

Lecture Notes in Computer Science 4280
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ajoy K. Datta Maria Gradinariu (Eds.)

Stabilization,
Safety, and Security
of Distributed Systems

8th International Symposium, SSS 2006
Dallas, TX, USA, November 17-19, 2006
Proceedings

13

Volume Editors

Ajoy K. Datta
School of Computer Science
University of Nevada Las Vegas
Las Vegas, USA
E-mail: datta@cs.unlv.edu

Maria Gradinariu
Universite Paris 6, LIP6
8 rue du Capitaine Scott
75015, Paris, France
E-mail: Maria.Gradinariu@lip6.fr

Library of Congress Control Number: 2006935958

CR Subject Classification (1998): C.2.4, C.2, C.3, F.1, F.2.2, K.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-49018-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-49018-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11924517 06/3142 5 4 3 2 1 0

Preface

This symposium has been the main forum for presentation of research results
in the area of self-* for 17 years. It started as The Workshop on Self-Stabilizing
Systems (WSS), and met in 1989 in Austin, 1995 in Las Vegas, 1997 in Santa
Barbara, 1999 in Austin, and 2001 in Lisbon. It was then renamed The Sym-
posium on Self-Stabilizing Systems (SSS), and has since met in 2003 in San
Francisco, and in 2005 in Barcelona, Spain.

This year, we extended the scope of the symposium to cover all safety and se-
curity related aspects of self-* systems. The title of the symposium was changed
to the International Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS) to reflect this expansion.

The decision by Mohamed Gouda, the General Chair, to expand the scope of
the symposium was timely and successful. From 33 papers submitted for SSS
2005, the number of submissions increased to 155. Reviewing this surge of sub-
missions to select the final set of papers for the symposium was a monumental
task for the Program Committee. The 61 Program Committee members devoted
countless hours reading and evaluating the papers. But even this effort was not
enough; we recruited 143 external reviewers, whose work was also very substan-
tial.

This volume contains 36 regular papers and 12 brief announcements that
were presented at the symposium. The papers published here were selected by
the Program Committee after five days of extensive electronic discussions and
phone calls. The call for papers sought only regular papers, but the Program
Committee decided to include a few brief announcements which were considered
to be of high quality and great importance to the community. Selected papers
from the symposium will be published in a special issue of the ACM Transactions
on Autonomous and Adaptive Systems (TAAS).

Ted Herman and Chen Zhang received the Best Paper Award for their pa-
per, “Stabilizing Clock Synchronization for Wireless Sensor Networks.” We had
three very interesting and entertaining invited talks this year. The speakers were
Shlomi Dolev, Rachid Guerraoui, and Yi-Min Wang. Shlomi’s and Rachid’s in-
vited papers are included in these proceedings. Unfortunately, Yi-Min’s invited
paper was not ready for print before the proceedings went to print.

On behalf of the Program Committee, we would like to thank all authors of
submitted papers for their support. We also thank the members of the Steering
Committee for their advice. We cannot thank the Program Committee members
and additional external reviewers enough for their tremendous effort and invalu-
able time to help us get the job done. We would like to extend special thanks
to the Publicity and Web Chair, Florent Claerhout, for his sincerity, diligence,
and willingness to do everything we asked. Florent worked very hard for several

VI Preface

months, maintaining the webpage and making many changes in the conference
management system to fit the needs of SSS.

We are also grateful to Jorge A. Cobb and Ravi Prakash for handling local
arrangements. Jorge’s efforts enabled us to obtain the conference venue and hotel
rooms at very good rates.

November 2006 Ajoy K. Datta
Maria Gradinariu

Program Co-chairs

Message from the General Chair

On a warm spring day in 1989, SSS was born almost by accident. At the time,
the world had no more than a dozen researchers who were interested in the area
of self-stabilization. And six of those researchers happend to be in Austin, Texas
at the same time; so they decided to have a workshop to present their work to
one another. The six researchers were Anish Arora and Paul Attie (who were
working on their PhD dissertations at the University of Texas at Austin), Jim
Burns (who was visiting me for a week to kick off our collaboration in the area
of self-stabilization), Mike Evangelist (who was working for MCC, Inc.), Shmuel
Katz (who was spending a sabatical year at the University of Texas at Austin),
and myself. The idea for the workshop came to us shortly before the workshop
was to be held, and so we had no time to announce the workshop, to select a
Technical Program Committee, to publish a call for papers, or to invite anyone
else to attend. Mike Evangelist arranged for the workshop to be held in the
facilities of MCC, Inc. And if my recollections are correct, only five papers were
presented in the workshop, which lasted just over half a day. No proceedings
for the workshop were ever published, but eventually all the papers that were
presented in the workshop were published in the journal Distributed Computing,
thanks to an invitation by its editor Fred Schneider.

I tell this story to show how grateful I am that in 2006, 17 years after the first
SSS was held, SSS has matured into a vital yearly symposium with a strong Tech-
nical Program Committee, and with a rich and creative program. My gratitude
goes to the many individuals who supported SSS over the years, and especially
to Ajoy K. Datta and Maria Gradinariu, Program Co-chairs of SSS 2006, who
led SSS 2006 to an unprecedented success.

November 2006 Mohamed G. Gouda
General Chair

Organization

General Chair Mohamed G. Gouda
University of Texas at Austin, USA

Program Co-chairs Ajoy K. Datta
University of Nevada at Las Vegas, USA

Maria Gradinariu
IRISA, Université Rennes 1, France

Local Arrangements Co-chairs Jorge A. Cobb
University of Texas at Dallas, USA

Ravi Prakash
University of Texas at Dallas, USA

Publicity and Web Chair Florent Claerhout
IRISA, Université Rennes 1, France

Steering Committee

Anish Arora The Ohio State University, USA
Ajoy K. Datta University of Nevada at Las Vegas, USA
Shlomi Dolev Ben-Gurion University, Israel
Sukumar Ghosh University of Iowa, USA (Chair)
Mohamed G. Gouda University of Texas at Austin, USA
Ted Herman University of Iowa, USA
Shing-Tsaan Huang National Central University, Taiwan
Toshimitsu Masuzawa Osaka University, Japan
Vincent Villain Université de Picardie, France

Program Committee

Mustaque Ahamad Georgia Institute of Technology, USA
Anish Arora Ohio State University, USA
James Aspnes Yale University, USA
Roberto Baldoni Università di Roma “La Sapienza,” Italy
Farokh Bastani University of Texas at Dallas, USA
Joffroy Beauquier LRI, Université de Paris Sud, France
Jorge A. Cobb University of Texas at Dallas, USA
Sajal K. Das University of Texas at Arlington, USA
Ajoy K. Datta University of Nevada, Las Vegas, USA

(Co-chair)
Xavier Défago Japan Advanced Institute of Science and

Technology (JAIST), Japan

X Organization

Program Committee (Continued)

Carole Delporte-Gallet LIAFA, Université de Paris 7, France
Shlomi Dolev Ben Gurion University, Israel
Paul Ezhilchelvan University of Newcastle upon Tyne, UK
Hugues Fauconnier LIAFA, Université de Paris 7, France
Faith Fich University of Toronto, Canada
Paola Flocchini University of Ottawa, Canada
Felix C. Freiling University of Mannheim, Germany
Laurent Fribourg LSV, ENS Cachan, Paris, France
Roy Friedman Technion, Israel
Thomas Fuhrmann Universität Karlsruhe, Germany
Sukumar Ghosh University of Iowa, USA
Maria Gradinariu IRISA, Université Rennes 1, France (Co-chair)
Lisa Higham University of Calgary, Canada
Jaap-Henk Hoepman Radbound University Nijmengen, Netherlands
Chin-Tser Huang University of South Carolina at Columbia, USA
Shing-Tsaan Huang National Central University, Taiwan
Michel Hurfin IRISA, INRIA, Rennes, France
Raj Jain Washington University in St. Louis, USA
Arshad Jhumka University of Warwick, UK
Mehmet Kaarata Kuwait University, Kuwait
Anne-Marie Kermarrec IRISA, INRIA, Rennes, France
Sandeep S. Kulkarni Michigan State University, USA
Shay Kutten Technion, Israel
David Lee Ohio State University, USA
Toshimitsu Masuzawa Osaka University, Japan
Stéphane Messika LRI, Université de Paris Sud, France
Mikhail Nesterenko Kent University, USA
Fernando Pedone University of Lugano, Switzerland
Franck Petit LaRIA, Université de Picardie, France
Ravi Prakash University of Texas at Dallas, USA
Giuseppe Prencipe Università di Pisa, Italy
Sergio Rajsbaum Universidad Nacional Autonoma de Mexico,

Mexico
Sylvia Ratnasamy Intel Research Berkeley, USA
Michel Raynal IRISA, Université Rennes 1, France
Andre Schiper EPFL, Switzerland
Pierre Sens LIP6, Université de Paris 6, France
Alex Shvartsman University of Connecticut, USA
Neeraj Suri TU Darmstadt, Germany
Oliver Theel Carl von Ossietzky University of Oldenburg,

Germany
Srikanta Tirthapura Iowa State University, USA

Organization XI

Sébastien Tixeuil LRI, Université de Paris Sud, France
Philippas Tsigas Chalmers University, Sweden
Paulo Verissimo Universidade de Lisboa, Portugal
Vincent Villain LaRIA, Université de Picardie, France
Antonino Virgillito Università di Roma, Italy
Cliff Wang Army Research Office, USA
Yi-Min Wang Microsoft Research, USA
Roger Wattenhofer ETH Zurich, Switzerland
Joseph Widder Technische Universität Wien, Austria
Dong Xuan Ohio State University, USA
Masafumi Yamashita Kyushu University, Japan

Additional Reviewers

Alexander Alexandrov
Mahesh Arumugam
Eithan Bachmat
Xiaole Bai
Mahesh Balakrishnan
Somprakash

Bandyopadhyay
Sandip Bapat
Michael Becher
Doina Bein
Roberto Beraldi
Vincent Bernat
Vijayendra

Bhamidipati
Martin Biely
Karun Biyani
Erik-Oliver Blass
Borzoo Bonakdarpour
Francois Bonnet
Christian Boulinier
Olivier Bournez
Olga Brukman
Krzysztof Brzezinski
Marcio Bystronski
Lasaro Camargos
Hui Cao
Uday Chakraborty
Subhendu

