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Summary. In this paper we describe a clustering method that allows the use of graph-based
representations of data instead of traditional vector-based representations. Using this new
method we conduct content-based clustering of two web document collections. Clustering
of web documents is performed to organize the documents with little or no human interven-
tion. Benefits of clustering include easier browsing and improved retrieval speed. In order
to measure the performance of our graph-matching approach, we compare it to the popular
vector-based k-means method. We perform experiments using different graph distance mea-
sures as well as various document representations that utilize graphs. The results with the
k-means clustering algorithm show that the graph-based approach can outperform traditional
vector-based methods.
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1 Introduction

Clustering is the separation of a collection of objects into groups, called clusters,
such that objects within the same cluster are similar to each other, yet dissimilar
to the objects in other clusters. Clustering is an unsupervised method, meaning no
labeled training examples are provided. Many different clustering algorithms have
been proposed, such as k-means, fuzzy c-means, hierarchical agglomerative, and
graph partitioning [1].

Clustering of natural language documents is an important research area for two
major reasons. First, clustering a document collection into categories enables it to
be more easily browsed and used. Second, clustering can improve the performance
of search and retrieval on a document collection. Hierarchical clustering methods
[1], for example, are used often for this purpose. When representing documents for
clustering the vector model is typically used [2]. In this model, each meaningful term
that can appear in a document becomes a feature (dimension).

The vector model is simple and allows the use of traditional clustering methods
that deal with numerical feature vectors. However, it discards information such as
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the order in which the terms appear, where in the document the terms appear, how
close the terms are to each other, and so forth. By keeping this kind of structural
information we could possibly improve the performance of the clustering. The prob-
lem is that traditional clustering methods are often restricted to working on purely
numeric feature vectors due to the need to compute distances between objects or to
find some representative element of a cluster of objects, both of which are easily
accomplished with numerical feature vectors. Thus either the original data needs to
be converted to a vector of numeric values by discarding possibly useful structural
information (that we do when using the vector model to represent documents) or we
need to develop new, customized algorithms for a specific representation.

In order to overcome this problem, we have introduced an extension of classical
clustering methods that allows us to work with graphs as fundamental data structures
instead of being limited to vectors of numeric values [3, 4]. Our approach has two
main benefits:

1. It allows us to keep the inherent structure of the original documents by modeling
each document as a graph.

2. We can apply straightforward extensions to use existing clustering algorithms
rather than needing to create new algorithms from scratch. In this paper we will
address comparison of different graph similarity measures and document rep-
resentations in the context of document clustering. We will use a graph-based
k-means clustering algorithm to cluster two web document collections. We will
use the cosine and Jaccard similarity measures [2] with the vector model repre-
sentation as a baseline for comparison.

Recently, several papers have appeared in the literature that deal with graph rep-
resentations of documents. Liang and Doermann represented the physical layout of
document images as graphs [5]. In their layout graphs nodes represent elements on
the page of a document, such as columns of text or headings, while edges indicate
how these elements appear together on the page (i.e., spatial relationships). This
method is based on the formatting and appearance of the documents when ren-
dered, not the textual content (words) of a document as in our approach. Lopresti
and Wilfong compared web documents using a graph representation that primarily
utilizes HTML parse information, in addition to hyperlink and content order informa-
tion [6]. In their approach they use graph probing, which extracts numerical feature
information from the graphs, such as node degrees or edge label frequencies, rather
than comparing the graphs themselves. In contrast, our representation uses graphs
created solely from the content, and we use the graphs themselves rather than a set
of extracted features. The subject graphs of Tomita et al. [7] are constructed using
weights calculated from term occurrence frequencies; our method does not calculate
any weights, and most of our models do not use any frequency information.

Other graph-based approaches to text or web representation that are well known
in the literature include Sowa’s conceptual graphs [8] and directed acyclic word
graphs (DAWGs) [9]. Conceptual graphs provide for powerful knowledge repre-
sentation capabilities, but are not widely used for web documents because “they
are based on deep analysis, and so require well maintained dictionaries and an
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excessive amount of time to operate” [8]. DAWGs are used for compact representa-
tion and recognition of individual words in a text rather than representation of entire
documents.

Clustering with graphs is well established in the literature. However, the para-
digm in those methods is to treat the entire clustering problem as a graph: nodes
represent the items to be clustered and weights on edges connecting two nodes indi-
cate the distance (dissimilarity) between the objects the nodes represent. The usual
procedure is to create a minimal spanning tree of the graph and then remove the
remaining edges with the largest weight in the MST until the number of desired
clusters (connected components) is achieved [10]. After applying the algorithm the
edges indicate which objects belong to which clusters. In our method, by contrast,
each object is represented by a graph (not a node), and we perform standard cluster-
ing methods on these graphs.

