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The Time Arrow of Radiation

After a stone has been dropped into a pond, one observes concentrically
diverging (‘defocusing’) waves. Similarly, after an electric current has been
switched on, one finds a retarded electromagnetic field that is coherently
propagating away from its source. Since the fundamental laws of Nature,
which describe these phenomena, are invariant under time reversal, they are
equally compatible with the reverse phenomena, in which concentrically fo-
cusing waves (and whatever may be dynamically related to them – such as
heat) would ‘conspire’ in order to eject a stone out of the water. Deviations of
the deterministic laws from time reversal symmetry would modify this argu-
ment only in detail (see the Introduction). However, the reversed phenomena
are never observed in Nature. In high-dimensional configuration space, the
absence of dynamical correlations which would focus to create local effects
characterizes the time arrow of thermodynamics (Chap. 3), or, when applied
to wave functions, even that of quantum theory (see Sect. 4.3).

Electromagnetic radiation will here be considered to exemplify wave phe-
nomena in general. It may be described in terms of the four-potential Aµ,
which in the Lorenz gauge obeys the wave equation

−∂ν∂νAµ(r, t) = 4πjµ(r, t) , with ∂ν∂ν = −∂2
t + ∆ , (2.1)

using units with c = 1, the notations ∂µ := ∂/∂xµ and ∂µ := gµν∂ν , and Ein-
stein’s convention of summing over identical upper and lower indices. When
an appropriate boundary condition is imposed, one may write Aµ as a func-
tional of the sources jµ. For two well known boundary conditions one obtains
the retarded and the advanced potentials,

Aµ
ret(r, t) =

∫
jµ(r, t − |r − r′|)

|r − r′| d3r′ , (2.2a)

Aµ
adv(r, t) =

∫
jµ(r, t + |r − r′|)

|r − r′| d3r′ . (2.2b)
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These two functionals of jµ(r, t) are related to one another by a reversal of
retardation time |r − r′| – see also (2.5) and footnote 4 below. Their linear
combinations are again solutions of the wave equation (2.1).

At this point, many textbooks argue somewhat mysteriously that ‘for rea-
sons of causality’, or ‘for physical reasons’, only the retarded fields, derived
from the potential (2.2a) according to Fµν

ret := ∂µAν
ret − ∂νAµ

ret, occur in Na-
ture. This condition has therefore to be added to deterministic laws such
as (2.1), which historically did indeed emerge from the asymmetric concept
of causality. This example allows us to formulate in a preliminary way what
seems to be meant by this intuitive notion of causality : correlated effects (that
is, nonlocal regularities, such as coherent waves) must always possess a local
common cause in their past.1 However, this asymmetric notion of causality is
a major explanandum of the physics of time asymmetry. As pointed out in the
Introduction, it cannot be derived from the deterministic laws by themselves.

The popular argument that advanced fields are not found in Nature be-
cause they would require improbable initial correlations is known from statis-
tical mechanics, but totally insufficient (see Chap. 3). The observed retarded
phenomena are precisely as improbable among all possible ones, since they
describe equally improbable final correlations. So their ‘causal’ explanation
from an initial condition would beg the essential question.

Some authors take the view that retarded waves describe emission, ad-
vanced ones absorption. However, this claim ignores the fact that, for exam-
ple, moving absorbers give rise to retarded shadows, that is, retarded waves
which interfere destructively with incoming ones. In spite of the retardation,
energy may thus flow from the electromagnetic field into an antenna. When
incoming fields are present (as is generically the case), retardation does not
necessarily mean emission of energy (see Sect. 2.1).

At the beginning of the last century, Ritz – following simular ideas by
Planck and others – formulated a radical solution of the problem by postu-
lating the exclusive existence of retarded waves as a law . Such time-directed
action at a distance is equivalent to fixing the boundary conditions for the

1 In the case of a finite number of local effects resulting from one local cause in
the past, this situation is often viewed as a ‘fork’ in spacetime (see Horwich 1987,
Sect. 4.8). However, this fork of causality should not be confused with the fork
of indeterminism (in configuration space and time), which points to different (in
general global) potential states rather than to different events (see also footnote 7
of Chap. 3 and Fig. 3.8). The fork of causality (‘intuitive causality’) may also char-
acterize deterministic measurements and the documentation of their results, that
is, the formation and distribution of information. It is related to Reichenbach’s
(1956) concept of branch systems, and to Price’s (1996) principle of independence
of incoming influences (PI3). Insofar as it describes the cloning and spreading of
information, it represents an overdetermination of the past (Lewis 1986), or the
consistency of documents. It is these correlations which let the macroscopic past
appear ‘fixed’, while complete documents about microscopic history would be in
conflict with thermodynamics and quantum theory.
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electromagnetic field in a universal manner. The field would then not describe
any degrees of freedom on its own, but just describe retarded forces.

This proposal, a natural generalization of Newton’s gravitational force,
led to a famous controversy with Einstein, who favored the point of view that
retardation of radiation can be explained by thermodynamical arguments.
Einstein, too, argued here in terms of an action-at-a-distance theory (see
Sect. 2.4). At the end of their dispute, the two authors published a short let-
ter in order to state their different opinions. After an introductory sentence,
according to which retarded and advanced fields are equivalent “in some sit-
uations”, the letter reads as what appears to be also a verbal compromise
(Einstein and Ritz 1909 – my translation):2

While Einstein believes that one may restrict oneself to this case with-
out essentially restricting the generality of the consideration, Ritz re-
gards this restriction as not allowed in principle. If one accepts the
latter point of view, experience requires one to regard the represen-
tation by means of the retarded potentials as the only possible one,
provided one is inclined to assume that the fact of the irreversibil-
ity of radiation processes has to be present in the laws of Nature.
Ritz considers the restriction to the form of the retarded potentials as
one of the roots of the Second Law, while Einstein believes that the
irreversibility is exclusively based on reasons of probability.

Ritz thus conjectured that the thermodynamical arrow of time might be ex-
plained by the retardation of electromagnetic forces because of the latter’s
universal importance for all matter. However, the retardation of hydrodynam-
ical waves (such as sound) would then have to be explained quite differently
– for example, by again referring to the thermodynamical time arrow.

