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Summary. Graphical models are probabilistic models defined in terms of graphs. The
intuitive and compact graph representation and its ability to model complex probabilistic sys-
tems make graphical models a powerful modeling tool in various research areas. In this paper
we introduce a graphical model framework for image segmentation based on the integration
of Markov random fields (MRFs) and deformable models. A graphical model is constructed
to represent the relationship of the observed image pixels, the true region labels and the
underlying object contour. We then formulate the problem of image segmentation as the one
of joint region-contour inference and learning in the graphical model. The graphical model
representation allows us to use an approximate structured variational inference technique to
solve this otherwise intractable joint inference problem. Using this technique, the MAP solu-
tion to the original model is obtained by finding the MAP solutions of two simpler models,
an extended MRF model and a probabilistic deformable model, iteratively and incrementally.
In the extended MRF model, the true region labels are estimated using the BP algorithm in
a band area around the estimated contour from the probabilistic deformable model, and the
result in turn guides the probabilistic deformable model to an improved estimation of the con-
tour. Finally, we generalize our method from 2D to 3D. Experimental results on both synthetic
and real images, in both 2D and 3D, show that our new hybrid method outperforms both the
MRF-based and the deformable model-based methods using only homogeneous constraints.

1 Introduction

Graphical models are a marriage between probability theory and graph theory [1].
A graphical model is a probabilistic model defined in terms of a graph in which
the nodes represent random variables and the edges describe the probabilistic rela-
tionships among these variables. In particular, these probabilistic relationships are
usually defined by conditional probabilities among the related variables or potential
functions on the cliques of the graph, depend on whether the graph is directed or
undirected. The joint probability distribution of a set of variables or the whole sys-
tem can then be computed by taking products over the functions defined on relevant
nodes. The graph theoretic side of graphical models provides an intuitive and com-
pact representation for the complex probabilistic system, as well as well-defined data
structures and efficient general-purpose algorithms. Probability theory, on the other
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hand, ensures the consistency of the whole system, and provides various statistical
inference and learning methods to analyze the data.

Graphical models have recently received extensive attention from many different
research communities, including artificial intelligence, machine learning, computer
vision, etc. In this paper, we apply graphical models to the image segmentation
problem, one of the most important and difficult tasks in computer vision area. We
are able to integrate two fundamentally different traditional segmentation methods
and take advantage of both using graphical models. Furthermore, the graphical model
theory allows us to employ an approximate, computationally efficient solution to
the otherwise intractable inference problem. We will focus on the graphical model
representation and inference (mainly approximate inference) techniques for image
segmentation. See [2] for a more comprehensive introduction to graphical models
and [1] for more advanced topics.

The rest of this paper is organized as follows: Section 2 defines the segmentation
problem and reviews the previous work; Sect. 3 introduces a new integrated model
and its decoupled approximation using the variational inference method; detailed
inferences on the decoupled models are described in Sect. 4; the 2D model is then
generalized to 3D in Sect. 5; Sect. 6 shows the experimental results on both synthetic
and real 2D images and 3D volumes; and finally Sect. 7 summarizes the paper.

2 Previous Work

Image segmentation is one of the most important and difficult preliminary processes
for high-level computer vision and pattern recognition problems. The main goal of
image segmentation is to divide an image into its constituent parts that have a strong
correlation with objects or areas of the real world depicted by the image.

Region-based and edge-based segmentations are the two major classes of seg-
mentation methods. Though one can label regions according to edges or detect edges
from regions, these two kinds of methods are naturally different and have respective
advantages and disadvantages.

Region-based methods assign image pixels to a region according to some image
property (e.g., region homogeneity). These methods work well in noisy images,
where edges are usually difficult to detect while the region homogeneity is preserved.
The disadvantages of region-based methods are that they may generate rough edges
and holes inside the objects, and they do not take account of object shape.

On the other hand, edge-based methods generate boundaries of the segmented
objects. A prior knowledge of object shape and topology can be easily incorporated
to constrain the segmentation result. While this often leads to sufficiently smooth
boundaries, the oversmoothing may be excessive. Because edge-based methods rely
on edge detecting operators, they are sensitive to image noise and need to be initial-
ized close to the actual region boundaries.

