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Arbitrage Theory for Frictionless Markets

2.1 Models without Friction

2.1.1 DMW Theorem

The classical result by Dalang–Morton–Willinger, usually abbreviated as
DMW and sometimes referred to as the Fundamental Theory of Asset (or
Arbitrage) Pricing (FTAP) for the discrete finite-time model of a frictionless
financial market, says:

There is no arbitrage if and only if there is an equivalent martingale
measure.

This formulation is due to Harrison and Pliska, who established it for a
model with finite number of states of the nature, i.e., for finite Ω. Retrospec-
tively, one can insinuate that in this case it is mainly a “linguistic” exercise:
the result expressed in geometric language was known a long time ago as the
Stiemke lemma. This is, to large extent, true. However, a remarkable fact is
that, contrarily to its predecessors, exactly this formulation of a no-arbitrage
criterion, involving an important probability concept, a martingale measure,
opens a way to numerous generalizations of great theoretical and practical
value.

Loosely speaking, the result can be viewed as a partial converse to the
assertion that one cannot win (in finite time) by betting on a martingale: if
one cannot win betting on a process, the latter is a martingale with respect
to an equivalent martingale measure.

We start our presentation here with a detailed analysis of the Dalang–
Morton–Willinger theorem. The assertion in italics is, in fact, a grand public
formulation which hides a profound difference between these two results, and
the authors of advanced textbooks prefer to give a longer list of NA criteria.
We follow this tradition.

The model is given by a complete probability space (Ω, F , P ) with a
discrete-time filtration F = (Ft)t=0,1,...,T and an adapted d-dimensional price
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process S = (St) with the constant first component. It is convenient to assume
that F0 is trivial and FT = F .

The set of “results” RT (obtained from zero starting value) consists of the
terminal values of discrete-time integrals

H · ST :=
T∑

t=1

HtΔSt,

where ΔSt := St − St−1, and H runs over the linear space P of predictable
processes, i.e., Ht ∈ L0(Rd, Ft−1) (the first component of S plays no role here
because ΔS1

t = 0).
The common terminology: H is a (portfolio) strategy, while H · S is called

a value process. The larger set AT := RT − L0
+ can be interpreted as the set

of hedgeable claims; it is the set of random variables H · ST − h where the r.v.
h ≥ 0.

By definition, the NA property of the model means that RT ∩ L0
+ = {0}

(or, equivalently, AT ∩ L0
+ = {0}). We prefer to use from the very beginning

these mathematically convenient definitions in terms of intersections of certain
sets rather than a popular form like this: the property H · ST ≥ 0 implies that
H · ST = 0.

Theorem 2.1.1 The following properties are equivalent:

(a) AT ∩ L0
+ = {0} (NA condition);

(b) AT ∩ L0
+ = {0} and AT = ĀT (closure in L0);

(c) ĀT ∩ L0
+ = {0};

(d) there is a strictly positive process ρ ∈ M such that ρS ∈ M;
(e) there is a bounded strictly positive process ρ ∈ M such tat ρS ∈ M.

As usual, M is the space of martingales (if necessary, we shall also use a
more complicated notation showing the probability, time range, etc.).

Of course, the last two properties are usually formulated as:

(d′) there is a probability P̃ ∼ P such that S ∈ M(P̃ );
(e′) there is a probability P̃ ∼ P with dP̃ /dP ∈ L∞ such that S ∈ M(P̃ ).

However, the chosen versions have more direct analogs in the model with
transaction costs. Their equivalences are obvious due to the following elemen-
tary fact about martingales with respect to a probability measure P̃ � P
with density ρT :

S ∈ M(P̃ ) if and only if ρS ∈ M(P ) where ρt = E(ρT | Ft), t ≤ T .

Collecting conditions in the single theorem is useful because one can clearly
see that in numerous generalizations and ramifications certain properties re-
main equivalent (of course, appropriately modified), but others do not. Note
also that, in the case of finite Ω, the set AT is always closed. Indeed, it is
the arithmetic sum of a linear space and the polyhedral cone −L0

+ in the
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finite-dimensional linear space L0. Thus, it is a polyhedral cone. So, we have
no difference between the first three properties, while the last two coincide
trivially. The situation is completely different for arbitrary Ω. Though the
linear space RT is always closed (we show this later), the set AT may be not
closed even for T = 1 and a countable Ω. To see this, let F0 be trivial and take
F1 = σ{ξ} and ΔS1 = ξ, where ξ is a strictly positive finite random variable
such that P (ξ > ε) > 0 whatever is ε > 0. The set A1 = Rξ − L0

+ does not
contain any strictly positive constant, but each constant c > 0 belongs to its
closure Ā1 because (nξ) ∧ c → c as n → ∞.

To the already long list, one can add several other equivalent conditions:

(f) there is a strictly positive process ρ ∈ M such that ρS ∈ Mloc;
(f′) there is a probability P̃ ∼ P such that S ∈ Mloc(P̃ );
(g) {ηΔSt : η ∈ L0(Ft−1)} ∩ L0

+ = {0} for all t ≤ T (NA for one-step
models).

With other conditions already established, the above addendum poses no
problems. Indeed, (f ′) is obviously implied by (e′). On the other hand, if
S ∈ Mloc(P̃ ), then H̃ · S ∈ M(P̃ ) with H̃t := 1/(1 + Ẽ(|ΔSt‖Ft−1)). So,
we know that NA holds for the process H̃ · S; hence, it holds also for S
as both processes have the same set of hedgeable claims, i.e., (f ′) implies a
property from the “main” list of equivalent conditions. Suppose now that the
implication (g) ⇒ (a) fails. Take the smallest t ≤ T such that At ∩ L0

+ 
= {0}
(the set of such dates is nonempty: it contains, at least, T ). We have a strategy
H = (Hs)s≤T such that H · St ≥ 0 and P (H · St > 0) > 0. Due to the choice
of t, either the set Γ ′ := {H · St−1 < 0} is of strictly positive probability
(and (g) is violated by η := IΓ ′ Ht), or the set Γ ′ ′ := {H · St−1 = 0} is of full
measure (and (g) is violated by η := IΓ ′ ′ Ht), a contradiction.
Remark. The NA property for the class of all strategies, as defined above, is
equivalent to the NA property in the narrower class of bounded strategies H.
Indeed, if there is an arbitrage opportunity, then, in virtue of the condition (g),
there is an arbitrage opportunity η for a certain one-step model. Clearly, when
n is sufficiently large, ηI{ |η|≤n} will be an arbitrage opportunity for this one-
step model. Note that the presence of (g) in the list of equivalent conditions
is crucial in this reasoning.

Similarly, NA is equivalent to the absence of arbitrage in the class of so-
called admissible strategies for which the value processes are bounded from
below by constants (depending on the strategy). Moreover, if H is an arbitrage
opportunity generating the value process V = H · S, one can find another
arbitrage opportunity H̃ such that the value process H̃ · S ≥ 0. To see this,
we consider the sets Γt := {H · St < 0} and the last instant r for which the
probability of such a set is strictly positive; 0 < r < T since H is an arbitrage
opportunity. Let us check that the strategy H̃ := IΓrI]r,T ]H has the claimed
property. Indeed, the process Ṽ := H̃ · S is zero for all t ≤ r and remains
zero outside the set Γr until T . On the set Γr, the increments ΔṼt = ΔVt for



74 2 Arbitrage Theory for Frictionless Markets

t ≥ r + 1, and hence the trajectories of Ṽ are the trajectories of V shifted
upwards on the value −Vr > 0.

Before the proof of Theorem 2.1.1, we give in the following subsection
several elementary results which will be also useful in obtaining NA criteria
in models with transaction costs.

2.1.2 Auxiliary Results: Measurable Subsequences
and the Kreps–Yan Theorem

Lemma 2.1.2 Let ηn ∈ L0(Rd) be such that η := lim inf |ηn| < ∞. Then
there are η̃k ∈ L0(Rd) such that for all ω, the sequence of η̃k(ω) is a convergent
subsequence of the sequence of ηn(ω).

Proof. Define the random variables τk := inf{n > τk−1 : ‖ηn| − η| ≤ k−1}
starting with τ0 := 0. Then η̃k

0 := ητk is in L0(Rd), and supk |η̃k
0 | < ∞.

Working further with the sequence of η̃n
0 , we construct, applying the above

procedure to the first component and its lim inf, a sequence of η̃k
1 with con-

vergent first component and such that for all ω, the sequence of η̃k
1 (ω) is a

subsequence of the sequence of η̃n
0 (ω). Passing on each step to the newly cre-

ated sequence of random variables and to the next component, we arrive at a
sequence with the desired properties. ��

Remark. The claim can be formulated as follows: there exists a (strictly)
increasing sequence of integer-valued random variables σk such that ησk con-
verges a.s.

Lemma 2.1.3 Let G = {Γα} be a family of measurable sets such that any
nonnull set Γ has a nonnull intersection with an element of G. Then there
is an at most countable subfamily of sets {Γαi } the union of which is of full
measure.

Proof. Suppose that G is closed under countable unions. Then supα P (Γα)
is attained on some Γ̃ ∈ G. The subfamily consisting of a single Γ̃ gives
the answer. Indeed, P (Γ̃ ) = 1: otherwise we could enlarge the supremum
by adding a set from G having a nonnull intersection with Γ̃ c. The general
case follows by considering the family formed by countable unions of sets
from G. ��

The following result is referred to as the Kreps–Yan theorem. It holds for
arbitrary p ∈ [1, ∞], p−1 + q−1 = 1, but the cases p = 1 and p = ∞ are the
most important. Recall that for p 
= ∞, the norm closure of a convex set in
Lp coincides with the closure in σ{Lp, Lq }.

Theorem 2.1.4 Let C be a convex cone in Lp closed in σ{Lp, Lq }, containing
−Lp

+ and such that C ∩ Lp
+ = {0}. Then there is P̃ ∼ P with dP̃ /dP ∈ Lq

such that Ẽξ ≤ 0 for all ξ ∈ C.
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Proof. By the Hahn–Banach theorem any nonzero x ∈ Lp
+ := Lp(R+, F ) can

be separated from C: there is a zx ∈ Lq such that Ezxx > 0 and Ezxξ ≤ 0
for all ξ ∈ C. Since C ⊇ −Lp

+, the latter property yields that zx ≥ 0; we
may assume that ‖zx‖q = 1. Let us consider the family G := {zx > 0}. As
any nonnull set Γ has a nonnull intersection with the set {zx > 0}, x = IΓ ,
the family G contains a countable subfamily of sets (say, corresponding to a
sequence {xi}) the union of which is of full measure. Thus, z :=

∑
2−izxi > 0,

and we can take P̃ := zP . ��

2.1.3 Proof of the DMW Theorem

The implications (b) ⇒ (a), (b) ⇒ (c), and (e) ⇒ (d) are trivial. The im-
plication (d) ⇒ (a) is easy. Indeed, let ξ ∈ AT ∩ L0

+, i.e., 0 ≤ ξ ≤ H · ST .
Since the conditional expectation with respect to the martingale measure
Ẽ(HtΔSt| Ft−1) = 0, we obtain by consecutive conditioning that ẼH · ST = 0.
Thus, ξ = 0. To complete the proof, it remains to verify that (c) ⇒ (e) and
(a) ⇒ (b).

(c) ⇒ (e). Notice that for any random variable η, there is an equivalent
probability P ′ with bounded density such that η ∈ L1(P ′) (e.g., one can
take P ′ = Ce− |η|P ). Property (c) (as well as (a) and (b)) is invariant under
equivalent change of probability. This consideration allows us to assume that
all St are integrable. The convex set A1

T := ĀT ∩ L1 is closed in L1. Since
A1

T ∩ L1
+ = {0}, Theorem 2.1.4 ensures the existence of P̃ ∼ P with bounded

density and such that Ẽξ ≤ 0 for all ξ ∈ A1
T , in particular, for ξ = ±HtΔSt

with bounded and Ft−1-measurable Ht. Thus, Ẽ(ΔSt| Ft−1) = 0.
(a) ⇒ (b). Lemma 2.1.2 allows us to establish the closedness of AT by

simple recursive arguments even without assuming that the σ-algebra F0 is
trivial (of course, this does not add any generality but helps to start the
induction in the time variable).