Lately there has been some progress with performing clustering directly on
graph-based data. For example, an extension of self-organizing maps (SOMs) which
allows the procedure to work with graphs has been proposed [11]; graph edit distance
and weighted mean of a pair of graphs were introduced to deal with graph-based data
under the SOM algorithm. Clustering of shock trees using tree edit distance has also
been considered [12]. Both of these methods have in common that they use graph (or
tree) edit distance for their graph distance measures. One drawback of this approach
is that the edit cost functions must be specified for each application. Sanfeliu et al.
have investigated clustering of attributed graphs using their own “function-described
graphs” as cluster representatives [13]. However, their method is rather complicated
and much more involved than our straightforward extension of a classical, simple
clustering algorithm.

The remainder of this paper is organized as follows. In Sect. 2 we give the formal
notations relating to graphs that will be used throughout the paper. We describe the
graph-based extension of the k-means algorithm and the various graph distance mea-
sures in Sect. 3. The details of the different graph representations we utilize during
clustering are provided in Sect. 4. In Sect. 5 we explain our experimental procedures
and present the results. Finally, some concluding remarks are given in Sect. 6.

2 Formal Notation

In this section we will give the formal mathematical notation which pertains to graphs
and their role in performing clustering with the k-means algorithm. Graphs are a
mathematical formalism for dealing with structured entities and systems. In basic
terms a graph consists of vertices (or nodes), which correspond to some objects or
components. Graphs also contain edges, which indicate relationships between the
vertices. The first definition we have is that of the graph itself. Each object (web
document, in the context of this paper) in the data set we are clustering will be rep-
resented by such a graph:

Definition 1. A graph G is defined by a four-tuple (quadruple): G = (V,E, α, β),
where V is a set of vertices (also called nodes), E ⊆ V × V is a set of edges
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connecting the vertices, α : V → ΣV is a function labeling the vertices, and β :
E → ΣE is a function labeling the edges (ΣV and ΣE being the sets of labels that
can appear on the nodes and edges, respectively).

The graphs we will use in this paper are directed graphs with node and edge
labels. The next definition we have is that of a subgraph. One graph is a subgraph of
another graph if it exists as part of the larger graph:

Definition 2. A graph G1 = (V1, E1, α1, β1) is a subgraph of a graph G2 =
(V2, E2, α2, β2), denoted G1 ⊆ G2, if V1 ⊆ V2, E1 ⊆ E2 ∩ (V1 × V1), α1(x) =
α2(x) ∀x ∈ V1, and β1((x, y)) = β2((x, y)) ∀(x, y) ∈ E1. Conversely, graph G2 is
also called a supergraph of G1.

Next we have the important concept of the maximum common subgraph (mcs)
for short, which is the largest subgraph a pair of graphs have in common:

Definition 3. A graph G is a maximum common subgraph (mcs) of graphs G1 and
G2, denoted mcs(G1, G2), if: (1) G ⊆ G1 (2) G ⊆ G2 and (3) there is no other
subgraph G′ (G′ ⊆ G1, G′ ⊆ G2) such that |G′| > |G|.

In the above definition, |G| is intended to convey the “size” of the graph G;
often it is taken to be |V |, i.e., the number of vertices in the graph. In most of the
graph representations used in this paper we will define the size of a graph to be
|G| = |V | + |E|, i.e., the sum of the number of nodes and edges in the graph.
Complementary to Definition 3, we also have the concept of MCS:

Definition 4. A graph G is a minimum common supergraph [14] (MCS) of graphs
G1 and G2, denoted MCS(G1, G2), if: (1) G1 ⊆ G (2) G2 ⊆ G and (3) there is no
other supergraph G′ (G1 ⊆ G′, G2 ⊆ G′) such that |G′| < |G|.

Now that we have our formal notation, we are in a position to proceed to describ-
ing the k-means algorithm extended to cluster graphs instead of vectors.

3 Clustering with Graphs

3.1 Basic Clustering Algorithm

The k-means clustering algorithm is a simple and straightforward method for clus-
tering data [15]. The basic algorithm is given in Fig. 1. Usually during clustering we
represent each object, which consists of m numeric values, as a vector in the space
�m. When representing documents in this manner, each value is associated with a
specific term (word) that may appear on a document, and the set of possible terms
is shared across all documents; this is called the vector-space model of information
retrieval. The values may be binary, indicating the presence or absence of the cor-
responding term. The values may also be nonnegative integers, which represent the
number of times a term appears on a document (i.e., term frequency). Non-negative
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Inputs: the set of n data items and a parameter, k, defining the number of clusters to create
Outputs: the centroids of the clusters and for each data item the cluster (an integer in [1,k]) it
 belongs to

Step 1. Assign each data item randomly to a cluster (from 1 to k).
Step 2. Using the initial assignment, determine the centroids of each cluster.
Step 3. Given the new centroids, assign each data item to be in the cluster of its closest centroid.
Step 4. Re-compute the centroids as in Step 2. Repeat Steps 3 and 4 until the centroids do not change.

