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Consumption–Investment Problems

4.1 Consumption–Investment without Friction

4.1.1 The Merton Problem

The study of consumption–investment problems in continuous time was ini-
tiated by Merton. He considered a model of frictionless market where the
price processes are geometric Brownian motions and the investor’s goal is to
maximize the expected discounted utility of consumption on the infinite time
interval. For the power utility function, he obtained an explicit solution of
the optimal control problem. This solution has a clear financial meaning: the
optimal investment is to keep the proportions of the total wealth held in risky
securities equal to a constant vector. The latter is easily calculated from the
model parameters. This work was extended by many authors in various di-
rections including models with transaction costs, which are the main objects
of our interest. Taking into account that the Merton problem is classical and
exposed in a number of textbooks, we give here a rather sketchy presentation
needed to understand basic ideas and methods as well as their evolution. The
results of this section will be used at the end of this chapter, where we discuss
an asymptotical behavior of the consumption–investment problem for small
transaction cost coefficients.

We are given a stochastic basis with an m-dimensional standard Wiener
process w. The market contains a nonrisky security, which is the numéraire,
i.e., its price is identically equal to unit, and m risky securities with the price
evolution

dSi
t = Si

t

(
μi dt + dM i

t

)
, i = 1, . . . , m, (4.1.1)

where M = Σw is a (deterministic) linear transform of w. Thus, M is a
Gaussian martingale with 〈M 〉t = At; the covariance matrix A = ΣΣ∗ is
assumed to be nondegenerate.

The evolution of the value process corresponding to a self-financing strat-
egy H is given as dVt = Ht dSt. Assuming withdrawal of the funds for the
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consumption with rate ct ≥ 0, we arrive at the dynamics

dVt = Ht dSt − ct dt. (4.1.2)

Of course, we can substitute dSt by its expression given in (4.1.1). Since Hi
t is

a number of units of the ith asset in the portfolio, the quantity αi
t := Hi

tS
i
t/Vt

can be interpreted as the proportion of the wealth invested in this asset. It is
convenient to choose α together with c as the control parameters. With these
considerations, the problem with infinite time horizon can be formulated in
usual terms of stochastic optimal control theory in the following way.

The system dynamics is given by the controlled stochastic differential equa-
tion

dVt = Vtαt(μdt + dMt) − ct dt, V0 = x, (4.1.3)

with the initial condition x > 0 and the control π = (α, c), which is a pre-
dictable process. We suppose that the consumption intensity process c has
trajectories integrable on every finite interval, while the trajectories of α are
uniformly bounded by a constant which may depend on the strategy.1

More substantially, we require from π to be in the class of admissible
controls A(x) for which the process V = V x,π is positive. We assume also
that after the bankruptcy time (which is the first instant when V hits zero),
the control π is equal to zero, and the process V stops.

The investor’s goal is the following:

EJπ
∞ → max, (4.1.4)

i.e., to maximize the expectation of the limiting expected value of the utility
process Jπ defined as

Jπ
t :=

∫ t

0

e−βsu(cs) ds. (4.1.5)

The standard economically meaningful assumptions on the utility function
are that u is increasing and concave. For the sake of simplicity, we add to this
that u is positive and u(0) = 0. The parameter β > 0 shows to which extent
the agent prefers to consume today rather than in the future.

A typical example is the power utility function u(c) = cγ/γ, γ ∈ ]0, 1[.
Define the Bellman function

W (x) := sup
π∈A(x)

EJπ
∞, x > 0. (4.1.6)

By convention, A(0) := {0} and W (0) := 0.
Notice that the Bellman function W inherits the properties of u. Namely, it

is increasing (as A(x̃) ⊇ A(x) when x̃ ≥ x). With the chosen α-parameteriza-
tion, its concavity appears not to be so obvious, but we get it immediately
1 This assumption is not very wise but allows us to avoid discussions of integrability.
It is done because, in the Merton problem, the optimal strategy in a wider class
possesses this property.
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by turning back to the initial H-parameterization. Indeed, suppose that the
strategies πj = (αj , cj), πj ∈ A(xj), j = 1, 2, generate the value processes Vj .
The convex combination of these processes, V = λV1 + (1 − λ)V2, is of the
form (4.1.2), where H and c are the convex combinations with the same coeffi-
cients of the corresponding controls. The process H admits the representation
via the process α with the components

αi = HiSi/V =
λV1

λV1 + (1 − λ)V2
αi

1 +
(1 − λ)V2

λV1 + (1 − λ)V2
αi

2;

α is bounded because both αj are bounded. Thus, π = (α, λc1 + (1 − λ)c2)
belongs to A(x) with x = λx1 + (1 − λ)x2, and, therefore,

W
(
λx1 + (1 − λ)x2

)
≥ EJπ

∞ ≥ λEJπ1
∞ + (1 − λ)EJπ2

∞

due to the concavity of u. With this, we obtain the concavity of W by taking
supremum over π1 and π2.

Notice that we cannot guarantee without additional assumptions that W
is finite. If the latter property holds, then, due to the concavity, W (x) is
continuous for x > 0, but the question whether it is continuous at zero remains
open.

At last, when the utility u is a power function, the Bellman function W , if
finite, is proportional to u. Indeed, the linear dynamics of the control system
implies that W (νx) = νγW (x) for all ν > 0, i.e., the Bellman function is
positive homogeneous of the same order as the utility function. In a scalar case
this homotheticity property defines, up to a multiplicative constant, a unique
finite function, namely xγ .

Now we formulate the Merton theorem.

Theorem 4.1.1 Let u be the power utility function. Assume that the para-
meters of the model are such that the constant

κM :=
1

1 − γ

(
β − 1

2
γ

1 − γ

∣
∣A−1/2μ

∣
∣2

)
> 0. (4.1.7)

Then the optimal strategy πo = (αo, co) is given by the formulae

αo = θ :=
1

1 − γ
A−1μ, (4.1.8)

co
t = κMV o

t , (4.1.9)

where V o is the solution of the linear stochastic equation

dV o = V o
t θ(μdt + dMt) − κMV o

t dt, V o
0 = x. (4.1.10)

The process V o is optimal, and the Bellman function is

W (x) = κγ−1
M xγ/γ = mxγ . (4.1.11)

Note that W is proportional to xγ , and, therefore, the last assertion is
about the exact value of the coefficient m, which happens to be finite and
equal to κγ−1

M /γ with κM given by (4.1.7).
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4.1.2 The HJB Equation and a Verification Theorem

The most powerful and efficient method to solve stochastic control problems is
the method of dynamic programming based on the analysis of the Hamilton–
Jacobi–Bellman equation (HJB, in short). For our infinite-horizon problem,
the latter is

sup
(α,c)

[
1
2

∣
∣A1/2α

∣
∣2x2f ′ ′(x) + αμxf ′(x) − βf(x) − f ′(x)c + u(c)

]
= 0, (4.1.12)

where x > 0, and the supremum is taken over all α ∈ Rd and c ∈ R+.
To solve the consumption–investment problem with the power utility func-

tion, we use a very elementary tool, namely, the so-called verification theorem
for the HJB equation. It is based on the following considerations.

Let f : R+ → R+ and π ∈ A(x). We consider the nonnegative process
Xf = Xf,x,π with

Xf
t := e−βtf(Vt) + Jπ

t , (4.1.13)

where V = V x,π. If f is smooth, the Itô formula for the process V given by
(4.1.3) implies the following important representation, which is the key point
to explain how the HJB equation arises:

Xf
t = f(x) + Dt + Ns, (4.1.14)

where

Dt :=
∫ t

0

e−βsL(Vs, αs, cs) ds (4.1.15)

with L(x, α, c) standing for the expression in square brackets of the formula
(4.1.12), and

Nt :=
∫ t

0

e−βsf ′(Vs)Vsαs dMs. (4.1.16)

The process N is a continuous local martingale up to the bankruptcy time σ.
That is, there exist stopping times σn ↑ σ such that the stopped processes
Nσn are uniformly integrable martingales. In the case where σ = ∞ and N is
a martingale, we shall take σn = n.

Suppose now that a smooth function f is a supersolution of (4.1.12), i.e.,

sup
(α,c)

[
1
2

∣
∣A1/2α

∣
∣2x2f ′ ′(x) + αμxf ′(x) − βf(x) − f ′(x)c + u(c)

]
≤ 0. (4.1.17)

Then the integrand in the definition of D does not exceed zero, and, therefore,
the process D is decreasing with D0 = 0. This implies, in particular, the
inequality N ≥ −f(x). It follows (as usual, by applying the Fatou lemma)
that N , being bounded from below, is a supermartingale. Due to the inequality
−Dt ≤ f(x) + Nt, the (negative) random variable Dt is integrable: we obtain
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that the process Xf
t is a supermartingale, and, hence,

EJt = EXf
t − Ee−βtf(Vt) ≤ EXf

t ≤ f(x). (4.1.18)

Since EJt → EJ∞ as t → ∞, we infer that W (x) ≤ f(x), i.e., f provides
a “cap” for the Bellman function, implying, in particular, that the latter
is finite. If, moreover, the supersolution f vanishes at zero, the function W
(being positive) is necessarily continuous at zero. Summarizing, we formulate
the outcome of this reasoning in the following statement.

Proposition 4.1.2 If f is a supersolution of (4.1.12), then W ≤ f , and,
hence, W ∈ C(R+ \ {0}). If, moreover, f(0+) = 0, then W ∈ C(R+).

An inspection of the above reasoning shows that if, in addition, it happened
that the process D (depending on the control) vanishes and

lim
n

Ee−βσnf(Vσn) = 0, (4.1.19)

then W = f , and the corresponding control is optimal. With these observa-
tions, we arrive at the promised verification theorem, which can be obtained,
of course, in a much more general context.

Theorem 4.1.3 Let f ∈ C(R+)∩C2(R+ \ {0}) be a positive concave function
solving the HJB equation (4.1.12) and vanishing at zero. Suppose that the
supremum in (4.1.12) is attained on α(x) and c(x) such that α is a bounded
measurable function, c is a positive measurable function, and the equation

dV o
t = V o

t α
(
V o

t

)
(μdt + dMt) − c

(
V o

t

)
dt, V o

0 = x, (4.1.20)

admits a strong solution V o
t . If condition (4.1.19) holds for the process V o,

then W = f , and the optimal control πo = (α(V o), c(V o)).

4.1.3 Proof of the Merton Theorem

With the above provision, we return to the HJB equation (4.1.12) and calcu-
late the supremum.

Put
u∗(p) := sup

c≥0

[
u(c) − cp

]
;

the function u∗ is the Fenchel transform of the function −u(−.). In particular,
for the power utility u(c) = cγ/γ, we have that

u∗(p) =
1 − γ

γ
pγ/(γ−1) (4.1.21)

because the supremum in the definition of u∗ is attained at the point p1/(γ−1).
Expecting that f ′ ′ < 0, we find easily that the maximum of the quadratic form
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over α is attained at the point

αo(x) = −A−1μ
f ′(x)

xf ′ ′(x)
.

Thus, the HJB equation can be transformed to the following one:

− 1
2

∣
∣A−1/2μ

∣
∣2 (f ′(x))2

f ′ ′(x)
− βf(x) +

1 − γ

γ

(
f ′(x)

) γ
γ−1 = 0.

We find easily that its solution of the form f(x) = mxγ should have the
coefficient m = κγ−1

M /γ with κM > 0 given in (4.1.7).
Now the function αo(x) = A−1μ/(1 − γ) is constant, co(x) = κMx, and

(4.1.20), pretending to describe the optimal dynamics, is linear:

dV o
t

V o
t

=
(

1
1 − γ

∣
∣A−1/2μ

∣
∣2 − κM

)
dt +

A−1μ

1 − γ
dM, V o

0 = x,

and its solution is the geometric Brownian motion, which never hits zero.
Noticing that 〈A−1μM 〉t = |A−1/2μ|2t, it can be given by the following explicit
formula:

V o
t = x exp

{(
1

1 − γ
− 1

2
1

(1 − γ)2

)∣
∣A−1/2μ

∣
∣2t − κM t +

A−1μ

1 − γ
Mt

}
.

Since E(V o
t )p = xpeκpt where κp is a constant, the process N for this control is

a true martingale, and we may take the localizing sequence σn deterministic.
In the particular case where p = γ, the corresponding constant

κγ =
1
2

γ

1 − γ
− γκM = β − κM

in virtue of (4.1.7). Thus,

e−βtE
(
V o

t

)γ = xγe−κM t,

and, therefore, (4.1.19) holds. The Merton theorem is proven.

4.1.4 Discussion

1. The optimal strategy in the Merton problem with the power utility functions
prescribes to keep constant proportions of wealth in each position. Let us
consider the special case m = 1, i.e., the model with a single risky asset.
Then the quantities V 2o

t := αoV o
t and V 1o

t = (1 − αo)V o
t are, respectively, the

optimal holdings in the risky and nonrisky assets,

αo = θ =
1

1 − γ

μ

σ2
.
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Thus,

V 2o
t :=

αo

1 − αo
V 1o

t =
θ

1 − θ
V 1o

t .

This means that the two-dimensional process (V 1o
t , V 2o

t ) on the plain (v1, v2)
evolves along the straight line with the slope θ/(1 − θ), called in the litera-
ture the Merton line. The parameter θ is referred to as the Merton propor-
tion.

2. In our presentation we consider the case where the price of the nonrisky
asset is constant over time as it would pay the interest r = 0. The reader may
be accustomed with the tradition to treat the model with an arbitrary r ≥ 0.
However, it is easy to see that, for the power utility function, considering the
model with zero interest rate does not lead to any loss in generality. Indeed,
due to the identity

u
(
erscs

)
= eγrsu(cs),

the maximization problem where the consumption is measured in “money” is
the same as that where the consumption is measured in “bonds” but with the
coefficient β replaced by β̃ := β − γr. Thus, there is no real reason to retain
r in calculations.

3. An analysis of the proof of Theorem 4.1.1 shows that, after minor
changes, it works well also for the power utility function with γ < 0, and,
hence, the same explicit formulae represent the optimal solution also in this
case. The HJB approach can be extended to the model with the logarithmic
utility function u(c) = ln c (corresponding to the value γ = 0). Of course, one
needs to impose an additional constraint to the consumption process ensuring
the integrability of Jπ

∞.
4. Turning back to the multi-asset case, let us define the scalar process M̃

with dM̃ = θ(μdt + dMt). Let us consider the same consumption–investment
problem imposing the restriction that the investments should be shared be-
tween money and the risky asset the price evolution of which follows the
process M̃ . Any value process and consumption process in this two-asset model
are those of the original one. One can imagine a financial institution (a mu-
tual fund) which offers such an artificial asset, called the market portfolio.
This allows the agent to allocate his wealth only in the nonrisky asset and the
market portfolio. Due to this economical interpretation, the Merton theorem
sometimes is referred to as the mutual fund theorem.

5. Formula (4.1.11) shows that, for a positive initial capital, the value
W (x) → ∞ as κM ↓ 0. It follows that, for small values of the discount para-
meter β, namely, when

β ≤ 1
2

γ

1 − γ

∣
∣A−1/2μ

∣
∣2,

the Bellman function W (x) = ∞, x > 0.
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4.1.5 Robustness of the Merton Solution

There is an interesting question about the sensitivity of the Merton solution
with respect to errors in determining the optimal proportion. It happens that
it is quite robust: a deviation of order ε from the Merton proportion leads
to losses in the expected utility only of order ε2. To see this, suppose that
in the two-asset model the investor’s strategy is to maintain the proportion
αo+ε and consume a constant part (1+δ)κM of the current wealth optimizing
the expected utility with respect to δ. Assume, for simplicity, that the initial
endowment x = 1. For such a strategy, the dynamics is given by the linear
equation

dVt

Vt
=

(
αo + ε

)
(μdt + σ dwt) − (1 + δ)κM dt

the solution of which is the geometric Brownian motion

Vt = exp
{

(
αo + ε

)
μt − 1

2
(
αo + ε

)2
σ2t − (1 + δ)κM t +

(
αo + ε

)
σwt

}
.

We have that
EV γ

t = eκγ(ε,δ)t,

where
κγ(ε, δ) = β − κM − 1

2
γ(1 − γ)σ2ε2 − γκMδ,

and, in particular, κγ(0, 0) = κγ = β − κM .
Notice that the coefficient at ε is zero, and this is a crucial fact. It follows

that

EJ∞ =
1
γ

κγ
M (1 + δ)γ

∫ ∞

0

e−βtEV γ
t dt =

1
γ

κγ−1
M

(1 + δ)γ

1 + 1
2κM

γ(1 − γ)σ2ε2 + γδ
.

Maximization over δ gives us the optimal value δo = 1
2κM

γσ2ε2, for which

EJ∞ =
1
γ

κγ−1
M

(
1 + δo

)γ−1 = m − 1
2
(1 − γ)κγ−2

M σ2 ε2 + O
(
ε4

)
,

and we get the claimed asymptotic.
Of course, the robustness of the Merton solution is of great practical im-

portance.

4.2 Consumption–Investment under Transaction Costs

4.2.1 The Model

The setting described in this section is, in some aspects, slightly more gen-
eral than that of the standard model of financial market under constant pro-
portional transaction costs. In particular, the cone K is not supposed to be
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polyhedral. On the other hand, it is more restrictive with respect to the price
processes: they are assumed to be geometric Brownian motions. Our frame-
work appeals to a well-developed theory of viscosity solutions (in fact, only
to basic elements of the latter) and allows us to catch essential properties of
the Bellman function before going to the specific case of the two-asset model
with the power utility function the detailed analysis of which is our ultimate
goal.

Let Y = (Yt) be an Rd-valued semimartingale on a stochastic basis
(Ω, F ,F, P ) with trivial initial σ-algebra. Let K and C be proper cones in Rd

such that C ⊆ int K �= ∅. Define the set A of controls π = (B, C) as the set of
adapted càdlàg processes of bounded variation such that, up to an evanescent
set,

Ḃ ∈ −K, Ċ ∈ C. (4.2.1)

Let Aa be the set of controls with absolutely continuous C and ΔC0 = 0.
For the elements of Aa, we have c := dC/dt ∈ C.

The controlled process V = V x,π is the solution of the linear system

dV i
t = V i

t− dY i
t + dBi

t − dCi
t , V i

0− = xi, i = 1, . . . , d. (4.2.2)

For x ∈ int K, we consider the subsets Ax and Ax
a of “admissible” controls

for which the processes V x,π never leave the set intK ∪ {0} and have the origin
as an absorbing point. Thus, if Vs−(ω) ∈ ∂K, then ΔBs(ω) = −Vs−(ω).

The important hypothesis that the cone K is proper, i.e., K ∩(−K) = {0},
or equivalently, intK∗ �= ∅, corresponds to the model of financial market
with efficient friction. In a financial context, K (usually containing Rd

+) is
interpreted as the solvency region and C = (Ct) as the consumption process;
the process B = (Bt) describes the accumulated fund transfers.

