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The Thermodynamical Arrow of Time

The thermodynamical arrow of time is characterized by the increase of entropy
according to the Second Law. This law was first postulated by Rudolf Clausius
in 1865 as a consequence of Carnot’s theorem of 1824 when combined with
the just established equivalence of heat with other forms of energy (the First
Law of thermodynamics). It can be written in a general form by means of a
sum of external and internal changes of entropy as

dS

dt
=
{

dS

dt

}
ext

+
{
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}
int

,

where

dSext =
dQ

T
and

{
dS

dt

}
int

≥ 0 . (3.1)

Here, S is phenomenologically defined as the entropy of a bounded system –
thereby exploiting reversible processes with (dS/dt)int = 0, while dQ is the
reversible (infinitely slow) inward heat flux through the system’s complete
boundary during a time interval dt. (See also the local form (3.39) of the
Second Law on p. 60.)

Conventionally, the heat flux is not written as a derivative dQ/dt, since
its integral Q(t) would not represent a ‘function of state’ – although it does,
of course, define the time-integrated net flux in the actual process. The first
term of dS/dt in (3.1) vanishes by definition for ‘thermodynamically closed’
systems. Since the whole Universe is defined as an absolutely closed system
(even if infinite), its total entropy, or the mean entropy of co-expanding vol-
ume elements, should according to this law evolve towards its maximum – the
so-called Wärmetod (heat death) of the world. The phenomenological thermo-
dynamical concepts used in (3.1), in particular the temperature, apply only
in situations of partial (local) equilibrium.

Statistical physics is now believed to provide an explanation and potential
generalization of phenomenological thermodynamics – including its Second
Law. While in principle all physical concepts are phenomenological, this term
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is used here to emphasize the presumed existence of conceivably complete
microscopic concepts that await the application of statistical methods.

While statistical considerations are indeed essential for the understanding
of thermodynamical concepts, statistics as a method of counting has nothing a
priori to do with dynamics. Therefore, it cannot by itself explain dynamically
‘irreversible’ processes – characterized by {dS/dt}int > 0. This requires addi-
tional assumptions, which often remain unnoticed, since they appear ‘natural’
to our prejudiced way of thinking in terms of ‘causes’ (exclusively in the past).
These hidden assumptions have therefore to be carefully investigated in order
to reveal the true origin of the thermodynamical arrow.

An attempt to explain this fundamental asymmetry on the basis of the
‘historical nature’ of the world, that is, by using the idea that the past is
‘fixed’ (and therefore neither requires nor allows statistical retrodiction) would
clearly represent a circular argument when starting from nothing but time-
symmetrically deterministic laws. This idea must itself be rooted in the time
asymmetry of the physical world. The existence of reliable knowledge or infor-
mation only about the past corresponds to a time-asymmetric physical relation
between documents and their sources, analogous to the asymmetric ‘causal’
relation between retarded electromagnetic fields and charged currents as their
advanced sources (Sect. 2.1). For example, light contains information about
objects in the more or less recent past. Similarly, all documents represent an
asymmetry in the physical world, and do not simply reflect the way boundary
conditions (such as initial or final conditions) are posed.

In a statistical description, ‘irreversible’ processes are of the form

improbable state −→
t

probable state ,

where the probability ratio is usually a huge number. These probabilities are
defined by the size or measure of certain sets of elementary states (called
‘representative ensembles’ by Tolman 1938), which contain the real state of
the considered system (a point in its microscopic configuration space) as a
member. This measure of probability changes as the state moves along its
trajectory through different such sets. If the representative ensembles are op-
erationally defined, for example by means of macroscopic preparation pro-
cedures, they are often themselves called macroscopic or thermodynamical
‘states’. This terminology has its origin in a description that is unaware of the
microscopic states (or rejects the concept of such a microscopic reality). The
dynamical justification of thermodynamical states is a major objective of a mi-
croscopic foundation of thermodynamics: why are certain sets of microscopic
states ‘representative’ in forming macroscopic states?

Irreversible processes of the above kind would statistically be more abun-
dant than those of the kind

improbable state −→
t

improbable state .

Their overwhelming occurrence in Nature can therefore be understood under
the presumption of improbable initial states. In an operational approach,



3 The Thermodynamical Arrow of Time 41

such an assumption would simply be taken for granted: a consequence of
operations to be performed in time. In a cosmological context it requires a
cosmic initial condition. This has occasionally been called the Kaltgeburt (cold
birth) of the Universe, although a low temperature (kT much smaller than
energies of mechanical degrees of freedom) need not be its essential aspect
– see Sect. 5.3. However, this initial assumption appears quite unreasonable
precisely for statistical reasons, since (1) there are just as many processes of
the type

probable state −→
t

improbable state ,

and (2) far more of the kind

probable state −→
t

probable state .

The latter describe equilibrium. Hence, for statistical reasons we should expect
the world to be in the situation of a heat death, while the required improbable
initial condition needs an explanation that does not presume causality.

The first of these two arguments is the ‘reversibility objection’ (Umkehr-
einwand), formulated by Boltzmann’s friend and teacher Johann Joseph
Loschmidt. It is based on the fact that each trajectory has precisely one
time-reversed counterpart.1 If, for example, z(t) ≡ {qi(t), pi(t)}i=1,...,3N de-
scribes a trajectory in 6N -dimensional phase space (Γ -space) according to
the Hamiltonian equations, then the time-reversed trajectory, zT(−t) ≡
{qi(−t),−pi(−t)}, is also a solution of the equations of motion. If the en-
tropy S of a state z can be defined as a function of this state, S = F (z), with
F (z) = F (zT), then Loschmidt’s objection means that for every solution with
dS/dt > 0 there is precisely one corresponding solution with dS/dt < 0. In
statistical theories, F (z) is defined as a monotonic function (conveniently the
logarithm) of the size or measure of the mentioned set of states to which z
belongs. The property F (z) = F (zT) is then a consequence of the symmetry
character of the transformation z → zT, while the stronger objection (2) above
means that there are far more solutions with dS/dt ≈ 0, that is, S(t) ≈ Smax –
simply because this condition characterizes almost all of configuration space.

In order to justify the thermodynamical arrow of time statistically, one
therefore has to either derive the improbable initial conditions from an in-
dependent (time-asymmetric) cosmological assumption, or simply postulate
them in some form. The Second Law is by no means incompatible with deter-
ministic or T -symmetric dynamical laws; it is just extremely improbable and
1 Often, T (or CPT) symmetry of the dynamics is assumed for this argument.

This has misleadingly given rise to the by no means justified expectation that
the difficulties in deriving the Second Law may be overcome by dropping this
symmetry. However, as already pointed out in the Introduction, the crucial point
in Loschmidt’s argument is the time reversal symmetry of determinism itself (not
of its precise form), which is often reflected by the possibility of compensating
time reversal by another symmetry operation (see also Sect. 3.4).
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in conflict with unbiased statistical reasoning. The widespread ‘double stan-
dard’ of readily accepting improbable initial conditions while rejecting similar
final ones has been duly criticized by Price (1996).

Another argument against the statistical interpretation of irreversibility,
the recurrence objection (or Wiederkehreinwand), was raised much later by
Ernst Friedrich Zermelo, a collaborator of Max Planck at a time when the
latter still opposed atomism, and instead supported the ‘energeticists’, who
attempted to understand energy and entropy as fundamental ‘substances’.
This argument is based on a mathematical theorem due to Henri Poincaré,
which states that every bounded mechanical system will return as close as
one wishes to its initial state within a sufficiently large time. The entropy of
a closed system would therefore have to return to its former value, provided
only the function F (z) is continuous. This is a special case of the quasi-
ergodic theorem which asserts that every system will come arbitrarily close to
any point on the hypersurface of fixed energy (and possibly with other fixed
analytical constants of the motion) within finite time.

While all these theorems are mathematically correct, the recurrence objec-
tion fails to apply to reality for quantitative reasons. The age of our Universe
is much smaller than the Poincaré recurrence times even for a gas consist-
ing of no more than a few tens of particles. Their recurrence to the vicinity
of their initial states (or their coming close to any other similarly specific
state) can therefore be excluded in practice. Nonetheless, some ‘foundations’
of irreversible thermodynamics in the literature rely on formal idealizations
that would lead to strictly infinite Poincaré recurrence times (for example
the ‘thermodynamical limit’ of infinite particle number). Such assumptions
are not required in our Universe of finite age, and they would not invalidate
the reversibility objection (or the equilibrium expectation, mentioned above).
However, all foundations of irreversible behavior have to presume some very
improbable initial conditions.

The theory of thermodynamically irreversible processes must therefore ad-
dress two main problems:

1. The investigation of realistic mechanisms which describe the dynamical
evolution away from certain (presumed) improbable initial states. This is
usually achieved in the form of ‘master equations’, which mimic a law-like
T-asymmetry – analogous to Ritz’s retarded action-at-a-distance in elec-
trodynamics. In contrast to electrodynamics, they describe the dynamics
of ensembles, equivalent to an effective stochastic dynamics for the indi-
vidual states (applicable in the ‘forward’ direction of time). These mecha-
nisms should be able to justify the representative ensembles (macroscopic
states) and even describe the emergence of order (Sect. 3.4).

2. The precise nature of the required improbable initial states. This leads
again to the quest for an appropriate cosmic initial condition, similar to
the global condition Aµ

in = 0 in the early Universe that would be able to
explain the radiation arrow (see Sects. 2.2 and 5.3).
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3.1 The Derivation of Classical Master Equations

Statistical physics is concerned with systems consisting of a large number
of microscopic constituents which are known to obey quantum mechanics.
However, quantum theory is still haunted by interpretational problems, in
particular regarding the nature of probabilistic ‘quantum events’. These are
usually understood as representing a fundamental irreversible part of dynam-
ics, that might even be the true source of thermodynamical irreversibility.
In contrast, classical mechanics is deterministic and well defined. Therefore,
classical statistical mechanics will be formulated and discussed in this chap-
ter for conceptual consistency and later comparison with quantum statistical
mechanics – even though it is based on an incorrect microscopic theory. Most
thermodynamic properties of a gas, for example, can in fact be modelled by
a system of interacting classical mass points – see (4.21). While the present
section follows historical routes, a more general and systematic formalism,
that can later also be used in quantum theory, will be presented in Sect. 3.2.

3.1.1 µ-Space Dynamics and Boltzmann’s H-Theorem

The complete dynamical state of a mechanical system of N classical particles
(distinguishable mass points) can either be represented by one point in its
6N -dimensional phase space (‘Γ -space’), or by N numbered points in six-
dimensional ‘µ-space’ (the single-particle phase space). These N points form
a discrete distribution in µ-space. If the particles are not distinguished from
one another, this is exactly equivalent to an ensemble of N ! points in Γ -
space that results from all particle permutations. Because of the large number
of particles forming macroscopic systems (of order 1023), Boltzmann (1866,
1896) used continuous (smoothed) distributions (or phase space densities)
ρµ(p, q) to describe them. This plausible approximation will turn out to have
important consequences.

Two types of argument are in general used to justify it:

1. The formal thermodynamical limit N → ∞. This represents an idealiza-
tion that would lead to infinite Poincaré recurrence times. Mathematical
proofs may then appear rigorous, while in fact they are approximations
– valid only for the early (far from equilibrium) stage of our Universe.
Though often convenient, this procedure may conceal physically impor-
tant aspects, in particular when interchanging the thermodynamical limit
with the limit t → ∞ (physically a quantitative question).

2. Slightly ‘uncertain’ positions and momenta, defining small volume ele-
ments in Γ -space, ∆VΓ = (∆Vµ)N , instead of points. They describe in-
finite ensembles of states, and they may again lead to smooth distribu-
tions, since N ! such volume elements easily overlap even for a dilute gas,
as N !∆VΓ ≈ (N∆Vµ)N according to Stirling’s approximation. Although
uncertainties slightly larger than distances between the particles are suf-
ficient for the smoothing, they will turn out to have drastic dynamical
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consequences for many interacting particles. However, these uncertainties
cannot be based on the quantum mechanical uncertainty relations with
their corresponding phase space cells of size h3N , since equivalent prob-
lems reappear in quantum theory if phase space points are consistently
replaced by wave functions (see Sect. 4.1.1).

The time dependence of an individual point {pi(t), qi(t)} in Γ -space (with
i = 1, . . . , 3N), described by Hamilton’s equations, is equivalent to the si-
multaneous time dependence of all N points in µ-space. Therefore, the time
dependence of an ensemble in Γ -space (represented by a distribution ρΓ ) de-
termines that of the corresponding density ρµ. In contrast to the dynamics in
Γ -space (Sect. 3.1.2), however, this dynamics is not ‘autonomous’: the time
derivative of a non-singular density ρµ is not determined by ρµ. The reason is
that ρΓ cannot be recovered from ρµ in order to determine the latter’s time
derivative from that of the former. The mapping of Γ -space distributions on
µ-space distributions cannot be uniquely inverted, as it destroys information
about correlations between the particles (see also Fig. 3.1 and the subsequent
discussion). The smooth µ-space distribution may, for example, characterize a
‘macroscopic state’ in the sense mentioned in the introduction to this chapter.
Therefore, the envisioned chain of computation

ρµ −→ ρΓ
H−→ dρΓ

dt
−→ ∂ρµ

∂t
, (3.2)

which would be required to derive an autonomous dynamics for ρµ, is broken at
its first link. Boltzmann’s attempt to bridge this gap by statistical arguments
will turn out to be the source of the time direction asymmetry in his statistical
mechanics, and similarly in other formulations of irreversible processes. His
procedure specifies a direction in time in a phenomenologically justified way,
although it was originally meant to represent a general approximation rather
than a modification of the Hamiltonian dynamics. One must then ask under
what circumstances it may be valid.

Boltzmann postulated a stochastic dynamical law of the form

∂ρµ

∂t
=
{

∂ρµ

∂t

}
free+ext

+
{

∂ρµ

∂t

}
collision

. (3.3)

Its first term is defined to describe particle motion under external forces only.
It can be written as a continuity equation in 6-dimensional µ-space:{

∂ρµ

∂t

}
free+ext

= −divµjµ := −∇q·(q̇ρµ) −∇p·(ṗρµ)

= −∇q·
( p

m
ρµ

)
−∇p·(F extρµ) , (3.4)

where jµ is the current density in µ-space. In the absence of particle inter-
actions this equation would describe the dynamics of the ‘phase space fluid’
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exactly. It represents the local conservation of probability in µ-space accord-
ing to the deterministic Hamiltonian equations, which hold separately for
each particle in this case. Each point in µ-space (each single-particle state)
moves continuously on a trajectory that is governed by the external forces
F ext, thereby retaining its individual probability which was determined by
the initial condition for ρµ.

