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Abstract. In this paper, we focus on the problem of automated addition of fault-
tolerance to an existing fault-intolerant real-time program. We consider three lev-
els of fault-tolerance, namely nonmasking, failsafe, and masking, based on safety
and liveness properties satisfied in the presence of faults. More specifically, a
nonmasking (respectively, failsafe, masking) program satisfies liveness (respec-
tively, safety, both safety and liveness) in the presence of faults. For failsafe and
masking fault-tolerance, we consider two additional levels, soft and hard, based
on satisfaction of timing constraints in the presence of faults. We present a poly-
nomial time algorithm (in the size of the input program’s region graph) that adds
bounded-time recovery from an arbitrary given set of states to another arbitrary
set of states. Using this algorithm, we propose a sound and complete synthesis
algorithm that transforms a fault-intolerant real-time program into a nonmask-
ing fault-tolerant program. Furthermore, we introduce sound and complete al-
gorithms for adding soft/hard-failsafe fault-tolerance. For reasons of space, our
results on addition of soft/hard-masking fault-tolerance are presented in a techni-
cal report.

Keywords: Fault-tolerance, Real-time, Bounded-time recovery, Program synthe-
sis, Program transformation, Formal methods.

1 Introduction

Automated program synthesis is the problem of designing an algorithmic method to find
a program that satisfies a required set of properties. Such automated synthesis is desir-
able, as it ensures that the synthesized program is correct-by-construction. In existing
specification-based synthesis methods, a change in the specification requires us to redo
synthesis from scratch. Thus, it would be advantageous, if we could reuse the previous
efforts made to synthesize real-time programs and somehow incrementally add proper-
ties (e.g., fault-tolerance) to them. Moreover, such incremental synthesis is especially
useful if the given real-time program is designed manually, e.g., for ensuring that the
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original program is efficient. More importantly, incremental synthesis is crucial when
the existing real-time program satisfies properties whose automated synthesis is unde-
cidable (e.g., precise eventuality ♦=δq) or lies in highly complex classes of complexity.

In this paper, we focus on designing incremental synthesis algorithms that solely
add fault-tolerance to existing fault-intolerant real-time programs, where processes can
read and write all program variables in one atomic step. In particular, we concentrate
on algorithms with manageable time and space complexity such that they can be used
in tools for synthesizing fault-tolerant real-time programs. To characterize such man-
ageable complexity, we require that the complexity of our algorithms are comparable
to that of existing model checking techniques in the dense real-time model.

In order to characterize fault-tolerance requirements of programs, in our work, we
consider three levels of fault-tolerance, namely nonmasking (respectively, stabilizing),
failsafe, and masking, based on safety and liveness properties satisfied in the presence
of faults. Furthermore, we propose two additional levels, namely soft and hard fault-
tolerance, based on satisfaction of timing constraints in the presence of faults. Precisely,
in the absence of faults, both soft and hard fault-tolerant programs are required to satisfy
their timing constraints. However, in the presence faults, a soft fault-tolerant program
is not required to satisfy its timing constraints while a hard fault-tolerant program is
required to do so. In this sense, for instance, a hard-failsafe program satisfies its safety
specification as well as its timing constraints in the presence of faults.

1.1 Related Work

In the literature of real-time computing, fault-tolerance has mostly been addressed in
the context of scheduling theory (e.g., [1, 2]). In fault-tolerant real-time scheduling, the
objective is to find the optimal schedule of a set of tasks on a set of processors dynam-
ically, such that the largest possible number of tasks meet their deadlines. Since time
complexity is a critical issue in dynamic scheduling, most of the proposed algorithms
are in the form of heuristics designed for specific platforms and special types of faults
(e.g., transient, fail-stop, Byzantine, etc.).

Recently, we studied the problem of incremental synthesis of timed automata in the
absence of faults in [3]. More specifically, we developed synthesis algorithms and hard-
ness results for adding different types of bounded response properties to a given timed
automaton. We also studied the problem of incremental addition of UNITY [4] proper-
ties to untimed programs in [5].

The problem of synthesizing untimed fault-tolerant programs has been studied in the
literature from different perspectives. In [6, 7, 8], the authors propose synthesis meth-
ods for adding fault-tolerance and multitolerance to existing untimed programs. In [9],
Attie, Arora, and Emerson study the problem of synthesizing fault-tolerant concurrent
untimed programs from temporal logic specifications expressed in CTL formulas.

Synthesis of real-time systems has mostly been studied in the context of controller
synthesis and game theory [10,11,12,13,14,15]. In these papers, the common assump-
tion is that the existing program (called a plant) and/or the given specification are de-
terministic. Moreover, since the authors consider highly expressive specifications, the
complexity of proposed methods is very high. For example, synthesis problems pre-
sented in [15,10,11,14] are EXPTIME-complete. Moreover, deciding the existence of a
solution (called a controller) in [12, 13] is 2EXPTIME-complete.
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1.2 Contributions

In this paper we (i) introduce a generic fault-tolerance framework for real-time pro-
grams independent of platform, architecture, and type of faults; (ii) extend the previous
work by Kulkarni and Arora [6] to the context of real-time programs; (iii) consider
a general notion of real-time programs that covers both deterministic and nondeter-
ministic programs in both synchronous and asynchronous models; and (iv) introduce
various levels of fault-tolerance for real-time systems based on satisfaction of proper-
ties and timing constraints in the presence of faults. Furthermore, we present a class
of specifications where we can express typical requirements for specifying real-time
and fault-tolerant systems and we show that the complexity of synthesis algorithms
for this class of specifications is comparable to existing model checking techniques for
real-time programs [16]. Moreover, since we follow the standard model of timed au-
tomata [17], many of the problems in fault-tolerant scheduling theory can be modeled
in our framework [18].

