
Parallel Bioinspired Algorithms
in Optimization of Structures

Wac�law Kuś1 and Tadeusz Burczyński1,2

1 Department for Strength of Materials and Computational Mechanics,
Silesian University of Technology, ul. Konarskiego 18a, 44-100 Glwice, Poland

waclaw.kus@polsl.pl, tadeusz.burczynski@polsl.pl
2 Institute for Computer Modelling, Cracow University of Technology

ul. Warszawska 24, 31-155 Cracow, Poland

Abstract. The parallel versions of bioinspired algorithms are presented
in the paper. The parallel evolutionary algorithms and artificial immune
systems are described. The applications of bioinspired algorithms to op-
timization of mechanical structures are shown. The numerical tests pre-
sented in the paper were computed with use of grid based on Alchemi
framework.

1 Introduction

The optimization methods inspired by biological mechanisms have become very
popular in last few decades. Most of them give good results optimizing multi-
modal functions. The paper describes the computational intelligence algorithms:
evolutionary algorithms and artificial immune system. The optimization of me-
chanical structures is a long time process because of hundreds or even thousands
of objective function evaluations. The objective function evaluation is connected
with a direct problem which solved by means of FEM [12] in most cases. The
wall computation time can be shorten when parallel algorithms are used [3][2].
The computational grids provide sophisticated and user friendly environment
for performing time consuming computations. The grids give opportunity to
use distributed resources in engineering optimization problems [6]. The Alchemi
framework [1] is used in the paper. The shape optimization of the anvils in
two-stage forging process is considered as a benchmark problem.

2 Grid Based on Alchemi Framework

The Alchemi framework[1] was used to construct a grid. The Alchemi framework
is based on Windows .NET. This makes Alchemi useful only on hardware us-
ing Windows operating system. The Alchemi consists of few elements: Alchemi
Manager - the central host with scheduling capabilities, one manager is needed
for grid or part of grid, Alchemi Executors - the hosts performing computations,
Alchemi Cross Platform Manager - web services based manager with ability to
communicate with non-Alchemi parts of the grid. The Alchemi Manager host

R. Wyrzykowski et al. (Eds.): PPAM 2007, LNCS 4967, pp. 1285–1292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

1286 W. Kuś and T. Burczyński

can also be used as a Executor one. The security policy is based on usernames
and passwords. The users can be grouped. The end-users, executors and adminis-
trator groups are available by default. The information about users, tasks, jobs,
executor hosts are stored in database connected with Alchemi Manager. The
communication between Alchemi Manager and Executors are performed using
TCP/IP selected ports. These ports need to be available through firewalls. The
architecture of the grid based on Alchemi is shown in Fig. 1[1].

Fig. 1. Architecture of grid based on Alchemi framework[1]

The most important advantage of Alchemi framework is API provided for
grid applications developers. The execution of grid applications is performed us-
ing remote threads running on executors. The communication between remote
threads is prohibited. The task submitted to grid consists of threads. The Al-
chemi framework contains also Alchemi Console for monitoring tasks, threads
and executors. The Alchemi Manager and Executor can work as a system service.

3 Evolutionary Algorithms

The genetic and evolutionary algorithms (EA) [8] are based on mechanisms taken
from biological evolution of species. The selection based on the individual fitness,
mutations in chromosomes and individuals crossover are adopted. The genetic
algorithms operate on binary coded chromosomes. The term evolutionary al-
gorithm is more widely used for different modifications of genetic algorithms
(also for algorithms operating on genes containing floating point numbers). The
evolutionary algorithms operate on a population of individuals. The individu-
als contain one chromosome in most cases. The following description concerns
the evolutionary algorithm used in numerical examples. The staring population
is created randomly. Next the fitness function values are computed for each
chromosome. The selection chooses chromosomes for a new parent subpopula-
tion taking into account fitness function values. Evolutionary operators change
chromosomes’ genes and create chromosomes for the offspring population. The
uniform and Gaussian mutations and the simple crossover are randomly cho-
sen to perform chromosome changes. The new chromosome are evaluated. The

Parallel Bioinspired Algorithms in Optimization of Structures 1287

Fig. 2. The flowchart of the evolutionary algorithm

algorithm works iteratively till the end optimization condition is fulfilled. The
flowchart of evolutionary algorithm is presented in Fig. 2[7].

