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Summary. We describe an approach to learning patterns in relational data represented as a
graph. The approach, implemented in the Subdue system, searches for patterns that maximally
compress the input graph. Subdue can be used for supervised learning, as well as unsupervised
pattern discovery and clustering.

Mining graph-based data raises challenges not found in linear attribute-value data. How-
ever, additional requirements can further complicate the problem. In particular, we describe
how concepts can be learned from training examples which are embedded into a single con-
nected graph, or supervised graph. We demonstrate the technique using data from a NASA
SST domain as well as a homeland security domain.

1 Introduction

Much of current data mining research focuses on algorithms to discover sets of
attributes that can discriminate data entities into classes, such as shopping or bank-
ing trends for a particular demographic group. In contrast, we are developing data
mining techniques to discover patterns consisting of complex relationships between
entities. The field of relational data mining, of which graph-based relational learning
is a part, is a new area investigating approaches to mining relational information by
finding associations involving multiple tables in a relational database.

Two main approaches have been developed for mining relational information:
logic-based approaches and graph-based approaches. Logic-based approaches fall
under the area of inductive logic programming (ILP) [1]. ILP embodies a number of
techniques for inducing a logical theory to describe the data, and many techniques
have been adapted to relational data mining [2]. Graph-based approaches differ from
logic-based approaches to relational mining in several ways, the most obvious of
which is the underlying representation. Furthermore, logic-based approaches rely on
the prior identification of the predicate or predicates to be mined, while graph-based
approaches are more data-driven, identifying any portion of the graph that has high
support. However, logic-based approaches allow the expression of more complicated
patterns involving, e.g., recursion, variables, and constraints among variables. These
representational limitations of graphs can be overcome, but at a computational cost.
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Our research is particularly applicable to domains in which the data is event
driven, such as counter-terrorism intelligence analysis, and domains where distin-
guishing characteristics can be object attributes or relational attributes. This ability
has also become a crucial challenge in many security-related domains. For example,
the US House and Senate Intelligence Committees’ report on their inquiry into the
activities of the intelligence community before and after the September 11, 2001 ter-
rorist attacks revealed the necessity for “connecting the dots” [3]; that is, focusing
on the relationships between entities in the data, rather than merely on an entity’s
attributes. A natural representation for this information is a graph, and the ability to
discover previously unknown patterns in such information could lead to significant
improvement in our ability to identify potential threats. Similarly, identifying char-
acteristic patterns in spatial or temporal data can be a critical component in acquiring
a foundational understanding of important research in many of the basic sciences.

Learning systems capable of utilizing graph-based data typically require training
examples to be represented using disjoint graphs, one for each example. In a highly
relational domain, however, the positive and negative examples of a concept are not
easily separated. We call such a graph a supervised graph, because the graph as a
whole contains embedded class information which may not be easily separated into
individual labeled components. In this chapter we describe a method of learning
concepts from examples in supervised graphs that builds upon the capabilities of the
Subdue graph-based data mining system.

2 Related Work

Graph-based data mining (GDM) is the task of finding novel, useful, and understand-
able graph-theoretic patterns in a graph representation of data. Several approaches to
GDM exist based on the task of identifying frequently occurring subgraphs in graph
transactions, i.e., those subgraphs meeting a minimum level of support. Kuramochi
and Karypis [4] developed the FSG system for finding all frequent subgraphs in large
graph databases. FSG starts by finding all frequent single and double edge subgraphs.
Then, in each iteration, it generates candidate subgraphs by expanding the subgraphs
found in the previous iteration by one edge. In each iteration the algorithm checks
how many times the candidate subgraph occurs within an entire graph. The can-
didates, whose frequency is below a user-defined level, are pruned. The algorithm
returns all subgraphs occurring more frequently than the given level.

