non-
actionable itemsets with target classes and actionable attributes are mined. In
the rule generation step, the conditional support [10] is employed to tackle data
imbalance problem.

3.1 Interestingness Measures

For a single combined association rule D + Ai ⇒ Cki, the conventional interest-
ingness measures are its confidence and lift. However, these two interestingness
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measures are not sufficient to mine actionable knowledge from combined associa-
tion rule. We illustrate this problem using an example. For a discovered frequent
pattern D + Ai ⇒ Cki, suppose Conf(D + Ai ⇒ Cki) is 60% and the expected
confidence of Cki is 30%. So the lift of this frequent pattern is 2, which is high
enough in most association rule mining algorithms. However the confidence of
D ⇒ Cki is 70%, which means objects with non-actionable attribute D have 70%
probability to be class Cki. On the other hand, if action Ai happens, objects with
non-actionable attribute D only have 60% probability to be class Cki. Obviously
action Ai is negatively correlated to class Cki with respect to non-actionable
itemset D.

Hence, a new lift named conditional lift is defined as follows to measure the
interestingness of a combined association rule.

ConLift =
Conf(D + Ai ⇒ Cki)

Conf(D ⇒ Cki)
=

Count(D ∩Ai ∩ Cki) · Count(D)
Count(D ∩Ai) · Count(D ∩ Cki)

(2)

where ConLift stands for the conditional lift of combined association rule D +
Ai ⇒ Cki. Count(×) is the count of the tuples containing itemset “×”. Note
that D, Ai,and Cki are all itemsets so that D ∩ Ai ∩ Cki means D,Ai, and Cki

occur simultaneously.
Briefly, Eq. 2 is the lift of D + Ai ⇒ Cki with D as a pre-condition, which

shows how much is the contribution of Ai in the rule.

3.2 Algorithm Outline

The combined association rule mining procedure in this paper consists of two
steps. The first step is to find single rule composed of frequent itemsets. The
second step is to extract interesting combined association rule sets. Since itemsets
are treated as different groups, the time comlexity of the algorithm is much
lower than searching in the whole space of itemsets. In order to calculate the
interestingness measures, the support count of each frequent itemset is recorded
in the frequent itemset generation step. The outline of combined association rule
mining is shown as follows:

1. Discovering frequent non-actionable itemsets ID and the corresponding sup-
port counts CD;

2. For each frequent non-actionable itemsets ID

3. Finding frequent itemsets including target class IDC ;
4. Recording the support count CDC for each IDC ;
5. Calculating conditional support ConSup(DC);
6. If (ConSup(DC) > MinSup), for each IDC

7. Finding candidate pattern of three kinds of itemsets IDCA;
8. Recording the support count CDCA for each IDCA;
9. Calculating conditional support: ConSup(DA);

10. Calculating Conf , Lift and ConLift;
11. If (Conf ≥ minc & Lift ≥ minl & ConLift ≥ mincl)
12. Adding the mined frequent itemsets to the rule set.
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4 Case Study

Our proposed technique has been tested with real-world data in Centrelink,
which is an Australian Government Service Deliver Agency delivering a range of
Commonwealth services to the Australian public.

4.1 Business Background and Problem Statement

When customers receive Commonwealth payments to which they were not en-
titled, these payments become customer debt that must be recovered. The pur-
pose of data mining in debt recovery is trying to make the customers to repay
their debts in a shortened timeframe according to historical debt recovery data
and customer demographics. From a technical point of view, the objective is to
mine the combined association rule with respect to the demographic attributes
and debt information of customers, the arrangement, and the target class. Sup-
pose some customers with similar demographic attributes and debt information
belong to different target classes under different arrangements, Centrelink will
recommend an arrangement to assist them to pay off a debt in the shortest pos-
sible time. Note that an arrangement is an agreement between a customer and
Centrelink officer on the method, amount and frequency of repayment.

4.2 Data Involved

The dataset used for the combined association rule mining is composed of cus-
tomer demographic data, debt data and repayment data. The customer demo-
graphic data includes customer ID, gender, age, marital status, salary, and so
on. The debt data includes the debt related information. The repayment data
includes the debt recovery arrangement, debt repayment amount and debt re-
payment date. The class ID of each customer is defined by business experts based
on the information in debt data and arrangement data.

4.3 Experimental Results

In our experiment, the frequent patterns of the demographic itemsets were first
mined using standard Apriori algorithm [1] on demographic data. The Conf ,
Lift and ConLift can be calculated on each frequent itemset. In the experi-
ments, we set minconf = 0.45, minlift = 1.2, and minconlift = 1.2. Using
these parameters and the calculated interestingness measures, the interesting
combined association rule sets are selected. In this case study, 28 rule sets are
discovered, which include 111 single rules algother. Selected results are shown in
Table 1. For privacy reason, the benefit type, arrangement pattern and class ID
are recoded in the experiments.

With the mined combined association rules, much actionable knowledge can
be obtained. For example, suppose the priority of target class in this experiment
is C2 > C1 > C3, if a customer is with demographic attributes MARITAL :
SIN & Age : 26y − 50y & Earnings : [$200, $400), the arrangement A2 will be
recommended to him/her with the greatest priority. If A2 is impossible, A1 will
be recommended. The arrangement A10 is recommended with the least priority.
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Table 1. Selected results of combined association rules

Demographics Arg Class Conf Lift ConLift IsRule
BENType:AAA & MARITAL:MAR & Age:65y+ A1 C1 0.46 1.31 1.70 Yes
BENType:AAA & MARITAL:MAR & Age:65y+ A2 C2 0.92 2.01 1.61 Yes
BENType:AAA & MARITAL:MAR & Age:65y+ A3 C2 0.91 1.97 1.58 Yes
MARITAL:SIN & Age:26y-50y & Earnings:[$200, $400) A1 C1 0.78 2.20 1.83 Yes
MARITAL:SIN & Age:26y-50y & Earnings:[$200, $400) A4 C1 0.29 0.83 0.69 No
MARITAL:SIN & Age:26y-50y & Earnings:[$200, $400) A11 C1 0.50 1.42 1.18 No
MARITAL:SIN & Age:26y-50y & Earnings:[$200, $400) A2 C2 0.79 1.72 2.15 Yes
MARITAL:SIN & Age:26y-50y & Earnings:[$200, $400) A7 C3 0.42 2.27 2.04 No
MARITAL:SIN & Age:26y-50y & Earnings:[$200, $400) A10 C3 0.46 2.47 2.23 Yes
BENType:BBB & Earnings:0 & Children:0 A5 C1 0.77 1.67 2.97 Yes
BENType:BBB & Earnings:0 & Children:0 A7 C3 0.64 3.44 1.47 Yes
BENType:BBB & Earnings:0 & Children:0 A8 C3 0.50 2.70 1.16 No

5 Related Work

The work in this paper is obviously different from any previous association rule
mining algorithms. Hilderman et al. [4] extended simple association rule to mine
characterized itemsets. Employing the concept of “share measures”, their algo-
rithm may present more information in terms of financial analysis. Different from
Hilderman et al.’s algorithm, each single rule in this paper is associated with a
target class to provide ordered action list.

Ras et al. [7,8] proposed to mine action rules. They divided the attributes in
a database into two groups: stable ones and flexible ones. The action rules are
extracted from a decision table given preference to flexible attributes. However,
in their algorithm, only flexible attributes appear in the mined rules.

In combined association rule mining, each single combined association rule is
similar to class association rule (CAR), which was proposed by Liu et al. [5] in
1998. However, in [5], the class association rules are mined to build associative
classifier while the combined association rule sets are mined for direct actions
rather than prediction.

Data imbalance problem has attracted much research attention in recent
years. Arunasalam and Chawla [2] studied the data imbalance in association
rule mining. Their algorithm is focused on the imbalanced distribution of one
attribute, the target class. In our algorithm, the data imbalance problem occurs
not only on target class but also actionable attributes.

6 Summary

This paper proposes an efficient algorithm to mine combined association rules
on imbalanced datasets. Unlike conventional association rules, our combined
association rules are organized as a number of rule sets. In each rule set, single
combined association rules consist of different kinds of attributes. A novel fre-
quent pattern generation algorithm is proposed to discover the complex inter-rule
and intra-rule relationships. Data imbalance problem is also tackled in this paper.
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The proposed algorithm is tested in a real world application. The experimental
results show the effectiveness of algorithm.
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Zighed, A.D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI),
vol. 1910, pp. 587–592. Springer, Heidelberg (2000)

8. Ras, Z.W., Ras, Z.W., Tzacheva, A.A., Tsay, L.-S., Giirdal, O.: Mining for inter-
esting action rules. In: Tzacheva, A.A. (ed.) IAT 2005, pp. 187–193 (2005)

9. Yang, Q., Yin, J., Ling, C., Pan, R.: Extracting actionable knowledge from decision
trees. IEEE TKDE 19(1), 43–56 (2007)

10. Zhang, H., Zhao, Y., Cao, L., Zhang, C.: Class association rule mining with mul-
tiple imbalanced attributes. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS
(LNAI), vol. 4830, pp. 582–587. Springer, Heidelberg (2007)

11. Zhao, Y., Zhang, H., Figueiredo, F., Cao, L., Zhang, C.: Mining for combined
association rules on multiple datasets. In: Proceedings of the KDD 2007 Workshop
on Domain Driven Data Mining, San Jose, CA, USA, pp. 18–23 (2007)



Enriching WordNet with Folksonomies

Hao Zheng, Xian Wu, and Yong Yu

Shanghai Jiao Tong University
Shanghai 200240, China

{zhenghao,wuxian,yyu}@apex.sjtu.edu.cn

Abstract. Manually constructed thesauri are not updated regularly, so
they are hard to catch the fast emergence of new words. Moreover, the
vocabularies of the professionals who construct the thesauri may not
completely match the vocabularies of normal users. Recently, Folkson-
omy services are very popular and highly sensitive to information drift
and the change of users’ vocabularies. In this paper, we explore a method
for enriching formal thesauri with informal Folksonomies. We demon-
strate our method by semi-automatically enriching WordNet with new
words emerging from a social bookmark service. Tags are related to each
other by the subsumption relationships extracted from Folksonomies.
New words are recommended to be placed in appropriate synsets of
the WordNet hierarchy. An initial evaluation on our experimental re-
sult shows the effectiveness of our method.

Keywords: Folksonomy, Social Annotation, WordNet.

1 Introduction

WordNet [1] is a huge hand-built thesaurus and has been widely employed in
many tasks. But with the fast emergence of new words in our times, WordNet
may not be able to catch the fast pace of the changes of vocabularies, and its
lack of new words apparently has become a more and more serious problem.
Recently, Folksonomies are very popular web services and they allow annotators
to use freely chosen strings as tags without any apriori thesaurus. A cursory
analysis of the tags reveals that the tags can perfectly reflect the emergence
of new words, most probably owing to the popularity of such services. But the
shortcoming of Folksonomies is their unrestricted use of words and their flat
structure, which obstructs their direct application.

This paper describes a method for semi-automatic enrichment of WordNet
with Folksonomies. Our method aims to derive the emergent semantics of Folk-
sonomies and places the new words found in Folksonomies to appropriate posi-
tions in WordNet according to the subsumption relationships [2] extracted from
Folksonomies. Although it is relatively simpler than more sophisticated meth-
ods, the technique of subsumption itself has long been employed in constructing
concept hierarchies and has achieved some success [2]. In our preliminary exper-
iment, the method appears to be effective.

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 1075–1080, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Related Work

2.1 Folksonomies

Social annotations are very popular in the past few years. What’s special is their
use of keywords called “tags”. These user-created annotations were coined the
name “Folksonomy”, a combination of “folk” and “taxonomy” [3]. In our work,
the most important strength of Folksonomies is that they directly reflect users’
vocabularies. Traditionally, dictionaries or thesauri can only represent the vocab-
ularies of lexicographers, and there is a great gap between these two vocabularies.
[4] recommends using Folksonomies as the start of professionally designed con-
trolled vocabularies and also makes a good analogy between Folksonomies and
“desire lines”. Some early reviews on Folksonomies have been published [5,3,6].
[7] introduced the social dimension into a unified model of social networks and
semantics. [8] gave a detailed analysis of annotation data in Delicious. [9,10]
proposed to integrate Folksonomies with the Semantic Web.

