
Text Onto Miner – A Semi Automated Ontology

Building System

Piotr Gawrysiak1, Grzegorz Protaziuk1, Henryk Rybinski1,
and Alexandre Delteil2

1 ICS, Warsaw University of Technology
2 France Telecome R & D

{P.Gawrysiak,G.Protaziuk,H.Rybinski}@ii.pw.edu.pl,
alexandre.delteil@orange-ft.com

Abstract. This paper presents an overview of the results of the project
undertaken by the Warsaw University of Technology Institute of Com-
puter Science as a part of research agreement with France Telecom. The
project goal was to create a set of tools – both software and methods,
that could be used to speed up and improve a process of creating ontolo-
gies. In the course of the project a new ontology building methodology
has been devised, new text mining algorithms optimized for extracting
information useful for building an ontology from text corpora have been
proposed and an universal text mining toolkit – TOM Platform – have
been implemented.

Keywords: Natural language processing, ontologies, text mining.

1 Introduction

Ontologies have shown their importance in many application areas, such as intel-
ligent knowledge base integration, information brokering, and natural-language
processing, just to indicate few of them. Their importance is growing, as is
growing on the Web the number of information repositories that need metadata
enrichment and analysis. On the other hand however, their usage is still very
limited by ontology engineering, which is very time-consuming and expensive.
Therefore there is a growing need for automated – or at least semi-automated
methods, that will be able to leverage the amount of information present in ever
growing repositories of text data (e.g. obtainable via the Internet) in order to
build useful ontology systems.

One can distinguish two main approaches in discovering semantic informa-
tion from text corpora – knowledge-rich and knowledge-poor ones, according
to the amount of knowledge they presuppose [7]. Knowledge-rich approaches
require some sort of previously built semantic information, domain-dependent
knowledge structures, semantic tagged training corpora, or semantic dictionar-
ies, thesauri, ontologies, etc. (see e.g. [9,24]). In most cases, the reported meth-
ods refer to knowledge-rich methods, which require deep and specific knowledge
“coded” into the algorithms, auxiliary dictionaries and/or thesauri, very much
language and domain dependent. Although the knowledge rich methods may

A. An et al. (Eds.): ISMIS 2008, LNAI 4994, pp. 563–573, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

564 P. Gawrysiak et al.

bring better results than the knowledge poor ones, the requirement for deep and
specific knowledge is the main limitation in using them. There is therefore a
high demand for finding knowledge-poor algorithms that would give satisfactory
results, especially for the cases of limited lexical resources. In this context, the
most promising approach seems to be utilization of text mining techniques for
discovering semantic information from text corpora in order to build or main-
tain ontologies (see e.g. [14]). To this date most approaches of this type have
only looked at a very specific problem, e.g. how to learn the taxonomic part of
ontologies, or how to find proper names. The most complete approach has been
reported in the work performed by the group of AIFB (Karlsruhe University),
e.g. [14,15]. Our approach follows this direction. So, as in [14] we attempt to
cover the entire process of ontology building, and provide an advanced platform
(named TOM), supporting the whole process. Additionally, we have incorpo-
rated to TOM a number of novel algorithms, focused mainly on enriching the
ontologies lexical layer. TOM integrates text preprocessing algorithms with novel
TM based algorithms [19,21,11,22], and the tools for merging partial results into
the existing ontology.

In this paper we present an overview of this approach, and the set of tools.
It is a semi-automated method that could help building ontologies thanks to
the analysis and extraction of semantic information from large text corpora.
The structure of this paper is as follows: Section 2 presents an overview of the
proposed ontology building process, and Section 3 describes briefly new algo-
rithms and methods that have been developed in order to support this process.
Section 4 presents the structure of the TOM platform that has been developed
specifically in order to verify experimentally the proposed algorithms and the
methodology. Finally, Section 5 contains information concerning experimental
results and concluding remarks.

2 Semi-automatic Ontology Building Process

In the literature many approaches to building ontologies have been introduced and
discussed (see for example) [2,1,4,5,6,12,16,23]. In [8] and [17] authors present an
opinion that the process of ontology building is not a rigorous engineering disci-
pline. Nevertheless, tasks that are required in order to create ontology are quite
well defined. According to e.g. [17] these include: (a) defining a domain and scope
of an ontology, (b) creating a comprehensive list of concepts (classes) and their
hierarchy, (c) defining relations between classes and (d) populating an ontology
with instances of classes. Additionally, some auxiliary tasks, such as defining the
properties of classes or preserving transitivity of some relations (e.g. taxonomy,
part of), and avoiding cycles, are usually required.