Fig. 1. The k-means clustering algorithm

real numbers can also be used, in this case indicating the importance or weight of
each term. These values are derived through a method such as the popular inverse
document frequency model (tf · idf ) [2], which reduces the importance of terms
that appear on many documents. Regardless of the method used, each series of val-
ues represents a document and corresponds to a point (i.e., vector) in a Euclidean
feature space. This model is often used when applying data mining techniques to
documents, as there is a strong mathematical foundation for performing distance
measure and centroid calculations using vectors. However, this method of document
representation does not capture important structural information, such as the order
and proximity of term occurrence, or the location of term occurrence within the doc-
ument. It is also common to restrict the number of dimensions by selecting some
small set of discriminating or important terms, as the number of possible terms that
can occur across a collection of documents can be quite large.

When representing data by vectors, the distances between two objects can be
computed using the Euclidean distance in m dimensions:

distEUCL(x, y) =

√

√

√

√

m
∑

i=1

(xi − yi)2 (1)

where xi and yi are the ith components of vectors x = [x1, x2, . . . , xm] and
y = [y1, y2, . . . , ym], respectively. However, for applications in text and document
clustering, the cosine similarity measure [2] is often used due to its length invariance
property. We can convert this to a distance measure by the following:

distCOS(x, y) = 1− x • y

‖x‖ · ‖y‖ (2)

Here • indicates the dot product operation and ‖ . . . ‖ indicates the magnitude
(length) of a vector. Another popular distance measure for determining document
similarity is the extended Jaccard similarity [2], which is converted to a distance
measure as follows:

distJAC(x, y) = 1−
∑m

i=1 xiyi
∑m

i=1 x2
i +
∑m

i=1 y2
i −
∑m

i=1 xiyi
(3)

We have determined that if methods of computing distance between graphs and
constructing a representative of a set of graphs are available it is possible to extend
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many clustering and classification methods to work directly on graphs. First, any dis-
tance calculations between objects to be clustered, which are represented by graphs
and not vectors, is accomplished with a graph-theoretical distance measure as we will
discuss in Sect. 3.2. Second, since it is necessary to compute the distance between
objects and cluster centers, it follows that the cluster centers (representatives) must
also be graphs. Therefore, we compute the representative of a cluster as the median
graph of the set of graphs in that cluster (as we will describe in Sect. 3.3).

3.2 Graph Distance Measures

As we mentioned above, we need a graph-theoretical distance measure in order to
use graphs for clustering. We have implemented several distance measures and will
compare their clustering performance. For brevity we will refer to the distance mea-
sures below as MCS, WGU, and MMCS.

The first distance measure MCS is a well-known graph distance measure based
on the mcs [16]:

dMCS(G1, G2) = 1− |mcs(G1, G2)|
max(|G1|, |G2|)

(4)

where G1 and G2 are the graphs to compare, mcs(G1, G2) is their maximum com-
mon subgraph, | . . . | is the size of a graph, and max(. . . ) is the usual maximum
operation. Here we define the size of a graph to be the sum of the number of nodes
and edges in the graph. The concept behind this distance measure is that as the size
of the maximum common subgraph of a pair of graphs becomes larger, the more
similar the two graphs are (i.e., they have more in common). The larger the maxi-
mum common subgraph, the smaller dMCS(G1, G2) becomes, indicating more sim-
ilarity and less distance. If the two graphs are in fact identical, their maximum
common subgraph is the same as the graphs themselves and thus the size of all
three graphs is equal: |G1| = |G2| = |mcs(G1, G2)|. This leads to the distance,
dMCS(G1, G2), becoming 0. Conversely, if no maximum common subgraph exists,
then |mcs(G1, G2)| = 0 and dMCS(G1, G2) = 1. This distance measure has been
shown to be a metric [16], and produces a value in [0, 1].

A second distance measure WGU which has been proposed by Wallis et al.
[17] is:

dWGU (G1, G2) = 1− |mcs(G1, G2)|
|G1|+ |G2| − |mcs(G1, G2)|

(5)

This distance measure behaves similarly to MCS. If the maximum common subgraph
does not exist (i.e., |mcs(G1, G2)| = 0), then dWGU (G1, G2) = 1. If the maximum
common subgraph is identical to the original graphs, |G1| = |G2| = |mcs(G1, G2)|,
then the graphs G1 and G2 are identical and thus dWGU (G1, G2) = 0. The denom-
inator used in this method is based on the idea of “graph union.” It represents the
size of the union of the two graphs in the set theoretic sense; specifically adding
the size of each graph (|G1| + |G2|) then subtracting the size of their intersection
(|mcs(G1, G2)|) leads to the size of the union (the reader may easily verify this
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using a Venn diagram). The motivation for doing this is to allow for changes in the
smaller graph to exert some influence over the distance measure, which does not hap-
pen with MCS [17]. This measure was also demonstrated to be a metric, and creates
distance values in [0, 1].