Yan and Han [5] introduced gSpan, which combines depth-first search and lex-
icographic ordering to find frequent subgraphs. Their algorithm starts from all fre-
quent one-edge graphs. The labels on these edges together with labels on incident
vertices define a code for every such graph. Expansion of these one-edge graphs
maps them to longer codes. The codes are stored in a tree structure such that if
α = (a0, a1, ..., am) and β = (a0, a1, ..., am, b), the β code is a child of the α code.
Since every graph can map to many codes, the codes in the tree structure are not
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unique. If there are two codes in the code tree that map to the same graph and one is
smaller then the other, the branch with the smaller code is pruned during the depth-
first search traversal of the code tree. Only the minimum code uniquely defines the
graph. Code ordering and pruning reduces the cost of matching frequent subgraphs
in gSpan.

Inokuchi et al. [6] developed the apriori-based graph mining (AGM) system,
which uses an approach similar to Agrawal and Srikant’s [7] apriori algorithm for
discovering frequent itemsets. AGM searches the space of frequent subgraphs in a
bottom-up fashion, beginning with a single vertex, and then continually expanding
by a single vertex and one or more edges. AGM also employs a canonical coding
of graphs in order to support fast subgraph matching. AGM returns association rules
satisfying user-specified levels of support and confidence.

We distinguish graph-based relational learning (GBRL) from graph-based data
mining in that GBRL focuses on identifying novel, but not necessarily most frequent,
patterns in a graph representation of data [8]. Only a few GBRL approaches have
been developed to date. Two specific approaches, Subdue [9] and GBI [10], take a
greedy approach to finding subgraphs maximizing an information theoretic measure.
Subdue searches the space of subgraphs by extending candidate subgraphs by one
edge. Each candidate is evaluated using a minimum description length metric [11],
which measures how well the subgraph compresses the input graph if each instance
of the subgraph were replaced by a single vertex. GBI continually compresses the
input graph by identifying frequent triples of vertices, some of which may represent
previously compressed portions of the input graph. Candidate triples are evaluated
using a measure similar to information gain. Kernel-based methods have also been
used for supervised GBRL [12].

3 Graph-based Relational Learning in Subdue

The Subdue graph-based relational learning system1 [9,13] encompasses several ap-
proaches to graph-based learning, including discovery, clustering, and supervised
learning, which will be described in this section. Subdue uses a labeled graph
G = (V,E,L) as both input and output, where V = {v1, v2, . . . , vn} is a set of
vertices, E = {(vi, vj)|vi, vj ∈ V } is a set of edges, and L is a set of labels that can
appear on vertices and edges. The graph G can contain directed edges, undirected
edges, self-edges (i.e., (vi, vi) ∈ E), and multi-edges (i.e., more than one edge be-
tween vertices vi and vj). The input graph need not be connected, but the learned
patterns must be connected subgraphs (called substructures) of the input graph. The
input to Subdue can consist of one large graph or several individual graph transac-
tions, and in the case of supervised learning, the individual graphs are classified as
positive or negative examples.

1 Subdue source code, sample datasets, and publications are available at http://ailab.uta.edu/
subdue.
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3.1 Substructure Discovery

SUBDUE’s discovery algorithm is shown in Fig. 1 and is given as the input graph,
the beam length, and a limit on the total number of substructures considered by the
algorithm.

Subdue searches for a substructure that best compresses the input graph. Subdue
uses a variant of beam search for its main search algorithm. A substructure in Subdue
consists of a subgraph definition and all its occurrences throughout the graph. The
initial state of the search is the set of substructures consisting of all uniquely labeled
vertices. The only operator of the search is the ExtendSubstructure operator. As its
name suggests, it extends a substructure in all possible ways by a single edge and a
vertex, or by only a single edge if both vertices are already in the subgraph.

The search progresses by applying the ExtendSubstructure operator to each sub-
structure in the current state. The resulting state, however, does not contain all the
substructures generated by the ExtendSubstructure operator. The substructures are
kept on a queue and are ordered based on their description length (or sometimes
referred to as value) as calculated using the MDL principle described later.

