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Preface

Graph theory has strong historical roots in mathematics, especially in topology. Its
birth is usually associated with the “four-color problem” posed by Francis Guthrie
in 1852,1 but its real origin probably goes back to the Seven Bridges of Königsberg
problem proved by Leonhard Euler in 1736.2 A computational solution to these two
completely different problems could be found after each problem was abstracted to
the level of a graph model while ignoring such irrelevant details as country shapes
or cross-river distances. In general, a graph is a nonempty set of points (vertices)
and the most basic information preserved by any graph structure refers to adjacency
relationships (edges) between some pairs of points. In the simplest graphs, edges
do not have to hold any attributes, except their endpoints, but in more sophisticated
graph structures, edges can be associated with a direction or assigned a label. Graph
vertices can be labeled as well. A graph can be represented graphically as a drawing
(vertex = dot, edge = arc), but, as long as every pair of adjacent points stays connected
by the same edge, the graph vertices can be moved around on a drawing without
changing the underlying graph structure.

The expressive power of the graph models placing a special emphasis on con-
nectivity between objects has made them the models of choice in chemistry, physics,
biology, and other fields. Their increasing popularity in the areas of computer vision
and pattern recognition can be easily explained by the graphs’ ability to represent
complex visual patterns on one hand and to keep important structural information,
which may be relevant for pattern recognition tasks, on the other hand. This is in
sharp contrast with the more conventional feature vector or attribute-value represen-
tation of patterns where only unary measurements – the features, or equivalently,
the attribute values – are used for object representation. Graph representations also
have a number of invariance properties that may be very convenient for certain tasks.

1 Is it possible to color, using only four colors, any map of countries in such a way as to
prevent two bordering countries from having the same color?

2 Given the location of seven bridges in the city of Königsberg, Prussia, Euler has proved that
it was not possible to walk with a route that crosses each bridge exactly once, and return to
the starting point.
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As already mentioned, we can rotate or translate the drawing of a graph arbitrarily
in the two-dimensional plane, and it will still represent the same graph. Moreover,
we can stretch out or shrink its edges without changing the underlying graph. Hence
graph representations have an inherent invariance with respect to translation, rotation
and scaling – a property that is desirable in many applications of image analysis. On
the other hand, we have to pay a price for the enhanced representational capabili-
ties of graphs, viz. the increased computational complexity of many operations on
graphs. For example, while it takes only linear time to test two feature vectors or two
tuples of attribute-value pairs, for identity, all available algorithms for the equivalent
operation on general graphs, i.e., graph isomorphism, are of exponential complexity.
Nevertheless, there are numerous applications where the underlying graphs are rela-
tively small, such that algorithms of exponential complexity are applicable. In other
problem domains, heuristics can be found that cut significant amounts of the search
space, thus rendering algorithms with a reasonably high speed. Last but not least,
for more or less all common graph operations needed in pattern recognition and
machine vision, approximate algorithms have become available meanwhile, which
can be substituted for their exact versions. As a matter of experience, often the perfor-
mance of the overall task is not compromised by using an approximate algorithm
rather than an optimal one.

This book intends to cover a representative, but in no way exclusive, set of novel
graph-theoretic methods for complex computer vision and pattern recognition tasks.
The book is divided into three parts, which are briefly described below.

Part I includes three chapters applying graph theory to low-level processing of
digital images. The first chapter by Walter G. Kroptasch, Yll Haxhimusa, and Adrian
Ion presents a new method for partitioning a given image into a hierarchy of homo-
geneous areas (“segments”) using graph pyramids. A graphical model framework for
image segmentation based on the integration of Markov random fields (MRFs) and
deformable models is introduced in the chapter by Rui Huang, Vladimir Pavlovic,
and Dimitris N. Metaxas. In the third chapter, Alain Bretto studies the relationship
between graph theory and digital topology, which deals with topological properties
of 2D and 3D digital images.

Part II presents four chapters on graph-theoretic learning algorithms for high-
level computer vision and pattern recognition applications. First, a survey of graph
based methodologies for pattern recognition and computer vision is presented by
D. Conte, P. Foggia, C. Sansone, and M. Vento. Then Gabriel Valiente introduces
a series of computationally efficient algorithms for testing graph isomorphism and
related graph matching tasks in pattern recognition. Sebastien Sorlin, Christine
Solnon, and Jean-Michel Jolion propose a new graph distance measure to be used
for solving graph matching problems. Joseph Potts, Diane J. Cook, and Lawrence B.
Holder describe an approach, implemented in a system called Subdue, to learning
patterns in relational data represented as a graph.

Finally, Part III provides detailed descriptions of several applications of graph-
based methods to real-world pattern recognition tasks. Thus, Gian Luca Marcialis,
Fabio Roli, and Alessandra Serrau present a critical review of the main graph-based
and structural methods for fingerprint classification while comparing them with the



Preface VII

classical statistical methods. Horst Bunke et al. present a new method to visualize
a time series of graphs, and show potential applications in computer network mon-
itoring and abnormal event detection. In the last chapter, A. Schenker, H. Bunke,
M. Last, and A. Kandel describe a clustering method that allows the use of graph-
based representations of data instead of the traditional vector-based representations.

We believe that the chapters included in our volume will serve as a foundation
for a variety of useful applications of the graph theory to computer vision, pattern
recognition, and related areas. Our additional goal is to encourage more research
studies that will deal with the methodological challenges in applied graph theory
outlined by this book authors.

October 2006 Abraham Kandel
Horst Bunke

Mark Last
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Part I

Applied Graph Theory for Low Level Image
Processing and Segmentation



Multiresolution Image Segmentations in Graph
Pyramids

Walter G. Kropatsch, Yll Haxhimusa and Adrian Ion

1 Introduction

“How do we bridge the representational gap between image features and coarse
model features?” is the question asked by the authors of [1] when referring to several
contemporary research issues. They identify the one-to-one correspondence between
salient image features (pixels, edges, corners, etc.) and salient model features (gen-
eralized cylinders, polyhedrons, invariant models, etc.) as a limiting assumption
that makes prototypical or generic object recognition impossible. They suggested
to bridge and not to eliminate the representational gap, as it is done in the computer
vision community for quite long, and to focus efforts on (1) region segmentation,
(2) perceptual grouping, and (3) image abstraction. Let us take these goals as a
guideline to consider multiresolution representations under the special viewpoint of
segmentation and grouping. In [2] multiresolution representation is considered under
the abstraction viewpoint.

Wertheimer [3] has formulated the importance of wholes (Ganzen) and not of
its individual elements and introduced the importance of perceptual grouping and
organization in visual perception. Regions as aggregations of primitive pixels play
an extremely important role in nearly every image analysis task. Their internal prop-
erties (color, texture, shape, etc.) help to identify them, and their external relations
(adjacency, inclusion, similarity of properties) are used to build groups of regions
having a particular meaning in a more abstract context. The union of regions forming
the group is again a region with both internal and external properties and relations.

Low-level cue image segmentation cannot and should not produce a complete
final “good” segmentation, because there is no general “good” segmentation. With-
out prior knowledge, segmentation based on low-level cues will not be able to extract
semantics in generic images. Using some similarity measures, the segmentation
process results in “homogeneity” regions with respect to the low-level cues. Prob-
lems emerge because (1) homogeneity of low-level cues will not map to the seman-
tics [4] and (2) the degree of homogeneity of a region is in general quantified by
threshold(s) for a given measure [5]. Even though segmentation methods (including
ours) that do not take the context of the image into consideration cannot produce a
W.G. Kropatsch et al.: Multiresolution Image Segmentations in Graph Pyramids, Studies in Computational Intelligence
(SCI) 52, 3–41 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



4 W.G. Kropatsch et al.

“good” segmentation, they can be valuable tools in image analysis in the same sense
as efficient edge detectors are. Note that efficient edge detectors do not consider the
context of the image, too. Thus, the low-level coherence of brightness, color, texture,
or motion attributes should be used to sequentially come up with hierarchical parti-
tions [6]. Mid and high-level knowledge can be used to either confirm these groups or
select some further attention. A wide range of computational vision problems could
make use of segmented images, were such segmentation rely on efficient compu-
tation, e.g., motion estimation requires an appropriate region of support for finding
correspondences; higher-level problems such as recognition and image indexing can
also make use of segmentation results in the problem of matching.

It is important for a grouping method to have the following properties [7]:

– Capture perceptually important groupings or regions, which reflect global as-
pects of the image

– Be highly efficient running in time linear in the number of image pixels, and
– Create hierarchical partitions [6]

To find region borders quickly and effortlessly in a bottom-up “stimulus-driven” way
based on local differences in a specific feature, we propose a hierarchy of extended
region adjacency graphs (RAG+) to achieve partitioning of the image by using a
minimum weight spanning tree (MST). A RAG+ is a region adjacency graph (RAG)
enhanced by nonredundant self-loops or parallel edges. Rather than trying to have
just one “good” segmentation the method produces a stack of (dual) graphs (a graph
pyramid), which down projected onto the base level gives a multilevel segmenta-
tion i.e., a labeled spanning tree. The MST of an image is built by combining the
advantage of regular pyramids (logarithmic tapering) with the advantages of irreg-
ular graph pyramids (their purely local construction and shift invariance). The aim
is reached by using the selection method for contraction kernels proposed in [8].
Borůvka’s minimum spanning tree algorithm [9] with the dual-graph contraction
algorithm [10] build in a hierarchical way an MST, while preserving the proper topol-
ogy. For vision tasks, in natural systems, topological relations seem to play an even
more important role than precise geometrical positions.

1.1 Overview of the Chapter

The plan of the chapter is as follows. In order to make the reading of this chapter
easy, in Sect. 2 we recall some of the basic notions of graph theory. After a short
introduction into image pyramids (Sect. 3) a detailed presentation of dual-graph con-
traction is given (Sect. 5). Using the dual-graph contraction algorithm from Sect. 5,
Borůvka’s algorithm is redefined in Sect. 6.3, so that we can construct an image graph
pyramid, and at the same time, the minimum spanning tree. In Sect. 6 we give the
definition of internal and external contrast and the merge decision criteria based on
these definitions. In addition, the algorithm for building the hierarchy of partitions is
introduced in this section. Also Sect. 6.5 reports on experimental results. Evaluation
of the quality of the segmentation results is reported in Sect. 7. Parts of this chapter
has been previously published in [11].
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2 Basics of Graph Theory

In 1736, Leonard Euler was puzzled whether it is possible to walk across all the
bridges on the river Pregel in Königsberg1 only once and return to the starting point
(see Fig. 1a). In order to solve this problem, Euler in an ingenious way, abstracted
the bridges and the landmasses. He replaced each landmass by a dot (called vertex)
and each bridge by an arch (called edge or line) (Fig. 1b). Euler proved that there is
no solution to this problem. The Königsberg bridge problem was the first problem
studied in what is nowadays called graph theory. This problem was a starting point
also for another branch in mathematics, the topology. The definitions given later
are compiled from the books [12–14], therefore the citations are not repeated. The
interested reader can find all these definitions and more in the earlier mentioned
literature.

Formally, one can define graph G on sets V and E as:

Definition 1 (Graph). A graph G = (V (G), E(G), ιG(·)) is a pair of sets V (G)
and E(G) and an incidence relation ιG(·) that maps pairs of elements of V (G) (not
necessarily distinct) to elements of E(G).

The elements vi of the set V (G) are called vertices (or nodes, or points) of the
graph G, and the elements ej of E(G) are its edges (or lines). Let an example be
used to clarify the incidence relations ιG(·). Let the set of vertices of the graph G
in Fig. 1b) be given by V (G) = {vA, vB, vC , vD} and the edge set by E(G) =
{ea, eb, ec, ed, ef , eg}. The incidence relation is defined as:

ιG(ea) = (vA, vB), ιG(eb) = (vA, vB), ιG(ec) = (vA, vC), ιG(ed) = (vA, vC),
ιG(ee) = (vA, vD), ιG(ef ) = (vB, vD), ιG(eg) = (vC , vD). (1)

A

B

C

D
a

b

c
d

e

f

g

Pregel

a) The seven bridges on the river Pregel
A, B, C and D – landmasses

a, b, c, d, e, f, and g – bridges

vA

vB

vC

vD

ea eb

ec ed

ee

ef

eg

b) The abstracted graph
vA, vB, vC, and vD – vertices

ea, eb, ec, ed, ee, ef, and eg – edges

Fig. 1. The seven bridges problem and the abstracted graph

1 Nowadays Pregoyla in Kaliningrad.
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For the sake of simplicity of the notation, the incidence relation will be omitted,
therefore one can write, without the fear of confusion:

ea = (vA, vB), eb = (vA, vB), ec = (vA, vC), ed = (vA, vC),
ee = (vA, vD), ef = (vB, vD), eg = (vC , vD). (2)

i.e., the graph is defined as G = (V,E) without explicit mentioning of the incidence
relation. The vertex set V (G) and the edge set E(G) are simply written as V and
E. There will be no distinction between a graph and its sets, one may write a vertex
v ∈ G or v ∈ V instead of v ∈ V (G), an edge e ∈ G or e ∈ E, and so on. Vertices
and edges are usually represented with symbols like v1, v2, ... and e1, e2, ..., respec-
tively. Note that in (2), each edge is identified with a pair of vertices. If the edges
are represented with ordered pairs of vertices, then the graph G is called directed or
oriented, otherwise if the pairs are not ordered, it is called undirected or nonoriented.
Two vertices connected by an edge ek = (vi, vj) are called end vertices or ends of
ek. In the directed graph the vertex vi is called the source, and vj the target vertex of
edge ek. The elements of the edge set E are distinct i.e., more than one edge can join
the same vertices. Edges having the same end vertices are called parallel edges.2 If
ek = (vi, vi), i.e., the end vertices are the same, then ek is called a self-loop. A graph
G containing parallel edges and/or self-loops is a multigraph. A graph having no par-
allel edges and self-loops is called a simple graph. The number of vertices in G is
called its order, written as |V |; its number of edges is given as |E|. A graph of order
0 is called an empty graph,3 and of order 1 is simply called trivial graph.4 A graph is
finite or infinite based on its order. If not otherwise stated all the graphs used in this
chapter are finite and not empty.

Two vertices vi and vj are neighbors or adjacent if they are the end vertices
of the same edge ek = (vi, vj). Two edges ei and ej are adjacent if they have an
end vertex in common, say vk, i.e., ei = (vk, vl) and ej = (vk, vm). If all vertices
of G are pairwise neighbors, then G is complete. A complete graph on m vertices is
written as Km. An edge is called incident on its end vertices. The degree (or valency)
deg(v) of a vertex v is the number of edges incident on it. A vertex of degree 0 is
called isolated; of degree 1 is called pendant. Note that a self-loop at a vertex v
contributes twice in deg(v).

Let G = (V,E) and G′ = (V ′, E′) be two graphs. G′ = (V ′, E′) is a subgraph
of G (G′ ⊆ G) if V ′ ⊆ V and E′ ⊆ E, i.e., the graph G contains graph G′. Graph
G is called also a supergraph of G′ (G ⊇ G′). If either V ′ ⊂ V or E′ ⊂ E, the
graph G′ is called a proper subgraph of G. If G′ ⊆ G and G′ contains all the edges
e = (vi, vj) ∈ E such that vi, vj ∈ V ′, G′ is the (vertex) induced subgraph of G and
V ′ induces (spans) G′ in G. It is written as G′ = G[V ′], i.e., since V ′ ⊂ G(V ), then
G[V ′] denotes the graph on V ′ whose edges are the edges of G with both ends in V ′.
If not otherwise stated, by induced subgraph, the vertex-induced subgraph is meant.
If there are no isolated vertices in G′, then G′ is called the induced subgraph of G on
the edge set E′ or simply edge induced subgraph of G. If G′ ⊆ G and V ′ spans all
2 Also called double edges.
3 A graph with no vertices and hence no edges.
4 A graph with one vertex and possibly with self-loops.
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of G, i.e., V ′ = V then G′ is a spanning subgraph of G. A subgraph G′ of a graph
G is a maximal (minimal) subgraph of G with respect to some property Π if G′ has
the property Π and G′ is not a proper subgraph of any other subgraph of G having
the property Π . The minimal and maximal subsets with respect to some property are
defined analogously. This definition will be used later to define a component of G
as a maximal connected subgraph of G, and a spanning tree of a connected G is a
minimal connected spanning subgraph of G.

Let G = (V,E) be a graph with sets V = {v1, v2, · · · } and E = {e1, e2, · · · }.
A walk in a graph G is a finite nonempty alternating sequence v0, e1, v1, . . . ,
vk−1, ek, vk of vertices and edges in G such that ei = (vi, vi+1) for all 1 ≤ i ≤ k.
This walk is called a v0 − vk walk with v0 and vk as the terminal vertices and all
other vertices are internal vertices of this walk. In a walk, edges and vertices can
appear more than once. If v0 = vk, the walk is closed, otherwise it is open. A walk
is a trail if all its edges are distinct. A trail is closed if its end vertices are the same,
otherwise it is opened. By definition the walk can contain the same vertex many
times. A path P is a trail where all vertices are distinct. A simple path is written as
P = v0, v1, v2, · · · , vk, where edges are not explicitly depicted since in a path all
vertices are distinct and therefore in a simple graph all the edges are distinct too.
Note that in a multigraph a path is not uniquely defined by this nomenclature, be-
cause of possible multiple edges between two vertices. Vertices v0 and vk are linked
by the path P , also P is called a path from v0 to vk (as well as between v0 and vk).
The number of edges in the path is called the path length. The path length is denoted
with P k, where k is the number of edges in the path. Note that by definition it is
not necessary that a path contains all the vertices of the graph. Cycles, like paths,
are denoted by the cyclic sequence of vertices C = v0, v1, · · · , vk, v0. The length of
the cycle is the number of edges in it is called k-cycle written as Ck. The minimum
length of a cycle in a graph G is the girth g(G) of G, and the maximum length of a
cycle is its circumference. The distance between two vertices v and w in G denoted
by d(u,w), is the length of the shortest path between these vertices. The diameter of
G, diam(G) is the maximum distance between any two vertices of G.

Connectivity is an important concept in graph theory and it is one of the basic
concepts used in this presentation. Two vertices vi and vj are connected in a graph
G = (V,E) if there is a path vi−vj in G. A vertex is connected to itself. A nonempty
graph is connected if any two vertices are joint by a path in G. Let graph G = (V,E)
be a nonconnected graph. The set V is partitioned into subsets V1, V2, · · · , Vp if
V1 ∪ V2 ∪ · · · ∪ Vp = V and for all i and j, i �= j Vi ∩ Vj = ∅. {V1, V2, · · · , Vp}
is called a partition of V . Since the graph G is nonconnected, the vertex set V can
be partitioned into subsets V1, V2, · · · , Vp, such that each vertex induced subgraph
G[Vi] is connected, and there exists no path between a vertex in subset Vi and a vertex
in Vj , j �= i. A maximally connected subgraph of G is called a component of graph
G. A component of G is not a proper subgraph of any other connected subgraph
of G. An isolated vertex is considered to be a component, since by definition it is
connected to itself. Note that a component is always nonempty, and that if a graph G
is connected then it has only one component, i.e., itself.

The following theorem is used in the Sect. 5 to show that after the edge removal
from the cycle the graph stays connected.
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Theorem 1. If a graph G = (V,E) is connected, then the graph remains connected
after the removal of an edge e of a cycle C ∈ E, i.e., G′ = (V,E−{e}) is connected.

Proof. The proof can be found in [12].

From the earlier theorem one can conclude that edges that if removed disconnect a
graph, do not lie on any cycle.

The definition of cut and cut-set are as follows. Let {V1, V2} be partitions of the
vertex set V of a graph G = (V,E). The set K(V1, V2) of all edges having one end
in one vertex partition (V1) and the other end on the second vertex partition (V2) is
called a cut. A cut-set KS of a connected graph G is a minimal set of edges such
that its removal from G disconnects G, i.e., G − KS is disconnected. If the induced
subgraphs of G on vertex set V1 and V2 are connected then K = KS . If the vertex set
V1 = {v}, the cut is denoted by K(v).

Trees are simple graph structures, and are extensively used in the rest of the
discussion. A graph G is acyclic if it has no cycles. A tree of graph G is a connected
acyclic subgraph of G. Vertices of degree 1 in a tree are called leaves, and all edges
are called branches. A nontrivial tree has at least two leaves and a branch, for example
the simplest tree consists of two vertices joined by an edge. Note that an isolated
vertex is by definition an acyclic connected graph, and therefore a tree.

A spanning tree of graph G is a tree of G containing all the vertices of G. Edges
of the spanning tree are called branches. The tree containing all vertices, and only
those edges not in the spanning tree, is called cospanning tree, and its edges are
called cords. An acyclic graph with k components is called a k-tree. If the k-tree
is a spanning subgraph of G, then it is called a spanning k-tree of G. A forest F
of a graph G is a spanning k-tree of G, where k is the number of component of G.
A forest is simply a set of trees, spanning all the vertices of G. A connected subgraph
of a tree T is called a subtree of T . If T is a tree then there is exactly one unique path
between any two vertices of T .

And finally some basic binary and unary operations on graphs are described. Let
G = (V,E) and G′ = (V ′, E′) be two graphs. Three basic binary operations on two
graphs are as follows:

Union and Intersection. The union of G and G′ is the graph G′′ = G ∪ G′ =
(V ∪ V ′, E ∪ E′), i.e., the vertex set of G′′ is the union of V and V ′, and the edge
set is the union of E and E′, respectively. The intersection of G and G′ is the graph
G′′ = G ∩G′ = (V ∩ V ′, E ∩E′), i.e., the vertex set of G′′ has only those vertices
present in both V and V ′, and the edge set contains only those edges present in both
E and E′, respectively.

Symmetric Difference. The symmetric difference5 between two graphs G and G′,
written as G ⊕ G′, is the induced graph G′′ on the edge set E � E′ = (E \ E′) ∪
(E′ \ E),6 i.e., this graph has no isolated vertices and contains edges present either
in G or in G′ but not in both.

5 Called also ring sum.
6 Where \ is the set minus operation and is interpreted as removing elements from X that

are in Y .
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Fig. 2. Operations on graph

Four unary operations on a graph are as follows:
Vertex Removal. Let vi ∈ G, then G − vi is the induced subgraph of G on the

vertex set V − vi; i.e., G− vi is the graph obtained after removing the vertex vi and
all the edges ej = (vi, vj) incident on vi. The removal of a set of vertices from a
graph is done as the removal of single vertex in succession. An example of vertex
removal is shown in Fig. 2a.

Edge Removal. Let e ∈ G, then G−e is the subgraph of G obtained after remov-
ing the edge e from E. The end vertices of the edge e = (vi, vj) are not removed.
The removal of a set of edges from a graph is done as the removal of single edge in
succession. An example of edge removal is shown in Fig. 2b.

Vertex Identifying. Let vi and vj be two distinct vertices of graph G joined by the
edge e = (vi, vj). Two vertices vi and vj are identified if they are replaced by a new
vertex v∗ such that all the edges incident on vi and vj are now incident on the new
vertex v∗. An example of vertex identifying is given in Fig. 2c.

Edge Contraction. Let e = (vi, vj) ∈ G be the edge with distinct end points
vi �= vj to be contracted. The operation of edge contraction denotes removal of the
edge e and identifying its end vertices vi and vj into a new vertex v∗. If the graph G′

results from G after contracting a sequence of edges, than G is said to be contractible
to a graph G′. Note the difference between vertex identifying and edge contraction,
in Fig. 2c and d. Vertex identifying preserves the edge ek, whereas edge contraction
first removes this edge. In Sect. 5 a detailed treatment of edge contraction and edge
removal in the dual graphs context is presented.

3 Image Pyramids

Visual data is characterized by large amount of data and high redundancy with rel-
evant information clustered in space and time. All this indicates a need of organi-
zation and aggregation principles, in order to cope with computational complexity
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and to bridge the gap between raw data and symbolic description. Local processing
is important in early vision, since operations like convolution, thresholding, mathe-
matical morphology, etc. belong to this class. However, using them is not efficient
for high- or intermediate-level vision, such as symbolic manipulation, feature extrac-
tion, etc., because these processes need both local and global information. Therefore
a data structure must allow the transformation of local information (based on subim-
ages) into global information (based on the whole image), and be able to handle
both local (distributed) and global (centralized) information. Such a data structure,
the pyramid, is known as hierarchical architecture [15], and it allows distribution
of the global information to be used by local processes. The pyramid is a trade-off
between parallel architecture and the need for a hierarchical representation of an
image, i.e., at several resolutions [15].

An image pyramid (Fig. 3a,b) describes the contents of an image at multiple lev-
els of resolution. High-resolution input image is at the base level. Successive levels
reduce the size of the data by a reduction factor λ > 1.0. Reduction windows relate
one cell at the reduced level with a set of cells in the level directly below. Thus,
local independent (and parallel) processes propagate information up and down and
laterally in the pyramid. The contents of a lower resolution cell are computed by
means of a reduction function the input of which are the descriptions of the cells
in the reduction window. Sometimes the description of the lower resolution needs
to be extrapolated to the higher resolution. This function is called the refinement or
expansion function. It is used in Laplacian pyramids [16] and wavelets [17] to iden-
tify redundant information in the higher resolution and to reconstruct the original
data. Two successive levels of a pyramid are related by the reduction window and
the reduction factor. Higher-level description should be related to the original input
data in the base of the pyramid. This is identified by the receptive field (RF) of a
given pyramidal cell ci. The RF (ci) aggregates all cells (pixels) in the base level of
which ci is the ancestor.

Based on how the cells in subsequent levels are joint, two types of pyramids exist:

– Regular
– Irregular pyramids

These concepts are strongly related to the ability of the pyramid to represent the
regular and irregular tessellation of the image plane.
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a) vertical structure b) image pyramid

Fig. 4. 2 × 2/4 regular pyramid

3.1 Regular Pyramids

The constant reduction factor and constant size reduction window completely define
the structure of the regular pyramid. The decrease rate of cells from level to level is
determined by the reduction factor. The number of levels h is limited by the reduction
factor λ > 1.0: h ≤ log(image size)/ log(λ). The main computational advantage
of regular image pyramids is due to their logarithmic complexity. Usually regular
pyramids are employed in a regular grid tessellated image plane, therefore the re-
duction window is usually a square of n × n, i.e., the n × n cells are associated to
a cell on a higher level directly above. Regular pyramids are denoted using notation
n×n/λ. The vertical structure of a classical 2×2/4 is given in Fig. 4a. In this regular
pyramid 2× 2 = 4 cells are related to only one cell in the level directly above. Since
the children have only one parent this class of pyramids is also called nonoverlapping
regular pyramids. Therefore the reduction factor is λ = 4. An example of 2 × 2/4
regular image pyramid is given in Fig. 4b. The image size is 512 × 512 = 29 × 29

therefore the image pyramid consist of 1+2 ·2+4 ·4+ ...+28×28 +29×29 cells,
and the height of this pyramid is 9. The pyramid levels are shown by a white border
on the left upper corner of image. See [18] for extensive overview of other pyramid
structures with overlapping reduction windows, e.g., 3× 3/2, 5× 5/4. It is possible
to define pyramids on other plane tessellation, e.g., triangular tessellation [15].

Thus, because of the rigid vertical structure, the regular image pyramid is an effi-
cient structure for fast grouping and access to image objects across the input image,
The regular pyramid representation of a shifted, rotated, and/or scaled image is not
unique, and moreover it does not preserve the connectivity. Thus, [19] concludes that
regular image pyramids have to be rejected as general-purpose segmentation algo-
rithms. This major drawback of the regular pyramid motivated a search for a structure
that is able to adapt on the image data. It means, that the regularity of the structure is
to be abandoned.

3.2 Irregular Pyramids

Abandoning the regularity of the structure means that the horizontal and vertical
neighborhood have to be explicitly represented, usually by using graph formalisms.
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These irregular structures are usually called irregular pyramids. One of the main
goals of irregular pyramids is to achieve the shift invariance, and to overcome this
major drawback of their regular counterparts. Other motivations why one has to use
irregular structures are [20]: arrangement of biological vision sensors is not com-
pletely regular; the CCD cameras cannot be produced without failure, resulting in an
irregular sensor geometry; perturbation may destroy the regularity of regular pyra-
mids; and image processing to arbitrary pixels arrangement (e.g., log-polar geome-
tries [21]).

Two main processing characteristics of the regular pyramids should be preserved
by building irregular ones [22]:

1. Operation are local, i.e., the result is computed independently of the order, this
allows parallelization.

2. Bottom-up building of the irregular pyramid, with an exponential decimation of
the number of cells.

The structure of the regular pyramid as well as the reduction process is deter-
mined by the type of the pyramid (e.g., 2× 2/4). After removing this regularity con-
straint one has to define a procedure to derive the structure of the reduced graph Gk+1

from Gk, i.e., a graph contraction method has to be defined. Irregular pyramids can
be build by parallel graph contraction [23], or graph decimation [24]. Parallel graph
contraction has been developed only for special graph structures, like trees, and is not
discussed in this chapter. The graph decimation procedure is described in Sect. 5. An
efficient random decimation algorithm for building regular pyramids, called stochas-
tic pyramids (MIS) is introduced in [24]. A detailed discussion of this and similar
methods is done in [25]. It is shown that MIS in some cases is not logarithmically ta-
pered, i.e., the decimation process does not successively reduce the number of cells
exponentially. The main reason for this behavior is that the cell’s neighborhood is
not bounded, for some cases the degree of the cell increases exponentially. In [25],
two new methods based on maximal independent edge set (MIES and MIDES) that
overcome this drawback are presented. An overview of the properties of regular and
irregular pyramids is found in [26]. In irregular pyramids the flexibility is paid by
less efficient data access.

Most information in vision today is in the form of array representation. This is
advantageous and easily manageable for situations having the same resolution, size,
and other typical properties equivalent. Various demands are appearing upon more
flexibility and performance, which makes the use of array representations less attrac-
tive [27]. The increasing use of actively controlled and multiple sensors requires a
more flexible processing and representation structure [2,20]. Cheaper CCD sensors
could be produced if defective pixels would be allowed, which yields in the resulting
irregular sensor geometry [21, 28]. Image processing functions should be general-
ized to arbitrary pixel geometries [21, 29]. The conventional array form of images
is impractical as it has to be searched and processed every time if some action is to
be performed and (1) features of interest may be very sparse over parts of an array,
leaving a large number of unused positions in the array; and (2) a description of
additional detail cannot be easily added to a particular part of an array.
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In order to express the connectivity or other geometric or topological properties,
the image representation must be enhanced by a neighborhood relation. In the reg-
ular square grid arrangement of sampling points, it is implicitly encoded as 4- or
8-neighborhood with the well known paradox in conjunction with Jordan’s curve
theorem. The neighborhood of sampling points can be represented explicitly, too:
in this case the sampling grid is represented by a graph consisting of vertices cor-
responding to the sampling points and of edges connecting neighboring vertices.
Although this data structure consumes more memory space it has several advan-
tages, as follows [20]: the sampling points need not be arranged in a regular grid; the
edges can receive additional attributes too; and the edges may be determined either
automatically or depending on the data. In irregular pyramids, each level represents a
partition of the pixel set into cells, i.e., connected subsets of pixels. The construction
of an irregular image pyramid is iteratively local [8, 24]:

– The cells have no information about their global position
– The cells are connected only to (direct) neighbors
– The cells cannot distinguish the spatial positions of the neighbors

This means that we use only local properties to build the hierarchy of the pyramid.
Usually, on the base level (level 0) of an irregular image pyramid the cells represent
single pixels and the neighborhood of the cells is defined by the 4-connectivity of the
pixels. A cell on level k + 1 (parent) is a union of neighboring cells on level k (chil-
dren). As shown in Sect. 5 this union is controlled by contraction kernels (decimation
parameters). Every parent computes its values independently of other cells on the
same level. This implies that an image pyramid is built in O[log(image diameter)]
parallel steps. Neighborhoods on level k+1 are derived from neighborhoods on level
k. Two cells c1 and c2 are neighbors if there exist pixels p1 in c1 and p2 in c2 such
that p1 and p2 are 4-neighbors.

Before we continue with the presentation of graph pyramids, a concept of pla-
nar graphs is needed. A planar graph separates the plane into regions called faces.
This idea of separating the plane into regions is helpful in defining the dual graphs.
Duality of a graph brings together two important concepts in graph theory: cycles and
cut-sets. This concept of duality is also encountered in the graph-theoretical approach
of image region and edge extraction. The definition of dual graphs representing the
partitioning of the plane, allows one to apply transformations on these graphs, like
edge contraction and/or removal to simplify them in the sense of less vertices and
edges. Edge contraction and removal introduces naturally a hierarchy of dual graphs,
the so-called dual-graph pyramid.

4 Planar and Dual Graphs

A graph ˜G of finite sets of vertices V and edges E is called plane graph if it can be
drawn in a plane in R

2 such that [12]:
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Fig. 5. A planar graph G and its embedding in a plane, the plane graph ˜G

– All V ⊂ R
2

– Every edge is an arc7 between two vertices
– No two edges are crossed

Note that R\ ˜G is an open set and its connected regions are faces f of ˜G. It is said that
the plane graph divides the plane into regions. Since ˜G is bordered, one of its faces is
an unbounded one (infinite area). This face is called the background face.8 The other
faces enclose finite areas, and are called interior faces. Edges and vertices incident to
a face are called the boundary elements of that face. A planar embedding of a graph
G is an isomorphism between G and a plane graph ˜G. ˜G is called a drawing of G.
Similar to ˜G, G is drawn so that its edges intersect only on vertices.

A graph G is planar if it can be embedded on the plane. The concept of
embeddings can be extended to any surface. A graph G is embeddable in surface
S if it can be drawn in S so that its edges intersect only on their end vertices. A
graph embeddable on the plane is embeddable on the sphere too. It can be shown
by using the stereoscopic projection of the sphere onto a plane [14]. Note that the
concept of faces is also applicable to spherical embeddings.

Let G in Fig. 5 represent a planar graph, in general with parallel edges and
self-loops. Since the graph is embedded onto a plane, it divides the plane into faces.
Let each of these faces be denoted by a new vertex say f , and let these vertices be
put inside the faces, as shown in Fig. 5. From this point on the notion of face vertices
and face are synonymous. Let the faces that are neighbors, i.e., that share the same
edge e2 (they are incident on the same edge), be connected by the edge, say e2, so
that edges e2 and e2 are crossed. At the end, for each edge e2 ∈ G there is an edge
e2 of the newly created graph G, which is called the dual graph of G. If e2 is incident
only with one face a self-loop edge e2 is attached to the vertex on the face in which
the edge e2 lays, of course e2 and the self-loop edge e2 have to cross each other. The
adjacency of faces is expressed by the graph G. More formally one can define dual
graphs for a given plane graph G = (V,E) [14]:

7 An arc is a finite union of straight line segments, and a straight line segment in the Euclidean
plane is a subset of R

2 of the form {x + λ(y − x)|0 ≤ λ ≤ 1}∀ x �= y ∈ R
2.

8 Called also exterior face.
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Fig. 6. A plane graph G and it dual G

Definition 2 (Dual graphs). A graph G = (V ,E) is a dual of G = (V,E) if there
is a bijection between the edges of G and G, such that a set of edges in G is a cycle
vector if and only if the corresponding set of edges in G is a cut vector.

There is a one-to-one correspondence between the vertex set V of G and the face set
F of G, therefore sometimes graph G = (V ,E) is written as G = (F,E) instead,
without fear of confusion. In order to show that G is a dual of G, one has to prove
that vectors forming a basis of the cycle subspace of G correspond to the vectors
forming a basis of the cut subspace of G. The edges ei of graph G in Fig. 6 corre-
spond to edges ei in graph G. The cycles {e1, e3, e4}, {e2, e3, e6}, {e4, e5, e8}, and
{e6, e7, e8} form a basis of the cycle subspace of G. These cycles correspond to the
set of edges {e1, e3, e4}, {e2, e3, e6}, {e4, e5, e8}, and {e6, e7, e8}, which form a
basis of the cut subspace of G. It follows according to the definition of the duality,
that graph G is a dual of G. The graph G is called the primal graph and G the dual
graph. Dual graphs are denoted by a line above the big letter. If a planar graph G′

is a dual of G, then a planar G is a dual of G′ as well, and every planar graph has a
dual [12, 13].

In the following, two important properties of dual graphs with respect to the
edge contraction and removal operations are given, the proofs are due to [14]. These
properties are required to prove that during the process of dual-graph contraction
graphs stay planar and are duals (Sect. 5). Let G and its dual G be two graphs. Let
edge e ∈ G correspond to edge e ∈ G. Note that a cycle in G corresponds to a cut in
G and vice versa [14]. Let G′ denote the graph G after the contraction of the edge e,
and G′ the graph after the removal of the corresponding edge e from G.

Theorem 2. A graph and its dual are duals also after the removal of an edge e in the
primal graph G and the contraction of the corresponding edge e in the dual graph G.
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Corollary 1. If a graph G has a dual, then every edge-induced subgraph of G has
also a dual.

Theorem 3 (Whitney 1933). A graph is planar if and only if it has a dual.

Proof. The proofs can be found in [14] and [12].

4.1 Dual Image Graphs

An image is transformed into a graph such that, to each pixel a vertex is associated,
and pixels that are neighbors in the sampling grid are joint by an edge. Note that
no restriction on the sampling grid is made, therefore an image of regular as well
as nonregular sampling grid can be transformed into a graph. The gray value or any
other feature is simply considered as an attribute of a vertex (and/or an edge). Since
the image is finite and connected, the graph is finite and connected as well. The
graph which represents the pixels is denoted by G = (V,E) and is called primal
graph.9 Note that pixels represent finite regions, and the graph G is representing in
fact a graph with faces as vertices. The dual of a face graph (see Sect. 4) is the graph
representing borders of the faces, which in fact are interpixel edges and interpixel
vertices. This graph is denoted by G and is called simply dual graph. Based on
Theorem 3, dual graphs are planar, therefore images with square grid are transformed
into 4 – connected square grid graphs, since 8 – connected square grid graphs are in
general not planar. 10

The same formalism as done for the pixels can be used at intermediate levels in
image analysis i.e., RAGs. RAGs can be the results of image segmentation processes.
Regions are connected sets of pixels, and are separated by region borders. Their
geometric dual though causes problems [10]. This section is concluded by a formal
definition of the dual image graphs:

Definition 3 (Dual image graphs [30]). The pair of graphs (G,G), where G =
(V,E) and G = (V ,E) are called dual image graphs if both graphs (G,G) are
finite, planar, connected, not simple in general and duals of each other.

Dual graphs can be seen as an extension of the well know region adjacency
graphs (RAG) representation. Note that this representation is capable to encode not
only adjacency relations but inclusion relations as well [10].

5 Dual-Graph Contraction

Irregular (dual graph) pyramids are constructed in a bottom-up way such that a sub-
sequent level (say k + 1) results by (dually) contracting the precedent level (say k).
In this section a short exposition of the dual-graph contraction is given, following
the work of Kropatsch [10]. Building dual-graph pyramids using this algorithm is
presented in Sect. 5.3. Dual-graph contraction (DGC) [10] proceeds in two steps:
9 Also called neighborhood graph.

10 This holds for square grid graphs of grid size ≥ 4 × 4.
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Fig. 7. Dual-graph contraction procedure (DGC)

1. Primal-edge contraction and removal of its dual
2. Dual-edge contraction and removal of its primal

In Fig. 7 examples of these two steps are shown in three possible cases. Note that
these two steps correspond in [10] to the steps (1) dual-edge contraction, and (2) dual
face contraction.

The base of the pyramid consists of the pair of dual image graphs (G0, G0). In
order to proceed with the dual-graph contraction a set of so-called contraction kernels
(decimation parameters) must be defined. The formal definition is postponed until
the Sect. 5.1. Let the set of contraction kernels be 〈Sk, Nk,k+1〉. This set consists
of a subset of surviving vertices Sk = Vk+1 ⊂ Vk, and a subset of nonsurviving
primal edges Nk,k+1 ⊂ Ek (where index k, k + 1 refer to contraction from level
k to k + 1). Surviving vertices in v ∈ Sk are vertices not to be touched by the
contraction, i.e., after contraction these vertices make up the set Vk+1 of the graph
Gk+1; and every nonsurviving vertex v ∈ Vk\Sk must be paired to one surviving
vertex in a unique way, by nonsurviving primal edges (Fig. 8a). In this Figure, the
shadowed vertex s is the survivor and this vertex is connected with arrow edges (ns)
with nonsurviving vertices. Note that a contraction kernel is a tree of depth one, i.e.,
there is only one edge between a survivor and a nonsurvivor, or analogously one can
say that the diameter of this tree is two.

The contraction of a nonsurviving primal edge consists in the identification of its
endpoints (vertices) and the removal of both the contracted primal edge and its dual
edge (see Sect. 2 for details on these operations). Figure 9a shows the normal situa-
tion, Fig. 9b the situation where the primal-edge contraction creates multiple edges,
and Fig. 9c self-loops. In Fig. 9c, redundancies (lower part) are decided through the
corresponding dual graphs and removed by dual-graph contraction. In Fig. 9, the
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Fig. 8. (a) Contraction kernel and (b) parent–child relation

I. Primal-edge contraction and removal of its dual

II. Dual-edge contraction and removal of its primal

Fig. 9. Dual-graph contraction of a part of a graph



Multiresolution Image Segmentations in Graph Pyramids 19

primal graph is shown with square, vertices with broken lines, and its dual with cir-
cle vertices and full lines.

In [10] it is shown that 〈Sk, Nk,k+1〉 determine the structure of an irregular pyra-
mid. The relation between two pairs of dual graphs,(Gk, Gk) and (Gk+1, Gk+1),
is established by dual-graph contraction with the set of contraction kernels
〈Sk, Nk,k+1〉 as:

(Gk+1, Gk+1) = C[(Gk, Gk), 〈Sk, Nk,k+1〉]. (3)

Dual-edge contraction and removal of its primal (second step) has a role of clean-
ing the primal graph by simplifying most of the multiple edges and self-loops,11 but
not those enclosing any surviving parts of the graph. They are necessary to preserve
correct structure [10]. Dual-graph contraction reduces the number of vertices and
edges of a pair of dual graphs, while preserving the topological relations among sur-
viving parts of the graph. In [30,31] a detailed presentation of dual-graph contraction
is given.

5.1 Contraction Kernels

Let S be the set of surviving vertices, and N the set of nonsurviving primal edges.
The connected components12 CC(s), s ∈ S, of subgraph (S,N) form a set of
rooted tree structures T (s) that, if contracted, each of them would collapse into the
vertex s of the contracted graph. The number of these trees is |S|. The union of
trees T (s) contains the nonsurviving primal edges N . T (s) is a spanning tree of
the connected component CC(s), or equivalently, (V,N) is a spanning forest of the
graph G = (V,E). In order to decimate the graph G = (V,E) the set of surviving
vertices S ⊂ V and the set of nonsurviving primal edges N ⊂ E must be selected,
such that the following conditions are satisfied (1) graph (V,N) is a spanning forest
of graph G = (V,E), and (2) the surviving vertices s ∈ S ⊂ V are the roots of the
forest (V,N).

Definition 4 (Contraction kernels). A set of disjoint rooted trees with length two of
path going through the root is called a set of contraction kernels.

Analogously, the trees T (v) of the forest (V,N) with roots v ∈ V are contraction
kernels. After applying the dual-graph contraction algorithm on a graph, one has to
establish a path connecting two surviving vertices on the resulted new graph. Let
G = (V,E) be a graph with decimation parameters (S,N).

Definition 5 (Connecting path [30]). A path in G = (V,E) is called a connecting
path between two surviving vertices s, s′ ∈ S if it consists of three subsets of edges:

– The first part is a possibly empty branch of contraction kernel T (s).
– The middle part is an edge e ∈ E \N that bridges the gap between (connects)

the two contraction kernels T (s) and T (s′).
– The third part is a possibly empty branch of contraction kernel T (s′).

11 Called also redundant edges.
12 Neglected level indexes refer to contraction from level k to level k + 1.
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Fig. 10. Connecting path CP (v, v′), e is the bridge of this path

See Fig. 10 for explanation. The connecting path is denoted by CP (s, s′). Edge e is
called the bridge of the connecting path CP (s, s′). Each edge e′ = (v, v′) ∈ Ek+1

has a corresponding connecting path CPk(s, s′), where s, s′ ∈ S ⊂ Vk are survivors
in the graph Gk = (Vk, Ek). This means that two surviving vertices s and s′, s �= s′,
that can be connected by a path13 CPk(s, s′) in Gk are connected by an edge in
Ek+1. If the graph Gk is connected, after dual-graph contraction the connectivity of
the graph Gk+1 is preserved [30].

Dual-edge contraction can be implemented by (1) simply renaming all the non-
surviving vertices to their surviving parent vertex (e.g., by using a find union set al-
gorithm [32]), (2) deleting all nonsurviving edges N , and (3) their duals N . We use
different (MIS, MIES, and D3P) stochastic methods to build contraction kernels [25].

5.2 Equivalent Contraction Kernels

Reference [16] combines two or more successive reductions in one equivalent
weighting function in order to compute any level of any regular pyramid directly
from the base level. Similarly, [31] combines two (or more) dual-graph contrac-
tions (as shown in Fig. 11) of graph Gk = (Vk, Ek) with decimation parameters
〈Sk, Nk,k+1〉 and 〈Sk+1, Nk+1,k+2〉 into one single equivalent contraction kernel
(ECK) Nk,k+2 = Nk,k+1 ◦Nk+1,k+2:14

C[C[Gk, 〈Sk, Nk,k+1〉], 〈Sk+1, Nk+1,k+2〉] = C[Gk, 〈Sk+1, Nk,k+2〉] = Gk+2

(4)

The structure of Gk+1 is determined by Gk and the decimation parameters
〈Sk, Nk,k+1〉. Simply overlaying the two sets of contraction kernels, 〈Sk, Nk,k+1〉
(the one from level k to k + 1) and 〈Sk+1, Nk+1,k+2〉 (the one from level k + 1

13 By definition of the connectivity of a graph, there exists always a path between any two
vertices of graph.

14 Only Gk is shown instead of (Gk, Gk) for simplicity.
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Fig. 11. Equivalent contraction kernel

to k + 2) will not yield a proper equivalent contraction kernel 〈Sk+1, Nk,k+2〉.
The surviving vertices from Gk to Gk+2 are Sk+1 = Vk+2. The edges of
the searched contraction kernels must be formed by edges Nk,k+2 ⊂ Ek. An
edge ek+1 = (vk+1, v

′
k+1) ∈ Nk+1,k+2 corresponds to a connecting path

CPk(vk+1, v
′
k+1) in Gk.15 By Definition 5, CPk(vk+1, v

′
k+1) consists of one branch

of Tk(vk+1), one branch of Tk(v′
k+1), and one surviving edge ek ∈ Ek connecting

the two contraction kernels Tk(vk+1), and Tk(v′
k+1).

Definition 6 (Bridge [30]). Function bridge: Ek+1 �→ Ek assigns to each edge
ek+1 = (vk+1, wk+1) ∈ Ek+1 one of the bridges ek ∈ Ek of the connecting paths
CPk(vk+1, wk+1):

bridge(ek+1) = ek. (5)

Connecting two disjoint tree structures by a single edge results in a new tree structure.
Now, Nk,k+2 can be defined as the result of connecting all contraction kernels Tk by
bridges as:

Nk,k+2 = Nk,k+1 ∪
⋃

ek+1∈Nk+1,k+2

bridge(ek+1) (6)

This definition satisfies the requirements of a contraction kernel [30]. Analogously,
the earlier process can be repeated for any pair of levels k and k′ such that k < k′.
If k = 0 and k′ = h, where h is the level index of the top of the pyramid, with the
resulting equivalent contraction kernel (N0,h), the base level (0) is contracted in one
step into an apex Vh = {vh}. ECKs are able to compute any level of the pyramid
directly from the base.

5.3 Dual-Graph Pyramid

A graph pyramid is a pyramid where each level is a graph G(V,E) consisting of
vertices V and of edges E relating two vertices. In order to correctly represent
the embedding of the graph in the image plane [33], we additionally store the dual
graph G(V ,E) at each level. The levels are represented as pairs (Gk, Gk) of dual
plane graphs Gk and Gk. See Sect. 4.1 for more details on this representation.
15 If there are more than one connecting paths, one is selected.
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The sequence (Gk, Gk), 0 ≤ k ≤ h is called dual graph pyramid, where 0 is the
base level index and h is the top level index, also called the height of the pyramid.
Moreover the graphs are attributed, G(V,E, attrv, attre), where attrv : V → R

+

and attre : E → R
+, i.e., content of the graph is stored in attributes attached to both

vertices and edges. In general a graph pyramid can be generated bottom-up as shown
in Algorithm 1.

Algorithm 1 . Constructing dual-graph pyramid
Input: Graphs (G0, G0)

1: k ← 0.
2: while further abstraction is possible do
3: determine contraction kernels, Nk,k+1.
4: perform dual-graph contraction and simplification of dual graphs, (Gk+1, Gk+1) =

C[(Gk, Gk), Nk,k+1].
5: apply reduction functions to compute content attr : Gk+1 → R

+ of new reduced
level.

6: k ← k + 1.
7: end while

Output: Graph pyramid – (Gk, Gk), 0 ≤ k ≤ h .

Let the building of the dual-graph pyramid be explained by using the image in
Fig. 12. For the sake of simplicity of the presentation, in the figures afterward, the
dual graphs are not shown explicitly as well as intralevel relations. An example of
this intralevel relation is shown in Fig. 8b with the contraction kernel shadowed. In
the example from Fig. 13 initially the attributes of the vertices receive the gray values
of the pixels. The first step determines what information in the current top level is
important and what can be dropped. A contraction kernel is a (small) subtree of the
top level, the root of which is chosen to survive (black circles in Fig. 13b). Figure 13a
shows the window and the selected contraction kernels with gray. Selection criteria
in this case contracts only edges inside connected components having the same gray
value. All the edges of the contraction trees are dually contracted during step 3 from
Algorithm 1. Dual contraction of an edge e (formally denoted by G/{e}) consists of

Fig. 12. Image to dual graphs
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Fig. 13. Dual-graph contraction in G0 and the creation of the G1 of the pyramid

contracting e and removing the corresponding dual edge e from the dual graph (for-
mally denoted by G \ {e}). This preserves duality and the dual graph needs not be
constructed from the contracted primal graph G′ at the next level. Since the contrac-
tion of an edge may yield multiedges (an example shown with arrows in Fig. 13c)
and self-loops there is a second simplification phase of step 3 which removes all
redundant multiedges and self-loops. Note that not all such edges can be removed
without destroying the topology of the graph: if the cycle formed by the multiedge
or the self-loop surrounds another part of the data its removal would corrupt the con-
nectivity! Fortunately this can be decided locally by the dual graph since faces of
degree two (having the double-edge as boundary) and faces of degree one (boundary
= self-loop) cannot contain any connected elements in its interior. Since removal and
contraction are dual operations, the removal of a self-loop or of one of the double
edges can be done by contracting the corresponding dual edges in the dual graph
(which are not depicted in our example for the sake of simplicity). The dual contrac-
tion from our example remains a simple graph G1 without self-loops and multiedges
(Fig. 13d). Step 3 generates a reduced pair of dual graphs. Their contents is derived
in step 4 from the level later using the reduction function. In our example reduc-
tion is very simple: the surviving vertex inherits the color of its sons. The following
table summarizes dual-graph contraction in terms of the control parameters used for
abstraction and the conditions to preserve topology:

level representation contract / remove conditions
0 (G0, G0)

↓ contraction kernel N0,1 forest, depth 1
(G0/N0,1, G0 \ N0,1)

↓ redundant edges S0,1 deg v ≤ 2

1 (G1 = G0/N0,1 \ S0,1,

G1 = G0 \ N0,1/S0,1)

↓ contraction kernel N1,2 forest, depth 1
...
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6 A Hierarchy of Partitions

The segmentation problem is supposed to find natural groupings of the pixel set
given as input. The first question that comes in mind is how these natural groupings
are found. In other words what makes pixels in a partition be more like one another
than pixels in other segments. This observation pours down into two issues [34] (1)
how to measure the similarity between pixels, and (2) how to evaluate a partitioning
of the pixels into segments.

It is expected that, these measures of dissimilarity capture the expectation that the
distance in a feature space of pixels within a segment is less than the distance between
pixels in different segments. The second issue is defining the criterion function to
be optimized. The goal is to find the groups or segments that have strong internal
similarities, which optimize the criterion function. But before we continue with the
presentation of the algorithm for hierarchical image partitioning, let we recall the
idea of minimum spanning tree (MST) and Borůvka’s algorithm.

Algorithm 2 . Borůvka’s Algorithm
Input: graph G(V, E)

1: MST ← empty edge list
2: all vertices v ∈ V make a list of trees L
3: while there is more than one tree in L do
4: each tree T ∈ L finds the edge e with the minimum weight which connects T to G \ T

and add edge e to MST.
5: using edge e merge pairs of trees in L
6: clean the graph from self-loops if necessary
7: end while

Output: minimum weight spanning tree - edge induced subgraph on MST.

6.1 Minimum Weight Spanning Tree (MST)

The minimum spanning tree, called afterward MST, is the simplest and best-studied
optimization problem in computer science. According to [35] the “Minimum span-
ning tree is a cornerstone problem of combinatorial optimization and in a sense its
cradle.” The problem is defined as follows. Let G = (V,E) be a undirected con-
nected plane graph consisting of the finite set of vertices V and the finite set of edges
E. Each edge e ∈ E is identified with a pair of vertices vi, vj ∈ V such that vi �= vj .
Let each edge e ∈ E be associated with a unique weight w(e) = w(vi, vj), from
the totally ordered universe (it is assumed that weights are distinct, if not, ties can be
broken arbitrarily). Note that parallel edges, for e.g., e1 = (v1, v2) and e2 = (v1, v2)
e1 �= e2, have different weights. The problem is formulated as construction of a
minimum total weight spanning tree of G.
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6.2 Borůvka’s Algorithm

The idea of Borůvka [9] is to do steps like in Prim’s algorithm [36], in parallel over
the graph at the same time. This algorithm constructs a spanning tree in iterations
composed of the steps shown in Algorithm 2. First create a list L of trees, each a
single vertex v ∈ V . For each tree T of L find the edge e with the smallest weight,
which connects T to G\T . The trees T are then connected to G\T with the edges e.
In this way the number of trees in L is reduced, until there is only one, the MST.

Observation 0.1 In the 3rd step of Algorithm 2, each tree T ∈ L finds the edge with
the minimal weight, and as trees become larger, the process of finding these edges
takes longer.

6.3 Minimum Spanning Tree with DGC

Taking the Observation 0.1 into consideration, the contraction of the edge e, which
connects T and G \ T in the 4th step of Algorithm 2 will speed up the process of
searching for minimum weight edges in Borůvka’s algorithm. If the graphs are repre-
sented as adjacency lists then a vertex with degree d can enumerate its incident edges
in its neighborhood in time O(d). Since in the level k + 1, after edge contraction,
each tree (from level k) will be represented by a vertex, the search for the edge with
the minimum weight would be a local search, and the resulting graph is smaller (in
the sense of less vertices and less edges), thus the next pass can run faster.

The dual-graph contraction algorithm [10] is used to contract edges and cre-
ate super vertices i.e., it creates father–son relations between vertices in subsequent
levels (vertical relation), whereas Borůvka’s algorithm is used to create son–son
relations between vertices in the same level (horizontal relation). Here we expand
Borůvka’s algorithm with the steps that contract edges, remove parallel edges and
self loops (if the connectivity of the graph is not changed), see Algorithm 3. In the
section later we will refine the son–son relation to simulate the pop-out phenom-
ena [37], and to find region borders quickly and effortlessly in a bottom-up “stimulus-
driven” way based on local differences in a specific feature (e.g., color).

Algorithm 3 . Borůvka’s Algorithm with DGC
Input: attributed graph G0(V, E)

1: k ← 0
2: repeat
3: for each vertex v ∈ Gk find the minimum-weight edge e ∈ Gk incident to the vertex v

and mark the edges e to be contracted
4: determine CCk

i as the connected components of the marked edges e
5: contract connected components CCk

i in a single vertex and eliminate the parallel edges
(except the one with the minimum weight) and self-loops and create the graph Gk+1 =
C[Gk, CCk

i ]
6: k ← k + 1
7: until all connected components of G are contracted into one single vertex

Output: a graph pyramid with an apex.
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6.4 Building a Hierarchy of Partitions

Hierarchies are a significant tool for image partitioning as they are naturally com-
bined with homogeneity criteria. Horowitz and Pavlidis [38] define a consistent ho-
mogeneity criteria over a set V as a boolean predicate P over its parts Φ(V ) that
verifies the consistency property: ∀(x, y) ∈ Φ(V ) x ⊂ y ⇒ (P (y) ⇒ P (x)).
In image analysis this states that the subregions of a homogeneous region are also
homogeneous. It follows that if Pyr is a hierarchy and P a consistent homogeneity
criteria on V then the set of maximal elements of Pyr that satisfy P defines a unique
partition of V . Thus the combined use of a hierarchy and homogeneity criteria allows
to define a partition in a natural way.

The goal is to find partitions of connected components Pk = {CC(u1), ...,
CC(un)} such that these elements satisfy certain properties. We use the pairwise
comparison of neighboring vertices (partitions) to check for similarities [7, 39, 40].
A pairwise comparison function, B(CC(ui), CC(uj)) is true, if there is evidence
for a boundary between CC(ui) and CC(uj), and false when there is no bound-
ary. Note that B(·, ·) is a boolean comparison function for pairs of partitions. The
definition of B(·, ·) depends on the application. The pairwise comparison function
B(·, ·) that we use measures the difference along the boundary of two components
relative to the differences of component’s internal differences. This definition tries to
encapsulate the intuitive notion of contrast: a contrasted zone is a region containing
two components whose inner differences (internal contrast) are less then the differ-
ences between them (external contrast). We define an external contrast between two
components and an internal contrast of each component. These measures are defined
analogously to [7, 39, 40].

Every vertex u ∈ Gk is a representative of a connected component CC(u) of
the partition Pk. The equivalent contraction kernel [10] of a vertex u ∈ Gk, N0,k(u)
is a set of edges on the base level that are contracted, i.e., applying N0,k(u) on the
base level contracts the subgraph G′ ⊆ G onto the vertex u. The internal contrast of
CC(u) ∈ Pk is the largest dissimilarity inside the component CC(u) i.e., the largest
edge weight of N0,k(u) of vertex u ∈ Gk, that is

Int(CC(u)) = max{attre(e), e ∈ N0,k(u)}. (7)

Let ui, uj ∈ Vk, ui �= uj be the end vertices of an edge e ∈ Ek. The external con-
trast between two components CC(ui), CC(uj) ∈ Pk is the smallest dissimilarity
between component CC(ui) and CC(uj) i.e., the smallest edge weight connecting
N0,k(ui) and N0,k(uj) of vertices ui, uj ∈ Gk:

Ext(CC(ui), CC(uj))
= min{attre(e), e = (ui, uj) : ui ∈ N0,k(ui) ∧ w ∈ N0,k(uj)}. (8)

This definition is problematic since it uses only the smallest edge weight be-
tween the two components, making the method very sensitive to noise. But in
practice this limitation works well as shown in Sect. 6.5. In Fig. 14 an example
of Int(·) and Ext(·, ·) is given. The Int(CC(ui)) of the component CC(ui) is
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Fig. 14. Internal and external contrast

the maximum of the weights of the solid edges (analogously for Int(CC(uj))),
whereas Ext(CC(ui), CC(uj)) is the minimum of the weights of the dashed edges
connecting component CC(ui) and CC(uj). Vertices ui and uj are the representa-
tives of the components CC(ui) and CC(uj), i.e., by contracting the edges N0,k(ui)
one arrives to the vertex ui. The pairwise comparison function B(·, ·) between two
connected components CC(ui) and CC(uj) can now be defined as:

B(CC(ui), CC(uj)) =

{

True if Ext(CC(ui), CC(uj)) > PInt(CC(ui), CC(uj)),
False otherwise,

(9)

where the minimum internal contrast difference between two components,
PInt(·, ·), reduces the influence of too small components and is defined as:

PInt(CC(ui), CC(uj))
= min{Int(CC(ui)) + τ(CC(ui)), Int(CC(uj)) + τ(CC(uj))} (10)

For the function B(·, ·) to be true i.e., for the border to exist, the external contrast
difference must be greater than the internal contrast differences. The reason for using
a threshold function τ(CC(·)) is that for small components CC(·), Int(CC(·)) is
not a good estimate of the local characteristics of the data, in the extreme case when
|CC(·)| = 1, Int(CC(·)) = 0. Any nonnegative function of a single component
CC(·), can be used for τ(CC(·)).