Let us consider the case T = 1. Let Hn
1 ΔS1 − rn → ζ a.s., where Hn

1 is
F0-measurable, and rn ∈ L0

+. The closedness of A1 means that ζ = H1ΔS1 −r
for some F0-measurable H1 and r ∈ L0

+. To show this, we represent each Hn
1

as a column vector and write the whole sequence of these column vectors as
the infinite matrix

H1 :=

⎡

⎢⎢⎢⎣

H11
1 H21

1 . . . . . . Hn1
1 . . .

H12
1 H22

1 . . . . . . Hn2
1 . . .

. . . . . . . . . . . . . . . . . .

H1d
1 H2d

1 . . . . . . Hnd
1 . . .

⎤

⎥⎥⎥⎦ .

If the matrix is zero, there is nothing to prove. Suppose that the assertion
holds when this (random) matrix has, for each ω, at least m zero lines. We
show that the claim holds true also when H1 has at least m − 1 zero lines.

It is sufficient to find F0-measurable random variables H̃k
1 convergent a.s.

and r̃k ∈ L0
+ such that H̃k

1 ΔS1 − r̃k → ζ a.s.
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Let Ωi ∈ F0 form a finite partition of Ω. An important (though obvi-
ous) observation: we may argue on each Ωi separately as on an autonomous
measure space (considering the restrictions of random variables and traces of
σ-algebras).

Let H1 := lim inf |Hn
1 |. On Ω1 := {H1 < ∞}, we take, using Lemma 2.1.2,

F0-measurable H̃k
1 such that H̃k

1 (ω) is a convergent subsequence of Hn
1 (ω) for

every ω; r̃k are defined correspondingly. Thus, if Ω1 is of full measure, the
goal is achieved.

On Ω2 := {H1 = ∞}, we put Gn
1 := Hn

1 /|Hn
1 | and hn

1 := rn
1 /|Hn

1 |. Clearly,
Gn

1ΔS1 − hn
1 → 0 a.s. By Lemma 2.1.2 we find F0-measurable G̃k

1 such that
G̃k

1(ω) is a convergent subsequence of Gn
1 (ω) for every ω. Denoting the limit

by G̃1, we obtain that G̃1ΔS1 = h̃1 where h̃1 is nonnegative; hence, in virtue
of (a), G̃1ΔS1 = 0.

As G̃1(ω) 
= 0, there exists a partition of Ω2 into d disjoint subsets Ωi
2 ∈ F0

such that G̃i
1 
= 0 on Ωi

2. Define H̄n
1 := Hn

1 − βnG̃1, where βn := Hni
1 /G̃i

1

on Ωi
2. Then H̄n

1 ΔS1 = Hn
1 ΔS1 on Ω2. The matrix H̄1 has, for each ω ∈ Ω2,

at least m zero lines: our operations did not affect the zero lines of H1, and
a new one has appeared, namely, the ith one on Ωi

2. We conclude by the
induction hypothesis.

To establish the induction step in the time variable, we suppose that the
claim is true for (T − 1)-step models. Let

∑T
t=1 Hn

t ΔSt − rn → ζ a.s., where
Hn

t are Ft−1-measurable, and rn ∈ L0
+. As at the first step, we work with the

matrix H1 using exactly the same reasoning.
On Ω1 we take an increasing sequence of F0-random variables τk such that

Hk := Hτk
1 converges to H1. Thus,

∑T
t=2 Hτk

t ΔSt − rτk converges as k → ∞,
and we have a reduction to a (T − 1)-step model.

On Ω2 we use again the same induction in m, the number of zero lines
of H1. The only modification is that the identical operations (passage to
subsequences, normalization by Hn

1 , etc.) should be performed simultaneously
over all other matrices H2, . . . ,HT .

Remark 1. Exactly the same arguments as those used in the proof of the
implication (a) ⇒ (b) lead to the following assertion referred to as the Stricker
lemma:

The set of results RT is closed.

This property holds irrelevantly of the NA-condition. Indeed, the latter
was used only to check that the nonnegative limit h̃1 is, in fact, equal to zero.
But this holds automatically if we start the arguments with rn = 0.

Remark 2. The DMW theorem contains as a corollary the assertion that, in
the discrete-time setting with finite horizon, any local martingale is a mar-
tingale with respect to a measure P̃ ∼ P with bounded density. Moreover,
this measure can be chosen in such a way that a given random variable ξ will
be P̃ -integrable. At the end of this chapter we show that, even in the model
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with infinite horizon, the local martingale is a martingale with respect to an
equivalent probability measure.

2.1.4 Fast Proof of the DMW Theorem

Our detailed formulation of the DMW theorem, together with its proof, is
intended to prepare the reader to the arguments developed for models with
transaction costs. However, a short and elementary proof of the “main” equiv-
alence (a) ⇔ (e), a proof which can be used in introductory courses for math-
ematical students, is of separate interest. We give one here combining an
optimization approach due to Chris Rogers with Lemma 2.1.2 on measurable
subsequences. It is based on the one-step result the first condition of which is
just an alternative reformulation of the NA-property.

Proposition 2.1.5 Let ξ ∈ L0(Rd), and let G be a sub-σ-algebra of F . Then
the following conditions are equivalent:

(i) for any α ∈ L0(Rd, G), the inequality αξ ≥ 0 holds as the equality;
(ii) there exists a bounded random variable � > 0 such that E�|ξ| < ∞ and

E(�ξ| G) = 0.

Proof. One needs arguments only for the “difficult” implication (i) ⇒ (ii).
First, examine the case where G is trivial. Let us consider the function

f(a) = Eeaξ− |ξ|2 , a ∈ Rd. If it attains its minimum at some point a∗, the
problem is solved with ρ = ea∗ξ− |ξ|2 , since at this point the derivative of f is
zero: Eξea∗ξ− |ξ|2 = 0. One can check that condition (i) excludes the possibility
that the minimum is not attained—we do a verification below.

Let us turn to the general case. A dimension reduction argument allows us
to work assuming that the relation αξ = 0 with α ∈ L0(Rd, G) holds only if
α = 0 (when G is trivial, this is just the linear independence of the components
of ξ as elements of L0). Let Q(ω, dx) be the regular conditional distribution
of ξ with respect to G. Define the function

f(ω, a) :=
∫

eax− |x|2Q(ω, dx)

continuous in a and G-measurable in ω. Introduce the G-measurable random
variable f∗(ω) = infa f(ω, a) and consider, in the product space Ω × Rd, the
sets {(ω, a) : f(ω, a) < f∗(ω) + 1/n} with nonempty open ω-sections Γn(ω).
Let αn be a G-measurable random variable with αn(ω) ∈ Γn(ω). Such αn can
be constructed easily, without appealing to a measurable selection theorem,
e.g., one can take αn(ω) := qθ(n), where

θ(n) := min
{
k : f(ω, qk) < f∗(ω) + 1/n

}
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with an arbitrary countable dense subset {qn} in Rd. Let us consider the set
Ω0 := {lim inf |αn| < ∞} with its complement Ω1. Using Lemma 2.1.2, we
may assume that on Ω1 the sequence α̃n := αn/|αn| converges to some β with
|β| = 1 and, by the Fatou lemma,

∫
elim |αn(ω)|β(ω)x− |x|2I{β(ω)x �=0}Q(ω, dx)

≤ lim inf
∫

eαn(ω)x− |x|2I{β(ω)x �=0}Q(ω, dx) ≤ f∗(ω).

Necessarily, Q(ω, {x : β(ω)x > 0}) = 0, implying that βξ ≤ 0 (a.s.), and,
therefore, in virtue of (i), we have that βξ = 0. Due to our provision, this
equality holds only if β = 0, and, hence, Ω1 is a null set which does not
matter. Again by Lemma 2.1.2 we may assume that on the set Ω0 of full
measure the sequence αn(ω) converges to some α∗(ω). Clearly, f(ω, a) attains
its minimum at α∗(ω), and we conclude with � := eα∗ξ− |ξ|2/c(α∗), where the
function c(a) := supx(1 + |x|)eax− |x|2 . ��

The “difficult” implication (a) ⇒ (e) follows from the above proposi-
tion by backward induction. We claim that for each t = 0, 1, . . . , T − 1,
there is a bounded random variable ρT

t > 0 such that EρT
t |ΔSu| < ∞ and

EρT
t ΔSu = 0 for u = t + 1, . . . , T . Since (a) implies the NA-property for

each one-step model, the existence of ρT
T −1 follows from the above proposition

with ξ = ΔST and G = FT −1. Suppose that we have already found ρT
t .

Putting ξ = E(ρT
t | Ft−1)ΔSt−1 and G = Ft−2, we find bounded

Ft−1-measurable �t−1 > 0 such that E(�t−1E(ρT
t | Ft−1)|ΔSt−1|) < ∞ and

E(�t−1E(ρT
t | Ft−1)ΔSt−1) = 0. It is clear that ρT

t−1 meets the requirements.
Property (e) of the DMW theorem holds with ρt := E(ρT

0 | Ft).

2.1.5 NA and Conditional Distributions of Price Increments

As shown by Jacod and Shiryaev, the long list of conditions equivalent to
the NA-property can be completed by the following one involving the regular
conditional distributions Qt(ω, dx) of the price increments ΔSt knowing Ft−1:

(h) 0 ∈ ri conv supp Qt(ω, dx) a.s. for all t = 1, . . . , T .

Recall that Qt(ω, Γ ) is an Ft−1-measurable random variable in ω and a
measure in Γ such that P (ΔSt ∈ Γ | Ft−1) = Qt(ω, Γ ) (a.s.) for each Borel set
Γ in Rd. The topological support of the measure Qt(ω, dx) is the intersection
of all closed sets the complements of which are null sets for this measure. The
abbreviation “ri” denotes the relative interior of a convex set, i.e., the interior
in the relative topology of the smallest affine subspace containing it.

Comparing (h) and (g), we see that their equivalence follows from the next
one-step result complementing Proposition 2.1.5.
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Proposition 2.1.6 Let ξ ∈ L0(Rd), and let Q(ω, dx) be a regular conditional
distribution of ξ with respect to a σ-algebra G ⊆ F . Then the NA-property (or
the equivalent property (ii)) holds if and only if the following condition is
satisfied:

(iii) 0 ∈ ri conv supp Q(ω, dx) a.s.

Proof. (ii) ⇒ (iii). Consider the case where G is trivial. If the origin does not
belong to A := ri conv supp Q(dx), then there exists a ∈ Rd such that the
latter set lies in the closed half-space {x : ax ≥ 0} but not in the subspace
{x : ax = 0} (to see this, apply the separation theorem in the linear subspace
of minimal dimension containing A and extend the separating functional to
a functional on the whole Rd vanishing on the orthogonal complement). So,
Q(x : ax > 0) > 0, and for any strictly positive bounded random variable
ρ measurable with respect to σ{ξ} (i.e., of the form ρ = r(ξ) with a Borel
function r), we have

Eρaξ =
∫

r(x)axI{x: ax>0}Q(dx) > 0,

in contradiction with (ii).
In the general case we consider the set Γ := {(ω, a) : Q(ω, {ax > 0}) > 0},

which is measurable with respect to the product σ-algebra G ⊗ Bd; let Γ (ω)
be its ω-sections. If (iii) fails, then, as it was just shown, the projection PrΩΓ
of Γ on Ω is nonnull. Due to the measurable selection theorem, there exists a
G-measurable Rd-valued random variable α such that α(ω) ∈ Γ (ω) for almost
all ω from PrΩΓ . Now, take an arbitrary bounded strictly positive function
r(ω, x) measurable with respect to σ{ G, ξ} ⊗ Bd and put ρ(ω) := r(ω, ξ(ω)).
Then

E(rαξ| G) =
∫

r(ω, x)α(ω)xI{x: α(ω)x>0}Q(ω, dx) > 0 on PrΩΓ.