For the second (non-trivial) term, Boltzmann proposed his Stoßzahlansatz
(collision equation), which will be formulated here for simplicity under the
following assumptions:

(1) F ext = 0 ‘no external forces’,
(2) ρµ(p, q, t) = ρµ(p, t) ‘homogeneous distribution’.

The second condition is dynamically consistent for translation-invariant forces.
From these assumptions one obtains {∂ρµ/∂t}free+ext = 0. The Stoßzahlansatz
is then written in the plausible form

∂ρµ

∂t
=
{

∂ρµ

∂t

}
collision

= gains − losses , (3.5)

that is, as a balance equation. Its two terms on the RHS can be explicitly
written in terms of transition rates w(p1p2; p′

1p
′
2) for particle pairs scattered

from p′
1p

′
2 to p1p2. They are usually (in a low density approximation) deter-

mined by the two-particle scattering cross-section, and they have to satisfy
certain conservation laws. Because of this description in terms of rates for
discontinuous changes of momenta, the collisions cannot be described by a
local conservation of probability in µ-space, as in (3.4).

This Stoßzahlansatz (3.5) reads explicitly

∂ρµ(p1, t)
∂t

=
∫ [

w(p1p2; p′
1p

′
2)ρµ(p′

1, t)ρµ(p′
2, t)

− w(p′
1p

′
2; p1p2)ρµ(p1, t)ρµ(p2, t)

]
d3p2d3p′1d

3p′2 . (3.6)

It forms the prototype of a master equation as an irreversible balance equation
based on probabilistic transition rates. Because of their time asymmetry, these
master equations cannot be generally valid approximations. They may hold
for special solutions, which thus characterize an arrow of time. These solutions
cannot even be particularly frequent among all other solutions.

For further simplification, invariance of the transition rates under collision
inversion,

w(p1p2; p′
1p

′
2) = w(p′

1p
′
2; p1p2) , (3.7)

will be assumed. It may be derived from invariance under space reflection and
time reversal, although these two symmetries do not necessarily have to be
separately valid. The Stoßzahlansatz then assumes the form
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∂ρµ(p1, t)
∂t

=
∫

w(p1p2; p′
1p

′
2)
[
ρµ(p′

1, t)ρµ(p′
2, t)

− ρµ(p1, t)ρµ(p2, t)
]
d3p2d3p′1d

3p′2 . (3.8)

In order to demonstrate the irreversibility described by the Stoßzahlansatz , it
is useful to consider Boltzmann’s H-functional

H[ρµ] :=
∫

ρµ(p, q, t) ln ρµ(p, q, t)d3p d3q = N ln ρµ , (3.9)

proportional to the mean logarithm of probability. The mean f̄ of a function
f(p, q) is defined here as f̄ :=

∫
f(p, q)ρµ(p, q)d3p d3q/N , in accordance with

the normalization
∫

ρµ(p, q)d3p d3q = N . Because of this fixed normalization,
the H-functional is large for narrow distributions, but small for wide ones.
An ensemble of discrete points (or δ-distributions), for example, would lead
to H[ρµ] = ∞, while a constant distribution on a region of volume Vµ, ρµ =
N/Vµ, gives H[ρµ] = N(lnN − lnVµ). Note that H is defined only up to
an additive constant that depends on the choice of a unit volume element of
phase space in (3.10).

One may now derive Boltzmann’s H-theorem,

dH[ρµ]
dt

≤ 0 , (3.10)

by differentiating H[ρµ] with respect to time, while using the collision equation
in the form (3.8):

dH[ρµ]
dt

= V

∫
∂ρµ(p1, t)

∂t

[
ln ρµ(p1, t) + 1

]
d3p1

= V

∫
w(p1p2; p′

1p
′
2)
[
ρµ(p′

1, t)ρµ(p′
2, t) − ρµ(p1, t)ρµ(p2, t)

]
× [

ln ρµ(p1, t) + 1
]
d3p1d3p2d3p′1d

3p′2 . (3.11)

The last expression may be conveniently reformulated by using the symme-
tries under collision inversion given by (3.7), and under particle permutation,
w(p1p2; p′

1p
′
2) = w(p2p1; p′

2p
′
1). (Otherwise this combined symmetry would

be required to hold for short chains of collisions, at least.) Rewriting the inte-
gral in (3.11) as a symmetric sum of the four equivalent permutations of the
integration variables, one obtains

dH[ρµ]
dt

=
V

4

∫
w(p1p2; p′

1p
′
2)
[
ρµ(p′

1, t)ρµ(p′
2, t) − ρµ(p1, t)ρµ(p2, t)

]
×
{

ln
[
ρµ(p1, t)ρµ(p2, t)

]− ln
[
ρµ(p′

1, t)ρµ(p′
2, t)

]}
d3p1d3p2d3p′1d

3p′2 ≤ 0 .

(3.12)
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This integrand is manifestly non-positive, since the logarithm is a monotoni-
cally increasing function of its argument. This completes the proof of (3.10),
which would apply to any monotonic function, not just the logarithm.

In order to recognize the relation between the H-functional and entropy,
one may consider the Maxwell distribution ρM, given by

ρM(p) :=
N

V

exp(−p2/2mkT )√
(2πmkT )3

. (3.13)

Its H-functional H[ρM] has two important properties:

1. It represents a minimum for given energy , E =
∫

ρµ(p)[p2/2m]d3p ≈∑
i p2

i /2m. A proof will be given in a somewhat more general form in
Sect. 3.1.2. (Statistical reasoning unconstrained by a given energy value
would predict infinite energy, since the phase space volume grows non-
relativistically as its (3N/2) th power.) ρM must therefore represent an
equilibrium distribution (with maximum entropy) under the Stoßzahl-
ansatz if the transition probabilities are assumed to conserve energy.

2. One obtains explicitly

H[ρM] = V

∫
ρM(p) ln ρM(p)d3p

= −N

(
ln

V

N
+

3
2

lnT + constant
)

. (3.14)

This expression may be compared with the entropy of a mole of a
monatomic ideal gas according to phenomenological thermodynamics:

Sideal(V, T ) = R

(
lnV +

3
2

lnT

)
+ constant′ , (3.15)

with another constant that may depend on the particle number N ac-
cording to its derivation. The second constant may then be chosen such
that

Sideal = −kH[ρM] =: Sµ[ρM] , (3.16)

where k = R/N .

The entropy of an ideal gas can thus be identified with the measure of the
width of the molecular distribution in µ-space. The Stoßzahlansatz success-
fully describes the evolution of this distribution towards a Maxwell distribu-
tion with its parameter T that determines the conserved total energy. This
Lagrange parameter – see (3.19) – is thereby recognized as the temperature.

This important success seems to be the origin of the ‘myth’ of the statistical
foundation of the thermodynamical arrow of time. However, statistical argu-
ments applied to a gas can neither explain why the Stoßzahlansatz is a good
approximation in one and only one direction of time, nor tell us whether Sµ is
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always an appropriate definition of entropy. It will indeed turn out to be in-
sufficient when correlations between particles become essential, as is the case,
for example, for real gases or solid bodies. Taking them into account requires
more general concepts, which were first proposed by Gibbs. His approach will
also allow us to formulate the exact ensemble dynamics in Γ -space, although
it cannot yet explain the origin of the thermodynamical arrow of time (that
is, of the low-entropy initial conditions).

3.1.2 Γ -Space Dynamics and Gibbs’ Entropy

In the preceding section, Boltzmann’s smooth phase space density ρµ was jus-
tified by means of small uncertainties in particle positions and momenta. It
describes an infinite number (a continuum) of possible single-particle states,
for example each particle represented by a small volume element ∆Vµ. An ob-
jective (‘real’) state would instead be described by a point (or a δ-distribution)
in Γ -space, or by a sum over N δ-functions in µ-space. This would then lead
to an infinite value of Boltzmann’s H-functional, or negative infinite entropy.

However, the finite value of Sµ[ρµ], derived from the smooth µ-space dis-
tribution, is not just a measure of this arbitrary smoothing procedure (for
example representing the size of the volume elements ∆Vµ). If N points are
replaced by small but overlapping volume elements, this leads to a smooth
distribution ρµ whose width reflects that of the discrete (real) distribution
of particles. Therefore, Sµ characterizes the real physical state. The formal
‘renormalization of entropy’, which is part of this smoothing procedure, adds
an infinite positive contribution to the infinite negative entropy corresponding
to a point in such a way that the finite result Sµ[ρµ] is physically meaningful.
The ‘representative ensemble’ obtained in this way defines a finite measure of
probability (in the sense of the introduction to this chapter) for the N ! points
in Γ -space. It depends only slightly on the precise smoothing conditions, pro-
vided the discrete µ-space distribution is already smooth in the mean.

The ensemble concept introduced by Josiah Willard Gibbs (1902) dif-
fers from Boltzmann’s at the very outset. He considered probability densities
ρΓ (p, q) with

∫
ρΓ (p, q)dp dq = 1 – from now on writing p := p1, . . . , p3N ,

q := q1, . . . , q3N and dp dq := d3Npd3Nq for short, which are meant to describe
incomplete information (‘ignorance’) about microscopic degrees of freedom.
For example, a probability density may characterize a macroscopic (incom-
plete) preparation procedure. Boltzmann’s H-functional is then replaced by
Gibbs’ formally analogous extension in phase η :

η[ρΓ ] := ln ρΓ =
∫

ρΓ (p, q) ln ρΓ (p, q)dp dq . (3.17)

It leads generically to a finite ensemble entropy SΓ := −kη[ρΓ ]. For a probabil-
ity density that is constant on a phase space volume element of size ∆VΓ (while
vanishing elsewhere), one has η[ρΓ ] = − ln ∆VΓ . The entropy SΓ = k ln ∆VΓ
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is a logarithmic measure of the size of this volume element: it does not char-
acterize a real state, as Boltzmann’s entropy was supposed to do.

For a smooth distribution of statistically independent particles, ρΓ =∏N
i=1

[
ρµ(pi, qi)/N

]
, one nevertheless obtains

η[ρΓ ] =
N∑

i=1

∫ [
ρµ(pi, qi)/N

]
ln
[
ρµ(pi, qi)/N

]
d3pid3qi

=
∫

ρµ(p, q)
[
ln ρµ(p, q) − lnN

]
d3p d3q = H[ρµ] − N lnN . (3.18)

In this important special case one thus recovers Boltzmann’s statistical en-
tropy Sµ (with all its advantages) – except for the term kN lnN ≈ k lnN !
that has to be interpreted as the mixing entropy of the gas with itself. It is
absent in Boltzmann’s approach, since his µ-space distribution does not distin-
guish between particle permutations even though they define different states.
While merely an additive constant in systems with fixed particle number, this
self-mixing entropy leads to observable consequences at variance with experi-
mental results in situations where the particle number may vary dynamically.
Large particle numbers would then acquire far too large statistical weights. In
particular, the specific volume V/N in (3.14) would then be replaced by the
total volume V . This does even appear consistent (though empirically wrong),
since particles forming an ideal gas are independent of one another, so each
one is constrained only to the total volume V .

Since empirically not required, this self-mixing entropy was generally over-
looked in Boltzmann’s approach, although it had already been known as a
problem to Maxwell. It can be resolved only by applying Gibbs’ ensemble
concept to quantum states defined in the occupation number representation
for field modes (field quantization).2 Only after borrowing this result from
quantum field theory may one identify Boltzmann’s entropy with an ensemble
entropy (representing incomplete knowledge) for non-interacting ‘particles’.
2 The popular argument that this self-mixing entropy has to be dropped simply be-

cause of the indistinguishability of particles is wrong, since conceptually different
(even though operationally indistinguishable) states would have to be counted
separately for statistical purposes. Classical states differing by a permutation of
particles would dynamically retain their individuality. The use of µ-space distri-
butions, such as in Boltzmann’s statistical mechanics, is also inconsistent from a
classical point of view, unless these probability densities were multiplied by the
weight factors N ! again. The concepts of indistinguishability and identity are dif-
ferent in principle (see also Saunders 2005 and references therein for a discussion).
The identity of states with interchanged ‘particles’ can be understood in terms
of quantum fields – see also (4.21), since the permutation of two identical wave
packets at different places would represent an identity operation (Zeh 2003). Even
the difference N ln N − ln N ! ≈ N − ln N , usually neglected in these arguments,
can be understood: it counts states with different particle numbers which must
contribute to open systems that permit particle exchange, described by a grand
canonical distribution with given chemical potential (see p. 71).
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Furthermore, SΓ is maximized under the constraint of fixed mean en-
ergy, Ē =

∫
H(p, q)ρΓ (p, q)dp dq, by the canonical (or Gibbs’) distribution

ρcan := Z−1 exp
[−H(p, q)/kT

]
. The latter can be derived from a variational

procedure with the additional constraint of fixed normalization of probability,∫
ρΓ (p, q)dp dq = 1, that is, from

δ

{
η[ρΓ ] + α

∫
ρΓ (p, q)dp dq + β

∫
H(p, q)ρΓ (p, q)dp dq

}
(3.19)

=
∫ [

ln ρΓ (p, q) + (α + 1) + βH(p, q)
]
δρΓ (p, q)dp dq = 0 ,

with Lagrange parameters α and β for fixed normalization and energy. The
solution is

ρcan = exp
{
− [

βH(p, q) − α − 1
]}

=: Z−1 exp
[− βH(p, q)

]
, (3.20)

and one recognizes β = 1/kT and the partition function (sum over states)
Z :=

∫
e−βH(p,q)dp dq = e−α−1. By using the Ansatz ρ = eχ+∆χ with

eχ := ρcan, an arbitrary (not necessarily small) variation ∆χ(p, q), the above
constraints, and the general inequality ∆χe∆χ ≥ ∆χ, one may even show
that the canonical distribution represents an absolute maximum of this en-
tropy. In statistical thermodynamics (and in contrast to phenomenological
thermodynamics), entropy is thus a more fundamental concept than tem-
perature, which applies only to special (canonical or equivalent) probability
distributions, while a formal entropy is defined for all ensembles.

