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The Time Arrow in Quantum Cosmology

Our mistake is not that we take our theories
too seriously, but that we do not take them
seriously enough. (Stephen Weinberg 1977)
– Well, but which theories?

The founders of quantum theory invented their theory as a theory of atoms,
that was soon successfully applied also to other microscopic systems. Macro-
scopic objects were thought to require the established classical concepts even
though they consist of atoms. This hardly consistent traditional point of view
(that would also exclude quantum cosmology) seems to be slowly changing
under the impact of more recent interpretations, which allow one to describe
the world in terms of a universally valid quantum theory (Sect. 4.6).

Another obstacle to quantum cosmology is that a description of the whole
Universe seems to require a ‘theory of everything’, which is elusive. While
there are various mathematically deep and physically even plausible proposals
for such a theory, physics is an empirical science. Physical cosmology should
therefore only extrapolate empirically founded concepts and laws. Mathemat-
ical cosmological models may be important and interesting in their own right,
and some of them may prove physically successful in the future, but reality has
usually offered great conceptual surprises that could not have been foreseen
by mathematical reasoning or pure logic.

Physical cosmology should not therefore rely on any details of uncon-
firmed unified quantum field theories, for example. Only the general frame-
work of quantum theory may be regarded as empirically sufficiently founded
to draw cosmological conclusions from it. This framework includes, first of
all, the superposition principle and the unitarity of dynamics (in other words,
a general wave function and a Schrödinger equation). In cosmology, this re-
quires an answer to the fundamental problem of what quantum theory means
in the absence of external observers or measurement devices. Physical cos-
mology must therefore depend on the interpretation of quantum theory (as
discussed in Sect. 4.6) in an essential way. A pragmatic probability interpre-
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tation with respect to external observers is obviously ruled out, since the
very concept of cosmology presumes an objective (though in principle hypo-
thetical) reality. Quantum field theory has instead traditionally been used
and confirmed as a method for calculating S-matrix elements, which describe
probabilities for scattering events. This amounts to applying a collapse of the
wave function after each elementary scattering process, and it would be insuf-
ficient for consistently describing objects which make up the Universe, such
as condensed matter, complex systems (including measurement devices and
observers), macroscopic fields, and global spacetime structure.

The general quantum framework is usually applied in the form of a ‘quanti-
zation’ of a classical theory (see Sect. 4.1.1) – in particular of the mechanics of
particles, which are kinematically described as space points. By quantization
I mean here1 the application of the superposition principle to the elements of
a classical configuration space (thus defining a wave function on it), and the
construction of the corresponding quantum Hamiltonian by replacing vari-
ables and their canonical momenta by operators acting on wave functions.
The second part is ambiguous because of the factor ordering problem.

We can now re-interpret this quantization procedure as the conceptual re-
versal of a physical decoherence process that led to the classical appearance of
the system under consideration. This explains why this quantization cannot
be expected to define a unique result, but requires further empirical input.
The quantization of many-particle mechanics leads non-relativistically ‘back’
to a consistent and successful quantum theory: quantum mechanics. Some
other ‘particle’ properties (such as spin or isotopic spin) have no similar clas-
sical correspondence. The quantization of classical fields in this canonical way
leads to wave functionals on the configuration space for field amplitudes. It
does not in general directly define a consistent quantum theory, although it
can often be rendered consistent by a mere renormalization of its fundamen-
tal parameters. This is evidence that a fundamental quantum theory may be
quite independent of any classical theory that could be quantized in this way.
For example, relativistic quantum mechanics led to the discovery that field
amplitudes of not classically observed fermion fields rather than particle posi-
tions define the correct arena for the wave function(al) – an approach that is
somewhat misleadingly called a ‘second quantization’, since the fermion fields
were first discovered as effective ‘single-particle wave functions’ (see Zeh 2003).
The underlying fields (on space) define a local basis (the ‘stage’ for quantum

1 This interpretation is quite different from the original and literal meaning of
the term ‘quantization’ as a discretization of certain quantities. For example,
‘light quanta’ can be understood as a consequence of the eigenvalue problem
in terms of wave functions for the amplitudes of free field modes, dynamically
described as harmonic oscillators. These fundamental aspects of quantum theory
are often hidden behind a collection of recipes to perform calculations (such as
perturbation theory in terms of Feynman graphs). In particular, a ‘quantization
of time’ (Sect. 6.2) does not require a quantum of time – just as the quantization
of particle motion does not require a quantum of length (or a spatial lattice).
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dynamics) that spans the required Hilbert space. This structure permits the
formulation of local dynamics by means of a Hamiltonian density in spite of
generically nonlocal states. It may therefore be useful – though also dangerous
and certainly insufficient – to investigate mathematical models for a unified
quantum field theory solely by investigating certain classical fields on three- or
higher-dimensional spaces, rather than consistently taking into account their
quantum nature from the beginning (for instance in terms of wave functionals
of these fields as representing the true quantum reality).

Extrapolating unitary dynamics to the whole Universe requires an Ev-
erett type interpretation (see Sect. 4.6). Hugh Everett (1957) seems to have
first seriously considered a wave function of the Universe,2 that must then
include internal observers. Although he may have had in mind the quanti-
zation of general relativity with its cosmological aspects, Everett applied his
ideas, which were based on a time-dependent Schrödinger equation, to non-
relativistic quantum theory. His main interpretational obstacle was the en-
tanglement arising from measurements described by means of von Neumann’s
unitary interaction (4.32). This led him to his ‘extravagant’ interpretation (in
Bell’s words) in terms of many quasi-classical ‘branches’ of the world, which
are separately experienced, but are all assumed to exist in one superposi-
tion that defines the true and dynamically consistent quantum world. Beyond
measurements proper and occasional interactions he does not seem to have
regarded entanglement as particularly important (see Tegmark 1998).

The quantitative considerations reviewed in Sect. 4.3 demonstrate that un-
controllable ‘measurement-like’ interactions with the environment are essen-
tial and unavoidable for almost all systems under all realistic circumstances.
Strong entanglement is, therefore, a generic aspect of quantum theory. The
more macroscopic a system, the stronger its entanglement with its environ-
ment. The concept of a (pure) quantum state can be consistently applied only
to the Universe as a whole (Zeh 1970, Gell-Mann and Hartle 1990). This seems
to be a far more powerful argument for the need of quantum cosmology than
an attempt to construct a unified quantum field theory.

The second pillar of physical cosmology is general relativity. It is empiri-
cally confirmed only as a classical theory, but this fact can be well understood
by decoherence again (see Sects. 4.3.5 and 6.2.2). Exactly classical gravity
would lead to inconsistencies with the uncertainty principle. Applying the
quantization rules to the Hamiltonian formalism of general relativity (de-
scribed in Sect. 5.4) leads to a non-renormalizable ‘effective’ quantum gravity
that cannot be exact, but may be expected to be appropriate as a low energy
limit. This readily allows us to discuss a number of important novel concep-
tual problems that must come up, in particular the need for a ‘quantization
of time’ (Sect. 6.2).

2 Thibault Damour (2006) has recently presented evidence that Everett was origi-
nally stimulated by remarks Albert Einstein made about quantum theory during
his last seminar, given at Princeton in 1954.
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The quantum state of the Universe must therefore include gravitational
degrees of freedom (entangled with matter) in an essential way. However,
many quantum cosmological aspects may be formulated on a quasi-classical
background spacetime, using a given foliation parametrized by a time co-
ordinate t. Global states can then be dynamically described by means of a
time-dependent Schrödinger equation with respect to this coordinate time t.
This formalism will be derived from quantum gravity (with its quantized con-
cept of an intrinsic time) in Sect. 6.2.2 as an approximation. Global states
(such as those of quantum fields) depend on a foliation (or a reference frame)
even on flat spacetime, while the density matrix of any local system should
be invariant under a change of foliation that preserves its local rest frame – a
requirement that does not seem to have attracted much attention.

If the Quantum Universe is thus conceptually regarded as a whole, it does
not decohere, since there is no further environment. Decoherence is meaningful
only for subsystems of the Universe (or for subsets of variables), and with re-
spect to observations by other subsystems (internal ‘observer-participators’).
If no real collapse of the wave function is assumed to apply, one is then forced
to accept Everett’s global wave function, which describes a superposition of at
least all ‘possible’ outcomes of measurements and measurement-like processes
that ever occurred in the Universe. This global quantum state may always
be assumed to be pure, since a global density matrix could be consistently
understood as representing incomplete information about such a pure state.
A measurement that merely selects a subset from those states which diago-
nalize this density matrix would be equivalent to a classical measurement (as
depicted in Fig. 3.5 – in contrast to Fig. 4.3).