The third distance measure MMCS, proposed by Fernández and Valiente, is
based on both the maximum common subgraph and the MCS [14]:

dMMCS(G1, G2) = |MCS(G1, G2)| − |mcs(G1, G2)| (6)

where MCS(G1, G2) is the minimum common supergraph of graphs G1 and G2.
The concept that drives this distance measure is that the maximum common sub-
graph provides a “lower bound” on the similarity of two graphs, while the MCS
is an “upper bound.” If two graphs are identical, then both their mcs and MCS
are the same as the original graphs and |G1| = |G2| = |MCS(G1, G2)| =
|mcs(G1, G2)|, which leads to dMMCS(G1, G2) = 0. As the graphs become more
dissimilar, the size of the maximum common subgraph decreases, while the size
of the MCS increases. This in turn leads to increasing values of dMMCS(G1, G2).
For two graphs with no maximum common subgraph, the distance will become
|MCS(G1, G2)| = |G1| + |G2|. MMCS has also been shown to be a metric [14],
but it does not produce values normalized to the interval [0, 1], unlike the previously
described distance measures. Note that if it holds that |MCS(G1, G2)| = |G1| +
|G2| − |mcs(G1, G2)| ∀G1, G2, we can compute dMMCS(G1, G2) as |G1| + |G2|
− 2|mcs(G1, G2)|. This is much less computationally intensive than computing the
MCS.

We will describe our graph representation of documents in detail in Sect. 4. How-
ever, we wish to mention here an interesting feature our graph representation has on
the time complexity of determining the distance using (4–6). For general graphs
the computation of the mcs is NP-Complete. Methods for computing the mcs are
presented in [18, 19]. However, for the graph representations of web documents pre-
sented in this paper, the computation of the maximum common subgraph is O(n2),
with n being the number of nodes, due to the existence of unique node labels in the
graph representations (i.e., we need only examine the intersection of the nodes, since
each node has a unique label) [20]. Thus the maximum common subgraph, Gmcs, of
a pair of graphs with unique node labels, G1 and G2, can be created by the following
procedure:

1. Find the nodes Vmcs by determining the subset of node labels that the original
graphs have in common with each other and create a node for each common
label.

2. Find the edges Emcs by examining all pairs of nodes from step 1 and introduce
edges that connect pairs of nodes in both of the original graphs with identical
edge labels.

Note that the calculation of the MCS can be reduced to the mcs problem [21].
Therefore the computation of the MCS can also be performed in O(n2) time.
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3.3 Median of a Set of Graphs

The second ingredient required to apply clustering to graphs is that of a graph-
theoretic cluster representative of a set of graphs. For this we have used the con-
cept of the median graph [22], which is the graph which has the minimum average
distance to all graphs in the cluster:

G = arg min
∀s∈S

(

1
n

n
∑

i=1

dist(s,Gi)
)

(7)

Here S = {G1, G2, . . . , Gn} is a set of n graphs for which we want to compute the
median (and thus |S| = n) and G is the median graph. The median is defined to be
a graph in set S. Thus the median of a set of graphs is the graph from that set which
has the minimum average distance to all the other graphs in the set. The distance
dist(. . . ) is computed using one of (4–6) above. There also exists the concepts
of the generalized median and weighted mean [22], where we do not require that
G be a member of S, but we will not consider them here because they are quite
expensive to compute. In the case where the median is not unique (i.e., there is more
than one graph that has the same minimum average distance) we select one of those
graphs at random as the representative for the k-means algorithm. This variation of
the k-means algorithm, where we use a median instead of a mean as cluster repre-
sentatives, is also known as k-medoids [23].

4 Graph Representations of Web Documents

In this section we describe methods for representing web documents using graphs
instead of the traditional vector representations. All representations are based on the
adjacency of terms in a web document. These representations are named: standard,
simple, n-distance, n-simple distance, raw frequency and normalized frequency.

