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Summary. Many applications such as information retrieval and classification, involve
measuring graph distance or similarity, i.e., matching graphs to identify and quantify their
common features.

Different kinds of graph matchings have been proposed, giving rise to different graph
similarity or distance measures. Graph matchings may be univalent – when each vertex is
associated with at most one vertex of the other graph – or multivalent – when each vertex
is associated with a set of vertices of the other graph. Also, graph matchings may be exact
– when all vertex and edge features must be preserved by the matching – or error-tolerant –
when some vertex and edge features may not be preserved by the matching.

The first goal of this chapter is to propose a new graph distance measure based on the
search of a best matching between the vertices of two graphs, i.e., a matching minimizing
vertex and edge distance functions. This distance measure is generic in the sense that it allows
both univalent and multivalent matchings and it is parameterized by vertex and edge distance
functions defined by the user depending on the considered application. The second goal of
this chapter is to show how to use this generic measure to model and to solve classical graph
matching problems such as (sub-)graph isomorphism problem, error-tolerant graph matching,
and nonbijective graph matching.

1 Introduction

In many applications such as information retrieval or classification, measuring object
similarity is an important issue [1]. Measuring the similarity of two objects consists
in identifying and quantifying their commonalities. A dual problem is to measure the
distance of these two objects, i.e., identify and quantify their differences.

Graphs are often used to model structured objects, e.g., scene representation
[2–5], design objects [6], molecule representations [7, 8], and web documents [9].
Vertices represent object components while edges represent binary relations between
these components. Vertices and edges may be labeled by their features. For example,
to represent an image by a graph, one usually associates a vertex with each region
of the segmented image, and an edge with each couple of vertices corresponding to
two adjacent regions. In order to better represent images, each vertex may be labeled
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by the size and the bounding box of its associated region and each edge may be
labeled by a value representing how much two regions are connected (by means of
the number of adjacent pixels) [2].

1.1 Graph Matchings and Distance Measures

Computing the distance/similarity of two graphs usually involves finding a “best”
matching of the graph vertices (i.e., the one that most preserves vertex and edge fea-
tures) and then quantifying this set of preserved features. Hence, graph distance mea-
sures are closely related to graph matching problems and the capacity of a measure
to identify the commonalities of graphs depends on the kind of considered matching.

Graph matchings may be univalent – when each vertex is associated with at most
one vertex of the other graph – or multivalent – when each vertex is associated with
a set of vertices of the other graph. Also, graph matchings may be exact – when all
vertex and edge features must be preserved by the matching – or error-tolerant –
when some vertex and edge features may not be preserved by the matching.

Examples of univalent exact matchings are:

1. Graph isomorphism, that involves finding a bijection between the graph vertices
that preserves all vertex and edge features of the graphs and that is used to prove
graph equivalence

2. Subgraph isomorphism, that involves finding an injection from the vertices of
the first graph to the vertices of a second graph that preserves all vertex and edge
features of the first graph and that is used to prove graph inclusion

In many applications, we are looking for similar objects and not “identical” ones
and error-tolerant matchings are needed. Examples of univalent error-tolerant match-
ings are:

1. Maximum common subgraph [10, 30], that looks for the largest matching (with
respect to the number of matched vertices) that preserves all the edges of the
matched vertices

2. Graph edit distance [10, 30] that looks for the minimum cost set of operations
(i.e., vertex and edge insertion, deletion and relabeling) needed to transform the
first graph into a graph that is isomorphic to the second graph

Many applications involve comparing objects described at different granula-
rity levels and multivalent matchings are needed. Different graph distance/similarity
measures based on multivalent error-tolerant graph matchings have been proposed:

1. Champin and Solnon [6] measure the similarity of design[ed] objects where one
single component of an object may play the same role as that of a set of com-
ponents of another object, depending on the granularity of object description.
Therefore, the graph similarity measure is based on multivalent matchings where
one vertex in a graph may be associated with a set of vertices of the other graph.

2. Boeres et al. [4] and Deruyver et al. [12] use graph matching to match an image
to its model. In this application, the model has a schematic aspect easy to seg-
ment while the image is noised and usually over-segmented. Therefore, scene
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recognition is better expressed as a multivalent matching problem where a set of
vertices of the scene may be matched with a same vertex of the model.

3. Ambauen et al. [2] propose a new graph edit distance to overcome the prob-
lem of comparing over and under segmented images. This distance is based on
multivalent matchings: two new edit operations – vertex splitting and merging –
are introduced in order to merge or to split over- or under-segmented regions.

1.2 Motivation and Outline of the Chapter

Many different graph distance/similarity measures have been proposed in the litera-
ture [13, 14]. These measures are based on different definitions of a “best” matching
between two graphs depending on the considered application. For example, the graph
similarity measure of Boeres et al. [4] is specific to the recognition of brain images,
and in this context specific constraints are added (e.g., all model vertices must be
mapped and each image vertex must be mapped to exactly one model vertex). There-
fore, it is difficult to use this measure in other applications.

Ambauen et al. defines [2] a more generic graph distance measure: the measure
is parameterized by the cost of each possible operation and these costs can be cho-
sen depending on the considered application. As in [4], this measure adds an image
recognition specific constraint on the considered multivalent matching: the multiva-
lent matching operations (vertex merging and splitting) must be nonoverlapping, i.e.,
if one wants to link two vertices u and v of one graph to another vertex u′, one has
to merge u and v and as a consequence, it will not be possible anymore to link u
with a vertex v′ without linking v to v′. If this constraint makes sense in a context of
over-segmented regions, it is not a desirable property in all applications (in particular
for the application of [6]). Also, graph distance measure of [2] is not generic enough
to express all kinds of multivalent matching problems: for example, it cannot be used
to model the problem described in [4].

In [15] Sorlin and Solnon prove that the similarity measure of Champin and
Solnon [6] is generic, i.e., it can be used to compute many other similarity measures
(including measures of [4] and [2]). However, if it is generic, it is not always straight-
forward to use. This measure deals with multilabeled graphs and the similarity of
two multilabeled graphs is computed with respect to the set of identical labels that
are associated by a mapping. These labels are discrete values, and each label is either
recovered or lost by a mapping. However, in many applications and in particular in
an image recognition context, one has to compare continuous values. For example,
the size of a region of an image is a continuous value and in order to compare two
regions, one has to compute the difference between their sizes. Furthermore, when
two components are merged, one needs an operator to aggregate these continuous
values (for example, the sum of the sizes or the average color of a set of merged
regions). Finally, some constraints on matchings are difficult to express in [6]. For
example, it is difficult to constrain a vertex to be linked to vertices having a given
property only. To express these kinds of constraints on matchings, we show in [15]
that one can label the graph vertices in such a way that the original matching can
be reconstituted from the set of recovered labels. As a consequence, the similarity
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of [6] can be used to compute any other similarity measures based on a best graph
matching, whatever the constraints on the matching are.

Our goal is to propose a generic graph distance measure, i.e., a unifying frame-
work for all graph matchings and distance measures. This framework offers a bet-
ter understanding of the different existing matchings and distance measures. It also
allows us to define generic algorithms that can be used to compute any kind of graph
distance/similarity measures. Indeed, many algorithms have been proposed for com-
puting graph distance measures or solving graph matching problems. However, all
these algorithms are dedicated to one problem and cannot be used to solve other
kinds of graph matching problems.

Our generic distance has the same power of expression than the similarity mea-
sure of Champin and Solnon [6]. However, it is more flexible: it is based on a multi-
valent matching of the graph vertices like in [6] but it is parameterized by vertex and
edge distance functions that can more easily deal with vertex and edge properties
(such as labels, real values, etc.).

In Sect. 2, we introduce some definitions and notations needed to define our dis-
tance measure. In Sect. 3, we propose a new generic graph distance measure. In
Sect. 4, we compare this measure with some classical graph matching problems. In
Sect. 5, we prove that our distance and the graph similarity measure of Champin and
Solnon [6] are equivalent in the sense that they have the same power of expression.
We conclude in Sect. 6 with some computational issues.

2 Definitions and Notations

2.1 Graph

A graph is a pair G = (V,E) such that:

1. V is a finite set of vertices
2. E ⊆ V × V is a set of oriented couples of vertices called edges

Given an edge (u, v) ∈ E, the vertices u and v are called the endpoints of the
edge (u, v).

Partial Subgraph and Induced Subgraph

A graph G′ = (V ′, E′) is a partial subgraph of a graph G = (V,E) (noted G′ ⊆p G)
if and only if V ⊆ V ′ and E′ ⊆ E ∩ (V × V ′).

A graph G′ = (V ′, E′) is an induced subgraph of a graph G = (V,E) (noted
G′ ⊆i G) if and only if V ⊆ V ′ and E′ = E ∩ (V ′ × V ′). An induced subgraph
G′ = (V ′, E′) of a graph G = (V,E) is the graph that contains all the edges of G
having their endpoints into V ′. As a consequence, an induced subgraph is always a
partial subgraph of G (Fig. 1).
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Fig. 1. Examples of a graph G, a partial subgraph G′ of G, and an induced subgraph G′′ of G

Graph Matching

Given two graphs G = (V,E) and G′ = (V ′, E′), a multivalent matching m bet-
ween G and G′ is a relation between V and V ′, i.e., m ⊆ V × V ′. Without loss of
generality, we shall suppose that V ∩ V ′ = ∅.

Given a matching m, we note m(v) the set of vertices matched with a vertex v.
More formally, we define:

∀v ∈ V,m(v) =̇ {v′ ∈ V ′|(v, v′) ∈ m}
∀v′ ∈ V ′,m(v′) =̇ {v ∈ V |(v, v′) ∈ m}

By extension, when the set of vertices matched with a vertex v is a singleton (i.e.,
|m(v)| = 1), we shall also use m(v) to denote the single vertex that belongs to m(v).

