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Summary. In this chapter, we present a review of graph-based methodologies for pattern
recognition and computer vision, by considering three different points of view: the algorithms,
the applications, and the performance evaluation. Preliminarily, a survey of graph-matching
approaches, including a synthetic description of a plenty of algorithms and their inspiring
rationale, is discussed. Afterward, a detailed taxonomy of pattern recognition applications
using graphs is organized, motivating, for each of them, why graph-based approaches can be
profitably used and how a specific technique can be exploited. Finally, a section reporting
the state-of-the-art of benchmarking activities is present, together with a discussion of the
performance issues of well-known graph-based algorithms.

1 Introduction

Starting from the late 1970s, graph-based techniques have been proposed as a
powerful tool for pattern representation and classification. After the initial enthu-
siasm, graphs have been practically left unused for a long period of time and only
recently are obtaining a growing attention from the scientific community of pattern
recognition (PR) and computer vision.

Due to their expressive power, graphs are conquering a primary role as a smart
data structure for representing complex visual patterns, especially in structural meth-
ods, whose rationale is a vision of the objects as made of parts suitably connected
to each other. Under this assumption, nodes of the graphs, enriched with properly
defined attributes, can be thought as descriptors of the component parts of the ob-
jects, while the edges of the graphs represent the relationships between the parts.
The reason why the literature on graph-based approaches is so wide depends on
the fact that description schemes generally lead to a variety of graph representa-
tions differing from each other for the graph topology, the nature of the nodes and
edges (deterministic or stochastic), the type of the attributes (numeric values, sym-
bols, probabilities), etc. Of course, for each representation scheme, some methods
for comparing the obtained graph representations must be defined, so obtaining also
a variety of algorithms able to calculate exact or somewhat inexact correspondence
between graphs, or a sort of distance between them.
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The huge material available on graphs often discourages a researcher who in-
tends to use these smart and promising approaches; in other cases, the complexity
of this material is the main cause of unsuccessful attempts. The under-evaluation of
the complexity of the literature may suggest to the researcher a quick and superfi-
cial choice of an algorithm, because of the wrong convincement that almost all the
algorithms differ from each other for minor performance issues.

In the recent past some surveys of graph-based techniques have been published
(see for example [1]). Since they are mainly focused to presenting almost all the
existing algorithms (even if sometimes they are organized in a taxonomy), they
often result really useful only to experienced researchers of the field. The idea of
the present paper is the attempt of filling the “knowledge gap” existing between
the graph-based techniques and their use in PR applications. This is done by con-
sidering both the above-mentioned issues in successive sections of the paper, care-
fully bridging techniques and applications, retracing the history of almost all the PR
applications using graphs in the last decades.

In Sect. 2, a survey of graph-matching approaches, including a synthetic descrip-
tion of a plenty of algorithms with their inspiring rationale, is discussed. The sur-
vey groups similar approaches and algorithms in a few categories, each described in
terms of the underlying technique, purposely neglecting inessential algorithmic de-
tails. This is done for both the classes of exact and inexact graph-matching methods.
In a following subsection a commented bibliography is given, presenting for each
group of algorithms the most important papers, with the aim of explaining the main
differences among them, and reconstructing their publication sequence.

In Sect. 3 a detailed taxonomy of PR applications using graphs is organized;
this section highlights, for each application, why graph-based approaches can be
profitably used and how a specific technique can be exploited. The taxonomy is
organized so as to render more understandable by a practitioner of the field the rela-
tionship among the techniques and the applications, so as to help him to choose the
more suitable structural method using graphs. To complete the review, a final section
reports the state of the art of benchmarking activities, together with a discussion of
the performance issues of well-known graph-based algorithms. It is mainly orga-
nized in order to give general criteria for selecting the most effective algorithm for
dealing with the problem at hand, with respect to some common classes of graphs.

2 Graph-Matching Taxonomy

In this section we will present a review of the algorithms that have been proposed and
used in the PR field for the graph-matching problem. We have divided the matching
methods into two broad categories: the first contains exact matching methods that
require a strict correspondence between the two object being matched or at least
between subparts of them. The second category defines inexact matching methods,
where a matching can occur even if the two graphs being compared are structurally
different to some extent.
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2.1 An Introduction to Exact Graph-Matching Problems

Exact graph matching is characterized by the fact that the mapping between the nodes
of the two graphs must be edge-preserving in the sense that if two nodes in the first
graph are linked by an edge, they are mapped to two nodes in the second graph that
are linked by an edge as well.

Conceptually, the simplest form of graph matching is graph isomorphism (see
Fig. 1), where an exact structural correspondence is sought: there must be a bijective
mapping between the nodes of the two graphs that preserves the edges of both graphs.

A slightly weaker form of matching is subgraph isomorphism (see Fig. 2), that
requires the existence of an isomorphism between one of the graphs and a subgraph
of the other. In other words, one of the graphs may have extra nodes and extra edges
linking these new nodes to the rest. Subgraph isomorphism is often confused with
monomorphism, which is a little more relaxed matching: in monomorphism extra
edges in the larger graph are allowed also between nodes that do have a correspon-
dent in the smaller graph. In subgraph isomorphism, instead, one of the ends of the
extra edges must be an extra node. In other words, while isomorphism and subgraph
isomorphism impose a two-way constraint on the edges of the graphs, monomor-
phism imposes a one-way constraint.

A more robust form of graph matching is based on the computation of the maxi-
mum common subgraph (MCS - see Fig. 3), that is the largest subgraph of one of the
two graphs that is isomorphic to a subgraph of the other. This kind of matching allows
both graphs to have extra nodes and edges, but is also significantly more expensive
from a computational viewpoint.

Fig. 1. Definitions of graph and graph isomorphism
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Fig. 2. Definitions of subgraph isomorphism and monomorphism

Fig. 3. Definition of maximum common subgraph
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It has been demonstrated that the MCS problem is equivalent to the determina-
tion of the maximum clique (i.e., fully connected subgraph) in a so-called association
graph, encoding the possible mappings between the nodes of the two graphs being
matched; hence, many authors formulate the graph-matching algorithm in terms of
clique detection. A generalization of MCS is weighted graph matching (WGM),
where the edges of the graphs have a weight, and the goal is to find the common
subgraph with the largest total weight.

Because of its strict requirements, isomorphism is not very used in PR applica-
tions, where it is customary that the graphs representing different instances of a same
pattern have some structural differences due to noise or occlusions or to other causes.
Subgraph isomorphism, monomorphism, and MCS are generally used in PR for find-
ing an object, represented by a graph, as a part of a larger model graph (prototype),
or for detecting the parts shared by two objects, structurally represented by graphs.
Although, exact graph matching has exponential time complexity in the worst case.
However, in many PR applications the actual computation time can be still accept-
able, because of two factors: first, the kinds of graphs encountered in practice are
usually different from the worst cases for the algorithms. Second, node and edge
attributes can be used very often to reduce dramatically the search time.

2.2 A Commented Bibliography on Algorithms and Techniques for Exact
Graph Matching

The first attempts for reducing the computational complexity of graph matching were
aimed to define algorithms devised for special kinds of graphs. Among them, we find
algorithms for some common graph topologies, as trees (special cases of graphs),
proposed by Aho et al. in 1974 [2], planar graphs by Hopcroft and Wong in 1974 [3],
and bounded valence graphs by Luks in 1982 [4]). Despite the historical relevance,
this family of graph-matching algorithms can be used only in specific applicative
areas, where the graphs being matched always have a same predefined structure.

Most of the algorithms for exact graph matching are based on some form of tree
search with backtracking. The basic idea is that a partial match (initially empty) is
iteratively expanded by adding to it new pairs of matched nodes; the pair is chosen
using some necessary conditions that ensure its compatibility with the constraints
imposed by the matching type with respect to the nodes mapped so far, and usually
using also some heuristic condition to prune as early as possible unfruitful search
paths. Eventually, either the algorithm finds a complete matching, or it reaches a
point where the current partial mapping cannot be further expanded because of the
matching constraints. In this latter case the algorithm backtracks, i.e., undoes the
last additions until it finds a partial matching for which an alternative extension is
possible. If all the possible mappings that satisfy the constraints have already been
tried, the algorithm halts. Several different implementation strategies of this kind of
algorithm have been employed, differing in the order the partial matches are visited.
Probably the simplest is depth-first search that requires less memory than others and
lends itself very well to a recursive formulation; it is alsoknown as branch and bound.
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A nice property of such algorithms is that they can be very easily adapted to take into
account the attributes of nodes and edges in constraining the desired matching, with
no limitations on the kind of attributes that can be used. This is very important for
PR applications where often attributes play a key role in reducing the computational
time of the matching. The first important algorithm of this family is due to Ullmann,
in 1976 [5], still widely used today. Also the approach proposed by Schmidt and
Druffel in 1976 [6] adopts the same strategy, with the addition of a preprocessing
that creates an initial partition of the graph nodes on the basis of the distance matrix,
to reduce the search space. Another interesting monomorphism algorithm based on
backtracking has been proposed by Ghahraman et al. in 1980 [7]; it prune the search
space, using a so-called netgraph obtained from the Cartesian product of the nodes of
two graphs being matched. Monomorphisms between these two graphs correspond
to particular subgraphs of the netgraph. A major drawback of the algorithm is that
the netgraph is represented using a matrix of size N2 ×N2, where N is the number
of nodes of the largest graph. Consequently, only small graphs can be reasonably
dealt with.

A more recent algorithm for both isomorphism and subgraph isomorphism is
the VF algorithm [8, 9]. The authors define a heuristic that is based on the analysis
of the sets of nodes adjacent to the ones already considered in the partial mapping.
This heuristic is fast to compute leading in many cases to a significant improve-
ment over Ullmann’s and other algorithms, as shown in [10, 11]. Successively, the
authors propose a modification of the algorithm [12,13], called VF2, that reduces the
memory requirement from O(N2) (that compares favorably with other algorithms)
to O(N) with respect to the number of nodes in the graphs, thus making the algo-
rithm particularly interesting for working with large graphs. One of the most recent
tree search methods for isomorphism has been proposed by Larrosa and Valiente
in 2002 [14]; the authors reformulate graph isomorphism as a constraint satisfac-
tion problem (CSP), a problem that has been studied very deeply in the framework
of discrete optimization and operational research. Thus the authors apply to graph
matching some heuristics derived from the CSP literature.

The backtracking approach has been applied also to problems different from
graph isomorphism and subgraph isomorphism. For instance, Durand et al. [15] have
used this approach to solve the maximal clique detection problem. Probably the most
interesting matching algorithm that is not based on tree search is Nauty, developed by
McKay in 1981 [16]. The algorithm deals only with the isomorphism problem, and
is regarded by many authors as the fastest isomorphism algorithm available today.
It uses some results coming from group theory for constructing the automorphism
group of each of the input graphs. From them, a canonical labeling is derived, so
that two graphs can be checked for isomorphism by simply verifying the equality of
their canonical forms. The equality verification can be done in O(N2) time, but the
construction of the canonical labeling can require an exponential time in the worst
case. In the average case this algorithm has quite impressive performance, although
in [11, 17] it has been verified that under some conditions it can be outperformed
by other algorithms like the above mentioned VF2. Furthermore, it does not lend
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itself very well to exploit node and edge attributes of the graphs, that in many PR
applications can provide an invaluable contribution to reduce the matching time.

Some matching algorithms are specifically aimed at reducing the cost of match-
ing one input graph against a large library of graphs, suitably preprocessed. Messmer
and Bunke proposed a very impressive algorithm in 1997 [18,19]. The algorithm, that
deals with isomorphism and subgraph isomorphism, in a preprocessing phase builds
a decision tree from the graph library. Using this decision tree, an input graph can
be matched against the whole library in a time that is O(N2) with respect to the
input graph size. An extension to MCS is presented in a paper by Shearer et al. in
1997 [20], further improved in [21].