2.2 Hyponym/Hypernym Relation Extraction

The current automated approaches for Hyponym/Hypernym relation extraction
are classified into two classes: 1). approaches based on lexical or syntactic
analysis, which rely on the lexical or syntactic patterns to discover relation-
ships between words in text. [11] described a method by use of lexico-syntactic
patterns manually identified. [12] applied the pattern learning method to Part-
Whole relations. [13] employed Formal Concept Analysis for a specific domain.
2). approaches based on co-occurrence distributions of words, which just
treat text as bag-of-words without depending on any syntactic features. [2] in-
troduced a document-based definition of subsumption. We adopt the work to
Folksonomies. [14,15] derived subsumption relations on text associated with im-
age captions and descriptions. [16,17] employed subsumption to enhance effective
browsing of social annotations.

3 Exploiting Folksonomies

Folksonomy is usually formalized into a tripartite model [7], consisting of 3
disjoint sets U = {u1, u2, . . . , uK}, T = {t1, t2, . . . , tN}, and R = {r1, r2, . . . , rM}
corresponding to K users, N tags, and M web resources annotated. What interests
us is the co-occurrence of users, resources and tags, which is defined as a set of
triples (user, resource, tag). However, the tags in Folksonomies are unrestricted
and in a single flat namespace. In this section, we describe the techniques for
solving these problems in detail.

3.1 Tag Selection

The tags in Folksonomies vary greatly in their quality, due to lack of control.
After analyzing a large amount of tags, we conclude some causes of low quality:
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– No support for Hierarchies, e.g. “coding.languages.php”, “software.os.linux”.
– No support for Spaces, e.g. “programminglanguage”, “dosomethingwiththis”.
– Numbers, Letters and other Index-like strings, e.g. “2004-10”, “A”, “1.11.05”.
– Personal Choices, e.g. “ to read”, “˜4 wednesday”, “〈darren〉”, “*temp”.

In order to filter out such tags of low quality, we take into consideration the
consensus of users on a specific tag. The number of users who make annotation
with the tag shows the degree to which the community reaches a consensus.
This is analogous to common life: the more people the word is used by, the more
likely it will appear in dictionaries. We find that the consensus of tag choices by
users follow a power law distribution. In our dataset, 2283 tags are only used
by one user, while only 2116 tags are shared by more than 20 users. We choose
the number of 20 as tag selection threshold. After tag selection, we regard the
remaining tags to be of “high” quality. The next subsection discusses how to
relate these tags in a flat namespace to each other.

3.2 Subsumption Relationships

The Hyponym/Hypernym relation is the most important one for the organization
of WordNet. We aim to extract such relationship from co-occurrence of tags. The
triples (user, resource, tag) are converted to a tag-by-resource matrix Cn×m.
Each row of C is a tag. Each column of C is a resource. Cij denotes the times
of tag ti used to annotate resource rj . tx is said to subsume ty, if ty is used to
annotate a small portion of the resources that are annotated by tx.

P (tx|ty) ≥ τ, P (ty|tx) < 1 , (1)

P (tx|ty) =
f(tx, ty)
f(ty)

, (2)

f(ty) =
M∑

j=1

Cyj , f(tx, ty) =
M∑

j=1

min(Cxj , Cyj) . (3)

where τ (0 < τ � 1) denotes the relaxed subsumption threshold, f(ty) denotes
the number of resources annotated with ty, and f(tx, ty) denotes the number of
resources annotated with both tx and ty. Different τ generates different number
of Hyponym/Hypernym pairs. We set τ to 0.8 conservatively, comparable to the
value determined empirically by [2]. The last problem to be tackled is the issue
of placing new words into the appropriate position in WordNet.

3.3 Enriching WordNet

Words in WordNet are organized into synsets, which are the basic elements
of WordNet. One word may be included in several synsets. The relations be-
tween synsets include among others, Synonym, Hypernym, Hyponym, Meronym,
Holonym, etc. To place new words in appropriate synsets, we define the similar-
ity between a tag and a synset as sim(synset, tag) = maxw∈synset∩T f(w, tag),
where f(w, tag) is defined in (3). It calculates the co-occurrence of the tag and
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the words appearing both in the tag set T and the synset. It could serve a
measure of how close the tag is to the synset.

When comparing the Hyponym/Hypernym t0/t1 pairs discovered by sub-
sumption to the noun hierarchy of WordNet, 4 kinds of outcome are possible:

1. Both t0 and t1 are in WordNet. If the relationship is already in WordNet, it
justifies the subsumption method, so these pairs are used as evaluation set
of our approach (Sect.4.1). If the relationship does not exist, it is treated as
a false pair generated by subsumption, assuming all Hyponym/Hypernym
relations between existing words are already in WordNet, although indeed,
it could be a potential relationship missing in WordNet.

2. t0 is in, but t1 is not present. For each Hypernym synset s of each sense of
t0, sim(s, t1) is calculated. The co-occurred synsets ordered by sim(s, t1) are
recommendations of where t1 be placed. Our method recommends that t1 be
placed either in these existing synsets or in a newly created sibling synset,
i.e. at the same level of them. If all Hypernym synsets s have sim(s, t1) = 0,
a new synset without recommendation for its position is created for t1.

3. t1 is in, but t0 is not present. This case is contrary to case 2.
4. Both t0 and t1 are not present. Initially, there may be many pairs in this

case. However, some t0 or t1 also belong to some pairs in case 2 or 3, so
after these tags are placed in WordNet by case 2 or 3, these pairs could be
converted to case 2 or 3 iteratively. Finally, the pairs still left in this case
are discarded without processing.

4 Experiment and Evaluation

In our experiment, WordNet 2.0 and the social bookmark service Delicious are
used. We collected a sample of Delicious data, which consists of 479,035 annotation
triples made by 29,221 users on 16,963 web resources with 8,445 distinct tags.

After tag selection, 2116 tags of high quality, i.e. shared by more than 20
users, are involved in subsumption checking. About 50% of them (1143 of 2116)
are already in WordNet, and the others (973 of 2116) can be considered as good
candidates for new words. By setting τ to 0.8 in (1), we extracted 987 pairs of
Hyponym/Hypernym relations. These pairs are divided into 4 cases discussed in
Sect.3.3 (Table 1). It shows, after iteratively moved to other cases, only 1 pair
remains in case 4 and is discarded without processing.

Evaluation presents a challenge, because no objective standard exists. In pre-
vious work, evaluation is usually conducted manually by human judges. In our
work, we find that the tags already in WordNet could provide a good ground
truth. So we conduct both objective and subjective evaluations.

4.1 Evaluation by WordNet

For 274 subsumption pairs whose Hyponym and Hypernym are both in Word-
Net already, 192 pairs (precision 0.70) are found in WordNet. As for recall,
Hyponym/Hypernym relations are tested pairwise between these 1143 tags, and
3231 relations are found. The recall 0.06 is rather low, since most relations found
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Table 1. The number of subsumption pairs in 4 cases: both tags are in, only Hyponym
is in, only Hypernym is in, and neither tag is in WordNet

Both Hyponym Hypernym Neither

initially 274 92 425 196
finally 274 128 (+36) 584 (+159) 1 (-195)

in WordNet are too general to be extracted by co-occurrence. For example, in
relation “t-shirt/object”, “object” is too general to be used with “t-shirt” in De-
licious, thus the relation could not be extracted by subsumption. By removing
all relations whose Hypernym is too general, the recall increases to 0.65.

4.2 Evaluation by Human

Manual evaluation is only conducted on the subsumption pairs in which only
Hyponym is registered (128 pairs), or in which only Hypernym is registered (584
pairs). Human judges mark each pair t0/t1 by the type of relation between t0
and t1. 4 options are provided: “Hyponym/Hypernym”, “Meronym/Holonym”,
“Same”, and “Unknown”, in accordance with [2]. [2] applied subsumption to free
text, and it provided us with a valuable baseline.

Table 2. Human evaluation of the subsumption pairs derived from Delicious. Each
pair is marked by one of 4 options.

Hyponym/Hypernym Meronym/Holonym Same Unknown

Baseline 23% 49% 8% 19%

only Hyponym in 38% 25% 32% 5%
only Hypernym in 45% 28% 17% 10%
Average 42% 26% 25% 7%

In general, the results are encouraging (Table 2). We notice that 19% of the
relations are classified as “Unknown” in baseline. By contrast, only 7% in aver-
age are judged as “Unknown” in our method. It shows the subsumption pairs
produced from Folksonomies are relatively high quality, compared to those pro-
duced from free text. We expect this to occur because when subsumption was
used upon free text directly, a crucial step would be term selection. When sub-
sumption is employed upon Folksonomies, however, the problem no longer exists.
Users of Folksonomies undertake the task for us, i.e. choose the tags best sum-
marizing the web resources, presumably better than any automated process. It
justifies the effectiveness of adapting subsumption to Folksonomies.

5 Conclusion

In this paper, we presented a method for enriching formal thesauri with informal
Folksonomies. Traditional human-built thesaurus could not catch the pace of fast
emergence of new words. On the other hand, Folksonomies are very popular web
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services recent years and are highly sensitive to information drift and the change
of users’ vocabularies. Our method selects tags of high quality, extracts the
subsumption relation among them, and then places them into the appropriate
synsets in WordNet. Through preliminary experiment, we show that our method
is effective.
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Abstract. Credit scoring is a very typical classification problem in Data Mining. 
Many classification methods have been presented in the literatures to tackle this 
problem. The decision tree method is a particularly effective method to build a 
classifier from the sample data. Decision tree classification method has higher 
prediction accuracy for the problems of classification, and can automatically 
generate classification rules. However, the original sample data sets used to gen-
erate the decision tree classification model often contain many noise or redundant 
data. These data will have a great impact on the prediction accuracy of the clas-
sifier. Therefore, it is necessary and very important to preprocess the original 
sample data. On this issue, a very effective approach is the rough sets. In rough 
sets theory, a basic problem that can be tackled using rough sets approach is re-
duction of redundant attributes. This paper presents a new credit scoring approach 
based on combination of rough sets theory and decision tree theory. The results of 
this study indicate that the process of reduction of attribute is very effective and 
our approach has good performance in terms of prediction accuracy. 

Keywords: Data Mining, Credit Scoring, Rough Sets, Decision Tree, Attribute 
Reduction. 

1   Introduction 

The credit scoring model has been used in commercial and consumer loan for a few 
decades. Numerous methods have been presented in many literatures to develop the 
credit scoring model. Those models include traditional statistical models (e.g.: logistic 
regression [4]), nonparametric statistical models (e.g., k-nearest neighbor [5], decision 
trees [11, 12] and neural network models [3]). All these models are widely used. But 
they didn’t all process the original sample data when they were used to build the credit 
scoring model. It is necessary and very important to preprocess the original sample data 
to eliminate redundant data and noise data, etc. In this paper, we finish the process by 
using rough set theory [9]. In addition, due to higher prediction accuracy and gener-
ating automatically classification rules [7], we will build the credit scoring model by 
using decision tree method.  

The rest of this paper is organized as follows. We will briefly explain the basic 
concepts of rough set in section 2, and discuss the decision tree algorithm C4.5 [11, 12] 
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in section 3. The design and generating of our model will be illustrated in section 4. In 
section 5 we will analyze the experimental results of the credit scoring model in this 
paper and compare with other methods in the prediction accuracy. Finally, section 6 
addresses the conclusion and discusses the possible future research work. 

2   Rough Sets Theory 

2.1   The Information System 

An information system can be represented as follows:        

fVAUS ,,,=         (1) 

Where, U is a non-empty finite set of objects called universe; A is a non-empty finite set 

of attributes; aV is the range of the attribute a; aAa VV ∈= U ; VAUf →×: is the 

information function such that aVaxf ∈),( , for any Aa ∈  and Ux ∈ . 

2.2   Indiscernibility Relation  

The indiscernibility relation [10, 13, 14] is an equivalence relation on the set U and can 
be defined as follows: 

There is an indiscernibility relation )(PINP , for arbitrary attribute subset AP ⊆ : 

{ }),(),(,,)( ayfaxfPaUUyxPIND =∈∀×>∈<=              (2) 

If , ( )x y IND P< >∈ , that means objects x and y are indiscernible with attribute 
set P.  

2.3   Reduction of Concept and the Core 

In real-world application, we are often required to eliminate irrelevant or redundant 
attributes; meanwhile, we must maintain the primary areas of the information system. 
This problem refers to two basic concepts: reduction and core [9, 13, 14].   

2.4   Discernibility Matrix 

Discernibility matrix [13, 14] is a very important concept in rough set theory. Dis-
cernibility matrix can be used to complete attributes reduction.  

Definition 1. [13, 14]: Given an information system S, { }nxxxU ,,, 21 L=  is the set 

of objects, { }mcccC ,,, 21 L= is the predictive attributes set, D is the class attribute. 