Chattopadhyay
Shantnu Chaturvedi

Guillaume Chelius
Sriram Chellappan
Florent Claerhout
Thomas Clouser
Gabor Cselle
Ariel Daliot
Sylvie Delaët
Murat Demirbas
Jerry L. Derby
Abhishek Dhama
Yoann Dieudonné
Dan Dobre
Lucia D. Penso
Matthias Függer
Eric Fleury
Akihiro Fujiwara
Philippe Gauron
Anders Gidenstam
Mohamed G. Gouda
Isabelle Guérin-Lassous
Rachid Guerraoui
Arobinda Gupta
Sandeep Gupta
Thomas Hérault
Phuong Ha
Sammy Haddad
Philipp Hahn
Yinnon Haviv
Naohiro Hayashibara
Ted Herman

Thorsten Holz
Martin Hutle
David Ilcinkas
Taisuke Izumi
Qasim Javed
Jehn-Ruey Jiang
Jinjing Jiang
Colette Johnen
Jason Jue
Eunjing Jung
Hirotsugu Kakugawa
Prasanth Kalakota
Ronen Kat
Yoshiaki Katayama
Dogan Kesdogan
Boris Koldehofe
Marina Kopeetsky
Steve Kremer
Michael Kuhn
Santosh Kumar
Taewoo Kwon
Hamida S. Lagraa
Mikel Larrea
Bill Leal
Pierre Lemarinier
Ron R. Levy
Thomas Locher
Darrell D.E. Long
Stefan Lucks
Fredrik Manne

XII Organization

Additional Reviewers (Continued)

Sebastian Max
Adnan N. Mian
Alessia Milani
Neeraj Mittal
Nathalie Mitton
Aad V. Moorsel
Heinrich Moser
Vinayak Naik
Nicolas Nisse
Regina O’Dell
Fukuhito Ooshita
Yvonne-Anne

Oswald
Anand Padmanabhan
Jennie Palmer
Olivier Peres
Scott M. Pike
Lexi Pimenidis
Rami Puzis

Vivien Quéma
Leonardo Querzoni
Shrisha Rao
Aina Ravoaja
Jared Saia
Kamil Sarac
Elad M. Schiller
Nicolas Schiper
Stefan Schmid
Ulrich Schmid
Rodrigo Schmidt
Sirio Scipioni
Samia Souissi
Paulo Sousa
Neil Speirs
Mukundan Sridharan
Marija Stamenkovic
Tomoko Suzuki
Sapon Tanachaiwiwat

Mansi Thoppian
Alan Tully
Chi-Hung Tzeng
Marco Voss
Limin Wang
Xun Wang
Timo Warns
Pihui Wei
Bettina Weiss
Marcin Wieloch
Matthias Wiesmann
Bojian Xu
Zhe Xu
Yukiko Yamauchi
Chau-Yuan Yang
Wei Yu
Hongwei Zhang
Qing Zhang
Zhijan Zheng

Table of Contents

Invited Talks

Stabilization Enabling Technology . 1
Shlomi Dolev and Yinnon Haviv (Ben Gurion University)

A General Characterization of Indulgence . 16
Rachid Guerraoui (EPFL) and Nancy Lynch (MIT)

Regular Papers

Coverage, Connectivity, and Fault Tolerance Measures of Wireless
Sensor Networks . 35

Habib M. Ammari and Sajal K. Das (University of Texas at
Arlington)

A Case Study on Prototyping Power Management Protocols
for Sensor Networks . 50

Mahesh Arumugam, Limin Wang, and Sandeep S. Kulkarni
(Michigan State University)

Unconscious Eventual Consistency with Gossips . 65
Roberto Baldoni (Università di Roma), Rachid Guerraoui (EPFL),
Ron R. Levy (MIT), Vivien Quéma, and Sara Tucci Piergiovanni
(Università di Roma)

All k-Bounded Policies Are Equivalent for Self-stabilization 82
Joffroy Beauquier, Colette Johnen, and Stéphane Messika
(Université de Paris Sud)

A 1-Strong Self-stabilizing Transformer . 95
Joffroy Beauquier, Sylvie Delaët, and Sammy Haddad (Université
de Paris Sud)

Optimal Message-Driven Implementation of Omega with Mute
Processes . 110

Martin Biely and Josef Widder (Technische Universität Wien)

Incremental Synthesis of Fault-Tolerant Real-Time Programs 122
Borzoo Bonakdarpour and Sandeep S. Kulkarni (Michigan State
University)

Toward a Time-Optimal Odd Phase Clock Unison in Trees 137
Christian Boulinier, Franck Petit, and Vincent Villain (Université
de Picardie)

XIV Table of Contents

Recovery Oriented Programming . 152
Olga Brukman and Shlomi Dolev (Ben Gurion University)

Evaluation of a Tracking Architecture in Wireless Sensor Networks 169
Florent Claerhout (IRISA, INRIA)

Self-protection for Distributed Component-Based Applications 184
Benoit Claudel, Noël De Palma (Institut National Polytechnique de
Grenoble), Renaud Lachaize (Université Joseph Fourier, Grenoble),
and Daniel Hagimont (Institut National Polytechnique, Toulouse)

From Self- to Snap- Stabilization . 199
Alain Cournier, Stéphane Devismes, and Vincent Villain (Université
de Picardie)

Self-stabilizing Philosophers with Generic Conflicts 214
Praveen Danturi, Mikhail Nesterenko (Kent State University),
and Sébastien Tixeuil (Université de Paris Sud)

Selfish Stabilization . 231
Anurag Dasgupta, Sukumar Ghosh (University of Iowa),
and Sébastien Tixeuil (Université de Paris Sud)

Reliability and Availability Analysis of Self-stabilizing Systems 244
Abhishek Dhama, Oliver Theel, and Timo Warns (Carl von
Ossietzky University of Oldenburg)

Circle Formation of Weak Mobile Robots . 262
Yoann Dieudonné, Ouiddad Labbani-Igbida, and Franck Petit
(Université de Picardie)

Self-stabilizing Device Drivers . 276
Shlomi Dolev and Reuven Yagel (Ben Gurion University)

Secure Communication for RFIDs Proactive Information Security
Within Computational Security . 290

Shlomi Dolev and Marina Kopeetsky (Ben Gurion University)

Fault Masking in Tri-redundant Systems . 304
Mohamed G. Gouda (University of Texas at Austin), Jorge A. Cobb
(University of Texas at Dallas), and Chin-Tser Huang (University
of South Carolina at Columbia)

Logarithmic Keying of Communication Networks . 314
Mohamed G. Gouda (University of Texas), Sandeep S. Kulkarni
(Michigan State University), and Ehab S. Elmallah (University of
Alberta)

Table of Contents XV

Safe Peer-to-Peer Self-downloading . 324
Kajari Ghosh Dastidar (University of Iowa), Ted Herman
(University of Iowa), and Colette Johnen (Université de Paris Sud)

Best Paper: Stabilizing Clock Synchronization for Wireless Sensor
Networks . 335

Ted Herman and Chen Zhang (University of Iowa)

Self-stabilizing Byzantine Digital Clock Synchronization 350
Ezra N. Hoch, Danny Dolev, and Ariel Daliot (Hebrew University
of Jerusalem)

Distributed Edge Coloration for Bipartite Networks 363
Shing-Tsaan Huang (National central University)
and Chi-Hung Tzeng (National Tsing Hua University)

A Dependable Intrusion Detection Architecture Based on Agreement
Services . 378

Michel Hurfin (IRISA, INRIA), Jean-Pierre Le Narzul (ENST
Bretagne), Frédéric Majorczyk, Ludovic Mé, Ayda Saidane,
Eric Totel (Supélec), and Frédéric Tronel (Université Rennes 1)

Stabilizing Health Monitoring for Wireless Sensor Networks 395
William Leal, Sandip Bapat, Taewoo Kwon, Pihui Wei,
and Anish Arora (Ohio State University)

A Byzantine-Fault Tolerant Self-stabilizing Protocol for Distributed
Clock Synchronization Systems . 411

Mahyar R. Malekpour (NASA Langley Research Center)

A Memory Efficient Self-stabilizing Algorithm for Maximal
k-Packing . 428

Fredrik Manne and Morten Mjelde (University in Bergen)

Bounding the Impact of Unbounded Attacks in Stabilization 440
Toshimitsu Masuzawa (Osaka University) and Sébastien Tixeuil
(Université de Paris Sud)

On Bootstrapping Topology Knowledge in Anonymous Networks 454
Toshimitsu Masuzawa (Osaka University) and Sébastien Tixeuil
(Université de Paris Sud)

Self-adaptive Disk Arrays . 469
Jehan-François Pâris (University of Huston), Thomas J.E. Schwarz
(Santa Clara University), and Darrell D.E. Long (University of
California)

XVI Table of Contents

Using Eventually Consistent Compasses to Gather Oblivious Mobile
Robots with Limited Visibility . 484

Samia Souissi, Xavier Défago Japan Advanced Institute of Science
and Technology (JAIST), and Masafumi Yamashita (Kyushu
University)

Self-stabilizing Asynchronous Phase Synchronization in General
Graphs . 501

Chi-Hung Tzeng (National Tsing Hua University), Jehn-Ruey Jiang,
and Shing-Tsaan Huang (National Central University)

Composition of Fault-Containing Protocols Based on Recovery
Waiting Fault-Containing Composition Framework 516

Yukiko Yamauchi (Osaka University), Sayaka Kamei (Tottori
University of Environmental Studies), Fukuhito Ooshita (Osaka
University), Yoshiaki Katayama (Nagoya Institute of Technology),
Hirotsugu Kakugawa, and Toshimitsu Masuzawa (Osaka University)

Energy-Efficient and Non-interactive Self-certification
in MANETs . 533

Jeong Hyun Yi (Samsung Advanced Institute of Technology)

Self-adaptive Worms and Countermeasures . 548
Wei Yu (Texas A&M University), Nan Zhang (University of Texas
at Arlington), and Wei Zhao (Texas A&M University)