The main results in this paper are as follows. First, we present a polynomial time al-
gorithm (in the size of the input program’s region graph) that adds bounded-time recov-
ery from an arbitrary given set of states to another arbitrary set of states. Then, using this
algorithm, we propose sound and complete synthesis algorithms that transform a fault-
intolerant real-time program into a (1) nonmasking or soft-failsafe fault-tolerant pro-
grams, or (2) hard-failsafe fault-tolerant program where the synthesized fault-tolerant
program is required to satisfy at most one bounded response property in the presence
of faults. For reasons of space, in a technical report [19], we also present a synthesis
algorithm for adding soft-masking fault-tolerance. Moreover, we show that the problem
of adding hard-masking fault-tolerance where the synthesized program is required to
satisfy at least two bounded response properties in the presence of faults is NP-hard.

Organization of the paper. In Section 2, we present formal definitions of real-time
programs, specifications, and regions graphs. We introduce the notions of faults and
fault-tolerance in the context of real-time programs in Section 3. In Section 4, we for-
mally state the problem of adding fault-tolerance to real-time programs. We present
our synthesis algorithms for adding nonmasking, soft-failsafe, and hard-failsafe fault-
tolerance in sections 5, 6, and 7, respectively. Finally, in Section 8, we make the con-
cluding remarks.

2 Real-Time Programs, Specifications, and Region Graphs

In our framework, programs are specified in terms of their state space and their transi-
tions [20]. The definition of specifications is adapted from Henzinger [21]. Finally, the
notion of region graph is due to Alur and Dill [17].

2.1 Real-Time Program

Let V be a finite set of discrete variables and X be a finite set of clock variables.
Each discrete variable is associated with a finite domain D of values. A location is
a function that maps each discrete variable to a value from its respective domain. A
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clock constraint over the set X of clock variables is a Boolean combination of formulas
of the form x � c or x − y � c, where x, y ∈ X , c ∈ Z≥0, and � is either < or
≤. We denote the set of all clock constraints over X by Φ(X). A clock valuation is a
function ν : X → R≥0 that assigns a real value to each clock variable. Furthermore,
for τ ∈ R≥0, ν + τ = ν(x) + τ for every clock x. Also, for λ ⊆ X , ν[λ := 0] denotes
the clock valuation for X which assigns 0 to each x ∈ λ and agrees with ν over the rest
of the clock variables in X .

A state (denoted σ) is a pair (s, ν), such that s is a location and ν is a clock valuation
for X at location s. A transition (denoted (σ0, σ1)) is of the form (s0, ν0) → (s1, ν1).
Transitions are classified into two types:

– Delay: for a state σ = (s, ν) and a time duration δ ∈ R≥0 (denoted (σ, δ)),
(s, ν) → (s, ν + δ).

– Jump: for a state (s0, ν), a location s1, and a set λ of clock variables, (s0, ν) →
(s1, ν[λ := 0]).

A program P is a tuple 〈Sp, ψp〉, where Sp is the state space, and ψp is a set of tran-
sitions. Let ψs

p and ψd
p denote the set of jump and delay transitions in ψp, respectively.

A state predicate is a subset of Sp such that it is definable by the above syntax of
clock constraints, i.e., in the corresponding Boolean expression clock variables are
only compared to nonnegative integers. A state predicate S is closed in program P
if ((∀(σ0, σ1) ∈ ψs

p : (σ0 ∈ S ⇒ σ1 ∈ S)) ∧ (∀(σ, δ) ∈ ψd
p : (σ ∈ S ⇒ ∀ε ≤

δ : σ+ ε ∈ S))). A timed state sequence 〈(σ0, τ0), (σ1, τ1), · · · 〉, where τi ∈ R≥0, is a
computation of P if the following conditions are satisfied: (1) ∀j > 0 : (σj−1, σj) ∈ ψp,
(2) if it is finite and terminates in (σl, τl) then there does not exist state σ such that
(σl, σ) ∈ ψp, and (3) the sequence 〈τ0, τ1, · · · 〉 satisfies the following constraints:

Monotonicity: τi ≤ τi+1 for all i ∈ N.
Divergence: For all t ∈ R≥0, there exists j such that τj ≥ t.

The projection of a set of program transitions ψp on state predicate S (denoted ψp|S)
is the set of transitions {(σ0, σ1) ∈ ψs

p | σ0, σ1 ∈ S} ∪ {(σ, δ) ∈ ψd
p | σ ∈ S ∧ (∀ε ≤

δ : σ + ε ∈ S)}.

2.2 Specification

A specification (or property), denoted Σ, is a set of timed state sequences of the form
〈(σ0, τ0), (σ1, τ1), · · · 〉. Following Henzinger [21], we require that the sequence
〈τ0, τ1, · · · 〉 satisfies monotonicity and divergence. We now define what it means for
a program P to satisfy a specification Σ. Given a program P , a state predicate S, and
a specification Σ, we write P |=S Σ and say that program P satisfies Σ from S iff (1)
S is closed in P , and (2) every computation of P that starts where S is true is in Σ. If
P |=S Σ and S �= {}, we say that S is an invariant of P for Σ.

Notation. Whenever the specification is clear from the context, we will omit it; thus,
“S is an invariant of P” abbreviates “S is an invariant of P for Σ”.

We say that program P maintains Σ iff for all finite timed state sequences α of P ,
there exists a timed state sequence β such that αβ ∈ Σ. We say that P violates Σ iff it
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is not the case that P maintains Σ. Note that, the definition of maintains identifies the
property of finite timed state sequences, whereas the definition of satisfies expresses the
property of infinite timed state sequences.