Let G := (−K) ∩ ∂O1(0), where ∂O1(0) = {x ∈ Rd : |x| = 1} in accor-
dance with the notation for the open ball Or(y) := {x ∈ Rd : |x − y| < r}
The set G is a compact, and −K = cone G. We denote by ΣG the support
function of G, given by the relation ΣG(p) = supx∈G px.

We shall work using the following assumption:

H1. The process Y is a continuous process with independent increments with
mean EYt = μt, μ ∈ Rd, and covariance DYt = At.

To facilitate references, we formulate also a more specific hypothesis (fre-
quent in the literature), where the matrix A is diagonal with aii = (σi)2, i.e.,
the components of the driving noise are independent.

H2. The components of Y are of the form dY i
t = μi dt + σi dwi

t, where w is a
standard Wiener process in Rd.

In our proof of the dynamic programming principle (needed to derive the
HJB equation) we shall assume that the stochastic basis is a canonical one,
that is, the space of continuous functions with the Wiener measure.
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The efficient friction assumption, together with the hypothesis H1, ensures
that the L2-norm of the “maximal function” of the portfolio trajectories ad-
mits an exponential bound which is uniform with respect to strategies. This
result will be used in the sequel to claim that certain stochastic integrals
are not just local martingales but true martingales. For future references, we
immediately give a precise formulation and proof.

Proposition 4.2.1 There is a constant κ > 0 such that

E sup
t≤T

|Vt|2 ≤ κ|x|2eκT 2
(4.2.3)

for any value process V = V x,π, x ∈ int K, and T ≥ 0.

Proof. As usual, κ denotes a “generic” positive constant which may be dif-
ferent in different formulae. Let us take an arbitrary vector p ∈ int K∗ with
|p| = 1. Making use that p dB ≤ 0 and p dC ≥ 0 (in the sense of densities),
we obtain from (4.2.2) that

pVs ≤ px +
∫ s

0

p̃Vr dr +
∫ s

0

Vr dM̃r,

where p̃i := piμi, and M̃ i = piM i with M denoting the martingale part of Y .
The crucial observation is that there is κ > 0 such that κ−1|y| ≤ py for any
y ∈ K. Since |py| ≤ |y| for any y ∈ Rd, we easily obtain the estimate

|Vs| ≤ κ|x| + κ

∫ s

0

|Vr | dr + κ

∣
∣
∣
∣

∫ s

0

Vr dM̃r

∣
∣
∣
∣.

Notice that the right-hand side of this inequality is a continuous process,
and, hence, V is locally bounded, i.e., there exists a sequence of stopping
times τn ↑ ∞ such that each stopped process V τn = (Vt∧τn) is bounded.
With this observation, the proof is completed by a fairly standard argument,
which we only sketch on. Squaring the above inequality, we get, by elementary
estimates combined with the Cauchy–Schwarz and Doob inequalities, that the
(bounded) function ϕ

(n)
t := E sups≤t∧τn

|Vs|2 satisfies the inequality

ϕ
(n)
t ≤ κ|x|2 + κ(T + 1)

∫ t

0

ϕ(n)
s ds.

The Gronwall–Bellman lemma implies that

ϕ
(n)
T ≤ κ|x|2eκ(T+1)T .

Taking here the limit in n and enlarging the constant, we arrive at the required
bound. ��



4.2 Consumption–Investment under Transaction Costs 193

4.2.2 Goal Functionals

Let U : C → R+ be a concave function such that U(0) = 0 and U(x)/|x| → 0
as |x| → ∞. With every π = (B, C) ∈ Ax

a, we associate the “utility process”

Jπ
t :=

∫ t

0

e−βsU(cs) ds, t ≥ 0,

where β > 0. We consider the infinite-horizon maximization problem with the
goal functional EJπ

∞ and define its Bellman function W by

W (x) := sup
π∈Ax

a

EJπ
∞, x ∈ int K. (4.2.4)

If πi, i = 1, 2, are admissible strategies for the initial points xi, then
the strategy λπ1 + (1 − λ)π2 is an admissible strategy for the initial point
λx1 +(1 − λ)x2 for any λ ∈ [0, 1], and the corresponding absorbing time is the
maximum of the absorbing times for both πi. It follows that the function W
is concave on int K. Since Ax1

a ⊆ Ax2
a when x2 − x1 ∈ K, the function W is

increasing with respect to the partial ordering ≥K generated by the cone K.
It is convenient to put W equal to zero on the boundary of K and extend
it to the whole space Rd as a concave function just by putting W := −∞
outside K.
Remark 1. In financial models, usually, C = R+e1 and σ0 = 0, i.e., the only
first (nonrisky) asset is consumed. Our presentation in this section is oriented
to the scalar power utility function u(c) = cγ/γ, γ ∈ ]0, 1[. As we already
mentioned in the previous section, in this case there is no need to consider
a nonzero interest rate for the nonrisky asset, which can be chosen as the
numéraire. Of course, for other types of utility functions, adding to the model
an interest rate may have sense.
Remark 2. We consider here a model with mixed “regular–singular” controls.
In fact, the assumption that the consumption process has an intensity c = (ct)
and the agent’s utility depends on this intensity is not very satisfactory from
the economical point of view. One can consider models with an intertemporal
substitution and the consumption by “gulps,” i.e., dealing with “singular”
controls of the class Ax and the goal functionals like

Jπ
t :=

∫ t

0

e−βsU(C̄s) ds,

where
C̄s =

∫ s

0

K(s, r) dCr

with a suitable kernel K(s, r) (the exponential kernel e−γ(s−r) is the common
choice).
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4.2.3 The Hamilton–Jacobi–Bellman Equation

Assume that hypothesis H1 on the structure of driving noise holds. In the
sequel we denote by U ∗ the convex function U ∗(p) := supx∈C (U(x) − px). We
introduce a continuous function of four variables by putting

F (X, p, W, x) := max
{
F0(X, p, W, x) + U ∗(p), ΣG(p)

}
,

where X belongs to Sd, the set of d×d symmetric matrices, p, x ∈ Rd, W ∈ R,
and the function F0 is given by

F0(X, p, W, x) :=
1
2
tr A(x)X + μ(x)p − βW,

where Aij(x) := aijxixj , μi(x) := μixi, 1 ≤ i, j ≤ d. In the detailed form we
have that

F0(X, p, W, x) =
1
2

d∑

i,j=1

aijxixjXij +
d∑

i=1

μixipi − βW.

If φ is a smooth function, we put

Lφ(x) := F
(
φ′ ′(x), φ′(x), φ(x), x

)
.

In a similar way, L0 corresponds to the function F0.
We show, under mild hypotheses, that W is the unique viscosity solution

of the Dirichlet problem for the HJB equation

F
(
W ′ ′(x), W ′(x), W (x), x

)
= 0, x ∈ int K, (4.2.5)

W (x) = 0, x ∈ ∂K, (4.2.6)

with the boundary condition understood in the usual classical sense.
We do not suppose that the reader is acquainted with the theory of vis-

cosity solutions. Necessary prerequisites, adapted to our needs, are given in
the next sections.

4.2.4 Viscosity Solutions

Since, in general, W may have no derivatives at some points x ∈ intK (and
this is, indeed, the case for the model considered here), the notation (4.2.5)
needs to be interpreted. The idea of viscosity solutions is to plug into F the
derivatives and Hessians of quadratic functions touching W from above and
below. Formal definitions (adapted to the case we are interested in) are as
follows.

Let f and g be functions defined in a neighborhood of zero. We shall write
f(.) � g(.) if f(h) ≤ g(h) + o(|h|2) as |h| → 0. The notation f(.) � g(.) and
f(.) ≈ g(.) has an obvious meaning.
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For p ∈ Rd and X ∈ Sd, we consider the quadratic function

Qp,X(z) := pz + (1/2)〈Xz, z〉, z ∈ Rd,

and define the superjets and subjets of a function v at the point x:

J+v(x) :=
{
(p, X) : v(x + .) � v(x) + Qp,X(.)

}
,

J −v(x) :=
{
(p, X) : v(x + .) � v(x) + Qp,X(.)

}
.

In other words, J+v(x) (resp. J −v(x)) is the family of coefficients of
quadratic functions v(x) + Qp,X(y − .) dominating the function v(.) (resp.,
dominated by this function) in a neighborhood of the point x with precision
up to the second order included and coinciding with v(.) at this point.

A function v ∈ C(K) is called a viscosity supersolution of (4.2.5) if

F
(
X, p, v(x), x

)
≤ 0 ∀(p, X) ∈ J −v(x), x ∈ int K.

A function v ∈ C(K) is called a viscosity subsolution of (4.2.5) if

F
(
X, p, v(x), x

)
≥ 0 ∀(p, X) ∈ J+v(x), x ∈ int K.

A function v ∈ C(K) is a viscosity solution of (4.2.5) if v is simultaneously
a viscosity supersolution and subsolution of (4.2.5).

At last, a function v ∈ C(K) is called a classical supersolution of (4.2.5) if
v ∈ C2(int K) and Lv ≤ 0 on int K. We add the adjective strict when Lv < 0
on the set intK.

Of course, the above notions2 can be formulated also for open subsets of K.
If v is smooth at a point x, then

J+v(x) :=
{
(p, X) : p = v′(x), X ≥ v′ ′(x)

}
,

J −v(x) :=
{
(p, X) : p = v′(x), X ≤ v′ ′(x)

}
,

where the inequality between matrices is understood in the sense of par-
tial ordering induced by the cone of positive semidefinite matrices. The pair
(v′(x), v′ ′(x)) is the unique element belonging to the intersection of J −v(x)
and J+v(x). Thus, any viscosity solution v which is in C2(int K) is a classical
solution of (4.2.5). It is not difficult to check that a classical solution solves
(4.2.5) in the viscosity sense: the needed property that F is increasing in X
with respect to the partial ordering holds in our case.
Remark on a mnemonic rule. The monotonicity allows us to memorize
easily the signs of the inequalities for F . In the smooth case for the second-
order Taylor approximation, i.e., for the quadratic function (v′(x), v′ ′(x)), we
2 The reader may notice that the introduced concepts are related only with the
operator and, therefore, could be called viscosity super-, sub-, and median functions,
which seems to be a more natural terminology. We have no courage to deviate from
the tradition already established in the theory of viscosity solutions.
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have the equality. Thus, if X ≥ v′ ′(x) for the pair (v′(x), X) which is an
element of J+v(x), we have obviously the inequality ≥ 0. Note that in the
literature, the equation is quite often written with the opposite sign, and so
its left-hand side is decreasing in X. . .

For the sake of simplicity and having in mind the specific case we shall
work on, we incorporated in the definitions the requirement that the viscosity
super- and subsolutions are continuous on K including the boundary. For other
cases, this might be too restrictive, and more general and flexible formulations
can be used.

The next criterion gives a flexibility to manipulate with the above concepts.
It allows us to use smooth local majorants/minorants of a function, which is
the supposed viscosity solution, as test functions (to be inserted with their
derivatives into the operator).

Lemma 4.2.2 Let v ∈ C(K). Then the following conditions are equivalent:

(a) the function v is a viscosity supersolution of (4.2.5);
(b) for any ball Or(x) ⊆ K and any f ∈ C2(Or(x)) such that v(x) = f(x)

and v ≥ f on Or(x), the inequality Lf(x) ≤ 0 holds.

Proof. (a) ⇒ (b). Obvious: the pair (f ′(x), f ′ ′(x)) is in J −v(x) according to
the Taylor formula.

(b) ⇒ (a). Take (p, X) in J −v(x). To conclude, we construct a smooth
function f with f ′(x) = p and f ′ ′(x) = X satisfying the requirements of (b).

By definition,

v(x + h) − v(x) − Qp,X(h) ≥ |h|2ϕ
(

|h|
)
,

where ϕ(u) → 0 as u ↓ 0. We consider on ]0, r[ the function

δ(u) := sup
{h: |h|≤u}

1
|h|2

(
v(x + h) − v(x) − Qp,X(h)

)− ≤ sup
{y: 0≤y≤u}

ϕ−(y).

Obviously, δ is continuous, increasing, and δ(u) → 0 as u ↓ 0. The function

Δ(u) :=
2
3

∫ 2u

u

∫ 2η

η

δ(ξ) dξ dη

vanishes at zero with its two right derivatives, and u2δ(u) ≤ Δ(u) ≤ u2δ(4u).
It follows that the function x �→ Δ(|x|) belongs to C2(Or(0)), its Hessian
vanishes at zero, and

v(x + h) − v(x) − Qp,X(h) ≥ −|h|2δ
(

|h|
)

≥ −Δ
(

|h|
)
.

Thus, f(y) := v(x) + Qp,X(y − x) − Δ(|y − x|) is the needed function. ��

For subsolutions, we have a similar result with the inverse inequalities.
Using the alternative definition, we can easily establish the following:
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Lemma 4.2.3 Suppose that the function v is a viscosity solution of (4.2.5).
If v is twice differentiable at x0, then it satisfies (4.2.5) at this point in the
classical sense.

Proof. One needs to be more precise with definitions since it is not assumed
that v′ is defined at every point of a neighborhood of x0. “Twice differentiable”
means here that the Taylor formula at x0 holds:

v(x) = v(x0) +
〈
v′(x0), x − x0

〉
+

1
2
〈
v′ ′(x0)(x − x0), x − x0

〉
+ o

(
|x − x0|2

)
.

Let us consider the C2-function

fε(x) = v(x0) +
〈
v′(x0), x − x0

〉
+

1
2
〈
v′ ′(x0)(x − x0), x − x0

〉
+ ε|x − x0|2

with fε(x0) = v(x0). If ε < 0, then v ≥ fε in a sufficiently small neighborhood
of x0. Thus, by virtue of the previous lemma Lfε(x0) ≤ 0. Letting ε tend to
zero, we obtain that Lv(x0) ≤ 0. Taking in the above definition ε > 0, we get
the opposite inequality. ��

Obviously, one can give a slightly different formulation saying that v is a
viscosity supersolution of the second-order differential equation if and only if,
for every x ∈ int K, the inequality

F
(
φ′ ′(x), φ′(x), v(x), x

)
≤ 0 (4.2.7)

holds for any C2-function φ such that, at the point x, the difference v − φ
attains its local minimum equal to zero. The reader may ask why we replace
in the inequality φ(x) by v(x), which is the same number. This has sense! We
can skip in the suggested reformulation the words “equal to zero” due to the
following assertion, which happens to be useful in the sequel.

Lemma 4.2.4 A function v ∈ C(K) is a viscosity supersolution of (4.2.5)
if and only if, for every point x ∈ int K, inequality (4.2.7) holds for any
C2-function φ defined in a neighborhood of the point x and such that the
difference v − φ attains its local minimum at x.

Proof. In one direction the claim is trivial, and we need to check only that,
for a supersolution, the mentioned inequality (4.2.7) holds when v − φ has a
local minimum at x, i.e., when, for all y from a certain neighborhood Oε(x),
we have the bound

v(y) − φ(y) > v(x) − φ(x), y �= x.

Let v̄ be a C2-function dominated by v, and let g be a smooth function on
R+ taking values in the interval [0, 1] and such that g(t) = 1 for t ≤ ε/2 and
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g(t) = 0 for t ≥ ε. Let us consider the C2-function φ̃ = φ̃(y) with

φ̃(y) =
[
φ(y) + v(x) − φ(x)

]
g
(

|x − y|
)

+
(
1 − g

(
|x − y|

))
v̄(y).

The difference v − φ̃ attains its minimal value equal to zero at point x, and,
therefore, by the supersolution property, (4.2.7) holds for φ̃ and, hence, for φ
because the two derivatives of both functions coincide at x. ��

Again, a corresponding result holds for subsolutions. Notice also that spe-
cific features of the set K (with nonempty interior) were not used in the above
discussions.

Now we give an application of the last characterization of the viscosity so-
lution to prove an assertion claiming that, for a “regular” ordinary differential
equation, a C1-function known to be the viscosity solution is, in fact, a smooth
one satisfying the equation in the classical sense. In the present context, the
“regular” means, roughly speaking, that the equation can be solved with re-
spect to the second derivative and the resulting right-hand side is continuous
in all variables. More precisely, we have the following:

Lemma 4.2.5 Let ψ ∈ C1(a, b) be a viscosity solution of the equation

ψ′ ′(z) = G
(
ψ′(z), ψ(z), z

)
.

Suppose that the right-hand side here is a continuous function. Then the func-
tion ψ ∈ C2(a, b), and the equation holds in the classical sense.

Proof. Take a subinterval [z1, z2] of ]a, b[ and consider on it the C2-function
ψε(z) such that

ψ′ ′
ε (z) = G

(
ψ′(z), ψ(z), z

)
+ ε, ψε(zi) = ψ(zi), i = 1, 2.

Of course, this function could be expressed by an explicit formula, but we
need not it. The parameter ε here is an arbitrary real number. We first argue
with ε > 0. Suppose that ψ − ψε attains a local minimum at an interior point
z of [z1, z2]. Then, necessarily, ψ′

ε(z) = ψ′(z). According to the above criterion
for the supersolution,

ψ′ ′
ε (z) ≤ G

(
ψ′

ε(z), ψ(z), z
)

= G
(
ψ′(z), ψ(z), z

)
,

in contradiction with the definition of ψε. Thus, the difference ψ − ψε is min-
imal at the extremities of [z1, z2], where it is equal to zero. This means that
ψ(z) ≥ ψε(z) for all z ∈ [z1, z2]. Letting ε ↓ 0 and noting that ψε(z) → ψ0(z)
(even uniformly), we obtain the inequality ψ(z) ≥ ψ0(z). Arguing in the same
way with ε < 0 and using the subsolution property, we obtain the reverse
inequality. So, ψ = ψ0 on [z1, z2]. This means that ψ0 is a classical solution
on this interval, and it coincides with ψ. It is easily seen that such a property
implies the claim of the lemma. ��
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4.2.5 Ishii’s Lemma

The only result we need from the theory of viscosity solutions (or, better to
say, from convex analysis) is the following simplified version of Ishii’s lemma,
see Crandall et al. [42] or Fleming and Soner [72].

Lemma 4.2.6 Let v and ṽ be two continuous functions on an open subset
O ⊆ Rd. Consider the function Δ(x, y) := v(x) − ṽ(y) − 1

2n|x − y|2 with
n > 0. Suppose that Δ attains a local maximum at (x̂, ŷ). Then there are
symmetric matrices X and Y such that

(
n(x̂ − ŷ), X

)
∈ J̄+v(x̂),

(
n(x̂ − ŷ), Y

)
∈ J̄ −ṽ(ŷ),

and (
X 0
0 −Y

)
≤ 3n

(
I −I

−I I

)
. (4.2.8)

In this statement, I is the identity matrix, and J̄+v(x) and J̄ −v(x) are
values of the set-valued mappings whose graphs are closures of graphs of the
set-valued mappings J+v and J −v, respectively.

Of course, if v is smooth, the claim follows directly from the necessary
conditions of a local maximum (with X = v′ ′(x̂), Y = ṽ′ ′(ŷ) and the constant 1
instead of 3 in inequality (4.2.8)).

The following assertion is an easy exercise from linear algebra.