Brief Announcement

Brief Announcement: Self-healing Algorithms for Reconfigurable
Networks . 563

Iching Boman, Jared Saia, Chaouki T. Abdallah,
and Edl Schamiloglu (University of New Mexico)

Brief Announcement: Distributed Synthesis of Fault-Tolerance 566
Borzoo Bonakdarpour, Sandeep S. Kulkarni, and Fuad Abujarad
(Michigan State University)

Brief Announcement: Exploration and Mitigation of Deafness Problems
in Directional Antennas Based Wireless Ad-Hoc Networks 568

Kai Chen, Fan Jiang, and Zongyao Tang (University of Science and
Technology of China)

Brief Announcement: A Synthetic Public Key Management Scheme for
Large-Scale MANET . 570

Pan Dong, Pei-dong Zhu, and Xi-cheng Lu (National University of
Defense Technology)

Table of Contents XVII

Brief Announcement: Termination Detection in an Asynchronous
Distributed System with Crash-Recovery Failures . 572

Felix C. Freiling (University of Mannheim), Matthias Majuntke
(RWTH Aachen University), and Neeraj Mittal (University of Texas
at Dallas)

Brief Announcement: Self-stabilizing Spanning Tree Algorithm for
Large Scale Systems . 574

Thomas Herault, Pierre Lemarinier, Olivier Peres, Laurence Pilard,
and Joffroy Beauquier (Université de Paris Sud)

Brief Announcement: Chasing the Weakest System Model for
Implementing Ω and Consensus . 576

Martin Hutle (EPFL and Vienna University of Technology),
Dahlia Malkhi (Microsoft Research), Ulrich Schmid (Vienna
University of Technology), and Lidong Zhou (Microsoft Research)

Brief Announcement: Wait-Free Dining for Eventual Weak Exclusion . . . 578
Scott M. Pike, Yantao Song, and Kaustav Ghoshal (Texas A&M
University

Brief Announcement: An Efficient and Self-stabilizing Link Formation
Algorithm . 580

Jun Kiniwa and Kensaku Kikuta (University of Hyogo)

Brief Announcement: Analyzing the Interactions of Self-propagating
Codes in Multi-hop Networks . 582

Sapon Tanachaiwiwat and Ahmed Helmy (University of Southern
California)

Brief Announcement: Towards Modular Verification of Stabilisation in
Self-adaptive Embedded Systems . 584

Ina Schaefer and Arnd Poetzsch-Heffter (Technische Universität
Kaiserslautern)

Brief Announcement: An Adaptive Randomised Searching Protocol
in Peer-to-Peer Systems Based on Probabilistic Weak Quorum
System . 586

Yu Wu, Taisuke Izumi, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa (Osaka University)

Author Index . 589

Stabilization Enabling Technology�

(Extended Abstract)

Shlomi Dolev and Yinnon Haviv

Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, 84105, Israel

{dolev, haviv}@cs.bgu.ac.il

Abstract. Hardware and software components are suggested for en-
abling the creation of a self-stabilizing os on top of an off-the-shelf,
non-self-stabilizing processor. Simple “watchdog” hardware called peri-
odic reset monitor (prm) provides a basic solution. The solution is ex-
tended to a stabilization enabling hardware (seh) which removes any
real time requirement from the os. A stabilization enabling system that
extends the seh with some software components provides the user (the
os designer) with a self-stabilizing processor abstraction. Adapting the
current os code to be self-stabilizing is supported using a mechanism for
enforcing the software configuration.

1 Introduction

Self-stabilization. Self-stabilization is an important fault-tolerance paradigm
[2,3]. A system that is designed to be self-stabilizing automatically recovers from
an arbitrary state. The paradigm makes no assumption on how the unexpected
state is reached, only that the error that caused the unexpected state is transient.

One event that can be modeled as a transient fault is a transient violation of
input sequence assumptions. Currently, a significant number of system failures
are caused by sequences of inputs which were not addressed during the imple-
mentation of the system. In most cases, the unpredicted sequence is defined as
illegal in the specifications. Still, the implementation failed to properly verify
the consistency of the input sequence, causing the system to fail and reach an
illegal state after which the system will not recover. Notice that, even if these er-
roneous sequences are not frequent, and even if they are handled manually (i.e.,
by a human operator), the system may suffer from a considerable downtime since
identifying the problem may take time. Assuming these errors are rare and not
malicious, one can model them as transient faults.

Another example of transient errors are soft-errors (see [4]). Soft-errors are
changes in memory values caused by cosmic rays. Decrease in computing features
size, decrease in power usage and shorting the micro-cycle period, enhance the
influence of soft-errors.
� Partially supported by Microsoft, IBM, NSF, Intel, Deutsche Telekom, Rita Altura

Trust Chair in Computer Sciences, Intel, vaatat and Lynn and William Frankel
Center for Computer Sciences.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 S. Dolev and Y. Haviv

Enforcing stabilization on a blackbox processor. Processor specifications
expose the programmer to an abstract presentation of the processor behavior
and hide implementation details. Among other benefits, the abstract descrip-
tion eases the programming and allows the processor designer to change the
implementation. However, in the context of soft-errors and self-stabilization, the
abstract presentation implies the following hazard. The processor state space
(in terms of implementation) contains many states which were not supposed to
be reached. The behavior from these erroneous states does not correspond to
the behavior specified when starting from any of the abstract states. When
such an erroneous state is reached, the self-stabilizing program may face a
permanent illegal behavior of the processor. Notice that under this persistent
illegal behavior of the processor, no software can exhibit the desired
behavior.

In [4], we showed an implementation of a self-stabilizing processor. Started in
any state, the processor converges into a subset of its states in which it performs
fetch, decode and execute of machine instructions according to the manufac-
turer’s specifications. In [4], a simple processor was considered (the one in [12]),
allowing to prove the self-stabilization property by considering (the micro-code
of) the whole implementation.

In contrast, the implementations of current processors are very complex and
may contain high coupling between components. Using the above approach will
practically require redesigning the processor from scratch. In this paper we sug-
gest the first solution that forces the stabilization property on off-the-shelf com-
mercial processors. The solution uses only a modest additional hardware that is
external to the processor. The hardware enforces the consistency and the setup
parameters of the processor.

We propose three methods for enforcing stabilization on a blackbox processor.
The first method (Section 2) is based on periodically resetting the processor by
the os. An additional hardware is added to the processor which monitors and
assists in the reset procedure. The os may choose the time to perform such a
reset, but if the os fails to request a reset within a predetermined amount of
time, the additional hardware enforces this reset. The second method (Section 3)
extends the first method by notifying the os concerning the upcoming (maybe
enforced) reset. This addition enables the third method to remove the require-
ment to request a reset within the predetermined amount of time at the cost of
slightly restricting the processor specifications.

In [4], we suggested using a watchdog for detecting that the processor repeat-
edly executes the fetch, decode and execute cycle. The method suggested in [4]
used a signal sent by the processor to decide when to reset the watchdog. The
signal indicated that the processor is starting a new cycle (of fetch, decode and
execute). The signal sent by the processor actually indicated that a predicate
p, over the internal state of the processor holds. The predicate p ensured that
the processor is in a legal state and therefore behaves according to the specifica-
tions. Moreover, the predicate p is correct infinitely often. The existence of such

Stabilization Enabling Technology 3

a predicate is reasonable for basic processors, such as the one in [4]1. However,
the internal state of commercial processors is complex, making the problem of
finding such a predicate hard and even practically infeasible. In this paper, on
the contrary, the watchdog is used for ensuring that the os resets the processor
infinitely often, enforcing its internal state to a legal one.

Self-stabilizing oss. Operating systems (oss) are used for sharing resources
and providing hardware abstraction in virtually all computer systems. Therefore,
it is crucial that oss never fail. Designing a system that never fails is impossible in
the presence of transient errors. The reason is that a transient error may change
the output of the system and by that create a (non-maskable) fault. Fortunately
one can ensure that the system will automatically repair itself following such
transient error. Started in an arbitrary state, a self-stabilizing os exhibits a
legal behavior following a finite and preferably short stabilization period.

The stabilization property of oss is crucial for supporting self-stabilizing soft-
ware ([3]) and self-stabilizing monitoring environment, such as the one presented
in [1]. In [6] a self-stabilizing os is designed. The operating system is designed
from scratch and written in machine code. The os presented in [6] is comparable
to the TinyOS [10]. In contrast, current oss are very complex. Redesigning a
fully functional industrial quality kernel from scratch and proving its stabiliza-
tion may take enormous amount of resources.

Thus, we propose in Section 5 a framework that enables the adaptation of
existing oss code to be self-stabilizing. The framework reduces the amount of
required code changes by allowing the designer to focus only on the parts of
the state which are dynamic; i.e., parts that may be changed after the system
setup and configuration. Moreover, the stabilization enabling system, presented
in Section 4 assists the design of the os by providing a framework for enforcing
invariants on the state of the self-stabilizing os.

2 Periodic Reset Monitor

The first method suggests enforcing the stabilization on the processor by issuing a
periodic reset. The os is required to request a reset every predetermined amount
of time. Notice that, the operating system cannot guarantee anything when the
processor behavior is not legal and when the os converges from a transient fault.
Therefore, we suggest using additional hardware, the Periodic Reset Monitor
(prm), which ensures that resets are performed periodically.

Figure 1 illustrates the state machine of the prm. Initially the prm is set to
probe for a reset request (state 10). The watch-dog counter (WDC) is a variable
used by the state machine and is initially set to MaxWDC. If a request was made
(50), the system continues into a state in which a reset of the processor takes
place (state 70). If no request was made (20), the prm decrements the watch-dog
counter (WDC) (state 30). Then, the value of WDC is examined. If the value

1 The predicate p in [4] verifies that the value of the micro-program-counter corre-
sponds to the first micro-code instruction.

4 S. Dolev and Y. Haviv

0 was not reached and the value of the WDC is less than MaxWDC (i.e., the
value is correct, 40) then the prm continues to probe for a reset request (state
10). Otherwise (the WDC values is incorrect or the time to enforce a reset is
reached, 60), the system continues into a state in which a reset of the processor
takes place (state 70). After resetting the processor, the prm continues to state
80, resets the WDC to its initial value, MaxWDC (state 80), and returns to the
initial state (state 10).