The search terminates upon reaching a user-specified limit on the number of
substructures extended, or upon exhaustion of the search space. Once the search

Subdue (Graph, Beam, Limit)

queue Q = {v | v is a vertex in Graph having a unique label}

bestSub = first substructure in Q

repeat

newQ = {}

for each substructure S ∈ Q

newSubs = Extend-Substructure (S, Graph)

in all possible ways

Evaluate (newSubs)

newQ = newQ ∪ newSubs mod  Beam

Limit = Limit − 1

if best substructure in newQ better than bestSub

then bestSub = best substructure in Q

Q = newQ

until Q is empty or  Limit ≤ 0

return bestSub

Fig. 1. SUBDUE’s discovery algorithm
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terminates and Subdue returns the list of best substructures found, the graph can
be compressed using the best substructure. The compression procedure replaces all
instances of the substructure in the input graph by single vertices, which represent
the substructure definition. Incoming and outgoing edges to and from the replaced
instances will point to, or originate in the new vertex that represents the instance. The
Subdue algorithm can be invoked again on this compressed graph. This procedure
can be repeated a user-specified number of times, and is referred to as an iteration.

Subdue’s search is guided by the minimum description length (MDL) [11] prin-
ciple, which seeks to minimize the description length of the entire data set. The
evaluation heuristic based on the MDL principle assumes that the best substructure
is the one that minimizes the description length of the input graph when compressed
by the substructure [9]. The description length of the substructure S given the in-
put graph G is calculated as DL(S) + DL(G|S), where DL(S) is the description
length of the substructure and DL(G|S) is the description length of the input graph
compressed by the substructure. Description length DL() is calculated as the num-
ber of bits in a minimal encoding of the graph. Subdue seeks a substructure S that
maximizes compression as calculated in (1).

Compression =
DL(G)

DL(S) + DL(G|S)
(1)

As an example, Fig. 2a shows a collection of geometric objects described by their
shapes and their “ontop” relationship to one another. Figure 2b shows the graph rep-
resentation of a portion (“triangle on square”) of the input graph for this example
and also represents the substructure minimizing the description length of the com-
pressed graph. Figure 2c shows the input example after being compressed by the
substructure.

3.2 Graph-based Clustering

Given the ability to find a prevalent subgraph pattern in a larger graph and then
compress the graph with this pattern, iterating over this process until the graph can no
longer be compressed will produce a hierarchical, conceptual clustering of the input

S1

S1 S1 S1

object

object

triangle

square

on

shape

shape

(a) Input (b) Substructure (c) Compressed

Fig. 2. Example of Subdue’s substructure discovery capability



188 J. Potts et al.

data. On the ith iteration, the best subgraph Si is used to compress the input graph,
introducing new vertices labeled Si in the graph input to the next iteration. Therefore,
any subsequently discovered subgraph Sj can be defined in terms of one or more Si,
where i < j. The result is a lattice, where each cluster can be defined in terms of
more than one parent subgraph. For example, Fig. 3 shows such a clustering done on
a DNA molecule. See [14] for more information on graph-based clustering. The idea
of clustering graphs has been explored by others such as Günter and Bunke [15, 16]
who also determine the optimal number of clusters automatically, and by Giugno and
Shasha [17], who provide graph querying and clustering tools for a wide variety of
graph types. Our approach is unique in employing a discovery algorithm to perform
the clustering, and in yielding a hierarchical lattice of graph clusters from the original
graph data.

3.3 Supervised Learning from Graphs

Extending a graph-based discovery approach to perform supervised learning in-
volves, of course, the need to handle negative examples (focusing on the two-class
scenario). In the case of a graph the negative information can come in two forms.
First, the data may be in the form of numerous small graphs, or graph transactions,
each labeled either positive or negative. Second, data may be composed of two large
graphs: one positive and one negative.

The first scenario is closest to the standard supervised learning problem in that we
have a set of clearly defined examples. Figure 4a depicts a simple set of positive and
negative examples. Let G+ represent the set of positive graphs, and G− represent
the set of negative graphs. Then, one approach to supervised learning is to find a
subgraph that appears often in the positive graphs, but not in the negative graphs.
This amounts to replacing the information-theoretic measure with simply an error-
based measure. For example, we would find a subgraph S that minimizes

|{g ∈ G+|S �⊆ g}|+ |g ∈ G−|S ⊆ g}|
|G+|+ |G−| ,

where S ⊆ g means S is isomorphic to a subgraph of g. The first term of the
numerator is the number of false negatives, and the second term is the number of
false positives.