When there is no constraint on the matching, i.e., each vertex may be associated
in m with 0, 1 or several vertices, the matching is said to be multivalent.

However, one may add constraints on the number of vertices a vertex may be
matched with, thus defining matchings that are partial functions, total functions,
univalent matchings, injective matchings, and bijective matchings. Given two graphs
G = (V,E) and G′ = (V ′, E′), a matching m ⊆ V × V ′ is said to be:

1. A partial function from G to G′ if m links each vertex of V to at most one vertex
of G′, i.e.:

∀v ∈ V , |m(v)| ≤ 1

2. A total function from G to G′ if m links each vertex of V to exactly one vertex
of G′, i.e.:

∀v ∈ V , |m(v)| = 1

3. A univalent matching between G and G′ if m links each vertex of V and V ′ to
at most one vertex, i.e.:

∀v ∈ V, |m(v)| ≤ 1 ∧ ∀v′ ∈ V ′, |m(v)| ≤ 1
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4. An injective matching from G to G′ if m links each vertex of V to a different
vertex of V ′, i.e.:

∀v ∈ V, |m(v)| = 1 ∧ ∀(u, v) ∈ V × V, u �= v ⇒ m(u) �= m(v)

Another definition of an injective matching from G to G′ is a matching m such
that:

∀v ∈ V, |m(v)| = 1 ∧ ∀v′ ∈ V ′, |m(v′)| ≤ 1

5. A bijective matching between G and G′ if m links each vertex of V (resp. V ′)
to a different vertex of V ′ (resp. V ), i.e.:

∀v ∈ V, |m(v)| = 1 ∧ ∀(u, v) ∈ (V × V ), u �= v ⇒ m(u) �= m(v)
∀v′ ∈ V ′, |m(v′)| = 1 ∧ ∀(u′, v′) ∈ (V ′ × V ′), u′ �= v′ ⇒ m(u′) �= m(v′)

Another definition of a bijective matching between G and G′ is a matching m
such that m links each vertex of V and V ′ to exactly one vertex, i.e.:

∀v ∈ V, |m(v)| = 1 ∧ ∀v′ ∈ V ′, |m(v′)| = 1

Edges Matched by a Matching

Given a matching m of the vertices of two graphs G = (V,E) and G′ = (V ′, E′), an
edge (u, v) ∈ E is said to be matched with another edge (u′, v′) ∈ E′ if and only if
{(u, u′), (v, v′)} ⊆ m. By extension, we shall note m(u, v) the set of edges matched
with the edge (u, v) by the matching m, i.e.:

∀(u, v) ∈ E,m(u, v) =̇ {(u′, v′) ∈ E′|u′ ∈ m(u), v′ ∈ m(v)}
∀(u′, v′) ∈ E′,m(u′, v′) =̇ {(u, v) ∈ E|u ∈ m(u′), v ∈ m(v′)}

Subgraph Induced by a Matching

Given a matching m of two graphs G = (V,E) and G′ = (V ′, E′), the subgraph
of G (resp. G′) induced by m is noted Gm = (Vm, Em) (resp. G′

m = (V ′
m, E′

m))
where Vm and Em (resp. V ′

m and E′
m) are the sets of vertices and edges of G (resp.

G′) matched with at least one vertex or edge of G′ (resp. G), i.e.:

Vm = {v ∈ V/m(v) �= ∅} , Em = {(u, v) ∈ E/m(u, v) �= ∅}
V ′

m = {v′ ∈ V ′/m(v′) �= ∅} , E′
m = {(u′, v′) ∈ E′/m(u′, v′) �= ∅}

Given a matching m of two graphs G = (V,E) and G′ = (V ′, E′), if the sub-
graph of G induced by m, Gm = (Vm, Em), is equal to G, then, m is an homomor-
phism between G and G′, i.e., m is a function that links each edge of G to an edge
of G′ (Fig. 2).
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Fig. 2. Two graphs G and G′ and their subgraphs induced by the matching m =
{(1, a), (1, d), (2, b), (3, c)}

3 A New Graph Distance Measure

3.1 Vertex and Edge Distance Functions

The first step when computing the distance between two graphs is to match their
vertices in order to identify their commonalities. We consider here multivalent graph
matchings, i.e., each vertex of a graph may be matched with a – possibly empty – set
of vertices of the other graph.

Given a matching m, one has to know for each vertex and each edge how much
its properties are recovered by m. Therefore, we assume the existence of a vertex
(resp. edge) distance function δvertex (resp. δedge) that gives for each vertex v (resp.
edge (u, v)) of the two graphs and each set of vertices sv (resp. set of edges se) of the
other graph a real value from the interval [0,+∞[ expressing the distance between
v (resp. (u, v)) and the set sv (resp. se). More formally, we assume the existence of
the two following functions:

δvertex : (V, ℘(V ′)) ∪ (V ′, ℘(V ))→ [0,+∞[
δedge : (E,℘(E′)) ∪ (E′, ℘(E))→ [0,+∞[

Roughly speaking, the functions δvertex and δedge express the local preferences
on the way to match a vertex and an edge. These functions depend on the considered
application and are used to reflect both the similarity knowledge and constraints that
a matching must satisfy.

Generally, the distance is equal to +∞ if the vertex v (resp. the edge (u, v)) is
not comparable with the set of vertices sv (resp. the set of edges se), i.e., when it is
not possible to match v (resp. (u, v)) with sv (resp. se). The distance is equal to 0
when all the properties of v (resp. (u, v)) are recovered by the set sv (resp. se).

For example, if we are looking for an univalent matching (i.e., each vertex is
linked to at most one other vertex) that recovers a maximum number of vertices and
edges, one can define the functions δvertex and δedge as follows:
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∀(v, sv) ∈ (V × ℘(V ′)) ∪ (V ′ × ℘(V )), δvertex(v, sv) = 1 if sv = ∅
= 0 if |sv| = 1
= +∞ otherwise

∀((u, v), se) ∈ (E × ℘(E′)) ∪ (E′ × ℘(E)), δedge((u, v), se) = 1 if se = ∅
= 0 if |se| = 1
= +∞ otherwise

3.2 Graph Distance

Given a matching m ⊆ V ×V ′ of two graphs G = (V,E) and G′ = (V ′E′) and two
distance functions δvertex and δedge, the distance of these two graphs with respect to
the matching m depends on the distance between each vertex (resp. edge) and the set
of vertices (resp. edges) they are matched with, i.e.:

δm(G,G′) = ⊗({(v, δvertex(v,m(v)))/v ∈ V ∪ V ′} ∪ (1)
{((u, v), δedge((u, v),m(u, v)))/(u, v) ∈ E ∪ E′})

where⊗ is an application-dependent function which is used to aggregate the different
vertex and edge distances. Roughly speaking, the function ⊗ is used to express the
global preferences on the distances of the vertices and the edges of the graphs. The
function ⊗ should be defined in such a way that the minimal distance between two
graphs with respect to a matching is equal to 0 and if the distance between two graphs
G and G′ is equal to +∞, the matching of these two graphs is not acceptable with
respect to the considered application. In most cases, the function ⊗ is defined as
a sum or a weighted sum of the distances of each component. However, in order to
express more sophisticated distances, we do not restrict ourself to this particular case.
For example, the function ⊗ may be defined in such a way that the distance between
two graphs depends on the number of vertices that have at most one incoming or
outgoing edge having a distance higher than a threshold.

Formula (1) defines the distance of two graphs with respect to a given matching
m between the graph vertices. Now, we define the distance of two graphs G and
G′ as the distance induced by the best matching, i.e., the matching giving rise to a
minimal distance:

δ(G,G′) = min
m⊆V ×V ′

δm(G,G′) (2)

Finally, given two graphs G and G′, a distance measure between G and G′ is
defined as a triple δ =< δvertex, δedge,⊗ > where δvertex is the vertex distance
function, δedge the edge distance function, and ⊗ is the function used to aggregate
the distances of all vertices and edges of the graphs.

Note that the word “distance” is used here in its common sense: the distance
of two graphs is low when the two graphs share a lot of common properties and is
equal to 0 (the minimum) when we can find a “perfect” matching of the two graphs
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(with respect to the considered application). In the general case, our distance mea-
sure does not have the mathematical properties of a classical distance measure and
is not a metric. As a consequence, the distance between two graphs may have an
infinite value, it may not respect the triangular inequality, nor be symmetric and the
distance between a graph and itself may not be equal to 0. However, depending on
the functions δvertex, δedge, and ⊗, our distance measure may be a metric.

3.3 Graph Similarity

We have chosen to define the distance of two graphs but distance and similarity
measures are two dual concepts and we could use this graph distance measure to
define a graph similarity measure of two graphs. For example, in many applications,
the distance between two graphs G and G′ is always lower or equal to the sum
of the distance between each graph and the empty graph G∅ (i.e., G∅ = (∅, ∅)). As
a consequence, we could define a graph similarity measure using this property:

sim(G,G′) = 1− δ(G,G′)
δ(G,G∅) + δ(G′, G∅)

4 Equivalence with Other Graph Matchings
and Distance/Similarity Measures

In this section, we show how our graph distance measure can be used to solve clas-
sical graph matching problems.