Following Alpern and Schneider [22] and Henzinger [21], we let the specification
consist of a liveness specification and a safety specification. The liveness specification
is represented by a set of infinite computations. A program satisfies the liveness spec-
ification, if every computation prefix of the program has a suffix that is in the liveness
specification.

Remark 2.1: In the synthesis problem, we begin with an initial fault-intolerant pro-
gram that satisfies its specification (including the liveness specification) in the absence
of faults. We will show that our synthesis algorithms preserve liveness specification.
Hence, the liveness specification need not be specified explicitly.

In this paper, with abuse of notation, we let the safety specification consist of (1) a set
Σbt of location switch bad transitions that should not occur in the program computation,
and (2) a conjunction of zero or more bounded response properties of the form Σbr ≡
((P1 �→≤δ1 Q1) ∧ (P2 �→≤δ2 Q2) ∧ ... ∧ (Pm �→≤δm Qm)), i.e., it is always the
case that a state in Pi is followed by a state in Qi within δi time units, where Pi and
Qi are state predicates and δi ∈ Z≥0, for all i such that 1 ≤ i ≤ m. Observe that we
abuse the |= notation for the set Σbt of bad transitions. This is because it is possible
to trivially translate this concise representation of safety into the corresponding set of
infinite computations. The same concept applies to definitions of maintains and violates.

2.3 Region Graph

Real-time programs can be analyzed with the help of an equivalence relation of finite
index on the set of states [17]. Given a real-time program P , for each clock x ∈ X ,
let cx be the largest constant in the guards of transitions and invariant of P that involve
x, where cx = 0 if x does not occur in any guard or invariant of P . Two clock valu-
ations ν, μ are clock equivalent if (1) for all x ∈ X , either �ν(x)� = �μ(x)� or both
ν(x), μ(x) > cx, (2) the ordering of the fractional parts of the clock variables in the
set {x ∈ X | ν(x) < cx} is the same in μ, and (3) for all x ∈ {y ∈ X | ν(y) < cy},
the clock value ν(x) is an integer if and only if μ(x) is an integer. A clock region
ρ is a clock equivalence class. Two states (s0, ν0) and (s1, ν1) are region equivalent,
written (s0, ν0) ≡ (s1, ν1), if (1) s0 = s1 and (2) ν0 and ν1 are clock equivalent.
A region is an equivalence class with respect to ≡. Using the region equivalence re-
lation, we construct the region graph of P〈Sp, ψp〉 (denoted R(P)〈Sr

p, ψr
p〉) as fol-

lows. Vertices of R(P) (denoted Sr
p) are regions. Edges of R(P) (denoted ψr

p) are of
the form (s0, ρ0) → (s1, ρ1) iff for some clock valuations ν0 ∈ ρ0 and ν1 ∈ ρ1,
(s0, ν0) → (s1, ν1) is a transitions in ψp. We say that a region (s0, ρ0) of region graph
R(P) is a deadlock region iff for all regions (s1, ρ1), there does not exist an edge of
the form (s0, ρ0) → (s1, ρ1). A region predicate Sr with respect to a state predicate S
is defined by Sr = {(s, ρ) | ∃(s, ν) : ((s, ν) ∈ S ∧ ν ∈ ρ)}. Likewise, the region
predicate with respect to invariant S of a program P is called region invariant Sr. The
projection of a set of edges ψr

p on region predicate Sr (denoted ψr
p|Sr) is the set of

edges {(r0, r1) ∈ ψr
p | r0, r1 ∈ Sr}.
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Region graphs are time-abstract bisimulation of real-time programs [17]. In our syn-
thesis algorithms in section 5, 6, and 7, we transform a real-time program P〈Sp, ψp〉
into its corresponding region graph R(P)〈Sr

p, ψr
p〉 by invoking the procedure

ConstructRegionGraph. We also let this procedure take state predicates and sets of
transitions in P (e.g., S and Σbt) and return the corresponding region predicates and
sets of edges in R(P) (e.g., Sr and Σr

bt). Likewise, we transform a region graph R(P)
back to a real-time program by invoking the procedure ConstructRealTimeProgram.

A clock region β is a time-successor of a clock region α iff for each ν ∈ α, there
exists τ ∈ R≥0, such that ν + τ ∈ β, and ν + τ ′ ∈ α∪β for all τ ′ < τ . We call a region
(s, ρ) a boundary region, if for each ν ∈ ρ and for any τ ∈ R≥0, ν and ν + τ are not
equivalent. A region is open, if it is not a boundary region. A region (s, ρ) is called an
end region, if ν(x) > cx for all ν ∈ ρ and for all clocks x ∈ X .

3 Faults and Fault-Tolerance in Real-Time Programs

In this section, we extend formal definitions of faults and fault-tolerance due to Arora
and Gouda [23] to the context of real-time programs. The faults that a program is sub-
ject to are systematically represented by transitions. A class of faults f for program
P〈Sp, ψp〉 is a subset of the set Sp × Sp. Faults are also categorized into delay faults
and jump faults. We use ψp[]f to denote the transitions obtained by taking the union of
the transitions in ψp and the transitions in f .

We say that a state predicate T is an f -span (read as fault-span) of P from S iff the
following conditions are satisfied: (1) S ⊆ T , and (2) T is closed in ψp[]f . Observe that
for all computations of P that start from states where S is true, T is a boundary in the
state space of P up to which (but not beyond which) the state of P may be perturbed by
the occurrence of the transitions in f . As we defined the computations of P , we say that
a timed state sequence, 〈(σ0, τ0), (σ1, τ1), · · · 〉, is a computation of P in the presence
of f iff the following four conditions are satisfied: (1) ∀j > 0 : (σj−1, σj)∈ (ψp ∪ f),
(2) if it is finite and terminates in state (σl, τl) then there does not exist state σ such that
(σl, σ) ∈ ψp, (3) 〈τ0, τ1, · · · 〉 satisfies monotonicity and divergence, and (4) ∃n ≥ 0 :
(∀j > n : (σj−1, σj)∈ψp).