As shown in [20], there are already many publications referring to the research
on automatic tools that support ontology building process in various phases. In
many of above tasks (e.g. while determining relations between classes) some
automatic tools can be used, to a higher or lesser extent. Some of these tasks
cannot be even performed manually in a reasonable amount of time. This state-
ment refers specifically to situations, where a huge amount of data should be

Text Onto Miner – A Semi Automated Ontology Building System 565

processed and/or analyzed. With the text mining methods we can provide a
support in such cases, however the discovered knowledge always requires human
decision and intervention, thus provided tools will be always semi-automatic.

Below we sketch a method of building a domain ontology from unstructured
text documents with the text mining support provided by the TOM text min-
ing platform. We propose an approach to building an ontology from a domain
specific repository. We assume that neither an a priori taxonomy nor ontology
is available. The approach consists of the following steps:

1. Text extraction and preprocessing
TOM provides a variety of tools for text preprocessing. In various text mining ex-
periments there may be different needs for defining a text unit. We have therefore

Fig. 1. Designing a preprocessing pipeline

introduced an option for
defining granularity of the
text mining process. In
particular, TOM allows
viewing the whole corpus
as a set of documents,
paragraphs or sentences.
For example, for exper-
iments aiming at dis-
covering compound terms
[19], or synonyms [21] the
granularity was set to the
sentence level. For dis-
covering homonyms and
homograms [22] we have
performed experiments

with the granularity set at the paragraph level. The process can be defined
as a pipeline (Fig. 1), and the results can be used in all the other phases.

2. Determining list of terms & purifying document representations
In this step two kinds of terms are determined: (a) words specific for a domain
of interest, and (b) compound terms, including compound proper nouns (see [19]
for details). For building the list (a) usually one should extract a dictionary from
the given repository and subtract from it the dictionary received from a refer-
ence repository (containing a common sense texts). Next, sequences of words
representing multiword terms are replaced by compound terms in the text.

3. Building a hierarchy (taxonomy)
The candidates for the hierarchy building are discovered with FIHC, and apriori
(see [11] and [21] for details respectively). Based on it, the user selects proper
candidates. It is difficult to automatically detect the hierarchy for compound
proper nouns, because such terms occur in texts rather infrequently, and they
are disseminated among many clusters. It is therefore reasonable in FIHC to
ignore compound (proper) nouns. On the other hand, synonymy discovering

566 P. Gawrysiak et al.

procedure [21] finds inter alia categories of terms. In such cases a taxonomy
level can be created or adjusted manually, when needed. Then hierarchies are
merged. The step ends with an ontology skeleton.

4. Discovering terms meanings
By discovering terms meanings we (1) identify the pairs of terms with close
meanings, and homonyms (or in general, various meanings of some terms). To
this end, we use the methods sketched in Section 3. As the method described
discovers also pairs of the type (broader, narrower), part of, or belonging to
the same category, some results can be used to enrich the taxonomy obtained
in the steps above. Discovered synonyms and homonyms can be used for enrich-
ing the lexical part of the ontology by relating the literals to the appropriate
concepts. In the case of homonyms we also keep within the ontology various
meanings of the words. The information can be then used by the user for enrich-
ing the dictionary layer and its connections to the concept layer of the ontology.

5. Discovering association relations & enriching the ontology skeleton
The process of discovering association relations is done by applying the method
described in Section 3. Discovered relations can be then used by the user for
building the concept layer of the ontology. In this case each term included in
the discovered relations is treated as an instance of a certain class unless it is
directly stated that the word is a name of a class. The OWL standard requires
that each instance must have assigned a class but it may happen that for some
instances appropriate classes are unknown.

It is worth noting that steps 2 and 5 are performed with the same T-GSP
algorithm (though with different parameters), whereas step 4 (both homonymy
and close meaningterm discovery) is performed with apriori [1].