The algorithm to build the hierarchy of partitions is shown in Algorithm 4. Each
vertex ui ∈ Gk defines a connected region CC(ui) on the base level of the pyra-
mid, and since the presented algorithm is based on Borůvka’s algorithm [9], it builds
a MST(ui) of each region, i.e., N0,k(ui) =MST(ui) [41]. The idea is to collect
the smallest weighted edges e (4th step) that could be part of the MST, and then
to check if the edge weight attre(e) is smaller than the internal contrast of both
of the components (MST of end vertices of e) (5th step). If these conditions are
fulfilled then these two components are merged (7th step). All the edges to be con-
tracted form the contraction kernels Nk,k+1, which are then used to create the graph
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Algorithm 4 . Hierarchy of Partitions
Input: Attributed graph G0.
1: k ← 0
2: repeat
3: for all vertices u ∈ Gk do
4: Emin(u) ← argmin{attre(e) | e = (u, v) ∈ Ek or e = (v, u) ∈ Ek}
5: end for
6: for all e = (ui, uj) ∈ Emin with

Ext(CC(ui), CC(uj)) ≤ PInt(CC(ui), CC(uj)) do
7: include e in contraction edges Nk,k+1

8: end for
9: contract graph Gk with contraction kernels, Nk,k+1: Gk+1 = C[Gk, Nk,k+1].

10: for all ek+1 ∈ Gk+1 do
11: set edge attributes attre(ek+1) ← min{attre(ek) | ek+1 = C(ek, Nk,k+1)}
12: end for
13: k ← k + 1
14: until Gk = Gk−1

Output: A region adjacency graph (RAG) pyramid.

Gk+1 = C[Gk, Nk,k+1] [20]. In general Nk,k+1 is a forest. We update the attributes
of those edges ek+1 ∈ Gk+1 with the minimum attribute of the edges ek ∈ Ek that
are contracted into ek+1 (9th step). The output of the algorithm is a pyramid where
each level represents a RAG, i.e., a partition. Each vertex of these RAGs is the repre-
sentative of a MST of a region in the image. The algorithm is greedy since it collects
only the nearest neighbor with the minimum edge weights and merges them if the
pairwise comparison (9) evaluates to “false.” Some properties of the algorithm are
given in [42].

6.5 Experiments on Image Graphs

The base level of our experiments is the trivial partition, where each pixel is a
homogeneous region. The attributes of edges can be defined as the difference bet-
ween features of end vertices, attre(ui, uj) = |F (ui) − F (uj)|, where F is
some feature. Other attributes could be used as well e.g., [6] attre(ui, uj) =
exp{−||F (ui)−F (uj)||22

σI
}, where F is some feature, and σI is a parameter, which con-

trols the scale of proximity measures of F . F could be defined as F (ui) = I(ui),
for gray value intensity images, or F (ui) = [vi, vi · si · sin(hi), vi · si · cos(hi)], for
color images in HSV color distance [6]. However the choice of the definition of the
weights and the features to be used is in general a hard problem, since the grouping
cues could conflict with each other [43].

For our experiments we use, as attributes of edges, the difference between pixel
intensities F (ui) = I(ui), i.e., attre(ui, uj) = |I(ui) − I(uj)|. For color images
we run the algorithm by computing the distances (weights) in RGB color space. We
choose this simple color distances in order to study the properties of the algorithm.
To compute the hierarchy of partitions we define τ(CC) to be a function of the size
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of CC e.g., τ(CC) := α/|CC|, where |CC| is the size of the component CC and α
is a constant. The algorithm has one running parameter α, which is used to compute
the function τ . A larger constant α sets the preference for larger components. A more
complex definition of τ(CC), which is large for certain shapes and small otherwise
would produce a partitioning which prefers certain shapes. To speed up the compu-
tation, vertices are attributed (attrv) with the internal differences, average color and
the size of the region they represent. Each of these attributes is computed for each
level of the hierarchy. Note that the height of the pyramid depends only on the image
content.

We use indoor and outdoor RGB images. We found that α := 300 produces
the best hierarchy of partitions of the images as shown in Monarch,16 Object45 and
Object1117 Fig. 15 (I, III, IV) and α := 1000 for the woman image in Fig. 15 (II),
after the average intensity attribute of vertices is down projected onto the base grid.
Figure 15 shows some of the partitions on different levels of the pyramid and the
number of components. Note that in all images there are regions of large inten-
sity variability and gradient. This algorithm copes with this kind of gradient and
variability.

The algorithm is capable of grouping perceptually important regions despite of
large intensity variability and gradient. In contrast to [7] the result is a hierarchy
of partitions at multiple resolutions suitable for further goal driven, domain-specific
analysis. On lower levels of the pyramid the image is over-segmented whereas in
higher levels it is under-segmented. Since the algorithm preserves details in low-
variability regions, a noisy pixel would survive through the hierarchy, see Fig. 15
(Id). Image smoothing in low-variability regions would overcome this problem. We
do not smooth the images, as this would introduce another parameter into the method.
The robustness of topology is discussed in Sect. 6.6. The hierarchy of partitions can
also be built from an over-segmented image to overcome the problem of noisy pixels.
Note that the influence of τ in the decision criterion is smaller as the region gets
bigger for a constant α. The constant α is used to produce a kind of over-segmented
image and the influence of τ decays with each new level of the pyramid. For an
over-segmented image, where the size of the regions is large, the algorithm becomes
parameterless.

6.6 Robustness of Graph Pyramids

There are several places in the construction of a graph pyramid where noise can
affect the result (1) the input data; (2) during selection of contraction kernels; and
(3) when summarizing the content of a reduction window by the reduction function.

The effects on the topology can be the following: a connected region falls
into parts; two regions merge into one; break inclusion, create new inclusions; two
adjacent regions become separated; two separated regions become adjacent. All these
changes reflect in the Euler characteristic which we will use to judge the topological

16 Waterloo image database.
17 Coil 100 image database.
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Fig. 15. Partitioning of images

robustness of graph pyramids. Let us start with the influence of a wrong pixel on the
connectivity structure. A wrong pixel adjacent to a region can corrupt its connectiv-
ity (and the property of inclusion in 2D) if it falls on a one pixel wide branch of the
Figure. The consequence can be that the region breaks into two parts which increases
the Euler characteristic by 1. A noisy pixel inside a region creates a new connected
component which is a topological change (e.g., a new inclusion) but it can be easily
recognized and eliminated by its size. However the change is again not very drastic
since one noisy pixel can change the Euler characteristic only by 1. If all regions of
the picture both foreground and background are at least 2 pixels wide a single wrong
pixel changes their size but not their connectivity.

For a branch of two pixels in width, two noisy pixels in a particular spatial
position relative to each other are needed to modify the topology. More generally
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to break the connectivity across an n-pixel wide branch of a region noisy pixels are
needed, forming a connected path from one side of the branch to the other. This can
be considered as the consequence of the sampling theorem (see [44]). All these topo-
logical modifications happen in the base of our pyramid. As long as we use topology-
preserving constructions and/or consider identified noise pixels as nonsurvivors the
topology is not changed in higher levels.

Different criteria and functions can be used for selecting contraction and reduc-
tion kernels. In contrast to data, noise errors are introduced by the specific operations
and may be the consequence of numerical instabilities or quantizations errors. There
is no general property allowing to derive an overall property like robustness of all
possible selection or reduction functions. Hence operational robustness needs to be
checked for any particular choice.

7 Evaluation of Segmentations

The segmentation process results in “homogeneous” regions with respect to the low-
level cues using some similarity measures. Problems emerge because the homogene-
ity of low-level cues does not always lead to semantics and the difficulty of defin-
ing the degree of homogeneity of a region. Also some of the cues can contradict
each other. Thus, low-level cue image segmentation cannot produce a complete final
“good” segmentation [45], leading researchers to look at the segmentation only in
the context of a task, as well as the evaluation of the segmentation methods. How-
ever in [46] the segmentation is evaluated purely18 as segmentation by comparing
the segmentation done by humans with those done by a particular method. As can
be seen in 2, 3, 4 of Fig. 16 there is a consistency in segmentations done by humans
(already demonstrated empirically in [46]), even thought humans segment images at
different granularity (refinement or coarsening). This refinement or coarsening could
be thought as hierarchical structure of the image, i.e., the pyramid.

Evaluation of the segmentation algorithms is difficult because it depends on many
factors [47] among them: the segmentation algorithm; the parameters of the algo-
rithm; the type(s) of images used in the evaluation; the method used for evaluation
of the segmentation algorithms, etc. Our evaluation copes with these facts:

1. Real world images should be used, because it is difficult to extrapolate conclu-
sion based on synthetic images to real images [48].

2. The human should be the final evaluator [49].

There are two general methods to evaluate segmentations:

– Qualitative
– Quantitative methods

Qualitative methods involve humans for doing the evaluation, meaning that different
observers would give different opinions about the segmentations (e.g., already en-
countered in edge detection evaluation [47], or in image segmentation [46]). On the
18 The context of the image is not taken into consideration during segmentation.
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Fig. 16. Segmentation of Humans, NCutSeg, and MSTBorůSeg (MIS, MIES, D3P)
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other hand, quantitative methods are classified into analytical and empirical meth-
ods [50]. Analytical methods study the principles and properties of the algorithm,
like processing complexity, efficiency, and so on. Empirical methods study proper-
ties of the segmentations by measuring how “good” a segmentation is close to an
“ideal” one, by measuring this “goodness” with some function of parameters. Quali-
tative and empirical methods depend on the subjects, the first one in coming up with
the reference (perfect) segmentation19 and the second one defining the function. The
difference between the segmented image and the reference (ideal) one can be used to
asses the performance of the algorithm [50]. The reference image could be a synthetic
image or manually segmented by humans. Higher value of the discrepancy means
bigger error, signaling poor performance of the segmentation method. In [50], it is
concluded that evaluation methods based on mis-segmented pixels should be more
powerful than other methods using other measures. In [46] the error measures used
for segmentation evaluation “count” the mis-segmented pixels.

Note that the segmented image #35/2 in Fig. 16 can be coarsened to obtain the
image in #35/4, this is called simple refinement; whereas to obtain image in #35/3
from #35/2 (or vice versa) we must coarsen in one part of the image and refine in the
other (notice the chin of the man in #35/3, this is called mutual refinement. Therefore
in [46] a segmentation consistency measure that does not penalize this granularity
difference is defined (Sect. 7.1).

The segmentation results of NCutSeg [6] on gray value images are shown in
Fig. 16 in 5 and 6 of BorůSeg with MIS [24] decimation strategy in 7 and 8; with
MIES [8] in 9, and 10; and with D3P [52] in 11 and 12. Note that the NCutSeg and
BorůSeg methods are capable of producing a hierarchy of images. These methods use
only local contrast based on pixel intensity values. As it is expected, and can be seen
from the Fig. 16, segmentation methods which are based only on low-level local cues
cannot create segmentation results as good as humans. Even thought it looks like the
NCutSeg method produces more regions, actually the overall number of regions 6,
8, 10, and 12 of Fig. 16 is almost the same, but BorůSeg produces a bigger number
of small regions. The methods (see Fig. 16) were capable of segmenting the face of a
man satisfactory (image #35). The BorůSeg method did not merge the statue on the
top of the mountain with the sky (image #17), but it merged it with the mountain,
compared to humans which do segment this statue as a single region. All methods
have problems segmenting the see creatures (image #12). Note that the segmentation
done by humans on the image of rocks (image #18), contains the axis of symmetry,
even thought there is no “big” change in the local contrast, therefore the NCutSeg and
BorůSeg methods fail in this respect. It must be mentioned that none of the methods
is “looking” for this axis of symmetry.

In the rest of this section, we evaluate two graph-based segmentation methods,
the normalized cut [6] (NCutSeg) and the method based on the Borůvka’s mini-
mum spanning tree (MST) [41] (BorůSeg). In fact we evaluate three flavors of the
BorůSeg depending on the decimation strategy used: MIS, MIES, or D3P, denoted by
BorůSeg (MIS), BorůSeg (MIES), and BorůSeg (D3P). See [25] for details on these

19 Also called a gold standard [51].
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decimation strategies. We compare these methods following the framework of [46]
i.e., comparing the segmentation result of the two graph-based methods with the hu-
man segmentations. The results of the evaluation are reported in Sect. 7.1 later. Also
the variation of regions sizes is shown in this section.

Some examples of applying BorůSeg on color images are shown in Sect. 6,
where for visualization purposes each region has the mean color value. In this section
we use the region borders to highlight the regions. Note that, two pixel wide borders
are used only for better visualization purposes, and are not produced by these seg-
mentation methods nor are part of the evaluation process.

7.1 Segmentation Benchmarking

In [46] segmentations made by humans are used as a reference and basis for bench-
marking segmentations produced by different methods. The concept behind this is
the observation that even though different people produce different segmentations for
the same image, the obtained segmentations differ, mostly, only in the local refine-
ment of certain regions. This concept has been studied on the human segmentation
database (see 2, 3, 4 of Fig. 16) by [46] and used as a basis for defining two error
measures, which do not penalize a segmentation if it is coarser or more refined than
another. In this sense, a pixel error measure E(S1, S2, p), called the local refinement
error, is defined as:

E(S1, S2, p) =
|R(S1, p)\R(S2, p)|

|R(S1, p)| , (11)

where \ denotes set difference, |x| the cardinality of a set x, and R(S, p) is the set of
pixels corresponding to the region in segmentation S that contains pixel p. Using the
local refinement error E(S1, S2, p) the following error measures are defined [46]:
the global consistency error (GCE), which forces all local refinements to be in the
same direction, and is defined as:

GCE(S1, S2) =
1
|I| min

⎧

⎨

⎩

∑

p∈I

E(S1, S2, p),
∑

p∈I

E(S2, S1, p)

⎫

⎬

⎭

, (12)

and the local consistency error (LCE), which allows refinement in different directions
in different parts of the image, and is defined as:

LCE(S1, S2) =
1
|I|
∑

p∈I

min {E(S1, S2, p), E(S2, S1, p)} , (13)

where |I| is the number of pixels in the image I . Notice that LCE ≤ GCE for any
two segmentations. GCE is a tougher measure than LCE, because GCE tolerates only
simple refinements, while LCE tolerates mutual refinement as well.

We have used the GCE and LCE measures presented earlier to do an evaluation
of the BorůSeg method using the human segmented images from the Berkley humans
segmented images database [46]. The results of comparison of the NCutSeg method
vs. humans and humans vs. humans are confirmed [46].
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7.2 Evaluation of Segmentations on the Berkley Image Database

As mentioned in [46] a segmentation consisting of a single region and a segmentation
where each pixel is a region, is the coarsest and finest possible of any segmentation.
In this sense, the LCE and GCE measures should not be used when the number of
regions in the two segmentations differs a lot. Taking into consideration that both
methods can produce segmentations with different number of regions, we have taken
for each image as a region count reference number the average number of regions
from the human segmentations available for that image. We instructed the NCutSeg
to produce the same number of regions and for the BorůSeg we have taken the level
of the pyramid that has the region number closest to the same region count reference
number.

As data for the experiments, we take 100 gray level images from the Berkley Im-
age Database.20 For segmentation, we have used the normalized cuts implementation
available on the Internet21 and for the BorůSeg we have implementations based on
combinatorial pyramids [53].22

For each of the images in the test, we have calculated the GCE and LCE using the
results produced by the two methods and all the human segmentations available for
that image. Having more then one pair of GCE and LCE for the methods NCutSeg
and BorůSeg (all its versions) and each image, we have calculated the mean and the
standard deviation.

In Fig. 17, the histogram of error values LCE (a) and GCE (b) ([0 . . . 1], where
zero means no error) of Humans vs. Humans, NCutSeg vs. Human, BorůSeg (all
versions) vs. Human are shown. µ̂ represents the mean value of the error. Notice
that the humans are consistent in segmenting the images and the Human vs. Hu-
man histogram shows a peak very close to 0. i.e., a small µ̂ = 0.0592 for LCE and
µ̂ = 0.0832 for GCE. For the NCutSeg and BorůSeg there is not a significant dif-
ference between the values of LCE and GCE (see the mean values of the respective
histograms). One can conclude that the quality of segmentation of these methods
seen over the whole database is not different.

We wanted to also tested how produced region sizes vary from one method to
the other and how this variation depends on the content of the segmented images.
For this, we have normalized the size of each region by dividing it to the size of
the segmented image it belonged to (number of pixels), and for each segmentation,
we have calculated the standard deviation (σS) of the normalized region sizes. For
the case of human segmented images, we have done separately the calculation for
each segmentation and taken the mean of the results for the segmentations of the
same image. Figure 18a shows the resulting σS for 70 images (a clear majority for
which the σS order Humans>MSTBorůSeg>NCutSeg existed). Results are shown
sorted by the sum of the 3 σS for each image. The average region size variation
for the whole dataset is: 0.1537 for Humans, 0.0392 for NCutSeg, and 0.0872 for
MSTBorůSeg (MIES). Note, that the size variation is smallest and almost content
20 http://www.cs.berkeley.edu/projects/vision/grouping/segbench/.
21 http://www.cis.upenn.edu/∼jshi/software/.
22 http://www.prip.tuwien.ac.at/Research/FSPCogVis/Software/.
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Fig. 17. Histograms of discrepancy measure: LCE (a) and GCE (b)

Fig. 18. Variation of region sizes σS
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independent for the NCutSeg and largest for Humans. We calculated the variation
of regions sizes for the different decimation strategies MIS, MIES, and D3P. The
average region size variation for the whole data set is 0.0893 for MSTBorůSeg (MIS)
and 0.1037 for MSTBorůSeg (D3P). In Fig. 18b a solid line represents the mean
region size variation of the three decimation strategies MIES, MIS, and D3P, and the
doted line the standard deviation. Note that the standard deviation stays small for the
whole spectrum which shows the region size variation consistency between the three
decimation methods.

8 Conclusion

Image segmentation aggregates sets of pixels into connected regions that satisfy a
certain homogeneity criteria. All such regions partition a given image into homo-
geneous areas. Real objects are composed of such homogeneous regions but there
are no globally unified criteria to aggregate the smaller homogeneous regions into
the larger regions corresponding to objects. We therefore need a representation able
to aggregate smaller regions into larger regions using different criteria on differ-
ent levels of abstraction. Starting with the dual graphs created for the input image,
the irregular graph pyramid is constructed bottom-up by repeatedly applying dual-
graph contraction. This progressively simplifies the graphs, level by level, obtaining
a topmost level usually made out of one single vertex, called the apex. Dual-graph
contraction involves concepts from graph theory like edge contraction and it is dual,
edge removal to simplify a pair of dual graphs while preserving planarity and dual-
ity. The edges to be removed/contracted build up contraction kernels which form a
spanning forest of the input graph. Repeated contraction steps can be combined in a
single contraction using large equivalent contraction kernels. The receptive field of
a high-level vertex is spanned by the tree of the equivalent contraction kernel. The
corresponding regions are connected and form an inclusion hierarchy well suited to
hold the intended segmentations. In this chapter, we presented a hierarchical image
partitioning method using a pairwise similarity function. The function encapsulates
the intuitive notion of contrast by measuring the difference along the boundary of
two components, relative to a measure of differences of the components’ internal
variation. Two components are merged if there is an edge with low-cost connection
between them. Borůvka’s MST algorithm together with the dual-graph contraction
algorithm is used for building an MST, and at the same time, preserving the connec-
tivity of the input graph. For vision tasks, in natural systems, the topological relations
seem to play a role even more important than precise geometrical position. Even
though the MST algorithm makes local greedy decisions, it produces perceptually
important partitions by finding region borders quickly and effortlessly in a bottom-
up “stimulus-driven” way based only on local differences in a specific feature.
The framework is general and can handle large variation and gradient intensity in
images. Experimental results prove the validity of the theoretical concept. We evalu-
ated quantitatively the segmentation result produced by different methods. The eval-
uation is done by using discrepancy measures, that do not penalize segmentations
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that are coarser or more refined in certain regions. We used only gray images to eval-
uate the quality of results on one feature. It is shown that the graph-based method
presented produce qualitatively similar results.
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A Graphical Model Framework for Image
Segmentation

Rui Huang, Vladimir Pavlovic and Dimitris N. Metaxas

Summary. Graphical models are probabilistic models defined in terms of graphs. The
intuitive and compact graph representation and its ability to model complex probabilistic sys-
tems make graphical models a powerful modeling tool in various research areas. In this paper
we introduce a graphical model framework for image segmentation based on the integration
of Markov random fields (MRFs) and deformable models. A graphical model is constructed
to represent the relationship of the observed image pixels, the true region labels and the
underlying object contour. We then formulate the problem of image segmentation as the one
of joint region-contour inference and learning in the graphical model. The graphical model
representation allows us to use an approximate structured variational inference technique to
solve this otherwise intractable joint inference problem. Using this technique, the MAP solu-
tion to the original model is obtained by finding the MAP solutions of two simpler models,
an extended MRF model and a probabilistic deformable model, iteratively and incrementally.
In the extended MRF model, the true region labels are estimated using the BP algorithm in
a band area around the estimated contour from the probabilistic deformable model, and the
result in turn guides the probabilistic deformable model to an improved estimation of the con-
tour. Finally, we generalize our method from 2D to 3D. Experimental results on both synthetic
and real images, in both 2D and 3D, show that our new hybrid method outperforms both the
MRF-based and the deformable model-based methods using only homogeneous constraints.

1 Introduction

Graphical models are a marriage between probability theory and graph theory [1].
A graphical model is a probabilistic model defined in terms of a graph in which
the nodes represent random variables and the edges describe the probabilistic rela-
tionships among these variables. In particular, these probabilistic relationships are
usually defined by conditional probabilities among the related variables or potential
functions on the cliques of the graph, depend on whether the graph is directed or
undirected. The joint probability distribution of a set of variables or the whole sys-
tem can then be computed by taking products over the functions defined on relevant
nodes. The graph theoretic side of graphical models provides an intuitive and com-
pact representation for the complex probabilistic system, as well as well-defined data
structures and efficient general-purpose algorithms. Probability theory, on the other
R. Huang et al.: A Graphical Model Framework for Image Segmentation, Studies in Computational Intelligence (SCI)
52, 43–63 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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hand, ensures the consistency of the whole system, and provides various statistical
inference and learning methods to analyze the data.

Graphical models have recently received extensive attention from many different
research communities, including artificial intelligence, machine learning, computer
vision, etc. In this paper, we apply graphical models to the image segmentation
problem, one of the most important and difficult tasks in computer vision area. We
are able to integrate two fundamentally different traditional segmentation methods
and take advantage of both using graphical models. Furthermore, the graphical model
theory allows us to employ an approximate, computationally efficient solution to
the otherwise intractable inference problem. We will focus on the graphical model
representation and inference (mainly approximate inference) techniques for image
segmentation. See [2] for a more comprehensive introduction to graphical models
and [1] for more advanced topics.

The rest of this paper is organized as follows: Section 2 defines the segmentation
problem and reviews the previous work; Sect. 3 introduces a new integrated model
and its decoupled approximation using the variational inference method; detailed
inferences on the decoupled models are described in Sect. 4; the 2D model is then
generalized to 3D in Sect. 5; Sect. 6 shows the experimental results on both synthetic
and real 2D images and 3D volumes; and finally Sect. 7 summarizes the paper.

2 Previous Work

Image segmentation is one of the most important and difficult preliminary processes
for high-level computer vision and pattern recognition problems. The main goal of
image segmentation is to divide an image into its constituent parts that have a strong
correlation with objects or areas of the real world depicted by the image.

Region-based and edge-based segmentations are the two major classes of seg-
mentation methods. Though one can label regions according to edges or detect edges
from regions, these two kinds of methods are naturally different and have respective
advantages and disadvantages.

Region-based methods assign image pixels to a region according to some image
property (e.g., region homogeneity). These methods work well in noisy images,
where edges are usually difficult to detect while the region homogeneity is preserved.
The disadvantages of region-based methods are that they may generate rough edges
and holes inside the objects, and they do not take account of object shape.

On the other hand, edge-based methods generate boundaries of the segmented
objects. A prior knowledge of object shape and topology can be easily incorporated
to constrain the segmentation result. While this often leads to sufficiently smooth
boundaries, the oversmoothing may be excessive. Because edge-based methods rely
on edge detecting operators, they are sensitive to image noise and need to be initial-
ized close to the actual region boundaries.

Most segmentation methods are either region-based or edge-based. Among
region-based methods, besides the classical region growing method [3], the Markov
random field (MRF) model has been extensively used. Because the exact MAP
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inference in MRF models is computationally infeasible, various techniques for
approximating the MAP estimation have been proposed, such as Markov Chain
Monte Carlo (MCMC) [4], iterated conditional modes (ICM) [5], maximizer of
posterior marginals (MPM) [6], etc. [7] presents a comparative analysis of some of
these methods. Two of the more recent algorithms, Belief Propagation (BP) [8,9] and
Graph Cuts [10] are compared in [11]. The estimation of the MRF model parameters
is another related problem, often solved using the EM algorithm [12].

In edge-based methods, since Kass et al. introduced Snakes [13], deformable
models have attracted much attention. Variants of deformable models have been pro-
posed to address different problems. For instance, Balloons [14] and Gradient Vec-
tor Flow (GVF) Snakes [15] introduces different external forces, and Topologically
Adaptable Snakes [16] allow changes in the model’s topology. See [17] for a review
of deformable models and [3] for other edge-based methods and some basic edge
detecting operators.

Hybrid approaches [18–20] attempt to combine region-based and edge-based
segmentations to alleviate deficiencies of the individual methods and improve the
segmentation results. There are different choices of the combination. For instance,
[20] proposes a way of integrating MRFs and deformable models. MRFs are used to
initially estimate the boundary of objects in noisy images. Balloons are then fitted to
the estimated boundary. The result of the fitting is in turn used to update the MRF
parameters. Final segmentation is achieved by iteratively integrating these processes.
While this hybrid method attempted to take advantage of both MRFs and deformable
models, the model coupling was loose. This may cause failure of deformable models
if the initial estimation of the boundary by MRF is not closed, and it may also yield
oversmoothed boundaries.

We propose a new framework to combine the MRF-based and the deformable
model-based segmentation methods. To tightly couple the two models, we construct
a graphical model to represent the relationship of the observed image pixels, the
true region labels and the underlying object contour. Exact inference in the graphical
model is intractable because of the large state spaces and the couplings of model
variables. To tackle this problem we use a variational inference method to seemingly
decouple the graphical model into two simpler models: one extended MRF model
and one probabilistic deformable model. Then we obtain the MAP solution in the
original model by solving the MAP problems of the two simpler models iteratively
and incrementally. In the extended MRF model, the true region labels are estimated
using the BP algorithm in a band area around the estimated contour from the proba-
bilistic deformable model, and the result in turn guides the probabilistic deformable
model to an improved estimation of the contour.

3 Our Method

The goal of our segmentation method is to find one specific region with a smooth and
closed boundary. A seed point is manually specified and the region containing it is
then segmented automatically. Thus, without significant loss of modeling generality,
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we simplify the MRF model and avoid possible problems caused by segmenting
multiple regions simultaneously.

In this section, we first briefly review MRFs and deformable models, define the
notation, and then introduce our hybrid framework.

3.1 MRF-Based Segmentation

MRF models are a special case of undirected graphical models. They are often used
for image analysis, because of their ability to capture the context of an image (i.e.,
dependencies among neighboring image pixels) and deal with the noise.

A typical MRF model for image segmentation, as shown in Fig. 1, is a graph with
two types of nodes: observable nodes (shaded nodes in Fig. 1, representing image
pixel values) and hidden nodes (clear nodes in Fig. 1, representing region labels).
The edges in the graph depict the relationships among the nodes.

Let n be the number of the hidden/observable states (i.e., the number of pixels in
the image). A configuration of the hidden layer is:

x = (x1, ..., xn), xi ∈ L, i = 1, ..., n

where L is a set of region labels, such as L = {inside, outside}.
Similarly, a configuration of the observable layer is:

y = (y1, ..., yn), yi ∈ D, i = 1, ..., n

where D is a set of pixel values, e.g., gray values 0–255.
The relationship between the hidden states and the observable states (also known

as local evidence) can be described by the potential (or compatibility) function:
φ(xi, yi), which is often a conditional Gaussian to handle the image noise; the rela-
tionship between the neighboring hidden states is described by the second potential
function: ψ(xi, xj), which usually penalizes differences between the states to keep
region smoothness. The detailed definitions will be discussed later.

Now the segmentation problem can be viewed as a problem of estimating the
MAP solution of the MRF model:

xMAP = arg max
x

P (x|y) (1)

y (image pixels)

x (region labels)

Fig. 1. MRF model
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where
P (x|y) ∝ P (y|x)P (x) ∝

∏

i

φ(xi, yi)
∏

(i,j)

ψ(xi, xj)

As mentioned previously, the exact MAP inference in MRFs is computation-
ally infeasible, and various techniques have been used for approximating the MAP
estimation. In our method, we use the BP algorithm. The MRF model parameters
(i.e., the parameters in the potential functions) are learned using the EM algorithm.
However, in the presence of multiple regions in the image, the automatic determina-
tion of the number of regions and the initial guess of the parameters could be diffi-
cult. More importantly, like other region-based methods, MRFs do not take account
of object shape and may generate rough edges and even holes inside the objects.

3.2 Deformable Model-Based Segmentation

Many deformable model-based methods have also been used in image segmentation.
A deformable model is usually a parameterized geometric primitive, whose defor-
mation is determined by geometry, kinematics, dynamics, and other constraints (e.g.,
material properties, etc.) [21]. Snakes [13], a special case of deformable models, are
a parametric contour:

Ω = [0, 1] → �2

s→ c(s) = (x(s), y(s))

where s is the parametric domain and x and y are the coordinate functions. The
energy of the contour:

E(c) = Eint(c) + Eext(c) =
∫

Ω

ω1(s)
∣

∣

∣

∣

∂c
∂s

∣

∣

∣

∣

2

+ ω2(s)
∣

∣

∣

∣

∂2c
∂s2

∣

∣

∣

∣

2

+ F (c(s))ds

where ω1(s) and ω2(s) control the “elasticity” and “rigidity” of the contour, and
F is the potential associated to the external forces. The final shape of the contour
corresponds to the minimum of this energy.

To minimize the above energy term, one can use the discretized first-order
Lagrangian dynamics equation:

ḋ + Kd = f

where d is discretized version of c, K is the stiffness matrix calculated from ω1(s)
and ω2(s), and f is the generalized force vector.

Image gradient forces are usually used to attract a deformable model to edges.
However, when far from the true boundary, the model often gets attracted to spuri-
ous image edges. Balloon forces have been introduced to solve this problem [14].
Namely, the deformable model is considered a balloon, which is inflated by an addi-
tional force and stopped by strong edges. The initial contour need no longer be close
to the true boundary. Mathematically, a force along the normal direction to the curve
at point c(s) with some appropriate amplitude k is added to the original forces.
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f ′ = f + k−→n (s)

Deformable models can also be viewed in a probabilistic framework [17]. The
internal energy Eint(c) leads to a Gibbs prior distribution of the form:

P (c) =
1
Zi

exp(−Eint(c)) (2)

while the external energy Eext(c) can be converted to a sensor model with condi-
tional probability:

P (I|c) =
1
Ze

exp(−Eext(c)) (3)

where I denotes the image, and Eext(c) is a function of the image I.
The deformable models can now be fitted by solving the MAP problem:

cMAP = arg max
c

P (c|I) (4)

where
P (c|I) ∝ P (c)P (I|c)

One limitation of the deformable model-based method is its sensitivity to
image noise, a common drawback of edge-based methods. This may result in
the deformable model being “stuck” in a local energy minimum of a noisy image.

3.3 Integrated Model

As shown in (1) and (4), both the MRF-based and the deformable model-based seg-
mentations can be viewed as the MAP estimation problems. In previous work [20],
these two models were loosely coupled. Our new framework uses the graphical
model theory to tightly couple the two models. This is achieved, as depicted in
Fig. 2, by adding a new hidden state to the traditional MRF model to represent the
underlying contour.

Fig. 2. Integrated model
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In the new model, the segmentation problem can also be viewed as a joint MAP
estimation problem:

(c,x)MAP = arg max
c,x

P (c,x|y)

where
P (c,x|y) ∝ P (y|x)P (x|c)P (c)

To define the joint distribution of the integrated model, we model the image like-
lihood term P (y|x) as:

P (y|x) =
∏

i

φ(xi, yi)

identical to the traditional MRF model. The second term P (x|c), modeling the dis-
tribution of the region labels conditioned on the contour, is defined as:

P (x|c) =
∏

(i,j)

ψ(xi, xj)
∏

i

P (xi|c)

where we incorporated a shape prior c to constrain the region labels x, in addition to
the original Gibbs distribution.

Since we only segment one specific region at one time, we need only consider
the pixels near the contour, and label them either inside or outside the contour.

We model the dependency between the contour c and the region labels x using
the softmax function:

P (xi = inside|c) =
1

1 + exp(−dist(i, c))
(5)

P (xi = outside|c) = 1− P (xi = inside|c) (6)

induced by the signed distance of pixel i from the contour c:

dist(i, c) = sign(i)min
s∈Ω
‖loc(i)− c(s)‖ (7)

where sign(i) = 1 if pixel i is inside contour c, sign(i) = −1 when it is outside,
and loc(i) denotes the spatial coordinates of pixel i.

Lastly, the prior term P (c), as in (2), can be represented as a Gibbs distribution
when the shape prior is given by a parametric contour c.

Despite the compact graphical representation of the integrated model, the exact
inference in the model is computationally intractable. One reason for this is the large
state space size and the complex dependency structure introduced by the Gibbs dis-
tribution of the prior P (c). The second reason is the existence of loops in the graph-
ical model, which preclude polynomial-time inference. To deal with these problems
we propose an approximate, yet tractable, solution based on structured variational
inference.
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3.4 Approximate Inference Using Structured Variational Inference

Structured variational inference techniques [22,23] consider parameterized distribu-
tion which is in some sense close to the desired posterior distribution, but is easier
to compute. Namely, for a given image y, a distribution Q(c,x|y, θ) with an addi-
tional set of variational parameters θ is defined such that the Kullback–Leibler (KL)
divergence between Q(c,x|y, θ) and P (c,x|y) is minimized with respect to θ:

θ∗ = arg min
θ

∑

c,x

Q(c,x|y, θ) log
P (c,x|y)

Q(c,x|y, θ)

The dependency structure of Q is chosen such that it closely resembles the
dependency structure of the original distribution P . However, unlike P the depen-
dency structure of Q must allow a computationally efficient inference.

In our case we define Q by decoupling the MRF model and the deformable
model components of the original integrated model in Fig. 2. The original distrib-
ution is factorized into two independent distributions: an extended MRF model QM

with variational parameter a and a probabilistic deformable model QD with varia-
tional parameter b (Fig. 3). The extended MRF model means we have an additional
layer to the traditional MRF model to deal with the shape prior, and the probabilistic
deformable model means the contour is not fitted to the image directly, but to the
probabilistic label image.

Because QM and QD are independent,

Q(c,x|y,a,b) = QM (x|y,a)QD(c|b)

According to the extended MRF model, we have:

QM (x|y,a) ∝ QM (y|x)QM (x|a)

QM (y|x) =
∏

i

φ(xi, yi)

Fig. 3. Decoupled models



A Graphical Model Framework for Image Segmentation 51

QM (x|a) =
∏

(i,j)

ψ(xi, xj)
∏

i

P (xi|ai)

Hence,
QM (x|y,a) ∝

∏

i

φ(xi, yi)
∏

(i,j)

ψ(xi, xj)
∏

i

P (xi|ai) (8)

On the other hand, the probabilistic deformable model yields:

QD(c|b) ∝ QD(b|c)QD(c)

QD(b|c) =
∏

i

P (bi|c)

leading to
QD(c|b) ∝

∏

i

P (bi|c)QD(c) (9)

The optimal values of the variational parameters θ = (a,b) are obtained by
minimizing the KL-divergence. It can be shown, using e.g., [24], that the optimal
parameters θ∗ = (a∗,b∗) should satisfy the following equations:

log P (xi|a∗
i ) =

∑

c

QD(c|b∗) log P (xi|c) (10)

log P (b∗i |c) =
∑

xi∈L

QM (xi|y,a∗) log P (xi|c) (11)

Notice that the inference solutions, (8) and (9), together with the parameter opti-
mizations, (10) and (11), form a set of fixed-point equations. Solution of this fixed-
point set yields a tractable approximation to the intractable original posterior.

Since the state space of c (all possible contour configurations in the image plane)
is too large, (10) is still intractable. We simply use the winner-take-all strategy and
approximate QD(c|b) as a delta function:

Q′
D(c|b) =

{

1 if c = arg max
c

QD(c|b)

0 else

and (10) can be simplified to:

P (xi|ai) = P (xi|c) (12)

where c = arg max
c

QD(c|b).

3.5 Algorithm Description

The variational inference algorithm for the hybrid MRF-DM model can now be
summarized as:
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Initialize contour c;
while (error > maxError) {

1. Calculate a band area B around c. Perform remaining steps inside B;
2. Calculate P (xi|ai) based on (12) using c;
3. Estimate the MRF-MAP solution QM (xi|y, a) based on (8) using P (xi|ai);
4. Calculate log P (bi|c) based on (11) using QM (xi|y, a);
5. Estimate the DM-MAP solution QD(c|b) based on (9) using log P (bi|c);

}

Steps 2 and 4 follow directly from (12) and (11). The details of steps 1, 3, and 5
are discussed in Sect. 4.

4 Implementation Issues

4.1 Solve MRF-MAP with EM and BP

Step 3 of our algorithm solves the MAP problem in the extended MRF model. The
EM algorithm is used to estimate both the MAP solution of region labels x and the
parameters of the model (i.e., the parameters in the potential functions).

Particularly, in E step, the MAP solution of region labels x is estimated based
on current parameters. Unlike most of the previous work mentioned in Sect. 2, we
solve this MRF-MAP estimation problem using the BP algorithm. BP is an inference
method proposed by Pearl [8] to efficiently estimate Bayesian beliefs in the network
by the way of iteratively passing messages between neighbors. It is an exact inference
method in the network without loops. Even in the network with loops, the method
often leads to good approximate and tractable solutions [25].

There are two variants of the BP algorithm: sum–product and max–product. The
sum–product message passing rule can be written as:

mij(xj) =
∑

xi

Ψij(xi, xj)Φi(xi)
∏

k∈ℵ(i)\j

mki(xi)

The max–product has analogous formula, with the marginalization replaced by the
maximum operator. At convergence:

xiMAP = arg max
xi

Φi(xi)
∏

j∈ℵ(i)

mji(xi)

According to our extended MRF model the compatibility functions are:

Φi(xi) = φ(xi, yi)P (xi|ai)

Ψij(xi, xj) = ψ(xi, xj)

We again note the difference from a traditional MRF model, due to the incorporated
shape prior. P (xi|ai) is calculated in step 2 of the algorithm. φ(xi, yi) and ψ(xi, xj)
can be calculated using current MRF parameters.
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In this model we assume the image pixels are corrupted by white Gaussian noise:

φ(xi, yi) =
1

√

2πσ2
xi

exp
(

− (yi − µxi
)2

2σ2
xi

)

On the other hand, to penalize differences between the neighboring labels (i.e., to
keep local region smoothness),

ψ(xi, xj) =
1
Z

exp
(

δ(xi − xj)
σ2

)

where δ(x) = 1 if x = 0; δ(x) = 0 if x �= 0, σ controls the similarity of neighboring
hidden states, and Z is a normalization constant.

As shown in step 1 in our algorithm, belief propagation is restricted to a single
band of model variables around the current contour estimates. A reason for this is
that, in practice, we only need to care about the statistics of pixels near the boundary.
More importantly, the banded inference significantly speeds up the whole algorithm.
Although convergence of the banded algorithm is not guaranteed, in our experiments,
the BP algorithm does converge, usually in only one or two iterations.

In M step, the MRF parameters are updated based on the MAP solution of the
region labels x using the following equations:

µl =

∑

i

QM (xi = l|yi, ai)yi

∑

i

QM (xi = l|yi, ai)

σ2
l =

∑

i

QM (xi = l|yi, ai)(yi − µl)2

∑

i

QM (xi = l|yi, ai)

where l ∈ {inside, outside}.

4.2 Probabilistic Deformable Model

In step 5, according to (3), we use the negative log term,− log P (b|c), as the external
energy in the deformable model. Given this “label image” energy landscape, the
image force is simply ∇(log P (b|c)). With the additional balloon forces, this leads
to the discretized first-order Lagrangian dynamics equation:

ḋ + Kd = ∇(log P (b|c)) + k−→n (s)

We note that this formulation is different from that of [20] where the deformable
model is fitted to a binary label image obtained from the MAP configuration of x.
In our method, we use a probabilistic measurement of the label of each pixel as
specified in (11).

Finally, following the definition in (5)–(7), we note that the gradient of the cou-
pling energy at pixel i,∇(log P (b|c)), can be shown to be:

∂ log P (b|c)
∂c

= −∂ log P (b|c)
∂loc(i)
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5 3D Image Segmentation

Increasing availability of high-resolution 3D image data using modalities such as
magnetic resonance (MR) and computed tomography (CT) has prompted the need
for 3D segmentation approaches. However, 3D image segmentation remains an
extremely difficult problem, due to the complex topology of 3D objects, the massive
data, and demanding computational algorithms. Many 3D approaches are often 2D
in nature (i.e., applying the 2D algorithm slice by slice to the 3D volume data [26]).
The lack of interaction among individual slice solutions, however, leads to results
that are inferior to true 3D-based solutions [27].

In this section, we generalize our framework to 3D image segmentation based
on the integration of 3D MRFs and deformable surface models. The proposed
method is a true 3D method that fully exploits the structure of the 3D data, result-
ing in improved object segmentation. The generalization is straightforward using the
graphical model representation, and the variational inference in the graphical model
also leads to computationally more efficient solutions, which, in the 3D case, is still
of main concern.

A 3D MRF model is shown in Fig. 4. The hidden nodes are positioned at the
vertices of a regular 3D grid of the same size as the volume data (Fig. 4 left). Each
hidden node xi is connected to six neighboring hidden nodes (more neighbors can be
connected by adding diagonals in the grid) and one observable node yi (Fig. 4 right).
Again, the observable nodes represent the voxel values of the 3D volume data and
the hidden nodes represent the region labels of corresponding voxels.

As to the deformable models, Finite-Element Method (FEM)-based balloon mod-
els [27] and Polygonal Geometrically Deformed Model (GDM) [28] are commonly
used for representation of 3D surfaces and segmentation of volume data.

Similar to the 2D case, a new hidden node representing the underlying bound-
ary surface is added to the 3D MRF model (Fig. 5 left, only one pair of voxel/label
nodes is drawn for simplicity). We again use the structured variational inference tech-
nique to seemingly decouple the integrated model into two simpler models (Fig. 5
right): one extended 3D MRF model with shape prior constraints and one probabilis-
tic deformable surface model.

The 3D algorithm is similar to the 2D one. However, the expansion process
of the 3D balloon model far away from the true boundary can be time-consuming
and needs frequent reparametrization, and often suffers from local energy minima in

Fig. 4. 3D MRF model
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y (image voxels)

x (region labels)

c (deformable 
surface)

y (image voxels)

x (region labels)

a (variational 
parameters)

c (deformable 
surface)

b (variational 
parameters)

Fig. 5. Integrated and decoupled models

noisy images. An interactive initialization procedure or a learned shape prior would
be helpful. When there is no shape prior, one can use the 3D MRF segmentation
algorithm alone to generate an initial region segmentation and apply the Marching
Cubes algorithm [29] to the 3D belief image to generate an initial surface. March-
ing Cubes is an algorithm for constructing triangle models of constant density sur-
faces from discrete volume data. The resulting surface representation is suitable for
the FEM-based balloon model. The rest of the 3D algorithm is a straightforward
generalization of the 2D one.

6 Experiments

6.1 2D Synthetic Images

The initial study of properties and utility of our method was conducted on a set of
synthetic images. The images were synthesized in a way similar to [7]. In [7], the
64×64 perfect images contain only two gray levels representing the object (gray
level is 160) and the background (gray level is 100) respectively. In our experiments,
we made the background more complicated by introducing a gray level gradient.
The gray levels of the background are increasing from 100 to 160, along the normal
direction of the object contour (Fig. 6a). Figure 6b shows the result of a traditional
MRF-based method. The object is segmented correctly, however some regions in the
background are misclassified. On the other hand, the deformable model fails because
of the leaking from the high-curvature part of the object contour, where the gradient
in the normal direction is too weak (Fig. 6c). Our hybrid method, shown in Fig. 6d,
results in a significantly improved segmentation.

We next generated a test image (Fig. 6e) by adding Gaussian noise with mean
0 and standard deviation 60 to Fig. 6a. The result of the MRF-based method on the
noisy image (Fig. 6f) is somewhat similar to that in Fig. 6b, which shows the MRF
can deal with image noise to some extent. But significant misclassification occurred
because of the complicated background and noise levels. The deformable model
either sticks to spurious edges caused by image noise or leaks (Fig. 6g) because
of the weakness of the true edges. Unlike the two independent methods, our hybrid
algorithm, depicted in Fig. 6h, correctly identifies the object boundaries despite the
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a b c d

e f g h

Fig. 6. Experiments on 2D synthetic images

excessive image noise. For visualization purposes we superimpose the contour on
the original image (Fig. 6a) to show the quality of the result in Fig. 6g and h.

6.2 2D Medical Images

Experiments with synthetic images in Sect. 6.1 outlined some of the benefits of our
hybrid method. The real world images usually have significant, often nonwhite noise
and contain multiple regions and objects, rendering the segmentation task a great deal
more difficult. In this section we show results of applying our method to real medical
images on which we can hardly get satisfying results with either the MRF-based or
the deformable model-based methods alone.

In the following comparisons, we manually specified the inside/outside regions to
get an initial guess of the parameters for the MRF-only method. For the deformable
model method, we started the balloon model at several different initial positions and
use the best results for the comparison. On the other hand, our hybrid method is
significantly less sensitive to the initialization of the parameters and the initial seed
position.

Figure 7a shows a 2D MR image of the left ventricle of the human heart.
Figure 7b is the result of the MRF-based method. While it is promising, the result
still exhibits rough edges and holes. Figure 7c depicts the result of the deformable
model-based method. Although we carefully chose the magnitude of the balloon
forces, parts of the contour begin to leak others stick to spurious edges. Our hybrid
method, started from the initial contour shown in Fig. 7e, generated better result
(Fig. 7d). One of the intermediate iterations is shown in Fig. 7f. The corresponding
external energy in the band area is depicted in Fig. 7g (image intensities are pro-
portional to the magnitude of the energy), showing a more useful profile than the
traditional edge energy −|∇(Gσ ∗ I)|2 shown in Fig. 7h.
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Fig. 7. Experiments on 2D medical images (1)

Fig. 8. Experiments on 2D medical images (2)

Figure 8a is an ultrasound image. The MRF gets rough edges and holes in the ob-
jects (Fig. 8b) while the deformable model cannot escape a local minimum (Fig. 8c).
Our hybrid method eliminates the rough edges and holes caused by the MRF while
outlining the region more accurately than the deformable model (Fig. 8d).

Finally, Figs. 9a and 10a are both examples of difficult images with complicated
global properties, requiring the MRF-based method to automatically determine the
number of regions and the initial values of the parameters. Figure 9b is obtained by
manually initializing the MRF model. Our method avoids this problem by creating
and updating an MRF model locally and incrementally. The images are also difficult
for deformable models because the boundaries of the objects to be segmented are
either high-curvature (Fig. 9a) or low-gradient (Fig. 10a). Figure 9c exemplifies the
oversmoothed deformable models. Our method’s results, shown in Figs. 9d and 10b,
do not suffer from either of the problems.

6.3 3D Synthetic Images

Our 3D method was also first experimented on a set of synthetic images. The per-
fect image contains two gray levels representing the object (gray level is 160) and
the background (gray level is 100), respectively. Gaussian noise with mean 0 and
standard deviation 60 is added to the whole image to generate the test image.
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a b

c d

Fig. 9. Experiments on 2D medical images (3)

a b

Fig. 10. Experiments on 2D medical images (4)

The first experiment intended to show the advantages of the true 3D method over
the 2D slice-based method. In this experiment, we generated a 100× 100× 100 3D
image containing a ball-like object. Figure 11a shows several slices of the perfect
image. Our test image is generated by cutting out a quarter of the pie-like object
from the 50th frame and adding the Gaussian noise (Fig. 11b). The segmentation
results by 2D MRFs and 3D MRFs are shown in Fig. 11c, d. Both models handled
noise successfully. The 3D MRF model obviously recovered the pie-like object in
the 50th frame by retaining region smoothness in the direction perpendicular to the
frame. The 2D MRF model cannot achieve this due to the lack of interaction between
neighboring frames. The boundary of the results from 3D MRFs also look smoother.

The second experiment was performed on a 64 × 64 × 64 volume containing a
“5”-like object similar to Fig. 6a. The thickness of the object is 8 (i.e., frames 29
to 36 contain the object). Besides the zero mean Gaussian noise, extra noise with
mean 160 is also added to a part of the two successive frames 32 and 33. The test
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a. Perfect image slices (Frame 30, 40, 49, 50, 51, 60, 70)

b. Corrupted Image slices

c. 2D MRFs segmented slices

d. 3D MRFs segmented slices

Fig. 11. Experiments on 3D synthetic images (1)

a. noisy slices (Frame 29 36)

b. 2D MRF segmentation slices (error = 3.98%)

c. 3D MRF segmentation slices (error = 2.79%)

d. 3D MRF + DM segmentation slices (error = 1.62%)

Fig. 12. Experiments on synthetic 3D images (2)

image slices are shown in Fig. 12a. The results of 2D MRFs are shown in Fig. 12b.
Each slice looks different from others, especially for the two frames with extra noise.
The slices in Fig. 12c (results of 3D MRFs), however, are smoother and similar to
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their neighbors, except for the first and last frames, which suffered more interference
from the background. These two outermost frames are improved by coupling the DM
with the 3D MRF model, and other frames are also slightly smoother (Fig. 12d). The
average error rates of the three methods are 3.98%, 2.79%, and 1.62%.

6.4 3D Medical Images

Experiments with synthetic images in Sect. 6.3 outlined the advantages of both the
3D method over the 2D method and the hybrid method over the MRF-only method.
In this section, we show experimental results of applying our methods to 3D medical
images. We do not show the results of the slice-based method with 2D MRFs as in
previous experiments mainly because this method is sensitive to initialization and
we cannot get satisfying results on these medical images. While our 3D method also
needs manual initialization when the shape prior is not given, the slice-based method
requires manual initialization for almost each single slice.

We first test our algorithms on simulated brain MRI data from BrainWeb [30].
The database contains simulated brain MRI data based on two anatomical models:
normal and multiple sclerosis. For both of these, full 3D data volumes have been
simulated using three sequences (T1-, T2-, and proton-density (PD)-weighted) and
a variety of slice thicknesses, noise levels, and levels of intensity nonuniformity. We
segmented the white matter from three different normal brain data volumes using the
hybrid method. Figure 13a shows a slice from the ground truth data of the white mat-
ter. Figure 13d is the result from our hybrid method. The second column of Fig. 13
shows the segmentation results on T1 image without noise and intensity nonunifor-
mity (RF inhomogeneity). The segmented white matter is slightly thicker than the
results from the ground truth, because some of the grey matter is misclassified due to
its similar grey value to the white matter. Same misclassification can be observed in

a. Ground truth image slice b. T1 image slice c. Noisy T1 image slice

e. Result on T1 image f. Result on noisy T1 image

Fig. 13. Experiments on 3D medical images (1)
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a. Test image slice b. 3D MRFs only c. 3D MRFs + DM

d. Upper - right part of b e. Upper - right part of c

Fig. 14. Experiments on 3D medical images (1)

the third column, which is the segmentation result on T1 image with 9% noise and
40% intensity nonuniformity. One possible solution to the misclassification problem
is using the 3D MRF-only algorithm to do a multiregion segmentation first.

Finally, we show some results on a real medical image [31], which is an MR
image of a head with the skull partially removed to reveal the brain. Figure 14a is one
of the slices from the volume. The results of our methods are shown in Fig. 14b, c. To
show the difference between the two algorithms (i.e., the effect of adding deformable
models), the upper-right parts of Fig. 14b, c are magnified in Fig. 14d, e. The arrows
show that some incorrect patches are eliminated by the deformable fitting process.
Surface smoothness can be easily controlled by tuning the parameters in the stiffness
matrix. Because the white matter itself is a complicated object with high curvature,
the parameters are usually chosen according to experts’ opinion.

7 Conclusions

We proposed a new framework to combine the MRF-based and the deformable
model-based segmentation methods. The framework was developed under the aus-
pices of the graphical model theory allowing us to employ a well-founded set of sta-
tistical inference and learning techniques. In particular, we employed the variational
inference method, an approximate, computationally efficient solution, to otherwise
intractable inference of region boundaries. Experimental results on both synthetic
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and real 2D images and 3D volumes show that the hybrid methods outperforms both
the MRF-based and the deformable model-based methods using only homogeneous
constraints.
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Digital Topologies on Graphs

Alain Bretto

Summary. In this chapter we focus on the relationship between graph theory and topology.
Topologies on vertices of graphs became much more essential in topology, with the devel-
opment of computer science, especially with the development of computer graphic and im-
age analysis. Digital topology is the study of the topological properties of digital images. In
most of the literature a digital image has been endowed with a graph model; the vertices be-
ing the points of the image, and the edges giving the connectivity between the points. This
has led to the investigation of topology on graph [7–12]. We study compatible topologies on
graphs, (here compatibility is to be understood as connectivity). We describe some properties
of these particular topological spaces. We discuss the relation between T0-spaces (which play
an important role) and other compatible topologies on graph. We develop some applications
to digital geometry. Other results related to compatible topologies on graphs is developed.

Key words: Graph theory, Topology, Computer sciences, Image processing

1 Introduction

Because data structures in computer sciences are enumerable, the only set which can
be used in this case are discrete or digital. Roughly speaking discrete or digital is
used in this chapter as opposed to continuous. For instance the space R

n, n ≥ 1 is
where we do both continuous geometry and continuous topology, while the space
Z

n, n ≥ 1 is an example of a space where we do both digital geometry and digi-
tal topology. Graphs have particular significance in computational sciences because
of their presence in applications such as solid modeling, molecular biology, com-
puter graphic, image analysis, etc. The most popular approach to define a discrete
analog of the topologies of the Euclidean space is the graph-theoretic approach. Ac-
tually a digital d-space is the set of d-tuple of the real Euclidean d-space having
integer coordinates. Such a point is called a digital point. Moreover a digital space is
equipped with a graph structure based on the local adjacency relations. So the graph

A. Bretto: Digital Topologies on Graphs, Studies in Computational Intelligence (SCI) 52, 65–82 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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theoretic approach gives directly the connectedness but it is difficult to handle some
topological concepts such as continuity, compacity and so on. Hence some important
problems arise:

– What are the topological or geometrical properties of a discrete set?
– What does connected component mean for a digital set?
– What does continuous mapping mean between two discrete spaces?
– Which other properties has a digital set?

Discrete topological spaces, can be defined as a topological space such that any point
has a smallest neighborhood. These types of topological spaces were first study by
Alexanfroff [1]. Some applications of these topologies have been developed, where
topological spaces are used to model discrete situations:

– In “Graphs, topologies and simple games” J. M. Bilbao [2] uses discrete topo-
logical spaces on a finite set to study the existence of connected coalitions in a
simple game. Thanks to the digital topology he gives some sufficient conditions
for the existence of winning coalitions.

– Baik and Miller [3] give a topological approach for testing equivalence in het-
erogeneous relational databases.

– By introducing “pretopology” M. Brissaud [4] models preference structures in
economy.

We can find other applications in data structures, logics, complexity theory....
Any digital image can be interpreted as a graph, (it is “embedded” in a discrete space)
whose vertices are the pixels (geometric points and grey level intensity) and whose
edges define nearness and connectedness. Because a digital image can be viewed as
a discrete set, hence a graph, it is interesting to study the problems enumerate below.
For this we have to define a notion of compatibility between graphs and topologies.
The natural way to define the compatible topologies on graphs is the connectedness:
Let G = (V,E) be a graph and let T be a topology on V , T is called a compatible
topology on V if it satisfies the following conditions:

(a) For every connected induced subgraph G(V ′), V ′ is connected for T .
(b) For each V ′ ⊆ V connected set for T , the induced subgraph G(V ′) is a con-

nected graph.

Another important problem in image processing is the digitalization: let a subset A
of R

n, n ≥ 1 and let f : R
n −→ Z

n be a map which associates to A a discrete set
f(A). This map is called a digitizer. From this definition some questions arise about
the continuity of f or f−1, the structural properties of f , etc. Consequently compat-
ible topologies have been intensively studied and there are a lot of contributions by
many authors [5–15].

In the first part of this chapter we investigate compatible topologies on graphs.
We study the relation between connectedness and Alexandroff space. We show that



Digital Topologies on Graphs 67

any locally finite Alexandroff topology can be “embedded” into a T0-locally finite
Alexandroff topology such that both have the same connected set. We use these re-
sults to characterize the graphs which have compatible topologies on the set of ver-
tices. We introduce an example of compatible topology on a bipartite graph and we
study exhaustively this one. In a second part, to illustrate the first part, we give some
applications to digital plane and digital spaces; others applications of compatible
topologies will be given.

2 Definitions

All graphs are finite or infinite, undirected without isolated vertices. We consider that
these graphs are simple (graphs without no loop or multiple edge). We denote them
G = (V ;E). Given a graph G, we denote the neighborhood of a vertex x by Γ (x),
i.e. the set formed by all the vertices adjacent to x:

Γ (x) = {y ∈ V, {x, y} ∈ E}

The number of neighbors of x is the degree of x (denoted by dx). For all x ∈
V , if dx is finite one will say that G is a locally finite graph. A chain (or path)
from x0 to xk is a sequence of distinct vertices: V = {x0, x1, . . . , xk} such that
{x0x1, x1x2, . . . , xk−1xk} ⊆ E, where xixi+1, stand for the edge {xi, xi+1}. The
number of edges is the length of this chain. A graph is connected if for all x, y ∈ V
there exists a chain from x to y. A cycle is a chain such that the first vertex and the
last vertex are the same. We denote a cycle with a length equal to n by Cn. Let Cn

be a cycle, a chord of Cn is an edge linking two nonconsecutive vertices of Cn. A
circle is a cycle without chord. A graph G′ = (V ′;E′) is a subgraph of G when it is
a graph satisfying V ′ ⊆ V and E′ ⊆ E. If V ′ = V then G′ is a spanning subgraph.
An induced subgraph (generated by A) G(A) = (A;U), with A ⊆ V and U ⊆ E is
a subgraph such that for x, y ∈ A: {x, y} ∈ E implies {x, y} ∈ U . An orientation of
G = (V ;E) is a preorder, (reflexive and transitive relation) on its vertices such that
{x; y} ∈ E if and only if x < y or y < x. A simple undirected graph G = (V ;E)
is a comparability graph if there exists an orientation of G. A graph G = (V,E) is
bipartite if V = V1 ∪ V2 with V1 ∩ V2 = ∅ and every edge joins a vertex of V1 to a
vertex V2. We denote a bipartite graph by G = (V1, V2;E).

A topology on a set X is a nonempty collection T of subsets of X , called open,
such that any union of open sets is open, any finite intersection of open sets is open,
and both X and the empty set are open. A set together with a topology on it is called
a topological space. We denote a topological space by (X, T ).

Let (X, T1) and (X, T2 be two topological spaces. If any open set of T1 is a an
open set of T2 one will say that T1 is more thin than T2 and one will denote that by



68 A. Bretto

T1 ≤ T2. A neighborhood of x ∈ X is a subset V of X containing an open subset
which contains the point x. The set of neighborhoods of a point x will be denoted by
V(x), or VT (x).

Suppose we have a topology on a set X , and a collection of neighborhoods V ′ =
(V ′

i )i∈I of a point x ∈ X such that any neighborhood of x contains an element of
V ′. Then V ′ is called a fundamental system of neighborhood of x. Suppose we have
a topology on a set X , and a collection O of open sets such that every open set is a
union of members of O: then O is called a base for the topology and elements of O
are called basic open sets.

A family U = {Ui} of (open) subsets of X is an (open) covering if each element
in X belongs to at least one Ui ∈ U . The closure of A ⊆ X is φ(A) = {x ∈
X;∀ V ∈ V(x) V ∩A �= ∅}.

(X,P(X)) is a topological space called discrete topological space, we will de-
note it by (X,D). The set {X, ∅} = G defines a topology on X , we call it trivial
topology.

Let V ′ be a subset of X and let T be a topology on X; the collection of sets
T ′ = {V ′ ∩ U ;U ∈ T } defines a topology on X ′ called induced topology. We will
call subspace of X this topological space.

A topological space (X, T ) is connected if X cannot be expressed as the union of
two disjoint nonempty open sets. A connected subset of X is a connected subspace
of X . The connected component C(x) of x is the biggest connected subset of X
containing x. {C(x), x ∈ X} is a closed partition of X .

X is totally disconnected if C(x) = {x} for every x ∈ X . A topological space
X is path connected, if given any two points a and b in X , there exists a continuous
path between them, that is a continuous map γ : [0, 1] −→ X such that γ(0) = a
and γ(1) = b, where [0, 1] is equipped with the usual topology.

A topological space X is locally connected if there exists a fundamental system
of connected neighborhood for every x ∈ X . An Alexandroff topology is one in
which every intersection of open sets is open. So in an Alexandroff space any point
x has a smallest neighborhood denoted by N (x), or NT (x): it is a open set.