Most segmentation methods are either region-based or edge-based. Among
region-based methods, besides the classical region growing method [3], the Markov
random field (MRF) model has been extensively used. Because the exact MAP
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inference in MRF models is computationally infeasible, various techniques for
approximating the MAP estimation have been proposed, such as Markov Chain
Monte Carlo (MCMC) [4], iterated conditional modes (ICM) [5], maximizer of
posterior marginals (MPM) [6], etc. [7] presents a comparative analysis of some of
these methods. Two of the more recent algorithms, Belief Propagation (BP) [8,9] and
Graph Cuts [10] are compared in [11]. The estimation of the MRF model parameters
is another related problem, often solved using the EM algorithm [12].

In edge-based methods, since Kass et al. introduced Snakes [13], deformable
models have attracted much attention. Variants of deformable models have been pro-
posed to address different problems. For instance, Balloons [14] and Gradient Vec-
tor Flow (GVF) Snakes [15] introduces different external forces, and Topologically
Adaptable Snakes [16] allow changes in the model’s topology. See [17] for a review
of deformable models and [3] for other edge-based methods and some basic edge
detecting operators.

Hybrid approaches [18–20] attempt to combine region-based and edge-based
segmentations to alleviate deficiencies of the individual methods and improve the
segmentation results. There are different choices of the combination. For instance,
[20] proposes a way of integrating MRFs and deformable models. MRFs are used to
initially estimate the boundary of objects in noisy images. Balloons are then fitted to
the estimated boundary. The result of the fitting is in turn used to update the MRF
parameters. Final segmentation is achieved by iteratively integrating these processes.
While this hybrid method attempted to take advantage of both MRFs and deformable
models, the model coupling was loose. This may cause failure of deformable models
if the initial estimation of the boundary by MRF is not closed, and it may also yield
oversmoothed boundaries.

We propose a new framework to combine the MRF-based and the deformable
model-based segmentation methods. To tightly couple the two models, we construct
a graphical model to represent the relationship of the observed image pixels, the
true region labels and the underlying object contour. Exact inference in the graphical
model is intractable because of the large state spaces and the couplings of model
variables. To tackle this problem we use a variational inference method to seemingly
decouple the graphical model into two simpler models: one extended MRF model
and one probabilistic deformable model. Then we obtain the MAP solution in the
original model by solving the MAP problems of the two simpler models iteratively
and incrementally. In the extended MRF model, the true region labels are estimated
using the BP algorithm in a band area around the estimated contour from the proba-
bilistic deformable model, and the result in turn guides the probabilistic deformable
model to an improved estimation of the contour.

3 Our Method

The goal of our segmentation method is to find one specific region with a smooth and
closed boundary. A seed point is manually specified and the region containing it is
then segmented automatically. Thus, without significant loss of modeling generality,
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we simplify the MRF model and avoid possible problems caused by segmenting
multiple regions simultaneously.

In this section, we first briefly review MRFs and deformable models, define the
notation, and then introduce our hybrid framework.

3.1 MRF-Based Segmentation

MRF models are a special case of undirected graphical models. They are often used
for image analysis, because of their ability to capture the context of an image (i.e.,
dependencies among neighboring image pixels) and deal with the noise.

A typical MRF model for image segmentation, as shown in Fig. 1, is a graph with
two types of nodes: observable nodes (shaded nodes in Fig. 1, representing image
pixel values) and hidden nodes (clear nodes in Fig. 1, representing region labels).
The edges in the graph depict the relationships among the nodes.

Let n be the number of the hidden/observable states (i.e., the number of pixels in
the image). A configuration of the hidden layer is:

x = (x1, ..., xn), xi ∈ L, i = 1, ..., n

where L is a set of region labels, such as L = {inside, outside}.
Similarly, a configuration of the observable layer is:

y = (y1, ..., yn), yi ∈ D, i = 1, ..., n

where D is a set of pixel values, e.g., gray values 0–255.
The relationship between the hidden states and the observable states (also known

as local evidence) can be described by the potential (or compatibility) function:
φ(xi, yi), which is often a conditional Gaussian to handle the image noise; the rela-
tionship between the neighboring hidden states is described by the second potential
function: ψ(xi, xj), which usually penalizes differences between the states to keep
region smoothness. The detailed definitions will be discussed later.