A similar but less well known controversy had already occurred in the
nineteenth century between Max Planck and Ludwig Boltzmann. The former,
at that time still an opponent of statistical mechanics, understood radiation
as a genuine irreversible process, while the latter maintained that the problem
is not different from that in kinetic gas theory: a matter of improbable initial
conditions (Boltzmann 1897). These different interpretations became relevant,
in particular, in connection with the quantum hypothesis: are quanta caused

2 The original text reads: “Während Einstein glaubt, daß man sich auf diesen
Fall beschränken könne, ohne die Allgemeinheit der Betrachtung wesentlich zu
beschränken, betrachtet Ritz diese Beschränkung als eine prinzipiell nicht er-
laubte. Stellt man sich auf diesen Standpunkt, so nötigt die Erfahrung dazu, die
Darstellung mit Hilfe der retardierten Potentiale als die einzig mögliche zu betra-
chten, falls man der Ansicht zuneigt, daß die Tatsache der Nichtumkehrbarkeit
der Strahlungsvorgänge bereits in den Grundgesetzen ihren Ausdruck zu finden
habe. Ritz betrachtet die Einschränkung auf die Form der retardierten Potentiale
als eine der Wurzeln des Zweiten Hauptsatzes, während Einstein glaubt, daß die
Nichtumkehrbarkeit ausschließlich auf Wahrscheinlichkeitsgründen beruhe.”
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by the emission process (as Planck had believed – later called quantum jumps
– see Sects. 4.3.6 and 4.5), or inherent to light itself?

In Maxwell’s classical field theory , the problem does not appear as obvious
as in action-at-a-distance theories, since every bounded region of spacetime
may contain ‘free fields’, which possess neither past nor future sources in
this region. Therefore, one can consistently understand Ritz’s hypothesis only
cosmologically: all fields must possess advanced sources (‘causes’) somewhere
in the Universe. While the examples discussed above demonstrate that the
time arrow of radiation cannot merely reflect the way boundary conditions
are posed, the problem becomes even more pronounced with the time-reversed
question: “Do all fields also possess a retarded source (a sink in time-directed
terms) somewhere in the future Universe?” This assumption corresponds to
the absorber theory of radiation, a T -symmetric action-at-a-distance theory
to be discussed in Sect. 2.4. The observed asymmetries would then require an
unusual cosmic time asymmetry in the distribution of such sources.

2.1 Retarded and Advanced Form
of the Boundary Value Problem

In order to distinguish the indicated pseudo-problem that concerns only the
definition of ‘free’ fields from the physically meaningful question, one has
to investigate the general boundary value problem for hyperbolic differential
equations (such as the wave equation). This can be done by means of Green’s
functions, defined as the solutions of the specific inhomogeneous wave equation
with a point-like source:

−∂ν∂νG(r, t; r′, t′) = 4πδ3(r − r′)δ(t − t′) , (2.3)

and an appropriate boundary condition in space and time. Some of the con-
cepts and methods to be developed below will be applicable in a similar form
in Sect. 3.2 to the Liouville equations (Hamilton’s equations applied to ensem-
bles of states of mechanical systems). Using (2.3), a solution of the general
inhomogeneous wave equation (2.1) may then be written as a functional of its
sources:

Aµ(r, t) =
∫

G(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ , (2.4)

where the boundary condition for G(r, t; r′, t′) determines that for Aµ(r, t),
too. Retarded or advanced solutions are obtained from Green’s functions Gret

and Gadv, which are given by

G ret
adv

(r, t; r′, t′) :=
δ(t − t′ ± |r − r′|)

|r − r′| . (2.5)

The potentials Aµ
ret and Aµ

adv resulting from (2.4) are thus functionals of
sources only on the past or future light cones of their argument, respectively.



2.1 Retarded and Advanced Form of the Boundary Value Problem 21

P

t1

t2

t

x

Fig. 2.1. Kirchhoff’s boundary value problem, including initial, final and spatial
boundaries. Sources (thick world lines) within the considered region and boundaries
on both light cones (dashed lines) may in general contribute to the electromagnetic
potential Aµ at the spacetime point P

By contrast, Kirchhoff’s formulation of the boundary value problem allows
one to express every specific solution Aµ(r, t) of the wave equation by means
of any Green’s function G(r, t; r′, t′). This can be achieved by using the three-
dimensional Green theorem∫

V

[
G(r, t; r′, t′)∆′Aµ(r′, t′) − Aµ(r′, t′)∆′G(r, t; r′, t′)

]
d3r′ (2.6)

=
∫

∂V

[
G(r, t; r′, t′)∇′Aµ(r′, t′) − Aµ(r′, t′)∇′G(r, t; r′, t′)

]
·dS′ ,

where ∆ = ∇2 is the Laplace operator, and ∂V is the boundary of the spatial
volume V . Multiplying (2.3) by Aµ(r′, t′), and integrating over r′ and t′ from
t1 to t2 – on the right-hand side (RHS) by means of the δ-functions, while
using the Green theorem and twice integrating by parts with respect to t′ on
the left-hand side (LHS), one obtains by further using (2.1):

Aµ(r, t) =
∫ t2

t1

∫
V

G(r, t; r′, t′)jµ(r′, t′) d3r′ dt′

− 1
4π

∫
V

[
G(r, t; r′, t′)∂t′A

µ(r′, t′) − Aµ(r′, t′)∂t′G(r, t; r′, t′)
]
d3r′

∣∣∣∣t2
t1

+
1
4π

∫ t2

t1

∫
∂V

[
G(r, t; r′, t′)∇′Aµ(r′, t′) − Aµ(r′, t′)∇′G(r, t; r′, t′)

]
·dS′ dt′

≡ ‘source term’ + ‘boundary terms’ . (2.7)

if the event P described by r and t lies within the spacetime boundaries.
Here, both (past and future) light cones may contribute to the three terms
occurring in (2.7), as indicated in Fig. 2.1.

The formal T -symmetry of this representation of the potential as a sum of
a source term and boundary terms in the past and future can be broken by
the choice of Green’s functions. When using one of the two forms (2.5), the
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Fig. 2.2. Two representations of the same electromagnetic potential at time t by
means of retarded or advanced Green’s functions. They require data on partial
boundaries (indicated by solid lines) corresponding to an initial or a final value
problem, respectively

spacetime boundary required for determining the potential at time t assumes
specific forms indicated in Fig. 2.2. Hence, the same potential can be written
according to one or the other RHS of

Aµ = source term + boundary terms = Aµ
ret + Aµ

in

= Aµ
adv + Aµ

out . (2.8)

For example, Aµ
in is here that solution of the homogeneous equations which

coincides with Aµ for t = t1. Aµ
ret and Aµ

adv vanish by definition for t = t1
or t = t2, respectively. Any field can therefore be described equivalently by
an initial or a final value problem – with arbitrary boundary conditions. This
result reflects the T -symmetry of the laws, while phenomenological causality
is often used as an ad hoc argument for choosing Gret rather than Gadv.

However, two free boundary conditions in the mixed form of Fig. 2.1 would
in general not be consistent with one another, even if individually incomplete
(see also Sects. 2.4 and 5.3). Retarded and advanced fields formally result-
ing from past and future sources, respectively, do not add independently (as
sometimes assumed to describe a conjectured retro-causation) – they just
contribute to different (or mixed) representations of the same field. In field
theory, no (part of the) field ‘belongs to’ a certain source (in contrast to
specific action-at-a-distance theories). Sources determine only the difference
Aµ

out −Aµ
in – similar to T/i = S−1 in the interaction picture of the S-matrix.