Lemma 4.2.7 The inequality (4.2.8) implies that, for any d × m matrices B
and C,

tr(BB′X − CC ′Y ) ≤ 3n|B − C|2. (4.2.9)

Proof. For a symmetric matrix S ≥ O and any matrix G of appropriate
dimension, tr GG′S = tr G′S1/2S1/2G ≥ 0. Manipulating with block matrices
and using this observation, we have

tr(BB′X − CC ′Y ) = tr
(

BB′ BC ′

CB′ CC ′

)(
X 0
0 −Y

)

≤ 3n tr
(

BB′ BC ′

CB′ CC ′

) (
I −I

−I I

)

= 3n tr(BB′ − BC ′ − CB′ + CC ′)

= 3n tr(B − C)(B − C)′ = 3n|B − C|2,

and the result is proven. ��

Notice that A(x) = diag xAdiag x. We denote by diag x the diagonal ma-
trix whose entries on the diagonal are the coordinates of the vector x. Applying
the above lemma with the matrices B = diag xA1/2 and C = diag yA1/2, we
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obtain the following inequality which we need in the sequel:

tr
(
A(x)X − A(y)Y

)
≤ 3n

∣
∣A1/2

∣
∣2|x − y|2. (4.2.10)

Remark. We can obtain the similar inequality

tr
(
A(x)X − A(y)Y

)
≤ 3n tr A|x − y|2

by “probabilistic” considerations using the above lemma in its simpler version
with m = 1. Indeed, let ξ be a standard Gaussian vector-column, and let
η = A1/2ξ.

Applying the lemma with B = diagx η and C = diagy η, we get the in-
equality

tr (BB′X − CC ′Y ) ≤ 3n
∣
∣diag(x − y)

∣
∣2|η|2.

It remains to take the expectation and note that EBB′ = A(x), ECC ′ = A(y),
and E|η|2 = tr A.

4.3 Uniqueness of the Solution and Lyapunov Functions

4.3.1 Uniqueness Theorem

The following concept plays a crucial role in the proof of a purely analytic
result on the uniqueness of the viscosity solution, which we establish by a
classical method of doubling variables using the Ishii lemma.
Definition. We say that a positive function � ∈ C(K) ∩ C2(int K) is the
Lyapunov function if the following properties are satisfied:

(1) �′(x) ∈ int K∗ and L0�(x) ≤ 0 for all x ∈ int K,
(2) �(x) → ∞ as |x| → ∞.

Theorem 4.3.1 Suppose that there exists a Lyapunov function �. Then the
Dirichlet problem (4.2.5)–(4.2.6) has at most one viscosity solution in the
class of continuous functions satisfying the growth condition

W (x)/�(x) → 0, |x| → ∞. (4.3.1)

Proof. Let W and W̃ be two viscosity solutions of (4.2.5) coinciding on the
boundary ∂K. Suppose that W (z) > W̃ (z) for some z ∈ K. Take ε > 0 such
that

W (z) − W̃ (z) − 2ε�(z) > 0.

We introduce the family of continuous functions Δn : K × K → R by putting

Δn(x, y) := W (x) − W̃ (y) − 1
2
n|x − y|2 − ε

[
�(x) + �(y)

]
, n ≥ 0.
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Note that Δn(x, x) = Δ0(x, x) for all x ∈ K and Δ0(x, x) ≤ 0 for x ∈ ∂K.
From the assumption that the function l has a higher growth rate than W we
deduce that Δn(x, y) → −∞ as |x| + |y| → ∞. It follows that the level sets
{Δn ≥ a} are compacts and the function Δn attains its maximum. That is,
there exist (xn, yn) ∈ K × K such that

Δn(xn, yn) = Δ̄n := sup
(x,y)∈K×K

Δn(x, y) ≥ Δ̄ := sup
x∈K

Δ0(x, x) > 0.

All (xn, yn) belong to the compact set {(x, y) : Δ0(x, y) ≥ 0}. It follows
that the sequence n|xn − yn|2 is bounded. We continue to argue (without
introducing new notation) with a subsequence along which (xn, yn) converge
to some limit (x̂, x̂). Necessarily, n|xn − yn|2 → 0 (otherwise we would have
Δ0(x̂, x̂) > Δ̄). It is easily seen that Δ̄n → Δ0(x̂, x̂) = Δ̄. Thus, x̂ is an
interior point of K, and so are xn and yn for sufficiently large n.

By virtue of the Ishii lemma applied to the functions v := W − ε� and
ṽ := W̃ + ε� at the point (xn, yn), there exist matrices Xn = (Xn

ij) and
Y n = (Y n

ij ) satisfying (4.2.8) and such that

(
n(xn − yn), Xn

)
∈ J̄+v(xn),

(
n(xn − yn), Y n

)
∈ J̄ −ṽ(yn).

Using the notation pn := n(xn − yn) + ε�′(xn), qn := n(xn − yn) − ε�′(yn),
Xn := Xn + ε�′ ′(xn), Yn := Y n − ε�′ ′(yn), we may rewrite the last relations
in the following equivalent form:

(pn, Xn) ∈ J̄+W (xn), (qn, Yn) ∈ J̄ −W̃ (yn). (4.3.2)

Since W and W̃ are viscosity sub- and supersolutions,

F
(
Xn, pn, W (xn), xn

)
≥ 0 ≥ F

(
Yn, qn, W̃ (yn), yn

)
.

The second inequality implies that mqn ≤ 0 for each m ∈ G = (−K)∩∂O1(0).
But for the Lyapunov function, �′(x) ∈ int K∗ for x ∈ int K, and, therefore,

mpn = mqn + εm
(
�′(xn) + �′(yn)

)
< 0.

Since G is a compact, ΣG(pn) < 0. It follows that

F0

(
Xn, pn, W (xn), xn

)
+ U ∗(pn) ≥ 0 ≥ F0

(
Yn, qn, W̃ (yn), yn

)
+ U ∗(qn).

Recall that U ∗ is decreasing with respect to the partial ordering generated
by C ∗ and, hence, also by K∗. Thus, U ∗(pn) ≤ U ∗(qn), and we obtain the
inequality

bn := F0

(
Xn, pn, W (xn), xn

)
− F0

(
Yn, qn, W̃ (yn), yn

)
≥ 0.
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Clearly,

bn =
1
2

d∑

i,j=1

(
aijxi

nxj
nXn

ij − aijyi
nyj

nY n
ij

)
+ n

d∑

i=1

μi
(
xi

n − yi
n

)2

− 1
2
βn|xn − yn|2 − βΔn(xn, yn) + ε

(
L0�(xn) + L0�(yn)

)
.

By virtue of (4.2.10), the first sum is dominated by const×n|xn −yn|2; a similar
bound for the second sum is obvious; the last term is negative according to
the definition of a Lyapunov function. It follows that lim sup bn ≤ −βΔ̄ < 0,
and we get a contradiction arising from the assumption W (z) > W̃ (z). ��

An inspection of the arguments shows that they lead to the following
slightly more general and useful comparison result.

Theorem 4.3.2 Assume that there exists a Lyapunov function �. Let W and
W̃ be, respectively, viscosity sub- and supersolution of the equation in an open
set O ⊆ K coinciding on ∂O and such that

W (x) = o
(
�(x)

)
, W̃ (x) = o

(
�(x)

)
, |x| → ∞.

Then W (x) ≤ W̃ (x) for all x ∈ Ō.

Remark. The definition of a Lyapunov function does not depend on U (it
is a property of the operator with U ∗ = 0), and we have the uniqueness for
any utility function U for which U ∗ is decreasing with respect to the partial
ordering induced by K∗. However, to apply the uniqueness theorem, we should
know that W is not growing faster than a certain Lyapunov function.

4.3.2 Existence of Lyapunov Functions and Classical
Supersolutions

Results on the uniqueness of a solution to the HJB equation are all based on
work with specific Lyapunov functions. The following general considerations
explain how the latter can be constructed.

Let u ∈ C(R+) ∩ C2(R+ \ {0}) be an increasing strictly concave function
with u(0) = 0 and u(∞) = ∞. Introduce the function R := −u′2/(u′ ′u).
Assume that R̄ := supz>0 R(z) < ∞.

For p ∈ K∗ \ {0}, we define the function f(x) = fp(x) := u(px) on K. If
y ∈ K and x �= 0, then yf ′(x) = (py)u′(px) ≤ 0. The inequality is strict when
p ∈ int K∗.

Recall that A(x) is the matrix with Aij(x) = Aijxixj and the vector μ(x)
has the components μixi. Suppose that 〈A(x)p, p〉 �= 0. Putting z := px for
brevity, we obtain by obvious transformations intended to isolate full square



4.3 Uniqueness of the Solution and Lyapunov Functions 203

that

L0f(x) =
1
2

[
〈
A(x)p, p

〉
u′ ′(z) + 2

〈
μ(x), p

〉
u′(z) +

〈μ(x), p〉2

〈A(x)p, p〉
u′2(z)
u′ ′(z)

]

+
1
2

〈μ(x), p〉2

〈A(x)p, p〉 R(z)u(z) − βu(z). (4.3.3)

Since u′ ′ ≤ 0, the expression in the square brackets is negative, and so is the
whole right-hand side of the above formula if β ≥ η(p)R̄, where

η(p) :=
1
2

sup
x∈K

〈μ(x), p〉2

〈A(x)p, p〉 .

Of course, if 〈A(x)p, p〉 = 0 we cannot argue in this way, but if in such a case
also 〈μ(x), p〉 = 0, then L0f(x) = −βu(z) ≤ 0 for any β ≥ 0.

These simple observations lead us to the following existence result for
Lyapunov functions:

Proposition 4.3.3 Let p ∈ int K∗. Suppose that 〈μ(x), p〉 vanishes on the set
{x ∈ int K : 〈A(x)p, p〉 = 0}. If β ≥ η(p)R̄, then fp is a Lyapunov function.

Let η̄ := supp∈K∗ η(p). Note that η(p) = η(p/|p|). Continuity considera-
tions show that η̄ is finite if 〈A(x)p, p〉 �= 0 for all x ∈ K \ {0} and p ∈ K∗ \ {0}.
Obviously, if β ≥ η̄R̄, then fp is a Lyapunov function for p ∈ int K∗.

The representation (4.3.3) is useful also in the search of classical superso-
lutions for the operator L. Since Lf = L0f +U ∗(f ′), it is natural to choose u
related to U . For a particular case where C = Rd

+ and U(c) = u(e1c), with u
satisfying the postulated properties (except, maybe, unboundedness) and as-
suming, moreover, that the inequality

u∗(
au′(z)

)
≤ g(a)u(z) (4.3.4)

holds, we get, using the homogeneity of L0, the following result.

Proposition 4.3.4 Assume 〈A(x)p, p〉 �= 0 for all x ∈ int K and p ∈ K∗ \ {0}.
Suppose that (4.3.4) holds for all a, z > 0 with g(a) = o(a) as a → ∞. If
β > η̄R̄, then there exists a0 such that, for every a ≥ a0, the function afp is a
classical supersolution of (4.2.5) whatever is p ∈ K∗ with p1 �= 0. Moreover, if
p ∈ int K∗, then afp is a strict supersolution on any compact subset of int K.

For the power utility function u(z) = zγ/γ, γ ∈ ]0, 1[, we have

R(z) = γ/(1 − γ) = R̄

and u∗(au′(z)) = (1 − γ)aγ/(γ−1)u(z). Therefore, inequality (4.3.4) holds with
g(a) = o(a), a → 0.

If Y satisfies H2 with σ1 = 0, μ1 = 0 (i.e., the first asset is the numéraire),
and σi �= 0 for i �= 1, then, by the Cauchy–Schwarz inequality applied to
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〈μ(x), p〉,

η(p) ≤ 1
2

d∑

i=2

(
μi

σi

)2

.

The inequality

β >
γ

1 − γ

1
2

d∑

i=2

(
μi

σi

)2

(4.3.5)

(implying the relation β > η̄R̄) is a standing assumption in many studies
on the consumption–investment problem under transaction costs, see Akian
et al. [3] and Davis and Norman [47].

In particular, for the model with only one risky asset and the power util-
ity function, by virtue of the above computations, we have, for the function
f(x) = au(px) given by p ∈ K∗ with p1 = 1, that

L0f(x) + U ∗(
f ′(x)

)
= [. . .] +

(
1
2

γ

1 − γ

μ2

σ2
− β + (1 − γ)a1/(γ−1)

)
f(x),

where [. . .] ≤ 0. This implies the following conclusion.

Proposition 4.3.5 Suppose that, in the two-asset model with the power util-
ity function, the Merton parameter

κM :=
1

1 − γ

(
β − 1

2
γ

1 − γ

μ2

σ2

)
> 0.

Then the function

f(x) =
1
γ

κγ−1
M (px)γ = m(px)γ (4.3.6)

is a classical supersolution of the HJB equation whatever is p ∈ K∗ with
p1 = 1.

As we shall see in the next section, the existence of supersolutions has
important implications for the Bellman function, ensuring, in particular, the
finiteness of the latter.

4.4 Supersolutions and Properties of the Bellman
Function

4.4.1 When is W Finite on K?

First, we present sufficient conditions ensuring that the Bellman function W
of the considered maximization problem is finite.

Let Φ be the set of continuous functions f : K → R+ increasing with
respect to the partial ordering ≥K and such that, for every x ∈ int K and
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every π ∈ Ax
a the positive process Xf = Xf,x,π given by the formula

Xf
t := e−βtf(Vt) + Jπ

t , (4.4.1)

where V = V x,π, is a supermartingale.
The set Φ of f with this property is convex and stable under the operation

∧ (recall that the minimum of two supermartingales is a supermartingale).
Any continuous function which is a monotone limit (increasing or decreasing)
of functions from Φ also belongs to Φ.

Lemma 4.4.1 (a) If f ∈ Φ, then W ≤ f ;
(b) if for any y ∈ ∂K, there exists f ∈ Φ such that f(y) = 0, then W is

continuous on K.

Proof. (a) Using the positivity of f , the supermartingale property of Xf , and,
finally, the monotonicity of f , we get the following chain of inequalities leading
to the required property:

EJπ
t ≤ EXf

t ≤ f(V0) ≤ f(V0−) = f(x).

(b) Recall that a concave function is locally Lipschitz continuous on the
interior of its domain, i.e., on the interior of the set where it is finite. Hence,
if Φ is not empty, then W is continuous (and even locally Lipschitz continuous)
on int K. The continuity at a point y ∈ ∂K follows from the assumed property
because 0 ≤ W ≤ f . ��

Lemma 4.4.2 Let f : K → R+ be a function in C(K) ∩ C2(int K). If f is a
classical supersolution of (4.2.5), then f ∈ Φ, i.e., Xf is a supermartingale.

Proof. First, notice that a classical supersolution is increasing with respect
to the partial ordering ≥K . Indeed, by the finite increments formula we have
that, for any x, h ∈ int K,

f(x + h) − f(x) = f ′(x + ϑh)h

for some ϑ ∈ [0, 1]. The right-hand side is greater or equal to zero because,
for the supersolution f , we have the inequality ΣG(f ′(y)) ≤ 0 whatever is
y ∈ int K, or, equivalently, f ′(y)h ≥ 0 for every h ∈ K, just by the definition
of the support function ΣG and the choice of G as a generator of the cone
−K. By continuity, f(x + h) − f(x) ≥ 0 for every x, h ∈ K.

In order to be able to apply the Itô formula in a comfortable way, we
introduce the process Ṽ = V σ− = V I[0,σ[ + Vσ−I[σ,∞[, where σ is the first
hitting time of zero by the process V . This process coincides with V on [0, σ[
but, in contrast to the latter, either always remains in intK (due to the
stopping at σ if Vσ− ∈ int K) or exits to the boundary in a continuous way
and stops there. Let X̃f be defined by (4.4.1) with V replaced by Ṽ . Since

Xf = X̃f + e−βσ
(
f(Vσ− + ΔBσ) − f(Vσ−)

)
I[σ,∞[,
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by the monotonicity of f it is sufficient to verify that X̃f is a supermartingale.
Applying Itô’s formula to e−βtf(Ṽt), we obtain on [0, σ[ the representation

X̃f
t = f(x) +

∫ t

0

e−βs
[

L0f(Vs) − csf
′(Vs) + U(cs)

]
ds + Rt + mt, (4.4.2)

where m is a process such that mσn = (mt∧σn) are continuous martingales
for some stopping times σn increasing to σ, and

Rt :=
∫ t

0

e−βsf ′(Ṽs−) dBc
s +

∑

s≤t

e−βs
[
f(Ṽs− + ΔBs) − f(Ṽs−)

]
. (4.4.3)

By the definition of a supersolution, for any x ∈ int K,

L0f(x) ≤ −U ∗(
f ′(x)

)
≤ cf ′(x) − U(c) ∀c ∈ K.

Thus, the integral in (4.4.2) is a decreasing process. The process R is also
decreasing because the terms of the sum in (4.4.3) are less or equal to zero by
monotonicity of f , while the integral is negative since

f ′(Ṽs−) dBc
s = I{ΔBs=0}f ′(Ṽs−)Ḃs d‖B‖s,

where f ′(Ṽs−)Ḃs ≤ 0 since Ḃ takes values in K. Taking into account that
X̃f ≥ 0, we obtain from (4.4.2) that for each n, the negative decreasing process
Rt∧σn dominates an integrable process, and so it is integrable. The same
conclusion holds for the stopped integral. Being a sum of integrable decreasing
process and a martingale, the process X̃f

t∧σn
is a positive supermartingale and,

hence, by the Fatou lemma, X̃f is a supermartingale as well. ��

Lemma 4.4.2 implies that the existence of a smooth positive supersolu-
tion f of (4.2.5) ensures the finiteness of W on K. Sometimes, e.g., in the
case of power utility function, it is possible to find such a function in a rather
explicit form.
Remark. Let Ō be the closure of an open subset O of K, and let f : Ō → R+

be a classical supersolution in Ō. Let x ∈ O, and let τ be the exit time of the
process V x,π from Ō. The above arguments imply that the process Xf

t∧τ is a
supermartingale, and, therefore,

E
[
e−β(t∧τ)f(Vt∧τ ) + Jπ

t∧τ

]
≤ f(x). (4.4.4)

4.4.2 Strict Local Supersolutions

The next, slightly more technical result, the proof of which is also based on
the analysis of (4.4.2), is of great importance. It will play a crucial role in
deducing from the Dynamic Programming Principle that W is a subsolution
of the HJB equation.
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We fix a ball Ōr(x) ⊆ int K and define τπ as the exit time of V π,x from
Or(x), i.e.,

τπ := inf
{
t ≥ 0 :

∣
∣V π,x

t − x
∣
∣ ≥ r

}
.

For simplicity, we assume that f is smooth in a neighborhood of Ōr(x).

Lemma 4.4.3 Let f ∈ C2(Ōr(x)) be such that Lf ≤ −ε < 0 on Ōr(x). Then
there exist a constant η > 0 and an interval ]0, t0] such that

sup
π∈Ax

a

EXf,x,π
t∧τπ ≤ f(x) − ηt ∀t ∈ ]0, t0].