Now the segmentation problem can be viewed as a problem of estimating the
MAP solution of the MRF model:

xMAP = arg max
x

P (x|y) (1)

y (image pixels)

x (region labels)

Fig. 1. MRF model
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where
P (x|y) ∝ P (y|x)P (x) ∝

∏

i

φ(xi, yi)
∏

(i,j)

ψ(xi, xj)

As mentioned previously, the exact MAP inference in MRFs is computation-
ally infeasible, and various techniques have been used for approximating the MAP
estimation. In our method, we use the BP algorithm. The MRF model parameters
(i.e., the parameters in the potential functions) are learned using the EM algorithm.
However, in the presence of multiple regions in the image, the automatic determina-
tion of the number of regions and the initial guess of the parameters could be diffi-
cult. More importantly, like other region-based methods, MRFs do not take account
of object shape and may generate rough edges and even holes inside the objects.

3.2 Deformable Model-Based Segmentation

Many deformable model-based methods have also been used in image segmentation.
A deformable model is usually a parameterized geometric primitive, whose defor-
mation is determined by geometry, kinematics, dynamics, and other constraints (e.g.,
material properties, etc.) [21]. Snakes [13], a special case of deformable models, are
a parametric contour:

Ω = [0, 1] → �2

s→ c(s) = (x(s), y(s))

where s is the parametric domain and x and y are the coordinate functions. The
energy of the contour:

E(c) = Eint(c) + Eext(c) =
∫

Ω

ω1(s)
∣

∣

∣

∣

∂c
∂s

∣

∣

∣

∣

2

+ ω2(s)
∣

∣

∣

∣

∂2c
∂s2

∣

∣

∣

∣

2

+ F (c(s))ds

where ω1(s) and ω2(s) control the “elasticity” and “rigidity” of the contour, and
F is the potential associated to the external forces. The final shape of the contour
corresponds to the minimum of this energy.

To minimize the above energy term, one can use the discretized first-order
Lagrangian dynamics equation:

ḋ + Kd = f

where d is discretized version of c, K is the stiffness matrix calculated from ω1(s)
and ω2(s), and f is the generalized force vector.

Image gradient forces are usually used to attract a deformable model to edges.
However, when far from the true boundary, the model often gets attracted to spuri-
ous image edges. Balloon forces have been introduced to solve this problem [14].
Namely, the deformable model is considered a balloon, which is inflated by an addi-
tional force and stopped by strong edges. The initial contour need no longer be close
to the true boundary. Mathematically, a force along the normal direction to the curve
at point c(s) with some appropriate amplitude k is added to the original forces.
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f ′ = f + k−→n (s)

Deformable models can also be viewed in a probabilistic framework [17]. The
internal energy Eint(c) leads to a Gibbs prior distribution of the form:

P (c) =
1
Zi

exp(−Eint(c)) (2)

while the external energy Eext(c) can be converted to a sensor model with condi-
tional probability:

P (I|c) =
1
Ze

exp(−Eext(c)) (3)

where I denotes the image, and Eext(c) is a function of the image I.
The deformable models can now be fitted by solving the MAP problem:

cMAP = arg max
c

P (c|I) (4)

where
P (c|I) ∝ P (c)P (I|c)

One limitation of the deformable model-based method is its sensitivity to
image noise, a common drawback of edge-based methods. This may result in
the deformable model being “stuck” in a local energy minimum of a noisy image.

3.3 Integrated Model

As shown in (1) and (4), both the MRF-based and the deformable model-based seg-
mentations can be viewed as the MAP estimation problems. In previous work [20],
these two models were loosely coupled. Our new framework uses the graphical
model theory to tightly couple the two models. This is achieved, as depicted in
Fig. 2, by adding a new hidden state to the traditional MRF model to represent the
underlying contour.

Fig. 2. Integrated model
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In the new model, the segmentation problem can also be viewed as a joint MAP
estimation problem:

(c,x)MAP = arg max
c,x

P (c,x|y)

where
P (c,x|y) ∝ P (y|x)P (x|c)P (c)

To define the joint distribution of the integrated model, we model the image like-
lihood term P (y|x) as:

P (y|x) =
∏

i

φ(xi, yi)

identical to the traditional MRF model. The second term P (x|c), modeling the dis-
tribution of the region labels conditioned on the contour, is defined as:

P (x|c) =
∏

(i,j)

ψ(xi, xj)
∏

i

P (xi|c)

where we incorporated a shape prior c to constrain the region labels x, in addition to
the original Gibbs distribution.