As can be seen from (2.8), this difference is identical to Aµ
ret −Aµ

adv. In causal
language, where Aµ

in is regarded as given, the source ‘creates’ precisely its re-
tarded field that has to be added to Aµ

in in the future of the source (where
Aµ

adv = 0).
Physically, spatial boundary conditions represent an interaction with the

(often uncontrollable) spatial environment. For infinite spatial volume (V =
R

3), when the light cone cannot reach ∂V within finite time t − t1, or in a
closed universe, one loses this boundary term in (2.7), and thus obtains the
pure initial value problem (for t > t1),



2.1 Retarded and Advanced Form of the Boundary Value Problem 23

Aµ = Aµ
ret + Aµ

in ≡
∫ t

t1

∫
R3

Gret(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ (2.9)

+
1
4π

∫
R3

[
Gret(r, t; r′, t1)∂t1A

µ(r′, t1) − Aµ(r′, t1)∂t1Gret(r, t; r′, t1)
]
d3r′ ,

and correspondingly the pure final value problem (t < t2),

Aµ = Aµ
adv + Aµ

out ≡
∫ t2

t

∫
R3

Gadv(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ (2.10)

− 1
4π

∫
R3

[
Gadv(r, t; r′, t2)∂t2A

µ(r′, t2) − Aµ(r′, t2)∂t2Gadv(r, t; r′, t2)
]
d3r′ .

The different signs at t1 and t2 are due to the fact that the gradient in the
direction of the outward-pointing normal vector has now been written as a
derivative with respect to t1 (inward) or t2 (outward).

So one finds precisely the retarded potential Aµ = Aµ
ret if Aµ

in = 0. (Only
the ‘Coulomb part’, required by Gauß’s law, must always be present by con-
straint. It can be regarded as the retarded or advanced consequence of the
conserved charge.) In scattering theory, an initial condition fixing the incom-
ing wave (usually described by a plane wave) is called a Sommerfeld radiation
condition. Both conditions are to determine the actual situation. Therefore,
the physical problem is not which of the two forms, (2.9) or (2.10), is correct
(both are), but:

1. Why does the Sommerfeld radiation condition Aµ
in = 0 (in contrast to

Aµ
out = 0) approximately apply in many situations?

2. Why are initial conditions more useful than final conditions?

The second question is related to the historical nature of the world. Answers
to these questions will be discussed in Sect. 2.2.

The form (2.7) of the four-dimensional boundary value problem, charac-
teristic of determinism in field theory, applies to partial differential equations
of hyperbolic type (that is, with a Lorentzian signature −+++). Elliptic type
equations would instead lead to the Dirichlet or von Neumann problems, which
require values of the field or its normal derivative, respectively, on a closed
boundary (which in spacetime would have to include past and future). Only
hyperbolic equations lead generally to ‘propagating’ solutions, which are com-
patible with free initial conditions. They are thus responsible for the concept
of a dynamical state of the field, which facilitates the familiar concept of time.

The wave equation (with its hyperbolic signature) is known to be derivable
from Newton’s equations as the continuum limit of a spatial lattice of mass
points, held at their positions by means of harmonic forces. For a linear chain,
md2qi/dt2 = −k

[
(qi − qi−1 − a)− (qi+1 − qi − a)

]
with k > 0, this is the limit

a → 0 for fixed ak and m/a. The crucial restriction to ‘attractive’ forces
(k > 0) may here appear surprising, since Newton’s equations are always
deterministic, and allow one to pose initial conditions regardless of the type
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or sign of the forces. However, only bound (here oscillating) systems possess
a stable position (here characterized by the lattice constant a). In the same
limit, an elliptic differential equation (with signature ++++) would result
for a lattice of variables qi with repulsive forces (k < 0). This repulsion,
though still representing deterministic dynamics, would cause the particle
distances qi − qi−1 to explode immediately in the limit k → ∞. The unstable
solution qi − qi−1 = a is in this case the only eigensolution of the Dirichlet
problem with eigenvalue 0 (derived from the condition of a bounded final
state). Mathematically, the dynamically diverging solutions simply do not
‘exist’ any more in the continuum limit.

For second order wave equations, a hyperbolic signature forms the basis for
all (exact or approximate) conservation laws, which give rise to the continuity
of ‘objects’ in time (including the ‘identity’ of observers). For example, the free
wave equation has solutions of a conserved form f(z ± ct), while the Klein–
Gordon equation with a positive and variable ‘squared mass’ m2 = V (r, t)
has unitary solutions i∂φ(r, t)/∂t = ±√−∆ + V φ(r, t). This dynamical con-
sequence of the spacetime metric, which leads to such ‘wave tubes’ (see also
Sect. 6.2.1), is crucial for what appears as the inevitable ‘progression of time’
(in contrast to our freedom to move in space). However, the direction of this
apparent flow of time requires additional conditions.

This section was restricted to the boundary value problem for fields in
the presence of given sources. In reality, the charged sources depend in turn
on the fields by means of the Lorentz force. The resulting coupled system
of differential equations is still T -symmetric, while all consequences of the
retardation regarding the actual electromagnetic fields, derived in this and
the following section, remain valid. New problems will arise, though, from
the self-interaction of point charges or elementary charged rigid objects (see
Sect. 2.3).

2.2 Thermodynamical and Cosmological Properties
of Absorbers

Wheeler and Feynman (1945, 1949) took up the Einstein–Ritz controversy
about the relation between the two time arrows of radiation and thermody-
namics. Their work essentially confirms Einstein’s point of view, provided his
‘reasons of probability’ are replaced by ‘thermodynamical reasons’. Statistical
reasons by themselves are insufficient for deriving a thermodynamical arrow
(see Chap. 3.) The major part of Wheeler and Feynman’s arguments were
again based on a T -symmetric action-at-a-distance theory, which is particu-
larly well suited for presenting them in an historical context. From the point
of view of local field theory (that is for good reasons preferred today), this pic-
ture may appear strange or even misleading. The description of their absorber
theory of radiation will therefore be postponed until Sect. 2.4.
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Fig. 2.3. Ideal absorbers do not contribute by means of Gret. (Arrows represent
the formal time direction of retardation)

In field theory, radiation is described by a continuum of variables, which
may themselves require the application of thermodynamical concepts (as is
well known for black body radiation). However, coupled harmonic oscillators
are not ergodic, and so would not approach equilibrium. For this reason,
radiation in a cavity consisting of reflecting walls was usually assumed to
contain a small dust grain of coal in order to allow its spectral distribution to
equilibrate by absorption and re-emission. I will here neglect the presence of
reflecting bodies, and define absorbers (in the ‘ideal’ case assumed to possess
infinite heat capacity) by the following phenomenological properties:

A spacetime region is called an ‘(ideal) absorber’ if any radiation prop-
agating within its boundaries is (immediately) thermalized at the ab-
sorber temperature T (= 0).