Proof. We fix a strategy π and omit its symbol in the notation below. In what
follows, only the behavior of the processes on [0, τ ] does matter. Taking into
account the monotonicity of f and modifying, if necessary, the strategy at
the date τ by reducing the size of the jump ΔBτ , we may assume without
loss of generality that |Vτ − x| = r on the set {τ < ∞}. As in the proof of
Lemma 4.4.2, we apply the Itô formula. By assumption, for y from the ball
Ōr(x), we have the bounds L0f(y) ≤ −ε − U ∗(y) and ΣG(f ′(y)) ≤ −ε; the
latter means that kf ′(y) ≤ −ε|k| for k ∈ −K (hence, f ′(Ōr(x)) ⊂ int K∗).
This implies the inequality

EXf,x
t∧τ ≤ f(x) − e−βtENt,

where

Nt := ε(t ∧ τ) +
∫ t∧τ

0

H
(
cs, f

′(Vs)
)
ds + ε

∫ t∧τ

0

|Ḃs| d‖B‖s

with H(c, p) := U ∗(p) + pc − U(c) ≥ 0. It remains to verify that EN t domi-
nates, on a certain interval ]0, t0], a strictly increasing linear function which
is independent of π.

Being the image of a closed ball under continuous mapping, the set
f ′(Ōr(x)) is a compact in int K∗. The lower bound of U ∗ on f ′(Ōr(x)) is
finite. For any p from f ′(Ōr(x)) and c ∈ C ⊆ K, we have the inequality
(c/|c|)p ≥ ε. At last, U(c)/|c| → 0 as c → ∞. Combining these facts, we infer
that there is a constant κ (“large”; for convenience, κ ≥ 1) such that

inf
p∈f̄ ′(Ōr(x))

H(c, p) ≥ κ−1|c|, ∀c ∈ C, |c| ≥ κ.

Thus, for the first integral in the definition of Nt, we have
∫ t∧τ

0

H
(
cs, f

′(Vs)
)
ds ≥ κ−1

∫ t∧τ

0

I{ |cs |≥κ} |cs| ds.

Notice that the second integral dominates κ̃‖B‖t∧τ for some κ̃ > 0. To see
this consider the absolute norm |.|1 in Rd. Then the total variation of B with
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respect to this norm is
∑

i Var Bi, and

|Ḃ|1 =
∑

i

∣
∣Ḃi

∣
∣ =

∑

i

∣
∣
∣
∣

dBi

d‖B‖

∣
∣
∣
∣ =

∑

i

∣
∣
∣
∣

dBi

d Var Bi

∣
∣
∣
∣
d Var Bi

d‖B‖ =
d

∑
i VarBi

d‖B‖ .

But all the norms in Rd are equivalent, i.e., κ̃−1| · | ≤ | · |1 ≤ κ̃| · | for some
strictly positive constant κ̃, and the same inequalities relate the corresponding
total-variation processes.

Summarizing, we conclude that it is sufficient to check the domination
property for EÑt with the simpler processes

Ñt := t ∧ τ +
∫ t∧τ

0

I{ |cs |≥κ} |cs| ds + ‖B‖t∧τ . (4.4.5)

The idea of the concluding reasoning is very simple: on a certain set of
strictly positive probability, where one may neglect the random fluctuations,
either τ is “large,” or the total variation of the control is “large.”

The formal arguments are as follows. Take δ > 1. By the stochastic Cauchy
formula the solution of the linear equation (4.2.2) can be written as

V i
t = Et

(
Y i

)
xi + Et

(
Y i

) ∫ t

0

E −1
s

(
Y i

)
d
(
Bi

s − Ci
s

)
, i = 1, . . . , d,

with the Girsanov exponential

E
(
Y i

)
:= eY i −(1/2)〈Y i 〉.

Using only the fact that E0+(Y i) = E0(Y i) = 1, we get immediately from this
representation that there exist a number t0 > 0 and a measurable set Γ with
P (Γ ) > 0 on which

∣
∣V x,π − x

∣
∣ ≤ r/2 + δ

(
‖B‖ + ‖C‖

)
on [0, t0]

whatever is the control π = (B, C). Of course, diminishing t0, we may assume
without loss of generality that κt0 ≤ r/(4δ). For any t ≤ t0, we have on the
set Γ ∩ {τ ≤ t} the inequality ‖B‖τ + ‖C‖τ ≥ r/(2δ), and, hence,

Ñt ≥ ‖B‖τ + ‖C‖τ −
∫ τ

0

I{ |cs |<κ} |cs| ds ≥ r

2δ
− κt0 ≥ κt0 ≥ t0 ≥ t.

On the set Γ ∩ {τ > t}, obviously, Ñt ≥ t. Thus, EÑt ≥ tP (Γ ) on [0, t0], and
the result is proven. ��

4.5 Dynamic Programming Principle

The following property of the Bellman function is usually referred to as the
(weak) “dynamic programming principle”:
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Theorem 4.5.1 Assume that W (x) < ∞ for x ∈ int K. Then for any finite
stopping time τ ,

W (x) = sup
π∈Ax

a

E
(
Jπ

τ + e−βτW
(
V x,π

τ −
))

. (4.5.1)

It is corollary of two more precise results given in Lemmas 4.5.2 and 4.5.3,
which will be our tools to derive the HJB equation for the Bellman function
(though nicely looking, the above formulation does not suit this purpose).

We work on the canonical filtered space of continuous functions equipped
with the Wiener measure. The generic point ω = ω. of this space is a con-
tinuous function on R+, zero at the origin. Let F ◦

t := σ{ωs, s ≤ t} and
Ft :=

⋂
ε>0 Ft+ε. We add the superscript P to denote σ-algebras augmented

by all P -null sets from Ω. Recall that F ◦,P
t coincides with F P

t (this assertion
follows easily from the predictable representation theorem).

A particular structure of Ω allows us to consider such operators as the
stopping ω. �→ ωs

. , s ≥ 0, where ωs
. = ωs∧., and the translation ω. �→ ωs+. −ωs.

Taking Doob’s theorem into account, one can describe F ◦
s -measurable random

variables as those of the form g(w.) = g(ws
. ) where g is a measurable function

on Ω.
We define also the “concatenation” operator as the measurable mapping

g : R+ × Ω × Ω → Ω

with gt(s, ω., ω̃.) = ωtI[0,s[(t) + (ω̃t−s + ωs)I[s,∞[(t).
Notice that

gt

(
s, ωs

. , ω.+s − ωs

)
= ωt.

Thus, π(ω) = π(g(s, ωs
. , ω.+s − ωs)).

Let π be a fixed strategy from Ax
a, and let ϑ = ϑx,π be a hitting time of

zero for the process V x,π.
We need the following general fact on conditional distributions.
Let ξ and η be two random variables taking values in Polish spaces X and

Y equipped with their Borel σ-algebras X and Y . Then ξ admits a regular
conditional distribution given η = y, which we shall denote by pξ|η(Γ, y), and

E
(
f(ξ, η)|η

)
=

∫
f(x, y)pξ|η(dx, y)

∣
∣
∣
y=η

(a.s.)

for any measurable function f(x, y) ≥ 0.
We shall apply the above relation to the random variables ξ = (ω.+τ − ωτ )

and η = (τ, ωτ ). In this case, according to the Dynkin–Hunt theorem, the
conditional distribution pξ|η(Γ, y) admits a version which is independent of y
and coincides with the Wiener measure P .

At last, for fixed s and ws, the shifted control π(g(s, ωs
. , ω̃.), s + dr) is

admissible for the initial condition V x,π
s− (ω). Here we denote by ω̃. a generic

point of the canonical space.
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Lemma 4.5.2 Let Tf and Tb be, respectively, the sets of all finite and bounded
stopping times. Then

W (x) ≤ sup
π∈Ax

a

inf
τ ∈Tf

E
(
Jπ

τ + e−βτW
(
V x,π

τ −
))

. (4.5.2)

If W (x) < ∞ for all x ∈ int K, then

W (x) ≤ sup
π∈Ax

a

inf
τ ∈Tb

E
(
Jπ

τ + e−βτW
(
V x,π

τ

))
. (4.5.3)

Proof. For arbitrary π ∈ Ax
a and Tf , we have that

EJπ
∞ = EJπ

τ + Ee−βτ

∫ ∞

0

e−βru(cr+τ ) dr.

According to the above discussion, we can rewrite the second term of the
right-hand side as

Ee−βτ

∫ (∫ ∞

0

e−βru
(
cr+τ

(
g
(
τ, ωτ , ω̃

)))
dr

)
P (dω̃)

and dominate it by Ee−βτW (V x,π
τ − ). Thus,

EJπ
∞ ≤ EJπ

τ + Ee−βτW
(
V x,π

τ −
)
.

This bound leads directly to the first announced inequality. To obtain the
second, we note that W is dominated by a linear function and consider, for a
bounded stopping time τ , the sequence τn := τ +1/n; for τn, the above bound
holds. Clearly, V x,π

τn − → V x,π
τ . Since W is continuous in int K and zero is an

adsorbing point, W (V x,π
τn −) → W (V x,π

τ ). At last, Proposition 4.2.1 allows us to
apply the dominated convergence theorem and remove the annoying minus in
the bound, which leads, in this modified form, to (4.5.3). ��

The proof of the opposite inequality is based on different ideas.

Lemma 4.5.3 Assume that W (x) < ∞ for all x ∈ int K. Then for any finite
stopping time τ ,

W (x) ≥ sup
π∈Ax

a

E
(
Jπ

τ + e−βτW
(
V x,π

τ −
))

. (4.5.4)

Proof. Fix ε > 0. Being concave, the function W is continuous on intK.
For each x ∈ int K, we can find an open ball Or(x) = x + Or(0) with
r = r(ε, x) < ε contained in the open set {y ∈ int K : |W (y) − W (x)| < ε}.
Moreover, we can find a smaller ball Or̃(x) contained in the set y(x)+K with
y(x) ∈ Or(x). Indeed, take a ball x0 + Oδ(0) ⊆ K. Since K is a cone,

x + Oλδ(0) ⊆ x − λx0 + K
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for every λ > 0. Clearly, the requirement is met for y(x) = x − λx0 and
r̃ = λδ when λ|x0| < ε and λδ < r. The family of sets Or̃(x)(x), x ∈ int K, is
an open covering of int K. But any open covering of a separable metric space
contains a countable subcovering (this is the Lindelöf property; in our case,
where int K is a countable union of compacts, it is obvious). Take a countable
subcovering indexed by points xn. For simplicity, we shall denote its elements
by On and y(xn) by yn. Put A1 := O1 and An = On \

⋂
k<n Ok. The sets An

are disjoint, and their union is int K.
Let πn = (Bn, Cn) ∈ Ayn

a be an ε-optimal strategy for the initial point yn,
i.e., such that

EJπn ≥ W (yn) − ε.

Let π ∈ Ax
a be an arbitrary strategy. We consider the strategy π̃ ∈ Ax

a defined
by the relation

π̃ = πI[0,τ [ +
∞∑

n=1

[(
yn − V x,π

τ − , 0
)

+ π̄n
]
I[τ,∞[IAn

(
V x,π

τ −
)
I{τ<ϑ},

where π̄n is the translation of the strategy πn: namely, for a point ω. with
τ(ω) = s < ∞, we have

π̄n
t (ω.) := πn

t−s(ω.+s − ωs).

In other words, the measure dπ̃ coincides with dπ on [0, τ [ and with the shift
of dπn on ]τ, ∞[ when V x,π

τ − is a subset of An; the correction term guarantees
that in the latter case the trajectory of the control system corresponding to
the control π̃ passes at time τ through the point yn.

Now, using the same considerations as in the previous lemma, we have

W (x) ≥ EJ π̃
∞ = EJπ

τ +
∞∑

n=1

EIAn

(
V x,π

τ −
)
I{τ<ϑ}

∫ ∞

τ

e−βsu
(
c̄n
s

)
ds

≥ EJπ
τ +

∞∑

n=1

EIAn

(
V x,π

τ −
)
I{τ<ϑ}e−βτ

(
W (yn) − ε

)

≥ EJπ
τ + Ee−βτW

(
V x,π

τ −
)

− 2ε.

Since π and ε are arbitrary, the result follows. ��

Remark. The previous lemmas imply the identity

W (x) = sup
π∈Ax

a

inf
τ ∈Tf

E
(
Jπ

τ + e−βτW
(
V x,π

τ −
))

.

It can be considered as another form of the dynamic programming principle.
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4.6 The Bellman Function and the HJB Equation

Theorem 4.6.1 Assume that the Bellman function W is in C(K). Then W
is a viscosity solution of (4.2.5).

Proof. The claim follows from the two lemmas below. ��

Lemma 4.6.2 If (4.5.4) holds, then W is a viscosity supersolution of (4.2.5).

Proof. Let x ∈ O ⊆ int K. We choose a test function φ ∈ C2(O) such that
φ(x) = W (x) and W ≥ φ in O.

At first, we fix m ∈ K and argue with ε > 0 small enough to ensure that
x − εm ∈ O. The function W is increasing with respect to the partial ordering
generated by K. Thus,

φ(x) = W (x) ≥ W (x − εm) ≥ φ(x − εm).

It follows that −mφ′(x) ≤ 0, and, therefore, ΣG(φ′(x)) ≤ 0.
Take now π with Bt = 0 and ct = c ∈ C. Let τr be the exit time of

the continuous process V = V x,π from the ball Ōr(x) ⊆ int K. The identity
(4.5.4) implies that

W (x) ≥ E
(
Jπ

t∧τr
+ e−β(t∧τr)W (Vt∧τr )

)
,

and this inequality holds true if replace W by φ. Writing all terms of the latter
in the right-hand side and applying the Itô formula (4.4.2), we get that

0 ≥ E

(∫ t∧τr

0

e−βsU(cs) ds + e−β(t∧τr)φ(Vt∧τr )
)

− φ(x)

≥ E

∫ t∧τr

0

e−βs
[

L0φ(Vs) − cφ′(Vs) + U(c)
]
ds

≥ min
y∈Ōr(x)

[
L0φ(y) − cφ′(y) + U(c)

]
E

[
1
β

(
1 − e−β(t∧τr)

)
]
.

Dividing the resulting inequality by t and taking successively the limits as t
and r converge to zero, we infer that L0φ(x) − cφ′(x)+U(c) ≤ 0. Maximizing
over c ∈ C yields the bound L0φ(x) + U ∗(φ′(x)) ≤ 0, and, therefore, W is a
supersolution of the HJB equation. ��

Lemma 4.6.3 If (4.5.2) holds, then W is a viscosity subsolution of (4.2.5).

Proof. Let x ∈ O ⊆ int K. Let φ ∈ C2(O) be a function such that
φ(x) = W (x) and W ≤ φ on O. Assume that the subsolution inequality
for φ fails at x. Thus, there exists ε > 0 such that Lφ ≤ −ε on some ball
Ōr(x) ⊆ O. By virtue of Lemma 4.4.3 (applied to the function φ), there are
t0 > 0 and η > 0 such that on the interval ]0, t0], for any strategy π ∈ Ax

a,

E
(
Jπ

t∧τπ + e−βτπ

φ
(
V x,π

t∧τπ

))
≤ φ(x) − ηt,



4.7 Properties of the Bellman Function 213

where τπ is the exit time of the process V x,π from the ball Ōr(x). Fix t ∈ ]0, t0].
By the second claim of Lemma 4.5.2), there exists π ∈ Ax

a such that

W (x) ≤ E
(
Jπ

t∧τ + e−βτW
(
V x,π

t∧τ

))
+

1
2
ηt

for every stopping time τ , in particular, for τπ.
Using the inequality W ≤ φ and applying Lemma 4.4.3, we obtain from the

above relations that W (x) ≤ φ(x) − (1/2)ηt. This is a contradiction because
at the point x the values of W and φ are the same. ��

4.7 Properties of the Bellman Function

4.7.1 The Subdifferential: Generalities

The subdifferential of the function W at a point x ∈ int K is defined as the
set

∂W (x) :=
{
w ∈ Rd : W (y) ≤ W (x) + w(y − x) ∀y ∈ K

}
.

Since W is concave, this set is nonempty; obviously, it is closed and bounded.
If W is unbounded, zero does not belong to ∂W (x).

Recall that, for a concave function f of scalar argument, the subdifferential
∂f(x) = [D+f(x), D−f(x)], the interval between the values of the right and
left derivatives at x.

Lemma 4.7.1 Let x1, x2 be two points in int K. Then
(
∂W (x1) − ∂W (x2)

)
(x1 − x2) ≤ 0. (4.7.1)

Proof. Let wi ∈ ∂W (xi), i = 1, 2. From the definition we have the inequalities

W (x2) ≤ W (x1) + w1(x2 − x1), W (x1) ≤ W (x2) + w2(x1 − x2).

Adding them, we obtain that (w1 − w2)(x1 − x2) ≤ 0, the relation we need.
��

Lemma 4.7.2 The set ∂W (x) is a singleton if and only if W is differentiable
at x; in this case the unique element of ∂W (x) is W ′(x).

Lemma 4.7.3 Let O be an open subset of K. The function W is of class
C1(O) if ∂W (x) is a singleton at any point x ∈ O.

Now we exploit some specific properties of the Bellman function.
The following lemma follows from the monotonicity of W with respect to

the partal ordering induced by the cone K.
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Lemma 4.7.4 For every x ∈ int K, we have the inclusion ∂W (x) ⊆ K∗.

Proof. If w ∈ ∂W (x), the linear function ϕ(.) := W (x) + w(. − x) dominates
W (.) on K. Then, for any y ∈ K,

ϕ(x) = W (x) ≤ W (x + y) ≤ ϕ(x + y) = W (x) + wy.

Thus, wy ≥ 0 for all y ∈ K, and the result follows. ��

The Bellman function in the model with the power utility inherits the
homotheticity property of the latter. Namely,

W (νx) = νγW (x) ∀ν > 0. (4.7.2)

This implies a homotheticity property for the subdifferential.

Lemma 4.7.5 If W satisfies (4.7.2), then

∂W (νx) = νγ−1∂W (x) ∀ν > 0. (4.7.3)

Proof. Taking into account that K is a cone, we have

∂W (νx) =
{
w ∈ Rd : W (νy) ≤ W (νx) + w(νy − νx) ∀y ∈ K

}

=
{
w ∈ Rd : νγW (y) ≤ νγW (x) + w(νy − νx) ∀y ∈ K

}

=
{
w ∈ Rd : W (y) ≤ W (x) + ν1−γw(y − x) ∀y ∈ K

}
.

Since the right-hand side is νγ−1∂W (x), we get the claim. ��

Corollary 4.7.6 If W �= 0 satisfies (4.7.2), then 0 /∈ ∂W (x).

Proof. If 0 ∈ ∂W (x), then 0 ∈ ∂W (νx), ν > 0. Thus, W attains its maximum
at every point νx. In virtue of (4.7.2), this is possible only if W = 0. ��

Lemma 4.7.7 If W satisfies (4.7.2), then the projection of ∂W (x) on Linx
is the singleton γW (x)|x| −2x. In particular, for d = 2, if not a singleton, the
subdifferential ∂W (x) is a closed interval orthogonal to x.