A topological space (X, T ) is a T0-space if, for any distinct points x, y ∈ X if
x ∈ φ({y}), then y �∈ φ({x}).

Let G = (V ;E) be a graph and let T be a topology on V , T is called a compat-
ible topology on G if it satisfies the following conditions:

(a) For every connected induced subgraph G′(V ′), V ′ is connected for T .
(b) For each V ′ ⊆ V connected set for T , G(V ′) is a connected graph.

3 Connectivity and Alexandroff Spaces

We give first a preliminary lemma.

Lemma 1 Let (X, T ) be a topological space,

(1) {x, y} is connected if and only if y ∈ φ({x}) or x ∈ φ({y}).
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(2) If (X, T ) is connected then for any open covering U , one has the following prop-
erty: for any x, y ∈ X either there exists V1 ∈ U such that x, y ∈ V1, or there
exists n ≥ 2 and V1, V2, . . . , Vn ∈ U such that x ∈ V1 \ V2, y ∈ Vn \ Vn−1 and
satisfying: Vi ∩ Vj �= ∅ if and only if |i− j| ≤ 1.

Moreover if (X, T ) is an Alexandroff space then:

(a) {x, y} is connected if and only if x ∈ N (y) or y ∈ N (x).
(b) For any x, if x ∈ A ⊆ N (x), then A is connected; so (X, T ) is locally con-

nected. In particular for any x, C(x) is a set both open and closed.
(c) If X is connected, then X is path connected.

Proof. (1) Let us suppose that {x, y} is nonconnected. There exists O1, O2 ∈ T
with O′

1 = O1 ∩ {x, y} and O′
2 = O2 ∩ {x, y} such that O′

1 ∩O′
2 = ∅ and {x, y} =

O′
1 ∪ O′

2. So y �∈ O1 (for example) and O1 is an open neighborhood of x in X .
Consequently x �∈ φ({y}). In the same way x �∈ O2, so O2 is an open neighborhood
of y, that leads to y �∈ φ({x}).

Suppose that x �∈ φ({y}) and y �∈ φ({x}). There exists an open neighborhood
V of x (respectively, open neighborhood W of y) such that y �∈ V (respectively, x �∈
W ). So {x, y} = (V ∩{x, y})∪ (W ∩{x, y}) and (V ∩{x, y})∩ (W ∩{x, y}) = ∅.

(2) See [16], ex 11, p 188.
Suppose now that (X, T ) is an Alexandroff space.

(a) Because y ∈ N (x)⇐⇒ x �∈ φ(y) and (1).
(b) A =

⋃

y∈A{x, y} and any {x, y} is connected by (a).
(c) It is well known that if (X, T ) is locally connected then C(x) is open.

Suppose that X is connected. Take the open covering U = {N (x), x ∈ X}. Let
us suppose u, v ∈ X; X being connected we have u ∈ N (x0), . . . ,N (xi), . . . ,
N (xn) � v, withN (xi)∩N (xj) �= ∅ if and only if |i− j| ≤ 1. So it is sufficient to
prove that if x ∈ N (y) then there exists a path from x to y: γ(t) = x if 0 ≤ t < 1
and γ(1) = y is suitable because [0, 1] ⊆ γ−1(N (x)) and [0, 1] ⊆ γ−1(N (y)). ��

3.1 Generation of Alexandroff Spaces

If T is an Alexandroff topology then it is easy to see that the map x �−→ N (x)
satisfies

(a) x ∈ N (x).
(b) y ∈ N (x) involves N (y) ⊆ N (x).

Conversely if we have a map N verifying the conditions (a), (b), then there exists
an Alexandroff topology T where the open sets containing x are defined in the
following way: {Y,N (x) ⊆ Y }. T is the Alexandroff topology associated to N .
The following assertion characterizes generated Alexandroff space.
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Theorem 1 Let (X, T ) be a topological space, and N (x) =
⋂

V ∈V(x) V , x ∈ X:

(i) N produces an Alexandroff topology on X , denoted by AT .
(ii) AT = inf{T ′, T ′ Alexandroff topology and T ≤ T ′} (AT is the Alexandroff

topology generated by T ).
(iii) T is T0 ⇐⇒AT is T0 ⇐⇒ the map N is injective.
(iv) The connected sets with two elements are the same for T and AT .
(v) φT ({x}) = φAT ({x}) for all x ∈ X .

(vi) AT can have fewer connected sets than T .

Proof. (i) It is obvious that x ∈ N (x). Let us show that if y ∈ N (x) then N (y) ⊆
N (x): let t ∈ N (y): for every W ∈ V(x), W open set, we have y ∈ W (because
y ∈ N (x)); W being open set is a neighborhood of y, hence t ∈W so t ∈ N (x).

(ii) One has T ≤ AT because if V ∈ VT (x) then V ⊇ N (x), so V ∈ VAT (x).
Moreover if T ≤ T ′, T ′ an Alexandroff topology, for all V ∈ VT (x) one has
V ⊇ NT ′(x); consequently N (x) ⊇ NT ′(x), so AT ≤ T ′.

(iii) If y ∈ N (x) then for all V ∈ VT (x), y ∈ V . T being T0 there exists
W ∈ V(y) such that x �∈W , so x �∈ N (y).

(iv) If {x, y} is a connected set for AT , it is a connected set for T because
T ≤ AT .

If {x, y} is a nonconnected set for AT , we have x �∈ φAT ({y}) and y �∈
φAT ({x}), so y �∈ N (x) and x �∈ N (y). Consequently there exists V ∈ VT (x) such
that y �∈ V and there exists W ∈ VT (y) such that x �∈W , that leads to x �∈ φT ({y})
and y �∈ φT ({x}), and {x, y} is a nonconnected set for T .

(v) Easy from the fact that y ∈ φT ({x}) if and only if x ∈
⋂

V ∈VT (y) V .
(vi) For instance if T is the usual topology on R thenAT is the discrete topology.

��

Theorem 2 gives more precisions about the generation of Alexandroff spaces.

Theorem 2 Let (X, T ) be a Alexandroff space, there exists T ′ such that:

(i) T ≤ T ′ and T ′ is an T0 Alexandroff space.
(ii) T and T ′ have the same connected sets.

(iii) T ′ is a minimal element of the set:
M = {S, S is an T0 Alexandroff topology on X, T ≤ S, and S, T
have the same connected subsets}.

Proof. (i) Let us define the map N : X −→ P(X), with N (x) the smallest neigh-
borhood of x. For V ∈ P(X) one denotes N−1(V ) = {x,N (x) = V }. So
X =

⋃

V ∈P(X)N−1(V ) is a partition of X . For every nonempty element of this
partition:

– If N−1(V ) = {x} one has N (x) = V , and one choose N ′(x) = V .
– If #(N−1(V )) ≥ 2, by the well-ordered axiom, V can be well ordered, so one

takes the smallest element ω of V and one sets N ′(ω) = V . Now suppose
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that N ′(x) is defined for any x < α, (x, α ∈ V ), one takes N ′(α) = V
\{t, t < α}.

It is obvious that x ∈ N ′(x) ⊆ N (x), for all x ∈ X .
Let us suppose y ∈ N ′(x), either N ′(x) = N (x) and N ′(y) ⊆ N ′(x), or

N ′(x) � N (x) = V , N ′(x) = V \{t, t < x}, V being well ordered, we have
y ≥ x. Consequently N ′(y) = V \{t, t < y} ⊆ N ′(x) = V \{t, t < x}. That is to
say N ′(y) ⊆ N ′(x). One can conclude that N ′ generates an Alexandroff topology
T ′, and T ≤ T ′. Now suppose x �= y:

– If N (x) �= N (y) then x �∈ N (y) or y �∈ N (x); “a fortiori” y �∈ N ′(x) or
x �∈ N ′(y).

– If N (x) = N (y) = V then N ′(x) = V \{t, t < x} and N ′(y) = V \{t, t < y}.
Moreover x < y or y < x: Consequently y �∈ N ′(x) or x �∈ N ′(y).

So (X, T ′) is a T0 Alexandroff space and T ≤ T ′.
(ii) Let us show that T and T ′ have the same connected sets. It is obvious that

any connected set for T ′ is a connected set of T .
If {x, y} is connected for T , it is equivalent to say that y ∈ N (x) or x ∈ N (y)

(from Lemma 1). Without losing generality, suppose y ∈ N (x). We have two cases:

– If N ′(x) = N (x) then {x, y} is a connected set for T ′.
– If N ′(x) � N (x) = V then N ′(x) = V \{t, t < x}. If y ∈ N ′(x) then
{x, y} will be a connected set for T ′. If y �∈ N ′(x) then y < x, consequently
x ∈ N ′(y) and {x, y} is a connected set for T ′.

Let us now suppose that C is a connected set for T , from the proof of Lemma 1, it
is path connected. Let us suppose x, y ∈ C with y ∈ N (x). From above {x, y} is a
connected set for both topologies, so {x, y} is a connected set for T ′. From lemma 1
one can conclude that C is a connected set for T ′.

(iii) If S ∈ M and S ≤ T ′ one has NT ′(x) ⊆ NS(x) ⊆ NT (x); and if
y ∈ NS(x) necessarily x �∈ NS(y), a fortiori x �∈ NT ′(y); but y ∈ NS(x) implies
{x, y} is connected for S, hence {x, y} is connected for T ′, so since x �∈ NT ′(y),
necessarily y ∈ NT ′(x): consequently NS(x) ⊆ NT ′(x). ��

Proposition 1 Let (X, T ) be a T0-Alexandroff space, T is maximal in the set of
topologies on X for which the connected sets are the same as for T .

Proof. Let us suppose that T < T ′, there is an open set U for T ′ which is not an
open set for T . So there exists x ∈ X such that U ∈ VT ′(x) and U �∈ VT (x).
Consequently U �⊇ N (x) and there exists y ∈ N (x) such that y �∈ U :
{x, y} is a connected set for T .
T is a T0 space, so x �∈ N (y) which means that y �∈ φT (x), consequently

y �∈ φT ′(x). Moreover y �∈ U implies x �∈ φT ′(y) therefore {x, y} is not a connected
set for T ′. ��
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4 Dual Alexandroff Topologies

Let (X, T ) be an Alexandroff space. Because any intersection of open sets is an
open set, the closed sets of T are the open sets of a topology on X . We denote this
topology by T̃ , and we will call it the dual topology of T . If T = T̃ one say that T
is self-dual.

Theorem 3 provides us with a way of building dual Alexandroff topologies.

Theorem 3 Let σ : X −→ P(X) be a map verifying:

– ∀ x ∈ X , x ∈ σ(x).
– y ∈ σ(x) implies σ(y) ⊆ σ(x).

There exists two Alexandroff topologies associated with σ:
T for which NT (x) = σ(x), and T ′ for which φT ′({x}) = σ(x).

– T and T ′ are dual: T ′ = T̃ .
– T is T0 if and only if T̃ is T0 if and only if σ is injective.
– T and T̃ have the same connected sets, hence these topologies have the same

connected components.

Proof. Let T the Alexandroff topology associated to σ. The map ψ, (see Sect. 3.1):
P(X) −→ P(X) defined by ψ(A) =

⋃

x∈A σ(x) is a closure operator. Hence this
closure operator generates a topology T ′.

Let us suppose that U an open set for T . For all x ∈ U σ(x) ⊆ U , so U =
⋃

x∈U σ(x) = ψ(U) and U is a closed set for T ′. If F is a closed set for T ′ we have
ψ(F ) = F =

⋃

x∈F σ(x). Consequently x ∈ F implies that σ(x) ⊆ F . Hence F is
a open set for T . So T ′ = T̃ .

Suppose that T is T0, so y ∈ N (x) implies x �∈ N (y), but N (x) = σ(x), so
y ∈ σ(x) means that x �∈ σ(y) and T̃ is T0. The converse can be obtained in the
same way. T and T̃ have the same connected sets because the open sets for T are
the closed sets for T ′. ��

Proposition 2 characterizes self-dual topologies.

Proposition 2 If T = T̃ then B = {N (x)}x∈X is a partition of X .
If (Ai)i∈I is a partition of X , B = {Ai, i ∈ I} is a base of a self-dual Alexan-

droff topology T = T̃ .
Moreover X is connected if and only if T = G.

Proof. Let us suppose T = T̃ , N (x) is the smallest open set containing x and we
have N (x) = φ({x}). If t ∈ N (x) ∩N (y) then N (t) ⊆ N (x); t ∈ φ({x}) implies
x ∈ N (t) therefore N (x) ⊆ N (t). Likewise N (y) ⊆ N (t): B is a partition of X .

Let B = {Ai, i ∈ I} be a partition: obviously B is a base of one topology
denoted by T . Moreover if x ∈ Ai, Ai is the smallest open set containing x. So T is
an Alexandroff topology and N (x) = Ai.

Let us now show that φ({x}) = N (x).
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Ai is a closed set, consequently φ({x}) ⊆ Ai = N (x). We have for all y ∈
N (x), N (y) = N (x), x ∈ N (y) and y ∈ φ({x}). Consequently φ({x}) = N (x)
and T = T̃ .

Any N (x) is both a closed and open set, so X is a connected set if and only if
for every x ∈ X , N (x) = X if and only if T = G. ��

Examples

The trivial topology is self-dual, it is connected. The discrete topology is also self-
dual, it is totally disconnected if cardX ≥ 2

We give now some results on the topological lattice of dual topologies on the
set X .

Proposition 3 Let (X, T ) be an Alexandroff space.

– sup(T , T̃ ) is the self-dual Alexandroff topology associated with the partition
{A(x)}x∈X with A(x) = {y,N (y) = N (x)}.
Moreover T is T0, if and only if sup(T , T̃ ) = D, (D being the discrete
topology).

– inf(T , T̃ ) is the self-dual Alexandroff topology associated with the partition
{C(x), x ∈ X} where C(x) is the connected component of x for T ; so T is
connected if and only if inf(T , T̃ ) = G, (G being the trivial topology).

Proof. Let us S = sup(T , T̃ ); for any x ∈ X , N (x) ∩ φ({x}) = A(x) is an open
neighborhood of x for S. Moreover N (x) ∩ φ({x}) = A(x) implies that A(x) =
{y,N (y) = N (x)}, (because any neighborhood of x is a neighborhood of y and
conversely). So {A(x)}x∈X is a partition of X and from the last proposition we
have a self-dual Alexandroff topology U associated with it. We have T ≤ U because
A(x) ⊆ N (x) for all x ∈ X . N (x) is a neighborhood of x for U , therefore T ≤ U ,
hence T̃ ≤ Ũ = U ; which means that S ≤ U . A(x) is an open set of S and since
U ≤ S, so S = U .
T is T0 if and only if N is injective if and only if A(x) = {x} if and only if

S = D.
Let C be the self-dual topology associated with the partition {C(x), x ∈ X};

each C(x) is both open and closed for T (from Theorem 3 or Lemma 1), so C(x) is
open set for T̃ , hence C ≤ T and C ≤ T̃ .

Assume now E ≤ T and E ≤ T̃ ; every open set U for E is an open and closed
set for T . So for all x ∈ U we have C(x) ⊆ U , (because C(x) is a subset of any
open–closed set containing x). As a consequence U =

⋃

x∈U C(x) is an open set for
C. So E ≤ C. ��

In Sect. 5 we study compatible topologies on a graph G = (V ;E).

5 Compatible Topologies on Graph

Recall, [15], that a topology T on the set of vertices V of a graph G = (V ;E)
is compatible if the connected subspaces of (V, T ) are the same as the connected
induced subgraphs of G = (V ;E).
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Some preliminary results are given by:

Lemma 2 Let T be a compatible topology on G, we have the following properties:

(a) φ({x}) ∪
⋂

V ∈V(x) V = {x} ∪ Γ (x).
(b) T is T0 if and only if φ({x}) ∩

⋂

V ∈V(x) V = {x}.
(c) If T is an Alexandroff topology then φ({x})∪N (x) = {x}∪Γ (x) and {x}∪Γ (x)

is a connected neighborhood of x, and T is locally connected.

Proof. (a) Let us suppose that y ∈ φ({x}), x �= y, so {x, y} is a connected set for
T . Hence {x, y} ∈ E and y ∈ {x} ∪ Γ (x).

Let us suppose that y ∈
⋂

V ∈V(x) V , one has for all V ∈ V(x), y ∈ V , so
x ∈ φ({y}) and y ∈ {x} ∪ Γ (x).

Now suppose that y ∈ Γ (x), {x, y} ∈ E and {x, y} is a connected set for T ,
from Lemma 1: y ∈ φ({x}), or x ∈ φ({y}): consequently for all V ∈ V(x), y ∈ V
and y ∈

⋂

V ∈V(x) V .
(b) Suppose that T is T0. Let us suppose y ∈ φ({x}) ∩

⋂

V ∈V(x) V , so x ∈
φ({y}) and y ∈ φ({x}), consequently x = y and φ({x}) ∩

⋂

V ∈V(x) V = {x}.
(c) Indeed N (x) =

⋂

V ∈V(x) V . ��

An important result can be inferred from Theorem 4. The assertion (b) is to be found
in [15].

Theorem 4 Let T be a compatible topology on G, we have the following properties:

(a) If T is an Alexandroff topology then {x} ∪ Γ (x) is a neighborhood of x.
(b) If G is locally finite then {x} ∪ Γ (x) is a neighborhood of x.

Proof. For x ∈ X the connected component of X \ Γ (x) are {x} and (Ci)i∈I .
{x} ∪ Ci is not a connected set (by construction), so x �∈ φ(Ci). From this, there
exists Vi ∈ V(x) such that Vi ∩ Ci = ∅. Let us set W :=

⋂

i∈I Vi, one has for all
i ∈ I , W ∩ Ci = ∅ so W ⊆ {x} ∩ Γ (x).

(a) If T is an Alexandroff topology then W ∈ V(x) and {x} ∩ Γ (x) is a neighbor-
hood of x.

(b) If G is locally finite then #(I) ≤ #(Γ (Γ (x))) < ℵ0, so I is a finite set. Conse-
quently W ∈ V(x) and {x} ∪ Γ (x) is a neighborhood of x. ��

Corollary 1 If G is locally finite then T is an Alexandroff topology.

Proof. Because for all x, (V ∩ ({x}∪Γ (x)))V ∈V(x) is a fundamental neighborhood
system of x with a finite number of elements, (the number of subsets of {x}∪Γ (x) at
most), consequently the intersection of these elements is the smallest neighborhood
of x. ��

Problem 1. Which are the compatible topologies such that {x} ∪ Γ (x) is neighbor-
hood of x?

The following result can be found in [14, 15]. The proof given here is shorter.
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Theorem 5 Let G = (V,E) be a graph, the following properties are equivalent:

(i) G has a compatible topology T .
(ii) G is a comparability graph.

Proof. Under hypothesis (i), and from Theorem 1 there exists a compatible T0-
Alexandroff topology, A0, such that T ≤ A0. Let ≤ the binary relation defined
by x ≤ y if and only if y ∈ φ({x}). This relation is a partial order relation, so

– If {x, y} ∈ E, then {x, y} is a connected set for A0, (by (iv) from Theorem 1)
consequently y ∈ φ({x}) or x ∈ φ({y}), and x ≤ y or y ≤ x.

– If x ≤ y, y ∈ φ({x}), so {x, y} is a connected set for T , so for A0, and
{x, y} ∈ E.

Under hypothesis (ii), let ≤ be a preorder on V verifying: [x ≤ y or y ≤ x] if and
only if {x, y} ∈ E. To this preorder one can associate an Alexandroff topology A
defined by: φ({x}) = {y ∈ V, x ≤ y}. So {x, y} is a connected set forA if and only
if y ∈ φ({x}) or x ∈ φ({y}), if and only if y ≤ x or x ≤ y. ��

Proposition 4 links compatible topologies and generated Alexandroff topologies.

Proposition 4 Let T be a compatible topology, we denote by A the Alexandroff
topology generated by T and the T0 Alexandroff topology by A0. We have the fol-
lowing properties:

– A, Ã and A0, Ã0 are compatible.
– sup{A0, Ã0} = D (not compatible if #(E) > 1).
– inf{A, Ã} = inf{A0, Ã0} = G. (not compatible if #(E) > 2).

Proof. Obvious from Theorems 1–3. ��

Proposition 5 If T is a T0 compatible Alexandroff topology, it is maximal in the
compatible topologies.

Proof. Obvious from Proposition 1. ��

Proposition 6 Let G = (V,W ;A) be a locally finite connected bipartite graph, one
has:

(a) If #(A) = 1 there are three compatible topologies on V : G,A = {∅, V, V ∪W}
and T̃ = {∅,W, V ∪W}.

(b) If #(A) ≥ 2 there are two compatible topologies:
(1) the Alexandroff topology A associated with NA(x) = {x} for x ∈ V and
NA(x) = {x} ∪ Γ (x) for x ∈W .

(2) the dual Alexandrov topology Ã with NÃ(x) = {x} for x ∈ W and
NÃ(x) = {x} ∪ Γ (x) for x ∈ V .

These two topologies are T0.

Proof. (a) Obvious.
(b) By Corollary 1 any topology U on the set of vertices of G is an Alexandroff
topology. From Theorem 4, {x} ∪ Γ (x) is a neighborhood of x. Hence {x} ∪ Γ (x)
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contains an open set containing x; the graph being a bipartite graph and U being a
compatible topology this open set is either {x} ∪ Γ (x) or {x}. By connectivity, if
x ∈ V and N (x) = {x} then N (y) = {y} for all y ∈ V . This topologies are T0.
Let us x �= y and {z, y} ∈ E: if x ∈ φ(y) then y �∈ φ(x), otherwise x, y, z should
be an odd cycle. ��

To illustrate this, we give some examples.

6 Examples

Let G = (V ;E) be the bipartite graph defined by: V = Q ∪ {∞} and {q, y} ∈ E if
and only if q ∈ Q and y =∞ (Q being the set of rational numbers).

6.1 Construction of Alexandroff Topologies

Let A∞ be the Alexandroff topology defined by: N (∞) = {∞} and N (q) =
{q,∞}. So φ({∞}) = V (because for all q ∈ Q, V ∈ V(q) implies ∞ ∈ V , it
is equivalent to Q ⊂ φ({∞})); φ({q}) = {q}. The open set are ∅ and the subsets
A ⊆ V such that∞ ∈ A.

It goes without saying that A∞ is a T0 topology.
V is a connected set for A∞ because {∞} is connected and φ({∞}) = V .

6.2 Construction of Ã∞

φ({q}) = {q} and φ({∞}) = V , so Ñ (q) = {q} and Ñ (∞) = V . Consequently
the open sets of Ã∞ are: ∅, V and the subsets A ⊆ Q.

So we have: sup{A∞, Ã∞} = D, because A∞ is T0. inf{A∞, Ã∞} = G,
because V is a connected set for A∞.

6.3 Connected Sets of A∞ and Ã∞

By hypothesisN (q) = {q,∞} is a connected set. Moreover if {x, y} is a connected
set then x ∈ N (y) or y ∈ N (x). Consequently, if x �= y there exists just one
possibility {x, y} = {x,∞}. Any connected set A with #(A) > 1 contains ∞.
Indeed, let A be a connected set, A is path connected; for x, y ∈ A so there exists a
path from x to y, this one contains∞.

6.4 Construction of Other Topologies Having the same Connected Sets
with two Elements

Let T be a compatible topology, (not necessarily an Alexandroff topology) on V . For
this topology the subspace Q is totally disconnected: indeed, if A ⊆ Q is a connected
set for the induced topology on Q, A is a connected set for the topology T on V . But
∞ �∈ A, so the cardinality of A is less or equal to one.

Conversely if T is a totally disconnected topology on Q, one can associate two
topologies with T :
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For the first one topology T∞, the set of open sets from this topology is: {∅} ∪
{U ∪ {∞}, U open set of T }.
For the second T ∗

∞, the set of open sets from this topology is: {V } ∪
{U, U openset of T }. (These topologies are not necessarily Alexandroff
topologies).

We have a lot of choices for T , for example one can choose the discrete topology D
(which gives T∞ = A∞ from Sect. 6.1), or the topology T+ whose an open base is
given by [x, y[, x, y ∈ Q, or the topology T− whose an open base is given by ]x, y],
x, y ∈ Q, or the usual topology T0 on Q (associated with the usual distance on Q),
or the p-adic topology (associated with the p-adic distance on Q), etc.

7 Applications to Digital Topology

The main focus of digital topology and digital geometry is to determine geometrical
and topological properties between the discrete nature of a computational objects and
their theoretical representation in terms of continuous space R

n. To use the geomet-
rical and topological notions in digital topology and digital geometry it is necessary
to define an analog to the continuous space R

n, (n > 1).

7.1 Digital Spaces

Usually there is two ways to define a digital space: Let x = (x1, x2, x3, . . . , xp) be
a point of Z

p. The (3p − 1)-neighbors of x are all points y = (y1, y2, y3, . . . , yp) ∈
Z

p such that:
max |xi − yi| = 1

The discrete space with a dimension equal to n, (n ≥ 2) defined thanks to the
equation below will be denote by (d∞, n)-space.

In the case where p = 2 we obtain the “8-connected” digital plane, see Fig. 1.
The 2p-neighbors of x are all points y = (y1, y2, y3, . . . , yp) ∈ Z

p such that:
p
∑

i=1

|xi − yi| = 1

The discrete space with a dimension equal to n, (n ≥ 2) defined thanks to the equa-
tion below will be denote by (d1, n)-space.

In the case where p = 2 we obtain the “4-connected” digital plane, see Fig. 2.
It is well known that an induced graph of a comparability graph is a comparabil-

ity graph. So if a graph Γ contains an induced subgraph which is not a comparability
graph then Γ is not a comparability graph. In [5] we showed that:

Proposition 7 Let Γ = (V ;E) be a graph with a compatible topology on V . For
every induced subgraph H the topology restricted to the vertices of H is a compatible
topology on H .

Proof. From remark above and Theorem 5. ��
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Fig. 1. A piece of 8-connected discrete plane

Fig. 2. A piece of 4-connected discrete plane

In Fig. 3 we see that the 8-connected digital plane is not a comparability graph be-
cause we are able to display an induced subgraph which is not a comparability
graph. From Theorem 5 we find a generalization of the well known CHASSERY’
theorem [5, 7, 17, 18]:

Theorem 6 The (d∞, n)-space has no compatible topology.

The next theorem can be found in [5, 17]

Theorem 7 The (d1, n)-discrete space has exactly two compatible topologies.

Proof. It is easy to see that the (d1, n)-discrete space is a bipartite graph, (is the
Cartesian product of n chains [5]), hence from Proposition 6 the result follow. ��
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Fig. 3. Circle with an odd length

Fig. 4. An example of a part of an abstract complex. The points have a dimension equal to
0, the lines are cells with a dimension equal to 1 and the square are cells with a dimension
equal to 2

7.2 Cell Complexes

An abstract cell complex, is a triplet C = (E,B,Dim) where E is a set of ab-
stract elements called cells, B ⊆ E × E is an antisymmetric, irreflexive and tran-
sitive binary relation and with a dimension function DimE −→ I ⊆ N such that
Dim(e) < Dim(e′) for all pairs (e, e′) ∈ B. The plane R

2 can be see as abstract
cell complex, see Fig. 4.

From the abstract cell complex which stands for the plane R
n, n ≥ 1, we can

construct a graph in the following way:

– The set of vertices V is the set of cells.
– Two vertices, x, y ∈ V form an edge if and only if either (x, y) ∈ B or

(y, x) ∈ B.



80 A. Bretto

Fig. 5. Induced subgraph associated with a part of the cell complex of the plane

Fig. 6. Orientation of graph Fig. 5

By putting a black point on the cells with a dimension equal 2, a small black point
on the cells with a dimension equal 1, and a grey point on the cells with a dimension
equal 0, we obtain the graph of Fig. 5.

This graph is denoted by G(C); the associate graph with a cell complex. The
binary relation B being transitive, graph Fig. 5 is a comparability graph. An orien-
tation is given Fig. 6. We will denote by H(x) the horizontal neighbors of a small
black point x, and by V (x) the vertical neighbors of a small black point x.

Lemma 3 Let T be a T0-Alexandroff compatible topology with G(C), C being the
cell complex associated with the plane. For all x black point or grey point we have:
either NT (x) = {x} ∪ Γ (x) or NT (x) = {x}.
Sketch of Proof. If NT (x) �= {x} one can show thank to T0 hypothesis than 6 of the
8 neighbors of x are in NT (x) and one can conclude that the two others neighbors
are equally in NT (x).

Let T be a T0-Alexandroff compatible topology and let x be a grey point, we
have two cases.

(a) We suppose that NT (x) = {x}. One can show that for all grey point y we
have NT (y) = {y}, and for all y small black points we have NT (x) = H(x).
Consequently for all black points y we have NT (x) = {x} ∪ Γ (x).
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(b) If NT (x) = {x} ∪ Γ (x) in the same way we show a similar result.

So from this remark and by applying Theorems 2–5 we have:

Theorem 8 There are exactly two T0 Alexandroff compatible topologies, T1 and T2
on the graph associated with the cell complex of the plane.

These two topologies are described in the following way:

– Let x be a black point, NT1(x) = {x} ∪ Γ (x) and NT2(x) = {x}.
– Let x be a small black points, NT1(x) = H(x) NT2(x) = V (x).
– Let x be a grey points NT1(x) = {x} and NT2(x) = {x} ∪ Γ (x).

We are now showing that this two topologies are homeomorphic, (but not equal).

Theorem 9 The two T0 Alexandroff compatible topologies, T1 and T2 are homeo-
morphic.

Proof. Settle:

– The set of grey points W = {(2n, 2m + 1), n,m ∈ Z}.
– The set of small black points SB = {(n,m),m + n = 2k, k ∈ N

∗, n,m ∈ Z}.
– The set of black points B = {(2n + 1, 2m), n,m ∈ Z}.

Let us define the following mapping:

φ : (Z2; T1) −→ (Z2; T2)

(x, y) �−→ (y, x)

It is a symmetry given Fig. 7. We have to show that

φ(NT1((x, y))) = NT2((y, x)).

(0;0)

Fig. 7. Symmetry of the plane
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(1) Let (x, y) be a point of SB. Because x + y = 2k = y + x it is easy to see that if
(x, y) ∈ SB then (y, x) ∈ SB. Consequently

φ(NT1((x, y)))=φ({(x+ε, y), ε = 0,±1})={(y, x+ε = 0,±1)}=NT2((y, x)).

(2) Let (x, y) = (2n; 2m + 1) ∈W , hence (y, x) = (2n + 1; 2m) ∈ B, so:

φ(NT1((x, y))) = φ({(x, y)}) = {(y, x)} = NT2((y, x)).

Moreover the identity is not an homeomorphism becauseNT1((x, y)) �= NT2((y, x)).
��
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Part II

Graph Similarity, Matching, and Learning for High
Level Computer Vision and Pattern Recognition



How and Why Pattern Recognition and Computer
Vision Applications Use Graphs

Donatello Conte, Pasquale Foggia, Carlo Sansone and Mario Vento

Summary. In this chapter, we present a review of graph-based methodologies for pattern
recognition and computer vision, by considering three different points of view: the algorithms,
the applications, and the performance evaluation. Preliminarily, a survey of graph-matching
approaches, including a synthetic description of a plenty of algorithms and their inspiring
rationale, is discussed. Afterward, a detailed taxonomy of pattern recognition applications
using graphs is organized, motivating, for each of them, why graph-based approaches can be
profitably used and how a specific technique can be exploited. Finally, a section reporting
the state-of-the-art of benchmarking activities is present, together with a discussion of the
performance issues of well-known graph-based algorithms.

1 Introduction

Starting from the late 1970s, graph-based techniques have been proposed as a
powerful tool for pattern representation and classification. After the initial enthu-
siasm, graphs have been practically left unused for a long period of time and only
recently are obtaining a growing attention from the scientific community of pattern
recognition (PR) and computer vision.

Due to their expressive power, graphs are conquering a primary role as a smart
data structure for representing complex visual patterns, especially in structural meth-
ods, whose rationale is a vision of the objects as made of parts suitably connected
to each other. Under this assumption, nodes of the graphs, enriched with properly
defined attributes, can be thought as descriptors of the component parts of the ob-
jects, while the edges of the graphs represent the relationships between the parts.
The reason why the literature on graph-based approaches is so wide depends on
the fact that description schemes generally lead to a variety of graph representa-
tions differing from each other for the graph topology, the nature of the nodes and
edges (deterministic or stochastic), the type of the attributes (numeric values, sym-
bols, probabilities), etc. Of course, for each representation scheme, some methods
for comparing the obtained graph representations must be defined, so obtaining also
a variety of algorithms able to calculate exact or somewhat inexact correspondence
between graphs, or a sort of distance between them.
D. Conte et al.: How and Why Pattern Recognition and Computer Vision Applications Use Graphs, Studies in Computa-
tional Intelligence (SCI) 52, 85–135 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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The huge material available on graphs often discourages a researcher who in-
tends to use these smart and promising approaches; in other cases, the complexity
of this material is the main cause of unsuccessful attempts. The under-evaluation of
the complexity of the literature may suggest to the researcher a quick and superfi-
cial choice of an algorithm, because of the wrong convincement that almost all the
algorithms differ from each other for minor performance issues.

In the recent past some surveys of graph-based techniques have been published
(see for example [1]). Since they are mainly focused to presenting almost all the
existing algorithms (even if sometimes they are organized in a taxonomy), they
often result really useful only to experienced researchers of the field. The idea of
the present paper is the attempt of filling the “knowledge gap” existing between
the graph-based techniques and their use in PR applications. This is done by con-
sidering both the above-mentioned issues in successive sections of the paper, care-
fully bridging techniques and applications, retracing the history of almost all the PR
applications using graphs in the last decades.

In Sect. 2, a survey of graph-matching approaches, including a synthetic descrip-
tion of a plenty of algorithms with their inspiring rationale, is discussed. The sur-
vey groups similar approaches and algorithms in a few categories, each described in
terms of the underlying technique, purposely neglecting inessential algorithmic de-
tails. This is done for both the classes of exact and inexact graph-matching methods.
In a following subsection a commented bibliography is given, presenting for each
group of algorithms the most important papers, with the aim of explaining the main
differences among them, and reconstructing their publication sequence.

In Sect. 3 a detailed taxonomy of PR applications using graphs is organized;
this section highlights, for each application, why graph-based approaches can be
profitably used and how a specific technique can be exploited. The taxonomy is
organized so as to render more understandable by a practitioner of the field the rela-
tionship among the techniques and the applications, so as to help him to choose the
more suitable structural method using graphs. To complete the review, a final section
reports the state of the art of benchmarking activities, together with a discussion of
the performance issues of well-known graph-based algorithms. It is mainly orga-
nized in order to give general criteria for selecting the most effective algorithm for
dealing with the problem at hand, with respect to some common classes of graphs.

2 Graph-Matching Taxonomy

In this section we will present a review of the algorithms that have been proposed and
used in the PR field for the graph-matching problem. We have divided the matching
methods into two broad categories: the first contains exact matching methods that
require a strict correspondence between the two object being matched or at least
between subparts of them. The second category defines inexact matching methods,
where a matching can occur even if the two graphs being compared are structurally
different to some extent.
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2.1 An Introduction to Exact Graph-Matching Problems

Exact graph matching is characterized by the fact that the mapping between the nodes
of the two graphs must be edge-preserving in the sense that if two nodes in the first
graph are linked by an edge, they are mapped to two nodes in the second graph that
are linked by an edge as well.

Conceptually, the simplest form of graph matching is graph isomorphism (see
Fig. 1), where an exact structural correspondence is sought: there must be a bijective
mapping between the nodes of the two graphs that preserves the edges of both graphs.

A slightly weaker form of matching is subgraph isomorphism (see Fig. 2), that
requires the existence of an isomorphism between one of the graphs and a subgraph
of the other. In other words, one of the graphs may have extra nodes and extra edges
linking these new nodes to the rest. Subgraph isomorphism is often confused with
monomorphism, which is a little more relaxed matching: in monomorphism extra
edges in the larger graph are allowed also between nodes that do have a correspon-
dent in the smaller graph. In subgraph isomorphism, instead, one of the ends of the
extra edges must be an extra node. In other words, while isomorphism and subgraph
isomorphism impose a two-way constraint on the edges of the graphs, monomor-
phism imposes a one-way constraint.

A more robust form of graph matching is based on the computation of the maxi-
mum common subgraph (MCS - see Fig. 3), that is the largest subgraph of one of the
two graphs that is isomorphic to a subgraph of the other. This kind of matching allows
both graphs to have extra nodes and edges, but is also significantly more expensive
from a computational viewpoint.

Fig. 1. Definitions of graph and graph isomorphism
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Fig. 2. Definitions of subgraph isomorphism and monomorphism

Fig. 3. Definition of maximum common subgraph
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It has been demonstrated that the MCS problem is equivalent to the determina-
tion of the maximum clique (i.e., fully connected subgraph) in a so-called association
graph, encoding the possible mappings between the nodes of the two graphs being
matched; hence, many authors formulate the graph-matching algorithm in terms of
clique detection. A generalization of MCS is weighted graph matching (WGM),
where the edges of the graphs have a weight, and the goal is to find the common
subgraph with the largest total weight.

Because of its strict requirements, isomorphism is not very used in PR applica-
tions, where it is customary that the graphs representing different instances of a same
pattern have some structural differences due to noise or occlusions or to other causes.
Subgraph isomorphism, monomorphism, and MCS are generally used in PR for find-
ing an object, represented by a graph, as a part of a larger model graph (prototype),
or for detecting the parts shared by two objects, structurally represented by graphs.
Although, exact graph matching has exponential time complexity in the worst case.
However, in many PR applications the actual computation time can be still accept-
able, because of two factors: first, the kinds of graphs encountered in practice are
usually different from the worst cases for the algorithms. Second, node and edge
attributes can be used very often to reduce dramatically the search time.

2.2 A Commented Bibliography on Algorithms and Techniques for Exact
Graph Matching

The first attempts for reducing the computational complexity of graph matching were
aimed to define algorithms devised for special kinds of graphs. Among them, we find
algorithms for some common graph topologies, as trees (special cases of graphs),
proposed by Aho et al. in 1974 [2], planar graphs by Hopcroft and Wong in 1974 [3],
and bounded valence graphs by Luks in 1982 [4]). Despite the historical relevance,
this family of graph-matching algorithms can be used only in specific applicative
areas, where the graphs being matched always have a same predefined structure.

Most of the algorithms for exact graph matching are based on some form of tree
search with backtracking. The basic idea is that a partial match (initially empty) is
iteratively expanded by adding to it new pairs of matched nodes; the pair is chosen
using some necessary conditions that ensure its compatibility with the constraints
imposed by the matching type with respect to the nodes mapped so far, and usually
using also some heuristic condition to prune as early as possible unfruitful search
paths. Eventually, either the algorithm finds a complete matching, or it reaches a
point where the current partial mapping cannot be further expanded because of the
matching constraints. In this latter case the algorithm backtracks, i.e., undoes the
last additions until it finds a partial matching for which an alternative extension is
possible. If all the possible mappings that satisfy the constraints have already been
tried, the algorithm halts. Several different implementation strategies of this kind of
algorithm have been employed, differing in the order the partial matches are visited.
Probably the simplest is depth-first search that requires less memory than others and
lends itself very well to a recursive formulation; it is alsoknown as branch and bound.
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A nice property of such algorithms is that they can be very easily adapted to take into
account the attributes of nodes and edges in constraining the desired matching, with
no limitations on the kind of attributes that can be used. This is very important for
PR applications where often attributes play a key role in reducing the computational
time of the matching. The first important algorithm of this family is due to Ullmann,
in 1976 [5], still widely used today. Also the approach proposed by Schmidt and
Druffel in 1976 [6] adopts the same strategy, with the addition of a preprocessing
that creates an initial partition of the graph nodes on the basis of the distance matrix,
to reduce the search space. Another interesting monomorphism algorithm based on
backtracking has been proposed by Ghahraman et al. in 1980 [7]; it prune the search
space, using a so-called netgraph obtained from the Cartesian product of the nodes of
two graphs being matched. Monomorphisms between these two graphs correspond
to particular subgraphs of the netgraph. A major drawback of the algorithm is that
the netgraph is represented using a matrix of size N2 ×N2, where N is the number
of nodes of the largest graph. Consequently, only small graphs can be reasonably
dealt with.

A more recent algorithm for both isomorphism and subgraph isomorphism is
the VF algorithm [8, 9]. The authors define a heuristic that is based on the analysis
of the sets of nodes adjacent to the ones already considered in the partial mapping.
This heuristic is fast to compute leading in many cases to a significant improve-
ment over Ullmann’s and other algorithms, as shown in [10, 11]. Successively, the
authors propose a modification of the algorithm [12,13], called VF2, that reduces the
memory requirement from O(N2) (that compares favorably with other algorithms)
to O(N) with respect to the number of nodes in the graphs, thus making the algo-
rithm particularly interesting for working with large graphs. One of the most recent
tree search methods for isomorphism has been proposed by Larrosa and Valiente
in 2002 [14]; the authors reformulate graph isomorphism as a constraint satisfac-
tion problem (CSP), a problem that has been studied very deeply in the framework
of discrete optimization and operational research. Thus the authors apply to graph
matching some heuristics derived from the CSP literature.

The backtracking approach has been applied also to problems different from
graph isomorphism and subgraph isomorphism. For instance, Durand et al. [15] have
used this approach to solve the maximal clique detection problem. Probably the most
interesting matching algorithm that is not based on tree search is Nauty, developed by
McKay in 1981 [16]. The algorithm deals only with the isomorphism problem, and
is regarded by many authors as the fastest isomorphism algorithm available today.
It uses some results coming from group theory for constructing the automorphism
group of each of the input graphs. From them, a canonical labeling is derived, so
that two graphs can be checked for isomorphism by simply verifying the equality of
their canonical forms. The equality verification can be done in O(N2) time, but the
construction of the canonical labeling can require an exponential time in the worst
case. In the average case this algorithm has quite impressive performance, although
in [11, 17] it has been verified that under some conditions it can be outperformed
by other algorithms like the above mentioned VF2. Furthermore, it does not lend
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itself very well to exploit node and edge attributes of the graphs, that in many PR
applications can provide an invaluable contribution to reduce the matching time.

Some matching algorithms are specifically aimed at reducing the cost of match-
ing one input graph against a large library of graphs, suitably preprocessed. Messmer
and Bunke proposed a very impressive algorithm in 1997 [18,19]. The algorithm, that
deals with isomorphism and subgraph isomorphism, in a preprocessing phase builds
a decision tree from the graph library. Using this decision tree, an input graph can
be matched against the whole library in a time that is O(N2) with respect to the
input graph size. An extension to MCS is presented in a paper by Shearer et al. in
1997 [20], further improved in [21].

Other two recent papers, by Lazarescu et al. in 2000 [22] and by Irniger and
Bunke in 2001 [23], proposed the use of decision trees for speeding up the matching
against a large library of graphs. In these cases, the decision tree is not used to per-
form the matching process, but only for quickly filtering out as many library graphs
as possible, applying then a complete matching algorithm only to the remaining ones.

2.3 An Introduction to Inexact Graph-Matching Problems

The stringent constraints imposed by exact matching are in some circumstances too
rigid for the comparison of two graphs. In many applications, the observed graphs
are subject to deformations due to several causes: intrinsic variability of the pat-
terns, noise in the acquisition process, presence of nondeterministic elements in the
processing steps leading to the graph representation, are among the possible reasons
for having actual graphs that differ somewhat from their ideal models.

So the matching process must accommodate the differences by relaxing, to some
extent, the constraints that define the matching type. Usually, in these algorithms
the matching between two nodes that do not satisfy the edge-preservation require-
ments of the matching type is not forbidden. Instead, it is penalized by assigning to
it a cost that may take into account other differences (e.g., among the correspond-
ing node/edge attributes). So the algorithm must find a mapping that minimizes the
matching cost.

Optimal inexact matching algorithms always find a solution that is the global
minimum of the matching cost so implying that if an exact solution exists, it will
be found. Hence they can be seen as a generalization of exact matching algorithms.
Optimal algorithms face the problem of graph variability, and they do not necessar-
ily provide an improvement of the computation time, usually resulting fairly more
expensive than their exact counterparts.

Approximate or suboptimal matching algorithms, instead, only ensure to find a
local minimum of the matching cost, generally not very far from the global one. Even
if an exact solution exists, they may not be able to find it and for some applications
this may not be acceptable, but the suboptimality of the solution is abundantly repaid
by a shorter, usually polynomial, matching time.

A significant number of inexact graph-matching algorithms base the definition of
the matching cost on an explicit model of the errors (deformations) that may occur
(i.e., missing nodes, etc.), assigning a possibly different cost to each kind of error.
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These algorithms are often denoted as error correcting or error tolerant. Another
way of defining a matching cost is to introduce a set of graph edit operations (e.g.,
node insertion, node deletion, etc.), each assigned a cost; the cheapest sequence of
operations needed to transform one of the two graphs into the other is computed, and
called graph edit cost.

Some of the inexact matching methods also propose the use of the matching cost
as a measure of dissimilarity of the graphs, e.g., for selecting the most similar in
a set of graphs, or for clustering. In some cases, the cost formulation verifies the
mathematical properties of a distance function (e.g., the triangular inequality); then
we have a graph distance that can be used to extend to graphs some of the algorithms
defined in metric spaces. Of particular interest is the graph edit distance, obtained if
the graph edit costs satisfy some constraints (e.g., the cost of node insertion must be
equal to the cost of node deletion).

Some papers demonstrates equivalences holding between the graph edit distance
and relevant graph-matching problems, as the graph isomorphism and subgraph iso-
morphism and MCS [24–28].

2.4 A Commented Bibliography on Algorithms and Techniques for Inexact
Graph Matching

Tree search with backtracking can also be used for inexact matching. In this case the
search is usually directed by the cost of the partial matching obtained so far, and by
a heuristic estimate of the matching cost for the remaining nodes. This information
can be used either to prune unfruitful paths in a branch and bound algorithm, or
also to determine the order in which the search tree must be traversed, as in the A*
algorithm. In this latter case, if the heuristic provides a close estimate of the future
matching cost, the algorithm finds the solution quite rapidly; but if this is not the
case, the memory requirement is considerably larger than for the branch and bound
algorithm.

The first tree-based inexact algorithm is due to Tsai and Fu, in 1979 [29], and
in an extended version in 1983 [30]. The paper introduces a formal definition of
error-correcting graph matching of attributed relational graphs (ARG), based on the
introduction of a graph edit cost, and defines a search method ensuring to find the
optimal solution. A more recent paper by Wong et al. in 1990 [31] proposes an im-
provement of the heuristic of Tsai and Fu for error-correcting monomorphism, taking
into account also the future cost of edge matching.

A similar approach is used in a paper by Sanfeliu and Fu in [32–34], where
the definition of a true graph edit distance is attempted, and a suboptimal method,
working in a polynomial time, for the distance computation is introduced. In a paper
of 1980, Gharaman et al. [35], propose an optimal inexact graph monomorphism
algorithm that is based on the use of branch and bound together with a heuristic
derived from the netgraph.

Interesting early papers are due to Shapiro and Haralick in 1981 [36] and later in
1985 [37], with algorithms for finding the optimal error-correcting homomorphism
and for evaluating the distance between two hypergraphs.
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Among the more recent proposals based on tree search we can cite the algorithm
using A*, for different purposes: Dumay et al. in 1992 [38], for evaluating a graph
distance and Berretti et al. in their 2000 and 2001 papers [39–41], for finding the
largest matching between two sets of nodes forming a bipartite graph, with the con-
straint that each node must be used at most once. A* search appears also in a recent
paper by Gregory and Kittler in 2002 [42], where a fast, simple heuristic is used that
takes into account only the future cost of unmatched nodes. The authors assume that
at least for small graphs the less accurate estimate of the future cost is abundantly
repaid by the time savings obtained in computing a less complicated heuristic.

Another recent inexact algorithm has been proposed by Cordella et al. in two
papers of 1996 and 1997 [43,44]. This algorithm deals with deformations by defining
a transformation model in which under appropriate conditions a subgraph can be
collapsed into a single node. The transformation model is contextual, in the sense
that a given transformation may be selectively allowed depending on the attributes
of neighboring nodes and edges.

Along the same lines, Serratosa et al. in 1999 [45,46] present an inexact matching
method that also exploits some form of contextual information. The authors define
a distance between function described graphs (FDG) that are ARGs enriched with
additional information relative to the joint probability of the nodes in order to model
with one FDG a set of observed ARGs. As in the case of exact approach, efficiently
inexact matching algorithms have been proposed for dealing with special, restricted
classes of graphs, as planar graphs and region adjacency graphs (RAGs). For planar
graphs, Rocha and Pavlidis [47] present an optimal algorithm for error-correcting
homomorphism, while in a paper by Wang and Abe (1995) [48], a distance between
RAGs is proposed, and is computed using a suboptimal algorithm. More recently,
Llados et al. in a 2001 paper [49] define a graph edit distance for RAGs using edit
operations that are devised to model common distortions in image segmentation; the
distance is computed using an optimal algorithm based on branch and bound.

The matching methods examined so far rely on a formulation of the matching
problems directly in terms of graphs. A radically different approach is to cast graph
matching, that is inherently a discrete optimization problem, so as to use one of the
many continuous, nonlinear optimization algorithms. The found solution needs to
be converted back from the continuous domain into the initial discrete problem by
a process that may introduce an additional level of approximation. Nevertheless, in
many application contexts this approach is very appealing because of its extremely
reduced computational cost that is usually polynomially dependent (and with a low
exponent) on the size of the graphs.

The first family of methods based on this approach uses relaxation labeling. One
of the pioneering works is due to Fischler and Elschlager in 1973 [50]. The basic idea
is that each node of one of the graphs can be assigned one label out of a discrete set
of possible labels, that determines which node of the other graph it corresponds to.
During the matching process, for each node there is a vector of the probabilities of
each candidate label, dynamically re-evaluated until the process converges to a sta-
ble solution. At this point, for each node the label having the maximum probability
is chosen. In 1989 Kittler and Hancock [51] provide a probabilistic framework for
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relaxation labeling, in which the update rules previously used for the probabilities are
given a theoretical motivation. In 1995, Christmas et al. [52] propose a method, based
on the theoretical framework of Kittler and Hancock, that is able to take into account
during the iteration process both node and edge attributes. Wilson and Hancock, in
1997 [53], extended the probabilistic framework by introducing a Bayesian consis-
tency measure, that can be used as a graph distance. An extension of this method
has been proposed by Huet and Hancock in 1999 [54]. This method also takes into
account edge attributes in the evaluation of the consistency measure.

Myers et al. [55] in 2000 propose a new matching algorithm that introduces the
definition of a Bayesian graph edit distance, approximated by considering indepen-
dently the supercliques of the graphs, so as to perform the computation in polynomial
time. Finally, in a recent paper (2001), Torsello and Hancock [56] propose the use of
relaxation labeling also for computing an edit distance between trees.

A recent method by Luo and Hancock [57] is based on a probabilistic model of
matching: the nodes of the input graph play the role of observed data while the nodes
of the model graph act as hidden random variables; the matching is then found by
using the expectation–maximization (EM) algorithm [58].

A different family of methods is based on a formulation of the problem as a
WGM problem that permits the enforcement of two-way constraints on the corre-
spondence. It consists in finding a matching, usually expressed by means of a match-
ing matrix M, between a subset of the nodes of the first graph and a subset of the
nodes of the second graph. The edges of the graphs are labeled with weights, that are
real numbers, usually between 0 and 1. The desired matching must optimize a suit-
ably defined goal function. Usually the problem is transformed into a continuous one
by allowing M elements to have continuous values so making the WGM problem a
quadratic optimization problem. An important limitation of this approach, from the
perspective of PR applications, is that nodes cannot have attributes and edges cannot
have other attributes than their weight. This restriction imposes a severe limit on the
use of the semantic information often available in real applications.

Among the first papers based on this formulation is the work by Almohamad
and Duffuaa in 1993 [59]. In this paper the quadratic problem is linearized and
solved using the simplex algorithm [60]. The approximate, continuous solution found
this way is then converted back into discrete form using the so-called Hungarian
method [60] for the assignment problem. Rangarajan and Mjolsness [61], in 1996,
proposed a method based on Lagrangian relaxation networks in which the constraints
on the rows and on the columns of the matching matrix are satisfied separately
and then equated through a Lagrange multiplier. Also in a 1996 paper, Gold and
Rangarajan [62] present the graduated assignment graph-matching (GAGM) algo-
rithm. In this algorithm a technique known as graduated nonconvexity is employed
to avoid poor local optima. Another approach is based on a theorem by Motzkin
and Straus that establishes a close relation between the clique problem and contin-
uous optimization. Namely, they proves that all the maximum cliques of a graph
correspond to maxima of a well-defined quadratic functional. In 1997, Bomze [63]
proposed a modified functional for which the correspondence holds in both senses.
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The papers by Pelillo and Jagota in 1995 [64, 65] propose a matching method
based on the above cited theorem and an implementation where the quadratic prob-
lem is solved by means of relaxation networks [66]. In [67] a unified framework
for relational matching based on the Bomze functional is presented. In 1999, Pelillo
et al. [68] introduced a technique to reduce the MCS problem between trees to a
clique problem and then solved it using replicator equations. Branca et al. [69] pro-
posed in 1999 an extension of the framework defined by Pelillo [67] that is able to
deal with a weighted version of the clique problem.

Several other inexact matching methods based on continuous optimization have
been proposed in the recent years, as the fuzzy graph matching (FGM) by Medasani
et al. [70, 71], that is a simplified version of WGM based on fuzzy logic. Another
recent approach, proposed by van Wyk et al. in 2002 [72, 73] is based on the theory
of the so-called reproducing Kernel Hilbert spaces (RKHS) for casting the matching
problem into a system identification problem; this latter is then solved by construct-
ing a RKHS interpolator to approximate the unknown mapping function.

Spectral methods are based on the following observation: the eigenvalues and
the eigenvectors of the adjacency matrix of a graph are invariant with respect to node
permutations. Hence, if two graphs are isomorphic, their adjacency matrices will
have the same eigenvalues and eigenvectors. Unfortunately, the converse is not true:
we cannot deduce from the equality of eigenvalues/eigenvectors that two graphs are
isomorphic. However, since the computation of eigenvalues/eigenvectors is a well-
studied problem, that can be solved in polynomial time, there is a great interest in
their use for graph matching. An important limitation of these methods is that they
are purely structural, in the sense that they are not able to exploit node or edge
attributes, that often, in PR applications, convey information very relevant for the
matching process. Further, some of the spectral methods are actually able to deal
only with real weights assigned to edges by using an adjacency matrix with real-
valued elements.

The pioneering work on spectral methods is the paper by Umeyama, in 1988 [74],
proposing an algorithm for the weighted isomorphism between two graphs. It uses
the eigendecomposition of adjacency matrices of the graphs to derive a simple
expression of the orthogonal matrix that optimizes the objective function, under
the assumption that the graphs are isomorphic. From this expression he derives a
method for computing the optimal permutation matrix when the two graphs are
isomorphic, and a suboptimal permutation matrix if the graphs are nearly iso-
morphic. In 2001, Xu and King [75], propose a solution to the weighted isomor-
phism problem, by approximating the permutation matrix with a generic orthogonal
matrix. An objective function is defined using Principal Component Analysis and
then gradient descent is used to find the optimum of this function.

In 2001 Carcassoni and Hancock [76] propose a spectral method that is based on
the use of spectral features to define clusters of nodes that are likely to be matched
together in the optimal correspondence; the method uses hierarchical matching by
first finding a correspondence between clusters and then between the nodes in the
clusters. Another method that combines a spectral approach with the idea of cluster-
ing has been presented by Kosinov and Caelli in 2002 [77]: a vector space, called the
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graph eigenspace, is defined using the eigenvectors of the adjacency matrices, and
the nodes are projected onto points in this space and a clustering algorithm is used to
find nodes of the two graphs that are to be put in correspondence.

A method that is partly related to spectral techniques has been proposed in 2001
by Shokoufandeh and Dickinson [78]. The authors use the eigenvalues to associate
to each node of a Directed Acyclic Graph a topological signature vector (TSV) that
is related to the structure of the subgraph made of the descendants of the node. These
TSV are used both for a quick indexing in a graph database and for the actual graph-
matching algorithm. This latter is based on the combination of a greedy search pro-
cedure and of bipartite graph matching.

Finally, we must say that other heuristic approaches to inexact graph matching
have been proposed: at least in principle, any of the heuristic techniques that have
been used for combinatorial problems or for continuous global optimization prob-
lems can be adapted to some approximate form of graph matching. With no presump-
tion of completeness, we can cite here, as examples, simulated annealing (Jagota
et al. [79]) and tabu search (Gendreau et al. [80]; Williams et al. [81]).

3 Application Taxonomy

In the last decade several applications of graph matching in PR and machine vision
have been reported in the literature. As regards the role of such applications within
the global context of the containing work, we can recognize two situations. In a first
type of works, that we could name application-driven papers, the main concern of
the authors is solving an applicative problem. They present their graph-based tech-
niques as a solution that is as effective or more effective than other, nongraph-based
methods, for solving the problem at hand. Application-driven papers are of course
the most interesting ones for an audience involved in deciding whether a graph-based
technique is more or less suitable for a given problem, since they usually provide a
comparison, either theoretical or experimental (or both), between their proposal and
other approaches of different kind to the same problem. A second type of works,
say technique-driven papers, instead is more centered around the presentation of a
novel graph-based algorithm or technique that could be potentially applicable in sev-
eral situations, and make use of an applicative problem to provide a performance
benchmark of the proposed technique in comparison to other, often similar, meth-
ods. Since the application is not the main concern, in these papers the authors do
not investigate thoroughly the advantages of a graph-based method over a different
kind of approach. Nevertheless, these paper provide very useful insight to a slightly
different audience: that is, the researchers that have already chosen to cast their prob-
lem in a graph framework and are now looking for the best performing technique or
algorithm known to solve a problem of that kind. In this review, we will present both
application-driven and technique-driven papers, but will focus mainly on the first
type of works, providing only a shallow overview of the second type.
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We have grouped the applications of graph matching according to the topic
within the PR and machine vision fields. Namely, we have individuated five broad
areas that cover the vast majority of the applications:

• 2D and 3D image analysis
• Document processing
• Biometric identification
• Image databases
• Video analysis

Among the applications to 2D and 3D image analysis, we have found both low-
level problems such as edge detection and stereomatching, and middle/high-level
problems such as automatic navigation, robotic vision, and object recognition.
Handwritten recognition, OCR, and symbol recognition are the most relevant docu-
ment processing applications addressed in the literature, while face recognition
and authentication, facial expression recognition, hand posture recognition, ear
recognition, and fingerprint recognition are examples of biometric identification
applications. In the field of image databases, indexing and retrieval have been consid-
ered. Retrieval from video databases, annotation of video databases, object tracking
and motion estimation are the typical applications in the context of video analysis.

While most graph-matching applications fall in the previously outlined cate-
gories, there are also a few, isolated works (mainly in the fields of biology and bio-
medicine) that do not fall neatly into one of the above-mentioned areas. We have
presented some of these papers as miscellaneous applications.

In the following subsections we will provide details about each application areas,
discussing the peculiarity of how graph-based methods have been applied in their
context, highlighting (wherever it is possible) recurring patterns of usage and corre-
spondence between the problem, the representation, and the matching technique.

3.1 2D and 3D Image Analysis

Among the papers that address 2D and 3D image analysis problems with a graph-
matching technique, a significant number lies in the technique-driven category we
have previously defined. For the 2D image analysis, this is the case of papers that
report applications in the object recognition field [31, 73, 82–86], of papers that
address the shape recognition [56, 68, 77, 87–89] or the scene recognition [90, 91]
problem, and of papers that work on SAR images [53, 92]. As regards 3D image
analysis, papers that report results on robotic vision [34], stereomatching [52, 93]
object matching [57], object recognition [94–97], and object reconstruction [98]
applications can be cited.

However, there are several interesting application-driven papers that we will
now examine with more detail. In the field of 2D image analysis, the problems
faced by the application-driven papers are three: object recognition (by Meth and
Chellappa [99], Li and Lee [100], Belongie and Malik [101]), shape recognition
(Sebastian et al. [102]) and visual inspection (Koo and Yoo [103]).
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In object recognition the goal is to find all the occurrences, within an image, of
a distinguished set of objects. Usually objects of interest belong to different classes
(having different shapes) and neither their number nor their positions within the
image are known; the image often contains also background elements (possibly
complex) that should not be detected by the system. In some cases, the objects
of interest may be partially occluded by other objects or by background elements.
The basic idea of graph-based object recognition is to decompose the whole image
into smaller parts, obtaining a graph representation describing those parts and their
relations, and then to look for subgraphs of this large graph that correspond to
the shapes of the objects of interest, by means of some kind of inexact match-
ing algorithm. The above-mentioned papers differ in the adopted representations,
ranging from low-level [99] to middle-level representations [100, 101], and also
in matching techniques (error-correcting subgraph isomorphism with a similarity
measure [99], inexact matching with a neural approach [100], weighted bipartite
matching [101]); Shape recognition is very similar to object recognition, differing
for the fact that only shape information is available (and not, say, color or texture
information), and usually the image is not cluttered with background elements. If the
shapes are simply connected (i.e., they not contain holes), they can be represented
using a tree instead of a fully general graph, and the matching can be performed
using error-correcting tree isomorphism [102]. Visual inspection is also similar
to the object recognition problem, with the important difference that a model of
which objects are expected to be in the image and which should be their positions
is known; indeed, the purpose of visual inspection is actually to spot any difference
with respect to the expected situation. For this reason, exact matching methods can
be more appropriate for this problem [103].