This approach will lead the search toward a small subgraph that discriminates
well, e.g., the subgraph in Fig. 4b. However, such a subgraph does not neces-
sarily compress well, nor represent a characteristic description of the target con-
cept. We can bias the search toward a more characteristic description by using
the information-theoretic measure to look for a subgraph that compresses the pos-
itive examples, but not the negative examples. If I(G) represents the description
length (in bits) of the graph G, and I(G|S) represents the description length of
graph G compressed by subgraph S, then we can look for an S that minimizes
I(G+|S) + I(S) + I(G−) − I(G−|S), where the last two terms represent the por-
tion of the negative graph incorrectly compressed by the subgraph. This approach
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Fig. 4. Graph-based supervised learning example with (a) four positive and four negative
examples, (b) one possible graph concept, and (c) another possible graph concept

will lead the search toward a larger subgraph that characterizes the positive exam-
ples, but not the negative examples, e.g., the subgraph in Fig. 4c.

Finally, this process can be iterated in a set-covering approach to learn a dis-
junctive hypothesis. If using the error measure, then any positive example contain-
ing the learned subgraph would be removed from subsequent iterations. If using
the information-theoretic measure, then instances of the learned subgraph in both
the positive and negative examples (even multiple instances per example) are com-
pressed to a single vertex. See [18] for more information on graph-based supervised
learning.

4 Learning from Supervised Graphs

Learning systems capable of utilizing graph-based input have typically required the
training examples to be represented as disjoint graphs. Input for these systems con-
sists of training examples represented as individual graphs, each of which is an exam-
ple of one of n classes. The goal is to learn a concept which can be used to determine
to which class a previously unseen graph belongs.

In a domain where training examples are naturally embedded (and possibly over-
lap) in a single graph, efficiently transforming the data for input to systems such as
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these can be quite difficult. If a system requires individual graphs for each example,
then it is necessary to excise each example along with some amount of surrounding
graph structure to create a disconnected graph containing that example. If the ex-
amples are close enough to each other in the original graph, then this surrounding
data may overlap with the surrounding data of another example. In fact, the training
example graph may even have to include all or part of another example. This overlap
will result in some data appearing in more than one example graph.

Determining just how much structure to include in an example is tricky. Taking
too large a region around the example causes extra data to be handled. Taking too
small a region may result in the loss of potentially vital information. Since process-
ing graph-based data is very resource intensive, any redundant information can have
a drastic effect on performance. Failure to include enough data may result in the
inability of the system to learn.

We hypothesize that a compression-based graph mining algorithm can be used to
learn class information embedded in a single, connected graph. We develop a learner
that allows the input graph, containing all the training examples for all classes to
be input with a minimum of preprocessing and a minimum of added or redundant
information. In a highly complex relational domain, positive and negative examples
of a concept are not easily separated into nonoverlapping graphs. We call such a
graph with embedded, possibly overlapping examples a supervised graph, or a graph
that contains embedded class information which may not be easily separated into
individual labeled components.

For example, consider a social network in which we look for patterns distin-
guishing various income levels. Individuals of a particular income level can appear
anywhere in the graph and may be interact with or be related to individuals at other
income levels, so we cannot easily partition the graph into separate training cases
without potentially severing the target relationships.

To validate our hypothesis, we propose a representation requiring the addition to
the input graph of one vertex for each example. We also propose an enhancement
of the Subdue algorithm which will construct substructures capable of identifying
the examples of each class guided by a new performance metric called classification
compression. Finally, we propose a representation for these learned substructures
called a classification sequence which facilitates the determination of class member-
ship for new observations.