Proof. Let w ∈ ∂W (x), and let w = κx + w⊥ where w⊥x = 0. Then, for any
real t > 0, we have, in virtue of the definition of a subdifferential, that

W (tx) ≤ W (x) + wx(t − 1) = W (x) + κ|x|2(t − 1).

On the other hand, for the smooth scalar function ψ(t) := W (tx) = tγW (x),
the subdifferential ∂ψ(1) is the singleton γW (x). Thus, γW (x) = κ|x|2. ��
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4.7.2 The Bellman Function of the Two-Asset Model

Now we investigate the structure of the Bellman function for the case d = 2
assuming its homotheticity. Let g1, g2 be the generators of K. First, let us
consider the ray

r1 := g2 + R+g1 =
{
x ∈ R2 : x = g2 + tg1, t ≥ 0

}
,

parallel to g1 and starting from the point g2. Relation (4.7.2) allows us to
recover the whole function W from its values on r1, i.e., from the values of the
concave increasing function W1(t) := W (g2 + tg1), t > 0, with W (0+) = 0.
Its subdifferential ∂W1(t) is the interval [D+W1(t), D−W1(t)] ⊆ R+; if t̃ > t,
then the interval ∂W1(t̃) lays leftwards with respect to the interval ∂W1(t).
Put t1 := inf{t ≥ 0 : D+W1(t) = 0}. Necessarily, ∂W1(t) = {0} for t > t1.

Define the cone K1 := cone{g1, g2 + t1g1} contained in K; by convention,
g2 + ∞ g1 = g1, i.e., K1 := cone{g1} when t1 = ∞.

Notice that g1∂W (g2 + tg1) ⊆ ∂W1(t). Indeed, if w ∈ ∂W (g2 + tg1), then,
for all s > 0,

W (g2 + sg1) ≤ W (g2 + tg1) + wg1(t − s),

i.e., wg1 ∈ ∂W1(t).
In particular, g1∂W (g2 + tg1) = {0} for t > t1. On the other hand, by

Lemma 4.7.7 the projection of ∂W (g2 + tg1) on the direction g2 + tg1 is a
singleton. Thus, ∂W (g2 + tg1) i also a singleton. Using Lemma 4.7.3 and
Lemma 4.7.3, we arrive at the following conclusion: W is C1 on int K1, and
g1W

′ = 0 on this set.
Changing the role of indices, we may introduce also the function W2, the

value t2, and the cone K2 := cone{g2, g1 + t2g2} degenerating to the ray
cone{g2} when t2 = ∞. Similarly, W is C1 on K2, and g2W

′ = 0 on this set.
Notice that int K1 ∩ int K2 = ∅. Indeed, at a common point one would

have the identities giW
′(x) = 0, possible only if W ′(x) = 0. This contradicts

to Corollary 4.7.6. Therefore, K0 := cone{g2 + t1g1, g1 + t2g2} is a cone lying
in between K1 and K2; the interiors of these three cones are disjoint.

Lemma 4.7.8 For every x ∈ int K0, we have the inclusion ∂W (x) ⊆ intK∗

or, equivalently, wgi > 0 for all w ∈ ∂W (x), i = 1, 2.

Proof. As we just proved, g1∂W (g2 + tg1) ⊆ ∂W1(t). But for t < t1, the set
∂W1(t) lies in ]0, ∞[. It follows that g1∂W (x) > 0 for x belonging to the
intersection of the ray g2 +R+g1 with int K0 and, hence, by Lemma 4.7.3, for
all x ∈ int K0. The arguments for the generator g2 are similar. ��

To check that intK1 and int K2 are nonempty as well as int K0, we use
more particular properties of the HJB equation. This will be done in the next
section.
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4.7.3 Lower Bounds for the Bellman Function

For the model where the functional depends only on the first asset which is the
numéraire, one can get easily tractable lower bounds for the Bellman function
which will be used later.

Let l(x) be the liquidation function, i.e.,

l(x) := sup{z ∈ R+ : x − ze1 ∈ K}.

We consider the subset of admissible strategies with ΔB0 = e1l(x) − x and
Bt = B0 for t > 0. This means that the agent liquidates his position in the
risky asset entering the market and remains afterwards only with money. For
a strategy π of this type,

Jπ
∞ =

∫ τ

0

e−βtu(ct) dt,

where τ is the instant when the process Xt := l(x) −
∫ t

0
cs ds hits zero. In

particular, if the consumption is proportional to the wealth, i.e., ct = κXt

with some constant κ > 0, we have the dynamics Xt = l(x)e−κt with τ = ∞
and

Jπ
∞ =

∫ ∞

0

e−βtu
(
κl(x)e−κt

)
dt.

Thus,

W (x) ≥ sup
κ>0

∫ ∞

0

e−βtu
(
κl(x)e−κt

)
dt. (4.7.4)

In the specific case of the power utility function,

Jπ
∞ =

κγ

γ(β + κγ)
lγ(x).

The maximum of the right-hand side over κ is attained at κ∗ = β/(1−γ). This
gives us a useful lower bound for the Bellman function, which we formulate
as follows:

Lemma 4.7.9 In the problem with the power utility function,

W (x) ≥ 1
γ

κγ−1
∗ lγ(x) =

1
γ

(
β

1 − γ

)γ−1

lγ(x). (4.7.5)

In particular,

W (e1) ≥ 1
γ

κγ−1
∗ =

1
γ

(
β

1 − γ

)γ−1

. (4.7.6)

This result will be used in the sequel for the two-asset model with the
transaction cost coefficients λ12 = λ21 = λ. For such a case, at any point
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x = (ξ, η) which lies in the intersection of the solvency region K with the
upper half-plane, the value of liquidation function is

l(x) = ξ +
η

1 + λ
=

p2x

1 + λ

(the stock holding η is converted into η/(1 + λ) units of money). Therefore,
we can write more explicitly that

W (x) ≥ 1
γ

κγ−1
∗

(
ξ +

η

1 + λ

)γ

. (4.7.7)

In particular, for x = (1 − z, z) with z ∈ [0, 1+1/λ], we have the lower bound

W (1 − z, z) ≥ 1
γ

(
β

1 − γ

)γ−1 1
(1 + λ)γ

(1 + λ − λz)γ . (4.7.8)

Remark. Another lower bound for the Bellman function can be obtained
by considering the strategy π which prescribes to convert immediately the
portfolio into a single-asset one with holdings in a fixed risky asset and to
consume proportionally to the current portfolio value (this means that shares
permanently should be sold paying the transaction costs, which can be also
interpreted as a consumption tax). Since the wealth in this case evolves ac-
cordingly to a stochastic linear equation, EJπ

∞ can be easily calculated.

4.8 The Davis–Norman Solution

4.8.1 Two-Asset Model: The Result

Let us consider the two-asset model with the price dynamics given by

dS1
t = 0,

dS2
t = S2

t (μdt + σ dwt),

where w is a Wiener process, and σ > 0. That is, the first asset (“bond”,
“money”, or “bank account”) is the numéraire. The price of the risky asset
follows a geometric Brownian motion. The portfolio values evolve as

dV 1
t = dL21

t −
(
1 + λ12

)
dL12

t − ct dt,

dV 2
t = V 2

t (μdt + σ dwt) + dL12
t −

(
1 + λ21

)
dL21

t ,

where L12 and L21 are adapted right-continuous increasing processes.
The optimization problem is of the form

E

∫ ∞

0

e−βsu(cs) ds → max, (4.8.1)
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where u : R+ → R+ is a utility function. The maximum is taken over the
set of strategies for which the value process evolves in the solvency cone K
generated by the vectors g1 := (1 + λ12, −1) and g2 := (−1, 1 + λ21) lying
respectively in the forth and second quadrants. So, K and K∗ are simply
sectors; the generators of the dual cone are the vectors p1 := (1, 1 + λ12) and
p2 := (1 + λ21, 1) lying in R2

+ and orthogonal, respectively, to g1 and g2.
For the power utility function, the structure of the solution was found by

Norman and Davis in 1990, though it was conjectured already in the pioneer-
ing paper of Magill and Constantinides of 1976. It was thoroughly analyzed
using methods of viscosity solutions in the paper by Shreve and Soner of 1994.
In our presentation we follow the latter.

We consider here the model with u(c) = cγ/γ, γ ∈ ]0, 1[, supposing always
that the Bellman function W is finite. As we already know, such a property
is guaranteed if κM > 0, i.e.,

β >
1
2

γ

1 − γ

μ2

σ2
. (4.8.2)

Note that the above inequality ensures the finiteness of W even in the classical
Merton problem without friction. In the model with friction one can find other
sufficient conditions for the finiteness of the Bellman function. We discuss this
issue later.

It follows from the general theory that the Bellman function W is the
viscosity solution of the HJB equation with zero boundary condition. It is
unique in the class of functions with growth rate γ′ ≥ γ such that the above
bound still holds with γ′.

We assume, moreover, that the instantaneous interest rate of the risky
asset μ > 0, and this hypothesis will be used immediately in proving (4.8.5).

The HJB equation can be written as follows:

max
{

1
2
σ2η2Wηη + μηWη − βW + u∗(Wξ), −g1W

′, −g2W
′
}

= 0. (4.8.3)

Of course, at the moment, we have no information about the existence of the
involved derivatives of W , and the above relation has to be understood in the
viscosity sense. Since this section is a case study and our intention is to obtain
an explicit solution, we abandon the standard notation: to improve the per-
ception of the formulae, we use the notation (ξ, η) and (t, z) for generic points
in R2

+. Moreover, for the sake of simplicity, we suppose that the transaction
costs for buying and selling are the same, i.e., λ12 = λ21 = λ > 0.

The principal result is the following:

Theorem 4.8.1 There are vectors g̃1, g̃2 such that the solvency cone K is
the union of K1 = cone{g1, g̃1}, K2 = cone{g2, g̃2}, and K0 = cone{g̃1, g̃2},
three sectors with disjoint nonempty interiors. The Bellman function W is
a concave positive homogeneous function of order γ and belongs to the class
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C1(int K). On Ki, i = 1, 2, it is given by the formulae aiu(pix). On int K0,
it is a classical C2-solution of the equation

1
2
σ2η2Wηη + μηWη − βW + u∗(Wξ) = 0, (4.8.4)

where u∗(p) = (1 − γ)γ−1pγ/(γ−1).

4.8.2 Structure of Bellman Function

First of all, we recall that the functions au(pix) for large a are classical super-
solutions, and, hence, they dominate W (x) “globally,” i.e., on the whole K.
We refine this result by showing that, on certain sectors with nonempty in-
teriors and adjacent to the boundaries of the solvency region, the Bellman
function W coincides with functions of this particular type. Specifically, we
have:

Proposition 4.8.2 (a) There exists a1 > 0 such that

W (x) = a1u(p1x) on cone{g1, e1}. (4.8.5)

(b) There exists a2 > 0 such that

W (x) = a2u(p2x) on cone
{
g2, 2θ(1 + λ)−1g2 + e2

}
. (4.8.6)

Proof. (a) Take a1 := W (e1)/u(p1e1) = γW (e1). Due to the homotheticity
property, this choice implies that the function ϕ(x) := a1u(p1x) coincides with
W (x) on the whole ray R+e1. This immediately implies that W (x) ≥ ϕ(x) on
the sector cone{g1, e1} because, along each ray ξe1+R+g1, ξ > 0, the function
W is increasing while ϕ remains constant. On the other hand, both functions
are zero on the boundary ray R+g1 (which is a part of ∂K). Let us check that
ϕ is a classical supersolution of our HJB equation on the sector cone{g1, e1},
and, hence, we have the reverse inequality W (x) ≤ ϕ(x) on this set due to
Lemmas 4.4.1 and 4.4.2. The only problem is to check, in the interior of the
sector, the inequality L0ϕ + u∗(ϕξ) ≤ 0, which, in the detailed notation, is
simply

1
2
σ2η2ϕηη + μηϕη − βϕ + u∗(ϕξ) ≤ 0.

The first term in the left-hand side is always negative (due to the concavity).
The second one is negative because, for x = (ξ, η) in the considered set, the
coordinate η < 0, the parameter μ > 0 by assumption, and ϕ is increasing
in η. At last, by virtue of the bound (4.7.6),

a1 := γW (e1) ≥ κγ−1
∗ =

(
β

1 − γ

)γ−1

, (4.8.7)
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and we easily get that

u∗(ϕξ) = (1 − γ)a
1

γ−1
1 ϕ ≤ βϕ. (4.8.8)

(b) We put N := 2θ(1 + λ)−1 and note that

1
2
σ2(1 + λ)(γ − 1)N + μ = 0.

Take now a2 := W (Ng2 + e2)/u(p2e2) = γW (Ng2 + e2). By the same general
arguments as above, we obtain that the function ψ(x) := a2u(p2x) coincides
with W (x) on the whole ray generated by the vector Ng2 + e2 and satisfies
the inequality W (x) ≥ ψ(x) on the sector cone{g2, Ng2 + e2}. To obtain the
reverse inequality, it remains to verify that L0ψ + u∗(ψξ) ≤ 0 at any point
x = (ξ, η) from the interior of this sector. Such a point admits a unique
representation

x = ξ̄g2 + η̄(Ng2 + e2)

with some reals ξ̄, η̄ > 0. We have: p2x = η̄p2e2 = η̄ and

η = xe2 = ξ̄g2e2 + η̄(Ng2 + e2)e2 ≥ Nη̄g2e2 = Nη̄(1 + λ).

Thus,

1
2
σ2η2ψηη(x) + μηψη(x) = a2(p2x)γ−1η

(
1
2
σ2(γ − 1)

η

p2x
+ μ

)

≤ a2(p2x)γ−1η

(
1
2
σ2(γ − 1)N(1 + λ) + μ

)
= 0

due to our choice of N .
On the other hand, the value of liquidation function is

l(Ng2 + e2) = 1/(1 + λ) (the intersection of the ray Ng2 + e2 − R+g2 and the
axis of abscises is the point (1/(1 + λ), 0)), and, therefore, due to the bound
(4.7.6), we have that

a2 ≥ κγ−1
∗

1
(1 + λ)γ

=
(

β

1 − γ

)γ−1 1
(1 + λ)γ

. (4.8.9)

It follows that

u∗(
ψξ(x)

)
= (1 − γ)a

1
γ−1
2 (1 + λ)

γ
γ−1 ψ(x) ≤ βψ(x), (4.8.10)

and we get the result. ��

We denote by Ki, i = 1, 2, the largest sectors on which the Bellman func-
tion is given by the formulae W (x) = ai(pix)γ . By the above we have:

Corollary 4.8.3 The sectors Ki, i = 1, 2, are nonempty, and

a1 ≥ κγ−1
∗ , a2 ≥ κγ−1

∗
1

(1 + λ)γ
. (4.8.11)



4.8 The Davis–Norman Solution 221

Our next aim is to show that intK0 �= ∅ or, in other words, that K1

and K2 have no common boundary points (except zero). Though the crucial
information will be obtained by a reduction to a one-dimensional problem,
we make the first step in this direction immediately by inspecting the above
formulae and establishing the following simple assertion:

Lemma 4.8.4 If

W (e1) =
1
γ

(
β

1 − γ

)γ−1

, (4.8.12)

then the axis of abscises is not the common boundary of K1 and K2.

Proof. Suppose the opposite. Then the function ψ(x) = a2(p2x)γ coincides
with W (x) on the sector cone{g2, e1}, and we can determine the value of a2

using (4.8.12). It corresponds to the equalities in (4.8.9) and (4.8.10). Hence,
in the considered case,

L0ψ(x) + u∗(
ψξ(x)

)
= a2(p2x)γ−1η

(
1
2
σ2(γ − 1)

η

p2x
+ μ

)
.

The right-hand side is strictly positive for points x = (ξ, η) with sufficiently
small coordinate η > 0. This means that, for such points, ψ cannot be the
solution of the HJB equation. ��

Usually, to find the constants ai, one has to solve a free-boundary problem.
However, in the special case where θ = 1, the value a2 can be calculated
easily. The optimal strategy is just to sell a constant proportion of the stock
to generate a flow of money for consumption. The precise result is here.

Proposition 4.8.5 Suppose that the Merton parameter

κM :=
1

1 − γ

(
β − 1

2
γ

1 − γ

μ2

σ2

)
> 0

and θ := (1 − γ)−1
μσ−2 = 1 (i.e., μ = (1 − γ)σ2).

Then

W (x) = m
1

(1 + λ)γ
(p2x)γ on K ∩

{
x = (ξ, η) : ξ ≤ 0

}
. (4.8.13)

Proof. Let us consider the process V = (V 1, V 2) with V 1 = 0 and

dV 2
t = V 2

t (μdt + σ dwt) − κMV 2
t dt, V 2

0 = 1.

It corresponds to the strategy when the agent, having as the initial endowment
a unit of stock, converts instantaneously a constant proportion of his wealth
into cash and uses it immediately for the consumption with intensity given
by the formula ct = (1 + λ)−1κMV 2

t .
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Apparently,

E
(
V 2

t

)γ = eγ(μ−σ2/2−κM )t+(1/2)γ2σ2t = e(β−κM )t,

the second equality holding because of the assumed identity μ = (1 − γ)σ2.
Thus, for the considered strategy,

Jπ
∞ =

∫ ∞

0

e−βtEu(ct) dt =
1
γ

κγ−1
M

1
(1 + λ)γ

= m
1

(1 + λ)γ
= f(e2),

where we denote by f the right-hand side of (4.8.13). It follows that
W (e2) ≥ f(e2). In fact, we have the equality here since we know already
that f is a classical supersolution (see Proposition 4.3.5), and, hence, W ≤ f
in K. By the homotheticity, W = f on R+e2. Since along each ray ηe2 −R+g2,
η > 0, the function f is constant while W is decreasing, we have, on the sector
K ∩ {x = (ξ, η) : ξ ≤ 0}, the inequality W ≤ f and, hence, the equality. ��

4.8.3 Study of the Scalar Problem

The utility function is homogeneous of degree γ, and this property, due to the
linearity of the dynamics, is inherited by the Bellman function, i.e.,

W (x) = νγW (x/ν) ∀ν > 0. (4.8.14)

Thus, knowing W on the intersection of the line {(ξ, η) : ξ + η = 1} with the
interior of K, that is, on the interval with the extremities (−1/λ, 1+1/λ) and
(1 + 1/λ, −1/λ), one can reconstruct this function, using the homotheticity
property, on the whole domain by the formula

W (ξ, y) = (ξ + η)γW

(
ξ

ξ + η
,

η

ξ + η

)
, (ξ, η) ∈ int K. (4.8.15)

Let us consider the bijection mapping T : (ξ, η) �→ (ξ = η, η/(ξ + η)) of int K
onto the rectangular ]0, ∞[ × ] − 1/λ, 1+1/λ[; clearly, T ∈ C∞. It follows that
the function Φ(t, z) = tγψ(z) with ψ(z) := W (1 − z, z) is a viscosity solution
of the equation obtained by the change of variables.