We consider three levels of fault-tolerance, namely nonmasking, failsafe, and mask-
ing based on satisfaction of safety and liveness properties in the presence of faults. For
failsafe and masking fault-tolerance, we propose two additional levels, namely soft and
hard, based on satisfaction of timing constraints in the presence of faults. Intuitively, a
soft fault-tolerant real-time program is not required to satisfy its timing constraints in
the presence of faults. A hard fault-tolerant real-time program must satisfy its timing
constraints even in the presence of faults.

Let specification Σ consist of Σbt and Σbr. Since a nonmasking fault-tolerant pro-
gram need not satisfy safety in the presence of faults, P is nonmasking f -tolerant from
S for Σ with recovery time δ, where δ ∈ Z≥0, iff (1) P |=S Σbt, (2) P |=S Σbr, and
(3) there exists T such that T is an f -span of P from S, and every computation of
P〈Sp, ψp[]f〉 that starts from a state in T , reaches a state in S within δ time units. We
say that P is soft-failsafe f -tolerant from S for Σ iff (1) P |=S Σbt, (2) P |=S Σbr, and
(3) there exists T such that T is an f -span of P from S, and P〈Sp, ψp[]f〉 maintains
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Σbt from T . A program P is hard-failsafe f -tolerant from S for Σ iff P is soft-failsafe
f -tolerant from S for Σ and P〈Sp, ψp[]f〉 maintains Σbr from T . A program P〈Sp, ψp〉
is soft-masking f -tolerant from S for Σ with recovery time δ, where δ ∈ Z≥0, iff (1)
P |=S Σbt, (2) P |=S Σbr, (3) there exists T such that T is an f -span of P from S and
P〈Sp, ψp[]f〉 maintains Σbt from T , and (4) every computation of P〈Sp, ψp[]f〉 that
starts from a state in T , reaches a state in S within δ time units. A program P〈Sp, ψp〉
is hard-masking f -tolerant from S for Σ with recovery time δ, where δ ∈ Z≥0, iff P is
soft-masking f -tolerant from S for Σ with recovery time δ, and P〈Sp, ψp[]f〉 maintains
Σbr from T .

Notation. Whenever the specification Σ and the invariant S are clear from the context,
we omit them; thus, “f -tolerant” abbreviates “f -tolerant from S for Σ”.

Assumption 3.1: Since P satisfies Σbr ≡ ((P1 �→≤δ1 Q1) ∧ ...∧ (Pm �→≤δm Qm))
in the absence of faults (cf. Remark 2.1), without loss of generality, we assume that
for each bounded response property (Pi �→≤δi Qi), where 1 ≤ i ≤ m, the intolerant
program already has a clock variable that is reset on transitions that go from a state in
¬Pi to a state in Pi to keep track of time as soon as Pi becomes true.

Assumption 3.2: We assume that faults are immediately detectable and that given
a state of the program, we can determine the number of faults that have occurred in
reaching that state. This assumption is needed only for addition of hard fault-tolerance
and is realistic in many commonly considered systems. For instance, in multiproces-
sor scheduling theory, a processor-crash is immediately detectable and its number of
occurrences is easily traceable.

Assumption 3.3: We assume that the number of occurrence of faults in a program
computation is bounded by a pre-specified value n. This assumption is required since
for commonly considered faults, it can be shown that bounded-time recovery in the
presence of unbounded occurrence of faults is impossible.

4 Problem Statement

Given are a fault-intolerant real-time program P〈Sp, ψp〉, its invariant S, a set of faults
f , and a safety specification Σ such that P |=S Σ. Our goal is to synthesize a real-
time program P ′〈Sp, ψ

′
p〉 with invariant S′ such that P ′ is f -tolerant from S′ for Σ.

As mentioned in the introduction, our synthesis methods obtain P ′ from P by adding
fault-tolerance alone to P , i.e., P ′ does not introduce new behaviors to P when no
faults have occurred. Observe that:

1. If S′ contains states that are not in S then, in the absence of faults, P ′ may include
computations that start outside S. Since we require that P ′ |=S′ Σ, it would imply
that P ′ is using a new way to satisfy Σ in the absence of faults.

2. If ψ′
p|S′ contains a transition that is not in ψp|S′ then P ′ can use this transition in

order to satisfy Σ in the absence of faults.

Thus, the synthesis problem is as follows (we instantiate this problem for soft/hard-
failsafe, nonmasking, and soft/hard-masking f -tolerance in the obvious way):
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Problem Statement 4.1. Given P〈Sp, ψp〉, S, Σ, and f such that P |=S Σ.
Identify P ′〈Sp, ψ

′
p〉 and S′ such that

(C1) S′ ⊆ S
(C2) ψ′

p|S′ ⊆ ψp|S′, and
(C3) P ′ is f -tolerant from S′ for Σ.

Soundness and completeness. We say that an algorithm for the synthesis problem is
sound iff its output meets the constraints of the Problem Statement 4.1. We say that an
algorithm for the synthesis problem is complete iff it finds a solution to the Problem
Statement 4.1 iff there exists one.