One can similarly show that SΓ is maximized by the microcanonical en-
semble ρmicro ≡ δ

(
E − H(p, q)

)
if constrained by the condition of fixed en-

ergy , H(p, q) = E. Although essentially equivalent for most applications, the
canonical and microcanonical distributions characterize two different situa-
tions: systems with and without energy exchange with a heat bath.

For non-interacting particles, H =
∑

i

[
p2

i /2m + V (qi)
]
, one obtains from

(3.20) a factorizing canonical distribution ρΓ (p, q) =
∏

i

[
ρµ(pi, qi)/N

]
, as

already considered in (3.18), with a µ-space distribution given by ρµ(p, q) ∝
N exp

{
− [

p2/2m+V (q)
]
/kT

}
. This is a Maxwell distribution multiplied by

the barometric formula. However, the essential advantage of the canonical Γ -
space distribution (3.20) over Boltzmann’s is its ability to describe equilibrium
correlations between particles. This has been demonstrated in particular by
the cluster expansion of Ursell and Mayer (see Mayer and Mayer 1940), in more
recent terminology called an expansion by N -point functions, and technically
a predecessor of Feynman graphs. However, the distribution (3.20) must not
include macroscopic degrees of freedom (such as the position and shape of a
solid body). In the case of a rotationally symmetric Hamiltonian, for example,
the solid body in thermodynamical equilibrium would otherwise have to be
physically characterized by a symmetric distribution of all its orientations in
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space rather than by a definite orientation. Similarly, its center of mass would
always have to be expected close to the minimum of an external potential
(see also Fröhlich 1973). These macroscopic variables are dynamically robust
rather than behaving ergodically. In order to calculate a thermodynamically
meaningful representative ensemble according to (3.19), one has to impose
additional constraints to fix their values (see Sect. 3.3.1).

Gibbs’ extension in phase η thus appears superior to Boltzmann’s H-
functional (3.9). Unfortunately, the corresponding ensemble entropy SΓ has
two (related) defects, which render it entirely unacceptable for representing
physical entropy: (1) in stark contrast to the Second Law it remains constant
under exact (Hamiltonian) dynamics, and (2) it is obviously not an additive
(or extensive) quantity, that would define an entropy density .

In order to confirm the first statement, one may formulate the exact en-
semble dynamics in Γ -space in analogy to (3.4) by using the 6N -dimensional
continuity equation

∂ρΓ

∂t
+ divΓ (ρΓ vΓ ) = 0 . (3.21)

It describes the conservation of probabilities for volume elements moving
through Γ -space by forming a bunch of trajectories. The 6N -dimensional ve-
locity vΓ may be replaced by means of the Hamiltonian equations,

vΓ ≡ (ṗ1, . . . , ṗ3N , q̇1, . . . , q̇3N ) =
(
−∂H

∂q1
, . . . ,− ∂H

∂q3N
,
∂H

∂p1
, . . . ,

∂H

∂p3N

)
.

(3.22)
So when rewriting (3.21) by means of the identity

divΓ (ρΓ vΓ ) = ρΓ divΓ vΓ + vΓ ·∇Γ ρΓ ,

one may use the Liouville theorem,

divΓ vΓ = − ∂2H

∂p1∂q1
−· · ·− ∂2H

∂p3N∂q3N
+

∂2H

∂q1∂p1
+· · ·+ ∂2H

∂q3N∂p3N
≡ 0 , (3.23)

which describes an incompressible ‘fluid’ in Γ -space. One thus obtains the
Liouville equation,

∂ρΓ

∂t
= −vΓ ·∇Γ ρΓ =

3N∑
n=1

(
∂H

∂qn

∂ρΓ

∂pn
− ∂H

∂pn

∂ρΓ

∂qn

)
=
{
H, ρΓ

}
, (3.24)

where {a, b} defines the Poisson bracket for two functions a and b. This equa-
tion represents the exact Hamiltonian dynamics for ensembles ρΓ (p, q, t) under
the assumption of individually conserved probabilities.

From this analogy with an incompressible fluid in space one may expect
the ensemble entropy SΓ (the measure of ‘extension in phase’) to remain con-
stant in time. This can indeed be confirmed by differentiating (3.17), inserting
(3.24), and repeatedly integrating by parts:
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dSΓ

dt
=
∫

(ln ρΓ + 1)ρ̇Γ dp dq

=
∫

(ln ρΓ + 1)
3N∑
n=1

(
∂H

∂qn

∂ρΓ

∂pn
− ∂H

∂pn

∂ρΓ

∂qn

)
dp dq

= −
∫ 3N∑

n=1

(
∂H

∂qn

∂ ln ρΓ

∂pn
− ∂H

∂pn

∂ ln ρΓ

∂qn

)
ρΓ dp dq

= −
∫ 3N∑

n=1

(
∂H

∂qn

∂ρΓ

∂pn
− ∂H

∂pn

∂ρΓ

∂qn

)
dp dq = 0 . (3.25)

A more instructive proof may be obtained by multiplying the Liouville equa-
tion (3.24) by the imaginary unit i in order to cast the dynamics into the form
of a Schrödinger equation,

i
∂ρΓ

∂t
= i

{
H, ρΓ

}
=: L̂ρΓ . (3.26)

The operator L̂ (acting on probability densities) is called the Liouville opera-
tor . In accordance with this analogy one may use the formal solution ρΓ (t) =
exp(−iL̂t)ρΓ (0), valid if ∂L̂/∂t = 0 (see Prigogine 1962). The Liouville oper-
ator is Hermitean with respect to the inner product 〈ρΓ , ρΓ

′〉 :=
∫

ρ∗Γ ρ′Γ dp dq

(that is, 〈ρΓ , L̂ρ′Γ 〉 = 〈L̂ρΓ , ρ′Γ 〉), as can again be shown by partial integra-
tion. This means that the Liouville equation conserves these inner products.
In particular, for ρ′Γ = ln ρΓ , one has

d
dt

〈ρΓ , ln ρΓ 〉 =
d
dt

ln ρΓ = 0 , (3.27)

since the Liouville operator, when applied to a function f(ρΓ ), satisfies the
same Leibniz chain rule L̂f(ρΓ ) = (df/dρΓ )L̂ρΓ as the time derivative.

The norm corresponding to this inner product, ‖ρΓ ‖2 = 〈ρΓ , ρΓ 〉 =∫
ρ2

Γ dp dq = ρΓ , is then also dynamically invariant. It represents a linear
measure of extension in phase (a linear ensemble entropy3), and thus has to
be distinguished from the probability norm

∫
ρΓ dp dq = 1̄ = 1. The conser-

vation of these measures under a Liouville equation confirms in turn that the
Γ -space volume is an appropriate measure for non-countable sets of states
(Ehrenfest and Ehrenfest 1911): the thus defined ‘number’ of states does not
change under an appropriately defined determinism. A more fundamental jus-
tification of this measure can be derived from the conservation of probabilities
of discrete quantum states (see Sect. 4.1).
3 See Wehrl (1978) for further measures, which are, however, not always monoton-

ically related to one another. The conventional logarithmic measure is usually
preferred because of the resulting additivity of the entropies of statistically inde-
pendent subsystems.
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The conservation of ensemble entropy, implied by using the exact dynam-
ics, is unacceptable in a statistical foundation of physical entropy. Therefore,
Gibbs introduced a more subtle concept of entropy, that was motivated by his
famous ink drop analogy : A bit of ink dropped into a glass of water is assumed
to behave as an incompressible fluid when the water is stirred. Although its
volume must remain constant, the whole glass of water will soon appear homo-
geneous in light blue. Only a microscopic examination would reveal that the
ink had simply rearranged itself into many thin tubes, which are everywhere
dense in spite of occupying only a volume of the initial size of the droplet.

Therefore, Gibbs defined his new entropy SGibbs by means of a coarse-
grained distribution ρcg, obtained by averaging over small (but fixed) 6N -
dimensional volume elements ∆Vm (m = 1, 2, . . .) which cover the whole Γ -
space:

ρcg(p, q) =
1

∆Vm

∫
∆Vm

ρ(p′, q′)dp′dq′ =:
∆pm

∆Vm
, for p, q ∈ ∆Vm . (3.28)

The resulting ensemble entropy is then given by

SGibbs := −kη[ρcg] = −k
∑
m

∆pm ln
∆pm

∆Vm
. (3.29)

As already mentioned in connection with the smoothing of Boltzmann’s µ-
space distributions, the justification of this procedure by means of the quan-
tum mechanical uncertainty relations, that is, by coarse-graining over phase
space cells of size h3N , may be tempting, but would clearly be inconsistent with
classical mechanics. The consistent quantum mechanical treatment (Chap. 4)
leads again to the conservation of ensemble entropy (now for ensembles of
wave functions rather than Γ -space points). ‘Quantum cells’ of size h3N can
be justified only as convenient units of phase space volume in order to ob-
tain the same normalization of entropy as in the classical limit of quantum
statistical mechanics, where ensemble entropy vanishes for pure states, which
correspond to phase space ‘cells’ – see (4.21). However, these quantum cells do
not define uncertain initial conditions which might explain quantum indeter-
minism (as often claimed); ensemble entropy is conserved under Hamiltonian
and Schrödinger dynamics.

The increase in Gibbs’ entropy can be understood according to the clas-
sical ink drop analogy. While the volume of the compact ink droplet is only
slightly increased by moderate coarse-graining, that of a dense web of thin
tubes (obtained by stirring) is considerably enlarged. Even though the coarse-
graining itself is artificial, its efficiency depends on the shape of the volume
to which it is applied. This is similar to using Boltzmann’s smooth µ-space
densities, which characterize properties of the discrete particle distributions.
Since there evidently exist far more droplet shapes with a large surface than
compact ones, the former have to be regarded as more probable. For statistical
reasons one should hardly ever find a compact droplet (which is confirmed for
three-dimensional ‘droplets’ in the absence of any surface tension).
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However, there remains an essential difference between a droplet of ink
in water and a dynamical volume element in phase space. While the exten-
sion and shape of a droplet are real physical properties, the real state of a
classical mechanical system is represented by a point in phase space. Coarse-
graining of the ink drop may be likened to Boltzmann’s smoothing procedure
in-so-far as it preserves properties of the discrete particle distribution, while
Gibbs’ entropy for a real state p, q, SGibbs = f(p, q) := k ln ∆Vm0 (resulting if
p, q ∈ ∆Vm0), would be entirely artificial. This difference would be reduced if
individual classical state were identified with N ! points in Γ−space.

Gibbs’ procedure is therefore usually applied to presumed phase space
densities, which can only represent incomplete information. His entropy then
measures the enlargeability by coarse-graining of a certain state of knowledge
– not by coarse-graining of a real physical state. Its increase, dSGibbs/dt ≥ 0,
under a deterministic (information-conserving) dynamical law describes the
transformation of macroscopic information, assumed to be present initially ,
into fine-grained information, that is then regarded as ‘irrelevant’ and dy-
namically neglected (Sect. 3.2). However, this procedure may be in conflict
with the idea of entropy as an objective physical quantity that is independent
of any information held by an observer. This fundamental problem will be
addressed again in Sect. 3.3 and later chapters.

Similar to the problem that arose for µ-space densities in (3.2), the coarse-
graining cannot be uniquely inverted, since it destroys information. The in-
tended chain of calculation,

ρcg −→ ρ
L̂−→ ∂ρ

∂t
−→ ∂ρcg

∂t
, (3.30)

is again broken at its first link. A new autonomous dynamics has therefore
been proposed for ρcg, in analogy to the Stoßzahlansatz , by complementing
the Hamiltonian dynamics with a dynamical coarse-graining, applied in small
but finite time steps ∆t:

{
∂ρcg

∂t

}
master

:=

[
e−iL̂∆tρcg

]cg
− ρcg

∆t
. (3.31)

In this form it may also be regarded as a variant of a ‘unifying principle’
that was proposed as a stochastic process by R.M. Lewis (1967). Instead of
dynamically applying Gibbs’ coarse-graining in (3.31), Lewis suggested max-
imizing the entropy in each dynamical step under the constraint of certain
fixed ‘macroscopic’ quantities (see also Jaynes’ theory in Sect. 3.3.1).

Equation (3.31) defines reasonable dynamics if the corresponding probabil-
ity increments ∆∆pm – see (3.28) – are proportional to ∆t for small but finite
time intervals ∆t, thus describing transition rates between the cells ∆Vm. This
important condition will be discussed in a more general form in Sect. 3.2, and
later for deriving the Pauli equation (4.18). Master equations such as (3.31)
ensure a monotonic entropy increase. Their approximate validity requires that
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Fig. 3.1. Transformation of information about particle momenta into information
about correlations between them as the basis of the H-theorem (symbolic, for non-
central collisions)

the arising microscopic (fine-grained) information remains dynamically irrele-
vant for the evolution of the coarse-grained distribution. Except in the case of
equilibrium, this cannot simultaneously be true in different directions of time.

The meaning of Boltzmann’s Stoßzahlansatz (3.6) can be similarly un-
derstood, as it neglects all particle correlations, which are thus regarded as
fine-grained information, after they have formed in collisions. It is again based
on the assumption that the interval ∆t is finite and large compared to colli-
sion times. The effect of an individual collision on the phase space distribution
may be illustrated in two-dimensional momentum space (Fig. 3.1): a collision
between two particles with small momentum uncertainties ∆p1 and ∆p2 leads
deterministically to a correlating (deformed) volume element of the same size
∆VΓ as the initial one. (In a realistic description, momenta would also be cor-
related with particle positions.) Subsequent neglect of the arising correlations
will then enlarge this volume element (∆V ′

Γ > ∆VΓ ). However, neglecting
such statistical correlations evidently has no effect on a phase space point .

The question as to the precise mathematical conditions under which cer-
tain systems are indeed ‘mixing’ in the sense of the plausible ink drop analogy
(in a stronger version referred to as K-systems after Kolmogorov) is rigorously
investigated, though under idealized conditions (such as ideal isolation), in er-
godic theory (see Arnol’d and Avez 1968, or Mackey 1989). Most non-ergodic
systems are pathological in forming sets of measure zero, or in being unstable
against unavoidable perturbations. In general, the quantitative question for
the time-scale of mixing between different regions in phase space is physically
far more relevant than exact formal theorems which apply only at infinite
times. Regions which don’t mix with others over long times may define robust
(usually macroscopic) properties, that do not have to represent constants of
the motion. On the other hand, certain non-ergodic aspects have been claimed
to apply under quite general circumstances (Yoccoz 1992), but no physically
relevant interpretation of these formal dynamical properties has ever been
given.

