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Summary. There is a growing interest on trees and graphs with unique node labels in the
field of pattern recognition, not only because graph isomorphism and related problems become
polynomial-time solvable when restricted to them but also in the light of important practical
applications in structural pattern recognition. Current algorithms for testing graph and sub-
graph isomorphism and computing the graph edit distance, a shortest edit script, a largest com-
mon subgraph, and a smallest common supergraph of two graphs with unique node labels, take
time quadratic in the number of nodes in the graphs, and the same holds for similar problems
on trees with unique node labels. In this paper, simple algorithms are presented for solving
these problems in time linear in the number of nodes and edges in the trees or graphs. These
new algorithms are based on radix sorting the sets of nodes and edges in the trees or graphs by
node label and source and target node label, respectively, followed by a simultaneous traversal
of the ordered sets of nodes and edges.
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1 Introduction

Graph theoreticians and theoretical computer scientists have been suffering the so-
called graph isomorphism disease (to establish the complexity of graph isomorphism
and related problems) for several decades now [1,2] but, surprisingly, it is the restric-
tion to graphs with unique node labels [3,4] what makes these problems polynomial-
time solvable and with important practical applications in pattern recognition [3, 5].

A graph with unique node labels [3] is just a directed graph with nodes labeled
over an ordered alphabet such that no two nodes share the same label. Formally, let
ΣV be an ordered set of node labels, and let ΣE be a set of edge labels. A graph is a
four-tuple G = (V,E, α, β), where V is a finite set of nodes, E ⊆ V × V is a finite
set of edges, α : V → ΣV is a node labeling mapping, and β : E → ΣE is an edge
labeling mapping. A graph G = (V,E, α, β) is a graph with unique node labels if
α(v) �= α(w) for all v, w ∈ V with v �= w.
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Graph matching [6] has been studied in the pattern recognition literature in
various forms: graph isomorphism [7–10], subgraph isomorphism [9–11] [12, 13],
largest common subgraph [14–18], smallest common supergraph [19,20], and graph
edit distance [21–25]. However, a fundamental limitation for the practical applica-
tion of graph matching in the field of pattern recognition, lies in the complexity of
graph matching because subgraph isomorphism, largest common subgraph, smallest
common supergraph, and graph edit distance are all NP-complete problems [26].

In the class of graphs with unique node labels, these problems become
polynomial-time solvable, because they reduce to the computation of either set
union or set intersection for the set of nodes and the set of edges in the graphs. For
instance, computing a largest common subgraph of two graphs with unique node
labels takes O(n2) time, where n is the number of nodes [3, 5].

In this paper, we show that the problems of testing graph and subgraph isomor-
phism and computing the graph edit distance, a shortest edit script, a largest common
subgraph, and a smallest common supergraph of two trees or graphs with unique
node labels can all be solved in optimal O(n + m) time, where n is the number of
nodes and m is the number of edges. The algorithms themselves are not complicated
to implement, and they only require the use of standard data structures.

The rest of the paper is organized as follows. In Sect. 2, the notion of graph with
unique node labels is recalled. Efficient algorithms for the problems of graph iso-
morphism, subgraph isomorphism, graph edit distance, shortest edit script, largest
common subgraph, and smallest common supergraph on trees and graphs with
unique node labels are presented in detail in Sect. 3. Finally, some conclusions are
drawn in Sect. 4.

2 Trees and Graphs with Unique Node Labels

The class of graphs with unique node labels, introduced in [3], is characterized by
the requirement of each node label being unique. Graphs with unique node labels
find application in those problem domains in which objects are modeled by nodes
with some property that can be used to uniquely identify them. Some applications of
graphs with unique node labels, discussed in [4], include computer network moni-
toring (where each client, server, or router in a computer network is represented by a
node, and an address uniquely identifies such a node in a computer network) and web
document analysis (where each unique term that occurs in a document is represented
by a node, and multiple occurrences of the same term are represented by the same
node). Further application domains for trees and graphs with unique node labels
include biochemical networks (where each biochemical reaction in the metabolic
pathway of an organism is represented by a node, and multiple occurrences of the
same biochemical reaction in the metabolism of an organism are represented by the
same node; see [27]) and taxonomic classifications (where each group of species or
species name labels a different node of a taxonomic tree; see [28]) in computational
biology.
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Definition 1. Let ΣV be an ordered set of node labels, and let ΣE be a set of edge
labels. A graph is a four-tuple G = (V,E, α, β), where V is a finite set of nodes,
E ⊆ V × V is a finite set of edges, α : V → ΣV is a node labeling mapping, and
β : E → ΣE is an edge labeling mapping. A graph G = (V,E, α, β) is a graph with
unique node labels if α(v) �= α(w) for all v, w ∈ V with v �= w.