In this section, the function ⊗ is always defined by the function ⊗∑ that
returns the sum of the distances of each vertex and each edge of the two graphs.
More formally, we define ⊗∑ : (V ∪ V ′ ∪E ∪ E′)× [0,+∞[→ [0,+∞[ by:

⊗∑(S) =
∑

(u,d)∈S

d +
∑

((u,v),d)∈S

d

4.1 Exact Graph Matchings

In this section we show how to reformulate exact graph matching problems with our
graph distance measure. For all these kinds of problems, we are looking for an univa-
lent matching between the vertices of two graphs. As a consequence, the vertex and
edge distance functions are defined in such a way that a multivalent matching always
involves an infinite positive distance. Furthermore, as these problems are satisfaction
problems, the objective is always to find a matching m such that δm(G,G′) = 0.

Graph Isomorphism

Problem Definition

Given two graphs that have the same number of vertices, the graph isomorphism
problem consists in deciding if these two graphs are identical minor a renaming of
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their vertices. More formally, two graphs G = (V,E) and G′ = (V ′, E′) such that
|V | = |V ′| are isomorphic if and only if there exists a bijective matching m ⊆ V ×V ′

such that (u, v) ∈ E ⇔ (m(u),m(v)) ∈ E′.1

Measure Definition

To solve the graph isomorphism problem using our distance measure, we have to
define vertex and edge distance functions such that these functions return 0 if the
vertex or edge is matched with exactly one element and +∞ otherwise (in order to
forbid nonbijective matchings). More formally:

∀v ∈ V ∪ V ′,∀sv ⊆ V ∪ V ′, δiso
vertex(v, sv) = 0 if |sv| = 1

= +∞ otherwise
∀(u, v) ∈ E ∪ E′,∀se ⊆ E ∪ E′, δiso

edge(u, v, se) = 0 if |se| = 1
= +∞ otherwise

δiso = < δiso
vertex, δiso

edge,⊗∑ >

Theorem 1. Given two graphs G = (V,E) and G′ = (V ′, E′), the two following
properties are equivalent:

1. G and G′ are isomorphic
2. δiso(G,G′) = 0

Proof. (1) ⇒ (2). By definition, if the two graphs are isomorphic, there exists a
bijective matching m ⊆ V × V ′ such that (u, v) ∈ E ⇔ (m(u),m(v)) ∈ E′.
As a consequence, ∀v ∈ V ∪ V ′, |m(v)| = 1 (because m is a bijective matching)
and ∀(u, v) ∈ E ∪ E′, |m(u, v)| = 1 (because ∀(u, v) ∈ V × V, (u, v) ∈ E ⇔
(m(u),m(v)) ∈ E′). So, δiso

m (G,G′) = 0 and therefore δiso(G,G′) = 0.
(2)⇒ (1). If δiso(G,G′) = 0, there exists a matching m such that δiso

m (G,G′) =
0. Given the definition of δiso

vertex, m is such that ∀v ∈ V ∪V ′, |m(v)| = 1. As a con-
sequence, the matching m is a bijective matching. Furthermore, if δiso

m (G,G′) = 0,
then, ∀(u, v) ∈ E∪E′, |m(u, v)| = 1. As a consequence, each edge of both graphs is
matched with exactly one edge of the other graph, so (u, v) ∈ E ⇔ (m(u),m(v)) ∈
E′. So, m defines an isomorphic matching between the two graphs and G and G′ are
isomorphic.

Partial Subgraph Isomorphism (or Monomorphism)

Problem Definition

Given two graphs G = (V,E) and G′ = (V ′, E′) such that |V | ≤ |V ′|, the partial
subgraph isomorphism problem (or monomorphism problem) consists in deciding
1 Let us recall that for univalent matchings, when the set of vertices matched with a vertex

v is a singleton, i.e., |m(v)| = 1, we note m(v) to denote the single vertex, which is an
element of m(v).
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if the graph G is isomorphic to a partial subgraph of the graph G′, i.e., in finding
an injective matching m ⊆ V × V ′ such that ∀(u, v) ∈ V × V, (u, v) ∈ E ⇒
(m(u),m(v)) ∈ E′. The partial subgraph isomorphism problem is used to decide if
a graph is included into another graph.

Measure Definition

To solve the partial subgraph isomorphism problem using our distance measure, we
have to define vertex and edge distance functions such that these functions return 0 if
an element of G is matched with one element (in order to preserve vertices and edges
of G) and +∞ otherwise (in order to avoid noninjective matching). Distance func-
tions for vertices and edges of G′ just forbid nonunivalent matchings. More formally:

G

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∀v ∈ V,∀sv ⊆ V ′, δpsub
vertex(v, sv) = 0 if |sv| = 1

= +∞ otherwise
∀(u, v) ∈ E,∀se ⊆ E′, δpsub

edge(u, v, se) = 0 if |se| = 1
= +∞ otherwise

G′

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∀v ∈ V ′,∀sv ⊆ V, δpsub
vertex(v, sv) = 0 if |sv| ≤ 1

= +∞ otherwise
∀(u, v) ∈ E′,∀se ⊆ E, δpsub

edge(u, v, se) = 0 if |se| ≤ 1
= +∞ otherwise

δpsub = < δpsub
vertex, δpsub

edge ,⊗∑ >

Theorem 2. Given two graphs G = (V,E) and G′ = (V ′, E′), the two following
properties are equivalent:

1. The graph G is a partial subgraph of G′

2. δpsub(G,G′) = 0

Proof. (1) ⇒ (2). By definition, if G is a partial subgraph of G′, there exists an
injective matching m ⊆ V × V ′ such that ∀(u, v) ∈ V × V, (u, v) ∈ E ⇒
(m(u),m(v)) ∈ E′. As a consequence, ∀v ∈ V, |m(v)| = 1, ∀v ∈ V ′, |m(v)| ≤ 1,
and ∀(u, v) ∈ E′, |m(u, v)| ≤ 1 (because m is an injective matching). Further-
more, ∀(u, v) ∈ E, |m(u, v)| = 1 (because (u, v) ∈ E ⇒ (m(u),m(v)) ∈ E′).
So, given the definition of δpsub

vertex and δpsub
edge , δpsub

m (G,G′) = 0 and therefore
δpsub(G,G′) = 0.

(2) ⇒ (1). If δpsub(G,G′) = 0, then, there exists a matching m such that
δpsub
m (G,G′) = 0. Given the definition of δpsub

vertex, ∀v ∈ V, |m(v)| = 1 and
∀v ∈ V ′, |m(v)| � 1. As a consequence, m is an injective matching. Furthermore,
∀(u, v) ∈ E, |m(u, v)| = 1. As a consequence, each edge of G is matched with
exactly one edge of G′ and (u, v) ∈ E ⇒ (m(u),m(v)) ∈ E′. So, there exists an
injective matching m ⊆ V × V ′ that preserves all the edges of G and, by definition,
G is a partial subgraph of G′.
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Induced Subgraph Isomorphism

Problem Definition

Given two graphs G = (V,E) and G′ = (V ′, E′) such that |V | ≤ |V ′|, the induced
subgraph isomorphism problem consists in deciding if the graph G is isomorphic to
an induced subgraph of G′, i.e., in finding an injective matching m ⊆ V × V ′ such
that ∀(u, v) ∈ V × V, (u, v) ∈ E ⇔ (m(u),m(v)) ∈ E′. The induced subgraph
isomorphism problem is a special case of partial subgraph isomorphism: it adds the
constraint that for each couple (u, v) ∈ V 2, if (u, v) is not an edge of G, then, the
corresponding vertices in m must neither be an edge of G′.

Measure Definition

The induced subgraph problem between G = (V,E) and G′ = (V ′, E′) adds a
constraint on each couple of vertices of V (to be or not matched with an edge of G′).
To check these constraints, the edge distance function δedge has to be defined for each
couple (u, v) ∈ V × V of vertices of G and each subset se ⊆ E′ of edges of G′.
As a consequence, one has to compare the complete graph G′′ = (V, V × V ) to the
graph G′ = (V ′, E′). The vertex distance function must return +∞ if the matching
is not injective (rules a, d, and e) and 0 otherwise. The edge distance function must
return +∞ if an edge of G is not matched (rule b) or if a couple (u, v) of vertices of
G which is not an edge is matched with an edge of G′ (rule c) and 0 otherwise. More
formally, given a graph G = (V,E) and a graph G′ = (V ′, E′), we have to compare
the graphs G′′ = (V, V × V ) and G′ with the two following distance functions:

G′′

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

a ∀v ∈ V,∀sv ⊆ V ′, δsub
vertex(v, sv) = 0 if |sv| = 1

= +∞ otherwise
b ∀(u, v) ∈ V 2,∀se ⊆ E′, δsub

edge,G(u, v, se) = 0 if (u, v) ∈ E ∧ |se| = 1
c = 0 if (u, v) �∈ E ∧ se = ∅

= +∞ otherwise

G′

⎧

⎪

⎨

⎪

⎩

d ∀v ∈ V ′,∀sv ⊆ V, δsub
vertex(v, sv) = 0 if |sv| ≤ 1

= +∞ otherwise
e ∀(u, v) ∈ E′,∀se ⊆ E, δsub

edge,G(u, v, se) = 0 if |se| ≤ 1
= +∞ otherwise

δsub
G = < δsub

vertex, δsub
edge,G,⊗∑ >

Theorem 3. Given two graphs G = (V,E) and G′ = (V ′, E′), the two following
properties are equivalent:

1. The graph G is an induced subgraph of G′

2. δsub
G (G′′, G′) = 0, where G′′ = (V, V × V )