The strongest mixing is required for the finest conceivable coarse-graining.
This is given by its nontrivial limit ∆VΓ → 0 for the size of grains, which
defines a weak convergence for measures on phase space. It would again lead to
infinite Poincaré recurrence times for isolated systems. However, this is neither
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required in a universe of finite age, nor would it be realistic, since quantum
theory limits the entropy capacity available in the form of unlimited fine-
graining of classical phase space. For this quantum mechanical reason there
can be no ‘overdetermination’ of the microscopic past in spite of the validity
of microscopic causality (see footnote 1 of Chap. 2 and the end of Sect. 5.3).
However, it is important to note that all concepts of mixing are T -symmetric.
In order to explain the time asymmetry of the Second Law (‘irreversibility’),
they would have to be applied dynamically in a specific direction of time.

Dynamical coarse-graining as in (3.31) may also be based on an incom-
pletely known Hamiltonian. An ensemble of Hamiltonians defines a stochastic
dynamical model when used for calculating ‘forward’ in time. Even very small
uncertainties in the Hamiltonian may be sufficient to completely destroy fine-
grained information within a short time interval. Borel (1924) estimated the
effect of a gravitational force that would arise here on earth by the displace-
ment of a mass of the order of a few grams by a few centimeters at the distance
of Sirius. He thereby pointed out that this would lead to a completely differ-
ent microscopic state for the molecules forming a gas in a vessel under normal
conditions within seconds. Although distortions of the individual molecular
trajectories are extremely small, they would be amplified in each subsequent
collision by a factor of the order of l/R, the ratio of the mean free path over
the molecular radius. This extreme sensitivity to the environment describes
in effect a local microscopic indeterminism.4 In many situations, the micro-
scopic distortions may even co-determine macroscopic effects (thus inducing
an effective macroscopic indeterminism), as discussed, in particular, in the
theory of chaos (‘butterfly effect’).

The essence of Borel’s argument is that macroscopic systems, aside from
the whole Universe, may never be regarded as dynamically isolated – even
when thermodynamically closed in the sense of dSext = 0. The dynamical
coarse-graining that is part of the master equation (3.31) may indeed be as-
cribed to perturbations by the environment – provided the latter obey causal-
ity, that is, can be treated stochastically in the forward direction of time. This
important dynamical assumption is yet another form of the intuitive causality
discussed at the beginning of Chap. 2 as a major manifestation of the arrow of
time. The representative ensembles used in statistical thermodynamics may
therefore be understood within classical physics as those which arise (and
are maintained) by this stochastic nature of unavoidable perturbations, while
‘robust’ properties can be regarded as macroscopic.

While the intrinsic dynamics of a macroscopic physical system transforms
coarse-grained into fine-grained information, interactions with the environ-
ment thus transform the resulting fine-grained information very efficiently
into practically useless correlations with distant systems. The sensitivity of

4 While the effect of Borel’s gravitational distortion is drastically reduced for quan-
tized interactions, other environmental effects (such as decoherence) then become
important in producing an effective local indeterminism (see Sects. 4.3.4 and 5.3).
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the microscopic states of macroscopic systems to such interactions with their
environments strongly indicates that simultaneously existing opposite arrows
of time in different regions of the Universe would be inconsistent with one an-
other. This universality of the arrow of time seems to be its most important
property. Time asymmetry has therefore been regarded as a global symmetry
breaking . However, such a conclusion would not exclude the far more probable
situation of thermal equilibrium.

Lawrence Schulman (1999) has challenged the usual assumption of a uni-
versal arrow of time by suggesting explicit counterexamples. Most of them are
indeed quite illustrative in emphasizing the role of initial of final conditions,
but they appear unrealistic in our Universe (see Zeh 2005b). The situation
is similar to the symmetric boundary conditions suggested by Wheeler and
Feynman in electrodynamics, and discussed in Sect. 2.4. Local final conditions
at the present stage of the Universe or in the near future can hardly be retro-
caused by a low entropy condition at the big crunch (see also Casati, Chirikov
and Zhirov 2000), but may be essential during a conceivable recontraction era
of the Universe (see Sect. 5.3).

In order to reverse the thermodynamical arrow of time in a bounded sys-
tem, it would not therefore suffice to “go ahead and reverse all momenta”
in the system itself, as ironically suggested by Boltzmann as an answer to
Loschmidt. In an interacting Laplacean universe, the Poincaré cycles of its
subsystems could in general only be those of the whole Universe, since their
exact Hamiltonians must always depend on their time-dependent environ-
ment.

Time reversal including thermodynamical aspects has been achieved even
in practice for very weakly interacting spin waves (Rhim, Pines and Waugh
1971). The latter can be regarded as isolated systems to a very good approx-
imation (similar to electromagnetic waves in the absence of absorbers), while
allowing a sudden sign reversal of their spinor Hamiltonian in order to sim-
ulate time reversal (dt → −dt). These spin wave experiments demonstrate
that a closed system in thermodynamical equilibrium may preserve an arrow
of time in the form of hidden correlations. When a closed system has reached
macroscopic equilibrium, it appears T -symmetric, although its fine-grained
information determines the distance and direction in time to its low-entropy
state in the past (see also the Appendix for a numerical example). In con-
trast to such rare almost-closed systems, generic ones are strongly affected by
Borel’s argument, and cannot be reversed by local manipulations.

3.2 Zwanzig’s General Formalism of Master Equations

Boltzmann’s Stoßzahlansatz (3.6) for µ-space distributions and the master
equation (3.31) for coarse-grained Γ -space distributions can thus be under-
stood in a similar way. They describe the transformation of special macro-
scopic states into more probable ones, whereby the higher information con-
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tent of the former is transformed into macroscopically irrelevant information.
There are many other master equations based on the same strategy, and de-
signed to suit various purposes. Zwanzig (1960) succeeded in formalizing them
in a general and instructive manner that also reveals their analogy with re-
tarded electrodynamics as another manifestation of the arrow of time – see
(3.40)–(3.49) below.

The basic concept of Zwanzig’s formalism is defined by idempotent map-
pings P̂ , acting on probability distributions ρ(p, q):

ρ → ρrel := P̂ ρ , with P̂ 2 = P̂ and ρirrel := (1 − P̂ )ρ . (3.32)

Their meaning will be illustrated by means of several examples below, before
explaining the dynamical formalism. If these mappings reduce the information
content of ρ to what is then called its ‘relevant’ part ρrel, they may be regarded
as a generalized coarse-graining . In order to interpret ρrel as a probability
density again, one has to require its non-negativity and, for convenience,∫

ρreldp dq =
∫

ρdp dq = 1 , (3.33)

that is, ∫
ρirreldp dq =

∫
(1 − P̂ )ρdp dq = 0 . (3.34)

Reduction of information means

SΓ [P̂ ρ] ≥ SΓ [ρ] (3.35)

(or similarly for any other measure of ensemble entropy).
Using this concept, Lewis’ master equation (3.31), for example, may be

written in the generalized form{
∂ρrel

∂t

}
master

:=
P̂ e−iL̂∆tρrel − ρrel

∆t
. (3.36)

It would then describe a monotonic increase in the corresponding entropy
S[ρrel]. In contrast to Zwanzig’s approach, to be described below, phenomeno-
logical master equations such as Lewis’s unifying principle have often been
meant to describe a fundamental indeterminism that would replace reversible
Laplacean determinism.

In most applications, Zwanzig’s idempotent operations P̂ are linear and
Hermitean with respect to the inner product for probability distributions de-
fined above (3.27). In this case they are projection operators, which preserve
only some ‘relevant component’ of the original information. If such a projec-
tion obeys (3.33) for every ρ, it must leave the equipartition invariant, P̂1 = 1,
as can be shown by writing down the above-mentioned inner product of this
equation with an arbitrary distribution ρ and using the hermiticity of P̂ .
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Zwanzig’s dynamical formalism may also be useful for non-Hermitean or
even non-linear idempotent mappings P̂ (see Lewis 1967, Willis and Picard
1974). These mappings are then not projections any more: they may even
create new information. A trivial example for the creation of information
is the nonlinear mapping of all probability distributions onto a fixed one,
P̂ ρ := ρ0 for all ρ, regardless of whether or not they contain a component
proportional to ρ0. The physical meaning of such generalizations of Zwanzig’s
formalism will be discussed in Sects. 3.4 and 4.4. In the following we shall
consider information-reducing mappings.

Zwanzig’s ‘projection’ concept is deliberately kept general in order to per-
mit a wealth of applications. Examples introduced so far are coarse-graining,
P̂ cgρ := ρcg, as defined in (3.28), and the neglect of correlations between
particles by means of µ-space densities:

P̂µρ(p, q) :=
N∏

i=1

ρµ(pi, qi)
N

,

with

ρµ(p, q) :=
N∑

i=1

∫
ρ(p, q)δ3(p − pi)δ3(q − qi)dp dq . (3.37)

(As before, boldface letters represent three-dimensional vectors, while p, q
is a point in Γ -space.) The latter example defines a non-linear though
information-reducing ‘Zwanzig projection’. Most arguments applying to lin-
ear operators P̂ remain valid in this case when applied to the linearly re-
sulting µ-space distributions ρµ(p, q) (which do not live in Γ -space) rather
than to their products P̂µρ(p, q) (which do). In quantum theory, this ap-
proach is related to the Hartree or mean field approximation. Boltzmann’s
‘relevance concept’, which, when written as a Zwanzig projection, would map
real states onto products of smooth µ-space distributions, can then be written
as P̂Boltzmann = P̂µP̂cg. An obvious generalization of P̂Boltzmann can be defined
by a projection onto two-particle correlation functions. In this way, a complete
hierarchy of relevance concepts in terms of n-point functions (equivalent to a
cluster expansion) can be defined.

A particularly important concept of relevance, that is often not even no-
ticed, is locality (see, e.g., Penrose and Percival 1962). It is required in order to
define entropy as an extensive quantity – in accordance with the phenomeno-
logical equation (3.1) and with the concept of an entropy density s(r), such
that S =

∫
s(r)d3r. The corresponding Zwanzig projection of locality may be

symbolically written as
P̂localρ :=

∏
k

ρ∆Vk
. (3.38)

The RHS here is meant to describe the neglect of all statistical correlations
beyond a distance defined by the size of volume elements ∆Vk. The probabil-
ity distributions ρ∆V k

would here be defined by integrating over all external
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degrees of freedom. The volume elements have to be chosen large enough to
contain a sufficient number of particles in order to preserve dynamically rele-
vant short range correlations (as required for real gases, for example). In order
to allow volume elements ∆Vk with physically open boundaries, their prob-
ability distributions ρ∆V k

in (3.38) have to admit variable particle number
(density fluctuations) – as in a grand canonical ensemble.

Locality is presumed, in particular, when writing (3.1) in its differential
(local) form as a ‘continuity inequality’ for the entropy density s(r, t),

∂s

∂t
+ divjs ≥ 0 , (3.39)

with an entropy current density js(r, t). This form allows the definition of
phenomenological entropy-producing (hence positive) terms on the RHS in
order to replace the inequality by an equation (see Landau and Lifschitz 1959
or Glansdorff and Prigogine 1971). An example is the source term κ(∇T )2/T 2

in the case of heat conduction, where κ is the heat conductivity.
The general applicability of (3.39) demonstrates that the concept of physi-

cal entropy is always based on the neglect of nonlocal correlations. Therefore,
the production of entropy can be usually understood as the transformation
of local information into nonlocal correlations (as depicted in Fig. 3.1). This
description is in accordance with the conservation of ensemble entropy (deter-
minism) and with intuitive causality. The Second Law thus depends crucially
on the dynamical irrelevance of microscopic correlations for the future (as as-
sumed in the Stoßzahlansatz , for example). Since this ‘microscopic causality’
cannot be observed as easily and directly as the causal correlations which de-
fine retardation of macroscopic radiation, its validity under all circumstances
has been questioned (Price 1996). However, it is not only indirectly confirmed
by the success of the Stoßzahlansatz , but also (in its quantum mechanical
form – see Sect. 4.2) by the validity of a Sommerfeld radiation condition (see
Sect. 2.1) for microscopic scattering experiments, or by the validity of expo-
nential decay (Sect. 4.5).

The Zwanzig projection of locality is again ineffective on real states, which
are always local in the sense of defining the states of all their subsystems.
Therefore, applying P̂local to an individual state (a δ-function or sum of them)
would not lead to a non-singular entropy SΓ . This will drastically change in
quantum mechanics, because it is kinematically non-local (Chap. 4).

As already mentioned on p. 55, coarse-graining as a relevance concept may
also enter in a hidden form, corresponding to its nontrivial limit ∆VΓ → 0,
by considering only non-singular measures on phase space (thus excluding
δ-functions). This strong idealization may be mathematically signalled by the
‘unitary inequivalence’ of the original Liouville equation and the master equa-
tions resulting in this limit (see Misra 1978 or Mackey 1989).

Further examples of Zwanzig projections will be defined throughout the
book, in particular in Chap. 4 for quantum mechanical applications, where
the relevance of locality leads to the important concept of decoherence. Dif-
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ferent schools and methods of irreversible thermodynamics may even be dis-
tinguished according to the concepts of relevance which they are using, and
which they typically regard as ‘natural’ or ‘fundamental’ (see Grad 1961).

However, the mere conceptual foundation of a relevance concept (‘paying
attention’ only to certain aspects) is insufficient for justifying its dynamical
autonomy in the form of a master equation (3.36) – see the Appendix for an
explicit example. Locality is usually dynamically relevant in this sense because
of the locality of all interactions. This dynamical locality is essential even for
the very concept of physical systems, including those of local observers as the
ultimate referees for what is relevant.

Zwanzig reformulated the exact Hamiltonian dynamics for ρrel regardless
of any specific choice of P̂ instead of simply postulating a phenomenological
master equation (3.36) in analogy to Boltzmann or Lewis. It can then in
general not be autonomous5, that is, of the form ∂ρrel/∂t = f(ρrel), but has
to be written as

∂ρrel

∂t
= f(ρrel, ρirrel) (3.40)

in order to eliminate ρirrel by means of certain assumptions. The procedure
is analogous to the elimination of the electromagnetic degrees of freedom by
means of the condition Aµ

in = 0 when deriving a retarded action-at-a-distance
theory (Sect. 2.2). In both cases, empirically justified boundary conditions
which specify a time direction are assumed to hold for the degrees of freedom
that are to be eliminated.