3 New Text Analysis Methods

During the course of the TOM project several new text analysis methods have
been developed. The methods mainly refer to discovering various relations be-
tween words and their properties relevant in the ontology development and main-
tenance process. In particular, the following algorithms have been elaborated and
tested, and then incorporated into TOM:

1. discovering hierarchies with FIHC algorithm [6]; the algorithm is used for
finding taxonomies from the set of documents; a number of improvements
have been introduced to the algorithm in comparison to the original, making
the algorithm much faster;

2. apriori based algorithm for discovering close meaning terms (synonyms,
antonyms, BT/NT related terms, category/instances related terms, etc.);

3. apriori based algorithm for discovering homonyms and homograms;
4. T-GSP algorithm for discovering grammatically filtered frequent patterns;

the algorithm can be used for discovering (proper) composed nouns, as well
as association relations, depending on the grammar rules defined;

Text Onto Miner – A Semi Automated Ontology Building System 567

5. new (knowledge rich) methods for discovering association relations;
6. a number of rules have been elaborated in order to support the process of

merging ontologies.
Some methods have been described in detail in [21,19,11,22]. A complete de-
scription is provided in [18]. Below we briefly present only short descriptions of
the selected algorithms.

Discovering hierarchies based on the FIHC
Processing text corpora with the FIHC algorithm [6] generates hierarchical clus-
tering tree. As described in [6], labels of this tree tend to form a potentially in-
teresting taxonomy. Resulted tree comes from the frequent itemsets tree, which
has taxonomic character by itself, e.g. Warsaw University of Technology is ob-
viously in is a relation with University and the former itemset is a superset of
the latter one. In addition, the obtained FIHC tree has the following advantages
over normal frequent sets trees:

• it is not full. In the case of frequent sets, if an itemset is frequent, then all
its subsets are also frequent, and all of them exist in the tree. FIHC takes
only the most significant subsets.

• FIHC can merge similar siblings, so it might happen that a phrase has a
parent which is not its subset.

In [11] our group have proved that the original algorithm can easily be mod-
ified to operate on closed sets and can produce exactly the same results as by
means of frequent itemsets. The number of frequent closed sets is usually much
lower than the number of frequent itemsets giving significant gain in time of
execution and memory requirements. Moreover, we made some modifications to
the algorithm which strengthen the ability of discovering taxonomies. We exper-
imented with many modifications. The ones listed below significantly improve
the taxonomy discovery:

• use of POS tagging for pattern matching & pre-filtering. It allows restricting
search only for relations of a given form, e.g. only noun-noun relations. We
can define any pattern which can be expressed by means of regular expres-
sions.

• allowing obvious pruning only. Normally, the resultant tree is vastly pruned
in the last phases of the FIHC algorithm. This option allows performing only
obvious pruning. It means that parent-child merging is allowed only in case
of one-child nodes. This option was introduced to retrieve more semantic
relations. Originally FIHC was meant to produce labeled clustering tree and
it was reasonable to have a small number of meaningful groups. We are not
interested in clusters, instead, we want to have a rich description of semantic
relations.

• pulling up labels. While performing the pruning, original FIHC leaves a
parent label that is the shorter one. In our case, we do not look for cluster
labels, but we need semantic relations, which are more likely hidden in longer
labels. When the option of pulling labels is on, the label of the child is kept
instead of the parent’s one during the pruning phase.

568 P. Gawrysiak et al.

• operating on sequential patterns instead of itemsets, which keeps words or-
dering, and makes results more readable and potentially more accurate. We
replaced the phase of itemsets discovery with TGSP.

Discovering synonyms [21]
In our method we assume that: The synonyms do not appear together in a sen-
tence, but they appear quite frequently in similar contexts. Hence, synonyms are
often used with the same words. Having the pairs of terms that do not co-occur,
we apply the similarity measures CSIM and ASIM [21]. The approach for gen-
erating pairs of terms that are likely to be synonyms consists of the following
steps:
1. Text corpus is tagged with parts of speech, and some cleaning is done;
2. Text data are converted into transactional database, where sentences are

treated as transactions (by means of [1];
3. The apriori based algorithm for finding frequent itemsets is executed;
4. For every frequent term being in the field of interest, frequent itemsets con-

taining that word are found (we call the set of itemsets context of a word);
5. Finally synonymy measure is computed for every pair of words with use

of their contexts. Based on this, a decision is taken whether the pair can
candidate for synonymy or not.