4.1 Problem Statement

Our approach to learning concepts from supervised graphs is embodied in the
Subdue-EC algorithm. In addition to the labeled graph defined earlier as G =
(V,E,L), Subdue-EC also expects as input a set of examples, X , where each x ∈ X
is a set of one or more vertices in V and a set C of class designations, one for each ex-
ample from the set of n classes. Subdue-EC the learns a concept which is expressed
as a set of subgraphs, S, which can be used to assign a class to designated sets of
vertices in graphs.
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For simplicity in the following discussion, we will consider the two-class learn-
ing problem. However, the algorithm, the performance measures, and the classifica-
tion concepts are applicable to problems with any number of classes. Furthermore,
the examples are represented as sets of vertices. Again, for simplicity, we will use
single-vertex examples, but any number of vertices may be part of a training example.

4.2 Evaluating Concepts

To be able to perform inductive learning on a single graph with both positive and
negative examples, compression of the input graph becomes a less desirable evalu-
ation metric because the graph contains examples of all classes. To allow the MDL
principle to guide us in classification, we have to look not at the graph, but at the clas-
sification itself. That is, we assume that our receiving agent already has the graph and
all of the examples it contains. What we need to send is the classification of those
examples. The straightforward way to do that is simply send the class number for
each example. Since the examples are in the same order in the receiver’s copy of the
graph as they are in the sender’s, we can just send the class number for examples
1 . . . n and the agent will be able to classify each example. The description length of
this naive classification, Cnaive, is simply the number of bits required to provide a
class number for each of the examples. Thus DL(Cnaive) is nlog2k, where n is the
number of classes and k is the number of examples.

An alternative to just telling the receiver the class of each example, is to provide
the concept as a sequence of substructures s1, s2, . . . , sj , each with an associated
class. If an instance of one of the substructures is found in the new graph, then the
class associated with that substructure is assigned to all vertices in the substructure
instance. The description length of this encoding is thus the description length of the
substructure sequence with classes, or classification sequence CS. This is computed
as the sum of the description length of the substructures in the sequence, DL(CS) =
ΣiDL(si).

Of course, this approach may misclassify or fail to classify some examples. In
this case, we must inform the agent of the correct classification for those examples.
Thus the descriptive length of our alternative message is the sum of the descriptive
lengths of each substructure, the class number for each substructure, and encoded
exceptions for each class. The description length of this exception list, DL(EL), will
require (k+m+u)log2(n+1) bits, where m is the number of misclassified examples
and u is the number of examples left unclassified by the substructure sequence.

If the description length of CS together with ES is smaller than the descrip-
tion length of the naive classification, DL(CS) + DL(EL) < DL(Cnaive), then
we will have reduced the message size required to convey the classification to the
receiver. We will thus have compressed the classification using our concept, or clas-
sification sequence CS. In the same way that Subdue searches for a subgraph that
best compresses the input graph, Subdue-EC searches for a classification sequence
which provides the best compression of the naive classification. We can now calcu-
late compression as
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Compression =
DL(CS) + DL(EL)

DL(Cnaive)
=

ΣiDL(si) + (k + m + u)log2(n + 1)
nlog2k

.

As before, we take the reciprocal of the compression and use the resulting value
as the evaluation measure for potential concepts (classification sequences). The clas-
sification sequence that yields the largest value is selected by Subdue-EC as the best
concept.

4.3 Identifying Examples

Now that we have a metric for evaluating potential concepts, the remaining issue
is how to identify the embedded examples and their associated classes. This is ac-
complished by the addition of a vertex to the graph for each training example. The
vertex is labeled with the class name of the example and is connected by an edge
to each vertex in the graph that is part of the training example. We do not need to
mark the edges of the example since Subdue-EC will include them in the classifying
substructure if they are needed for classification purposes. This vertex is relabeled
by Subdue-EC to “EXAMPLE.”

Observe that with this representation, vertices and edges in the original graph can
be members of more than one training example, possibly from different classes. This
is the type of representational freedom that we desire. An individual may interact
with one group that is represents a terrorist threat and at the same time do business
with other groups that are not under suspicion. In fact, these types of overlaps are
sometimes critical to finding the desired concept.

In addition, note that now we can make the initial state of the search algorithm
much smaller by starting with only one substructure. All we need are the instances
of the single vertex subgraph “EXAMPLE,” since all classifying substructures must
start there. This “focuses” the search immediately on the right place. Subdue-EC is
constrained to never add an “EXAMPLE” node during substructure extension since
no classifying substructure can have more than one such vertex.