The decoherence of subsystems by their environment according to a global
Schrödinger equation leads dynamically to robust Everett branches. They
represent dynamically autonomous components of the global wave function,
which may factorize in the form φobs1φobs2 . . . ψrest with respect to ‘observer
states’ that may describe objectivizable memory (see Sect. 4.3.2 and Tegmark
2000). This unitary evolution requires a fact-like arrow of time, correspond-
ing to a cosmic initial condition of type (4.59). Branching into components
which contain definite observer states has to be taken into account in addi-
tion to the unitary evolution as an effective dynamics in order to describe
the history of the (quasi-classical) ‘observed world’ in quantum mechanical
terms (see Sect. 4.6 and Fig. 4.3). However, this need not represent a modi-
fication of the fundamental dynamical laws, since this indeterminism affects
the observer rather than the quantum world. The decrease of physical entropy
characterizing the ‘apparent collapse’ experienced by the subjective observer
may be negligible on a thermodynamical scale, and in comparison to the en-
tropy increase by decoherence in the usual situation of a measurement. Yet it
may have dramatic consequences for global phase transitions that describe a
dynamical symmetry-breaking of the vacuum. This will now be discussed.
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6.1 Phase Transitions of the Vacuum

Heisenberg (1957) and Nambu and Jona-Lasinio (1961) invented the concept
of a vacuum that breaks symmetries of a fundamental Hamiltonian ‘sponta-
neously’ (in a fact-like way) – just as most actual states of physical systems do.
This proposal was based on an analogy between the vacuum (the ground state
of quantum field theory) and the phenomenological ground states of macro-
scopic systems, such as ferromagnets or solid bodies in general. Their asym-
metric ground states lead to specific modes of excitation, which in quantum
theory define quasi-particles (phonons, for example). The corresponding occu-
pation number eigenstates span specific partial Hilbert spaces (‘Fock spaces’).
A symmetry-violating vacuum may similarly lead to Goldstone bosons or other
collective modes, based on space-dependent oscillations of the order parameter
about its macroscopic (collective) ‘orientation’ – see below.

A symmetry-breaking (quasi-classical) ‘ground state’ is in general not even
an eigenstate of the fundamental (symmetric) Hamiltonian; it may only form
an eigenstate of an effective (asymmetric) Fock space Hamiltonian. While non-
diagonal elements of the exact Hamiltonian which connect states of different
collective orientation of these many-body systems (lying in different Fock
spaces), are usually extremely small, they would be essential to determine
its exact eigenstates, since the diagonal elements for all states related by a
symmetry transformation must be degenerate.

The symmetry-breaking vacuum was originally understood as part of the
kinematics of a field theory, while the dynamics was then assumed to be com-
pletely defined by means of the Fock space Hamiltonian. Later, the analogy
was generalized to allow for a dynamical phase transition of the vacuum dur-
ing the early stages of the Universe. This may be induced by the variation of
some global parameter (such as a rapid decrease of energy density, reflecting
the expansion of the Universe). The arising ‘unitarily inequivalent’ different
Fock spaces can then be interpreted as robust Everett branches or collapse
components. Even the empirical P or CP -violating terms of the (effective)
weak-interaction Hamiltonian may have emerged dynamically in this way by
means of an apparent or genuine collapse of the wave function that led to a
specific vacuum.

A popular model for describing symmetry-breaking in non-perturbative
quantum field theory is the ‘Mexican hat’ or ‘wine bottle potential’ of the type
V (Φ) = a|Φ|4−b|Φ|2 (with a, b > 0) for a fundamental complex matter field Φ
(such as a Higgs field). It may possess a degenerate minimum on a circle in the
complex plane, at |Φ| = Φ0 > 0, say. The classical field configurations of lowest
energy may then be written as Φ ≡ Φ0eiα, with an arbitrary phase α. They
break the dynamical symmetry under rotations in the complex Φ-plane. These
classical ground states correspond to different quantum mechanical vacuum
states |α〉 (for example described by narrow Gauß packets of α-eigenstates).
One of them, |α0〉, say, is assumed to characterize our observed world (while
the specific value of α0 is in this case observationally meaningless).
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A dynamical phase transition of the vacuum can now be described by as-
suming that the Universe was initially in the symmetric vacuum |Φ ≡ 0〉. This
may later become a ‘false’ vacuum (a relative minimum) through a change of
the parameters a and b. The state of the observed universe is then assumed
to undergo a transition into a specific Fock space vacuum |α0〉. If potential
energy is thereby released in a ‘slow roll’ (similar to latent heat in a phase
transition), it must be transformed into excitations (particle creation). Evi-
dently, this symmetry-breaking process requires effective deviations from the
Schrödinger equation – similar to a measurement process.

If the initial state is here assumed to be pure, a unitary evolution (similar
to von Neumann’s measurement) leads to a symmetric superposition of all
asymmetric states. For example, the symmetric superposition of all Fock space
vacua,

|0sym〉 = C

∫
|α〉dα �= |Φ ≡ 0〉 , (6.1)

may possess an even lower energy expectation value than |α〉, and may thus
represent an approximation to the ground state of the full theory. A globally
symmetric superposition of type (6.1) would persist even when its compo-
nents on the RHS contain or develop uncontrollable excitations in their Fock
spaces, while these components then form dynamically independent Everett
branches. The superposition itself describes intrinsic complexity , but not a
global asymmetry. If πα := i∂/∂α generates a gauge transformation, (6.1)
describes a state obeying a gauge constraint, πα|ψ〉 = 0 (see Sect. 6.2).

Each homogeneous classical state α0 would permit excitations in the form
of small space-dependent oscillations, α0 + ∆α(r, t). Quantum mechanically
they describe massless Goldstone bosons (excitations with vanishing energy
in the limit of infinite wavelength because of the degeneracy). Their degrees
of freedom are thus created by the intrinsic symmetry breaking, and their ob-
servation demonstrates that the collective variables (including corresponding
‘gauge’ degrees of freedom) do not describe mere redundancies. These new
variables may be thermodynamically extremely relevant. So it is remarkable
that the most important cosmic entropy capacities are represented by zero-
mass bosons: electromagnetic and gravitational fields (Zeh 1986a, Joos 1987).
These capacities are not only relevant for physical entropy (such as in the
form of heat), but also for the formation of entanglement between different
spatial regions. This seems to be important for the ‘arrow of quantum causal-
ity’ (Sect. 4.6).

In contrast to the false vacuum, the symmetric superposition (6.1) would
already describe a nonlocal state. If one neglects Casimir–Unruh type corre-
lations (see Sect. 5.2), each vacuum |α〉 may be written as a direct product of
vacua on volume elements ∆Vk,

|α〉 ≈
∏
k

|α〉∆Vk
. (6.2)
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This non-relativistic approximation describes a pure vacuum state on each
volume element (local subsystem) ∆Vk, while the superposition (6.1) would
lead to ‘mixed states’ for them:

ρ∆Vk
∝
∫

|α∆Vk
〉〈α∆Vk

|dα , (6.3)

formally representing Zwanzig projections P̂ sub. However, this density matrix
would be meaningful only for an external observer of the global state (who
could not live in one of the Fock spaces). It describes a canonical distribu-
tion of Goldstone bosons with infinite temperature (since then e−E/kT → 1).
Therefore, only a (genuine or apparent) collapse into one component α0 gives
rise to the pure (cold and not entangled) vacuum (6.2) experienced by an
internal local observer who lives in this Fock space.

Order parameters such as α may differ in different spatial regions (similar
to Weiss regions of a ferromagnet). If these regions are macroscopic, and thus
decohere to become ‘real’ (see Sect. 4.3.1), they break translational symmetry
(Calzetta and Hu 1995, Kiefer, Polarski and Starobinsky 1998, Kiefer et al.
2006). This scenario has now become ‘standard’ in quantum cosmology –
although its interpretation varies. A homogeneous superposition of entangled
microscopic inhomogeneities would represent ‘virtual’ symmetry breaking (in
classical language circumscribed as ‘vacuum fluctuations’).