5 Adding Nonmasking Fault-Tolerance

Algorithm sketch. Since a nonmasking program is not required to satisfy its safety
specification in the presence of faults, it only suffices to provide bounded-time recov-
ery from the fault-span Sp − S to the invariant S. We develop a general procedure
that adds bounded-time recovery to a given region graph from any arbitrary given state
predicate P to another state predicate Q within δ time units (i.e., P �→≤δ Q). Notice
that bounded-time recovery from fault-span to the invariant can be formally defined by
R ≡ (Sp − S) �→≤δ S. The algorithm has four main steps. First, we transform the re-
gion graph to a weighted directed graph (called MaxDelay digraph [24]), in which the
length of a path from vertex vs to vt is equivalent to the maximum delay for reaching
the region that corresponds to vt from the region that corresponds to vs. We use this
property to remove the computations that violate P �→≤δ Q. To this end, in Step 2,
we rank vertices of the MaxDelay digraph by simply applying an adjusted Dijkstra’s
shortest path algorithms. For instance, suppose that a computation starts from a state
σ0 ∈ P . If a fault perturbs the program to a state σj where “something” should be
redone, the maximum delay of that computation to reach Q is obviously increased.
Hence, we adjust the length of the shortest path from σ0 to Q such that the amount
of time wasted by every occurrence of faults is considered (cf. Figure 1). In Step 3,
we include regions and edges whose rank is at most the required response time δ.
Then, in Step 4, we transform the synthesized MaxDelay digraph back into a region
graph.

Construction of MaxDelay digraph. We now describe the procedure Construct-
MaxDelayGraph that transforms a region graph to a MaxDelay digraph. The pro-
cedure takes a region graph R(P)〈Sr

p , ψr
p〉 and a set f r of fault edges as input, and

constructs a MaxDelay digraph G〈V, A〉 as follows. Vertices of G consist of the re-
gions in R(P).

Notation. We denote the weight of an arc (v0, v1) by Weight(v0, v1). Let γ denote a
bijection that maps each region r ∈ Sr

p to its corresponding vertex in G; i.e., γ(r) is a
vertex of G that represents region r of R(P). Also, let γ−1 denote the inverse of γ; i.e.,
γ−1(v) is the region of R(P) that corresponds to vertex v in V . Let Γ be a function
that maps a region predicate in R(P) to the corresponding set of vertices of G and let
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Γ−1 be its inverse. Finally, for a boundary region r with respect to clock variable x, we
denote the value of x by r.x (equal to some nonnegative integer in Z≥0).

Arcs of G consist of the following:

– Arcs of weight 0 from v0 to v1, if γ−1(v0) → γ−1(v1) represents a jump transition
in R(P).

– Arcs of weight c′ − c, where c, c′ ∈ Z≥0 and c′ > c, from v0 to v1, if γ−1(v0)
and γ−1(v1) are both boundary regions with respect to clock variable xi, such that
γ−1(v0).xi = c, γ−1(v1).xi = c′, and there is a path in R(P) from γ−1(v0) to
γ−1(v1), which does not reset xi.

– Arcs of weight c′ − c − ε, where c, c′ ∈ Z≥0, c′ > c, and 0 < ε � 1, from v0
to v1 , if (1) γ−1(v0) is a boundary region with respect to clock xi, (2) γ−1(v1) is
an open region whose time-successor γ−1(v2) is a boundary region with respect to
clock xi, (3) γ−1(v0) → γ−1(v1) represents a delay transition in R(P), and (4)
γ−1(v0).xi = c and γ−1(v2).xi = c′.

– Self-loop arcs of weight ∞ at vertex v, if γ−1(v) is an end region.

In order to compute the maximum delay between regions in P r and Qr, it suffices to
find the longest distance between Γ (P r) and Γ (Qr) in G.

We now describe the procedure Add BoundedRecovery (cf. Figure 2) in detail.
Given a region graph R(P), we first transforms it into a MaxDelay digraph G〈V, A〉
(Line A1). Recall that, by Assumption 3.2, faults are detectable and P has a variable
that shows how many faults have occurred in a computation. Thus, let Gi〈V i, Ai〉 be the
portion of G, in which n − i faults have occurred, where 0 ≤ i ≤ n. More specifically,
initially, a computation starts from the portion Gn where no faults have occurred. If
a fault occurs in a computation that is currently in portion Gi, the computation will
proceed in portion Gi−1. We use these portions to see whether it is possible to reach a
vertex in Γ (Qr) from each vertex in Γ (P r) within δ time units.

Next, we rank vertices of all portions of G using a modified Dijkstra’s shortest path
algorithm, which takes state perturbations into account (lines A2-A9 and A22-A23).
More specifically, since no faults occur in G0, we first let the rank of each vertex v ∈
V 0 be the length of Dijkstra’s shortest path from v to Γ (Qr)0 (Line A2). Now, let
v0 be a vertex in V i where 1 ≤ i ≤ n, and let v1 be a vertex in V i−1, such that
(γ−1(v0), γ−1(v1)) is a fault edge in R(P) and both v0 and v1 are on a path from Γ (P r)
to Γ (Qr). There exist two cases: (1) the fault edge (γ−1(v0), γ−1(v1)) decreases or
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Fig. 1. Adjusted shortest path
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procedure Add BoundedRecovery(R(P)〈Sr
p, ψr

p〉: region graph, fr : set of edges,
P r , Qr : region predicate, n, δ: integer)

// Adds bounded-time recovery from P r to Qr in the presence of fr

{
step 1: G〈V, A〉 := ConstructMaxDelayGraph(R(P)〈Sr

p, ψr
p〉, fr); (A1)

Let Gi〈V i, Ai〉 be the portion of G, in which (n − i) faults have occurred, where 0 ≤ i ≤ n;
step 2: for each vertex v ∈ V 0 : Rank(v) := Length of the shortest path from v to Γ (Qr)0; (A2)

for i = 1 to n (A3)
for each vertex v0 ∈ V i : (A4)