To this end the Liouville equation i∂ρ/∂t = L̂ρ is decomposed into its
relevant and irrelevant parts by multiplying it by P̂ or 1− P̂ , respectively:

i
∂ρrel

∂t
= P̂ L̂ρrel + P̂ L̂ρirrel , (3.41a)

i
∂ρirrel

∂t
= (1 − P̂ )L̂ρrel + (1 − P̂ )L̂ρirrel . (3.41b)

This corresponds to representing the Liouville operator by a matrix of oper-
ators

L̂ =

(
P̂ L̂P̂ P̂ L̂(1 − P̂ )

(1 − P̂ )L̂P̂ (1 − P̂ )L̂(1 − P̂ )

)
. (3.42)

Equation (3.41b) for ρirrel, with (1 − P̂ )L̂ρrel regarded as an inhomogeneity,
may then be formally solved by the method of the variation of constants
(interaction representation). This leads to

ρirrel(t) = e−i(1−P̂ )L̂(t−t0)ρirrel(t0) − i
∫ t−t0

0

e−i(1−P̂ )L̂τ (1 − P̂ )L̂ρrel(t − τ)dτ ,

(3.43)
5 In mathematical physics, ‘autonomous dynamics’ is often defined as the absence

of any explicit time dependence in the dynamics – regardless of whether it is
fundamental or caused by a time-dependent environment.
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as may be confirmed by differentiation.
If t > t0, (3.43) is analogous to the retarded form (2.9) of the boundary

value problem in electrodynamics. In this case, τ ≥ 0, and ρrel(t − τ) may be
interpreted as an advanced source for the ‘retarded’ ρirrel(t). Substituting this
formal solution (3.43) into (3.41a) leads to three terms on the RHS, viz.,

i
∂ρrel(t)

∂t
= I + II + III (3.44)

≡ P̂ L̂ρrel(t) + P̂ L̂e−i(1−P̂ )L̂(t−t0)ρirrel(t0) − i
∫ t−t0

0

Ĝ(τ)ρrel(t − τ)dτ .

The integral kernel of the last term,

Ĝ(τ) := P̂ L̂e−i(1−P̂ )L̂τ (1 − P̂ )L̂P̂ , (3.45)

corresponds to the retarded Green’s function of Sect. 2.1.
Equation (3.44) is exact and, therefore, cannot yet describe time asym-

metric dynamics. Since it forms the first step in this derivation of master
equations, it is known as a pre-master equation. The meanings of its three
terms are illustrated in Fig. 3.2. The first one describes the internal dynam-
ics of ρrel. In Boltzmann’s µ-space dynamics (3.3), it would correspond to
{∂ρµ/∂t}free+ext. It vanishes if P̂ L̂P̂ = 0 (as is often the case).6

The second term of (3.44) is usually omitted by presuming the absence of
irrelevant initial information: ρirrel(t0) = 0. If relevant information happens
to be present initially, it can then be dynamically transformed into irrelevant
information. (Because of the asymmetry between P̂ and 1 − P̂ , irrelevant
information would have to be measured by −SΓ [ρ] + SΓ [ρrel] rather than by
−SΓ [ρirrel].)

The vital third term is non-Markovian (non-local in time), as it depends
on the whole time interval between t0 and t. Its retarded form (valid for
t > t0) is compatible with the intuitive concept of causality. This term be-
comes approximately Markovian if ρrel(t − τ) varies slowly for a small ‘re-
laxation time’ τ0 during which Ĝ(τ) becomes negligible for reasons to be
discussed. In (3.44), Ĝ(τ) may then be regarded to lowest order as being
proportional to a δ-function in τ . This assumption is also contained in Boltz-
mann’s Stoßzahlansatz , where it means that correlations arising by scattering
6 Since the (indirectly acting) non-trivial terms contribute only in second and higher

orders of time, the time derivative defined by the master equation (3.36) would
then vanish in the limit ∆t → 0. This corresponds to what in quantum theory
is known as the quantum Zeno paradox (Misra and Sudarshan 1977), also called
watched pot behavior or the watchdog effect . It describes an immediate loss of
information from the irrelevant channel (or its dynamically relevant parts – see
later in the discussion), such that it has no chance of affecting its relevant coun-
terpart any more. Fast information loss may be caused by a strong coupling to
the environment, for example. Since this efficiency depends on the energy level
density (Joos 1984), the Zeno effect is relevant mainly in quantum theory.
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relevant channel

irrelevant channel

I

II
III

t0 t = t t

rirrel 0(t )

r trel( )

Fig. 3.2. Retarded form of the exact dynamics for the relevant information ac-
cording to Zwanzig’s pre-master equation (3.24). In addition to the instantaneous
direct interaction I, there is the contribution II arising from the ‘incoming’ irrele-
vant information, and the retarded term III in analogy to electromagnetic action at
a distance, resulting from ‘advanced sources’ in the whole time interval between t0
and t (cf. the left part of Fig. 2.2)

are irrelevant for the forward dynamics of ρrel. In analogy to retarded electro-
magnetic forces, this third term of the pre-master equation then assumes the
form of an effective direct interaction between the relevant degrees of freedom
(though instantaneous in this nonrelativistic treatment). In electrodynamics,
the charged sources would represent the ‘relevant’ variables, while their ef-
fective interactions act ‘at a distance’. In statistical physics, this ‘interaction’
describes the dynamics of ensembles.

The Markovian approximation may be understood by means of assump-
tions which simultaneously explain the applicability of the initial condition
ρirrel ≈ 0 at all times – provided it holds in an appropriate form in the very
distant past. This is again analogous to the condition in electrodynamics that
Aµ

in either vanishes or can be well understood in terms of a limited number of
known or at least plausible sources at all times.

Consider the action of the operator (1 − P̂ )L̂P̂ appearing on the RHS
of the kernel (3.45). Because of the structure of a typical Liouville operator,
it transforms information from ρrel only into specific parts of ρirrel. In the
scattering theory of complex objects, similar formal parts are called doorway
states (Feshbach 1962). For example, if the Hamiltonian contains no more
than two-particle interactions, L̂P̂µ creates two-particle correlations. Only the
subsequent application of the propagator exp[−i(1 − P̂ )L̂τ ] is then able to
produce states ‘deeper’ in the irrelevant channel (many-particle correlations
in this case) – see Fig. 3.3. Recurrence from the depth of the irrelevant channel
is related to Poincaré recurrence times, and may in general be neglected (as
exemplified by the success of Boltzmann’s collision equation). If the relaxation
time, now defined as the time required for the transfer of information from
the doorway ‘states’ into deeper parts of the irrelevant channel, is of the order
τ0, say, one may assume Ĝ(τ) ≈ 0 for τ � τ0, as required for the Markovian
δ-function approximation Ĝ(τ) ≈ Ĝ0δ(τ).

Essential for the validity of this approximation is the large information
capacity of the irrelevant channel (similar to that of the electromagnetic field
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relevant channel

t0 t = t t

doorway channel

deep states

Fig. 3.3. The large information capacity of the irrelevant channel and the specific
structure of the interaction together enforce the disappearance of information into
the depth of the irrelevant channel if an appropriate initial condition holds

in Chap. 2, but far exceeding it). For example, correlations between particles
may describe far more information than the single-particle distribution ρµ. A
fundamental cosmological assumption,

ρirrel(t0) = 0 , (3.46)

at a time t0 in the finite past (similar to the cosmological Aµ
in = 0 at the big

bang) is therefore quite powerful – even though it is a probable condition. Any
irrelevant information formed later from the initial ‘information’ contained in
ρrel(t0) (that is, from any specification of the initial state) may be expected
to remain dynamically negligible in (3.44) for a very long time. It would be
essential, however, for calculating backwards in time under these conditions.

The assumption ρirrel ≈ 0 has thus to be understood in a dynamical sense:
any newly formed contribution to ρirrel must remain irrelevant in the ‘forward’
direction of time. The dynamics for ρrel may then appear autonomous (while
it cannot be exact). For example, all correlations between subsystems seem
to require advanced local causes, but no similar (retarded) effects. Otherwise
they would be interpreted as a conspiracy , the deterministic version of causae
finales.

Under these assumptions, one obtains from (3.44), as a first step, the non-
Markovian dynamics

∂ρrel(t)
∂t

= −
∫ t−t0

0

Ĝ(τ)ρrel(t − τ)dτ . (3.47)

The upper boundary of the integral can here be replaced by a constant T that
is large compared to τ0, but small compared to any (theoretical) recurrence
time for Ĝ(τ). If ρrel(t) is now assumed to remain constant over time intervals
of the order of the relaxation time τ0, corresponding to an already prevailing
partial (e.g., local) equilibrium, one obtains the time-asymmetric Markovian
limit:

∂ρrel(t)
∂t

≈ −Ĝretρrel(t) , (3.48)

with
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relevant channel

Dt

doorway channel

deep states

Fig. 3.4. The master equation represents ‘alternating dynamics’, usually describing
a monotonic loss of relevant information

Ĝret :=
∫ T

0

Ĝ(τ)dτ . (3.49)

A similar nontrivial limit of vanishing retardation (τ0 → +0) led to the LAD
equation with its asymmetric radiation reaction in Sect. 2.3. The integral
(3.49) could be formally evaluated when inserting (3.45), but it is usually
more conveniently computed after this operator has been applied to a specific
ρ(t). (See the explicit evaluation for discrete quantum mechanical states in
Sect. 4.1.2.)

The autonomous master equation (3.48) again describes alternating dy-
namics of the type (3.36) (see Fig. 3.4). Irrelevant information is disregarded
after short time intervals ∆t (now representing the relaxation time τ0). If
P̂ only destroys information, the master equation describes never-decreasing
entropy:

dSΓ [ρrel]
dt

≥ 0 . (3.50)

This corresponds to a positive operator Ĝret (as can most easily be shown by
means of the linear measure of entropy).

A phenomenological probability-conserving Markovian master equation for
a system with ‘macroscopic states’ described by a (set of) ‘relevant’ variable(s)
α, that is, ρrel(t) ≡ ρ(α, t) (see also Sects. 3.3 and 3.4) can be written in the
general form

∂ρ(α, t)
∂t

=
∫ [

w(α, α′)ρ(α′, t) − w(α′, α)ρ(α, t)
]
dα′ . (3.51)

The transition rates w(α, α′) here define the phenomenological operator Ĝret

by means of its integral kernel Ĝret(α, α′) =−w(α, α′)+δ(α, α′)
∫

w(α, α′′)dα′′.
They often satisfy a generalized time inversion symmetry,

w(α, α′)
σ(α)

=
w(α′, α)
σ(α′)

, (3.52)

where σ(α) may represent the density of the (‘irrelevant’) microscopic states
with respect to the variable α – that is, σ := dn/dα, where n is the number
of microscopic states as a function of α. In this case one may again derive an
H-theorem, in analogy to (3.12), for the generalized H-functional
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Hgen[ρ(α)] :=
∫

ρ(α) ln
ρ(α)
σ(α)

dα = ln p . (3.53)

The final form on the RHS is appropriate, since the mean probability p(α)
for individual microscopic states and for given ρ(α) is then p(α) = ρ(α)/σ(α).
The entropy defined by −kHgen is also known as the relative entropy of ρ(α)
with respect to the measure σ(α). The latter is often introduced ad hoc as
part of a phenomenological description.

Under the approximation w(α′, α) = f(α)δ′(α − α′) one now obtains the
deterministic ‘drift’ limit of the master equation (3.51) – usually representing
the first term of (3.44). It defines the first order of the Kramers–Moyal expan-
sion for w(α, α′), equivalent to an expansion of ρ(α′, t) in terms of powers of
α′−α at α′ = α. The second order, w(α′, α) = f(α)δ′(α−α′)+g(α)δ′′(α−α′),
leads to the Fokker–Planck equation as the lowest non-trivial approximation
that leads to an irreversible equation (see de Groot and Mazur 1962, Röpke
1987). In this respect, it is analogous to the LAD equation as the lowest non-
trivial order in the Taylor expansion of the Caldirola equation (2.31). A master
equation is generally equivalent to a (stochastic) Langevin equation for indi-
vidual macroscopic trajectories α(t) which may form a dynamical ensemble
represented by ρ(α, t).

In contrast to the Liouville equation (3.26), the master equation (3.48) or
(3.36) cannot be unitary with respect to the inner product for probability dis-
tributions defined above (3.27). While total probability must be conserved by
these equations, that of the individual trajectories cannot (see also Sect. 3.4).
Information-reducing master equations describe an indeterministic evolution,
which in general only determines an ever-increasing ensemble of different po-
tential successors for each macroscopic state (such as a point in α-space).7

As discussed above, this macroscopic indeterminism is compatible with mi-
croscopic determinism if that information which is transformed from relevant

7 The frequently used picture of a ‘fork’ in configuration space, characterizing a
dynamical indeterminism, may be misleading, since it seems to imply unique
predecessors. This would be wrong, as can be recognized, for example, in an
equilibrium situation. In the case of a stochastic dynamical law that is defined on a
finite set of states, a state must in general also have different possible predecessors,
corresponding to an inverse fork. Inverse forks by themselves would represent
a pure forward determinism (a ‘semigroup’, that may describe attractors). All
these structures are meant to characterize the dynamical law . They are neither
properties of the (f)actual history (which is assumed to evolve along a definite
trajectory regardless of the nature of the dynamical law), nor of an evolving
ensemble that represents a specific state of knowledge.

However, only dynamically unique predecessors may give rise to recordable
histories (consisting of ‘facts’ that are redundantly documented). The historical
nature of our world is thus based on a uniquely determined or even overdeter-
mined macroscopic past – see also footnote 1 of Chap. 2, Fig. 3.8, and Sect. 3.5.
A macroscopic history that was completely determined from its macroscopic past
would be in conflict with the notion of an (apparent) free will.
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to irrelevant in the course of time no longer has any relevant (macroscopic)
effects for all future times of interest. The validity of this assumption depends
on the dynamics and on the specific initial conditions (3.46).