Since we only segment one specific region at one time, we need only consider
the pixels near the contour, and label them either inside or outside the contour.

We model the dependency between the contour c and the region labels x using
the softmax function:

P (xi = inside|c) =
1

1 + exp(−dist(i, c))
(5)

P (xi = outside|c) = 1− P (xi = inside|c) (6)

induced by the signed distance of pixel i from the contour c:

dist(i, c) = sign(i)min
s∈Ω
‖loc(i)− c(s)‖ (7)

where sign(i) = 1 if pixel i is inside contour c, sign(i) = −1 when it is outside,
and loc(i) denotes the spatial coordinates of pixel i.

Lastly, the prior term P (c), as in (2), can be represented as a Gibbs distribution
when the shape prior is given by a parametric contour c.

Despite the compact graphical representation of the integrated model, the exact
inference in the model is computationally intractable. One reason for this is the large
state space size and the complex dependency structure introduced by the Gibbs dis-
tribution of the prior P (c). The second reason is the existence of loops in the graph-
ical model, which preclude polynomial-time inference. To deal with these problems
we propose an approximate, yet tractable, solution based on structured variational
inference.
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3.4 Approximate Inference Using Structured Variational Inference

Structured variational inference techniques [22,23] consider parameterized distribu-
tion which is in some sense close to the desired posterior distribution, but is easier
to compute. Namely, for a given image y, a distribution Q(c,x|y, θ) with an addi-
tional set of variational parameters θ is defined such that the Kullback–Leibler (KL)
divergence between Q(c,x|y, θ) and P (c,x|y) is minimized with respect to θ:

θ∗ = arg min
θ

∑

c,x

Q(c,x|y, θ) log
P (c,x|y)

Q(c,x|y, θ)

The dependency structure of Q is chosen such that it closely resembles the
dependency structure of the original distribution P . However, unlike P the depen-
dency structure of Q must allow a computationally efficient inference.

In our case we define Q by decoupling the MRF model and the deformable
model components of the original integrated model in Fig. 2. The original distrib-
ution is factorized into two independent distributions: an extended MRF model QM

with variational parameter a and a probabilistic deformable model QD with varia-
tional parameter b (Fig. 3). The extended MRF model means we have an additional
layer to the traditional MRF model to deal with the shape prior, and the probabilistic
deformable model means the contour is not fitted to the image directly, but to the
probabilistic label image.

Because QM and QD are independent,

Q(c,x|y,a,b) = QM (x|y,a)QD(c|b)

According to the extended MRF model, we have:

QM (x|y,a) ∝ QM (y|x)QM (x|a)

QM (y|x) =
∏

i

φ(xi, yi)

Fig. 3. Decoupled models
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QM (x|a) =
∏

(i,j)

ψ(xi, xj)
∏

i

P (xi|ai)

Hence,
QM (x|y,a) ∝

∏

i

φ(xi, yi)
∏

(i,j)

ψ(xi, xj)
∏

i

P (xi|ai) (8)

On the other hand, the probabilistic deformable model yields:

QD(c|b) ∝ QD(b|c)QD(c)

QD(b|c) =
∏

i

P (bi|c)

leading to
QD(c|b) ∝

∏

i

P (bi|c)QD(c) (9)

The optimal values of the variational parameters θ = (a,b) are obtained by
minimizing the KL-divergence. It can be shown, using e.g., [24], that the optimal
parameters θ∗ = (a∗,b∗) should satisfy the following equations:

log P (xi|a∗
i ) =

∑

c

QD(c|b∗) log P (xi|c) (10)

log P (b∗i |c) =
∑

xi∈L

QM (xi|y,a∗) log P (xi|c) (11)

Notice that the inference solutions, (8) and (9), together with the parameter opti-
mizations, (10) and (11), form a set of fixed-point equations. Solution of this fixed-
point set yields a tractable approximation to the intractable original posterior.

Since the state space of c (all possible contour configurations in the image plane)
is too large, (10) is still intractable. We simply use the winner-take-all strategy and
approximate QD(c|b) as a delta function:

Q′
D(c|b) =

{

1 if c = arg max
c

QD(c|b)

0 else

and (10) can be simplified to:

P (xi|ai) = P (xi|c) (12)

where c = arg max
c

QD(c|b).