Under the standard method each unique term (word) appearing in the document,
except for stop words such as “the,” “of,” and “and” which convey little information,
becomes a node in the graph representing that document. Each node is labeled with
the term it represents. Note that we create only a single node for each word even
if a word appears more than once in the text. Second, if word a immediately pre-
cedes word b somewhere in a “section” s of the document, then there is a directed
edge from the node corresponding to term a to the node corresponding to term b
with an edge label s. We take into account certain punctuation (such as periods) and
do not create an edge when these are present between two words. Sections we have
defined for web documents are: title, which contains the text related to the docu-
ment’s title and any provided keywords (meta-data); link, which is text that appears
in hyperlinks on the document; and text, which comprises any of the readable text
in the document (this includes link text but not title and keyword text). Next we
remove the most infrequently occurring words on each document, leaving at most
m nodes per graph (m being a user provided parameter). This is similar to the di-
mensionality reduction process for vector representations [2]. Finally we perform
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a simple stemming method and conflate terms to the most frequently occurring form
by relabeling nodes and updating edges as needed. An example of this type of graph
representation is given in Fig. 2. The ovals indicate nodes and their corresponding
term labels. The edges are labeled according to title, link, or text. The document
represented by the example has the title “YAHOO NEWS,” a link whose text reads
“MORE NEWS,” and text containing “REUTERS NEWS SERVICE REPORTS.”
If a pair of terms appears together in more than one section, we create an edge for
each section with the appropriate section label. Note there is no restriction on the
form of the graph and that cycles are allowed. Also, disconnected components may
occur in the graphs, which is not a problem with our approach. While this method
of document representation appears superficially similar to the bigram, trigram, or
N -gram methods, those are statistically oriented approaches based on word occur-
rence probability models [24]. The methods presented here, with the exception of the
frequency representations described below, do not require or use the computation of
term probability relationships.

The second type of graph representation we will look at is what we call the
simple representation. It is basically the same as the standard representation, except
that we look at only the visible text on the page (no title or meta-data is examined)
and we do not label the edges between nodes. Thus we ignore the information about
the “section” where the two respective words appear together. An example of this
type of representation is given in Fig. 3.

TITLE LINK

TEXT

TEXT

TEXT

YAHOO

SERVICE REPORTS REUTERS

MORENEWS

Fig. 2. Example of a standard graph representation of a document

NEWS

SERVICE

MORE

REPORTS REUTERS

Fig. 3. Example of a simple graph representation of a document
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The third type of representation is called the n-distance representation. Under
this model, there is a user-provided parameter, n. Instead of considering only terms
immediately following a given term in a web document, we look up to n terms
ahead and connect the succeeding terms with an edge that is labeled with the dis-
tance between them (unless the words are separated by certain punctuation marks);
here “distance” is related to the number of other terms which appear between the two
terms in question. For example, if we had the following sequence of text on a web
page, “AAA BBB CCC DDD,” then we would have an edge from term AAA to term
BBB labeled with a 1, an edge from term AAA to term CCC labeled 2, and so on.
The complete graph for this example is shown in Fig. 4. The mcs for this represen-
tation is derived in the same manner as described previously, where we require the
edge labels to be an exact match in both graphs.

Similar to n-distance, we also have the fourth graph representation, n-simple
distance. This is identical to n-distance, but the edges are not labeled, which means
we only know that the “distance” between two connected terms is not more than n.

The fifth graph representation is what we call the raw frequency representation.
This is similar to the simple representation (adjacent words, no section-related infor-
mation) but each node and edge is labeled with an additional frequency measure. For
nodes this indicates how many times the associated term appeared in the web docu-
ment; for edges, this indicates the number of times the two connected terms appeared
adjacent to each other in the specified order. The raw frequency representation uses
the total number of term occurrences (on the nodes) and co-occurrences (edges).

A problem with this representation is that large differences in document size
could lead to skewed comparisons, similar to the problem encountered when using
Euclidean distance with vector representations of documents. Under the normalized
frequency representation, instead of associating each node with the total number of
times the corresponding term appears in the document, a normalized value in [0, 1]
is assigned by dividing each node frequency value by the maximum node frequency
value that occurs in the graph; a similar procedure is performed for the edges. Thus
each node and edge has a value in [0, 1] associated with it, which indicates the nor-
malized frequency of the term (for nodes) or co-occurrence of terms (for edges).

AAA BBB

CCC DDD

1

1

1

2 2

3

Fig. 4. Example of a n-distance graph representation of a document
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For the raw frequency and normalized frequency representations the graph size is
defined as the total of the node frequencies added to the total of the edge frequencies,
rather than the previous definition of |G| = |V | + |E|. We need this modification
to reflect the frequency information in the graph size. As an example, consider two
raw frequency graphs each with a node “A”; however, term “A” appears twice in
one document and 300 in the other. This difference in frequency information is not
captured under the previous definition. Further, when we compute the mcs for these
representations we take the minimum frequency element (either node or edge) as the
value for the mcs. To continue the above example, node “A” in the mcs would have a
frequency of 2, which is min(2, 300).