6.2 Quantum Gravity and the Quantization of Time

Um sie kein Ort, noch weniger eine Zeit;
Von ihnen sprechen ist Verlegenheit.
(Mephisto advising Faust to time travel)

The compatibility of general relativity and quantum theory has often been
questioned. This seems to be a prejudice, that derives from various roots:

Einstein’s attitude regarding quantum theory is well known. He is even
claimed to have remarked that a quantization of general relativity would be
‘childish’ – although he also emphasized the importance of reconciling his
theory with quantum theory. Another position holds that gravitons may be
unobservable in practice, and the quantization of gravity hence not required
(von Borzeszkowski and Treder 1988). However, a classical gravitational field
or spacetime metric is inconsistent with quantum mechanics, since it would
always allow one in principle to determine the exact energy of a quantum ob-
ject – in conflict with the uncertainty relations. This has been known since the
early Bohr–Einstein debate (see Jammer 1974, for example), while other con-
sistency problems regarding an exactly classical spacetime metric were raised
by Page and Geilker (1982). Concepts of quantum gravity will turn out to
be essential for cosmology and the definition of a master arrow of time. The
classical appearance of spacetime cannot be regarded as an argument against
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its quantization, since these classical aspects may be understood within a uni-
versal quantum theory in a similar way to all other quasi-classical properties
(Sect. 4.3.5).

One often finds also arguments that the canonical quantization of general
relativity does not lead to a renormalizable theory, and must therefore be
wrong. This argument would apply if quantum gravity was assumed to be
an exact theory. However, it can only be expected to represent an ‘effective
theory’ that describes specific low energy aspects of an elusive unified field
theory. We know that QED, too, has to be modified and replaced by elec-
troweak theory at high energies, while it remains an excellent and consistent
description of all relevant phenomena at low energies. Its most general quan-
tum aspects (described in terms of QED wave functionals) are in fact observed
for laser fields in cavities. An analogous (though technically and conceptually
more demanding) canonical method of quantizing general relativity leads to
the Wheeler–DeWitt equation (6.4) below (DeWitt 1967). Why should the
Einstein equations be saved from quantization, while the Maxwell equations
are not? The conceptual consequences of quantum gravity, in particular those
for cosmology, have turned out to be profound even at this level of a low
energy approximation.

The construction of a unified theory certainly represents the major chal-
lenge to quantum field theory at a fundamental level. Such a theory must
become important in the vicinity of spacetime singularities (inside black holes
or close to the big bang), but may also have cosmological consequences. In the
absence of any observational confirmation, the latter have to be regarded as
‘mathematical cosmology’, that remains physically entirely speculative. Can-
didate models are often studied just as classical theories – sometimes includ-
ing certain ‘quantum corrections’. The surprising claim that M-theory may
eventually lead to an explanation of quantum theory (Witten 1997) seems to
be based on an elementary misunderstanding of quantum mechanics and its
empirical basis.

A second approach to overcome fundamental problems of quantum grav-
ity is canonical loop quantum gravity (Ashtekhar 1987, Rovelli and Smolin
1990, Thiemann 2006b, Nicolai, Peeters, and Zamaklar 2005). As it does not
necessarily require a unification with other field theories, it does not contain
most of the speculative elements of string theories, for example. To some ex-
tent it may be regarded as a specific though non-trivial renormalization of
general relativity. Since this includes a radical formal redefinition of many
phenomenological concepts, mostly by means of active diffeomorphisms that
would severely affect also classical general relativity, it may help to find the
correct configuration space on which the ultimate wave function may be de-
fined. However, the relation of its quantization procedures (such as ‘Bohr
compactification’ – invented by the mathematician Harald August Bohr) to
the empirically founded quantization concepts must be regarded as highly
questionable.
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If quantization can indeed be understood as the conceptual reversal of a
physical process of decoherence, the thereby recovered superpositions of the
(effective) classical quantities should at least define an effective quantum grav-
ity – similar to quantum mechanics, which is an effective theory in spite of
more general quantum field theory. Therefore, the Wheeler–DeWitt equation
in its field representation (here defined in terms of three-geometries) appears
as the method of choice for ‘physical’ quantum cosmology. Questions of inter-
pretation related to those for the wave function in general then seem to be
more urgent at this stage than the consequences of speculative attempts to
solve consistency problems that arise at high energies or in connection with a
complete renormalization procedure.

A major problem that nonetheless prevents many physicists from accepting
the Wheeler–DeWitt equation as appropriately describing quantum general
relativity is the absence of any time parameter in the case of a closed uni-
verse (see Isham 1992). According to the Hamiltonian formulation reviewed
in Sect. 5.4, one would naively expect free gravity to be described by a time-
dependent wave functional on the configuration space of three-geometries,
Ψ [(3)G, t], dynamically governed by a Schrödinger equation, i∂Ψ/∂t = HΨ .
However, there is no longer an external time parameter in a consistent quan-
tum description, and nor are there trajectories of appropriate physical clock
variables, which could give this time dependence an interpretation. Different
three-geometries (3)G (classically the carriers of ‘information’ about many-
fingered time – see Sect. 5.4) occur instead as arguments of these wave func-
tionals. In the absence of parametrizable trajectories (3)G(t) – that is, of space-
time geometries (4)G, neither proper times nor global time coordinates are
available. Therefore, it appears conceptually quite consistent (see Zeh 1984,
1986b, Barbour 1986) that the quantized form of the Hamiltonian constraint,
HΨ = 0,3 completely removes any time parameter t from the wave function
of a kinematically closed (though not necessarily finite) universe. This conse-
quence must be expected to remain valid in reparametrizable unified theories
– even after renormalization.

If matter is again represented by a single scalar field Φ on space-like hyper-
surfaces defined by their three-geometries (3)G, the Wheeler–DeWitt equation
assumes the general form

HΨ [Φ,(3) G] = 0 . (6.4)

3 Only because of the (here quite inappropriate) Heisenberg picture in terms of
particles is the equation Hψ = Eψ usually called a stationary Schrödinger equa-
tion, while in wave mechanical terms it describes static solutions. Even ‘vacuum
fluctuations’ represent static entanglement in the Schrödinger picture. Similarly,
eigenvalues of the momentum operator are no more than formally analogous to
classical momenta (which are defined as time derivatives). These conceptual sub-
tleties will turn out to be essential for a consistent interpretation of the Wheeler–
DeWitt equation.
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Even though it represents dynamics, it does not describe a one-dimensional
succession of states (or a history labelled by a parameter t). This is the nat-
ural quantum consequence of a classically missing absolute time (the absence
of any preferred time parameter). In spite of the Hamiltonian constraint, the
classical Hamiltonian equations would still define time-dependent (though
reparametrizable) trajectories, which allow the unique (one-dimensional) or-
dering of states by means of physical clocks (‘physical time’). While this does
not apply to the dynamics (6.4) of quantum gravity any more, we shall see in
Sect. 6.2.2 that one may approximately construct quasi-trajectories by means
of a WKB approximation and using decoherence. Note that (6.4) describes the
whole (Everett) quantum Universe, while branching components describing
quasi-classical spacetimes would have to obey a stochastic quantum Langevin
equation (see Sect. 4.6). However, the absence of fundamental trajectories in
Hilbert space now leads to the problem of how to pose an ‘initial’ condition
that would be able to explain the arrow of time that is already required for the
irreversible process of decoherence, which is needed to justify the branching.

If time in a closed mechanical universe was according to Mach consistently
defined by motion (as discussed in Chap. 1 regardless of general relativity),
there could also be no meaningful time-dependent Schrödinger equation. In-
stead of an external or absolute time parameter t, one would have to refer to
a physical clock variable u, say, that is part of this universe and has to be
quantized, too. A time-dependent wave function ψ(x, t) is thus replaced by
an entangled wave function ψ(x, u) (Peres 1980b, Page and Wootters 1983,
Wootters 1984). In the conventional probability interpretation, ψ(x, u) would
describe a probability amplitude for ‘physical time’ u – not at a time u. Then
why do we always observe states ‘at’ such a definite time rather than their su-
perpositions? The answer is that one has to expect the relevant clock variable
u to become quasi-classical for reasons explained in Sect. 4.3. For example,
an assumed ‘dust of test clocks’ that measured proper times would accord-
ing to (6.4) decohere any superposition of three-geometries which correspond
to different intrinsic times. (This comes close to what really happens in our
Universe – see Sect. 6.2.2.)