Other two recent papers, by Lazarescu et al. in 2000 [22] and by Irniger and
Bunke in 2001 [23], proposed the use of decision trees for speeding up the matching
against a large library of graphs. In these cases, the decision tree is not used to per-
form the matching process, but only for quickly filtering out as many library graphs
as possible, applying then a complete matching algorithm only to the remaining ones.

2.3 An Introduction to Inexact Graph-Matching Problems

The stringent constraints imposed by exact matching are in some circumstances too
rigid for the comparison of two graphs. In many applications, the observed graphs
are subject to deformations due to several causes: intrinsic variability of the pat-
terns, noise in the acquisition process, presence of nondeterministic elements in the
processing steps leading to the graph representation, are among the possible reasons
for having actual graphs that differ somewhat from their ideal models.

So the matching process must accommodate the differences by relaxing, to some
extent, the constraints that define the matching type. Usually, in these algorithms
the matching between two nodes that do not satisfy the edge-preservation require-
ments of the matching type is not forbidden. Instead, it is penalized by assigning to
it a cost that may take into account other differences (e.g., among the correspond-
ing node/edge attributes). So the algorithm must find a mapping that minimizes the
matching cost.

Optimal inexact matching algorithms always find a solution that is the global
minimum of the matching cost so implying that if an exact solution exists, it will
be found. Hence they can be seen as a generalization of exact matching algorithms.
Optimal algorithms face the problem of graph variability, and they do not necessar-
ily provide an improvement of the computation time, usually resulting fairly more
expensive than their exact counterparts.

Approximate or suboptimal matching algorithms, instead, only ensure to find a
local minimum of the matching cost, generally not very far from the global one. Even
if an exact solution exists, they may not be able to find it and for some applications
this may not be acceptable, but the suboptimality of the solution is abundantly repaid
by a shorter, usually polynomial, matching time.

A significant number of inexact graph-matching algorithms base the definition of
the matching cost on an explicit model of the errors (deformations) that may occur
(i.e., missing nodes, etc.), assigning a possibly different cost to each kind of error.
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These algorithms are often denoted as error correcting or error tolerant. Another
way of defining a matching cost is to introduce a set of graph edit operations (e.g.,
node insertion, node deletion, etc.), each assigned a cost; the cheapest sequence of
operations needed to transform one of the two graphs into the other is computed, and
called graph edit cost.

Some of the inexact matching methods also propose the use of the matching cost
as a measure of dissimilarity of the graphs, e.g., for selecting the most similar in
a set of graphs, or for clustering. In some cases, the cost formulation verifies the
mathematical properties of a distance function (e.g., the triangular inequality); then
we have a graph distance that can be used to extend to graphs some of the algorithms
defined in metric spaces. Of particular interest is the graph edit distance, obtained if
the graph edit costs satisfy some constraints (e.g., the cost of node insertion must be
equal to the cost of node deletion).

Some papers demonstrates equivalences holding between the graph edit distance
and relevant graph-matching problems, as the graph isomorphism and subgraph iso-
morphism and MCS [24–28].

2.4 A Commented Bibliography on Algorithms and Techniques for Inexact
Graph Matching

Tree search with backtracking can also be used for inexact matching. In this case the
search is usually directed by the cost of the partial matching obtained so far, and by
a heuristic estimate of the matching cost for the remaining nodes. This information
can be used either to prune unfruitful paths in a branch and bound algorithm, or
also to determine the order in which the search tree must be traversed, as in the A*
algorithm. In this latter case, if the heuristic provides a close estimate of the future
matching cost, the algorithm finds the solution quite rapidly; but if this is not the
case, the memory requirement is considerably larger than for the branch and bound
algorithm.

The first tree-based inexact algorithm is due to Tsai and Fu, in 1979 [29], and
in an extended version in 1983 [30]. The paper introduces a formal definition of
error-correcting graph matching of attributed relational graphs (ARG), based on the
introduction of a graph edit cost, and defines a search method ensuring to find the
optimal solution. A more recent paper by Wong et al. in 1990 [31] proposes an im-
provement of the heuristic of Tsai and Fu for error-correcting monomorphism, taking
into account also the future cost of edge matching.

A similar approach is used in a paper by Sanfeliu and Fu in [32–34], where
the definition of a true graph edit distance is attempted, and a suboptimal method,
working in a polynomial time, for the distance computation is introduced. In a paper
of 1980, Gharaman et al. [35], propose an optimal inexact graph monomorphism
algorithm that is based on the use of branch and bound together with a heuristic
derived from the netgraph.

Interesting early papers are due to Shapiro and Haralick in 1981 [36] and later in
1985 [37], with algorithms for finding the optimal error-correcting homomorphism
and for evaluating the distance between two hypergraphs.
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Among the more recent proposals based on tree search we can cite the algorithm
using A*, for different purposes: Dumay et al. in 1992 [38], for evaluating a graph
distance and Berretti et al. in their 2000 and 2001 papers [39–41], for finding the
largest matching between two sets of nodes forming a bipartite graph, with the con-
straint that each node must be used at most once. A* search appears also in a recent
paper by Gregory and Kittler in 2002 [42], where a fast, simple heuristic is used that
takes into account only the future cost of unmatched nodes. The authors assume that
at least for small graphs the less accurate estimate of the future cost is abundantly
repaid by the time savings obtained in computing a less complicated heuristic.

Another recent inexact algorithm has been proposed by Cordella et al. in two
papers of 1996 and 1997 [43,44]. This algorithm deals with deformations by defining
a transformation model in which under appropriate conditions a subgraph can be
collapsed into a single node. The transformation model is contextual, in the sense
that a given transformation may be selectively allowed depending on the attributes
of neighboring nodes and edges.

Along the same lines, Serratosa et al. in 1999 [45,46] present an inexact matching
method that also exploits some form of contextual information. The authors define
a distance between function described graphs (FDG) that are ARGs enriched with
additional information relative to the joint probability of the nodes in order to model
with one FDG a set of observed ARGs. As in the case of exact approach, efficiently
inexact matching algorithms have been proposed for dealing with special, restricted
classes of graphs, as planar graphs and region adjacency graphs (RAGs). For planar
graphs, Rocha and Pavlidis [47] present an optimal algorithm for error-correcting
homomorphism, while in a paper by Wang and Abe (1995) [48], a distance between
RAGs is proposed, and is computed using a suboptimal algorithm. More recently,
Llados et al. in a 2001 paper [49] define a graph edit distance for RAGs using edit
operations that are devised to model common distortions in image segmentation; the
distance is computed using an optimal algorithm based on branch and bound.

The matching methods examined so far rely on a formulation of the matching
problems directly in terms of graphs. A radically different approach is to cast graph
matching, that is inherently a discrete optimization problem, so as to use one of the
many continuous, nonlinear optimization algorithms. The found solution needs to
be converted back from the continuous domain into the initial discrete problem by
a process that may introduce an additional level of approximation. Nevertheless, in
many application contexts this approach is very appealing because of its extremely
reduced computational cost that is usually polynomially dependent (and with a low
exponent) on the size of the graphs.

The first family of methods based on this approach uses relaxation labeling. One
of the pioneering works is due to Fischler and Elschlager in 1973 [50]. The basic idea
is that each node of one of the graphs can be assigned one label out of a discrete set
of possible labels, that determines which node of the other graph it corresponds to.
During the matching process, for each node there is a vector of the probabilities of
each candidate label, dynamically re-evaluated until the process converges to a sta-
ble solution. At this point, for each node the label having the maximum probability
is chosen. In 1989 Kittler and Hancock [51] provide a probabilistic framework for
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relaxation labeling, in which the update rules previously used for the probabilities are
given a theoretical motivation. In 1995, Christmas et al. [52] propose a method, based
on the theoretical framework of Kittler and Hancock, that is able to take into account
during the iteration process both node and edge attributes. Wilson and Hancock, in
1997 [53], extended the probabilistic framework by introducing a Bayesian consis-
tency measure, that can be used as a graph distance. An extension of this method
has been proposed by Huet and Hancock in 1999 [54]. This method also takes into
account edge attributes in the evaluation of the consistency measure.

Myers et al. [55] in 2000 propose a new matching algorithm that introduces the
definition of a Bayesian graph edit distance, approximated by considering indepen-
dently the supercliques of the graphs, so as to perform the computation in polynomial
time. Finally, in a recent paper (2001), Torsello and Hancock [56] propose the use of
relaxation labeling also for computing an edit distance between trees.

A recent method by Luo and Hancock [57] is based on a probabilistic model of
matching: the nodes of the input graph play the role of observed data while the nodes
of the model graph act as hidden random variables; the matching is then found by
using the expectation–maximization (EM) algorithm [58].

A different family of methods is based on a formulation of the problem as a
WGM problem that permits the enforcement of two-way constraints on the corre-
spondence. It consists in finding a matching, usually expressed by means of a match-
ing matrix M, between a subset of the nodes of the first graph and a subset of the
nodes of the second graph. The edges of the graphs are labeled with weights, that are
real numbers, usually between 0 and 1. The desired matching must optimize a suit-
ably defined goal function. Usually the problem is transformed into a continuous one
by allowing M elements to have continuous values so making the WGM problem a
quadratic optimization problem. An important limitation of this approach, from the
perspective of PR applications, is that nodes cannot have attributes and edges cannot
have other attributes than their weight. This restriction imposes a severe limit on the
use of the semantic information often available in real applications.

Among the first papers based on this formulation is the work by Almohamad
and Duffuaa in 1993 [59]. In this paper the quadratic problem is linearized and
solved using the simplex algorithm [60]. The approximate, continuous solution found
this way is then converted back into discrete form using the so-called Hungarian
method [60] for the assignment problem. Rangarajan and Mjolsness [61], in 1996,
proposed a method based on Lagrangian relaxation networks in which the constraints
on the rows and on the columns of the matching matrix are satisfied separately
and then equated through a Lagrange multiplier. Also in a 1996 paper, Gold and
Rangarajan [62] present the graduated assignment graph-matching (GAGM) algo-
rithm. In this algorithm a technique known as graduated nonconvexity is employed
to avoid poor local optima. Another approach is based on a theorem by Motzkin
and Straus that establishes a close relation between the clique problem and contin-
uous optimization. Namely, they proves that all the maximum cliques of a graph
correspond to maxima of a well-defined quadratic functional. In 1997, Bomze [63]
proposed a modified functional for which the correspondence holds in both senses.
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The papers by Pelillo and Jagota in 1995 [64, 65] propose a matching method
based on the above cited theorem and an implementation where the quadratic prob-
lem is solved by means of relaxation networks [66]. In [67] a unified framework
for relational matching based on the Bomze functional is presented. In 1999, Pelillo
et al. [68] introduced a technique to reduce the MCS problem between trees to a
clique problem and then solved it using replicator equations. Branca et al. [69] pro-
posed in 1999 an extension of the framework defined by Pelillo [67] that is able to
deal with a weighted version of the clique problem.

Several other inexact matching methods based on continuous optimization have
been proposed in the recent years, as the fuzzy graph matching (FGM) by Medasani
et al. [70, 71], that is a simplified version of WGM based on fuzzy logic. Another
recent approach, proposed by van Wyk et al. in 2002 [72, 73] is based on the theory
of the so-called reproducing Kernel Hilbert spaces (RKHS) for casting the matching
problem into a system identification problem; this latter is then solved by construct-
ing a RKHS interpolator to approximate the unknown mapping function.

Spectral methods are based on the following observation: the eigenvalues and
the eigenvectors of the adjacency matrix of a graph are invariant with respect to node
permutations. Hence, if two graphs are isomorphic, their adjacency matrices will
have the same eigenvalues and eigenvectors. Unfortunately, the converse is not true:
we cannot deduce from the equality of eigenvalues/eigenvectors that two graphs are
isomorphic. However, since the computation of eigenvalues/eigenvectors is a well-
studied problem, that can be solved in polynomial time, there is a great interest in
their use for graph matching. An important limitation of these methods is that they
are purely structural, in the sense that they are not able to exploit node or edge
attributes, that often, in PR applications, convey information very relevant for the
matching process. Further, some of the spectral methods are actually able to deal
only with real weights assigned to edges by using an adjacency matrix with real-
valued elements.