5 Experiments and Results

5.1 Web Document Data Sets

In order to evaluate the performance of the graph-based k-means algorithm as
compared with the traditional vector methods, we performed experiments on three
different collections of web documents, called the F-series, the J-series, and the
K-series [25]; the data sets are available under these names at ftp://ftp.cs.
umn.edu/dept/users/boley/PDDPdata/. These data sets were selected
because of two major reasons. First, all of the original HTML documents are avail-
able, which is necessary if we are to represent the documents as graphs; many other
document collections only provide a preprocessed vector representation, which is
unsuitable for use with our method. Second, ground truth assignments are provided
for each data set, and there are multiple classes representing easily understandable
groupings that relate to the content of the documents. Some web document collec-
tions are not labeled or are presented with some other task in mind than content-
related clustering (e.g., building a predictive model based on user preferences).

The F-series originally contained 98 documents belonging to one or more of
17 subcategories of four major category areas: manufacturing, labor, business and
finance, and electronic communication and networking. Because there are multiple
subcategory classifications for many of these documents, we have reduced the cat-
egories to just the four major categories mentioned above in order to simplify the
problem. There were five documents that had conflicting classifications (i.e., they
were classified to belong to two or more of the four major categories) which we
removed, leaving 93 total documents. The J-series contains 185 documents and ten
classes: affirmative action, business capital, information systems, electronic com-
merce, intellectual property, employee rights, materials processing, personnel man-
agement, manufacturing systems, and industrial partnership. We have not modified
this data set. The K-series consists of 2,340 documents and 20 categories: business,
health, politics, sports, technology, entertainment, art, cable, culture, film, industry,
media, multimedia, music, online, people, review, stage, television, and variety. The
last 14 categories are subcategories related to entertainment, while the entertainment
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category refers to entertainment in general. These were originally news pages hosted
at Yahoo (http://www.yahoo.com). Experiments on this data set are presented
in [26].

For the vector-model representation experiments there were already several term-
document matrices available for our experiments at the same location where we
obtained the document collections. We selected the matrices with the smallest num-
ber of dimensions. For the F-series documents there are 332 dimensions (terms)
used, while the J-series has 474 dimensions; the K-series used 1,458 dimensions. We
performed some preliminary experiments and observed that other term-weighting
schemes (i.e., tf · idf , see [2]) improved the accuracy of the vector-model represen-
tation for these data sets either only very slightly or in many cases not at all. Thus
we have left the data in its original format.

5.2 Clustering Performance Measures

We use the following three clustering performance measures to evaluate the perfor-
mance of each clustering. The first two indices measure the matching of obtained
clusters to the “ground truth” clusters, while the third index measures the quality of
clustering in general.

The first index is the Rand index [27]. To compute the Rand index, we perform
a comparison of all pairs of objects in the data set after clustering. If both objects in
a pair are in the same cluster in both the ground truth clustering and the clustering
we wish to measure, this counts as an “agreement.” If both objects in the pair are in
different clusters in both the ground truth clustering and the clustering we wish to
investigate, this is also an agreement. Otherwise, this is a “disagreement.” The Rand
index is computed as:

RI =
A

A + D
(8)

where A is the number of agreements and D is the number of disagreements, as
described above. Thus the Rand index is a measure of how closely the clustering
created by some procedure matches ground truth. It produces a value in the interval
[0, 1], with 1 representing a clustering that perfectly matches ground truth.

The second performance measure we use is mutual information [26, 28], which
is defined as:

ΛM =
1
n

k
∑

l=1

g
∑

h=1

n
(h)
l logk·g

(

n
(h)
l · n

∑k
i=1 n

(h)
i

∑g
i=1 n

(i)
l

)

(9)

where n is the number of objects, k is the number of clusters produced by our clus-
tering algorithm, g is the actual number of ground truth clusters, and n

(j)
i is the

number of items in cluster i (in the created clustering) associated with cluster j (in
the ground truth clustering). Note that k and g may not necessarily be equal, which
would indicate we are attempting to create more (or fewer) clusters than exist in
the ground truth clustering. However, for the experiments described in this paper we
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will create an identical number of clusters as is present in ground truth. Mutual in-
formation represents the overall degree of agreement between the clustering created
by some method and the categorization provided by the ground truth clustering with
a preference for clusters that have high purity (i.e., are homogeneous with respect
to the objects clustered, as given by the clusters they belong to in ground truth).
Higher numbers indicate clusters that are homogeneous (i.e., created clusters which
contain objects mostly belonging to a single ground truth cluster). Lower numbers
indicate less similarity between the clustering that was created and ground truth; a
value of zero signifies no statistical correlation between the two clusterings (i.e., they
are independent).

The third performance measure we use is the Dunn index [29], which is
defined as:

DI =
dmin

dmax
(10)

where dmin is the minimum distance between any two objects in different clusters
and dmax is the maximum distance between any two items in the same cluster. The
numerator captures the worst-case amount of separation between clusters, while the
denominator captures the worst-case compactness of the clusters. Thus the Dunn
index is an amalgam of the overall worst-case compactness and separation of a
clustering, with higher values being better. It does not, however, measure cluster-
ing accuracy compared to ground truth as the other two methods do. Rather it is
based on the basic underlying assumption of any clustering technique: items in the
same cluster should be similar (i.e., have small distance, thus creating compact clus-
ters) and items in separate clusters should be dissimilar (i.e., have large distance, thus
creating clusters that are well separated from each other).