In the class of graphs with unique node labels, the problems of testing graph and
subgraph isomorphism and computing the graph edit distance, a shortest edit script, a
largest common subgraph, and a smallest common supergraph of two graphs become
polynomial-time solvable, because they reduce to computation of either set union or
set intersection for the set of nodes and the set of edges in the graphs. For instance,
the algorithm given in [3,5] for computing a largest common subgraph of two graphs
with unique node labels, can be stated in pseudocode form as follows.

Algorithm 1. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, compute a largest common subgraph G = (V, E, α, β) of G1 and G2.

1. V := ∅
2. foreach node v1 ∈ V1

foreach node v2 ∈ V2

if α1(v1) = α2(v2) then
V := V ∪ {v}, where v is a new node
α(v) := α1(v1)

endif
endfor

endfor
3. E := ∅
4. foreach node v ∈ V

let v1 be the node of G1 with α1(v1) = α(v)
let v2 be the node of G2 with α2(v2) = α(v)
foreach node w ∈ V

let w1 be the node of G1 with α1(w1) = α(w)
let w2 be the node of G2 with α2(w2) = α(w)
if (v1, w1) ∈ E1, (v2, w2) ∈ E2 and β1(v1, w1) = β2(v2, w2) then

E := E ∪ {(v, w)}
β(v, w) := β1(v1, w1)

endif
endfor

endfor
5. return G

Computation of a largest common subgraph of two graphs with unique node
labels using the previous algorithm takes O(n2) time, where n is the number of
nodes in the graphs. A more efficient algorithm is presented in Sect. 3 that only takes
O(n+m) time, where n is the number of nodes and m is the number of edges in the
graphs.
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3 Efficient Algorithms on Trees and Graphs with Unique Node
Labels

The problems of testing graph and subgraph isomorphism and computing the graph
edit distance, a shortest edit script, the largest common subgraph, and the smallest
common supergraph of two graphs with unique node labels, can be solved in time
linear in the number of nodes and edges in the graphs, only if the sets of node labels
can be sorted in time linear in the number of nodes and the sets of edge source and
target node labels can also be sorted in time linear in the number of nodes and edges
in the graphs. The procedure was first sketched in [29].

While sorting takes, in general, quasilinear time, there are at least two particular
cases of much interest in pattern recognition for which nodes labels can be sorted in
linear time. On the one hand, if node labels are small integers, as in [3], let k be a
fixed, but arbitrary, constant. Since n integers in the range {1, . . . , kn} can be sorted
in O(n) time, by bucket sorting techniques, it follows that the sets of node labels
and the sets of edge source and target node labels can be sorted in time linear in the
number of nodes and edges in the graphs.

On the other hand, if node labels are strings, as in [5], let k be again a fixed, but
arbitrary, constant. Since n strings of total length at most kn can be sorted in O(n)
time, by radix sorting techniques [30], it follows that the sets of node labels and the
sets of edge source and target node labels can be sorted in time linear in the total
length of the strings. In particular, if node labels are all short strings, of O(1) length
each.

All trees and graphs are assumed to be given in adjacency list representation in
the rest of the paper.

3.1 Graph Isomorphism

Definition 2. Two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) are
isomorphic if there is a bijection µ : V1 → V2 such that, for every node vi ∈ V1,
α1(vi) = α2(µ(vi) and for every pair of nodes v1, w1 ∈ V1, (v1, w1) ∈ E1 if and
only if (µ(v1), µ(w1)) ∈ E2 and β1(v1, w1) = β2(µ(v1), µ(w1)). In such a case, µ
is a graph isomorphism of G1 to G2.