Specifically, let t = t(ξ, η) = ξ + η, z = z(ξ, η) = η/(ξ + η) (and, hence,
ξ = t(1 − z), η = tz). Differentiating the identity

W (ξ, η) =
[
t(ξ, η)

]γ
ψ

(
z(ξ, η)

)
,

we obtain the following formulae for derivatives:

Wξ(ξ, η) = tγ−1
[
γψ(z) − zψ′(z)

]
,

Wη(ξ, η) = tγ−1
[
γψ(z) + (1 − z)ψ′(z)

]
,

Wηη(ξ, η) = tγ−2
[
γ(γ − 1)ψ(z) + 2(γ − 1)(1 − z)ψ′(z) + (1 − z)2ψ′ ′(z)

]
.
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Therefore, we obtain that

g1W
′(ξ, η) = tγ−1

[
λγψ(z) − (1 + λz)ψ′(z)

]
,

g2W
′(ξ, η) = tγ−1

[
λγψ(z) + (1 + λ − λz)ψ′(z)

]
.

The formal substitution into (4.8.3) yields the following equation in the
viscosity sense on the interval [−1/λ, 1 + 1/λ] for the continuous function ψ
vanishing at the extremities:

max
0≤i≤2

�iψ = 0 (4.8.16)

with two first-order operators

�1ψ := −λγψ + (1 + λz)ψ′, �2ψ := −λγψ − (1 + λ − λz)ψ′,

and the second-order operator

�0ψ = f2ψ
′ ′ + f1ψ

′ + f0ψ +
1 − γ

γ
[γψ − zψ′]

γ
γ−1 ,

where

f2(z) :=
1
2
σ2z2(1 − z)2,

f1(z) := −σ2(1 − γ)z(1 − z)(z − θ),

f0(z) :=
1
2
σ2γ(γ − 1)z2 + γμz − β,

and θ := (1 − γ)−1μσ−2 is the Merton proportion.
The function ψ, being concave, has left and right derivatives continuous

from the left and right, respectively, and satisfying the inequality
D+ψ ≤ D−ψ, which can be strict only on a countably set. Outside this set,
the derivative ψ′ exists and is continuous.

Moreover, ψ is twice differentiable (in the sense of the Taylor formula)
almost everywhere, and, therefore, (4.8.16) holds in the classical sense almost
everywhere, see Lemma 4.2.3. This means that, at each point outside an ex-
ceptional null-set, we have three inequalities

�1ψ(z) ≤ 0, �0ψ(z) ≤ 0, �2ψ(z) ≤ 0, (4.8.17)

and at least one of them is “active,” that is, holds with the equality. By
continuity, on the whole interval,

−λγψ + (1 + λz)D±ψ ≤ 0, −λγψ − (1 + λ − λz)D±ψ ≤ 0. (4.8.18)

Lemma 4.8.6 The function ψ is continuously differentiable on the interval
I := ]−1/λ, 1 + 1/λ [ except, maybe, zero. If ψ′ has a discontinuity at zero,
then

ψ(0) =
1
γ

(
1 − γ

β

)1−γ

=
1
γ

κ1−γ
∗ . (4.8.19)
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Proof. Since ψ is concave, it has left and right derivatives satisfying the in-
equality D+ψ ≤ D−ψ. Suppose that at a point z the inequality is strict. Let
p ∈ ]D+ψ(z), D−ψ(z)[. It follows that (p, X) ∈ J+ψ(z) whatever is X ∈ R.
By the definition of viscosity subsolution, we should have at least one of the
following three inequalities: �iQp,X(z) ≥ 0, i = 0, 1, 2. This leads to an im-
mediate contradiction if z �= 0 or z �= 1. Indeed, the coefficient at the second
derivative being strictly positive, �0Qp,X(z) → −∞ as X → −∞. A non-
constant linear function negative at the extremities of an interval is strictly
negative in its interior, and, therefore, (4.8.18) implies that �iQp,X(z) < 0 for
i = 1, 2.

For the point z = 1, we can say only that

�0Qp,n(z) = f0(1)ψ(1) + u∗(
γψ(1) − p

)
≥ 0. (4.8.20)

To obtain a contradiction, we recall the classical fact that, for the monotone
function ψ′, the derivative ψ′ ′ exists almost everywhere. Another fact (less
known) is that ψ′ ′ is locally integrable. On the other hand, the function 1/f2

has a nonintegrable singularity at 1. With this, we can find a sequence zn ↑ 1
(or zn ↓ 1) such that ψ′ ′(zn) does exist, limn f2(zn)ψ′ ′(zn) = 0, and inequali-
ties (4.8.17) hold at zn. The passage to the limit in the central one yields the
inequalities

f0(1)ψ(1) + u∗(
γψ(1) − D±ψ(1)

)
≤ 0.

The function u∗ being strictly monotone,

f0(1)ψ(1) + u∗(
γψ(1) − p

)
< 0,

contradicting to (4.8.20).
The above arguments for z = 0 do not work. An attempt to repeat them

leads to a conclusion that if ψ′ has a discontinuity at zero, then, necessarily,

f0(0)ψ(0) + u∗(
γψ(0)

)
= 0.

Solving this equation, we get the formula (4.8.19). ��

Remark. On int K, the Bellman function W always has a continuous deriv-
ative in the radial direction. Thus, the second claim of the lemma means
that if W has no derivative in transversal directions at the ray R+e1, then,
necessarily,

W (ξ, 0) =
1
γ

(
1 − γ

β

)1−γ

ξγ .

Due to the continuity of the derivative, we may guess that the regions
where inequalities in (4.8.16) are active are intervals. The concavity of ψ makes
plausible a more specific structure of ψ, namely, that this function satisfies the
above three differential inequalities, the first is a differential equation on the
interval ] − 1/λ, z1[, the second on ]z1, z2[, and the third on ]z2, 1 + 1/λ[. The
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first-order differential equations �iψ = 0 with zero boundary conditions can
be readily solved, and we have the following explicit formulae for the external
intervals:

ψ(z) = κ1(1 + λz)γ , z ∈ [−1/λ, z1],
ψ(z) = κ2(1 + λ − λz)γ , z ∈ [z2, 1 + 1/λ],

where the constants κi > 0 are to be specified.

Lemma 4.8.7 The interior of K0 is nonempty.

Proof. Suppose the opposite. This means that there exists a point x different
from the origin which belongs to the common boundary of K1 and K2. If the
function W is differentiable at x, we obtain that W 1/γ has vanishing partial
derivatives in the directions g1 and g2. It follows that W ′(x) = 0, which is
impossible. If W is not differentiable at x, then x is on the axis of abscises,
and we refer simply to Lemmas 4.8.4 and 4.8.6. ��

The most difficult part of the analysis is to show the following result claim-
ing that the axis of abscises is not on the boundary of K0.

Proposition 4.8.8 The point e1 belongs to int K1.

Proof. Suppose that the assertion is note true, that is, the value z1 = 0. If
γW (e1) > κγ−1

∗ , then, as we know, W ∈ C1(int K). In a right neighborhood
of zero, ψ(z) = W (1 − z, z) is the solution of the second-order differential
equation �0ψ = 0. Since f1(0) = 0 and f0(0) = −β, we have that

lim
z↓0

1
2
σ2z2ψ′ ′(z) = βψ(0) − 1 − γ

γ

[
γψ(0)

] γ
γ−1 .

Noticing that the derivative of the function

H(y) := βy − 1 − γ

γ
(γy)

γ
γ−1 , y > 0,

is strictly positive and H(κγ−1
∗ /γ) = 0, we conclude that the limit above is

also strictly positive. But this is impossible because ψ is concave and ψ′ ′ ≤ 0.
Consider the “critical” case where γW (e1) = κγ−1

∗ and the first derivative
of ψ has a jump downwards at point zero.

Now we know the function ψ(z) on the interval [−1/λ, 0] explicitly. On the
other hand, the lower bound for W implies the inequality

ψ(z) ≥ h(z) :=
1
γ

κγ−1
∗

1
(1 + λ)γ

(1 + λ − λz)γ .

In a right neighborhood of zero, ψ(z) is the solution of the second-order dif-
ferential equation. The difference ψ̃(z) = ψ(z) − h(z) ≥ 0, and ψ̃(0) = 0. It is
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clear that

0 ≤ D+ψ̃(0) = D+ψ(0) − h′(0) ≤ D−ψ(0) − h′(0) < ∞.

Substitution of ψ(z) = h(z) + ψ̃(z) into the equation �0ψ(z) = 0 yields the
identity

g1(z) + g2(z) + g3(z) = 0,

where

g1(z) := �0h(z),
g2(z) := �0ψ̃(z) − u∗(

γψ̃(z) − zψ̃′(z)
)
,

g3(z) := u∗(
γh(z) − zh′(z) + γψ̃(z) − zψ̃′(z)

)
− u∗(

γh(z) − zh′(z)
)
.

Note that

g1(z) = f2(z)h′ ′(z) + f1(z)h′(z) +
(
f0(z) + β

)
h(z).

It follows that g1(0) = 0 and

g′
1(0) = f ′

1(0)h′(0) + f ′
0(0)h(0) =

μ

1 + λ
κγ−1

∗ .

Observing that also g3(0+) = 0, we infer that g2(0+) = 0 as well, and, hence,

lim
z↓0

z2ψ̃′ ′(z) = 0. (4.8.21)

The existence of the derivatives of g1 and g3 implies the existence of the
derivatives of g2. We have the identity for the derivatives

g′
1(z) + g′

2(z) + g′
3(z) = 0, (4.8.22)

implying that

lim
z↓0

[
g′
2(z) + g′

3(z)
]

= − lim
z↓0

g′
1(z) = − μ

1 + λ
κγ−1

∗ . (4.8.23)

The differentiability of g2 implies that the derivative ψ̃′ ′ ′(z) does exist and is
continuous for z > 0. Differentiating the expression

g2(z) = f2(z)ψ̃′ ′(z) + f1(z)ψ̃′(z) + f0(z)ψ̃(z),

we obtain that

lim
z↓0

g′
2(z) = (μ − β)D+ψ̃(0) + lim

z↓0

[
(1/2)σ2z2ψ̃′ ′ ′(z) +

(
σ2 + μ

)
zψ̃′ ′(z)

]
.
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Differentiating the formula

g3(z) =
1 − γ

γ

[
κγ−1

∗

(
1 + λ − λz

1 + λ

)γ−1

+ γψ̃(z) − zψ̃′(z)
] γ

γ−1

− 1 − γ

γ
κγ

∗

(
1 + λ − λz

1 + λ

)γ

,

we infer that

lim
z↓0

g′
3(z) = −κ∗(γ − 1)D+ψ̃(0) + κ∗ lim

z↓0
zψ̃′ ′(z).

Adding this identity with that for the limit of g′
2(z), we arrive at the formula

lim
z↓0

[
g′
2(z)+g′

3(z)
]

= μD+ψ̃(0)+lim
z↓0

[
(1/2)σ2z2ψ̃′ ′ ′(z)+

(
σ2 +μ+κ∗

)
zψ̃′ ′(z)

]
.

In virtue of the lemma below, the right-hand side is positive, in contradiction
with identity (4.8.23). ��

Lemma 4.8.9 Let f be a bounded C2-function on the interval ]0, ε[, and let
κ ∈ R. Then

lim sup
z↓0

[
z2f ′ ′(z) + κzf ′(z)

]
≥ 0.

Proof. Put z := e−t and consider the bounded function f̃(t) = f(e−t). The
claimed property means that

lim sup
t→∞

[
f̃ ′ ′(t) + κf̃ ′(t)

]
≥ 0

whatever is the constant κ. Suppose that the assertion fails. Then there exists
κ1 > 0 such that

f̃ ′ ′(t) + κf̃ ′(t) ≤ −κ1

for all sufficiently large t. The integration yields the inequality

f̃ ′(t) + κf̃(t) ≤ κ2 − κ1t,

leading to an obvious contradiction: a function cannot be bounded while its
derivative converges to −∞. ��

Proposition 4.8.8 completes the proof of Theorem 4.8.1. It provides the
information that the suspicious point z = 0 belongs to the interval where the
function ψ, given by the explicit formula, is smooth. Thus, ψ is C1.
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4.8.4 Skorohod Problem

In the classical Merton problem there are no difficulties to construct the opti-
mal pair: the optimal wealth process is a solution of a simple linear stochastic
equation, the optimal control is a linear function of the solution, and the same
linear equation describes the optimal dynamics. In the model with transac-
tion costs the situation is much more complicated. The optimal pair (i.e., the
portfolio process and the control) is a solution of the stochastic Skorokhod
problem (called also a stochastic differential equation with reflection). More-
over, the needed particular case of this problem has rather unpleasant features:
the domain is a sector (so the boundary is not smooth), reflection is oblique,
and the explicit form of the drift coefficient is not available. Since differential
equations with reflections are rarely treated in the monographic literature, we
provide in the Appendix a brief introduction with an elementary result which
well serves our purpose here. In this subsection we use this result to check the
existence and uniqueness of the optimal pair in the considered optimal control
problem.

We have established that the solvency cone K can be decomposed into
the union of three convex cones Ki (sectors, in fact) with disjoint nonempty
interiors. The sectors Ki, i = 1, 2, share their “external” boundaries R+gi

with the solvency cone K, while the “internal” boundaries form the boundaries
of K0. The function W 1/γ is linear in K1 and K2. Moreover, the axis of abscises
is in the interior of K1. The Bellman function W is C1 in int K.

Let g : ∂K0 → R2 be a vector-valued function with g(x) = −gi on the set
(∂K0 ∩ ∂Ki) \ {0} and g(0) = 0. We consider on K0 the Skorokhod problem
formulated as follows: find a pair of adapted continuous processes, V , starting
from x ∈ K0, evolving in K0, and trapped at zero, and k, scalar, starting at
zero, and increasing, such that

dV 1
t = −

(
Wξ(Vt)

)1/(γ−1)
dt + g1(Vt) dkt, (4.8.24)

dV 2
t = V 1

t (μdt + σ dwt) + g2(Vt) dkt, (4.8.25)

and
dkt = I{Vt ∈∂K0} dkt. (4.8.26)

Proposition 4.8.10 The Skorokhod problem has a solution.

Proof. Let W̃ be the Bellman function of our optimal control problem but
with the utility function uγ = uγ/γ. Let us introduce the polygons

Kn
0 := K0 ∩

{
n−2/γ ≤ x1 + x2 ≤ n2/γ

}

and ice-cream-shaped closed regions K̃n
0 having smooth boundaries and such

that Kn
0 ⊆ K̃n

0 ⊆ Kn+1
0 . We define on the boundary ∂K̃n

0 a smooth non-
tangent reflection vector field coinciding on the lateral parts of the boundary
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with g(x). According to Theorem 5.6.3 the Skorokhod problem in each region
K̃n

0 admits a unique solution (V n, kn). Let

τn := inf
{
t :

∣
∣V n

t

∣
∣
1

= n−2/γ
}
, τ := lim τn,

ρn := inf
{
t :

∣
∣V n

t

∣
∣
1

= n2/γ
}
, ρ := lim ρn.

The uniqueness of solutions allows us to assert the existence of a pair of
processes (V, k) defined on the time interval [0, τ ∧ ρ[ and such that (V, k)
coincides with (V n, kn) on [0, τn ∧ ρn]. From the homotheticity property it
follows that the Bellman function admits the upper bound of the form

W (x) ≤ κ̄|x|γ1 , x ∈ K,

and the lower bound
W (x) ≥ κ|x|γ1 , x ∈ K0.

Omitting in the dynamic programming inequality (4.5.4) the integral term
and using afterwards the above lower bound, we obtain that

W (x) ≥ Ee−β(τn ∧ρn ∧t)W (Vτn ∧ρn ∧t) ≥ κe−tE|Vτn ∧ρn ∧t|γ1 , x ∈ K0.

Since

E|Vτn ∧ρn ∧t|γ1 ≥ EIρn<τn ∧t|Vτn ∧ρn ∧t|γ1 ≥ n2P (ρn < τn ∧ t),

this implies that
∑

n P (ρn < τn ∧ t) < ∞. By virtue of the Borel–Cantelli
lemma, ρn ≥ τn ∧ t for sufficiently large n on the set of full measure. Thus,
ρ ≥ τ ∧ t, and, because t is arbitrary, ρ ≥ τ .

So, we know that the processes V and k are defined on the stochastic
interval [0, τ [ and limn Vτn = 0.

One can show that limt↑τ Vτn = 0 (a.s.). In other words, the process V is
absorbed at the origin. ��

4.8.5 Optimal Strategy

Now we formulate the Davis–Norman theorem on the structure of the optimal
solution.

Theorem 4.8.11 Suppose that the initial endowment x ∈ K0. Then the
process V participating in the solution of the Skorokhod problem (4.8.24)–
(4.8.26) defines the dynamics of the optimal portfolio, and the optimal strategy
is given by the formulae

Bt =
∫ t

0

g(Vs) dks, (4.8.27)

ct =
(
Wξ(Vt)

)1/(γ−1)
. (4.8.28)
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Proof. We follow the same line of arguments as in the proof of the Merton
theorem. Applying the Itô formula and taking into account that giW

′(x) = 0
for x ∈ ∂K0, we obtain that

e−βtW (Vt) + Jπ
t = W (x) + σ

∫ t

0

V 2
t Wη(Vt) dwt. (4.8.29)

The integrals with respect to dt and dk disappeared. To obtain the result, it
remains to check that the stochastic integral above is a martingale (hence, its
expectation is zero) and verify that, for a certain sequence of real numbers
tn ↑ ∞,

lim
n→∞

e−βtnEW (Vtn) = 0. (4.8.30)

Due to the homotheticity property of the derivative of the Bellman function
following from Lemma 4.7.5, we have the inequality |W ′(y)| ≤ κ|y|γ−1, where
κ is the bound for the derivative of W on the intersection of the set K0 with
the line ξ + η = 1. Thus,

∣
∣ηWη(y)

∣
∣ ≤ κ|y|γ ≤ κ

(
1 + |y|

)
, y ∈ K0,

and the absolute value of the integrand is dominated by a linear function of
the phase variable. Using the exponential bound of Proposition 4.2.1, we infer
that the stochastic integral in (4.8.29) is a martingale.

To accomplish the proof, we need the inequality

Wξ(y) ≥ κ|y|γ−1, y ∈ K0,

also implied by the homotheticity. Here the constant κ > 0 is the minimum
of the partial derivative Wξ on the intersection of the set K0 with the line
ξ + η = 1. It is strictly positive: the derivative of the Bellman function W
in the direction g1 is positive, the derivative in the radial direction is strictly
positive, and the vector e1 lies between these two directions.

Using these observations, we have the following chain of inequalities with
a varying constant:

E

∫ ∞

0

e−βtW (Vt) dt ≤ κE

∫ ∞

0

e−βt|Vt|γ dt ≤ κE

∫ ∞

0

e−βtu(ct) dt ≤ W (x).