The pioneering work on spectral methods is the paper by Umeyama, in 1988 [74],
proposing an algorithm for the weighted isomorphism between two graphs. It uses
the eigendecomposition of adjacency matrices of the graphs to derive a simple
expression of the orthogonal matrix that optimizes the objective function, under
the assumption that the graphs are isomorphic. From this expression he derives a
method for computing the optimal permutation matrix when the two graphs are
isomorphic, and a suboptimal permutation matrix if the graphs are nearly iso-
morphic. In 2001, Xu and King [75], propose a solution to the weighted isomor-
phism problem, by approximating the permutation matrix with a generic orthogonal
matrix. An objective function is defined using Principal Component Analysis and
then gradient descent is used to find the optimum of this function.

In 2001 Carcassoni and Hancock [76] propose a spectral method that is based on
the use of spectral features to define clusters of nodes that are likely to be matched
together in the optimal correspondence; the method uses hierarchical matching by
first finding a correspondence between clusters and then between the nodes in the
clusters. Another method that combines a spectral approach with the idea of cluster-
ing has been presented by Kosinov and Caelli in 2002 [77]: a vector space, called the
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graph eigenspace, is defined using the eigenvectors of the adjacency matrices, and
the nodes are projected onto points in this space and a clustering algorithm is used to
find nodes of the two graphs that are to be put in correspondence.

A method that is partly related to spectral techniques has been proposed in 2001
by Shokoufandeh and Dickinson [78]. The authors use the eigenvalues to associate
to each node of a Directed Acyclic Graph a topological signature vector (TSV) that
is related to the structure of the subgraph made of the descendants of the node. These
TSV are used both for a quick indexing in a graph database and for the actual graph-
matching algorithm. This latter is based on the combination of a greedy search pro-
cedure and of bipartite graph matching.

Finally, we must say that other heuristic approaches to inexact graph matching
have been proposed: at least in principle, any of the heuristic techniques that have
been used for combinatorial problems or for continuous global optimization prob-
lems can be adapted to some approximate form of graph matching. With no presump-
tion of completeness, we can cite here, as examples, simulated annealing (Jagota
et al. [79]) and tabu search (Gendreau et al. [80]; Williams et al. [81]).

3 Application Taxonomy

In the last decade several applications of graph matching in PR and machine vision
have been reported in the literature. As regards the role of such applications within
the global context of the containing work, we can recognize two situations. In a first
type of works, that we could name application-driven papers, the main concern of
the authors is solving an applicative problem. They present their graph-based tech-
niques as a solution that is as effective or more effective than other, nongraph-based
methods, for solving the problem at hand. Application-driven papers are of course
the most interesting ones for an audience involved in deciding whether a graph-based
technique is more or less suitable for a given problem, since they usually provide a
comparison, either theoretical or experimental (or both), between their proposal and
other approaches of different kind to the same problem. A second type of works,
say technique-driven papers, instead is more centered around the presentation of a
novel graph-based algorithm or technique that could be potentially applicable in sev-
eral situations, and make use of an applicative problem to provide a performance
benchmark of the proposed technique in comparison to other, often similar, meth-
ods. Since the application is not the main concern, in these papers the authors do
not investigate thoroughly the advantages of a graph-based method over a different
kind of approach. Nevertheless, these paper provide very useful insight to a slightly
different audience: that is, the researchers that have already chosen to cast their prob-
lem in a graph framework and are now looking for the best performing technique or
algorithm known to solve a problem of that kind. In this review, we will present both
application-driven and technique-driven papers, but will focus mainly on the first
type of works, providing only a shallow overview of the second type.
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We have grouped the applications of graph matching according to the topic
within the PR and machine vision fields. Namely, we have individuated five broad
areas that cover the vast majority of the applications:

• 2D and 3D image analysis
• Document processing
• Biometric identification
• Image databases
• Video analysis

Among the applications to 2D and 3D image analysis, we have found both low-
level problems such as edge detection and stereomatching, and middle/high-level
problems such as automatic navigation, robotic vision, and object recognition.
Handwritten recognition, OCR, and symbol recognition are the most relevant docu-
ment processing applications addressed in the literature, while face recognition
and authentication, facial expression recognition, hand posture recognition, ear
recognition, and fingerprint recognition are examples of biometric identification
applications. In the field of image databases, indexing and retrieval have been consid-
ered. Retrieval from video databases, annotation of video databases, object tracking
and motion estimation are the typical applications in the context of video analysis.

While most graph-matching applications fall in the previously outlined cate-
gories, there are also a few, isolated works (mainly in the fields of biology and bio-
medicine) that do not fall neatly into one of the above-mentioned areas. We have
presented some of these papers as miscellaneous applications.

In the following subsections we will provide details about each application areas,
discussing the peculiarity of how graph-based methods have been applied in their
context, highlighting (wherever it is possible) recurring patterns of usage and corre-
spondence between the problem, the representation, and the matching technique.

3.1 2D and 3D Image Analysis

Among the papers that address 2D and 3D image analysis problems with a graph-
matching technique, a significant number lies in the technique-driven category we
have previously defined. For the 2D image analysis, this is the case of papers that
report applications in the object recognition field [31, 73, 82–86], of papers that
address the shape recognition [56, 68, 77, 87–89] or the scene recognition [90, 91]
problem, and of papers that work on SAR images [53, 92]. As regards 3D image
analysis, papers that report results on robotic vision [34], stereomatching [52, 93]
object matching [57], object recognition [94–97], and object reconstruction [98]
applications can be cited.

However, there are several interesting application-driven papers that we will
now examine with more detail. In the field of 2D image analysis, the problems
faced by the application-driven papers are three: object recognition (by Meth and
Chellappa [99], Li and Lee [100], Belongie and Malik [101]), shape recognition
(Sebastian et al. [102]) and visual inspection (Koo and Yoo [103]).
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In object recognition the goal is to find all the occurrences, within an image, of
a distinguished set of objects. Usually objects of interest belong to different classes
(having different shapes) and neither their number nor their positions within the
image are known; the image often contains also background elements (possibly
complex) that should not be detected by the system. In some cases, the objects
of interest may be partially occluded by other objects or by background elements.
The basic idea of graph-based object recognition is to decompose the whole image
into smaller parts, obtaining a graph representation describing those parts and their
relations, and then to look for subgraphs of this large graph that correspond to
the shapes of the objects of interest, by means of some kind of inexact match-
ing algorithm. The above-mentioned papers differ in the adopted representations,
ranging from low-level [99] to middle-level representations [100, 101], and also
in matching techniques (error-correcting subgraph isomorphism with a similarity
measure [99], inexact matching with a neural approach [100], weighted bipartite
matching [101]); Shape recognition is very similar to object recognition, differing
for the fact that only shape information is available (and not, say, color or texture
information), and usually the image is not cluttered with background elements. If the
shapes are simply connected (i.e., they not contain holes), they can be represented
using a tree instead of a fully general graph, and the matching can be performed
using error-correcting tree isomorphism [102]. Visual inspection is also similar
to the object recognition problem, with the important difference that a model of
which objects are expected to be in the image and which should be their positions
is known; indeed, the purpose of visual inspection is actually to spot any difference
with respect to the expected situation. For this reason, exact matching methods can
be more appropriate for this problem [103].

The distribution of the matching algorithms and of the graph representations used
within this applicative area is shown in Fig. 4.

Entering into details, in the field of 2D object recognition, Meth and Chellappa
in [99] work on SAR images. They use a low-level representation: a node of the
graph is associated to each pixel of the image. The node labels depend on the so-
called topographical primal sketch (TPS). A TPS assigns to each pixel a label that
is invariant under monotonic transformations of the grey levels. This is obtained by
fitting a local two dimensional cubic surface on the image for estimating the intensity
surface around each pixel. On the basis of the derivatives of this surface, one of the
following six labels is given to the pixel: peak, pit, ravine, ridge, saddle, “no zero
crossing.” Two graph-matching techniques are proposed, the first one is based on a
distance measure between node labels, while the second one is based on a similarity
measure between features associated to node labels. In both cases, the test and the
model image are first registered with respect to the node labels position. The first
matching technique calculates a cost based on the relative distance between nodes
with the same label in the test and in the model image. The second one associates
a feature vector (by calculating the second derivative extrema, the directions of the
second derivative extrema and the gradient) to nodes that have a certain label; on the
basis of these feature vectors a similarity measure is computed. Results are reported
on 81 images belonging to three different categories.
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Fig. 4. Distribution of (a) the matching algorithms and (b) the graph representations used
within applications in the 2D and 3D image analysis field

In [101] Belongie and Malik define a new middle-level shape descriptor, that
they call shape context, for measuring shape similarity. Given an image, the edges
are extracted and a certain number of uniformly spaced points, say N , on these edges
is selected. A compact descriptor for each sample point is obtained by computing a
coarse histogram of the relative coordinates of the remaining points, in a log-polar
coordinate system. All the N histograms are flattened and concatenated so as to
obtain the so-called shape context of the image. In addition to this representation,
another one based on the local appearance, in particular on the tangent angle calcu-
lated for each of the N points, is also used. So, if a node of a graph is associated
to each of these points, the cost of matching two nodes relative to points on two
images can be expressed by taking into account two contributions, one relative to
the difference between histograms and the other one relative to the tangent angles
dissimilarity. The object recognition problem is then viewed as a weighted bipartite
matching problem that can be solved with the Hungarian method. Results on the
same database used in [104] are presented and also on other silhouette image data-
bases. Furthermore, the authors suggest that their method can be also used for the
retrieval from an image database, as it provides a similarity measure between 2D
objects.

In the paper by Li and Lee [100], a graph represents a 2D scene that is described
by using a polygonal approximation. The nodes of the graph are the vertices of the
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polygon and the edges represent the sides. The angle subtended by each vertex is the
node attribute, while the distance between two nodes is used as edge attribute. Given
such a graph (called scene graph), in order to cope with distortions and occlusions,
the authors propose to divide it into smaller pieces, called subscene graphs. Then,
an inexact subscene graph matching is performed between each subscene graph and
a model graph, by using an Hopfield neural net. The correct match for the complete
scene graph can be obtained from the statistics of the matching results between each
subscene graph and the model graph. In the paper, tests are made on images repre-
senting 2D hand tools.

Sebastian et al. [102] propose a system to recognize object shapes on the basis of
their silhouette. They represent each object using a shock tree, which is derived from
a thinning of the shape. For the matching, they propose the definition of a tree edit
distance, in which the edit costs are not fixed arbitrarily but are derived analytically
from a small set of hypotheses related to the cost of deforming a silhouette. This
distance is computed by means of an error-correcting tree isomorphism algorithm
based on dynamic programming.

Finally, Koo and Yoo [103] address the problem of visual inspection by using
an high-level representation scheme. They consider Printed Circuit Board images,
that are represented by means of a tree. Images are first binarized, then the bina-
rized image is partitioned into nonoverlapping regions (blobs) each one made up
of adjacent pixels having the same value. A node is associated to each blob; a tree
is constructed by adding an edge between two nodes if the blobs they represent
are spatially included into each other and have different pixel values. The root of
the tree is the blob that contains the outer boundary pixels of the image. The tree
obtained from a test image is compared with the tree derived from a defect-free
image by means of the tree isomorphism algorithm proposed in [2]. If the two trees
are not isomorphic a defect is detected and the inspection process stops. Otherwise,
additional polygonal-boundary information are extracted and a second matching
step is performed. In particular, a tolerance zone is defined and the proposed algo-
rithm through a polygonal-boundary matching function checks if such tolerance is
respected between pairs of matched nodes.