The efficient computation of the isomorphism of two graphs G1 = (V1, E1,
α1, β1) and G2 = (V2, E2, α2, β2) with unique node labels proceeds as follows.
Sort V1 and V2 by node label and, during a simultaneous traversal [30] of the ordered
sets of nodes, map each node v1 ∈ V1 to the only node v2 ∈ V2 such that α1(v1) =
α2(v2), that is, set µ(v1) = v2. In a similar vein, sort E1 and E2 by source node label
and target node label and then, during a simultaneous traversal of the ordered sets of
edges, for each edge e1 ∈ E1 and e2 ∈ E2, say e1 = (v1, w1) and e2 = (v2, w2),
with α1(v1) = α2(v2) and α1(w1) = α2(w2), check that β1(e1) = β2(e2). Then,
the node mapping µ : V1 → V2 obtained in the first stage is a graph isomorphism of
G1 to G2 if and only if all nodes of V1 were mapped and the latter test was successful
for all edges of E1.
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Algorithm 2. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, compute a graph isomorphism µ of G1 to G2, if it exists.

1. sort V1 and V2 by node label
2. isomorph := true
3. while V1 �= ∅ and V2 �= ∅ and isomorph do

let v1 and v2 be the first element of V1 and V2, respectively
if α1(v1) = α2(v2) then

µ(v1) := v2

V1 := V1 \ {v1}
V2 := V2 \ {v2}

else
isomorph := false

endif
endwhile

4. sort E1 and E2 by target node label
sort E1 and E2 by source node label

5. while E1 �= ∅ and E2 �= ∅ and isomorph do
let (v1, w1) and (v2, w2) be the first element of E1 and E2

if µ(v1) = v2 and µ(w1) = w2 and β1(v1, w1) = β2(v2, w2) then
E1 := E1 \ {(v1, w1)}
E2 := E2 \ {(v2, w2)}

else
isomorph := false

endif
endwhile

6. return (µ, isomorph)

3.2 Subgraph Isomorphism

Definition 3. A subgraph isomorphism of a graph G1 = (V1, E1, α1, β1) into a
graph G2 = (V2, E2, α2, β2) is an injection µ : V1 → V2 such that, for every
node vi ∈ V1, α1(vi) = α2(µ(vi) and for every pair of nodes v1, w1 ∈ V1 with
(v1, w1) ∈ E1, (µ(v1), µ(w1)) ∈ E2 and β1(v1, w1) = β2(µ(v1), µ(w1)). In such a
case, µ is a subgraph isomorphism of G1 into G2.

The efficient computation of a subgraph isomorphism of a graph G1 =
(V1, E1, α1, β1) with unique node labels into another graph G2 = (V2, E2, α2, β2)
with unique node labels proceeds as follows. Sort V1 and V2 by node label and,
during a simultaneous traversal [30] of the ordered sets of nodes, map each node
v1 ∈ V1 to the only node v2 ∈ V2 such that α1(v1) = α2(v2), that is, set µ(v1) = v2.
In a similar vein, sort E1 and E2 by source node label and target node label and then,
during a simultaneous traversal of the ordered sets of edges, for each edge e1 ∈ E1

and e2 ∈ E2, say e1 = (v1, w1) and e2 = (v2, w2), with α1(v1) = α2(v2) and
α1(w1) = α2(w2), check that β1(e1) = β2(e2). Then, the node mapping µ : V1 →
V2 obtained in the first stage is a subgraph isomorphism of G1 into G2 if and only if
all nodes of V1 were mapped and the latter test was successful for all edges of E1.
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Algorithm 3. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, compute a subgraph isomorphism µ of G1 into G2, if it exists.

1. sort V1 and V2 by node label
2. while V1 �= ∅ and V2 �= ∅ do

let v1 and v2 be the first element of V1 and V2, respectively
if α1(v1) = α2(v2) then

µ(v1) := v2

V1 := V1 \ {v1}
endif
V2 := V2 \ {v2}

endwhile
3. sort E1 and E2 by target node label

sort E1 and E2 by source node label
4. while E1 �= ∅ and E2 �= ∅ do

let (v1, w1) and (v2, w2) be the first element of E1 and E2

if µ(v1) = v2 and µ(w1) = w2 and β1(v1, w1) = β2(v2, w2) then
E1 := E1 \ {(v1, w1)}

endif
E2 := E2 \ {(v2, w2)}

endwhile
5. isomorph := (V1 = ∅ and E1 = ∅)
6. return (µ, isomorph)

3.3 Graph Edit Distance

The edit operations of node and edge deletion, insertion, and substitution allow one
to transform any given graph into any other graph. In the class of graphs with unique
node labels, edge label substitution are allowed but node label substitutions are for-
bidden, because they may generate graphs with nonunique node labels [3, 4].