Proof. (1) ⇒ (2). By definition, if G is a subgraph of G′, there exists an injective
matching m ⊆ V ×V ′ such that ∀(u, v) ∈ V ×V, (u, v) ∈ E ⇔ (m(u),m(v)) ∈ E′.
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As a consequence, ∀v ∈ V, |m(v)| = 1, ∀v ∈ V ′, |m(v)| ≤ 1, and ∀(u, v) ∈
E′, |m(u, v)| ≤ 1 (because m is an injective matching). Furthermore, ∀(u, v) ∈
E, |m(u, v)| = 1 (because ∀(u, v) ∈ V × V, (u, v) ∈ E ⇒ (m(u),m(v)) ∈ E′)
and ∀(u, v) ∈ (V × V )−E,m(u, v) = ∅ (because ∀(u, v) ∈ V × V, (u, v) �∈ E ⇒
(m(u),m(v)) �∈ E′). So, given the definition of δsub

vertex and δsub
edge,G, δsub

mG(G′′, G′) =
0 and δsub

G (G′′, G′) = 0.
(2) ⇒ (1). If δsub

G (G′′, G′) = 0, there exists a matching m such that
δsub
mG(G′′, G′) = 0. Given the definition of δsub

vertex, ∀v ∈ V, |m(v)| = 1 and
∀v ∈ V, |m(v)| ≤ 1. As a consequence, m is an injective matching. Further-
more, if m involves a distance equal to 0, then, ∀(u, v) ∈ E, |m(u, v)| = 1.
As a consequence, each edge of G is matched with exactly one edge of
G′, so ∀(u, v) ∈ V × V, (u, v) ∈ E ⇒ (m(u),m(v)) ∈ E′. Finally,
∀(u, v) ∈ (V × V ) − E,m(u, v) = ∅, and each couple of vertices of G
that is not an edge of G is linked to a couple of vertices of G′ that is nei-
ther an edge of G′. As a consequence, m is an injective matching such that
∀(u, v) ∈ V × V, (u, v) ∈ E ⇔ (m(u),m(v)) ∈ E′ and G is an induced sub-
graph of G′.

Generalization of the Subgraph Isomorphism Problem

Problem Definition

Zampelli et al. propose [16] a generalization of the subgraph isomorphism problem.
This problem is called “approximate subgraph matching” and consists in looking for
a pattern graph into a target graph. It is used for the analysis of biochemical networks.
The specificity of this problem is that the pattern graph is composed of mandatory
vertices and edges (i.e., vertices and edges that must be preserved by the matching),
optional vertices (i.e., vertices that may not be matched), and forbidden edges (i.e.,
edges that must not be preserved by the matching). Note that an edge having an
optional endpoint is optional until its endpoints are matched.2 More formally, an ap-
proximate pattern graph is defined by a tuple Gp = (Vp, Op, Ep, Fp) where (Vp, Ep)
is a graph, Op ⊆ Vp is the set of optional nodes, and Fp ⊆ (Vp × Vp) − Ep is the
set of forbidden edges. An approximate subgraph matching m between an approx-
imate pattern graph Gp = (Vp, Op, Ep, Fp) and a target graph Gt = (Vt, Et) is an
univalent matching m ⊆ Vp × Vt such that:

1. ∀v ∈ Vp −Op, |m(v)| = 1
2. ∀(u, v) ∈ Vp × Vp, |m(u)| = 1 ∧ |m(v)| = 1
∧ (u, v) ∈ Ep ⇒ (m(u),m(v)) ∈ Et

3. ∀(u, v) ∈ Vp × Vp, |m(u)| = 1 ∧ |m(v)| = 1
∧ (u, v) ∈ Fp ⇒ (m(u),m(v)) �∈ Et

4. ∀v′ ∈ VT , |m(v′)| ≤ 1

2 This notion of optional vertices is only useful when we look for a matching satisfying some
other constraints. Otherwise, we just have to remove optional vertices and their edges from
the pattern graph.
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Measure Definition

Solving an approximate subgraph matching problem consists in finding an univalent
matching m between Gp and the graph G′ = (Vt, Vt×Vt) such that each mandatory
vertex is matched with exactly one vertex (rule a), each optional vertex is matched
with at most one vertex (rule b), each edge (u, v) is either matched with a couple of
vertices (u′, v′) of G′ which is an edge of Gt (rule d) or is not matched at all if one
of its optional endpoints is not matched (rule c), each forbidden edge is not matched
(rule e). Finally, the matching must be univalent (rules f and g). More formally, one
has to compute the distance between G = (Vp, Ep∪Fp) and G′ = (Vt, E

′ = Vt×Vt)
with the following vertex and edge distance functions:

G
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

a ∀v ∈ Vp −Op,∀sv ⊆ Vt, δ
agm
vertex(v, sv) = 0 if |sv| = 1

= +∞ otherwise
b ∀v ∈ Op,∀sv ⊆ Vt, δ

agm
vertex(v, sv) = 0 if |sv| ≤ 1

= +∞ otherwise
∀(u, v) ∈ Ep,∀se ⊆ Vt × Vt,

c δagm
edge,Gt

(u, v, se) = 0 if se = ∅
d = 0 if se = {(u′, v′)}

∧(u′, v′) ∈ Et

= +∞ otherwise
e ∀(u, v) ∈ Fp,∀se ⊆ E′, δagm

edge,Gt
(u, v, se) = 0 if se = {(u′, v′)}

∧(u′, v′) �∈ Et

= +∞ otherwise

G′

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f ∀v ∈ Vt,∀sv ⊆ Vp, δ
agm
vertex(v, sv) = 0 if |sv| ≤ 1

= +∞ otherwise
g ∀(u, v) ∈ E′,∀se ⊆ Ep ∪ Fp, δ

agm
edge,Gt

(u, v, se) = 0 if |se| ≤ 1
= +∞ otherwise

δagm
Gt

= < δagm
vertex, δagm

edge,Gt
,⊗∑ >

Theorem 4. Given an approximate pattern graph Gp = (Vp, Op, Ep, Fp), a target
graph Gt = (Vt, Et) and a mapping m ⊆ V × V ′, the two following properties are
equivalent:

1. m is a solution of the approximate subgraph matching problem between the
approximate pattern graph Gp = (Vp, Op, Ep, Fp) and the target graph Gt =
(Vt, Et)

2. δagm
m,Gt

(G,G′) = 0 where G = (Vp, Ep ∪ Fp) and G′ = (Vt, Vt × Vt)

Proof. (1)⇒ (2). If m is a solution of the approximate subgraph matching problem
then ∀v ∈ Vp − Op, |m(v)| = 1 (condition 1), ∀v ∈ Vt, |m(v)| ≤ 1 and ∀(u, v) ∈
Vt×Vt, |m(u, v)| ≤ 1 (condition 4), ∀(u, v) ∈ Ep,m(u, v) = {(u′, v′)}∧(u′, v′) ∈
Et (condition 2), and ∀(u, v) ∈ Fp,m(u, v) = {(u′, v′)} ∧ (u′, v′) �∈ Et (condition
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3). As a consequence, given the definition of the vertex and edge distance functions,
δagm
m,Gt

(G,G′) = 0.
(2) ⇒ (1). If the distance δagm

m,Gt
(G,G′) = 0, then the matching m is univalent

because, given the vertex and edge distance functions, all nonunivalent matchings
give rise to an infinite distance. Furthermore, if δagm

m,Gt
(G,G′) = 0, then ∀v ∈ Vp −

Op, |m(v)| = 1 so that m respects condition 1. Furthermore, ∀(u, v) ∈ Ep, (m(u) �=
∅ ∧m(v) �= ∅) ⇒ (m(u, v) = {(u′, v′)} ∧ (u′, v′) ∈ Et) and as a consequence, m
respects condition 2. Finally, ∀(u, v) ∈ Fp, (m(u) �= ∅ ∧m(v) �= ∅)⇒ (m(u, v) =
{(u′, v′)} ∧ (u′, v′) �∈ Et) and as a consequence, m respects condition 3 and m is a
solution of the approximate subgraph matching problem.

4.2 Error Tolerant Graph Matchings

In this section we show how to model error tolerant graph matching problems as
graph distance measures. For all these problems, we are looking for an univalent
matching between the vertices of two graphs. As a consequence, the vertex and edge
distance functions are chosen in such a way that a nonunivalent matching always
gives an infinite positive distance. Furthermore, as these problems are optimization
problems, the objective is always to find the matching that gives the lower distance.

Maximum Common Partial Subgraph

Problem Definition

Given two graphs G and G′ the maximum common partial subgraph problem con-
sists in finding the size of the largest partial subgraph G′′ of G that is isomorphic to
a partial subgraph of G′. For this problem, the size of a graph G = (V,E) is defined
by the number of its vertices and edges, i.e., |G| = |V | + |E|. The maximum com-
mon partial subgraph problem is used to quantify the intersection of two graphs and
therefore, it can be used to define a graph similarity measure. Indeed, the similarity
of two objects a and b is usually defined as size(a ∩ b)/size(a ∪ b) [17, 18].

Measure Definition

We have to use vertex and edge distance functions that forbid multivalent matchings
while encouraging vertices and edges of G and G′ to be matched. As a consequence,
the vertex and edge distance functions must return +∞ if the element is matched
with more than one element, 1 if it is not matched and 0 if the element is matched
with exactly one element, i.e.:

∀v ∈ V ∪ V ′,∀sv ⊆ V ∪ V ′, δmcps
vertex(v, sv) = 1 if sv = ∅

= 0 if |sv| = 1
= +∞ otherwise
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∀(u, v) ∈ E ∪ E′,∀se ⊆ E ∪ E′, δmcps
edge (u, v, se) = 1 if se = ∅

= 0 if |se| = 1
= +∞ otherwise

δmcps = < δmcps
vertex, δmcps

edge ,⊗∑ >

Theorem 5. Given two graphs G = (V,E) and G′ = (V ′, E′), and a mapping
m ⊆ V × V ′, the two following properties are equivalent:

1. m is a mapping that minimizes the distance δmcps
m

2. The subgraph Gm of G induced by the matching m is a maximum common
partial subgraph of G and G′

Proof. The proof is decomposed into two steps, we first show that for every match-
ing m ⊆ V × V ′ such that δmcps

m (G,G′) = d �= +∞, the induced subgraph Gm

of G is a common partial subgraph of G and G′ and |Gm| = (|G| + |G′| − d)/2.
In a second step, we show that, if there exists a subgraph G′′ of G isomorphic to a
partial subgraph of G′, then, we can find a matching m having a distance d equal to
|G| + |G′| − 2 ∗ |G′′| and such that G′′ = Gm, the subgraph induced by the map-
ping m. Then, as we prove that each common partial subgraph G′′ corresponds to a
mapping inducing a noninfinite distance inverse to the size of G′′ (and conversely),
the property holds.