It is easy to see that this is a contradiction with (ii).
(iii) ⇒ (ii). Again, let us first consider the case of trivial G. Let L

be the affine subspace of minimal dimension containing the set
A := ri conv supp Q(dx).

The assumption 0 ∈ A implies that the function

f(a) :=
∫

eax− |x|2Q(dx) =
∫

eax− |x|2IL(x)Q(dx)

attains its minimum at some point a∗: otherwise, we could find, as in the proof
of Proposition 2.1.5, a vector β such {x : βx > 0} ∩ L is a Q-null set. But
this means that the origin is not in the relative interior of the convex hull of
supp Q(dx). In the general case, we can find a G-measurable random variable
α∗ such that α∗(ω) is a minimizer of f(ω, a) and conclude in the same way as
in Proposition 2.1.5. ��
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2.1.6 Comment on Absolute Continuous Martingale Measures

One may ask whether the existence of an absolute continuous martingale
measure can be related with a certain no-arbitrage property. Indeed, in the
case of finite number of states of nature, we have the following criterion:

Proposition 2.1.7 Suppose that Ω is finite. Then the following conditions
are equivalent:

(a) RT ∩ L0(R+ \ {0}) = ∅;
(b) there is a probability measure P̃ � P such that S ∈ M(P̃ ).

Here the implication (b) ⇒ (a) is obvious, while the converse follows easily
from the finite-dimensional separation theorem applied to the disjoint convex
sets AT \ {0} and L0(R+ \ {0}): any separating functional after normalization
is a density of probability measure with the needed property. The condition
(a) means that there is no “universal” arbitrage strategy H, that is, such that
H · ST > 0 (a.s.).

Unfortunately, the above proposition cannot be extended to the case of
arbitrary Ω.
Example. Let us consider a one-period model with two risky assets whose
price increments ΔS1

1 and ΔS2
1 are random variables defined on a count-

able probability space Ω = {ωi}i≥0 with all P ({ωi}) > 0. The initial σ-
algebra is trivial. Let ΔS1

1(ω0) = 1, ΔS1
1(ωi) = −i, i ≥ 1. Let ΔS2

1(ω0) = 0,
ΔS2

1(ωi) = 1, i ≥ 1. Apparently, the equalities EQΔS1
1 = 0 and EQΔS2

1 = 0
are incompatible, and, hence, there are no martingale measures. On the other
hand, let (H1, H2) ∈ R2 be a “universal” arbitrage strategy. Then necessarily
H1 > 0, and we get a contradiction since in such a case the countable system
of inequalities −iH1 + H2 > 0, i ≥ 1, is incompatible whatever is H2.

2.1.7 Complete Markets and Replicable Contingent Claims

As we observed, the set of results RT is always closed in L0. It is an easy
exercise to deduce from this property that the set R + RT is also closed. We
use this remark in the proof of the following:

Proposition 2.1.8 Suppose that the set Qe of equivalent martingale mea-
sures is nonempty. Then the following conditions are equivalent:

(a) Qe is a singleton;
(b) R + RT = L0.

Proof. (a) ⇒ (b). We may assume without loss of generality that P is a
martingale measure. Suppose that there is ξ ∈ L0 which is not in the closed
subspace R + RT ⊆ L0. It follows that the random variables ξn := ξI{ |ξ|≤n}
are not in this subspace for all n ≥ N . Applying the separation theorem, one
can find η with |η| ≤ 1/2 such that Eηζ = 0 for the elements ζ from the
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closed subspace (R+RT ) ∩ L1 of L1 but EηξN > 0. Put Q = (1 + η)P . Then
EQH · ST = 0 whatever is a bounded predictable process H. This means that
Q is an equivalent martingale measure different from P , contradicting (a).

(b) ⇒ (a). Take Γ ∈ FT . Then IΓ = cΓ +HΓ · ST , where cΓ is a constant.
It follows that Q(Γ ) = cΓ whatever is a martingale measure Q, i.e., the latter
is unique.

The property (b), in financial literature referred to as the market complete-
ness, means that any contingent claim can be replicated, that is, represented
as the terminal value of a self-financing portfolio starting from a certain initial
endowment. The above statement, asserting that an arbitrage-free market is
complete if and only if there is only one equivalent martingale measure, some-
times is called the second fundamental theorem of asset pricing.

The closedness of the subspace R+RT leads the next assertion concerning
replicable claims on incomplete markets. In its formulation, Ql and Qe

l denote
the sets of absolutely continuous and equivalent local martingale measures.
��

Proposition 2.1.9 Suppose that Qe 
= ∅. Let a random variable ξ ≥ 0 be
such that a = supQ∈Qe

l
EQξ < ∞ and the supremum is attained on some

measure Q∗. Then ξ = a + H · ST for some predictable process (and, hence,
the function Q �→ EQξ is constant on the set Qe

l ).

Proof. Supposing that the statement fails, we apply the Hahn–Banach theo-
rem and separate ξ and the subspace (R + RT ) ∩ L1(Q∗) in L1(Q∗), that is,
we find η ∈ L∞ such that EQ∗ ξη > 0 and EQ∗ ηζ = 0 for all ζ from the sub-
space. In particular, EQ∗ η = 0 and EQ∗ H · ST η = 0 whatever is a predictable
process H such that H · ST is integrable; in particular, the last equality holds
for H = I[0,τn], where τn is a localizing sequence for S. Normalizing, we may
assume that |η| ≤ 1/2. It follows that the measure Q̃ = (1 + η)Q∗ is an ele-
ment of Qe

l and EQ̃ξ = a + EQ∗ ξη > a in an apparent contradiction with the
definition of Q∗. ��

2.1.8 DMW Theorem with Restricted Information

Let us consider the following setting, which is only slightly different from the
classical one. Namely, assume that we are given a filtration G = (Gt)t≤T with
Gt ⊆ Ft. Suppose that the strategies are now predictable with respect to this
smaller filtration (i.e., Ht ∈ L0(Gt−1)), a situation which may happen when
the portfolios are revised on the basis of restricted information, e.g., due to a
delay. Again, we may define the sets RT and AT and give a definition of the
arbitrage, which, in these symbols, looks exactly as (a) above, and we can list
the corresponding necessary and sufficient conditions.

To this aim, we define the G-optional projection Xo of an integrable
process X by putting Xo

t := E(Xt| Gt), t ≤ T .
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Theorem 2.1.10 The following properties are equivalent:

(a) AT ∩ L0
+ = {0} (NA condition);

(b) AT ∩ L0
+ = {0} and AT = ĀT ;

(c) ĀT ∩ L0
+ = {0};

(d) there is a strictly positive process ρ ∈ M with (ρS)o ∈ M(G);
(e) there is a bounded strictly positive process ρ ∈ M with (ρS)o ∈ M(G).

The symbol M(G) stands here for the set of G-martingales, and we pre-
sume tacitly in the last two conditions that Eρt|St| < ∞. Clearly, these con-
ditions can be formulated in terms of existence of an equivalent probability P̃
such that Ẽ(St+1| Gt) = Ẽ(St| Gt) for all t ≤ T − 1.

We leave to the reader as an (easy) exercise to inspect that the arguments
of the previous section go well for this theorem.
Remark. Curiously, this result, rather natural and important for practical ap-
plications, was established only recently. It happens that all numerous proofs,
except one suggested in [131] and reproduced above in Sect. 2.1.3, in their
most essential part concerning the construction of equivalent martingale mea-
sures given the NA-property, are based on the reduction to the one-step case
with T = 1. Of course, (a) implies (g) (i.e., the NA-property for all one-step
models). A clever argument in the Dalang–Morton–Willinger paper permits
to assemble a required martingale density from martingale densities for one-
step models. However, in the model with restricted information, the property
(g) drops out from the list of equivalent conditions.
Example. Consider the model where T = 2, G0 = G1 = {∅, Ω}, but there is
A ∈ F2 such that 0 < P (A) < 1. Put

ΔS1 := IA − 1
2
IAc , ΔS2 := − 1

2
IA + IAc .

There is no arbitrage at each of two steps, but the constant process with
H1 = H2 = 1 is an arbitrage strategy for the two-step model.

2.1.9 Hedging Theorem for European-Type Options

One of the most fundamental though simple ideas of mathematical finance is
the arbitrage pricing of contingent claims.

A contingent claim or an option is a random variable ξ which can be inter-
preted as a pay-off of the option seller to the option buyer. For a European-
type option, the payment is made at the terminal (maturity) date T and may
depend on the whole history up to T . What is a “fair” price for such a con-
tract payed at time zero? Apparently, and this is the basic principle, the option
price should be such that neither of two parties has arbitrage opportunities,
i.e., riskless profits.



2.1 Models without Friction 83

Let us define the set

Γ := Γ (ξ) := {x : ∃H ∈ P such that x + H · ST ≥ ξ}.

Clearly, if not empty, it is a semi-infinite interval (maybe, coinciding with the
whole line). A priori, it can be either of the form [x̄, ∞[ or ]x̄, ∞[.

The theorem below ensures, in particular, that x̄ ∈ Γ . If the contracted
price of the option, say, x is strictly larger than x̄, then the seller has a nonrisky
profit by pocketing x − x̄ and running a self-financing portfolio process in the
underlying assets x̄+H ·S, the terminal value of which dominates the terminal
pay-off (so, selling the portfolio at the date T covers the liability).

Similarly, suppose that the right extremity x of the semi-infinite interval

−Γ (−ξ) = {x : ∃H ∈ P such that − x + H · ST ≥ −ξ}

belongs to this interval. If x is strictly less than x, then the option buyer will
have an arbitrage opportunity. Indeed, in this case there exists a strategy H
such that −x + H · ST ≥ −ξ. Thus, borrowing x at t = 0 to buy the option,
the agent runs a portfolio −x + H · S, which has a terminal value larger than
x − x − ξ. Therefore, after exercising the option, the agent will have a nonrisky
profit x − x.

These arguments show that “fair” prices lie in the interval [x, x̄].

Remark 1. Note that it is tacitly assumed that the agent (option seller)
may have a short position in option: for the discrete-time model, it is an
innocent assumption, but it is questionable for continuous-time models, where
the admissibility means that unbounded short positions even in the underlying
are not allowed.

In the case where the contingent claim is redundant, that is, of the form
ξ = x + Hξ · ST , we necessarily have that x = x = x̄ is the no-arbitrage price
of the option. Indeed, let us consider the hedging portfolio process x̄ + H · S
for ξ. The absence of arbitrage implies that its terminal value must coincide
with ξ and, in virtue of the “law of one price” (also due to NA, see the remark
below), x = x̄ and, by symmetry, x = x. The same NA arguments show that
if ξ is nonredundant, the hedging portfolio starting from x̄ is an arbitrage
opportunity. Thus, the range of no-arbitrage prices is either a singleton or an
open interval ]x, x̄[.

Remark 2. The law of one price (L1P) is the property asserting that the
equality x + H · ST = x′ + H ′ · ST implies the equality x = x′. The NA-
property is a sufficient condition for L1P that follows from the DMW theorem:
the latter ensures that there is a measure under which the process (H − H ′) · S
is a martingale. One may ask what is a necessary and sufficient condition for
L1P. The answer is the following:

L1P holds if and only if there is a bounded martingale Z with EZT = 1
and Z0 > 0 such that the process ZS is a martingale.
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In this formulation we do not suppose that the σ-algebra is trivial. Notice
that L1P means that RT ∩ L0(F0) = {0}, where, as already mentioned, the
linear space RT is closed. We hope that with this remark the proof of the
nontrivial “only if” part will be an easy exercise for the reader.

Now we present the theorem giving a “dual” description of the set of initial
capitals Γ , from which one can super-replicate (hedge) the contingent claim ξ.
Notation. Let Q (resp. Qe) be the set of all measures Q � P (resp. Q ∼ P )
such that S is a martingale with respect to Q. We add to this notation the
subscript l to denote larger sets of measures Ql and Qe

l for which S is only a
local martingale. We shall denote by Z, Z e, Zl, . . . the density processes for
measures from the corresponding sets.