A non-negative cost is assigned to each edit operation, the cost of a sequence
of edit operations is given by the sum of the individual cost over all of the edit
operations in the sequence, and the edit distance of two graphs is defined as the least
cost over all sequences of edit operations that transform one graph into the other.

In practical applications, the cost of an edit operations is equal to 1 except for
node substitutions, which have infinite cost. Under this assumption of unit cost, the
edit distance coincides with the size of a largest common subgraph [21]. Therefore,
under the assumption of unit cost, the algorithm for computing a largest common
subgraph of two graphs with unique node labels presented below can also be used to
compute the edit distance of two graphs with unique node labels.

3.4 Shortest Edit Script

Definition 4. An edit script of a graph G1 = (V1, E1, α1, β1) to a graph G2 =
(V2, E2, α2, β2) is a set S of edit operations that, if applied in the right order
(essentially, inserting an edge only after having inserted the nodes incident with the
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inserted edge), allow one to transform G1 into G2. An edit script S of G1 to G2 is
shortest if there is no edit script of G1 to G2 of smaller size than S.

The efficient computation of a shortest edit script of two graphs G1 =
(V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with unique node labels proceeds as
follows. Sort V1 and V2 by node label and, during a simultaneous traversal [30] of
the ordered sets of nodes, for each node v1 ∈ V1 such that there is no node v2 ∈ V2

with α1(v1) = α2(v2), output the edit operation “delete node α1(v1)” and for each
node v2 ∈ V2 such that there is no node v1 ∈ V1 with α1(v1) = α2(v2), output the
edit operation “insert node α2(v2).”

In a similar vein, sort E1 and E2 by source node label and target node label
and then, during a simultaneous traversal of the ordered sets of edges, for each edge
e1 ∈ E1 and e2 ∈ E2, say e1 = (v1, w1) and e2 = (v2, w2), with α1(v1) = α2(v2)
and α1(w1) = α2(w2), if β1(e1) �= β2(e2), then output the edit operation “substitute
edge α1(v1) to α1(w1) label β2(v2, w2).” Also, for each edge e1 = (v1, w1) ∈
E1 such that there is no edge e2 = (v2, w2) ∈ E2 with α1(v1) = α2(v2) and
α1(w1) = α2(w2), output the edit operation “delete edge α1(v1) to α1(w1)” and
for each edge e2 = (v2, w2) ∈ E2 such that there is no edge e1 = (v1, w1) ∈ E1

with α1(v1) = α2(v2) and α1(w1) = α2(w2), output the edit operation “insert edge
α2(v2) to α2(w2).”

3.5 Largest Common Subgraph

Definition 5. A common subgraph of two graphs G1 = (V1, E1, α1, β1) and G2 =
(V2, E2, α2, β2) is a graph G such that there exist subgraph isomorphisms of G into
G1 and into G2. A common subgraph G of G1 and G2 is maximal if there is no
subgraph isomorphism of G into any other common subgraph G′ of G1 and G2, and
it is largest if there is no common subgraph G′ of G1 and G2 of larger size than G.

The efficient computation of a largest common subgraph of two graphs G1 =
(V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with unique node labels proceeds as
follows. Let G = (V,E, α, β) be an empty graph and let γ : V1 → V be an array
of nodes indexed by the nodes of G1. Sort V1 and V2 by node label and, during a
simultaneous traversal [30] of the ordered sets of nodes, for each node v1 ∈ V1 and
v2 ∈ V2 with α1(v1) = α2(v2), add a new node v to G with α(v) = α1(v1) and
set γ(v1) = v. In a similar vein, sort E1 and E2 by source node label and target
node label and then, during a simultaneous traversal of the ordered sets of edges,
for each edge e1 ∈ E1 and e2 ∈ E2, say e1 = (v1, w1) and e2 = (v2, w2), with
α1(v1) = α2(v2) and α1(w1) = α2(w2), if β1(e1) = β2(e2), then add a new edge
e = (v, w) to G with β(e) = β1(e1), where v = γ(v1) and w = γ(w1).

Notice that graph and subgraph isomorphism can also be tested by just comparing
the size of a largest common subgraph with the size of the given graphs.