Time-reversed (‘anti-causal’) effects could only be derived from an ap-
propriate final condition by applying the corresponding approximations to
(3.44) for t < t0. It is an empirical fact that such a condition, analogous to
Aµ

out = 0 in electrodynamics, does not describe our observed Universe. An
exact boundary condition ρirrel(t0) = 0 at some accessible time t0 would for
similar statistical reasons lead to a non-decreasing entropy for t > t0, but to
non-increasing entropy for t < t0, hence to an entropy minimum at t = t0
unless S(t0) = Smax.

While the (statistically probable) assumption (3.46) led to the master
equation (3.48), it would not necessarily characterize an arrow of time. With-
out an improbable initial condition ρrel(ti), the approximate validity of the
equality sign in (3.50) would be overwhelmingly probable. Retarded action-
at-a-distance electrodynamics would be trivial, too (and equivalent to its ad-
vanced counterpart) if all sources were already in thermal motion (such as
the sources forming absorbers). It is the low entropy initial condition for ρrel

which is responsible for the dynamical formation of that ‘irrelevant’ informa-
tion which would be highly relevant for correctly calculating ρrel(t) backwards
in time.

The main conclusions derived in this and the previous section can thus be
summed up as follows:

1. The ensemble entropy SΓ does not represent physical entropy, since (a)
it would be minus infinity for a real physical state (one or N ! points in
phase space), (b) it is otherwise not additive for composite systems (in
particular, it is not an integral over an entropy density), and (c) it remains
constant under deterministic dynamics (in contrast to the Second Law).
For indeterministic dynamical laws, it would have to increase, starting
from its given value, in both directions of time (except when already at
its maximum value). This demonstrates that ensemble entropy is not a
physical quantity (see also Kac 1959).

2. Coarse-grained (or ‘relevant’) entropy, when defined as a function of the
deterministically evolving microscopic state that is assumed to represent
reality, would most probably fluctuate in time close to its maximum value.
However, it may increase for a very long time – far exceeding the present
age of the Universe if this had begun in an appropriate state of extremely
low entropy (see Sect. 5.3). While a Zwanzig projection (describing gener-
alized coarse-graining) can be arbitrarily chosen for convenience in order
to derive an appropriate master equation, the cosmic initial condition
must be specified as a condition characterizing the real Universe.

3. Only a relevance concept that includes locality is able to describe entropy
as an extensive quantity.
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4. Any coarse-grained entropy could be forced never to decrease by an appro-
priate modification of the corresponding ensemble dynamics – as in (3.36).
This may represent either new physics or an approximation to the situa-
tion described in the second part of item 2 (where the second possibility
is assumed to apply).

General Literature: Jancel 1963, Balian 1991.

3.3 Thermodynamics and Information

3.3.1 Thermodynamics Based on Information

As explained in the previous sections, Gibbs’ probability densities or ensem-
bles ρΓ represent incomplete information about the real state, which would in
classical mechanics be described by a singular point in phase space. Similarly,
Zwanzig’s projection operators P̂ (defining a generalized coarse-graining) were
justified by the incomplete observability of macroscopic systems. The entropy
and other parameters characterizing these ensembles, such as a temperature,
therefore appear fundamentally observer-related (objectively unmotivated).
While Gibbs’ ensembles refer in principle to actual knowledge, Boltzmann’s
distributions may be based on an objectivized limitation of knowledge, char-
acterizing a certain class of potential observers, such as those able to recognize
only the mean particle density ρµ for a gas.8 For similar reasons, the coarse-
graining P̂ is kept fixed as a reference system, and not comoving accord-
ing to the dynamics. The concept of information appears here extraphysical,
although observers or other carriers of information have to be regarded as
physical (in particular thermodynamical) systems, too (see Sect. 3.3.2).

Jaynes (1957) generalized Gibbs’ statistical methods by rigorously apply-
ing Shannon’s (1948) information concept. Shannon’s formal measure of infor-
mation for a probability distribution {pi} on a set of elements characterized
by the index i,

I :=
∑

i

pi ln pi ≤ 0 , (3.54)

is evidently defined in analogy to Boltzmann’s H, and therefore also called
negentropy . However, as a measure of information, it corresponds more closely
to Gibbs’ extension in phase η. This measure is often normalized relative
to its value for minimum information, pi = p

(0)
i , where p

(0)
i = 1/N if i =

1, . . . , N , unless different statistical weights for the ‘elements’ i arise from a
more fundamental level of description – cf. (3.53):
8 The term ‘objectivized’ presumes the basically subjective (observer-related) sta-

tus of what is to be objectivized. In contrast, the term ‘objective’ is in physics
often used synonymously with the term ‘real’, and then means the assumed or
conceivable existence of an object or its state regardless of its observation.



3.3 Thermodynamics and Information 69

Irel = I(pi|p(0)
i ) :=

∑
i

pi ln(pi/p
(0)
i ) = lnN +

∑
i

pi ln pi ≥ 0 . (3.55)

This renormalized measure of information may remain finite even when I
diverges in the limit N → ∞. Under an appropriate modification it can then
also be applied to a continuum.

Jaynes thus based his approach on the idea that the microscopic state
of a macroscopic system can never be completely known. Instead, a small
though varying number of macroscopic variables, which are functions of the
microscopic state, α(p, q), are approximately ‘given’. Therefore, he introduced
specific representative ensembles, ρα(p, q) or ρᾱ(p, q), which are defined to
possess minimal information about all other variables (maximal ensemble en-
tropy SΓ [ρ]) under the constraint of either fixed values α, or fixed mean values
ᾱ :=

∫
α(p, q)ρ(p, q)dp dq. This entropy thus becomes a function of α or ᾱ, de-

fined as S(ᾱ) := SΓ [ρᾱ], for example. This generalization of Gibbs’ approach
has turned out to be useful in many applications, while the macroscopic vari-
ables α remain to be chosen ad hoc.

As mentioned already in Sect. 3.1.2, an entropy concept based on the actu-
ally available information would be in conflict with the usual interpretation of
entropy as an observer-independent physical quantity that can be objectively
measured. On the other hand, its dependence on a certain basis of information
may be quite meaningful. For example, the numerical value of SΓ [ρ] depends
in a reasonable way on whether or not ρ contains information about actual
density fluctuations, or about the isotopic composition of a gas. The prob-
ability pfluct(α) for the occurrence of some quantity α in thermodynamical
equilibrium was successfully calculated by Einstein in his theory of Brownian
motion from the expression

pfluct(α) =
exp

[
S(α)/k

]
exp

{
S[ρcan]/k

} , (3.56)

thus exploiting the interpretation of entropy as a measure of probability. The
probability for other quantities to be found immediately after the observation
of this fluctuation would then have to be calculated from the ‘conditioned’
ensemble ρα rather than from ρcan.

Similarly, a star cluster (that is, a collection of macroscopic objects) pos-
sesses meaningful temperature and entropy S �= 0 from the point of view
that the motion of the individual stars is regarded as ‘microscopic’. The same
statistical considerations as used for molecules then show that their velocity
distribution must be Maxwellian. At the other extreme, one could (in classical
physics) conceive of an external Lapacean demon as a super-observer of the
individual molecules in a gas. Entropy would indeed depend here on the avail-
able or accessible information. Its objectivity in thermodynamics can then
only be understood as representing a common basis of information shared by
us human observers. This perspective must be caused by our specific situation
as physical systems.
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In order to consistently regard ensembles as representing actual informa-
tion, one would have to take into account all physical processes which affect
the information carrier rather than just those in the system itself. Such a def-
inition would certainly be inappropriate for the concept of physical entropy.
For example, thermodynamical entropy does not depend on whether or how
accurately the temperature has been measured; it is simply understood as a
function of temperature.

Let α(p, q) represent a set of such quantities that are assumed to be ‘given’,
possibly up to certain uncertainties ∆α – see the model used in (3.51). The
Hamiltonian H(p, q) is in general just one of them. Subsets of microscopic
states p, q corresponding to values of α within intervals α0 < α(p, q) <
α0 + ∆α, define subvolumes of Γ -space. The widths ∆α may be those of
Jaynes’ representative ensembles for given mean values ᾱ, since any finer res-
olution would regard fluctuations as being relevant, unless α were a constant
of the motion. For a single parameter α, these volume elements can be writ-
ten as ∆Vα := (dV/dα)∆α, with V (α0) :=

∫
α(p,q)<α0

dp dq. In N -particle
phase space, the size of the interval ∆α is often quite irrelevant, since con-
tributions to the volume integral for a compact region α(p, q) < α0 may be
strongly concentrated just below the surface defined by the value α0 because
of the geometry of such high-dimensional spaces. The term ln∆α can then be
neglected under the logarithm, ln∆Vα, that defines the entropy S(α).

One may now define a new useful Zwanzig projection P̂macro by averaging
over subsets defined by such volume elements ∆Vα:

P̂macroρ(p, q) :=
∆pα

∆Vα
(3.57)

:=
1

∆Vα

∫
∆Vα

ρ(p′, q′)dp′dq′ , for p, q ∈ ∆Vα .

If discrete values αi are defined for convenience by means of ‘macroscopic
steps’ αi + ∆α = αi+1, the integral for SΓ [P̂macroρ] splits into two sums:

SΓ [P̂macroρ] = −k

∫
P̂macroρ ln(P̂macroρ)dp dq

= −k
∑

i

∆Vαi

∆pαi

∆Vαi

ln
∆pαi

∆Vαi

= −k
∑

i

∆pαi ln ∆pαi +
∑

i

∆pαik ln ∆Vαi . (3.58)

[Note the relation to the concept of relative information (3.53) or (3.55) – see
also Schlögl 1966.] The first term in the last line describes the entropy corre-
sponding to the lacking macroscopic information described by the probabili-
ties ∆pαi . The second term is the mean physical entropy with respect to this
macroscopic ensemble. The physical entropy, S(α) := k ln ∆Vα ≈ SΓ [ρα], thus
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measures the size of Jaynes’ representative ensembles ρα, or, in Planck’s lan-
guage, the number of complexions, that is, the number of microscopic states
which may represent it. In the special case α(p, q) := H(p, q) one obtains
the entropy of the canonical ensemble as a function of the mean energy. If
∆α = ∆E is chosen infinitesimal, one obtains the entropy of the microcanon-
ical ensemble, relevant for thermodynamically closed systems.9

Although the first term on the RHS of (3.58) is usually much smaller than
the second one, it is essential for a complete and consistent discussion of in-
formation processing and measurement (see Sect. 3.3.2). A simple example of
such a partitioning of the ensemble entropy into physical entropy and entropy
of lacking information is provided by the particle number in a grand canonical
ensemble, Z−1 exp

[− (H − µN)/kT
]
. This particle number is assumed to be

‘given’ (although in general not known) once the vessel that was in equilib-
rium with a particle reservoir characterized by the chemical potential µ has
been closed. Thereafter, the system is represented by a canonical ensemble
with fixed particle number N , while the relative contribution of that part of
the original ensemble entropy which has now become entropy of lacking infor-
mation about the exact particle number N is of the order lnN/N (Casper and
Freier 1973). This contribution to the entropy is often neglected by using the
‘approximation’ N ! ≈ NN . The argument demonstrates, however, that this
different choice of ensembles is dynamically justified (by their robustness), and
that the difference between the number of permutations, N !, of a fixed number
N of particles and the factor NN arising from the grand canonical ensemble
with mean particle number N is meaningful – see (4.21) and cf. footnote 2.

The concept of physical entropy, defined above, no longer depends on ac-
tual information, since the choice of ‘macroscopic’ subsets, characterized by
functions of state α(p, q), is motivated by their dynamical stability. In gen-
eral, variables α characterizing ‘robust’ subsets of phase space that are densely
populated by a trajectory (in the sense of quasi-ergodicity) within reasonably
short times are regarded as macroscopic quantities. This quasi-ergodicity de-
pends on a ‘measure of distance’ in Γ -space that cannot be invariant under
canonical transformations. The macroscopic variables α are instead assumed
to vary slowly and controllably – even under the influence of normal perturba-
tions, or during their observation. These robust quantities define approximate
constants of the motion or adiabatically changing collective variables. Since
this concept of robustness is based on quantitative aspects, it cannot usually
be defined with mathematical rigor. For example, the positions and shapes of
droplets that are formed in a condensation process, or even more so those of
the walls of the vessel, are evidently robust properties, although they do not
represent exact constants of the motion.

9 The infinite renormalization which is required for the corresponding concept of
an entropy density as a function of α is due to the fact that the entropy for a
continuous quantity has no lower bound, so that the measure of information may
grow beyond all limits – see the remarks following (3.55).
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A microscopic trajectory q(t) determines all macroscopic trajectories α(t)
defined as functions of this state: α(t) := α

(
p(t), q(t)

)
. As discussed in

Sect. 3.1.2, the macroscopic dynamics α(t) is then in general not autonomous,
since trajectories starting from the same α(t0) may evolve into different α(t1)
– depending on the microscopic initial state p(t0), q(t0). This macroscopic
indeterminism is essential for fluctuations or certain phase transitions.

The determinism of a dynamical model (such as Laplacean mechanics)
is defined by the mathematical existence of a unique mapping of appropriate
initial (or final) states onto complete trajectories. This concept of determinism
is independent of the availability of an (analytic or algorithmic) procedure for
explicitly constructing these trajectories in terms of conventional coordinates
(‘integrability’). It is therefore also independent of any practical limitation to
their computability, which forms the basis of Kolmogorov’s (1954) entropy,
and is often used in the definition of chaos (see Schuster 1984, or Hao-Bai-Lin
1987). In classical mechanics, the deterministic dynamical mapping of initial
conditions onto trajectories is a consequence of Newton’s equations under non-
singular conditions (see Bricmont 1996 for his lucid criticism of the popular
misuse of the concept of chaos in this connection).

Trajectories could in principle be described in terms of the constants of
the motion. The latter could then be used as new coordinates or ‘co-evolving
grids’ (see Appendix B of Zurek 1989). Such constants of the motion are often
denied to exist, since they are not analytically related to conventional coordi-
nates. However, this does not mean that they would not exist in any absolute
sense. It was indeed one of the great lessons from the theory of relativity that
physics and spacetime geometry (‘reality’) are independent of the choice of
coordinates, while the ancient Greeks were not even able to overcome Zeno’s
paradox of Achilles and the tortoise by a transformation to more appropri-
ate ‘coordinates’ of description. We should similarly be able to conceptually
overcome all mathematical problems in the construction of canonical trans-
formations, and instead rely on the assumption of a coordinate-free ‘reality’
(at least in classical mechanics).