Discernibility matrix is denoted by M(S), whose elements are as follows: 
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{ }
⎩
⎨
⎧ ≠∧≠∈=

otherwise

DxfDxfaxfaxfCaa
m jiji

ij
0

),(),(),(),(:
     (3) 

where nji ,,2,1, L= , here n=|U|. 

3   C4.5 

The ID3 [11] is a famous algorithm to construct a decision tree. And the C4.5 [12] is the 
extended version of the ID3. The C4.5 mainly contains two phases: generating an initial 
decision tree and pruning the initial decision tree. 

3.1   Generating Decision Tree 

The original ID3 algorithm used a criterion called gain to select the test attribute. The 
criterion gain refers to the concept entropy in information theory [6, 10].  

3.2   Pruning Decision Tree 

Since there is a less objects to work with after each decision node split, it is necessary to 
prune the decision tree to get a better accuracy of prediction. On this issue, C4.5 uses a 
specific technique to estimate the prediction error rate. This technique is called pessi-
mistic error pruning [11]. 

4   New Credit Scoring Model 

4.1   Design 

In this paper, the credit scoring model is built based on the combination of rough set 
theory and decision tree theory. Firstly, our model preprocesses the sample data by using 
rough set; then generates the credit scoring model by using C4.5. This approach can 
bring many benefits. Rough set can not only remove redundant data but also simplify the 
dimension of input information space by discovering the relation among all data.  

 

Fig. 1. Experiment procedures 
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Fig. 1 illustrates the self-explanatory experimental procedure for generating the 
credit scoring classifier. The details will be presented in next section. 

4.2   Reduction of Attributes 

Before the classifier generated, we will preprocess the original sample data. The 
process mainly processes the redundant attribute. In this paper the process is called 
reduction of attributes. We process the redundant attributes by using the algorithm in 
Wang and Pei’s paper [14] (denoted by WPA in this paper). In this paper we improved 
the WPA, and denotes by Algorithm 1. The Algorithm 1 is faster than WPA in 
run-time. 

Before discussion the Algorithm 1, we give a theorem in Boolean algebra as  
follows: 

Theorem 1. [1]: abaa ↔∨∧ )( . 

We will not prove the Theorem 1 because it is easy to prove it. 

Algorithm 1. Compute all reductions of attributes. 
Input:  Information system fVAUS ,,,= ; 
Output: All reductions of attributes of the information system fVAUS ,,,= ; 
Procedure: 

1. construct the discernibility matrix nnijcSM ×= ][)( of information system S, and 
construct }1,0|{ −≤≤= njicM ij ; 

2. construct discernibility function )(SfM according to M , the form of the func-
tion )(SfM  is disjunctive normal form; 

3*. reduce the disjunctive normal form according to the Theorem 1; 
4. ),( MDNFMnDnfFunctionMi ; 
5．get all reduction of attributes from MDNF . 

Algorithm 2. ),( MDNFMnDnfFunctionMi   
Input:   the discernibility matrix nnijcSM ×= ][)( of information system S, and the 

set }1,0|{ −≤≤= njicM ij  
Output: MDNF  
Procedure: 

1. ∅=1MDNF ； ∅=2MDNF ； 

2. if ∅=M  return ∅ ;  

3. if 1|| =M  return MDNFM =1 ; 

4. divide M into 1M , 2M ； ),( 11 MDNFMnDnfFunctionMi ； 

),( 22 MDNFMnDnfFunctionMi ; 

5. Construct },|{ 221121 MM DMFdDNFdddR ∈∈∧=  

6. =MDNF reduction of R; return MDNF ; 
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The definition of reduction of R, the definition of discernibility function )(Sf M , 
and the definition of the DNF are in [14]. The step 3 with notation ‘*’ is our optimiza-
tion step in algorithm 1, and other steps is the same as the WPA. 

The time complexity of WPA is |))|||log(|(| 24 UUKAOT += , where 
MaxK =  }|)({ NGDNFCard G ⊆  [14]. The time complexity is decreased in 

the Algorithm 1. The value of K will be greatly decreased, because the size |M| of the 
set M is greatly decreased. And the rank of K is 4, so the Algorithm 1 will evidently 
reduce the running time. The experimental results of the efficiency of reduction of 
attribute will be given in the section 5. 

4.3   Generating Classifier 

After reduction of attributes, we got a new sample data set. We can randomly select a 
majority of the instances as train sample of decision tree classifier from the new 
sample. We build the credit scoring model by using the Algorithm C4.5.  

5   Experimental Results 

5.1   Efficiency of Reduction of Attributes 

To compare with WPA, we selected the same databases as Wang and Pei’s. We se-
lected nine databases from the database of UCI machine learning. The experiment was 
completed on the same PC (Intel-Celeron, 2.4GHz, 256MB RAM，WinXP Profes-
sional). We obtained the same results by the two methods. And the experimental results 
on the running time are reported at the Table 1: 

Table 1. Comparison of the running time of reduction algorithms 

Name of database 
Number of 
instances 

Number of 
attributes 

Algorithm 1
Running time(s) 

WPA Running 
time(s) 

Postoperative Patient 
Hayes-Roth  

Balance-scale  
Teaching Assistant Evaluation 

Zoo
Tic-Tac-Toe Endgame  

Car Evaluation  
BUPA liver disorders 
Monk's Problems(1) 
Monk's Problems(2) 
Monk's Problems (3) 

90
132 
625 
152 
101 
958 

1728 
345 
432 
432 
432 

9
6
5
6

17
10
7
7
7
7
7

0.000 
0.031 
0.156 
0.035 
0.046 
0.453 
0.846 
0.062 
0.093 
0.109 
0.093 

0.102 
0.155 
5.410 
0.226 
0.150 
17.885 
68.756 
1.520 
2.633 
2.598 
2.375  

According to the Table 1, obviously, the algorithm 1 has a higher efficiency com-
paring with WPA on the running time. It shows that it is effective that we improved the 
WPA. The analysis about time complexity of the Algorithm 1 is validated by the result. 
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5.2   Prediction Accuracy Analysis 

The two databases of in our experiments are from the UCI Machine Learning Re-
pository [8]: German Credit database and Australian Credit database. For the German 
Credit, there are in all 1000 instances which contain 700 good credit instances and 300 
bad credit instances, and each instance consists of 20 predictive attributes and 1 class 
attribute. For the Australian Credit, there are in all 690 instances which contain 303 
good credit instances and 387 bad credit instances, and each instance consists of 14 
predictive attributes and 1 class attribute. 

Table 2. Description of Databases from the UCI Machine Learning 

Name     Instance  Predictive Attributes  class attribute  Good credit   Bad credit 
German Credit   1000          20               1          700         300 

Australian Credit  690           14               1          303         387  

We respectively test the two databases by using the rough set & C4.5 method (de-
noted by RSC) and the single C4.5 with two different ratios. The two ratios are 7:3 and 
8:2 between the size of train sample and the size of test sample. We had 20 experiments 
by using RSC and the single C4.5 for each database. The process of choice train sample 
is stochastic. Remainder instances of the database are used for test sample after 
choosing train sample. The experimental results are respectively reported at the Table 3 
and at the Table 4. 

Table 3. (UCI——German Credit) prediction accuracy 

Methods Number of 
predictive attribute 

Max prediction  
accuracy (%) 

Min prediction 
accuracy (%) 

Average of prediction 
accuracy (%) 

C4.5 (7:3)     20              74.0              68.0             72.0 
RSC (7:3)    12              80.67             72.0             78.67 
C4.5 (8:2)    20              74.5              68.0             73.5 
RSC (8:2)    12              82.0              72.0             79.5  

Table 4. (UCI——Australian Credit) prediction accuracy 

Methods Number of 
predictive attribute 

Max prediction  
accuracy (%) 

Min prediction 
accuracy (%) 

Average of prediction 
accuracy (%) 

C4.5(7:3)        14             88.12            81.26             85.31 
RSC(7:3)       11             90.68            83.47             87.78 
C4.5(8:2)        14             88.41            81.26             85.45  
RSC(8:2)        11             90.95            84.78             88.21  

According to the Table 3, only 12 of all 20 predictive attributes in RSC were used to 
build the credit scoring model after the reduction of attributes. Comparing with the 
single C4.5 method, the prediction accuracy of the RSC method are both evidently 
improved with the radio 7:3 and with 8:2. The average prediction accuracy is heightened 
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about 6%～7%. The RSC method had a good performance for the German Credit da-
tabase. From the Table 4, we can find that the RSC has also a good performance for the 
Australian Credit database. 

By comparing with the single C4.5, we conclude that the RSC method have a good 
performance for the two databases. The reduction of attribute not only reduced the 
dimension of the decision table (the original sample), but also enhanced the prediction 
accuracy of the credit scoring model. Reduction of attribute before building model is 
very effective. Reduction of attribute plays a very important role in the process of 
building the credit scoring model.  

However, we must notice the index min prediction accuracy in the Table 3 and  
Table 4. The min prediction accuracy is low in the RSC method, which indicates that 
the stability of RSC is not good. We think that it is caused by the algorithm C4.5 by 
theoretical analysis. We can get the worst instance, and the prediction accuracy is just 
0%. Suppose the 700 train instances are all from the 700 good instances and the 300 test 
instances are all from the 300 bad instances, which is possible though the probability is 
very tiny. If it happened, the generated decision tree would just have one node, and the 
class of the node is good. So we would get the 100% error rate when we test all bad 
instances in the test experiment. Hence, we can conclude that the prediction accuracy of 
model is associated with the ratio of good instances and bad instances in the train 
sample.  

5.3   Comparing with Other Methods  

Because those methods on credit scoring problem in many papers often use the k-fold 
cross validation to complete experiment, we tested again the prediction accuracy of our 
model by using the 10-fold cross validation by using the RSC method to compare with 
other methods. The result is the average of the accuracy determined for each of the 10 
independent stochastic data set partitions. For the two databases, we all had 10 ex-
periments with the 10-fold cross validation (10x10-CV). The results are reported at the 
Table 5. 

Table 5. The accuracy rates (%) with the 10-fold cross validation for German credit database and 
Australian credit database by using the RSC method 

No.1  No.2  No.3  No.4 No.5 No.6 No.7 No.8 No.9  No.10  Avg. 
German 79.9  79.4   79.9   80.2   79.0  79.8   79.2   79.6   79.8   79.5 79.63

Australian 88.55  87.97  88.26  88.55  88.70 88.26  88.59  88.99  88.84  88.70 88.54  

At the present, many data mining techniques such as neural networks and genetic 
programming and SVM-based are successfully applied to build the credit scoring 
model, and they usually have good prediction accuracy. Therefore, the RSC method 
will be compared with these methods for the German Credit database and Australian 
Credit database.  

We will compare RSC with the single C4.5, BPN (Back-propagation Neural Net-
work), GP (Genetic Programming) [6], SVM+GA (Support Vector Machine +Genetic 
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Algorithm) [2].The results of the two databases are summarized in the Table 6 by using 
RSC, single C4.5, BPN, GP, and SVM+GA. Where, the results of BP, GP, and 
SVM+GA are from the paper [2]. 

In the paper [2], the two credit scoring databases are partitioned into training and 
independent test sets by the same 10-fold cross validation procedure. The GP specific 
parameters for the set two credit datasets areas follows: population size is 250, repro-
duction rate is 0.2, crossover rate is 0.7, mutation rate is 0.08, and maximum number of 
generations is 2000-3000; For the BP model, several options of the neural network 
configurations are tested, in which14-32-1 and 24-43-1 respectively for the Australian 
data and German data are selected to obtain better results. Additionally, the learning 
rate and momentum are set to 0.8 and 0.2, respectively; For C4.5 and SVM+GA, it 
chooses their default settings. 

Table 6. Result summary with the 10-fold cross validation for German credit database and 
Australian credit database 

Method  German Avg. 
(%) 

Australia Avg. 
(%) 

RSC 
C4.5 
BPN 
GP 

SVM+GA 

79.63 
73.50 
77.83 
78.10 
77.92 

88.54 
85.31 
86.83 
87.00 
86.90 

On the basis of the results of Table 6, we can conclude that the RSC method in our 
study outperforms to other methods for Australian Credit database and German Credit 
database. It indicates that the RSC method is effective and successful to build the credit 
scoring model in this paper. 