The distribution of the matching algorithms and of the graph representations used
within this applicative area is shown in Fig. 4.

Entering into details, in the field of 2D object recognition, Meth and Chellappa
in [99] work on SAR images. They use a low-level representation: a node of the
graph is associated to each pixel of the image. The node labels depend on the so-
called topographical primal sketch (TPS). A TPS assigns to each pixel a label that
is invariant under monotonic transformations of the grey levels. This is obtained by
fitting a local two dimensional cubic surface on the image for estimating the intensity
surface around each pixel. On the basis of the derivatives of this surface, one of the
following six labels is given to the pixel: peak, pit, ravine, ridge, saddle, “no zero
crossing.” Two graph-matching techniques are proposed, the first one is based on a
distance measure between node labels, while the second one is based on a similarity
measure between features associated to node labels. In both cases, the test and the
model image are first registered with respect to the node labels position. The first
matching technique calculates a cost based on the relative distance between nodes
with the same label in the test and in the model image. The second one associates
a feature vector (by calculating the second derivative extrema, the directions of the
second derivative extrema and the gradient) to nodes that have a certain label; on the
basis of these feature vectors a similarity measure is computed. Results are reported
on 81 images belonging to three different categories.
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Fig. 4. Distribution of (a) the matching algorithms and (b) the graph representations used
within applications in the 2D and 3D image analysis field

In [101] Belongie and Malik define a new middle-level shape descriptor, that
they call shape context, for measuring shape similarity. Given an image, the edges
are extracted and a certain number of uniformly spaced points, say N , on these edges
is selected. A compact descriptor for each sample point is obtained by computing a
coarse histogram of the relative coordinates of the remaining points, in a log-polar
coordinate system. All the N histograms are flattened and concatenated so as to
obtain the so-called shape context of the image. In addition to this representation,
another one based on the local appearance, in particular on the tangent angle calcu-
lated for each of the N points, is also used. So, if a node of a graph is associated
to each of these points, the cost of matching two nodes relative to points on two
images can be expressed by taking into account two contributions, one relative to
the difference between histograms and the other one relative to the tangent angles
dissimilarity. The object recognition problem is then viewed as a weighted bipartite
matching problem that can be solved with the Hungarian method. Results on the
same database used in [104] are presented and also on other silhouette image data-
bases. Furthermore, the authors suggest that their method can be also used for the
retrieval from an image database, as it provides a similarity measure between 2D
objects.

In the paper by Li and Lee [100], a graph represents a 2D scene that is described
by using a polygonal approximation. The nodes of the graph are the vertices of the
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polygon and the edges represent the sides. The angle subtended by each vertex is the
node attribute, while the distance between two nodes is used as edge attribute. Given
such a graph (called scene graph), in order to cope with distortions and occlusions,
the authors propose to divide it into smaller pieces, called subscene graphs. Then,
an inexact subscene graph matching is performed between each subscene graph and
a model graph, by using an Hopfield neural net. The correct match for the complete
scene graph can be obtained from the statistics of the matching results between each
subscene graph and the model graph. In the paper, tests are made on images repre-
senting 2D hand tools.

Sebastian et al. [102] propose a system to recognize object shapes on the basis of
their silhouette. They represent each object using a shock tree, which is derived from
a thinning of the shape. For the matching, they propose the definition of a tree edit
distance, in which the edit costs are not fixed arbitrarily but are derived analytically
from a small set of hypotheses related to the cost of deforming a silhouette. This
distance is computed by means of an error-correcting tree isomorphism algorithm
based on dynamic programming.

Finally, Koo and Yoo [103] address the problem of visual inspection by using
an high-level representation scheme. They consider Printed Circuit Board images,
that are represented by means of a tree. Images are first binarized, then the bina-
rized image is partitioned into nonoverlapping regions (blobs) each one made up
of adjacent pixels having the same value. A node is associated to each blob; a tree
is constructed by adding an edge between two nodes if the blobs they represent
are spatially included into each other and have different pixel values. The root of
the tree is the blob that contains the outer boundary pixels of the image. The tree
obtained from a test image is compared with the tree derived from a defect-free
image by means of the tree isomorphism algorithm proposed in [2]. If the two trees
are not isomorphic a defect is detected and the inspection process stops. Otherwise,
additional polygonal-boundary information are extracted and a second matching
step is performed. In particular, a tolerance zone is defined and the proposed algo-
rithm through a polygonal-boundary matching function checks if such tolerance is
respected between pairs of matched nodes.

In the field of the 3D image analysis applications, Branca et al. [69] addressed
the problem of automatic navigation, while Bauckhage et al. [105] and Olatunbosun
et al. [106] the recognition of 3D objects, and Fuchs and Le Men [107, 108] the 3D
object reconstruction.

The 3D object recognition problem is quite similar to the 2D version; the main
differences are the need to take into account the changes in the object appearance due
to a different point of view, and the increased importance of the occlusion phenom-
enon. These differences lead to the use of graph-matching algorithms more tolerant
to structural changes.

The 3D object reconstruction is aimed at deriving the three-dimensional struc-
ture of a scene from 2D images. Under some constraints on the objects being
reconstructed, it can been faced with an approach that reduces this problem to object
recognition, by defining a set of 3D structural primitives whose occurrence can be
recognized in the image. Automatic navigation consists in the detection of still or
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moving objects (such as obstacles a vehicle has to avoid) in a 3D scene, usually rep-
resented by means of a pair of stereo images. The problem is different from object
recognition since the shape of the objects is not known a priori. However, it turns
out that this problem can be faced with techniques very similar to the ones used for
3D object recognition. In fact, by finding for each part of one of the two images the
corresponding part in the other (which is similar to what an object recognizer does),
the distance of each part from the camera can be estimated.

The 3D applications mainly use ARGs [69, 105, 107, 108] for representing
objects, and two different matching techniques: either perform a MCS detection (by
means of a maximal clique search on the association graph) [69, 106] or employ an
error-correcting subgraph isomorphism algorithm [105, 107, 108]. With more detail,
Branca et al. [69] presents an application of graph matching to autonomous naviga-
tion. In particular, the detection of ground floor obstacles and of moving objects are
considered. Relational graphs are used for object representation, where the object
features extracted by means of the Moravec interest operator are the nodes and the
edge linking them are weighted by projective invariant values. Given two graphs
obtained from two different images acquired by a TV camera mounted on a mobile
vehicle, the goal is to determine, into the association graph, the maximal clique
of nodes that are mutually compatible according to the similarity imposed by the
invariant relations encoded into the edges. The nodes of this clique will belong to
the same object and this permit to detect into a given image the features that belong
to an obstacle, or to individuate the feature pertaining to a moving object. In the
paper an algorithm for finding the maximum edge weighted clique in an high-order
association graph is presented, based on an optimization procedure that use the
Motzkin–Straus theorem.

As regards 3D object recognition, Bauckhage et al. present in [105] a system
that uses graphs to recognize mechanical assemblies in a dynamic construction
environment. In particular, the main objective of their project is to develop a robot
that assembles parts from a wooden construction-kit for children, made up of bolts,
rings, bars, and cubes. So, given an assembly described by a graph, they use a
graph-matching technique for recognizing if that assembly is already present in the
knowledge base of the robot. In the negative case it will be added to the database.
They introduce the mating feature graph for representation. The nodes of this graph
represent mating features or subparts of an assembly and are labeled with the type
of the subpart. Nodes connected with a pair of edges represent subparts that belong
to the same object, while single directed edges between nodes represent the fact that
the corresponding subparts are attached to the same bolt. If an object is connected to
several bolts, the nodes that correspond to these bolts are linked by a bidirectional
edge; this edge is labeled with a value that indicates the angle between the bolts.
For matching two mating feature graphs, they use the error-correcting matching
procedure presented in [109]. They also propose an application of the mating feature
graph to the 3D reconstruction of assembled objects.

Another approach is proposed in Olatunbosun et al. [106], where a special kind
of RAGs, called color region adjacency graph (CRAG), is used for representing
3D objects. Graph nodes are the segmented regions, using the coordinates of their
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centroids as node attributes, and edges represent connections between regions. By
using the line length ratio, i.e., the ratio of the distance between a pair of nodes
into the model image and a pair of nodes in a test image, and the line angles, i.e.,
angles between three nodes into the model and the test image, an association graph
where the nodes are provisionally matched is built. Then the Bron–Kerbosh [110]
algorithm is used to find the maximal clique on this association graph: an high clique
value imply high similarity between the model image and a test image. The authors
also propose to reduce the computational complexity of the maximal clique search
method, by adopting a model-based approach. In order to recognize an object, a
test images is first filtered, by eliminating from it all the color regions that do not
belong to the model CRAG. So, the maximal clique search is performed on a smaller
association graph.

Finally, Fuchs and Le Men in [107] and [108] use graph matching in the field
of 3D building reconstruction from aerial stereopairs. In particular, in [108] the 3D
object extraction problem is addressed, while in [107] the goal is the reconstruction
of the structure of the roofs. They use a model driven strategy: the models used are
ARGs, where each nodes represent a 3D feature (a 3D line segment, or a 3D planar
region, or a facade of a building), while each edge encodes a geometric property
(such as parallelism, orthogonality, and so on) between nodes. The building recon-
struction is based on the computation of a subgraph isomorphism between a model
and a graph built on a set of 3D features derived from the images. As regards the
matching procedure, in [108] they use the error-correcting subgraph isomorphism
detection presented in [109], with an estimation of the subgraph distance based on a
stochastic heuristic, while in [107] propose a modification of the algorithm proposed
in [109] in order to take benefit of an external information (e.g., an user input or a
precomputed information). If the correspondence between some nodes of the model
and some nodes of the input data is already known before the matching, the search
space of the matching problem can be pruned by integrating the external information
in the error-correcting subgraph isomorphism algorithm.

3.2 Document Processing

Among the various document processing applications, OCR, handwritten recogni-
tion, string recognition, symbol and graphic recognition have been addressed in the
literature by using graph-matching techniques.

These problems are relatively similar to each other, entailing the recognition of
small elements having a definite meaning within a printed or handwritten document.
The number of different categories (classes) to be considered varies from ten to sev-
eral hundreds, and also the shape variability of the elements belonging to a same class
can range from reasonably small (e.g., for high-resolution printed characters) to very
high (for handwritten characters or symbols). As regards the strategy adopted to face
the problem, entities to be recognized (characters, symbols, or graphics) are usu-
ally decomposed into geometric primitives, which are in most cases approximated
as thin lines (also called strokes), since in handwriting and in printed scripts, thick-
ness does not convey useful information. This decomposition is then represented as
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a graph, and the recognition process is performed as a graph matching with model
graphs corresponding to the different classes of characters, symbols, or graphics to
be recognized. The proposed approaches differ in complexity of the geometric prim-
itives, in the way the decomposition is translated into a graph, and in the kind of
graph matching performed. A problem that is strongly related is the construction of
such model graphs from a set of examples, which is usually performed by means of
algorithms that involve a graph matching as one of their step.

The distribution of the matching algorithms and of the graph representations used
within the document processing field is shown in Fig. 5. Now we will examine with
more detail each of the problems belonging to this field.

Since OCR and handwritten recognition are among the most classical PR prob-
lems, and many of large datasets are available, they are often used as test cases in
technique-driven papers. This is the case of the papers by Sanfeliu and Fu [34],
Foggia et al. [43, 111, 112], Chan [113] and Rangarajan and Mjolness [61]. But also
several application-driven papers have been written on the handwritten recognition
problem (both offline and online) or on the optical character recognition problem:
this is the case of the papers by Lee and Liu [114] and Suganthan and Yan [115], and
Liu et al. [116], Lu et al. [117], Chen and Lieu [118], and Rocha and Pavlidis [47].

Independently on the main focus of the considered papers, both printed and hand-
written characters are typically described by ARGs [34, 43, 47, 111, 112, 115, 117,
118]. Two description schemes have been used (1) the nodes of the graph represent

Fig. 5. Distribution of (a) the matching algorithms and of (b) the graph representations used
within applications in the document processing field
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the structural primitives in which a character can be decomposed after a thinning
process and the edges represent the relations between them these primitives or (2)
the nodes are the junctions between strokes (singular points) and edges represent
the primitives into which characters are decomposed. Authors dealing with Latin
characters and Arabic digits [34, 43, 47, 111, 112] use circular arcs and segments as
primitives, while straight line segments or strokes are typically used in case of Chi-
nese characters [115–118]. As regards the representation, a quite different approach
is proposed in [114], where the authors propose an architecture for the recognition
of handwritten Chinese character that integrates the feature extraction, the segmenta-
tion, and the recognition phase. The feature extraction phase is performed by means
of Gabor filters; such features are used to segment characters using an optimiza-
tion module based on a genetic algorithm. Finally, elastic graph matching is used in
the recognition phase. Besides this paper, other authors mainly use error-correcting
graph matching for dealing with the high variability of handwritten characters. An-
other feature that is peculiar to this kind of applications is the graph size: graphs
describing characters are typically made up of few nodes.

As regards technique-driven papers on handwritten recognition, in [34] and [111]
the authors use respectively handwritten characters and handwritten digits to vali-
date a distance measure between ARGs in the framework of error-correcting graph
matching. In the same framework, a matching algorithm using subgraph trans-
formations is applied to handwritten characters [43]. Chinese characters are used
in [113] as test case for a learning algorithm that build templates starting from fuzzy-
attribute graphs; while in [61] the authors present a suboptimal method for exact
graph matching, based on a lagrangian relaxation network, using handwritten digits
for testing. Finally, handprinted digits are used as application of a graph learning
algorithm [112].

As regards the recognition of Chinese characters, both offline and online app-
roaches are present in the literature. In [115] the matching between input graph and
model graph for offline Chinese character recognition is performed by means of an
Hopfield network (presented in [119]) that is specifically devised to allow the seg-
ments of a broken stroke of an input character to be matched to a stroke of the model
graph.

The recognition of online handwritten Chinese character addressed by graph
matching has the additional problem of a significant computational cost due to the
large number of categories. Therefore for developing an online recognition system
it is mandatory to find an adequate structural representation together with matching
algorithms that can efficiently address this recognition problem. To this aim, some
authors [117, 118] used a sort of hierarchical graphs to represent a character. Such
graphs have two layers: nodes and edges in the first layer represent high-level com-
ponents and relations between them; while in the second layer each component is
described by a graph in which nodes and edges represent the strokes of that compo-
nent and their relations. In [116] a Chinese character is described with a complete
relational graph (CRG), where each node describe one of the segments in which a
stroke obtained from a pen down–pen up movement on a digitizer can be decom-
posed. In order to reduce matching time, a suboptimal solution is proposed. The
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problem of matching CRGs is transformed into a two-layer assignment problem and
solved with the Hungarian method. Within the OCR field, in [47] an error-correcting
subgraph-matching algorithm is used. It allows a multiple-to-one matching from a
set of feature (a path) of an input graph to a feature of a model graph (prototype), on
the basis of a set of predefined transformations. These graph transformations regard
straightening of strokes, rewriting of strokes into arcs, insertion and deletion of fea-
tures, and attribute transformations. Having associated a cost to each transformation,
the matching procedure for each input graph selects the prototype that gives rise to
the matching with the minimum cost. It is worth noting that prototypes are manually
defined, without using a specific learning procedure.

A quite peculiar approach is proposed in [120], where the OCR problem is add-
ressed with an ad hoc matching defined between the so-called graph embeddings. A
graph embedding, used in this paper for representing characters, is a labeled graph
where each node is labeled with its coordinates in the x–y plane.

The handwritten digit string recognition problem has been addressed by [121].
Starting from an input image and after a thinning process, the authors construct a
graph whose nodes are the branches or the ending points of the thinned image and
whose edges represent lines of the thinned image. The input graph is then submit-
ted to a segmentation process by using a set of heuristic rules. It gives rise to a
number of separate symbols, called blocks. The recognition procedure consists in
matching the input blocks with the prototype graphs of the digits, by applying a set
of transformations to each input block. The matching is therefore an error-correcting
graph–subgraph isomorphism. As transformations, the combination of two nodes
into one, the transformation of a loop to an edge and the deletion of edges or nodes
are considered.

Finally, in the field of symbol and graphics recognition fall the paper of Llads
et al. [49,122], Changhua et al. [123], Cordella et al. [8] and Jiang et al. [124]. While
the last two papers are devoted to exploit the performance of an exact subgraph-
matching algorithm in detecting component parts within technical drawings [8] and
of a graph-clustering algorithm [124], respectively, the others have their main focus
on the application domain.

As in case of character recognition, almost all the approaches use ARGs
for representing symbols or graphical drawings; as already said, in [8] an exact
subgraph-matching algorithm is used, while other authors employs different kinds of
error-correcting subgraph-matching algorithms for recognition. The main difference
with respect to the case of character recognition is in the number of the nodes of
graphs representing maps, diagrams, or technical drawings, that can be up to some
hundreds or even thousands.

In [49] the problem of finding a model graph, that represents a prototype symbol,
as a subgraph of an input graph, that represents a drawing, is addressed. To do this, a
two-level graph representation for graphical symbols is used. In the first level, a vec-
torized document is approximated by graphs whose nodes represent characteristic
points (i.e., junctions, end or corner points, and so on) and whose edges approximate
the segments between them. In the second level, data is organized in terms of RAGs.
The RAG nodes represent the regions, i.e., minimal closed loops of the first level
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graphs, and the edges are the neighboring relations between regions. Symbols are
then recognized by means of an inexact subgraph-matching procedure that computes
the minimum distance from a model RAG to an input RAG. This distance is consid-
ered to be the weighted sum of the costs of edit operations to transform one RAG
into another one.

In [122] the authors try to identify building blocks in a hand-drawn floor plan.
After a scanning and a vectorization process, drawings are described by means of
ARGs. An inexact subgraph isomorphism algorithm based on discrete relaxation is
used for matching the obtained ARG against model graphs representing the building
elements. In order to speed up the process, a straight line Hough transform is also
used. It allows the detections of regions filled with parallel straight lines, such as
walls that are typically characterized by hatching patterns.

Finally in [123] graphical hand-sketched symbols are represented through ARGs
and a similarity measure calculated using the A* algorithm is used for recognition.

3.3 Biometric Identification

Graph-based techniques have been widely used within the context of biometric
applications, mainly with reference to identification problems implemented by
means of elastic graph-matching procedures. Rarely, in this application area, graph-
learning algorithms have been used.

Among all the biometric identification problems, a key role is played by face
authentication, face recognition, and fingerprint recognition. Moreover, there are
other applications based on facial images, as facial expression recognition and face
pose estimation, as well as other probably less-known applications, as hand posture
recognition and ear recognition. In all these problems, the goal is to compare a graph
representation obtained from a sample image of some biometric trait of an individ-
ual with a model graph. This comparison has to take into account the possibility of
severe distortion of the sample graph with respect to the model, due to the extreme
variability in the appearance of biometric traits. In the case of authentication, there is
only one model graph, and the problem is to decide whether the model and the sam-
ple correspond to the same person. In biometric recognition problems, instead, there
are several models (corresponding to different persons, but also possibly to different
gestures of a single person) and the system has to identify the person (or the gesture)
shown in the sample. A characteristic that is common to many applications of this
category, is that the reliability of the identification is extremely important, since the
cost of errors is significantly larger than, for example, that of document processing
applications.

In almost all cases, papers falling in this area are mainly application-driven, so
using rather standard graph-based techniques; sometimes minor adjustments to clas-
sical algorithms have been introduced so as to take into account peculiarities of the
problem at hand. Generally, the graphs used for describing the patterns are made of
tens of nodes and have a rather simple structure (sometimes regular ones, as the grids
of nodes used for applications dealing with facial images). The attributes of the nodes
of the graphs are rather complex, and frequently are given by feature vectors made
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of many components, while the edge attributes are simpler and typically represent
distances between given points in the original image. For these characteristics, the
matching technique that is most commonly used is elastic graph matching.

The distribution of the matching algorithms and of the graph representations used
in the Biometric Identification field is summarized in Fig. 6.

In the areas of face authentication and face recognition, graph matching has
been used in the systems proposed by Van Der Malsburg, Wiskott et al. [125–127],
by Lim and Reinders [128], by Kotropoulos, Pitas, and Tefas [129, 130], by Duc
et al. [131] and by Lyons et al. [132]. All these approaches use a graph, in particular
a labeled rectangular grid, as an intermediate representation level for representing a
face. In this grid, each node of the graph is associated to a specific facial landmark,
called fiducial point. The labels associated to the nodes are of two different types:
those based on Gabor coefficients [125–128, 131, 132], the so-called jets, and those
made up of a vector of features evaluated on small areas of interest in the input image
by means of multiscale dilation–erosion techniques [129, 130]. The face identifica-
tion process is carried out by standard elastic graph-matching algorithms. The grid
representing the input face is compared with the ones representing face models. Dur-
ing the matching process the feature vectors associated to matched nodes are used
to calculate a distance, so as to evaluate an overall distance between the two com-
pared input graphs. The matching procedure is elastic in the sense that it copes with
deformations, rotations, or scale variations in the areas of interest of the input image.

Fig. 6. Distribution of (a) the matching algorithms and of (b) the graph representations used
within applications in the biometric identification field
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In more details, one of the simplest description schemes is the one proposed
in [128], where the authors describe a face image by a graph made of four nodes rep-
resenting prefixed landmark points of the face as eyes, the nose, and the mouth. Each
node is labeled with a jet, while an edge of the graph is associated an attribute repre-
senting the distance existing between the points of the images relative to the nodes it
connects. In this paper the elastic graph-matching procedure is specifically tailored
for dealing with affine transformations on the considered images in the neighbors of
the landmark points, and the authors denote their matching algorithm as affine graph
matching. The algorithm is used for localizing a face within an image, and this task
is accomplished by maximizing the similarity measure proposed in [127]; they take
into account only the magnitude value of the jets, and use a genetic algorithm for
exploring the search space more efficiently.

In the papers by Van der Malsburg, Wiskott et al. [125–127] faces are described
by a larger graph, in particular a rectangular graph (a grid graph) where each node
label is associated to a vector of Gabor wavelet complex coefficients. In [125] only
the magnitude of these coefficients is used in the recognition process; while in [127]
the addition of the phase of the coefficients allowed to achieve a more accurate
location of the landmark points within the considered image. Moreover, in the latter
paper, a new data structure, called bunch graph, is introduced for dealing with gen-
eralized representations of faces. A face bunch graph (FBG) is a sort of prototype
of a set of images. As the previous graphs, it has a grid structure, and each node
is devoted to represent the homologous nodes (fiducial points) of the represented
graphs. The term bunch is used to denote the set of jets referring to the same fiducial
point, and associated to a node of a FBG. The FBGs used to represent the images are
obtained by an elastic graph-matching procedure, described in more details in [126].
The latter paper also explores the possibility of determining facial attributes, as sex,
presence or absence of glasses or beard by using FBGs.

The magnitude of Gabor coefficients as features associated to grid nodes have
been also used by Duc et al. [131] and Lyons et al. [132] in combination with
techniques based on discriminant analysis. In particular in [131], after the elastic
graph-matching phase, the authors use a local discriminant analysis on the fea-
ture vectors associated to grid node to verify the correct identity of the input face.
In [132], instead, the authors use discriminant analysis before the matching. In
particular, they submit the feature vectors to a principal component analysis so as
to reduce the dimensionality of the feature space. They also present results on sex,
race, and expression recognition.

Instead of using Gabor coefficients, Pitas et al. in [129] associate to each node
of the grid a feature vector obtained by applying a multiscale dilation–erosion
operator to the input image; they also propose a variant of the elastic graph match-
ing, called morphological elastic graph matching (MEGM) that uses in the elastic
graph-matching procedure the feature vectors obtained by morphological operators.
The use of such operators is justified by considering that the computation of Gabor
coefficients is time consuming while dilation and erosions can be computed in a
very fast way. Moreover, dilations and erosions deal with local minima or maxima
in an image and revealed to provide an effective characterization of facial features.
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In a more recent paper [130] the same authors describe a method to improve the
recognition performance of MEGM. In particular they propose to estimate the best
coefficients for weighting the similarity values associated to the grid nodes by means
of discriminant analysis techniques and support vector machines.

Among the other applications dealing with face images, papers by Wang et al.
[133] and Hong et al. [83] make use of graph-matching techniques in the context
of facial expression recognition while Elagin et al. [134] use graph matching for
pose estimation.

In particular, as usual in this application area, Hong et al. [83] use grid graphs,
labeled with jets, for representing faces and rather standard elastic graph-matching
algorithm for recognizing seven face expressions: neutrality (that means no expres-
sion), happiness, sadness, anger, disgust, fear, and surprise.

Only three expressions are instead considered by Wang et al. in [133]: happiness,
surprise, and anger. Indeed, their main goal is rather different and is aimed to estimate
the changes of face expression from sequences of facial images. To this concern, the
correspondence between images relative to successive frames is viewed as an elastic
matching, even if the authors call it “labeled graph-matching problem.” In detail,
19 nodes are used to represent a face image. Each node is labeled using a template
matrix of the 17× 17 pixels (in gray levels) around each node, while to each edge is
associated a measure of the distance between the nodes it links. The graph matching
is carried out by minimizing a cost function that takes into account both the template
similarity and the topological information.

In the framework of the pose estimation problem, Elagin et al. [134] use graphs
with 16 nodes to represent a face. Each node is associated to a facial landmark, as the
pupils, the tip of the nose, the mouth angles, and so on. Also in this case, the nodes are
labeled with Gabor coefficients, while the labels of the edges represent the distances
between the points of the image associated to the nodes. Five different orientations
are considered for the pose. As in [127] a bunch graph is used to represent set of
faces, and so a bunch graph-matching procedure is used in order to perform the
estimation.

The use of graph matching in the context of hand posture recognition, is
described in the paper by Triesch and von der Malsburg [135]. The authors employ
a description and recognition scheme similar to those typically utilized in the field
of face recognition. In fact, Gabor coefficient as graph labels and elastic graph
matching for recognition are used. In addition to conventional Gabor jets, a color-
Gabor jet is introduced. It measures the similarity of each pixel to the skin color
and together with the Gabor jet constitutes the so-called compound jet. The elastic
graph-matching procedure is also modified in order to cope with this compound
jet. After describing each hand by graphs made up of 15 nodes manually placed at
anatomically significant points, 12 different hand postures are recognized.

Another biometric system is the one proposed by Burge and Burger [136], that
make use of features extracted by ear images for subject identification. They consider
300 × 500 pixels images, acquired using a CCD camera. Also in this case a mid-
dle level representation is used; after the localization of the ear within the images,
an edge extraction based on the Canny operator is performed, followed by a curve
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extraction. On the basis of the regions delimited by the obtained curves, a Voronoi
neighborhood graph is constructed. The identification process is accomplished by a
subgraph error-correcting graph matching between the model graph and the input
graph. To this aim, the authors propose a matching procedure that specifically takes
into account the possibility of broken curves into the input graph. This procedure
tries to merge neighboring curves if their Voronoi regions indicate that they are part
of the same underlying feature.

Finally, fingerprint recognition by means of graph matching, has been addressed
in the papers by Maio and Maltoni [137] by Fan et al. [138] and by Neuhaus and
Bunke [93]. This latter is a technique driven paper, while the other two are applica-
tion driven. They use different approaches both for representing fingerprint and for
recognizing them.

The first paper [137] uses ARG for describing fingerprints. The original finger-
print image is first processed in order to calculate a directional image. Then the
directional image is segmented into regions, and each region is represented by a
node of the graph. Each node has an attribute that measures the area of the region
it represents, while each edge has three attributes: the phase difference between the
average directions, the distance between the centroids, the length of the boundary
between the regions represented by the two nodes it links. For the recognition phase
an inexact graph matching is proposed, based on a branch and bound search within
the space state.

On the other hand, Fan et al. [138] use bipartite graphs for representing the sam-
ple fingerprint image and template fingerprints. A fingerprint image is preprocessed
in order to extract clusters of feature points (minutiae). A set of 24 attributes is then
calculated for each feature point cluster and is associated to a node of the graph. The
feature point clusters of a test image are the set of the left nodes of a fuzzy bipar-
tite weighted graph while the feature point clusters of the template fingerprint are
the right nodes. Fingerprint verification is then treated as a fuzzy bipartite graph-
matching problem.

3.4 Image Databases

Another field in which graph-based techniques have been successfully employed is
the one of image databases. Typical applications involving this kind of databases are
indexing and retrieval: few papers addressed both the aspect [41,139], while the most
part [42, 54, 104, 140–147] investigated only the retrieval problem. Among all these
papers, in [144] Hlaoui and Wang use a simple image database only for testing the
performance of a new error-correcting matching algorithm with edit operations.

The indexing and retrieval problems are very similar from a conceptual point of
view, but their different requirements in terms of performance and accuracy have
brought to the use of different techniques and algorithms. In both cases, the goal is
to find the images in the database that are similar to a given query image. While
this can bear some resemblance to a recognition problem, there is an important con-
ceptual difference: the images in the database are not partitioned in a set of fixed,
nonoverlapping classes, to which the unknown class of the query image belongs.
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Instead, the images have to be considered relevant to the query only on the basis of
a vaguely defined perceptual similarity; there is no clear-cut, exact desired response
for the system. Furthermore, the number of images in the database can be really
large, imposing strong constraints on the performance of the algorithm. In the re-
trieval problem it is usually desired that the result images are provided in an order
that reflects a similarity scoring, to allow the user to choose interactively the one that
fits his needs. This mandates for a matching technique that yields some sort of cost or
distance, such as error-correcting graph-matching techniques. As regards the index-
ing problem, the focus is to obtain a fast screening of the images before performing
a retrieval operation, to reduce the search time. So it is not required to provide a dis-
tance measure, and it is acceptable if some images that are not relevant to the query
are returned in the result set (the converse is not true, i.e., it is not acceptable if in-
dexing excludes strongly relevant images). The main concerns for indexing are how
fast it performs, and how many nonrelevant images it is able to filter out.

The distribution of the matching algorithms and of the graph representations used
in the image databases field is shown in Fig. 7.

A peculiarity of this applicative context is that there is little agreement on the
choice of the kind of graph representation to be used for the images. In most cases
images are represented by ARGs [41, 139, 140, 143], but also RAGs [42], directed
ordered acyclic graphs [141], shock graphs [104], dual graphs [147], pyramidal

Fig. 7. Distribution of (a) the matching algorithms and of (b) the graph representations used
within applications in the image databases field
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graphs [142], and n nearest-neighbor graphs [54, 145, 146] are used. As regards the
matching phase, mainly error-correcting subgraph isomorphism algorithms are used.
In some cases, however, learning techniques have also been employed [141].

Among the papers that address both the indexing and the retrieval problem,
Berretti et al. in [41] propose the use of a metric indexing scheme for manag-
ing the organization of large archives of ARGs with a common size. In particular,
the indexing is performed using m-trees. They also propose a new algorithm for
retrieval, combining the A* search with an original look ahead estimate. The esti-
mate is derived as the optimal solution of a weighted assignment, which relaxes the
optimal look-ahead problem so as to remove its basic factor of exponential com-
plexity. This sort of minimal simplification results in an extremely well-informed
estimate which can still be computed in polynomial time. The database used for
testing the approach is composed of about 1,000 images, coming from paintings of
the library of a web-museum. For each image of the database 10 further images
are generated, synthetically changing color and color positions. In the system they
proposed, for querying the database, an user can both select an example image or
submit a query by sketch by drawing a set of colored regions and by arranging them
in order to represent the expected appearance of the searched images. All the images
are modeled with ARGs having a fixed number of nodes, namely eight. Each node
come from the clustering of the color histogram in the L*u*v* color space and the
node attributes encode the triple of normalized coordinates of the average color of
the cluster. For any two objects corresponding to different regions in the user sketch,
the edge attribute encodes the relationship between the regions themselves.

In the paper by Petrakis and Faloutsos [139] ARGs that model medical images
are reduced to a vectorial representation, so enabling R-tree indexing, under the
assumption that all the graphs contain a set of anchor entities with predefined labels.
Non-anchor entities are also allowed, but their number determines a linear degrada-
tion in the efficiency of the index. In addition to this indexing technique, the authors
propose a subgraph isomorphism algorithm with a distance measure for retrieval. In
particular, given an iconic query, all the images under a suitably chosen threshold are
selected. As regards the representation, each image is segmented into regions, each
one represented by a node. Size, roundness, and orientation of each region have been
chosen as node attributes.

Among the papers that mainly address the retrieval problem, Cho and Yoo
in [140] use graphs whose nodes represent objects of the image, while the edges
encode spatial relations between objects. An object is characterized by its color, the
ratio between its area and the whole image area, the ratios between the x-coordinate
and the width and the ratio between the y-coordinate and the height of the image.
The attribute edge can assume one of the eight possible spatial relations between
two objects (N, NE, E, SE, S, SW, W, NW). They also define the prime edge graph,
obtainable from a graph by deleting edges that are unnecessary for representing the
structure of the image. The matching is realized with a subgraph isomorphism algo-
rithm that makes use of a similarity measure.

In [143] Folkers et al. propose an exact subgraph isomorphism with a bottom-
up strategy. They also define a similarity measure for pruning some isomorphism
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checks. The proposed measure takes into account both the contextual and the spatial
similarity between ARGs. In their description scheme, once again nodes represent
the symbols of the image and the edge the relationships between them.

In the papers by Hancock and Huet [54,145,146], the aim is to retrieve 2D images
from large databases. In their description scheme, a set of line-patterns are repre-
sented by means of a special type of ARG, i.e., a N -nearest-neighbor graph. In a
N -nearest-neighbor graph, each node represent a line structure segmented from a
2D image. For each node n of the graph exactly N edges are created, the ones that
link n to the nodes representing the N line segments having the closest distances
from the line represented by n itself. Distances between lines are computed by con-
sidering distances between their centers.

In [145] the authors use six nearest-neighbor graphs. The line orientation and the
line length constitute the attributes of the nodes, while the measure of the relative
position and of the relative orientation of two lines whose representing nodes are
linked by an edge are the attribute of that edge. The proposed matching is of inexact
type; in particular a fuzzy variant of the Hausdorff distance that use only the values
of the edge attributes is proposed for comparing graphs. For each image graphs of
3–400 nodes are considered. A first screening of a possible query result is made
by considering only the histograms of the edge attributes, that are compared using
the Bhattacharyya distance. Then, the fuzzy version of the Hausdorff distance is
employed on the N -nearest images that are found, for refining the search. In [54]
the node attributes are two normalized histograms, the one of the relative angles and
the one of the relative lengths with respect to the remaining line segments in the
pattern. The matching process is realized by means of a Bayesian graph-matching
algorithm that utilize a two-step process. Firstly, a correspondence matches between
the nodes in the a query pattern and each of the patterns in the database is established.
This is made by maximizing an a posteriori measurement probability. In particular,
the authors use an extension of the graph-matching technique reported by Wilson
and Hancock in [53]; in order to minimize the computational overheads associated
with establishing correspondence matches only edge information are used. Once the
maximum a posteriori probability correspondence matches have been established for
each pattern in the database, the pattern which has maximum matching probability
is selected. This is made by using the Bhattacharyya distance for comparing the
histogram attributes of the matched nodes.

In [146] Huet et al. present an application of the image retrieval for verify-
ing similarities among different technical drawings representing patents. They use
ARGs obtained as six-nearest-neighbor graph from the line drawings, using the same
description model of [145]. The matching is of inexact type, and is realized by means
of the fuzzy variant of the Hausdorff distance presented in [145].

Among the other representation schemes employed in the literature, in [42]
Gregory and Kittler utilizes RAGs. Images are segmented so that a RAG can be
built. Each pixel in the image is represented as a 5D vector, where the first three
dimensions are the RGB color values for the pixel and the last two dimensions are
the pixel coordinates. This feature space is then clustered and to every pixel a label
corresponding to the cluster which it has been classified to is given. The region labels
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correspond to homogeneous color regions within the image. A connected component
analysis stage ensures that only to connected pixels may be assigned the same label.
At this point each obtained region is represented by a node, whose attributes are the
number of pixels and the average values of the red, green, and blue pixels within the
region it represent. The segmentation is further improved by merging adjacent nodes
which have a small number of pixels, or “similar” feature space representation. The
database used for the testing phase is made up of flag images, that give rise to graphs
of about 15 nodes. The matching is performed by using an error-correcting subgraph
isomorphism with edit operations and the A* procedure.

On the other hand, in [104] Sharvit et al. use shock graphs for representing
images. The shock graph is directly extracted from the image on the basis of the sym-
metries exhibited by the image itself. As regards the matching procedure, they use a
WGM that is a variant of the method presented in [62]. For testing, they employ a
database consisting of binary shapes, and match grayscale images of isolated objects
and user-drawn sketches against this database. The resulting shock graphs are made
up of few nodes.

Finally, in [147] Park et al. propose the use of dual graphs for representing
images. In particular, an ARG called modified color adjacency graph (MCAG) is
used for indexing and a spatial variance graph (SVG) is used to disambiguate differ-
ent images having equal MCAG representations. In a MCAG each node represents a
bin of the quantized RGB color histogram. Node attributes are then the pixel count
of each RGB chromatic component, while the edge attributes encodes spatial adja-
cency (based on 8-connectivity) between two color regions. The average number of
nodes of a MCAG is about 100. On the other hand, each node of the SVG graph
has as attribute the within-class variance relative to the pixels of the node it repre-
sents, while each edge attribute encodes the between-class variance. Graph matching
is performed by defining a similarity measure directly obtainable by the adjacency
matrices of the graphs.

Finally, in [141] a learning technique for facing the retrieval problem is proposed
by De Mauro et al. Database images are described by means of RAG that are suc-
cessively transformed into directed ordered acyclic graphs (DOAG). This transfor-
mation becomes necessary because it is more difficult to process undirected graphs
than directed ones. The task of learning the search criteria for visual retrieval is
accomplished by means of a Recursive Neural Network that map DOAGs into vec-
tors. This net learn to map DOAG representing similar images into near vectors.
Then, the retrieval problem is reformulated as the one of finding the N -nearest neigh-
bors of the vector into which the net transform the DOAG of the query image.

3.5 Video Analysis

Among the video analysis problems addressed by using graph-based techniques,
retrieval from video databases [21, 142, 148], annotation of video databases [149],
object tracking [150–153], and motion estimation [154] have been proposed.

Retrieval from video databases is similar to retrieval from static image databases
from a conceptual point of view; the main differences are the considerably larger
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size of the databases and the possibility to exploit information about the motion
of parts of the scene to improve the retrieval performance. The other problems,
instead, are rather peculiar of video analysis. In particular, their common aspect
is that they are focused on extracting some kind of information from the sequence
of the frames composing a video. This implies a comparison between successive
frames, and the need to establish a correspondence between regions of two frames
representing the same object or the same part of it. In motion estimation, the goal is
to measure the velocity of moving elements of the scene. In object tracking, which
can be considered as an evolution of motion estimation, where the application should
be able to follow the motion of an object and compute its trajectory, distinguishing
the different objects presents in the scene. A further evolution consists in the recog-
nition, on the basis of the object trajectories, of events that bear a specific meaning
within the context of the application: this gives rise to the possibility of automatic
annotation of the video sequence, allowing a user to perform retrieval with classic,
keyword-based search.

Since these problems are quite different each other, it should not be amazing the
fact that very different kinds of graphs have been used. In particular, ARGs [21,148],
pyramidal graphs [142, 153], bipartite graphs [150, 152], multivalued neighborhood
graphs [151], and medial graphs [154] are used. Obviously, also the matching tech-
niques proposed in the various paper are quite different. The distribution of the
matching algorithms and of the graph representations used in this applicative area
is summarized in Fig. 8.

Fig. 8. Distribution of (a) the matching algorithms and of (b) the graph representations used
within applications in the video analysis field
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In the framework of the retrieval from video databases, Shearer et al. [21, 148]
proposed two different approaches that do not make particular hypotheses on the
nature of the video at hand, where Doulamis et al. [142] propose a system specifically
tailored for the retrieval of people images in a video database. Furthermore, in the
first two papers ARGs are used for representing video frames, while the last one
propose the use of pyramidal graphs.

Entering into details, in [21] Shearer et al. describe a new algorithm to solve the
largest common subgraph problem. Such algorithm significantly reduces the compu-
tational complexity of detection of the largest common subgraph between a known
database of models, and a query given online. This approach can be fruitfully applied
to video databases. In fact, when searching a video database, we are typically inter-
ested in the largest subpicture match that can be found. So, the largest common sub-
graph method will find the largest subpicture in common between a query image and
a database of video frames. As regard the representation, ARGs are used. The authors
consider each frame of the video and decompose it into objects. Then, graph nodes
represent objects, while the edges are labeled with one of five categories (Disjoint –
Meets – Contains – Belongs to – Overlaps) that represent the relationships between
two objects. The proposed retrieval procedure is realized by using a decision tree
algorithm based on a decision tree constructed using the adjacency matrix represen-
tation for the model graphs.

A different approach is presented in [148], where a modified version of an
algorithm presented by Bunke and Messmer in [18] is proposed. It is able to cope
with dynamically changing graphs. Such graphs can be employed for representing
videos: the sequence of images that make a video can be represented by means of
an initial graphs that represent the initial image and a sequence of graph edit oper-
ation that represent the successive images. As in the previous paper, for each image
the nodes of the graph represent objects, while the edges encode the spatial relations
between objects. An experimental evaluation of the algorithm is also presented, by
using query graphs with 9 nodes against models having 4–10 nodes. In particular, the
application of this algorithm consists in querying a video database with a sequence
of frames. Each query frame is built starting from a number of object labels that can
be spatially arranged by the user. The system transforms these query frames into a
graph representing the initial frame and into a set of edit operations. Then, it uses
the proposed matching algorithm in order to find the video sequence that match the
sequence of selected frames.

In [142] Doulamis et al. propose a system for extracting people images from
MPEG-coded videos. After a segmentation phase in which objects such as the face,
the human body, and the background are extracted from each frame, graphs are used
for representing these objects and their spatial relationships. As attribute of the nodes,
the average color and the texture of an object, as well as its size and location within
the scene are considered. The authors make use of two different types of graphs,
one with edge attributes, that encode the direction and the orientation between two
objects, and another one without edge attributes. Moreover, in order to enhance the
querying flexibility of their system, they also propose a further decomposition of
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each node into other graphs, so giving rise to a pyramidal graph representation of
the visual content. As an example, the human face can be considered as an object
containing the regions of eyes, mouth, and lips, each having their own properties.
As regards the problem of retrieval from a video database, they do not clarify in the
paper what type of graph-matching technique they use.

A quite peculiar approach to the problem of retrieval from databases is the one
presented by Ozer et al. in [149]. The aim of this work is to annotate images and/or
videos where a particular object of interest (OOI) is present. So, a simple textual
query can be performed to extract images of OOI from a preprocessed database.
As an example, they consider cars in video and image libraries, that they describe
using ARGs. In case of video sequences, the feature points of an object are tracked
and then grouped together according to their moving directions and distances. The
object extraction is performed by means of a color image segmentation technique
combined with an edge detector algorithm. Since an object usually contains several
subobjects (in this case wheels, windows, lights, etc. of a car) a hierarchical segmen-
tation scheme is also proposed. Three different views of a car are considered – front
view, rear view, and side view. The three subgraphs relative to these views are joined
together to form a unique graph representing all the possible views of the object. As
attributes of the nodes, Hu moments and the compactness of the segmented regions
are considered. Given two adjacent regions represented by two nodes, the ratio of
the areas, the ratio of the perimeters, the relative position and orientation, and the
overlapping area between two adjacent regions are the attribute of the edge that links
those nodes. As regards the graph-matching procedure, they propose an inexact sub-
graph matching with a matching cost based on the attribute values, using a depth-first
search with a brute force approach.

The papers by Chen et al. [150], Gomila and Mayer [151], and Conte et al. [152,
153] exploit the use of graph matching for object tracking in video sequences. They
use different middle level representations and also different matching techniques.

In Conte et al. [152] the definition and the performance assessment of a tracking
method devised for video-surveillance applications are presented. The tracking prob-
lem is factorized into two subproblems: the first is the definition of a suitable measure
of similarity between regions in adjacent frames. Provided with this measure, the sec-
ond subproblem is the search for an optimal matching between the regions appearing
in the frames. As regards the first subproblem (the definition of a similarity mea-
sure), several different metrics are proposed, jointly used during the detection phase,
according to a sort of signal fusion approach. The subproblem of the optimal
matching has been instead formulated in a graph-theoretic framework, and then
reduced to a weighted bipartite graph matching, for which a standard algorithm has
been used.

Chen et al. [150] apply a shape contour extraction and a shadow deletion to each
frame. Therefore they obtain the silhouette of each object within the scene. To each
object a probability distribution is associated, that takes into account the intensity
values of the area within the object contour. To model the multiobject tracking prob-
lem a bipartite graph is used. Each node represents an object and has as attributes its
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position, its intensity distribution, and the dimension of its enclosing bounding box.
The two classes of nodes in the bipartite graph are the so-called profile nodes and
object nodes that correspond to the objects in the past and the present frame respec-
tively. A bipartite matching algorithm is used to find the best match among nodes of
the two successive frames in order to resolve the identities of the objects. If there are
unmatched nodes, it implies that new objects have been detected and so new profiles
will be created for tracking them within the successive frames.

On the other hand, Gomila and Mayer [151] segment the image of each frame on
the basis of the color information and represents the segmented image with a mul-
tivalued neighborhood graph. Node attributes measure the intrinsic features of the
region they represents, while edge attributes represent relational constraints between
nodes. Matching graphs relative to two successive frames permits to follow the
objects along the video sequence. In order to cope with different segmentation of
the same object in two successive frames, split and merge operation are performed
on the images before the matching. The proposed matching algorithm is an error
correcting one using the relaxation labeling.

Conte et al. [153] use a multiresolution graph pyramid for representing objects at
different levels of detail. They use a hierarchical graph-matching procedure to deal
with partial occlusions of the objects being tracked. The advantage of their approach
is that it uses a fast, coarse grained, weighted bipartite graph matching as long as
there are no occlusions in the scene. When two tracked objects come to overlap,
a more refined subgraph isomorphism procedure is used to distinguish the parts of
the occluding objects, possibly recurring to a finer level or detail until a reasonable
solution is found.

Finally, Salotti and Laachfoubi in [154] present an application of motion estima-
tion in aerial videos. Given an aerial video, their aim is to estimate the shift of the part
of the image that represents the smoke, in order to collect information for preventing
fires. They use topographic graphs (that are similar to medial graphs) for describing
aerial images. Each frame of the video is segmented on the basis of the color infor-
mation and the smoke area is described by means of a topographic graph. The shift
estimation is performed by means of an inexact matching procedure that defines a
cost function for matching nodes of two topographic graphs relative to successive
images. These cost function examines only shifts in a small square window centered
on each node, since it is reasonable that the move of the smoke is not too fast.

3.6 Miscellanea

Besides the application areas detailed in previous sections, there are other
application-driven papers that are not strongly related to each other, neither on
the basis of the problem they face, nor on the basis of the adopted approach (be-
sides, obviously, the fact that they are based on graph matching). For the sake of
completeness, we present here some of these works, although in these cases we
cannot individuate any sort of common scheme in the exploitation of graph match-
ing. The papers we have chosen deal with biomedical [38, 133, 155, 156] and the
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Fig. 9. Distribution of (a) the matching algorithms and of (b) the graph representations used
within applications in the miscellanea field

biological [157,158] applications (see also Fig. 9 for the distribution of the matching
algorithms and the graph representations used in this case).

Namely, the paper by Wang et al. [133] is technique driven, and presents an
algorithm for finding the largest approximately common substructure of two trees.
In the experimental results, the authors discuss its application for finding motifs in
multiple RNA secondary structures. On the contrary, both the biomedical application
described in [38, 155] have their main focus on the application context and address
the problem of the correct identification of coronary arteries (artery labeling) starting
from medical images, and are based on prior knowledge about the expected coronary
arterial tree (CAT) structure and attributes. They use different graph-matching tech-
niques to realize the labeling.

In the paper by Dumay et al. [38], the authors start from an arteriogram image and
project a geometric model of the artery against the image. From this projected model,
an ARG made up of about ten nodes is constructed: the nodes of the graph represents
arterial segments and have as attributes the position, the mean diameter, and the
orientation of the segments, while edges represent the parental relationship (parent–
child and grandparent–child) between segments. Starting from the anatomy of a left
coronary tree of normal functioning hearts, an inexact graph-matching procedure is
used in order to assign anatomic labels to the node of an input image. Since missing
branch and/or false structures can corrupt the input image, a cost function is defined
in order to cope with transformations (substitution, insertion, and deletion of a node
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and/or an edge) of the input graph. An A* algorithm is used to perform the state
space search.

Also the paper by Charnoz et al. [156] faces a somewhat analogous problem:
the matching of several CAT-images of the intrahepatic vascular system of a same
patient, acquired at different times. The authors propose an error-correcting tree
matching algorithm that is robust with respect to topological modifications.

In the paper by Haris et al. [155], the authors use ARGs to represent the CAT.
Starting from the input image, the CAT is detected by constructing an approximation
of its centerline and borders. This results in a directed acyclic graph representing the
CAT. The attribute of each node of this graph are the position of the artery element
it represents, the direction of the artery and its approximate width. Given the input
graph and a 3D CAT model which encapsulates the expected anatomic and geometric
structure of a normal human CAT, a graph-matching algorithm assigns the appropri-
ate labels to the input CAT using weighted maximal cliques on the association graph
corresponding to the two given graphs. So the labeling problem is reformulated as
one of finding the best maximal clique of the association graph.

A biological application is the identification of diatoms described by Fischer
et. al. [157] and Ambauen et al. [158]. Diatoms are unicellular algae found in water
and in other places where there is sufficient humidity and light for allowing photo-
synthesis. The technique used for describing diatom images is the same used in the
face recognition field. A middle-level representation based on labeled grid graphs is
used. On each image a rectangular 16× 8 grid is superimposed and each node of the
graph is associated to a rectangle of the image. Each node is labeled with 13 features
derived from the gray-level co-occurrence matrices and from the Gabor coefficients.
In [157] the matching procedure can be seen as a simple form of error-correcting
graph matching. A dissimilarity measure is evaluated between two grid graphs as
the sum of the distance between the feature vectors associated to the nodes. More-
over, in order to cope with geometric distortions, also translations of the nodes are
allowed and a specific cost is introduced into the dissimilarity measure in order to
weigh such translations. In [158] a more complex matching algorithm is proposed,
based on the addition of new edit operations to the classical set of deletion, insertion,
and mutation.

4 Performance Comparison

By reviewing the wide literature in the field of graph matching, it appears evident
that the habit of proposing more and more new algorithms is prevailing against the
need of assessing the performance of the existing ones in an objective way. The
characterization of the graph-matching algorithms proposed up to now would instead
allow potential users to predict the performance of an algorithm – at least to some
degree – and could thus lead to substantial savings in system development time.

Starting from these considerations, the IAPR-TC15 community in the sec-
ond GbR workshop held in 1999 (see the TC15website at the address: http://
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www.iapr-tc15.unisa.it) declared the need for a serious benchmarking
activity in the context of graph-matching algorithms. According to the proposal
made in [159], such activity could start with exact graph-matching algorithms, by
considering different kinds of morphism and by suitably defining the number of
graphs to be matched, the size of the input graphs and the graph structure. Even if
only exact graph-matching algorithms are considered, it is also worth noting that the
matching problem may have, as pointed out in [160]:

• No solution (e.g., if the graphs are not isomorphic, or if there is no subgraph
isomorphic to the given graph)

• One solution
• More than one solution (e.g., a square mesh matches its versions rotated by 90,

180, and 360◦)

Generally, not only a fast solution for the second case is required, since a small
disturbance caused by noise may transform it into the first case. Then, it is relevant
the time needed by an algorithm for finding out that there is no perfect solution
(nonmatching time). Nonmatching times are also crucial factors in the context of
graph database filtering, as noted in [161]. Finally, the third case concerns algorithms
that can find one or all the possible solutions to the given matching problem.

If we try to understand the reasons why up to now only a small number of serious
attempts [11,162–164] has been made for comparing graph-matching algorithms, we
can easily recognize that one of the main difficulties is the fact that only in the last
few years some standard databases of graphs specifically designed for this purpose
have been made available. The creation of a graph database, in fact, is definitely not
a simple task, since several issues have to be faced [11]. Generally speaking, two
approaches can be followed for generating a database; a first way is to start from
graphs obtained from real data, otherwise the database can be obtained synthetically.
Although the first approach allows us to obtain rather realistic graphs, it is generally
more expensive as it requires the collection of real data and the selection of the set
of algorithms to be used for obtaining graphs from data. In this case the graphs are
dependent on both the domain under consideration and the preprocessing algorithm
used, reducing significantly the generality of the database and its reusability in other
contexts. On the contrary, the artificial generation of graphs is not only simpler and
faster than collecting graphs from real applications, but also allows us to control the
variation of several critical parameters of the underlying graph population, such as
the average number of nodes, average number of edges per node, number of different
labels, and so on.

By following the latter approach, three proposal have been recently made in
the scientific community, in order to provide standard graph databases. The first
two [164, 165] gave rise to databases of synthetically generated graphs explicitly
devised for benchmarking (sub)graph isomorphism algorithms and MCS algorithms,
respectively, while the third proposal [166] is based on the generation of a database
of artificial images – by using a set of attributed plex grammars – and of their corre-
sponding graph representations.
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4.1 Graph Databases

The choice of the kind of graphs to be included in the first two cited database derived
from an analysis of the graphs mainly used by members of the IAPR-TC15 com-
munity. Both databases are structured in pairs of graphs. In the first database, two
categories of pairs of graphs have been introduced, namely pairs made of isomor-
phic graphs and pairs made of graphs in which the second graph is a subgraph of the
first one. In the second database each pair of graphs has a MCS of at least two nodes.

In both cases, each category of pairs is made up of graphs that are different for
structure and size. In particular, the following kinds of graphs have been considered
(see [165] for a detailed discussion about their properties and the parameters charac-
terizing them):

• Randomly Connected Graphs
• Regular Meshes, with different dimensionality: 2D, 3D and 4D
• Irregular Meshes
• Bounded Valence Graphs
• Irregular Bounded Valence Graphs

Randomly connected graphs are graphs in which the edges connect nodes without
any structural regularity (see Fig. 10a). They can model applications in which objects
(represented by nodes) can establish relations (represented by edges) with any other
objects (not only the surrounding ones) independently of the relative positions. This
hypothesis typically occurs in the middle and high processing levels of an image
processing task.

Regular meshes (see Fig. 10b) have been introduced for simulating applications
dealing with regular structures as those operating at the lower levels of an image
processing task; while Irregular mesh-connected graphs (see Fig. 10c) can be used
for simulating the behavior of graph-matching algorithms in presence of slightly dis-
torted meshes. Bounded valence graphs (see Fig. 10d) model applications in which
each object establish a fixed number of relations with other object, not necessarily
with those belonging to its neighborhood. In order to introduce some irregularities
in these kind of graphs, Irregular bounded valence graphs have been introduced too
(see Fig. 10e).

So, in the first database (hereinafter denoted as ISO-DB) a total of 72,800 pairs
of graphs have been generated: 18,200 pairs of isomorphic graphs and 54,600 pairs
for which a subgraph isomorphism exists. Each kind of graphs has pairs of different
size, ranging from few dozens to about 1,000 nodes (i.e., small and medium size
graphs according to the classification presented in [159]). For each size and kind of
graphs 100 different pairs have been generated. Moreover, in case of graph subgraph
isomorphism, pairs in which the two graphs have three different size ratios have been
generated.

The graphs composing the whole database have been distributed on a CD
during the third IAPR-TC15 Workshop on Graph-Based Representations in
Pattern Recognition and are also publicly available on the web at the URL:
http://amalfi.dis.unina.it/graph.
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Fig. 10. (a) An example of a randomly connected graph. (b) A 2D regular mesh with size
5 × 5 and (c) an irregular mesh obtained by adding five further edges to the graph (b). For
each added edge, the starting and the ending nodes are randomly determined according to an
uniform distribution. (d) A bounded valence graph with a valence equal to 5; (e) an irregular
bounded valence graph, obtained from the graph (d) by moving the two dashed edges

For the second database (from now on denoted as MCS-DB), a total of 81,400
pairs of labeled graphs have been generated. The choice of the labeling comes from
the need of restricting the number of possible node or edge pairings because of the
complexity of the MCS problem. For each of the above-mentioned kind of graphs,
pairs of graphs having different sizes N , ranging from 10 to 100, have been included
in the database. Moreover, for each value of N , five different sizes of the MCS have
been taken into account and 100 pairs of graphs have been generated for each size.
As regards the labeling, the authors proposal was to generate random values for
the attributes, since any other choice would imply assumptions about an application
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dependent model of the represented graphs. The whole database is publicly available
on the web at the URL: http://amalfi.dis.unina.it/graph.

The third database comes from an image generation method (downloadable from
the URL: http://www.artificial-neural.net/) based on a combination
of attribute grammars and plex grammars [167]. A plex grammar is a generic mech-
anism allowing to specify a number of rules that describe how an image is built up
from simpler constituents. Because the rules can be recursive, a potentially infinite
set of images can be described by a finite number of rules.

According to the authors’ proposal [166], an image generated according to the
previous method can be simply converted into a graphical representation. An exam-
ple referring to the image of a policeman is reported in Fig. 11. The nodes of the
graph correspond to regions in the image, while the edges represent spatial relations
between the regions. A number of different attributes can be computed for each node
and each edge. Examples of node attributes are color, center of gravity, and size of
a region; while edge attributes represent geometric relations between regions (e.g.,
angle and distance of centers of gravity).

Since the rules of the attributed plex grammar are defined by the user, there are
no restrictions on the underlying domain and there is not a predefined graphical
representation of an image. In fact, through a number of parameters the user can
choose the representation that is most suitable for the problem at hand. It is then
possible to create image databases, together with their graphical representations, for
various kinds of PR problems involving graphs. Exact and inexact graph matching,
supervised and unsupervised learning of graphical representations from examples
and graph clustering are actual examples.

Fig. 11. (a) The image of a policeman generated according to the method proposed in [166]
and (b) its representation as a graph. Labels associated with each node are not shown
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Even if some authors [141, 163, 168] used the above-described image database
for testing their graph-based approaches, no paper reporting a serious comparison of
algorithms on graphs generated from it has been presented so far. On the other hand,
there are some papers presenting benchmarking activities using graphs extracted
from both the ISO-DB and the MCS-DB.

4.2 Benchmarking Activities

One of the first attempts to compare graph-matching algorithms has been made
in [162]. Five inexact graph-matching algorithms have been considered and com-
pared with respect to both the speed of algorithms, capacity for classification and
suitability for different kind of graphs. Algorithms were tested in two real-world
classification problems. Nevertheless, since the size of the graphs used in the tests
ranges from three to nine nodes, the current usefulness of the obtained results is quite
limited.

More recently, three works have tried to follow the indications of the IAPR TC
15 community for carried out a noteworthy activity in the context of graph-matching
algorithms.

In particular, in [11], four exact graph-matching algorithms have been compared
with respect to the times needed for finding a match on pairs of isomorphic graphs
extracted from the ISO-DB. In particular the Ullmann’s algorithm [5], the algorithm
by Schmidt and Druffel [6], the VF2 algorithm [13] and Nauty [16] have been con-
sidered. As it could be expected, the authors conclude that an algorithm performing
definitively better than all the others does not exist. In particular, for randomly con-
nected graphs, the Nauty algorithm is the better if the graphs are quite dense and/or
of quite large size. For smaller and quite sparse graphs, on the contrary, VF2 per-
forms better. On more regular graphs, i.e., on 2D meshes, VF2 is definitely the best
algorithm: in this case the Nauty algorithm is even not able to find a solution for
graphs bigger than few dozens of nodes. In case of bounded valence graph, if the
valence is small, VF2 is always the best algorithm, while for bigger values of the
valence the Nauty algorithm is more convenient if the size of the graphs is small.

Two of the above-described algorithms, namely VF2 and Ullmann, have been
also extensively compared in [161] with respect to their nonmatching times, i.e., the
time needed for declaring that there is not a match between two given graphs. The
comparison has been carried out on graphs extracted from the ISO-DB; both the cases
of pairs of graphs with the same number of nodes and with a different number of
nodes have been considered.

According to the tests reported in the paper, the nonmatching times obtained
by the Ullmann’s algorithm are almost always smaller than those achieved by the
VF2 algorithm when pairs of graphs with the same number of nodes are taken into
account. Only in case of very regular graphs, i.e., high-dimensional meshes, the
nonmatching times of the two algorithms are practically identical. This behavior
is substantially confirmed in case of graphs with different number of nodes, even if
in this case the nonmatching times of VF2 are smaller for regular bounded valence
graphs with at least 70 nodes and for high-dimensional meshes.
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Finally, in [164] the matching times of three MCS algorithms, namely those pro-
posed by McGregor [169], by Balas and Yu [170], and by Durand et al. [15], have
been compared by using pairs of graphs extracted from the MCS-DB.