When the example in Fig. 5 is processed by Subdue-EC, the following five clas-
sifying substructures are discovered:

– D (negative)
– B→A→C (positive)
– C (negative)
– B→A→B (positive)
– B (negative)

In this description, the underlined vertices are the ones being classified (the ver-
tices to which an “EXAMPLE” vertex is connected). Thus the first vertex labeled
“B” in the B→A→B subgraph is being classified as positive, not the second one.
The second “B” vertex is later classified as negative.

Two points should be addressed here. The order that the classifying substructures
are applied must be the same as the order in which they were discovered. This facil-
itates the discover of smaller substructures. For example, the substructure B→A→B
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Fig. 5. Embedded examples. Positive-labeled vertices are connected to vertices in the figure
with a “+,” and negative-labeled vertices are connected to vertices the figures with a “−”

compresses away both positive B vertices. Any remaining B vertices are thus part of
negative examples.

5 Experimental Results Using NASA Data

To validate the effectiveness of Subdue-EC to discover concepts from supervised
graphs, we chose a simple classification task on a large set of data. We obtained sea
surface temperature (SST) data from NASA [19]. This data is averaged over a five-
day period and placed on a one degree global grid. The data contains a fill value for
grid points for which the SST is not available such as land or due to missing infor-
mation. We first determined for each grid point whether the temperature increased,
decreased, or stayed the same from January 8, 1990 to February 7, 1990. We then
placed the nonfill temperature values into one of 9 equal width bins.

We represent this data as a graph, as shown in Fig. 6. Vertices are used to repre-
sent each month, discretized latitude and longitude values, hemisphere, and change
in temperature from one month to the next. Vertices labeled with “increase” repre-
sent regions with increasing temperatures and “decrease” vertices represent regions
with decreasing temperatures. Each vertex is connected to its northern and western
neighbors, continued in a circle around the globe. This results in a graph that looks
like a mesh cylinder, containing 259,200 vertices and 323,640 edges. Each grid point
also was connected to a unique vertex containing its temperature binand to another
unique vertex labeled N or S, indicating the position’s hemisphere.

Note that this is an example dataset where there may exist overlap between in-
stances of the same or different classes. While instances could be extracted from the
graph and presented as separate subgraphs for training, the amount of information
surrounding each region node that is critical for learning the concept is not known. As
a result, the instances cannot be effectively extracted without jeopardizing the acc-
uracy of the result and greatly affecting the runtime of the system due to redundancy
in the instances.
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Fig. 6. NASA’s SST data (left) and Subdue graph representation (right)

Table 1. Accuracy results on NASA SST data

run #substructures time (seconds) accuracy on accuracy on
generated training data test data

0 106 52822 86.07% 85.31%
1 104 49669 85.81% 85.26%
2 109 76336 85.57% 85.25%
3 100 71679 85.81% 85.32%
4 104 78874 85.66% 85.69%
5 111 80388 85.84% 86.22%
6 108 73174 85.84% 85.00%
7 112 77236 85.81% 85.39%
8 99 75392 85.64% 84.57%
9 108 80497 85.76% 84.10%
Min 99 49669 85.57% 84.10%
Max 112 80497 86.07% 86.22%
Avg 106.1 71607 85.78% 85.21%

Table 1 shows the results of tenfold cross-validation testing applied to the NASA
SST data. For each fold 90% of the grid nodes were randomly selected as training
data and the remaining 10% were assigned to a second copy of the graph and was
used for testing. The accuracy was good, and accuracy for the test data was fairly
consistent with the accuracy on the training data.