5.3 Results

In Tables 1–3 we show the clustering performance for the F-series, J-series, and
K-series when using different graph distance measures (Sect. 3.2). The performance
of the traditional vector-based approach using distances based on cosine and Jaccard
similarity is also given for comparison. Because of the random initialization of the
k-means algorithm, each number indicates the average performance taken over ten
experiments. We used a maximum of 50 nodes per graph (i.e., m = 50, see Sect. 4)
for the F and J data sets, while we used 70 nodes per graph for K, due to the higher
number of classes and documents. The standard representation was used for the
distance measure comparison experiments. The value of k used in the experiments
matches the number of clusters present in the ground truth clustering for each data
set; thus k = 4 for the F-series, k = 10 for the J-series, and k = 20 for the K-series.

We see that the graph-based methods that use normalized distance measures
(MCS and WGU) generally performed similarly to or better than vector-based meth-
ods using cosine or Jaccard. MMCS, which is not normalized to the interval [0, 1],
performed poorly for all data sets. To see why this occurs, we have provided the fol-
lowing example. Let |G1| = 10, |G2| = 10, |mcs(G1, G2)| = 0, |MCS(G1, G2)| =
20, |G3| = 20, |G4| = 20, |mcs(G3, G4)| = 5, and |MCS(G1, G2)| = 35. Clearly
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Table 1. Distance measure comparison for the F-series data set using the standard representa-
tion and 50 nodes per graph maximum

distance Rand mutual Dunn
measure index information index

Cosine (vector-based) 0.6788 0.1101 0.4168
Jaccard (vector-based) 0.6899 0.1020 0.6188
MCS 0.7748 0.2138 0.7202
WGU 0.7434 0.1744 0.7967
MMCS 0.6594 0.1120 0.3132

Table 2. Distance measure comparison for the J-series data set using the standard representa-
tion and 50 nodes per graph maximum

distance Rand mutual Dunn
measure index information index

Cosine (vector-based) 0.8648 0.2205 0.3146
Jaccard (vector-based) 0.8717 0.2316 0.5703
MCS 0.8618 0.2240 0.6476
WGU 0.8757 0.2598 0.7691
MMCS 0.1809 0.0273 0.1381

Table 3. Distance measure comparison for the K-series data set using the standard represen-
tation and 70 nodes per graph maximum

distance Rand mutual Dunn
measure index information index

Cosine (vector-based) 0.8537 0.2266 0.0348
Jaccard (vector-based) 0.8998 0.2441 0.0730
MCS 0.8957 0.1174 0.0284
WGU 0.8377 0.1019 0.0385
MMCS 0.1692 0.0127 0.0649

graphs G3 and G4 are more similar to each other than graphs G1 and G2 since G1

and G2 have no common subgraph whereas G3 and G4 do. However, the distances
computed for these graphs are dMCS(G1, G2) = 1.0, dMCS(G3, G4) = 0.75,
dMMCS(G1, G2) = 20, and dMMCS(G3, G4) = 30. So we have the case that the
unnormalized distance is actually greater for the pair of graphs that are more similar.
This is both counter-intuitive and the opposite of what happens in the cases of the
normalized distance measures. Thus this phenomenon leads to the poor clustering
performance for MMCS.

In Tables 4–6 we show the clustering performance for the F-series, J-series, and
K-series for the different graph representations presented in Sect. 4. For these experi-
ments we use the MCS distance measure (4). For the representations n-distance and
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Table 4. Representation comparison for the F-series data set using MCS distance and 50 nodes
per graph maximum

representation Rand mutual Dunn
index information index

Cosine (vector-based) 0.6788 0.1101 0.4168
Jaccard (vector-based) 0.6899 0.1020 0.6188
Standard 0.7748 0.2138 0.7202
Simple 0.6823 0.1314 0.7364
2-distance 0.6924 0.1275 0.7985
5-distance 0.6731 0.1044 0.8319
2-simple distance 0.7051 0.1414 0.7874
5-simple distance 0.7209 0.1615 0.8211
Raw frequency 0.7070 0.1374 0.7525
Normalized frequency 0.7242 0.1525 0.7077

Table 5. Representation comparison for the J-series data set using MCS distance and 50 nodes
per graph maximum

representation Rand mutual Dunn
index information index

Cosine (vector-based) 0.8648 0.2205 0.3146
Jaccard (vector-based) 0.8717 0.2316 0.5703
Standard 0.8618 0.2240 0.6476
Simple 0.8562 0.2078 0.5444
2-distance 0.8674 0.2365 0.6531
5-distance 0.8598 0.2183 0.7374
2-simple distance 0.8655 0.2285 0.7056
5-simple distance 0.8571 0.2132 0.6874
Raw frequency 0.8650 0.2141 0.6453
Normalized frequency 0.8812 0.2734 0.6119

n-simple distance, we use values of n = 2 and n = 5 (i.e., 2-distance, 2-simple
distance, 5-distance, and 5-simple distance) in these experiments.