In the field of the 3D image analysis applications, Branca et al. [69] addressed
the problem of automatic navigation, while Bauckhage et al. [105] and Olatunbosun
et al. [106] the recognition of 3D objects, and Fuchs and Le Men [107, 108] the 3D
object reconstruction.

The 3D object recognition problem is quite similar to the 2D version; the main
differences are the need to take into account the changes in the object appearance due
to a different point of view, and the increased importance of the occlusion phenom-
enon. These differences lead to the use of graph-matching algorithms more tolerant
to structural changes.

The 3D object reconstruction is aimed at deriving the three-dimensional struc-
ture of a scene from 2D images. Under some constraints on the objects being
reconstructed, it can been faced with an approach that reduces this problem to object
recognition, by defining a set of 3D structural primitives whose occurrence can be
recognized in the image. Automatic navigation consists in the detection of still or



How and Why PR and CV Applications Use Graphs 101

moving objects (such as obstacles a vehicle has to avoid) in a 3D scene, usually rep-
resented by means of a pair of stereo images. The problem is different from object
recognition since the shape of the objects is not known a priori. However, it turns
out that this problem can be faced with techniques very similar to the ones used for
3D object recognition. In fact, by finding for each part of one of the two images the
corresponding part in the other (which is similar to what an object recognizer does),
the distance of each part from the camera can be estimated.

The 3D applications mainly use ARGs [69, 105, 107, 108] for representing
objects, and two different matching techniques: either perform a MCS detection (by
means of a maximal clique search on the association graph) [69, 106] or employ an
error-correcting subgraph isomorphism algorithm [105, 107, 108]. With more detail,
Branca et al. [69] presents an application of graph matching to autonomous naviga-
tion. In particular, the detection of ground floor obstacles and of moving objects are
considered. Relational graphs are used for object representation, where the object
features extracted by means of the Moravec interest operator are the nodes and the
edge linking them are weighted by projective invariant values. Given two graphs
obtained from two different images acquired by a TV camera mounted on a mobile
vehicle, the goal is to determine, into the association graph, the maximal clique
of nodes that are mutually compatible according to the similarity imposed by the
invariant relations encoded into the edges. The nodes of this clique will belong to
the same object and this permit to detect into a given image the features that belong
to an obstacle, or to individuate the feature pertaining to a moving object. In the
paper an algorithm for finding the maximum edge weighted clique in an high-order
association graph is presented, based on an optimization procedure that use the
Motzkin–Straus theorem.

As regards 3D object recognition, Bauckhage et al. present in [105] a system
that uses graphs to recognize mechanical assemblies in a dynamic construction
environment. In particular, the main objective of their project is to develop a robot
that assembles parts from a wooden construction-kit for children, made up of bolts,
rings, bars, and cubes. So, given an assembly described by a graph, they use a
graph-matching technique for recognizing if that assembly is already present in the
knowledge base of the robot. In the negative case it will be added to the database.
They introduce the mating feature graph for representation. The nodes of this graph
represent mating features or subparts of an assembly and are labeled with the type
of the subpart. Nodes connected with a pair of edges represent subparts that belong
to the same object, while single directed edges between nodes represent the fact that
the corresponding subparts are attached to the same bolt. If an object is connected to
several bolts, the nodes that correspond to these bolts are linked by a bidirectional
edge; this edge is labeled with a value that indicates the angle between the bolts.
For matching two mating feature graphs, they use the error-correcting matching
procedure presented in [109]. They also propose an application of the mating feature
graph to the 3D reconstruction of assembled objects.

Another approach is proposed in Olatunbosun et al. [106], where a special kind
of RAGs, called color region adjacency graph (CRAG), is used for representing
3D objects. Graph nodes are the segmented regions, using the coordinates of their



102 D. Conte et al.

centroids as node attributes, and edges represent connections between regions. By
using the line length ratio, i.e., the ratio of the distance between a pair of nodes
into the model image and a pair of nodes in a test image, and the line angles, i.e.,
angles between three nodes into the model and the test image, an association graph
where the nodes are provisionally matched is built. Then the Bron–Kerbosh [110]
algorithm is used to find the maximal clique on this association graph: an high clique
value imply high similarity between the model image and a test image. The authors
also propose to reduce the computational complexity of the maximal clique search
method, by adopting a model-based approach. In order to recognize an object, a
test images is first filtered, by eliminating from it all the color regions that do not
belong to the model CRAG. So, the maximal clique search is performed on a smaller
association graph.

Finally, Fuchs and Le Men in [107] and [108] use graph matching in the field
of 3D building reconstruction from aerial stereopairs. In particular, in [108] the 3D
object extraction problem is addressed, while in [107] the goal is the reconstruction
of the structure of the roofs. They use a model driven strategy: the models used are
ARGs, where each nodes represent a 3D feature (a 3D line segment, or a 3D planar
region, or a facade of a building), while each edge encodes a geometric property
(such as parallelism, orthogonality, and so on) between nodes. The building recon-
struction is based on the computation of a subgraph isomorphism between a model
and a graph built on a set of 3D features derived from the images. As regards the
matching procedure, in [108] they use the error-correcting subgraph isomorphism
detection presented in [109], with an estimation of the subgraph distance based on a
stochastic heuristic, while in [107] propose a modification of the algorithm proposed
in [109] in order to take benefit of an external information (e.g., an user input or a
precomputed information). If the correspondence between some nodes of the model
and some nodes of the input data is already known before the matching, the search
space of the matching problem can be pruned by integrating the external information
in the error-correcting subgraph isomorphism algorithm.

3.2 Document Processing

Among the various document processing applications, OCR, handwritten recogni-
tion, string recognition, symbol and graphic recognition have been addressed in the
literature by using graph-matching techniques.

These problems are relatively similar to each other, entailing the recognition of
small elements having a definite meaning within a printed or handwritten document.
The number of different categories (classes) to be considered varies from ten to sev-
eral hundreds, and also the shape variability of the elements belonging to a same class
can range from reasonably small (e.g., for high-resolution printed characters) to very
high (for handwritten characters or symbols). As regards the strategy adopted to face
the problem, entities to be recognized (characters, symbols, or graphics) are usu-
ally decomposed into geometric primitives, which are in most cases approximated
as thin lines (also called strokes), since in handwriting and in printed scripts, thick-
ness does not convey useful information. This decomposition is then represented as
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a graph, and the recognition process is performed as a graph matching with model
graphs corresponding to the different classes of characters, symbols, or graphics to
be recognized. The proposed approaches differ in complexity of the geometric prim-
itives, in the way the decomposition is translated into a graph, and in the kind of
graph matching performed. A problem that is strongly related is the construction of
such model graphs from a set of examples, which is usually performed by means of
algorithms that involve a graph matching as one of their step.

The distribution of the matching algorithms and of the graph representations used
within the document processing field is shown in Fig. 5. Now we will examine with
more detail each of the problems belonging to this field.

Since OCR and handwritten recognition are among the most classical PR prob-
lems, and many of large datasets are available, they are often used as test cases in
technique-driven papers. This is the case of the papers by Sanfeliu and Fu [34],
Foggia et al. [43, 111, 112], Chan [113] and Rangarajan and Mjolness [61]. But also
several application-driven papers have been written on the handwritten recognition
problem (both offline and online) or on the optical character recognition problem:
this is the case of the papers by Lee and Liu [114] and Suganthan and Yan [115], and
Liu et al. [116], Lu et al. [117], Chen and Lieu [118], and Rocha and Pavlidis [47].

Independently on the main focus of the considered papers, both printed and hand-
written characters are typically described by ARGs [34, 43, 47, 111, 112, 115, 117,
118]. Two description schemes have been used (1) the nodes of the graph represent

Fig. 5. Distribution of (a) the matching algorithms and of (b) the graph representations used
within applications in the document processing field
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the structural primitives in which a character can be decomposed after a thinning
process and the edges represent the relations between them these primitives or (2)
the nodes are the junctions between strokes (singular points) and edges represent
the primitives into which characters are decomposed. Authors dealing with Latin
characters and Arabic digits [34, 43, 47, 111, 112] use circular arcs and segments as
primitives, while straight line segments or strokes are typically used in case of Chi-
nese characters [115–118]. As regards the representation, a quite different approach
is proposed in [114], where the authors propose an architecture for the recognition
of handwritten Chinese character that integrates the feature extraction, the segmenta-
tion, and the recognition phase. The feature extraction phase is performed by means
of Gabor filters; such features are used to segment characters using an optimiza-
tion module based on a genetic algorithm. Finally, elastic graph matching is used in
the recognition phase. Besides this paper, other authors mainly use error-correcting
graph matching for dealing with the high variability of handwritten characters. An-
other feature that is peculiar to this kind of applications is the graph size: graphs
describing characters are typically made up of few nodes.

As regards technique-driven papers on handwritten recognition, in [34] and [111]
the authors use respectively handwritten characters and handwritten digits to vali-
date a distance measure between ARGs in the framework of error-correcting graph
matching. In the same framework, a matching algorithm using subgraph trans-
formations is applied to handwritten characters [43]. Chinese characters are used
in [113] as test case for a learning algorithm that build templates starting from fuzzy-
attribute graphs; while in [61] the authors present a suboptimal method for exact
graph matching, based on a lagrangian relaxation network, using handwritten digits
for testing. Finally, handprinted digits are used as application of a graph learning
algorithm [112].

As regards the recognition of Chinese characters, both offline and online app-
roaches are present in the literature. In [115] the matching between input graph and
model graph for offline Chinese character recognition is performed by means of an
Hopfield network (presented in [119]) that is specifically devised to allow the seg-
ments of a broken stroke of an input character to be matched to a stroke of the model
graph.

The recognition of online handwritten Chinese character addressed by graph
matching has the additional problem of a significant computational cost due to the
large number of categories. Therefore for developing an online recognition system
it is mandatory to find an adequate structural representation together with matching
algorithms that can efficiently address this recognition problem. To this aim, some
authors [117, 118] used a sort of hierarchical graphs to represent a character. Such
graphs have two layers: nodes and edges in the first layer represent high-level com-
ponents and relations between them; while in the second layer each component is
described by a graph in which nodes and edges represent the strokes of that compo-
nent and their relations. In [116] a Chinese character is described with a complete
relational graph (CRG), where each node describe one of the segments in which a
stroke obtained from a pen down–pen up movement on a digitizer can be decom-
posed. In order to reduce matching time, a suboptimal solution is proposed. The
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problem of matching CRGs is transformed into a two-layer assignment problem and
solved with the Hungarian method. Within the OCR field, in [47] an error-correcting
subgraph-matching algorithm is used. It allows a multiple-to-one matching from a
set of feature (a path) of an input graph to a feature of a model graph (prototype), on
the basis of a set of predefined transformations. These graph transformations regard
straightening of strokes, rewriting of strokes into arcs, insertion and deletion of fea-
tures, and attribute transformations. Having associated a cost to each transformation,
the matching procedure for each input graph selects the prototype that gives rise to
the matching with the minimum cost. It is worth noting that prototypes are manually
defined, without using a specific learning procedure.

A quite peculiar approach is proposed in [120], where the OCR problem is add-
ressed with an ad hoc matching defined between the so-called graph embeddings. A
graph embedding, used in this paper for representing characters, is a labeled graph
where each node is labeled with its coordinates in the x–y plane.

The handwritten digit string recognition problem has been addressed by [121].
Starting from an input image and after a thinning process, the authors construct a
graph whose nodes are the branches or the ending points of the thinned image and
whose edges represent lines of the thinned image. The input graph is then submit-
ted to a segmentation process by using a set of heuristic rules. It gives rise to a
number of separate symbols, called blocks. The recognition procedure consists in
matching the input blocks with the prototype graphs of the digits, by applying a set
of transformations to each input block. The matching is therefore an error-correcting
graph–subgraph isomorphism. As transformations, the combination of two nodes
into one, the transformation of a loop to an edge and the deletion of edges or nodes
are considered.