Since W is finite, this obviously implies the existence of a sequence tn ↑ ∞
for which (4.8.30) holds. ��

Remark. The case where x ∈ Ki is easily reduced to the one treated in the
theorem. It is sufficient to modify the process B by adding the initial jump

ΔB0 = inf{s ≥ 0 : x − sgi ∈ K0}, x ∈ Ki, i = 1, 2. (4.8.31)

The function W on the set Ki is constant along the direction gi for i = 1, 2.
Thus, such a modification gives a strategy resulting in the value W (x + Δ0)
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coinciding with W (x). Notice that in intK1 (resp., in int K2) the changes of
the initial endowment means the buying of stock (resp. the selling of stock),
while in intK0 there are no transactions. This explains the abbreviations BS,
SS, and NT used in the literature for the corresponding regions.

Using the structure of optimal control, we improve a bit Proposition 4.3.5,
which gives us an upper bound for the Bellman function in the case where the
solution of the classical Merton problem is finite. It happens that, “usually,”
in the model with transaction costs the bound is strict, and this fact plays an
important role to locate more precisely the boundaries of the no-transaction
cone K0 (see the next subsection). The precise statement is as follows.

Proposition 4.8.12 Suppose that κM > 0. Let p = (p1, p2) ∈ K∗ and p1 = 1.
If (1 − γ)σ2 �= μ, then

W (x) < mu(px) =
1
γ

κγ−1
M (px)γ ∀x ∈ int K. (4.8.32)

If (1 − γ)σ2 = μ, then e2 ∈ K0.

Proof. Proposition 4.3.5 says that the function ϕ(x) = mu(px) is a superso-
lution of the HJB equation, and, therefore,

L0ϕ + u∗(ϕξ) = − γ

2(1 − γ)σ2

[
(1 − γ)σ2p2η

ξ + p2η
− μ

]2

φ(x) ≤ 0.

The equality holds if and only if

μξ −
[
(1 − γ)σ2 − μ

]
p2η = 0. (4.8.33)

Let us plug-in the optimal process V = (V 1, V 2) (corresponding to the
strategy given by (4.8.27) and (4.8.28), eventually with an initial transfer)
into the function ϕ. Applying the Itô formula, we get

e−βtϕ(Vt) = ϕ(V0) +
∫

]0,t]

e−βsϕη(Vs)σV 2
s dws +

∫

]0,t]

e−βsϕ′(Vs)g(Vs) dks

+
∫

]0,t]

e−βs
[

L0ϕ(Vs) − csϕξ(Vs) + u(cs)
]
ds −

∫

]0,t]

e−βsu(cs) ds

≤ ϕ(x) +
∫

]0,t]

e−βsϕη(Vs)σV 2
s dws

+
∫

]0,t]

e−βs
[

L0ϕ(Vs) + u∗(
ϕξ(Vs)

)]
ds −

∫

]0,t]

e−βsu(cs) ds.

The above bound holds because ϕ(V0) ≤ ϕ(x) due to losses which occur at
the initial transfer, giϕ

′(x) ≤ 0 for x ∈ ∂K0, and

−csϕξ(Vs) + u(cs) ≤ u∗(
ϕξ(Vs)

)
.
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By the same arguments as in the previous proof, we infer that the expectation
of the stochastic integral is zero and Ee−βtϕ(Vt) → 0 as t → ∞. It follows
that

W (x) ≤ ϕ(x) + E

∫

]0,t]

e−βs
[

L0ϕ(Vs) + u∗(
ϕξ(Vs)

)]
ds ≤ ϕ(x).

In the case (1 − γ)σ2 �= μ, the second inequality is always strict: otherwise the
integrant is a negligible process, i.e., according to (4.8.33), we would have

μV 1 −
[
(1 − γ)σ2 − μ

]
p2V

2 = 0.

This identity is impossible because the left-side is a semimartingale with non-
trivial diffusion component.

If (1 − γ)σ2 = μ, we have, necessarily, that V 1
t = 0 for all t > 0. Thus,

the process V after the initial jump evolves along the axis of ordinates, and
therefore e2 ∈ K0. ��

4.8.6 Precisions on the No-Transaction Region

We established already that the no-transaction region K0 = cone{g̃1, g̃2} has
a nonempty interior and lies strictly above the axis of abscises. Now we give
some bounds on the position of the generator g̃2.

The following simple lemma ensures us that, whatever is λ > 0, the in-
terval [z1, z2] (depending on λ) lies inside the fixed interval, namely, [0, 2θ+1],
θ = β/(1 − γ). We shall need this fact for the asymptotic analysis
as λ → 0.

Lemma 4.8.13 We have

0 < z2 ≤ 1 +
2θ

1 + λ + 2θλ
. (4.8.34)

Proof. The first inequality holds because z2 > z1 > 0. According to Propo-
sition 4.8.2, we have the inclusion K2 ⊆ cone{g2, Ng2 + e2}, where the con-
stant N = 2θ(1 + λ)−1. The ray generated by Ng2 + e2 intersects the line
{(ξ, η) : ξ + η = 1} at the point (1 − z, z), where

z = 1 +
N

1 + Nλ
= 1 +

2θ

1 + λ + 2θλ
.

Since the point (1 − z2, z2) is the intersection of the boundary ray separating
K2 and K0 with the aforementioned line, we have from obvious geometric
considerations that z2 ≤ z, which is exactly the second inequality. ��

With minor efforts, we can get a more precise information about the po-
sitions of z2 and z1.
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Recall that, according to Corollary 4.8.3, on the cones Ki, i = 1, 2, the
Bellman function W has the form W (x) = ai(pix)γ , where

a1 ≥ κγ−1
∗ , a2 ≥ κγ−1

∗
1

(1 + λ)γ
,

with κ∗ = β/(1 − γ). Now we are able to say a bit more: the inequality for a2

is strict! Indeed, suppose that we have the equality for a2. In virtue of (4.7.7),
for such a value of a2, the function W (x) in the upper half-plane dominates
the function a2(p2x)γ . But we know that the latter dominates W (x) on the
whole cone K and coincides with W (x) exactly on the cone K2. Combining
these facts, we get that K2 ⊇ K ∩ {x = (ξ, η) : η ≥ 0}, which is impossible.

Now we give sharper bounds for zi.

Proposition 4.8.14 (a) We always have the inequality

z2 <
μ(1 + λ)

1
2 (1 − γ)σ2 + μλ

. (4.8.35)

(b) If κM > 0 and θ �= 1 (i.e., (1 − γ)σ2 �= μ), then

z2 >
μ(1 + λ)

(1 − γ)σ2 + μλ
. (4.8.36)

(c) If κM > 0 and θ = 1, then z2 = 1.
(d) If κM > 0 and (1 − γ)σ2 > λμ, then

z1 <
μλ

(1 − γ)σ2(1 + λ) − μλ
. (4.8.37)

Proof. (a) Let us consider the function ψ(x) = a2u(p2x), which is the solution
of the HJB equation in K2. Since a2 > κγ−1

∗ (1 + λ)−γ , we have, for every
x ∈ int K, the strict inequality u∗(ψξ(x)) − βψ(x) < 0 and, therefore, the
bound

L0ψ(x) + u∗(
ψξ(x)

)
< a2(p2x)γ−2η

[
1
2
σ2(γ − 1)η + μ(p2x)

]
.

The expression in the square bracket is less or equal to zero when the point x =
(1−z, z) ∈ K and z dominates the right-hand side of (4.8.35). This observation
makes the bound (4.8.35) obvious.

(b) Let us examine the right-hand side of the identity

L0ψ(x) + u∗(
ψξ(x)

)

= − γ

2(1 − γ)σ2

[
(1 − γ)σ2η

(1 + λ)ξ + η
− μ

]2

ψ(x)

+
(

1
2

γ

1 − γ

μ2

σ2
− β + (1 − γ)a1/(γ−1)

2 (1 + λ)
γ

γ−1

)
ψ(x).
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In virtue of Proposition 4.8.12, under the assumed hypotheses, the coefficient
(. . .) is strictly positive. Thus, the function given by the expression [. . .] cannot
vanish at points of the set intK2 where the function ψ is the solution of the
HJB equation. It has the positive sign on this set (its values tend to +∞ as
x = (ξ, η) approaches a point of the outer boundary of K2 other than zero).
Moreover, the continuity considerations imply that [. . .] is strictly positive
also on the inner boundary (of course, except the origin), in particular, at the
point (1 − z2, z2). This last property is equivalent to inequality (4.8.36).

(c) In this case the Proposition 4.8.5 says that the coefficient (. . .) = 0 and
z2 ≤ 1. On the other hand, according to Proposition 4.8.12, z2 ≤ 1.

(d) If (1 − γ)σ2 = μ, inequality (4.8.37) is reduced to z1 < 1. However,
we already know that z1 < z2 always and z2 = 1 in the considered case as we
just proved. Suppose that (1 − γ)σ2 �= μ. For ϕ(x) = a1u(p1(x)), we have the
identity

L0ψ(x) + u∗(
ψξ(x)

)
= − γ

2(1 − γ)σ2

[
(1 − γ)σ2(1 + λ)η

ξ + (1 + λ)η
− μ

]2

ϕ(x)

+
(

1
2

γ

1 − γ

μ2

σ2
− β + (1 − γ)a

1
γ−1
1

)
ϕ(x).

Proposition 4.8.12 provides us the information that the second term is strictly
positive on intK1, and we derive the required inequality (4.8.37) by the same
arguments as in (a). ��

4.9 Liquidity Premium

4.9.1 Non-Robustness with Respect to Transaction Costs

According to Theorem 4.1.1, in the Merton two-asset model of frictionless
financial market, the optimal expected utility of the unit wealth invested in a
portfolio is given by the formula

m = WM (1) = κγ−1
M /γ,

where

κM :=
1

1 − γ

(
β − 1

2
γ

1 − γ

μ2

σ2

)
; (4.9.1)

it is assumed that the model parameters are such that κM > 0. The optimal
strategy prescribes to rebalance continuously the portfolio to keep the pro-
portion of stock to the total value at the constant level θ = (1 − γ)−1μ/σ2,
called in the literature the Merton proportion.

It is natural to expect that in the market with friction, even following
an appropriate optimal strategy, the investor cannot achieve the above per-
formance. It would be interesting to know to which extent the presence of
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transaction costs deteriorate the portfolio performance. Unfortunately, the
solution of the Davis–Norman problem does not admit such an explicit ex-
pression, and the comparison between two results seems to be complicated.
It can be done asymptotically for small transaction costs. Assume that the
initial endowment of the investor is in θ units of stock and 1 − θ units on
money, where θ is the Merton proportion. The next theorem due to Shreve
asserts that the discrepancy between the two optimal values, in general, is of
(exact) order λ2/3 as the transaction cost coefficient λ tends to zero. Thus,
the model is not robust in the sense that the discrepancy increases infinitely
fast when the transaction costs appear. The only exception is the case θ = 1,
where the portfolio has zero position in money, and the stock is sold only
to consume. This case will be considered separately at the end of the sec-
tion.

In our presentation, in order to have simpler formulae, we assume that
both operations, buying stock and selling stock, are charged equally.

Theorem 4.9.1 Suppose that θ �= 1. Then there are constants κ1, κ2 > 0,
independent of λ, such that

m − κ2λ
2/3 ≤ W (1 − θ, θ) ≤ m − κ1λ

2/3 (4.9.2)

for all sufficiently small λ > 0.

Proof. Recall that the function ψ(z) := W (1 − z, z) is concave, continuously
differentiable on the interval ]−1/λ, 1 + 1/λ[, and its second derivative may
have (jump) discontinuities only at two (distinct) points z1, z2. It satisfies,
in the classical sense, everywhere except at these two points, the HJB equa-
tion

max
{
�1ψ(z), �0ψ(z), �2ψ(z)

}
= 0 (4.9.3)

involving the first-order operators

�1ψ(z) = −λγψ(z) + (1 + λz)ψ′(z), �2ψ(z) = −λγψ − (1 + λ − λz)ψ′(z),

and the second-order operator

�0ψ(z) = f2(z)ψ′ ′(z) + f1(z)ψ′(z) + f0(z)ψ(z) +
1 − γ

γ

[
γψ(z) − zψ′(z)

] γ
γ−1

with the coefficients

f2(z) =
1
2
σ2z2(1 − z)2,

f1(z) = −σ2(1 − γ)z(1 − z)(z − θ),

f0(z) = − 1
2
σ2γ(1 − γ)(z − θ)2 − (1 − γ)(γm)

1
γ−1 .

The structure of ψ is as follows. Outside of the interval ]z1, z2[, the function
ψ1/γ coincides with two linear functions: on [−1/λ, z1] with a function pro-
portional to (1+λz), thus, vanishing at −1/λ; on [z2, 1+1/λ] with a function
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proportional to (1+λ − λz), thus, vanishing at 1+1/λ. On the interval ]z1, z2[
the function ψ is the classical solution of the second-order differential equation
�0ψ(z) = 0.

For a fixed λ, the graph of ψ is an arc-shaped curve, flattening and with
the increasing base as λ tends to zero. We may expect that the “interpolation”
interval degenerates into the single point θ and that the maximal value of ψ
converges to m.

Having in mind this behavior, we approximate ψ from above and be-
low by C1-functions ψ̃ having a similar shape. We interpolate their “linear
in the power γ” parts by parabolas and choose, for these functions, the
interpolation intervals ]z̃1, z̃2[ containing θ and being of the length of or-
der λ1/3.

Namely, for r > 0, we put

Q(z) := m − rλ2/3 − (z − θ)2λ2/3,

z̃1 := θ − δ1λ
1/3, and z̃2 := θ + δ2λ

1/3, where the bounded strictly positive
coefficients δi = δi(λ; r) will be chosen to guarantee the continuity of the
first derivatives of the function ψ̃(z) = ψ̃(z, λ; r). The latter is defined (for
sufficiently small λ) by the formula

ψ̃(z) :=
Q(z̃1)

(1 + λz̃1)γ
(1 + λz)γI[−1/λ,z̃1[(z) + Q(z)I[z̃1,z̃2](z)

+
Q(z̃2)

(1 + λ − λz̃2)γ
(1 + λ − λz)γI]z̃2,1+1/λ](z). (4.9.4)

Its first derivative:

ψ̃′(z) =

⎧
⎪⎪⎨

⎪⎪⎩

γλ
1+λz ψ̃(z), z ∈ ]−1/λ, z̃1[,

−2λ2/3(z − θ), z ∈ ]z̃1, z̃2[,

− γλ
1+λ−λz ψ̃(z), z ∈ ]z̃2, 1 + 1/λ[.

Its second derivative:

ψ̃′ ′(z) =

⎧
⎪⎪⎨

⎪⎪⎩

− γ(1−γ)λ2

(1+λz)2 ψ̃(z), z ∈ ]−1/λ, z̃1[,

−2λ2/3, z ∈ ]z̃1, z̃2[,

− γ(1−γ)λ2

(1+λ−λz)2 ψ̃(z), z ∈ ]z̃2, 1 + 1/λ[.

The second derivative is constant over the central interval. It is continu-
ous on the external intervals, and its limits at the points z̃i coincide with the
corresponding one-sided derivatives.

The result will be established if we find, independently on λ, two val-
ues of the parameter r > 0 such that the corresponding δi(λ) belongs to a
bounded interval, ψ̃(z, λ; r) is a supersolution of the HJB equation for the
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smaller value (say, r1) and a subsolution for the larger value (say, r2) what-
ever are λ ≤ λ0; the threshold λ0 may depend on ri. Indeed, in virtue of the
comparison lemma given after the proof of the theorem, the function ψ will
lie between these two functions, and the corresponding inequalities for the
values calculated at the point θ yield (4.9.2). Note that the supersolution and
the subsolution are understood in an “almost” classical sense: the correspond-
ing inequalities for maxi �ψ̃(z) should hold everywhere except, maybe, at the
points z̃i.

We have

ψ̃(z̃i) = m − rλ2/3 − δ2
i λ4/3, i = 1, 2,

D+ψ̃(z1) = 2δ1λ, D−ψ̃(z2) = −2δ2,

D−ψ̃(z1) =
γλ

1 + λz̃1
Q(z̃1), D+ψ̃(z2) = − γλ

1 + λ − λz̃2
Q(z̃2).

The requirement that ψ̃ is continuously differentiable means that the right
and left derivatives of ψ̃ at each point z̃i coincide. It is met when δi are the
(positive) roots of the corresponding quadratic equations

Ai(λ)δ2 − Bi(λ)δ + Ci(λ) = 0.

Their coefficients are as follows:

A1(λ) = (2 − γ)λ4/3, B1(λ) = 2(1 + λθ), C1(λ) = γ
[
m − rλ2/3

]
;

A2(λ) = (2 + γ)λ4/3, B2(λ) = 2(1 + λ − λθ), C2(λ) = C1(λ).

Note that, for λ close to zero, the left-hand sides of these equations are pos-
itive for δ = Bi(λ)/Ci(λ) and negative for δ = 2Bi(λ)/Ci(λ) . Thus, we can
find roots δi(λ) in this interval. Asymptotically,

δi(λ) ∈
[
2/(γm), 4/(γm) + o(1)

]
, (4.9.5)

and, therefore, δi(λ) ∈ [2/(γm), 5/(γm)] for λ less than a certain λ0 depend-
ing on r.

Let us check that, for “r small” (respectively, “r large”), the function ψ̃ is
a supersolution (respectively, subsolution) of the HJB equation (4.9.3).

In principle, we have to verify 18 inequalities. Luckily, most of them are
trivial or easy. We organize our analysis in three parts.

1. The interval ]−1/λ, z̃1[.

We have here �1ψ̃ = 0, and, hence, the subsolution inequality ≥ 0 is obvi-
ous. Moreover, since ψ̃ and ψ̃′ are both positive, the inequality �2ψ̃ ≤ 0 always
holds. To check the supersolution inequality ≤ 0, it remains to verify, on the
considered interval, that �0ψ̃ ≤ 0.
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Note that the function ψ̃(z) on the considered interval is proportional to
(1 + λz)γ , and, therefore,

γψ̃(z) − zψ̃′(z) = γ
1

1 + λz
ψ̃(z) = const × (1 + λz)γ−1.

Since u∗(p) = (1 − γ)/γpγ/(γ−1), the nonlinear term is proportional to ψ̃,
i.e.,

u∗(
γψ̃(z) − zψ̃′(z)

)
= κλψ̃(z).

Since ψ̃(z̃1) = Q(z̃1), we can determine the constant κλ. Namely,

κλ = (1 + λz̃1)
γ

1−γ (1 − γ)γ
1

γ−1
[
Q(z̃1)

] 1
γ−1 .

Our definitions imply that z̃1 = θ + o(1), Q(z̃1) = m − rλ2/3 + o(λ2/3). The
derivative Q′(1) = 1, and, hence, κλ has the following asymptotic expan-
sion:

κλ = (1 − γ)(γm)
1

γ−1

(
1 +

1
1 − γ

r

m
λ2/3

)
+ o

(
λ2/3

)
.