3.5 Algorithm Description

The variational inference algorithm for the hybrid MRF-DM model can now be
summarized as:
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Initialize contour c;
while (error > maxError) {

1. Calculate a band area B around c. Perform remaining steps inside B;
2. Calculate P (xi|ai) based on (12) using c;
3. Estimate the MRF-MAP solution QM (xi|y, a) based on (8) using P (xi|ai);
4. Calculate log P (bi|c) based on (11) using QM (xi|y, a);
5. Estimate the DM-MAP solution QD(c|b) based on (9) using log P (bi|c);

}

Steps 2 and 4 follow directly from (12) and (11). The details of steps 1, 3, and 5
are discussed in Sect. 4.

4 Implementation Issues

4.1 Solve MRF-MAP with EM and BP

Step 3 of our algorithm solves the MAP problem in the extended MRF model. The
EM algorithm is used to estimate both the MAP solution of region labels x and the
parameters of the model (i.e., the parameters in the potential functions).

Particularly, in E step, the MAP solution of region labels x is estimated based
on current parameters. Unlike most of the previous work mentioned in Sect. 2, we
solve this MRF-MAP estimation problem using the BP algorithm. BP is an inference
method proposed by Pearl [8] to efficiently estimate Bayesian beliefs in the network
by the way of iteratively passing messages between neighbors. It is an exact inference
method in the network without loops. Even in the network with loops, the method
often leads to good approximate and tractable solutions [25].

There are two variants of the BP algorithm: sum–product and max–product. The
sum–product message passing rule can be written as:

mij(xj) =
∑

xi

Ψij(xi, xj)Φi(xi)
∏

k∈ℵ(i)\j

mki(xi)

The max–product has analogous formula, with the marginalization replaced by the
maximum operator. At convergence:

xiMAP = arg max
xi

Φi(xi)
∏

j∈ℵ(i)

mji(xi)

According to our extended MRF model the compatibility functions are:

Φi(xi) = φ(xi, yi)P (xi|ai)

Ψij(xi, xj) = ψ(xi, xj)

We again note the difference from a traditional MRF model, due to the incorporated
shape prior. P (xi|ai) is calculated in step 2 of the algorithm. φ(xi, yi) and ψ(xi, xj)
can be calculated using current MRF parameters.
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In this model we assume the image pixels are corrupted by white Gaussian noise:

φ(xi, yi) =
1

√

2πσ2
xi

exp
(

− (yi − µxi
)2

2σ2
xi

)

On the other hand, to penalize differences between the neighboring labels (i.e., to
keep local region smoothness),

ψ(xi, xj) =
1
Z

exp
(

δ(xi − xj)
σ2

)

where δ(x) = 1 if x = 0; δ(x) = 0 if x �= 0, σ controls the similarity of neighboring
hidden states, and Z is a normalization constant.

As shown in step 1 in our algorithm, belief propagation is restricted to a single
band of model variables around the current contour estimates. A reason for this is
that, in practice, we only need to care about the statistics of pixels near the boundary.
More importantly, the banded inference significantly speeds up the whole algorithm.
Although convergence of the banded algorithm is not guaranteed, in our experiments,
the BP algorithm does converge, usually in only one or two iterations.

In M step, the MRF parameters are updated based on the MAP solution of the
region labels x using the following equations:

µl =

∑

i

QM (xi = l|yi, ai)yi

∑

i

QM (xi = l|yi, ai)

σ2
l =

∑

i

QM (xi = l|yi, ai)(yi − µl)2

∑

i

QM (xi = l|yi, ai)

where l ∈ {inside, outside}.

4.2 Probabilistic Deformable Model

In step 5, according to (3), we use the negative log term,− log P (b|c), as the external
energy in the deformable model. Given this “label image” energy landscape, the
image force is simply ∇(log P (b|c)). With the additional balloon forces, this leads
to the discretized first-order Lagrangian dynamics equation:

ḋ + Kd = ∇(log P (b|c)) + k−→n (s)

We note that this formulation is different from that of [20] where the deformable
model is fitted to a binary label image obtained from the MAP configuration of x.
In our method, we use a probabilistic measurement of the label of each pixel as
specified in (11).