For the F-series, standard was the best performing representation, achieving
the best value for Rand index and mutual information, while for the Dunn index,
5-distance was the best representation. For the J-series, normalized frequency was
the best for Rand index and mutual information, with 5-distance again being best for
the Dunn index. It is not a surprising result that Rand and mutual information should
perform similarly to each other and differently than Dunn, as both Rand and mutual
information are based on comparison with ground truth while Dunn is a measure of
compactness and separation of the clusters with no regard to “accuracy.”

For the K-series, the best performing graph representation was standard. How-
ever, the graph-based method in this case did not outperform the Jaccard distance-
based vector approach. The K-series is a highly homogeneous data set; all the pages
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Table 6. Representation comparison for the K-series data set using MCS distance and 70 nodes
per graph maximum

representation Rand mutual Dunn
index information index

Cosine (vector-based) 0.8537 0.2266 0.0348
Jaccard (vector-based) 0.8998 0.2441 0.0730
Standard 0.8957 0.1174 0.0284
Simple 0.8870 0.0972 0.0274
2-distance 0.8753 0.0832 0.0229
5-distance 0.8813 0.1013 0.0206
2-simple distance 0.8813 0.0947 0.0218
5-simple distance 0.8663 0.0773 0.0234
Raw frequency 0.8770 0.0957 0.0335
Normalized frequency 0.8707 0.0992 0.0283

Table 7. Statistical analysis of experimental results

data set performance confidence significant?
measure (1 − P )

F-series Rand 0.9998 yes (better)
F-series MI 1.0000 yes (better)
J-series Rand 0.9255 no (same)
J-series MI 0.4767 no (same)
K-series Rand 0.3597 no (same)
K-series MI 1.0000 yes (worse)

have a similar format and some of the same terms appear on every document. To
improve the performance of the graph method in this case, we should look at either
removing the common terms (nodes) from all graphs (which is often done with the
vector model and can also be applied to our approach), or greatly increase the size
of the graphs to capture more terms. In our experiments, Rand increases to 0.9053
and mutual information to 0.1618 for the standard representation and MCS distance
when using 200 nodes maximum per graph.

In Table 7 we give a statistical analysis of some of the experimental results. Six
comparisons are listed in the table, which represent comparing the Jaccard and graph
methods for Rand index and mutual information for all three data sets. The graph
experiments represented in Table 7 use the standard graph representation, MCS dis-
tance, and either 50 nodes per graph (F and J) or 70 nodes per graph (K). The Con-
fidence column in the table represents the probability that the means of the results
for the vector and graph methods are statistically different, as determined by a two-
tailed t-test. Values higher than 0.95 are considered significant, as shown in the last
column of the table; we also show whether the graph method was considered better,
the same, or worse than the vector method.
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6 Conclusions

In this paper we have examined the problem of clustering data which is represented
by graphs instead of simpler feature vectors. To perform the clustering we have
developed a graph-based version of the k-means clustering algorithm, substituting
a suitable graph-theoretical distance measure in the place of the usual vector-related
distance and median graphs in place of centroids.

The application we presented here was clustering of web documents. We imple-
mented six different methods of representing web documents by graphs and three
different graph distance measures. Our experiments compared the clustering per-
formance of the various proposed methods with the usual vector model approach
using cosine and Jaccard-based distance measures. Experimental results showed that
the graph-based methods can outperform the traditional vector methods in terms of
clustering performance under three different clustering performance measures. We
saw that graph distance measures that were not normalized performed poorly, while
those that were normalized to the interval [0, 1] yielded good results. The standard
representation produced the best results for one data set in terms of comparison with
ground truth, while normalized frequency was better for another.

For future work we intend to extend our graph-based method to other classifica-
tion and clustering methods, such as hierarchical agglomerative clustering and dis-
tance weighted k-nearest neighbors. We also wish to look for the optimal graph size
and associated terms to represent each specific document. Further, we only examined
using two values of n for the n-distance and n-simple distance representations in
this paper. Finding the optimal value of n is another subject of ongoing research.
Given the good results for the normalized frequency representation for one of the
document collections, we will explore similar representations that incorporate more
explicit term weighting components (i.e., a model similar to tf · idf but for graphs).
However, such an extension is not immediately obvious, since we must deal with
adjusting the weights of edges as well as terms (nodes). Finally, we can look at
incorporating specific domain knowledge in the distance measure definitions.
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