
iZi: A New Toolkit for Pattern Mining Problems

Frédéric Flouvat, Fabien De Marchi, and Jean-Marc Petit

Université de Lyon, LIRIS, UMR5205 CNRS, F-69621, France
firstname.lastname@liris.cnrs.fr

Abstract. Pattern mining problems are useful in many applications.
Due to a common theoretical background for such problems, generic con-
cepts can be re-used to easier the development of algorithms. As a con-
sequence, these problems can be implemented with only minimal effort,
i.e. programmers do not have to be aware of low-level code, customized
data structures and algorithms being available for free. A toolkit, called
iZi, has been devised and applied to several problems such as itemset
mining, constraint mining in relational databases and query rewriting in
data integration systems. According to our first results, the programs ob-
tained using our library offer a very good tradeoff between performances
and development simplicity.

1 Introduction

In the last decade, many algorithmshave been devised for patternmining problems
(such as for Frequent Itemset Mining). This is especially true for pattern mining
problems known to be representable as set [1], as for instance, frequent itemset
mining and variants [2,3], functional or inclusion dependency inference [4] or learn-
ing monotone boolean function [1]. Recently, other application domains have been
identified such as discovery of schema matching [5] or query rewriting in integra-
tion systems [6]. In this setting, a common idea is to say that algorithms devised so
far should be useful to answer these tasks and available open source implementa-
tions are a great source of know-how. Unfortunately, it seems rather optimistic to
envision the application of most of publicly available implementations of frequent
itemsetmining algorithms, even for closely related problems. Indeed, sophisticated
data structures specially devised for monotone predicates turn out to give very ef-
ficient algorithms but limit their application to other data mining tasks. As a con-
sequence, low-level implementations hamper the rapid advances in the field.

Paper contribution. This paper takes advantage of the common theoretical
background of problems isomorphic to boolean lattices. We provide a generic
architecture and an implementation framework for this family of pattern mining
problems. It encompasses efficient data structures for boolean lattice represen-
tation and several generic implementations of well known algorithms, such as a
levelwise algorithm and a dualization-based algorithm. By the way, any prob-
lem can be implemented with only minimal effort, i.e. the programmers do not
have to be aware of low-level code, customized data structures and algorithms
being available for free. To the best of our knowledge, our contribution is the

A. An et al. (Eds.): ISMIS 2008, LNAI 4994, pp. 131–136, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

132 F. Flouvat, F. De Marchi, and J.-M. Petit

only one providing a generic theoretical and implementation framework for this
family of pattern mining problems. A toolkit called iZi has been devised and
applied to several problems such as itemset mining, constraint mining in rela-
tional databases and query rewriting in data integration systems. According to
our first results, the programs obtained using our toolkit have very interesting
performances regarding simplicity of their development.

2 Related Work

Several packages and libraries have also been proposed for data mining. However,
most of them do not focus on interesting pattern discovery problems and address
more specifics data mining tasks (classification, clustering,...).

To our knowledge, only the DMTL library has objectives close to iZi w.r.t.
code reusability and genericity. DMTL (Data Mining Template Library) is a
C++ library for frequent pattern mining which supports any types of patterns
representable as graphs (sets, sequences, trees and graphs). However, the moti-
vations are quite different: while DMTL focuses on patterns genericity w.r.t. the
frequency criteria only, iZi focuses on a different class of patterns but on a wider
class of predicates. Moreover, iZi is based on a well established theoretical frame-
work, whereas DMTL does not rely on such a theoretical background. However,
DMTL encompasses problems that cannot be integrated into iZi, for instance
frequent sequences or graphs mining since such problems are not isomorphic to
a boolean lattice.

3 Theoretical Framework

We recall in this section the theoretical KDD framework defined in [1] for in-
teresting pattern discovery problems. Given a database d, a finite language L
for expressing patterns or defining subgroups of the data, and a predicate Q
for evaluating whether a pattern ϕ ∈ L is true or “interesting” in d, the dis-
covery task is to find the theory of d with respect to L and Q, i.e. the set
Th(L, d, Q) = {ϕ ∈ L | Q(d, ϕ) is true}.

Let us suppose a specialization/generalization relation between patterns of
L. Such a relation is a partial order � on the patterns of L. We say that ϕ is
more general (resp. more specific) than θ, if ϕ � θ (resp. θ � ϕ). Let (I,�)
be a partially ordered set of elements. A set S ⊆ I is closed downwards (resp.
closed upwards) if, for all X ∈ S, all subsets (resp. supersets) of X are also in S.
The predicate Q is said to be monotone (resp. anti-monotone) with respect to
� if for all θ, ϕ ∈ L such that ϕ � θ, if Q(d, ϕ) is true (resp. false) then Q(d, θ)
is true (resp. false). As a consequence, if the predicate is monotone (resp. anti-
monotone), the set Th(L, d, Q) is upward (resp. downward) closed, and can be
represented by either his positive border or his negative border. The positive bor-
der, denoted by Bd+(Th(L, d, Q)), made up of the MOST SPECIALIZED true
patterns when Th(L, d, Q) is downward closed, and the MOST SPECIALIZED
false patterns when Th(L, d, Q) is upward closed. The negative border, denoted

iZi: A New Toolkit for Pattern Mining Problems 133

by Bd−(Th(L, d, Q)), made up of the MOST GENERALIZED false patterns
when Th(L, d, Q) is downward closed, and the MOST GENERALIZED true
patterns when Th(L, d, Q) is upward closed.