Finally, following the definition in (5)–(7), we note that the gradient of the cou-
pling energy at pixel i,∇(log P (b|c)), can be shown to be:

∂ log P (b|c)
∂c

= −∂ log P (b|c)
∂loc(i)
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5 3D Image Segmentation

Increasing availability of high-resolution 3D image data using modalities such as
magnetic resonance (MR) and computed tomography (CT) has prompted the need
for 3D segmentation approaches. However, 3D image segmentation remains an
extremely difficult problem, due to the complex topology of 3D objects, the massive
data, and demanding computational algorithms. Many 3D approaches are often 2D
in nature (i.e., applying the 2D algorithm slice by slice to the 3D volume data [26]).
The lack of interaction among individual slice solutions, however, leads to results
that are inferior to true 3D-based solutions [27].

In this section, we generalize our framework to 3D image segmentation based
on the integration of 3D MRFs and deformable surface models. The proposed
method is a true 3D method that fully exploits the structure of the 3D data, result-
ing in improved object segmentation. The generalization is straightforward using the
graphical model representation, and the variational inference in the graphical model
also leads to computationally more efficient solutions, which, in the 3D case, is still
of main concern.

A 3D MRF model is shown in Fig. 4. The hidden nodes are positioned at the
vertices of a regular 3D grid of the same size as the volume data (Fig. 4 left). Each
hidden node xi is connected to six neighboring hidden nodes (more neighbors can be
connected by adding diagonals in the grid) and one observable node yi (Fig. 4 right).
Again, the observable nodes represent the voxel values of the 3D volume data and
the hidden nodes represent the region labels of corresponding voxels.

As to the deformable models, Finite-Element Method (FEM)-based balloon mod-
els [27] and Polygonal Geometrically Deformed Model (GDM) [28] are commonly
used for representation of 3D surfaces and segmentation of volume data.

Similar to the 2D case, a new hidden node representing the underlying bound-
ary surface is added to the 3D MRF model (Fig. 5 left, only one pair of voxel/label
nodes is drawn for simplicity). We again use the structured variational inference tech-
nique to seemingly decouple the integrated model into two simpler models (Fig. 5
right): one extended 3D MRF model with shape prior constraints and one probabilis-
tic deformable surface model.

The 3D algorithm is similar to the 2D one. However, the expansion process
of the 3D balloon model far away from the true boundary can be time-consuming
and needs frequent reparametrization, and often suffers from local energy minima in

Fig. 4. 3D MRF model
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y (image voxels)

x (region labels)

c (deformable 
surface)

y (image voxels)

x (region labels)

a (variational 
parameters)

c (deformable 
surface)

b (variational 
parameters)

Fig. 5. Integrated and decoupled models

noisy images. An interactive initialization procedure or a learned shape prior would
be helpful. When there is no shape prior, one can use the 3D MRF segmentation
algorithm alone to generate an initial region segmentation and apply the Marching
Cubes algorithm [29] to the 3D belief image to generate an initial surface. March-
ing Cubes is an algorithm for constructing triangle models of constant density sur-
faces from discrete volume data. The resulting surface representation is suitable for
the FEM-based balloon model. The rest of the 3D algorithm is a straightforward
generalization of the 2D one.

6 Experiments

6.1 2D Synthetic Images

The initial study of properties and utility of our method was conducted on a set of
synthetic images. The images were synthesized in a way similar to [7]. In [7], the
64×64 perfect images contain only two gray levels representing the object (gray
level is 160) and the background (gray level is 100) respectively. In our experiments,
we made the background more complicated by introducing a gray level gradient.
The gray levels of the background are increasing from 100 to 160, along the normal
direction of the object contour (Fig. 6a). Figure 6b shows the result of a traditional
MRF-based method. The object is segmented correctly, however some regions in the
background are misclassified. On the other hand, the deformable model fails because
of the leaking from the high-curvature part of the object contour, where the gradient
in the normal direction is too weak (Fig. 6c). Our hybrid method, shown in Fig. 6d,
results in a significantly improved segmentation.