Finally, in the field of symbol and graphics recognition fall the paper of Llads
et al. [49,122], Changhua et al. [123], Cordella et al. [8] and Jiang et al. [124]. While
the last two papers are devoted to exploit the performance of an exact subgraph-
matching algorithm in detecting component parts within technical drawings [8] and
of a graph-clustering algorithm [124], respectively, the others have their main focus
on the application domain.

As in case of character recognition, almost all the approaches use ARGs
for representing symbols or graphical drawings; as already said, in [8] an exact
subgraph-matching algorithm is used, while other authors employs different kinds of
error-correcting subgraph-matching algorithms for recognition. The main difference
with respect to the case of character recognition is in the number of the nodes of
graphs representing maps, diagrams, or technical drawings, that can be up to some
hundreds or even thousands.

In [49] the problem of finding a model graph, that represents a prototype symbol,
as a subgraph of an input graph, that represents a drawing, is addressed. To do this, a
two-level graph representation for graphical symbols is used. In the first level, a vec-
torized document is approximated by graphs whose nodes represent characteristic
points (i.e., junctions, end or corner points, and so on) and whose edges approximate
the segments between them. In the second level, data is organized in terms of RAGs.
The RAG nodes represent the regions, i.e., minimal closed loops of the first level
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graphs, and the edges are the neighboring relations between regions. Symbols are
then recognized by means of an inexact subgraph-matching procedure that computes
the minimum distance from a model RAG to an input RAG. This distance is consid-
ered to be the weighted sum of the costs of edit operations to transform one RAG
into another one.

In [122] the authors try to identify building blocks in a hand-drawn floor plan.
After a scanning and a vectorization process, drawings are described by means of
ARGs. An inexact subgraph isomorphism algorithm based on discrete relaxation is
used for matching the obtained ARG against model graphs representing the building
elements. In order to speed up the process, a straight line Hough transform is also
used. It allows the detections of regions filled with parallel straight lines, such as
walls that are typically characterized by hatching patterns.

Finally in [123] graphical hand-sketched symbols are represented through ARGs
and a similarity measure calculated using the A* algorithm is used for recognition.

3.3 Biometric Identification

Graph-based techniques have been widely used within the context of biometric
applications, mainly with reference to identification problems implemented by
means of elastic graph-matching procedures. Rarely, in this application area, graph-
learning algorithms have been used.

Among all the biometric identification problems, a key role is played by face
authentication, face recognition, and fingerprint recognition. Moreover, there are
other applications based on facial images, as facial expression recognition and face
pose estimation, as well as other probably less-known applications, as hand posture
recognition and ear recognition. In all these problems, the goal is to compare a graph
representation obtained from a sample image of some biometric trait of an individ-
ual with a model graph. This comparison has to take into account the possibility of
severe distortion of the sample graph with respect to the model, due to the extreme
variability in the appearance of biometric traits. In the case of authentication, there is
only one model graph, and the problem is to decide whether the model and the sam-
ple correspond to the same person. In biometric recognition problems, instead, there
are several models (corresponding to different persons, but also possibly to different
gestures of a single person) and the system has to identify the person (or the gesture)
shown in the sample. A characteristic that is common to many applications of this
category, is that the reliability of the identification is extremely important, since the
cost of errors is significantly larger than, for example, that of document processing
applications.

In almost all cases, papers falling in this area are mainly application-driven, so
using rather standard graph-based techniques; sometimes minor adjustments to clas-
sical algorithms have been introduced so as to take into account peculiarities of the
problem at hand. Generally, the graphs used for describing the patterns are made of
tens of nodes and have a rather simple structure (sometimes regular ones, as the grids
of nodes used for applications dealing with facial images). The attributes of the nodes
of the graphs are rather complex, and frequently are given by feature vectors made
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of many components, while the edge attributes are simpler and typically represent
distances between given points in the original image. For these characteristics, the
matching technique that is most commonly used is elastic graph matching.

The distribution of the matching algorithms and of the graph representations used
in the Biometric Identification field is summarized in Fig. 6.

In the areas of face authentication and face recognition, graph matching has
been used in the systems proposed by Van Der Malsburg, Wiskott et al. [125–127],
by Lim and Reinders [128], by Kotropoulos, Pitas, and Tefas [129, 130], by Duc
et al. [131] and by Lyons et al. [132]. All these approaches use a graph, in particular
a labeled rectangular grid, as an intermediate representation level for representing a
face. In this grid, each node of the graph is associated to a specific facial landmark,
called fiducial point. The labels associated to the nodes are of two different types:
those based on Gabor coefficients [125–128, 131, 132], the so-called jets, and those
made up of a vector of features evaluated on small areas of interest in the input image
by means of multiscale dilation–erosion techniques [129, 130]. The face identifica-
tion process is carried out by standard elastic graph-matching algorithms. The grid
representing the input face is compared with the ones representing face models. Dur-
ing the matching process the feature vectors associated to matched nodes are used
to calculate a distance, so as to evaluate an overall distance between the two com-
pared input graphs. The matching procedure is elastic in the sense that it copes with
deformations, rotations, or scale variations in the areas of interest of the input image.

Fig. 6. Distribution of (a) the matching algorithms and of (b) the graph representations used
within applications in the biometric identification field
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In more details, one of the simplest description schemes is the one proposed
in [128], where the authors describe a face image by a graph made of four nodes rep-
resenting prefixed landmark points of the face as eyes, the nose, and the mouth. Each
node is labeled with a jet, while an edge of the graph is associated an attribute repre-
senting the distance existing between the points of the images relative to the nodes it
connects. In this paper the elastic graph-matching procedure is specifically tailored
for dealing with affine transformations on the considered images in the neighbors of
the landmark points, and the authors denote their matching algorithm as affine graph
matching. The algorithm is used for localizing a face within an image, and this task
is accomplished by maximizing the similarity measure proposed in [127]; they take
into account only the magnitude value of the jets, and use a genetic algorithm for
exploring the search space more efficiently.

In the papers by Van der Malsburg, Wiskott et al. [125–127] faces are described
by a larger graph, in particular a rectangular graph (a grid graph) where each node
label is associated to a vector of Gabor wavelet complex coefficients. In [125] only
the magnitude of these coefficients is used in the recognition process; while in [127]
the addition of the phase of the coefficients allowed to achieve a more accurate
location of the landmark points within the considered image. Moreover, in the latter
paper, a new data structure, called bunch graph, is introduced for dealing with gen-
eralized representations of faces. A face bunch graph (FBG) is a sort of prototype
of a set of images. As the previous graphs, it has a grid structure, and each node
is devoted to represent the homologous nodes (fiducial points) of the represented
graphs. The term bunch is used to denote the set of jets referring to the same fiducial
point, and associated to a node of a FBG. The FBGs used to represent the images are
obtained by an elastic graph-matching procedure, described in more details in [126].
The latter paper also explores the possibility of determining facial attributes, as sex,
presence or absence of glasses or beard by using FBGs.

The magnitude of Gabor coefficients as features associated to grid nodes have
been also used by Duc et al. [131] and Lyons et al. [132] in combination with
techniques based on discriminant analysis. In particular in [131], after the elastic
graph-matching phase, the authors use a local discriminant analysis on the fea-
ture vectors associated to grid node to verify the correct identity of the input face.
In [132], instead, the authors use discriminant analysis before the matching. In
particular, they submit the feature vectors to a principal component analysis so as
to reduce the dimensionality of the feature space. They also present results on sex,
race, and expression recognition.

Instead of using Gabor coefficients, Pitas et al. in [129] associate to each node
of the grid a feature vector obtained by applying a multiscale dilation–erosion
operator to the input image; they also propose a variant of the elastic graph match-
ing, called morphological elastic graph matching (MEGM) that uses in the elastic
graph-matching procedure the feature vectors obtained by morphological operators.
The use of such operators is justified by considering that the computation of Gabor
coefficients is time consuming while dilation and erosions can be computed in a
very fast way. Moreover, dilations and erosions deal with local minima or maxima
in an image and revealed to provide an effective characterization of facial features.
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In a more recent paper [130] the same authors describe a method to improve the
recognition performance of MEGM. In particular they propose to estimate the best
coefficients for weighting the similarity values associated to the grid nodes by means
of discriminant analysis techniques and support vector machines.

Among the other applications dealing with face images, papers by Wang et al.
[133] and Hong et al. [83] make use of graph-matching techniques in the context
of facial expression recognition while Elagin et al. [134] use graph matching for
pose estimation.

In particular, as usual in this application area, Hong et al. [83] use grid graphs,
labeled with jets, for representing faces and rather standard elastic graph-matching
algorithm for recognizing seven face expressions: neutrality (that means no expres-
sion), happiness, sadness, anger, disgust, fear, and surprise.

Only three expressions are instead considered by Wang et al. in [133]: happiness,
surprise, and anger. Indeed, their main goal is rather different and is aimed to estimate
the changes of face expression from sequences of facial images. To this concern, the
correspondence between images relative to successive frames is viewed as an elastic
matching, even if the authors call it “labeled graph-matching problem.” In detail,
19 nodes are used to represent a face image. Each node is labeled using a template
matrix of the 17× 17 pixels (in gray levels) around each node, while to each edge is
associated a measure of the distance between the nodes it links. The graph matching
is carried out by minimizing a cost function that takes into account both the template
similarity and the topological information.

In the framework of the pose estimation problem, Elagin et al. [134] use graphs
with 16 nodes to represent a face. Each node is associated to a facial landmark, as the
pupils, the tip of the nose, the mouth angles, and so on. Also in this case, the nodes are
labeled with Gabor coefficients, while the labels of the edges represent the distances
between the points of the image associated to the nodes. Five different orientations
are considered for the pose. As in [127] a bunch graph is used to represent set of
faces, and so a bunch graph-matching procedure is used in order to perform the
estimation.

The use of graph matching in the context of hand posture recognition, is
described in the paper by Triesch and von der Malsburg [135]. The authors employ
a description and recognition scheme similar to those typically utilized in the field
of face recognition. In fact, Gabor coefficient as graph labels and elastic graph
matching for recognition are used. In addition to conventional Gabor jets, a color-
Gabor jet is introduced. It measures the similarity of each pixel to the skin color
and together with the Gabor jet constitutes the so-called compound jet. The elastic
graph-matching procedure is also modified in order to cope with this compound
jet. After describing each hand by graphs made up of 15 nodes manually placed at
anatomically significant points, 12 different hand postures are recognized.

Another biometric system is the one proposed by Burge and Burger [136], that
make use of features extracted by ear images for subject identification. They consider
300 × 500 pixels images, acquired using a CCD camera. Also in this case a mid-
dle level representation is used; after the localization of the ear within the images,
an edge extraction based on the Canny operator is performed, followed by a curve
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extraction. On the basis of the regions delimited by the obtained curves, a Voronoi
neighborhood graph is constructed. The identification process is accomplished by a
subgraph error-correcting graph matching between the model graph and the input
graph. To this aim, the authors propose a matching procedure that specifically takes
into account the possibility of broken curves into the input graph. This procedure
tries to merge neighboring curves if their Voronoi regions indicate that they are part
of the same underlying feature.

Finally, fingerprint recognition by means of graph matching, has been addressed
in the papers by Maio and Maltoni [137] by Fan et al. [138] and by Neuhaus and
Bunke [93]. This latter is a technique driven paper, while the other two are applica-
tion driven. They use different approaches both for representing fingerprint and for
recognizing them.

The first paper [137] uses ARG for describing fingerprints. The original finger-
print image is first processed in order to calculate a directional image. Then the
directional image is segmented into regions, and each region is represented by a
node of the graph. Each node has an attribute that measures the area of the region
it represents, while each edge has three attributes: the phase difference between the
average directions, the distance between the centroids, the length of the boundary
between the regions represented by the two nodes it links. For the recognition phase
an inexact graph matching is proposed, based on a branch and bound search within
the space state.