6   Conclusions and Future Works 

The Data Mining technique is a very effective approach to research the financial or-
derliness and quickly make decision. The credit scoring model based on rough set and 
decision tree in this paper fully exhibits the advantages of rough set and decision tree. 
On the basis of the result of the section 5, we can conclude that the reduction of at-
tribute in this paper is a very important and effective instrument to improve the pre-
diction accuracy. Reducing the redundant attributes not only avoids the harmful data to 
impact the prediction accuracy but also reduces the cost of calculation in the process of 
building credit scoring model. Moreover, the RSC method has higher prediction ac-
curacy than the single C4.5, BP, GP, and SVM+GA on the benchmarks. The RSC 
method is effective and successful on the credit scoring problem in this paper. How-
ever, the method has some limitations and need to improve the stability even as our 
analysis in the section 5. In future works, we can try to improve the RSC method 
combining with the Boosting Algorithm or Bagging Algorithm to get higher accuracy,.  



 A New Credit Scoring Method Based on Rough Sets and Decision Tree 1089 

Acknowledgements 

The paper is supported by the National Nature Science Foundation of China (Grant no. 
60773126) and the Province Nature Science Foundation of Fujian (Grant no. 
A0710023) and academician start-up fund (Grant No. X01109) and 985 information 
technology fund (Grant No. 0000-X07204) in Xiamen University. 

References 

1. Hamiltion, A.G.: Logic for Mathematicians. Cambridge University Press, Cambridge (1988) 
2. Huang, C.-L., Chen, M.-C., Wang, C.-J.: Credit scoring with a data mining approach based 

on support vector machines. Expert Systems with Applications (2006), doi: 10.1016/j.eswa 
2006.07.007 

3. Desai, V.S., Crook, J.N., Overstreet, G.A.: A comparison of neural networks and linear 
scoring models in the credit union environment. European Journal of Operational Re-
search 95(1), 24–37 (1996) 

4. Henley, W.E.: Statistical aspects of credit scoring. Dissertation, The Open University, Mil-
ton Keynes, UK (1995) 

5. Henley, W.E., Hand, D.J.: A k-nearest neighbor classifier for assessing consumer credit risk. 
Statistician 44(1), 77–95 (1996) 

6. Koza, J.R.: Genetic programming: On the programming of computers by means of natural 
selection. The MIT Press, Cambridge, MA (1992) 

7. Kantardzic, M.: Data Mining: Concept, Models, Methods, and Algorithms. IEEE Press, 
America (2002) 

8. Murphy, P.M., Aha, D.W.: UCI Repository of Machine Learning Database (2001),  
http://www.ics.uci.edu/~mlearn/MLRepository.html 

9. Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11(5), 
341–356 (1982) 

10. Hu, Q., Zhao, H., Xie, Z., Yu, D.: Consistency Based Attribute Reduction. In: Zhou, Z.-H., 
Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 96–107. Springer, 
Heidelberg (2007) 

11. Quinlan, J.R.: Introduction of decision trees. Machine Learning 1(1) (1986) 
12. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco 

(1993) 
13. Skowron, A., Rauszer, C.: The discernibility matrices and function in information system. In: 

Slowinski, R. (ed.) Intelligent Decision support Handbook of Application and Advances of 
the Rough sets Theory, pp. 331–362. Kluwer Academic Publisher, Dordrecht (1991) 

14. Yuan-Zhen, W., Xiao-Bing, P.: A Fast Algorithm for Reduction Based on Skowron Dis-
cernibility Matrix. Compute Science (in China) 32(4), 42–44 (2005) 



T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 1090–1098, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Analyzing the Propagation of Influence and Concept 
Evolution in Enterprise Social Networks through 

Centrality and Latent Semantic Analysis 

Weizhong Zhu, Chaomei Chen, and Robert B. Allen 

College of Information Science and Technology, Drexel University 
19014 Philadelphia, USA 

{wz32, chaomei.chen, bob.allen}@ischool.drexel.edu 

Abstract. Understanding the propagation of influence and the concept flow 
over a network in general has profound theoretical and practical implications. In 
this paper, we propose a novel approach to ranking individual members of a 
real-world communication network in terms of their roles in such propagation 
processes. We first improve the accuracy of the centrality measures by incorpo-
rating temporal attributes. Then, we integrate weighted PageRank and centrality 
scores to further improve the quality of these measures. We valid these ranking 
measures through a study of an email archive of a W3C working group against 
an independent list of experts. The results show that time-sensitive Degree, 
time-sensitive Betweenness and the integration of the weighted PageRank and 
these centrality measures yield the best ranking results. Our approach partially 
solves the rank sink problem of PageRank by adjusting flexible jumping prob-
abilities with Betweenness centrality scores. Finally the text analysis based on 
Latent Semantic Indexing extracts key concepts distributed in different time 
frames and explores the evolution of the discussion topics in the social network. 
The overall study depicts an overview of the roles of the actors and conceptual 
evolution in the social network. These findings are important to understand the 
dynamics of the social networks. 

Keywords: Betweenness Centrality, Weighted PageRank, Social Network 
Analysis, Time Series Analysis, Latent Semantic Indexing. 

1   Introduction 

Social Network analysis (SNA) investigates the interactions among people, organiza-
tions or communities. Two factors are essential for understanding the social status of 
an actor --- popularity and prestige. Popularity can be measured by the quantity of 
endorsements the actor receives from other actors, whereas the prestige is shown by 
the quality of the received endorsements, for example, the prestige of endorsing actors 
[2]. The quality of scholarly communication is often assessed in terms of the number 
of citations it has received. We extend this notion to the study of the influence of an 
individual in a network of email communication. Our study aims to address the extent 
one can identify the influential status of group members based on the structure of their 
email communications and explore the evolution of the key discussion topics over an 
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extended period of time. A common criticism of social network research is that the 
study of prestige has not directly addressed the dynamic information flow in such 
networks [10, 19]. In this paper, we develop a similarity measure between nodes, 
which incorporates time factor and simulates the speed and frequency of email con-
versations. This measure is particularly useful for discovering long-term active ex-
perts and contemporary experts.   

The Degree and Closeness [17] centrality are generally accepted as indicators of 
influential status, and are based on the number of neighbors for a node in a network 
and the distances between nodes. However, they primarily indicate the popularity 
rather than prestige. A potential measure of prestige is Betweenness centrality [8] [9], 
which is based on the critical members in the shortest paths between any pair of nodes 
in a network. Another possible measure of prestige is the PageRank algorithm [6] 
[16], which computes the influence of a web page based on a combination of the 
number of hyperlinks that point to the page and the influence of the pages that the 
hyperlinks originate from. PageRank, restricted to random walks, is essentially a 
special case of eigenvector centrality. All the four measures, i.e. Degree Centrality, 
Closeness, Betweenness Centrality, and PageRank, assume that influence propagates 
via restricted paths. We evaluate all these measures of influence by a member net-
work in W3C according to their historical email conversations. First, we compare the 
results of these measures and identify the inter-relationships between them. Then we 
integrate two of them to improve the performance because the correlation relation-
ships among these measures are statistically significant. We show that PageRank 
enhanced by time-sensitive Betweenness improves influence ranking by solving the 
rank sink problem of PageRank. To evaluate the consequences of such a change on 
the assessment of influence, we use the mail collection of the W3C URI working 
group selected from the TREC Enterprise 2005. To show the trends of concept evolu-
tion, LSI-based concept ranking method [24] is applied to extract and rank the discus-
sion topics over a 10-year period (1904-2004).  

The rest of this paper is organized as follows: Section 2 reviews related work, Sec-
tion 3 discusses how to construct the time sensitive centrality. Section 4 presents the 
weighted PageRank algorithm and how to propagate with Betweenness centrality. 
Section 5 describes LSI-based concept extraction and ranking. Section 6 presents the 
experimental results and discussions. Section 7 is the conclusions.  

2   Related Work 

Borgatti [3] [4] addresses the problem of discovering key players by explicitly meas-
uring the contribution of a set of actors to the cohesion of a network with two analyti-
cal functions. White and Smyth [20] define the most important nodes in the network 
by considering the referral links like PageRank [16] and HITS [12]. In [7] a linear 
model is used to produce sub-graphs on the basis of electrical circuit formulae. 
Huberman [13] uses the same approach and exploits Kirchhoff’s Laws to model a 
social network. Other approaches such as [14] use Betweenness to find crucial central 
nodes. Pujol [11] proposed a PageRank style ranking algorithm that uses the out-
degree that could be thought as a slight variant of absolute out-degree centrality to 
weigh the random jumping probability. In this paper, we extend weighted Page Rank 
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algorithm to social network analysis which follows the same traversing mechanism. 
Our novel method propagates weighted Page Rank with Betweenness to solve the 
“tank sink” problem of random walks. 

3   Time Series Analysis 

The simulation study in [10] reported that the centrality of nodes is affected by the 
characteristics of dynamics of information flows. Motivated by this study, we  
developed the time sensitive centrality measures. We divide a long period of time into 
a number of consecutive time slices. Participating actors in a social network are pre-
sented as the vectors of the email conversation frequencies in a time series. The 
groups of actors are clustered based on the similarity between their vectors. A linkage 
is defined by a send-reply chain between two actors in a time slice such as a month. 
The linkage is weighted by the cosine similarity between the vectors. With a  
chosen threshold, the graph for the network is generated and analyzed with  
small-world network model in Pajek [1]. Centrality scores are obtained through  
Degree/Closeness/Betweenness analysis in Pajek. The Betweenness analysis is an 
implementation of Brandes’s algorithm [5].  

The original centrality measures assume the impacts of the conversations are 
equally important over time, which may not consider an expert who contributed to the 
enterprise community during an early decade. If we are supposed to find an “emerg-
ing expert”, this measure may not also be accurate. So we develop another measure 
by assigning each conversation a delaying weight depending on its age. The modified 
conversation frequency is divided by (T (current)-T (i) +1)δ. If δ is set to 1, the con-
versation frequency is divided by the age. The measure particularly favors a recently 
active member in a community.  

4   Propagation of Weighted PageRank with Betweenness 

The definition of original PageRank assumes that prestige is equally distributed across 
all the links of a web page. In a social network, however, not all edges are equal. 
Some actors interact more often and/or more profoundly with others. In this context, 
the PageRank equation should take into account weighted communication links and to 
what extent they should transfer PageRank values. In our weighted PageRank equa-
tion, a propagation proportion is defined as w(aj, ai) between actors ai and aj by nor-
malizing the link weights emanating from a particular actor aj as follows: 

),(/),(),( kk jijij aaWaaWaaw ∑=  (1) 

For any particular actor aj, w(aj, ai) is defined as the ratio between the number of 
email conversations between ai and aj to the number of all the email conversations of 
aj. Therefore it can be used to determine the fraction of an actor’s PageRank that 
transfers to other linked actors.  

The PageRank algorithm computes the importance scores of web pages through a 
stochastic irreducible Markov transition matrix, yielding the “rank sink" problem. To 
solve this problem, [6] introduces a uniform matrix and linearly interpolates it with 
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the normalized adjacency matrix with a fixed random jumping probability β. A surfer 
would be better off to follow the out-links of a high-quality hub page rather than a 
low-quality one. This motivates us to think that a dynamic β value based on the com-
munication properties of an actor can be a better choice in SNA. Interestingly, we 
observe that Betweenness centrality B(i) can be defined as the average probabilities 
across all possible pairs of nodes that the shortest path between any two nodes will 
pass through the given node i [8]. The Betweenness score could be seen as the aver-
age probability that any other node goes through the selected node. Driven by this 
definition, we hypothesize that the score of Betweenness could dynamically be used 
as the value of the parameter (1-β), and model a PageRank Markov matrix more accu-
rately. This assignment assumes any pair of nodes in the network communicates 
through shortest paths. We use this approach to extend our weighted PageRank to 
rank the actors in a social network. Then the Weighted PageRank Eq. 2 for an actor ai 
is defined as follows: 

),(*)(/)1()( ij
j

jwiw aawaPRNaPR ∑+−= λλ
 

(2) 

According to Eq. 1, the transfer of prestige from one actor to the other is modu-
lated by the propagation proportion w(aj, ai). The parameter λ, which equals B(ai), 
represents the attenuation of prestige values as they are transferred from one actor to 
the other.  