According to the authors, also in this case it does not exist an algorithm that is
definitively better than the others. In particular, for randomly connected graphs, the
McGregor algorithm is the best one if the graphs are quite sparse and/or of quite
small size. For larger and quite dense graphs, on the contrary, the Durand et al.
algorithm performs better. If the MCS has a more regular structure, i.e., on mesh-
like MCS, the McGregor algorithm is in most cases the best algorithm; the Durand
et al. algorithm performs better only for small and dense graphs. On the contrary,
when the irregularity degree grows up, the Balas–Yu algorithm performs better for
large and dense graphs. In case of bounded valence graphs, the McGregor algorithm
is the best one if the valence is small, while for larger values of the valence the Du-
rand et al. algorithm is more convenient when the graphs to be matched are dense. If
the graphs are both dense and large, the Balas Yu algorithm is the best one. Finally,
when an irregularity degree is added to the bounded valence graphs, the Durand–
Pasari algorithm performs better in most cases, even if the Balas–Yu algorithm is
still winning for large graphs.

5 Conclusions

In this paper we have presented a comprehensive review of graph-matching methods
used in PR and computer vision applications, highlighting the relationships between
the application domain and specific problem on one side, and the adopted graph rep-
resentation and matching technique on the other side. An evaluation of the proposed
methods and tools for assessing the performance of a graph-matching algorithm com-
pleted our work.

All together, these two parts provide useful information to applied researchers
for deciding which graph-based technique best fits their needs.
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Efficient Algorithms on Trees and Graphs with Unique
Node Labels

Gabriel Valiente

Summary. There is a growing interest on trees and graphs with unique node labels in the
field of pattern recognition, not only because graph isomorphism and related problems become
polynomial-time solvable when restricted to them but also in the light of important practical
applications in structural pattern recognition. Current algorithms for testing graph and sub-
graph isomorphism and computing the graph edit distance, a shortest edit script, a largest com-
mon subgraph, and a smallest common supergraph of two graphs with unique node labels, take
time quadratic in the number of nodes in the graphs, and the same holds for similar problems
on trees with unique node labels. In this paper, simple algorithms are presented for solving
these problems in time linear in the number of nodes and edges in the trees or graphs. These
new algorithms are based on radix sorting the sets of nodes and edges in the trees or graphs by
node label and source and target node label, respectively, followed by a simultaneous traversal
of the ordered sets of nodes and edges.

Key words: Graph matching, Trees, Graphs with unique node labels, Graph isomor-
phism, Subgraph isomorphism, Edit distance, Edit script, Largest common subgraph,
Smallest common supergraph, Efficient algorithms

1 Introduction

Graph theoreticians and theoretical computer scientists have been suffering the so-
called graph isomorphism disease (to establish the complexity of graph isomorphism
and related problems) for several decades now [1,2] but, surprisingly, it is the restric-
tion to graphs with unique node labels [3,4] what makes these problems polynomial-
time solvable and with important practical applications in pattern recognition [3, 5].

A graph with unique node labels [3] is just a directed graph with nodes labeled
over an ordered alphabet such that no two nodes share the same label. Formally, let
ΣV be an ordered set of node labels, and let ΣE be a set of edge labels. A graph is a
four-tuple G = (V,E, α, β), where V is a finite set of nodes, E ⊆ V × V is a finite
set of edges, α : V → ΣV is a node labeling mapping, and β : E → ΣE is an edge
labeling mapping. A graph G = (V,E, α, β) is a graph with unique node labels if
α(v) �= α(w) for all v, w ∈ V with v �= w.
G. Valiente: Efficient Algorithms on Trees and Graphs with Unique Node Labels, Studies in Computational Intelligence
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Graph matching [6] has been studied in the pattern recognition literature in
various forms: graph isomorphism [7–10], subgraph isomorphism [9–11] [12, 13],
largest common subgraph [14–18], smallest common supergraph [19,20], and graph
edit distance [21–25]. However, a fundamental limitation for the practical applica-
tion of graph matching in the field of pattern recognition, lies in the complexity of
graph matching because subgraph isomorphism, largest common subgraph, smallest
common supergraph, and graph edit distance are all NP-complete problems [26].

In the class of graphs with unique node labels, these problems become
polynomial-time solvable, because they reduce to the computation of either set
union or set intersection for the set of nodes and the set of edges in the graphs. For
instance, computing a largest common subgraph of two graphs with unique node
labels takes O(n2) time, where n is the number of nodes [3, 5].

In this paper, we show that the problems of testing graph and subgraph isomor-
phism and computing the graph edit distance, a shortest edit script, a largest common
subgraph, and a smallest common supergraph of two trees or graphs with unique
node labels can all be solved in optimal O(n + m) time, where n is the number of
nodes and m is the number of edges. The algorithms themselves are not complicated
to implement, and they only require the use of standard data structures.

The rest of the paper is organized as follows. In Sect. 2, the notion of graph with
unique node labels is recalled. Efficient algorithms for the problems of graph iso-
morphism, subgraph isomorphism, graph edit distance, shortest edit script, largest
common subgraph, and smallest common supergraph on trees and graphs with
unique node labels are presented in detail in Sect. 3. Finally, some conclusions are
drawn in Sect. 4.

2 Trees and Graphs with Unique Node Labels

The class of graphs with unique node labels, introduced in [3], is characterized by
the requirement of each node label being unique. Graphs with unique node labels
find application in those problem domains in which objects are modeled by nodes
with some property that can be used to uniquely identify them. Some applications of
graphs with unique node labels, discussed in [4], include computer network moni-
toring (where each client, server, or router in a computer network is represented by a
node, and an address uniquely identifies such a node in a computer network) and web
document analysis (where each unique term that occurs in a document is represented
by a node, and multiple occurrences of the same term are represented by the same
node). Further application domains for trees and graphs with unique node labels
include biochemical networks (where each biochemical reaction in the metabolic
pathway of an organism is represented by a node, and multiple occurrences of the
same biochemical reaction in the metabolism of an organism are represented by the
same node; see [27]) and taxonomic classifications (where each group of species or
species name labels a different node of a taxonomic tree; see [28]) in computational
biology.
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Definition 1. Let ΣV be an ordered set of node labels, and let ΣE be a set of edge
labels. A graph is a four-tuple G = (V,E, α, β), where V is a finite set of nodes,
E ⊆ V × V is a finite set of edges, α : V → ΣV is a node labeling mapping, and
β : E → ΣE is an edge labeling mapping. A graph G = (V,E, α, β) is a graph with
unique node labels if α(v) �= α(w) for all v, w ∈ V with v �= w.

In the class of graphs with unique node labels, the problems of testing graph and
subgraph isomorphism and computing the graph edit distance, a shortest edit script, a
largest common subgraph, and a smallest common supergraph of two graphs become
polynomial-time solvable, because they reduce to computation of either set union or
set intersection for the set of nodes and the set of edges in the graphs. For instance,
the algorithm given in [3,5] for computing a largest common subgraph of two graphs
with unique node labels, can be stated in pseudocode form as follows.

Algorithm 1. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, compute a largest common subgraph G = (V, E, α, β) of G1 and G2.

1. V := ∅
2. foreach node v1 ∈ V1

foreach node v2 ∈ V2

if α1(v1) = α2(v2) then
V := V ∪ {v}, where v is a new node
α(v) := α1(v1)

endif
endfor

endfor
3. E := ∅
4. foreach node v ∈ V

let v1 be the node of G1 with α1(v1) = α(v)
let v2 be the node of G2 with α2(v2) = α(v)
foreach node w ∈ V

let w1 be the node of G1 with α1(w1) = α(w)
let w2 be the node of G2 with α2(w2) = α(w)
if (v1, w1) ∈ E1, (v2, w2) ∈ E2 and β1(v1, w1) = β2(v2, w2) then

E := E ∪ {(v, w)}
β(v, w) := β1(v1, w1)

endif
endfor

endfor
5. return G

Computation of a largest common subgraph of two graphs with unique node
labels using the previous algorithm takes O(n2) time, where n is the number of
nodes in the graphs. A more efficient algorithm is presented in Sect. 3 that only takes
O(n+m) time, where n is the number of nodes and m is the number of edges in the
graphs.
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3 Efficient Algorithms on Trees and Graphs with Unique Node
Labels

The problems of testing graph and subgraph isomorphism and computing the graph
edit distance, a shortest edit script, the largest common subgraph, and the smallest
common supergraph of two graphs with unique node labels, can be solved in time
linear in the number of nodes and edges in the graphs, only if the sets of node labels
can be sorted in time linear in the number of nodes and the sets of edge source and
target node labels can also be sorted in time linear in the number of nodes and edges
in the graphs. The procedure was first sketched in [29].

While sorting takes, in general, quasilinear time, there are at least two particular
cases of much interest in pattern recognition for which nodes labels can be sorted in
linear time. On the one hand, if node labels are small integers, as in [3], let k be a
fixed, but arbitrary, constant. Since n integers in the range {1, . . . , kn} can be sorted
in O(n) time, by bucket sorting techniques, it follows that the sets of node labels
and the sets of edge source and target node labels can be sorted in time linear in the
number of nodes and edges in the graphs.

On the other hand, if node labels are strings, as in [5], let k be again a fixed, but
arbitrary, constant. Since n strings of total length at most kn can be sorted in O(n)
time, by radix sorting techniques [30], it follows that the sets of node labels and the
sets of edge source and target node labels can be sorted in time linear in the total
length of the strings. In particular, if node labels are all short strings, of O(1) length
each.

All trees and graphs are assumed to be given in adjacency list representation in
the rest of the paper.

3.1 Graph Isomorphism

Definition 2. Two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) are
isomorphic if there is a bijection µ : V1 → V2 such that, for every node vi ∈ V1,
α1(vi) = α2(µ(vi) and for every pair of nodes v1, w1 ∈ V1, (v1, w1) ∈ E1 if and
only if (µ(v1), µ(w1)) ∈ E2 and β1(v1, w1) = β2(µ(v1), µ(w1)). In such a case, µ
is a graph isomorphism of G1 to G2.

The efficient computation of the isomorphism of two graphs G1 = (V1, E1,
α1, β1) and G2 = (V2, E2, α2, β2) with unique node labels proceeds as follows.
Sort V1 and V2 by node label and, during a simultaneous traversal [30] of the ordered
sets of nodes, map each node v1 ∈ V1 to the only node v2 ∈ V2 such that α1(v1) =
α2(v2), that is, set µ(v1) = v2. In a similar vein, sort E1 and E2 by source node label
and target node label and then, during a simultaneous traversal of the ordered sets of
edges, for each edge e1 ∈ E1 and e2 ∈ E2, say e1 = (v1, w1) and e2 = (v2, w2),
with α1(v1) = α2(v2) and α1(w1) = α2(w2), check that β1(e1) = β2(e2). Then,
the node mapping µ : V1 → V2 obtained in the first stage is a graph isomorphism of
G1 to G2 if and only if all nodes of V1 were mapped and the latter test was successful
for all edges of E1.
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Algorithm 2. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, compute a graph isomorphism µ of G1 to G2, if it exists.

1. sort V1 and V2 by node label
2. isomorph := true
3. while V1 �= ∅ and V2 �= ∅ and isomorph do

let v1 and v2 be the first element of V1 and V2, respectively
if α1(v1) = α2(v2) then

µ(v1) := v2

V1 := V1 \ {v1}
V2 := V2 \ {v2}

else
isomorph := false

endif
endwhile

4. sort E1 and E2 by target node label
sort E1 and E2 by source node label

5. while E1 �= ∅ and E2 �= ∅ and isomorph do
let (v1, w1) and (v2, w2) be the first element of E1 and E2

if µ(v1) = v2 and µ(w1) = w2 and β1(v1, w1) = β2(v2, w2) then
E1 := E1 \ {(v1, w1)}
E2 := E2 \ {(v2, w2)}

else
isomorph := false

endif
endwhile

6. return (µ, isomorph)

3.2 Subgraph Isomorphism

Definition 3. A subgraph isomorphism of a graph G1 = (V1, E1, α1, β1) into a
graph G2 = (V2, E2, α2, β2) is an injection µ : V1 → V2 such that, for every
node vi ∈ V1, α1(vi) = α2(µ(vi) and for every pair of nodes v1, w1 ∈ V1 with
(v1, w1) ∈ E1, (µ(v1), µ(w1)) ∈ E2 and β1(v1, w1) = β2(µ(v1), µ(w1)). In such a
case, µ is a subgraph isomorphism of G1 into G2.

The efficient computation of a subgraph isomorphism of a graph G1 =
(V1, E1, α1, β1) with unique node labels into another graph G2 = (V2, E2, α2, β2)
with unique node labels proceeds as follows. Sort V1 and V2 by node label and,
during a simultaneous traversal [30] of the ordered sets of nodes, map each node
v1 ∈ V1 to the only node v2 ∈ V2 such that α1(v1) = α2(v2), that is, set µ(v1) = v2.
In a similar vein, sort E1 and E2 by source node label and target node label and then,
during a simultaneous traversal of the ordered sets of edges, for each edge e1 ∈ E1

and e2 ∈ E2, say e1 = (v1, w1) and e2 = (v2, w2), with α1(v1) = α2(v2) and
α1(w1) = α2(w2), check that β1(e1) = β2(e2). Then, the node mapping µ : V1 →
V2 obtained in the first stage is a subgraph isomorphism of G1 into G2 if and only if
all nodes of V1 were mapped and the latter test was successful for all edges of E1.
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Algorithm 3. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, compute a subgraph isomorphism µ of G1 into G2, if it exists.

1. sort V1 and V2 by node label
2. while V1 �= ∅ and V2 �= ∅ do

let v1 and v2 be the first element of V1 and V2, respectively
if α1(v1) = α2(v2) then

µ(v1) := v2

V1 := V1 \ {v1}
endif
V2 := V2 \ {v2}

endwhile
3. sort E1 and E2 by target node label

sort E1 and E2 by source node label
4. while E1 �= ∅ and E2 �= ∅ do

let (v1, w1) and (v2, w2) be the first element of E1 and E2

if µ(v1) = v2 and µ(w1) = w2 and β1(v1, w1) = β2(v2, w2) then
E1 := E1 \ {(v1, w1)}

endif
E2 := E2 \ {(v2, w2)}

endwhile
5. isomorph := (V1 = ∅ and E1 = ∅)
6. return (µ, isomorph)

3.3 Graph Edit Distance

The edit operations of node and edge deletion, insertion, and substitution allow one
to transform any given graph into any other graph. In the class of graphs with unique
node labels, edge label substitution are allowed but node label substitutions are for-
bidden, because they may generate graphs with nonunique node labels [3, 4].

A non-negative cost is assigned to each edit operation, the cost of a sequence
of edit operations is given by the sum of the individual cost over all of the edit
operations in the sequence, and the edit distance of two graphs is defined as the least
cost over all sequences of edit operations that transform one graph into the other.

In practical applications, the cost of an edit operations is equal to 1 except for
node substitutions, which have infinite cost. Under this assumption of unit cost, the
edit distance coincides with the size of a largest common subgraph [21]. Therefore,
under the assumption of unit cost, the algorithm for computing a largest common
subgraph of two graphs with unique node labels presented below can also be used to
compute the edit distance of two graphs with unique node labels.

3.4 Shortest Edit Script

Definition 4. An edit script of a graph G1 = (V1, E1, α1, β1) to a graph G2 =
(V2, E2, α2, β2) is a set S of edit operations that, if applied in the right order
(essentially, inserting an edge only after having inserted the nodes incident with the
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inserted edge), allow one to transform G1 into G2. An edit script S of G1 to G2 is
shortest if there is no edit script of G1 to G2 of smaller size than S.

The efficient computation of a shortest edit script of two graphs G1 =
(V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with unique node labels proceeds as
follows. Sort V1 and V2 by node label and, during a simultaneous traversal [30] of
the ordered sets of nodes, for each node v1 ∈ V1 such that there is no node v2 ∈ V2

with α1(v1) = α2(v2), output the edit operation “delete node α1(v1)” and for each
node v2 ∈ V2 such that there is no node v1 ∈ V1 with α1(v1) = α2(v2), output the
edit operation “insert node α2(v2).”

In a similar vein, sort E1 and E2 by source node label and target node label
and then, during a simultaneous traversal of the ordered sets of edges, for each edge
e1 ∈ E1 and e2 ∈ E2, say e1 = (v1, w1) and e2 = (v2, w2), with α1(v1) = α2(v2)
and α1(w1) = α2(w2), if β1(e1) �= β2(e2), then output the edit operation “substitute
edge α1(v1) to α1(w1) label β2(v2, w2).” Also, for each edge e1 = (v1, w1) ∈
E1 such that there is no edge e2 = (v2, w2) ∈ E2 with α1(v1) = α2(v2) and
α1(w1) = α2(w2), output the edit operation “delete edge α1(v1) to α1(w1)” and
for each edge e2 = (v2, w2) ∈ E2 such that there is no edge e1 = (v1, w1) ∈ E1

with α1(v1) = α2(v2) and α1(w1) = α2(w2), output the edit operation “insert edge
α2(v2) to α2(w2).”

3.5 Largest Common Subgraph

Definition 5. A common subgraph of two graphs G1 = (V1, E1, α1, β1) and G2 =
(V2, E2, α2, β2) is a graph G such that there exist subgraph isomorphisms of G into
G1 and into G2. A common subgraph G of G1 and G2 is maximal if there is no
subgraph isomorphism of G into any other common subgraph G′ of G1 and G2, and
it is largest if there is no common subgraph G′ of G1 and G2 of larger size than G.

The efficient computation of a largest common subgraph of two graphs G1 =
(V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with unique node labels proceeds as
follows. Let G = (V,E, α, β) be an empty graph and let γ : V1 → V be an array
of nodes indexed by the nodes of G1. Sort V1 and V2 by node label and, during a
simultaneous traversal [30] of the ordered sets of nodes, for each node v1 ∈ V1 and
v2 ∈ V2 with α1(v1) = α2(v2), add a new node v to G with α(v) = α1(v1) and
set γ(v1) = v. In a similar vein, sort E1 and E2 by source node label and target
node label and then, during a simultaneous traversal of the ordered sets of edges,
for each edge e1 ∈ E1 and e2 ∈ E2, say e1 = (v1, w1) and e2 = (v2, w2), with
α1(v1) = α2(v2) and α1(w1) = α2(w2), if β1(e1) = β2(e2), then add a new edge
e = (v, w) to G with β(e) = β1(e1), where v = γ(v1) and w = γ(w1).

Notice that graph and subgraph isomorphism can also be tested by just comparing
the size of a largest common subgraph with the size of the given graphs.

3.6 Smallest Common Supergraph

Definition 6. A common supergraph of two graphs G1 = (V1, E1, α1, β1) and G2 =
(V2, E2, α2, β2) is a graph G such that there exist subgraph isomorphisms of G1
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Algorithm 4. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, output a shortest edit script of G1 and G2.

1. sort V1 and V2 by node label
2. while V1 �= ∅ and V2 �= ∅ do

let v1 and v2 be the first element of V1 and V2, respectively
case α1(v1) < α2(v2)

output “delete node α1(v1)”
V1 := V1 \ {v1}

case α1(v1) > α2(v2)
output “insert node α2(v2)”
V2 := V2 \ {v2}

otherwise
V1 := V1 \ {v1}
V2 := V2 \ {v2}

endcase
endwhile

3. sort E1 and E2 by target node label
sort E1 and E2 by source node label

4. while E1 �= ∅ and E2 �= ∅ do
let (v1, w1) and (v2, w2) be the first element of E1 and E2

case α1(v1) < α2(v2) or (α1(v1) = α2(v2) and α1(w1) < α2(w2))
output “delete edge α1(v1) to α1(w1)”
E1 := E1 \ {(v1, w1)}

case α1(v1) > α2(v2) or (α1(v1) = α2(v2) and α1(w1) > α2(w2))
output “insert edge α2(v2) to α2(w2)”
E2 := E2 \ {(v2, w2)}

otherwise
if β1(v1, w1) �= β2(v2, w2) then

output “substitute edge α1(v1) to α1(w1) label β2(v2, w2)”
endif
E1 := E1 \ {(v1, w1)}
E2 := E2 \ {(v2, w2)}

endcase
endwhile

and G2 into G. A common supergraph G of G1 and G2 is minimal if there is no
subgraph isomorphism into G of any other common supergraph G′ of G1 and G2,
and it is smallest if there is no common supergraph G′ of G1 and G2 of smaller size
than G.

The efficient computation of a smallest common supergraph of two graphs G1 =
(V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with unique node labels proceeds as
follows. Let G = (V,E, α, β) be an empty graph, and let γ : V1 → V be an array
of nodes indexed by the nodes of G1. Sort V1 and V2 by node label and, during a
simultaneous traversal [30] of the ordered sets of nodes, for each node v1 ∈ V1 and
v2 ∈ V2 with α1(v1) = α2(v2), add a new node v to G with α(v) = α1(v1) and set
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Algorithm 5. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, compute a largest common subgraph G = (V, E, α, β) of G1 and G2.

1. sort V1 and V2 by node label
2. V := ∅
3. while V1 �= ∅ and V2 �= ∅ do

let v1 and v2 be the first element of V1 and V2, respectively
case α1(v1) < α2(v2)

V1 := V1 \ {v1}
case α1(v1) > α2(v2)

V2 := V2 \ {v2}
otherwise

V := V ∪ {v}, where v is a new node
α(v) := α1(v1)
γ(v1) := v
V1 := V1 \ {v1}
V2 := V2 \ {v2}

endcase
endwhile

4. sort E1 and E2 by target node label
sort E1 and E2 by source node label

5. E := ∅
6. while E1 �= ∅ and E2 �= ∅ do

let (v1, w1) and (v2, w2) be the first element of E1 and E2

case α1(v1) < α2(v2) or (α1(v1) = α2(v2) and α1(w1) < α2(w2))
E1 := E1 \ {(v1, w1)}

case α1(v1) > α2(v2) or (α1(v1) = α2(v2) and α1(w1) > α2(w2))
E2 := E2 \ {(v2, w2)}

otherwise
if β1(v1, w1) = β2(v2, w2) then

E := E ∪ {(γ(v1), γ(w1))}
β(γ(v1), γ(w1)) := β1(v1, w1)

endif
E1 := E1 \ {(v1, w1)}
E2 := E2 \ {(v2, w2)}

endcase
endwhile

7. return G

γ(v1) = v and γ(v2) = v. Also, for each node v1 ∈ V1 such that there is no node
v2 ∈ V2 with α1(v1) = α2(v2), add a new node v to G with α(v) = α1(v1) and
set γ(v1) = v, and for each node v2 ∈ V2 such that there is no node v1 ∈ V1 with
α1(v1) = α2(v2), add a new node v to G with α(v) = α2(v2) and set γ(v2) = v.

In a similar vein, sort E1 and E2 by source node label and target node label
and then, during a simultaneous traversal of the ordered sets of edges, for each edge
e1 ∈ E1 and e2 ∈ E2, say e1 = (v1, w1) and e2 = (v2, w2), with α1(v1) = α2(v2)
and α1(w1) = α2(w2), if β1(e1) = β2(e2), then add a new edge e = (v, w) to G
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with β(e) = β1(e1), where v = γ(v1) and w = γ(w1). Also, for each edge e1 =
(v1, w1) ∈ E1 such that there is no edge e2 = (v2, w2) ∈ E2 with α1(v1) = α2(v2)
and α1(w1) = α2(w2), add a new edge e = (v, w) to G with β(e) = β1(e1), where
v = γ(v1) and w = γ(w1), and for each edge e2 = (v2, w2) ∈ E2 such that there
is no edge e1 = (v1, w1) ∈ E1 with α1(v1) = α2(v2) and α1(w1) = α2(w2), add a
new edge e = (v, w) to G with β(e) = β2(e2), where v = γ(v1) and w = γ(w1).

4 Conclusion

Graph matching encompasses a series of related problems with important practical
applications in combinatorial pattern matching, pattern recognition, chemical struc-
ture search, computational biology, and other areas of engineering and life sciences.
In the class of trees and graphs with unique node labels, these problems become
polynomial-time solvable and current algorithms for testing graph and subgraph iso-
morphism and computing the graph edit distance, a shortest edit script, a largest
common subgraph, and a smallest common supergraph of two graphs with unique
node labels, take time quadratic in the number of nodes in the graphs, and the same
holds for similar problems on trees with unique node labels.

The main contribution of this paper is the development of a simple technique for
performing set-theoretical operations on the nodes and edges of two trees or graphs
with unique node labels. The technique is based on radix sorting the sets of nodes
and edges in the trees or graphs by node label and source and target node label,
respectively, followed by a simultaneous traversal of the ordered sets of nodes and
edges.

Application of this technique to graph matching resulted in simple algorithms
for testing graph and subgraph isomorphism and computing the graph edit distance,
a shortest edit script, a largest common subgraph, and a smallest common super-
graph of two trees or graphs with unique node labels in time linear in the number
of nodes and edges in the trees or graphs. The algorithms themselves, for which de-
tailed pseudocode is given, are not complicated to implement, and they only require
the use of standard data structures.
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Algorithm 6. Given two graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with
unique node labels, compute a smallest common supergraph G = (V, E, α, β) of G1 and G2.

1. sort V1 and V2 by node label
2. V := ∅
3. while V1 �= ∅ and V2 �= ∅ do

let v1 and v2 be the first element of V1 and V2, respectively
case α1(v1) < α2(v2)

V := V ∪ {v}, where v is a new node
α(v) := α1(v1)
γ(v1) := v
V1 := V1 \ {v1}

case α1(v1) > α2(v2)
V := V ∪ {v}, where v is a new node
α(v) := α2(v2)
γ(v2) := v
V2 := V2 \ {v2}

otherwise
V := V ∪ {v}, where v is a new node
α(v) := α1(v1)
γ(v1) := v
γ(v2) := v
V1 := V1 \ {v1}
V2 := V2 \ {v2}

endcase
endwhile

4. sort E1 and E2 by target node label
sort E1 and E2 by source node label

5. E := ∅
6. while E1 �= ∅ and E2 �= ∅ do

let (v1, w1) and (v2, w2) be the first element of E1 and E2

case α1(v1) < α2(v2) or (α1(v1) = α2(v2) and α1(w1) < α2(w2))
E := E ∪ {(γ(v1), γ(w1))}
β(γ(v1), γ(w1)) := β1(v1, w1)
E1 := E1 \ {(v1, w1)}

case α1(v1) > α2(v2) or (α1(v1) = α2(v2) and α1(w1) > α2(w2))
E := E ∪ {(γ(v2), γ(w2))}
β(γ(v2), γ(w2)) := β1(v2, w2)
E2 := E2 \ {(v2, w2)}

otherwise
if β1(v1, w1) = β2(v2, w2) then

E := E ∪ {(γ(v1), γ(w1))}
β(γ(v1), γ(w1)) := β1(v1, w1)

endif
E1 := E1 \ {(v1, w1)}
E2 := E2 \ {(v2, w2)}

endcase
endwhile

7. return G
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A Generic Graph Distance Measure
Based on Multivalent Matchings

Sébastien Sorlin, Christine Solnon and Jean-Michel Jolion

Summary. Many applications such as information retrieval and classification, involve
measuring graph distance or similarity, i.e., matching graphs to identify and quantify their
common features.

Different kinds of graph matchings have been proposed, giving rise to different graph
similarity or distance measures. Graph matchings may be univalent – when each vertex is
associated with at most one vertex of the other graph – or multivalent – when each vertex
is associated with a set of vertices of the other graph. Also, graph matchings may be exact
– when all vertex and edge features must be preserved by the matching – or error-tolerant –
when some vertex and edge features may not be preserved by the matching.

The first goal of this chapter is to propose a new graph distance measure based on the
search of a best matching between the vertices of two graphs, i.e., a matching minimizing
vertex and edge distance functions. This distance measure is generic in the sense that it allows
both univalent and multivalent matchings and it is parameterized by vertex and edge distance
functions defined by the user depending on the considered application. The second goal of
this chapter is to show how to use this generic measure to model and to solve classical graph
matching problems such as (sub-)graph isomorphism problem, error-tolerant graph matching,
and nonbijective graph matching.

1 Introduction

In many applications such as information retrieval or classification, measuring object
similarity is an important issue [1]. Measuring the similarity of two objects consists
in identifying and quantifying their commonalities. A dual problem is to measure the
distance of these two objects, i.e., identify and quantify their differences.

Graphs are often used to model structured objects, e.g., scene representation
[2–5], design objects [6], molecule representations [7, 8], and web documents [9].
Vertices represent object components while edges represent binary relations between
these components. Vertices and edges may be labeled by their features. For example,
to represent an image by a graph, one usually associates a vertex with each region
of the segmented image, and an edge with each couple of vertices corresponding to
two adjacent regions. In order to better represent images, each vertex may be labeled

S. Sorlin et al.: A Generic Graph Distance Measure Based on Multivalent Matchings, Studies in Computational Intelli-
gence (SCI) 52, 151–181 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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by the size and the bounding box of its associated region and each edge may be
labeled by a value representing how much two regions are connected (by means of
the number of adjacent pixels) [2].

1.1 Graph Matchings and Distance Measures

Computing the distance/similarity of two graphs usually involves finding a “best”
matching of the graph vertices (i.e., the one that most preserves vertex and edge fea-
tures) and then quantifying this set of preserved features. Hence, graph distance mea-
sures are closely related to graph matching problems and the capacity of a measure
to identify the commonalities of graphs depends on the kind of considered matching.

Graph matchings may be univalent – when each vertex is associated with at most
one vertex of the other graph – or multivalent – when each vertex is associated with
a set of vertices of the other graph. Also, graph matchings may be exact – when all
vertex and edge features must be preserved by the matching – or error-tolerant –
when some vertex and edge features may not be preserved by the matching.

Examples of univalent exact matchings are:

1. Graph isomorphism, that involves finding a bijection between the graph vertices
that preserves all vertex and edge features of the graphs and that is used to prove
graph equivalence

2. Subgraph isomorphism, that involves finding an injection from the vertices of
the first graph to the vertices of a second graph that preserves all vertex and edge
features of the first graph and that is used to prove graph inclusion

In many applications, we are looking for similar objects and not “identical” ones
and error-tolerant matchings are needed. Examples of univalent error-tolerant match-
ings are:

1. Maximum common subgraph [10, 30], that looks for the largest matching (with
respect to the number of matched vertices) that preserves all the edges of the
matched vertices

2. Graph edit distance [10, 30] that looks for the minimum cost set of operations
(i.e., vertex and edge insertion, deletion and relabeling) needed to transform the
first graph into a graph that is isomorphic to the second graph

Many applications involve comparing objects described at different granula-
rity levels and multivalent matchings are needed. Different graph distance/similarity
measures based on multivalent error-tolerant graph matchings have been proposed:

1. Champin and Solnon [6] measure the similarity of design[ed] objects where one
single component of an object may play the same role as that of a set of com-
ponents of another object, depending on the granularity of object description.
Therefore, the graph similarity measure is based on multivalent matchings where
one vertex in a graph may be associated with a set of vertices of the other graph.

2. Boeres et al. [4] and Deruyver et al. [12] use graph matching to match an image
to its model. In this application, the model has a schematic aspect easy to seg-
ment while the image is noised and usually over-segmented. Therefore, scene
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recognition is better expressed as a multivalent matching problem where a set of
vertices of the scene may be matched with a same vertex of the model.

3. Ambauen et al. [2] propose a new graph edit distance to overcome the prob-
lem of comparing over and under segmented images. This distance is based on
multivalent matchings: two new edit operations – vertex splitting and merging –
are introduced in order to merge or to split over- or under-segmented regions.

1.2 Motivation and Outline of the Chapter

Many different graph distance/similarity measures have been proposed in the litera-
ture [13, 14]. These measures are based on different definitions of a “best” matching
between two graphs depending on the considered application. For example, the graph
similarity measure of Boeres et al. [4] is specific to the recognition of brain images,
and in this context specific constraints are added (e.g., all model vertices must be
mapped and each image vertex must be mapped to exactly one model vertex). There-
fore, it is difficult to use this measure in other applications.

Ambauen et al. defines [2] a more generic graph distance measure: the measure
is parameterized by the cost of each possible operation and these costs can be cho-
sen depending on the considered application. As in [4], this measure adds an image
recognition specific constraint on the considered multivalent matching: the multiva-
lent matching operations (vertex merging and splitting) must be nonoverlapping, i.e.,
if one wants to link two vertices u and v of one graph to another vertex u′, one has
to merge u and v and as a consequence, it will not be possible anymore to link u
with a vertex v′ without linking v to v′. If this constraint makes sense in a context of
over-segmented regions, it is not a desirable property in all applications (in particular
for the application of [6]). Also, graph distance measure of [2] is not generic enough
to express all kinds of multivalent matching problems: for example, it cannot be used
to model the problem described in [4].

In [15] Sorlin and Solnon prove that the similarity measure of Champin and
Solnon [6] is generic, i.e., it can be used to compute many other similarity measures
(including measures of [4] and [2]). However, if it is generic, it is not always straight-
forward to use. This measure deals with multilabeled graphs and the similarity of
two multilabeled graphs is computed with respect to the set of identical labels that
are associated by a mapping. These labels are discrete values, and each label is either
recovered or lost by a mapping. However, in many applications and in particular in
an image recognition context, one has to compare continuous values. For example,
the size of a region of an image is a continuous value and in order to compare two
regions, one has to compute the difference between their sizes. Furthermore, when
two components are merged, one needs an operator to aggregate these continuous
values (for example, the sum of the sizes or the average color of a set of merged
regions). Finally, some constraints on matchings are difficult to express in [6]. For
example, it is difficult to constrain a vertex to be linked to vertices having a given
property only. To express these kinds of constraints on matchings, we show in [15]
that one can label the graph vertices in such a way that the original matching can
be reconstituted from the set of recovered labels. As a consequence, the similarity
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of [6] can be used to compute any other similarity measures based on a best graph
matching, whatever the constraints on the matching are.

Our goal is to propose a generic graph distance measure, i.e., a unifying frame-
work for all graph matchings and distance measures. This framework offers a bet-
ter understanding of the different existing matchings and distance measures. It also
allows us to define generic algorithms that can be used to compute any kind of graph
distance/similarity measures. Indeed, many algorithms have been proposed for com-
puting graph distance measures or solving graph matching problems. However, all
these algorithms are dedicated to one problem and cannot be used to solve other
kinds of graph matching problems.

Our generic distance has the same power of expression than the similarity mea-
sure of Champin and Solnon [6]. However, it is more flexible: it is based on a multi-
valent matching of the graph vertices like in [6] but it is parameterized by vertex and
edge distance functions that can more easily deal with vertex and edge properties
(such as labels, real values, etc.).

In Sect. 2, we introduce some definitions and notations needed to define our dis-
tance measure. In Sect. 3, we propose a new generic graph distance measure. In
Sect. 4, we compare this measure with some classical graph matching problems. In
Sect. 5, we prove that our distance and the graph similarity measure of Champin and
Solnon [6] are equivalent in the sense that they have the same power of expression.
We conclude in Sect. 6 with some computational issues.

2 Definitions and Notations

2.1 Graph

A graph is a pair G = (V,E) such that:

1. V is a finite set of vertices
2. E ⊆ V × V is a set of oriented couples of vertices called edges

Given an edge (u, v) ∈ E, the vertices u and v are called the endpoints of the
edge (u, v).

Partial Subgraph and Induced Subgraph

A graph G′ = (V ′, E′) is a partial subgraph of a graph G = (V,E) (noted G′ ⊆p G)
if and only if V ⊆ V ′ and E′ ⊆ E ∩ (V × V ′).

A graph G′ = (V ′, E′) is an induced subgraph of a graph G = (V,E) (noted
G′ ⊆i G) if and only if V ⊆ V ′ and E′ = E ∩ (V ′ × V ′). An induced subgraph
G′ = (V ′, E′) of a graph G = (V,E) is the graph that contains all the edges of G
having their endpoints into V ′. As a consequence, an induced subgraph is always a
partial subgraph of G (Fig. 1).
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Fig. 1. Examples of a graph G, a partial subgraph G′ of G, and an induced subgraph G′′ of G

Graph Matching

Given two graphs G = (V,E) and G′ = (V ′, E′), a multivalent matching m bet-
ween G and G′ is a relation between V and V ′, i.e., m ⊆ V × V ′. Without loss of
generality, we shall suppose that V ∩ V ′ = ∅.

Given a matching m, we note m(v) the set of vertices matched with a vertex v.
More formally, we define:

∀v ∈ V,m(v) =̇ {v′ ∈ V ′|(v, v′) ∈ m}
∀v′ ∈ V ′,m(v′) =̇ {v ∈ V |(v, v′) ∈ m}

By extension, when the set of vertices matched with a vertex v is a singleton (i.e.,
|m(v)| = 1), we shall also use m(v) to denote the single vertex that belongs to m(v).

When there is no constraint on the matching, i.e., each vertex may be associated
in m with 0, 1 or several vertices, the matching is said to be multivalent.

However, one may add constraints on the number of vertices a vertex may be
matched with, thus defining matchings that are partial functions, total functions,
univalent matchings, injective matchings, and bijective matchings. Given two graphs
G = (V,E) and G′ = (V ′, E′), a matching m ⊆ V × V ′ is said to be:

1. A partial function from G to G′ if m links each vertex of V to at most one vertex
of G′, i.e.:

∀v ∈ V , |m(v)| ≤ 1

2. A total function from G to G′ if m links each vertex of V to exactly one vertex
of G′, i.e.:

∀v ∈ V , |m(v)| = 1

3. A univalent matching between G and G′ if m links each vertex of V and V ′ to
at most one vertex, i.e.:

∀v ∈ V, |m(v)| ≤ 1 ∧ ∀v′ ∈ V ′, |m(v)| ≤ 1



156 S. Sorlin et al.

4. An injective matching from G to G′ if m links each vertex of V to a different
vertex of V ′, i.e.:

∀v ∈ V, |m(v)| = 1 ∧ ∀(u, v) ∈ V × V, u �= v ⇒ m(u) �= m(v)

Another definition of an injective matching from G to G′ is a matching m such
that:

∀v ∈ V, |m(v)| = 1 ∧ ∀v′ ∈ V ′, |m(v′)| ≤ 1

5. A bijective matching between G and G′ if m links each vertex of V (resp. V ′)
to a different vertex of V ′ (resp. V ), i.e.:

∀v ∈ V, |m(v)| = 1 ∧ ∀(u, v) ∈ (V × V ), u �= v ⇒ m(u) �= m(v)
∀v′ ∈ V ′, |m(v′)| = 1 ∧ ∀(u′, v′) ∈ (V ′ × V ′), u′ �= v′ ⇒ m(u′) �= m(v′)

Another definition of a bijective matching between G and G′ is a matching m
such that m links each vertex of V and V ′ to exactly one vertex, i.e.:

∀v ∈ V, |m(v)| = 1 ∧ ∀v′ ∈ V ′, |m(v′)| = 1

Edges Matched by a Matching

Given a matching m of the vertices of two graphs G = (V,E) and G′ = (V ′, E′), an
edge (u, v) ∈ E is said to be matched with another edge (u′, v′) ∈ E′ if and only if
{(u, u′), (v, v′)} ⊆ m. By extension, we shall note m(u, v) the set of edges matched
with the edge (u, v) by the matching m, i.e.:

∀(u, v) ∈ E,m(u, v) =̇ {(u′, v′) ∈ E′|u′ ∈ m(u), v′ ∈ m(v)}
∀(u′, v′) ∈ E′,m(u′, v′) =̇ {(u, v) ∈ E|u ∈ m(u′), v ∈ m(v′)}

Subgraph Induced by a Matching

Given a matching m of two graphs G = (V,E) and G′ = (V ′, E′), the subgraph
of G (resp. G′) induced by m is noted Gm = (Vm, Em) (resp. G′

m = (V ′
m, E′

m))
where Vm and Em (resp. V ′

m and E′
m) are the sets of vertices and edges of G (resp.

G′) matched with at least one vertex or edge of G′ (resp. G), i.e.:

Vm = {v ∈ V/m(v) �= ∅} , Em = {(u, v) ∈ E/m(u, v) �= ∅}
V ′

m = {v′ ∈ V ′/m(v′) �= ∅} , E′
m = {(u′, v′) ∈ E′/m(u′, v′) �= ∅}

Given a matching m of two graphs G = (V,E) and G′ = (V ′, E′), if the sub-
graph of G induced by m, Gm = (Vm, Em), is equal to G, then, m is an homomor-
phism between G and G′, i.e., m is a function that links each edge of G to an edge
of G′ (Fig. 2).
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Fig. 2. Two graphs G and G′ and their subgraphs induced by the matching m =
{(1, a), (1, d), (2, b), (3, c)}

3 A New Graph Distance Measure

3.1 Vertex and Edge Distance Functions

The first step when computing the distance between two graphs is to match their
vertices in order to identify their commonalities. We consider here multivalent graph
matchings, i.e., each vertex of a graph may be matched with a – possibly empty – set
of vertices of the other graph.

Given a matching m, one has to know for each vertex and each edge how much
its properties are recovered by m. Therefore, we assume the existence of a vertex
(resp. edge) distance function δvertex (resp. δedge) that gives for each vertex v (resp.
edge (u, v)) of the two graphs and each set of vertices sv (resp. set of edges se) of the
other graph a real value from the interval [0,+∞[ expressing the distance between
v (resp. (u, v)) and the set sv (resp. se). More formally, we assume the existence of
the two following functions:

δvertex : (V, ℘(V ′)) ∪ (V ′, ℘(V ))→ [0,+∞[
δedge : (E,℘(E′)) ∪ (E′, ℘(E))→ [0,+∞[

Roughly speaking, the functions δvertex and δedge express the local preferences
on the way to match a vertex and an edge. These functions depend on the considered
application and are used to reflect both the similarity knowledge and constraints that
a matching must satisfy.

Generally, the distance is equal to +∞ if the vertex v (resp. the edge (u, v)) is
not comparable with the set of vertices sv (resp. the set of edges se), i.e., when it is
not possible to match v (resp. (u, v)) with sv (resp. se). The distance is equal to 0
when all the properties of v (resp. (u, v)) are recovered by the set sv (resp. se).

For example, if we are looking for an univalent matching (i.e., each vertex is
linked to at most one other vertex) that recovers a maximum number of vertices and
edges, one can define the functions δvertex and δedge as follows:
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∀(v, sv) ∈ (V × ℘(V ′)) ∪ (V ′ × ℘(V )), δvertex(v, sv) = 1 if sv = ∅
= 0 if |sv| = 1
= +∞ otherwise

∀((u, v), se) ∈ (E × ℘(E′)) ∪ (E′ × ℘(E)), δedge((u, v), se) = 1 if se = ∅
= 0 if |se| = 1
= +∞ otherwise

3.2 Graph Distance

Given a matching m ⊆ V ×V ′ of two graphs G = (V,E) and G′ = (V ′E′) and two
distance functions δvertex and δedge, the distance of these two graphs with respect to
the matching m depends on the distance between each vertex (resp. edge) and the set
of vertices (resp. edges) they are matched with, i.e.:

δm(G,G′) = ⊗({(v, δvertex(v,m(v)))/v ∈ V ∪ V ′} ∪ (1)
{((u, v), δedge((u, v),m(u, v)))/(u, v) ∈ E ∪ E′})

where⊗ is an application-dependent function which is used to aggregate the different
vertex and edge distances. Roughly speaking, the function ⊗ is used to express the
global preferences on the distances of the vertices and the edges of the graphs. The
function ⊗ should be defined in such a way that the minimal distance between two
graphs with respect to a matching is equal to 0 and if the distance between two graphs
G and G′ is equal to +∞, the matching of these two graphs is not acceptable with
respect to the considered application. In most cases, the function ⊗ is defined as
a sum or a weighted sum of the distances of each component. However, in order to
express more sophisticated distances, we do not restrict ourself to this particular case.
For example, the function ⊗ may be defined in such a way that the distance between
two graphs depends on the number of vertices that have at most one incoming or
outgoing edge having a distance higher than a threshold.

Formula (1) defines the distance of two graphs with respect to a given matching
m between the graph vertices. Now, we define the distance of two graphs G and
G′ as the distance induced by the best matching, i.e., the matching giving rise to a
minimal distance:

δ(G,G′) = min
m⊆V ×V ′

δm(G,G′) (2)

Finally, given two graphs G and G′, a distance measure between G and G′ is
defined as a triple δ =< δvertex, δedge,⊗ > where δvertex is the vertex distance
function, δedge the edge distance function, and ⊗ is the function used to aggregate
the distances of all vertices and edges of the graphs.

Note that the word “distance” is used here in its common sense: the distance
of two graphs is low when the two graphs share a lot of common properties and is
equal to 0 (the minimum) when we can find a “perfect” matching of the two graphs
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(with respect to the considered application). In the general case, our distance mea-
sure does not have the mathematical properties of a classical distance measure and
is not a metric. As a consequence, the distance between two graphs may have an
infinite value, it may not respect the triangular inequality, nor be symmetric and the
distance between a graph and itself may not be equal to 0. However, depending on
the functions δvertex, δedge, and ⊗, our distance measure may be a metric.

3.3 Graph Similarity

We have chosen to define the distance of two graphs but distance and similarity
measures are two dual concepts and we could use this graph distance measure to
define a graph similarity measure of two graphs. For example, in many applications,
the distance between two graphs G and G′ is always lower or equal to the sum
of the distance between each graph and the empty graph G∅ (i.e., G∅ = (∅, ∅)). As
a consequence, we could define a graph similarity measure using this property:

sim(G,G′) = 1− δ(G,G′)
δ(G,G∅) + δ(G′, G∅)

4 Equivalence with Other Graph Matchings
and Distance/Similarity Measures

In this section, we show how our graph distance measure can be used to solve clas-
sical graph matching problems.

In this section, the function ⊗ is always defined by the function ⊗∑ that
returns the sum of the distances of each vertex and each edge of the two graphs.
More formally, we define ⊗∑ : (V ∪ V ′ ∪E ∪ E′)× [0,+∞[→ [0,+∞[ by:

⊗∑(S) =
∑

(u,d)∈S

d +
∑

((u,v),d)∈S

d

4.1 Exact Graph Matchings

In this section we show how to reformulate exact graph matching problems with our
graph distance measure. For all these kinds of problems, we are looking for an univa-
lent matching between the vertices of two graphs. As a consequence, the vertex and
edge distance functions are defined in such a way that a multivalent matching always
involves an infinite positive distance. Furthermore, as these problems are satisfaction
problems, the objective is always to find a matching m such that δm(G,G′) = 0.

Graph Isomorphism

Problem Definition

Given two graphs that have the same number of vertices, the graph isomorphism
problem consists in deciding if these two graphs are identical minor a renaming of
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their vertices. More formally, two graphs G = (V,E) and G′ = (V ′, E′) such that
|V | = |V ′| are isomorphic if and only if there exists a bijective matching m ⊆ V ×V ′

such that (u, v) ∈ E ⇔ (m(u),m(v)) ∈ E′.1

Measure Definition

To solve the graph isomorphism problem using our distance measure, we have to
define vertex and edge distance functions such that these functions return 0 if the
vertex or edge is matched with exactly one element and +∞ otherwise (in order to
forbid nonbijective matchings). More formally:

∀v ∈ V ∪ V ′,∀sv ⊆ V ∪ V ′, δiso
vertex(v, sv) = 0 if |sv| = 1

= +∞ otherwise
∀(u, v) ∈ E ∪ E′,∀se ⊆ E ∪ E′, δiso

edge(u, v, se) = 0 if |se| = 1
= +∞ otherwise

δiso = < δiso
vertex, δiso

edge,⊗∑ >

Theorem 1. Given two graphs G = (V,E) and G′ = (V ′, E′), the two following
properties are equivalent:

1. G and G′ are isomorphic
2. δiso(G,G′) = 0

Proof. (1) ⇒ (2). By definition, if the two graphs are isomorphic, there exists a
bijective matching m ⊆ V × V ′ such that (u, v) ∈ E ⇔ (m(u),m(v)) ∈ E′.
As a consequence, ∀v ∈ V ∪ V ′, |m(v)| = 1 (because m is a bijective matching)
and ∀(u, v) ∈ E ∪ E′, |m(u, v)| = 1 (because ∀(u, v) ∈ V × V, (u, v) ∈ E ⇔
(m(u),m(v)) ∈ E′). So, δiso

m (G,G′) = 0 and therefore δiso(G,G′) = 0.
(2)⇒ (1). If δiso(G,G′) = 0, there exists a matching m such that δiso

m (G,G′) =
0. Given the definition of δiso

vertex, m is such that ∀v ∈ V ∪V ′, |m(v)| = 1. As a con-
sequence, the matching m is a bijective matching. Furthermore, if δiso

m (G,G′) = 0,
then, ∀(u, v) ∈ E∪E′, |m(u, v)| = 1. As a consequence, each edge of both graphs is
matched with exactly one edge of the other graph, so (u, v) ∈ E ⇔ (m(u),m(v)) ∈
E′. So, m defines an isomorphic matching between the two graphs and G and G′ are
isomorphic.

Partial Subgraph Isomorphism (or Monomorphism)

Problem Definition

Given two graphs G = (V,E) and G′ = (V ′, E′) such that |V | ≤ |V ′|, the partial
subgraph isomorphism problem (or monomorphism problem) consists in deciding
1 Let us recall that for univalent matchings, when the set of vertices matched with a vertex

v is a singleton, i.e., |m(v)| = 1, we note m(v) to denote the single vertex, which is an
element of m(v).
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if the graph G is isomorphic to a partial subgraph of the graph G′, i.e., in finding
an injective matching m ⊆ V × V ′ such that ∀(u, v) ∈ V × V, (u, v) ∈ E ⇒
(m(u),m(v)) ∈ E′. The partial subgraph isomorphism problem is used to decide if
a graph is included into another graph.

Measure Definition

To solve the partial subgraph isomorphism problem using our distance measure, we
have to define vertex and edge distance functions such that these functions return 0 if
an element of G is matched with one element (in order to preserve vertices and edges
of G) and +∞ otherwise (in order to avoid noninjective matching). Distance func-
tions for vertices and edges of G′ just forbid nonunivalent matchings. More formally:

G

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∀v ∈ V,∀sv ⊆ V ′, δpsub
vertex(v, sv) = 0 if |sv| = 1

= +∞ otherwise
∀(u, v) ∈ E,∀se ⊆ E′, δpsub

edge(u, v, se) = 0 if |se| = 1
= +∞ otherwise

G′

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∀v ∈ V ′,∀sv ⊆ V, δpsub
vertex(v, sv) = 0 if |sv| ≤ 1

= +∞ otherwise
∀(u, v) ∈ E′,∀se ⊆ E, δpsub

edge(u, v, se) = 0 if |se| ≤ 1
= +∞ otherwise

δpsub = < δpsub
vertex, δpsub

edge ,⊗∑ >

Theorem 2. Given two graphs G = (V,E) and G′ = (V ′, E′), the two following
properties are equivalent:

1. The graph G is a partial subgraph of G′

2. δpsub(G,G′) = 0

Proof. (1) ⇒ (2). By definition, if G is a partial subgraph of G′, there exists an
injective matching m ⊆ V × V ′ such that ∀(u, v) ∈ V × V, (u, v) ∈ E ⇒
(m(u),m(v)) ∈ E′. As a consequence, ∀v ∈ V, |m(v)| = 1, ∀v ∈ V ′, |m(v)| ≤ 1,
and ∀(u, v) ∈ E′, |m(u, v)| ≤ 1 (because m is an injective matching). Further-
more, ∀(u, v) ∈ E, |m(u, v)| = 1 (because (u, v) ∈ E ⇒ (m(u),m(v)) ∈ E′).
So, given the definition of δpsub

vertex and δpsub
edge , δpsub

m (G,G′) = 0 and therefore
δpsub(G,G′) = 0.

(2) ⇒ (1). If δpsub(G,G′) = 0, then, there exists a matching m such that
δpsub
m (G,G′) = 0. Given the definition of δpsub

vertex, ∀v ∈ V, |m(v)| = 1 and
∀v ∈ V ′, |m(v)| � 1. As a consequence, m is an injective matching. Furthermore,
∀(u, v) ∈ E, |m(u, v)| = 1. As a consequence, each edge of G is matched with
exactly one edge of G′ and (u, v) ∈ E ⇒ (m(u),m(v)) ∈ E′. So, there exists an
injective matching m ⊆ V × V ′ that preserves all the edges of G and, by definition,
G is a partial subgraph of G′.
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Induced Subgraph Isomorphism

Problem Definition

Given two graphs G = (V,E) and G′ = (V ′, E′) such that |V | ≤ |V ′|, the induced
subgraph isomorphism problem consists in deciding if the graph G is isomorphic to
an induced subgraph of G′, i.e., in finding an injective matching m ⊆ V × V ′ such
that ∀(u, v) ∈ V × V, (u, v) ∈ E ⇔ (m(u),m(v)) ∈ E′. The induced subgraph
isomorphism problem is a special case of partial subgraph isomorphism: it adds the
constraint that for each couple (u, v) ∈ V 2, if (u, v) is not an edge of G, then, the
corresponding vertices in m must neither be an edge of G′.

Measure Definition

The induced subgraph problem between G = (V,E) and G′ = (V ′, E′) adds a
constraint on each couple of vertices of V (to be or not matched with an edge of G′).
To check these constraints, the edge distance function δedge has to be defined for each
couple (u, v) ∈ V × V of vertices of G and each subset se ⊆ E′ of edges of G′.
As a consequence, one has to compare the complete graph G′′ = (V, V × V ) to the
graph G′ = (V ′, E′). The vertex distance function must return +∞ if the matching
is not injective (rules a, d, and e) and 0 otherwise. The edge distance function must
return +∞ if an edge of G is not matched (rule b) or if a couple (u, v) of vertices of
G which is not an edge is matched with an edge of G′ (rule c) and 0 otherwise. More
formally, given a graph G = (V,E) and a graph G′ = (V ′, E′), we have to compare
the graphs G′′ = (V, V × V ) and G′ with the two following distance functions:

G′′

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

a ∀v ∈ V,∀sv ⊆ V ′, δsub
vertex(v, sv) = 0 if |sv| = 1

= +∞ otherwise
b ∀(u, v) ∈ V 2,∀se ⊆ E′, δsub

edge,G(u, v, se) = 0 if (u, v) ∈ E ∧ |se| = 1
c = 0 if (u, v) �∈ E ∧ se = ∅

= +∞ otherwise

G′

⎧

⎪

⎨

⎪

⎩

d ∀v ∈ V ′,∀sv ⊆ V, δsub
vertex(v, sv) = 0 if |sv| ≤ 1

= +∞ otherwise
e ∀(u, v) ∈ E′,∀se ⊆ E, δsub

edge,G(u, v, se) = 0 if |se| ≤ 1
= +∞ otherwise

δsub
G = < δsub

vertex, δsub
edge,G,⊗∑ >

Theorem 3. Given two graphs G = (V,E) and G′ = (V ′, E′), the two following
properties are equivalent:

1. The graph G is an induced subgraph of G′

2. δsub
G (G′′, G′) = 0, where G′′ = (V, V × V )

Proof. (1) ⇒ (2). By definition, if G is a subgraph of G′, there exists an injective
matching m ⊆ V ×V ′ such that ∀(u, v) ∈ V ×V, (u, v) ∈ E ⇔ (m(u),m(v)) ∈ E′.
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As a consequence, ∀v ∈ V, |m(v)| = 1, ∀v ∈ V ′, |m(v)| ≤ 1, and ∀(u, v) ∈
E′, |m(u, v)| ≤ 1 (because m is an injective matching). Furthermore, ∀(u, v) ∈
E, |m(u, v)| = 1 (because ∀(u, v) ∈ V × V, (u, v) ∈ E ⇒ (m(u),m(v)) ∈ E′)
and ∀(u, v) ∈ (V × V )−E,m(u, v) = ∅ (because ∀(u, v) ∈ V × V, (u, v) �∈ E ⇒
(m(u),m(v)) �∈ E′). So, given the definition of δsub

vertex and δsub
edge,G, δsub

mG(G′′, G′) =
0 and δsub

G (G′′, G′) = 0.
(2) ⇒ (1). If δsub

G (G′′, G′) = 0, there exists a matching m such that
δsub
mG(G′′, G′) = 0. Given the definition of δsub

vertex, ∀v ∈ V, |m(v)| = 1 and
∀v ∈ V, |m(v)| ≤ 1. As a consequence, m is an injective matching. Further-
more, if m involves a distance equal to 0, then, ∀(u, v) ∈ E, |m(u, v)| = 1.
As a consequence, each edge of G is matched with exactly one edge of
G′, so ∀(u, v) ∈ V × V, (u, v) ∈ E ⇒ (m(u),m(v)) ∈ E′. Finally,
∀(u, v) ∈ (V × V ) − E,m(u, v) = ∅, and each couple of vertices of G
that is not an edge of G is linked to a couple of vertices of G′ that is nei-
ther an edge of G′. As a consequence, m is an injective matching such that
∀(u, v) ∈ V × V, (u, v) ∈ E ⇔ (m(u),m(v)) ∈ E′ and G is an induced sub-
graph of G′.

Generalization of the Subgraph Isomorphism Problem

Problem Definition

Zampelli et al. propose [16] a generalization of the subgraph isomorphism problem.
This problem is called “approximate subgraph matching” and consists in looking for
a pattern graph into a target graph. It is used for the analysis of biochemical networks.
The specificity of this problem is that the pattern graph is composed of mandatory
vertices and edges (i.e., vertices and edges that must be preserved by the matching),
optional vertices (i.e., vertices that may not be matched), and forbidden edges (i.e.,
edges that must not be preserved by the matching). Note that an edge having an
optional endpoint is optional until its endpoints are matched.2 More formally, an ap-
proximate pattern graph is defined by a tuple Gp = (Vp, Op, Ep, Fp) where (Vp, Ep)
is a graph, Op ⊆ Vp is the set of optional nodes, and Fp ⊆ (Vp × Vp) − Ep is the
set of forbidden edges. An approximate subgraph matching m between an approx-
imate pattern graph Gp = (Vp, Op, Ep, Fp) and a target graph Gt = (Vt, Et) is an
univalent matching m ⊆ Vp × Vt such that:

1. ∀v ∈ Vp −Op, |m(v)| = 1
2. ∀(u, v) ∈ Vp × Vp, |m(u)| = 1 ∧ |m(v)| = 1
∧ (u, v) ∈ Ep ⇒ (m(u),m(v)) ∈ Et

3. ∀(u, v) ∈ Vp × Vp, |m(u)| = 1 ∧ |m(v)| = 1
∧ (u, v) ∈ Fp ⇒ (m(u),m(v)) �∈ Et

4. ∀v′ ∈ VT , |m(v′)| ≤ 1

2 This notion of optional vertices is only useful when we look for a matching satisfying some
other constraints. Otherwise, we just have to remove optional vertices and their edges from
the pattern graph.
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Measure Definition

Solving an approximate subgraph matching problem consists in finding an univalent
matching m between Gp and the graph G′ = (Vt, Vt×Vt) such that each mandatory
vertex is matched with exactly one vertex (rule a), each optional vertex is matched
with at most one vertex (rule b), each edge (u, v) is either matched with a couple of
vertices (u′, v′) of G′ which is an edge of Gt (rule d) or is not matched at all if one
of its optional endpoints is not matched (rule c), each forbidden edge is not matched
(rule e). Finally, the matching must be univalent (rules f and g). More formally, one
has to compute the distance between G = (Vp, Ep∪Fp) and G′ = (Vt, E

′ = Vt×Vt)
with the following vertex and edge distance functions:

G

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪
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a ∀v ∈ Vp −Op,∀sv ⊆ Vt, δ
agm
vertex(v, sv) = 0 if |sv| = 1

= +∞ otherwise
b ∀v ∈ Op,∀sv ⊆ Vt, δ

agm
vertex(v, sv) = 0 if |sv| ≤ 1

= +∞ otherwise
∀(u, v) ∈ Ep,∀se ⊆ Vt × Vt,

c δagm
edge,Gt

(u, v, se) = 0 if se = ∅
d = 0 if se = {(u′, v′)}

∧(u′, v′) ∈ Et

= +∞ otherwise
e ∀(u, v) ∈ Fp,∀se ⊆ E′, δagm

edge,Gt
(u, v, se) = 0 if se = {(u′, v′)}

∧(u′, v′) �∈ Et

= +∞ otherwise

G′

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f ∀v ∈ Vt,∀sv ⊆ Vp, δ
agm
vertex(v, sv) = 0 if |sv| ≤ 1

= +∞ otherwise
g ∀(u, v) ∈ E′,∀se ⊆ Ep ∪ Fp, δ

agm
edge,Gt

(u, v, se) = 0 if |se| ≤ 1
= +∞ otherwise

δagm
Gt

= < δagm
vertex, δagm

edge,Gt
,⊗∑ >

Theorem 4. Given an approximate pattern graph Gp = (Vp, Op, Ep, Fp), a target
graph Gt = (Vt, Et) and a mapping m ⊆ V × V ′, the two following properties are
equivalent:

1. m is a solution of the approximate subgraph matching problem between the
approximate pattern graph Gp = (Vp, Op, Ep, Fp) and the target graph Gt =
(Vt, Et)

2. δagm
m,Gt

(G,G′) = 0 where G = (Vp, Ep ∪ Fp) and G′ = (Vt, Vt × Vt)

Proof. (1)⇒ (2). If m is a solution of the approximate subgraph matching problem
then ∀v ∈ Vp − Op, |m(v)| = 1 (condition 1), ∀v ∈ Vt, |m(v)| ≤ 1 and ∀(u, v) ∈
Vt×Vt, |m(u, v)| ≤ 1 (condition 4), ∀(u, v) ∈ Ep,m(u, v) = {(u′, v′)}∧(u′, v′) ∈
Et (condition 2), and ∀(u, v) ∈ Fp,m(u, v) = {(u′, v′)} ∧ (u′, v′) �∈ Et (condition
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3). As a consequence, given the definition of the vertex and edge distance functions,
δagm
m,Gt

(G,G′) = 0.
(2) ⇒ (1). If the distance δagm

m,Gt
(G,G′) = 0, then the matching m is univalent

because, given the vertex and edge distance functions, all nonunivalent matchings
give rise to an infinite distance. Furthermore, if δagm

m,Gt
(G,G′) = 0, then ∀v ∈ Vp −

Op, |m(v)| = 1 so that m respects condition 1. Furthermore, ∀(u, v) ∈ Ep, (m(u) �=
∅ ∧m(v) �= ∅) ⇒ (m(u, v) = {(u′, v′)} ∧ (u′, v′) ∈ Et) and as a consequence, m
respects condition 2. Finally, ∀(u, v) ∈ Fp, (m(u) �= ∅ ∧m(v) �= ∅)⇒ (m(u, v) =
{(u′, v′)} ∧ (u′, v′) �∈ Et) and as a consequence, m respects condition 3 and m is a
solution of the approximate subgraph matching problem.