The thermalization referred to in this definition is based on the arrow of
time given by the Second Law. For electromagnetic waves this can also be
described by means of a complex refractive index when using the Maxwell
equations. The sign of its imaginary part reflects the thermodynamical arrow.
The definition means that no radiation can propagate within ideal absorbers,
and in particular that no radiation may leave the absorbing region along
forward light cones. This consequence can then be applied to the boundary
value problem as follows (see also Fig. 2.3):

By means of the retarded Green’s function, (ideal) absorbers forming
parts of a spacetime boundary contribute only thermal radiation at
the absorber temperature T (= 0).

Such a boundary condition simplifies the initial value problem considerably.
If the space-like part ∂V of the boundary required for the retarded form of
the boundary value problem depicted in Fig. 2.2 consists entirely of ideally
absorbing walls (as is usually an excellent approximation for the relevant
frequencies in a laboratory or other closed rooms), the condition Aµ

in = 0
applies shortly after the initial time t1 that is used to define the ‘incoming’
fields in (2.7). So one finds precisely the retarded fields (including reflected
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waves) of sources which are present in the laboratory. On the other hand,
absorbers on the boundary would not affect contributions to the Kirchhoff
problem by means of Gadv; in the nontrivial case one has Aµ

out �= 0. Therefore,
in this laboratory situation the radiation arrow is a simple consequence of the
thermodynamical arrow characterizing absorbers.

Do similar arguments also apply to situations outside absorbing bound-
aries, in particular in astronomy? The night sky does in fact appear black,
representing a condition Aµ

in ≈ 0, although the present Universe is transpar-
ent to visible light. Can the darkness of the night sky then be understood in
a realistic cosmological model? For the traditional model of an infinitely old
universe this was impossible, a situation called Olbers’ paradox after one of
the first astronomers who mentioned this problem. The total brightness B of
the sky beyond the atmosphere would then be given by

B = 4π

∫ ∞

0

ρLa(r)r2 dr , (2.11)

where ρ is the number density of sources (mainly the fixed stars), while
La(r) = L̄/r2 is their mean apparent luminosity. In the static and homo-
geneous situation (L̄, ρ = constant) this integral diverges linearly, and the
night sky should be infinitely bright. Light absorption by stars in the fore-
ground would reduce this result to a finite but large value, corresponding to
a sky as bright as the mean surface of a star. It would not help to take into
account other absorbing matter, since this would soon have to be in thermal
equilibrium with the radiation under these conditions.

Olbers’ paradox was resolved by Hubble’s discovery of the expansion of
the Universe, which required a finite age of the order of 1010 years (following a
big bang). An integral of type (2.11) with a finite upper limit would in general
remain bounded. Since all wavelengths λ grow proportional to the expansion
parameter a(t), this leads according to Wien’s displacement law, T ∝ λ−1,
to the reduction of the apparent temperature Ta of all past sources. Stefan
and Boltzmann’s law for thermal radiation, L ∝ T 4, then requires that the
apparent brightness of the stars, La, decreases not only with the geometric
factor r−2, but also with the inverse fourth power of a. In a homogeneous
expanding universe of finite age, the brightness of the sky is then given by

B ∝
∫ τmax

0

ρ(t0 − τ)L̄(t0 − τ)
[
a(t0 − τ)

a(t0)

]4

dτ , (2.12)

where t0 means the present, while τmax ≈ t0 is the age of the transparent uni-
verse. If neither the total number of stars nor their mean absolute luminosity,
L̄, have changed, the integrand is simply proportional to a(t0− τ)/a(t0). This
or similar models lead to a negligible contribution from star light. Indeed, if
our present universe were static, times of the order of 1023 yr, that is, exceed-
ing the Hubble age by a factor of 1013, would be required in the integral (2.11)
to produce a night sky as bright as the surface of a mean star (Harrison 1977).
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Fig. 2.4. The cosmological initial value problem for the electromagnetic radiation.
The thermal contribution of the non-ideal absorber represented by the hot, ionized
matter during the radiation era has now cooled down to the measured background
radiation of 2.7 K (which can be neglected for most purposes)

While this conclusion resolves Olbers’ original paradox, it is does not ex-
plain the cosmological condition Aµ

in ≈ 0, since (1) it presumes retardation,
and (2) the nature of sources must have drastically changed during the early
history of the Universe. In its ‘radiation era’, matter was ionized and almost
homogeneous, representing a non-ideal absorber with a temperature of several
thousand degrees (see Fig. 2.4) that can serve as an initial boundary. Because
of the cosmic expansion, the thermal radiation of this absorber has cooled
down to its now observed value of 2.73 K, compatible with the darkness of the
night sky.

The cosmic expansion, which is vital for this low present temperature, is
thus also essential for the non-equilibrium formed by the contrast between cold
interstellar space and the hot stars. The latter are producing their energy by
nuclear reactions under the control of gravitational contraction – see Chap. 5.
The expansion of the Universe has therefore often been proposed as the master
arrow of time. However, it would be inappropriate to use causal arguments to
explain this connection. Even in a presumed contraction era of the Universe,
absorbers would then retain their intrinsic arrow of time. In order to reverse
it, the thermodynamical arrow would have to be reversed, too. The scenario
of fields and phenomenological absorbers in an expanding universe is far too
simple to describe a master arrow. This cosmological discussion will therefore
be resumed in Sects. 5.3 and 6.2.

In a quite different approach, Hogarth (1962) had suggested that the opac-
ity of intergalactic matter (cosmic absorbers) must have changed drastically
during the evolution of the Universe in order to provide a time asymmetry that
would explain the observed retardation of radiation. Inspired by Wheeler and
Feynman’s time-symmetric definition of absorbers (Sect. 2.4), he neglected the
thermodynamical arrow of absorbers. However, even in thermal equilibrium,
a time arrow may survive in the form of correlations between microscopic
variables unless enforced otherwise (see the Appendix for an example).

The above conclusions regarding the retardation of electromagnetic radia-
tion apply accordingly to all kinds of waves in interaction with matter obey-
ing thermodynamics. Only gravitational waves might be sufficiently decoupled
from absorbers, since even the radiation era must have been transparent to
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them. Ritz’s conjecture of a law-like nature of retarded electrodynamics will
therefore be reconsidered and applied to gravity3 in Chap. 5.

2.3 Radiation Damping

This somewhat technical section describes an important application of re-
tarded fields. Except for Dirac’s radiation reaction of (2.22), which will be
used in Sect. 2.4, its results are rarely needed for the rest of the book.