5   Concept Extraction and Ranking 

Our natural idea is to represent each actor in the social network with a document which 
contains all the emails the actor had sent in a time frame and then to extract and rank 
concepts from these documents according their global statistical contribution. Firstly, 
4257 emails of the W3C URI working group that belong to 388 members are divided 
into 388 separate documents. Each document is chopped into 11 pieces due to the years. 
Next, STANFORD part-of-speech (POS) tagging, stop-word filtering with the Google 
stop word list and Port stemming are applied to the corpus. A total of 8,647 single noun 
terms are selected for the subsequent text analysis. All the nouns with a less than 2 term 
frequency are excluded. The associative relationship between a noun term and a docu-
ment is weighted by traditional TFIDF. These concepts are ranked by the feature selec-
tion algorithm in [24]. The ranking algorithm has been applied to news articles and the 
ISI citation abstracts related to SDSS (Sloan Digital Sky Survey).  For instance, the 
algorithm extracts the top 5 concepts from the 61 ISI records of Dr. Michael Vogeley, 
like “void galaxy”, “power spectrum”, “genu curve”, “largescale” and “release”. He 
verifies that these concepts are good summaries for his research. 

6   Experiments Results and Discussion 

The W3C email collection used for the experiment was crawled from w3c.org. We 
automatically identified threads (in-reply-to chains) from the in-reply-to fields of  
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the email messages. There are three types of information, unique message ID, non-
trivial subject lines, and null (not a reply).  By linking messages with unique mes-
sage ID and nontrivial subject lines, the pairs of senders and receivers are treated as 
discussion threads/links. This yielded 3032 discussion threads/links among 330 
members from 4257 emails of the URI working group at W3C across 10-year pe-
riod (1994-2004). 

Table 1. The top 10 actors ranked by the 10 ranking algorithms 

 BW CL DE T_CL T_DE 

1 Larry Masinter* Larry Masinter* Larry Masinter* Larry Masinter* Larry Masinter* 

2 Roy T. Fielding* Roy T. Fielding* Roy T. Fielding* Roy T. Fielding* Roy T. Fielding* 
3 Michael Mealling* Martin Duerst* Martin Duerst* Dan Connolly* Dan Connolly* 

4 Martin Duerst* Dan Connolly* Michael Mealling* Michael Mealling* Michael Mealling* 

5 Dan Connolly* Michael Mealling* Dan Connolly* Martin Duerst * Martin Duerst * 

6 Paul Hoffman Al Gilman Al Gilman Al Gilman Al Gilman 
7 Al Gilman Graham Klyne Patrick Stickler Paul Hoffman Paul Hoffman 
8 Patrick Stickler Paul Hoffman Graham Klyne Daniel LaLiberte Harald Tveit 

Alvestrand 
9 Daniel LaLiberte Daniel LaLiberte Paul Hoffman Graham Klyne Daniel LaLiberte 

10 Aaron Swartz Patrick Stickler Daniel LaLiberte Ronald E. Daniel Leslie Daigle* 
 W_PR PR_BW T_BW PR_TBW TE_BW 
1 Larry Masinter* Larry Masinter * Larry Masinter* Larry Masinter* Roy T. Fielding* 

2 Roy T. Fielding* Roy T. Fielding* Roy T. Fielding* Roy T. Fielding* Michael Mealling* 

3 Martin Duerst * Michael Mealling* Dan Connolly* Michael Mealling* Patrick Stickler 

4 Michael Mealling* Martin Duerst * Michael Mealling* Martin Duerst* Al Gilman 

5 Al Gilman Paul Hoffman Martin Duerst* Dan Connolly* Martin Duerst * 
6 Patrick Stickler Al Gilman Al Gilman Al Gilman Chris Lilley 

7 Dan Connolly* Dan Connolly* Harald Tveit 
Alvestrand 

Paul Hoffman Graham Klyne 

8 Graham Klyne Patrick Stickler Paul Hoffman Daniel LaLiberte Daniel LaLiberte 
9 Daniel LaLiberte Daniel LaLiberte Daniel LaLiberte Harald Tveit 

Alvestrand 
Larry Masinter* 

10 Paul Hoffman Aaron Swartz Leslie Daigle* Leslie Daigle* John Cowan 
*indicates the most influential members. 

According to the evaluation of expert search task in TREC Enterprise 2005 compe-
tition, we select Dan Connolly, Michael Mealling, and Leslie Daigle as URI experts in 
addition to well-known members, Tim Beners-Lee, Larry Minster (URI chair), Roy T. 
Fielding and Martin Duerst. In table 1, BW denotes Betweenness. CL denotes Close-
ness. DE denotes output Degree Centrality. T_BW denotes time-sensitive Between-
ness. T_CL denotes time-sensitive Closeness. T_DE denotes time-sensitive Degree 
Centrality. TE_BW denotes Betweenness centrality with the delaying weights on time. 
W_PR denotes weighted PageRank with a fixed parameter λ=0.85. PR_BW denotes 
weighted PageRank with a dynamic parameter λ generated from BW. PR_TBW  
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denotes weighted PageRank with a dynamic parameter λ generated from T_BW. The 
top 10 ranking lists of BW, CL, DE, W_PR, PR_BW and T_CL include 5 influential 
members. T_BW, T_DE and PR_TBW identify 6 influential members, including an 
additional influential member, Leslie Daigle. TE_BW identify four more currently 
active experts, which excludes Leslie Daigle and Dan Connolly. It suggested these two 
experts might be more active in the early developing stage of this working group. Tim 
Beners-Lee doesn’t appear in the top ranking list because his conversation frequency is 
only ranked as 25th in our dataset. With BW, his ranking is 25th. With W_PR, his  
ranking drops to 27th. With PR_BW, his ranking is enhanced to the 22nd. If W_PR is ex-
tended by T_BW, his ranking is 18th. But if measured by T_BW, his best ranking, 
15th, is achieved. 

Table 2. The Spearman Correlations among the 9 ranking algorithms except TE_BW 

 BW CL DE T_BW T_CL T_DE W_PR PR_BW 
CL .65* ---- ---- ---- ---- ---- ---- ---- 
DE .85* .78* ---- ---- ---- ---- ---- ---- 
T_BW .73* .73* .81* ---- ---- ---- ---- ---- 
T_CL .65* .57* .71* .81* ---- ---- ---- ---- 
T_DE .64* .55* .70* .80* .99* ---- ---- ---- 
W_PR .83* .65* .88* .76* .65* .64* ---- ---- 
PR_BW .22* .17* .16* .22* .57* .55* .18* ---- 
PR_TBW .17* .11* .12* .02 .71* .70* .16* .48* 

      *indicates statistically significant. 

In table 2, the results indicate that most of the Spearman correlations between the 9 
algorithms tend to be statistically significant. Even the correlation scores are changed 
from 0.11 to 0.99. Correlation coefficients among BW, CL, DE, T_BW, T_CL, T_DE 
and W_PR are larger than 0.5 from 0.64 to 0.99. Most of the coefficients among 
PR_BW, PR_TBW and other algorithms are less than 0.5 from 0.11 to 0.48 except 
T_CL and T_DE. The results indicate the integration of PageRank and Betweenness 
dramatically changes the topology of the graph. Through a node with a higher Be-
tweenness score, information flows more likely follow the shortest pathways that are 
linked to the most influential actors.  

Topical Terms in table 3 are ranked by the algorithm at section 5. For each year, 
the top ten themes are listed. These terms cover the key themes for URI, for instance, 
“urn, iri, character, base uri, fragment, ipv, resource” (see http://gbiv.com/protocols/ 
uri/rfc/rfc3986.html). The rankings include one for the overall 10 year period and 
eleven for each separate year. Because of TFIDF weights are used in text processing, 
these noun terms with an IDF = 0 are excluded in the ranking list. For instance, the 
ranking list for 1994-2004 excludes a list of terms, “uri, url, name, scheme, and ex-
ample”.  Obviously, these terms are very important and should be considered to un-
derstand the concept evolution. The highlighted terms reflect the concept building 
history in the URI working group in the ten-year period. The concepts shift from “url, 
uri” to “urn” and then “iuri, iri”, which matches the concept development history of 
URI (see, http://www.w3.org/Addressing/).  
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Table 3. Discussion Topic Evolution in the URI working group from 1994 Dec to 2004 May 

Rank 1994-2004 1994 1995 1996 1997 1998 
1 fragment some urn urn rtsp academy 
2 urn body rate vemmi utf nntp 
3 character davenport cid irc character lb 
4 lid ics Initiative wnetc div encode 
5 rate harald range fragment chri script 
6 utf norwegian digest mud imap gaymen 
7 base usenet ipv draft base utf 
8 iuri alvestrand finger deployment susan axiom 
9 iri cmu docid local numer cesuscd 
10 vemmi usage lyco acct fragment networld 
Actor amount 388 11 137 54 70 37 
Rank 1999 2000 2001 2002 2003 2004 
1 urn lid null lm urn snmp 
2 admin utf webdav smb mm file 
3 error xml ark base fragment dollar 
4 palceum base dav query openurl namespace 
5 busy Reagl protozilla rdf catalog iri 
6 termin sysrcus tftp offer tld sm 
7 nature idn index iri ni associtive 
8 product iuri christian oai thing fragment 
9 paper entity iri identity pgp resource 
10 leslie gerald urn yahoo dan info 
Actor amount 19 39 78 67 97 52 

7   Conclusion 

In summary, there is no substantial difference among the six centrality measures, BW, 
CL, DE, T_CL and W_PR. Weighted PageRank integrated with time-sensitive Be-
tweenness (PR_TBW), time-sensitive Betweenness (T_BW), and time-sensitive 
(T_DE) perform 60% (6 out of the top 10 ranks) accuracy. They appear to be the best 
measures to identify influential members from email conversations compared to any 
other algorithm. Even though TE_BW identify 4 out of the top 10, it emphasizes on 
the discovery of the contemporarily active experts. So including the time attribute 
improves the centrality measures. Betweenness Centrality is validated to be a good 
estimator of random jumping probabilities in a social network and it partly solved the 
rank-sink problem of PageRank. Furthermore, our novel approach integrates content 
analysis to bootstrap key concepts distributed in the social network. The top-ranking 
concepts selected from the different years demonstrate the development history of the 
discussion topics in the enterprise working group. The overall study highlights the 
roles of the most influential actors and demonstrates the evolution of the conceptual 
temporal structures in the social networks. 

Our current analysis emphasizes on the study of the strong ties among conversation 
links with restrict paths. However, there are many unrestricted pathways in the com-
munication system such as the broadcast emails. In future studies, we will explore and 
study the approaches from information diffusion perspectives like graph theory [15] 
[18], eigenvector centrality and information centrality [21] [22] [23] on the social or 
biological communities with unrestricted topology properties.   
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Kobyliński, �Lukasz 904
Koh, Yun Sing 910, 916
Kötter, Tobias 14
Krieger, Ralph 40

Kubo, Harunobu 148
Kuboyama, Tetsuji 184

Lallich, Stéphane 634
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Tsai, Cheng-Fa 739
Tsai, Chieh-Yuan 749
Tseng, Vincent S. 759, 864, 1035

Uno, Takeaki 234, 345, 357
Urazawa, Shinpei 582

Verleysen, Michel 527

Waiyamai, Kitsana 767
Walczak, Krzysztof 723, 904
Wan, You 1042
Wang, Hao 777
Wang, Jianyong 1062
Wang, KeHong 821
Wang, Liang 369
Wang, Peng 795
Wang, Tengjiao 405
Wang, Wei 795
Wang, Xiaozhe 369
Welter, Petra 40
Williams, Graham J. 536
Wong, Jui-Tsung 785
Wong, W.K. 381
Wu, Gang 821
Wu, Xian 1075
Wu, Xiaochen 795
Wu, Xintao 124



1102 Author Index

Xia, Tian 803
Xiong, Hui 160
Xu, Kaifeng 393

Yang, Bishan 405
Yang, Dongqing 405
Yang, Shuang-Hong 417, 813, 1049
Yang, Yu-Jiu 813, 1049
Yang, Zehong 932
Yang, Zhenglu 923
Yen, Chia-Chen 739
Yin, Jianping 951
Yoo, Jin Soung 1056
Yoshida, Minoru 260
Yu, Philip S. 970
Yu, Yang 429
Yu, Yong 393, 1075
Yung, Raylene 616

Zeng, Yifeng 441
Zeng, Zhiping 1062
Ženko, Bernard 454

Zhang, Chengqi 1069
Zhang, DeFu 1081
Zhang, Huaifeng 1069
Zhang, Jing 466
Zhang, Kuo 821
Zhang, Xian-Chao 839
Zhang, Xing 777
Zhang, Yongdong 803
Zhang, Zhongfei (Mark) 209
Zhao, Wentao 951
Zhao, Yanchang 1069
Zheng, Hao 1075
Zheng, Huicheng 830
Zhou, Jing 673
Zhou, Lizhu 1062
Zhou, XiYue 1081
Zhou, Zhi-Hua 209, 429
Zhu, En 951
Zhu, Weizhong 1090
Zhu, Ye 479
Zighed, Djamel 985
Zong, Yu 839