Discovering homonyms
Distinct meanings of homonyms are indicated by various distinct contexts in
which they appear frequently. This assumption is based on the distributional
hypothesis [10], where the underlying idea is that “a word is characterized by
the company it keeps”. The rule is very intuitive, and therefore is applied to
the proposed approaches. The problem is, however, how the notion of a context
is defined. For example, it can be understood as a set of words surrounding a
target word frequently enough in documents, paragraphs, or sentences. In our
approach, context is evaluated as below.

Let dictionary D = {t1, t2, . . . , tm} be a set of distinct words, called terms. In
general, any set of terms is called a termset. The set P is a set of paragraphs,
where each paragraph P is a set of terms such that P ⊆ P .

Statistical significance of a termset X is called support and is denoted by
sup(X). sup(X) is defined as the number (or percentage) of paragraphs in P
that contain X . Clearly, the supports of termsets that are supersets of termset
X are not greater than sup(X).

A termset is called frequent if it occurs in more than ε paragraphs in P ,
where ε is a user-defined support threshold. In the sequel, we will be interested
in maximal frequent termsets, which we will denote by MF and define as the
set of all maximal (in the sense of inclusion) termsets that are frequent.

Let x be a term. By MF (x) we denote all maximal frequent termsets con-
taining x. MF (x) will be used for determining atomic contexts for x. A termset
X, x /∈ X , is defined as an atomic context of term x if {x} ∪ X is an element of
MF (x). The set of all atomic contexts of x will be denoted by AC(x):

AC(x) = {X\{x} | X ∈ MF (x)}.

Text Onto Miner – A Semi Automated Ontology Building System 569

Clearly, for each two termsets Y, Z in AC(x), Y differs from Z by at least one
term and vice versa. In spite of this, Y and Z may indicate the same meaning of x
in reality. Let y be a term in Y \Z and z be a term in Z\Y and {xyz} be a termset
the support of which is significantly less than the supports of Y and Z. This may
suggest that Y and Z probably represent different meanings of x. Otherwise, Y
and Z are likely to represent the same meaning of x. Please, note that {xyz}
plays a role of a potential discriminant for pairs of atomic contexts. The set of
all potential discriminants for Y and Z in AC(x), denoted by D(x, Y, Z) is:

D(x, Y, Z) = {{xyz} | y ∈ Y \Z ∧ z ∈ Z\Y }.
Among the potential discriminants, those which are relatively infrequent are
called proper discriminants. Formally, the set of all proper discriminants for Y
and Z in AC(x) will be denoted by PD(x, Y, Z), and defined as follows:

PD(x, Y, Z) = {X ∈ D(x, Y, Z) | relSup(x, X, Y, Z) ≤ δ}, where
relSup(x, X, Y, Z) = sup(X)/min(sup(xY), sup(xZ)), and

δ is a user-defined threshold.

In the sequel, relSup(x, X, Y, Z) is called a relative support of discriminant X
for term x with respect to atomic contexts Y and Z.

Our proposal of determining the groups of contexts representing separate
meanings of x is based on the introduced notion of proper discriminants for
pairs of atomic contexts.

Atomic contexts Y and Z in AC(x) are called discriminable if there is at
least one proper discriminant in PD(x, Y, Z). Otherwise, Y and Z are called
indiscriminable.

A sense-discriminant context SDC(x, X) of x for termset X in AC(x) is de-
fined as the family of the termsets in AC(x) that are indiscriminable with X :

SDC(x, X) = {Y ∈ AC(x) | PD(x, X, Y) = ∅}.
Clearly, X ∈ SDC(x, X). Please, note that sense-discriminant contexts of x for
Y and Z, where Y �= Z, may overlap, and in particular, may be equal.

The family of all distinct sense-discriminant contexts, denoted by FSDC(x) is:

FSDC(x) = {SDC(x, X) | X ∈ AC(x)}.
Please, note that | FSDC(x) |≤| AC(x) |.

A given term x is defined as a homonym candidate if the cardinality of
FSDC(x) is greater than 1. Final decision on homonymy is given to the user.
Let us also note that the more overlapping are distinct sense-discriminant con-
texts, the more difficult is reusing the contexts for the meaning recognition in
the mining procedures.