The emission of electromagnetic radiation by a charged particle that is
accelerated by an external force requires the particle to react by losing energy.
Similar to friction, this radiation reaction, described by an effective equation of
motion, must change sign under time reversal. As will be explained, this can be
understood as a consequence of the retardation of the field when acting on its
own source, even though the retardation seems to disappear at the position
of a point source. However, the self-interaction of point-like charges leads
to singularities (infinite mass renormalization) which need care when being
separated from that part of the interaction which is responsible for radiation
damping. While these problems could be avoided if any self-interaction were
eliminated by means of the action-at-a-distance theory (described in Sect. 2.4),
others would arise in their place.

Consider the trajectory of a charged particle, represented by means of its
Lorentzian coordinates zµ(τ) as functions of proper time τ . The corresponding
four-velocity and four-acceleration are vµ := dzµ/dτ and aµ := d2zµ/dτ2,
respectively.4 From vµvµ = −1 one obtains by differentiation vµaµ = 0 and
vµȧµ = −aµaµ. In a rest frame, defined by vk = 0 (with k = 1, 2, 3), one has
a0 = 0.

The four-current density of this point charge is given by

jµ(xν) = e

∫
vµ(τ)δ4

[
xν − zν(τ)

]
dτ . (2.13)

Its retarded field Fµν
ret = 2∂[µA

ν]
ret := ∂µAν

ret−∂νAµ
ret is known as the Liénard–

Wiechert field. The retarded or advanced fields can be written in an invariant
3 The retardation of gravitational waves has been indirectly confirmed by double

pulsars (see Taylor 1994).
4 While an orbit in space or configuration space would merely be passed backwards

under time reversal (t → −t), a worldline in spacetime changes according to
zk(τ) → zk(−τ) and z0(τ) → −z0(−τ) (for k = 1, 2, 3). The reversal of the pa-
rameter τ is now only a consequence of the convention dt/dτ > 0, but physically
meaningless. As the derivative vµ(τ) – and accordingly also the current jµ(τ) –
then get an additional minus sign under time reversal, the potentials Aµ and fields
F µν inherit this transformation property for their respective indices (correspond-
ing to E → E and B → −B). In order to study questions of (ir)reversibility, one
may often better use the simpler TP transformations, zµ(τ) → −zµ(−τ) for all
µ – see the Introduction.
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manner (see, for example, Rohrlich 1965) as

Fµν
ret/adv(x

σ) = ±2e

ρ

d
dτ

v[µRν]

ρ

=
2e

ρ2
v[µuν] +

2e

ρ

{
a[µvν] − u[µvν]au ± u[µaν]

}
, (2.14)

with vµ and aµ taken at times τret or τadv, respectively. In this expression,

Rµ := xµ − zµ
(
τret/adv

)
=: (uµ ± vµ)ρ , (2.15)

with uµvµ = 0 and uµuµ = +1, is the light-like vector pointing from the
retarded or advanced spacetime position zµ of the source to the point xµ

where the field is considered. Obviously, ρ is the distance in space or in time
between these points in the rest frame of the source, while au := aµuµ is the
component of the acceleration in the direction of the unit spatial distance
vector uµ. Retardation or advancement are enforced by the condition of Rµ

being light-like, that is, RµRµ = 0.
On the RHS of (2.14), second line, the field consists of two parts, propor-

tional to 1/ρ2 and 1/ρ. They are called the generalized Coulomb field (‘near-
field’) and the radiation field (‘far-field’), respectively. Since the stress–energy
tensor

Tµν =
1
4π

(
FµαF ν

α +
1
4
gµνFαβFαβ

)
(2.16)

is quadratic in the fields, it then consists of three parts characterized by dif-
ferent powers of ρ. For example, one has

Tµν
ret := Tµν(Fµν

ret ) =
e2

4πρ4

(
uµuν − vµvν − 1

2
gµν

)
+

e2

2πρ3

{
au

RµRν

ρ2
− [

v(µau + a(µ
]Rν)

ρ

}
+

e2

4πρ2
(a2

u − aλaλ)
RµRν

ρ2
, (2.17)

where braces around pairs of indices define symmetrization, so for example,
v(µ Rν) := (vµRν + vνRµ)/2. Here, Tµν is the ν-component of the current of
the µ-component of four-momentum. In particular, T 0k is the Poynting vector
in the chosen Lorentz system, and Tµνd3σν is the flux of four-momentum
through an element d3σν of a hypersurface. If d3σν is space-like (a volume
element), this ‘flux’ describes its energy–momentum (‘momenergy’) content,
otherwise it is the flux through a spatial surface element during an element
of time.

The retarded field caused by an element of the world line of the point
charge between τ and τ +∆τ has its support between the forward light cones
of these two points, that is, on a thin four-dimensional conic shell (see Fig. 2.5).
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Fig. 2.5. The spacetime support of the retarded field of a world line element ∆τ of
a point charge is located between two light cones (co-axial only in the rest frame of
the source). The flux of field momentum crosses light cones in the near-field region
of the charge

The intersection of the cones with a space-like hyperplane forms a spherical
shell (concentric only in the rest frame at time τ , and in the figure depicted
two-dimensionally as a narrow ring). The integral of the stress–energy tensor
over this spherical spatial shell,

∆Pµ =
∫

Tµνd3σν , (2.18)

is the four-momentum of the field on this hyperplane ‘caused’ by the world line
element ∆zµ. In general, this momentum is not conserved along light cones,
since (2.17) contains a momentum flux orthogonal to the cones, due to the
dragging of the near-field by the charge. Therefore, Teitelboim 1970 suggested
a time-asymmetric splitting of the energy–momentum tensor, which leads to
an asymmetric electron dressing – valid only in connection with given Fin.
However, the flux component orthogonal to the cones vanishes in the far-
zone, where Tµν is proportional to RµRν . In this region the integral (2.18)
describes the four-momentum radiated away from the trajectory of the charge
during the interval ∆τ ,

∆Pµ −→
ρ→∞ ∆Pµ

rad =
2
3
e2aλaλvµ∆τ =: �vµ∆τ . (2.19)

The quantity � = 2e2aλaλ/3 is called the invariant rate of radiation. In
the comoving rest frame (vk = 0), one recovers the non-relativistic Larmor
formula,

∆P 0
rad = vµ∆Pµ

rad =
2
3
e2aλaλ∆t =

2
3
e2a2∆t . (2.20)

This result confirms that the energy transfer into radiation in a positive inter-
val of time cannot be negative – a consequence of the presumed retardation.
An accelerated charged particle must lose energy to radiation, regardless of
the direction of the driving external force.

Larmor’s formula led to a certain confusion when it was applied to a
charged particle in a gravitational field. Because of its dependence on ac-
celeration, (2.19) is restricted to inertial frames. In general relativity, inertial
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frames are freely falling ones. According to the principle of equivalence, a
freely falling charge should then not radiate, while a charge ‘at rest’ in a
gravitational field (under the influence of non-gravitational forces) should do
so. This problem was not understood until Mould (1964) demonstrated that
the response of a detector to radiation depends on its acceleration, too (see
also Fugmann and Kretzschmar 1991).