Inspecting the function �0ψ̃, we see that the term f2(z)ψ̃′ ′(z) is always neg-
ative. If z ≤ 0, the coefficient f1 is negative, and so is f1(z)ψ̃′(z). Omitting
these two terms and taking into account that, for z ∈ ]−1/λ, z̃1[,

f0(z) = − 1
2
σ2γ(1 − γ)(z − θ)2 − (1 − γ)(γm)

1
γ−1

≤ − 1
2
σ2γ(1 − γ)δ2

1λ2/3 − (1 − γ)(γm)
1

γ−1 ,

we arrive, on the interval ]−1/λ, 0], at the bound

�0ψ̃(z)
ψ̃(z)

≤ f0(z) + κλ ≤ 1
2
σ2γ(1 − γ)

(
κr − 1

(γm)2

)
λ2/3 + o

(
λ2/3

)
,

which holds for all λ ≤ λ0 (the threshold is chosen to insure that there ex-
ists a positive root δ1 ≥ 1/(γm)). Here the constant κ > 0, and, hence, for
“small” r, the coefficient of the main term is strictly negative.

On the interval ]0, z̃1[ we cannot omit the term with the first derivative,
but this does not affect the resulting asymptotic expansion: on this interval,
f1(z) is bounded, and

f1(z)
ψ̃′(z)
ψ̃(z)

= f1(z)
γλ

1 + λz
= o(λ)

uniformly in z.

2. The interval ]z̃2, 1 + 1/λ[.

The reasoning is completely analogous to the one given above.
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3. The interval ]z̃1, z̃2[.

Here the function

�1ψ̃(z) = �1Q(z) = −λγQ(z) + (1 + λz)Q′(z)

is quadratic in z, and its coefficients at z2 and z are, respectively, λ5/3(γ − 2)
and 2λ5/3(−γθ + θ − 1/λ). The point

zmax(λ) :=
θ(1 − γ) − 1/λ

2 − γ
,

where �1Q(z) attains its maximum, tends to −∞ as λ → 0 and, hence, lies
leftwards to the interval [z̃1, z2] for sufficiently small λ. But this means that,
on this interval, �1ψ̃ decreases, i.e., �1ψ̃(z) ≤ �1ψ̃(z̃1) = 0.

Exactly by the same arguments we check that �2ψ̃(z) ≤ 0.
Summarizing: in the central interval, the super- or subsolution property

for ψ̃ is equivalent, respectively, to the inequality �0ψ̃ ≤ 0 or �0ψ̃ ≥ 0.
On the considered interval (degenerating in the limit to the point θ) we

have that Q(z) = m − rλ2/3 + o(λ2/3), Q′(z) = o(λ2/3) uniformly in z and
Q′ ′ = −2λ2/3. With this, we get readily that

�0ψ̃(z) = −σ2θ(1 − θ)λ2/3 + r
1
2
σ2γ(1 − γ)(z − θ)2 + rκλ2/3 + o

(
λ2/3

)

with some constant κ > 0. Since (z − θ)2 ≤ 5(γm)λ2/3, this representation
makes clear that in the case θ �= 1 we can choose a small value r such that
�0ψ̃ ≤ 0 for sufficiently small λ. The opposite inequality for large values of r
holds obviously for any θ. ��

Remark. The condition θ �= 1 is needed only at the very end of the proof.
Moreover, the subsolution property of the approximation is not violated even
in the exceptional case, and, therefore, due to the comparison lemma below,
the left inequality in (4.9.2) remains valid. In contrast to this, for θ = 1,
the right inequality fails because, as we show later, in this case the difference
ψ(θ) − m converges to zero with rate λ.

Now we are back to the comparison lemma. It is extremely simple for the
C1-functions which are twice continuously differentiable everywhere except
a finite number of points where the limits of the second derivatives exist
and coincide with the one-sided second derivatives. A subtlety is that one
of the functions to be compared is ψ, which is simultaneously a super- and
subsolution, but for which we cannot guarantee the mentioned behavior of
the second derivatives at the point z = 1 (in the case z2 = 1). However,
(zn − 1)2ψ′ ′(zn) → 0 for certain sequences zn ↑ 0 and zn ↓ 0. But this implies
that the super- and subsolution inequalities hold also at the point z = 1 with
the degenerate operator �0 defined by

�0ψ(1) = f0(1)ψ(1) + u∗(
γψ(1) − λψ′(1)

)
.
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In the formulation below we suppose that ψ1 and ψ2 possess this property of
the second derivative at z = 1.

Lemma 4.9.2 Let ψ1 be a supersolution, and ψ2 be a subsolution with the
same boundary condition. Then ψ1 ≥ ψ2.

Proof. Let us consider a point z0 where the difference ψ2 − ψ1 attains its
maximum. If the claim fails, then ψ2(z0) > ψ1(z0). Since ψ′

2(z0) = ψ′
1(z0) and

ψ1 is a supersolution, liψ2(z0) < liψ1(z0) ≤ 0 for i = 1, 2. Suppose first that
at z0 the second derivatives are continuous. Then ψ′ ′

2 (z0) ≤ ψ′ ′
1 (z0). Taking

into account the signs of the coefficients f2(z0) and f0(z0) and using the fact
that u∗ is decreasing, we infer that l0ψ2(z0) < l0ψ1(z0) ≤ 0. Thus, all liψ2(z0)
are strictly less than zero, in contradiction with the subsolution property. The
general case z0 �= 1 is not much different: the one-sided second derivatives of
ψ2 − ψ1 are negative at z0, and we obtain, as before, that l0ψ2(z0+) < 0. This
means that the subsolution property of ψ2 is violated in a neighborhood of z0.
At last, if z0 = 1, we arrive at a violation of the subsolution property at this
point due to the remark preceding the lemma. ��

4.9.2 First-Order Asymptotic Expansion

A more elaborated analysis based on the same kind of approximation, but
with the interpolating polynomials of the fourth order of the form

Q(z) := m − r2λ
2/3 − r3λ − r4λ

4/3

− ρ1(z − θ)λ − ρ2(z − θ)2λ2/3 + ρ3(z − θ)2λ1/3 − ρ4(z − θ)4,

allows us to establish for the discrepancy the exact asymptotics of order λ2/3

with an explicit expression for the constant.

Theorem 4.9.3 Suppose that θ �= 1. Then

W (1 − θ, θ) − m = r2λ
2/3 + o

(
λ2/3

)
, (4.9.6)

where

r2 =
(

9
32

(1 − γ)θ4(1 − θ)4
)1/3

(γm)1+
1

1−γ σ2. (4.9.7)

Proof. The arguments require a bit patience, but for the reader accustomed
already with the structure of coefficients and notations, it is quite a routine.
The approximating functions are again given by formula (4.9.4) but with the
interpolating polynomial Q(z) of the fourth order with the maximum attained
at θ, namely, with

Q(z) := m − r2λ
2/3 − r3λ − ρ2(z − θ)2λ2/3 − ρ4(z − θ)4. (4.9.8)

Note that the first part is a series expansion in powers of λ1/3 with the coeffi-
cients ri, the second part, more involved, is an expansion in increasing powers
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of z − θ with the coefficients ρi multiplied by decreasing powers of λ1/3. The
coefficients r1, r4, and ρ1, ρ3 are already taken zero. We show that a good
choice for other constants is the following:

ρ2 :=
1

σ2θ2(1 − θ)2
(γm)

1
γ−1 r2, (4.9.9)

ρ4 := − 1
12

γ(1 − γ)
θ2(1 − θ)2

m. (4.9.10)

The parameter r3 is “free”: it serves to produce sub- and supersolutions.
The extremities of the central interval will be

z̃1 = θ − νλ1/3 + O
(
λ2/3

)
, z̃2 = θ + νλ1/3 + O

(
λ2/3

)
, (4.9.11)

with the positive constant ν determined by the relation

1
2
σ2γ(1 − γ)ν2 = (γm)

1
γ−1 m−1r2. (4.9.12)

The parameters should be chosen to ensure that ψ̃ ∈ C1.
Our analysis will go in the inverse direction to that in the proof of the

previous theorem. Though we have already listed the explicit values of the
constants, we shall see in a clear and successive way how they appear to
eliminate terms of lower orders.

The derivatives of ψ̃ are given by the formulae

ψ̃′(z) =

⎧
⎪⎪⎨

⎪⎪⎩

γλ
1+λz ψ̃(z), z ∈ ]−1/λ, z̃1[,

−2[ρ2(z − θ)λ2/3 + 2ρ4(z − θ)3], z ∈ ]z̃1, z̃2[,

− γλ
1+λ−λz ψ̃(z), z ∈ ]z̃2, 1 + 1/λ[,

ψ̃′ ′(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− γ(1−γ)λ2

(1+λz)2 ψ̃(z), z ∈ ]−1/λ, z̃1[,

−2[ρ2λ
2/3 + 6ρ4(z − θ)2], z ∈ ]z̃1, z̃2[,

− γ(1−γ)λ2

(1+λ−λz)2 ψ̃(z), z ∈ ]z̃2, 1 + 1/λ[.

First, we consider the approximations on the interpolation interval [z̃1, z̃2]
and relate constants in such a way that the sign of the inequality for �0ψ̃ will
be determined by the sign of the coefficient at λ.

Using the symbol ≈ to denote equalities which hold up to O(λ4/3) (uni-
formly in z) and replacing by the symbol . . . the coefficients for which explicit
expressions are of no importance, we represent the asymptotic expansions for
the linear terms of the operator in the following transparent form:

f2(z)ψ̃′ ′(z) ≈ −σ2
[
θ2(1 − θ)2 + . . . (z − θ)

][
ρ2λ

2/3 + 6ρ4(z − θ)2
]
,

f1(z)ψ̃′(z) ≈ 0,

f0(z)ψ̃(z) ≈ − 1
2
σ2γ(1 − γ)(z − θ)2m − (1 − γ)(γm)

1
γ−1

(
m − r2λ

2/3 − r3λ
)
.
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Since
γψ̃(z) − zψ̃′(z) ≈ γ

(
m − r2λ

2/3 − r3λ
)

+ . . . (z − θ)λ2/3,

the nonlinear term admits the expansion

u∗(
γψ̃(z) − zψ̃′(z)

)

≈ 1 − γ

γ
(γm)

γ
γ−1 + (γm)

1
γ−1

(
γr2λ

2/3 + γr3λ + . . . (z − θ)λ2/3
)
.

Summing up, we obtain the approximation

�0ψ̃(z) ≈ . . . (z − θ)λ2/3 + . . . (z − θ)3 + r3γ(γm)
1

γ−1 λ;

the coefficients at λ2/3 and (z − θ)2 are zero because of our choice of ρ2 and ρ4,
see relations (4.9.9) and (4.9.10).

On the considered interval the width of which is controlled by the para-
meter ν, the absolute value of the first two terms of the right-hand side is
dominated by κνλ + o(λ), where κν is a constant. This observation leads to
the following important conclusion: whatever is ν, one can always find r3 suf-
ficiently large in absolute value such that �0ψ̃ ≥ 0 or �0ψ̃ ≤ 0 in dependence
of whether r3 is positive or negative (of course, for λ ≤ λ0). Automatically,
r3 takes the control over the sign of maxi �iψ̃ because the functions �1ψ̃ and
�2ψ̃ on the central interval are negative for small λ. The latter property follows
easily from the asymptotic expansions. Indeed,

�1ψ̃(z̃1) = −λγQ(z̃1) + (1 + λz̃1)Q′(z̃1) = −γm + λ + o(λ),

while, for the derivative, we have
[
�1ψ̃(z)

]′ = λ(1 − γ)Q′(z) + (1 + λz̃)Q′ ′(z) = −2ρ2λ
2/3 + o

(
λ2/3

)
.

Thus, the function �1ψ̃ is negative on [z̃1, z̃2], being negative at the left
extremity and decreasing on the whole interval. The arguments for �2ψ̃ are
exactly the same.

Let us examine now the situation on the interval ]−1/λ, z̃1[. As was ex-
plained in the previous proof, the only nontrivial part is to establish the
supersolution inequality �0ψ̃ ≤ 0, which we expect to hold for large negative
values of r3.

We have

�0ψ̃(z)
ψ̃(z)

= −f2(z)
γ(1 − γ)λ2

(1 + λz)2
+ f1(z)

γλ

1 + λz
+ f0(z) + κλ, (4.9.13)

where the coefficient

κλ = (1 + λz̃1)
γ

1−γ (1 − γ)γ
1

γ−1
[
Q(z̃1)

] 1
γ−1

≈ (1 − γ)(γm)
1

γ−1

[
1 +

1
1 − γ

m−1r2λ
2/3 +

(
1

1 − γ
m−1r3 − γ

1 − γ
ν

)
λ

]
.
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Outside the interpolation interval we have the inequality

f0(z) ≤ − 1
2
σ2γ(1 − γ)

(
ν2λ2/3 − 2νηλ

)
− (1 − γ)(γm)

1
γ−1 + O

(
λ4/3

)
,

where η = |η1| ∨ |η2|.
The first term in the left-hand side of (4.9.13) is negative. On the subin-

terval ]−1/λ, 0] the second term is also negative, and, hence,

�0ψ̃(z)
ψ̃(z)

≤ f0(z) + κλ ≤
(
(γm)

1
γ−1 m−1r3 + κ

)
λ + o(λ)

because (4.9.12) is aimed to eliminate the coefficient at λ2/3 in the right-hand
side. The value of the constant κ is of no importance. On the subinterval
]0, z̃1[, where we can affirm only that

�0ψ̃(z)
ψ̃(z)

≤ f1(z)
γλ

1 + λz
+ f0(z) + κλ;

the structure of the resulting estimate remains the same since here the coef-
ficient f1(z) is bounded. With this, it is clear that �0ψ̃ ≤ 0 for large negative
values of the parameter r3 whatever is λ smaller than some threshold value.

The situation on the other external interval is exactly the same.
Until now we did not need any specific value of r2. It appears from the

conditions of the C1-fit at the points z̃i, which are as follows:

γλ

1 + λz̃1
Q(z̃1) + 2ρ2(z̃1 − θ)λ2/3 + 4ρ4(z̃1 − θ)3 = 0,

γλ

1 + λ − λz̃2
Q(z̃2) − 2ρ2(z̃2 − θ)λ2/3 − 4ρ4(z̃2 − θ)3 = 0.

Take formally z̃i = νλ1/3 + ηλ2/3 and consider the asymptotic expansions of
the left-hand sides of these relations (denoted by Fi(z̃i)) in powers of λ1/3.
Equating the coefficients at λ, we obtain the same relation for both identities:

γm − 2ρ2ν − 4ρ4ν
3 = 0.

In virtue of (4.9.9) and (4.9.12), the coefficient ρ2 is proportional to ν2, and,
therefore, this is a linear equation for ν3. Its solution is

ν3 =
3
2

θ2(1 − θ)2

1 − γ
.

Expressing r2 from (4.9.12), we arrive at formula (4.9.7) for the coefficient r2

in the formulation of the theorem.
Examine, e.g., the case i = 1. Clearly, the coefficient at λ4/3 is a (non-

degenerate) linear function of η1, which vanishes at some value η0
1 . Due to
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our choice of ν, this coefficient determines, for sufficiently small λ, the signs
of F1(νλ1/3 + (η0

1 + 1)λ1/3) and F1(νλ1/3 + (η0
1 − 1)λ1/3). Since they are op-

posite, the continuity implies that there is η1(ε) ∈ [η0
1 − 1, η0

1 + 1] such that
F1(νλ1/3 + η1(ε)λ1/3) = 0. Thus, we established the existence of the points z̃i

satisfying (4.9.11) and ensuring the smooth fit of the interpolation.
The proof is completed. ��

In the above reasoning we have proved a bit more than it was claimed
in the formulation of the theorem. Namely, we have shown that ψ lies be-
tween two arch-shaped functions ψ̃1 and ψ̃2 depending on the parameter λ
and converging to each other uniformly with rate λ. With this, we can easily
get the asymptotics of the extremities zi of the no-transaction interval. The
following theorem asserts that, asymptotically, the length of the latter is pro-
portional to λ1/3. The no-transaction region opens wider very quickly with
the introduction of transaction costs!

Theorem 4.9.4 Suppose that θ �= 1. Then

z1 = θ − νλ1/3 + O
(
λ2/3

)
, z2 = θ − νλ1/3 + O

(
λ2/3

)
. (4.9.14)

Proof. Recall that z1 > 0 and z2 is bounded from above, i.e., [z1, z2] lies
in a certain fixed interval [ζ1, ζ2] containing θ and not depending on λ. The
derivative of the concave function ψ on this fixed interval decreases from
its maximal (positive) value at ζ1 to its minimal (negative) value at ζ2 The
interval [z̃1, z̃2] shrinks to θ. For sufficiently small λ, the functions ψ̃

1/γ
1 and

ψ̃
1/γ
2 on both intervals external to [ζ1, ζ2] are linear, as well as the function

ψ1/γ lying between them. Taking into account that the derivatives of ψ̃
1/γ
i at

ζ1 and ζ2 are of order λ, we conclude that

sup
z∈[ζ1,ζ2]

∣
∣ψ′(z)

∣
∣ = O(λ).

On the interval [ζ1, ζ2],

u∗(
γψ(z) − zψ′(z)

)
=

1 − γ

γ
(γm)

γ
γ−1 + (γm)

1
γ−1 γr2λ

2/3 + O(λ).

Clearly,

f0(zi)ψ(zi) = − 1
2
σ2γ(1 − γ)m(zi − θ)2 − (1 − γ)(γm)

1
γ−1

(
m − r2λ

2/3
)
+O(λ).

Recall that the equation �0ψ(zi) = 0 is always fulfilled under the conven-
tion that the term with the second derivative (may be not existing) is omitted
at zi = 1. In the case zi �= 1 the second derivative of ψ does exist. Since ψ is
given by explicit formulae to the left of z1 and to the right of z2, we get easily
that ψ′ ′(zi) = O(λ2). Thus, the terms with the second and first derivatives
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are negligible, and

�0ψ(zi) = f0(zi)ψ(zi) + u∗(
γψ(zi) − zψ′(zi)

)
+ O(λ)

= − 1
2
σ2γ(1 − γ)m(zi − θ)2 + (γm)

1
γ−1 r2λ

2/3 + O(λ).

Expressing r2 via ν from (4.9.12) and equating the left-hand side to zero, we
obtain that, necessarily,

(zi − θ)2 = ν2λ2/3 + O(λ) = ν2λ2/3
(
1 + O

(
λ1/3

))

and, therefore,
zi = θ ± νλ1/3 + O

(
λ2/3

)

with minus for z1 and plus for z2. ��

4.9.3 Exceptional Case: θ = 1

We consider now a very particular situation where θ = 1 and the arguments
of the previous subsection cannot be used.

However, according to Proposition 4.8.5, for this case we have in the cone
K ∩ {x = (ξ, η) : ξ ≤ 0} the explicit formula

W (x) = m
1

(1 + λ)γ
(p2x)γ ,

and, therefore,

ψ(θ) = ψ(1) = W (e2) = m
1

(1 + λ)γ
= m − mγλ + o(λ).

Moreover, z2 = 1. For z1, the arguments of the proof of the above theorem
can be repeated with r2 = 0 until the last step. Its appropriate modification
shows that z1 = 1 + O(λ1/2).
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