We also conducted some tests varying Subdue parameters such as beam size and
limit (the number of substructures extended and evaluated). These tests were con-
ducted on 100% of the examples. That is, class vertices were attached to all 64,800
grid points. Surprisingly, the accuracy did not change a lot even when the number
of substructures decreased substantially. This is due to the tradeoff in the numerator
of classification compression between substructure size and misclassifications. For
the NASA data, adding one more vertex adds about 16 bits to the size of the sub-
structure. Since there are about 64,000 examples, the penalty for a misclassification
is about 16 bits (that is how many bits it takes to tell the sender the example num-
ber of the misclassified example). Thus eliminating two misclassifications more than
pays for making the substructure one vertex bigger. This tends to drive substructure
growth larger and larger until terminated by the limit parameter. On the other hand,
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Table 2. Accuracy with increasing limit

limit substructures time accuracy
generated

6 16 17345 83.70%
7 11 10603 84.41%
8 28 28099 85.17%
9 28 26768 85.17%

10 26 26077 85.12%
20 71 53370 85.46%
40 113 77107 85.87%
60 135 82789 85.90%
80 137 92012 86.09%

100 146 101324 86.23%

the unclassified examples are then classified on a subsequent iteration. Thus there are
more substructures and larger substructures as the limit is increased, but the accuracy
does not significantly improve (see Table 2).

Our final test on the NASA data is to train Subdue-EC with all of the 1990 data
and use the learned concept to classify 1991 data. We created a graph using the same
representation for data from January 8, 1991 to February 7, 1991, and calculated the
accuracy of the learned substructures on this new data. Using a limit of ten substruc-
tures, Subdue-EC achieved 81.98% accuracy, showing that the learned substructures
have classification value even for subsequent years.

The learned substructures are what one might intuitively expect. The first in the
sequence addresses the large number of same examples. These are primarily land ar-
eas which are still land masses 30 days later and therefore still have fill values for the
temperature and receive the same classification. Otherwise, the concepts represent
the ideas that the northern hemisphere gets colder in winter and the southern hemi-
sphere gets warmer. Interestingly, temperature bin 0 classifies as same. This may be
because the coldest areas do not change temperature much throughout the year. In
addition, southern hemisphere grid points north of temperature bin 6 decrease. This
is consistent with the fact that these areas are on the equator and therefore start to
cool off as winter drags on and they get less sun. Finally, it should be noted that none
of the tests ever leave any data unclassified. On these data there always seems to be
benefit to including a catchall classification substructure at the end that has enough
correct classifications to pay for its misclassifications.

6 Experimental Results Using Security Data

As part of a government-sponsored program, a domain has been built to simulate
the evidence available about terrorist groups and their plans prior to execution. This
domain is motivated from an understanding of the real problem of intelligence data
analysis. The domain consists of a number of concepts, including threat and non-
threat actors, threat, and nonthreat groups, targets, exploitation modes (vulnerability
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modes are exploited by threat groups, productivity modes are exploited by threat
and nonthreat groups), capabilities, resources, communications, visits to targets, and
transfer of resources between actors, groups, and targets.

The domain follows a general plan of starting a group, recruiting members with
needed capabilities, acquiring needed resources, visiting a target, and then exploiting
the target. The data we use for our experiments represents the activities of terrorist
organizations as they attempt to exploit vulnerable targets, represented by the execu-
tion of five different event types. They are:

– Two-way-communication. Involves one initiating person and one responding
person.

– N-way-communication. Involves one initiating person and multiple respondents.
– Generalized-transfer. One person transfers a resource.
– Applying-capability. One person applies a capability to a target.
– Applying-resource. One person applies a resource to a target.

All data is generalized so that no specific names are used. The simulator gener-
ates evidence related to all of these events, and this evidence is passed through filters
varying the degree of observability and noise in the final evidence.

For our experiments, a graph was creating in which vertices are used to represent
member agents from threat and nonthreat groups. Anyone which whom these agents
communicates is also added to the graph and connected to the agent with an undi-
rected “association” edge. Communication events between associates are similarly
represented with “association” edges.

In addition, each person may be described using attribute and capability vertices.
In the simulated data, every individual is assigned at least two strong “trust-link”
attributes (e.g., school, place of worship, former military unit, extended family) and
at least two weaker “culture-link” attributes (e.g., nationality, language, religion) that
are commonly applied in social network development. Capabilities refer to unique
abilities exhibited by the individual. Figure 7 shows a portion of the graph generated
for this dataset.