Fig. 1. State machine of the periodic reset monitor
(prm)

The value of MaxWDC
influences the time the prm
waits for the os to re-
quest a reset. If the os
does not request a reset
within this time, the prm
enforces one. Setting the
value of MaxWDC too low
may have a negative influ-
ence on the performance or
even lead to a situation in
which the os does not re-
quest a reset on time dur-
ing fault free periods. On
the other hand, the stabi-
lization time of the proces-
sor is proportional to this
value; a high value implies
a long stabilization period.

When implementing the
prm, one must make sure
that any refinement made in the implementation eventually behaves according
to the automaton presented in Figure 1. In [5], we introduced the same relation
for programs compiled by a stabilization preserving compiler. The top level au-
tomaton can be implemented, for example, using eprom by placing commands
that branch into the initial state in all locations that are not used in the im-
plementation. The refinements of steps 30 and 80 can be easily performed by
functional blocks (that have no state), ensuring that the automaton in Figure 1
never ceases to advance in these states.

The implementation of the probe (state 10) and reset (state 70) is specific to
each embodiment. The implementation is made by a sub-automaton with an ini-
tial state and a non empty set of final states. When the top level state (10 / 70)
is reached, the sub-automaton is set to its initial state. Then, the top level au-
tomaton stops and only the sub-automaton advances. When the sub-automaton
reaches one of its final states, the top level automaton continues according to
the final state reached. One can imagine the interaction between the top level
automaton and the sub-automaton as calling a procedure. The result of the
procedure is expressed in the final state of the sub-automaton that was reached.

Stabilization Enabling Technology 5

Making sure that the automaton in Figure 1 never ceases to advance requires
that the sub-automaton implementing each of the two external procedures (probe
and reset) reaches one of its final states, when started in any of its internal
states. The following requirement summarizes the property required from the
implementation of the probe and reset procedures.

Requirement 1. Started in any of their internal state, the probe and the reset
procedures eventually terminate.

Assuming that the implementation satisfies Requirement 1, we can prove that the
prm executes a periodic resets. The following lemma summarizes this behavior.

Lemma 1. Started in any state, eventually a reset of the processor takes place.

Proof. The only loop in the state machine presented in Figure 1 which does
not reach state 70 is the loop traversing states 10 and 30. After the first it-
eration in this loop, the watch-dog counter (WDC) must be in the range {0,
MaxWDC−1}. Since each iteration decrements WDC by one and no other
changes to WDC are made during the iteration, eventually WDC reaches 0
and a reset is initiated.

Fig. 2. The interaction between the os and the prm

Using the prm. The de-
signer of an os that uses
the prm is required to re-
quest a reset before such
a reset is enforced by the
prm. Notice that resetting
the processor implies that
the registers are set to
their initial values as spec-
ified in the processor spec-
ifications. However, the
main memory of the pro-
cessor is left unchanged.
Therefore, the os designer
must save all the registers which contain information required following the reset.
Notice that the designer can avoid saving registers that have a constant value
throughout the os runtime. These registers can be restored into their predeter-
mined initial values. The interface between the prm and its user includes two
points: The first is the request-reset method, a method for requesting a reset from
the prm (which is executed by the os). The second point is the restoration-code,
executed by the processor following a reset.

Figure 2 illustrates the interaction between the os, the processor and the
prm. The upper part, (a), illustrates the scenario in which the os requests a reset
from the prm. The lower part of Figure 2, (b), illustrates the message exchanged
between the os and the seh when the seh executes its reset procedure (state 70
of Figure 1).

6 S. Dolev and Y. Haviv

The designer of the os must follow some simple steps for using the prm. First,
a program point p, which is reached infinitely often, is picked by the designer.
The designer must be able to show that this program point is reached at least
every t′ time units (for some constant t′). For example, the context switch point
between tasks has this property in systems with preemptive scheduling. Then,
the designer must write a code that saves the parts of the state which will be
needed after the reset. A reset request from the prm is added at the end of
this code (the request-reset procedure), followed by an infinite loop. Next, the
designer must add the code for restoring the state (the restoration-code). The
restoration-code can use the parts of the state which were saved prior to the reset
by the save-code. Next, the designer must establish an upper bound, t, on the
time it takes until the system reaches the request-reset, and set MaxWDC to a
value that corresponds to t. Notice that the requirement that the system reaches
the rest request every t time units can be relaxed to consider only executions
that start in a state in which the processor behaves according to the specification
and the internal state of the os is legal.

Following a reset, the processor operates according to its original specifica-
tions, with the augmented ability2 to request a reset from the prm and with
the added requirement to request a reset before the watch-dog timer expires.
We denote this behavior of the processor (augmented with the prm)
as LEprm.

Implementation details for the prm (using Intel XScale). One possible
embodiment for the prm is in the scope of the XScale environment. In this
section we describe the implementation details in this embodiment. The XS-
cale core is used in various Intel processors, ranging from network processors to
handhelds and cellular phones. The XScale core is ARMv5TE compliant. Specific
processors built upon XScale add functionality using the standard mechanisms
of ARM for accessing additional coprocessors and system configurations. The
implementation details are based on the ARM v5 specifications [11], Intel XS-
cale core specifications [8] and the specifications of Intel’s 80200 processor (which
is used for network and I/O processors [9]). The three parts of the specifications
([11], [8], [9]) may define the behavior of the processor to some scenarios as
“undefined” or “unpredictable”. It is assumed that following such scenarios, the
processor remains in a legal state; Thus, the processor continues to fetch, decode
and execute instructions according to the specifications.

The XScale core allows the programmer to perform “on chip emulation”. That
is, debugging of programs by executing them on the processor, and using the
debugging mechanism, integrated in the processor, for accessing and controlling
the debugged program. The programmer uses a debugger, which is executed on
a remote host and interfaces with the XScale processor through the “Test Access
Port” (tap) using a protocol defined by the “Joint Test Action Group” (jtag,

2 Notice that the ability to request a reset overrides some functionality of the processor.
When implementing the prm, one should choose to override redundant functionality
of the processor, which is not used by the os.

Stabilization Enabling Technology 7

IEEE Std 1149.1, see [7]). The jtag protocol is simple and allows scanning data
into and from special “jtag registers” in the processor.

Our XScale embodiment uses tx, a jtag register designed for sending data
from the processor to the debugger. The tx register is scanned out by the prm
whenever the prm wishes to probe for a reset request. The os, on the other hand,
writes to the tx register for requesting a reset. The scanning of the tx register
is a procedure that is composed of a constant number of steps and therefore
can be implemented in the prm as a strait line automaton. Moreover, the reset
of the processor (and the tap), known as “cold-reset” in XScale terms, is also
performed using a constant number of steps. The above mentioned ensures that
Requirement 1 holds for this implementation.

3 The Stabilization Enabling Hardware (seh) —
Supporting Enforced Resets

Fig. 3. State machine of the Stabilization Enabling
Hardware (seh)

The designer of the os
may wish to remove the re-
quirement to request a re-
set periodically. In order to
support such an os, we sug-
gest adding a warning mes-
sage from the prm to the
os before executing the re-
set. In terms of the state
machine of the prm (Fig-
ure 1), state 70 is split into
two states (71 and 72), as
illustrated in Figure 3. The
first state (71), executes an
asynchronous call to the os,
notifying the upcoming re-
set. Then, the prm waits
for the os to save the state
into the memory and to ac-
knowledge that it is ready
for a reset. Upon receiv-
ing an acknowledgement or
if such an acknowledgement
does not arrive within a pre-
determined amount of time,
the prm advances to state 72, in which the processor is reset. Notice that bound-
ing the time the prm waits in state 71 for a notification from the os ensures that
the state machine presented in Figure 3 never ceases to advance. We denote this
behavior of the processor (augmented with the seh) as LEseh.

8 S. Dolev and Y. Haviv

Using the seh. The designer of the os that uses the seh interacts with the seh
at four different points. The first two points are identical to the prm; i.e. the
request-reset method and the restoration-code. The third interface point is a code
that is called by the seh before executing a reset (at state 71 of Figure 3). We
denote this code as the save-code. Since the execution of the save-code is initiated
by the seh (as opposed to the os), the third interface point is implemented as
an interrupt handler. The forth interface point is a method executed by the
save-code, which acknowledges the seh notification and signals the seh that the
os is ready for a reset. The execution of this method while the seh is in state
71 will cause the seh state machine to advance to state 72. Figure 4 illustrates
the interaction between the os and the seh. The upper part, (a), illustrates
the scenario in which the os requests a reset from the seh. The lower part of
Figure 4, (b), illustrates the message exchanged between the os and the seh
when the seh executes its reset procedure (states 71 and 72 of Figure 3).

Fig. 4. The interaction between the os and the seh

The designer is required
to write the save-code
and the restoration-code.
The semantics obtained
by the processor during
fault free periods is closely
related to the content of
the save and restoration
code. The designer must
be aware that anytime
during the execution of
the os, the following se-
quence may occur: execu-
tion of the save-code, re-
set of the processor and
execution of the restore-
code. The designer may
choose to save and restore
any parts of the processor
state. Moreover, the designer is free to enforce invariants on the restored state.

The designer may optionally choose to initiate a reset at a timing which best
suits the os. For example, the designer may choose to request a reset during the
idle time of the os. Requesting a reset is performed as in the prm, using the
request-reset procedure. After requesting a reset, the os must wait by entering
an infinite loop. When using this option, the restoration code must check if the
restored program counter is inside the infinite loop, and enforce the program
counter to point to the instruction following the loop.

As noted in Section 2, one must implement the additional features (notifying
the os on the upcoming reset and probing for an acknowledgement message)
so that the state machine of the seh never ceases to advance. The following

Stabilization Enabling Technology 9

requirement summarizes the property required from the implementation of the
notification and acknowledgement probing procedures.

Requirement 2. Started in any of their internal state, the notification and
probing for acknowledgement procedures eventually terminate.

Implementation details for the seh (using Intel XScale). The imple-
mentation of the seh is an extension of the implementation of the prm. Two
components are added. The first component is used for notifying the os on the
upcoming reset by triggering the save-code. We detail the specifics of this com-
ponent in the sequel. The second component is responsible for probing for a
notification acknowledgement and is implemented using the same technique as
the component used for probing for a reset-request.