Equation (6.4) does not yet represent the Wheeler–DeWitt equation in a
form that can be used. In practice, one has to represent the three-geometry
(3)G by a metric hkl(x1, x2, x3) = gkl(x0

0, x
1, x2, x3) with respect to a certain

choice of coordinates (see Sect. 5.4). The wave functional Ψ [hkl] must then be
invariant under spatial coordinate transformations. This is guaranteed by the
three secondary momentum constraints, classically described as Hi = 0 (with
i = 1, 2, 3). In their quantum mechanical form they must again be imposed as
constraint operators acting on the wave function: HiΨ [hkl] = 0, similar to the
Hamiltonian constraint. If the momentum constraints are satisfied, the wave
functional Ψ [hkl] represents a functional on three-geometries, Ψ [(3)G], only.
This seems to require that the operators Hi commute in the weak sense, that
is, their commutators must again define constraints. However, this may not be
necessary if the effective theory lives in an Everett branch that breaks gauge
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symmetry – similar to an α-vacuum in (6.1). This would in turn require that
the constraints define infinitesimal physical transformations – not just redun-
dancies (see Giulini, Kiefer and Zeh 1995) as usually assumed for coordinate
transformations. A similar conceptual problem occurs for many other gauge
transformations.

General Literature: Kiefer 2007.

6.2.1 Quantization of the Friedmann Universe

A simple toy model of a quantum universe can be constructed by quantizing
the classical Friedmann universe described in Sect. 5.3, presuming exact ho-
mogeneity and isotropy (Kaup and Vitello 1974, Blyth and Isham 1975). This
leads to a reduced Wheeler–DeWitt equation for the two remaining variables,
but in contrast to its classical counterpart it does not represent a reasonable
approximation to reality. Symmetry requirements are much stronger in their
quantum mechanical form than they are classically. For example, the rotation
of a macroscopic spherical body produces a similar but microscopically dif-
ferent state, whereas a spherically symmetric quantum state is a symmetric
superposition of all orientations, that would not be affected by this symme-
try transformation any more. An exactly spherical quantum object therefore
cannot possess any rotational degrees of freedom – compare the symmetric
vacuum (6.1) or a superfluid in a spherical vessel. Rotational spectra are only
found in the case of strong intrinsic symmetry breaking, as known for small
molecules or deformed nuclei (Zeh 1967). Translations and rotations are thus
identity operations when applied to a quantum Friedmann universe, which can
therefore only be regarded as a very first step towards quantum cosmology
(except perhaps very close to the big bang). The low-dimensional configura-
tion space describing such a model is usually called a ‘mini-superspace’.

If the Hamiltonian (5.34) is quantized in the usual way in its field rep-
resentation, canonical momenta have to be replaced by the corresponding
differential operators. In general, this leads to a factor-ordering problem for
the Hamiltonian, since arbitrary terms proportional to the commutators [p, q]
could always be added before quantization. Although (5.34) looks quite ‘nor-
mal’, its straightforward translation into a Wheeler–DeWitt equation,

e−3α

2

(
∂2

∂α2
− ∂2

∂Φ2
− ke4α + m2e6αΦ2

)
Ψ(α, Φ) = 0 , (6.5)

is far from being trivial. For example, the result would have been different for
quantization in terms of the expansion parameter a instead of its logarithm α.
However, the choice used in (6.5) represents the invariant d’Alembertian with
respect to DeWitt’s ‘superspace metric’ that is defined by the quadratic form
of momenta describing the kinetic energy – see (6.14) below. This specific
factor- ordering is analogous to that for a point mass in flat space when
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formulated in terms of non-Cartesian coordinates. The prefactor e−3α/2 can
be omitted from (6.5).

Even though the Wheeler–DeWitt equation is a stationary Schrödinger
equation, it is of hyperbolic type – similar to a Klein–Gordon equation with
variable mass – for reasons explained in Sect. 5.4. This fact offers the surpris-
ing possibility of formulating an intrinsic initial value problem in spite of the
absence of any time parameter (see Sect. 2.1). The logarithmic expansion pa-
rameter α may be regarded as a time-like variable with respect to this intrinsic
dynamics. The wave function on a ‘space-like’ hypersurface in superspace (for
example at a fixed value of α) then defines an intrinsic dynamical state ac-
cording to this dynamics. This intrinsic quantum dynamics with respect to
the ‘variable’ α can also be written in the form

− ∂2

∂α2
Ψ(α, Φ) =

[
− ∂2

∂Φ2
+ V (α, Φ)

]
Ψ(α, Φ) =: H2

redΨ(α, Φ) , (6.6)

in order to define a Klein–Gordon type reduced Hamiltonian Hred.4 This dy-
namics is non-unitary, in particular as H2

red is not in general a non-negative
operator. The ‘reduced norm’,

∫ |Ψ(α, Φ)|2dΦ, is thus not generally conserved
as a function of α. Although there is a conserved formal ‘relativistic’ two-
current density in this mini-superspace,

j := Im (Ψ∗∇Ψ) , (6.7)

its direction depends on the sign of i = ±√−1, which is physically meaningless
in the absence of a time-dependent Schrödinger equation. There is in fact no
reason even to expect a complex global solution of the real Wheeler–DeWitt
equation.

The big bang and a conceivable big crunch would ‘coincide’ with respect
to the intrinsic time variable α, while the expansion of the Universe becomes
a tautology. The concept of a reversal of the cosmic expansion is an artifact
of the classical description in terms of trajectories, such as in Fig. 5.7, while in
more realistic models correlations of the expansion parameter α with quasi-
classical physical clocks (including physiological ones) remain meaningful. So
4 In loop quantum gravity , this differential equation has been replaced by a differ-

ence equation with respect to p := a2. This discrete new variable can then be
extended to negative values in a regular way (Bojowald 2003). This doubling of
space would represent a space reflection, inverting the sign of the volume measure,
such that the deterministic propagation through p = 0 (even in the continuous
case) could be visualized as ‘turning space inside out’. However, even if this ex-
tension of the concept of space could be vindicated in some way, the dynamical
meaning of negative values of p (such as representing ‘pre-big-bang times’) had to
be carefully analyzed. Since the low entropy ‘initial’ condition may be expected
to apply at p = 0 rather than at p = −∞ for reasons of symmetry, the physical
direction of time would always point into the direction of growing |p| – thus re-
placing the big bang by a reversal of the physical arrow of time in the past (see
also Laguna 2006).
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Fig. 6.1. Coherent ‘wave tube’ Ψ(α, Φ) for the anisotropic indefinite harmonic oscil-
lator (with ωΦ:ωα = 7:1) as a toy model of a periodically contracting and rebouncing
quantum universe. It is here only plotted for the sector α > 0 and Φ < 0, since the
solution is symmetric under reflections at both the α and the Φ axis (so wave tubes
intersect at the right boundary). The intrinsic structure of the wave function is not
completely resolved by the grid size used in this figure

what would ‘happen’ to a quasi-classical universe that were classically bound
to recontract at some time?

One may discuss the quantum cosmological state in analogy to the ‘sta-
tionary’ wave function of a quantum ‘particle’ with fixed energy E, reflected
from a spatial potential barrier (now a barrier in α). Since in timeless quan-
tum gravity there is no reference phase e−iωt, one cannot distinguish between
incoming and outgoing partial waves by their proportionality to e±ikα.

Because of the hyperbolic nature of the Wheeler–DeWitt equation, narrow
wave packets in Φ at fixed α lead to narrow ‘wave tubes’ that may approxi-
mately follow classical trajectories in mini-superspace (see Fig. 6.1). The case
of positive spatial curvature, k = +1, is particularly illustrative. Its classical
trajectories in mini-superspace would reverse direction with respect to α at
some αmax (Fig. 5.7). According to classical determinism, half of the trajec-
tory (defined to represent the contracting universe) would be regarded as the
dynamical successor of the other half (the expansion era). This determinis-
tic relation is symmetric, since there is no absolute dynamical direction. The
wave determinism described by the hyperbolic equation (6.6), on the other
hand, propagates monotonically with α, and permits one to choose the whole
initial condition (consisting of Ψ and ∂Ψ/∂α) on any ‘space-like’ hypersurface
in superspace (e.g., at a small value of α). One could thus exclude precisely
that part of the wave tube that would be required by classical determinism
(Zeh 1988). How can these two forms of determinism (classical and quantum)
be reconciled?