3.6 Smallest Common Supergraph

Definition 6. A common supergraph of two graphs G1 = (V1, E1, α1, β1) and G2 =
(V2, E2, α2, β2) is a graph G such that there exist subgraph isomorphisms of G1
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Algorithm 4. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, output a shortest edit script of G1 and G2.

1. sort V1 and V2 by node label
2. while V1 �= ∅ and V2 �= ∅ do

let v1 and v2 be the first element of V1 and V2, respectively
case α1(v1) < α2(v2)

output “delete node α1(v1)”
V1 := V1 \ {v1}

case α1(v1) > α2(v2)
output “insert node α2(v2)”
V2 := V2 \ {v2}

otherwise
V1 := V1 \ {v1}
V2 := V2 \ {v2}

endcase
endwhile

3. sort E1 and E2 by target node label
sort E1 and E2 by source node label

4. while E1 �= ∅ and E2 �= ∅ do
let (v1, w1) and (v2, w2) be the first element of E1 and E2

case α1(v1) < α2(v2) or (α1(v1) = α2(v2) and α1(w1) < α2(w2))
output “delete edge α1(v1) to α1(w1)”
E1 := E1 \ {(v1, w1)}

case α1(v1) > α2(v2) or (α1(v1) = α2(v2) and α1(w1) > α2(w2))
output “insert edge α2(v2) to α2(w2)”
E2 := E2 \ {(v2, w2)}

otherwise
if β1(v1, w1) �= β2(v2, w2) then

output “substitute edge α1(v1) to α1(w1) label β2(v2, w2)”
endif
E1 := E1 \ {(v1, w1)}
E2 := E2 \ {(v2, w2)}

endcase
endwhile

and G2 into G. A common supergraph G of G1 and G2 is minimal if there is no
subgraph isomorphism into G of any other common supergraph G′ of G1 and G2,
and it is smallest if there is no common supergraph G′ of G1 and G2 of smaller size
than G.

The efficient computation of a smallest common supergraph of two graphs G1 =
(V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with unique node labels proceeds as
follows. Let G = (V,E, α, β) be an empty graph, and let γ : V1 → V be an array
of nodes indexed by the nodes of G1. Sort V1 and V2 by node label and, during a
simultaneous traversal [30] of the ordered sets of nodes, for each node v1 ∈ V1 and
v2 ∈ V2 with α1(v1) = α2(v2), add a new node v to G with α(v) = α1(v1) and set
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Algorithm 5. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, compute a largest common subgraph G = (V, E, α, β) of G1 and G2.

1. sort V1 and V2 by node label
2. V := ∅
3. while V1 �= ∅ and V2 �= ∅ do

let v1 and v2 be the first element of V1 and V2, respectively
case α1(v1) < α2(v2)

V1 := V1 \ {v1}
case α1(v1) > α2(v2)

V2 := V2 \ {v2}
otherwise

V := V ∪ {v}, where v is a new node
α(v) := α1(v1)
γ(v1) := v
V1 := V1 \ {v1}
V2 := V2 \ {v2}

endcase
endwhile

4. sort E1 and E2 by target node label
sort E1 and E2 by source node label

5. E := ∅
6. while E1 �= ∅ and E2 �= ∅ do

let (v1, w1) and (v2, w2) be the first element of E1 and E2

case α1(v1) < α2(v2) or (α1(v1) = α2(v2) and α1(w1) < α2(w2))
E1 := E1 \ {(v1, w1)}

case α1(v1) > α2(v2) or (α1(v1) = α2(v2) and α1(w1) > α2(w2))
E2 := E2 \ {(v2, w2)}

otherwise
if β1(v1, w1) = β2(v2, w2) then

E := E ∪ {(γ(v1), γ(w1))}
β(γ(v1), γ(w1)) := β1(v1, w1)

endif
E1 := E1 \ {(v1, w1)}
E2 := E2 \ {(v2, w2)}

endcase
endwhile

7. return G

γ(v1) = v and γ(v2) = v. Also, for each node v1 ∈ V1 such that there is no node
v2 ∈ V2 with α1(v1) = α2(v2), add a new node v to G with α(v) = α1(v1) and
set γ(v1) = v, and for each node v2 ∈ V2 such that there is no node v1 ∈ V1 with
α1(v1) = α2(v2), add a new node v to G with α(v) = α2(v2) and set γ(v2) = v.

