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Abstract. Many data mining problems can be represented with non-
linear data structures like trees. In this paper, we introduce a scalable
algorithm to mine partially-ordered trees. Our algorithm, POTMiner,
is able to identify both induced and embedded subtrees and, as special
cases, it can handle both completely ordered and completely unordered
trees (i.e. the particular situations existing algorithms address).

1 Introduction

Non-linear data structures are becoming more and more common in data mining
problems. Graphs, for instance, are commonly used to represent data and their
relationships in different problem domains, ranging from web mining and XML
documents to bioinformatics and computer networks. Trees, in particular, are
amenable to efficient mining techniques and they have recently attracted the
attention of the research community.

The aim of this paper is to present a new algorithm, POTMiner, to identify
frequent patterns in partially-ordered trees, a particular kind of trees that is
present in several problems domains. However, existing tree mining algorithms
cannot be directly applied to this important kind of trees.

Our paper is organized as follows. We introduce the idea of partially-ordered
trees as well as some standard terms in Section 2. Section 3 describes the state
of the art in tree mining algorithms. Our algorithm is presented in Section 4.
Section 5 shows some experimental results. Finally, in Section 6, we present some
conclusions and pointers to future work in this area.

2 Background

We will first review some basic concepts related to labeled trees using the nota-
tion from [1].

A tree is a connected and acyclic graph. A tree is rooted if its edges are
directed and a special node, called root, can be identified. The root is the node
from which it is possible to reach all the other vertices in the tree. In contrast, a
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tree is free if its edges have no direction, that is, when it is an undirected graph.
Therefore, a free tree has no predefined root.

Rooted trees can be classified as:

– Ordered trees, when there is a predefined order within each set of siblings.
– Unordered trees, when there is not such a predefined order among siblings.

In this paper, we consider partially-ordered trees, witch can be defined as
trees that have both ordered and unordered sets of siblings. They can be useful
when the order within some sets of siblings is important but it is not necessary
to establish an order relationship among all the tree nodes.

In Figure 1, we show a dataset example with different kinds of rooted trees. In
this figure, circled nodes represent ordered nodes, while squared nodes represent
unordered ones.
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Fig. 1. Example dataset with different kinds of rooted trees (from left to right): (a)
completely ordered tree, (b) and (c) partially-ordered trees, (d) completely unordered
tree

Different kinds of subtrees can be mined from a set of trees depending on
the way we define the matching function between a pattern and a tree. We can
obtain induced subtrees from a tree T by repeatedly removing leaf nodes from
a bottom-up subtree of T (i.e. the subtree obtained by taking one vertex from T
and all its descendants). We can also obtain embedded subtrees by removing
nodes from a bottom-up subtree provided that we do not to break the ancestor
relationship between the vertices of T.

Figure 2 shows the induced subtrees of size 3 that appear at least 3 times in
the example dataset from Figure 1. In this example, this would also be the set
of frequent embedded subtrees of size 3.
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Fig. 2. Frequent subtrees of size 3 found in the dataset from Figure 1



Mining Induced and Embedded Subtrees 113

3 Tree Pattern Mining

Once we have introduced some basic terminology, we will survey the state of the
art in tree pattern mining.

The goal of frequent tree mining is the discovery of all the frequent subtrees
in a large database of trees D, also referred to as forest, or in an unique large
tree.

Let δT (S) be the occurrence count of a subtree S in a tree T and dT a variable
such that dT (S)=0 if δT (S) = 0 and dT (S)=1 if δT (S) > 0. We define the sup-
port of a subtree as σ(S) =

∑
T∈D dT (S), i.e., the number of trees in D that

include at least one occurrence of the subtree S. Analogously, the weighted sup-
port of a subtree is σw(S) =

∑
T∈D δT (S), i.e., the total number of occurrences

of S within all the trees in D.
We say that a subtree S is frequent if its support is greater than or equal to

a predefined minimum support threshold. We define Fk as the set of all frequent
subtrees of size k.

A frequent tree t is maximal if is not a subtree of other frequent tree in T
and is closed if is not a subtree of another tree with the same support in D.

Before we proceed to introduce the algorithms proposed in the literature, we
will describe the most common tree representations used by such algorithms.

3.1 Tree Representation

A canonical tree representation is an unique way of representing a labeled tree.
This representation makes the problems of tree comparison and subtree enumer-
ation easier.