4.2 Error Tolerant Graph Matchings

In this section we show how to model error tolerant graph matching problems as
graph distance measures. For all these problems, we are looking for an univalent
matching between the vertices of two graphs. As a consequence, the vertex and edge
distance functions are chosen in such a way that a nonunivalent matching always
gives an infinite positive distance. Furthermore, as these problems are optimization
problems, the objective is always to find the matching that gives the lower distance.

Maximum Common Partial Subgraph

Problem Definition

Given two graphs G and G′ the maximum common partial subgraph problem con-
sists in finding the size of the largest partial subgraph G′′ of G that is isomorphic to
a partial subgraph of G′. For this problem, the size of a graph G = (V,E) is defined
by the number of its vertices and edges, i.e., |G| = |V | + |E|. The maximum com-
mon partial subgraph problem is used to quantify the intersection of two graphs and
therefore, it can be used to define a graph similarity measure. Indeed, the similarity
of two objects a and b is usually defined as size(a ∩ b)/size(a ∪ b) [17, 18].

Measure Definition

We have to use vertex and edge distance functions that forbid multivalent matchings
while encouraging vertices and edges of G and G′ to be matched. As a consequence,
the vertex and edge distance functions must return +∞ if the element is matched
with more than one element, 1 if it is not matched and 0 if the element is matched
with exactly one element, i.e.:

∀v ∈ V ∪ V ′,∀sv ⊆ V ∪ V ′, δmcps
vertex(v, sv) = 1 if sv = ∅

= 0 if |sv| = 1
= +∞ otherwise
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∀(u, v) ∈ E ∪ E′,∀se ⊆ E ∪ E′, δmcps
edge (u, v, se) = 1 if se = ∅

= 0 if |se| = 1
= +∞ otherwise

δmcps = < δmcps
vertex, δmcps

edge ,⊗∑ >

Theorem 5. Given two graphs G = (V,E) and G′ = (V ′, E′), and a mapping
m ⊆ V × V ′, the two following properties are equivalent:

1. m is a mapping that minimizes the distance δmcps
m

2. The subgraph Gm of G induced by the matching m is a maximum common
partial subgraph of G and G′

Proof. The proof is decomposed into two steps, we first show that for every match-
ing m ⊆ V × V ′ such that δmcps

m (G,G′) = d �= +∞, the induced subgraph Gm

of G is a common partial subgraph of G and G′ and |Gm| = (|G| + |G′| − d)/2.
In a second step, we show that, if there exists a subgraph G′′ of G isomorphic to a
partial subgraph of G′, then, we can find a matching m having a distance d equal to
|G| + |G′| − 2 ∗ |G′′| and such that G′′ = Gm, the subgraph induced by the map-
ping m. Then, as we prove that each common partial subgraph G′′ corresponds to a
mapping inducing a noninfinite distance inverse to the size of G′′ (and conversely),
the property holds.

δmcps
m (G,G′) = d �= +∞ ⇒ Gm is a common subgraph of G and G′ such

that |Gm| = (|G| + |G′| − d)/2. Given the vertex and edge distance functions, if
δmcps
m (G,G′) �= +∞ then m is an univalent matching (because all nonunivalent

matchings give an infinite distance). By definition, the subgraph Gm = (Vm, Em) of
G induced by m is a partial subgraph of G and the subgraph G′

m = (V ′
m, E′

m) of G′

induced by m is a partial subgraph of G′. Given the definition of an induced subgraph
and knowing that the mapping is univalent, the matching m is a bijective matching
between the vertices of Gm and G′

m such that (u, v) ∈ Em ⇔ (m(u),m(v)) ∈
E′

m. As a consequence, Gm and G′
m are isomorphic and Gm is a common par-

tial subgraph of both G and G′. Given the vertex and edge distance functions, if
δmcps
m (G,G′) = d �= +∞ then d = |G|+ |G′| − |Gm| − |G′

m|. As Gm and G′
m are

isomorphic, then |Gm| = |G′
m|. As a consequence, |Gm| = (|G|+ |G′| − d)/2 and

the property holds.
G′′ is a common subgraph of G and G′ ⇒ ∃m such that δmcps

m (G,G′) = |G|+
|G′| − 2 ∗ |G′′| and G′′ = Gm. If there exists a common subgraph G′′ = (V ′′, E′′)
of G = (V,E) and G′ = (V ′, E′), then, by definition of a common subgraph, there
exists at least one graph G′′′ = (V ′′′ ⊆ V ′, E′′′ ⊆ E′) and a bijective matching
m ⊆ V ′′ × V ′′′ such that (u, v) ∈ E′′ ⇔ (m(u),m(v)) ∈ E′′′. As a consequence,
the matching m is such that ∀v ∈ V ′′ ∪ V ′′′, |m(v)| = 1 (because m is a bijective
matching), ∀(u, v) ∈ E′′ ∪ E′′′, |m(u, v)| = 1 (because m is such that (u, v) ∈
E′′ ⇔ (m(u),m(v)) ∈ E′′′. Furthermore, by definition, m is such that ∀v ∈ V −
V ′′,m(v) = ∅, ∀v ∈ V ′ − V ′′′,m(v) = ∅, ∀(u, v) ∈ E − E′′,m(u, v) = ∅, and
∀(u, v) ∈ E′ − E′′′,m(u, v) = ∅. As a consequence, δmcps

m (G,G′) = |G|+ |G′| −
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|G′′| − |G′′′|. G′′ and G′′′ are isomorphic, so, |G′′| = |G′′′| and δmcps
m (G,G′) =

|G|+ |G′| − 2 ∗ |G′′|. The property holds.

Maximum Common Induced Subgraph

Problem Definition

Given two graphs G and G′ the maximum common induced subgraph problem con-
sists in finding the largest induced subgraph G′′ of G that is isomorphic to an induced
subgraph of G′. For this problem, the size of a graph G = (V,E) is defined by the
number of its vertices, i.e., |G| = |V |. As the maximum common partial subgraph,
the maximum common induced subgraph problem is used to define an intersection
between two graphs and a corresponding graph similarity measure [10].

Measure Definition

To solve the maximum common subgraph problem using our distance measure, we
have to use vertex and edge distance functions encouraging vertices of G to be
matched while forbidding matchings that do not correspond to common induced sub-
graph. So, similarly to the induced subgraph isomorphism problem, the edge distance
function must check a constraint (and so be defined) for each couple of vertices of
both the graphs. As a consequence, complete graphs must be compared. The vertex
distance function encourages the vertices of G to be matched (rule a) and the edge
distance function returns +∞ when a couple of vertices (u, v) of G (resp. (u′, v′)
of G′) is linked to a couple of vertices (u′, v′) of G′ (resp. (u, v) of G) such that
(u, v) ∈ E �⇔ (u′, v′) ∈ E′ (rule b) (resp. rule d). Finally, the matching must
be univalent (rule c). More formally, we have to compute the distance of the graph
G2 = (V, V × V ) with the graph G′

2 = (V ′, V ′ × V ′) by using the following vertex
and edge distance functions:

G2
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a ∀v ∈ V,∀sv ⊆ V ′, δmcs
vertex(v, sv) = 1 if sv = ∅

= 0 if |sv| = 1
= +∞ otherwise

∀(u, v) ∈ V 2,∀se ⊆ V ′2,
b δmcs

edge,GG′(u, v, se) = 0 if se = ∅
= 0 if se = {(u′, v′)}

∧((u, v) ∈ E ⇔ (u′, v′) ∈ E′)
= +∞ otherwise

G′
2
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c ∀v ∈ V ′,∀sv ⊆ V, δmcs
vertex(v, sv) = 0 if |sv| ≤ 1

= +∞ otherwise
∀(u, v) ∈ V ′2,∀se ⊆ V 2,

δmcs
edge,GG′(u, v, se) = 0 if se = ∅

= 0 if se = {(u′, v′)}
∧((u, v) ∈ E′ ⇔ (u′, v′) ∈ E)

= +∞ otherwise
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δmcs
GG′ = < δmcs

vertex, δmcs
edge,GG′ ,⊗∑ >

Theorem 6. Given two graphs G = (V,E) and G′ = (V ′, E′), and a mapping
m ⊆ V × V ′, the two following properties are equivalent:

1. m is a mapping that minimizes the distance δmcs
m,GG′

2. The subgraph Gm of G induced by the matching m is a maximum common
induced subgraph of G and G′

Proof. The proof is decomposed into two steps. We first show that, for every match-
ing m ⊆ V × V ′ such that δmcs

GG′m(G,G′) = d �= +∞, the subgraph Gm of G
induced by the mapping m is an induced common subgraph of G and G′ such that
|Gm| = |G| − d. In a second step, we show that, if there exists an induced subgraph
G′′ of G isomorphic to an induced subgraph of G′, then, we can find a matching m
having a distance d equal to |G| − |G′′| and such that G′′ = Gm, the subgraph of G
induced by the matching m. Then, as we prove that each common induced subgraph
G′′ corresponds to a mapping inducing a noninfinite distance inverse to the size of
G′′ (and reversely), the property holds.

δmcs
mGG′(G2, G

′
2) = d �= +∞ ⇒ Gm is a common induced subgraph of G and

G′ such that |Gm| = |G| − d. Given the vertex and edge distance functions, if
δmGG′(G2, G

′
2) �= +∞ then m is an univalent matching (because all nonuniva-

lent matchings give a distance equal to +∞). By definition, the subgraph G2m =
(V2m, E2m) of G2 induced by m is a partial subgraph of G2 and of G. Furthermore,
given the definition of the edge distance function, (u, v) ∈ E2m ⇒ (u, v) ∈ E and
(u, v) �∈ E2m ⇒ (u, v) �∈ E. As a consequence, G2m is an induced (i.e., a nonpar-
tial) subgraph of G and G2m = Gm. In the same way, we can also prove that the sub-
graph G′

2m = (V ′
2m, E′

2m) of G′
2 induced by m is an induced subgraph of G′ and that

G′
2m = G′

m. Finally, m is a univalent matching and, given the definitions of the ver-
tex and edge distance functions, m is such that (u, v) ∈ Em ⇔ (m(u),m(v)) ∈ E′

m

so, m defines an isomorphism matching between Gm and G′
m. As a consequence

Gm is a common induced subgraph of G and G′. Finally, as only the number of
nonrecovered vertices of G influences (positively) the distance, |Gm| = |G| − d.

G′′ is a common induced subgraph of G and G′⇒∃m such that δmcs
mGG′(G2, G

′
2) =

|G| − |G′′| and such that Gm = G′′. If there exists a common induced sub-
graph G′′ = (V ′′, E′′) of G = (V,E) and G′ = (V ′, E′), then, by defini-
tion of an induced common subgraph, there exists at least one induced subgraph
G′′′ = (V ′′′, E′′′) of G′ and one bijective matching m ⊆ V ′′ × V ′′′ such that
(u, v) ∈ E′′ ⇔ (m(u),m(v)) ∈ E′′′. Given the vertex and edge distance func-
tions, we can see that the distance δmcs

mGG′(G2, G
′
2) is equal to |G| − |G′′| and that

Gm = G′′.

Graph Edit Distance (ged)

Problem Definition

Given two labeled graphs G and G′ (i.e., graphs where a label is associated with
each vertex and each edge), the graph edit distance of G and G′ is the minimum cost
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set of weighted operations needed to transform G into G′. Considered operations are
insertions, substitutions (i.e., relabeling), and deletions of vertices and edges. Bunke
shows in [10] that, when considering appropriate weight definitions, ged is closely
related to the maximum common subgraph, and therefore it is also closely related to
the similarity measure based on it.

Bunke and Jiang define formally the graph edit distance in [19]. A labeled graph
is defined by a tuple G = (V,E,L, α, β) where V is a set of vertices, E is a set of
edges, L is a set of labels, α : V → L is a total function labeling the vertices of
G and β : E → L is a total function labeling the edges of G. Given two labeled
graphs G = (V,E,L, α, β) and G′ = (V ′, E′, L′, α′, β′), an error tolerant graph
matching is an univalent matching m ⊆ V × V ′. The vertex u ∈ V is substituted
by the vertex v if m(u) = v. If α(u) = α′(m(u)), the substitution is called an
identical substitution, otherwise, it is a nonidentical substitution. Each vertex v ∈ V
such that m(v) = ∅ is deleted by m and each vertex v′ ∈ V ′ such that m(v′) = ∅
is inserted by m. The same terms are used for the substituted, deleted, and inserted
edges of the graphs. A cost cvs (resp. cvi and cvd) is associated with the nonidentical
vertex substitutions (resp. insertions and deletions) and a cost ces (resp. cei and ced)
is associated with the nonidentical edge substitutions (resp. insertions and deletions).
Once the six operation costs are set, the cost of an error tolerant graph matching m
is defined as the sum of the costs of each operation induced by m. Finally, the graph
edit distance between two graphs is defined as the minimum cost error-tolerant graph
matching.

Measure Definition

Each univalent graph matching of our model corresponds to an error-tolerant graph
matching of Bunke and Jiang [19]. As a consequence, if the vertex and edge distance
functions are defined in such a way that they reproduce the cost of each operation
while forbidding nonunivalent matchings, the distance between G1 and G2 with re-
spect to an univalent mapping m corresponds to the cost of the error-tolerant graph
matching defined by m. More formally, to compute the graph edit distance between
two labeled graphs G = (V,E,L, α, β) and G′ = (V ′, E′, L′, α′, β′), we have to
compare the graphs G1 = (V,E) and G2 = (V ′, E′) with the following vertex and
edge distance functions:
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∀v ∈ V,∀sv ⊆ V ′,

δged
vertex,GG′(v, sv) = cvd if sv = ∅

= 0 if sv = {v′} ∧ α(v) = α′(v′)
= cvs if sv = {v′} ∧ α(v) �= α′(v′)
= +∞ if |sv| > 1

∀(u, v) ∈ E,∀se ⊆ E′,

δged
edge,GG′(u, v, se) = ced if se = ∅

= 0 if se = {(u′, v′)} ∧ β((u, v)) = β′((u′, v′))
= ces if sv = {(u′, v′)} ∧ β((u, v)) �= β′((u′, v′))
= +∞ if|se| > 1
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G2
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∀v ∈ V ′,∀sv ⊆ V, δged
vertex,GG′(v, sv) = cvi if sv = ∅

= 0 if |sv| = 1
= +∞ if |sv| > 1

∀(u, v) ∈ E′,∀se ⊆ E, δged
edge,GG′(u, v, se) = cei if se = ∅

= 0 if |se| = 1
= +∞ if |se| > 1

deltaged
GG′ = < δged

vertex,GG′ , δ
ged
edge,GG′ ,⊗∑ >

Theorem 7. Given two labeled graphs G and G′ (G = (V,E,L, α, β) and G′ =
(V ′, E′, L′, α′, β′)), the graph edit distance of Bunke and Jiang [19] is equal to the
distance δged

GG′(G1, G2), where G1 = (V,E) and G2 = (V ′, E′).

Proof. The proof of correctness is trivially done first by proving the equivalence
between the set of error-tolerant graph matchings and the set of univalent graph
matchings and second, by proving that, given an univalent matching m, the computed
distance with respect to m is equal to the cost of the error-tolerant graph matching m.

4.3 Multivalent Graph Matchings

In this section we show how to model different multivalent graph matching prob-
lems as graph distance measures. As these problems are optimization problems, the
objective is always to find the matching that gives the lowest distance.

Extended Graph Edit Distance

Problem Definition

Ambauen et al. [2] propose to extend the graph edit distance with two new oper-
ations: vertex splitting – to split one vertex of G into several vertices of G′ – and
vertex merging – to merge several vertices of G into one single vertex of G′. These
two new operations are added in order to merge over-segmented regions and to split
under-segmented regions. Each of these new operations is weighted by a cost csplit

and cmerge (but, in [2], these costs are set to 0). Finally, nonoverlapping constraints
are added on the two kinds of “multivalent matching” operations (vertex merging and
splitting): if one wants to link two vertices u and v of one graph to another vertex u′,
one has to merge u and v. As a consequence, it will not be possible anymore to link
u with a vertex v′ without linking v to v′.

Measure Definition

We cannot model the extended graph edit distance in the same way as that for (nonex-
tended) graph edit distance: the nonoverlapping constraint could not be checked. To
take into account this constraint, the matching m must represent the operations that
are done. We introduce an “operation graph” GO = (VO, EO = VO × VO). This
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graph is a complete graph that has as many vertices as the two graphs to compare,
i.e., |VO| = |V | + |V ′|. Its vertices must be matched with the vertices of the two
graphs to compare, i.e., we are looking for a matching m ⊆ VO × (V ∪ V ′). De-
pending on the way the vertices of GO are matched with the vertices of G and G′,
the matching m represents a set of edit operations between G and G′. When a vertex
of GO is only matched with a vertex v of G, the vertex v is deleted. When a ver-
tex of GO is only matched with a vertex v′ of G′, the vertex v′ is inserted. When
a vertex of GO is matched with a vertex v of G and a vertex v′ of G′, the vertex
v is substituted by the vertex v′. In the same way, the edges of GO model the edge
deletions, insertions, and substitutions. When a vertex of GO is matched with some
vertices of G (resp. G′), these vertices are merged (resp. splitted). If the vertices of
G and G′ must be matched with exactly one vertex of GO, every matching satisfying
this constraint corresponds to a set of edition operations of the extended graph edit
distance satisfying the nonoverlapping constraint.

More formally, to model the extended graph edit distance between G =
(V,E,L, α, β) and G′ = (V ′, E′, L′, α′, β′), with our generic graph distance
measure, one have to compare the graph G′′ = (V ′′ = V ∪ V ′, E′′ = E ∪ E′) (let
us recall that V ∩ V ′ = ∅) and the complete graph GO = (VO, EO = VO × VO)
such that |VO| = |V |+ |V ′| (because there is at most one edition operation for each
vertex of G and G′). The distance functions δeged

vertex and δeged
edge must constrain the

vertices of G and G′ to be matched with exactly one vertex of GO. The cost of the
edition operations must be computed on the vertices of the graph GO:
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∀v ∈ V ′′, ∀sv ⊆ VO, δeged
vertex(v, sv) = 0 if |sv| = 1

= +∞ otherwise
∀(u, v) ∈ E′′, ∀se ⊆ EO, δeged

edge((u, v), se) = 0

∀vo ∈ VO, ∀sv ⊆ V ′′,

δeged
vertex(vo, sv) = 0 if sv = ∅

= matchv(sv ∩ V1, sv ∩ V2) otherwise
∀(uo, vo) ∈ EO, ∀se ⊆ E′′,

δeged
edge((uo, vo), se) = 0 if se = ∅

= matche(se ∩ E1, se ∩ E2) otherwise

δeged = < δeged
vertex, δeged

edge ,⊗∑ >

where matchv(sv, s′v) (resp. matche(se, s
′
e)) is the cost needed to match the

(possibly empty) set of vertices sv (resp. edges se) of G1 to the (possibly empty)
set of vertices s′v (resp. edges s′e) of G2. More formally, the functions matchv :
℘(V1)× ℘(V2)→ [0,+∞[ et matche : ℘(E1)× ℘(E2)→ [0,+∞[ are defined by:

a ∀sv ⊆ V,∀s′v ⊆ V ′,
matchv(sv, s′v) = merge(sv) + merge(s′v)

+substv(sv, s′v) if sv �= ∅ ∧ s′v �= ∅
b = merge(sv) + delv(sv) if sv �= ∅ ∧ s′v = ∅
c = merge(s′v) + insv(s′v) if sv = ∅ ∧ s′v �= ∅
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d ∀se ⊆ V,∀s′e ⊆ V ′,
matche(se, s

′
e) = subst(se, s

′
e) if se �= ∅ ∧ s′e �= ∅

e = dele(se) if se �= ∅ ∧ s′e = ∅
f = inse(s′e) if se = ∅ ∧ s′e �= ∅

The function merge(sv) is the cost needed to merge the vertices of the set sv ,
the function substv(sv, s′v) (resp. subste(se, s

′
e)) is the cost needed to substitute the

vertices (resp. the edges) of the set sv (resp. se) by the vertices (resp. the edges) of
the set s′v (resp. s′e). insv(sv) (resp. inse(se)) is the cost need to insert the vertices
(resp. edges) of the set sv (resp. se) and delv(sv) (resp. dele(se)) is the cost of their
deletion.

Theorem 8. Given two (mono)-labeled graphs G = (V,E,L, α, β) and G′ =
(V ′, E′, L′, α′, β′), the extended graph edit distance is equal to δeged(GO, G′′)
where G′′ = (V1 ∪ V2, E1 ∪ E2) and GO = (VO, VO × VO) such that |VO| =
|V1|+ |V2|.

Proof. The proof of correctness is easy: each matching m giving rise to a noninfinite
distance correspond to a sequence of edition operations of the extended graph edit
distance (and reversely). Furthermore, the vertex and edge distance functions are
defined in such a way that the cost of this sequence is equal to the distance induced
by m.

Nonbijective Graph Matching Problem

Definition

Boeres et al. [4] propose a nonbijective graph similarity measure to compare medical
images of brains to an image model of a brain. The model has a schematic aspect
easy to segment whereas the real image is noised and generally over-segmented.
As a consequence, when comparing the image graph to the model graph, one has
to use a nonbijective graph matching where the vertices of the model graph may
be linked to a set of vertices of the image graph in order to merge over-segmented
regions of the image graph. The similarity between an image graph and its model
is computed with respect to vertex and edge similarity matrices and the problem
consists in finding the best matching (the one with the highest similarity) that satisfies
application-dependent constraints. More formally, two graphs are used to represent
the problem: the model graph G = (V,E) and the image graph G′ = (V ′, E′)
(with |V | ≤ |V ′|). A solution is a matching m ⊆ V × V between G and G′ such
that each vertex of G is linked to a nonempty set of connected vertices of G′ (i.e.,
∀v ∈ V, |m(v)| ≥ 1 and the subgraph induced by m(v) is a connected graph), and
each vertex of G′ is linked to exactly one vertex of G (i.e., ∀v ∈ V ′, |m(v)| = 1).
Finally, some couples of vertices cannot be matched together. Given any matching
that respects these constraints, a similarity measure sim[Boeres]m is computed with
respect to a vertex and an edge similarity function smv : V × V ′ → [0, 1] and
sme : E × E′ → [0, 1] as follows:
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sim[Boeres]m =

∑

(u,v)∈m

smv(u, v)

|V |.|V ′| +

∑

(u,v)∈(V ×V ′)−m

1− smv(u, v)

|V |.|V ′| +
∑

((u,u′),(v,v′))∈E×E′,{(u,v),(u′,v′)}∈m

sme((u, u′), (v, v′))

|E|.|E′| +
∑

((u,u′),(v,v′))∈E×E′,{(u,v),(u′,v′)}
∈m

1− sme((u, u′), (v, v′))

|E|.|E′|
Measure Definition

By properly choosing vertex and edge distance functions δvertex and δedge, we can
model the similarity of Boeres et al. as a graph distance measure. The vertex distance
function returns +∞ when the matching violates a constraint and both the vertex
and edge distance functions reproduce the similarity matrices smv and sme. More
formally:

G

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∀v ∈ V,∀sv ⊆ V ′, δnbgm
vertex(v, sv) =

∑

v′∈sv
1− smv(v, v′)

+
∑

v′∈V ′−sv
smv(v, v′)

if connected(sv)
= +∞ otherwise

∀(u, v) ∈ E,∀se ⊆ E′,

δnbgm
edge ((u, v), se) =

∑

(u′,v′)∈se
1− sme((u, v), (u′, v′))

+
∑

(u′,v′)∈E′−se
sme((u, v), (u′, v′))

G′

⎧

⎨

⎩

∀v ∈ V ′,∀sv ⊆ V, δnbgm
vertex(v, sv) = 0 if allowed(v, sv)

= +∞ otherwise
∀(u′, v′) ∈ E′,∀se ⊆ E, δnbgm

edge ((u′, v′), se) = 0

δnbgm = < δnbgm
vertex, δnbgm

edge ,⊗∑ >

where connected and allowed are two predicates introduced to check the con-
straints. connected is false when a vertex of the model is not matched or when it
is matched with a nonconnected set of vertices and true otherwise. allowed is false
when a vertex of the image is not matched with only one allowed vertex of the model
and true otherwise:

∀v ∈ V,∀sv ⊆ V ′, connected(sv) = true if sv is a nonempty set of
connected vertices

false otherwise
∀v ∈ V ′,∀sv ⊆ V, allowed(v, sv) = true if sv = {v′} ∧ (v, v′) is allowed

false otherwise
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Theorem 9. If the matching m minimizing the distance δnbgm
m (G,G′) gives rise to a

noninfinite distance, then m is the matching that maximizes the similarity of Boeres
et al. otherwise, there does not exist a mapping that satisfies the hard constraints of
the similarity of Boeres et al.

Proof. We can easily prove that, thanks to the predicates connected and allowed, the
distance between G and G′ with respect to a matching m is equal to +∞ if and only if
m is a matching that violates at least one hard constraint. Finally, by decomposing the
vertex and edge distance functions, we can prove that the distance δnbgm is inverse
to the similarity of [4] and as a consequence, the matching minimizing the distance
δnbgm is the matching that maximizes the similarity of Boeres et al.

5 Comparison with the Graph Similarity Measure of Champin
and Solnon

In [15], we show that the similarity of Champin and Solnon [6] is generic in the sense
that, by properly instantiating parameters of this measure, it can be used to solve all
the graph matching problems listed earlier. In this section, we briefly present the
graph similarity measure of Champin and Solnon and we show that this measure and
our graph distance measure are equivalent.

5.1 Definition of the Graph Similarity of Champin and Solnon

The measure of Champin and Solnon is defined for multilabeled graphs, i.e., graphs
where a nonempty set of labels is associated with each vertex and each edge of the
graphs. More formally, given a set LV of vertex labels and a set LE of edge labels, a
multilabeled graph G is defined by a tuple G = 〈V, rV , rE〉 such that:

• V is a finite set of vertices
• rV ⊆ V × LV is a relation associating labels to vertices, i.e., rV is the set of

couples (vi, l) such that vertex vi is labeled by l
• rE ⊆ V × V × LE is a relation associating labels to edges, i.e., rE is the set

of triples (vi, vj , l) such that edge (vi, vj) is labeled by l. Note that the set E of
edges of the graph can be defined by E = {(vi, vj)|∃l, (vi, vj , l) ∈ rE}
The first step for measuring graph similarity of two graphs G = 〈V, rV , rE〉

and G′ = 〈V ′, rV ′ , rE′〉 defined over the same set LV and LE of vertex and edge
labels is to match their vertices. The matching m considered here is multivalent, i.e.,
m ⊆ V × V ′.

Once a multivalent mapping is defined, the next step is to identify the set of
features that are common to the two graphs with respect to this matching. This set
contains all the features from both G and G′ whose vertices (resp. edges) are matched
by m to at least one vertex (resp. edge) that has the same feature. More formally, the
set of common features G�mG′, with respect to a matching m, is defined as follows:
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G �m G′ =̇ {(v, l) ∈ rV |∃v′ ∈ m(v), (v′, l) ∈ rV ′}
∪ {(v′, l) ∈ rV ′ |∃v ∈ m(v′), (v, l) ∈ rV }
∪ {(vi, vj , l) ∈ rE |∃(v′

i, v
′
j) ∈ m(vi, vj), (v′

i, v
′
j , l) ∈ rE′}

∪ {(v′
i, v

′
j , l) ∈ rE′ |∃(vi, vj) ∈ m(v′

i, v
′
j), (vi, vj , l) ∈ rE}

Given a multivalent matching m, we also have to identify the set of split vertices,
i.e., the set of vertices that are matched with more than one vertex, each split vertex
v being associated with the set sv of its mapped vertices:

splits(m) = {(v,m(v))|v ∈ V ∪ V ′, |m(v)| ≥ 2}

The similarity of G and G′ with respect to a mapping m is then defined by:

simm(G,G′) =
f(G �m G′)− g(splits(m))

f(rV ∪ rE ∪ rV ′ ∪ rE′)
(3)

where f and g are two functions that are introduced to weight features and splits,
depending on the considered application.

Finally, the absolute similarity sim(G,G′) of two graphs G and G′ is the highest
similarity with respect to all possible mappings:

sim(G,G′) = max
m⊆V ×V ′

f(G �m G′)− g(splits(m))
f(rV ∪ rE ∪ rV ′ ∪ rE′)

(4)

5.2 Our Graph Distance Measure and the Graph Similarity of Champin
and Solnon

Both our graph distance measure and the graph similarity of Champin and Solnon
have been shown to be generic in the sense that they can be used to model many
other graph distance/similarity measures from the literature. We show here that these
two measures have the same ability to represent graph matching problems.

Theorem 10. Given two sets of vertex and edge labels LV and LE and two functions
f and g that define a graph similarity measure, there exists a distance measure δ =<
δvertex, δedge,⊗ > such that for any pair of labeled graphs G1 = 〈V1, rV 1, rE1〉
and G2 = 〈V2, rV 2, rE2〉 defined over LV and LE , the matching m ⊆ V1 × V2

that maximizes simm(G1, G2) also minimizes δm(G′
1, G

′
2) where G′

1 and G′
2 are

the nonlabeled graphs corresponding to G1 and G2, i.e., G′
1 = (V1, E1) and G′

2 =
(V2, E2) with E1 = {(u, v)/∃(u, v, l) ∈ rE1} and E2 = {(u, v)/∃(u, v, l) ∈ rE2}.

Proof. In order to make the proof, we show that it is possible to define the dis-
tance functions δvertex and δedge in such a way that the arguments of the function ⊗
contains all the information required to reconstitute the matching done. As a conse-
quence, the function ⊗ can be defined with the functions f and g.
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Let us define a bijective function num : ℘(V2) → N that associates an unique
integer value with every different subset of vertices of G′

2. The function num is used
by the vertex distance function δvertex to return the set of vertices of G′

2 matched
with each vertex of G′

1:

∀v ∈ V1,∀sv ⊆ V2, δvertex(v, sv) = num(sv)
∀v ∈ V2,∀sv ⊆ V1, δvertex(v, sv) = 0

∀(u, v) ∈ E1,∀se ⊆ E2, δedge((u, v), se) = 0
∀(u′, v′) ∈ E2,∀se ⊆ E1, δedge((u′, v′), se) = 0

With such vertex and edge distance functions, the function ⊗sim can be defined
with the functions f and g of the similarity measure:3

⊗sim(S) = g(split(ms))− f(G1 �mS
G2)

where mS is defined as follows:

mS = {(u, u′)/∃(u, d) ∈ S ∧ u ∈ V1 ∧ u′ ∈ num−1(d)}
Theorem 11. Given a distance definition δ =< δvertex, δedge,⊗ >, there exists a
graph similarity measure sim of Champin and Solnon (defined by the two functions
f and g) such that for any pair of graphs G1 and G2, the matching m ⊆ V1 × V2

that minimizes the distance δm(G1, G2) also maximize simm(G′
1, G

′
2), where G′

1

and G′
2 are two labeled graphs corresponding to G1 and G2.

Proof. In order to make the proof, we show that, by properly choosing the multi-
labeled graphs G1 and G2 to compare, the set G1�m G2 can contain all the informa-
tion required to know the matching m done. As a consequence, the function f that
takes this set as parameter can be defined with the functions δvertex, δedge, and ⊗ of
the graph distance measure.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), we define the multilabeled
graphs G′

1 = 〈V1, rV 1, rV 2〉 and G′
2 = 〈V2, rV 2, rE2〉 and the sets LV and LE of

vertex and edge labels such that:

LV = {(u, v), u ∈ V1, v ∈ V2} , LE = {le}
rV 1 = {(u, (u, v)), u ∈ V1, v ∈ V2} , rE1 = {(u, v, le), (u, v) ∈ E1}
rV 2 = {(v, (u, v)), u ∈ V1, v ∈ V2} , rE2 = {(u, v, le), (u, v) ∈ E2}

With such labeled graphs, the function f can be defined with the functions
δvertex, δedge and ⊗:

f(S) = −⊗ ({(v, δvertex(v,mS(v)))/v ∈ V1 ∪ V2}
∪{((u, v), δedge((u, v),mS(u, v)))/(u, v) ∈ E1 ∪ E2})

where the matching mS is defined by:

mS = {(u, v)/∃(u, (u, v)) ∈ S}
3 Note that in one case the problem is to minimize the distance and in the other case, the

problem is to maximize the similarity. So, the function ⊗ must be defined in such a way
that ∀m ⊆ V1 × V2, δm(G1, G2) = −simm(G1, G2).



A Generic Graph Distance Measure Based on Multivalent Matchings 177

6 Computing the Distance Between two Graphs

All matching problems described in Sect. 4 are NP-complete or NP-hard problems,
except for the graph isomorphism problem, the complexity of which is not exactly
stated.4 As a consequence, computing the distance between two graphs is also a NP-
hard problem in the general case.

Complete algorithms have been proposed for computing the matching which
maximizes the similarity of Champin and Solnon [6] and for computing the extended
graph edit distance of Ambauen et al. [2]. This kind of algorithms based on an ex-
haustive exploration of the search space combined with pruning techniques, guaran-
tees solution optimality. However, these algorithms are limited to very small graphs.
Therefore, incomplete algorithms, that do not guarantee optimality but have a poly-
nomial time complexity, appear to be good alternatives. We propose in [6,15,20,21]
three incomplete algorithms for computing the similarity of Champin and Solnon.
These algorithms may be adapted to our graph distance in a very straightforward
way.

Greedy Algorithm

We propose in [6] a greedy algorithm. The algorithm starts from an empty match-
ing m = ∅, and iteratively adds to m couples of vertices chosen within the set of
candidate couples cand = V × V ′ − m. This greedy addition of couples to m is
iterated until m is locally optimal, i.e., until no more couple addition can increase
the similarity. At each step, the couple to be added is randomly chosen within the set
of couples that most increase the similarity. This greedy algorithm has a polynomial
time complexity of O((|V | × |V ′|)2), provided that the computation of the f and g
functions have linear time complexities with respect to the size of the matching.

Reactive Tabu Search

The greedy algorithm of [6] returns a “locally optimal” matching in the sense that
adding or removing one couple of vertices to this matching cannot improve it. How-
ever, it may be possible to improve it by adding and/or removing more than one
couple to this matching. In order to improve the matching returned by the greedy
algorithm, we propose in [6, 15] a reactive tabu local search.

A local search [25, 26] tries to improve a solution by locally exploring its neigh-
borhood: the neighbors of a matching m are the matchings which can be obtained by
adding or removing one couple of vertices to m.

From an initial matching, computed by the greedy algorithm, the search space
is explored from neighbor to neighbor until the optimal solution is found (when the
optimal value is known) or until a maximum number of moves have been performed.

4 For particular graphs (such as trees or planar graphs) the graph isomorphism problem is
polynomial [22–24]; in general case, the graph isomorphism problem clearly belongs to
NP but has neither be proven to belong in P nor to be NP-complete.



178 S. Sorlin et al.

The tabu metaheuristic [25, 27] is used to choose the next neighbor to move on. At
each step, the best neighbor, i.e., the one that most increase the similarity, is chosen.
To avoid staying around locally optimal matchings by always performing the same
moves, a tabu list is used. This list has a length k and memorizes the last k moves
(i.e., the last k added/removed couples of vertices) in order to forbid backward moves
(i.e., to remove/add a couple recently added/removed).

The length k of the tabu list is a critical parameter that is hard to set: if the list
is too long, search diversification is too strong so that the algorithm converges too
slowly; if the list is too short, intensification is too strong so that the algorithm may
be stuck around local maxima and fail in improving the current solution. To solve
this parameter tuning problem, Battiti and Protasi [28] introduced Reactive Search
where the length of the tabu list is dynamically adapted during the search. We have
used the same idea to build a reactive tabu search algorithm to compute our generic
graph distance measure.

Ant Colony Optimization

We also proposed in [20,21] to use the Ant Colony Optimization (ACO) metaheuris-
tic approach to compute the similarity of Champin and Solnon. The ACO meta-
heuristic is a bioinspired approach [29, 30] that has been used to solve many hard
combinatorial optimization problems. The main idea is to model the problem to solve
as a search for an optimal path in a graph – called the construction graph – and to
use artificial ants to search for “good” paths.

The behavior of artificial ants mimics the behavior of real ones: (1) ants lay
pheromone trails on the components of the construction graph to keep track of the
most promising components, (2) ants construct solutions by moving through the con-
struction graph and choose their path with respect to probabilities which depend on
the pheromone trails previously laid, and (3) pheromone trails decrease at each cycle
simulating in this way the evaporation phenomena observed in the real world.

Given two graphs G = (V,E) and G′ = (V ′, E′) to match, the construction
graph is the complete nondirected graph that associates a vertex < (u, u′) > with
each couple (u, u′) ∈ V × V ′. Each elementary path into this graph represents a
matching m ⊆ V × V ′.

At each cycle, each ant of a colony constructs a matching in a randomized greedy
way: starting from an empty matching m = ∅, the ant iteratively adds couples of
vertices that are chosen within the set cand = {(u, u′) ∈ V × V ′ −m}. As usually
in ACO algorithm, the choice of the next couple to be added to m is done with
respect to a probability that depends on pheromone and heuristic factors (i.e., the
similarity improvement when adding the couple). A simple local search procedure
may be applied on built matchings to improve their quality.

Once each ant of the colony has built a matching, pheromone trails are updated
according to the best matching found. Pheromone is laid on each vertex < (u, u′) >
of the best found matching in a quantity proportional to the similarity induced by
the matching. As a consequence, the amount of pheromone on a vertex < (u, u′) >
represents the learnt desirability to match u with u′. This process stops iterating
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either when an ant has found an optimal matching, or when a maximum number of
cycles has been performed.

Experimental Results

These three algorithms have been experimentally compared on three different test
suites: graph and subgraph isomorphism problems, randomly generated multivalent
problems, and the nonbijective graph matching problems of Boeres et al. [4]. Each
of these problems has been transformed into our generic graph similarity measure
computing problem and, as a consequence, we always use exactly the same code
whatever the problem to solve is.

Experimental results showed us that on graph and subgraph isomorphism prob-
lems, our algorithms are not competitive with dedicated algorithms: our reactive tabu
search and ACO algorithms are able to solve these problems but are clearly longer
than dedicated algorithms such as Nauty [31] or VFLIB [32, 33]. These results can
be explained by the fact that our algorithms do not use any kind of filtering tech-
niques and potentially explore all kinds of mappings, even multivalent ones. On the
seven instances of the nonbijective graph matching problem, our algorithms obtain
better results than LS+, the reference algorithm of [4] (six instances over seven are
better solved by reactive tabu search and seven instances over seven are better solved
by ACO algorithm). On all these instances, ACO obtains better results than reactive
tabu search but reactive tabu search finds the solutions in shorter times than ACO. On
multivalent graph matching problems, reactive tabu search and ACO obtain similar
results. However, reactive tabu search finds the solutions in shorter times than ACO.

As a consequence, ACO usually obtains better results but is slower than reactive
tabu search. These two algorithms are complementary: if we have to quickly compute
a “good” solution of hard instances or if instances are easy, we can use reactive tabu
search but if we have more time to spend on computation or if we want to solve very
hard instances, we can use ACO.

7 Conclusion

In this chapter, we propose a graph distance measure. This distance is generic: it is
based on multivalent matchings of the graph vertices and it is parameterized by two
distance functions δvertex and δedge used to introduce the application-dependent dis-
tance knowledge on vertices and edges and a function⊗ used to aggregate these local
preferences. We have shown that we can use our graph distance measure to solve
many graph matching problems including the problem of computing the generic
graph similarity of Champin and Solnon. We quickly describe three algorithms to
compute this generic distance measure: a greedy algorithm, a reactive tabu local
search, and an Ant Colony Optimization algorithm. These algorithms are generic so
that they can be used to solve any kind of graph matching problem.
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Learning from Supervised Graphs

Joseph Potts, Diane J. Cook and Lawrence B. Holder

Summary. We describe an approach to learning patterns in relational data represented as a
graph. The approach, implemented in the Subdue system, searches for patterns that maximally
compress the input graph. Subdue can be used for supervised learning, as well as unsupervised
pattern discovery and clustering.

Mining graph-based data raises challenges not found in linear attribute-value data. How-
ever, additional requirements can further complicate the problem. In particular, we describe
how concepts can be learned from training examples which are embedded into a single con-
nected graph, or supervised graph. We demonstrate the technique using data from a NASA
SST domain as well as a homeland security domain.

1 Introduction

Much of current data mining research focuses on algorithms to discover sets of
attributes that can discriminate data entities into classes, such as shopping or bank-
ing trends for a particular demographic group. In contrast, we are developing data
mining techniques to discover patterns consisting of complex relationships between
entities. The field of relational data mining, of which graph-based relational learning
is a part, is a new area investigating approaches to mining relational information by
finding associations involving multiple tables in a relational database.

Two main approaches have been developed for mining relational information:
logic-based approaches and graph-based approaches. Logic-based approaches fall
under the area of inductive logic programming (ILP) [1]. ILP embodies a number of
techniques for inducing a logical theory to describe the data, and many techniques
have been adapted to relational data mining [2]. Graph-based approaches differ from
logic-based approaches to relational mining in several ways, the most obvious of
which is the underlying representation. Furthermore, logic-based approaches rely on
the prior identification of the predicate or predicates to be mined, while graph-based
approaches are more data-driven, identifying any portion of the graph that has high
support. However, logic-based approaches allow the expression of more complicated
patterns involving, e.g., recursion, variables, and constraints among variables. These
representational limitations of graphs can be overcome, but at a computational cost.
J. Potts et al.: Learning from Supervised Graphs, Studies in Computational Intelligence (SCI) 52, 183–201 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Our research is particularly applicable to domains in which the data is event
driven, such as counter-terrorism intelligence analysis, and domains where distin-
guishing characteristics can be object attributes or relational attributes. This ability
has also become a crucial challenge in many security-related domains. For example,
the US House and Senate Intelligence Committees’ report on their inquiry into the
activities of the intelligence community before and after the September 11, 2001 ter-
rorist attacks revealed the necessity for “connecting the dots” [3]; that is, focusing
on the relationships between entities in the data, rather than merely on an entity’s
attributes. A natural representation for this information is a graph, and the ability to
discover previously unknown patterns in such information could lead to significant
improvement in our ability to identify potential threats. Similarly, identifying char-
acteristic patterns in spatial or temporal data can be a critical component in acquiring
a foundational understanding of important research in many of the basic sciences.

Learning systems capable of utilizing graph-based data typically require training
examples to be represented using disjoint graphs, one for each example. In a highly
relational domain, however, the positive and negative examples of a concept are not
easily separated. We call such a graph a supervised graph, because the graph as a
whole contains embedded class information which may not be easily separated into
individual labeled components. In this chapter we describe a method of learning
concepts from examples in supervised graphs that builds upon the capabilities of the
Subdue graph-based data mining system.

2 Related Work

Graph-based data mining (GDM) is the task of finding novel, useful, and understand-
able graph-theoretic patterns in a graph representation of data. Several approaches to
GDM exist based on the task of identifying frequently occurring subgraphs in graph
transactions, i.e., those subgraphs meeting a minimum level of support. Kuramochi
and Karypis [4] developed the FSG system for finding all frequent subgraphs in large
graph databases. FSG starts by finding all frequent single and double edge subgraphs.
Then, in each iteration, it generates candidate subgraphs by expanding the subgraphs
found in the previous iteration by one edge. In each iteration the algorithm checks
how many times the candidate subgraph occurs within an entire graph. The can-
didates, whose frequency is below a user-defined level, are pruned. The algorithm
returns all subgraphs occurring more frequently than the given level.

Yan and Han [5] introduced gSpan, which combines depth-first search and lex-
icographic ordering to find frequent subgraphs. Their algorithm starts from all fre-
quent one-edge graphs. The labels on these edges together with labels on incident
vertices define a code for every such graph. Expansion of these one-edge graphs
maps them to longer codes. The codes are stored in a tree structure such that if
α = (a0, a1, ..., am) and β = (a0, a1, ..., am, b), the β code is a child of the α code.
Since every graph can map to many codes, the codes in the tree structure are not
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unique. If there are two codes in the code tree that map to the same graph and one is
smaller then the other, the branch with the smaller code is pruned during the depth-
first search traversal of the code tree. Only the minimum code uniquely defines the
graph. Code ordering and pruning reduces the cost of matching frequent subgraphs
in gSpan.

Inokuchi et al. [6] developed the apriori-based graph mining (AGM) system,
which uses an approach similar to Agrawal and Srikant’s [7] apriori algorithm for
discovering frequent itemsets. AGM searches the space of frequent subgraphs in a
bottom-up fashion, beginning with a single vertex, and then continually expanding
by a single vertex and one or more edges. AGM also employs a canonical coding
of graphs in order to support fast subgraph matching. AGM returns association rules
satisfying user-specified levels of support and confidence.

We distinguish graph-based relational learning (GBRL) from graph-based data
mining in that GBRL focuses on identifying novel, but not necessarily most frequent,
patterns in a graph representation of data [8]. Only a few GBRL approaches have
been developed to date. Two specific approaches, Subdue [9] and GBI [10], take a
greedy approach to finding subgraphs maximizing an information theoretic measure.
Subdue searches the space of subgraphs by extending candidate subgraphs by one
edge. Each candidate is evaluated using a minimum description length metric [11],
which measures how well the subgraph compresses the input graph if each instance
of the subgraph were replaced by a single vertex. GBI continually compresses the
input graph by identifying frequent triples of vertices, some of which may represent
previously compressed portions of the input graph. Candidate triples are evaluated
using a measure similar to information gain. Kernel-based methods have also been
used for supervised GBRL [12].

3 Graph-based Relational Learning in Subdue

The Subdue graph-based relational learning system1 [9,13] encompasses several ap-
proaches to graph-based learning, including discovery, clustering, and supervised
learning, which will be described in this section. Subdue uses a labeled graph
G = (V,E,L) as both input and output, where V = {v1, v2, . . . , vn} is a set of
vertices, E = {(vi, vj)|vi, vj ∈ V } is a set of edges, and L is a set of labels that can
appear on vertices and edges. The graph G can contain directed edges, undirected
edges, self-edges (i.e., (vi, vi) ∈ E), and multi-edges (i.e., more than one edge be-
tween vertices vi and vj). The input graph need not be connected, but the learned
patterns must be connected subgraphs (called substructures) of the input graph. The
input to Subdue can consist of one large graph or several individual graph transac-
tions, and in the case of supervised learning, the individual graphs are classified as
positive or negative examples.

1 Subdue source code, sample datasets, and publications are available at http://ailab.uta.edu/
subdue.
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3.1 Substructure Discovery

SUBDUE’s discovery algorithm is shown in Fig. 1 and is given as the input graph,
the beam length, and a limit on the total number of substructures considered by the
algorithm.

Subdue searches for a substructure that best compresses the input graph. Subdue
uses a variant of beam search for its main search algorithm. A substructure in Subdue
consists of a subgraph definition and all its occurrences throughout the graph. The
initial state of the search is the set of substructures consisting of all uniquely labeled
vertices. The only operator of the search is the ExtendSubstructure operator. As its
name suggests, it extends a substructure in all possible ways by a single edge and a
vertex, or by only a single edge if both vertices are already in the subgraph.

The search progresses by applying the ExtendSubstructure operator to each sub-
structure in the current state. The resulting state, however, does not contain all the
substructures generated by the ExtendSubstructure operator. The substructures are
kept on a queue and are ordered based on their description length (or sometimes
referred to as value) as calculated using the MDL principle described later.

The search terminates upon reaching a user-specified limit on the number of
substructures extended, or upon exhaustion of the search space. Once the search

Subdue (Graph, Beam, Limit)

queue Q = {v | v is a vertex in Graph having a unique label}

bestSub = first substructure in Q

repeat

newQ = {}

for each substructure S ∈ Q

newSubs = Extend-Substructure (S, Graph)

in all possible ways

Evaluate (newSubs)

newQ = newQ ∪ newSubs mod  Beam

Limit = Limit − 1

if best substructure in newQ better than bestSub

then bestSub = best substructure in Q

Q = newQ

until Q is empty or  Limit ≤ 0

return bestSub

Fig. 1. SUBDUE’s discovery algorithm
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terminates and Subdue returns the list of best substructures found, the graph can
be compressed using the best substructure. The compression procedure replaces all
instances of the substructure in the input graph by single vertices, which represent
the substructure definition. Incoming and outgoing edges to and from the replaced
instances will point to, or originate in the new vertex that represents the instance. The
Subdue algorithm can be invoked again on this compressed graph. This procedure
can be repeated a user-specified number of times, and is referred to as an iteration.

Subdue’s search is guided by the minimum description length (MDL) [11] prin-
ciple, which seeks to minimize the description length of the entire data set. The
evaluation heuristic based on the MDL principle assumes that the best substructure
is the one that minimizes the description length of the input graph when compressed
by the substructure [9]. The description length of the substructure S given the in-
put graph G is calculated as DL(S) + DL(G|S), where DL(S) is the description
length of the substructure and DL(G|S) is the description length of the input graph
compressed by the substructure. Description length DL() is calculated as the num-
ber of bits in a minimal encoding of the graph. Subdue seeks a substructure S that
maximizes compression as calculated in (1).

Compression =
DL(G)

DL(S) + DL(G|S)
(1)

As an example, Fig. 2a shows a collection of geometric objects described by their
shapes and their “ontop” relationship to one another. Figure 2b shows the graph rep-
resentation of a portion (“triangle on square”) of the input graph for this example
and also represents the substructure minimizing the description length of the com-
pressed graph. Figure 2c shows the input example after being compressed by the
substructure.

3.2 Graph-based Clustering

Given the ability to find a prevalent subgraph pattern in a larger graph and then
compress the graph with this pattern, iterating over this process until the graph can no
longer be compressed will produce a hierarchical, conceptual clustering of the input

S1

S1 S1 S1

object

object

triangle

square

on

shape

shape

(a) Input (b) Substructure (c) Compressed

Fig. 2. Example of Subdue’s substructure discovery capability
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data. On the ith iteration, the best subgraph Si is used to compress the input graph,
introducing new vertices labeled Si in the graph input to the next iteration. Therefore,
any subsequently discovered subgraph Sj can be defined in terms of one or more Si,
where i < j. The result is a lattice, where each cluster can be defined in terms of
more than one parent subgraph. For example, Fig. 3 shows such a clustering done on
a DNA molecule. See [14] for more information on graph-based clustering. The idea
of clustering graphs has been explored by others such as Günter and Bunke [15, 16]
who also determine the optimal number of clusters automatically, and by Giugno and
Shasha [17], who provide graph querying and clustering tools for a wide variety of
graph types. Our approach is unique in employing a discovery algorithm to perform
the clustering, and in yielding a hierarchical lattice of graph clusters from the original
graph data.

3.3 Supervised Learning from Graphs

Extending a graph-based discovery approach to perform supervised learning in-
volves, of course, the need to handle negative examples (focusing on the two-class
scenario). In the case of a graph the negative information can come in two forms.
First, the data may be in the form of numerous small graphs, or graph transactions,
each labeled either positive or negative. Second, data may be composed of two large
graphs: one positive and one negative.

The first scenario is closest to the standard supervised learning problem in that we
have a set of clearly defined examples. Figure 4a depicts a simple set of positive and
negative examples. Let G+ represent the set of positive graphs, and G− represent
the set of negative graphs. Then, one approach to supervised learning is to find a
subgraph that appears often in the positive graphs, but not in the negative graphs.
This amounts to replacing the information-theoretic measure with simply an error-
based measure. For example, we would find a subgraph S that minimizes

|{g ∈ G+|S �⊆ g}|+ |g ∈ G−|S ⊆ g}|
|G+|+ |G−| ,

where S ⊆ g means S is isomorphic to a subgraph of g. The first term of the
numerator is the number of false negatives, and the second term is the number of
false positives.

This approach will lead the search toward a small subgraph that discriminates
well, e.g., the subgraph in Fig. 4b. However, such a subgraph does not neces-
sarily compress well, nor represent a characteristic description of the target con-
cept. We can bias the search toward a more characteristic description by using
the information-theoretic measure to look for a subgraph that compresses the pos-
itive examples, but not the negative examples. If I(G) represents the description
length (in bits) of the graph G, and I(G|S) represents the description length of
graph G compressed by subgraph S, then we can look for an S that minimizes
I(G+|S) + I(S) + I(G−) − I(G−|S), where the last two terms represent the por-
tion of the negative graph incorrectly compressed by the subgraph. This approach
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Fig. 4. Graph-based supervised learning example with (a) four positive and four negative
examples, (b) one possible graph concept, and (c) another possible graph concept

will lead the search toward a larger subgraph that characterizes the positive exam-
ples, but not the negative examples, e.g., the subgraph in Fig. 4c.

Finally, this process can be iterated in a set-covering approach to learn a dis-
junctive hypothesis. If using the error measure, then any positive example contain-
ing the learned subgraph would be removed from subsequent iterations. If using
the information-theoretic measure, then instances of the learned subgraph in both
the positive and negative examples (even multiple instances per example) are com-
pressed to a single vertex. See [18] for more information on graph-based supervised
learning.

4 Learning from Supervised Graphs

Learning systems capable of utilizing graph-based input have typically required the
training examples to be represented as disjoint graphs. Input for these systems con-
sists of training examples represented as individual graphs, each of which is an exam-
ple of one of n classes. The goal is to learn a concept which can be used to determine
to which class a previously unseen graph belongs.

In a domain where training examples are naturally embedded (and possibly over-
lap) in a single graph, efficiently transforming the data for input to systems such as
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these can be quite difficult. If a system requires individual graphs for each example,
then it is necessary to excise each example along with some amount of surrounding
graph structure to create a disconnected graph containing that example. If the ex-
amples are close enough to each other in the original graph, then this surrounding
data may overlap with the surrounding data of another example. In fact, the training
example graph may even have to include all or part of another example. This overlap
will result in some data appearing in more than one example graph.

Determining just how much structure to include in an example is tricky. Taking
too large a region around the example causes extra data to be handled. Taking too
small a region may result in the loss of potentially vital information. Since process-
ing graph-based data is very resource intensive, any redundant information can have
a drastic effect on performance. Failure to include enough data may result in the
inability of the system to learn.

We hypothesize that a compression-based graph mining algorithm can be used to
learn class information embedded in a single, connected graph. We develop a learner
that allows the input graph, containing all the training examples for all classes to
be input with a minimum of preprocessing and a minimum of added or redundant
information. In a highly complex relational domain, positive and negative examples
of a concept are not easily separated into nonoverlapping graphs. We call such a
graph with embedded, possibly overlapping examples a supervised graph, or a graph
that contains embedded class information which may not be easily separated into
individual labeled components.

For example, consider a social network in which we look for patterns distin-
guishing various income levels. Individuals of a particular income level can appear
anywhere in the graph and may be interact with or be related to individuals at other
income levels, so we cannot easily partition the graph into separate training cases
without potentially severing the target relationships.

To validate our hypothesis, we propose a representation requiring the addition to
the input graph of one vertex for each example. We also propose an enhancement
of the Subdue algorithm which will construct substructures capable of identifying
the examples of each class guided by a new performance metric called classification
compression. Finally, we propose a representation for these learned substructures
called a classification sequence which facilitates the determination of class member-
ship for new observations.

4.1 Problem Statement

Our approach to learning concepts from supervised graphs is embodied in the
Subdue-EC algorithm. In addition to the labeled graph defined earlier as G =
(V,E,L), Subdue-EC also expects as input a set of examples, X , where each x ∈ X
is a set of one or more vertices in V and a set C of class designations, one for each ex-
ample from the set of n classes. Subdue-EC the learns a concept which is expressed
as a set of subgraphs, S, which can be used to assign a class to designated sets of
vertices in graphs.
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For simplicity in the following discussion, we will consider the two-class learn-
ing problem. However, the algorithm, the performance measures, and the classifica-
tion concepts are applicable to problems with any number of classes. Furthermore,
the examples are represented as sets of vertices. Again, for simplicity, we will use
single-vertex examples, but any number of vertices may be part of a training example.

4.2 Evaluating Concepts

To be able to perform inductive learning on a single graph with both positive and
negative examples, compression of the input graph becomes a less desirable evalu-
ation metric because the graph contains examples of all classes. To allow the MDL
principle to guide us in classification, we have to look not at the graph, but at the clas-
sification itself. That is, we assume that our receiving agent already has the graph and
all of the examples it contains. What we need to send is the classification of those
examples. The straightforward way to do that is simply send the class number for
each example. Since the examples are in the same order in the receiver’s copy of the
graph as they are in the sender’s, we can just send the class number for examples
1 . . . n and the agent will be able to classify each example. The description length of
this naive classification, Cnaive, is simply the number of bits required to provide a
class number for each of the examples. Thus DL(Cnaive) is nlog2k, where n is the
number of classes and k is the number of examples.

An alternative to just telling the receiver the class of each example, is to provide
the concept as a sequence of substructures s1, s2, . . . , sj , each with an associated
class. If an instance of one of the substructures is found in the new graph, then the
class associated with that substructure is assigned to all vertices in the substructure
instance. The description length of this encoding is thus the description length of the
substructure sequence with classes, or classification sequence CS. This is computed
as the sum of the description length of the substructures in the sequence, DL(CS) =
ΣiDL(si).

Of course, this approach may misclassify or fail to classify some examples. In
this case, we must inform the agent of the correct classification for those examples.
Thus the descriptive length of our alternative message is the sum of the descriptive
lengths of each substructure, the class number for each substructure, and encoded
exceptions for each class. The description length of this exception list, DL(EL), will
require (k+m+u)log2(n+1) bits, where m is the number of misclassified examples
and u is the number of examples left unclassified by the substructure sequence.

If the description length of CS together with ES is smaller than the descrip-
tion length of the naive classification, DL(CS) + DL(EL) < DL(Cnaive), then
we will have reduced the message size required to convey the classification to the
receiver. We will thus have compressed the classification using our concept, or clas-
sification sequence CS. In the same way that Subdue searches for a subgraph that
best compresses the input graph, Subdue-EC searches for a classification sequence
which provides the best compression of the naive classification. We can now calcu-
late compression as
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Compression =
DL(CS) + DL(EL)

DL(Cnaive)
=

ΣiDL(si) + (k + m + u)log2(n + 1)
nlog2k

.

As before, we take the reciprocal of the compression and use the resulting value
as the evaluation measure for potential concepts (classification sequences). The clas-
sification sequence that yields the largest value is selected by Subdue-EC as the best
concept.

4.3 Identifying Examples

Now that we have a metric for evaluating potential concepts, the remaining issue
is how to identify the embedded examples and their associated classes. This is ac-
complished by the addition of a vertex to the graph for each training example. The
vertex is labeled with the class name of the example and is connected by an edge
to each vertex in the graph that is part of the training example. We do not need to
mark the edges of the example since Subdue-EC will include them in the classifying
substructure if they are needed for classification purposes. This vertex is relabeled
by Subdue-EC to “EXAMPLE.”

Observe that with this representation, vertices and edges in the original graph can
be members of more than one training example, possibly from different classes. This
is the type of representational freedom that we desire. An individual may interact
with one group that is represents a terrorist threat and at the same time do business
with other groups that are not under suspicion. In fact, these types of overlaps are
sometimes critical to finding the desired concept.

In addition, note that now we can make the initial state of the search algorithm
much smaller by starting with only one substructure. All we need are the instances
of the single vertex subgraph “EXAMPLE,” since all classifying substructures must
start there. This “focuses” the search immediately on the right place. Subdue-EC is
constrained to never add an “EXAMPLE” node during substructure extension since
no classifying substructure can have more than one such vertex.