The last hypothesis of this framework is that the problem must be repre-
sentable as sets via an isomorphism, i.e. the search space can be represented by a
boolean lattice (or subset lattice). Let (L,�) be the ordered set of all the patterns
defined by the language L. Let E be a finite set of elements. The problem is said
to be representable as sets if a bijective function f : (L,�) → (2E ,⊆) exists, and
its inverse function f−1 is computable, such that: X � Y ⇐⇒ f(X) ⊆ f(Y).

Example 1: Key mining. Let us consider the key discovery problem in a rela-
tion, which can be enounced as follows: Let r be a relation over a schema R, ex-
tract the (minimal) keys satisfied in r. The patterns are : {X | X ⊆ R} = P(R).
X is true if X is a superkey, i.e. if |πX(r)| = |r|, where πX(r) is the projection
onto X over r. It is clear that any superset of a superkey is also a superkey, it
justifyes that only minimal keys are really interested. One can deduce that mini-
mal keys constitute the positive border of superkeys, with natural set inclusion.
The transformation function here is the identity since patterns are sets.

4 A Generic Toolkit for Pattern Discovery

Based on the theoretical framework presented in section 3, we propose a C++
library, called iZi, for these pattern mining problems. The basic idea is to offer
a toolbox for a rapid development of efficient and robust programs. The devel-
opment of this toolkit takes advantage of the past experience to solve particular
problems such as frequent itemsets mining, functional dependency mining, in-
clusion dependency mining and query rewriting...

4.1 Generic Algorithms and Data Structures

Even if this framework has been frequently used at a theoretical level, it has
never been exploited at a technical point of view. One of our goal is to factorize
some technical solutions which can be common to any pattern mining prob-
lem representable as sets. We are interested in algorithms and data structures
that apply directly on sets, since they can be applied without any change for
any problem, exploiting the isomorphic transformation. Our solution reuse some
previous works done for frequent itemset mining, which is a problem ”directly”
representable as sets.

Currently, many algorithms from the multitude that has been proposed for
the FIM problem could be implemented into iZi, from classical levelwise [7] and
depth-first approaches, to more sophisticated dualization-based algorithms [8,4].
Since the generic part of our library only manipulates sets, we use a data struc-
ture based on prefix-tree (also called trie) specially devoted to this purpose [9].
They have not only a power of compression by factorizing common prefix in
a set collection, but are also very efficient for candidate generation. Moreover,

134 F. Flouvat, F. De Marchi, and J.-M. Petit

prefix-trees are well adapted for inclusion and intersection tests, which are basic
operations when considering sets.

4.2 Architecture

Figure 1 represents the architecture of our library. The figure 2 presents how the
library solves the inclusion dependency (IND) mining problem using the levelwise
strategy. The algorithm is initialized (initialization function) with patterns
corresponding to singletons in the set representation, using the data (data access
component). Then, during the execution of the algorithm, the predicate is used
to test each pattern against the data. Before testing a element, the algorithm
uses the set transformation function to transform each set generated into the
corresponding pattern. This architecture is directly derived from the studied
framework and has the main advantage of decoupling algorithms, patterns and
data. Only the predicate, set transformation and initialization components
are specifics to a given problem. Consequently, to solve a new problem, users may
have to implement or reuse with light modifications some of these components.

Fig. 1. iZi architecture Fig. 2. IND mining example

As shown in figure 1, algorithms are decoupled of the problems and are
black box for users. Each algorithm can be used directly to solve any problem
fitting in the framework without modifications. This leads to the rapid construc-
tion of robust programs without having to deal with low-level details. Currently,
the library offers two bottom-up algorithms (an Apriori-like [7,1] and ABS [4]),
two top-down algorithms (top-down versions of Apriori and ABS) and depth-
first strategies are currently being integrated.

Another important aspect of our library is that data access is totally decou-
pled of all other components (see figure 1). Currently, data access in most of the
implementations is tightly coupled with algorithm implementations and pred-
icates. Consequently, algorithms and “problem” components can be used with
different data formats without modifications.

iZi: A New Toolkit for Pattern Mining Problems 135

Fig. 3. Comparison of three Apriori
implementations

Fig. 4. Comparison of iZi and DMTL
implementations

5 Experimentation

From our past experience in the development of pattern mining algorithms, we
note that the adaptation of existing implementations is extremely difficult. In
some cases, it implies the redevelopment of most of the implementation and
could take more time than developing a new program from scratch.