Three alternatives have been proposed in the literature to represent rooted
ordered trees as strings:

– Depth-first codification: The string representing the tree is built by adding
the label of the tree nodes in a depth-first order. A special symbol ↑, which is
not in the label alphabet, is used when the sequence comes back from a child
to his parent. In Figure 1, the depth-first codification of tree (b) is 32↑12↑3↑↑
while the codification of tree (c) is 132↑1↑↑2↑.

– Breadth-first codification: Using this codification scheme, the string is
obtained by traversing the tree in a breadth-first order, i.e., level by level.
Again, we need an additional symbol $, which is not in the label alphabet,
to separate sibling families. The breadth-first codification for trees (b) and
(c) in the previous example is 3$21$$23 and 1$32$21, respectively.

– Depth-sequence-based codification: This codification scheme is also
based on a depth-first traversal of the tree, but it explicitly stores the depth of
each node within the tree. The resulting string is built with pairs (l, d) where
the first element (l) is the node label and the second one (d) is the depth of the
node. The depth sequence codifications of the previous examples is (3,0)(2,1)
(1,1)(2,2)(3,2) for tree (b) and (1,0)(3,1)(2,2)(1,2)(2,1) for tree (c).
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The canonical representation for unordered trees can be defined as the mini-
mum codification, in lexicographical order, of all the ordered trees that can be
derived from it. You can use any of the codification schemes described above.

Free trees have no predefined root, but it is possible to select one node as the
root in order to get an unique canonical representation of the tree, as described
in [2].

3.2 Tree Mining Algorithms

Several frequent tree pattern mining algorithms have been proposed in the litera-
ture. These algorithms are mainly derived from two well-known frequent pattern
mining algorithms: Apriori [3] and FP-Growth [4].

Many algorithms follow the well-known Apriori [3] iterative pattern mining
strategy, where each iteration is broken up into two distinct phases:

– Candidate Generation: Potentially frequent candidates are generated from
the frequent patterns discovered in the previous iteration. Most algorithms
generate candidates of size k + 1 by merging two patterns of size k having
k−1 elements in common. There are several strategies for candidate subtree
generation:
• The rightmost expansion strategy generates subtrees of size k+1 from

frequent subtrees of size k by adding nodes only to the rightmost branch
of the tree. This technique is used in algorithms like FREQT [5], uFreqt
[6], and UNOT [7].

• The equivalence class-based extension technique is based on the
depth-first canonical representation of trees. It generates a candidate
(k + 1)-subtree through joining two frequent k-subtrees with (k − 1)
nodes in common. Zaki used this extension method in his TreeMiner [8]
and SLEUTH [9] algorithms.

• The right-and-left tree join method was proposed with the AMIOT
algorithm [10]. In candidate generation, this algorithm considers the
rightmost and the leftmost leaves of a tree.

• The extension and join technique is based on the breadth-first codifi-
cation of trees and defines two extension mechanisms and a join operation
to generate candidates. This method is used by HybridTreeMiner [2].

– Support Counting: Given the set of potentially frequent candidates, this
phase consists of determining their support and keeping only those can-
didates that are actually frequent.

Other algorithms are derived from the FP-Growth [4] algorithm. For instance,
the PathJoin algorithm [11] uses compacted structures called FP-Trees to encode
input data, while CHOPPER and XSpanner [12] use a sequence codification for
trees and extract subtrees using frequent subsequences.

Table 1 summarizes some frequent tree mining algorithms that have been
proposed in the literature, pointing out the kind of input trees they can be
applied to (ordered, unordered, or free) and the kind of subtrees they are able
to identify (induced, embedded, or maximal).
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Table 1. Some frequent tree mining algorithms

Input trees Discovered patterns
Algorithm Ordered Unordered Free Induced Embedded Maximal

FreqT[5] • •
AMIOT [10] • •
uFreqT [6] • •
TreeMiner [8] • •
CHOPPER [12] • •
XSpanner [12] • •
SLEUTH [9] • •
Unot [7] • •
TreeFinder [13] • • •
PathJoin [11] • • •
CMTreeMiner [14] • • • •
FreeTreeMiner [15] • •
HybridTreeMiner [2] • • •

4 Mining Partially-Ordered Trees

The algorithms described in the previous section can extract frequents patterns
from trees that are completely ordered or completely unordered, but none of
them works with partially-ordered trees.