Theorem 2.1.11 Suppose that Qe 
= ∅. Let ξ be a bounded from below ran-
dom variable such that EQ|ξ| < ∞ for every Q ∈ Qe. Then

Γ =
{
x : x ≥ EρT ξ for all ρ ∈ Z e

}
. (2.1.1)

In other words, x̄ = supQ∈Qe EQξ and Γ = [x̄, ∞]. An obvious corollary of
this theorem (applied to the set Γ (−ξ)) is the assertion that x = infQ∈Qe EQξ.

The direct proof of this result is not difficult, but we obtain it from two
fundamental facts having their own interest. The first one usually is referred to
as the optional decomposition theorem, which will be discussed in Sect. 2.1.12.

Theorem 2.1.12 Suppose that Qe 
= ∅. Let X = (Xt) be a bounded from
below process which is a supermartingale with respect to each probability mea-
sure Q ∈ Qe. Then there exist a strategy H and an increasing process A such
that X = X0 + H · S − A.

Proposition 2.1.13 Suppose that Qe 
= ∅. Let ξ be a bounded from below
random variable such that supQ∈Qe EQ|ξ| < ∞. Then the process X with

Xt = ess sup
Q∈Qe

EQ(ξ| Ft)

is a supermartingale with respect to every Q ∈ Qe.

For the proof of this result, we send the reader to Appendix (Proposi-
tion 5.3.7).
Proof of Theorem 2.1.11. The inclusion Γ ⊆ [x̄, ∞[ is obvious: if x+H ·ST ≥ ξ,
then x ≥ EQξ for every Q ∈ Qe. To show the opposite inclusion, we may
suppose that supQ∈Q EQ|ξ| < ∞ (otherwise both sets are empty). Applying
the optional decomposition theorem, we get that X = x̄ + H · S − A. Since
x̄ + H · ST ≥ XT = ξ, the result follows. ��
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2.1.10 Stochastic Discounting Factors

In this subsection we discuss financial aspects of the hedging theorem and give
an interpretation of densities of martingale measures as stochastic discounting
factors.

Let us consider a “practical example” where the option seller promised to
deliver at the expiration date T a “basket” of d assets, namely, ηi units of
the ith asset with positive price process Si. Since the market is frictionless,
this is same as to deliver ηST units of the numéraire, i.e., to make a payment
ξ = ηST . The hedging theorem asserts that the set of initial capitals allowing
one to super-replicate ξ can be described in terms of prices. Namely, if the
NA-property holds, one can hedge the pay-off from the initial capital x if
and only if x dominates the expectation of “stochastically discounted” pay-off
ρT ξ = ξSρ

T whatever is a martingale density ρ. In other words, the comparison
should be done not by computing the “value” of the basket using the “true”
price process but replacing the latter by a “consistent price system” Sρ = ρS
obtained by multiplying the “true” price process by the stochastic discounting
factor ρ. The word “consistent” here reflects the fact that Sρ

t is determined
by Sρ

T via the martingale property: Sρ
t = E(Sρ

T | FT ).

2.1.11 Hedging Theorem for American-Type Options

In the American-type option the buyer has the right to exercise at any date
before T on the basis of the available information flow, so the exercise date
τ is a stopping time; the buyer gets the amount Yτ , the value of an adapted
process Y at τ . The description of the pay-off process Y = (Yt) is a clause of
the contract (as well as the final maturity date T ).

By analogy with the case of European options, we define the set of initial
capitals starting from which one can run a self-financing portfolio the values
of which dominate the eventual pay-off on the considered time-interval:

Γ := Γ (Y ) := {x : ∃H ∈ P such that x + H · S ≥ Y }.

Theorem 2.1.14 Suppose that Qe 
= ∅. Let Y = (Yt) be an adapted process
bounded from below and such that EQ|Yt| < ∞ for all Q ∈ Qe and t ≤ T .
Then

Γ =
{
x : x ≥ EρτYτ for all ρ ∈ Z e and all stopping times τ ≤ T

}
. (2.1.2)

The proof of this result based on application of the optional decomposition
is exactly the same as of Theorem 2.1.11. The only difference is that now we
take as X the process

Xt = ess sup
Q∈Qe,τ ∈Tt

EQ(Yτ | Ft),

where Tt is the set of stopping times with values in the set {t, t + 1, . . . , T }.
Under the assumption supQ∈Qe EQ|Yt| < ∞ for each t, the process X is
a supermartingale with respect to every Q ∈ Qe, see Proposition 5.3.8 in
Appendix.
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2.1.12 Optional Decomposition Theorem

We give here a slightly different formulation.

Theorem 2.1.15 Suppose that Qe
l 
= ∅. Let X = (Xt) be a process which is a

generalized supermartingale with respect to each measure Q ∈ Qe
l . Then there

are a strategy H and an increasing process A such that X = X0 + H · S − A.

Proof. We start from a one-step version of the result. ��

Lemma 2.1.16 Let G be a sub-σ-algebra of F , and let ξ and η be random
variables with values in R and Rd and for which E(|ξ| + |η| | G) < ∞. Assume
that E(αξ| G) ≤ 0 whatever is a random variable α > 0 with E(α| G) = 1 such
that E(αη| G) = 0 and E(α|ξ| | G) < ∞, E(α|η| | G) < ∞. Suppose that such α
does exist. Then there is λ ∈ L0(Rd, G) such that ξ − λη ≤ 0.

Proof. First, we suppose without loss of generality that ξ and η are integrable
(we may argue with ξ̃ := ξ/(1+E(|ξ| + |η| | G)) and η̃ := η/(1+E(|ξ| + |η| | G))).
Define the set A := {λη : λ ∈ L0(Rd, G)} − L0

+. By the DMW theorem, it is
closed in probability. Thus, the convex set A1 := A ∩ L1 is closed in L1. If the
assertion of the lemma fails, ξ /∈ A1. Therefore, in virtue of the Hahn–Banach
separation theorem, there is α ∈ L∞ such that

Eαξ > sup
ζ∈A1

Eαζ.

Necessarily, α ≥ 0: if not, the right-hand side of the above inequality would
be infinite. By the same reason Eαλη = 0 whatever is λ ∈ L∞(Rd, G). Hence,
E(αη| G) = 0, and the supremum is equal to zero. That is, Eαξ > 0. But
this is incompatible with the inequality E(αξ| G) ≤ 0 we should have for
such α. ��

With the lemma, the proof of the theorem is easy. Indeed, let ρ ∈ Z e
l .

Consider the obvious identity ρt = α1 . . . αt, where αk := ρk/ρk−1. The mar-
tingale property of ρ means that E(αt| Ft−1) = 1. On the other hand, due to
the coincidence of the classes of local and generalized martingales, ρ ∈ Z e

l if
and only if E(αt|ΔSt| | Ft−1) < ∞ and E(αtΔSt| Ft−1) = 0 for all t ≤ T . Thus,
by Lemma 2.1.16, there is Ht ∈ L0(Rd| Ft−1) such that ΔXt − HtΔSt ≤ 0.
Denoting the right-hand side by −ΔAt and putting A0 = 0, we obtain the
desired decomposition.
Remark. Let us return to the setting of Lemma 2.1.16, assuming that the
σ-algebra G is trivial. Consider the maximization problem Eαξ → max under
two equality constraints Eα = 1 and Eαη = 0, the constraint α > 0 (a.s.),
and “admissibility” assumptions on α to ensure the needed integrability. The
hypothesis of the lemma says that the value of this problem does not exceed
zero. It is not difficult to prove that there is a Lagrange multiplier λ “remov-
ing” the second equality constraint. For the new maximization problem, we
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also have that Eα(ξ − λη) ≤ 0 for all α satisfying the remaining constraints.
Clearly, this is possible only if ξ − λη ≤ 0.

One may expect that these arguments can be extended for the general
case, with conditional expectations. This is still easy for finite or countable Ω.
This strategy of proof is feasible for arbitrary Ω, but one needs to look for a
G-measurable version of Lagrange multipliers by applying a delicate measur-
able selection result, requiring, in turn, specific preparations. However, this
approach (inspired by the original proof of the DMW) works well also for
continuous-time models, see [73]. We use it for an analysis of the structure of
the set of equivalent martingale measures in the next subsection.

2.1.13 Martingale Measures with Bounded Densities

The following useful result gives, in particular, the positive answer to the
question whether the set Qe is norm-dense in Qe

l (that is whether Z e is dense
in Z e

l in the L1-norm). Indeed, in virtue of the DMW theorem, Qe
l 
= ∅ if

and only if Qe 
= ∅. It remains to take as the reference measure an arbitrary
element of the latter set and apply the theorem below. This theorem happens
to be useful to get a similar property for the discrete-time model with infinite
horizon, which will be discussed in the next section.

Theorem 2.1.17 Let P ∈ Qe
l . Then the set {Q ∈ Qe, dQ/dP ∈ L∞ } is

norm-dense in Qe
l .

Proof. It contains three steps. The first one is a simple lemma on the ap-
proximations of positive functions on the probability space (Rm, Bn, μ) by
positive functions from C(R̄m), where R̄m is the one-point compactification
of Rm. ��

Lemma 2.1.18 Let φ : Rm → Rl be a measurable mapping with |φ| ∈ L1(μ).
Put U := {g ∈ L1(μ) : g > 0, g|φ| ∈ L1(μ)} and UC := U ∩ C(R̄m). Then
for any f ∈ U and ε > 0, there is fε ∈ UC such that ‖f − fε‖L1(μ) < ε and

Eμφf = Eμφfε. (2.1.3)

Proof. Let Oε(f) be an open ball in L1
μ of radius ε with center at f . Define

the convex sets G := U ∩ Oε(f) and GC := UC ∩ Oε(f) and consider the
affine mapping Φ : G → Rl with Φ(g) = Eμ(f − g)φ. We need to show that
0 ∈ Φ(GC). Notice that UC is a dense subset of U , and, therefore, GC is
dense in G in L1

μ. It follows that Φ(GC) is dense in Φ(G). The convexity of
these sets implies that ri Φ(GC) = riΦ(G), and to complete the proof, it is
sufficient to check that 0 ∈ ri Φ(G). To this aim we first observe that without
loss of generality we may consider the case where fφi, i = 1, . . . , l, are linearly
independent elements of L1

μ. Suppose that 0 /∈ riΦ(G). Let us consider the
smallest hyperplane H containing Φ(G). Since 0 ∈ Φ(G), it is a subspace. By
the separation theorem, there is a nontrivial linear functional y on H such that
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yx ≥ 0 for all x ∈ Φ(G). Extending y to a linear functional on the whole Rl,
we may rewrite this as Eμ(f − g)yφ ≥ 0 whatever is g ∈ G. Using functions of
the form g = f ± δfIΓ where Γ is a measurable set and δ ∈ ]0, 1[ is such that
g ∈ Oε(f), we get from here that EμIΓ fyφ = 0 for any Γ . Hence, yfφ = 0,
in contradiction with the assumed linear independence of components. ��

With this preparatory result, we can easily prove the claim for the one-
period model.

Lemma 2.1.19 Let G be a (complete) sub-σ-algebra of F , and let α and η
be random variables taking values, respectively, in R+ \ {0} and Rd such that
E((1+α)|η| | G) < ∞. Assume that E(α| G) = 1, E(η| G) = 0, and E(αη| G) = 0.
Then there are bounded random variables αn > 0 converging to α a.s. and such
that E(αn| G) = 1, E(αnη| G) = 0.