This dilemma can be resolved in analogy to conventional stationary states
of quantum mechanics – though now including negative dynamical mass mα
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Fig. 6.2. Real-valued wave tube of the ‘time’-dependent (damped) oscillator (6.5)
in adiabatic approximation without taking into account the reflection at amax, i.e.,
only the first term of (6.12) is used. Expansion parameter a = eα is plotted upward
and the amplitude of a homogeneous massive scalar field Φ from left to right

for the time-like variable. The simplest toy model for what is classically a
periodically contracting and rebouncing universe is a free motion between re-
flecting boundaries of a narrow rectangle in α and Φ, where quantum me-
chanical solutions, such as real-valued wave tubes, can be constructed as
superpositions of products of trigonometric functions matching the bound-
ary conditions. (The potential barriers would have to be positive infinite
for Φ-boundaries and negative infinite for α-boundaries.) In order to al-
low nontrivial zero-energy solutions, HΨ = 0, the box lengths Li have to
be commensurable when accounting for the mass ratio, that is, Lα/LΦ =√−mΦ/mα k/l, with integers k and l. Similar stationary wave tubes may
be constructed in analogy to Schrödinger’s coherent states from anisotropic
harmonic oscillators (Fig. 6.1). In this case, one needs an indefinite potential,
V (Φ, α) =

[
(ω2

ΦΦ2 − ωΦ) − (ω2
αα2 − ωα)

]
/2, where ‘zero point energies’ have

been subtracted. In the commensurable case, now defined by ωα/ωΦ = l/k,
solutions to the constraint HΨ = 0 may be obtained as superpositions of
the factorizing eigensolutions Θnα(

√
ωαα)ΘnΦ

(
√

ωΦΦ) of H, with eigenvalues
E = Eα + EΦ = −nαωα + nΦωΦ = 0, in the form

Ψ(α, Φ) =
∑

n

cnΘnk(
√

ωαα)Θnl(
√

ωΦΦ) . (6.8)

If the coefficients cn are chosen to define an ‘initial’ Gaussian wave packet
in Φ at ‘time’ α = 0, centered at some Φ0 �= 0 and with ∂Ψ/∂α = 0, say,
the resulting tube-like solutions propagate in α, following classical Lissajous
figures in mini-superspace – just as for the conventional oscillator (DeWitt
1967).

In contrast to Schrödinger’s time-dependent coherent states, which follow
classical trajectories without changing their shape, these ‘upside-down oscil-
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Fig. 6.3. Same as Fig. 6.2, but including the contribution of the reflected part: sec-
ond term of (6.12). The coherent wave tube assumed to represent the expanding
universe is here hardly recognizable against the background of the diffuse contribu-
tion representing the recontracting universe(s)

lators’ display a rich intrinsic structure. Wave packets on different parts of
a trajectory must also interfere with one another whenever they overlap –
in particular close to the classical turning points. Interference between inter-
secting tubes would be suppressed by taking into account additional variables
(higher-dimensional configuration spaces), since a projection onto mini-super-
space – that is, tracing out all other variables – represents decoherence (see
Sect. 6.2.2).

All components of (6.8) satisfy the usual boundary condition of normaliz-
ability in Φ and α. This choice is responsible for the reflection of wave tubes at
the potential barriers. Although unusual for a conventional time parameter,
it is consistent with the role of α as a dynamical variable. Such boundary con-
ditions (if applied to the complete Quantum Universe) might even determine
the solution of the Wheeler–DeWitt equation uniquely – provided there is a
solution for its fixed zero eigenvalue at all. The degeneracy of the oscillator
model (6.7), which allows the choice of ‘initial’ narrow wave packets, is ev-
idently pathological. Narrow wave tubes can in general only be expected to
arise as robust branches of the complete solution. They may not have to obey
the boundary conditions individually.

An approximate solution can also be constructed for the Wheeler–DeWitt
equation with a Friedmann Hamiltonian (6.5) – see Fig. 6.2 (Kiefer 1988).
The oscillator potential with respect to Φ may here be assumed to be weakly
α-dependent over many classical oscillations in Φ (shown in Fig. 5.7) except
for small values of α. If α-dependent oscillator wave functions Θn(Φ) – similar
to those used in (6.8) – are now defined by the eigenvalue equation(

− ∂2

∂Φ2
+ m2e6αΦ2

)
Θn

(√
me3αΦ

)
= (2n + 1)me3αΘn

(√
me3αΦ

)
, (6.9)
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one may expand a solution of (6.5) in terms of them as

Ψ(α, Φ) =
∑

n

cn(α)Θn(
√

me3αΦ) . (6.10)

In the adiabatic approximation with respect to α (that may here be based
on the Born–Oppenheimer expansion in terms of the inverse Planck mass
– see Banks 1985 and Sect. 6.2.2), this leads to decoupled equations for the
coefficients cn(α): [

+
∂2

∂α2
+ 2En(α)

]
cn(α) = 0 . (6.11)

For positive spatial curvature, k = 1, the effective potentials

2En(α) := (2n + 1)me3α − ke4α

become negative for α → +∞. Even though V (α, Φ) is positive almost every-
where in this limit - see (5.35), the Φ-oscillations are drawn into the narrow
region V < 0 (in the vicinity of the α-axis – see Fig. 5.7) by damping.

So if one requires square integrability for α → ∞, only the exponentially
decreasing partial wave solutions of (6.11) are admitted. Wave packets in Φ
consisting of many oscillator eigenstates with quantum numbers n ≈ n0, say,
may then be used to form wave tubes in α and Φ following the classical paths
of Fig. 5.7 – see Fig. 6.2. However, in the Friedmann model, wave tubes cannot
remain narrow wave packets in Φ when reflected at amax = eαmax , since the
turning point of the n th partial wave, amax,n = (2n + 1)m, depends strongly
on n. For values of a sufficiently below amax,n, the coefficients cn(α) can
according to Kiefer be written by means of a ‘scattering’ phase shift (caused
by the reflection) in the form of a sum of incoming and outgoing (though
real) waves. In the lowest WKB approximation one obtains (‘asymptotically’
in this sense)

cn(α) ∝ cos
[
φn(α) + n∆φ

]
+ cos

[
φn(α) − n∆φ +

π

4
an

2
]

. (6.12)

Here,

φn(α) :=
(an

4
− a

2

)√
a(an − a) +

[
arcsin

(
1 − 2a

an

)
− π

2

]
a2

n

8
− π

4
(6.13)

is a function of α and αn, while the integration constant ∆φ is the phase of the
corresponding classical Φ-oscillation at its turning point in α. If coefficients
are chosen, when substituting (6.12) into (6.10), such that the first cosines de-
scribe a (narrow) coherent oscillator wave packet, the ‘scattering phase shifts’
πan

2/4 of the second cosine terms cause the reflected wave to spread widely
(see Fig. 6.3). Only for pathological potentials, such as the indefinite harmonic
oscillator (6.8), or for integer values of m2/2 in the specific model (6.4), can
the phase shift differences be omitted as multiples of π.
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Therefore, even the WKB approximation, which would suppress any dis-
persion of the wave packet, cannot in general describe an expanding and
recollapsing quasi-classical universe by means of (‘initially’ prepared) wave
packets that propagate as narrow tubes beyond the turning point. The con-
cept of a universe deterministically expanding and recollapsing along a certain
trajectory in superspace is as incompatible with quantum cosmology as the
concept of an electron orbit in the hydrogen atom is with quantum mechanics.
Many quasi-trajectories (wave tubes) describing expanding universes have to
be superposed in order to obtain one quasi-classical contraction era (and vice
versa). Decoherence has to select very different superpositions of partial waves
cnΘn in (6.10) to define robust branches in opposite eras. The reflection at
amax describes a quasi-stochastic quantum process – just as in a quantum
scattering event. Compatibility problems for boundary conditions can thus
affect only the total Wheeler–DeWitt wave function (the superposition of
all branches). They would not at all occur for a non-normalizable Wheeler–
DeWitt wave function that represents forever expanding universes (k = 0 or
−1 in the case of Λ = 0).

All these simple models are far from being realistic. They are not only
unable to describe statistical aspects or decoherence – they also neglect the
important coupling between cosmic degrees of freedom and microscopic ones.
In particular, the latter’s ground states (‘zero point motion’) must in gen-
eral depend on α and Φ. The cosmic variables are then subject to extreme
decoherence (Barvinsky et al. 1999). Simplified models, as discussed above,
may nonetheless appropriately describe certain important conceptual aspects
of quantum cosmology.