These mathematical difficulties may nonetheless reflect the complex and
non-trivial physical relation between the Universe and its ‘observing parts’.
Observers are evidently not in any simple way related to the constants of the
motion – the reason why we feel ‘time change’.10 Some authors have related
the problems of a universe that contains its observers (physical self-reference)
to Gödel’s undecidability theorems, which apply to logical systems that allow
formal self-reference (see Wheeler 1979). However, one cannot argue that
the existence or meaning of an observer-independent reality is excluded just
because of the observers’ limited capabilities. This insufficient argument has
even been used as an explanation of ‘quantum uncertainty’ (Popper 1950, Born
1955, Brillouin 1962, Cassirer 1977, Prigogine 1980). There is a fundamental

10 “Time goes, you say? Ah no! Alas, time stays, we go.” (Austin Dobson – discov-
ered in Gardner 1967.)
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difference between the impossibility of ever knowing the precise classical state
of the Universe and the incompatibility of its existence with certain empirical
facts. While the former is often derived precisely by using (thus presuming)
classical concepts as describing reality, the latter is a consequence of crucial
experiments on which quantum theory is based.

3.3.2 Information Based on Thermodynamics

Macroscopic indeterminism, such as described by Einstein’s fluctuations in
(3.56), may give rise to a transient decrease in physical entropy S(α) in accor-
dance with microscopic determinism. It requires the transformation of lacking
irrelevant into lacking relevant information. The latter would not be lacking
any more if the fluctuation were observed, or, similarly, after the measure-
ment of a microscopic variable, as depicted by the first step of Fig. 3.5. In
these cases, the physical realization of information by observers or other in-
formation carriers has to be properly taken into account.

As is well known since the discussion of Maxwell’s demon, any change or
use of information must be described physically, with all its thermodynamical
consequences. Maxwell had assumed his demon to operate a microscopic slid-
ing door between two compartments of a vessel in such a way that only fast
molecules may enter the first compartment, while only slow ones are allowed
to leave it. His actions must then lead to a temperature and pressure differ-
ence, thus admitting the construction of a perpetuum mobile of the second
kind.

The demon must here invest its knowledge about trajectories of individ-
ual molecules. However, Smoluchowski (1912) objected that a demon who
acts physically would itself have to obey the Second Law: its operations must
be described (thermo-)dynamically. In phenomenological terms, any lowering
of the entropy of the gas must at least be balanced by a corresponding in-
crease of the demon’s entropy. If the demon were assumed to be a finite and
thermodynamically closed system, its increasing Brownian motion would then
ultimately prevent it from acting properly (by letting its ‘hands tremble’, or
as a result of its deteriorating information about the molecules).

Szilard (1929) derived a fundamental information-theoretical consequence
from this situation. By exploiting the idea of Maxwell’s demon, he concluded
that an ‘intelligent being’ must use up an amount of information of measure

∆I =
∆S

k
, (3.59)

in order to lower the entropy of some system by ∆S. This equivalence would
also be compatible with the ensemble interpretation of entropy, or Einstein’s
probabilities (3.56).

Szilard’s main argument used a model ‘gas’ consisting of a single molecule
in a vessel of volume V . Statistical aspects are introduced by means of many
collisions of the molecule with the walls, leading to thermal equilibration
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Fig. 3.5. Entropy relative to the state of information during a classical measure-
ment. In the first step in the figure, the state of the observer changes depending
on that of the system. The second step represents the subsequent resetting of the
‘observer’ or device (Bennett 1973), required if the process is to be exactly repeated
for a second measurement. Areas represent sets of microscopic states of the sub-
systems (while those of uncorrelated combined systems would be represented by
their direct products). The lower case letters a and b characterize the property to
be measured; and 0, A and B the corresponding ‘memory states’ of the observer,
while A′ and B′ are their respective effects in the thermal environment, required for
a deterministic reset. The ‘physical entropy’ (defined to add for subsystems) mea-
sures the phase space of all microscopic degrees of freedom, including the property
to be measured. Because of this presumed additivity, the physical entropy neglects
statistical correlations (dashed lines, which indicate sums of direct products of sets)
as being ‘irrelevant’ in the future – hence Sphysical ≥ Sensemble. I is the amount
of information held by the observer. S0 is at least k ln 2 in this simple case of two
equally probable values a and b. (From Chap. 2 of Joos et al. 2003)

between the molecule’s average motion and a surrounding heat bath (see
Fig. 3.6). A piston is then inserted sideways (without using energy) in order to
separate two partial volumes V1 and V2. This partition of the volume is robust
in the sense of Sect. 3.3.1. According to (3.58), this procedure transforms part
of the (physical) entropy of the ‘gas’ into entropy of lacking information. If
the experimenter knows (only) in which partial volume i = 1, 2 the molecule
resides, corresponding to a Shannon measure ∆Ii = ln[(V1 + V2)/Vi], he is
able to retrieve the mechanical energy

∆Ai =
∫ V1+V2

Vi

pdV =
∫ V1+V2

Vi

kT

V
dV = −kT ln

Vi

V1 + V2
(3.60)

by moving the piston into the empty volume, and slowly raising a weight, for
example. The molecule’s mean kinetic energy may thereby remain constant by



3.3 Thermodynamics and Information 75

T

Fig. 3.6. Szilard’s Gedanken engine completely transforms thermal energy into
mechanical energy by using information

the reversible extraction of heat from the external reservoir with temperature
T . This process lowers the entropy of the reservoir by

∆Si = −∆Ai

T
= k ln

Vi

V1 + V2
= −k∆Ii , (3.61)

in accordance with (3.59).
According to Smoluchowski, one could avoid referring to knowledge or

information by using a ‘mechanical rectifier’ (such as a ratchet) that causes
the piston to move in the appropriate direction. This rectifier would ultimately
have to perform thermal motion large enough to make it useless, corresponding
to the demon’s trembling hands (see also Feynman, Leighton and Sands 1963,
Vol. I, p. 46-1). So one has to conclude that utilizing knowledge for making
decisions (for example in the brain) is equivalent to the operation of a rectifier.
It is here essential that the rectifier cannot be reset to its initial state without
getting rid of entropy – usually in the form of heat (Bennett 1987). For this
reason the mechanism cannot work reversibly in a closed system.

Brillouin (1962), when elaborating on ideas originally presented by Ga-
bor in lectures given in 1952 (see Gabor 1964), emphasized that Szilard’s
‘intelligent being’ has to acquire information. Since this process must also be
compatible with the Second Law, Brillouin postulated his negentropy principle

∆S′ − k∆I ≥ 0 , (3.62)

which meant that any information gain ∆I has to be accompanied by some
process of dissipation that leads to a production of thermodynamical entropy
∆S′ in the information medium (usually light). He thereby referred to the lat-
ter’s quantum aspect (photons), which limits its information capacity. Because
of the minimum information required according to Szilard, the construction
of a perpetuum mobile of the second kind would then again be excluded.
However, because of the above example of a directly coupled mechanical rec-
tifier, no explicit reference to an information medium seems to be required.
According to Bennett (1973), it is the increase in physical entropy by the
reset mechanism in Fig. 3.5, ∆Sphys = k ln 2 if V1 = V2, that compensates its
decrease in (3.61).

All non-phenomenological arguments are based here on two assumptions:
(1) Global determinism, which requires that an ensemble of N different states
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(or N ensembles of equal measure) must have N different successors, which
have to be counted by the total ensemble entropy. Different states may evolve
into the same final state only by means of an appropriate interaction with
their environment, that transfers this difference to the latter (for example, in
the form of heat). (2) Intuitive causality, which asserts that uncontrollable
‘perturbations’ by the environment can only enlarge the ensemble. It gives
rise to inequalities such as (3.62) rather than equations. If thermodynamical
concepts apply, a transfer of entropy ∆S must be accompanied by a transfer
of energy according to ∆Q = T∆S. This relation has also led to the interpre-
tation of entropy as a measure of degradation of energy .

The equivalence of information and negative entropy suggests that any
(tautological) information processing (for example in a computer) can in prin-
ciple be performed reversibly. However, arithmetic operations are often logi-
cally irreversible in the sense that two factors cannot be recovered from their
product. (In a mechanical computer this operation may indeed require fric-
tion.) This led to the conjecture that a minimum amount of entropy k ln 2 has
to be produced for each bit of information in each elementary calculational
step (Landauer 1961). It was refuted by Bennett (1973 – see also Bennett
and Landauer 1985). However, in their discussion the logically lost informa-
tion (‘garbage bits’) – even if randomized – is still regarded as macroscopic or
‘relevant’ in the thermodynamical sense. For this reason, the entropy creation
is deferred to the reset or clearing of the memory, which is required for the
computer to perform its calculational steps more than once (see the second
step of Fig. 3.5). These considerations will lead to quite novel consequences
for quantum computers (see Sect. 4.3.3).

All these arguments support the interpretation that information has to be
physically realized (and therefore to be compatible with the laws of thermo-
dynamics), rather than representing an extraphysical concept that has to be
independently postulated for a statistical foundation of thermodynamics. On
the other hand, mathematical theorems do not represent information (as, for
example, assumed by Landauer 1996). Logic deals exclusively with tautologies
(‘analytical judgements’) – as complicated as they may appear to our limited
intelligence.

General Literature: Denbigh and Denbigh (1985), Bennett (1987), Leff and
Rex (1990).
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3.4 Semigroups and the Emergence of Order

In physical systems, ‘ordered’ states are characterized by low entropy. Or-
der may appear in the form of simple structures (such as regular lattices)
or complex ones (organisms). For example, the rectifier discussed in the pre-
vious section as replacing Maxwell’s demon must display ordered dynamical
behavior. The emergence of order from disorder in Nature, also called self-
organization of matter , may appear to contradict the Second Law with its
general trend towards disorder and chaos. This has often been misunderstood
as a ‘discrepancy between Clausius and Darwin’. However, the fundamental
phenomenological equation (3.1) allows entropy to decrease locally . A nega-
tive first term would allow physical entropy to flow into the environment. If
this environment is not in complete thermal equilibrium, and characterized
by at least two different temperatures, T1 and T2, a local loss of entropy,
dSext = dQ1/T1 + dQ2/T2 < 0, would not even require any net loss of heat,
dQ1 + dQ2 < 0. (Here differentials are always meant to refer to positive time
increments dt.) This local decrease of entropy is thus not in conflict with its
global increase according to the Second Law – see also Sect. 5.3.

In statistical terms, the number of states in a dynamically representative
ensemble (see Sect. 3.1.2) may decrease locally in accordance with determinism
and intuitive causality, provided the ensemble characterizing the state of the
environment increases accordingly – precisely as during the ‘reset’ of a memory
device, indicated in Fig. 3.5. In this Laplacean description, the outcome of
evolution would be determined by the microscopic initial state of the whole
Universe.

An important special case is a steady state of non-equilibrium, character-
ized by dS = dSint + dSext = 0 in spite of non-vanishing entropy production,
dSint > 0 (Bertalanffi 1953). It may support ordered states as dissipative
structures. The standard example, known as Bénard’s instability , describes
convective heat transfer through a thin horizontal layer of a liquid in the
form of spatially ordered convection cells, which optimize the process of ther-
mal equilibration between two reservoirs at different temperatures. In a fi-
nite universe, this stationary situation can only represent a transient local
phenomenon. The emergence of structure is often connected with symmetry
breaking (in particular of translational symmetry), related to a phase transi-
tion. In a deterministic description, an initial microscopic fluctuation would
thereby become unstable and be amplified to a macroscopic scale. In quantum
theory, it may also require an indeterministic collapse of the wave function
(see Sect. 4.1.2).

For similar reasons, Boltzmann suggested that biological processes here
on earth are facilitated by the temperature difference between the sun (with
its 6000 K surface temperature) and the dark Universe (at 2.7 K, as we know
today). At the distance of the earth, the solar radiation has an energy density
much lower than that of a black body with the same spectrum (tempera-
ture). Since photon number is not conserved (in general not even a robust
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quantity), a canonical distribution exp(−H/kT ) in the occupation number
representation determines not only the spectral distribution as a function of
temperature, but also the intensity (photon density). A gas with conserved
particle number would instead allow one independently to choose the mean
density – either by fixing the particle number by closing the vessel, or by
fixing the chemical potential (in a grand canonical ensemble) by connecting
the vessel to a particle reservoir. In contrast, a photon from the sun can be
transformed very efficiently into many soft photons, which together possess
much higher physical entropy.

Although order appears to be an objective property, an absolute concept
of order that is not simply defined by means of phenomenological entropy is
as elusive as an objective concept of information or relevance (see Denbigh
1981, p. 147, or Ford 1989). For reasons already mentioned in Sect. 3.3.1, the
definition of order in terms of computability would depend on the choice of
‘relevant coordinates’. For example, the obvious order observed in a crystal
lattice is not invariant under general canonical transformations. How, then,
may the order of an organism be conceptually distinguished from the ‘chaotic’
correlations arising from molecular collisions in a gas?

Many self-organizing systems include chemical reactions. They are phe-
nomenologically described by irreversible rate equations, which define the
dynamics of concentrations X, Y, . . . These concentrations are ‘macroscopic’
variables, called α in Sects. 3.2 and 3.3.1. In statistical terms, rate equations
can be derived from a generalized Stoßzahlansatz that includes rearrangement
collisions between different kinds of molecules, which are usually assumed to
be already in thermal equilibrium with one another. These rate equations are
therefore special master equations (as derived in Sect. 3.2) for these ‘relevant’
degrees of freedom X, Y, . . .

Rate equations determine trajectories in the configuration space of concen-
trations.11 For closed systems, these trajectories may eventually approach that
point in their configuration space which describes equilibrium. Reversible de-
terminism must come to an end at such attractors (see Fig. 3.7a), although this
may require infinite time. A mechanical example of an attractor in the pres-
ence of friction is the phase space point characterized by v := dx/dt = 0 and
V (x) = Vmin. The corresponding equation of motion, mdv/dt = −av − ∇V ,
neglects any stochastic response from the energy-absorbing microscopic de-
grees of freedom, which is in principle required by the fluctuation–dissipation
theorem. Similar to the LAD equation of Sect. 2.3, this equation is, therefore,
deterministic, even though it is asymmetric under time reversal.