Merging ontologies
Having loaded an ontology, one can merge it with detected proposals. In such a
process, a number of conflicts may occur, e.g. the type of an attribute is different
in both ontologies. The conflicts can be resolved either automatically or manu-
ally, though, some can be resolved only manually, e.g., if we have an attribute

570 P. Gawrysiak et al.

definition of integer type in the base ontology and an attribute definition of string
type in the other one, we will have a conflict that cannot be resolved automat-
ically. The users may set the way of resolving conflicts with conflict resolving
setup window, which is presented on the picture below. The available options as-
sociated with a particular kind of conflicts are organized in the hierarchy where
leafs represent single conflicts.

4 The TOM Platform

The TOM platform is thought as a universal environment that allows easy ex-
perimentations with various text mining algorithms for ontology building. The
system is highly modular (based on plug-in architecture), and highly portable as
Java has been used as the implementation language. At the top level it consists
of the following subsystems:

Text mining subsystem. The text mining subsystem enables a user to spec-
ify both data source of an experiment and a pipeline of a text mining process
(Fig. 1). Such a pipeline may consists of several steps for text processing, e.g.
generation of the bag of words representation of documents, splitting the text
into sentences, etc. In addition some text mining algorithms may be used as a
step within a pipeline, for example clustering of documents, discovering frequent
multi word terms, etc.

Analysis support subsystem. The analysis support subsystem is dedicated
for working with the results obtained from text mining plan-and-experiment
subsystem. For each type of results (clusters, sequences, candidate homonyms,
etc.) the dedicated tools supporting basic analysis are available. Also the viewer
of the ftdoc type documents is provided.

Fig. 2. Ontology managament subsystem

Ontology subsystem
The ontology subsystem is
thought as a tool with a
convenient graphical inter-
face for working on ontolo-
gies, for example enriching
ontologies, based on results
obtained from text-mining ex-
periments. It enables users to
do various operations: such as
browsing, annotating or val-
idating ontologies. The sub-
system also includes a tool
by which a user may gener-
ate the owl file with proposals
of new entries to ontologies.

Such proposals are generated based on results obtained by using text-mining
algorithm implemented in TOM.

Text Onto Miner – A Semi Automated Ontology Building System 571

Data storing subsystem. The data storing subsystem provides functionality
concerning saving and searching for all text data used in the TOM platform. An
integral part of this subsystem is an indexer (in TOM the Lucene [13] index is
used). The indexer helps one to create fast-searchable database of text documents
backed up with inverted index and vector document representation.

5 Project Results and Conclusions

For the experimental evaluation of the algorithms a FAO1 document repository
from the FAOLEX system was used. The full repository consists of more than
20000 national legislation documents concerning legal issues for food and
agriculture.The repository is provided in various languages.We have selected 5658
documents written in English documents. Of it, we were able to extract 546.617
paragraphs and then 1.296.929 sentences. The experiments conducted on this cor-
pus showed that especially the methods proposed by us for automatic homonymy
and synonymy identification were giving very robust results (in many cases
discovering information unknown previously to us, such as semantic relationship
between names of various species and species groups). The hierarchy building al-
gorithms do not eliminate the need for human intervention, they are very useful
in the ontology building process, and definitely speed up the overall engineering
process in ontology building – especially helpful was the ability to quickly gener-
ate a rough ontology skeleton that could be further improved by domain experts.
The illustrations below present a small fragment of ontology that has been created
with TOM by experiments run on the Faolex repository mentioned above.

Fig. 3. A subset of ontology created from FAOEX repository with TOM

The research briefly described in this paper is far from being complete. While
the initial project, that has been commission by France Telecom, has been com-
pleted successfully (i.e. the TOM platform can be readily used in order to speed
up ontology building and to improve the quality of resulting ontologies) we will be
extending the TOM platform system, with special emphasis on ontology merging
and introduction of more knowledge-rich methods into the platform.