Notifying the os on the upcoming reset is performed by invoking an exter-
nal debug break. The invocation of an external debug break causes the highest
priority exception to occur. In the XScale debug mechanism, the code that han-
dles the exception is known as the debug handler and is supposed to interact
with the remote debugger. We override the debugging mechanism and install the
save-code at the debug vector.

Since the save-code is executed as an interrupt, the program counter that
needs to be saved is held at the register holding the return address from the
interrupt (the lr register). Since the implementation of the seh involves adding
code to the os, the restoration code must avoid restoring a state in which the
program counter points to the newly added code. The restoration-code does that
by checking that the program counter is not in the predefined range used by the
debug handler.

In the following sub-section, we use the functionality obtained by the seh, in
order to establish a system that enables composing a self-stabilizing os on top
of a blackbox (non self-stabilizing) processor.

4 Stabilization Enabling System (ses)

In this section we suggest a system that enables composing a self-stabilizing os on
top of an off-the-shelf non self-stabilizing processor. The system is based upon the
stabilization enabling hardware (seh), presented in Section 3. The ses enables
the designer of a self-stabilizing os to assume that the processor eventually
executes the unchanged code according to specifications that are almost identical
to the ones presented in the processor specifications.

The stabilization enabling system (ses) is responsible for ensuring that the
processor does not stay in an erroneous state forever. Roughly speaking, the
ses monitors the fact that the processor repeatedly executes warm-boots and
aids in performing these warm-boots. The term warm-boot refers to saving the
processor state into the main memory, restarting (only) the processor, leaving
the main memory unchanged and then restoring the processor state prior to
the restart. The execution of a warm-boot ensures that the internal state of the
processor is legal (non-erroneous); i.e., enforces the stabilization of the processor.

10 S. Dolev and Y. Haviv

Moreover, executing such a warm-boot during a fault free period does not effect
the execution of the os (up to stuttering).

In other words, instead of designing the processor to be self-stabilizing, we
create a system that periodically refreshes the state of the processor to exactly
the same state when this state is legal, or to some legal state, otherwise. Once the
processor is in a legal state, and as long as there are no additional soft/transient
errors, the state of the processor remains legal and the processor execution will
be identical to the execution of the processor with no ses installed3.

Processor operational configuration. In [4], the legal behavior of the pro-
cessor was defined as fetching the instructions from the main memory, decoding
and executing them as specified in the vendor manual. Here, we refine this defi-
nition to support initial configuration for the processor. We separate the state of
the processor into two parts. The first part of the state includes registers which
are configured during the system boot and are not changed since. These registers
essentially determine the operational configuration of the processor, which we
call the configurational part of the state. For example, the ARM ([11]) archi-
tecture defines the control register (Section 2.4 in [11]) which is used, among
others, to configure the MMU. The non configurational part of the state in-
cludes the rest of the registers, as described in the specifications. For example,
in the x86 architecture, the eax, eip, and esp registers are included in the non
configurational part of the state. Once such a separation is defined, the pro-
cessor legal behavior is described for a specific configuration. Here, the state
space includes any assignment to the registers of the non configurational part
of the state and machine instructions that may change the configuration (the
content of registers included in the configurational part) are omitted from the
specification.

Warm-boot behavior. Performing a warm-boot in a legal processor state
forces the configurational part of the state into its predetermined value and
leaves the rest of the state unchanged. Performing a warm-boot in erroneous
state results in any of the allowed states for which the configurational part of
the state is set to its predetermined value. Moreover, the execution of a warm-
boot in either a legal or an erroneous state ensures that the code executed by
the processor is the code of the os.

The implementation of the ses uses some features of the processor for in-
teracting with the seh. The original behavior of these features, as defined in
the processor specifications, is therefore overridden by the ses. We refer to the
specifications of the processor with the overridden features as the ses-modified
specifications. An os that avoids using these features will not be effected by the
change in the specifications. In our suggested implementation for the XScale
processor, we override the on-chip debug functionality of the processor. The de-
bug mechanism is used only in the development stages of the system and can
therefore be safely overridden by the ses.
3 Up to clock speed and minor specification changes resulting in the ses-modified

specifications described in the sequel.

Stabilization Enabling Technology 11

Performing warm-boots infinitely often ensures that eventually the processor
behaves according to the ses-modified specifications with respect to the pre-
determined configuration and executes the original program. Notice that, when
using the seh, the programmer is still responsible for the stabilization of the pro-
gram from an arbitrary state. The following theorem summarizes the behavior
of a system that uses the ses.

Theorem 1. Started in any state, eventually the processor behaves according to
the ses-modified specification, up to stuttering, with respect to the predetermined
configuration and executes the original code.

Fig. 5. Sequence diagram of a warm-boot scenario

Implementing a warm-boot. Figure 5 illustrates the sequence of messages ex-
changed between the seh and the reset of the ses in the scenario of a warm-boot.
The scenario starts with a notification of an upcoming reset, initiated by the seh
(20). The save-code, executed on the processor saves the non-configurational part
of the state. This includes the value of any registers used by either user or os
code. For example, the stack pointer. Since the state of the processor may be
corrupted at this stage, no assumptions are made on the correct operation of
the processor at this stage. In particular, the seh does not assume that the
save-code execution is finished in a finite period of time. Therefore, a simple
timeout on the call is applied by the seh, denoted by the clock icon near the
“save state” call (20). When the save-code execution terminates, it sends an
acknowledgement message to the seh, notifying that it is safe to perform a re-
set (25). Then, a reset of the processor is invoked (40). Notice that the main
memory is left unchanged (and in particular, is not erased). From that point on,
the processor operates according to the specifications. Next, the seh invokes the
restoration-code.

12 S. Dolev and Y. Haviv

The first part of the restoration-code is responsible for restoring the processor
initial configuration (50). In this processes, the configuration of the processor
is loaded from a rom device (60). This configuration was captured and burned
during the design stage of the system. The second part of the restoration-code
is responsible for loading the non-configurational part of the state, which was
saved by the save-code (80).

Using the ses. The only requirement from the designer of the os, when using
the ses is to adapt the code to the ses-modified specifications. Performing code
adaptation must ensure that the os code: (a) Avoids using mechanisms over-
ridden in the implementation of the ses (in XScale, the debug mechanism), (b)
Avoids branching into the newly added code.

Extensions to the ses. We now list some possible extensions to the stabiliza-
tion enabling system. The first and the second extensions are aimed towards
better performance. The third extension can assist in the composition of a self-
stabilizing os.
• Timing warm-boots. Properly timing warm-boots may have a significant influ-
ence on performance. Executing warm-boots during the os idle time can cause
the warm-boots to go unnoticed by the user code. In order to support these
features, the implementation may add a method that requests a reset from the
seh. In terms of the XScale implementation, this simply means writing into the
tx register.
• Supporting “burning-hot”-boots. Under some situations, the os may choose
not to save and restore the entire state of the processor. For example, if the
warm-boot is initiated by the os during context switch, the user mode registers
are already saved by the os and there is no need to save and restore them in
the warm-boot processes. After the os scheduler chooses the next process to
execute, it can store this decision in memory and request a “burning-hot”-boot.
The save-code and the restoration-code can use settings placed in ram by the
os in order to decide which parts of the state should be saved and restored. The
method used by the os for requesting a warm-boot is now modified to contain
an infinite loop after requesting a reset from the seh. This enables the os to
wait in place until the ses performs the warm-boot. The loop is broken using
a special condition on saved state (in XScale, the lr register, containing the
return address), in the restoration code. Notice that using this feature requires
caution from the os designer, since the seh-modified specifications now contains
instructions that reset parts of the state.
• Supporting os invariants. The os designer may choose to add some function-
ality to the restoration-code in the form of invariants checks. For example, the
os designer may choose to ensure that if in the current state (the state restored)
the processor is in supervisor mode, then the instruction pointer points to os
code (rather than to the user code).

Stabilization Enabling Technology 13

Implementation details for the ses (using Intel XScale). The XScale
processor is configured by setting the registers of two coprocessors (The System
Control Coprocessor (CP15) and coprocessor 14). The separation of the processor
state into its configurational and non-configurational parts is therefore strait
forward. The configuration of the debug mechanism is also performed by writing
in these registers. Our implementation ensures that the configuration defined for
the debug mechanism will be as required.

In XScale, some of the registers have different copies for different processor
modes (such as user-mode, supervisor-mode etc.). The save-code in our imple-
mentation saves the main processor registers by traversing the different modes
and saving the values held in the different copies of the registers4. The registers
of all coprocessors (but CP14 and CP15) are also saved to the memory and
the dirty data cache pages are written into memory. The last instruction of the
save-code is a write instruction to the tx register, signalling the seh that the
system is ready for a reset.

The restoration code enforces immediate (constant) values on the registers
of CP14 and CP15 which hold the configurational part of the state. Then, in a
process reversed to that of the save code, the restoration code restores the non
configurational part of the state from memory.

5 Beyond the Processor — Enforcing Software
Configuration

The self-stabilization property of the processor is crucial for creating a self-
stabilizing system. The systems presented in Sections 2, 3 and 4 are used for
enforcing the stabilization of a processor without using detailed knowledge on its
implementation. In fact, the systems presented in previous sections are used for
saving the required vast development effort needed for creating self-stabilization
processors.

However, the environment on top of which current systems operate is much
richer than the processor. In particular, operating systems are used extensively.
Developing a self-stabilizing os with industrial quality from scratch requires
an enormous development effort. In this section, we aim towards reducing this
effort by introducing a scheme and a design of additional hardware that ease the
adaptation of legacy code (of, e.g., an os) into a self-stabilizing one.

An important assumption when designing self-stabilizing algorithms is that
the code running on the processor is not corrupted. We suggest extending this as-
sumption also to the program data that change only during the system boot and
configuration. Since most of the variables of computer software remain constant
following the boot and configuration stages, it is easier to define the portions of
memory in which there are content changes during the system run.

We suggest adding a hardware that supports capturing and “burning” the
current state of the portions of memory defined earlier to contain configuration

4 User mode registers are saved from supervisor mode using special instructions.

14 S. Dolev and Y. Haviv

parameters. Memory read operations from addresses which where marked as
containing configuration variables are later simulated in the additional hardware
by reading from the burned rom instead of the main memory.