In a similar vein, sort E1 and E2 by source node label and target node label
and then, during a simultaneous traversal of the ordered sets of edges, for each edge
e1 ∈ E1 and e2 ∈ E2, say e1 = (v1, w1) and e2 = (v2, w2), with α1(v1) = α2(v2)
and α1(w1) = α2(w2), if β1(e1) = β2(e2), then add a new edge e = (v, w) to G
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with β(e) = β1(e1), where v = γ(v1) and w = γ(w1). Also, for each edge e1 =
(v1, w1) ∈ E1 such that there is no edge e2 = (v2, w2) ∈ E2 with α1(v1) = α2(v2)
and α1(w1) = α2(w2), add a new edge e = (v, w) to G with β(e) = β1(e1), where
v = γ(v1) and w = γ(w1), and for each edge e2 = (v2, w2) ∈ E2 such that there
is no edge e1 = (v1, w1) ∈ E1 with α1(v1) = α2(v2) and α1(w1) = α2(w2), add a
new edge e = (v, w) to G with β(e) = β2(e2), where v = γ(v1) and w = γ(w1).

4 Conclusion

Graph matching encompasses a series of related problems with important practical
applications in combinatorial pattern matching, pattern recognition, chemical struc-
ture search, computational biology, and other areas of engineering and life sciences.
In the class of trees and graphs with unique node labels, these problems become
polynomial-time solvable and current algorithms for testing graph and subgraph iso-
morphism and computing the graph edit distance, a shortest edit script, a largest
common subgraph, and a smallest common supergraph of two graphs with unique
node labels, take time quadratic in the number of nodes in the graphs, and the same
holds for similar problems on trees with unique node labels.

The main contribution of this paper is the development of a simple technique for
performing set-theoretical operations on the nodes and edges of two trees or graphs
with unique node labels. The technique is based on radix sorting the sets of nodes
and edges in the trees or graphs by node label and source and target node label,
respectively, followed by a simultaneous traversal of the ordered sets of nodes and
edges.

Application of this technique to graph matching resulted in simple algorithms
for testing graph and subgraph isomorphism and computing the graph edit distance,
a shortest edit script, a largest common subgraph, and a smallest common super-
graph of two trees or graphs with unique node labels in time linear in the number
of nodes and edges in the trees or graphs. The algorithms themselves, for which de-
tailed pseudocode is given, are not complicated to implement, and they only require
the use of standard data structures.
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Algorithm 6. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, compute a smallest common supergraph G = (V, E, α, β) of G1 and G2.

1. sort V1 and V2 by node label
2. V := ∅
3. while V1 �= ∅ and V2 �= ∅ do

let v1 and v2 be the first element of V1 and V2, respectively
case α1(v1) < α2(v2)

V := V ∪ {v}, where v is a new node
α(v) := α1(v1)
γ(v1) := v
V1 := V1 \ {v1}

case α1(v1) > α2(v2)
V := V ∪ {v}, where v is a new node
α(v) := α2(v2)
γ(v2) := v
V2 := V2 \ {v2}

otherwise
V := V ∪ {v}, where v is a new node
α(v) := α1(v1)
γ(v1) := v
γ(v2) := v
V1 := V1 \ {v1}
V2 := V2 \ {v2}

endcase
endwhile

4. sort E1 and E2 by target node label
sort E1 and E2 by source node label

5. E := ∅
6. while E1 �= ∅ and E2 �= ∅ do

let (v1, w1) and (v2, w2) be the first element of E1 and E2

case α1(v1) < α2(v2) or (α1(v1) = α2(v2) and α1(w1) < α2(w2))
E := E ∪ {(γ(v1), γ(w1))}
β(γ(v1), γ(w1)) := β1(v1, w1)
E1 := E1 \ {(v1, w1)}

case α1(v1) > α2(v2) or (α1(v1) = α2(v2) and α1(w1) > α2(w2))
E := E ∪ {(γ(v2), γ(w2))}
β(γ(v2), γ(w2)) := β1(v2, w2)
E2 := E2 \ {(v2, w2)}

otherwise
if β1(v1, w1) = β2(v2, w2) then

E := E ∪ {(γ(v1), γ(w1))}
β(γ(v1), γ(w1)) := β1(v1, w1)

endif
E1 := E1 \ {(v1, w1)}
E2 := E2 \ {(v2, w2)}

endcase
endwhile

7. return G
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