	Title Page
	Preface
	Organization
	Table of Contents
	Graph Mining: Laws, Generators and Tools
	Efficient Algorithms for Mining Frequent and Closed Patterns from Semi-structured Data
	Introduction
	Efficient Frequent Pattern Mining Algorithms
	Framework of Semi-structured Data Mining
	Rightmost Expansion Technique for Frequent Pattern Mining
	Frequent Unordered Tree Miner Unot
	Applications of Frequent and Optimized Pattern Mining

	Efficient Maximal Pattern Mining Algorithms
	Maximal Pattern Discovery
	Depth-First Algorithms for Maximal Pattern Discovery
	PPC-Extension for Maximal Semi-structured Patterns

	Conlusion

	Supporting Creativity: Towards Associative Discovery of New Insights
	Motivation: The Need for Information Exploration
	State of the Art: Network-Based Information Access
	Adaptive and Explorative Approaches
	Combining Heterogeneous Information Repositories

	BisoNets: Bisociative Information Networks
	First Steps: A BisoNet Prototype
	Open Issues and Challenges

	Summary

	Cost-Sensitive Classifier Evaluation Using Cost Curves
	Introduction

	Prospective Scientific Methodology in Knowledge Society
	Change of Scientific Research and Society Due to the Development of Information Technology
	Change of Society Due to Informationization
	Expansion of Research Object and Change in Scientific Methodology Due to Informationization
	Active Modeling

	Active Modeling of Time Series: Some Examples
	Prediction and Interpolation by Time Series Modeling
	Use of Multivariate Structure


	SubClass: Classification of Multidimensional Noisy Data Using Subspace Clusters
	Introduction
	Subspace Classification
	Step 1: Interesting Subspaces
	Step 2: Classifying Subspace Clusters
	Step 3: Classification

	Algorithmic Concept
	Experiments
	Conclusion

	Mining Quality-Aware Subspace Clusters
	Introduction
	Related Works
	Quality Aware Subspace Clustering
	Problem Description
	The QASC Algorithm

	Experimental Studies
	Conclusions

	A Decremental Approach for Mining Frequent Itemsets from Uncertain Data
	Introduction
	Preliminaries
	Decremental Pruning
	Experimental Evaluation
	Pruning Power of the Decremental Methods
	Varying Minimum Support Threshold
	Comparing with Data Trimming

	Conclusions

	Multi-class Named Entity Recognition Via Bootstrapping with Dependency Tree-Based Patterns
	Introduction
	Bootstrapping NER with Tree-Based Patterns
	Pattern Acquisition
	Pattern Matching
	Pattern Ranking
	Entity Ranking

	The Advantage of Bootstrapping from Multiple Classes
	Exception List Construction
	Exception List Usage

	Experiments
	Data Preparation
	Experimental Results

	Related Work
	Conclusions and Future Work

	Towards Region Discovery in Spatial Datasets
	Introduction
	Methodology
	A Real-World Case Study: Ground Ice on Mars
	Conclusion

	Accurate and Efficient Retrieval of Multimedia Time Series Data Under Uniform Scaling and Time Warping
	Introduction
	Related Work
	Background
	Our Proposed Method
	Experiment
	Discussion and Conclusions
	References

	Feature Construction Based on Closedness Properties Is Not That Simple
	Introduction
	Feature Construction Using Closure Equivalence Classes
	Freeness or Closedness?
	What Is Interesting in Closure Equivalence Classes?
	Information and Equivalence Classes
	Towards a New Space of Descriptors

	Experimental Validation
	Conclusion

	On Addressing Accuracy Concerns in Privacy Preserving Association Rule Mining
	Introduction
	Distortion Framework
	Association Rule Revisited
	Randomization Procedure
	Estimating k-Itemset Supports

	Theoretical Analysis on Accuracy of Association Rule
	Accuracy on Support s
	Accuracy on Confidence c

	Empirical Evaluation
	Accuracy of Individual Rule vs. Varying p
	Accuracy of All Rules vs. Varying p
	Other Datasets

	Conclusion and Future Work

	Privacy-Preserving Linear Fisher Discriminant Analysis
	Introduction
	Background and Related Work
	Linear Fisher Discriminant Analysis
	Secure Building Blocks

	Secure Building Blocks
	Secure Matrix Multiplication
	Secure Inverse of Matrix Sum

	Privacy-Preserving FDA
	PPFDA over Horizontally Partitioned Data
	PPFDA over Vertically Partitioned Data

	Experiments
	Conclusions

	Unsupervised Change Analysis Using Supervised Learning
	Introduction
	Problem Setting and Overview
	The Change Analysis Problem
	Overview of Our Approach

	Virtual Classifier Approach to Change Analysis
	Condition of No Change
	Change Analysis Algorithm
	Application to Labeled Data

	Experiment
	Synthetic Data
	Spambase Data
	Enron Email Data
	Academic Activities Data

	Related Work
	Conclusion

	ANEMI: An Adaptive Neighborhood Expectation-Maximization Algorithm with Spatial Augmented Initialization
	Introduction
	Background
	Problem Formulation
	Related Work

	The ANEMI Algorithm
	The MRF Framework
	Neighborhood EM (NEM)
	NEM with Adaptive Coefficient Assignment
	Spatial Augmented Initialization

	Experimental Evaluation
	Experimental Datasets
	Comparison Methodology
	Results and Discussions

	Conclusions

	Minimum Variance Associations — Discovering Relationships in Numerical Data
	Introduction and Related Research
	Minimum Variance Itemsets
	Formal Problem Statement
	Finding the Minimum Variance Itemset for a Set of Attributes
	Example Calculation

	From Itemsets to Rules
	Illustrative Examples
	Performance Analysis
	Conclusions and Future Research

	An Efficient Unordered Tree Kernel and Its Application to Glycan Classification
	Introduction
	Bifoliate Tree Kernel
	Computing a Bifoliate q-Gram Profile
	Experimental Results
	Conclusion

	Generation of Globally Relevant Continuous Features for Classification
	Introduction
	Motivation
	Related Work
	The GLOREF Approach
	Analysis of Relevance
	Automatic Generation of Globally Relevant Features
	Application Issues and Smoothing of Transformations

	Experimental Evaluation
	Conclusion

	Mining Bulletin Board Systems Using Community Generation
	Introduction
	A General Model for Community Generation on BBS
	Interest-Sharing Group Identification
	Predicting User Behavior Using Generated Community
	Experiments
	Data Set
	Experiments on Community Generation
	Experiments on User Behavior Prediction

	Conclusions

	Extreme Support Vector Machine Classifier
	Introduction
	SLFNs and ELM
	Single Hidden Layer Feedforward Networks
	Extreme Learning Machine

	Extreme Support Vector Machine Classifier
	The Linear Extreme Support Machine Classifier
	The Nonlinear Extreme Support Vector Machine Classifier
	What Is the Relationship between ESVM and the RN?
	What Is the Relationship between ESVM and Nonlinear PSVM?
	What Is the Relationship between ELM and ESVM?
	What Are the Differences between ESVM and Standard SVM?

	Experimental Results
	Conclusions

	LCM over ZBDDs: Fast Generation of Very Large-Scale Frequent Itemsets Using a Compact Graph-Based Representation
	Introduction
	Preliminaries
	LCM and ZBDDs
	LCM Algorithm
	ZBDDs
	ZBDD-Growth Algorithm

	LCM over ZBDDs
	ZBDD Construction in LCM Procedure
	Employing Hypercube Decomposition
	Closed/Maximal Itemset Mining

	Experimental Results
	Conclusion

	Unusual Pattern Detection in High Dimensions
	Introduction
	Related Work
	Our Approach
	Experiments
	LOF, KMEAN and SNN
	Outcast

	Conclusion

	Person Name Disambiguation in Web PagesUsing Social Network, Compound Words and Latent Topics
	Introduction
	Task Definition
	Related Works
	Proposed Framework
	Preprocessing
	Extraction of Social Networks
	Document Similarities Based on Compound Key Words 
	Estimate Latent Topic of Document

	Experimentation of Proposed Framework
	Data Set
	Evaluation
	Baseline
	Experimentation

	Conclusion

	Mining Correlated Subgraphs in Graph Databases
	Introduction
	Preliminaries
	Mining Hyperclique Patterns of Subgraphs
	Properties of Hyperclique Patterns
	A Conditional Prefix Tree of Hyperclique Patterns
	HSG: A Hyperclique Pattern Miner in Graph Databases

	Related Work
	Experimental Evaluation
	Conclusion

	A Minimal Description Length Scheme for Polynomial Regression
	Introduction
	Polynomial Regression
	Ciper
	The Ciper Refinement Operator
	The New Refinement Operator

	Minimal Description Length Heuristics for Polynomial Models
	Ad-Hoc MDL Heuristic
	Improved MDL Heuristic
	Encoding Polynomial Structure
	Encoding the Linear Regression Model

	Empirical Evaluation
	Evaluating the New Refinement Operator
	Evaluating the New MDL Heuristic
	Comparison with Standard Regression Algorithms

	Conclusion and Future Work

	Handling Numeric Attributes in Hoeffding Trees
	Introduction
	Numeric Attributes and Hoeffding Trees
	VFML
	Exhaustive Binary Tree
	Quantile Summaries
	Gaussian Approximation

	Experimental Comparison of Methods
	Conclusion

	Scaling Record Linkage to Non-uniform Distributed Class Sizes
	Introduction
	Related Work
	Problem
	Method
	Scalable Framework
	Parallel Record Linkage
	Meta Model for Object Reduction

	Evaluation
	Dataset and Model Setup
	Comparison of Scaling Techniques
	Scaling a Large Dataset with Parallelizing and Object Reduction

	Conclusion and Future Work

	Large-Scale k-Means Clustering with User-Centric Privacy Preservation
	Introduction
	Related Works and Basic Strategy
	Building Blocks
	Private Asynchronous Average Computation
	Protocol for Private AAC

	Private Determination of the Nearest Cluster Center
	$k$-Means Clustering Using Private AAC and NCD
	Conclusion

	Semi-Supervised Local Fisher Discriminant Analysis for Dimensionality Reduction
	Introduction
	Preliminaries
	Formulation
	Principal Component Analysis (PCA)
	Locality-Preserving Projection (LPP)
	Fisher Discriminant Analysis (FDA)
	Local Fisher Discriminant Analysis (LFDA)

	Semi-Supervised LFDA (SELF)
	Basic Idea
	Definition
	Properties
	Numerical Examples

	Simulations
	Conclusions and Future Prospects

	An Efficient Algorithm for Finding Similar Short Substrings from Large Scale String Data
	Introduction
	Preliminary
	Multi-classification Algorithm
	Reducing the Cost for Radix Sort
	Avoiding Duplication without Memory
	A Fixed Parameter Tractable Algorithm

	Approach to Long Substrings
	Applications and Extensions
	Computing Mismatch Tolerance
	General Edit Distance

	Computational Experiments
	Conclusion

	Ambiguous Frequent Itemset Mining and Polynomial Delay Enumeration
	Introduction
	Polynomial Delay Algorithm
	Improvements for Efficient Practical Computation
	Weighted Ambiguous Frequent Itemset
	Hardness Result for Branch-and-Bound Approaches
	Computational Experiments
	Conclusion and Future Work

	Characteristic-Based Descriptors for Motion Sequence Recognition
	Introduction
	Related Work
	Methodology
	From Motion Image Sequences to Silhouette Sequences
	From Silhouette Sequences to Multivariate Time Series
	From Multivariate Time Series to Characteristic-Based Descriptor
	From Characteristic-Based Descriptor to Motion Recognition

	Experiments
	Evaluation Databases
	Data Processing and Classification
	Results and Analysis
	Discussion and Future Work

	Conclusion

	Protecting Privacy in Incremental Maintenance for Distributed Association Rule Mining
	Introduction
	Related Work
	Problem Definition
	Secure Protocol Utilities
	Incremental Maintenance of Association Rule Mining with Privacy Protection
	Candidate Set Generation
	Information Collection and Storage
	Pruning Mechanism and Checking Large Itemsets
	Checking Association Rules

	Experiments
	Database Sizes
	Support Threshold
	Ratio of Old Sites to New Sites

	Conclusions

	SEM: Mining Spatial Events from the Web
	Introduction
	Related Work
	Event Location Retrieval
	Event Topic Mining