The presence of the mechanism presented above allows easier modification of
legacy code to be self-stabilizing. The designer needs only to identify the portions
of memory which change after the boot and setup stages and only to enforce the
stabilization of these portions to a consistent value.

Our scheme may require the software to expose the addresses (physical page
numbers) that contain the information that should remain constant during run-
time. A manual switch, the “configuration enforcement switch” (ces) may be
added to the hardware. The switch is turned manually and may be in one of two
states: “setup” and “runtime”. Initially, the configuration enforcement switch
is in the “setup” state. In this state the machine operates with no interference
from the additional hardware. Then, when the user decides that the setup stage
is over, she flips the switch to the “runtime” state. This flip triggers burning into
rom the content held in the memory addresses which were marked to contain
configuration. From that point on, any request to read software configuration
from ram memory is serviced by reading from rom. Notice that using any of
the solutions presented in Sections 2, 3 and 4 ensures that the data cache is
eventually consistent and therefore the configuration used by the software is
eventually correct.

6 Conclusions

The existence of a self-stabilizing microprocessor is essential for the implemen-
tation of self-stabilizing systems. The prm, seh and ses enable the enforcement
of the stabilization property on commercial processors. The three solutions give
the designer of the os three different starting points.

The prm provides the most simple and flexible solution but requires some
effort from the os designer. In particular, the designer must make sure that the
os request a reset at least every predetermined amount of time. However, using
the prm, no code is added to the os.

A designer who wishes to remove the requirement for requesting a reset at
least every predetermined amount of time, while preserving some of the flexibility
may use the seh. The seh allows the designer complete flexibility in choosing
the save and restoration-code, which is also the downside of the solution.

Using the ses requires a very small effort from the os designer in exchange to
loosing some of the flexibility. The only requirement when using the ses is that
the os avoids using the mechanisms which were used for implementing the ses.
An implementation of the ses may choose redundant mechanisms (such as the
debug mechanism in XScale), which are not used in deployed systems. However,
the assistance provided by the ses to the os designer is important, the designer
may write invariants on the restored state and choose the preferred times for the
os to perform a warm-boot.

Stabilization Enabling Technology 15

The aim of the solutions in Sections 2, 3 and 4 was to achieve stabilization
(of the processor) by only modifying an existing solution instead of redesigning
a new one. We believe that the same concept should be used in the creation of
a self-stabilizing os. For example, the solution presented in Section 5 may form
necessary technology for applying the same concepts on oss. Using the solution
presented in Section 5, the designer can concentrate on proving the stabilizing
of the non-configurational part of the software state.

References

1. Olga Brukman and Shlomi Dolev, “Recovery Oriented Programming”, this pro-
ceedings, also in Technical Report #2006-06, Department of Computer Science,
Ben-Gurion University of the Negev, Israel, 2006.

2. Edsger W. Dijkstra. “Self-stabilizing systems in spite of distributed control”.
Commun. ACM, 17(11):643–644, 1974.

3. Shlomi Dolev, Self-Stabilization, MIT Press, 2000.
4. Shlomi Dolev and Yinnon Haviv, “Self-Stabilizing Microprocessor Analyzing and

Overcoming Soft-Errors”, IEEE Transactions on Computers ,vol. 55, no. 4, pp.
385-399, April. 2006, Also in Proc. of the International Conference on Architecture
of Computing Systems, Organic and Pervasive Computing (ARCS) Lecture Notes
in Computer Science 2981, Springer, pp. 31–46, 2004.

5. Shlomi Dolev, Yinnon Haviv, and Mooly Sagiv, “Self-stabilization preserving com-
piler”, Proc. of the 7th International Symposium on Self-Stabilizing Systems, Lec-
ture Notes in Computer Science 3764, Springer, pp. 81–95, 2005. Also in Technical
Report #2005-06, Department of Computer Science, Ben-Gurion University of the
Negev, Israel, 2005.

6. Shlomi Dolev and Reuven Yagel, “Memory management for self-stabilizing operat-
ing systems”. Proc. of the 7th International Symposium on Self-Stabilizing Systems,
Lecture Notes in Computer Science 3764, Springer, pp. 113–127, 2005.

7. IEEE, IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture,
2001. http://standards.ieee.org

8. Intel, Intel XScale Core, Developer’s Manual, 2004. http://www.intel.com/

design/intelxscale/273473.htm

9. Intel, Intel 80200 Processor based on Intel XScale Microarchitecture, 2000.
http://www.intel.com/design/iio/manuals/273411.htm

10. Jason Hill et al. “System Architecture Directions for Networked Sensors”, Archi-
tectural Support for Programming Languages and Operating Systems, pp. 93–104,
2000.

11. David Seal. ARM Architecture Reference Manual (2nd Edition), Addison-Wesley,
2000.

12. Andrew S. Tanenbaum. Structured computer organization, Prentice-Hall, 1984.

A General Characterization of Indulgence

R. Guerraoui1,2 and N. Lynch2

1 School of Computer and Communication Sciences, EPFL
2 Computer Science and Artificial Intelligence Laboratory, MIT

Abstract. An indulgent algorithm is a distributed algorithm that, be-
sides tolerating process failures, also tolerates arbitrarily long periods of
instability, with an unbounded number of timing and scheduling failures.
In particular, no process can take any irrevocable action based on the op-
erational status, correct or failed, of other processes. This paper presents
an intuitive and general characterization of indulgence. The characteri-
zation can be viewed as a simple application of Murphy’s law to partial
runs of a distributed algorithm, in a computing model that encompasses
various communication and resilience schemes. We use our characteriza-
tion to establish several results about the inherent power and limitations
of indulgent algorithms.

1 Introduction

Indulgence

The idea of indulgence is motivated by the difficulty for any process in a dis-
tributed system to accurately figure out, at any point of its computation, any
information about which, and in what order, processes will take steps after that
point. For instance, a process can usually not know if other processes have failed
and stopped operating or are simply slow to signal their activity and will in-
deed perform further computational steps. More generally, a process can hardly
exclude any future interleaving of the processes.

This uncertainty is at the heart of many impossibilities and lower bounds
in distributed computing, e.g., [9], and it has been expressed in various forms
and assuming specific computation models,e.g., [7,4,19]. The goal of this work
is to capture this uncertainty in an abstract and general way, independently of
specific distributed computing and communication models, be they time-based,
round-based, message passing or shared memory.

In short, an indulgent algorithm is an algorithm that tolerates this uncer-
tainty. In a sense, the algorithm is indulgent towards its environment, i.e., the
operating system and the network. These can thus be unstable and congested
for an arbitrarily long period of time, during which an unbounded number of
timing and scheduling failures can occur.

An obvious class of indulgent algorithms are asynchronous ones [9]. These do
not make any assumption on communication delays and relative process speeds.
As a consequence, no process can for instance ever distinguish a failed process

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 16–34, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A General Characterization of Indulgence 17

from a slow one. However, indulgent algorithms do not need to be asynchronous.
In particular, an algorithm that eventually becomes synchronous, after an un-
known period of time [7], is also indulgent. Similarly, algorithms that rely on an
eventual leader election abstraction, such as Paxos [19], or an eventually accu-
rate failure detector, such as the rotating coordinator algorithm of [4], are also
indulgent. Other examples of indulgent algorithms include those that assume a
time after which processes execute steps in a certain order [21], or an eventual
bound on the ratio between the delay of the fastest and the slowest messages [8],
as well as algorithms that tolerate an unbounded number of timing failures [23].
All these non-asynchronous indulgent algorithms have the nice flavor that the
assumptions they make about the interleaving of processes can only be used for
liveness. Safety is preserved even if these assumptions do not hold.

All these algorithms are devised in specific models that refer directly to specific
failure detector machinery or specific synchrony conditions, typically assuming
a message passing model [10,6,24,13,22].

Murphy’s Law

The goal of this work is to characterize the notion of indulgence in a general
manner, encompassing various distributed computing models, be they round-
based or time-based, as well as various communication schemes, be they shared
memory or message passing. By doing so, the goal is to determine the inherent
power and limitation of indulgent algorithms, independently of specific models.

To seek for a general characterization of indulgence, it is tempting to consider
an abstract approach that looks at runs of an algorithm as sequences of events
that occur at the interface between the processes executing the algorithm and
the services 1 used in the algorithm; each event representing a step of a process
consisting of a process id, a service id, together with the operation invoked by
the process on the service with its input and output parameters.

This is in contrast to an approach where we would look into the internals of
the individual services involved in the computation and the automata executed
on the processes. While appealing for its generality, the abstract approach is not
straightforward as we explain in the paper. In particular, it is not easy to devise
an abstract characterization without precluding algorithms that assume a thresh-
old of correct (non-faulty) processes. This would be unfortunate for indulgent
algorithms typically assume for instance a majority of correct processes [7,19,4].

The main contribution of this paper is to characterize indulgence by applying
Murphy’s law to partial runs of an indulgent algorithm. Basically, we characterize
indulgence through the following property: if the interleaving I (sequence of
process ids) of a partial run R (sequence of steps) of an algorithm A could be
extended with steps of certain processes and not others, while still be tolerated by
the algorithm, then the partial run R can itself be extended in A with such steps.
More specifically, we say that an algorithm A is indulgent if, given any partial

1 Shared memory object, broadcast primitive, message passing channel, failure detec-
tor, clock, etc.

18 R. Guerraoui and N. Lynch

run R of A and the corresponding interleaving I of processes, if A tolerates an
extension I ′ of I where some subset of processes stop taking steps (resp. take
steps) after I, then A does also have an extension of R with interleaving I ′. In
a sense, partial run R does not provide the processes with enough information
to predict the extension of the interleaving I: if some extension of I is tolerated
by the algorithm, then this extension can also be associated with an extension
of R.

Power and Limitation of Indulgence

We first show in the paper that our characterization of indulgence is robust in
the sense that it does not depend on the number of failures tolerated by an
algorithm. In short, if an algorithm A that tolerates k failures is indulgent, then
the restriction of A to runs with k − 1 failures is also indulgent.