In general relativity, the principle of equivalence is only locally valid (see
Rohrlich 1963). However, a homogeneous gravitational field (as would result
from a homogeneous massive plane) is described by a flat spacetime, and thus
globally equivalent to a rigid field of uniform accelerations aµ on Minkowski
spacetime. This field corresponds to a set of ‘parallel’ hyperbolic trajectories
with constant (in time, but varying between trajectories) accelerations aµaµ.
These trajectories define accelerated rigid frames, since they preserve distances
in comoving frames. Together with their proper times, the trajectories define
the curved Rindler coordinates – see (5.16) and Fig. 5.5 in Sect. 5.2.

The equivalence principle can therefore be globally applied to a homoge-
neous gravitational field. This means that an inertial (freely falling) detector
is not excited by an inertial charge, while a detector ‘at rest’ is. The latter
would remain idle in the presence of a charge being ‘equivalently at rest’ (at
a fixed distance in this case). A detector-independent definition of total radi-
ation also turns out to depend on acceleration (as it should for consistency)
because of the occurrence of spacetime horizons for truly uniform acceleration
(see Boulware 1980 and Sect. 5.2).

The emission of energy according to (2.20) thus requires a deceleration of
the point charge in order to conserve total energy. It should be possible to
derive this consequence directly from the fundamental dynamical equations,
which are governed by the Lorentz force,

Fµ
self(τ) = eFµν

ret

[
zσ(τ)

]
vν(τ) , (2.21)

resulting from the particle’s self-field. However, this expression leads to prob-
lems caused by the fact that the electromagnetic force acts only on the point
charge, where the self-field is singular (its Coulomb part even with 1/ρ2),
while part of the accelerated mass is contained in the energy of the comoving
Coulomb field. Paul Dirac (1938) showed that the symmetric part F̄µν of the
retarded field,

Fµν
ret =

1
2
(Fµν

ret + Fµν
adv) +

1
2
(Fµν

ret − Fµν
adv) ≡: F̄µν + Fµν

rad , (2.22)

is responsible for the infinite mass renormalization, while the antisymmetric
part, Fµν

rad, remains regular, and indeed describes the radiation reaction when
treated properly.

In order to prove the second part of this statement, one has to expand all
quantities in (2.14) up to the third order in terms of the retardation ∆τret =
τret − τ , e.g.,
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vν(τret) = vν(τ + ∆τret) = vν(τ) + ∆τreta
µ(τ) (2.23)

+
1
2
∆τ2

retȧ
µ(τ) +

1
6
∆τ3

retä
µ(τ) + · · · .

All terms which are singular at the position of the point charge cancel from
the antisymmetric field, and one obtains (see Rohrlich 1965, p. 142)

Fµν
rad = −4e

3
ȧ[µvν] . (2.24)

The resulting PT -antisymmetric Lorentz self-force, the Abraham four-vector

Fµ
rad := eFµν

radvν =
2e2

3
(ȧµ + vµȧνvν) =

2e2

3
(ȧµ − vµaνaν) (2.25)

(using aνvν = 0 in the second step), should then describe the radiation re-
action of a point charge. It leads to a nonlinear equation of motion (the
Lorentz–Abraham–Dirac or LAD equation). However, while the second term
on the RHS of (2.25) is in accord with (2.19), the ȧµ term is ill-defined (see
below). Together with the singular mass renormalization term resulting from
F̄µν , it describes the four-momentum transfer from the point charge itself to
its comoving singular near-field.

In a rest frame (with vk = 0 and a0 = 0), one obtains

F0
rad = −2e2

3
a2 , Fk

rad =
2e2

3
dak

dt
. (2.26)

Therefore, the radiation reaction describes non-relativistically a force propor-
tional to the change of acceleration, dak/dt, while its fourth component is the
energy loss according to the non-negative invariant rate of radiation (2.19).
The latter was originally defined by the energy flux through a distant sphere
on the future light cone (Fig. 2.5). However, global conservation laws may be
used only if all their contributions are taken into account. For example, one
would not obtain an analogous conservation of three-momentum for the bare
point charge and its far-field because of the aforementioned momentum flux
orthogonal to the future light cone of the moving charge. For this reason, the
uniformly accelerated charge may radiate with � �= 0 even though the ‘radia-
tion reaction’ Fµ

rad (including its ill-defined term) vanishes in this case, as can
be seen separately for its two non-vanishing components, Fµ

radaµ and Fµ
radvµ.

If the boundary condition Fµν
in = 0 does not hold, the complete electro-

magnetic force acting on a point charge is given by

maµ = Fµ = Fµ
in + Fµ

rad = Fµ
out −Fµ

rad (2.27)

– cf. Sect. 2.1 and (2.22). Terms caused by the symmetric part of the self-field
have now been brought to the LHS in the form of a mass renormalization
∆maµ. Equation (2.27) still exhibits T -symmetry, but the latter may be bro-
ken fact-like by the given initial condition Fµν

in (in contrast to the uncon-
trollable outgoing radiation contained in Fµν

out). The LAD equation, based on
(2.25) and the first RHS of (2.27), may then be written in the form
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m(aµ − τ0ȧ
µ) = Kµ(τ) := Fµ

in −�vµ , (2.28)

where τ0 = 2e2/3mc2 is the time required for light to travel a distance of the
order of the ‘classical electron radius’ e2/mc.

Both terms of (2.28) that result from the radiation reaction (2.25) now
change sign under time reversal (or the interchange of retarded and advanced
fields). While the second one (now on the RHS) is the friction-type radia-
tion damping −�vk, required for the conservation of energy, the one now
appearing on the LHS (called the Schott term) is proportional to the third
time-derivative of the position in an inertial frame. A solution to the LAD
equation (2.28) would thus require three initial vectors as integration con-
stants (the initial acceleration in addition to the usual initial position and
velocity). Evidently, information has been lost by differentiation in the ex-
pansion (2.23). Even for Fµ

in = 0, the LAD equation (2.28) admits runaway
solutions, non-relativistically in the form of an exponentially increasing self-
acceleration, ak(t) = ak(0) exp(t/τ0).