	Algorithm Overview
	Mining Spatial Event from the Web
	Data Retrieving and Query Expansion
	Mining Locations for a Query
	Summarizing Topics for Query

	Experiments
	Experimental Steps
	Results of Place Mining
	Results of Topic Mining
	Case Studies

	Conclusion and Future Work
	References

	BOAI: Fast Alternating Decision Tree Induction Based on Bottom-Up Evaluation
	Introduction
	Preliminaries
	Alternating Decision Tree
	ADTree Learning with AdaBoost

	BOAI - Bottom-Up Evaluation for ADTree Induction
	Pre-sorting Technique
	Data Structure
	Bottom-Up Evaluation
	Algorithm

	Experiments
	Synthetic Databases
	Real Data sets

	Conclusion

	Feature Selection by Nonparametric Bayes Error Minimization
	Introduction
	An Algorithmic Framework for Feature Selection
	Nonparametric Bayes Error Minimization
	Related Works

	Relief and Nonparametric Bayes Error Minimization
	Handling Imbalanced Multi-class Data Set
	Experiments
	Conclusion

	A Framework for Modeling Positive Class Expansion with Single Snapshot
	Introduction
	The Problem
	Related Works
	The Proposed Framework
	Experiments
	Experimental Setting
	Comparison with Other Methods
	Influence of Parameters

	Conclusion

	A Decomposition Algorithm for Learning Bayesian Network Structures from Data
	Introduction
	Related Work
	Decomposition Learning Algorithms
	Build a Dependency Graph
	Discover Local Components
	Cluster Expansion
	Recover Bayesian Network Structures

	Experimental Results
	Discussion

	Learning Classification Rules for Multiple Target Attributes
	Introduction
	Predictive Clustering
	Predictive Clustering Rules
	Learning Algorithm
	Learning Single Rule
	Modifying the Learning Set

	Experimental Setup
	Data Sets
	Evaluation Methodology

	Experimental Results
	Comparison to Existing Methods
	Comparison of Single to Multiple Target Prediction

	Conclusions and Further Work

	A Mixture Model for Expert Finding
	Introduction
	Expert Finding Description
	Models for Expert Finding
	Language Models for Document Retrieval
	Language Models for Expert Finding
	A Mixture Model for Expert Finding
	Find Experts Using the Model

	Experiments
	Experimental Setting
	Experimental Results of Expert Finding
	Discussions

	Related Work
	Language Model for Expert Finding
	Probabilistic Latent Semantic Analysis and Its Applications

	Conclusion
	References

	On Privacy in Time Series Data Mining
	Introduction
	Related Work
	Privacy Preserving Data Mining
	Time Series Data Mining

	Time Series Privacy Issues
	Threat Model
	Data Flow Separation Attack
	Blind Source Separation
	Data Flow Separation as a Blind Source Separation Problem
	Frequency Matching Attack

	Evaluation
	Performance Metrics
	A Small Example
	Mixing Degree
	Redundant Aggregate Data Flows
	Dependence between Individual Data Flows
	Frequency Matching

	Discussion
	Conclusion

	Exploiting Propositionalization Based on Random Relational Rules for Semi-supervised Learning
	Introduction
	Method
	Experiments
	Summary and Future Work

	On Discrete Data Clustering
	Introduction
	The Multinomial Generalized Dirichlet Mixture
	Maximum Likelihood Estimation
	Experimental Results
	Conclusion

	Automatic Training Example Selection for Scalable Unsupervised Record Linkage
	Introduction
	Related Work
	Two-Step Classification
	Training Example Selection
	Random Inclusion of Additional Training Examples
	Weight Vector Classification

	Experimental Evaluation
	Training Example Quality
	Classification Performance

	Conclusions and Future Work

	Analyzing PETs on Imbalanced Datasets When Training and Testing Class Distributions Differ
	Introduction
	Sampling Methods
	Experiments and Results
	Conclusions

	Improving the Robustness to Outliers of Mixtures of Probabilistic PCAs
	Introduction
	Robust Probabilistic PCA and Mixtures
	Learning Procedure
	Experiments
	Conclusion

	Exploratory Hot Spot Profile Analysis Using Interactive Visual Drill-Down Self-Organizing Maps
	Introduction
	Hot Spots Analysis
	Self-Organizing Maps
	SOM Hot Spot Profile Analysis Methodology
	Data Pre-processing and Map Training
	Identifying Hot Spots in Self-Organizing Maps
	Profile Analysis of Hot Spot
	Drill Down and Visualizing Hot Spots
	Visualization and Analysis of the Sub-map

	Results and Discussion
	Conclusion and Future Work

	Maintaining Optimal Multi-way Splits for Numerical Attributes in Data Streams
	Introduction
	Learning Decision Trees from Data Streams
	Optimal Multi-way Splits for Numerical Attributes
	Maintaining Sufficient Statistics On-Line
	Empirical Evaluation
	Conclusion

	Efficient Mining of High Utility Itemsets from Large Datasets
	Introduction
	Terms and Definitions
	Mining High Utility Itemsets in Large Datasets
	Creating $Global ItemTable$
	Database Subdivision by Parallel Projection
	Mining Subdivisions Using Compressed Utility Pattern Tree

	Performance Study
	Conclusion
	References

	Tradeoff Analysis of Different Markov Blanket Local Learning Approaches
	Introduction
	Brief Review of Related Algorithms
	Tradeoff Analysis
	Theoretical Assumption
	Time Efficiency
	Data Efficiency
	Scalability
	Summary

	Conclusion
	References

	Forecasting Urban Air Pollution Using HMM-Fuzzy Model
	Introduction
	Related Work
	HMM-Fuzzy Model
	Sorting Training Dataset
	Fuzzy Rule Generation
	Optimization of Extracted Fuzzy Rules

	Experiment and Result
	Dataset
	Experiment Design
	Results of HMM-Fuzzy Model
	Results Comparison

	Discussion and Conclusion
	References

	Relational Pattern Mining Based on Equivalent Classes of Properties Extracted from Samples
	Introduction
	Preparations
	Outline of Mapix Algorithm
	Difficulties in Mapix and the Idea to Them
	Properties, Property Items and Two Operators of Them
	The Mining Algorithm
	An Experiment and Concluding Remarks

	Evaluating Standard Techniques for Implicit Diversity
	Introduction
	Background and Related Work
	Method
	Results
	Conclusions
	References

	A Simple Characterization on Serially Constructible Episodes
	Introduction
	Episodes as Acyclic Transitive Labeled Digraphs
	Parallel-Free and Serially Constructible Episodes
	Conclusion

	Bootstrap Based Pattern Selection forSupport Vector Regression
	Introduction
	Pattern Selection for Support Vector Regression
	Experimental Results
	Conclusion

	Tracking Topic Evolution in On-Line Postings: 2006 IBM Innovation Jam Data
	Introduction
	Topic Identification and Tracking
	Implementation Studies
	2006 Innovation Jam Data Set
	Experimental Results
	Topic 1: food, health & exercise.
	Topic 2: Methods for payment & security.


	Conclusions and Directions for Future Work

	PAID: Packet Analysis for Anomaly Intrusion Detection
	Introduction
	Related Work
	Packet Analysis for Anomaly Intrusion Detection (Paid)
	Packet Header Analysis
	Data Transformation and Aggregation

	Evaluation
	Conclusion
	References

	A Comparison of Different Off-Centered Entropies to Deal with Class Imbalance for Decision Trees
	Class Imbalance Problem
	From Shannon's Entropy to Non-centered Entropies
	Usual Measures Based on Shannon's Entropy
	Off-Centered Entropy
	Off-Centered Generalized Entropies
	Asymmetric Entropy

	Experiments with More or Less Imbalanced Data Sets
	Conclusion and Future Works

	FIsViz: A Frequent Itemset Visualizer
	Introduction
	Related Work
	FIsViz: Our Proposed System for Visualizing Frequent Itemsets
	Basic Representation of FIsViz
	Features of FIsViz

	Evaluation Results
	Functionality Test
	Performance Test

	Discussion: Scalability of FIsViz
	Conclusions

	A Tree-Based Approach for Frequent Pattern Mining from Uncertain Data
	Introduction
	Related Work and Background
	Our Proposed UF-Growth Algorithm
	Construction of the UF-Tree
	Mining of Frequent Patterns from the UF-Tree

	Improvements to Our Proposed UF-Growth Algorithm
	Experimental Results
	Conclusions

	Connectivity Based Stream Clustering Using Localised Density Exemplars
	Introduction
	Related Work
	Clustering Stream Data Via Representative Points
	Preliminaries
	Merging and Splitting Clusters
	Knowledge Repository
	Singularities
	Data Retirement

	Experimental Results
	Synthetic Data
	Network Intrusion Data
	Forest Cover Data
	Scale-Up Experiments

	Conclusions

	Learning User Purchase Intent from User-Centric Data
	Introduction
	Related Work
	Purchase Intent Model
	Experimental Data
	Behavior Based Search Term Suggestion Algorithm
	Feature Construction

	Experiments
	Classification Experiments
	Site and User-Centric Comparison Experiments
	Prediction Latencies
	Smart Cookies

	Conclusion

	Query Expansion for the Language Modelling Framework Using the Na\"{i}ve Bayes Assumption
	Introduction
	Language Models for Information Retrieval
	Query Expansion within Language Models
	Query Expansion Using Naïve Bayes
	Computing the Query Expansion

	Query Term Compensation
	Experiments
	Conclusion

	Fast Online Estimation of the Joint Probability Distribution
	Introduction
	Related Work
	Problem Description
	Mixture Models
	Estimating Mixture Models Using On-Line EM
	Adapting Model Structure
	Bayesian Networks and Dependency Trees
	Time Complexity

	Experiments
	Results
	Conclusion and Future Work

	Fast $k$ Most Similar Neighbor Classifier for Mixed Data Based on Approximating and Eliminating
	Introduction
	Comparison Functions for Mixed Data
	Proposed Classifier
	Preprocessing Phase
	Classification Phase

	Experimental Results
	Conclusions
	References

	Entity Network Prediction Using Multitype Topic Models
	Introduction
	Related Work
	Models
	LDA
	SwitchLDA
	GESwitchLDA

	Experiments
	Data Sets
	Who-Entity Prediction
	Entity Link Prediction

	Conclusions

	Using Supervised and Unsupervised Techniques to Determine Groups of Patients with Different Doctor-Patient Stability
	Introduction
	Study Design
	Research Methodology
	SOFM Clusters
	CART Results
	Validation of SOFM and CART Groupings
	Similarities between Supervised and Unsupervised
	Summary and Conclusions
	References

	Local Projection in Jumping Emerging Patterns Discovery in Transaction Databases
	Introduction
	Emerging Patterns
	Rough Sets
	Local Projection
	JEP Computation
	Experimental Results
	Conclusions

	Applying Latent Semantic Indexing in Frequent Itemset Mining for Document Relation Discovery
	Introduction
	Frequent Itemset Mining
	Representation and Latent Semantic Indexing
	The Evaluation Method
	Experimental Settings and Results
	Conclusions

	G-TREACLE: A New Grid-Based and Tree-Alike Pattern Clustering Technique for Large Databases
	Introduction
	Preliminaries
	The Proposed G-TREACLE Clustering Algorithm
	Performance Studies
	Conclusion

	A Clustering-Oriented Star Coordinate Translation Method for Reliable Clustering Parameterization
	Introduction
	The Clustering-Oriented Star Coordinate Translation Method
	Feature Weighting Procedure
	Coordinate Arrangement Procedure
	Star Coordinate Translation Procedure

	Demonstrations
	Determining the Cluster Numbers
	Determining the Initial Cluster Centers

	Conclusions
	References

	Constrained Clustering for Gene Expression Data Mining
	Introduction
	The Proposed Method
	Imitative Triangle Inequality with Respect to Correlation Coefficient
	Algorithm of Correlational-Constrained Complete-Link (C-CCL)

	Experimental Evaluations
	Conclusions
	References

	Concept Lattice–Based Mutation Control for Reactive Motifs Discovery
	Introduction
	Reactive Motifs Discovery with Mutation Control
	Data Preparation and Block Scan Filtering
	Mutation Control
	Reactive Site – Group Definition

	Concept Lattice–Based Mutation Control for Complete Substitution Group Discovery
	Basic Definitions
	Complete Amino-Acids Substitution Group Discovery

	Experimental Results
	Conclusions and Discussion
	References

	Mining a Complete Set of Both Positive and Negative Association Rules from Large Databases
	Introduction
	Valid Association Rules
	Generating Valid Association Rules
	Pruning Strategies
	Algorithmic Details