General Literature: Ryan 1972, Kiefer 1988.

6.2.2 The Emergence of Classical Time

If classical time emerges, it cannot emerge
in classical time

A we have seen in Sect. 5.4, there is no dynamically preferred time parameter
in general relativity or other reparametrization invariant classical theories.
Moreover, the dynamical succession of global states, which may be conve-
niently described by means of a time coordinate, depends on the choice of
a foliation. The resulting invariant spacetime geometry nonetheless defines
many-fingered physical time, that is, absolute proper times as local controllers
of motion, while any foliation represents a trajectory in superspace (a global
history) that may then also be parametrized.

In quantum gravity, no global time parameter is generally available any
longer, since there are no trajectories (that is, no one-dimensional successions
of classical states with their physical clocks). Two given three-geometries are
then not dynamically connected by a definite four-geometry (a spacetime).
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Neither world lines nor their proper times, which could control Schrödinger
or master equations for local systems, are defined, and three-geometry is no
longer a reliable ‘carrier of information about time’.

As explained in Chap. 4, the Schrödinger equation is exact only as a global
equation. Its restriction to matter would require the global foliation of a clas-
sical spacetime. While this could still be chosen to proceed just locally (thus
defining a ‘finger of time’), the Wheeler–DeWitt equation describes entangled
dynamics for global quantum states of matter and three-geometry.

How can the traditional concept of time (either in the form of many-
fingered time, or as a parameter for the dynamics of global states) be recov-
ered from the Wheeler–DeWitt equation? This requires concepts and methods
discussed in Sect. 4.3, where quasi-classical quantities were shown to emerge
dynamically and irreversibly by means of decoherence, but the dynamics has
to be appropriately modified to suit the timeless Wheeler–DeWitt equation:
classical time cannot emerge in classical time. Similarly, classical spacetime
cannot have entered existence in a global quantum ‘event’ (which would have
to presume time).

In the local field representation, the general Wheeler–DeWitt equation can
be explicitly written in its gauge-dependent form (DeWitt 1967) as

−16π

m2
P

∑
klk′l′

Gklk′l′
δ2Ψ

δhklδhk′l′
− m2

P

16π

√
h(R − 2Λ)Ψ + HmatterΨ = 0 , (6.14)

when disregarding factor ordering. Here, Ψ is a functional of the six indepen-
dent functions hkl = gkl (k, l = 1, 2, 3), which represent the spatial metric
on a hypersurface. The letter h (without indices) means their determinant,
R their spatial Riemann curvature scalar. Λ is the cosmological constant,
while mP := 1/

√
G is the Planck mass. The hamiltonian density, Hmatter,

also depends on the metric by means of its kinetic energy terms. The matrix
Gklk′l′ := (hkk′hll′ + hkl′hlk′ − 2hklhk′l′)/2

√
h with respect to the six sym-

metric pairs of indices kl is DeWitt’s ‘superspace metric’. It has the locally
hyperbolic signature − + + + ++.

The Wheeler–DeWitt equation (6.14) can assume this local form only be-
cause of its gauge degrees of freedom. Their elimination requires the wave
functional to obey the three momentum constraints (see Sect. 5.4), in their
quantum mechanical form written as HkΨ = (δΨ/δhkl)|l = 0, where |l is
the covariant derivative with respect to the spatial metric hkl. They rep-
resent three functional differential equations for the functional Ψ [hkl], which
depends on six variables hkl at each point. Integration of the Wheeler–DeWitt
equation (6.14) under the constraints would then leave two functions as ‘inte-
gration constants’. These two degrees of freedom at each space point may be
regarded as representing the two physical components (polarizations) of the
gravitational field. The momentum constraints are analogous to Gauß’s law
in electrodynamics, which also forms a constraint on the initial data when
written in terms of the potential A. However, the momentum constraints are
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‘secondary’: they can only in special situations be solved analytically. In the
superspace region that describes Friedmann-type universes, all but one of the
infinity of negative kinetic energy terms of the Wheeler–DeWitt equation rep-
resent gauge degrees of freedom (see footnote 4 of Chap. 5). The remaining
physical dynamics is globally hyperbolic.

I shall now assume that a solution of these coupled equations exists. Since
the quantity m2

P/32π that appears in (6.14) as a formal dynamical mass is
very large compared to dynamical masses contained in Hmatter, one may con-
veniently analyze the solution by means of a Born–Oppenheimer approxima-
tion in analogy to molecular physics (Banks 1985). The matter wave function
will then adiabatically depend on the massive gravity variables – even though
there is no time-dependence. This situation resembles small molecules, which
are usually found in their energy eigenstates (giving rise to rotational and
vibrational bands) rather than in states representing quasi-classical motion.
However, as a novel aspect of quantum cosmology, the matter degrees of free-
dom must now also describe observers, while molecules or other microscopic
systems are observed from outside. Because of the adiabatic correlation of
the observer with the quantum state of geometrodynamics (and that of other
macroscopic variables), this quasi-classical state appears ‘given’ to him (see
Sect. 4.6).

In order to obtain a semiclassical dynamical description of spacetime ge-
ometry, one may use the ansatz

Ψ [hkl, x] = exp
[
iS0(hkl)

]
χ(hkl, x) , (6.15)

where x represents all matter degrees of freedom. S0 is defined as a solution
of the Hamilton–Jacobi equation of geometrodynamics (Peres 1962), with a
self-consistent source term that is given as the expectation value 〈χ|Tµν |χ〉 of
the matter states χ that are to be calculated along classical trajectories de-
scribed by S0. This is analogous to the description of large molecules, where
the heavy atomic nuclei or ions are dynamically described by time-dependent
classical orbits resulting from an effective potential that arises from an expec-
tation value for electron wave functions, which in turn depend adiabatically
on the nuclear positions. If the global boundary conditions are appropriate
to justify the WKB approximation, the matter wave function χ may indeed
depend adiabatically on the massive variables hkl in the relevant regions of
configuration space. As this spatial metric describes the three-geometry as
the carrier of information about time along every WKB trajectory (similar to
geometric optics), the dependence of χ on hkl may be regarded as a generalized
physical time dependence of the matter states.

Since the classical Hamilton–Jacobi equations describe an ensemble of dy-
namically independent trajectories in the configuration space of the three-
geometries, the remaining equations for the matter states χ can be integrated
along them. This procedure becomes particularly convenient after the expo-
nential exp(iS0) has been raised to the usual second order WKB approxima-
tion that includes a ‘prefactor’ which warrants the conservation of probabil-
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ity. In its local form (6.14), the Wheeler–DeWitt equation is reduced by the
ansatz (6.15) to a Tomonaga–Schwinger equation (Lapchinsky and Rubakov
1979, Banks 1985):

i
∑

klk′l′
Gklk′l′

δS0

δhkl

δχ
δhk′l′

= Hmatterχ . (6.16)

Its LHS is (the local component of) a derivative of χ in the direction of
the gradient ∇S0 in the configuration space of three-geometries. Written as
i∇S0·∇χ =: idχ/dτ , it defines a many-fingered time parameter τ for all tra-
jectories (that is, for all different spacetimes in the ensemble described by the
specific solution S0). Because of its dependence on the WKB approximation,
τ may be called a ‘WKB time’. Since the WKB wave function in general
describes an extended superposition, its individual quasi-trajectories (corre-
sponding to narrow wave tubes), correlated to their specific matter states χ,
can only represent Everett branches of a general quantum universe. They are
indeed decohered from one another by the adiabatic dependence on gravity of
the uncontrollable microscopic degrees of freedom contained in χ (Sect. 4.3.5).