We then highlight the safety aspect of indulgent algorithms. Basically, even
if an indulgent algorithm relies on some information about the interleaving of
processes to solve some problem, the algorithm can only rely on this informa-
tion to ensure the liveness part of the problem. Safety is preserved even if the
information is never accurate.

We then proceed to show that any indulgent algorithm A is inherently uni-
form: if A ensures the correct-restriction of a safety property P , then A ensures
the actual property P . A corollary of this, for instance, is that an indulgent algo-
rithm cannot solve the correct-restriction of consensus, also called non-uniform
consensus (where a process can decide a different value from a value decided
by a failed process) without solving consensus (where no two processes should
ever decide different value - uniform agreement). This is not the case with non-
indulgent algorithms.

We use our uniformity property to show that certain problems are impossi-
ble with indulgent algorithms. In particular, we show that no indulgent algo-
rithm can solve a failure sensitive problem, even if only one process can fail
and it can do so only initially. In short, a failure sensitive problem is one
the specification of which depends on the fact that certain processes takes
steps or not after a decision is taken. Failure sensitive problems include some
classical ones like non-blocking atomic commit, terminating reliable broadcast,
(also known as the Byzantine Generals problem) as well as interactive consis-
tency. There are known algorithms that solve these problems but these are not
indulgent.

Our reduction from uniformity to the impossibility of solving failure sensi-
tive problems is, we believe, interesting in its own right. By showing that our
impossibility applies only to initial failures, and holds even if the algorithm
uses powerful underlying services like consensus itself, we emphasize the fact
that this impossibility is fundamentally different from the classical impossibil-
ity of consensus in an asynchronous system if a process can fail during the
computation [9].

A General Characterization of Indulgence 19

Finally, we prove that, given n the number of processes in the system and as-
suming n−�n/x� processes can fail (x ≤ n), no indulgent algorithm can ensure a
x−divergent property using only timeless services. In short, a x−divergent prop-
erty is one that can hold for partial runs involving disjoint subset of processes
but not in the composition of these runs, whereas a timeless service is one that
does not provide any real-time guarantee. We capture here, in a general way, the
traditional partitioning argument that is frequently used in distributed comput-
ing. Corollaries of our result include the impossibility for an indulgent algorithm
using message passing or sequentially consistent objects [18] to (a) implement a
safe register [18] if half of the processes can fail, as well as (b) implement k-set
agreement [5] if n− �n/k� processes can fail.

To conclude the paper, we discuss how, using our notion of indulgence, we
indirectly derive the first precise definition of the concept of unreliable failure
detection [4]. Whereas this notion is now folklore in the distributed computing
literature, it has never been precisely defined in a general model of distributed
computation.

2 Model

Processes and Services

We consider a set Π of processes each representing a Turing machine. The total
number of processes is denoted by n and we assume at least 2 processes in the
system, i.e., n > 1. Every process has a unique identity. Processes communi-
cate through shared abstractions, called distributed services or simply services.
These might include sequentially consistent or atomic objects [18,15], as well
as message passing channels and broadcast primitives [14]. The processes can
also consult oracles such as failure detectors [4] about the operational status of
other processes, or randomization devices that provide them with arbitrary val-
ues from a random set. Each service exports a set of operations through which
it is accessed. For instance [20]:

– A message passing channel exports a send and a receive operations. The send
takes an input parameter, i.e., a message, and returns simply an ok indication
that the message was sent. On the other hand, a receive does not take any
input parameter and returns a message, possibly nil (empty message) if there
is no message to be received. Message passing channels differ according to
the guarantees on message delivery. Some might ensure that a message that
is sent is eventually received by every correct process (the notion of correct
is recalled more precisely below). Others ensure simply that the message is
received if both the sender and the receiver are correct.

– An atomic queue exports a enqueue and a dequeue operations. The enqueue
takes an input parameter (an element to enqueue) and returns an ok indica-
tion. On the other hand, a dequeue does not take any input parameter and
returns an element in the queue (the oldest), if there is any, or simply nil if
there is no element in the queue.

20 R. Guerraoui and N. Lynch

– A failure detector exports one query operation that does not take any input
parameter and returns a set of processes that are suspected to have failed and
stopped their execution. In a sense, a failure detector provides information
about the future interleaving of the processes. More generally, one could also
imagine oracles that inform a process that certain processes will be scheduled
before others.

Steps and Schedules

Each process is associated with a set of possible states, some of which are initial
states. A set of n states, each associated with one process of the system, is called
a configuration. A configuration composed of initial states is called an initial
configuration. A process is also associated with an automata that regulates the
execution of the process according to a given algorithm.

The system starts from an initial configuration, among a set of possible initial
configurations, and evolves to new configurations by having processes execute
steps. A step is an atomic unit of computation that takes the system from a
configuration to a new configuration.

Every step is associated with exactly one process. In every step, the associated
process accesses exactly one shared service by invoking one of the operations of
the service and getting back the operation’s reply. (We do not assume here any
determinism.) Based on this reply, the process modifies its local state before
moving to the next step.2 The automaton of the process determines, given a
state of a process and a reply from the invocation of an operation, the new state
of the process and the operation to invoke in the next step of the process.

The visible part of a step, at the interface between a process and a service, is
sometimes called an event. It is modeled by a process id, a service id, the id of an
operation, as well as input and output parameters of the operation’s invocation.
By language abuse, we also call this a step when there is no ambiguity between
the event and the corresponding step.

An infinite sequence of steps S is called a schedule and the corresponding
sequence of process ids is called the interleaving of the schedule S and is denoted
by I(S). If the sequence is finite, we talk about a partial schedule and a partial
interleaving. Sometimes we even simply say a schedule and an interleaving if
there is no ambiguity. If a process p has its id in an interleaving I then we say
that p appears in I.

We say that a (partial) schedule S2 (resp. an interleaving I2) is an extension
of a partial schedule S1 (resp. partial interleaving I1) if S1 (resp. I1) is a prefix
of S2 (resp. I2). We write S2 ∈ E(S1) (resp. I2 = E(I1)).

Runs and Algorithms

A run (resp. a partial) R is a pair (S, C) composed of a schedule (resp. a partial
schedule) S and a configuration C, called the initial configuration of the run R.
2 Executing a local computation, with no access to a shared service in a given step, is

simply modeled by an access to an immutable service.

A General Characterization of Indulgence 21

The interleaving of the schedule S, I(S), is also called the interleaving of the
run R, and is also denoted by I(R). We say that a (partial) run R2 = (S2, C)
is an extension of a partial run R1 = (S1, C) (we write R2 ∈ E(R1)) if S2 is
an extension of S1. In this case, I(R2) is also an extension of I(R1). We denote
by R/p = (S/p, C) the restriction of R = (S, C) to the steps involving only
process p.

A process p is correct in a run R if p appears infinitely often in the interleaving
I(R) of that run R, i.e., p performs an infinite number of steps in R. A process
p is said to be faulty in a run R if p is not correct in R. We say that a process p
initially fails in a run R if p does not appear in I(R). We denote the set of faulty
processes in a run R (resp. interleaving I) by faulty(R) (resp. faulty(I)), and the
set of processes that do not take any step in R by faulty�(R) (resp. faulty�(I)).

We model an algorithm as a set of runs. If Ri is a partial run of a run R ∈ A,
we write Ri ∈� A. The interleavings of the runs of an algorithm A are said to
be tolerated by A and the set of these interleavings is denoted by I(A).3

For instance, in wait-free computing [15], an algorithm tolerates all possible
interleavings: it has at least one run for every possible interleaving.

It is also common to study algorithms that tolerate a threshold of failures, as
we precisely define below.

– We say that A is a k-resilient algorithm if I ∈ A if and only if faulty(I) <
n − k. That is, I(A) contains exactly all interleavings where at least n − k
processes appear infinitely often.

– We say that A is a k�-resilient algorithm if I ∈ A if and only if faulty�(I) =
faulty(I) < n − k. Every process that appears once in any interleaving I of
A appears infinitely often in I. (We capture here the assumption of initial
failures.)

We assume that the algorithms are well behaved in the following senses. (1)
Every partial interleaving tolerated by an algorithm A has a failure-free extension
also tolerated by A. (2) Let A be any algorithm and R = (C, S) any run of A.
If C′ is an initial configuration similar to C, except for the initial states of the
processes in faulty�(R), then R′ = (C′, S) is also a run of A.

3 Indulgence

Overview

Informally, an algorithm is indulgent if no process, and any point of its compu-
tation, can make any accurate prediction about the future interleaving of the
processes. For instance, no process can ever declare another process as being
faulty or correct.
3 This conveys the idea that the interleaving is chosen by the operating system and

not by the algorithm. In some sense, the operating system acts as an adversary that
the algorithm needs to face and it is common to talk about the interleaving of the
adversary.

22 R. Guerraoui and N. Lynch

As we discuss below, it is not trivial to capture this intuition without pre-
cluding algorithms that tolerate certain interleavings and not others. Example
of these algorithms are t-(or t�-) resilient algorithms. In such algorithms, certain
interleavings are known to be impossible in advance, i.e., before the processes
start any computation. As we will explain, a naive definition of indulgence would
preclude such algorithms.

– Consider a first glance approach (characterization 1) that would declare an
algorithm A indulgent if, for any partial run R of A, for any process q, A has
an extension of R with an infinite number of steps by q. This clearly captures
the idea that no process can, at any point of its computation (say after any
partial run R) declare that some other process q is faulty, for q could still
take an infinite number of steps (after R) and thus be correct. Although
intuitive, this characterization is fundamentally flawed, as we discuss below.

– With characterization 1, we might consider as indulgent an algorithm that
relies on the ability of a process to accurately learn that at least one out
of two processes have failed, or learn that certain processes will perform
steps in a round-robin manner, provided they perform future steps. Indeed,
characterization 1 above simply says that any process q can still take steps
in some extension of the partial run R. For some pair of processes q1 and
q2, there might be no extension of R with both q1 and q2 taking an infinite
number of steps in any arbitrary order.

In particular, we would like indulgence to express the very fact that any
subset of processes can still take steps after any point of the computation,
i.e., after any partial run R, and in any possible order. In fact, there is
an easy fix to characterization 1 that deals with this issue. It is enough to
require (characterization 2) that, for any partial run R of A, for any subset
of processes Πi, A has an extension of R with an infinite number of steps
by all processes of Πi, in every order. As we discuss below however, this
characterization raises other issues.