When the example in Fig. 5 is processed by Subdue-EC, the following five clas-
sifying substructures are discovered:

– D (negative)
– B→A→C (positive)
– C (negative)
– B→A→B (positive)
– B (negative)

In this description, the underlined vertices are the ones being classified (the ver-
tices to which an “EXAMPLE” vertex is connected). Thus the first vertex labeled
“B” in the B→A→B subgraph is being classified as positive, not the second one.
The second “B” vertex is later classified as negative.

Two points should be addressed here. The order that the classifying substructures
are applied must be the same as the order in which they were discovered. This facil-
itates the discover of smaller substructures. For example, the substructure B→A→B
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Fig. 5. Embedded examples. Positive-labeled vertices are connected to vertices in the figure
with a “+,” and negative-labeled vertices are connected to vertices the figures with a “−”

compresses away both positive B vertices. Any remaining B vertices are thus part of
negative examples.

5 Experimental Results Using NASA Data

To validate the effectiveness of Subdue-EC to discover concepts from supervised
graphs, we chose a simple classification task on a large set of data. We obtained sea
surface temperature (SST) data from NASA [19]. This data is averaged over a five-
day period and placed on a one degree global grid. The data contains a fill value for
grid points for which the SST is not available such as land or due to missing infor-
mation. We first determined for each grid point whether the temperature increased,
decreased, or stayed the same from January 8, 1990 to February 7, 1990. We then
placed the nonfill temperature values into one of 9 equal width bins.

We represent this data as a graph, as shown in Fig. 6. Vertices are used to repre-
sent each month, discretized latitude and longitude values, hemisphere, and change
in temperature from one month to the next. Vertices labeled with “increase” repre-
sent regions with increasing temperatures and “decrease” vertices represent regions
with decreasing temperatures. Each vertex is connected to its northern and western
neighbors, continued in a circle around the globe. This results in a graph that looks
like a mesh cylinder, containing 259,200 vertices and 323,640 edges. Each grid point
also was connected to a unique vertex containing its temperature binand to another
unique vertex labeled N or S, indicating the position’s hemisphere.

Note that this is an example dataset where there may exist overlap between in-
stances of the same or different classes. While instances could be extracted from the
graph and presented as separate subgraphs for training, the amount of information
surrounding each region node that is critical for learning the concept is not known. As
a result, the instances cannot be effectively extracted without jeopardizing the acc-
uracy of the result and greatly affecting the runtime of the system due to redundancy
in the instances.
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Fig. 6. NASA’s SST data (left) and Subdue graph representation (right)

Table 1. Accuracy results on NASA SST data

run #substructures time (seconds) accuracy on accuracy on
generated training data test data

0 106 52822 86.07% 85.31%
1 104 49669 85.81% 85.26%
2 109 76336 85.57% 85.25%
3 100 71679 85.81% 85.32%
4 104 78874 85.66% 85.69%
5 111 80388 85.84% 86.22%
6 108 73174 85.84% 85.00%
7 112 77236 85.81% 85.39%
8 99 75392 85.64% 84.57%
9 108 80497 85.76% 84.10%
Min 99 49669 85.57% 84.10%
Max 112 80497 86.07% 86.22%
Avg 106.1 71607 85.78% 85.21%

Table 1 shows the results of tenfold cross-validation testing applied to the NASA
SST data. For each fold 90% of the grid nodes were randomly selected as training
data and the remaining 10% were assigned to a second copy of the graph and was
used for testing. The accuracy was good, and accuracy for the test data was fairly
consistent with the accuracy on the training data.

We also conducted some tests varying Subdue parameters such as beam size and
limit (the number of substructures extended and evaluated). These tests were con-
ducted on 100% of the examples. That is, class vertices were attached to all 64,800
grid points. Surprisingly, the accuracy did not change a lot even when the number
of substructures decreased substantially. This is due to the tradeoff in the numerator
of classification compression between substructure size and misclassifications. For
the NASA data, adding one more vertex adds about 16 bits to the size of the sub-
structure. Since there are about 64,000 examples, the penalty for a misclassification
is about 16 bits (that is how many bits it takes to tell the sender the example num-
ber of the misclassified example). Thus eliminating two misclassifications more than
pays for making the substructure one vertex bigger. This tends to drive substructure
growth larger and larger until terminated by the limit parameter. On the other hand,
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Table 2. Accuracy with increasing limit

limit substructures time accuracy
generated

6 16 17345 83.70%
7 11 10603 84.41%
8 28 28099 85.17%
9 28 26768 85.17%

10 26 26077 85.12%
20 71 53370 85.46%
40 113 77107 85.87%
60 135 82789 85.90%
80 137 92012 86.09%

100 146 101324 86.23%

the unclassified examples are then classified on a subsequent iteration. Thus there are
more substructures and larger substructures as the limit is increased, but the accuracy
does not significantly improve (see Table 2).

Our final test on the NASA data is to train Subdue-EC with all of the 1990 data
and use the learned concept to classify 1991 data. We created a graph using the same
representation for data from January 8, 1991 to February 7, 1991, and calculated the
accuracy of the learned substructures on this new data. Using a limit of ten substruc-
tures, Subdue-EC achieved 81.98% accuracy, showing that the learned substructures
have classification value even for subsequent years.

The learned substructures are what one might intuitively expect. The first in the
sequence addresses the large number of same examples. These are primarily land ar-
eas which are still land masses 30 days later and therefore still have fill values for the
temperature and receive the same classification. Otherwise, the concepts represent
the ideas that the northern hemisphere gets colder in winter and the southern hemi-
sphere gets warmer. Interestingly, temperature bin 0 classifies as same. This may be
because the coldest areas do not change temperature much throughout the year. In
addition, southern hemisphere grid points north of temperature bin 6 decrease. This
is consistent with the fact that these areas are on the equator and therefore start to
cool off as winter drags on and they get less sun. Finally, it should be noted that none
of the tests ever leave any data unclassified. On these data there always seems to be
benefit to including a catchall classification substructure at the end that has enough
correct classifications to pay for its misclassifications.

6 Experimental Results Using Security Data

As part of a government-sponsored program, a domain has been built to simulate
the evidence available about terrorist groups and their plans prior to execution. This
domain is motivated from an understanding of the real problem of intelligence data
analysis. The domain consists of a number of concepts, including threat and non-
threat actors, threat, and nonthreat groups, targets, exploitation modes (vulnerability
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modes are exploited by threat groups, productivity modes are exploited by threat
and nonthreat groups), capabilities, resources, communications, visits to targets, and
transfer of resources between actors, groups, and targets.

The domain follows a general plan of starting a group, recruiting members with
needed capabilities, acquiring needed resources, visiting a target, and then exploiting
the target. The data we use for our experiments represents the activities of terrorist
organizations as they attempt to exploit vulnerable targets, represented by the execu-
tion of five different event types. They are:

– Two-way-communication. Involves one initiating person and one responding
person.

– N-way-communication. Involves one initiating person and multiple respondents.
– Generalized-transfer. One person transfers a resource.
– Applying-capability. One person applies a capability to a target.
– Applying-resource. One person applies a resource to a target.

All data is generalized so that no specific names are used. The simulator gener-
ates evidence related to all of these events, and this evidence is passed through filters
varying the degree of observability and noise in the final evidence.

For our experiments, a graph was creating in which vertices are used to represent
member agents from threat and nonthreat groups. Anyone which whom these agents
communicates is also added to the graph and connected to the agent with an undi-
rected “association” edge. Communication events between associates are similarly
represented with “association” edges.

In addition, each person may be described using attribute and capability vertices.
In the simulated data, every individual is assigned at least two strong “trust-link”
attributes (e.g., school, place of worship, former military unit, extended family) and
at least two weaker “culture-link” attributes (e.g., nationality, language, religion) that
are commonly applied in social network development. Capabilities refer to unique
abilities exhibited by the individual. Figure 7 shows a portion of the graph generated
for this dataset.

Our experiments were conducted on a large graph (graph1) consisting of 435,429
vertices and 763,504 edges representing 61,105 people as well as a smaller graph
(graph2) consisting of 217,901 vertices and 314,793 edges representing 30,715 peo-
ple. Class vertices labeled threat were attached to members of known threat groups,
and nonthreat vertices were attached to members of nonthreat groups.

Our goal for the experiments was to see how well Subdue-EC could classify
threat and nonthreat individuals, given training examples embedded in a single con-
nected graph. In the original graphs there is a large predominance of nonthreat in-
dividuals (58,373, in contrast to the 1,732 threat individuals). To provide a stronger
sample to the learning algorithm, we randomly sampled an equal number of threat
and nonthreat individuals.

Table 3 summarizes the results for graph1. For the individuals that included
one or more of the classifying substructures, Subdue’s classification accuracy was
72.98%. However, the computational limitations of the discovery algorithm pre-
vented further substructures from being discovered in a reasonable amount of time,
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Fig. 7. A section of the graph representation for the counter-terrorism data

Table 3. Classification results on graph1

total correct incorrect unclassified
threats 1,732 765 35 932
nonthreats 1,732 70 290 1, 372

so 2,304 individuals remained unclassified. The greatest number of misclassifications
were false positives (classified as threats when the true classification is nonthreat),
which is a preferred type of mistake for this problem.

Of the substructures that were discovered, many consisted of an individual
exhibiting a particular capability. However, a few of the substructures, such as the
one shown in Fig. 8, highlight an association between two individuals in addition to
attributes and capabilities of the individuals.

The fact that Subdue discovered useful substructures that highlight relationships
between the individuals to be classified highlights the strength of Subdue-EC. If the
individuals have been separated into disjoint examples, this relationship could not
have been found. If we tried to extract individuals with a large enough neighborhood
of information around them to find these discoveries, several difficulties would arise.
First, how much information do we retain? The user cannot always know a priori
how much of a neighborhood must be extracted in order to retain all potentially
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Person Person

CA−295 CA−166

association

capability capability

Fig. 8. A sample discovered substructures. This substructure highlights an association between
two individuals, each with certain capabilities. The individual on the left is a known threat

Table 4. Results of graph1 testing on all individuals

total correct incorrect unclassified
threats 1, 732 765 35 932
nonthreats 59, 373 1, 830 12, 840 44, 703

Table 5. Classification results on graph2

total correct incorrect unclassified
set 1 threats 1, 225 463 28 734

nonthreats 1, 225 38 221 966
set 2 Threats 1, 225 463 28 734

nonthreats 29, 490 876 5, 596 23, 018

useful information. Second, when the neighborhood of information is extracted, it
is in essence reproduced for each example object that requires the information. This
results in substantial cost increase both in memory and in processing time for the
discovery algorithm.

To determine the effect of the sample size on Subdue’s classification accuracy,
we performed another classification experiment on graph1 in which training and test-
ing were performed on the entire set of input threat and nonthreat individuals. The
results are summarized in Table 4. As can be seen, the results did not change for
threat individuals. While the number of correctly classified nonthreat individuals did
increase, so did the number of misclassifications, resulting in a poorer performance
than the earlier experiment.

In a separate experiment, we evaluated the generalizability of Subdue’s results by
using the substructures discovered in the first two experiments to classify individuals
from a separate dataset, graph2. Table 5 shows the results of this experiment. As
can be seen, while the percentage of accurate classifications does drop for the new
dataset, Subdue still is able to perform fairly well on previously unseen data.

7 Conclusions

The handling of supervised graphs is an important direction for mining structural
data. To extend our current work, we would like to handle embedded instances with-
out a single representative instance node (the “increase” and “decrease” nodes in
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our NASA example) and instances that may possibly overlap. In addition, improved
scalability of graph operations is necessary to learn patterns, evaluate their accuracy
on test cases, and ultimately to use the patterns to find matches is future intelligence
data. The graph and subgraph isomorphism operations are a significant bottleneck to
these capabilities. We are currently designing faster approximate versions of these
operations to improve the scalability of graph-based relational learning.
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Part III

Special Applications



Graph-Based and Structural Methods for Fingerprint
Classification

Gian Luca Marcialis, Fabio Roli and Alessandra Serrau

Summary. Automatic Fingerprint Identification Systems (AFISs) are widely used for
criminal investigations for matching the latent fingerprints found at the crime scene with
those registered in the police database. As databases usually contain an enormous number of
fingerprints, the time required to identify potential suspects can be extremely long. Therefore,
a classification phase is performed to whittle down and thus speed up the search. Latent fin-
gerprints are classified into five classes known as Henry classes. In this way each fingerprint
only need to be matched against records of the corresponding class contained in the database.
Many fingerprint classification methods have been proposed to date, but only a few of these
exploit graph-based, or structural, representations of fingerprints. The results reported in the
literature indicate that classical statistical methods outperform structural methods for bench-
marking fingerprint databases. However, recent works have shown that graph-based methods
can offer some advantages for fingerprint classification which warrant further investigation,
especially when combined with statistical methods. This chapter opens with a critical review
of the main graph-based and structural fingerprint classification methods. Then, these meth-
ods are compared with the statistical methods currently used for fingerprint classification.
Experimental comparisons using a benchmarking fingerprint database are described, and the
benefits of fusing graph-based and statistical methods are investigated. The chapter closes
with some considerations on the present utility and future potential of graph-based methods
for fingerprint classification.

1 Introduction

Over the last few years, personal recognition by Automatic Fingerprint Identification
Systems (AFISs) has been gaining increasing importance in many applications (e.g.,
for criminal identification through crime scene fingerprint recognition) [1, 2].

The “identification time” strictly depends on the number of fingerprints contained
in the database, as identification is performed by matching the fingerprint against
each one stored in the database. As the number of fingerprints in real databases can be
very large, this can be a very lengthy process. As an example, if the database contains
200 million fingerprints (like the FBI repository) and comparing two fingerprints
takes 0.2 s (a realistic value for a modern one-to-one fingerprint matcher running on

G.L. Marcialis et al.: Graph-Based and Structural Methods for Fingerprint Classification, Studies in Computational
Intelligence (SCI) 52, 205–226 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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a standard PC [3]), average identification time will be 246 days. To reduce this time,
it is customary to classify the fingerprint into one of the five classes proposed by
Sir Edward Henry, thus limiting the search to the set of fingerprints corresponding
to that class [4]. This strategy can significantly reduce identification time. For the
above example and assuming the five classes to be uniformly distributed, identifica-
tion time can be reduced to 49 days and even further using specialized algorithms
and computers.

Henry found that many differently oriented ridge lines converge around the
so-called “singularity” points, named “core” and “delta” [4]. Figure 1 shows the five
Henry classes with relative singularities. Core and delta points are indicated for each
class by squares and triangles, respectively. The A class has no singularities, the L,
R, T classes have two singularities (one core and one delta point), and the W class
has four singularities (two cores and two deltas).

Unfortunately, several factors complicate fingerprint classification. These include
poor fingerprint image quality which can mislead singularity detection, and the exis-
tence of ambiguous fingerprints which cannot be reliably classified even by human
experts. In particular, the key issue of ambiguous fingerprints arises from the large
within-class variability and small between-class separation [1]. In some cases, fin-
gerprints which cannot be reliably assigned to a single class even by human experts
are labeled with two classes, and are known as “cross-referenced” fingerprints [1].
Several approaches to fingerprint classification have been proposed to address the
above issues and to achieve the performances required by many AFIS applications,
and much research continues to be done in this area [5–22].

For the purposes of this chapter, the proposed approaches to fingerprint classifi-
cation can be divided into two main categories: statistical and structural approaches.
Statistical methods are characterized by the use of the decision-theoretic approach
to pattern classification, namely, a set of characteristic measurements, called feature
vector, is extracted from fingerprint images and used for classification [7–11]. Struc-
tural approaches basically adopt the syntactic or structural pattern recognition meth-
ods [12–18]. Fingerprints are described by production rules or relational graphs and
parsing processes or graph matching algorithms are used for classification. Recently,
the use of multiple fingerprint classifiers combining different fingerprint classifica-
tion approaches has been proposed. In particular, some experimental results recently

L R W A T

Fig. 1. The five fingerprint classes in the Henry system: (L) left loop (R) right loop (W) whorl
(A) arch (T) tented arch. The “core” and “delta” points are indicated for each class by squares
and triangles
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reported by the authors and other researchers have demonstrated the potential of
integrating structural with statistical methods [19–22].

In this chapter, we review the main approaches to fingerprint classification and
perform an experimental comparison of some graph-based and structural methods.
The comparison is then extended to a state-of-the-art statistical approach and to its
combination with the investigated structural methods.

The chapter is organized as follows. Section 2 reviews the main approaches to
fingerprint classification by focusing on the structural methods and their integration
with the statistical ones. Section 3 describes the structural methods we used for our
experiments. Section 4 deals with the fusion algorithms adopted. Section 5 describes
our experiments. The chapter closes with some considerations on the present utility
and future potential of graph-based and structural methods for fingerprint classifi-
cation.

2 State-of-the-Art of Fingerprint Classification: An Overview

Automatic fingerprint classification has been widely researched but none of the pro-
posed approaches provides a satisfactory answer to this intrinsically complex prob-
lem. The aim of this Section is to provide an overview of the main approaches to
fingerprint classification. Further details about the state of the art of fingerprint clas-
sification can be found in [1, 6].

First of all, it should be pointed that the Henry classes are determined accord-
ing to the location and number of the “singularity” points named “core” and “delta”
(Fig. 1). Therefore, it might seem natural to classify fingerprints once these points
have been detected [5]. Unfortunately, the singularity points are very difficult to
detect because of the noise affecting fingerprint images, which can deceive automatic
singularity detection algorithms. Moreover, the small between-class separation may
not permit reliable fingerprint classification, because of irregular ridge flow patterns
(e.g., T class fingerprints, which exhibit singularities, can appear as A class finger-
prints). Finally, singularity detection is often not possible when some parts of the
fingerprint image are lost (e.g., smudged fingerprint parts). Because of these limit-
ations, most of the proposed approaches to automatic fingerprint classification are
only partially based on singularities detection (e.g., on detection of the core point).

In this chapter, we categorize automatic fingerprint classification approaches
according to the representation they use. We have defined three categories namely
“statistical,” “structural,” and “structural–statistical.” The first type of approach uses
a fixed length feature vector, i.e., a set of measures extracted from the fingerprint
image. The second uses structured data types such as graphs and trees. The third
approach combines structural and statistical representations. Standard classifiers are
often used to classify patterns characterized by the given representation. Thus, we
briefly describe the classifier only if it is a special purpose classifier designed around
the used representation.

The remainder of this section provides a review of fingerprint classification meth-
ods according to these categories, pointing out the common features, the differences
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and the pros and cons of the various methods. This review is by no means exhaustive,
as a plethora of literature exists on fingerprint classification. A more comprehensive
review can be found in [6].

2.1 Statistical Approaches for Fingerprint Classification

The core of statistical approaches is the feature extraction step. Depending on the
feature extraction mechanism, they can be divided into three categories: (1) those
which extract features from the fingerprint image directly [2]; (2) those which extract
features from the orientation field of the fingerprint [7, 9]; and (3) those which con-
catenate, in a single feature vector, features extracted in the above two ways with
other features, named “structural” features, which attempt to describe concisely the
structure of the fingerprint classes [10, 11].

In the following, we briefly describe the rationale behind each of the above types
of approach.

Features Extracted from the Fingerprint Image: The Fingercode

It is very difficult to extract reliable features from the fingerprint image, which may
be corrupted by noise. However, this may be quicker than subjecting the fingerprint
images to other preprocessing steps.

Jain et al. proposed characterizing each fingerprint by a numerical feature vec-
tor named FingerCode [8]. We describe this method in greater detail as we used it
for comparison and combination with other structural methods investigated in this
chapter. FingerCode computation commences by identifying the “core” point in the
fingerprint input image and by defining a spatial tessellation of the image region
around this point. This spatial tessellation is a circle decomposed into 48 sectors.
Then, four orientation-selective bandpass Gabor filters (0, π/4, π/2, and 3π/4) are
applied to the tessellated image, generating four orientation-filtered images. Each
filtered image accentuates ridge structures along one direction. Finally, the standard
deviation of grey levels is computed for each filtered image and for each sector and
a 192-dimensional FingerCode feature vector produced. Jain et al. used this feature
vector as input for a two-stage classification architecture using a K-nearest neigh-
bor classifier to find the two most probable classes of fingerprints and ten two-class
neural networks for decision making.

As can be observed, with this approach it is possible to extract features in a very
fast and simple way. Problems may arise if the fingerprint core cannot be detected for
one reason or another. In this case, another reference point should be found (as for
the A class fingerprints), or another form of tessellation defined [3]. Another prob-
lem is that FingerCode representation is not rotation invariant. One way of solving
this problem is to generate a number of FingerCodes for different fingerprint image
rotations, but this slows the procedure down [3]. Finally, there are some parameters
which have to be tuned, like for example, the number of Gabor filter orientations and
the number of tessellation sectors. Careful tuning of these parameters will depend on
image resolution and on the degree of precision required for an accurate description
of the fingerprint texture.
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(a) (b)

Fig. 2. (a) Example of fingerprint image and (b) corresponding orientation field represented by
a graph. Note that each pixel in the orientation field is the average ridge and valley orientation
for a given block of the original image. In this example, the orientation field is a 28 × 30-
dimensional real-valued matrix from a 480 × 512-dimensional fingerprint image

Features Extracted from the Orientation Field

The orientation field is a map of the average ridge-flow orientations of the fingerprint
image. Figure 2 shows an example extracted from a fingerprint image. The orienta-
tion field can be obtained after appropriate preprocessing for increasing the contrast
between ridges and valleys [1].

In this category of statistical approaches, we briefly review two methods which
illustrate the different uses of the orientation field for feature extraction.

The first method was proposed by Candela et al. [7]. They do not extract features
from the orientation field, but use the orientation field itself as feature vector with
1,680 elements. To reduce the dimensionality and to avoid redundant information in
the orientation field, the KL-transform is applied [23]. A probabilistic neural network
is used for classifying the KL-transformed feature vector.

The second method was proposed by Cappelli et al. [9]. They introduce a gener-
alized KL-transform of the orientation field, named multiple KL-transform (MKL).
The main idea is to represent each fingerprint class in multiple KL-subspaces, and to
construct a feature vector consisting of a set of distances between the input finger-
print and these subspaces. This feature vector is classified according to the nearest
neighbor criterion.

The papers by Candela et al. [7] and Cappelli et al. [9] well represent the current
use made of the orientation field for fingerprint classification. The main problem that
may arise adopting the approach proposed by Cappelli et al. concerns the number of
samples available for each class. Moreover, these approaches are not image rotation
invariant. Accordingly, a fingerprint “registration” phase is necessary. Fingerprint
registration depends on the location of singularities. Thus, singularity detection plays
a key role in the performance of these methods.

Features Extraction by Concatenating Structural and Statistical Features

These methods couple the features extracted from the fingerprint image or its orien-
tation field with other features that attempt to represent fingerprint structure. This can
be done by identifying particular configurations in the “neighborhood” of a certain
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pixel of the fingerprint orientation field, or using additional structural data types such
as graphs. In the following, we briefly review two approaches which exploit this idea.

The first was proposed by Nagaty [10]. Nagaty uses a 186-dimensional feature
vector made up of statistical and “structural” features such as the input to a neural
network. The structural features are represented by a 180-dimensional binary feature
vector that constitutes the orientation field code. The statistical features are repre-
sented by a 6-dimensional feature vector. Each component of this feature vector is a
sort of distance of the given fingerprint texture from a predefined “textural model” of
each class (Nagaty divided the W class into two subclasses, thus obtaining a 6-class
problem).

The second method was proposed by Yao et al. [11]. They use a 212-dimensional
feature vector made up of statistical and “structural” features for characterizing fin-
gerprints. The first 192 features constitute the FingerCode [8]. The remaining fea-
tures are obtained by compressing a graph-based representation obtained from the
orientation field into a 20-dimensional real-valued feature vector. This compression
is obtained through a machine learning architecture explicitly aimed at learning com-
plex data structures [24, 25]. The above 212-dimensional feature vector is the input
to a series of support vector machines (SVMs) [23]. In order to cover as far as pos-
sible ambiguous fingerprints due to the large within-class variability and the small
between-class separation, a set of 25 SVMs is first trained on five one-vs-all tasks
(e.g. A class vs. LRTW classes), 10 two-vs-three tasks (e.g. AT vs. LRW), 10 pair-
wise tasks (e.g. A vs. T). The SVMs decisions are codified into a 25-dimensional
binary feature vector. An appropriate “distance” of this feature vector from the rows
of a 5×25 Error Correcting-Code matrix is defined and computed [26]. As each
matrix row is associated to a given fingerprint class, the smallest distance indicates
the final classification.

Clearly the second approach codifies the fingerprint with a structural represen-
tation (graphs) and then reduces data complexity through a machine learning archi-
tecture. The rationale behind this approach is that the machine learning architecture
is able to “filter” the noise generated by the orientation field in a vector contain-
ing the distributed representation of the fingerprint. However, this produces coding
noise when few samples are available. Coding depends on the architecture parame-
ters, which are adjusted according to the data and to the labels attached to each graph
node.

Nagaty’s approach is simpler but the main issue here is to define an appropriate
“textural model” for each class. This problem is very similar to finding an appropriate
graph-prototype for each fingerprint class in the structural methods.

Finally, neither Nagaty’s nor Yao et al.’s approach are image rotation invariant.

2.2 Structural Approaches for Fingerprint Classification

The structural approaches describe each fingerprint class with data structures such
as grammars or graphs. These approaches can be further divided into syntacti-
cal approaches and template-matching-based approaches. Syntactical approaches
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associate a grammar to each fingerprint class. A parsing process is required for com-
puting the grammar to which a test fingerprint belongs. The template-matching-based
approaches associate a given template to each fingerprint class, usually through a
graph-based representation. Fingerprints are compared by inexact graph-matching
with each template, in order to find the model nearest to the given fingerprint.

Syntactical Approaches

Moayer and Fu and Rao and Balck provide a syntactical description of the finger-
print [12,13]. They define a set of terminal symbols, based on the directional coding
of the orientation field and a set of production rules in order to create a grammar
representing each class. A parsing algorithm is applied to perform the final classifi-
cation. Each terminal symbol has to take into account the wide range of distortions
due to the noise added to the fingerprint orientation field images. Moreover, a large
number of primitives is required to deal with the large within-class variations and
the small between-class separation. As an example, in [12] the final number of ter-
minal symbols considered is 69. This number increases with the increasing number
of possible fingerprint image rotations.

Because of their high computational complexity, as well as the difficulty in find-
ing an appropriate number of terminal symbols and production rules for each gram-
mar, these methods are no longer investigated. The noise in fingerprint images is
another key issue which contributes to complicating the design of effective syntac-
tical approaches. To the best of our knowledge, no significant improvements have
been made recently in syntactical fingerprint classification.

Graph-Based Approaches

These approaches are based on the observation that relational graphs are independent
of the fingerprint image rotations. Therefore, the relational graph appears to be suit-
able for overcoming the rotation issue in fingerprint representations. However, each
graph node needs to be enriched with a set of features which are usually dependent
on fingerprint rotation, thus the problem is only partially solved. The first ideas for
obtaining graph-based representations of fingerprints are based on the segmentation
of the orientation field into regions having homogeneous directions. A node of the
graph is associated to each region and an edge joins two nodes associated to adjacent
regions.

This idea has been taken up by Lumini et al., who perform inexact graph match-
ing with a template graph for each class to determine the best match for the final
classification [14]. Due to the high variability of the segmentations obtained, it is
very difficult to find a set of graph prototypes. A large number of prototypes are
needed to represent as many variations as possible, but the high computational com-
plexity of graph matching algorithms only increases classification time.

Following the same idea as Lumini et al., Cappelli et al. found a set of
prototype – segmentations for each class, and designed an algorithm to “guide”
the orientation field segmentation in order to produce a class-dependent segmenta-
tion [15]. A cost is associated to each segmentation. The orientation field of an input
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fingerprint is segmented according to five dynamic masks. The least cost segmenta-
tion corresponds to the “structure” that best represents a given orientation field, and
the relative class is associated to the fingerprint. However, detected prototypes are
not optimal for effectively discriminating between fingerprint classes, because of the
small between-class separation.

In [16], the graph-prototype search is completely avoided by using machine
learning architectures, called recursive neural networks, explicitly trained to learn
complex data structures [24, 25]. These networks take as input a structured rep-
resentation of fingerprints in terms of directed positional acyclic graphs (DPAGs)
and perform learning in a manner similar to multiple layer perceptrons (back-
propagation-based algorithms). Similarly to Lumini et al. and Cappelli et al., the
orientation field is segmented and an algorithm designed and implemented for deriv-
ing the DPAG from this segmentation. The main difficulty of this approach is tuning
the parameters both for the structured representation (e.g., the maximum number of
nodes joined by another one must be fixed) and the classifier (e.g., the number of
neural connections). Moreover, the use of DPAG in the place of relational graphs can
affect the expressive power of the representations. The advantage is that there is no
need for graph-prototypes because the possible DPAG “configurations” are learned
by examples.

The problem of finding an effective set of graph-prototypes has recently been
addressed by Neuhaus and Bunke in [17, 18]. In [17], each graph prototype is based
on the location of the cores and deltas of the relative fingerprint class, and the number
of ridges along the line joining each core and each delta. In fact, a node is associ-
ated to the core, the delta, and to each ridge along this line. Similarly, a graph is
derived from an input fingerprint. The class associated to the graph prototype near-
est the input graph is selected by inexact graph matching [27]. In [18], the problem
of finding an appropriate set of graph-prototypes is solved from another point of
view. The main issue of the current graph-based approaches is that fingerprints of
the same class can generate very different graphs. Neuhaus and Bunke propose com-
bining different graph-based representations of the same fingerprint, thus obtaining a
more robust and reliable graph-based representation. The solution proposed by these
authors concerns pattern recognition problems in general, but it can also be applied
to fingerprint images with promising results.

2.3 Structural–Statistical Approaches for Fingerprint Classification

It is well-known that combining data from multiple sources can affect classification
system performance [28]. The main idea behind the structural–statistical approaches
is that the fusion of multiple classifiers based on structural and statistical fingerprint
representations can improve performance. These methods “fuse” multiple fingerprint
classifiers by combining their outputs. These outputs can be the class associated to
the input fingerprint by the classifiers or the posterior probabilities of each class
for a given input fingerprint. In the first case the fusion takes place at the clas-
sifier decision level (decision-level fusion), in the second at the classifiers output
level (measurement-level fusion). The combination functions are generally called
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“fusion rules.” These rules can be fixed (e.g., majority voting at the decision-level,
or sum of the outputs at the measurement-level), trained (e.g., weighted majority on
the basis of the reliability of each classifier at the decision-level, or weighted sum
at the measurement-level) or “stacked,” whereby additional classifiers are used for
implementing the fusion rule. In the following, we review some of these approaches
with fusion rules at different levels and with different structural and statistical
representations.

Cappelli et al. combine the structural method presented in [15] with the multiple
KL-transform presented in [9, 20]. The feature vector, consisting of the distance set
between the input fingerprint and the multiple KL-subspaces is first classified accord-
ing to the nearest neighbor rule and the k-nearest neighbor rule. Combining these two
decisions with the dynamic mask method is also examined using the majority voting
rule.

Senior proposes a fingerprint classification system based on integrating hidden
Markov models (HMM) with decision trees (DT) [19]. The HMM-based classifier
is trained by a set of novel features extracted from the skin ridge flow. This feature
extraction step is performed as follows. A set of horizontal and vertical “fiducial”
lines intersects the skeletonized fingerprint image at different points. At each “fidu-
cial line” to “ridge line” intersection, a set of measures is computed. A multilayered
HMM is designed considering the so-computed set of features at each fiducial line
as the input to each layer. The decision tree classifier is trained on another set of
features extracted from the skin ridge pattern. These features are used to encode the
ridge line shape. The output from the DT and HMM classifiers is used as input to
a feed-forward neural network for the final classification (Senior fuses the A and T
class fingerprints into a single class, obtaining a four-class classification problem).

In [11,21], the authors presented the results of measurement-level fusion of struc-
tural and statistical approaches. The statistical approach consists of a multilayer per-
ceptron trained with the FingerCode [8]. The structural approach is that investigated
in [16]. The output of the statistical and structural classifiers, in terms of class poste-
rior probabilities, are combined using the k-nn classifier.

In [22], the authors presented the preliminary results of the comparison of three
structural approaches [14, 15, 21]. This chapter can be considered as a follow up to
that preliminary work. Accordingly, in the following we describe the state-of-the-art
of three structural approaches to fingerprint classification and perform an experimen-
tal comparison. The investigation is then extended to the measurement-level fusion
of these approaches also including the statistical approach proposed in [8].

3 Investigated Graph-Based Fingerprint Classification
Algorithms

Previous works have shown that fingerprints have an intrinsic “structure” that can
be extracted by segmenting fingerprint images into regions containing ridges having
homogeneous orientations. Figure 3 shows fingerprint structure for the five Henry
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Fig. 3. Segmentation of the orientation fields of the fingerprint images for the five Henry
classes

(a) (b)

Fig. 4. Graph-based representation obtained from segmented orientation field of a fingerprint
image: (a) DPAG representation obtained from the algorithm described in [29]; (b) relational
graph representation. Node labels represent the number associated to each region as shown in
the orientation field and the edge labels represent the position of each child-node with respect
to the father-node

classes. According to this definition, one can argue that structural information can
prove very useful for identifying class A fingerprints, as this class exhibits a struc-
ture (i.e., topology of regions containing ridges with homogeneous orientations) very
different from the other classes. Conversely, structural information is not so useful
for identifying fingerprints belonging to the other classes, especially classes R, L and
T, as they have similar structures, with only minor differences due to the different
positions of the two singularity points.

An important issue when using structural methods is how to describe fingerprint
structure through an appropriate data type. The approaches described below use dif-
ferent structural representations: from simple relational graphs for the inexact graph
matching to DPAGs for recursive neural networks. Figure 4 shows an example of
relational graph and DPAG for the same fingerprint orientation field segmentation.

The dynamic mask method is based on orientation field segmentation; however it
does not explicitly use any kind of graph but simply serves to guide the segmentation.
Nevertheless, this approach is considered graph-based because the masks represent
the structure extracted from the orientation field segmentation. Hence, the masks
could be represented with graphs.
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3.1 Fingerprint Classification by Inexact Graph Matching

One of the most natural structural representations of fingerprint orientation field seg-
mentation (i.e., of the segmentation of the fingerprint image in regions with homo-
geneous orientation of ridge and valley, as shown in Fig. 3) is the relational graph.
Relational graphs appear to be appropriate, as nodes might naturally correspond to
the regions extracted by the segmentation algorithm [14]. Each graph node can be
associated to a segmentation region and the edges join two nodes according to the
adjacency relationship of the respective regions. The representation is completed by
associating to each node and edge a feature vector containing characteristics of the
regions and geometrical differences between contiguous regions, respectively. In this
chapter the orientation field segmentations are obtained using the algorithm proposed
in [29].

In order to compare relational graphs, the error-correcting graph matching is
used [27, 30]. This method computes a measure of the “dissimilarity” between the
graph representing the input pattern to be classified and a certain graph-prototype.
This dissimilarity measure is called “edit-distance.” It is based on a deformation
model that exploits edit operations such as substitution, deletion and insertion of
nodes and/or edges.

Hence, let GI and GP be the input and prototype graphs, respectively. Let
T (GI , GP ) be the set of all possible sequences of edit operations which trans-
form GI into GP . Let S = (o1, . . . , on) ∈ T (GI , GP ) be a sequence of edit
operations o1, . . . , on. Let C(oi) ∈ �+ ∪ {0} be a nonnegative real value, called
“cost associated to oi” (i ∈ {1, . . . , n}). A nonnegative real value, called “cost
of S,” is associated to an instance of T (GI , GP ), namely, S, by the cost function
Fc : T (GI , GP )→ �+ ∪{0}. Cost function Fc(S) is defined as the sum of all costs
C(oi), for i ∈ {1, . . . , n}. The sequence S∗ = (o∗1, . . . , o

∗
n) that provides the mini-

mum cost is ultimately the edit distance De(GI , GP ) between GI and GP graphs:

De(GI , GP ) = min
S∈T (Gi,GP )

Fc(S) , where Fc(S) =
n
∑

i=1

C(oi) (1)

The cost of each edit operation C(oi) depends on the values of each feature
related to the node/edge v of the input graph and to the node/edge w of the prototype
graph according to the following equation:

C(oi) =

√

√

√

√

Nf
∑

h=1

(

Wh

(

fh(v)− fh(w)
)2
)

(2)

where fh is the h-th feature associated to a node/edge and the Wh are weights for
assigning different weights to each feature. If the deletion or insertion operation is
applied, the feature value fh related to the input or prototype graph node/edge is set
to zero. Accordingly:

C(oi) =

√

√

√

√

Nf
∑

h=1

(

Whf2
h(v)

)

(3)
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A good cost function definition should take into account the fact that a higher
cost should be associated to a significant distortion of the input graph with respect
to another. Moreover, an edit operation that occurs frequently should be assigned a
lower cost than one that seldom occurs. Weights Wh should therefore be selected
accordingly.

Note that, in order to obtain a distance, De(GI , GP ) = De(GP , GI) must hold.
Hence, the same weight Wh should be associated to both delete and insert operations.

So we have to find the sequence S∗ of edit operations that yields the least cost
according to (1). For this purpose, a search tree is constructed containing all possible
edit operation sequences T (GI , GP ). Each path from the root to the leaves corre-
sponds to a sequence S of edit operations. The search for the best sequence S∗, i.e.
the least cost path, is performed using an algorithm similar to A* [27].

Once edit distances between input graph and all prototypes have been computed,
the class corresponding to the nearest neighbor is associated to the input graph.

To obtain the conditional class probabilities for a given input pattern GI to be
classified, the least edit distance dk

I , for the comparison between this graph and the
most similar prototypes belonging to the k-th class, are converted using the softmax
formula:

P (C = k|GI) =
e−αdk

I

∑5
c=1 e−αdc

I

(4)

where α is a “smoothing” parameter. We empirically found that α = 9 is the best
value for converting edit distances into posterior probabilities.

3.2 Fingerprint Classification by Recursive Neural Networks

As mentioned earlier, a key issue in structural fingerprint classification is finding the
graph that best represents each fingerprint class, so as to apply a template-matching
algorithm. In particular, it is very difficult to discriminate between L, R, and T class
fingerprint structures using a simple relational graph-based representation. Another
problem is making this fingerprint representation robust against the large within-
class variability and the small between-class separation, which is accentuated in real
applications by noisy sensitive data. As each region is derived from the segmentation
algorithm, the robustness degree depends essentially on this algorithm. However, to
the best of our knowledge, none of the proposed segmentation algorithms is suffi-
ciently robust. As a result, very different segmentations for fingerprints of the same
class and similar segmentations for fingerprints of different classes (L, R, T, and W
especially) are often obtained.

In order to overcome these problems, recursive neural networks (RNNs) explic-
itly designed to handle structured data have been proposed [11,16,21]. As RNNs are
trained to classify complex data structures on examples, the problem of designing
a set of templates for each class is avoided. The main limitation of this approach is
that RNNs can learn to classify only data structures in terms of DPAGs. A DPAG is
a directed acyclic graph in which the “child-nodes” (nodes linked by another node,
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also called “parent-node”) are arranged according to a certain rule. For example, a
DPAG node can have the first, second and fourth child, while the third is missing.
The maximum number of child-nodes is called “outdegree.” Moreover, the “super-
source” node, i.e. the node dominating all other nodes, is defined within a DPAG.

In this chapter, we refer to the algorithm proposed in [21] for converting an orien-
tation field segmentation obtained with the algorithm proposed in [29] into a DPAG.
Similarly to the relational graph-based representation, a feature vector containing the
local characteristics of the regions and the geometrical and spectral differences be-
tween neighboring regions is associated to each node. Figure 4a gives an example
of DPAG generation from an orientation field segmentation. Note that the edges of
the DPAG are labeled with the position of each child-node with respect to its parent-
node. This position is computed using the DPAG generation algorithm.

A RNN performs a “recursive transduction” that maps a graph V into another
graph ZV having the same topology. Hence, the node nZV

of ZV corresponds to the
node nV of V . As shown in Fig. 5, a “state” vector X(nZV

) ∈ �N is associated
to each node nZV

, computed on the basis of the nV ’s feature vector, denoted with
U(nV ), using the equation:

X(nZV
) = f(X(u1), . . . , X(uk), U(nV )), where uj ∈ Child(nZV

) (5)

f is called “state transition function.” It combines a vector encoding the feature vec-
tor of nV with the state vectors of {u1, . . . , uk} , which is the ordered set of nZV

’s
children. Computation proceeds recursively from the childless nodes to the super-
source node (the node dominating all other nodes). The base step for (5) is X(u) = 0
if u is a missing child.

Figure 5 shows that the vector X(nZV
) contains the distributed representation of

the sub-graph dominated by nZV
(i.e., all nodes that can be reached via nZV

).
In our case, the transition function f is computed by a multilayer perceptron

(MLP), which is replicated at each node in the DPAG, sharing weights among replicas

Fig. 5. Recursive transduction from a simple input DPAG (outdegree = 2) to the state-DPAG
labeled with state vectors. The node labeled with the state vector X(S) contains the distributed
representation of the entire input DPAG. Each child can be univocally identified through its
position with respect to its parent: e.g., A is the first child of S, B the second. Note that C is
childless. In this case, the base-step is applied for each missing child
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[31]. Classification with recurrent neural networks is performed by adding an output
function g that takes as input the hidden state vector X(S) associated with the
super-source S: Y = g

(

X(S)
)

. Note that X(S) can be extracted and independently
used as a “structural” feature vector, as it contains the distributed representation of
the entire DPAG [11]. Function g is also implemented by a multilayer perceptron.

The output layer in this case uses the softmax functions (normalized exponen-
tials), so that Y can be interpreted as a vector of conditional class probabilities
for a given input graph, i.e. Yi = P (C = i|V ), where C is a multinomial class
variable [31]. Training relies on maximum likelihood and uses a gradient-descent
approach to weight optimization of functions f and g called “back-propagation
through structure” [32]. Further details can be found in [24, 25, 33].

In order to take into account the cross-referenced fingerprints, which have two
classes instead of one, a “soft” target vector was introduced into the training phase.
The two cross-referenced classes were regarded as having the same probability for a
given pattern. Thus, the target-vector takes a value of 0.5 for the two target classes
of the cross-referenced fingerprints. For the standard fingerprints, the target-vector
takes a value of 1.0 for the target class.

3.3 Fingerprint Classification by Dynamic Masks

This method was introduced by Cappelli et al. to overcome the large variability in
segmentations of similar fingerprints, when the segmentation algorithm described
in [29] is applied. The basic idea of this approach is to perform a “guided” segmen-
tation of the orientation field of the fingerprint image so as to reduce variability dur-
ing the segmentation process [15]. To this end, five filters, called “dynamic masks,”
one for each class, “guide” the orientation field segmentation, producing a class-
dependent segmentation. These dynamic masks can be regarded as “prototypes” of
images segmented by the orientation field. Using these filters the number of seg-
mentation regions and their rough shape are fixed. Each dynamic mask is obtained
following the four steps:

1. For each class, select a set of representative fingerprints.
2. Compute the respective orientation fields.
3. Apply a genetic algorithm to segment the orientation field.
4. Identify an “average” ensemble of fixed and moving vertices and segments that

define the mask. These vertices are located around the singularity points (“core”
and “delta”), according to the fingerprint structure shown in Fig. 3.

To classify fingerprints the orientation field of an input fingerprint is segmented
according to the five dynamic masks (one for each class). The “cost” for each mask
provides a measure of the difficulty of the guided segmentation process. Accordingly,
the least cost means that the segmentation process can easily produce a segmented
image very similar to the used mask. The cost vector is then converted into a poste-
rior probabilities vector by (4) (we empirically found α = 1 to be the best value).
The class associated with the maximum posterior probability is associated to the
fingerprint. Further details about mask design can be found in [15].
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4 Measurement-Level Fusion of Statistical and Structural
Approaches

In this section, we describe our approach for measurement-level fusion of structural
and statistical fingerprint classifiers. The general scheme is quite similar to the com-
monly used multiple classifiers fusion scheme at the measurement-level [28]. The
system is characterized by different representations. One classifier is designed for
each representation.

We used the FingerCode to statistically represent the fingerprint [8]. This vector
is the input of a multilayer perceptron trained according to the maximum likelihood
cost function. The outputs of the network have the same meaning as the recursive
neural network output, i.e., estimation of the conditional probability of each class
for a given fingerprint pattern. Hence, the output of each network is a 5-dimensional
probability vector. Structural representations of fingerprints are those described in
Sect. 3.

We used two types of fusion algorithms (or “fusion rules”). The first was based
on “fixed” transformation of the classifier outcomes [28]. We shall call these “fixed”
fusion rules as they require no parameter estimation. In particular, we used the mean
and the product rules.

The second fusion algorithm follows the so-called “meta-classification” (or
“stacked”) approach which uses an additional classifier for combination [28]. In
particular, a k-nearest neighbor classifier was used. The input of this classifier is a
“feature-vector” consisting of the outcome of each classifier to be combined. Clearly
this fusion strategy is more complex than that based on fixed rules.

5 Experimental Results

5.1 The Data Set

The NIST-4 database, created by the National Institute of Standards and Technology,
is a reference dataset widely used for assessing and comparing fingerprint classi-
fication algorithms [34]. It contains 4,000 ink-on-paper fingerprint images, equally
divided into five classes (A, L, R, W and T). Each fingerprint was acquired twice.
The first acquisition denotes fingerprints from f0001 to f2000, the second finger-
prints from s0001 to s2000. We followed the experimental protocol generally used
for this data set (see for e.g., [8,11,19]). The first 1,800 fingerprints (f0001–f900 and
s0001–s900) were used for classifier training. The next 200 fingerprints were used
as validation set, necessary for early stopping of neural classifiers (RNN and MLP)
training, and the last 2,000 fingerprints as test set.

Seven hundred fingerprint images in the NIST4 dataset were assigned to two
classes instead of just one (“cross-referenced” fingerprints), as they could not be
reliably categorized in a single class even by human experts.

To use the FingerCode statistical representation, we had to discard sixty three
fingerprint images as the poor quality made it impossible to detect the “core” point.
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Note that Jain et al. also disregarded the same fingerprint images in their experi-
ments [8].

5.2 Comparative Analysis of Structural Approaches

In this section, we describe the performance results of the structural classifiers des-
cribed in Sect. 3. First we compared the performance of structural classifiers so as to
analyze the main pros and cons for fingerprint classification. Then, we investigated
their measurement-level fusion as described in to Sect. 4.

Table 1 shows classification accuracy rate (second to sixth columns) and over-
all classification accuracy (seventh column). The second row refers to the dynamic
masks method (“Masks”), the third to the recursive neural networks-based approach
(“RNN”), and the fourth to the graph matching approach (“GM”).

The best performance is exhibited by the RNN classifier (Table 1, seventh
column). This can probably be explained by the fact that RNNs do not require class
prototypes, as class representations are automatically learnt by examples. Therefore,
RNNs are better able to handle the intrinsically small class-separation of fingerprints,
which makes it difficult to find a representative set of class prototypes to use with
GM. On the other hand, the RNN classifier performs worst for class T. One likely
explanation is the enormous number of cross-referenced fingerprints contained in the
NIST4 data set. Another reason for this result is the introduction of the soft-target,
which made it possible to reduce the “noise labeling” effect, be it at the expense of
class T training effectiveness, as there are fewer class T patterns assigned to a single
class than cross-referenced ones (70.0% of class T fingerprints are cross-referenced).

Though, on average, the GM classifier did not perform as well as the RNN, they
exhibit similar behavior. Both GM and RNN performed well for class A, and worst
for class T fingerprints. The satisfactory results obtained for class A confirm the
utility of structural features for discriminating among strongly structured classes.
Accordingly, it can be hypothesized that the performance of the GM classifier could
be significantly improved were a more robust orientation field segmentation algo-
rithm, or more effective methods for class prototypes selection, available. In fact,
although we used the sophisticated fingerprint segmentation algorithm described
in [29], segmentations of class L, R, and T fingerprints often contained errors that
made their graphs very similar. Clearly future efforts should be directed towards
graph representation and matching techniques that can handle these segmentation
errors.

Table 1. Class accuracy rates and overall accuracy of dynamic masks method (“Masks”),
recursive neural networks (“RNN”), and graph matching approach (“GM”)

A L R T W overall
Masks 48.1 84.5 82.1 66.0 78.4 71.5
RNN 90.7 79.1 83.3 36.2 81.4 76.8
GM 71.9 62.3 69.4 52.7 66.3 65.2
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Table 2. Accuracy rate of measurement-level fusion of structural classifiers by the mean rule,
the product rule, and K-nearest neighbor (KNN).

fusion of mean product KNN
Masks–RNN (76.8) 80.6 79.2 81.7
Masks–GM (71.5) 79.1 77.8 79.8
RNN–GM (76.8) 76.1 76.7 76.6
Masks–RNN–GM (76.8) 82.4 82.2 83.6

Overall accuracy of the best single classifier is shown in brackets
in the first column

The dynamic masks classifier performed quite differently from the others. In
particular, it yielded poor results for class A. In our opinion, this poor performance
can be explained by the absence of singularity points in class A, which make it rather
difficult to design an appropriate dynamic mask for that class. In this regard, note that
for the other classes, which exhibit at least two singularities, this classifier performed
far better.

Table 2 shows the performance of the single classifiers and their measurement-
level fusion for different combination rules.

When all three structural classifiers are combined the best performance is
achieved for the KNN-based fusion rules. But the simple mean rule also yields
good results (Table 2, fifth row). Improvement in classification performance is
around 7% compared to the best single structural classifier. This result shows that
each representation contributes significantly to enhancing performance.

5.3 Comparison with the Statistical Approach

Table 3 shows the accuracy for the statistical classifier test set mentioned in Sect. 2,
i.e., the multilayer perceptron using FingerCodes. Above all, Table 3 shows that the
overall accuracy of the statistical classifier is greater than any of the structural clas-
sifiers or a combination thereof. However, as the Tables 1 and 3 clearly show, the
structural classifier far outperform the statistical classifiers for class A (except for
the dynamic masks method).

To investigate the advantages of structural approaches for discriminating among
classes with a clear structure, for which the standard statistical classifier often
does not perform satisfactorily, we examined in detail the degree of misclassifi-
cation between classes A and T. Table 4 shows the degree of misclassification
between classes A and T (i.e., the percentage of class A fingerprints misclassified as
class T fingerprints) for each structural classifier, their best fusion, and the statistical
classifier. Note that interclass confusion is a well-known problem in state-of-the-art
statistical classifiers. Table 4 shows that structural approaches significantly reduce
the effect of misclassification on ultimate fingerprint classification accuracy. Even
for the dynamic masks and the GM classifiers, which by themselves do not outper-
form the statistical classifier, Table 4 shows their combination considerably reduces
this effect.
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Table 3. Classification accuracy rate and overall accuracy of multilayer perceptron trained
with FingerCodes

class A class L class R class T class W overall
statistical classifier 80.5 91.8 89.5 79.1 89.4 86.0

Table 4. Percent of class A–T misclassification for the single classifiers (Masks, RNN, GM),
their best fusion, and the statistical classifier. The best combination yielded the best overall
accuracy shown in Table 2

method accuracy method accuracy
Masks 19.8 Masks–RNN 4.5
RNN 2.7 Masks–GM 5.0
GM 19.4 RNN–GM 2.9
statistical 16.7 Masks–RNN–GM 5.2

Table 5. Overall accuracy rate of investigated fusion rules

fusion of mean product KNN
statistical-Masks 84.4 83.5 86.2
statistical-RNN 87.6 87.8 88.5
statistical-GM 86.7 87.0 88.6
statistical-RNN–GM 86.0 87.5 89.0
statistical-Masks–GM 86.8 85.8 88.0
statistical-Masks–RNN 88.2 85.8 88.8
statistical-Masks–RNN–GM 88.6 87.0 89.6

5.4 Fusion of Statistical and Structural Approaches

Table 5 gives the overall accuracy obtained using the product, mean, and KNN fusion
rules (second, third, fourth columns, respectively).

The sharp improvement in overall accuracy, very close to other state-of-the-art
results (90.0% in [8], 92.2% in [20]), clearly shows the advantage of combining
structural and statistical classifiers. In particular, the degree of misclassification of
A–T classes is about 5.0% for the four-classifier combination. The improvement with
respect to the statistical classifier alone is more than 10.0%. Therefore, by combining
structural and statistical approaches it is possible to deal effectively with the well-
known problems inherent in fingerprint classification algorithms, and also to improve
their overall performance.

Further experimental evidence is provided in Fig. 6 which shows the accuracy–
rejection curves of the best classifiers and fusion approaches investigated. The
rejection option makes sense when a fingerprint cannot be classified without a large
margin of uncertainty, thus increasing the probability of misclassification. Obvi-
ously the use of the rejection option ultimately increases identification time (Sect. 1).
Therefore, a good trade-off is needed between the percentage of rejected finger-
prints and the required classification accuracy. As the FBI requirements for the NIST
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Fig. 6. Accuracy–rejection curves of the best classifiers and their best fusion algorithm

databases are 99% classification accuracy with 20% rejection rate, we investigated
accuracy for rejection rates ranging from 2% to 20% in our experiments [1, 5, 19].

We followed Chow’s rule for pattern rejection, that is, its maximum poste-
rior probability should exceed a certain reject threshold otherwise it is considered
“rejected” or not classified [35]. From Fig. 6, it clearly emerges that by increasing
the number of structural classifiers, it is possible to gradually enhance performance
and also to improve classification accuracy as rejection rate increases. This confirms
that each classifier contributes to significantly improving performance, and also pos-
itively impacts the reliability of the classification system.

6 Conclusions

This chapter aimed to: (a) provide an overview of the main approaches to structural
fingerprint classification, (b) investigate the use of some measurement-level fusion
rules for exploiting the potential of their fusion with statistical approaches.

We believe that our investigation has contributed to demonstrating the present
utility of structural approaches in fingerprint classification. Our review has clearly
shown that structural approaches receive less attention than do statistical approaches.
The main reason for this is the lack of effective learning mechanisms and the high
computational complexity of structural and graph-based methods. The large within-
class variability and the small between-class separation, the noise corrupting sensi-
tive data, and the image processing errors (e.g., image segmentation errors), make
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learning of prototypes or class descriptions for syntactic and structural methods a
challenging task.

However, structural and graph-based approaches exhibit some interesting prop-
erties (e.g., fingerprint rotation invariance) and effectively address some of the
problems inherent in statistical approaches (e.g., degree of class A–T confusion).
Finally, the fusion of structural methods with a statistical method using simple
rules significantly enhanced performance with respect to state-of-the-art statistical
approaches. It can be argued that the design of special purpose fusion rules could well
develop into a promising research direction for exploiting the potential of structural
and statistical methods.
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Graph Sequence Visualisation and its Application
to Computer Network Monitoring and Abnormal
Event Detection

H. Bunke, P. Dickinson, A. Humm, Ch. Irniger and M. Kraetzl

Summary. In this chapter, a new visualisation method for time series of graphs is introduced.
This method is based on graph edit distance and multidimensional scaling. The proposed pro-
cedure maps each graph in a time series of graphs to a point on the two-dimensional real plane,
such that graphs with a high (low) similarity are mapped to points with a small (large) Euclid-
ean distance. In this way, similar graphs in the time series can be easily identified. As a poten-
tial application of this method, we consider the problem of computer network monitoring and
abnormal event detection. A number of results on simulated data and graphs obtained from
real computer networks are presented, highlighting the advantages of the proposed method
over previous approaches.

1 Introduction

Graph representations play an important role in many disciplines of science and
engineering. Particularly in pattern recognition and machine vision, graphs have been
used in a variety of applications. For a recent survey see [1]. Measuring the simi-
larity of objects is a fundamental task in pattern recognition and computer vision.
When graphs are used for object representation, the problem of object recognition
turns into that of measuring the similarity of two given graphs, one that represents
an unknown object and another that represents a prototype stored in a database of
known objects. The unknown object is then assigned to the class of its most similar
prototype. The problem of measuring the similarity of two graphs is also known as
graph matching. A number of graph matching problems have been addressed in the
literature, including graph isomorphism [2], subgraph isomorphism [3], maximum
common subgraph [4, 5] and graph edit distance computation [6, 7]. Solutions to
these matching problems are based on a variety of computational paradigms, includ-
ing combinatorial and heuristic search [8–10], constraint satisfaction [11], stochastic
relaxation [12, 13], genetic algorithms [14, 15], neural networks [16, 17] eigenspace
methods [18–20], random walks [21] and kernel methods [22–24].

Time series, or sequence, data are encountered in many application domains,
such as financial engineering, audio and video databases, biological and medical
research and weather forecast. Consequently, the analysis of time series has become
H. Bunke et al.: Graph Sequence Visualisation and its Application to Computer Network Monitoring and Abnormal
Event Detection, Studies in Computational Intelligence (SCI) 52, 227–245 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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an important area of research [25]. Particular attention has been paid to problems
such as time series segmentation [26], retrieval of sequences or partial sequences
[27], indexing [28], classification of time series [29], or detection of frequent sub-
sequences [30]. Although a rather large effort has been devoted to both time series
analysis and the processing and interpretation of graph based data, not much work in
the intersection of the two fields has been reported. In [31, 32], graph based appro-
aches to video sequence analysis have been proposed. An algorithm for comparing
two sequences of graphs with each other has been proposed in [33]. However, this
method has not been applied on real data until now.

In this chapter, we propose a new method for the analysis of time series of
graphs. Although our motivation is in the field of computer network monitoring and
abnormal event detection, the method is general and can be applied in other problem
domains as well, wherever a system can be represented as a sequence of graphs and
one is interested in detecting abnormal system behaviour. The aim of our method
is to visualise the behaviour of a computer network over time for abnormal event
detection. As computational tools we will use graph edit distance [6, 7] and multi-
dimensional scaling [34, 35]. The proposed method is mainly to be understood as a
visualisation tool suitable to assist a human network operator. However, as we will
point out at the end of this chapter, it is rather straightforward to fully automate the
method.

This chapter is organized as follows. In Sect. 2, we will introduce some basic
concepts from both graph theory and multidimensional scaling. Next, in Sect. 3, we
will describe how graph edit distance computation and multidimensional scaling can
be applied to the problem of computer network monitoring. In Sect. 4, a number of
experimental results will be presented, using synthetically generated data and graph
sequences acquired from real computer networks. Finally, in Sect. 5, we will present
a summary, conclusions and a number of possible extensions.

2 Preliminaries

In this section, we will review some fundamental concepts from graph theory and
multidimensional scaling, as a basis of the method proposed in Sect. 3.

2.1 Graph Matching

Let LV and LE denote two sets of node and edge labels, respectively. A graph is a
four-tuple g = (V,E, α, β), where V is the finite set of nodes, E ⊆ V × V is the set
of edges, α : V → LV is the node labelling function, and β : V → LE is the edge
labelling function. Edges are directed, i.e., edge (x, y) ∈ E originates at node x ∈ V
and terminates at node y ∈ V . The case of undirected edges is obtained if we define,
for each edge (x, y) ∈ E, an edge (y, x) in the opposite direction. Unlabelled graphs
are a special case of our definition if |LV | = |LE | = 1.

In many applications there is a need to compare graphs with each other. Graph
comparison is also known as graph matching. It includes the computation of graph
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isomorphism, subgraph isomorphism and maximum common subgraph [2–5]. In the
present chapter, we are concerned with a more general problem, namely, the com-
putation of graph difference, or graph distance. One well-known distance measure
for graphs, which has emerged in the domain of pattern recognition, is graph edit
distance [6, 7]. In graph edit distance computation, one applies a sequence of edit
operations on the two given graphs so as to make the first graph identical, or iso-
morphic, to the second one. The length of the shortest edit sequence of this kind is
defined as the edit distance of the two graphs under consideration. Often a cost is
assigned to each edit operation. In this case, edit distance is defined as the cost of
the cheapest sequence of edit operations that make the two graphs identical to each
other.

For general graphs, as introduced above, graph edit distance computation belongs
to the class of NP-complete problems. Often there exist problem dependent heuristics
that allow one to cut the search space. Nevertheless, graph edit distance computa-
tion is feasible for small graphs only. In the context of the application considered
in Sect. 3, however, we deal with a special class of graphs. Graphs of this kind
are characterised by the existence of unique node labels. That is, for any graph
g = (V,E, α, β) and two nodes x, y ∈ V , if x �= y then α(x) �= α(y). Consequently,
when computing the edit distance of two graphs gi and gj , there is a one-to-one cor-
respondence between the nodes of gi and gj , which can be exploited to greatly reduce
the computational complexity of the search process. As a matter of fact, it has been
shown in [36] that common graph matching tasks, such as computation of graph
isomorphism, subgraph isomorphism, maximum common subgraph and graph edit
distance, can be accomplished in linear time with respect to the number of nodes
plus the number of edges of the larger of the two graphs involved.1

The particular graph edit distance measure we use in this chapter is quite simple.
Given two graphs gi = (Vi, Ei, αi, βi) and gj = (Vj , Ej , αj , βj), their distance is
defined as:

d(gi, gj) = |Vi|+ |Vj | − 2|Vi ∩ Vj |+ |Ei|+ |Ej | − 2|Ei ∩ Ej |. (1)

Because of the property of unique node labels, we identify each node with its unique
label. Here, for the implementation of this equation, we only need a procedure for set
intersection. In (1), |V | denotes the number of nodes in set V , and |E| the number of
edges in E. Therefore this distance measure is equal to the number of nodes plus the
number of edges that occur in only one of the two graphs, but not in both. In other
words, if the set of edit operations consists of a node insertion, a node deletion, an
edge insertion and an edge deletion, then (1) reflects the minimum number of edit
operations needed in order to make gi and gj identical. More generally, the distance
measure is equal to the minimum cost needed to make the two graphs identical to
each other provided each edit operation has a cost equal to one. Note that d(gi, gj) is
small if gi and gj have many nodes and edges in common. In the extreme case, when
gi and gj are identical, we get d(gi, gj) = 0. On the other hand, if both graphs have

1 In the application considered in Sect. 3, nodes correspond to the servers, clients and routers
of a computer network and node labels represent their unique IP addresses, for example.
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Fig. 1. Two graphs used to demonstrate a measure of graph distance

no node and no edge in common, then the distance assumes its maximum value, i.e.,
d(gi, gj) = |Vi|+ |Vj |+ |Ei|+ |Ej |.