δmcps
m (G,G′) = d �= +∞ ⇒ Gm is a common subgraph of G and G′ such

that |Gm| = (|G| + |G′| − d)/2. Given the vertex and edge distance functions, if
δmcps
m (G,G′) �= +∞ then m is an univalent matching (because all nonunivalent

matchings give an infinite distance). By definition, the subgraph Gm = (Vm, Em) of
G induced by m is a partial subgraph of G and the subgraph G′

m = (V ′
m, E′

m) of G′

induced by m is a partial subgraph of G′. Given the definition of an induced subgraph
and knowing that the mapping is univalent, the matching m is a bijective matching
between the vertices of Gm and G′

m such that (u, v) ∈ Em ⇔ (m(u),m(v)) ∈
E′

m. As a consequence, Gm and G′
m are isomorphic and Gm is a common par-

tial subgraph of both G and G′. Given the vertex and edge distance functions, if
δmcps
m (G,G′) = d �= +∞ then d = |G|+ |G′| − |Gm| − |G′

m|. As Gm and G′
m are

isomorphic, then |Gm| = |G′
m|. As a consequence, |Gm| = (|G|+ |G′| − d)/2 and

the property holds.
G′′ is a common subgraph of G and G′ ⇒ ∃m such that δmcps

m (G,G′) = |G|+
|G′| − 2 ∗ |G′′| and G′′ = Gm. If there exists a common subgraph G′′ = (V ′′, E′′)
of G = (V,E) and G′ = (V ′, E′), then, by definition of a common subgraph, there
exists at least one graph G′′′ = (V ′′′ ⊆ V ′, E′′′ ⊆ E′) and a bijective matching
m ⊆ V ′′ × V ′′′ such that (u, v) ∈ E′′ ⇔ (m(u),m(v)) ∈ E′′′. As a consequence,
the matching m is such that ∀v ∈ V ′′ ∪ V ′′′, |m(v)| = 1 (because m is a bijective
matching), ∀(u, v) ∈ E′′ ∪ E′′′, |m(u, v)| = 1 (because m is such that (u, v) ∈
E′′ ⇔ (m(u),m(v)) ∈ E′′′. Furthermore, by definition, m is such that ∀v ∈ V −
V ′′,m(v) = ∅, ∀v ∈ V ′ − V ′′′,m(v) = ∅, ∀(u, v) ∈ E − E′′,m(u, v) = ∅, and
∀(u, v) ∈ E′ − E′′′,m(u, v) = ∅. As a consequence, δmcps

m (G,G′) = |G|+ |G′| −
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|G′′| − |G′′′|. G′′ and G′′′ are isomorphic, so, |G′′| = |G′′′| and δmcps
m (G,G′) =

|G|+ |G′| − 2 ∗ |G′′|. The property holds.

Maximum Common Induced Subgraph

Problem Definition

Given two graphs G and G′ the maximum common induced subgraph problem con-
sists in finding the largest induced subgraph G′′ of G that is isomorphic to an induced
subgraph of G′. For this problem, the size of a graph G = (V,E) is defined by the
number of its vertices, i.e., |G| = |V |. As the maximum common partial subgraph,
the maximum common induced subgraph problem is used to define an intersection
between two graphs and a corresponding graph similarity measure [10].

Measure Definition

To solve the maximum common subgraph problem using our distance measure, we
have to use vertex and edge distance functions encouraging vertices of G to be
matched while forbidding matchings that do not correspond to common induced sub-
graph. So, similarly to the induced subgraph isomorphism problem, the edge distance
function must check a constraint (and so be defined) for each couple of vertices of
both the graphs. As a consequence, complete graphs must be compared. The vertex
distance function encourages the vertices of G to be matched (rule a) and the edge
distance function returns +∞ when a couple of vertices (u, v) of G (resp. (u′, v′)
of G′) is linked to a couple of vertices (u′, v′) of G′ (resp. (u, v) of G) such that
(u, v) ∈ E �⇔ (u′, v′) ∈ E′ (rule b) (resp. rule d). Finally, the matching must
be univalent (rule c). More formally, we have to compute the distance of the graph
G2 = (V, V × V ) with the graph G′

2 = (V ′, V ′ × V ′) by using the following vertex
and edge distance functions:

G2

⎧

⎪
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⎪
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⎪

⎪

⎩

a ∀v ∈ V,∀sv ⊆ V ′, δmcs
vertex(v, sv) = 1 if sv = ∅

= 0 if |sv| = 1
= +∞ otherwise

∀(u, v) ∈ V 2,∀se ⊆ V ′2,
b δmcs

edge,GG′(u, v, se) = 0 if se = ∅
= 0 if se = {(u′, v′)}

∧((u, v) ∈ E ⇔ (u′, v′) ∈ E′)
= +∞ otherwise

G′
2
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⎪

⎩

c ∀v ∈ V ′,∀sv ⊆ V, δmcs
vertex(v, sv) = 0 if |sv| ≤ 1

= +∞ otherwise
∀(u, v) ∈ V ′2,∀se ⊆ V 2,

δmcs
edge,GG′(u, v, se) = 0 if se = ∅

= 0 if se = {(u′, v′)}
∧((u, v) ∈ E′ ⇔ (u′, v′) ∈ E)

= +∞ otherwise
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δmcs
GG′ = < δmcs

vertex, δmcs
edge,GG′ ,⊗∑ >

Theorem 6. Given two graphs G = (V,E) and G′ = (V ′, E′), and a mapping
m ⊆ V × V ′, the two following properties are equivalent:

1. m is a mapping that minimizes the distance δmcs
m,GG′

2. The subgraph Gm of G induced by the matching m is a maximum common
induced subgraph of G and G′

Proof. The proof is decomposed into two steps. We first show that, for every match-
ing m ⊆ V × V ′ such that δmcs

GG′m(G,G′) = d �= +∞, the subgraph Gm of G
induced by the mapping m is an induced common subgraph of G and G′ such that
|Gm| = |G| − d. In a second step, we show that, if there exists an induced subgraph
G′′ of G isomorphic to an induced subgraph of G′, then, we can find a matching m
having a distance d equal to |G| − |G′′| and such that G′′ = Gm, the subgraph of G
induced by the matching m. Then, as we prove that each common induced subgraph
G′′ corresponds to a mapping inducing a noninfinite distance inverse to the size of
G′′ (and reversely), the property holds.

δmcs
mGG′(G2, G

′
2) = d �= +∞ ⇒ Gm is a common induced subgraph of G and

G′ such that |Gm| = |G| − d. Given the vertex and edge distance functions, if
δmGG′(G2, G

′
2) �= +∞ then m is an univalent matching (because all nonuniva-

lent matchings give a distance equal to +∞). By definition, the subgraph G2m =
(V2m, E2m) of G2 induced by m is a partial subgraph of G2 and of G. Furthermore,
given the definition of the edge distance function, (u, v) ∈ E2m ⇒ (u, v) ∈ E and
(u, v) �∈ E2m ⇒ (u, v) �∈ E. As a consequence, G2m is an induced (i.e., a nonpar-
tial) subgraph of G and G2m = Gm. In the same way, we can also prove that the sub-
graph G′

2m = (V ′
2m, E′

2m) of G′
2 induced by m is an induced subgraph of G′ and that

G′
2m = G′

m. Finally, m is a univalent matching and, given the definitions of the ver-
tex and edge distance functions, m is such that (u, v) ∈ Em ⇔ (m(u),m(v)) ∈ E′

m

so, m defines an isomorphism matching between Gm and G′
m. As a consequence

Gm is a common induced subgraph of G and G′. Finally, as only the number of
nonrecovered vertices of G influences (positively) the distance, |Gm| = |G| − d.

G′′ is a common induced subgraph of G and G′⇒∃m such that δmcs
mGG′(G2, G

′
2) =

|G| − |G′′| and such that Gm = G′′. If there exists a common induced sub-
graph G′′ = (V ′′, E′′) of G = (V,E) and G′ = (V ′, E′), then, by defini-
tion of an induced common subgraph, there exists at least one induced subgraph
G′′′ = (V ′′′, E′′′) of G′ and one bijective matching m ⊆ V ′′ × V ′′′ such that
(u, v) ∈ E′′ ⇔ (m(u),m(v)) ∈ E′′′. Given the vertex and edge distance func-
tions, we can see that the distance δmcs

mGG′(G2, G
′
2) is equal to |G| − |G′′| and that

Gm = G′′.

Graph Edit Distance (ged)

Problem Definition

Given two labeled graphs G and G′ (i.e., graphs where a label is associated with
each vertex and each edge), the graph edit distance of G and G′ is the minimum cost
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set of weighted operations needed to transform G into G′. Considered operations are
insertions, substitutions (i.e., relabeling), and deletions of vertices and edges. Bunke
shows in [10] that, when considering appropriate weight definitions, ged is closely
related to the maximum common subgraph, and therefore it is also closely related to
the similarity measure based on it.