4 Artificial Immune Systems

The artificial immune systems are developed on the basis of mechanism dis-
covered in biological immune systems. An immune system is a complex system
which contains distributed groups of specialized cells and organs. The main pur-
pose of the immune system is to recognize and destroy pathogens - funguses,
viruses, bacteria and improper functioning cells. The lymphocytes cells play a
very important role in the immune system. The lymphocytes are divided into
several groups of cells. There are two main groups B and T cells, both con-
tains some subgroups (like B-T dependent or B-T independent). The B cells
contains antibodies, which could neutralize pathogens and are also used to rec-
ognize pathogens. There is a big diversity between antibodies of the B cells,
allowing recognition and neutralization of many different pathogens. The B cells
are produced in bone marrow in long bones. A B cell undergoes a mutation pro-
cess to achieve big diversity of antibodies. The T cells mature in thymus, only
T cells recognizing non self cells are released to the lymphatic and the blood
systems. There are also other cells like macrophages with presenting properties,
the pathogens are processed by a cell and presented by using MHC (Major His-
tocompatibility Complex) proteins. The recognition of a pathogen is performed
in a few steps. First, the B cells or macrophages present pathogen to a T cell
using MHC, the T cell decides if the presented antigen is a pathogen. The T
cell gives a chemical signal to B cells to release antibodies. A part of stimu-
lated B cells goes to a lymph node and proliferate (clone). A part of the B

1288 W. Kuś and T. Burczyński

cells changes into memory cells, the rest of them secrete antibodies into blood.
The secondary response of the immunology system in the presence of known
pathogens is faster because of memory cells. The memory cells created during
primary response, proliferate and the antibodies are secreted to blood. The an-
tibodies bind to pathogens and neutralizes them. Other cells like macrophages
destroy pathogens. The number of lymphocytes in the organism changes, while
the presence of pathogens increases, but after attacks a part of the lymphocytes
is removed from the organism. The artificial immune systems (AIS) [5] take only
few elements from the biological immune systems. The most frequently used
are the mutation of the B cells, proliferation, memory cells, and recognition by
using the B and T cells. The artificial immune systems have been used to op-
timization problems, classification and also computer viruses recognition. The
cloning algorithm Clonalg presented by von Zuben and de Castro [4] uses some
mechanisms similar to biological immune systems to global optimization prob-
lems. The unknown global optimum is the searched pathogen. The memory cells
contain project variables and proliferate during the optimization process. The
B cells created from memory cells undergo mutation. The B cells are evaluated
and better ones exchange memory cells. In Wierzchoń [11] version of Clonalg
the crowding mechanism is used - the diverse between memory cells is forced. A
new memory cell is randomly created and substitutes the old one, if two memory
cells have similar project variables. The crowding mechanism allows finding not
only the global optimum but also other local ones. The presented approach is
based on the algorithm presented in [11]. The mutation operator is changed.
The Gaussian mutation is used instead of nonuniform mutation in the presented
approach. The parallel artificial immune system (PAIS) was introduced by [10]
for classification problems. An artificial immune system is implemented as one
master process, other processes - workers evaluate objective functions for B cells.
The memory cells are created randomly. They proliferate and mutate creating
B cells. The number of clones created by each memory cell is determined by the
memory cells objective function value. The objective functions for B cells are
evaluated. The selection process exchanges some memory cells for better B cells.
The selection is performed on the basis of the geometrical distance between each
memory cell and B cells (measured by using design variables). The crowding
mechanism removes similar memory cells. The similarity is also determined as
the geometrical distance between memory cells. The process is iteratively re-
peated until the stop condition is fulfilled. The stop condition can be expressed
as the maximum number of iterations. The master part of the algorithm is placed
in the central processors and workers communicate only with the master. The
Alchemi grid environment was used in the computations. The flowchart of the
artificial immune system is shown in Fig. 3.

5 Numerical Example

The shape optimization of anvils in first stage of two-stage forming is consid-
ered as a numerical example [7]. The forging is performed using flat die in the

Parallel Bioinspired Algorithms in Optimization of Structures 1289

Fig. 3. The flowchart of the artificial immune system

second stage. The goal of the optimization is to find such shape of anvils which
gives cylindrical product of forging after second stage. The product after forging
have barreled shape. The product should have cylindrical shape after two-stage
forging. The forging is simulated using MSC.Marc[9] program. The finite ele-
ment method is used during direct problem solution. The preform is made from
highly nonlinear material. The material nonlinearities and different shapes of
the preform have influence on fitness function computing time. The anvils were
described using 8 parameters of the control polygon of NURBS curve. The ob-
jective function was defined as a difference between ideal cylindrical shape and
shape obtained after forging [7].

The optimization were performed by using evolutionary algorithm and artifi-
cial immune system. The results obtained using both algorithms were very close
to each other.

The results of two-stage forging when only flat anvils were used are presented
in Fig. 4. The barreling of the product can be easily observed. The results after
optimization using both algorithms are presented in Fig. 5. The shape of the
product is very close to the cylindrical one.