Proof. Let μ(dx, ω) be a regular conditional distribution of the random vector
(α, η) knowing G. Define on Rd+1 the functions f(x) := x1 and
φ(x) := (1, x2, . . . , xd+1). Writing the conditional expectations as the inte-
grals with respect to conditional distribution, we express properties of α as
follows: Eμ(.,ω)fφ = e1 (the first orth in Rd+1) for all ω except a null-set. The
set

Γn :=
{
(ω, g) ∈ Ω × C

(
R̄d+1

)
: g > 0, Eμ(.,ω)gφ = e1,

Eμ(.,ω)|f − g| < 1/n
}

is G ⊗ B(C(R̄d+1))-measurable and, according to the previous lemma, has
the projection on Ω of full measure. By the classical measurable selection the-
orem Γn admits a G-measurable selector fn : Ω → C(R̄d+1). The function
of two variables fn(ω, x), being G-measurable in ω and continuous in x, is
G ⊗ Bd+1-measurable. The random variables α̃n = fn(ω, (α(ω), η(ω))) con-
verge to α in L1 and, hence, in probability. Let us define the bounded random
variables α̃n,k(ω) := f̃n,k(ω, (α(ω), η(ω))), where

f̃n,k(ω, x) = fn(ω, x)I{ ‖fn(ω,.)‖ ≤k} + I{ ‖fn(ω,.)‖>k},

and ‖.‖ is a uniform norm in x. Since Eμ(.,ω)gφ = e1, we have the equalities
E(α̃n,k | G) = 1, E(α̃n,kη| G) = 0.

Obviously, α̃n,k converge to α̃n in probability. The convergence in prob-
ability is a convergence in a metric space, and, therefore, one can take a
subsequence kn such that αn := α̃n,kn converge to α in probability. But then
there is a subsequence of αn convergent to α a.s.

The third, concluding step, is also simple. Note first that we may replace
the reference measure by any other from Qe

l with bounded density. According
to the DMW theorem, between such measures, there are measures from Qe,
and so we may assume without loss of generality that already P ∈ Qe.

We again use the multiplicative representation of the density ρT = dQ/dP ,
namely, ρT = α1 . . . αT with αt := ρt/ρt−1. The property ρ ∈ Z e

l holds if and
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only if E(αt| Ft−1) = 1, E(αt|ΔSt| | Ft−1) < ∞ and E(αtΔSt| Ft−1) = 0 for all
t ≤ T . Applying the preceding lemma, we define the measure Pn := ρn

T P ∈ Qe

with bounded density ρn
T := αn

1 . . . αn
T convergent to ρT a.s. But by the Scheffe

theorem, here we also have the convergence in L1. ��

Remark. Theorem 2.1.17 has several obvious corollaries. For example, if
P ∈ Qe

l , then the set of Q ∈ Qe
l with bounded densities ρT = dQ/dP and

ρ−1
T = dP/dQ is dense in Qe

l . This fact is easily seen by considering the con-
vex combinations Qn = (1 − 1/n)Q + (1/n)P and letting n tend to infinity.
Noticing that Qe

l is dense in the set Ql (by the similar consideration), one can
further strengthen the claim in another direction, etc.

It is not difficult to check that the set of local martingale measures with
finite entropy (i.e., with EρT ln ρT < ∞), if nonempty, is also dense in Qe

l . We
explain the idea by establishing a more general result, which has applications
in portfolio optimization problems.

Let ϕ : ]0, ∞[→ R be a measurable function bounded from below, and let

Qe
ϕ :=

{
Q ∈ Qe : Eϕ(dQ/dP ) < ∞

}
.

Proposition 2.1.20 If the set Qe
ϕ 
= ∅, then it is dense in Qe in the following

two cases:

(a) for every c ≥ 1, there exist constants r1(c), r2(c) ≥ 0 such that

ϕ(λy) ≤ r1(c)ϕ(y) + r2(c)(y + 1), y ∈ ]0, ∞[, λ ∈
[
c−1, c

]
; (2.1.4)

(b) ϕ is convex, and Qe
ϕ = Qe

ϕλ
for any λ > 0, where ϕλ(y) := ϕ(λy).

Proof. (a) Let P̃ ∈ Qe
ϕ. Take an arbitrary measure Q ∈ Qe. By the above

theorem and the accompanying remark, there exists a sequence Qn ∈ Qe

convergent to Q with the densities dQn/dP̃ taking values in intervals [c−1
n , cn].

We have

Eϕ

(
dQn

dP

)
= Eϕ

(
dQn

dP̃

dP̃

dP

)
≤ r1(cn)Eϕ

(
dP̃

dP

)
+ 2r2(cn) < ∞.

Hence, Qn ∈ Qe
ϕ, and the result follows.

(b) We may assume without loss of generality that ϕ ≥ 0 (by adding a
constant) and repeat the same arguments modifying only the last step. Clearly,
dQn/dP̃ = αnc−1

n + (1 − αn)cn, where αn is a random variable taking values
in [0, 1]. By convexity,

Eϕ

(
dQn

dP̃

dP̃

dP

)
≤ E

[
αnϕ

(
c−1
n

dP̃

dP

)
+ (1 − αn)ϕ

(
cn

dP̃

dP

)]

≤ Eϕ

(
c−1
n

dP̃

dP

)
+ Eϕ

(
cn

dP̃

dP

)
< ∞

in virtue of assumption, and we conclude as before.
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Note that for convex ϕ, condition (a) implies (b). The latter hypothesis
entangles properties of ϕ and Qe.

In financial applications, typically, ϕ(y) = yp, p > 0, or ϕ(y) = y ln y.
In particular, if nonempty, the set Qe

y ln y of martingale measures with finite
entropy is dense in the set of equivalent martingale measures Qe.

More generally, let u : R → R be an increasing concave differentiable
function, and let u∗ be its Fenchel dual (which is, by definition, the Fenchel
dual of the convex function −u(−.)), i.e., the convex function

u∗(y) = sup
x

(
u(x) − xy

)
.

For example, the dual of the exponential utility function u(x) = 1 − e−x is
the function u∗(y) = y ln y − y + 1, y ≥ 0, and u∗(y) = ∞, y < 0.

Suppose that u has a “reasonable” asymptotic elasticity, i.e.,

AE+(u) := lim sup
x→∞

xu′(x)
u(x)

< 1, AE−(u) := lim inf
x→ − ∞

xu′(x)
u(x)

> 1.

It can be shown that the function ϕ = u∗ satisfies the growth condition (a)
of Proposition 2.1.20. ��

2.1.14 Utility Maximization and Convex Duality

In this subsection we explain the importance of the set of equivalent martin-
gale measures in the problem of portfolio optimization. Namely, we consider
the simplest model with finite number of states of nature where the investor
maximizes the mean value of an exponential utility function of the terminal
value of his portfolio. Applying the classical Fenchel theorem, we show that
the dual problem involves martingale measures.

So, Ω is finite, and hence, the space L0 can be identified with a finite-
dimensional Euclidean space. As usual, RT is the set of random variables H ·
ST , and Z e

T (respectively, Z e) is the set of densities (respectively, density
processes) of equivalent martingale measures.

It is supposed in the following discussion that Z e
T 
= ∅.

We are interested in the portfolio optimization problem the value of which
is

Jo := sup
η∈RT

E
(
1 − e−η

)
. (2.1.5)

It will be studied jointly with the minimization problem EZT lnZT → min
over the set of equivalent martingale densities Z e

T ; let its value be

J := inf
ξ∈Z e

T

Eξ ln ξ. (2.1.6)

The latter problem, by abuse of language, sometimes is referred to as the
“dual” one. As we shall see below, this terminology deviates from the standard
one of the convex analysis.
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The continuous function ξ → Eξ ln ξ attains its minimum J on the com-
pact set Z a

T which is a closure of Z e
T . Due to strict convexity, the minimizer

ξo is unique. The derivative of the function ϕ(x) = x ln x (with ϕ(0) = 0)
at zero is −∞, and this property implies that ξo is strictly positive. Indeed,
let us take an arbitrary point ξ of the set Z e

T (assumed nonempty) and con-
sider on [0, T ] the function Ft = Eft, where ft := ϕ(tξ + (1 − t)ξo). As F
attains its minimum at t = 0, the derivative F ′

0 ≥ 0. But F ′
0 = Ef ′

0. Since
f ′
0 = ϕ′(0)ξ = −∞ on the set {ξo = 0}, the probability of the latter is zero.

The measure P o = ξo is called the entropy minimal equivalent martingale
measure.

Proposition 2.1.21 Jo = 1 − e−J .

This result is a direct consequence of the fundamental Fenchel theorem.
We recall the simplest version of its formulation (in its traditional form, for
convex functions).

Let X be a Hilbert space, and let f : X → R ∪ {∞}, g : X → R ∪ { ∞}
be two convex lower semicontinuous functions not identically equal to infinity,
i.e., dom f 
= ∅ and dom g 
= ∅.

Let us consider two minimization problems, the primal

f(η) + g(η) → min on X (2.1.7)

and the dual
f ∗(−ξ) + g∗(ξ) → min on X∗(= X). (2.1.8)

We denote their values v := infx[f(x) + g(x)] and v∗ := infy[f ∗(−y) + g∗(y)].
Suppose that

dom f ∩ dom g 
= ∅,
(

−dom f ∗)
∩ dom g∗ 
= ∅;

we rewrite these conditions, to relate them with those in the formulation of
theorem below, as

0 ∈ dom f − dom g, 0 ∈ dom f ∗ + dom g∗.

They ensure that v < ∞ and v∗ < ∞.
Note that always v + v∗ ≥ 0 because by the Fenchel inequality

f(η) + g(η) + f ∗(−ξ) + g∗(ξ) ≥ (−η, ξ) + (η, ξ) = 0.

The following result is a particular case of the Fenchel theorem.

Theorem 2.1.22 (a) Let 0 ∈ int (dom f − dom g). Then the dual problem
(2.1.8) has a solution, and v + v∗ = 0.

(b) Let 0 ∈ int (dom g∗ + dom f ∗). Then the primal problem (2.1.7) has a
solution, and v + v∗ = 0.
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Let us consider the minimization problem

f(η) + g(η) → min on L0, (2.1.9)

where f(η) := E(eη − 1), and g = δRT
, the indicator function (in the sense

of convex analysis), which is equal to zero on RT and infinity on the com-
plement. Clearly, f ∗ is calculated via the dual to the convex function ex − 1,
namely, f ∗(−ξ) = E(ξ ln ξ − ξ + 1)δ[0,∞[(ξ), and g∗ = δR◦

T
. In our case the

polar R◦
T is just R⊥

T , the subspace orthogonal to RT . The conditions of the
Fenchel theorem, part (a), are obviously fulfilled. Thus, Jo coincides with the
(attained) value of the dual problem

f ∗(−ξ) + g∗(ξ) → min on L0,

i.e., Jo is equal to the minimum of f ∗(−ξ) on the set R⊥
T ∩ L0

+ = R+Z a
T . Since

inf
ξ∈Z

inf
t≥0

E(tξ ln tξ − tξ + 1) = inf
ξ∈Z a

T

(
1 − e−Eξ ln ξ

)
= 1 − e−J ,

we get the result.
Remark. If Z e 
= ∅, the hypothesis of the Fenchel theorem, part (b), holds,
ensuring the existence in the primal problem. In the case where Z e = ∅, there
is an arbitrage strategy Ha with ηa := Ha · ST ≥ 0 and ηa 
= 0. Clearly, for
any η ∈ RT , the value of the functional in (2.1.5) at ηa + η is strictly larger
than at η.

Proposition 2.1.23 Let Ho be the optimal strategy for the problem of port-
folio optimization, Then the random variable

ξo := e−Ho ·ST /Ee−Ho ·ST (2.1.10)

is the density of the minimal entropy equivalent martingale measure P o.

Proof. The right-hand side of (2.1.10) is the density of a martingale measure.
Indeed, for any strategy H, the function

fH(λ) = 1 − Ee−Ho ·ST +λH·ST

attains its maximum at λ = 0, and, therefore, f ′
H(0) = 0, i.e.,

E(H · ST )e−Ho ·ST = 0,

implying the claimed property. Using it, we can easily verify that

1 − e−Eξo ln ξo

= 1 − Ee−Ho ·ST .