	Experiment Results
	Conclusion
	References

	Designing a System for a Process Parameter Determined through Modified PSO and Fuzzy Neural Network
	Introduction
	The Architecture of the Proposed Approach
	The Integrated System
	PPSO Algorithm

	Proposed Algorithm Test
	Example Application of the Approach
	The Wire Bonding Process
	The Learning Result of ANFIS
	The Proposed Algorithm Implementation

	Conclusion
	References

	Data-Aware Clustering Hierarchy for Wireless Sensor Networks
	Introduction
	Data-Aware Clustering Hierarchy
	Data Distribution in Wireless Sensor Network
	Data-Aware Clustering Hierarchy
	Algorithm for Building Data-Aware Clustering Hierarchy

	A Communication Protocol Based on DACH
	Multi-granularity Query Processing Method Based on DACH
	Performance Evaluations
	Conclusions
	References

	A More Topologically Stable Locally Linear Embedding Algorithm Based on R*-Tree
	Introduction
	Background
	LLE Algorithm
	R*-Tree

	Problem Formation and Related Work
	Our Solution Based on R*-Tree
	“Short Circuit” Edge Pruning Based on R*-Tree
	The More Topologically Stable LLE Algorithm

	Experimental Results
	Conclusion
	References

	Sparse Kernel-Based Feature Weighting
	Introduction
	Kernel-Based Relief
	Kernel-Relief Revisiting
	Sparse Kernel-Relief
	Experiments
	Conclusion

	Term Committee Based Event Identification within News Topics
	Introduction
	Related Work
	Problem Definition and Analysis
	Our Approach
	News Story Representation
	Term Committee Discovery
	Event Identification

	Experiments
	Datasets
	Evaluation Metric
	Experimental Results

	Conclusions
	References

	Locally Linear Online Mapping for Mining Low-Dimensional Data Manifolds
	Introduction
	The Locally Linear Online Mapping Algorithm
	Experimental Results on Manifold Mining
	Conclusions
	References

	A Creditable Subspace Labeling Method Based on D-S Evidence Theory
	Introduction
	Background of D-S Evidence Theories
	A Creditable Subspace Labeling Method Based on D-S Evidence Theory
	Relevant Define
	CSL Algorithm

	Results and Analysis
	Conclusion
	References

	Discovering New Orders of the Chemical Elements through Genetic Algorithms
	Introduction
	Method
	Data Representation
	Ordering of Elements
	Genetic Algorithms for Order Discovery
	Evaluation of Orders

	Experiments
	Data
	Results

	Conclusion

	What Is Frequent in a Single Graph?
	Introduction
	The Support of a Pattern
	Experiments
	Conclusions and Future Work

	A Cluster-Based Genetic-Fuzzy Mining Approach for Items with Multiple Minimum Supports
	Introduction
	The Proposed Framework
	Clustering Chromosomes
	The Proposed Mining Algorithm: CGFMMS
	Experimental Results
	Conclusion and Future Works
	References

	A Selective Classifier for Incomplete Data
	Introduction
	SRBC
	RBSR
	Experimental Results
	Conclusion
	References

	Detecting Near-Duplicates in Large-Scale Short Text Databases
	Introduction
	Related Work
	SimFinder
	Term Weighting and Duplicate Degree
	Feature Extraction and Optimization

	Experiments and Evaluations
	Conclusion
	References

	Customer Churn Time Prediction in MobileTelecommunication Industry Using Ordinal Regression
	Introduction
	Classical Approaches for Tenure Modeling
	Ordinal Regression for Tenure Modeling
	Experiments and Results
	Data Preparation
	Data Preprocessing
	Empirical Results

	Conclusion and Future Work

	Rule Extraction with Rough-Fuzzy Hybridization Method
	Introduction
	Assessing Soft Computing Techniques for Generating Fuzzy if-Then Rules
	The Experimental Dataset
	Automatically Transform Quantitative Data Values Into Linguistic Terms
	Using Fuzzy Truth Value to Evaluate the Confidence of Fuzzy if-Then Rules

	Conclusion
	References

	I/O Scalable Bregman Co-clustering
	Introduction
	Co-clustering and the Bregman Co-clustering Algorithm
	Use OLAP to Achieve Scalability
	Performance Evaluation
	Related Work
	Conclusions and Future Work
	References

	Jumping Emerging Patterns with Occurrence Count in Image Classification
	Introduction
	Jumping Emerging Patterns in Transaction Databases
	Jumping Emerging Patterns with Occurrence Count
	Tile-Based Image Representation
	Experimental Results
	Conclusions

	Mining Non-coincidental Rules without a User Defined Support Threshold
	Introduction
	Preliminaries and Related Work
	Coincidental Itemset Problem
	Apriori with the MinAbsSup Function

	Experimental Results and Performance Study
	Conclusion

	Transaction Clustering Using a Seeds Based Approach
	Introduction
	Related Work
	Transaction Clustering by Seeding
	Seed Generation Phase
	Allocation Phase

	Experimental Results
	Conclusion

	Using Ontology-Based User Preferences to Aggregate Rank Lists in Web Search
	Introduction
	Rank Aggregation
	Hierarchical Similarity Measures
	Rank Lists Produced by Ontology-Based User Preferences
	Rank Aggregation Methods

	Experiments
	Dataset and Evaluation Metrics
	Experimental Results

	Conclusions

	The Application of Echo State Network in Stock Data Mining
	Introduction
	Echo State Network and Stock Prediction System
	Architecture of ESN
	Hurst Exponent
	Data Preparation

	Experiments and Results
	Conclusions
	References

	Text Categorization of Multilingual Web Pages in Specific Domain
	Introduction
	Text Categorization
	Dictionary-Based Multilingual Text Categorization
	Experiments
	Effect of Dataset on Classification Performance
	Effect of Dictionary-Based Multilingual Text Categorization on Classification Performance

	Conclusions
	References

	Efficient Joint Clustering Algorithms in Optimization and Geography Domains
	Introduction
	Preliminaries
	Algorithm KLS: K-Means with Local Search
	Transformation Phase
	Coarse Clustering Phase
	Fine Clustering Phase

	Performance Study
	Conclusion

	Active Learning with Misclassification Sampling Using Diverse Ensembles Enhanced by Unlabeled Instances
	Introduction
	Preliminary
	Notations

	The Proposed MSDEEUI Method
	Efficiency of Instances for Version Space Reduction
	Constructing the Strong Classifier Based on Modified DECORATE
	Sampling Criterion

	Experiments
	Conclusion

	A New Model for Image Annotation
	Introduction 
	Proposed Method 
	Image Annotation with Global Information 
	Image Annotation Model Using Local Information 

	Experiments 
	Experimental Setup
	Results

	Conclusion and Future Works 

	Unmixed Spectrum Clustering for Template Composition in Lung Sound Classification
	Introduction
	Previous Work
	Details of Our Method
	Experiment
	Conclusion and Future Work

	Forward Semi-supervised Feature Selection
	Introduction
	The Framework
	Our Approach
	Method Analysis

	Experiment
	Experiment Settings and Evaluation Method
	Empirical Results

	Conclusion and Future Work

	Automatic Extraction of Basis Expressions That Indicate Economic Trends
	Introduction
	Related Work
	Extraction of Basis Expressions
	Extraction of Frequent Phrases
	Selection of Frequent Phrases
	Acquisition of Clue Phrases
	Extraction of Basis Expressions by Using Frequent Phrases and Clue Phrases

	Classification of Basis Expressions
	Evaluation
	Discussions
	Conclusion

	A New Framework for Taxonomy Discovery from Text
	Introduction
	Estimating Semantic Relations
	Taxonomy Learning
	Improving Taxonomy with Relevance Feedback
	Conclusion and Future Works

	R-Map: Mapping Categorical Data for Clustering and Visualization Based on Reference Sets
	Introduction
	Related Works

	The R-Map Framework
	Analysis of the Framework

	Experimental Evaluation
	Experiments for Effectiveness Comparison with Related Works
	Experiments for Scalability on Synthetic Data Sets
	Experiment for Visualization

	Conclusions

	Mining Changes in Patent Trends for Competitive Intelligence
	Introduction
	Background and Related Work
	Patent Trend Change Mining Technique
	Detecting Changes in Patent Trends
	Patent Trend Mining
	Patent Trend Comparison
	Evaluating the Degree of Change

	Changes in Patent Trends in Taiwan’s Semiconductor Industry
	Conclusions
	References

	Seeing Several Stars: A Rating Inference Task for a Document Containing Several Evaluation Criteria
	Introduction
	Task
	The Methods and Features
	The Methods
	Feature Selection

	Experiment
	Dataset and Criteria for the Experiment
	Results
	Discussion

	Conclusion

	Structure-Based Hierarchical Transformations for Interactive Visual Exploration of Social Networks
	Introduction
	Social Network Background and Motivation
	Social Network Graph Models
	Expansion Values for Centrality Measures
	Motivation

	Semantics of Structure-Based Hierarchical Transformation
	Visual Mining Case Study
	Conclusions and Future Directions

	CP-Tree: A Tree Structure for Single-Pass Frequent Pattern Mining
	Introduction
	Overview of CP-Tree: Construction and Performance Issues
	Tree Restructuring

	Experimental Results
	Conclusions
	References

	Combining Context and Existing Knowledge When Recognizing Biological Entities – Early Results
	Introduction
	Background
	Entity Recognition
	Evaluation
	Conclusions and Future Work
	References

	Semantic Video Annotation by Mining Association Patterns from Visual and Speech Features
	Introduction
	Proposed Method
	Preprocessing Operation
	Training Phase
	Prediction Phase

	Empirical Evaluation
	Conclusions and Future Work
	References

	Cell-Based Outlier Detection Algorithm: A Fast Outlier Detection Algorithm for Large Datasets
	Introduction
	Problem Formulations
	Algorithm Description and Complexity Analysis
	Algorithm Description
	Complexity Analysis

	Experiment
	Comparison of Accuracy with LOF Algorithm
	Influence of k Value and Data Size on Algorithm Performance

	Conclusions and Future Works
	References

	Fighting WebSpam: Detecting Spam on the Graph Via Content and Link Features
	Introduction
	Related Work
	Our Algorithm
	Construct an Informative Similarity Graph
	Label Propagation under the Consistency Criterion
	Spectral Space Analysis

	Experiments
	Conclusion

	A Framework for Discovering Spatio-temporal Cohesive Networks
	Introduction
	Social Network Modeling
	Spatio-temporal Semantic Model
	Spatio-temporal Location Model
	Spatio-temporal Cohesive Network

	Spatio-temporal Cohesive Network Mining
	Conclusion

	Efficient Mining of Minimal Distinguishing Subgraph Patterns from Graph Databases
	Introduction and Formulation
	Motivation
	Preliminary Concepts

	Related Work
	The MDGP-Mine Algorithm
	Enumeration of Positive Frequent Subgraphs
	Discovery of Minimal DGPs
	Algorithms

	Experiments and Conclusion

	Combined Association Rule Mining
	Introduction
	Definition of Combined Association Rule
	Combined Association Rule Mining
	Interestingness Measures
	Algorithm Outline

	Case Study
	Business Background and Problem Statement
	Data Involved
	Experimental Results

	Related Work
	Summary

	Enriching WordNet with Folksonomies
	Introduction
	Related Work
	Folksonomies
	Hyponym/Hypernym Relation Extraction

	Exploiting Folksonomies
	Tag Selection
	Subsumption Relationships
	Enriching WordNet

	Experiment and Evaluation
	Evaluation by WordNet
	Evaluation by Human

	Conclusion

	A New Credit Scoring Method Based on Rough Sets and Decision Tree
	Introduction
	Rough Sets Theory
	The Information System
	Indiscernibility Relation
	Reduction of Concept and the Core
	Discernibility Matrix

	C4.5
	Generating Decision Tree
	Pruning Decision Tree

	New Credit Scoring Model
	Design
	Reduction of Attributes
	Generating Classifier

	Experimental Results
	Efficiency of Reduction of Attributes
	Prediction Accuracy Analysis
	Comparing with Other Methods

	Conclusions and Future Works
	References

	Analyzing the Propagation of Influence and Concept Evolution in Enterprise Social Networks through Centrality and Latent Semantic Analysis
	Introduction
	Related Work
	Time Series Analysis
	Propagation of Weighted PageRank with Betweenness
	Concept Extraction and Ranking
	Experiments Results and Discussion
	Conclusion
	References

	Author Index