Because of this formal information loss, the LAD equation is not a com-
plete equation of motion. It can only represent a necessary condition for the
motion of the point charge. In the free case, unphysical runaway solutions
could simply be eliminated by fixing the artificial integration constant by the
condition ak(0) = 0. However, this would still lead to runaway as soon as an
external force were turned on, since the formal solution of (2.28) with respect
to aµ is

maµ(τ) = eτ/τ0

[
maµ(0) − 1

τ0

∫ τ

0

e−τ ′/τ0Kµ(τ ′)dτ ′
]

. (2.29)

Therefore, Dirac suggested fixing the initial acceleration in terms of the future
force according to maµ(0) = (1/τ0)

∫∞
0

e−τ ′/τ0Kµ(τ ′)dτ ′. The substitution
τ ′ → τ ′ + τ then leads to Dirac’s equation of motion,

maµ(τ) =
∫ ∞

0

Kµ(τ + τ ′)
e−τ ′/τ0

τ0
dτ ′ . (2.30)

It represents a Newtonian (second order) equation of motion which depends
on a force that acts ahead of time. How could this ‘acausal’ result be derived
using retarded fields alone?

Moniz and Sharp (1977) demonstrated that the pathological behavior of
this ‘classical electron’ is a consequence of a mass renormalization that exceeds
the physical electron mass (so that the bare mass must be negative). If the
point charge is replaced by a rigid charged sphere of radius r0 in its rest frame,
one obtains, by using the now everywhere regular retarded field, an equation
of motion that was first proposed by Caldirola (1956), and later derived by
Yaghjian (1992) as an approximation. It reads

m0a
µ(τ) = Fµ

in(τ) +
2e2

3r0

vµ(τ − 2r0) + vµ(τ)vν(τ)vν(τ − 2r0)
2r0

, (2.31)
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where m0 is the bare mass. The retardation 2r0 in the arguments would
change sign for advanced fields (consistent only in conjunction with given
Fµ

out). Taylor expansion of (2.31) with respect to 2r0, equivalent to (2.23),
and using vµvµ = −1 and its time derivatives leads in first order to a finite
mass renormalization (4/3 of the electrostatic mass), and in second order back
to the LAD equation (see Zeh 1999a). While (2.31) is analogous to a non-
Markovian master equation (see Sect. 3.2), the LAD equation corresponds to
its Markovian limit, valid for slowly varying fields. In this sense, the radiation
reaction has to be calculated from the given history in order to determine the
acceleration (rather than its derivative) towards the future (right derivative).

The self-force acting on the rigid ‘electron’ according to (2.31) is the dif-
ference (because of vµvµ = −1) between a decelerating and an accelerating
friction type force with different retardations. For positive bare and physi-
cal masses it does not lead to runaway, although it may possess complicated
non-analytic solutions, in particular for forces varying on a time scale shorter
than the light travel time within the charged sphere. Dirac’s pre-acceleration
of the center of mass can now be understood as a consequence of the presumed
rigidity of the charged sphere, which requires forces of constraint acting ahead
of time.

The most rigorous elimination of unphysical solutions from the LAD equa-
tion so far was proposed by Spohn (2000) – see also Rohrlich (2001), while the
history of electron theory is discussed in Rohrlich (1997). It seems that the
concept of a non-inertial point charge is inconsistent with classical electrody-
namics, while external forces acting on a charge distribution would disturb its
shape and structure. A quantum ground state of the electron may instead be
protected against deformations by its discrete excitation spectrum. However,
an explicit QED eigenstate would have to include nonlocal quantum entan-
glement between particle and field modes in an essential way (see Sect. 4.2).

General Literature: Rohrlich 1965, 1997, Levine, Moniz and Sharp 1977,
Boulware 1980.

2.4 The Absorber Theory of Radiation

Ritz’s retarded action-at-a-distance theory, mentioned at the beginning of this
chapter, eliminates all electromagnetic degrees of freedom by postulating the
cosmological initial condition Fµν

in = 0 in order to fix all forces of electromag-
netic origin. Since electromagnetic forces would then act only on the forward
light cones of their sources, this theory cannot be compatible with Newton’s
third law, which requires their reactions. However, the reaction to a retarded
action must be advanced.5 In order to warrant energy–momentum conserva-
5 In field theory , sources and fields interact locally in spacetime. For this reason

the self-force (2.25) could not be derived from the flux of field momentum in the
far-zone.
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Fig. 2.6. Different interpretations of the same interaction term of the Hamiltonian
for a pair of particles

tion, an action-at-a-distance theory has to be formulated in a T -symmetric
way, as done by Fokker (1929) by means of his action

I =
∫

(T − V )dt =
∑

i

mi

∫
dτi (2.32)

−1
2

∑
i�=j

eiej

∫∫
vµ

i vjµδ
[
(zν

i − zν
j )(ziν − zjν)

]
dτidτj .

Here, indices i and j are particle numbers. A sum over i �= j defines a double
sum excluding equal indices, while a sum over i(�= j) is meant as a sum
over i only, excluding a given value j. In (2.32), the particle positions zµ

i

and velocities vµ
i have to be taken at the proper time τi of the corresponding

particle, for example zµ
i = zµ

i (τi).
Expanding the δ-function in the potential energy according to

δ(∆zν∆zν) = δ(∆z2
0 −∆z2) =

1
2|∆z|

[
δ(∆z0−|∆z|)+δ(∆z0+ |∆z|)

]
(2.33)

(with ∆zν = zν
i −zν

j ) preserves its symmetric form. By integrating either over
τi or over τj , one obtains, respectively, the first or second of the following
expressions (first two graphs of Fig. 2.6):

ei

2

∫ [
Aµ

ret,j(z
σ
i ) + Aµ

adv,j(z
σ
i )
]
viµdτi ≡ ej

2

∫ [
Aµ

adv,i(z
σ
j ) + Aµ

ret,i(z
σ
j )
]
vjµdτj .

(2.34)
Aµ

ret,j and Aµ
adv,j are the retarded and advanced potentials of the j th particle

according to (2.2a) and (2.2b). However, if the integral is always carried out
with respect to the particle on the backward light cone of the other one, one
obtains, in spite of the preserved T -symmetry of the theory, only contributions
in terms of retarded potentials (third graph):

ei

2

∫
Aµ

ret,j(z
σ
i )viµdτi +

ej

2

∫
Aµ

ret,i(z
σ
j )vjµdτj , (2.35)

and analogously, but time reversed, for the advanced potentials (fourth graph).
Einstein seems to have been referring to this equivalence of different forms of
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the interaction in his letter with Ritz (quoted in the introduction to this
chapter).

However, the Euler–Lagrange equations resulting from (2.32) automati-
cally lead to T -symmetric forces which comply with Newton’s third law:

maµ
i =

ei

2

∑
j(�=i)

[
Fµν

ret,j(z
σ
i ) + Fµν

adv,j(z
σ
i )
]
vi,ν . (2.36)

According to (2.8), this would correspond to the cosmic boundary condition
Fµν

in + Fµν
out = 0 in Maxwell’s theory. Equations (2.36) differ from the empiri-

cally required ones,

maµ
i = ei

∑
j(�=i)

Fµν
ret,j(z

σ
i )vi,ν +

ei

2

[
Fµν

ret,i(z
σ
i ) − Fµν

adv,i(z
σ
i )
]
vi,ν , (2.37)

not only by the replacement of half the retarded by half the advanced forces,
but also by the missing radiation reaction Fµ

rad,i (Dirac’s asymmetric self-
force). While the problem of a mass renormalization has disappeared, (2.36)
seems to be in drastic conflict with reality. Moreover, it contains a complicated
dynamical meshing of the future with the past that does not in any obvious
way permit the formulation of an initial-value problem.