Bunke and Jiang define formally the graph edit distance in [19]. A labeled graph
is defined by a tuple G = (V,E,L, α, β) where V is a set of vertices, E is a set of
edges, L is a set of labels, α : V → L is a total function labeling the vertices of
G and β : E → L is a total function labeling the edges of G. Given two labeled
graphs G = (V,E,L, α, β) and G′ = (V ′, E′, L′, α′, β′), an error tolerant graph
matching is an univalent matching m ⊆ V × V ′. The vertex u ∈ V is substituted
by the vertex v if m(u) = v. If α(u) = α′(m(u)), the substitution is called an
identical substitution, otherwise, it is a nonidentical substitution. Each vertex v ∈ V
such that m(v) = ∅ is deleted by m and each vertex v′ ∈ V ′ such that m(v′) = ∅
is inserted by m. The same terms are used for the substituted, deleted, and inserted
edges of the graphs. A cost cvs (resp. cvi and cvd) is associated with the nonidentical
vertex substitutions (resp. insertions and deletions) and a cost ces (resp. cei and ced)
is associated with the nonidentical edge substitutions (resp. insertions and deletions).
Once the six operation costs are set, the cost of an error tolerant graph matching m
is defined as the sum of the costs of each operation induced by m. Finally, the graph
edit distance between two graphs is defined as the minimum cost error-tolerant graph
matching.

Measure Definition

Each univalent graph matching of our model corresponds to an error-tolerant graph
matching of Bunke and Jiang [19]. As a consequence, if the vertex and edge distance
functions are defined in such a way that they reproduce the cost of each operation
while forbidding nonunivalent matchings, the distance between G1 and G2 with re-
spect to an univalent mapping m corresponds to the cost of the error-tolerant graph
matching defined by m. More formally, to compute the graph edit distance between
two labeled graphs G = (V,E,L, α, β) and G′ = (V ′, E′, L′, α′, β′), we have to
compare the graphs G1 = (V,E) and G2 = (V ′, E′) with the following vertex and
edge distance functions:
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∀v ∈ V,∀sv ⊆ V ′,

δged
vertex,GG′(v, sv) = cvd if sv = ∅

= 0 if sv = {v′} ∧ α(v) = α′(v′)
= cvs if sv = {v′} ∧ α(v) �= α′(v′)
= +∞ if |sv| > 1

∀(u, v) ∈ E,∀se ⊆ E′,

δged
edge,GG′(u, v, se) = ced if se = ∅

= 0 if se = {(u′, v′)} ∧ β((u, v)) = β′((u′, v′))
= ces if sv = {(u′, v′)} ∧ β((u, v)) �= β′((u′, v′))
= +∞ if|se| > 1
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G2
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⎪

⎪
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∀v ∈ V ′,∀sv ⊆ V, δged
vertex,GG′(v, sv) = cvi if sv = ∅

= 0 if |sv| = 1
= +∞ if |sv| > 1

∀(u, v) ∈ E′,∀se ⊆ E, δged
edge,GG′(u, v, se) = cei if se = ∅

= 0 if |se| = 1
= +∞ if |se| > 1

deltaged
GG′ = < δged

vertex,GG′ , δ
ged
edge,GG′ ,⊗∑ >

Theorem 7. Given two labeled graphs G and G′ (G = (V,E,L, α, β) and G′ =
(V ′, E′, L′, α′, β′)), the graph edit distance of Bunke and Jiang [19] is equal to the
distance δged

GG′(G1, G2), where G1 = (V,E) and G2 = (V ′, E′).

Proof. The proof of correctness is trivially done first by proving the equivalence
between the set of error-tolerant graph matchings and the set of univalent graph
matchings and second, by proving that, given an univalent matching m, the computed
distance with respect to m is equal to the cost of the error-tolerant graph matching m.

4.3 Multivalent Graph Matchings

In this section we show how to model different multivalent graph matching prob-
lems as graph distance measures. As these problems are optimization problems, the
objective is always to find the matching that gives the lowest distance.

Extended Graph Edit Distance

Problem Definition

Ambauen et al. [2] propose to extend the graph edit distance with two new oper-
ations: vertex splitting – to split one vertex of G into several vertices of G′ – and
vertex merging – to merge several vertices of G into one single vertex of G′. These
two new operations are added in order to merge over-segmented regions and to split
under-segmented regions. Each of these new operations is weighted by a cost csplit

and cmerge (but, in [2], these costs are set to 0). Finally, nonoverlapping constraints
are added on the two kinds of “multivalent matching” operations (vertex merging and
splitting): if one wants to link two vertices u and v of one graph to another vertex u′,
one has to merge u and v. As a consequence, it will not be possible anymore to link
u with a vertex v′ without linking v to v′.

Measure Definition

We cannot model the extended graph edit distance in the same way as that for (nonex-
tended) graph edit distance: the nonoverlapping constraint could not be checked. To
take into account this constraint, the matching m must represent the operations that
are done. We introduce an “operation graph” GO = (VO, EO = VO × VO). This
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graph is a complete graph that has as many vertices as the two graphs to compare,
i.e., |VO| = |V | + |V ′|. Its vertices must be matched with the vertices of the two
graphs to compare, i.e., we are looking for a matching m ⊆ VO × (V ∪ V ′). De-
pending on the way the vertices of GO are matched with the vertices of G and G′,
the matching m represents a set of edit operations between G and G′. When a vertex
of GO is only matched with a vertex v of G, the vertex v is deleted. When a ver-
tex of GO is only matched with a vertex v′ of G′, the vertex v′ is inserted. When
a vertex of GO is matched with a vertex v of G and a vertex v′ of G′, the vertex
v is substituted by the vertex v′. In the same way, the edges of GO model the edge
deletions, insertions, and substitutions. When a vertex of GO is matched with some
vertices of G (resp. G′), these vertices are merged (resp. splitted). If the vertices of
G and G′ must be matched with exactly one vertex of GO, every matching satisfying
this constraint corresponds to a set of edition operations of the extended graph edit
distance satisfying the nonoverlapping constraint.

More formally, to model the extended graph edit distance between G =
(V,E,L, α, β) and G′ = (V ′, E′, L′, α′, β′), with our generic graph distance
measure, one have to compare the graph G′′ = (V ′′ = V ∪ V ′, E′′ = E ∪ E′) (let
us recall that V ∩ V ′ = ∅) and the complete graph GO = (VO, EO = VO × VO)
such that |VO| = |V |+ |V ′| (because there is at most one edition operation for each
vertex of G and G′). The distance functions δeged

vertex and δeged
edge must constrain the

vertices of G and G′ to be matched with exactly one vertex of GO. The cost of the
edition operations must be computed on the vertices of the graph GO:
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∀v ∈ V ′′, ∀sv ⊆ VO, δeged
vertex(v, sv) = 0 if |sv| = 1

= +∞ otherwise
∀(u, v) ∈ E′′, ∀se ⊆ EO, δeged

edge((u, v), se) = 0

∀vo ∈ VO, ∀sv ⊆ V ′′,

δeged
vertex(vo, sv) = 0 if sv = ∅

= matchv(sv ∩ V1, sv ∩ V2) otherwise
∀(uo, vo) ∈ EO, ∀se ⊆ E′′,

δeged
edge((uo, vo), se) = 0 if se = ∅

= matche(se ∩ E1, se ∩ E2) otherwise

δeged = < δeged
vertex, δeged

edge ,⊗∑ >

where matchv(sv, s′v) (resp. matche(se, s
′
e)) is the cost needed to match the

(possibly empty) set of vertices sv (resp. edges se) of G1 to the (possibly empty)
set of vertices s′v (resp. edges s′e) of G2. More formally, the functions matchv :
℘(V1)× ℘(V2)→ [0,+∞[ et matche : ℘(E1)× ℘(E2)→ [0,+∞[ are defined by:

a ∀sv ⊆ V,∀s′v ⊆ V ′,
matchv(sv, s′v) = merge(sv) + merge(s′v)

+substv(sv, s′v) if sv �= ∅ ∧ s′v �= ∅
b = merge(sv) + delv(sv) if sv �= ∅ ∧ s′v = ∅
c = merge(s′v) + insv(s′v) if sv = ∅ ∧ s′v �= ∅
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d ∀se ⊆ V,∀s′e ⊆ V ′,
matche(se, s

′
e) = subst(se, s

′
e) if se �= ∅ ∧ s′e �= ∅

e = dele(se) if se �= ∅ ∧ s′e = ∅
f = inse(s′e) if se = ∅ ∧ s′e �= ∅

The function merge(sv) is the cost needed to merge the vertices of the set sv ,
the function substv(sv, s′v) (resp. subste(se, s

′
e)) is the cost needed to substitute the

vertices (resp. the edges) of the set sv (resp. se) by the vertices (resp. the edges) of
the set s′v (resp. s′e). insv(sv) (resp. inse(se)) is the cost need to insert the vertices
(resp. edges) of the set sv (resp. se) and delv(sv) (resp. dele(se)) is the cost of their
deletion.

Theorem 8. Given two (mono)-labeled graphs G = (V,E,L, α, β) and G′ =
(V ′, E′, L′, α′, β′), the extended graph edit distance is equal to δeged(GO, G′′)
where G′′ = (V1 ∪ V2, E1 ∪ E2) and GO = (VO, VO × VO) such that |VO| =
|V1|+ |V2|.

Proof. The proof of correctness is easy: each matching m giving rise to a noninfinite
distance correspond to a sequence of edition operations of the extended graph edit
distance (and reversely). Furthermore, the vertex and edge distance functions are
defined in such a way that the cost of this sequence is equal to the distance induced
by m.