On the other hand, Fan et al. [138] use bipartite graphs for representing the sam-
ple fingerprint image and template fingerprints. A fingerprint image is preprocessed
in order to extract clusters of feature points (minutiae). A set of 24 attributes is then
calculated for each feature point cluster and is associated to a node of the graph. The
feature point clusters of a test image are the set of the left nodes of a fuzzy bipar-
tite weighted graph while the feature point clusters of the template fingerprint are
the right nodes. Fingerprint verification is then treated as a fuzzy bipartite graph-
matching problem.

3.4 Image Databases

Another field in which graph-based techniques have been successfully employed is
the one of image databases. Typical applications involving this kind of databases are
indexing and retrieval: few papers addressed both the aspect [41,139], while the most
part [42, 54, 104, 140–147] investigated only the retrieval problem. Among all these
papers, in [144] Hlaoui and Wang use a simple image database only for testing the
performance of a new error-correcting matching algorithm with edit operations.

The indexing and retrieval problems are very similar from a conceptual point of
view, but their different requirements in terms of performance and accuracy have
brought to the use of different techniques and algorithms. In both cases, the goal is
to find the images in the database that are similar to a given query image. While
this can bear some resemblance to a recognition problem, there is an important con-
ceptual difference: the images in the database are not partitioned in a set of fixed,
nonoverlapping classes, to which the unknown class of the query image belongs.
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Instead, the images have to be considered relevant to the query only on the basis of
a vaguely defined perceptual similarity; there is no clear-cut, exact desired response
for the system. Furthermore, the number of images in the database can be really
large, imposing strong constraints on the performance of the algorithm. In the re-
trieval problem it is usually desired that the result images are provided in an order
that reflects a similarity scoring, to allow the user to choose interactively the one that
fits his needs. This mandates for a matching technique that yields some sort of cost or
distance, such as error-correcting graph-matching techniques. As regards the index-
ing problem, the focus is to obtain a fast screening of the images before performing
a retrieval operation, to reduce the search time. So it is not required to provide a dis-
tance measure, and it is acceptable if some images that are not relevant to the query
are returned in the result set (the converse is not true, i.e., it is not acceptable if in-
dexing excludes strongly relevant images). The main concerns for indexing are how
fast it performs, and how many nonrelevant images it is able to filter out.

The distribution of the matching algorithms and of the graph representations used
in the image databases field is shown in Fig. 7.

A peculiarity of this applicative context is that there is little agreement on the
choice of the kind of graph representation to be used for the images. In most cases
images are represented by ARGs [41, 139, 140, 143], but also RAGs [42], directed
ordered acyclic graphs [141], shock graphs [104], dual graphs [147], pyramidal

Fig. 7. Distribution of (a) the matching algorithms and of (b) the graph representations used
within applications in the image databases field
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graphs [142], and n nearest-neighbor graphs [54, 145, 146] are used. As regards the
matching phase, mainly error-correcting subgraph isomorphism algorithms are used.
In some cases, however, learning techniques have also been employed [141].

Among the papers that address both the indexing and the retrieval problem,
Berretti et al. in [41] propose the use of a metric indexing scheme for manag-
ing the organization of large archives of ARGs with a common size. In particular,
the indexing is performed using m-trees. They also propose a new algorithm for
retrieval, combining the A* search with an original look ahead estimate. The esti-
mate is derived as the optimal solution of a weighted assignment, which relaxes the
optimal look-ahead problem so as to remove its basic factor of exponential com-
plexity. This sort of minimal simplification results in an extremely well-informed
estimate which can still be computed in polynomial time. The database used for
testing the approach is composed of about 1,000 images, coming from paintings of
the library of a web-museum. For each image of the database 10 further images
are generated, synthetically changing color and color positions. In the system they
proposed, for querying the database, an user can both select an example image or
submit a query by sketch by drawing a set of colored regions and by arranging them
in order to represent the expected appearance of the searched images. All the images
are modeled with ARGs having a fixed number of nodes, namely eight. Each node
come from the clustering of the color histogram in the L*u*v* color space and the
node attributes encode the triple of normalized coordinates of the average color of
the cluster. For any two objects corresponding to different regions in the user sketch,
the edge attribute encodes the relationship between the regions themselves.

In the paper by Petrakis and Faloutsos [139] ARGs that model medical images
are reduced to a vectorial representation, so enabling R-tree indexing, under the
assumption that all the graphs contain a set of anchor entities with predefined labels.
Non-anchor entities are also allowed, but their number determines a linear degrada-
tion in the efficiency of the index. In addition to this indexing technique, the authors
propose a subgraph isomorphism algorithm with a distance measure for retrieval. In
particular, given an iconic query, all the images under a suitably chosen threshold are
selected. As regards the representation, each image is segmented into regions, each
one represented by a node. Size, roundness, and orientation of each region have been
chosen as node attributes.

Among the papers that mainly address the retrieval problem, Cho and Yoo
in [140] use graphs whose nodes represent objects of the image, while the edges
encode spatial relations between objects. An object is characterized by its color, the
ratio between its area and the whole image area, the ratios between the x-coordinate
and the width and the ratio between the y-coordinate and the height of the image.
The attribute edge can assume one of the eight possible spatial relations between
two objects (N, NE, E, SE, S, SW, W, NW). They also define the prime edge graph,
obtainable from a graph by deleting edges that are unnecessary for representing the
structure of the image. The matching is realized with a subgraph isomorphism algo-
rithm that makes use of a similarity measure.

In [143] Folkers et al. propose an exact subgraph isomorphism with a bottom-
up strategy. They also define a similarity measure for pruning some isomorphism
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checks. The proposed measure takes into account both the contextual and the spatial
similarity between ARGs. In their description scheme, once again nodes represent
the symbols of the image and the edge the relationships between them.

In the papers by Hancock and Huet [54,145,146], the aim is to retrieve 2D images
from large databases. In their description scheme, a set of line-patterns are repre-
sented by means of a special type of ARG, i.e., a N -nearest-neighbor graph. In a
N -nearest-neighbor graph, each node represent a line structure segmented from a
2D image. For each node n of the graph exactly N edges are created, the ones that
link n to the nodes representing the N line segments having the closest distances
from the line represented by n itself. Distances between lines are computed by con-
sidering distances between their centers.

In [145] the authors use six nearest-neighbor graphs. The line orientation and the
line length constitute the attributes of the nodes, while the measure of the relative
position and of the relative orientation of two lines whose representing nodes are
linked by an edge are the attribute of that edge. The proposed matching is of inexact
type; in particular a fuzzy variant of the Hausdorff distance that use only the values
of the edge attributes is proposed for comparing graphs. For each image graphs of
3–400 nodes are considered. A first screening of a possible query result is made
by considering only the histograms of the edge attributes, that are compared using
the Bhattacharyya distance. Then, the fuzzy version of the Hausdorff distance is
employed on the N -nearest images that are found, for refining the search. In [54]
the node attributes are two normalized histograms, the one of the relative angles and
the one of the relative lengths with respect to the remaining line segments in the
pattern. The matching process is realized by means of a Bayesian graph-matching
algorithm that utilize a two-step process. Firstly, a correspondence matches between
the nodes in the a query pattern and each of the patterns in the database is established.
This is made by maximizing an a posteriori measurement probability. In particular,
the authors use an extension of the graph-matching technique reported by Wilson
and Hancock in [53]; in order to minimize the computational overheads associated
with establishing correspondence matches only edge information are used. Once the
maximum a posteriori probability correspondence matches have been established for
each pattern in the database, the pattern which has maximum matching probability
is selected. This is made by using the Bhattacharyya distance for comparing the
histogram attributes of the matched nodes.

In [146] Huet et al. present an application of the image retrieval for verify-
ing similarities among different technical drawings representing patents. They use
ARGs obtained as six-nearest-neighbor graph from the line drawings, using the same
description model of [145]. The matching is of inexact type, and is realized by means
of the fuzzy variant of the Hausdorff distance presented in [145].

Among the other representation schemes employed in the literature, in [42]
Gregory and Kittler utilizes RAGs. Images are segmented so that a RAG can be
built. Each pixel in the image is represented as a 5D vector, where the first three
dimensions are the RGB color values for the pixel and the last two dimensions are
the pixel coordinates. This feature space is then clustered and to every pixel a label
corresponding to the cluster which it has been classified to is given. The region labels
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correspond to homogeneous color regions within the image. A connected component
analysis stage ensures that only to connected pixels may be assigned the same label.
At this point each obtained region is represented by a node, whose attributes are the
number of pixels and the average values of the red, green, and blue pixels within the
region it represent. The segmentation is further improved by merging adjacent nodes
which have a small number of pixels, or “similar” feature space representation. The
database used for the testing phase is made up of flag images, that give rise to graphs
of about 15 nodes. The matching is performed by using an error-correcting subgraph
isomorphism with edit operations and the A* procedure.

On the other hand, in [104] Sharvit et al. use shock graphs for representing
images. The shock graph is directly extracted from the image on the basis of the sym-
metries exhibited by the image itself. As regards the matching procedure, they use a
WGM that is a variant of the method presented in [62]. For testing, they employ a
database consisting of binary shapes, and match grayscale images of isolated objects
and user-drawn sketches against this database. The resulting shock graphs are made
up of few nodes.

Finally, in [147] Park et al. propose the use of dual graphs for representing
images. In particular, an ARG called modified color adjacency graph (MCAG) is
used for indexing and a spatial variance graph (SVG) is used to disambiguate differ-
ent images having equal MCAG representations. In a MCAG each node represents a
bin of the quantized RGB color histogram. Node attributes are then the pixel count
of each RGB chromatic component, while the edge attributes encodes spatial adja-
cency (based on 8-connectivity) between two color regions. The average number of
nodes of a MCAG is about 100. On the other hand, each node of the SVG graph
has as attribute the within-class variance relative to the pixels of the node it repre-
sents, while each edge attribute encodes the between-class variance. Graph matching
is performed by defining a similarity measure directly obtainable by the adjacency
matrices of the graphs.

Finally, in [141] a learning technique for facing the retrieval problem is proposed
by De Mauro et al. Database images are described by means of RAG that are suc-
cessively transformed into directed ordered acyclic graphs (DOAG). This transfor-
mation becomes necessary because it is more difficult to process undirected graphs
than directed ones. The task of learning the search criteria for visual retrieval is
accomplished by means of a Recursive Neural Network that map DOAGs into vec-
tors. This net learn to map DOAG representing similar images into near vectors.
Then, the retrieval problem is reformulated as the one of finding the N -nearest neigh-
bors of the vector into which the net transform the DOAG of the query image.

3.5 Video Analysis

Among the video analysis problems addressed by using graph-based techniques,
retrieval from video databases [21, 142, 148], annotation of video databases [149],
object tracking [150–153], and motion estimation [154] have been proposed.

Retrieval from video databases is similar to retrieval from static image databases
from a conceptual point of view; the main differences are the considerably larger
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size of the databases and the possibility to exploit information about the motion
of parts of the scene to improve the retrieval performance. The other problems,
instead, are rather peculiar of video analysis. In particular, their common aspect
is that they are focused on extracting some kind of information from the sequence
of the frames composing a video. This implies a comparison between successive
frames, and the need to establish a correspondence between regions of two frames
representing the same object or the same part of it. In motion estimation, the goal is
to measure the velocity of moving elements of the scene. In object tracking, which
can be considered as an evolution of motion estimation, where the application should
be able to follow the motion of an object and compute its trajectory, distinguishing
the different objects presents in the scene. A further evolution consists in the recog-
nition, on the basis of the object trajectories, of events that bear a specific meaning
within the context of the application: this gives rise to the possibility of automatic
annotation of the video sequence, allowing a user to perform retrieval with classic,
keyword-based search.