The theoretical speedup of parallel population-based algorithms can be very
close to the linear speedup. The speedup depends on number of chromosomes,
B-cells (number of objective functions to be evaluated in each iteration) and
number of processors. Consider the number of individuals n and number of
processors np. We assume that time need to compute fitness function value is
constant and equal to tf . The time need to perform communications between

1290 W. Kuś and T. Burczyński

Fig. 4. The product after forging using flat anvils

a) ,b)

Fig. 5. The product after forging by using the best found anvils: a) after first stage,
b) after second stage of forging

processors and time need to use evolutionary operators and selection is very
small (comparing to the time needed for fitness function evaluation tf) and can
be neglected. The wall time of computation of one iteration of optimization
algorithm using one processor is equal to t1 = tf ·n. When the np processors are
used the wall time is equal to

tnp = tf (n\np + r) (1)

where \ denotes integer division (the fractional part of the result is abandoned),
and the r = 0 is equal to:

r =
{

0 ifn mod np = 0
1 otherwise

(2)

The speedup is equal to:

s =
t1
tnp

=
n

n\np + r
(3)

The speedup is equal to np for the case when np > n. The ideal situation is
when the remainder of integer division of number of chromosomes and processors

Parallel Bioinspired Algorithms in Optimization of Structures 1291

is equal to zero, than the theoretical speedup can achieve linear speedup values
s = np for np ≤ n.

The experimental measurements of speedups for different number of proces-
sors were performed. The results are shown in Tab. 1. The 18 objective functions
were computed in each iteration. The theoretical measurements were performed
using average objective function computation time. The results shows better
measured speedups than theoretical ones in some cases. The times needed for
computations of objective functions for different individuals in real experiment
differs from each other. It occurs that a processor can compute two individu-
als when other compute only one in some cases. This situation occurs rarely,
but allows to obtain and explain better performance of real experiment than
theoretically predicted.

Table 1. Theoretical and measured speedups

number of processors measured speedup theoretical speedup
1 1.00 1.00
2 1.98 2.00
4 3.67 3.60
8 6.09 6.00
16 9.35 9.00
18 14.01 18.00

6 Conclusions

The presented parallel evolutionary algorithm and artificial immune system
working in grid environment based on Alchemi framework can be successfully
used in optimization problems. The complicated problems like optimization of
anvils in two-stage forging can be solved using presented approaches. The time
costs of optimization using both algorithms are similar. The theoretical speedup
computations and comparisons with experiment were shown in the paper.

Acknowledgement

The research is financed from the Polish science budget resources in the years
2005-2008 as the research project.

References

1. Akshay, L., Rajkumar, B., Rajiv, R., Srikumar, V.: Peer-to-Peer Grid Computing
and a.NET-based Alchemi Framework. In: Yang, L., Guo, M. (eds.) High Perfor-
mance Computing: Paradigm and Infrastructure, Wiley Press, New Jersey (2005)

2. Burczyński, T., Kuś, W., D�lugosz, A., Orantek, P.: Optimization and defect iden-
tification using distributed evolutionary algorithms. Engineering Applications of
Artificial Intelligence 17(4), 337–344 (2004)

1292 W. Kuś and T. Burczyński

3. Burczyński, T., Kuś, W.: Optimization of structures using distributed and par-
allel evolutionary algorithms. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M.,
Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 572–579. Springer, Hei-
delberg (2004)

4. de Castro, L.N., Von Zuben, F.J.: Learning and Optimization Using the Clonal Se-
lection Principle. IEEE Transactions on Evolutionary Computation, Special Issue
on Artificial Immune Systems 6(3), 239–251 (2002)

5. de Castro, L.N., Timmis, J.: Artificial Immune Systems as a Novel Soft Computing
Paradigm. Soft Computing 7(8), 526–544 (2003)

6. Kuś, W., Burczyński, T.: Grid-based evolutionary optimization of structures. In:
Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005.
LNCS, vol. 3911, Springer, Heidelberg (2006)

7. Kuś, W.: Evolutionary optimization of forging anvils using grid based on Alchemi
framework. In: Proc. 2nd IEEE International Conference on e-Science and Grid
Computing eScience 2006, Amsterdam (2006)

8. Michalewicz, Z.: Genetic algorithms + data structures = evolutionary algorithms.
Springer, Berlin (1996)

9. MSC.Marc, Users Guide (2002)
10. Watkins, A., Bi, X., Phadke, A.: Parallelizing an Immune-Inspired Algorithm for

Efficient Pattern Recognition. Intelligent Engineering Systems through Artificial
Neural Networks: Smart Engineering System Design 13, 225–230

11. Wierzchoń, S.T.: Artificial Immune Systems, theory and applications, EXIT, War-
saw (in Polish) (2001)

12. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. In: The Basis, But-
terworth, Oxford, vol. 1-2 (2000)

	Parallel Bioinspired Algorithms in Optimization of Structures
	Introduction
	Grid Based on Alchemi Framework
	Evolutionary Algorithms
	Artificial Immune Systems
	Numerical Example
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