As an example, consider graphs gi and gj in Fig. 1. In order to make gi and gj

identical, we have to remove node c and its two incident edges from gi, and insert
nodes d and e together with their incident edges in gj . Assuming a cost equal to one
for each edit operation, the total cost amounts to 8, i.e., d(gi, gj) = 8.

2.2 Multidimensional Scaling

Multidimensional Scaling (MDS) refers to a class of methods often used in the visu-
alisation of high-dimensional data [34, 35]. Consider n objects o1, ..., on in a metric
space and assume that the only information we are given about these objects is their
pairwise distances. Let dij denote the distance between objects oi and oj , where
dii = 0 and dij = dji; i, j = 1, ..., n; i �= j.

The starting point of MDS is an n × n distance matrix D = [dij ]. The goal of
MDS is to reconstruct points p1, ..., pn in the m-dimensional Euclidean space R

m

such that the Euclidean distance between pi and pj approximates dij as closely as
possible for all pairs i and j. In order to facilitate visualisation, the dimension m
of the target space is usually chosen m = 2 or m = 3. In this chapter, we will
exclusively consider the case m = 2.

There are several variations of MDS known from the literature. In this chapter we
will focus on metric scaling [34,35]. Let d2

ij be the squared distance between objects
oi and oj , and let ̂D = [d2

ij ] be the n× n matrix of pairwise squared distances. Note
that the main diagonal of ̂D consists of zeros only. Define matrix

J = I− n−111′, (2)

where I is the identity matrix, and let 1 be an n-dimensional column vector of 1’s. We
use x′ and X′ to denote the transpose of column vector x and matrix X, respectively.
From matrix ̂D we want to recover matrix

X =

⎛

⎜

⎝

x11 · · · x1m

...
. . .

...
xn1 · · · xnm

⎞

⎟

⎠
, (3)

where xj = (xj1, ..., xjm) is the location of object oj in R
m. Because

d2
ij = (xi − xj)′(xi − xj) = x′

ixi − 2x′
ixj + x′

jxj, (4)
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matrices ̂D and X are related via the equation

̂D = c1′ + 1c′ − 2XX′, (5)

where c = (x′
1x1 , ..., x′

nxn)′. After multiplication of this equation with J from the
left and from the right, and after some simplification, we obtain

B = −1
2
ĴDJ = XX′. (6)

Now the term in the middle is factored by eigendecomposition, yielding

B = QΛQ′ = (QΛ1/2)(QΛ1/2)′ = XX′, (7)

and
X = QΛ1/2. (8)

Here, Λ is a matrix that contains the eigenvalues λ1, ..., λn of B in its diagonal and
0’s elsewhere. By convention, we assume the eigenvalues being ordered such that
λ1 � ... � λn � 0. Matrix Q contains the eigenvectors of B as its columns. Now
the coordinates xi = (xi1, xi2) of all objects oi in the two-dimensional plane can be
retrieved from the first two columns of matrix X (3).

3 Application to Computer Network Monitoring and Abnormal
Event Detection

The application considered in this chapter is computer network monitoring and
abnormal event detection. In particular, we will focus our attention on intranets.
Intranets have been continuously growing in size and numbers because companies
and organisations are becoming more and more information centred today. Conse-
quently, intranet availability, reliability and security are becoming important issues.
Ensuring a high degree of availability requires sophisticated tools for computer net-
work monitoring and anomalous event detection. In the beginning, the identification
of network anomalies has relied upon ad hoc methods developed by skilled network
operators. Recently, however, anomalous event detection in computer networks has
become an area of active research.

A number of principled methods for the detection of abnormal events in com-
puter networks have been proposed in the literature. Some of these methods make use
of signatures [37]. Signature based methods match current network patterns against
abnormalities that have occurred in the past. Variants of signature based methods are
rule-based methods [38], and case-based reasoning [39]. A further approach presents
a data mining technique for discovering masquerader intrusion. User/system access
data are used as a basis for deriving statistically significant event patterns. These
patterns could be considered as a user/system access signature [40]. A shortcoming
of signature based abnormal event detection is that anomalies that have not been
observed in the past, and thus are not stored in the database of the system, remain
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undetected. Another approach to anomalous event detection is based on finite state
machines [41]. However, a problem with this approach is that the number of states
may grow very large when complex abnormalities need to be modelled. A number of
other approaches make use of statistical methods [42, 43], including auto-regressive
processes [43–45], hidden Markov models [46], wavelets [26] and Bayesian net-
works [27]. In [28] it is shown that network alarms produced by Intrusion Detection
Systems (IDSs) attains a high-level description of threats. As the number of alarms
is increasingly growing, automatic tools for alarm clustering have been proposed to
provide such a high level description of the attack scenario. It has been shown that
effective threat analysis requires the fusion of different sources of information, such
as different IDSs, firewall logs, etc.

In our previous work, we used graph theoretic methods for network anomaly
detection [29, 30, 47, 48]. The basic idea of this approach is to represent a com-
puter network by a graph where the nodes represent servers, routers or clients
and the edges represent physical or logical connections in the network. If the net-
work is sampled at regular points in time t1, t2, ..., ti, ..., a time series of graphs
g1, g2, ..., gi, ... is obtained, which formally represents the network. Using the graph
distance measure of (1), one can compute the amount of change, or distance, between
consecutive graphs in such a time series. If the distance d(gi−1, gi) between two con-
secutive graphs gi−1 and gi is above a given threshold, it is assumed that an abnormal
event has occurred in the network between time ti−1 and time ti. Because all clients
and servers can be uniquely identified in the application, the underlying graphs have
the property of unique node labels. This property ensures that all required graph
operations can be very efficiently computed and the method can deal with large
graphs [36].

The approach proposed in [29, 30, 47] has proven effective in identifying abnor-
mal network behaviour. Nevertheless, it is limited in that it can only classify network
change as normal or abnormal, but cannot identify individual states, or clusters of
states, of the network. In the context of this chapter, the state of a network is defined
by a certain subset of the nodes and edges within a graph that are actually present
in the graph at a certain point in time. In other words, the set of all possible net-
works states is defined by all subsets of the nodes and edges of the network. Here,
when dealing with a time series of graphs, the same subset of graph nodes and edges
will exist in adjacent graphs as long as the network remains in the same state. Now
assume that d(gi−1, gi) > θ and d(gi, gi+1) > θ where θ is a threshold that indicates
an abnormal event. Clearly, in this case we conclude that two abnormal events have
occurred in the network, one between time ti−1 and ti, and the other between time
ti and ti+1. However, we do not know if at time ti+1 the network is in the same, or a
similar state as it was at time ti−1. That is, we do not know whether the changes that
led from gi to gi+1 are inverse to the changes that led from gi−1 to gi, such that gi+1

is equal or similar to gi−1. Information of this kind would be extremely valuable
for a network operator. If it was known, for example, if the state at time ti−1 was a
normal network state and the states at ti−1 and ti+1 were similar to each other, then
one could conclude that after two abnormal events, between time ti−1 and ti as well
as ti and ti+1, the network has returned to a normal state again.
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Fig. 2. Snapshots of computer network at two consecutive points in time

Fig. 3. Graph distance plot of the network over 102 consecutive points in time

To give an example, snapshots of a computer network at two consecutive points
in time are given in Fig. 2. A plot of distances between pairs of consecutive graphs
of a whole time series of graphs is shown in Fig. 3. There is one prominent peak
in the distance plot of Fig. 3 at time t = 50, and this peak corresponds in fact the
change between the first and the second graph shown in Fig. 2. A closer look at
Fig. 3 reveals, however, that a large graph distance occurs not only at time t = 50,
but also at t = 51. This leads to the conjecture that the network topologies at time
t = 49 and t = 51 may be similar to one another, i.e., the changes that led to the
topology at time t = 51 may be inverse to the changes that led to the topology at
time t = 50. However this conjecture cannot be verified given only the information
provided in Fig. 3.

In order to reveal similarities in network topology between pairs of graphs gi

and gj that have a distance in time greater than one, i.e., j � i + 1, we propose to
compute all pairwise distances d(gi, gj) for i, j = 1, ..., n; i �= j. This results in an
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Fig. 4. MDS plot of the network
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Fig. 5. Dynamic evolution of MDS and graph distance plots over time

n × n distance matrix D = [dij ]. As a matter of fact, from (1) it can be seen that
D is a symmetric matrix with all elements in the diagonal equal to zero. Hence one
actually needs to compute only d(gi, gj) for i > j.

Mapping the graphs of the sequence underlying Fig. 3 into the two-dimensional
plane by means of MDS yields the plot shown in Fig. 4. In addition to merely
depicting the individual graphs, we show temporal relations by linking, through
edges, pairs of points that belong to two consecutive graphs. In this figure one can
identify one large cluster of points and one prominent outlier. As a matter of fact,
the outlier corresponds to the network at time t = 50. Therefore, the conjecture that
the network returns to its original state after the abnormal event can be verified by
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means of the MDS plot shown in Fig. 4, i.e., the network topologies at time t = 49
and t = 51 are similar to each other. To illustrate the behaviour of the network in
greater detail, we show snapshots of the evolution of both the distance plot and the
MDS plot in Fig. 5. Figure 5a shows the network at time t = 40 before the abnor-
mal event occurred. Next, Fig. 5b illustrates the network at time t = 50 immediately
after the abnormal event has happened, and Fig. 5c corresponds to time t = 60. In
the MDS plot it can be clearly seen that the abnormal event causes a large distance
between consecutive graphs (which can be seen in the graph distance plot as well).
However, after the abnormal event has occurred, the network’s topology becomes
similar to the topology before the abnormal event as the corresponding points in the
MDS plot belong to the same (i.e., the large) cluster. This phenomenon is only visible
in the MDS plot, but not in the graph distance plot.

4 Experimental Results

In order to investigate the visualisation method proposed in Sect. 3 in a more system-
atic way, we generated a number of synthetic graph sequences with specific proper-
ties and applied the proposed method. In our first simulation, a sequence of 100
graphs was generated. All graphs had 150 nodes with randomly distributed edges.
The sequence was divided into three subsequences s1, s2, and s3, including graphs
g1 to g39, g40 to g70, and g71 to g100, respectively. Sequences s1 and s3 had the
same statistical properties, but for s2 different parameters were used in the graph
generation process.

In many real networks, there exist a number of nodes that communicate with
each other frequently while others communicate only occasionally. Throughout this
chapter we will refer to links arising from frequent communication as group 1 edges
of the network. By contrast, links between pairs of nodes that communicate infre-
quently will be called group 2 edges. The two groups of edges are identified from
the initial graph. The initial graph is generated in the following way. First, N = 150
nodes are generated. Out of the N2 possible edges, 5% are randomly chosen as edges
for the initial graph. The edges chosen are designated to be edges of group 1. Con-
versely, the edges not chosen are designated as edges of group 2. No self-loops, i.e.,
edges (x, x) are admitted in the graph generation process.

The two groups of edges then have different change probabilities applied to them.
Given graph gi−1, the edges of the next graph gi are chosen according to the follow-
ing conditional probabilities:

– P (edge of group 1 exists in gi | edge of group 1 exists in gi−1) = 0.9
– P (edge of group 1 does not exist in gi | edge of group 1 does not exist in gi−1) = 0.3
– P (edge of group 2 exists in gi | edge of group 2 exists in gi−1) = 0.3
– P (edge of group 2 does not exist in gi | edge of group 2 does not exist in gi−1) = 0.99999

In subsequence s2, a subset of 75 nodes was randomly selected and all transition
probabilities of edges between nodes from this subset were set equal to 0.5, i.e.,

– P (edge exists in gi | edge exists in gi−1) = P (edge exists in gi | edge does not exist in
gi−1) = 0.5.
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From the graph generation procedure we know that subsequences s1 and s3 are
less dynamic than subsequence s2, i.e., the distances between consecutive graphs in
s2 are expected to be higher than in s1 and s3. Figure 6 shows both the MDS and the
graph distance plot. Our expectation of s2 exhibiting larger graph distances than s1

and s3 is confirmed in the graph distance plot. In the MDS plot we see, in addition
to some outliers, a compact cluster of points in the right-hand side, and a somewhat
diffuse cluster in the left-hand side. Figure 7 shows three snapshots of the evolution
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Fig. 6. MDS and graph distance plot of a simulated graph sequence
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Fig. 7. Dynamic evolution of MDS and graph distance plots over time
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of both plots over time. The three snapshots were taken at time 20, 50 and 80, i.e.,
during subsequence s1, s2 and s3, respectively. From Fig. 7, we conclude that the
compact cluster corresponds to subsequences s1 and s3, while the diffuse cluster
represents the network during subsequence s2. Note that in the compact cluster
many points are printed on top of each other. Hence this cluster appears smaller than
the diffuse cluster, although in fact it includes more points. We conclude that both,
the distance and the MDS plot reflect our expectation and describe the behaviour
of the network very well. The MDS plot, however, includes additional information
that is not evident from the graph distance plot. First, it shows that there are two
clusters of similar network states. Second, it indicates that the network states of
subsequences s1 and s3 belong to one cluster, i.e., they are very similar.

This can also be seen in Fig. 8, where three graphs at consecutive points in time
are shown from subsequence s1 (Fig. 8a), s2 (Fig. 8b) and s3 (Fig. 8c), respectively.
We observe that the three graphs in Fig. 8a are similar to the three graphs in Fig. 8c,
while the graphs in Fig. 8b appear somewhat different.

In the second simulation, we generated a sequence of 100 graphs based on the
same parameters that were used for the generation of subsequences s1 and s3 in
the first experiment. Once the whole sequence was generated, a subset of 75 nodes
were randomly selected, and each node of this subset that occurred in any of the
graphs g40, . . . , g70 was deleted together with all its incident edges. Due to this
procedure one would expect distances between consecutive graphs to have similar

a)

b)

c)

Fig. 8. Graphs from the first simulation: (a) three graphs from subsequence s1; (b) three graphs
from subsequence s2 and (c) three graphs from subsequence s3
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values in subsequences s1 = g1, ..., g39 and s3 = g71, ..., g100, but be smaller in sub-
sequence s2 = g40, ..., g70, due to the reduced number of nodes and edges involved.
This behaviour can be observed in the graph distance plot of Fig. 9, and can also be
seen in Fig. 10, where similarly to Fig. 8 three consecutive graphs from subsequence
s1, s2 and s3 are shown. The two large peaks in Fig. 9 coincide with the points at
which the subset of selected nodes, and their incident edges, were deleted and later
re-inserted. In the MDS plot we identify two clusters and a few spurious points.
The compact cluster in the left-hand side of the figure corresponds to sequence s2

(smaller graph distances lead to smaller distances between points in the MDS plot),
while the diffuse cluster in the right-hand side represents s1 and s3. The transition
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Fig. 9. MDS and graph distance plot of second simulated graph sequence

a)
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Fig. 10. Graphs from the second simulation: (a) three graphs from subsequence s1; (b) three
graphs from subsequence s2 and (c) three graphs from subsequence s3
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between the two clusters occurs at points in the sequence corresponding to the large
peaks in the graph distance plot. Similarly to the first experiment, we can clearly see
from the MDS plot that there are two major states. Furthermore, it can be observed
that the network returns to the first state after having changed from the first to the
second state. Information of this kind is not evident from the graph distance plot.

In the third experiment, again a graph sequence of length 100 was generated
using the same statistical parameters as for subsequences s1 and s3 in the first exper-
iment. At time t = 50 the graph was significantly distorted by randomly selecting
a subset V ′ of 75 nodes, deleting all edges existing between the nodes of V ′, and
inserting an edge between any pair of nodes from V ′ that were not connected before.
Such a graph would be considered an outlier with respect to the adjacent graphs in
the sequence. In this experiment one would expect the graph distances d(g49, g50)
and d(g50, g51) being significantly larger than all other graph distances. As a matter
of fact, this experiment corresponds to Figs. 3–5. Our expectation is confirmed in the
graph distance plot shown in Fig. 3. In the MDS plot we clearly identify the outlier
that corresponds to the graph at time t = 50. One can also see that the topology of
the network before and after time t = 50 is similar because the corresponding points
are in the same cluster.

In our last experiment with synthetic data, a graph sequence of length 100 was
generated with the same statistical properties as subsequences s1 and s3 in the first
experiment. In this experiment no abnormal event was implanted into the graph
sequence, i.e., the graph sequence was not altered. The MDS and graph distance
plots obtained for this time series are shown in Fig. 11. As one would expect, all
graph distances are of similar magnitude and no individual clusters emerge in the
MDS plot. Note that the scaling of the MDS plot in Fig. 11 is different from the scal-
ing used in previous figures. If the same scaling as in Fig. 9 was applied, the spread
of the cluster in Fig. 11 would be about the same as the spread of the diffuse clus-
ter in Fig. 9. Figure 12 shows three randomly selected consecutive graphs from this
sequence. They all appear similar.
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Fig. 11. MDS and graph distance plot of fourth simulated graph sequence
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Fig. 12. Three graphs from the fourth simulation
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Fig. 13. MDS and graph distance plot of first sequence obtained from a real network

Finally, two experiments were conducted with time series of graphs obtained
from real networks. The first network used in the study connects some 45, 000 users
around Australia. Origin–destination (OD) traffic statistics were collected using net-
work monitoring tools, whereby five probes were placed on links in the core of an
enterprise intranet. Probes were positioned on links in the network in such a way
as to achieve wide coverage of traffic on the network. The number of nodes in the
network was reduced to 150 by aggregating IP addresses to business domains. The
OD traffic data for a single day was used to generate a graph representing the logical
state of the network, in terms of topology and traffic, over a one day period. A time
series of 102 graphs was derived using traffic data from 102 adjacent days of traffic.
Average graph size was 70 nodes.

MDS and graph distance plots of this time series are shown in Fig. 13. Contrary
to the synthetically generated sequences, only minimal ‘ground truth’ data exists
for this time series, i.e., we do not have a description for many of the abnormal
events that have occurred within the recorded period of time. In the graph distance
plot we clearly observe three prominent peaks. The second peak coincides with the
introduction of a new electronic pay system. Before the first peak, the plot looks
rather dynamic, but between the first and second, the second and third, and after
the third peak, graph distances are somewhat smaller. From the MDS plot we can
draw a number of conclusions that cannot be inferred from the graph distance plot.
There are two rather dense clusters of points in the MDS plot, one in the upper right
and one in the lower right part. The upper cluster corresponds to the period between
the first and second peak, while the lower one represents both the period between the
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Fig. 14. MDS and graph distance plot of second sequence obtained from a real network

second and third, and after the third peak in the graph distance plot2. This means
that the network has a different topology before and after the first peak. Likewise,
the topology is different before and after the second peak. However, the network
topology is similar before and after the third peak. Note that this kind of information
cannot be concluded from the graph distance plot.

The second graph sequence based on real data was obtained from a wireless LAN
used by delegates during the World Congress for Information Technology (WCIT)
held in Adelaide, Australia, in 2002. The time series consists of 202 graphs with
an average size of about 100 nodes each. Here each node represents an individual IP
address. A graph was constructed from 30 min of traffic data. The sequence of graphs
was therefore produced from traffic in adjacent time intervals. In the graph distance
plot shown in Fig. 14, one can clearly observe a periodic behaviour of the network.
There are five highly dynamic and four less dynamic periods, corresponding to day
and night time, respectively.

In the MDS plot in Fig. 14, we observe one large and compact cluster in the right-
hand side, and two rather diffuse clusters, one in the upper left and the other in the
lower left part of the plot. The large compact cluster mainly corresponds to the net-
work during the four less dynamic periods and to the first two dynamic periods. This
cluster formed due to a reduced influence from traffic arising from user behaviour.
The upper diffuse cluster represents the network during the third dynamic period and
the lower diffuse cluster during the fourth and fifth dynamic periods. An even better
visualisation is achieved through displaying the evolution as a movie. Obviously this
kind of information cannot be inferred from the graph distance plot.

In Fig. 15a we show three graphs from the four less dynamic periods, while
graphs from the third and fifth dynamic period are displayed in Figs. 15b and 15c,
respectively. While all graphs in Fig. 15a look rather similar, the network is in dif-
ferent states in Figs. 15b and 15c. This again confirms that the MDS representation
is very well suited to represent the different network states from the global point of
view. The information visualised in the MDS plot cannot be represented by a graph
distance plot, such as the one shown in the right-hand side of Fig. 14.

2 This information is conveyed much clearer if we display the evolution of the graph distance
and the MDS plot as a function of time, see Fig. 5. An even better visualisation is achieved
through displaying the evolution as a movie.
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a)

b)

c)

Fig. 15. A few graphs from the time series obtained from the second real network: (a) three
graphs from one cluster; (b) and (c) graphs from different clusters

5 Conclusions, Discussion and Future Work

In this chapter, we propose a novel approach to the visualisation of computer net-
work behaviour. We start by representing a given network as a time series of graphs,
where the nodes represent either groups of users in common business domains or
individual servers, routers or clients and the edges represent physical or logical links
between nodes. A graph distance measure originally developed in the domain of
pattern recognition is used to compare graphs that represent the network at differ-
ent points in time. In our earlier work, only distances d(gi, gi+1) between graphs
at consecutive points in time were computed and displayed as a plot showing graph
distance over time. Abnormal events, or periods of abnormally high network activity,
manifest themselves in such a plot through high values. In the present chapter we go
one step further and compute distances between all pairs of graphs in a sequence. In
this way not only local, but also global temporal network behaviour is taken into con-
sideration. The pairwise graph distances are submitted to a multidimensional scaling
procedure that renders a two-dimensional visualisation of the graph sequence. In this
visualisation, each graph in the sequence is represented by a point in such a way that
the distances between points in the two-dimensional plane resemble the distances
between the underlying graphs as closely as possible. By means of this procedure,
not only anomalous network change can be represented, but also clusters of network
states and the transition between states can be visualised.
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A number of open issues remain to be addressed in future research. For example,
in the current chapter edge labels have been ignored. But it is a natural extension to
include edge labels, or edge weights, in the underlying graphs so as to represent the
amount of data transmitted over the links. As a matter of fact the considered graph
edit distance measure can be easily extended such that edge labels are taken into
account.

A limitation of the current method is imposed by the fact that a complete graph
sequence must be given in order to apply the MDS procedure. This restricts the
visualisation procedure to working exclusively in the ‘off-line’ mode. From the
application oriented point of view, however, more flexibility would be achieved if an
MDS plot could be built incrementally as new graphs of the time series are acquired.
Such an approach could be applied in a streaming environment.

All steps required in the production of an MDS plot can be executed without user
intervention, while the final interpretation of an MDS plot, i.e., the identification
of clusters, abnormal events, etc. is left to a human operator. However, we argue
that it takes just a small step to turn the method proposed in this chapter into a
fully automatic procedure for the detection of abnormal network states. The essential
addition required is an automatic clustering procedure that can identify clusters of
points with a high proximity in the MDS plot. Alternatively one could apply the
clustering procedure in a high-dimensional space before applying the projection into
the two-dimensional space. That is, rather than using only the first two columns of
matrix X in (3), one could use up to m columns. In principle, any of the known
clustering techniques can be applied for this purpose [49].
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Clustering of Web Documents Using Graph
Representations

Adam Schenker, Horst Bunke, Mark Last and Abraham Kandel

Summary. In this paper we describe a clustering method that allows the use of graph-based
representations of data instead of traditional vector-based representations. Using this new
method we conduct content-based clustering of two web document collections. Clustering
of web documents is performed to organize the documents with little or no human interven-
tion. Benefits of clustering include easier browsing and improved retrieval speed. In order
to measure the performance of our graph-matching approach, we compare it to the popular
vector-based k-means method. We perform experiments using different graph distance mea-
sures as well as various document representations that utilize graphs. The results with the
k-means clustering algorithm show that the graph-based approach can outperform traditional
vector-based methods.

Key words: Graph distance, Graph representations, k-Means

1 Introduction

Clustering is the separation of a collection of objects into groups, called clusters,
such that objects within the same cluster are similar to each other, yet dissimilar
to the objects in other clusters. Clustering is an unsupervised method, meaning no
labeled training examples are provided. Many different clustering algorithms have
been proposed, such as k-means, fuzzy c-means, hierarchical agglomerative, and
graph partitioning [1].

Clustering of natural language documents is an important research area for two
major reasons. First, clustering a document collection into categories enables it to
be more easily browsed and used. Second, clustering can improve the performance
of search and retrieval on a document collection. Hierarchical clustering methods
[1], for example, are used often for this purpose. When representing documents for
clustering the vector model is typically used [2]. In this model, each meaningful term
that can appear in a document becomes a feature (dimension).

The vector model is simple and allows the use of traditional clustering methods
that deal with numerical feature vectors. However, it discards information such as
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the order in which the terms appear, where in the document the terms appear, how
close the terms are to each other, and so forth. By keeping this kind of structural
information we could possibly improve the performance of the clustering. The prob-
lem is that traditional clustering methods are often restricted to working on purely
numeric feature vectors due to the need to compute distances between objects or to
find some representative element of a cluster of objects, both of which are easily
accomplished with numerical feature vectors. Thus either the original data needs to
be converted to a vector of numeric values by discarding possibly useful structural
information (that we do when using the vector model to represent documents) or we
need to develop new, customized algorithms for a specific representation.

In order to overcome this problem, we have introduced an extension of classical
clustering methods that allows us to work with graphs as fundamental data structures
instead of being limited to vectors of numeric values [3, 4]. Our approach has two
main benefits:

1. It allows us to keep the inherent structure of the original documents by modeling
each document as a graph.

2. We can apply straightforward extensions to use existing clustering algorithms
rather than needing to create new algorithms from scratch. In this paper we will
address comparison of different graph similarity measures and document rep-
resentations in the context of document clustering. We will use a graph-based
k-means clustering algorithm to cluster two web document collections. We will
use the cosine and Jaccard similarity measures [2] with the vector model repre-
sentation as a baseline for comparison.

Recently, several papers have appeared in the literature that deal with graph rep-
resentations of documents. Liang and Doermann represented the physical layout of
document images as graphs [5]. In their layout graphs nodes represent elements on
the page of a document, such as columns of text or headings, while edges indicate
how these elements appear together on the page (i.e., spatial relationships). This
method is based on the formatting and appearance of the documents when ren-
dered, not the textual content (words) of a document as in our approach. Lopresti
and Wilfong compared web documents using a graph representation that primarily
utilizes HTML parse information, in addition to hyperlink and content order informa-
tion [6]. In their approach they use graph probing, which extracts numerical feature
information from the graphs, such as node degrees or edge label frequencies, rather
than comparing the graphs themselves. In contrast, our representation uses graphs
created solely from the content, and we use the graphs themselves rather than a set
of extracted features. The subject graphs of Tomita et al. [7] are constructed using
weights calculated from term occurrence frequencies; our method does not calculate
any weights, and most of our models do not use any frequency information.

Other graph-based approaches to text or web representation that are well known
in the literature include Sowa’s conceptual graphs [8] and directed acyclic word
graphs (DAWGs) [9]. Conceptual graphs provide for powerful knowledge repre-
sentation capabilities, but are not widely used for web documents because “they
are based on deep analysis, and so require well maintained dictionaries and an
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excessive amount of time to operate” [8]. DAWGs are used for compact representa-
tion and recognition of individual words in a text rather than representation of entire
documents.

Clustering with graphs is well established in the literature. However, the para-
digm in those methods is to treat the entire clustering problem as a graph: nodes
represent the items to be clustered and weights on edges connecting two nodes indi-
cate the distance (dissimilarity) between the objects the nodes represent. The usual
procedure is to create a minimal spanning tree of the graph and then remove the
remaining edges with the largest weight in the MST until the number of desired
clusters (connected components) is achieved [10]. After applying the algorithm the
edges indicate which objects belong to which clusters. In our method, by contrast,
each object is represented by a graph (not a node), and we perform standard cluster-
ing methods on these graphs.

Lately there has been some progress with performing clustering directly on
graph-based data. For example, an extension of self-organizing maps (SOMs) which
allows the procedure to work with graphs has been proposed [11]; graph edit distance
and weighted mean of a pair of graphs were introduced to deal with graph-based data
under the SOM algorithm. Clustering of shock trees using tree edit distance has also
been considered [12]. Both of these methods have in common that they use graph (or
tree) edit distance for their graph distance measures. One drawback of this approach
is that the edit cost functions must be specified for each application. Sanfeliu et al.
have investigated clustering of attributed graphs using their own “function-described
graphs” as cluster representatives [13]. However, their method is rather complicated
and much more involved than our straightforward extension of a classical, simple
clustering algorithm.

The remainder of this paper is organized as follows. In Sect. 2 we give the formal
notations relating to graphs that will be used throughout the paper. We describe the
graph-based extension of the k-means algorithm and the various graph distance mea-
sures in Sect. 3. The details of the different graph representations we utilize during
clustering are provided in Sect. 4. In Sect. 5 we explain our experimental procedures
and present the results. Finally, some concluding remarks are given in Sect. 6.

2 Formal Notation

In this section we will give the formal mathematical notation which pertains to graphs
and their role in performing clustering with the k-means algorithm. Graphs are a
mathematical formalism for dealing with structured entities and systems. In basic
terms a graph consists of vertices (or nodes), which correspond to some objects or
components. Graphs also contain edges, which indicate relationships between the
vertices. The first definition we have is that of the graph itself. Each object (web
document, in the context of this paper) in the data set we are clustering will be rep-
resented by such a graph:

Definition 1. A graph G is defined by a four-tuple (quadruple): G = (V,E, α, β),
where V is a set of vertices (also called nodes), E ⊆ V × V is a set of edges
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connecting the vertices, α : V → ΣV is a function labeling the vertices, and β :
E → ΣE is a function labeling the edges (ΣV and ΣE being the sets of labels that
can appear on the nodes and edges, respectively).

The graphs we will use in this paper are directed graphs with node and edge
labels. The next definition we have is that of a subgraph. One graph is a subgraph of
another graph if it exists as part of the larger graph:

Definition 2. A graph G1 = (V1, E1, α1, β1) is a subgraph of a graph G2 =
(V2, E2, α2, β2), denoted G1 ⊆ G2, if V1 ⊆ V2, E1 ⊆ E2 ∩ (V1 × V1), α1(x) =
α2(x) ∀x ∈ V1, and β1((x, y)) = β2((x, y)) ∀(x, y) ∈ E1. Conversely, graph G2 is
also called a supergraph of G1.

Next we have the important concept of the maximum common subgraph (mcs)
for short, which is the largest subgraph a pair of graphs have in common:

Definition 3. A graph G is a maximum common subgraph (mcs) of graphs G1 and
G2, denoted mcs(G1, G2), if: (1) G ⊆ G1 (2) G ⊆ G2 and (3) there is no other
subgraph G′ (G′ ⊆ G1, G′ ⊆ G2) such that |G′| > |G|.

In the above definition, |G| is intended to convey the “size” of the graph G;
often it is taken to be |V |, i.e., the number of vertices in the graph. In most of the
graph representations used in this paper we will define the size of a graph to be
|G| = |V | + |E|, i.e., the sum of the number of nodes and edges in the graph.
Complementary to Definition 3, we also have the concept of MCS:

Definition 4. A graph G is a minimum common supergraph [14] (MCS) of graphs
G1 and G2, denoted MCS(G1, G2), if: (1) G1 ⊆ G (2) G2 ⊆ G and (3) there is no
other supergraph G′ (G1 ⊆ G′, G2 ⊆ G′) such that |G′| < |G|.

Now that we have our formal notation, we are in a position to proceed to describ-
ing the k-means algorithm extended to cluster graphs instead of vectors.

3 Clustering with Graphs

3.1 Basic Clustering Algorithm

The k-means clustering algorithm is a simple and straightforward method for clus-
tering data [15]. The basic algorithm is given in Fig. 1. Usually during clustering we
represent each object, which consists of m numeric values, as a vector in the space
�m. When representing documents in this manner, each value is associated with a
specific term (word) that may appear on a document, and the set of possible terms
is shared across all documents; this is called the vector-space model of information
retrieval. The values may be binary, indicating the presence or absence of the cor-
responding term. The values may also be nonnegative integers, which represent the
number of times a term appears on a document (i.e., term frequency). Non-negative
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Inputs: the set of n data items and a parameter, k, defining the number of clusters to create
Outputs: the centroids of the clusters and for each data item the cluster (an integer in [1,k]) it
 belongs to

Step 1. Assign each data item randomly to a cluster (from 1 to k).
Step 2. Using the initial assignment, determine the centroids of each cluster.
Step 3. Given the new centroids, assign each data item to be in the cluster of its closest centroid.
Step 4. Re-compute the centroids as in Step 2. Repeat Steps 3 and 4 until the centroids do not change.

Fig. 1. The k-means clustering algorithm

real numbers can also be used, in this case indicating the importance or weight of
each term. These values are derived through a method such as the popular inverse
document frequency model (tf · idf ) [2], which reduces the importance of terms
that appear on many documents. Regardless of the method used, each series of val-
ues represents a document and corresponds to a point (i.e., vector) in a Euclidean
feature space. This model is often used when applying data mining techniques to
documents, as there is a strong mathematical foundation for performing distance
measure and centroid calculations using vectors. However, this method of document
representation does not capture important structural information, such as the order
and proximity of term occurrence, or the location of term occurrence within the doc-
ument. It is also common to restrict the number of dimensions by selecting some
small set of discriminating or important terms, as the number of possible terms that
can occur across a collection of documents can be quite large.

When representing data by vectors, the distances between two objects can be
computed using the Euclidean distance in m dimensions:

distEUCL(x, y) =

√

√

√

√

m
∑

i=1

(xi − yi)2 (1)

where xi and yi are the ith components of vectors x = [x1, x2, . . . , xm] and
y = [y1, y2, . . . , ym], respectively. However, for applications in text and document
clustering, the cosine similarity measure [2] is often used due to its length invariance
property. We can convert this to a distance measure by the following:

distCOS(x, y) = 1− x • y

‖x‖ · ‖y‖ (2)

Here • indicates the dot product operation and ‖ . . . ‖ indicates the magnitude
(length) of a vector. Another popular distance measure for determining document
similarity is the extended Jaccard similarity [2], which is converted to a distance
measure as follows:

distJAC(x, y) = 1−
∑m

i=1 xiyi
∑m

i=1 x2
i +
∑m

i=1 y2
i −
∑m

i=1 xiyi
(3)

We have determined that if methods of computing distance between graphs and
constructing a representative of a set of graphs are available it is possible to extend
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many clustering and classification methods to work directly on graphs. First, any dis-
tance calculations between objects to be clustered, which are represented by graphs
and not vectors, is accomplished with a graph-theoretical distance measure as we will
discuss in Sect. 3.2. Second, since it is necessary to compute the distance between
objects and cluster centers, it follows that the cluster centers (representatives) must
also be graphs. Therefore, we compute the representative of a cluster as the median
graph of the set of graphs in that cluster (as we will describe in Sect. 3.3).

3.2 Graph Distance Measures

As we mentioned above, we need a graph-theoretical distance measure in order to
use graphs for clustering. We have implemented several distance measures and will
compare their clustering performance. For brevity we will refer to the distance mea-
sures below as MCS, WGU, and MMCS.

The first distance measure MCS is a well-known graph distance measure based
on the mcs [16]:

dMCS(G1, G2) = 1− |mcs(G1, G2)|
max(|G1|, |G2|)

(4)

where G1 and G2 are the graphs to compare, mcs(G1, G2) is their maximum com-
mon subgraph, | . . . | is the size of a graph, and max(. . . ) is the usual maximum
operation. Here we define the size of a graph to be the sum of the number of nodes
and edges in the graph. The concept behind this distance measure is that as the size
of the maximum common subgraph of a pair of graphs becomes larger, the more
similar the two graphs are (i.e., they have more in common). The larger the maxi-
mum common subgraph, the smaller dMCS(G1, G2) becomes, indicating more sim-
ilarity and less distance. If the two graphs are in fact identical, their maximum
common subgraph is the same as the graphs themselves and thus the size of all
three graphs is equal: |G1| = |G2| = |mcs(G1, G2)|. This leads to the distance,
dMCS(G1, G2), becoming 0. Conversely, if no maximum common subgraph exists,
then |mcs(G1, G2)| = 0 and dMCS(G1, G2) = 1. This distance measure has been
shown to be a metric [16], and produces a value in [0, 1].

A second distance measure WGU which has been proposed by Wallis et al.
[17] is:

dWGU (G1, G2) = 1− |mcs(G1, G2)|
|G1|+ |G2| − |mcs(G1, G2)|

(5)

This distance measure behaves similarly to MCS. If the maximum common subgraph
does not exist (i.e., |mcs(G1, G2)| = 0), then dWGU (G1, G2) = 1. If the maximum
common subgraph is identical to the original graphs, |G1| = |G2| = |mcs(G1, G2)|,
then the graphs G1 and G2 are identical and thus dWGU (G1, G2) = 0. The denom-
inator used in this method is based on the idea of “graph union.” It represents the
size of the union of the two graphs in the set theoretic sense; specifically adding
the size of each graph (|G1| + |G2|) then subtracting the size of their intersection
(|mcs(G1, G2)|) leads to the size of the union (the reader may easily verify this
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using a Venn diagram). The motivation for doing this is to allow for changes in the
smaller graph to exert some influence over the distance measure, which does not hap-
pen with MCS [17]. This measure was also demonstrated to be a metric, and creates
distance values in [0, 1].

The third distance measure MMCS, proposed by Fernández and Valiente, is
based on both the maximum common subgraph and the MCS [14]:

dMMCS(G1, G2) = |MCS(G1, G2)| − |mcs(G1, G2)| (6)

where MCS(G1, G2) is the minimum common supergraph of graphs G1 and G2.
The concept that drives this distance measure is that the maximum common sub-
graph provides a “lower bound” on the similarity of two graphs, while the MCS
is an “upper bound.” If two graphs are identical, then both their mcs and MCS
are the same as the original graphs and |G1| = |G2| = |MCS(G1, G2)| =
|mcs(G1, G2)|, which leads to dMMCS(G1, G2) = 0. As the graphs become more
dissimilar, the size of the maximum common subgraph decreases, while the size
of the MCS increases. This in turn leads to increasing values of dMMCS(G1, G2).
For two graphs with no maximum common subgraph, the distance will become
|MCS(G1, G2)| = |G1| + |G2|. MMCS has also been shown to be a metric [14],
but it does not produce values normalized to the interval [0, 1], unlike the previously
described distance measures. Note that if it holds that |MCS(G1, G2)| = |G1| +
|G2| − |mcs(G1, G2)| ∀G1, G2, we can compute dMMCS(G1, G2) as |G1| + |G2|
− 2|mcs(G1, G2)|. This is much less computationally intensive than computing the
MCS.

We will describe our graph representation of documents in detail in Sect. 4. How-
ever, we wish to mention here an interesting feature our graph representation has on
the time complexity of determining the distance using (4–6). For general graphs
the computation of the mcs is NP-Complete. Methods for computing the mcs are
presented in [18, 19]. However, for the graph representations of web documents pre-
sented in this paper, the computation of the maximum common subgraph is O(n2),
with n being the number of nodes, due to the existence of unique node labels in the
graph representations (i.e., we need only examine the intersection of the nodes, since
each node has a unique label) [20]. Thus the maximum common subgraph, Gmcs, of
a pair of graphs with unique node labels, G1 and G2, can be created by the following
procedure:

1. Find the nodes Vmcs by determining the subset of node labels that the original
graphs have in common with each other and create a node for each common
label.

2. Find the edges Emcs by examining all pairs of nodes from step 1 and introduce
edges that connect pairs of nodes in both of the original graphs with identical
edge labels.

Note that the calculation of the MCS can be reduced to the mcs problem [21].
Therefore the computation of the MCS can also be performed in O(n2) time.
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3.3 Median of a Set of Graphs

The second ingredient required to apply clustering to graphs is that of a graph-
theoretic cluster representative of a set of graphs. For this we have used the con-
cept of the median graph [22], which is the graph which has the minimum average
distance to all graphs in the cluster:

G = arg min
∀s∈S

(

1
n

n
∑

i=1

dist(s,Gi)
)

(7)

Here S = {G1, G2, . . . , Gn} is a set of n graphs for which we want to compute the
median (and thus |S| = n) and G is the median graph. The median is defined to be
a graph in set S. Thus the median of a set of graphs is the graph from that set which
has the minimum average distance to all the other graphs in the set. The distance
dist(. . . ) is computed using one of (4–6) above. There also exists the concepts
of the generalized median and weighted mean [22], where we do not require that
G be a member of S, but we will not consider them here because they are quite
expensive to compute. In the case where the median is not unique (i.e., there is more
than one graph that has the same minimum average distance) we select one of those
graphs at random as the representative for the k-means algorithm. This variation of
the k-means algorithm, where we use a median instead of a mean as cluster repre-
sentatives, is also known as k-medoids [23].

4 Graph Representations of Web Documents

In this section we describe methods for representing web documents using graphs
instead of the traditional vector representations. All representations are based on the
adjacency of terms in a web document. These representations are named: standard,
simple, n-distance, n-simple distance, raw frequency and normalized frequency.

Under the standard method each unique term (word) appearing in the document,
except for stop words such as “the,” “of,” and “and” which convey little information,
becomes a node in the graph representing that document. Each node is labeled with
the term it represents. Note that we create only a single node for each word even
if a word appears more than once in the text. Second, if word a immediately pre-
cedes word b somewhere in a “section” s of the document, then there is a directed
edge from the node corresponding to term a to the node corresponding to term b
with an edge label s. We take into account certain punctuation (such as periods) and
do not create an edge when these are present between two words. Sections we have
defined for web documents are: title, which contains the text related to the docu-
ment’s title and any provided keywords (meta-data); link, which is text that appears
in hyperlinks on the document; and text, which comprises any of the readable text
in the document (this includes link text but not title and keyword text). Next we
remove the most infrequently occurring words on each document, leaving at most
m nodes per graph (m being a user provided parameter). This is similar to the di-
mensionality reduction process for vector representations [2]. Finally we perform
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a simple stemming method and conflate terms to the most frequently occurring form
by relabeling nodes and updating edges as needed. An example of this type of graph
representation is given in Fig. 2. The ovals indicate nodes and their corresponding
term labels. The edges are labeled according to title, link, or text. The document
represented by the example has the title “YAHOO NEWS,” a link whose text reads
“MORE NEWS,” and text containing “REUTERS NEWS SERVICE REPORTS.”
If a pair of terms appears together in more than one section, we create an edge for
each section with the appropriate section label. Note there is no restriction on the
form of the graph and that cycles are allowed. Also, disconnected components may
occur in the graphs, which is not a problem with our approach. While this method
of document representation appears superficially similar to the bigram, trigram, or
N -gram methods, those are statistically oriented approaches based on word occur-
rence probability models [24]. The methods presented here, with the exception of the
frequency representations described below, do not require or use the computation of
term probability relationships.

The second type of graph representation we will look at is what we call the
simple representation. It is basically the same as the standard representation, except
that we look at only the visible text on the page (no title or meta-data is examined)
and we do not label the edges between nodes. Thus we ignore the information about
the “section” where the two respective words appear together. An example of this
type of representation is given in Fig. 3.

TITLE LINK

TEXT

TEXT

TEXT

YAHOO

SERVICE REPORTS REUTERS

MORENEWS

Fig. 2. Example of a standard graph representation of a document

NEWS

SERVICE

MORE

REPORTS REUTERS

Fig. 3. Example of a simple graph representation of a document
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The third type of representation is called the n-distance representation. Under
this model, there is a user-provided parameter, n. Instead of considering only terms
immediately following a given term in a web document, we look up to n terms
ahead and connect the succeeding terms with an edge that is labeled with the dis-
tance between them (unless the words are separated by certain punctuation marks);
here “distance” is related to the number of other terms which appear between the two
terms in question. For example, if we had the following sequence of text on a web
page, “AAA BBB CCC DDD,” then we would have an edge from term AAA to term
BBB labeled with a 1, an edge from term AAA to term CCC labeled 2, and so on.
The complete graph for this example is shown in Fig. 4. The mcs for this represen-
tation is derived in the same manner as described previously, where we require the
edge labels to be an exact match in both graphs.

Similar to n-distance, we also have the fourth graph representation, n-simple
distance. This is identical to n-distance, but the edges are not labeled, which means
we only know that the “distance” between two connected terms is not more than n.

The fifth graph representation is what we call the raw frequency representation.
This is similar to the simple representation (adjacent words, no section-related infor-
mation) but each node and edge is labeled with an additional frequency measure. For
nodes this indicates how many times the associated term appeared in the web docu-
ment; for edges, this indicates the number of times the two connected terms appeared
adjacent to each other in the specified order. The raw frequency representation uses
the total number of term occurrences (on the nodes) and co-occurrences (edges).

A problem with this representation is that large differences in document size
could lead to skewed comparisons, similar to the problem encountered when using
Euclidean distance with vector representations of documents. Under the normalized
frequency representation, instead of associating each node with the total number of
times the corresponding term appears in the document, a normalized value in [0, 1]
is assigned by dividing each node frequency value by the maximum node frequency
value that occurs in the graph; a similar procedure is performed for the edges. Thus
each node and edge has a value in [0, 1] associated with it, which indicates the nor-
malized frequency of the term (for nodes) or co-occurrence of terms (for edges).

AAA BBB

CCC DDD

1

1

1

2 2

3

Fig. 4. Example of a n-distance graph representation of a document
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For the raw frequency and normalized frequency representations the graph size is
defined as the total of the node frequencies added to the total of the edge frequencies,
rather than the previous definition of |G| = |V | + |E|. We need this modification
to reflect the frequency information in the graph size. As an example, consider two
raw frequency graphs each with a node “A”; however, term “A” appears twice in
one document and 300 in the other. This difference in frequency information is not
captured under the previous definition. Further, when we compute the mcs for these
representations we take the minimum frequency element (either node or edge) as the
value for the mcs. To continue the above example, node “A” in the mcs would have a
frequency of 2, which is min(2, 300).

5 Experiments and Results

5.1 Web Document Data Sets

In order to evaluate the performance of the graph-based k-means algorithm as
compared with the traditional vector methods, we performed experiments on three
different collections of web documents, called the F-series, the J-series, and the
K-series [25]; the data sets are available under these names at ftp://ftp.cs.
umn.edu/dept/users/boley/PDDPdata/. These data sets were selected
because of two major reasons. First, all of the original HTML documents are avail-
able, which is necessary if we are to represent the documents as graphs; many other
document collections only provide a preprocessed vector representation, which is
unsuitable for use with our method. Second, ground truth assignments are provided
for each data set, and there are multiple classes representing easily understandable
groupings that relate to the content of the documents. Some web document collec-
tions are not labeled or are presented with some other task in mind than content-
related clustering (e.g., building a predictive model based on user preferences).

The F-series originally contained 98 documents belonging to one or more of
17 subcategories of four major category areas: manufacturing, labor, business and
finance, and electronic communication and networking. Because there are multiple
subcategory classifications for many of these documents, we have reduced the cat-
egories to just the four major categories mentioned above in order to simplify the
problem. There were five documents that had conflicting classifications (i.e., they
were classified to belong to two or more of the four major categories) which we
removed, leaving 93 total documents. The J-series contains 185 documents and ten
classes: affirmative action, business capital, information systems, electronic com-
merce, intellectual property, employee rights, materials processing, personnel man-
agement, manufacturing systems, and industrial partnership. We have not modified
this data set. The K-series consists of 2,340 documents and 20 categories: business,
health, politics, sports, technology, entertainment, art, cable, culture, film, industry,
media, multimedia, music, online, people, review, stage, television, and variety. The
last 14 categories are subcategories related to entertainment, while the entertainment



258 A. Schenker et al.

category refers to entertainment in general. These were originally news pages hosted
at Yahoo (http://www.yahoo.com). Experiments on this data set are presented
in [26].

For the vector-model representation experiments there were already several term-
document matrices available for our experiments at the same location where we
obtained the document collections. We selected the matrices with the smallest num-
ber of dimensions. For the F-series documents there are 332 dimensions (terms)
used, while the J-series has 474 dimensions; the K-series used 1,458 dimensions. We
performed some preliminary experiments and observed that other term-weighting
schemes (i.e., tf · idf , see [2]) improved the accuracy of the vector-model represen-
tation for these data sets either only very slightly or in many cases not at all. Thus
we have left the data in its original format.

5.2 Clustering Performance Measures

We use the following three clustering performance measures to evaluate the perfor-
mance of each clustering. The first two indices measure the matching of obtained
clusters to the “ground truth” clusters, while the third index measures the quality of
clustering in general.

The first index is the Rand index [27]. To compute the Rand index, we perform
a comparison of all pairs of objects in the data set after clustering. If both objects in
a pair are in the same cluster in both the ground truth clustering and the clustering
we wish to measure, this counts as an “agreement.” If both objects in the pair are in
different clusters in both the ground truth clustering and the clustering we wish to
investigate, this is also an agreement. Otherwise, this is a “disagreement.” The Rand
index is computed as:

RI =
A

A + D
(8)

where A is the number of agreements and D is the number of disagreements, as
described above. Thus the Rand index is a measure of how closely the clustering
created by some procedure matches ground truth. It produces a value in the interval
[0, 1], with 1 representing a clustering that perfectly matches ground truth.

The second performance measure we use is mutual information [26, 28], which
is defined as:

ΛM =
1
n

k
∑

l=1

g
∑

h=1

n
(h)
l logk·g

(

n
(h)
l · n

∑k
i=1 n

(h)
i

∑g
i=1 n

(i)
l

)

(9)

where n is the number of objects, k is the number of clusters produced by our clus-
tering algorithm, g is the actual number of ground truth clusters, and n

(j)
i is the

number of items in cluster i (in the created clustering) associated with cluster j (in
the ground truth clustering). Note that k and g may not necessarily be equal, which
would indicate we are attempting to create more (or fewer) clusters than exist in
the ground truth clustering. However, for the experiments described in this paper we
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will create an identical number of clusters as is present in ground truth. Mutual in-
formation represents the overall degree of agreement between the clustering created
by some method and the categorization provided by the ground truth clustering with
a preference for clusters that have high purity (i.e., are homogeneous with respect
to the objects clustered, as given by the clusters they belong to in ground truth).
Higher numbers indicate clusters that are homogeneous (i.e., created clusters which
contain objects mostly belonging to a single ground truth cluster). Lower numbers
indicate less similarity between the clustering that was created and ground truth; a
value of zero signifies no statistical correlation between the two clusterings (i.e., they
are independent).

The third performance measure we use is the Dunn index [29], which is
defined as:

DI =
dmin

dmax
(10)

where dmin is the minimum distance between any two objects in different clusters
and dmax is the maximum distance between any two items in the same cluster. The
numerator captures the worst-case amount of separation between clusters, while the
denominator captures the worst-case compactness of the clusters. Thus the Dunn
index is an amalgam of the overall worst-case compactness and separation of a
clustering, with higher values being better. It does not, however, measure cluster-
ing accuracy compared to ground truth as the other two methods do. Rather it is
based on the basic underlying assumption of any clustering technique: items in the
same cluster should be similar (i.e., have small distance, thus creating compact clus-
ters) and items in separate clusters should be dissimilar (i.e., have large distance, thus
creating clusters that are well separated from each other).

5.3 Results

In Tables 1–3 we show the clustering performance for the F-series, J-series, and
K-series when using different graph distance measures (Sect. 3.2). The performance
of the traditional vector-based approach using distances based on cosine and Jaccard
similarity is also given for comparison. Because of the random initialization of the
k-means algorithm, each number indicates the average performance taken over ten
experiments. We used a maximum of 50 nodes per graph (i.e., m = 50, see Sect. 4)
for the F and J data sets, while we used 70 nodes per graph for K, due to the higher
number of classes and documents. The standard representation was used for the
distance measure comparison experiments. The value of k used in the experiments
matches the number of clusters present in the ground truth clustering for each data
set; thus k = 4 for the F-series, k = 10 for the J-series, and k = 20 for the K-series.

We see that the graph-based methods that use normalized distance measures
(MCS and WGU) generally performed similarly to or better than vector-based meth-
ods using cosine or Jaccard. MMCS, which is not normalized to the interval [0, 1],
performed poorly for all data sets. To see why this occurs, we have provided the fol-
lowing example. Let |G1| = 10, |G2| = 10, |mcs(G1, G2)| = 0, |MCS(G1, G2)| =
20, |G3| = 20, |G4| = 20, |mcs(G3, G4)| = 5, and |MCS(G1, G2)| = 35. Clearly
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Table 1. Distance measure comparison for the F-series data set using the standard representa-
tion and 50 nodes per graph maximum

distance Rand mutual Dunn
measure index information index

Cosine (vector-based) 0.6788 0.1101 0.4168
Jaccard (vector-based) 0.6899 0.1020 0.6188
MCS 0.7748 0.2138 0.7202
WGU 0.7434 0.1744 0.7967
MMCS 0.6594 0.1120 0.3132

Table 2. Distance measure comparison for the J-series data set using the standard representa-
tion and 50 nodes per graph maximum

distance Rand mutual Dunn
measure index information index

Cosine (vector-based) 0.8648 0.2205 0.3146
Jaccard (vector-based) 0.8717 0.2316 0.5703
MCS 0.8618 0.2240 0.6476
WGU 0.8757 0.2598 0.7691
MMCS 0.1809 0.0273 0.1381

Table 3. Distance measure comparison for the K-series data set using the standard represen-
tation and 70 nodes per graph maximum

distance Rand mutual Dunn
measure index information index

Cosine (vector-based) 0.8537 0.2266 0.0348
Jaccard (vector-based) 0.8998 0.2441 0.0730
MCS 0.8957 0.1174 0.0284
WGU 0.8377 0.1019 0.0385
MMCS 0.1692 0.0127 0.0649

graphs G3 and G4 are more similar to each other than graphs G1 and G2 since G1

and G2 have no common subgraph whereas G3 and G4 do. However, the distances
computed for these graphs are dMCS(G1, G2) = 1.0, dMCS(G3, G4) = 0.75,
dMMCS(G1, G2) = 20, and dMMCS(G3, G4) = 30. So we have the case that the
unnormalized distance is actually greater for the pair of graphs that are more similar.
This is both counter-intuitive and the opposite of what happens in the cases of the
normalized distance measures. Thus this phenomenon leads to the poor clustering
performance for MMCS.

In Tables 4–6 we show the clustering performance for the F-series, J-series, and
K-series for the different graph representations presented in Sect. 4. For these experi-
ments we use the MCS distance measure (4). For the representations n-distance and
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Table 4. Representation comparison for the F-series data set using MCS distance and 50 nodes
per graph maximum

representation Rand mutual Dunn
index information index

Cosine (vector-based) 0.6788 0.1101 0.4168
Jaccard (vector-based) 0.6899 0.1020 0.6188
Standard 0.7748 0.2138 0.7202
Simple 0.6823 0.1314 0.7364
2-distance 0.6924 0.1275 0.7985
5-distance 0.6731 0.1044 0.8319
2-simple distance 0.7051 0.1414 0.7874
5-simple distance 0.7209 0.1615 0.8211
Raw frequency 0.7070 0.1374 0.7525
Normalized frequency 0.7242 0.1525 0.7077

Table 5. Representation comparison for the J-series data set using MCS distance and 50 nodes
per graph maximum

representation Rand mutual Dunn
index information index

Cosine (vector-based) 0.8648 0.2205 0.3146
Jaccard (vector-based) 0.8717 0.2316 0.5703
Standard 0.8618 0.2240 0.6476
Simple 0.8562 0.2078 0.5444
2-distance 0.8674 0.2365 0.6531
5-distance 0.8598 0.2183 0.7374
2-simple distance 0.8655 0.2285 0.7056
5-simple distance 0.8571 0.2132 0.6874
Raw frequency 0.8650 0.2141 0.6453
Normalized frequency 0.8812 0.2734 0.6119

n-simple distance, we use values of n = 2 and n = 5 (i.e., 2-distance, 2-simple
distance, 5-distance, and 5-simple distance) in these experiments.

For the F-series, standard was the best performing representation, achieving
the best value for Rand index and mutual information, while for the Dunn index,
5-distance was the best representation. For the J-series, normalized frequency was
the best for Rand index and mutual information, with 5-distance again being best for
the Dunn index. It is not a surprising result that Rand and mutual information should
perform similarly to each other and differently than Dunn, as both Rand and mutual
information are based on comparison with ground truth while Dunn is a measure of
compactness and separation of the clusters with no regard to “accuracy.”

For the K-series, the best performing graph representation was standard. How-
ever, the graph-based method in this case did not outperform the Jaccard distance-
based vector approach. The K-series is a highly homogeneous data set; all the pages
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Table 6. Representation comparison for the K-series data set using MCS distance and 70 nodes
per graph maximum

representation Rand mutual Dunn
index information index

Cosine (vector-based) 0.8537 0.2266 0.0348
Jaccard (vector-based) 0.8998 0.2441 0.0730
Standard 0.8957 0.1174 0.0284
Simple 0.8870 0.0972 0.0274
2-distance 0.8753 0.0832 0.0229
5-distance 0.8813 0.1013 0.0206
2-simple distance 0.8813 0.0947 0.0218
5-simple distance 0.8663 0.0773 0.0234
Raw frequency 0.8770 0.0957 0.0335
Normalized frequency 0.8707 0.0992 0.0283

Table 7. Statistical analysis of experimental results

data set performance confidence significant?
measure (1 − P )

F-series Rand 0.9998 yes (better)
F-series MI 1.0000 yes (better)
J-series Rand 0.9255 no (same)
J-series MI 0.4767 no (same)
K-series Rand 0.3597 no (same)
K-series MI 1.0000 yes (worse)

have a similar format and some of the same terms appear on every document. To
improve the performance of the graph method in this case, we should look at either
removing the common terms (nodes) from all graphs (which is often done with the
vector model and can also be applied to our approach), or greatly increase the size
of the graphs to capture more terms. In our experiments, Rand increases to 0.9053
and mutual information to 0.1618 for the standard representation and MCS distance
when using 200 nodes maximum per graph.

In Table 7 we give a statistical analysis of some of the experimental results. Six
comparisons are listed in the table, which represent comparing the Jaccard and graph
methods for Rand index and mutual information for all three data sets. The graph
experiments represented in Table 7 use the standard graph representation, MCS dis-
tance, and either 50 nodes per graph (F and J) or 70 nodes per graph (K). The Con-
fidence column in the table represents the probability that the means of the results
for the vector and graph methods are statistically different, as determined by a two-
tailed t-test. Values higher than 0.95 are considered significant, as shown in the last
column of the table; we also show whether the graph method was considered better,
the same, or worse than the vector method.
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6 Conclusions

In this paper we have examined the problem of clustering data which is represented
by graphs instead of simpler feature vectors. To perform the clustering we have
developed a graph-based version of the k-means clustering algorithm, substituting
a suitable graph-theoretical distance measure in the place of the usual vector-related
distance and median graphs in place of centroids.

The application we presented here was clustering of web documents. We imple-
mented six different methods of representing web documents by graphs and three
different graph distance measures. Our experiments compared the clustering per-
formance of the various proposed methods with the usual vector model approach
using cosine and Jaccard-based distance measures. Experimental results showed that
the graph-based methods can outperform the traditional vector methods in terms of
clustering performance under three different clustering performance measures. We
saw that graph distance measures that were not normalized performed poorly, while
those that were normalized to the interval [0, 1] yielded good results. The standard
representation produced the best results for one data set in terms of comparison with
ground truth, while normalized frequency was better for another.

For future work we intend to extend our graph-based method to other classifica-
tion and clustering methods, such as hierarchical agglomerative clustering and dis-
tance weighted k-nearest neighbors. We also wish to look for the optimal graph size
and associated terms to represent each specific document. Further, we only examined
using two values of n for the n-distance and n-simple distance representations in
this paper. Finding the optimal value of n is another subject of ongoing research.
Given the good results for the normalized frequency representation for one of the
document collections, we will explore similar representations that incorporate more
explicit term weighting components (i.e., a model similar to tf · idf but for graphs).
However, such an extension is not immediately obvious, since we must deal with
adjusting the weights of edges as well as terms (nodes). Finally, we can look at
incorporating specific domain knowledge in the distance measure definitions.
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