Since these problems are quite different each other, it should not be amazing the
fact that very different kinds of graphs have been used. In particular, ARGs [21,148],
pyramidal graphs [142, 153], bipartite graphs [150, 152], multivalued neighborhood
graphs [151], and medial graphs [154] are used. Obviously, also the matching tech-
niques proposed in the various paper are quite different. The distribution of the
matching algorithms and of the graph representations used in this applicative area
is summarized in Fig. 8.

Fig. 8. Distribution of (a) the matching algorithms and of (b) the graph representations used
within applications in the video analysis field
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In the framework of the retrieval from video databases, Shearer et al. [21, 148]
proposed two different approaches that do not make particular hypotheses on the
nature of the video at hand, where Doulamis et al. [142] propose a system specifically
tailored for the retrieval of people images in a video database. Furthermore, in the
first two papers ARGs are used for representing video frames, while the last one
propose the use of pyramidal graphs.

Entering into details, in [21] Shearer et al. describe a new algorithm to solve the
largest common subgraph problem. Such algorithm significantly reduces the compu-
tational complexity of detection of the largest common subgraph between a known
database of models, and a query given online. This approach can be fruitfully applied
to video databases. In fact, when searching a video database, we are typically inter-
ested in the largest subpicture match that can be found. So, the largest common sub-
graph method will find the largest subpicture in common between a query image and
a database of video frames. As regard the representation, ARGs are used. The authors
consider each frame of the video and decompose it into objects. Then, graph nodes
represent objects, while the edges are labeled with one of five categories (Disjoint –
Meets – Contains – Belongs to – Overlaps) that represent the relationships between
two objects. The proposed retrieval procedure is realized by using a decision tree
algorithm based on a decision tree constructed using the adjacency matrix represen-
tation for the model graphs.

A different approach is presented in [148], where a modified version of an
algorithm presented by Bunke and Messmer in [18] is proposed. It is able to cope
with dynamically changing graphs. Such graphs can be employed for representing
videos: the sequence of images that make a video can be represented by means of
an initial graphs that represent the initial image and a sequence of graph edit oper-
ation that represent the successive images. As in the previous paper, for each image
the nodes of the graph represent objects, while the edges encode the spatial relations
between objects. An experimental evaluation of the algorithm is also presented, by
using query graphs with 9 nodes against models having 4–10 nodes. In particular, the
application of this algorithm consists in querying a video database with a sequence
of frames. Each query frame is built starting from a number of object labels that can
be spatially arranged by the user. The system transforms these query frames into a
graph representing the initial frame and into a set of edit operations. Then, it uses
the proposed matching algorithm in order to find the video sequence that match the
sequence of selected frames.

In [142] Doulamis et al. propose a system for extracting people images from
MPEG-coded videos. After a segmentation phase in which objects such as the face,
the human body, and the background are extracted from each frame, graphs are used
for representing these objects and their spatial relationships. As attribute of the nodes,
the average color and the texture of an object, as well as its size and location within
the scene are considered. The authors make use of two different types of graphs,
one with edge attributes, that encode the direction and the orientation between two
objects, and another one without edge attributes. Moreover, in order to enhance the
querying flexibility of their system, they also propose a further decomposition of
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each node into other graphs, so giving rise to a pyramidal graph representation of
the visual content. As an example, the human face can be considered as an object
containing the regions of eyes, mouth, and lips, each having their own properties.
As regards the problem of retrieval from a video database, they do not clarify in the
paper what type of graph-matching technique they use.

A quite peculiar approach to the problem of retrieval from databases is the one
presented by Ozer et al. in [149]. The aim of this work is to annotate images and/or
videos where a particular object of interest (OOI) is present. So, a simple textual
query can be performed to extract images of OOI from a preprocessed database.
As an example, they consider cars in video and image libraries, that they describe
using ARGs. In case of video sequences, the feature points of an object are tracked
and then grouped together according to their moving directions and distances. The
object extraction is performed by means of a color image segmentation technique
combined with an edge detector algorithm. Since an object usually contains several
subobjects (in this case wheels, windows, lights, etc. of a car) a hierarchical segmen-
tation scheme is also proposed. Three different views of a car are considered – front
view, rear view, and side view. The three subgraphs relative to these views are joined
together to form a unique graph representing all the possible views of the object. As
attributes of the nodes, Hu moments and the compactness of the segmented regions
are considered. Given two adjacent regions represented by two nodes, the ratio of
the areas, the ratio of the perimeters, the relative position and orientation, and the
overlapping area between two adjacent regions are the attribute of the edge that links
those nodes. As regards the graph-matching procedure, they propose an inexact sub-
graph matching with a matching cost based on the attribute values, using a depth-first
search with a brute force approach.

The papers by Chen et al. [150], Gomila and Mayer [151], and Conte et al. [152,
153] exploit the use of graph matching for object tracking in video sequences. They
use different middle level representations and also different matching techniques.

In Conte et al. [152] the definition and the performance assessment of a tracking
method devised for video-surveillance applications are presented. The tracking prob-
lem is factorized into two subproblems: the first is the definition of a suitable measure
of similarity between regions in adjacent frames. Provided with this measure, the sec-
ond subproblem is the search for an optimal matching between the regions appearing
in the frames. As regards the first subproblem (the definition of a similarity mea-
sure), several different metrics are proposed, jointly used during the detection phase,
according to a sort of signal fusion approach. The subproblem of the optimal
matching has been instead formulated in a graph-theoretic framework, and then
reduced to a weighted bipartite graph matching, for which a standard algorithm has
been used.

Chen et al. [150] apply a shape contour extraction and a shadow deletion to each
frame. Therefore they obtain the silhouette of each object within the scene. To each
object a probability distribution is associated, that takes into account the intensity
values of the area within the object contour. To model the multiobject tracking prob-
lem a bipartite graph is used. Each node represents an object and has as attributes its
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position, its intensity distribution, and the dimension of its enclosing bounding box.
The two classes of nodes in the bipartite graph are the so-called profile nodes and
object nodes that correspond to the objects in the past and the present frame respec-
tively. A bipartite matching algorithm is used to find the best match among nodes of
the two successive frames in order to resolve the identities of the objects. If there are
unmatched nodes, it implies that new objects have been detected and so new profiles
will be created for tracking them within the successive frames.

On the other hand, Gomila and Mayer [151] segment the image of each frame on
the basis of the color information and represents the segmented image with a mul-
tivalued neighborhood graph. Node attributes measure the intrinsic features of the
region they represents, while edge attributes represent relational constraints between
nodes. Matching graphs relative to two successive frames permits to follow the
objects along the video sequence. In order to cope with different segmentation of
the same object in two successive frames, split and merge operation are performed
on the images before the matching. The proposed matching algorithm is an error
correcting one using the relaxation labeling.

Conte et al. [153] use a multiresolution graph pyramid for representing objects at
different levels of detail. They use a hierarchical graph-matching procedure to deal
with partial occlusions of the objects being tracked. The advantage of their approach
is that it uses a fast, coarse grained, weighted bipartite graph matching as long as
there are no occlusions in the scene. When two tracked objects come to overlap,
a more refined subgraph isomorphism procedure is used to distinguish the parts of
the occluding objects, possibly recurring to a finer level or detail until a reasonable
solution is found.

Finally, Salotti and Laachfoubi in [154] present an application of motion estima-
tion in aerial videos. Given an aerial video, their aim is to estimate the shift of the part
of the image that represents the smoke, in order to collect information for preventing
fires. They use topographic graphs (that are similar to medial graphs) for describing
aerial images. Each frame of the video is segmented on the basis of the color infor-
mation and the smoke area is described by means of a topographic graph. The shift
estimation is performed by means of an inexact matching procedure that defines a
cost function for matching nodes of two topographic graphs relative to successive
images. These cost function examines only shifts in a small square window centered
on each node, since it is reasonable that the move of the smoke is not too fast.

3.6 Miscellanea

Besides the application areas detailed in previous sections, there are other
application-driven papers that are not strongly related to each other, neither on
the basis of the problem they face, nor on the basis of the adopted approach (be-
sides, obviously, the fact that they are based on graph matching). For the sake of
completeness, we present here some of these works, although in these cases we
cannot individuate any sort of common scheme in the exploitation of graph match-
ing. The papers we have chosen deal with biomedical [38, 133, 155, 156] and the
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Fig. 9. Distribution of (a) the matching algorithms and of (b) the graph representations used
within applications in the miscellanea field

biological [157,158] applications (see also Fig. 9 for the distribution of the matching
algorithms and the graph representations used in this case).

Namely, the paper by Wang et al. [133] is technique driven, and presents an
algorithm for finding the largest approximately common substructure of two trees.
In the experimental results, the authors discuss its application for finding motifs in
multiple RNA secondary structures. On the contrary, both the biomedical application
described in [38, 155] have their main focus on the application context and address
the problem of the correct identification of coronary arteries (artery labeling) starting
from medical images, and are based on prior knowledge about the expected coronary
arterial tree (CAT) structure and attributes. They use different graph-matching tech-
niques to realize the labeling.

In the paper by Dumay et al. [38], the authors start from an arteriogram image and
project a geometric model of the artery against the image. From this projected model,
an ARG made up of about ten nodes is constructed: the nodes of the graph represents
arterial segments and have as attributes the position, the mean diameter, and the
orientation of the segments, while edges represent the parental relationship (parent–
child and grandparent–child) between segments. Starting from the anatomy of a left
coronary tree of normal functioning hearts, an inexact graph-matching procedure is
used in order to assign anatomic labels to the node of an input image. Since missing
branch and/or false structures can corrupt the input image, a cost function is defined
in order to cope with transformations (substitution, insertion, and deletion of a node
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and/or an edge) of the input graph. An A* algorithm is used to perform the state
space search.

Also the paper by Charnoz et al. [156] faces a somewhat analogous problem:
the matching of several CAT-images of the intrahepatic vascular system of a same
patient, acquired at different times. The authors propose an error-correcting tree
matching algorithm that is robust with respect to topological modifications.

In the paper by Haris et al. [155], the authors use ARGs to represent the CAT.
Starting from the input image, the CAT is detected by constructing an approximation
of its centerline and borders. This results in a directed acyclic graph representing the
CAT. The attribute of each node of this graph are the position of the artery element
it represents, the direction of the artery and its approximate width. Given the input
graph and a 3D CAT model which encapsulates the expected anatomic and geometric
structure of a normal human CAT, a graph-matching algorithm assigns the appropri-
ate labels to the input CAT using weighted maximal cliques on the association graph
corresponding to the two given graphs. So the labeling problem is reformulated as
one of finding the best maximal clique of the association graph.

A biological application is the identification of diatoms described by Fischer
et. al. [157] and Ambauen et al. [158]. Diatoms are unicellular algae found in water
and in other places where there is sufficient humidity and light for allowing photo-
synthesis. The technique used for describing diatom images is the same used in the
face recognition field. A middle-level representation based on labeled grid graphs is
used. On each image a rectangular 16× 8 grid is superimposed and each node of the
graph is associated to a rectangle of the image. Each node is labeled with 13 features
derived from the gray-level co-occurrence matrices and from the Gabor coefficients.
In [157] the matching procedure can be seen as a simple form of error-correcting
graph matching. A dissimilarity measure is evaluated between two grid graphs as
the sum of the distance between the feature vectors associated to the nodes. More-
over, in order to cope with geometric distortions, also translations of the nodes are
allowed and a specific cost is introduced into the dissimilarity measure in order to
weigh such translations. In [158] a more complex matching algorithm is proposed,
based on the addition of new edit operations to the classical set of deletion, insertion,
and mutation.

4 Performance Comparison

By reviewing the wide literature in the field of graph matching, it appears evident
that the habit of proposing more and more new algorithms is prevailing against the
need of assessing the performance of the existing ones in an objective way. The
characterization of the graph-matching algorithms proposed up to now would instead
allow potential users to predict the performance of an algorithm – at least to some
degree – and could thus lead to substantial savings in system development time.