Many problems have been implemented in our library along with several com-
ponents. Our library was tested against 5 problems (and 5 different data formats):
frequent and frequent essential itemset mining (FIMI file format [10,11]), inclusion
dependency and key mining (FDEP file format [12], CSV file format or MySQL
DBMS), andquery rewriting in integration systems (specificfile format).As indica-
tion, the use of our library to implement a program for the key mining problem has
been done in less than one working day. Note that thanks to our library, an external
module has been developed and integrated into a query rewriting prototype, allow-
ing the scalability with respect to the number of views. From our point of view, this
is a typical case where our library is very useful, providing a scalable component,
almost for free, for the data-centric problems of a larger problem/application.

Performances. Implementations for FIM are very optimized, specialized, and
consequently very competitive. The most performant ones are often the results
of many years of research and development. In this context, our experimenta-
tions aims at proving that our generic algorithms implementations behave well
compared to specialized ones. Moreover, we compare iZi to the DTML library,
which is also optimized for frequent pattern mining. Experiments have been done
on some classical benchmark datasets [10,11]. We compared our Apriori generic
implementation to two others devoted implementations: one by B. Goethals and
one by C. Borgelt [13]. The first one is a quite natural version, while the second
one is, to our knowledge, the best existing Apriori implementation, developed
in C and strongly optimized. Then, we compared “iZi Apriori and ABS” to the
eclat implementation provided with DMTL. As shown in figures 3 and 4, our
generic version has good performances with respect to other implementations.
The difference between the two libraries is mainly due to the algorithm used
during the experimentations. These results are very encouraging, in regards of
the simplicity to obtain an operational program.

136 F. Flouvat, F. De Marchi, and J.-M. Petit

6 Discussion and Perspectives

In this paper, we have considered a classical problem in data mining: the dis-
covery of interesting patterns for problems known to be representable as sets,
i.e. isomorphic to a boolean lattice. As far as we know, this is the first contri-
bution trying to bridge the gap between fundamental studies in data mining
and practical aspects of pattern mining discovery. Our work concerns plenty
of applications from different areas such as databases, data mining, or machine
learning. Many perspectives exist for this work. First, we may try to integrate the
notion of closure which appears under different flavors in many problems. The
basic research around concept lattices could be a unifying framework. Secondly,
we are interested in integrating the library as a plugin for a data mining soft-
ware such as Weka. Analysts could directly use the algorithms to solve already
implemented problems or new problems by dynamically loading their own com-
ponents. Finally, a natural perspective of this work is to develop a declarative
version for such mining problems using query optimization techniques developed
in databases [14].

References

1. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997)

2. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: SIGMOD Conference, pp. 207–216 (1993)

3. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent
patterns with counting inference. SIGKDD Explorations 2(2), 66–75 (2000)

4. De Marchi, F., Flouvat, F., Petit, J.M.: Adaptive strategies for mining the positive
border of interesting patterns: Application to inclusion dependencies in databases.
In: Constraint-Based Mining and Inductive Databases, pp. 81–101 (2005)

5. He, B., Chang, K.C.C., Han, J.: Mining complex matchings across web query in-
terfaces. In: Das, G., Liu, B., Yu, P.S. (eds.) DMKD, pp. 3–10. ACM, New York
(2004)

6. Jaudoin, H., Petit, J.M., Rey, C., Schneider, M., Toumani, F.: Query rewriting
using views in presence of value constraints. In: Description Logics (2005)

7. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB, pp. 487–499 (1994)

8. Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharm, R.S.:
Discovering all most specific sentences. ACM Trans. Database Syst. 28(2) (2003)

9. Bodon, F.: Surprising results of trie-based fim algorithms [11]
10. Bayardo Jr., R.J., Zaki, M.J. (eds.): FIMI 2003, Proceedings of the IEEE ICDM

Workshop on Frequent Itemset Mining Implementations, USA (November 2003)
11. Bayardo Jr., R.J., Goethals, B., Zaki, M.J. (eds.): FIMI 2004, Proceedings of the

IEEE ICDM Workshop on Frequent Itemset Mining Implementations, UK (Novem-
ber 2004)

12. Flach, P.A., Savnik, I.: Database dependency discovery: A machine learning ap-
proach. AI Commun. 12(3), 139–160 (1999)

13. Borgelt, C.: Efficient implementations of Apriori and Eclat [10]
14. Chaudhuri, S.: Data mining and database systems: Where is the intersection? IEEE

Data Eng. Bull. 21(1), 4–8 (1998)

	iZi: A New Toolkit for Pattern Mining Problems
	Introduction
	Related Work
	Theoretical Framework
	A Generic Toolkit for Pattern Discovery
	Generic Algorithms and Data Structures
	Architecture

	Experimentation
	Discussion and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