We next generated a test image (Fig. 6e) by adding Gaussian noise with mean
0 and standard deviation 60 to Fig. 6a. The result of the MRF-based method on the
noisy image (Fig. 6f) is somewhat similar to that in Fig. 6b, which shows the MRF
can deal with image noise to some extent. But significant misclassification occurred
because of the complicated background and noise levels. The deformable model
either sticks to spurious edges caused by image noise or leaks (Fig. 6g) because
of the weakness of the true edges. Unlike the two independent methods, our hybrid
algorithm, depicted in Fig. 6h, correctly identifies the object boundaries despite the
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a b c d

e f g h

Fig. 6. Experiments on 2D synthetic images

excessive image noise. For visualization purposes we superimpose the contour on
the original image (Fig. 6a) to show the quality of the result in Fig. 6g and h.

6.2 2D Medical Images

Experiments with synthetic images in Sect. 6.1 outlined some of the benefits of our
hybrid method. The real world images usually have significant, often nonwhite noise
and contain multiple regions and objects, rendering the segmentation task a great deal
more difficult. In this section we show results of applying our method to real medical
images on which we can hardly get satisfying results with either the MRF-based or
the deformable model-based methods alone.

In the following comparisons, we manually specified the inside/outside regions to
get an initial guess of the parameters for the MRF-only method. For the deformable
model method, we started the balloon model at several different initial positions and
use the best results for the comparison. On the other hand, our hybrid method is
significantly less sensitive to the initialization of the parameters and the initial seed
position.

Figure 7a shows a 2D MR image of the left ventricle of the human heart.
Figure 7b is the result of the MRF-based method. While it is promising, the result
still exhibits rough edges and holes. Figure 7c depicts the result of the deformable
model-based method. Although we carefully chose the magnitude of the balloon
forces, parts of the contour begin to leak others stick to spurious edges. Our hybrid
method, started from the initial contour shown in Fig. 7e, generated better result
(Fig. 7d). One of the intermediate iterations is shown in Fig. 7f. The corresponding
external energy in the band area is depicted in Fig. 7g (image intensities are pro-
portional to the magnitude of the energy), showing a more useful profile than the
traditional edge energy −|∇(Gσ ∗ I)|2 shown in Fig. 7h.
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Fig. 7. Experiments on 2D medical images (1)

Fig. 8. Experiments on 2D medical images (2)

Figure 8a is an ultrasound image. The MRF gets rough edges and holes in the ob-
jects (Fig. 8b) while the deformable model cannot escape a local minimum (Fig. 8c).
Our hybrid method eliminates the rough edges and holes caused by the MRF while
outlining the region more accurately than the deformable model (Fig. 8d).

Finally, Figs. 9a and 10a are both examples of difficult images with complicated
global properties, requiring the MRF-based method to automatically determine the
number of regions and the initial values of the parameters. Figure 9b is obtained by
manually initializing the MRF model. Our method avoids this problem by creating
and updating an MRF model locally and incrementally. The images are also difficult
for deformable models because the boundaries of the objects to be segmented are
either high-curvature (Fig. 9a) or low-gradient (Fig. 10a). Figure 9c exemplifies the
oversmoothed deformable models. Our method’s results, shown in Figs. 9d and 10b,
do not suffer from either of the problems.

6.3 3D Synthetic Images

Our 3D method was also first experimented on a set of synthetic images. The per-
fect image contains two gray levels representing the object (gray level is 160) and
the background (gray level is 100), respectively. Gaussian noise with mean 0 and
standard deviation 60 is added to the whole image to generate the test image.
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a b

c d

Fig. 9. Experiments on 2D medical images (3)

a b

Fig. 10. Experiments on 2D medical images (4)

The first experiment intended to show the advantages of the true 3D method over
the 2D slice-based method. In this experiment, we generated a 100× 100× 100 3D
image containing a ball-like object. Figure 11a shows several slices of the perfect
image. Our test image is generated by cutting out a quarter of the pie-like object
from the 50th frame and adding the Gaussian noise (Fig. 11b). The segmentation
results by 2D MRFs and 3D MRFs are shown in Fig. 11c, d. Both models handled
noise successfully. The 3D MRF model obviously recovered the pie-like object in
the 50th frame by retaining region smoothness in the direction perpendicular to the
frame. The 2D MRF model cannot achieve this due to the lack of interaction between
neighboring frames. The boundary of the results from 3D MRFs also look smoother.