Accordingly to Proposition 2.1.21, this equality may hold only if ξo is the
solution of the problem of the entropy minimization. ��
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2.2 Discrete-Time Infinite-Horizon Model

The aim of this section is to present relations between the absence of arbitrage
and the existence of an equivalent martingale measure for the model with
an Rd-valued price process S = (St)t=0,1,... defined on some filtered space
(Ω, F ,F = (F )t=0,1,...). We assume that the initial σ-algebra is trivial. In the
first subsection we discuss some purely probabilistic questions. In particular,
we show that if S admits an equivalent local martingale measure, then it
admits an equivalent martingale measure. Moreover, the latter can be chosen
to ensure the integrability of an arbitrary adapted process fixed in advance.
Afterwards we introduce some substitutes for the no-arbitrage property and
prove necessary and sufficient conditions for them.

2.2.1 Martingale Measures in Infinite-Horizon Model

We consider the discrete-time infinite-horizon model with an Rd-valued pro-
cess S = (St)t≥0 and introduce, for p ≥ 1, the set Qe,p of probability measures
Q ∼ P such that S is a Q-martingale and St ∈ Lp(Q) for all t ≥ 0. We also
use the standard notation S∗

t := sups≤t |Ss|.
Theorem 2.2.1 Let S ∈ Mloc(P ). Then there exists a probability measure
P̃ ∼ P such that S ∈ M(P̃ ).

In the case of finite time-horizon this assertion is a direct corollary of
the DMW theorem (and the measure P̃T ∼ P even can be chosen with the
bounded density dP̃T /dP ). For the infinite-time horizon, we get it from the
following much more general assertion.

Theorem 2.2.2 Let S be a local martingale, and Y = (Yt) be an adapted
process dominating S∗. Let ε > 0. Then there exists a measure P ′ ∼ P such
that S is a local P ′-martingale, Yt ∈ L1(P ′) for every t, and ‖P ′ − P ‖ ≤ ε.

As an obvious corollary, we have:

Theorem 2.2.3 The set Qe,p is dense in the set Qe
l .

Theorem 2.2.2 is a generalization of Theorem 2.1.17. It is interesting that
the reference to the latter constitutes the essential ingredients of the proof.

Lemma 2.2.4 Let S = (St)t≤T be a local martingale in Rd, and let ξ ∈ L0
+.

Then for any ε > 0, there is a probability measure P ε ∼ P with density Zε
T

such that S = (St)t≤T is a local martingale with respect to P ε, E|Zε
T − 1| < ε,

and Zε
T (1 + ξ) is bounded.

Proof. We introduce the probability measure P 1 = ce−ξP . Since the NA-
property holds for P , it holds for P 1. By the DMW theorem there is P 2 ∼ P 1

with dP 2/dP 1 ∈ L∞ such that S ∈ M(P 2). Applying Theorem 2.1.17 with
P 2 as the reference measure, we obtain that there exists a measure P ε ∼ P 2

with dP ε/dP 2 ∈ L∞ such that ‖P ε − P ‖ < ε and S ∈ M(P ε). The measure
P ε meets the requirements. ��
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Proof of Theorem 2.2.2. We may suppose that ε < 1. Take a sequence εn > 0
such that

∑
εn < ε/3. We define recursively an auxiliary sequence of probabil-

ity measures Pn ∼ P with bounded Fn-measurable densities dPn/dP . Let ζk

denote the density process of P k with respect to P , that is,
ζk
t = E(dP k/dP | Ft). Put

Zn
t := ζ1

t . . . ζn
t , Z̄n

t := E
(
Zn

∞ | Ft

)
.

The construction will ensure the following properties:

(a) ζn
n (1 + Yn) ≤ cn for some constant cn;

(b) E(Z̄n
t St| Ft−1) = Z̄n

t−1St−1 for all t, i.e., Z̄nS is a local martingale;
(c) ‖Pn − P ‖ ≤ ε̃n := εn/(1 + c0 . . . cn−1).

Using Lemma 2.2.4, we define a probability measure P 1 ∼ P with
F1-measurable density dP 1/dP such that ζ1

1 (1+Y1) ≤ c1 for some constant c1,
the process (St)t≤1 is a P 1-martingale, and ‖P 1−P ‖ ≤ ε1. Note that the whole
process S remains a local martingale with respect to P 1.

Suppose that the measures P k for k ≤ n − 1 are already constructed. Ap-
plying Lemma 2.2.4 to the (d + 1)-dimensional local martingale
(Z̄n−1

t St, Z̄
n−1
t )t≤n, we find a measure Pn ∼ P with Fn-measurable density

such that the properties (a) and (c) hold and (Z̄n−1
t St, Z̄

n−1
t )t≤n is a local

Pn-martingale. The latter property means that (Z̄n−1
t ζn

t St, Z̄
n−1
t ζn

t )t≤n is a
local martingale. The martingale (Z̄n−1

t ζn
t ), having at the date t = n the value

Zn−1
n ζn

n = Zn
n = Zn

∞, coincides with (Z̄n
t ). Thus, Z̄nS is a local martingale,

and the property (b) holds.
By virtue of our construction,

E
∑∣∣ζn

∞ − 1
∣∣ ≤

∑
εn < ∞,

and hence
∑

|ζn
∞ − 1| < ∞ a.s. Thus, Zn

∞ converges almost surely to some
finite random variable Z∞ > 0. Moreover, the convergence holds also in L1

because

E
∣∣Zn

∞ − Zn−1
∞

∣∣ = EZn−1
∞

∣∣ζn
∞ − 1

∣∣ ≤ c0 . . . cn−1E
∣∣ζn

∞ − 1
∣∣ ≤ εn

and
∑

εn is finite. Also,

E|Z∞ − 1| ≤
∑

E
∣∣Zn

∞ − Zn−1
∞

∣∣ ≤
∑

εn < ε/3.

It remains to check that the probability measure P ′ = (Z∞/EZ∞)P meets
the requirements. Since EZ∞ ≥ 1 − ε/3 ≥ 2/3, we have that

‖P ′ − P ‖ = E|Z∞/EZ∞ − 1| ≤ 2E|Z∞ − 1|
EZ∞

≤ ε.

It is easy to check that, for each fixed t, the sequence Zn
∞Yt, n = t, t+1, . . . ,

is fundamental in L1. Indeed, we again use the properties (a) and (c):
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E
∣∣Zn

∞Yt − Zn−1
∞ Yt

∣∣ ≤ E
∣∣ζn

n − 1
∣∣ζ1

1 . . . ζt
tYtζ

t+1
t+1 . . . ζn−1

n−1

≤ c0 . . . cn−1E
∣∣ζn

n − 1
∣∣ ≤ εn.

It follows that Zn
∞Yt and Zn

∞St converges in L1 to integrable random variables.
Thus, Z∞Yt ∈ L1, and, in virtue of (b),

E(Z∞ΔSt| Ft−1) = 0,

i.e., P ′ is a martingale measure. ��

2.2.2 No Free Lunch for Models with Infinite Time Horizon

Infinite-horizon discrete-time market models based on the price process
(St)t=0,1,... pose new interesting mathematical problems related with the so-
called doubling strategies or the St.-Petersburg game. It is well known that
if S is a symmetric random walk on integers and, hence, a martingale, the
strategy Ht = 2tI{t≤τ } where τ := inf{t ≥ 1 : ΔSt = 1} looks as an ar-
bitrage opportunity: H · S∞ = 1. This strategy vanishes after the stopping
time τ , which is finite but not bounded. So, certain restrictions on strategies
are needed to exclude such a one. A satisfactory criterion relating the exis-
tence of an equivalent martingale measure with a strengthened no-arbitrage
property can be obtained by assuming that there is no trading after some
bounded stopping time where the bound depend on the strategy. Using the
concepts and notation developed above, we can formalize this easily.

Let R∞ be the union of all sets RT , T ∈ N, and let A∞ := R∞ − L0
+.

The infinite-horizon model has the NA-property if R∞ ∩ L0
+ = {0} (or,

equivalently, A∞ ∩ L0
+ = {0}). In general, NA is weaker than the EMM -

property claiming the existence of a probability measure P̃ ∼ P such that S
is a P̃ -martingale. The simplest reinforcing of NA is the NFL-property (“no-
free-lunch”) suggested by Kreps: C̄w

∞ ∩ L∞
+ = {0}, where C̄w

∞ is the closure of
the set C∞ := A∞ ∩ L∞ in the topology σ(L∞, L1) (i.e., the weak* closure).

Theorem 2.2.5 The following properties are equivalent:

(a) C̄w
∞ ∩ L∞

+ = {0} (NFL);
(b) there exists P̃ ∼ P such that S ∈ Mloc(P̃ );
(c) there exists P̃ ∼ P such that S ∈ M(P̃ ).

Proof. The Kreps–Yan theorem says that the NFL-property holds if and only
if there exists P ′ ∼ P such that E′ξ ≤ 0 for all ξ ∈ C̄w

∞. This P ′ can be called
a separating measure since its density is a functional from L1 which separates
C̄w

∞ and L∞
+ . Of course, a local martingale measure P̃ is a separating one.

Indeed, if H · ST is bounded from below, then the process (H · St)t≤T is a P̃ -
martingale. Hence, for any bounded from below random variable ξ = H ·ST −h
where h ∈ L0

+, we have the inequality Ẽξ ≤ 0. It follows that this inequality
holds for any ξ ∈ C̄w

∞. This gives us the implication (b) ⇒ (a). The more
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difficult implication (a) ⇒ (b) follows from Theorem 2.2.6 below ensuring
that, amongst the equivalent separating measures, there is a local martingale
measure. The equivalence (b) ⇔ (c) follows from Theorem 2.2.2. ��

Theorem 2.2.6 Any neighborhood of a separating measure contains an equiv-
alent probability measure P ′ under which S is a local martingale.

Proof. We assume without loss of generality that the reference measure P is
separating. Fix ε > 0 and a sequence of numbers εs > 0 such that

∑
s≥1 εs < ε.

The theorem will be proven if, for each s ≥ 1, we find an Fs-random variable
αs > 0 with the following properties:

(i) E(αs| Fs−1) = 1;
(ii) E(|1 − αs| | Fs−1) ≤ εs;
(iii) E(αs|ΔSs| | Fs−1) < ∞ and E(αsΔSs| Fs−1) = 0.

Indeed, let us consider the process Zt := α1 . . . αt, t ≥ 1, Z0 = 1, which is a
martingale in virtue of (i). In virtue of (ii),

E|ΔZs| = EZs−1E
(

|αs − 1| | Fs−1

)
≤ εs.

The martingale Z, being dominated by an integrable random variable, namely,
by 1 +

∑
|ΔZs|, is uniformly integrable. Also, E

∑
|αs − 1| < ε. Therefore,∑

|αs −1| < ∞ a.s., and the infinite product Z∞ > 0 a.s. Thus, the probability
measure P̃ = Z∞P is equivalent to P . In virtue of (iii), the process S is
a generalized martingale under P̃ , i.e., belongs to the class coinciding with
Mloc(P̃ ). Moreover,

E|Z∞ − 1| ≤ E
∑

s≥1

|ΔZs| < ε.

Let Hs ∈ L0(Rd, Fs−1) be such that the random variable HsΔSs is
bounded from below. Then (HsΔSs) ∧ n, being an element of C∞, has a neg-
ative expectation—we assumed that P is a separating measure. By the Fatou
lemma EHsΔSs ≤ 0. In the proposition below we show that this ensures the
existence of αs with the required properties. ��

So, we need the following one-step result.

Proposition 2.2.7 Let G be a sub-σ-algebra of F . Suppose that η ∈ L0(Rd)
is such that Eγη ≤ 0 for any γ ∈ L0(Rd, G) for which γη is bounded from
below. Let ε > 0. Then there is a strictly positive random variable α such that
E(α| G) = 1, E(|1 − α| | G) ≤ ε, E(α|η| | G) < ∞, and E(αη| G) = 0.