Equation (6.16) thus represents an effective time-dependent Schrödinger
equation for matter. Higher orders of the WKB approximation lead to correc-
tions to this Schrödinger dynamics (Kiefer and Singh 1991). The local fingers
of time – represented by this local form – may be combined by integrating
(6.16) over three-space (Giulini 1995). This integration elevates the local inner
product ∇S0·∇χ, that is, a sum over k′l′ by means of the Wheeler–DeWitt
metric, to a global one. In this way it defines the progression of a reparametriz-
able common global dynamical time, valid for all spacetimes which are de-
scribed by the Hamilton–Jacobi function S0. Since τ is defined for all WKB
trajectories (thus defining ‘simultaneous’ three-geometries on them), it also
defines a foliation of superspace (Giulini and Kiefer 1994). Only the defini-
tion of spacetime coordinates requires lapse and shift functions N and Nk

(Sect. 5.4), which then also define ‘velocities’ ḣkl with respect to coordinate
time according to

ḣkl = −NGklk′l′
δS0

δhk′l′
+ Nk|l + Nl|k . (6.17)

The complex ansatz (6.15) is obviously essential for the result (6.16). The
correct Wheeler–DeWitt wave function will in general have to be approx-
imated by a superposition of several such WKB components. There is no
reason to expect a complex solution for the complete Wheeler–DeWitt wave
function that describes the Quantum Universe. So one may, in particular, have
to replace (6.15) by its real part, Ψ → Ψ + Ψ∗. The two terms may then sep-
arately obey (6.16) and its complex conjugate to an excellent approximation,
similar to the various WKB trajectories (or wave tubes) which have to be su-
perposed to form the extended wave front of geometric optics described by an
appropriate Hamilton–Jacobi solution S0 (or some higher order approxima-
tion S1). This dynamical separation can again be understood as a consequence
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of decoherence by the microscopic matter degrees of freedom (Halliwell 1989,
Kiefer 1992). It is interesting, as it represents a simple but fundamental exam-
ple of gauge symmetry breaking by Everett branching. Note, however, that in
contrast to the complex classical field in Sect. 6.1, the complex form of (6.16)
characterizes superpositions in Hilbert space – not in the configuration space
of fields.

The Born–Oppenheimer approximation with respect to the Planck mass
is not always the most appropriate one. Macroscopic matter variables may
be described by a WKB approximation, too, while certain geometric modes
(graviton states) may not. These variables could then be shifted between S0

and χ (see Vilenkin 1989). For example, Halliwell and Hawking (1985) applied
the WKB approximation only to the monopoles α and Φ which characterize
the quantum Friedmann universe (6.5). Their WKB solution would describe
an ensemble of trajectories a(t), Φ(t) in mini-superspace (Sect. 5.4). Wave
functions for the (nonlocal) higher multipole amplitudes of matter and geom-
etry can then again be obtained by means of a Tomonaga–Schwinger equation,
similar to (6.16). This choice of nonlocal variables offers the advantage of sep-
arating physical degrees of freedom (in this case the pure tensor modes) from
the remaining pure gauge modes. As mentioned in Sect. 5.4, the physical ten-
sor modes all appear in the kinetic energy with a dynamical mass of the same
sign as the matter modes, while only the monopole variable a (or α = ln a)
has negative dynamical mass. In this model, the monopoles a and Φ are very
efficiently decohered by the tensor modes (Zeh 1986b, Kiefer 1987, Barvinsky
et al. 1999). Decoherence of local ‘fluctuations’ may lead to the formation of
large scale structures of the Universe (Kiefer, Polarski and Starobinsky 1998).

The Tomonaga–Schwinger equation (6.16) justifies a dynamical time pa-
rameter on the basis of the timeless Wheeler–DeWitt equation, but not yet
an arrow of time. Its solutions require ‘initial’ conditions with respect to the
global time parameter τ . In order to describe our observed time-asymmetric
Universe, these initial conditions must be responsible for the arrow(s) of time
(in particular ‘quantum causality’, that has already been used when referring
to decoherence). However, they cannot be freely postulated any more, but
must be obtained from the complete Wheeler–DeWitt wave function, that
depends on its own boundary conditions. For them, the hyperbolic nature of
the Wheeler–DeWitt equation is essential. As discussed in Sect. 6.2.1, initial
conditions may be posed for it at any fixed value of a time-like variable in
superspace, such as α. While the initial condition for χ has to characterize
an early Everett branch, the total wave function, which gives rise to the time
arrow of this branching, must depend on a general boundary condition (per-
haps just normalizability). ‘Before’ anything may evolve in classical time – as
assumed when applying (6.16) in the forward direction, classical time must
itself emerge from an appropriate initial condition that is a consequence of
boundary conditions for the solution of (6.14). For example, if the dynamics
in the form (6.6) is generalized by means of higher multipoles as
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H =
∂2

∂α2
+ H2

red =
∂2

∂α2
+
∑

i

[
− ∂2

∂x2
i

+ Vi(α, xi)
]

+ Vint(α, {xi}) , (6.18)

where the xi are now all other variables, the potential Vint may be highly
asymmetric under a reversal of the sign of α. In particular, it could have a
simple structure for α → −∞, as indicated in (6.5), which might give rise
to a ‘simple’ initial condition (SIC) in α (see Conradi and Zeh 1991). This
may even explain the symmetric initial vacuum of Sect. 6.1. In the absence
of any theory that describes the big bang singularity, we can only assume an
appropriate simple structure of the total wave function in this limit (just as
discussed for t → 0 at the end of Chap. 4).

Inasmuch as the Tomonaga–Schwinger equation along a WKB trajectory
in superspace describes measurements, it is practically useless for calculating
‘backwards’ in global time τ . One would have to know all (observed and
unobserved) final branches of the total matter wave function χ (such as those
that have unitarily arisen during measurements in the past). In the ‘forward’
direction, this global Schrödinger equation for matter has to be replaced by a
master equation if decoherence of the quantum state of matter by gravity is
relevant (see Sect. 4.3.4). This may explain the oft-proposed gravity-induced
collapse as an apparent one in the ‘usual’ manner.

This limited applicability of a time-dependent Schrödinger or master equa-
tion that is based on WKB time would become particularly important for a
recontracting universe (Sect. 5.3). If a master equation can be derived for all
or most WKB trajectories with respect to that direction of τ that represents
increasing a, it cannot remain valid along a classical spacetime history that
leads to recontraction – cf. Fig. 6.3. Page (1985) and Hawking (1985) un-
derstandably arrived at the opposite conclusion when they described a recon-
tracting universe by using WKB trajectories beyond the turning point (see the
discussion following Zeh 1994). They thereby interpreted their semi-classical
Feynman paths as representing an ensemble of possible cosmic histories that
they justified by ‘initial quantum uncertainties’. Their further treatment then
neglects the final condition in τ that would be part of the initial condition
in α, and give rise to formal recoherence along the trajectory even if quasi-
trajectories of geometry were defined beyond the turning point.

Quantum cosmology requires a consistent realistic interpretation of quan-
tum theory (Everett’s, for example). It is often uncritically applied by using
some pragmatic (for this purpose insufficient) interpretation, including a tra-
ditional concept of time. Let me therefore briefly mention consequences of a
timeless wave function on Bohm’s quantum mechanics, which were first dis-
cussed for different reasons by Julian Barbour (1994a,c):

In addition to a time-dependent Everett wave function, Bohm’s theory pos-
tulates the existence of an ensemble of trajectories in a classical configuration
space that describes particles and fields (see Sect. 4.6). If quantum gravity is
taken into account, this configuration space must include three-geometries. In
a time-less theory, the trajectories degenerate into an ensemble of fixed states
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(points), assumed to possess ‘statistical weights’ according to |Ψ |2. In contrast
to Bohm’s time-dependent theory, this is no longer an initial condition that
would have to be preserved by the presumed unobservable dynamics for the
Bohm trajectories.

The structure of the Wheeler–DeWitt wave function in the range of ap-
plicability of a WKB approximation then statistically favors those classical
states which lie on apparent trajectories. This result is very similar to Mott’s
(1929) description of α-particle tracks in a cloud chamber, where the ‘station-
ary’ (static) wave function suppresses configurations that describe droplets
not approximately lying along particle tracks. Barbour calls these preferred
states ‘time capsules’, since they represent consistent memories (without cor-
responding histories). In Barbour’s words: “time is in the instant” (in the
state) “– the instant is not in time” (in a history). If all classical states in
the ensemble are regarded as ‘real’ (precisely as all past and future states
are assumed to form a real one-dimensional history in the conventional block
universe description), they now form a multi-dimensional rather than a one-
dimensional continuum. One may even say that time is replaced by the wave
function in this picture.

In contrast to the Everett interpretation, Bohm’s theory presumes these
classical configurations as part of fundamental reality, which must include ob-
servers. Each electron in a molecule, for example, is then assumed to possess a
definite position in every actual state (though not any velocity or momentum).
Since this particle position is not part of a memorized or documented (real or
apparent) history according to this interpretation, we are only led to believe
that it ‘actually exists’ as a wave function. The intrinsic dynamics of the static
Wheeler-DeWitt wave function has the consequence that the electron’s effects
on measurement devices are dynamically ‘caused’ by all its positions in the
support of the wave function (in dependence of the latter’s amplitude) – not
by a one-dimensional history. This picture would explain why the arena for the
wave function is a classical configuration space, although most problems and
disadvantages of Bohm’s theory (see Zeh 1999b) persist, and even new ones
may arise. Why should there be arbitrary global simultaneities representing
actual elements of reality, while ‘actuality’ seems to be meaningful only with
respect to local observers?