Points in the space of macroscopic variables X, Y or x, v (‘macroscopic
states’ α, in general) describe the physical states incompletely. They repre-
sent large subspaces of the complete Γ -space (that may realistically even have
to include the environment). Volume elements of the same size in macroscopic

11 As the rate equations are of first order in time, this macroscopic configuration
space is often called a phase space.
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Fig. 3.7. Standard representation of an attractor (a) and a limit cycle (b) as ex-
amples of phenomenologically irreversible dynamics in the configuration space of
macroscopic variables α ≡ X, Y

‘phase space’ may correspond to very different ensemble measures. These vol-
ume elements are therefore in general not dynamically conserved. For exam-
ple, the immediate vicinity of an equilibrium ‘state’ X0, Y0 – such as v = 0,
V (x) = Vmin in the mechanical example – covers almost the whole Γ -space
of the completely described system (or some subspace that is defined by con-
served quantities).

In the specific mechanical example with friction, the modified macroscopic
phase space measure dxdv/v nonetheless happens to be dynamically invari-
ant. Time reversal is here compensated for by a transformation v → 1/v to
restore a formal T -symmetry of macroscopic determinism (in formal analogy
with the examples mentioned in the Introduction). This leads to a conserved
generalized H-functional – cf. (3.53) and (3.55), viz.,

Hgen :=
∫

ρ(v, x) ln
[|v| ρ(v, x)

]
dv dx , (3.63)

which defines a ‘reference density’ ρ0 = |v|−1 as an effective equilibrium mea-
sure on this macroscopic phase space.

In the situation of a steady state non-equilibrium, macroscopic trajectories
described by other effective irreversible equations of motion may approach
certain closed curves, which do not correspond to maximum entropy. They are
called limit cycles, and may represent dissipative structures, which represent
order (see Fig. 3.7b and Glansdorff and Prigogine 1971).

Open systems are often described by means of phenomenological semi-
groups, defined as dynamical maps acting on ensembles in finite time steps.
These maps can be understood as time-integrated Markov operators Gret,
and are thus applicable again only in the ‘forward’ direction of time (in con-
trast to the reversible group of time translations, valid for dynamically closed
systems). Mathematically, ensembles may even be regarded as the fundamen-
tal kinematical objects of the theory, without any explicit definition of their
elements, which would describe microscopic reality. ‘Determinism’ is then un-
derstood as a mere forward determinism for these formal ensembles. Maps are
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called irreversible if they form genuine semigroups, that is, if they cannot be
uniquely inverted as maps on ensembles.

This irreversibility of maps does not correspond to a dynamical indeter-
minism for elementary states: it usually represents resets or attractors phe-
nomenologically – that is, without explicitly taking into account microscopic
degrees of freedom. In order to describe a reset, the master equation (3.48)
has to be based on a non-Hermitean Zwanzig projector that ‘creates’ rel-
evant information. In a globally deterministic context, its microscopic real-
ization would then have to contain some way of getting rid of entropy (as
discussed in Sect. 3.3.2).12 As can be seen from the second step of Fig. 3.5, the
reset transforms local information into nonlocal correlations (also depicted
in Fig. 3.1). This transformation describes a production of physical entropy ,
while the ensemble entropy is conserved. The absence in Nature of correla-
tions which would allow the inverse process and thus lead to a reduction of
physical entropy is responsible for the irreversibility of the semigroup.

As these semigroups are defined to act on ensembles, regarded as abstract
objects, their inversion does not in general represent a reversal of the micro-
scopic dynamics (‘time reversal’). For the same reason, their forward deter-
minism is not equivalent to microscopic determinism. A dynamical map may
not be invertible as a map even though the underlying dynamical transfor-
mation of microscopic states can be reversed.

Individual indeterminism and attractors are illustrated on a finite set of
states in Fig. 3.8. An asymmetric dynamical indeterminism (b) is represented
by diverging forks (see footnote 7), while an attractor is characterized by con-
verging (or ‘inverse’) forks (c). An everywhere defined indeterminism must
apply symmetrically (a). On a continuum of states, one would first have to
define a measure, usually according to its invariance under the assumed fun-
damental deterministic dynamics of the completely described closed system.
(This may represent a problem if determinism is to be given up fundamen-
tally.) Semigroups are often studied on discrete state spaces, where measures
of states are trivial. A popular example is the model of ‘deterministic cellular
automata’ (see Kauffman 1991). Their merging trajectories (representing at-
tractors) then replace the shrinking phase space in the continuum model with
friction that led to the generalized H-functional (3.63).

Forward-deterministic dynamical maps are often defined by means of non-
linear transformations. A popular (though not very physical) one-dimensional
toy model of a semigroup is the Bernoulli shift , defined by the mapping

12 Therefore, mathematical physicists have proposed a new definition of entropy that
would always allow the entropy of an open system to grow under a semigroup, even
if its physical entropy decreased – see Mackey (1989). For example, the relative
entropy – cf. (3.53) and (3.55)], defined for an open system with respect to a
canonical distribution with temperature of an external heat bath, would increase
even when the temperature of the system is lowered (as it is in the case of a
cooler heat bath). Such a formal redefinition of entropy is certainly physically
misleading, even though it may be useful for certain purposes.
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(a) (b) (c) (d)

Fig. 3.8. Dynamical transformations of states on a discrete and finite ‘phase space’
consisting of only four states: (a) T -symmetric indeterminism (representing an in-
completely determined Hamiltonian, for example); (b) asymmetric indeterminism,
representing a law-like increase of ensemble entropy (cannot be defined everywhere
on finite sets); (c) attractors (cannot be inverted as a map defined on all ensem-
bles); (d) discrete caricature of a Frobenius–Perron map (see text). The symmetric
indeterminism (a) would appear asymmetric – similar to (b) – when applied to a
low-entropy initial ensemble (such as an individual state) in a given direction of time.
It would then describe the usual increase of ensemble entropy by uncontrollable ‘per-
turbations’. The distinction between (b) and (c) requires an absolute direction of
time

α → 2α mod 1 on the interval (0, 1]. (Its α-measure would be invariant under
translations in α if chosen as ‘fundamental dynamics’.) The dynamical in-
crease of this ‘phase space volume’ element dα by multiplication by the factor
2 in this map could be uniquely inverted on the infinite continuum, although
it represents an indeterminism in the sense of the measure. However, the sec-
ond term, mod 1, characterizes a semigroup as in Fig. 3.8c. Both dynamical
parts are combined here in order to form a Frobenius–Perron map, defined
everywhere on the interval in spite of representing a semigroup (symbolically
indicated for the discrete case of Fig. 3.8d). The forward indeterminism, ob-
vious in the discrete case, is often overlooked on the continuum, where the
topology-conserving stretching of ‘phase space’ α may appear deterministic
without a measure. The ‘topological time asymmetry’ (mod 1) contained in
the Frobenius–Perron map may be phenomenologically useful, as it is able to
describe the formation of macroscopic diversity. Realistic attractors must be
of mixed type in order to comply with the fluctuation–dissipation theorem.

Many similar dynamical maps are discussed in the literature. They are (at
most) of phenomenological value, and have little explanatory power from a
fundamental statistical point of view. Their investigators often seem to regard
the underlying individual microscopic reality as irrelevant. The ensembles be-
ing mapped dynamically are then treated as real states of physical objects.
This must, of course, lead to confusion from a fundamental point of view.
Statistical theories based on dynamical maps are occasionally even used for a
‘minimal’ interpretation of quantum mechanics (see Sect. 4.4). The misuse of
purely formal ensembles as describing physical states is thereby reversed by
identifying wave functions (that is, elementary quantum mechanical states)
with ensembles. However, the conclusion that quantum phenomena cannot
be explained in any such ‘simple way’ was already drawn by Bohr before the
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advent of matrix and wave mechanics (when his theory with Kramers and
Slater had failed – see Jammer 1974).

The formation of structure is often related to a spontaneous symmetry
breaking that may indeed have its origin in the fundamental quantum inde-
terminism (see Chap. 4 and Sect. 6.1). This may be the reason why the de-
scription of thermodynamical systems far from equilibrium (where structure
may form) usually remains phenomenological (see Glansdorff and Prigogine
1971). The onset of structure may then be described by means of unstable fluc-
tuations in certain quantities α, whose probabilities can be calculated from
Einstein’s formula (3.56). An instability would arise for them when the sec-
ond derivative ∂2S/∂α2 at a stationary point of S(α) becomes negative, for
example by an adiabatic change in an external parameter. In this way, new
robust quantities in the sense of Sect. 3.3.1 (see also Sect. 4.3.2) may emerge,
while physical entropy is transformed into entropy of the corresponding lack-
ing information, defined according to (3.58).

General Literature: Glansdorff and Prigogine 1971, Haken 1978, Cross and
Hohenburg (1993).

3.5 Cosmic Probabilities and History

I shall close this chapter with a brief discussion of an objection against the
probability interpretation of entropy when applied to the whole Universe and
its evolution. It was first raised by Bronstein and Landau (1933), and later
in a more explicit form by von Weizsäcker (1939) – see also Feynman (1965),
but it may also be affected by some recent developments in cosmology.

The present state of the Universe does not only possess an entropy Sα(now)

that is much smaller than its equilibrium value Sequil; it also contains doc-
uments which strongly indicate that the entropy has always been increasing
during the past, dSα(t)/dt > 0 for t < ttoday. One may now compare the prob-
ability that these documents (including our private memories) have indeed
formed in such a historical process with the probability for their formation in
a mere chance fluctuation. In the former case one has

Sα(yesterday) < Sα(now) � Sequil . (3.64)

However, if Einstein’s measure of probability in terms of entropy (3.56) were
applicable to the Universe, the formation of its present state in a chance
fluctuation – as improbable as it may appear – would be far more probable
than a state with much lower entropy in the distant past. This objection
evidently undermines Boltzmann’s explanation of the thermodynamical arrow
of time as arising from a grand fluctuation that occurred in an eternal universe
(see also Sect. 5.3), since this fluctuation could be replaced by a far smaller
one when its size is measured in terms of entropy.
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This probability argument requires that the left inequality (3.64) is valid
not only with respect to physical (local) entropy, but also for an appropri-
ate ensemble entropy that takes into account all those non-local correlations
which represent the convincing consistency of documents. Their existence in
a historical universe is related to Lewis’ ‘overdetermination of the past’ (see
footnote 1 of Chap. 2).13 While the improbability of the present solar system,
for example, as having occurred in a chance fluctuation would be ‘moderate’
compared to that for a corresponding whole universe, the former would then
have to contain consistent though unexplainable documents about the lat-
ter. David Hume’s fundamental insight that we can never predict anything
with certainty (not even that the sun will rise again) applies to the past as
well – even if we did not question the general validity of the dynamical laws.
Strictly speaking, we cannot be sure about the existence of any facts that we
seem to remember. The reliability of memories and documents is in principle
as doubtful as that of predictions; only the subjective local present cannot be
questioned. Hence, even Kant’s premise that we are making experience cannot
be taken for granted. Not what has been observed, only our (perhaps deceiv-
ing) ‘memory’ that we are aware of now is beyond doubt. Saint Augustine
concluded in a similar way in his Confessiones that the past and the future
‘exist’ only in the present – namely as memory and expectation ‘in the soul’.
This long-standing philosophical debate seems to be deeply affected (though
not overcome) by thermodynamical and statistical considerations.

However, Saint Augustine’s epistemologically rigorous concept of reality
is obviously too restrictive for the construction of a ‘world model’, which
must in principle always remain hypothetical (Poincaré 1902, Vaihinger 1911).
The probabilistic objection raised above, even if formally correct, will thus
hardly be accepted as demonstrating that causality is an illusion, based on an
accident. Einstein’s probabilities (3.56) for the occurrence of non-equilibrium
states α, motivated by the statistical interpretation of entropy, can indeed
be justified only for those macroscopic properties α which have a chance of
occurring repeatedly within relevant times (‘quasi-ergodically’) on a generic
trajectory – that is, for properties which are not robust on relevant timescales
(hence not for stable macroscopic properties).

Physical cosmology can fortunately be derived from the more economical
hypothesis of a universe of finite age. A homogeneous (structureless) low en-
tropy initial state appears more acceptable in this sense than a complex state
with a similarly low value of entropy. Probabilities for later states can then
be calculated as probabilities for histories (products of successive conditioned
probabilities). For example, the folding of protein chains is usually calculated
along trajectories of monotonically increasing entropy (according to a master
equation). Final configurations not accessible through such histories would
thus be excluded even when possessing relatively large entropy. (Quantum

13 States containing consistent (though possibly deceiving) documents were called
time-capsules by Barbour (1994a) – see Sect. 6.2.2.
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mechanically, there is always a non-vanishing but extremely small tunneling
probability for their occurrence.) Most probable under the initial condition are
those final states that are accessible through the most probable histories. This
picture explains consistent documents. The thus conditioned probability for
an observable world such as ours having evolved somewhere in the Universe
would even grow with its size (in contrast to the global initial probability).
This argument may lend support to many kinds of ‘multiverses’ (see Tegmark
et al. 2006), which are reasonable conceptions when extrapolated from the
observable universe by means of empirically founded laws or symmetries.

Whether the situation of a universe which contains scientists observing
it can be regarded as probable in this sense, or whether additional ‘weakly
anthropic’ selection criteria are required14, has hardly ever been estimated in
a reliable and unbiased way. Only at a tremendously later age of our universe
could a state of maximum entropy be reached via improbable intermediate
states or through quantum mechanical tunnelling (Dyson 1979), such that
unconditioned probabilistic arguments apply. The cosmologically very early
time that we are living at may thus remain the major improbable fact.

A ‘plausible’ low-entropy initial state of the Universe will be considered
in Sect. 5.3. Its discussion requires quantum theory. Quantum indetermin-
ism, whatever its correct interpretation (see Sect. 4.6), may even allow the
assumption of a unique ‘initial’ state of the Universe (with a very small en-
tropy capacity) – see Chap. 6. However, it may be worth noticing that the
outcome of evolution (including ourselves) must already have been contained
as a possibility in the huge configuration space that represents the fundamen-
tal kinematical concepts – regardless of all probability arguments.

14 The weak anthropic principle states that we are encountering a rare local situa-
tion (such as a planet like Earth or a special universe in a multiverse), since we
could not exist somewhere else, while the strong principle requires that the whole
Universe or Multiverse must fulfill very specific conditions in order to allow our
existence as observers. It has even been claimed to possess ‘predictive power’.
The border line between the weak and the strong principle is shifting in modern
cosmology. (See Barrow and Tipler 1986, and Sect. 6.1.)