Proof. Let μ(dx, ω) be a regular conditional distribution of η with respect
to G. In the space Ω × C(R̄d) we consider the G ⊗ B(C(R̄d))-measurable set Γ
defined as the intersection of the sets

{
(ω, g) : g > 0, Eμ(.,ω)g = 1, Eμ(.,ω)|1 − g| ≤ ε

}



2.2 Discrete-Time Infinite-Horizon Model 97

and {
(ω, g) : Eμ(.,ω)g|x| < ∞, Eμ(.,ω)gx = 0

}
.

If the projection of Γ on Ω is of full measure, we apply the measurable selec-
tion theorem, take an arbitrary G-measurable selector f : Ω → C(R̄d), and
conclude by putting α(ω) = f(ω, η(ω)).

Let Δω be the image of the convex set
{
g ∈ C

(
R̄d

)
: g > 0, Eμ(.,ω)g = 1, Eμ(.,ω)g|x| < ∞, Eμ(.,ω)|1 − g| ≤ ε

}

under the linear mapping Ψω := g �→ Eμ(.,ω)gx. The full projection property
means that, for almost all ω, the set Δω contains the origin.

Let us first consider the case d = 1, where Δω is just an interval. Define
the G-measurable random variables

ζ ′(ω) = inf
{
t : μ

(
]− ∞, t], ω

)
> 0

}
, ζ ′ ′(ω) = sup

{
t : μ

(
]− ∞, t], ω

)
< 1

}
.

The random variables IAI{ −n≤ξ′ }η, where A ∈ G, being bounded from
below, have negative expectations. Hence, I{ − ∞<ξ′ }E(η| G) ≤ 0. This implies
that

I{ − ∞<ξ′ }E
(
η+| G

)
≤ I{ − ∞<ξ′ }E

(
η− | G

)
< ∞.

Therefore, Ψ(1) ≤ 0 on the set {−∞ < ξ′ } and, by symmetry, Ψ(1) ≥ 0 on
the set {ξ′ ′ < ∞} (a.s.). Thus, on the intersection of these sets, Ψ(1) = 0. It
follows from the elementary lemma below that the interval Δω ⊇ [0, ∞[ for
almost all ω ∈ {−∞ < ξ′, ξ′ ′ = ∞}. By symmetry, the interval Δω ⊇] − ∞, 0]
for almost all ω ∈ { −∞ = ξ′, ξ′ ′ < ∞}. ��

In the following assertion, ω is fixed and omitted in notation.

Lemma 2.2.8 If ξ′ ′ = ∞, then Δ is unbounded from above.

Proof. Fix ε ∈ ]0, 1] and a > 0 such that μ({a}) = 0. Consider the subset
Wγ,a formed by the continuous functions g such that g(a) = 1, xg(x) → 0 as
x → ±∞, and EμgI[a,∞[ = ε. Note that supg∈Wε,a

EμxgI[a,∞[ = ∞. Indeed,
as the support of μ is unbounded, we can find a continuous function g0 with
a compact support contained in the interval ]a, ∞[ such that Eμg0 < ε while
the value Eμxg is arbitrarily large. Adding to g0 the function e−λ|x−a| with
an appropriately chosen parameter λ, we obtain a function g ∈ Wε,a with
EμxgI[a,∞[ ≥ Eμg0.

Take a > 0 such that μ({a}) = 0 and μ({x : |x| ≥ a}) ≤ δ/2. Take
f = e−λ|x+a| and choose the parameter λ to ensure that

ε := μ
({

x : |x| ≥ a
})

− EμfI]− ∞,a] > 0.

By the above, for any N >0, we can find fN ∈ Wε,a such that EμxfNI[a,∞[ ≥ N .
The assertion became obvious since, for the function

gN := fI]− ∞,−a[ + I]−a,a[ + gNI]a,a],

we have Ψ(gN ) ≥ N . The lemma is proven. ��
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For the case of d > 1 and ω for which 0 /∈ Δω, there is, in virtue of the
Hahn–Banach theorem, l(ω) ∈ Rd such that |l(ω)| = 1 and l(ω)x > 0 for all
x ∈ Δω. Put l(ω) = 0 if 0 ∈ Δω. Using a measurable version of the Hahn–
Banach theorem, one can choose the separating functionals in such a way
that the function ω �→ l(ω) is G-measurable. Applying the above reasoning
to the scalar random variable ηl := lη, we find a function f l(ω, y) on Ω × R
which is G-measurable in ω and continuous in x. Denoting by μl(dy, .) the
regular conditional distribution of ηl with respect to G, we get, by the change
of variable, that

l(ω)
∫

Rd

xf l
(
ω, l(ω)x

)
μ(dx, ω) =

∫

R

yf l(ω, y)μl(dy, ω) = 0.

Thus, l = 0 (a.s.), and the required property holds.
Remark. Let P be a probability measure under which S is a local martingale,
and let H be a strategy such that the process H · S is bounded from below.
Then this process is a true martingale converging at infinity to a random
variable H · S∞ almost surely. By the Fatou lemma, H · St ≥ E(H · S∞ | Ft).
Therefore, for this strategy, H · S ≥ 0 if and only if H · S∞ ≥ 0. These
considerations show that there is hope to get conditions for the existence of
an equivalent local martingale measure based on strategies of such a type.
This is done in the next section.

In the following model the NA-property is fulfilled, but there is no equiva-
lent separating measure. Namely, R∞ ⊂ L∞, R∞ ∩ L∞

+ = {0}, but C̄w
∞ = L∞!

Example. Let Ω = N, P ({2k − 1}) = P ({2k}) = 2−k−1, k ≥ 1, and let
Ft := σ{{1}, . . . , {2t} }. Put S0 := 0,

ΔSk = 25kI{2k−1} + 22kI{2k} − 2−kI{2k+1,...}.

Since FT is finite, the random variables H ·ST are bounded, and R∞ ⊆ L∞.
Let 0 ≤ ξ ≤ 1. Then ST ∧ ξ ∈ C∞, and ST ∧ ξ → ξ in probability as

T → ∞. Hence, ξ ∈ C̄w
∞. It follows that C̄w

∞ = L∞.
Let η 
= 0 be a random variable from R∞ ∩ L∞

+ , i.e., of the form H · ST .
Let k be the first integer for which at least one of the values η(2k − 1) or
η(2k) is strictly positive. Inspecting sequentially the increments HtΔSt, we
deduce that Ht = 0 for t < k, while the Fk−1-measurable random variable
Hk(j) is equal to a > 0 for j ≥ k − 1. It follows that Hk(j)ΔSk(j) ≤ −ae−k

for j ≥ 2k + 1. The negative values at elementary events 2k + 1 and 2k + 2
can be compensated only if Hk+1(j) ≥ a2−k for j ≥ 2k + 1. Continuing this
inspection, we arrive at the last increment HT ΔST the negative values of
which on elementary events 2T + 1, . . . cannot be compensated.

More surprisingly, in this example the closure of R∞ in the L1-norm inter-
sects L∞

+ only at zero. This can be shown by a similar sequential inspection of
limn Hn

t ΔSt. To ensure the positivity of η, these random variables should take
such large positive values at the elementary events with odd numbers larger
than k that the L1-norm of η would be infinite in an apparent contradiction.
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2.2.3 No Free Lunch with Vanishing Risk

The NFL-condition can be criticized because the weak* closure has no good
financial interpretation.1 Fortunately, it can be replaced by the more attractive
NFLVR-property.

To describe the latter we introduce the class of admissible strategies H
whose value processes H · S are bounded from below (by constants depending
on H) and converge a.s. to finite limits. Denoting by Rad the set of random
variables H · S∞, we define the sets Aad := Rad − L0

+ and Cad := Aad ∩ L∞.
We say that the process S has the NFLVR-property (no free lunch with

vanishing risk) if C̄ad ∩ L∞ = {0}, where C̄ad is the norm-closure of Cad. “Fi-
nancial” motivation of the terminology is based on the alternative description:
NFLVR-property holds if and only if P -lim ξn = 0 for every sequence ξn ∈ Cad

such that ‖ξ−
n ‖L∞ → 0, see Lemma 2.2.11.

Though the sets A and Aad may be not related by an inclusion, the prop-
erty Aad ∩ L0

+ = {0} ensures the property A∞ ∩ L0
+ = {0}. Indeed, the former

implies that, for any finite T , there is no arbitrage in the class of strategies
with the value processes (H · St)t≤T bounded from below. As we know, this is
equivalent to the absence of arbitrage in the class of all strategies and, hence,
to the existence of an equivalent martingale measure on FT . It follows that
the property Aad ∩ L0

+ = {0} implies that the bound H · ST ≤ c propagates
backwards and C∞ ⊆ Cad.

Theorem 2.2.9 NFLVR holds if and only if there is P ′ ∼ P such that
S ∈ Mloc(P ′).

Proof. It is easy to see (using the Fatou lemma) that a local martingale mea-
sure (and even a separating measure for R∞) separates C̄ad and L∞

+ . So, the
implication “if” is obvious. On the other hand, the condition C̄w

ad ∩ L∞
+ = {0},

ensuring that C∞ ⊆ Cad, implies the NFL-property, and the needed measure
P ′ does exist in virtue of Theorem 2.2.5. But according to Theorem 2.2.10
below, such a condition holds because under NFLVR the set C̄w

ad coincides
with C̄ad. ��

Theorem 2.2.10 Suppose that C̄ad ∩ L∞ = {0}. Then Cad = C̄w
ad.

Before the proof we establish some simple facts from functional analysis.
Let �η, ∞� be the set of ξ ∈ L0 such that ξ ≥ η.

Lemma 2.2.11 Let C be a convex cone in L∞ containing −L∞
+ . Then the

following properties are equivalent:
1 Of course, the definition of weak* closure involving only halfspaces is even simpler
than that of the norm closure. The intuition, though, appeals to the “interior”
description, in terms of limits. In general, the weak* sequential closure lies strictly
between the norm-closure and weak* closure. To get all points of the latter as limits,
one needs to consider convergence along the nets, which is, indeed, not intuitive.
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(a) C̄ ∩ L∞
+ = {0};

(b) P -lim ξn = 0 for every sequence ξn ∈ C such that ‖ξ−
n ‖L∞ → 0;

(c) the set C ∩ �−1, ∞� is bounded in probability.

Proof. (a) ⇒ (b). If the assertion fails, one can find a sequence ξn ∈ C such
that ξn ≥ −1/n and P (ξn > ε) ≥ ε for some ε > 0. Since ξn ∧ 1 ∈ C, we
may assume that ξn ≤ 1. By the von Weizsäcker theorem there are random
variables of the form ξ̄k = k−1

∑k
i=1 ξni (thus, elements of C) convergent to

a certain random variable ξ a.s. Note that the negative parts of ξ̄k converge
to zero in L∞. On the other hand, ξ is not zero. Indeed, ξ is also the limit of
k−1

∑k
i=1 ξ̃ni , where ξ̃n := ξn + 1/n ≥ 0 and P (ξ̃n > ε) ≥ ε. It is easy to see

that
Ee−ξ̃n ≤ P (ξ̃n ≤ ε) + e−εP (ξ̃n > ε) ≤ 1 − ε + e−εε < 1.

Due to convexity of the exponential, the same bound holds for the convex
combinations of ξ̃n and, thus, for the limit ξ. So, β := P (ξ > 0) > 0. By
the Egorov theorem, there is a measurable set Γ with P (Γ ) > 1 − β/2 on
which the convergence ξ̄n → ξ is uniform. But then the sequence ξ̄+

n IΓ − ξ̄−
n

of elements of C converges in L∞ to a nonzero random variable ξIΓ ≥ 0, in
contradiction with (a).

(b) ⇒ (c). If the set C ∩ �1, ∞� is unbounded in probability, then it contains
a sequence of random variables ξ0

n ≥ 1 such that limP (ξ0
n ≥ n) > 0. But then

the sequence ξn := ξ0
n/n violates condition (b).