General Literature: Anderson 2006, Kiefer 2007.

6.2.3 Black Holes in Quantum Cosmology

During the early days of general relativity, the spacetime region behind a
black hole horizon was regarded as meaningless, since it is inaccessible to
observers in the external region. From their positivistic point of view, it would
‘not exist’. Later one realized that world lines, including those of observers,
can be smoothly continued beyond the horizon, where they would hit the
singularity within finite proper time. The new conclusion, that the internal
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Fig. 6.4. Various kinds of simultaneities for a spherical black hole in a Kruskal type
diagram: (a) hitting the singularity, (b) entering only the regular internal region,
(c) completely remaining outside (Schwarzschild coordinate t). Any Schwarzschild
time, for example t = tturn, may be identified with t = 0 (a horizontal line in the
diagram) regardless of the time of the observed collapse. No horizon forms on the
Schwarzschild simultaneities, which are complete for the external universe. (From
Zeh 2005c)

regions of black holes are physically ‘regular’ except at the singularity (hence
for limited time only), seems to apply as well to Bekenstein–Hawking black
holes until they disappear (see Sect. 5.1). However, arguments indicating a
genuine (possibly dramatic) quantum nature of the event horizon have also
been raised (’t Hooft 1990, Keski-Vakkuri et al. 1995, Li and Gott 1998).

While a consistent quantum description of black holes has not as yet been
presented, attempts were mostly based on semiclassical methods. (For an
overview see Kiefer 2007.) When combined with quantum cosmology, they
may lead to important novel consequences, which seem to revive the early
doubts in the meaning and existence of black hole interiors.

Consider the Schwarzschild metric (Fig. 5.1) as far as it is relevant for
a black hole formed by collapsing matter, such that the Kruskal regions III
and IV do not occur (Fig. 5.3a). Its dynamical (3+1) description in terms of
three-geometries depends in an essential way on the choice of a foliation (see
Fig. 6.4, or the Oppenheimer–Snyder model described in Box 32.1 of Misner,
Thorne and Wheeler 1973). Three-geometries which intersect the event hori-
zon may spatially extend to the singularity at r = 0, and thus render the global
quantum states that they carry prone to dynamical indeterminism or conse-
quences of a future theory that may avoid singularities. In contrast, a foliation
according to Schwarzschild time t would describe regular three-geometries for
t < ∞, which could be continued in time beyond t = ∞ by means of the new
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Fig. 6.5. Classical trajectory of a collapsing dust shell or the surface of a collapsing
star (solid curve) in a thermodynamically symmetric recontracting universe. It is
represented here in compressed Schwarzschild coordinates as used in Fig. 5.1, with
the Schwarzschild metric now being valid only to the right of the star’s surface.
Because of the scale compression, light rays appear almost horizontal in the diagram.
For t > tturn, advanced radiation from the formal past would focus onto the black
hole, which must now re-expand and grow hair in this scenario, while observers
would experience time in the opposite direction. No horizon ever forms: the region
r < 2M (which is later than t = ∞) would arise only if gravitational collapse
continued forever in a classical manner. Because of the drastic quantum effects close
to the turning point of a Friedmann universe (see Fig. 6.3), there are in general only
‘probabilistic’ connections between quasi-classical branches in the expansion and
contraction eras of the Universe. (From Kiefer and Zeh 1995)

time coordinate r (with physical time growing with decreasing r for r < 2M).
According to this foliation, the black hole interior with its singularity would
always remain in our formal future, and the singularity must be irrelevant for
Hawking radiation. In the pair creation picture, the negative-energy partner
is absorbed to the spacetime region close to what appears as a horizon until
this is completely transformed into radiation. Therefore, this foliation seems
to be appropriate for the formulation of a cosmological boundary condition
(in superspace), that may explain the master arrow of time.

For further discussion now assume that the expansion of the classical uni-
verse on which this diagram is based is reversed at a finite Schwarzschild time
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Fig. 6.6. Quasi-classical picture (using Schwarzschild coordinates) of a thermody-
namically T -symmetric quantum universe which contains black holes, white holes,
and black-and-white holes that re-expand by anti-causal effects. Instead of horizons
and singularities, there are merely spacetime regions of large curvature (‘dense mat-
ter’) in this scenario. Because of their strong time dilation, they may serve as a short
cut in proper time between big bang and big crunch (or between the presumed eras
of opposite arrows of time). ‘Information-gaining systems’ could not thereby survive
as such. In quantum cosmology there is no unique connection between quasi-classical
histories (Everett branches) represented by the upper and lower halves of the figure,
but there is no need for a violation of conservation laws

t = tturn that is much larger than the time of the effective gravitational col-
lapse (losing hair – see Fig. 6.5). No horizon yet exists on the Schwarzschild
simultaneity t = tturn < ∞. If the cosmic time arrow does change direction
(while the quasi-classical universe passes through an era of thermodynami-
cal indefiniteness), the gravitationally collapsing matter close to the expected
horizon will very soon (in terms of its own proper time) enter the era where
radiation is advanced in the sense of Chap. 2. The black hole can then no
longer ‘lose hair’ by emitting retarded radiation; it must instead ‘grow hair’
in an anti-causal manner (Fig. 6.6). According to a ‘time-reversed no-hair the-
orem’ it has to re-expand when the Universe starts recontracting (Zeh 1994,
Kiefer and Zeh 1995).

This scenario does not contradict the geometrodynamical theorems about
a monotonic growth of black hole areas, since no horizons ever form. A clas-
sical spacetime will not even exist close to the ‘turning of the tide’. Here,
decoherence is competing with recoherence before being replaced by it. Only
region I of Fig. 5.1 is then realized. Events which appear ‘later’ than tturn in
the classical picture are ‘earlier’ in the sense of the intrinsic dynamics of the
Wheeler–DeWitt equation (6.6) – and therefore also in the thermodynamical
sense if this is based on an intrinsic initial condition. This quantum cosmo-
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logical model describes an apparent (quasi-classical) two-time Weyl tensor or
similar condition (see Fig. 6.6). In quantized general relativity, the two appar-
ently different boundaries are identical, and thus represent one and the same
boundary condition. The problem of their consistency (Sect. 5.4) is reduced
to the intrinsic ‘final’ condition of normalizability for a → ∞.

The description used so far in this section does not apply directly to a
forever-expanding universe, where the arrow would preserve its direction along
a complete quasi-trajectory from a = 0 to a = +∞. The Wheeler–DeWitt
wave function is then not normalizable for a → ∞. However, one may require
this wave function to vanish on all somewhere-singular three-geometries by a
symmetric generalization of the Weyl tensor hypothesis. Such a condition has
been confirmed to apply to a simple quantum model of a collapsing thin spher-
ical matter shell (Háj́ıček and Kiefer 2001). In more realistic cases it would
again lead to important thermodynamical and quantum effects close to event
horizons (Zeh 1983), and drastically affect (or even exclude) the possibility
of continuing a quasi-classical spacetime beyond them. These consequences
would be unobservable in practice by external observers, since the immediate
vicinity of a future horizon remains outside their backward light cones for
all finite future. In order to receive information from the vicinity of a future
horizon, one has to come dangerously close to it, and thus participate in the
extreme time dilatation (see Fig. 5.2, where the light cone structure is made
evident, while distances are strongly distorted).

These conclusions seem again to throw serious doubts on the validity of
a classical continuation of spacetime into black hole interiors (see also Kiefer
2004 or Zeh 2005a). Event horizons in classical general relativity may sig-
nal the presence of drastic thermodynamical and quantum effects rather than
representing ‘physically normal’ regions of spacetime. While their observable
consequences depend on the world lines of detectors or observers (their accel-
eration, in particular), global quantum states, such as a specific ‘vacuum’, are
invariantly defined – though not invariantly observed (Sect. 5.2). These global
states may define an objective arrow of time, including ‘quantum causality’
(responsible for decoherence), by means of a fundamental boundary condition
for the Wheeler–DeWitt wave function.