Vf := {v1 | (v1 ∈ V i−1 ∧ (γ−1(v0), γ−1(v1)) ∈ fr)}; (A5)
if Vf 	= {} then MinRank(v0) := (A6)

max{(Rank(v1) + Weight(v0, v1)) for all v1 ∈ Vf}; (A7)
else MinRank(v0) := 0; (A8)

AdjustShortestPaths(Gi〈V i, Ai〉, Γ (P r)i, Γ (Qr)i); (A9)
// Constructing a subgraph of each portion such that the longest distance between Γ (P r) and Γ (Qr) is at most δ

and then adding the arcs and vertices that do not appear on paths from Γ (P r) to Γ (Qr)
step 3: for i = 0 to n (A10)

G′i〈V ′i, A′i〉 = {}; (A11)
for each vertex v ∈ Γ (P r)i : (A12)

if Rank(v) ≤ δ then (A13)
Π := the shortest path from v to Γ (Qr)i; (A14)
V ′i := V ′i ∪ {u | u is on Π}; (A15)
A′i := A′i ∪ {a | a is on Π}; (A16)

A′i := A′i ∪ {(u, v) | (u, v) ∈ Ai ∧ (u /∈ V ′i ∨ (u ∈ Γ (Qr)i))}; (A17)
V ′i := (V ′i ∪ {u | (∃v : (u, v) ∈ A′i ∨ (v, u) ∈ A′i)}); (A18)

// Transforming weighted digraph G into a region graph
step 4: ψ′r

p := {(r0, r1) | (r0, r1) ∈ ψr
p ∧ (γ(r0), γ(r1)) ∈ A′} ∪

{(r1, r2) | (r1, r2) ∈ ψr
p ∧ (γ(r1), γ(r2)) /∈ A′ ∧

∃r0 : Weight(γ(r0), γ(r1)) = 1 − ε}; (A19)
ns := {r | γ(r) ∈ (V − V ′)}; (A20)
return ψ′r

p , ns (A21)
}
procedure AdjustShortestPaths(Gi〈V i, Ai〉 : directed weighted graph, Vq : set of vertices)
// Adjusts the rank of each vertex based on the ranks computed in Add BoundedRecovery
{

for each vertex v ∈ V i apply Dijkstra’s shortest path with the following change:
if Dijkstra’s shortest path computes a length less than MinRank(v) then

Rank(v) := MinRank(v); (A22)
else Rank(v) := length of Dijkstra’s shortest path from v to Vq

using the assigned rank of other vertices (A23)
}
algorithm Add Nonmasking(P〈Sp, ψp〉 :real-time program f :transitions, S: state predicate, n, δ: integer)
{

R(P)〈Sr
p, ψr

p〉, Sr , fr := ConstructRegionGraph(P〈Sp, ψp〉, S, f); (B1)
ψr

p := ψr
p ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) 	∈ Sr ∧
∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ − {t} := 0])}; (B2)

ψr
p, ns := Add BoundedRecovery(R(P)〈Sr

p, ψr
p1

〉, fr, Sr
p − Sr, Sr , n, δ); (B3)

rs := {r0 | ∃r1, r2, ...rn : (∀j : 0 ≤ j < n : (rj , rj+1) ∈ fr) ∧ rn ∈ (ns ∩ P r)}; (B4)
rt := {(r0, r1) | (r0, r1) ∈ ψr

p ∧ r1 ∈ rs)}; (B5)
S′r, ψ′r

p := Sr − rs, ψr
p − rt; (B6)

ψ′r
p := EnsureClosure(ψr

p, S′r); (B7)
P′〈Sp, ψ′

p〉, S′ := ConstructRealTimeProgram(R(P)〈Sr
p, ψ′r

p 〉, S′r) (B8)
}
procedure EnsureClosure(ψr

p : set of edges, Sr : region predicate)
{ return ψr

p−{(r0, r1) | r0∈Sr ∧ r1 	∈ Sr}}

Fig. 2. Adding Bounded-Time Recovery/Nonmasking Fault-Tolerance

does not change the computation delay, i.e, the shortest distance from v1 to Γ (Qr)i−1

is less than or equal to the shortest distance from v0 to Γ (Qr)i, and (2) the fault edge
(γ−1(v0), γ−1(v1)) increases the computation delay, i.e., the shortest distance from v1
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to Γ (Qr)i−1 is greater than the shortest distance from v0 to Γ (Qr)i (cf. Figure 1 for an
example). While the former case does not cause violation of P �→≤δ Q in the presence
of faults, the later may do. Hence, the rank of v0 ∈ V i must be at least the rank of
v1 ∈ V i−1. Moreover, if there exist multiple fault edges at γ−1(v0) then we take the
maximum rank (Line A7). After computing the rank of vertices from where faults may
occur, we adjust the rank of the rest of vertices from where faults do not occur by
invoking the procedure AdjustShortestPath (Line A9).

Now, for each portion Gi, we construct a subgraph of Gi whose longest distance
from each vertex in Γ (P r)i to Γ (Qr)i is at most δ as follows (lines A11-A16). We
begin with an empty digraph G′i〈V ′i, A′i〉 and we first include the shortest paths from
each vertex v ∈ Γ (P r)i to Γ (Qr)i, provided Rank(v) ≤ δ (lines A13-A16). Next,
we include the remaining arcs and vertices in G′i, so that no arcs of the form (v0, v1),
where v0 is on a path from Γ (P r)i to Γ (Qr)i are added (lines A17-A18).

Now, we transform the digraph G′ back into a region graph (Line A19). Finally, we
return the set ψ′r

p of edges from where P �→≤δ Q is not violated even in the presence of
faults, and the set ns of regions from where P �→≤δ Q may be violated in the presence
of faults (lines A20-A21).