Nonbijective Graph Matching Problem

Definition

Boeres et al. [4] propose a nonbijective graph similarity measure to compare medical
images of brains to an image model of a brain. The model has a schematic aspect
easy to segment whereas the real image is noised and generally over-segmented.
As a consequence, when comparing the image graph to the model graph, one has
to use a nonbijective graph matching where the vertices of the model graph may
be linked to a set of vertices of the image graph in order to merge over-segmented
regions of the image graph. The similarity between an image graph and its model
is computed with respect to vertex and edge similarity matrices and the problem
consists in finding the best matching (the one with the highest similarity) that satisfies
application-dependent constraints. More formally, two graphs are used to represent
the problem: the model graph G = (V,E) and the image graph G′ = (V ′, E′)
(with |V | ≤ |V ′|). A solution is a matching m ⊆ V × V between G and G′ such
that each vertex of G is linked to a nonempty set of connected vertices of G′ (i.e.,
∀v ∈ V, |m(v)| ≥ 1 and the subgraph induced by m(v) is a connected graph), and
each vertex of G′ is linked to exactly one vertex of G (i.e., ∀v ∈ V ′, |m(v)| = 1).
Finally, some couples of vertices cannot be matched together. Given any matching
that respects these constraints, a similarity measure sim[Boeres]m is computed with
respect to a vertex and an edge similarity function smv : V × V ′ → [0, 1] and
sme : E × E′ → [0, 1] as follows:
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sim[Boeres]m =

∑

(u,v)∈m

smv(u, v)

|V |.|V ′| +

∑

(u,v)∈(V ×V ′)−m

1− smv(u, v)

|V |.|V ′| +
∑

((u,u′),(v,v′))∈E×E′,{(u,v),(u′,v′)}∈m

sme((u, u′), (v, v′))

|E|.|E′| +
∑

((u,u′),(v,v′))∈E×E′,{(u,v),(u′,v′)}
∈m

1− sme((u, u′), (v, v′))

|E|.|E′|
Measure Definition

By properly choosing vertex and edge distance functions δvertex and δedge, we can
model the similarity of Boeres et al. as a graph distance measure. The vertex distance
function returns +∞ when the matching violates a constraint and both the vertex
and edge distance functions reproduce the similarity matrices smv and sme. More
formally:

G

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∀v ∈ V,∀sv ⊆ V ′, δnbgm
vertex(v, sv) =

∑

v′∈sv
1− smv(v, v′)

+
∑

v′∈V ′−sv
smv(v, v′)

if connected(sv)
= +∞ otherwise

∀(u, v) ∈ E,∀se ⊆ E′,

δnbgm
edge ((u, v), se) =

∑

(u′,v′)∈se
1− sme((u, v), (u′, v′))

+
∑

(u′,v′)∈E′−se
sme((u, v), (u′, v′))

G′

⎧

⎨

⎩

∀v ∈ V ′,∀sv ⊆ V, δnbgm
vertex(v, sv) = 0 if allowed(v, sv)

= +∞ otherwise
∀(u′, v′) ∈ E′,∀se ⊆ E, δnbgm

edge ((u′, v′), se) = 0

δnbgm = < δnbgm
vertex, δnbgm

edge ,⊗∑ >

where connected and allowed are two predicates introduced to check the con-
straints. connected is false when a vertex of the model is not matched or when it
is matched with a nonconnected set of vertices and true otherwise. allowed is false
when a vertex of the image is not matched with only one allowed vertex of the model
and true otherwise:

∀v ∈ V,∀sv ⊆ V ′, connected(sv) = true if sv is a nonempty set of
connected vertices

false otherwise
∀v ∈ V ′,∀sv ⊆ V, allowed(v, sv) = true if sv = {v′} ∧ (v, v′) is allowed

false otherwise
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Theorem 9. If the matching m minimizing the distance δnbgm
m (G,G′) gives rise to a

noninfinite distance, then m is the matching that maximizes the similarity of Boeres
et al. otherwise, there does not exist a mapping that satisfies the hard constraints of
the similarity of Boeres et al.

Proof. We can easily prove that, thanks to the predicates connected and allowed, the
distance between G and G′ with respect to a matching m is equal to +∞ if and only if
m is a matching that violates at least one hard constraint. Finally, by decomposing the
vertex and edge distance functions, we can prove that the distance δnbgm is inverse
to the similarity of [4] and as a consequence, the matching minimizing the distance
δnbgm is the matching that maximizes the similarity of Boeres et al.

5 Comparison with the Graph Similarity Measure of Champin
and Solnon

In [15], we show that the similarity of Champin and Solnon [6] is generic in the sense
that, by properly instantiating parameters of this measure, it can be used to solve all
the graph matching problems listed earlier. In this section, we briefly present the
graph similarity measure of Champin and Solnon and we show that this measure and
our graph distance measure are equivalent.

5.1 Definition of the Graph Similarity of Champin and Solnon

The measure of Champin and Solnon is defined for multilabeled graphs, i.e., graphs
where a nonempty set of labels is associated with each vertex and each edge of the
graphs. More formally, given a set LV of vertex labels and a set LE of edge labels, a
multilabeled graph G is defined by a tuple G = 〈V, rV , rE〉 such that:

• V is a finite set of vertices
• rV ⊆ V × LV is a relation associating labels to vertices, i.e., rV is the set of

couples (vi, l) such that vertex vi is labeled by l
• rE ⊆ V × V × LE is a relation associating labels to edges, i.e., rE is the set

of triples (vi, vj , l) such that edge (vi, vj) is labeled by l. Note that the set E of
edges of the graph can be defined by E = {(vi, vj)|∃l, (vi, vj , l) ∈ rE}
The first step for measuring graph similarity of two graphs G = 〈V, rV , rE〉

and G′ = 〈V ′, rV ′ , rE′〉 defined over the same set LV and LE of vertex and edge
labels is to match their vertices. The matching m considered here is multivalent, i.e.,
m ⊆ V × V ′.

Once a multivalent mapping is defined, the next step is to identify the set of
features that are common to the two graphs with respect to this matching. This set
contains all the features from both G and G′ whose vertices (resp. edges) are matched
by m to at least one vertex (resp. edge) that has the same feature. More formally, the
set of common features G�mG′, with respect to a matching m, is defined as follows:
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G �m G′ =̇ {(v, l) ∈ rV |∃v′ ∈ m(v), (v′, l) ∈ rV ′}
∪ {(v′, l) ∈ rV ′ |∃v ∈ m(v′), (v, l) ∈ rV }
∪ {(vi, vj , l) ∈ rE |∃(v′

i, v
′
j) ∈ m(vi, vj), (v′

i, v
′
j , l) ∈ rE′}

∪ {(v′
i, v

′
j , l) ∈ rE′ |∃(vi, vj) ∈ m(v′

i, v
′
j), (vi, vj , l) ∈ rE}

Given a multivalent matching m, we also have to identify the set of split vertices,
i.e., the set of vertices that are matched with more than one vertex, each split vertex
v being associated with the set sv of its mapped vertices:

splits(m) = {(v,m(v))|v ∈ V ∪ V ′, |m(v)| ≥ 2}

The similarity of G and G′ with respect to a mapping m is then defined by:

simm(G,G′) =
f(G �m G′)− g(splits(m))

f(rV ∪ rE ∪ rV ′ ∪ rE′)
(3)

where f and g are two functions that are introduced to weight features and splits,
depending on the considered application.

Finally, the absolute similarity sim(G,G′) of two graphs G and G′ is the highest
similarity with respect to all possible mappings:

sim(G,G′) = max
m⊆V ×V ′

f(G �m G′)− g(splits(m))
f(rV ∪ rE ∪ rV ′ ∪ rE′)

(4)

5.2 Our Graph Distance Measure and the Graph Similarity of Champin
and Solnon

Both our graph distance measure and the graph similarity of Champin and Solnon
have been shown to be generic in the sense that they can be used to model many
other graph distance/similarity measures from the literature. We show here that these
two measures have the same ability to represent graph matching problems.

Theorem 10. Given two sets of vertex and edge labels LV and LE and two functions
f and g that define a graph similarity measure, there exists a distance measure δ =<
δvertex, δedge,⊗ > such that for any pair of labeled graphs G1 = 〈V1, rV 1, rE1〉
and G2 = 〈V2, rV 2, rE2〉 defined over LV and LE , the matching m ⊆ V1 × V2

that maximizes simm(G1, G2) also minimizes δm(G′
1, G

′
2) where G′

1 and G′
2 are

the nonlabeled graphs corresponding to G1 and G2, i.e., G′
1 = (V1, E1) and G′

2 =
(V2, E2) with E1 = {(u, v)/∃(u, v, l) ∈ rE1} and E2 = {(u, v)/∃(u, v, l) ∈ rE2}.

Proof. In order to make the proof, we show that it is possible to define the dis-
tance functions δvertex and δedge in such a way that the arguments of the function ⊗
contains all the information required to reconstitute the matching done. As a conse-
quence, the function ⊗ can be defined with the functions f and g.
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Let us define a bijective function num : ℘(V2) → N that associates an unique
integer value with every different subset of vertices of G′

2. The function num is used
by the vertex distance function δvertex to return the set of vertices of G′

2 matched
with each vertex of G′

1:

∀v ∈ V1,∀sv ⊆ V2, δvertex(v, sv) = num(sv)
∀v ∈ V2,∀sv ⊆ V1, δvertex(v, sv) = 0

∀(u, v) ∈ E1,∀se ⊆ E2, δedge((u, v), se) = 0
∀(u′, v′) ∈ E2,∀se ⊆ E1, δedge((u′, v′), se) = 0

With such vertex and edge distance functions, the function ⊗sim can be defined
with the functions f and g of the similarity measure:3

⊗sim(S) = g(split(ms))− f(G1 �mS
G2)

where mS is defined as follows:

mS = {(u, u′)/∃(u, d) ∈ S ∧ u ∈ V1 ∧ u′ ∈ num−1(d)}
Theorem 11. Given a distance definition δ =< δvertex, δedge,⊗ >, there exists a
graph similarity measure sim of Champin and Solnon (defined by the two functions
f and g) such that for any pair of graphs G1 and G2, the matching m ⊆ V1 × V2

that minimizes the distance δm(G1, G2) also maximize simm(G′
1, G

′
2), where G′

1

and G′
2 are two labeled graphs corresponding to G1 and G2.