Starting from these considerations, the IAPR-TC15 community in the sec-
ond GbR workshop held in 1999 (see the TC15website at the address: http://
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www.iapr-tc15.unisa.it) declared the need for a serious benchmarking
activity in the context of graph-matching algorithms. According to the proposal
made in [159], such activity could start with exact graph-matching algorithms, by
considering different kinds of morphism and by suitably defining the number of
graphs to be matched, the size of the input graphs and the graph structure. Even if
only exact graph-matching algorithms are considered, it is also worth noting that the
matching problem may have, as pointed out in [160]:

• No solution (e.g., if the graphs are not isomorphic, or if there is no subgraph
isomorphic to the given graph)

• One solution
• More than one solution (e.g., a square mesh matches its versions rotated by 90,

180, and 360◦)

Generally, not only a fast solution for the second case is required, since a small
disturbance caused by noise may transform it into the first case. Then, it is relevant
the time needed by an algorithm for finding out that there is no perfect solution
(nonmatching time). Nonmatching times are also crucial factors in the context of
graph database filtering, as noted in [161]. Finally, the third case concerns algorithms
that can find one or all the possible solutions to the given matching problem.

If we try to understand the reasons why up to now only a small number of serious
attempts [11,162–164] has been made for comparing graph-matching algorithms, we
can easily recognize that one of the main difficulties is the fact that only in the last
few years some standard databases of graphs specifically designed for this purpose
have been made available. The creation of a graph database, in fact, is definitely not
a simple task, since several issues have to be faced [11]. Generally speaking, two
approaches can be followed for generating a database; a first way is to start from
graphs obtained from real data, otherwise the database can be obtained synthetically.
Although the first approach allows us to obtain rather realistic graphs, it is generally
more expensive as it requires the collection of real data and the selection of the set
of algorithms to be used for obtaining graphs from data. In this case the graphs are
dependent on both the domain under consideration and the preprocessing algorithm
used, reducing significantly the generality of the database and its reusability in other
contexts. On the contrary, the artificial generation of graphs is not only simpler and
faster than collecting graphs from real applications, but also allows us to control the
variation of several critical parameters of the underlying graph population, such as
the average number of nodes, average number of edges per node, number of different
labels, and so on.

By following the latter approach, three proposal have been recently made in
the scientific community, in order to provide standard graph databases. The first
two [164, 165] gave rise to databases of synthetically generated graphs explicitly
devised for benchmarking (sub)graph isomorphism algorithms and MCS algorithms,
respectively, while the third proposal [166] is based on the generation of a database
of artificial images – by using a set of attributed plex grammars – and of their corre-
sponding graph representations.
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4.1 Graph Databases

The choice of the kind of graphs to be included in the first two cited database derived
from an analysis of the graphs mainly used by members of the IAPR-TC15 com-
munity. Both databases are structured in pairs of graphs. In the first database, two
categories of pairs of graphs have been introduced, namely pairs made of isomor-
phic graphs and pairs made of graphs in which the second graph is a subgraph of the
first one. In the second database each pair of graphs has a MCS of at least two nodes.

In both cases, each category of pairs is made up of graphs that are different for
structure and size. In particular, the following kinds of graphs have been considered
(see [165] for a detailed discussion about their properties and the parameters charac-
terizing them):

• Randomly Connected Graphs
• Regular Meshes, with different dimensionality: 2D, 3D and 4D
• Irregular Meshes
• Bounded Valence Graphs
• Irregular Bounded Valence Graphs

Randomly connected graphs are graphs in which the edges connect nodes without
any structural regularity (see Fig. 10a). They can model applications in which objects
(represented by nodes) can establish relations (represented by edges) with any other
objects (not only the surrounding ones) independently of the relative positions. This
hypothesis typically occurs in the middle and high processing levels of an image
processing task.

Regular meshes (see Fig. 10b) have been introduced for simulating applications
dealing with regular structures as those operating at the lower levels of an image
processing task; while Irregular mesh-connected graphs (see Fig. 10c) can be used
for simulating the behavior of graph-matching algorithms in presence of slightly dis-
torted meshes. Bounded valence graphs (see Fig. 10d) model applications in which
each object establish a fixed number of relations with other object, not necessarily
with those belonging to its neighborhood. In order to introduce some irregularities
in these kind of graphs, Irregular bounded valence graphs have been introduced too
(see Fig. 10e).

So, in the first database (hereinafter denoted as ISO-DB) a total of 72,800 pairs
of graphs have been generated: 18,200 pairs of isomorphic graphs and 54,600 pairs
for which a subgraph isomorphism exists. Each kind of graphs has pairs of different
size, ranging from few dozens to about 1,000 nodes (i.e., small and medium size
graphs according to the classification presented in [159]). For each size and kind of
graphs 100 different pairs have been generated. Moreover, in case of graph subgraph
isomorphism, pairs in which the two graphs have three different size ratios have been
generated.

The graphs composing the whole database have been distributed on a CD
during the third IAPR-TC15 Workshop on Graph-Based Representations in
Pattern Recognition and are also publicly available on the web at the URL:
http://amalfi.dis.unina.it/graph.
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Fig. 10. (a) An example of a randomly connected graph. (b) A 2D regular mesh with size
5 × 5 and (c) an irregular mesh obtained by adding five further edges to the graph (b). For
each added edge, the starting and the ending nodes are randomly determined according to an
uniform distribution. (d) A bounded valence graph with a valence equal to 5; (e) an irregular
bounded valence graph, obtained from the graph (d) by moving the two dashed edges

For the second database (from now on denoted as MCS-DB), a total of 81,400
pairs of labeled graphs have been generated. The choice of the labeling comes from
the need of restricting the number of possible node or edge pairings because of the
complexity of the MCS problem. For each of the above-mentioned kind of graphs,
pairs of graphs having different sizes N , ranging from 10 to 100, have been included
in the database. Moreover, for each value of N , five different sizes of the MCS have
been taken into account and 100 pairs of graphs have been generated for each size.
As regards the labeling, the authors proposal was to generate random values for
the attributes, since any other choice would imply assumptions about an application
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dependent model of the represented graphs. The whole database is publicly available
on the web at the URL: http://amalfi.dis.unina.it/graph.

The third database comes from an image generation method (downloadable from
the URL: http://www.artificial-neural.net/) based on a combination
of attribute grammars and plex grammars [167]. A plex grammar is a generic mech-
anism allowing to specify a number of rules that describe how an image is built up
from simpler constituents. Because the rules can be recursive, a potentially infinite
set of images can be described by a finite number of rules.

According to the authors’ proposal [166], an image generated according to the
previous method can be simply converted into a graphical representation. An exam-
ple referring to the image of a policeman is reported in Fig. 11. The nodes of the
graph correspond to regions in the image, while the edges represent spatial relations
between the regions. A number of different attributes can be computed for each node
and each edge. Examples of node attributes are color, center of gravity, and size of
a region; while edge attributes represent geometric relations between regions (e.g.,
angle and distance of centers of gravity).

Since the rules of the attributed plex grammar are defined by the user, there are
no restrictions on the underlying domain and there is not a predefined graphical
representation of an image. In fact, through a number of parameters the user can
choose the representation that is most suitable for the problem at hand. It is then
possible to create image databases, together with their graphical representations, for
various kinds of PR problems involving graphs. Exact and inexact graph matching,
supervised and unsupervised learning of graphical representations from examples
and graph clustering are actual examples.

Fig. 11. (a) The image of a policeman generated according to the method proposed in [166]
and (b) its representation as a graph. Labels associated with each node are not shown
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Even if some authors [141, 163, 168] used the above-described image database
for testing their graph-based approaches, no paper reporting a serious comparison of
algorithms on graphs generated from it has been presented so far. On the other hand,
there are some papers presenting benchmarking activities using graphs extracted
from both the ISO-DB and the MCS-DB.

4.2 Benchmarking Activities

One of the first attempts to compare graph-matching algorithms has been made
in [162]. Five inexact graph-matching algorithms have been considered and com-
pared with respect to both the speed of algorithms, capacity for classification and
suitability for different kind of graphs. Algorithms were tested in two real-world
classification problems. Nevertheless, since the size of the graphs used in the tests
ranges from three to nine nodes, the current usefulness of the obtained results is quite
limited.

More recently, three works have tried to follow the indications of the IAPR TC
15 community for carried out a noteworthy activity in the context of graph-matching
algorithms.

In particular, in [11], four exact graph-matching algorithms have been compared
with respect to the times needed for finding a match on pairs of isomorphic graphs
extracted from the ISO-DB. In particular the Ullmann’s algorithm [5], the algorithm
by Schmidt and Druffel [6], the VF2 algorithm [13] and Nauty [16] have been con-
sidered. As it could be expected, the authors conclude that an algorithm performing
definitively better than all the others does not exist. In particular, for randomly con-
nected graphs, the Nauty algorithm is the better if the graphs are quite dense and/or
of quite large size. For smaller and quite sparse graphs, on the contrary, VF2 per-
forms better. On more regular graphs, i.e., on 2D meshes, VF2 is definitely the best
algorithm: in this case the Nauty algorithm is even not able to find a solution for
graphs bigger than few dozens of nodes. In case of bounded valence graph, if the
valence is small, VF2 is always the best algorithm, while for bigger values of the
valence the Nauty algorithm is more convenient if the size of the graphs is small.

Two of the above-described algorithms, namely VF2 and Ullmann, have been
also extensively compared in [161] with respect to their nonmatching times, i.e., the
time needed for declaring that there is not a match between two given graphs. The
comparison has been carried out on graphs extracted from the ISO-DB; both the cases
of pairs of graphs with the same number of nodes and with a different number of
nodes have been considered.

According to the tests reported in the paper, the nonmatching times obtained
by the Ullmann’s algorithm are almost always smaller than those achieved by the
VF2 algorithm when pairs of graphs with the same number of nodes are taken into
account. Only in case of very regular graphs, i.e., high-dimensional meshes, the
nonmatching times of the two algorithms are practically identical. This behavior
is substantially confirmed in case of graphs with different number of nodes, even if
in this case the nonmatching times of VF2 are smaller for regular bounded valence
graphs with at least 70 nodes and for high-dimensional meshes.
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Finally, in [164] the matching times of three MCS algorithms, namely those pro-
posed by McGregor [169], by Balas and Yu [170], and by Durand et al. [15], have
been compared by using pairs of graphs extracted from the MCS-DB.

According to the authors, also in this case it does not exist an algorithm that is
definitively better than the others. In particular, for randomly connected graphs, the
McGregor algorithm is the best one if the graphs are quite sparse and/or of quite
small size. For larger and quite dense graphs, on the contrary, the Durand et al.
algorithm performs better. If the MCS has a more regular structure, i.e., on mesh-
like MCS, the McGregor algorithm is in most cases the best algorithm; the Durand
et al. algorithm performs better only for small and dense graphs. On the contrary,
when the irregularity degree grows up, the Balas–Yu algorithm performs better for
large and dense graphs. In case of bounded valence graphs, the McGregor algorithm
is the best one if the valence is small, while for larger values of the valence the Du-
rand et al. algorithm is more convenient when the graphs to be matched are dense. If
the graphs are both dense and large, the Balas Yu algorithm is the best one. Finally,
when an irregularity degree is added to the bounded valence graphs, the Durand–
Pasari algorithm performs better in most cases, even if the Balas–Yu algorithm is
still winning for large graphs.

5 Conclusions

In this paper we have presented a comprehensive review of graph-matching methods
used in PR and computer vision applications, highlighting the relationships between
the application domain and specific problem on one side, and the adopted graph rep-
resentation and matching technique on the other side. An evaluation of the proposed
methods and tools for assessing the performance of a graph-matching algorithm com-
pleted our work.

All together, these two parts provide useful information to applied researchers
for deciding which graph-based technique best fits their needs.
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