Using Add BoundedRecovery to Add Nonmasking Fault-Tolerance. In order to
add nonmasking fault-tolerance with bounded-time recovery δ, we first transform the
real-time program P〈Sp, ψp〉, invariant S, and the set of fault transitions f into a region
graph R(P)〈Sr

p, ψr
p〉, region invariant Sr, and fault edges f r by invoking the procedure

ConstructRegionGraph (Line B1), as described in Subsection 2.3. Next, in order to
ensure that S′ is reachable from all the states in Sp−S′, we add recovery edges that start
from each region in Sr

p − Sr and go to regions where the time monotonicity condition
is preserved, i.e., time is not decreased (Line B2). Notice that the algorithm allows
arbitrary clock resets (except the clock that keeps track of the recovery time time δ)
during recovery, which is fine according to the definition of nonmasking fault-tolerance
(such “new” clock resets occur only in states outside the invariant). Then we invoke
the procedure Add BoundedRecovery. This invocation identifies the set rs of regions
and the set rt of edges from where faults alone may violate R (lines B4-B5). Then,
it removes such regions (respectively, edges) from Sr (respectively, ψr

p). Finally, the
algorithm ensures the closure of the invariant (Line B7) and transforms the synthesized
region graph R(P ′) back to a real-time program P ′ (Line B8).

6 Adding Soft-Failsafe Fault-Tolerance

As mentioned in Subsection 2.2, the safety specification identifies a set Σbt of bad
transitions and a conjunction Σbr of multiple bounded response properties. Also, recall
that in the presence of faults, a soft-failsafe program is required to maintain Σbt only.

Algorithm sketch. We adapt the proposed algorithm in [6], which adds failsafe fault-
tolerance to untimed programs. Intuitively, our algorithm, consists of three main steps.
First, we prohibit the program from reaching the set ms of states from where a sequence
of faults takes the program to a state where safety (Σbt) is violated. Since our goal is to
synthesize a maximal program, we find ms by computing the smallest fixpoint of states
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from where safety may be violated. In step 2, after removing ms from the program
invariant S, we make sure that this removal do not create new finite computations in the
absence of faults. To this end, we remove deadlock states from the invariant which is
in turn computing the largest fixpoint of the invariant. Finally, in step 3, we ensure that
removal of transitions from where safety may be violated does not violate the closure
of the output program.

We now describe the algorithm Add SoftFalisafe (cf. Figure 3). We first transform
the program P into its region graph R(P) (Line C1). Then, the algorithm adds failsafe
fault-tolerance to R(P), so that no edge of Σr

bt occurs in computations of R(P) in the
presence of faults by invoking the procedure Add UntimedFailsafe (Line C2). This
procedure first finds the set ms of regions and the set mt of edges from where safety
of P may be violated by faults alone (lines E1-E2). Next, it removes such regions (re-
spectively, edges) from the region invariant Sr (respectively, set of edges ψr

p) of R(P).
Then, it removes deadlock regions from Sr (Line E3), ensures the closure of ψr

p in
Sr (Line E5), and returns a failsafe region graph R(P ′)〈Sr

p , ψ′r
p 〉 (Line E6). Finally,

we transform the region graph R(P ′) back into a real-time program P ′ (Line C3) as
described in Subsection 2.3.

7 Adding Hard-Failsafe Fault-Tolerance with One Bounded
Response Property

In this section, we present our algorithm Add HardFailsafe (cf. Figure 3) for the case
where the synthesized hard-failsafe program is required to satisfy at most one bounded
response property in the presence of faults, i.e., Σbr ≡ P �→≤δ Q.

Algorithm sketch. Intuitively, the algorithms works in five main steps. First, we add
soft-failsafe to R(P) to ensure that a transition in Σbt occurs in no computation of P ′.
Note that, the outcome of adding soft-failsafe is a maximal program and every transition
that is removed by Add SoftFailsafe has to be removed, i.e., such transitions cannot
be in any fault-tolerant program that satisfies the constraints of Problem Statement 4.1.
In Step 2, we remove the behaviors that violate the bounded response property Σbr ≡
P �→≤δ Q in the presence of faults using the procedure Add BoundedRecovery. In
step 3, we remove deadlock states due to removal of states and transitions in step 2. In
Step 4, if a state σ1 ∈ Q is removed and some state, say σ0, in P uses σ1 to satisfy
P �→≤δ Q then another path from σ0 must be provided to satisfy P �→≤δ Q. Hence,
we remove σ1 from Q and repeat steps 2, 3, and 4 until no such Q-states exist. Finally,
in Step 5, we ensure the closure of the output program.

We now describe the pseudo-code of the algorithm. In order to ensure that P ′ main-
tains Σbt, we first add soft-failsafe fault-tolerance to R(P) (Line D1). Next, we trans-
form P into its region graph R(P) (Line D2). Next, we modify R(P), such that any
computation that starts from a region in P r, reaches a region in Qr in at most δ time
units even in the presence of faults. Towards this end, we compute the set of regions
and edges from where Σbr is maintained (lines D3-D14). Precisely, in order to ensure
that Q is reachable from all the states in P ∧ ¬S, we first include edges that start from
each region in Sr

p −Sr and go to regions where the time monotonicity condition is pre-
served, i.e., time is not decreased (Line D4). Notice that the algorithm allows arbitrary
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algorithm Add SoftFailsafe(P〈Sp, ψp〉 :real-time program f :transitions, S: state predicate, Σbt: specification)
{

R(P)〈Sr
p, ψr

p〉, Sr , fr , Σr
bt := ConstructRegionGraph(P〈Sp, ψp〉, S, f , Σbt); (C1)