Proof. In order to make the proof, we show that, by properly choosing the multi-
labeled graphs G1 and G2 to compare, the set G1�m G2 can contain all the informa-
tion required to know the matching m done. As a consequence, the function f that
takes this set as parameter can be defined with the functions δvertex, δedge, and ⊗ of
the graph distance measure.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), we define the multilabeled
graphs G′

1 = 〈V1, rV 1, rV 2〉 and G′
2 = 〈V2, rV 2, rE2〉 and the sets LV and LE of

vertex and edge labels such that:

LV = {(u, v), u ∈ V1, v ∈ V2} , LE = {le}
rV 1 = {(u, (u, v)), u ∈ V1, v ∈ V2} , rE1 = {(u, v, le), (u, v) ∈ E1}
rV 2 = {(v, (u, v)), u ∈ V1, v ∈ V2} , rE2 = {(u, v, le), (u, v) ∈ E2}

With such labeled graphs, the function f can be defined with the functions
δvertex, δedge and ⊗:

f(S) = −⊗ ({(v, δvertex(v,mS(v)))/v ∈ V1 ∪ V2}
∪{((u, v), δedge((u, v),mS(u, v)))/(u, v) ∈ E1 ∪ E2})

where the matching mS is defined by:

mS = {(u, v)/∃(u, (u, v)) ∈ S}
3 Note that in one case the problem is to minimize the distance and in the other case, the

problem is to maximize the similarity. So, the function ⊗ must be defined in such a way
that ∀m ⊆ V1 × V2, δm(G1, G2) = −simm(G1, G2).
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6 Computing the Distance Between two Graphs

All matching problems described in Sect. 4 are NP-complete or NP-hard problems,
except for the graph isomorphism problem, the complexity of which is not exactly
stated.4 As a consequence, computing the distance between two graphs is also a NP-
hard problem in the general case.

Complete algorithms have been proposed for computing the matching which
maximizes the similarity of Champin and Solnon [6] and for computing the extended
graph edit distance of Ambauen et al. [2]. This kind of algorithms based on an ex-
haustive exploration of the search space combined with pruning techniques, guaran-
tees solution optimality. However, these algorithms are limited to very small graphs.
Therefore, incomplete algorithms, that do not guarantee optimality but have a poly-
nomial time complexity, appear to be good alternatives. We propose in [6,15,20,21]
three incomplete algorithms for computing the similarity of Champin and Solnon.
These algorithms may be adapted to our graph distance in a very straightforward
way.

Greedy Algorithm

We propose in [6] a greedy algorithm. The algorithm starts from an empty match-
ing m = ∅, and iteratively adds to m couples of vertices chosen within the set of
candidate couples cand = V × V ′ − m. This greedy addition of couples to m is
iterated until m is locally optimal, i.e., until no more couple addition can increase
the similarity. At each step, the couple to be added is randomly chosen within the set
of couples that most increase the similarity. This greedy algorithm has a polynomial
time complexity of O((|V | × |V ′|)2), provided that the computation of the f and g
functions have linear time complexities with respect to the size of the matching.

Reactive Tabu Search

The greedy algorithm of [6] returns a “locally optimal” matching in the sense that
adding or removing one couple of vertices to this matching cannot improve it. How-
ever, it may be possible to improve it by adding and/or removing more than one
couple to this matching. In order to improve the matching returned by the greedy
algorithm, we propose in [6, 15] a reactive tabu local search.

A local search [25, 26] tries to improve a solution by locally exploring its neigh-
borhood: the neighbors of a matching m are the matchings which can be obtained by
adding or removing one couple of vertices to m.

From an initial matching, computed by the greedy algorithm, the search space
is explored from neighbor to neighbor until the optimal solution is found (when the
optimal value is known) or until a maximum number of moves have been performed.

4 For particular graphs (such as trees or planar graphs) the graph isomorphism problem is
polynomial [22–24]; in general case, the graph isomorphism problem clearly belongs to
NP but has neither be proven to belong in P nor to be NP-complete.
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The tabu metaheuristic [25, 27] is used to choose the next neighbor to move on. At
each step, the best neighbor, i.e., the one that most increase the similarity, is chosen.
To avoid staying around locally optimal matchings by always performing the same
moves, a tabu list is used. This list has a length k and memorizes the last k moves
(i.e., the last k added/removed couples of vertices) in order to forbid backward moves
(i.e., to remove/add a couple recently added/removed).

The length k of the tabu list is a critical parameter that is hard to set: if the list
is too long, search diversification is too strong so that the algorithm converges too
slowly; if the list is too short, intensification is too strong so that the algorithm may
be stuck around local maxima and fail in improving the current solution. To solve
this parameter tuning problem, Battiti and Protasi [28] introduced Reactive Search
where the length of the tabu list is dynamically adapted during the search. We have
used the same idea to build a reactive tabu search algorithm to compute our generic
graph distance measure.

Ant Colony Optimization

We also proposed in [20,21] to use the Ant Colony Optimization (ACO) metaheuris-
tic approach to compute the similarity of Champin and Solnon. The ACO meta-
heuristic is a bioinspired approach [29, 30] that has been used to solve many hard
combinatorial optimization problems. The main idea is to model the problem to solve
as a search for an optimal path in a graph – called the construction graph – and to
use artificial ants to search for “good” paths.

The behavior of artificial ants mimics the behavior of real ones: (1) ants lay
pheromone trails on the components of the construction graph to keep track of the
most promising components, (2) ants construct solutions by moving through the con-
struction graph and choose their path with respect to probabilities which depend on
the pheromone trails previously laid, and (3) pheromone trails decrease at each cycle
simulating in this way the evaporation phenomena observed in the real world.

Given two graphs G = (V,E) and G′ = (V ′, E′) to match, the construction
graph is the complete nondirected graph that associates a vertex < (u, u′) > with
each couple (u, u′) ∈ V × V ′. Each elementary path into this graph represents a
matching m ⊆ V × V ′.

At each cycle, each ant of a colony constructs a matching in a randomized greedy
way: starting from an empty matching m = ∅, the ant iteratively adds couples of
vertices that are chosen within the set cand = {(u, u′) ∈ V × V ′ −m}. As usually
in ACO algorithm, the choice of the next couple to be added to m is done with
respect to a probability that depends on pheromone and heuristic factors (i.e., the
similarity improvement when adding the couple). A simple local search procedure
may be applied on built matchings to improve their quality.

Once each ant of the colony has built a matching, pheromone trails are updated
according to the best matching found. Pheromone is laid on each vertex < (u, u′) >
of the best found matching in a quantity proportional to the similarity induced by
the matching. As a consequence, the amount of pheromone on a vertex < (u, u′) >
represents the learnt desirability to match u with u′. This process stops iterating
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either when an ant has found an optimal matching, or when a maximum number of
cycles has been performed.

Experimental Results

These three algorithms have been experimentally compared on three different test
suites: graph and subgraph isomorphism problems, randomly generated multivalent
problems, and the nonbijective graph matching problems of Boeres et al. [4]. Each
of these problems has been transformed into our generic graph similarity measure
computing problem and, as a consequence, we always use exactly the same code
whatever the problem to solve is.

Experimental results showed us that on graph and subgraph isomorphism prob-
lems, our algorithms are not competitive with dedicated algorithms: our reactive tabu
search and ACO algorithms are able to solve these problems but are clearly longer
than dedicated algorithms such as Nauty [31] or VFLIB [32, 33]. These results can
be explained by the fact that our algorithms do not use any kind of filtering tech-
niques and potentially explore all kinds of mappings, even multivalent ones. On the
seven instances of the nonbijective graph matching problem, our algorithms obtain
better results than LS+, the reference algorithm of [4] (six instances over seven are
better solved by reactive tabu search and seven instances over seven are better solved
by ACO algorithm). On all these instances, ACO obtains better results than reactive
tabu search but reactive tabu search finds the solutions in shorter times than ACO. On
multivalent graph matching problems, reactive tabu search and ACO obtain similar
results. However, reactive tabu search finds the solutions in shorter times than ACO.

As a consequence, ACO usually obtains better results but is slower than reactive
tabu search. These two algorithms are complementary: if we have to quickly compute
a “good” solution of hard instances or if instances are easy, we can use reactive tabu
search but if we have more time to spend on computation or if we want to solve very
hard instances, we can use ACO.

7 Conclusion

In this chapter, we propose a graph distance measure. This distance is generic: it is
based on multivalent matchings of the graph vertices and it is parameterized by two
distance functions δvertex and δedge used to introduce the application-dependent dis-
tance knowledge on vertices and edges and a function⊗ used to aggregate these local
preferences. We have shown that we can use our graph distance measure to solve
many graph matching problems including the problem of computing the generic
graph similarity of Champin and Solnon. We quickly describe three algorithms to
compute this generic distance measure: a greedy algorithm, a reactive tabu local
search, and an Ant Colony Optimization algorithm. These algorithms are generic so
that they can be used to solve any kind of graph matching problem.
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