(c) ⇒ (a). If (a) fails to be true, there exist a sequence ξn ∈ C and a
nonzero ξ ∈ L∞

+ such that ‖ξ − ξn‖L∞ ≤ 1/n. It follows that ‖ξ−
n ‖L∞ ≤ 1/n.

Then the random variables nξn belong to C ∩ �−1, ∞� and form a sequence
divergent to infinity on the set {ξ > 0} and, therefore, not bounded in prob-
ability. ��

The next lemma, comparatively with the previous one, requires a specific
structure of the cone C. We use the notation K̄P for the closure of K in L0.

Lemma 2.2.12 Let C = (K − L0
+) ∩ L∞ where K is a cone, K ⊆ �−1, ∞�.

Suppose that K is bounded in probability. Let ξn be a sequence in C ∩ �−1, ∞�
convergent to ξ a.s. Then the set K̄P ∩ �ξ, ∞� is nonempty and contains a
maximal element η0.

Proof. In virtue of the assumed structure of the set C, there are ηn ∈ K such
that ηn ≥ ξn. Applying the von Weizsäcker theorem, we find a subsequence
such that η̄k := k−1

∑k
i=1 ηni converge a.s. to some η̄ ≥ ξ. Since K is bounded

in probability, so is the set K̄P . Thus, η̄ is finite and belongs to K̄P ∩ �ξ, ∞�
= ∅.
It remains to recall that any nonempty closed bounded subset of L0 has a
maximal element with respect to the natural partial ordering (each linearly
ordered subset {ζα} has as a majorant ess supαζα < ∞, and the existence of
the maximal element holds by the Zorn lemma). ��

Lemma 2.2.13 Let Cad ∩ L+ = {0}. If H is an admissible integrand, then
H · S∞ ≥ −1 if and only if the process H · S ≥ −1.
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Proof. Suppose that H is admissible and H · S∞ ≥ −1 but there is u such
that P (Γu) > 0, where Γu := {H · Su < −1}. Then the strategy HI[u,∞[IΓu is
admissible, and the random variable HI]u,∞[IΓu · S∞ ≥ 0 is strictly positive
on Γu. This is a contradiction with the assumption of the lemma. ��

Proof of Theorem 2.2.10. According to the Krein–S̆mulian theorem, a convex
set is closed in σ{L∞, L1} if an only if its intersection with every ball of
L∞ is closed in probability. Obviously, the last condition follows if the set
is Fatou-closed, that is, if it contains the limit of any bounded from below
sequence of its elements convergent almost surely. So, let ξn be a sequence
in Cad convergent to ξ a.s. and such that all ξn ≥ −c. It is sufficient to
argue with c = 1. We apply Lemma 2.2.12 with K = Rad ∩ �−1, ∞�, which
is bounded in probability by virtue of Lemma 2.2.11. The theorem will be
proven if we show that a maximal element η0 in K̄P ∩ �ξ, ∞�
= ∅ belongs
to K. So, we have a sequence V n := Hn · S ≥ −1 with V n

∞ → η a.s. We
claim that supt |V n

t − V m
t | → 0 in probability as n, m → ∞. If this not true,

then P ((supt(V
ik
t − V jk

t )+ > ε) ≥ ε with some ε > 0 and ik, jk → ∞. For
Tk := inf{t : V ik

t − V jk
t > α}, we have P (Tk < ∞) ≥ ε. Let us consider the

process
Ṽ k :=

(
I[0,Tk]H

ik + I]Tk,T ]H
jk

)
· S,

which is an element of K = Rad ∩ �−1, ∞�. Note that

Ṽ k
∞ = V ik

∞ I{Tk=∞} + V jk
∞ I{Tk<∞} + ξk,

where ξk := (V ik

Tk
− V jk

Tk
)I{Tk<∞} ≥ 0, and P (ξk ≥ ε) ≥ ε. Using the von

Weizsäcker theorem in the same way as in the proof of Lemma 2.2.11, we find
a sequence V̄ k ∈ K such that V̄ k

∞ → η0 + ξ, where ξ ∈ L0 and ξ 
= 0. This
contradicts the maximality of η0.

Taking a subsequence, we may assume that supt |V n
t − V m

t | → 0 a.s. Thus,
there is a process V which is a uniform limit of V n (a.s.). Obviously, V ≥ −1,
and the limit V∞ exists and is finite. Since ΔV n

t = Hn
t ΔSt converges to ΔVt

and RT is closed, we have ΔVt = HtΔSt. ��

2.2.4 Example: “Retiring” Process

Here we present an example where a martingale measure can be constructed
in a rather straightforward way. We shall use the result later, in the study of
models with transaction costs.

Let S = (St)t≥0 be an Rd-valued discrete-time adapted process. Put
ξt = ΔSt, Γt := {ξt = 0}.

Proposition 2.2.14 Suppose that the following conditions hold:

(i) for each finite T , the process (St)t≤T has the NA-property;
(ii) IΓt ↑ 1 a.s.;
(iii) E(IΓt | Ft−1) > 0 a.s. on Γ c

t−1 for each t ≥ 1.
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Then there exists a probability Q ∼ P such that S is a Q-martingale
bounded in L2(Q) (hence, uniformly integrable with respect to Q).

Proof. By the DMW theorem condition (i) is equivalent to the NA-property
for each one-step model: the relation γξt ≥ 0 with γ ∈ L0(Rd, Ft−1) may hold
only if γξt = 0. The same theorem asserts that each ξt admits an equivalent
martingale measure which can be chosen to ensure the integrability of any
fixed finite random variable, e.g., |ξt|2. In terms of densities this means that
there are Ft-measurable random variables ᾱt > 0 such that E(ᾱtξt| Ft−1) = 0
and ct := E(ᾱt|ξt|2| Ft−1) < ∞. Normalizing, to this we can also add the
property E(ᾱt| Ft−1) = 1.

We define the Ft-measurable random variable αt > 0 by the formula

αt = IΓt−1 +
[

(1 − δt)IΓt

E(IΓt | Ft−1)
+

δtᾱtIΓ c
t

E(ᾱtIΓ c
t

| Ft−1)

]
IΓ c

t−1∩At + IΓ c
t−1∩Ac

t
,

where At := {E(ᾱtIΓ c
t

| Ft−1) > 0} and δt := 2−tE(ᾱtIΓ c
t

| Ft−1)/(1 + ct).
Clearly, E(αt| Ft−1) = 1.

Noting that ᾱtIΓ c
t
IAc

t
= 0 (a.s.), we obtain that E(αtξ

2
t | Ft−1) ≤ 2−t and

E(αtξt| Ft−1) = 0.
The process Zt := α1 . . . αt is a martingale which converges (stationarily)

a.s. to a random variable Z∞ > 0 with EZ∞ ≤ 1. Recalling that IΓt ↑ 1 (a.s.)
and using the identity Z∞IΓt = ZtIΓt , we obtain that

EZ∞ = E lim
t

Z∞IΓt = lim
t

EZ∞IΓt = lim
t

EZtIΓt = 1 − lim
t

EZtIΓ c
t
.

It follows that EZ∞ = 1 (i.e., (Zt) is a uniformly integrable martingale).
Indeed, E(αkIΓ c

k
| Fk−1 ≤ 2−k, and, hence,

EIΓ c
t
Zt = E

∏

k≤t

αkIΓ c
k

≤
∏

k≤t

2−k → 0.

Thus, Q := Z∞P is a probability measure under which S is a martingale. At
last,

EQS2
t =

∑

k≤t

EZkξ2
k ≤

∑

k≤t

2−k ≤ 1,

i.e., St belongs to the unit ball of L2(Q). ��
Remark 1. Condition (iii) cannot be omitted. Indeed, let S be the symmetric
random walk starting from zero and stopped at the moment when it hits unit.
It is a martingale, and condition (ii) holds. Since S∞ = 1 a.s., the process S
cannot be a uniformly integrable martingale with respect to a measure Q
equivalent to P .
Remark 2. Fix f : R → R+. A minor modification of the arguments leads to
a martingale measure Q for which EQ supt f(St) < ∞. Indeed, let (ηt) be an
adapted process with ηt = ηtIΓ c

t
≥ 0. As above, we can find αt with the extra

property E(αtf(St)| Ft−1) ≤ 2−t implying that E
∑

t ηt < ∞. It remains to
take ηt = f(St)IΓ c

t
and note that supt f(St) ≤

∑
t ηt.
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2.2.5 The Delbaen–Schachemayer Theory in Continuous Time

This book is addressed to the reader from whom we do not expect the knowl-
edge of stochastic calculus beyond standard textbooks. Luckily, the theory
of markets with transaction costs, in current state of art, does not require
such a knowledge, in a surprising contrast to the classical continuous-time
NA-theory initiated by Kreps and largely developed in a series of papers by
Delbaen and Schachermayer collected in [57]. However, it seems to be useful
to provide a short abstract of the main results of the latter, which will serve
as a background for a discussion explaining this difference.

In the classical continuous-time theory we are given a set X of scalar
semimartingales X on a compact interval [0, T ] interpreted as value processes;
the elements of RT := {XT : X ∈ X } are the investor’s “results”; the NA-
property means that RT ∩ L0

+ = {0}. Typically, X is the set of stochastic
integrals H · S, where S is a fixed d-dimensional semimartingale (interpreted
as the price processes of risky assets), and H is a d-dimensional predictable
process for which the integral is defined and is bounded from below by a
constant depending on H. The condition on H (“admissibility”) rules out the
doubling strategies. The experience with discrete-time models gives a hint that
martingale densities can be obtained by a suitable separation theorem. Put
CT := (RT − L0

+) ∩ L∞ (the set of bounded contingent claims hedgeable from
zero initial endowment) and introduce the “no-free-lunch condition” (NFL):
C̄w

T ∩ L∞
+ = {0}, where C̄w

T is a closure of CT in the weak* topology, i.e.,
σ{L∞, L1}. The Kreps–Yan theorem (Theorem 2.1.4) says that NFL holds if
and only if there exists an equivalent “separating” measure P ′ ∼ P such that
E′ξ ≤ 0 for all ξ from C̄w

T (or RT ). It is easy to see that in the model with
a bounded (resp., locally bounded) price process S, the latter is a martingale
(resp. local martingale).

The above result established by Kreps in the context of financial modelling
(“FTAP”) was completed by Delbaen and Schachermayer by a number of im-
portant observations for the model based on the price process S. We indicate
here only a few.

First, they observed that in the Kreps theorem the condition NFL can
be replaced by a visibly weaker (but, in fact, equivalent) condition “no-free-
lunch condition with vanishing risk” (NFLVR): C̄T ∩ L∞

+ = {0}, where C̄T is
the norm-closure of CT in L∞. The reason for this is in the following simply
formulated (but difficult to prove) result from stochastic calculus:

Theorem 2.2.15 Let the NFLVR-condition be fulfilled. Then CT = C̄w
T .

This result, which is a generalization of Theorem 2.2.9, can be formulated
in a more abstract way for a convex set X of bounded from below semimartin-
gales which satisfies some closedness and concatenation properties.

Second, they establish that in any neighborhood of a separating mea-
sure P ′, there exists an equivalent probability measure P̃ (also a separating
one) such that the semimartingale S with respect to P̃ is a σ-martingale
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(i.e., for some predictable integrants Gi with values in ]0, 1], the processes
Gi · Si, i = 1, . . . , d, are P̃ -martingales). The situation for the continuous time
is rather different even with respect to infinite-horizon discrete-time models:
one cannot claim the existence of an equivalent local martingale measure! The
reason for this is clear: in discrete time there is no difference between local
martingales and σ-martingales (which are just generalized martingales).

As we shall see further, for the model with transaction costs, the portfolio
processes are vector-valued, and their dynamics can be described using only
the Lebesgue integrals. In the case of zero transaction cost, one can make a
reduction to scalar wealth processes H · S, but the resulting H are (vector-
valued) processes of bounded variation and not arbitrary integrands, which is,
apparently, an additional complication. In the general case the problem of no-
arbitrage criteria has also other particularities arising even in the discrete-time
framework.
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