ψ′r
p , S′r := Add UntimedFailsafe(R(P)〈Sr

p , ψr
p〉, fr, Sr, Σr

bt); (C2)
P′〈Sp, ψ′

p〉, S′ := ConstructRealTimeProgram(R(P)〈Sr
p, ψ′r

p 〉, S′r); (C3)
return P′〈Sp, ψ′

p〉, S′; (C4)
}
algorithm Add HardFailsafe(P〈Sp, ψp〉 :real-time program f :transitions,

S, P, Q: state predicate, Σbt: specification, n, δ: integer)
{
step 1: P〈Sp, ψp〉, S := Add SoftFailsafe(R(P)〈Sr

p , ψr
p〉, fr, Sr, Σr

bt); (D1)
R(P)〈Sr

p, ψr
p〉, Sr , P r , Qr, fr , Σr

bt :=
ConstructRegionGraph(P〈Sp, ψp〉, S, P, Q, f, Σbt); (D2)

repeat
IsQRemoved := false; (D3)

step 2: ψr
p := ψr

p ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) 	∈ Sr ∧
∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ − {t} := 0])} − mt; (D4)

ψr
p, ns := Add BoundedRecovery(R(P)〈Sr

p, ψr
p〉, fr, P r , Qr , n, δ); (D5)

rs := {r0 | ∃r1, r2, ...rn :
(∀j : 0 ≤ j < n : (rj , rj+1) ∈ fr) ∧ rn ∈ (ns ∩ P r)}; (D6)

rt := {(r0, r1) | (r0, r1) ∈ ψr
p1

∧ r1 ∈ rs)}; (D7)
step 3: S′r := RemoveDeadlocks(Sr − (ns ∪ rs), ψr

p − rt); (D8)
if (S′r ={}) then

declare no hard-failsafe f-tolerant program P′ exists; exit; (D9)
step 4: if (Qr ∩ (Sr − S′r) 	= {}) then (D10)

IsQRemoved := true; (D11)
Sr := S′r ; (D12)
ψr

p := ψr
p − {(r, r0), (r0, r) | r0 ∈ Qr ∩ (Sr − S′r)}; (D13)

Qr := Qr ∩ (Sr − S′r); (D14)
until (IsQRemoved = false);

step 5: ψ′r
p := EnsureClosure(ψr

p, S′r); (D15)
P′〈Sp, ψ′

p〉, S′ := ConstructRealTimeProgram(R(P)〈Sr
p, ψ′r

p 〉, S′r) (D16)
}
procedure Add UntimedFailsafe(R(P)〈Sr

p , ψr
p〉: region graph, fr : set of edges,

Sr : region predicate, Σr
bt : specification)

{
step1: ms := {r0 | ∃r1, r2, ...rn :

(∀j | 0≤j <n : (rj , rj+1) ∈ fr) ∧ (rn−1, rn) ∈ Σr
bt }; (E1)

mt := {(r0, r1) | (r1∈ms) ∨ ((r0, r1) ∈ Σr
bt) }; (E2)

step2: Sr := RemoveDeadlocks(Sr − ms, ψr
p−mt); (E3)

if (Sr ={}) then
declare no soft/hard-failsafe f-tolerant program P′ exists; exit; (E4)

step3: ψr
p :=EnsureClosure(ψr

p−mt, Sr); (E5)
return ψr

p, Sr (E6)
}
procedure RemoveDeadlocks(Sr : region predicate, ψr

p : set of edges)
// Returns the largest subset of Sr from where all computations of R(P) are infinite
{

while (∃r0 | r0∈Sr : (∀r1 ∈ Sr : (r0, r1) 	∈ψr
p))

Sr := Sr − {r0};
return Sr

}

Fig. 3. Adding Failsafe Fault-Tolerance

clock resets as long as safety is not violated (by excluding the edges in mt). Then, we
invoke the procedure Add BoundedRecovery to ensure that P �→≤δ Q is maintained
in the presence of faults (Line D5). Then, we identify the set rs of regions and rt of
transitions from where Σbr may be violated (lines D6-D7). We remove such regions
and edges along with the deadlock regions from Sr in the same fashion that we did for
adding soft-failsafe (Line D8). However, we need to consider a special case where a
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region, say r1, in Qr becomes a deadlock region. In this case, it is possible that all the
regions along the paths that start from a region, say r0, in P r and end in r1 become
deadlock regions. Hence, we need to find another path from r0 to a region in Qr other
than r1. Thus, in this case, we remove r1 (and similar regions) from Sr and Qr and
start over (lines D10-D14). Finally, the algorithm ensures closure of the invariant (Line
D15) and transforms the synthesized region graph R(P ′) back to a real-time program
P ′ (Line D16).

Theorem 7.1. The algorithms Add Nonmasking and Add Soft/HardFalisafe are
sound and complete. ��
Theorem 7.2. The problem of adding nonmasking and soft/hard-failsafe fault-tolerance
to a real-time program, where the synthesized program is required to satisfy at most one
bounded response property in the presence of faults, is PSPACE-complete in the size of
the input program. ��

8 Conclusion

In this paper, we focused on the problem of automatic addition of fault-tolerance to
real-time programs. We considered three levels of fault-tolerance, namely failsafe, non-
masking, and masking. For failsafe and masking, we proposed two cases, soft and hard,
based on satisfaction of timing constraints in the presence of faults. We first intro-
duced a generic framework to formally define the notions of faults and fault-tolerance in
the context of real-time programs. Then, we presented sound and complete algorithms
for transforming fault-intolerant real-time programs into soft-failsafe and nonmasking
fault-tolerant programs. We also proposed a sound and complete algorithm that synthe-
sizes hard-failsafe fault-tolerant real-time programs, where the fault-tolerant program
is required to satisfy at most one bounded response property in the presence of faults.
The complexity of our algorithms are in polynomial time in the size region graphs. The
results on synthesis of soft/hard-masking fault-tolerance are presented in a technical
report [19].
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