Our experiments were conducted on a large graph (graph1) consisting of 435,429
vertices and 763,504 edges representing 61,105 people as well as a smaller graph
(graph2) consisting of 217,901 vertices and 314,793 edges representing 30,715 peo-
ple. Class vertices labeled threat were attached to members of known threat groups,
and nonthreat vertices were attached to members of nonthreat groups.

Our goal for the experiments was to see how well Subdue-EC could classify
threat and nonthreat individuals, given training examples embedded in a single con-
nected graph. In the original graphs there is a large predominance of nonthreat in-
dividuals (58,373, in contrast to the 1,732 threat individuals). To provide a stronger
sample to the learning algorithm, we randomly sampled an equal number of threat
and nonthreat individuals.

Table 3 summarizes the results for graph1. For the individuals that included
one or more of the classifying substructures, Subdue’s classification accuracy was
72.98%. However, the computational limitations of the discovery algorithm pre-
vented further substructures from being discovered in a reasonable amount of time,
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Fig. 7. A section of the graph representation for the counter-terrorism data

Table 3. Classification results on graph1

total correct incorrect unclassified
threats 1,732 765 35 932
nonthreats 1,732 70 290 1, 372

so 2,304 individuals remained unclassified. The greatest number of misclassifications
were false positives (classified as threats when the true classification is nonthreat),
which is a preferred type of mistake for this problem.

Of the substructures that were discovered, many consisted of an individual
exhibiting a particular capability. However, a few of the substructures, such as the
one shown in Fig. 8, highlight an association between two individuals in addition to
attributes and capabilities of the individuals.

The fact that Subdue discovered useful substructures that highlight relationships
between the individuals to be classified highlights the strength of Subdue-EC. If the
individuals have been separated into disjoint examples, this relationship could not
have been found. If we tried to extract individuals with a large enough neighborhood
of information around them to find these discoveries, several difficulties would arise.
First, how much information do we retain? The user cannot always know a priori
how much of a neighborhood must be extracted in order to retain all potentially
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Fig. 8. A sample discovered substructures. This substructure highlights an association between
two individuals, each with certain capabilities. The individual on the left is a known threat

Table 4. Results of graph1 testing on all individuals

total correct incorrect unclassified
threats 1, 732 765 35 932
nonthreats 59, 373 1, 830 12, 840 44, 703

Table 5. Classification results on graph2

total correct incorrect unclassified
set 1 threats 1, 225 463 28 734

nonthreats 1, 225 38 221 966
set 2 Threats 1, 225 463 28 734

nonthreats 29, 490 876 5, 596 23, 018

useful information. Second, when the neighborhood of information is extracted, it
is in essence reproduced for each example object that requires the information. This
results in substantial cost increase both in memory and in processing time for the
discovery algorithm.

To determine the effect of the sample size on Subdue’s classification accuracy,
we performed another classification experiment on graph1 in which training and test-
ing were performed on the entire set of input threat and nonthreat individuals. The
results are summarized in Table 4. As can be seen, the results did not change for
threat individuals. While the number of correctly classified nonthreat individuals did
increase, so did the number of misclassifications, resulting in a poorer performance
than the earlier experiment.

In a separate experiment, we evaluated the generalizability of Subdue’s results by
using the substructures discovered in the first two experiments to classify individuals
from a separate dataset, graph2. Table 5 shows the results of this experiment. As
can be seen, while the percentage of accurate classifications does drop for the new
dataset, Subdue still is able to perform fairly well on previously unseen data.

7 Conclusions

The handling of supervised graphs is an important direction for mining structural
data. To extend our current work, we would like to handle embedded instances with-
out a single representative instance node (the “increase” and “decrease” nodes in
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our NASA example) and instances that may possibly overlap. In addition, improved
scalability of graph operations is necessary to learn patterns, evaluate their accuracy
on test cases, and ultimately to use the patterns to find matches is future intelligence
data. The graph and subgraph isomorphism operations are a significant bottleneck to
these capabilities. We are currently designing faster approximate versions of these
operations to improve the scalability of graph-based relational learning.
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