The two equations of motion, (2.36) and (2.37), differ precisely by a force
that would result from the sum of the asymmetric fields of all particles,
Fµν

rad,total =
∑

j(F
µν
ret,j − Fµν

adv,j)/2. Since the retarded and advanced fields ap-
pearing in this expression possess identical sources, their difference solves the
homogeneous Maxwell equations, and thus represents a free field in spite of
the dependence of the retarded and advanced fields on the sources. Therefore,
this sum of differences may be assumed to vanish for all times as a ‘boundary’
condition. As there are no retarded fields at the beginning of the Universe, this
would require

∑
j Fµν

adv,j(tbig bang) = 0 as a very restrictive global constraint
on all sources that will ever arise; it can hardly be exactly valid.

If the condition Fµν
rad,total = 0 did apply, the advanced effects of all charged

matter in the Universe would precisely double the retarded forces in (2.36),
cancel the advanced ones, and imitate a self-interaction that is responsible for
radiation damping. This is an example of the equivalence of apparently quite
different dynamical representations of deterministic theories, such as causal
or teleological, local or global ones.

Instead of referring to a cosmic initial condition, Wheeler and Feynman
(1945) tried to explain the vanishing of the sum of asymmetric fields by the
assumption that the total charged matter in the Universe behaves as an ‘ab-
sorber’ in a sense that is very different from that used in Sect. 2.2. They
required that the symmetric field F̄ resulting from all particles, which would
according to (2.36) determine the force on an additional ‘test particle’, should
vanish for statistical reasons (by destructive interference) in a presumed empty
space surrounding all matter of this ‘island universe’. This assumption,
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j

F̄µν
j :=

∑
j

1
2

[
Fµν

ret,j + Fµν
adv,j

]
−→ 0 , (2.38)

constitutes their cosmic absorber condition. Since the retarded or advanced
fields vanish by definition in the asymptotic past or future, respectively, so
must their time-reversed partner because of (2.38), and hence also their asym-
metric combination. Wheeler and Feynman then concluded by means of the
homogeneous Maxwell equations that the total asymmetric field would vanish
everywhere. This is just the required ‘boundary’ condition.

However, the consistency of this procedure is very questionable. A sim-
ilar problem would arise for an expanding and recollapsing Universe that
were sandwiched between two thermodynamically opposite radiation eras (ab-
sorbers with opposite thermodynamical arrows of time) – see Sect. 5.3. As
explained in Sect. 2.1, the compatibility of double-ended (two-time) boundary
conditions is highly nontrivial – similar to an eigenvalue problem. This con-
sistency problem is particularly severe for a universe that remains optically
transparent and thus preserves information contained in the radiation such as
light (Davies and Twamley 1993).

In contrast to the physical absorbers of Sect. 2.2, the new absorber condi-
tion is symmetric under time reversal. This fact led to many misunderstand-
ings. For example, rather than adding the vanishing antisymmetric term to
(2.36), one might as well subtract it in order to obtain the time-reversed rep-
resentation

maµ
i = ei

∑
j(�=i)

Fµν
adv,j(z

σ
i )vi,ν − ei

2

[
Fµν

ret,i(z
σ
i ) − Fµν

adv,i(z
σ
i )
]
vi,ν . (2.39)

Although it is as correct as (2.37) under the absorber condition, (2.39) de-
scribes advanced actions and a radiation reaction that leads to reverse damp-
ing (exponential acceleration).

Therefore, Wheeler and Feynman’s absorber condition cannot explain the
observed radiation arrow. Neither (2.37) nor (2.39) would describe the local
empirical situation, which requires in general that only a limited number of
‘obvious sources’ contribute noticeably to the retarded sum (2.37). Otherwise,
retardation would never have been recognized. This means that the retarded
contribution of all ‘other’ sources (those which form the true universal ab-
sorber) must interfere destructively (see Fig. 2.7):∑

i∈ absorbers

Fµν
ret,i ≈ 0 ‘inside’ universal absorber . (2.40)

This is possible (except for the remaining thermal radiation) if the absorber
particles approach thermal equilibrium by means of collisions after having
been accelerated by retarded fields. Therefore, one cannot expect∑

i∈ absorbers

Fµν
adv,i ≈ 0 ‘inside’ universal absorber (2.41)
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'absorber'

' inside' 'outside'

∑
i ∈ absorbers

Fret,i ≈ 0
∑
i

(Fret,i + Fadv,i) = 0

Fig. 2.7. T -symmetric (‘outside’) and T -asymmetric (‘inside’) absorber conditions
of a model Universe with action-at-a-distance electrodynamics

to hold in a symmetric way. Since Fµν
ret contributes only on the forward light

cones, Fig. 2.7 reduces to Fig. 2.4.
In order to justify the applicability of (2.37) in contrast to that of (2.39),

one still needs the asymmetric condition that has been derived in Sect. 2.2
from the thermodynamical arrow of time under certain cosmological assump-
tions. This means that any motion of absorber particles is dissipated as heat
after it has been induced. While in field theory the field may be regarded
as ‘matter’ with its own thermodynamical state, action-at-a-distance theory
ascribes thermodynamical properties only to the sources. In the former de-
scription, the relation between electromagnetic and thermodynamical arrows
is just an example of the universality of the thermodynamical arrow (see
Sect. 3.1.2).

With these remarks I also hope to put to rest objections raised by Popper
(1956) against the thermodynamical foundation of the radiation arrow – see
also Price (1996), page 51. The only ‘unusual’ aspect of electromagnetic fields
(when regarded as matter) is their weak coupling, which may greatly delay
their thermalization in the absence of absorbers (see also Sect. 5.3.3). It is this
very property that allows light and radio waves to serve as information media.

Therefore, the time-reversal-symmetric ‘absorber condition’ (2.38) leads
to the equivalence of various forms of electrodynamics, but cannot explain
the time arrow of radiation. In action-at-a-distance theories, there is no free
radiation, while the radiation reaction is the effect of advanced forces ‘caused’
by future absorbers. If the Universe remained transparent for all times in
some direction, an appropriately beamed emitter should not draw any power
according to the absorber theory. As it always seems to do so (Partridge 1973),
the absorber theory may even be ruled out empirically. If similarly applied to
gravitational fields, it might also be in conflict with the observed energy loss
of double pulsars.

General Literature: Wheeler and Feynman 1945, 1949, Hoyle and Narlikar
1995.