In this section, we describe how Zaki’s TreeMiner [8] and SLEUTH [9] algo-
rithms can be adapted to mine partially ordered trees. The algorithm we have
devised, POTMiner (Partially-Ordered Tree Miner), is able to identify frequent
subtrees, both induced and embedded, in ordered, unordered, and partially-
ordered trees.

Our algorithm is based on Apriori [3]. Therefore, it has two phases: candidate
generation and support counting.

4.1 Candidate Generation for Partially-Ordered Trees

We use a depth-first codification to represent trees and generate (k + 1)-subtree
candidates by joining two frequent k-subtrees with k − 1 elements in common.

We use Zaki’s class extension method to generate candidates. Two k-subtrees
are in the same equivalence class [P ] if they share the same codification string
until the node k − 1. Each element of the class can then be represented by a
single pair (x, p) where x is the k-th node label and p specifies the depth-first
position of its parent.

TreeMiner [8] and SLEUTH [9] use the class extension method to mine or-
dered and unordered embedded subtrees, respectively. The main different be-
tween TreeMiner and SLEUTH is that, in SLEUTH, which works with unordered
trees, only those extensions that produce canonical subtrees are allowed in order
to avoid the duplicate generation of candidates.
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In POTMiner, as in TreeMiner, all extensions are allowed because tree nodes
might be ordered or unordered. The candidate generation method is defined as
follows:

Let (x, i) and (y, j) denote two elements in the same class [P ], and [P i
x] be

the set of candidate trees derived from the tree that is obtained by adding the
element (x, i) to P . The join procedure considers two scenarios [9]:

1. Cousin extension, when the element (y,j) is a right relative of the element
(x,i): If j ≤ i and |P | = k − 1 ≥ 1, then (y, j) ∈ [P i

x].
2. Child extension, when the element (y,j) is a descendant of the element (x,i):

If j = i then (y, k − 1) ∈ [P i
x].

4.2 Support Counting for Induced and Embedded Subtrees

For the support counting phase, we define the scope of a node [9] as a pair [l,u]
where l is the position of the node in depth-first order and u is the position of
its rightmost descendant.

Our algorithm preserves each occurrence of a pattern X in each database tree
using a tuple (t, m, s, d) where t is the tree identifier, m stores which nodes of the
tree match those of the (k-1) prefix of the pattern X in depth-first order, s is the
scope of the last node in the pattern X, and d is a depth-based parameter used
for mining induced subtrees (it is not needed when mining embedded subtrees).
The scope list of a pattern X is the list of all the tuples (t, m, s, d) representing
the occurrences of X in the database.

For patterns of size 1, m is an empty list and the element d is initialized with
the depth of the pattern only node in the database tree.

The scope list for a new candidate is built by joining the scope lists of the
subtrees involved in the generation of the candidate. Let [tx, mx, sx, dx] and
[ty, my, sy, dy] be the scope lists of the subtrees involved in the generation
of the candidate. The scope list for this candidate is built by a join operation
that depends on the candidate extension method used, i.e., whether it has been
generated by cousin extension or child extension.

1. In-scope test (used in conjunction with child extension):
If
(a) tx = ty = t and
(b) mx = my = m and
(c) sy ⊂ sx, (i.e., lx ≤ ly and ux ≥ uy)
then add [t, m

⋃ {lx}, sy, dy−dx] to the scope list of the generated candidate.
2. Out-scope test (used in conjunction with cousin extension):

If
(a) tx = ty = t and
(b) mx = my = m and
(c) If the node is ordered and sx < sy (i.e. ux < ly) or the node is unordered

and either sx < sy or sy < sx (i.e. either ux < ly or uy < lx)
then add [t, m

⋃ {lx}, sy ,dy] to the scope list of the generated candidate.
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The weighted support of an embedded pattern is the number of elements in its
scope list. The weighted support of an induced pattern is the number of elements
within its scope list whose d parameter equals 1. Intuitively, d represents the
distance between the last node in the pattern and its prefix m. This parameter
is needed to perform the support counting phase for induced patterns, since only
the occurrences with dx = 1 have to be considered when joining scope lists.