1 FAO is a UN organization (Food and Agriculture Organization).

572 P. Gawrysiak et al.

Acknowledgments. The work described in this paper results from the project
funded by France Telecom.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of
the 20th Int’l. Conf. on VLDB, Santiago, Chile, Morgan Kaufmann, San Francisco
(1994)

2. Ahonen-Myka, H.: Finding all frequent maximal sequences in text. In: Mladenic,
D., Grobelnik, M. (eds.) Proc. of the 16th Int. Con. on Machine Learning ICML
1999 Workshop on Machine Learning in Text Data Analysis, pp. 11–17 (1999)

3. Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: KDD 2002
(2002)

4. Byrd, R., Ravin, Y.: Identifying and extracting relations from text. In: NLDB 1999
- 4th Int. Con. on Applications of Natural Language to Information Systems (1999)

5. Faure, D., Nedellec, C.: A corpus-based conceptual clustering method for verb
frames and ontology acquisition. In: LREC Workshop on Adapting Lexical and
Corpus Resources to Sublanguages and Applications, Granada, Spain (1998)

6. Fung, B.C.M., Wan, K., Ester, M.: Hierarchical document clustering Using Fre-
quent Item-sets. In: SDM 2003 (2003)

7. Grefenstette, G.: Evaluation Techniques for Automatic Semantic Extraction: Com-
paring Syntatic and Window Based Approaches. In: Boguraev, B., Pustejovsky, J.
(eds.) Corpus processing for Lexical Acquisition, pp. 205–216. MIT Press, Cam-
bridge (1995)

8. Guarino, N., Welty, C.: Evaluating ontological decisions with Ontoclean. Comm.
of ACM 45(2) (2002)

9. Hamon, T., Nazarenko, A., Gros, C.: A step towards the detection of semantic
variants of terms in technical documents. In: Proc. 36th Ann. Meeting of ACL
(1998)

10. Harris, Z.: Distributional structure. Word 10(23), 146–162 (1954)
11. Skonieczny, K.M.: Hierarchical document clustering using frequent closed sets. In.

Proc. IIPWM (2006)
12. Lame, G.: Using text analysis techniques to identify legal ontologie’s components.

In: ICAIL 2003, Workshop on Legal Ontologies & Web Based Legal Inf. Manag.
(2003)

13. Lucene home page, http://www.apache.org/lucene
14. Maedche, A., Staab, S.: Ontology Learning, Handbook on Ontologies. Springer

Series on Handbooks in Information Systems. Springer, Heidelberg (2003)
15. Maedche, A., Staab, S.: Mining Ontologies from Text. In: Dieng, R., Corby, O.

(eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 189–202. Springer, Heidelberg
(2000)

16. Morin, E.: Automatic acquisition of semantic relations between terms from tech-
nical corpora. In: Proc. 5th Int’l. Congress on TKE (1999)

17. Noy, F.N., McGuinness, D.L.: Ontology Development 101: A Guide to Creating
Your First Ontology. Stanford Knowledge Systems Laboratory Technical Report
KSL-01-05 and Stanford Medical Informatics Techn. Rep. SMI-2001-0880

18. Protaziuk, G., et al.: TOM Platform Reference Manual, Techn. Rep., WUT (2006)
19. Protaziuk, G., et al.: Discovering Compound and Proper Nouns. In: Kryszkiewicz,

M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI),
vol. 4585, Springer, Heidelberg (2007)

http://www.apache.org/lucene

Text Onto Miner – A Semi Automated Ontology Building System 573

20. Protaziuk, G., et al.: State of The Art on Ontology and Vocabulary Building &
Maintenance Research And Applications, Techn. Rep., WUT (2006)

21. Rybinski, H., et al.: Discovering Synonyms based on Frequent Termsets. In:
Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007.
LNCS (LNAI), vol. 4585, Springer, Heidelberg (2007)

22. Rybinski, H., et al.: Discovering Word Meanings Based on Frequent Termsets. In:
MCD Workshop, PKDD, Warsaw (2007)

23. Velardi, P., Fabriani, P., Missikoff, M.: Using text processing techniques to auto-
matically enrich a domain ontology. In: Proc. Int’l. Conf. on FOIS (2001)

24. Wu, H., Zhou, M.: Optimizing Synonym Extraction Using Monolingual and Bilin-
gual Resources. In: Ann. Meeting ACL, Proc. 2nd Int’l Workshop on Paraphrasing,
vol. 16, pp. 72–79 (2003)

	Text Onto Miner – A Semi Automated Ontology Building System
	Introduction
	Semi-automatic Ontology Building Process
	New Text Analysis Methods
	The TOM Platform
	Project Results and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