The second experiment was performed on a 64 × 64 × 64 volume containing a
“5”-like object similar to Fig. 6a. The thickness of the object is 8 (i.e., frames 29
to 36 contain the object). Besides the zero mean Gaussian noise, extra noise with
mean 160 is also added to a part of the two successive frames 32 and 33. The test
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a. Perfect image slices (Frame 30, 40, 49, 50, 51, 60, 70)

b. Corrupted Image slices

c. 2D MRFs segmented slices

d. 3D MRFs segmented slices

Fig. 11. Experiments on 3D synthetic images (1)

a. noisy slices (Frame 29 36)

b. 2D MRF segmentation slices (error = 3.98%)

c. 3D MRF segmentation slices (error = 2.79%)

d. 3D MRF + DM segmentation slices (error = 1.62%)

Fig. 12. Experiments on synthetic 3D images (2)

image slices are shown in Fig. 12a. The results of 2D MRFs are shown in Fig. 12b.
Each slice looks different from others, especially for the two frames with extra noise.
The slices in Fig. 12c (results of 3D MRFs), however, are smoother and similar to
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their neighbors, except for the first and last frames, which suffered more interference
from the background. These two outermost frames are improved by coupling the DM
with the 3D MRF model, and other frames are also slightly smoother (Fig. 12d). The
average error rates of the three methods are 3.98%, 2.79%, and 1.62%.

6.4 3D Medical Images

Experiments with synthetic images in Sect. 6.3 outlined the advantages of both the
3D method over the 2D method and the hybrid method over the MRF-only method.
In this section, we show experimental results of applying our methods to 3D medical
images. We do not show the results of the slice-based method with 2D MRFs as in
previous experiments mainly because this method is sensitive to initialization and
we cannot get satisfying results on these medical images. While our 3D method also
needs manual initialization when the shape prior is not given, the slice-based method
requires manual initialization for almost each single slice.

We first test our algorithms on simulated brain MRI data from BrainWeb [30].
The database contains simulated brain MRI data based on two anatomical models:
normal and multiple sclerosis. For both of these, full 3D data volumes have been
simulated using three sequences (T1-, T2-, and proton-density (PD)-weighted) and
a variety of slice thicknesses, noise levels, and levels of intensity nonuniformity. We
segmented the white matter from three different normal brain data volumes using the
hybrid method. Figure 13a shows a slice from the ground truth data of the white mat-
ter. Figure 13d is the result from our hybrid method. The second column of Fig. 13
shows the segmentation results on T1 image without noise and intensity nonunifor-
mity (RF inhomogeneity). The segmented white matter is slightly thicker than the
results from the ground truth, because some of the grey matter is misclassified due to
its similar grey value to the white matter. Same misclassification can be observed in

a. Ground truth image slice b. T1 image slice c. Noisy T1 image slice

e. Result on T1 image f. Result on noisy T1 image

Fig. 13. Experiments on 3D medical images (1)
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a. Test image slice b. 3D MRFs only c. 3D MRFs + DM

d. Upper - right part of b e. Upper - right part of c

Fig. 14. Experiments on 3D medical images (1)

the third column, which is the segmentation result on T1 image with 9% noise and
40% intensity nonuniformity. One possible solution to the misclassification problem
is using the 3D MRF-only algorithm to do a multiregion segmentation first.

Finally, we show some results on a real medical image [31], which is an MR
image of a head with the skull partially removed to reveal the brain. Figure 14a is one
of the slices from the volume. The results of our methods are shown in Fig. 14b, c. To
show the difference between the two algorithms (i.e., the effect of adding deformable
models), the upper-right parts of Fig. 14b, c are magnified in Fig. 14d, e. The arrows
show that some incorrect patches are eliminated by the deformable fitting process.
Surface smoothness can be easily controlled by tuning the parameters in the stiffness
matrix. Because the white matter itself is a complicated object with high curvature,
the parameters are usually chosen according to experts’ opinion.

7 Conclusions

We proposed a new framework to combine the MRF-based and the deformable
model-based segmentation methods. The framework was developed under the aus-
pices of the graphical model theory allowing us to employ a well-founded set of sta-
tistical inference and learning techniques. In particular, we employed the variational
inference method, an approximate, computationally efficient solution, to otherwise
intractable inference of region boundaries. Experimental results on both synthetic
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and real 2D images and 3D volumes show that the hybrid methods outperforms both
the MRF-based and the deformable model-based methods using only homogeneous
constraints.
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