5 Experimental Results

All the experiments described in this section have been performed on a 2GHz
Core 2 Duo processor with 2GB of main memory running on Windows Vista.
POTMiner has been implemented in Java using Sun Microsystems JDK 5.0,
while Zaki’s TreeMiner and SLEUTH C++ implementations were obtained from
http://www.cs.rpi.edu/∼zaki/.

The experiments were performed with 5 synthetic datasets generated by the
tree generator available at http://www.cs.rpi.edu/∼zaki/software/TreeGen.tgz.
The datasets were obtained using the generator default values and varying the
number of trees from 10 to 100000.

In our first experiments, we have compared POTMiner and TreeMiner /
SLEUTH execution times. POTMiner and TreeMiner [8] are compared for (com-
pletely) ordered trees, while POTMiner and SLEUTH [9] are compared for un-
ordered trees. The results we have obtained are summarized in Figure 3.

Looking at the charts in Figure 3, which use a logarithmic scale for their y
axis, we can see that TreeMiner, SLEUTH, and POTMiner are efficient, scalable
algorithms for mining induced and embedded subtrees in ordered (TreeMiner
and POTMiner) and unordered (SLEUTH and POTMiner) trees. The observed
differences are probably due to the different programming platforms used in their
implementation (Java for POTMiner, C++ for TreeMiner and SLEUTH).

Figure 3 also shows that there are no significant differences between the POT-
Miner’s execution times for ordered and unordered trees in the experiments per-
formed with the aforementioned synthetic datasets.

Execution times of POTMiner and TreeMiner algorithm (left)for extracting
induced (top) and embedded (down) subtrees in completely ordered trees. POT-
Miner and SLEUTH behaviour when mining completely unordered trees, induced
(top) and embedded (down)is shown in right images.

We have also performed some experiments with partially-ordered trees. In this
case, since TreeMiner [8] and SLEUTH [9] cannot be applied to partially-ordered
trees, we have studied the behavior of POTMiner when dealing with this kind
of trees. Starting from the same datasets used in the previous experiments, we
have varied the percentage of ordered nodes in the datasets. The results we have
obtained are shown in Figure 4.

As expected, we have found that execution times slightly decrease when the
percentage of ordered nodes is increased, since ordered trees are easier to mine
than unordered trees.
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Fig. 3. Execution times of POTMiner and TreeMiner algorithms(left images) for ex-
tracting induced (top) and embedded (down) subtrees in completely ordered trees.
POTMiner and SLEUTH execution times and completely unordered (right) trees.
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Fig. 4. POTMiner execution times varying the percentage of ordered nodes. The charts
display POTMiner behavior when mining induced (left) and embedded (right) subtrees.
The series show execution times for different dataset sizes (10, 1000, and 100000 trees).

6 Conclusions and Future Work

There are many different tree mining algorithms that work either on ordered
or unordered trees, but none of them, to our knowledge, works with partially-
ordered trees, that is, trees that have both ordered and unordered nodes. We have
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devised a new algorithm to address this situation that is as efficient and scalable
as existing algorithms that exclusively work on either ordered or unordered trees.

Partially-ordered trees are important because they appear in different appli-
cation domains. In the future, we expect to apply our tree mining algorithm to
some of these domains. In particular, we believe that our algorithm for identi-
fying frequent subtrees in partially-ordered trees can be useful in the following
contexts:

– XML documents [16], due to their hierarchical structure, are directly amenable
to tree mining techniques. Since XML documents can contain both ordered
and unordered sets of nodes, partially-ordered trees provide a better repre-
sentation model for them and they are better suited for knowledge discovery
than existing ordered (or unordered) tree mining techniques.

– Multi-relational data mining [17] is another emerging research area where
tree mining techniques can be useful. They might help improve existing
multi-relational classification [18] and clustering [19] algorithms.

– In Software Engineering, it is usually acknowledged that mining the wealth
of information stored in software repositories can ”support the maintenance
of software systems, improve software design/reuse, and empirically validate
novel ideas and techniques” [20]. For instance, there are hierarchical program
representations, such as dependence higraphs [21], which can be viewed as
partially-ordered trees, hence the potential of tree mining techniques in soft-
ware mining.

We also have the goal of making some refinements to our POTMiner algo-
rithm, such as extending it for dealing with partial or approximate tree match-
ing, a feature that would be invaluable for many real-world problems, from entity
resolution in XML documents to program element matching in software mining.
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