– Characterization 2 might unfortunately lead us to consider as indulgent an
algorithm that relies on the ability for the processes to learn that some
specific process will take steps in the future. A naive way to prevent this
possibility is to also require (characterization 3) that, for any partial run R of
an indulgent algorithm A, for any subset of processes Πi, A has an extension
of R where no process in Πi takes any step after R. Characterization 3
however excludes algorithms that assume a threshold of correct processes. As
we pointed out earlier, many indulgent algorithms [3,7,19] assume a correct
threshold: in particular, they assume that every partial run has an extension
where a majority of processes take an infinite number of steps.

Characterization

Very intuitively, we cope with the issues above by proposing a definition of in-
dulgence inspired by Murphy’s law, which we apply to partial runs. Basically,
we declare an algorithm A indulgent if, whenever the interleaving I(R) of any

A General Characterization of Indulgence 23

partial run R of A could be extended with a certain interleaving, then R also
would. In other words, if the interleaving I(R) of a partial run R has an ex-
tension I ′ ∈ I(A), then A also has an extension R′ of R with the interleaving
I(R′) = I ′.

Definition (indulgence). An algorithm A is indulgent if, ∀I1, I2 ∈ I(A) s.t.
I2 ∈ E(I1), ∀R1 ∈ A s.t. I(R1) = I1, ∃R2 ∈ A s.t. I(R2) = I1 and I2 ∈ E(I1).

In other words, for any pair of interleavings I1 and I2 tolerated by A such that
I2 extends I1, any partial run R1 of A, such that I(R1) = I1, has an extension
R2 in A such that I(R2) = I2.

Basically, our definition says that no partial run R1 can preclude any extension
R2 with interleaving I2, provided I2 is tolerated by A. The definition does not
preclude t-resilient algorithms from being indulgent. This would not have been
the case for instance with a definition that would only consider as indulgent an
algorithm A such that, for any partial run R of A, for any subset of processes
Πi ⊂ Π , A has an extension R1 of R where all processes of Πi are correct, and
an extension R2 of R where no process in Πi takes any step after R.

Examples

Clearly, an algorithm that makes use of a perfect failure detector [4] is not in-
dulgent. If a process is detected to have failed in some partial run R, then R
cannot be extended with an interleaving including steps of p. In fact, even an al-
gorithm relying on an anonymously perfect failure detector is not indulgent [12].
Such a failure detector might signal that some process has failed, without indi-
cating which one. When it does so in some partial run R, this indicates that it
is impossible to extend R with a run where all processes are correct. Similarly,
an algorithm that uses an oracle which declares some process correct, say from
the start [11], would not be indulgent if the algorithm tolerates at least one
interleaving where that process crashes.

An obvious class of indulgent algorithms are t-resilient asynchronous ones [9].
Such algorithms do not have any partial run providing meaningful information
about the future interleaving of the processes. However, and as we explained
in the introduction, indulgent algorithms do not need to be asynchronous. Al-
gorithms that rely (only) on eventual properties (i.e., that hold only after an
unknown periods of time) about the interleavings of the processes are indulgent.
These include eventually synchronous algorithms [7], eventual leader-based al-
gorithms [19], rotating coordinator-based algorithms [4], as well as algorithms
that tolerate an unbounded number of timing failures [23], or assume eventual
interleaving properties [21], or an eventual bound on the ratio between the delay
of the fastest and the slowest communication [8].

In the following, we prove three properties of indulgent algorithms: robustness,
safety, and uniformity. Later, we will also prove some inherent limitations of
indulgent algorithms.

24 R. Guerraoui and N. Lynch

4 Robustness

In short, the robustness aspect (of our definition) of indulgence conveys the fact
that if an algorithm A that tolerates t failures is indulgent, then the restriction
of A to runs with t− 1 failures is also indulgent. Before stating and proving this
property, we define notions of extensions of an algorithm.

Let A and A′ be any two algorithms.

– A′ is an extension of A if A ⊂ A′. (Every run of A is a run of A′.) We also
say in this case that A is a restriction of A′.

– A′ is a strict extension of A if (a) A ⊂ A′ and (b) ∀R ∈ A′ s.t. I(R) ∈ I(A),
R ∈ A. (Every run of A′ with an interleaving tolerated by A is also a run of
A.) We also say in this case that A is a strict restriction of A′.

Proposition 1. Every strict restriction of an indulgent algorithm is also indul-
gent.

Proof. (Sketch) Consider an algorithm A that is a strict restriction of A′. We
proceed by contradiction and assume that A′ is indulgent whereas A is not.

The fact that A is not indulgent means that (a) there are two interleavings I1

and I2 ∈ I(A) such that I2 ∈ E(I1), (b) a partial run R ∈ A such that I(R) = I1,
and (c) (*) A has no extension of R, R′, such that I(R′) = I2.

The fact that I1 and I2 ∈ i(A) means that there are two runs R1 and R2 ∈ A
such that I(R1) = I1 and I(R2) = I2.

Since A′ is an extension of A, and R, R1 and R2 are (partial) runs of A, then
R, R1 and R2 are also partial runs of A′.

Since A′ is indulgent, then A has an extension R′ of R such that I(R′) = I2.
Finally, since A′ is a strict extension of A, then R′ ∈ A: a contradiction

with (*).

Consider an algorithm A that is t-resilient. Remember than this means that A
tolerates all interleavings where at least n − t processes are correct, i.e., n − t
processes take an infinite number of steps. The subset of all runs of A where
at least n − t − 1 processes take an infinite number of steps is a t − 1-resilient
algorithm A′ that is a strict restriction of A. The proposition above says that if A
is indulgent then so is A′. The same reasoning applies to t�-resilient algorithms.
(Note that robustness does not hold for the naive characterization 3 of indulgence
discussed earlier in Section 3.)

5 Safety

The safety aspect of indulgence means, roughly speaking, that, even if an indul-
gent algorithm relies on some information about the interleaving of processes to
solve some problem, the algorithm can only rely on this information to ensure
the liveness part of the problem, and not its safety. We first recall the notions
of safety and liveness.

A General Characterization of Indulgence 25

Safety and Liveness

The specifications of a distributed computing problem are typically expressed in
terms of predicates over runs, also called properties of runs. An algorithm solves
a problem if those predicates hold over all runs of the algorithm.

Informally, a safety property states that nothing bad should happen, whereas
a liveness property states that something good should eventually happen [17,1].

Consider a predicate P over runs and a specific run R. We say that P holds
in R if P (R) = true; P does not hold in R if P (R) = false.

A safety property P is a predicate that satisfies the two following conditions:
any run for which P does not hold has a partial run for which P does not hold;
and P does not hold in every extension of a partial run where P does not hold.
A liveness property P , on the other hand, is one such that any partial run has
an extension for which P holds.

It was shown in [17,1] that any property can be expressed as the intersection of
a safety and a liveness properties. Given a property P , possibly a set of properties
(i.e., a problem), we denote by S(P) the safety part of P and L(P) the liveness
part of P .

We capture in the following the safety aspect of indulgence through the notions
of stretched extension and unconscious algorithms, which we introduce below.
Let A and A′ be any two algorithms.

– A′ is a stretched extension of A if (a) A′ is an extension of A and (b) ∀R ∈� A′,
R ∈� A. (Every partial run of A′ is a partial run of A.)

Notice that the notions of strict and stretched extensions are orthogonal. Al-
gorithm A′ might be a strict (resp. stretched) extension of A but not a stretched
(resp. strict) extension of A.

Safety and Unconsciousness

By the very definition of safety, we immediately get the following:

Proposition 2. If the stretched extension A′ of an algorithm A solves a problem
P then A′ ensures S(P).

Proof. (Sketch) Assume by contradiction that A′ does not ensure S(P). By
definition of safety, there is a partial run R ∈� A′, such that S(P) does not
hold in R, nor in any extension of R. Because A′ is a stretched extension of A,
R ∈� A, which implies that A does not solve P .

This property is interesting because it helps expresses the fact that, if an in-
dulgent algorithm A solves some problem P , while relying on some information
about the interleaving of the processes, then A preserves the safety part of P
even if the information turns out not to be accurate. The stretched extension
of A precisely captures the situation where this information is not accurate. We
say that the algorithm resulting from this situation is unconscious.

26 R. Guerraoui and N. Lynch

Definition (unconsciousness). Algorithm A is unconscious if every run R is
such that R ∈ A if every partial run Ri of R is such that Ri ∈� A.

Indulgent algorithms like in [7,19,4,23,21,8] are conscious because they rely on
eventual information about at least one interleaving I. Any such algorithm A
tolerates an interleaving I with a run R 	∈ A such that I(R) = I and all partial
runs of R are in A. For instance, shared memory asynchronous algorithms are
both indulgent and unconscious. Eventually synchronous algorithms are, on the
other hand, indulgent but conscious. Indeed, consider a run R where every pro-
cess pi takes steps in rounds i, i2, i3, etc. Every partial run of R is eventually
synchronous. However, R is not. Interestingly, by the definitions of the notions
of stretched extensions and unconscious algorithm, we immediately get:

Proposition 3. The stretched extension of any algorithm is an unconscious
algorithm.

For instance, the stretched extension of an eventually synchronous algorithm is
asynchronous.

Proposition 2 and Proposition 3 say that if A solves some problem P while
relying on some information about the interleaving of the processes (e.g., A
assumes eventual synchrony), then A preserves the safety part of P even if the
information turns out not to be accurate (e.g., even if the system ends up being
asynchronous).

6 Uniformity

In the following, we show that indulgent algorithms are inherently uniform, in
the intuitive sense that they are not sensitive to safety properties that restrict
only the behavior of correct processes (which we call correct-restrictions). We
will illustrate the idea of uniformity through the consensus problem and point
out the fact that uniformity does not hold for algorithms that are not indulgent.
Later, we will use the notion of uniformity to prove that certain problems do
not have indulgent solutions. We first introduce below the notion of a correct-
restriction of a property.

Correct Restriction of a Property

Informally, the correct-restriction of P , denoted C(P), is the restriction of P to
correct processes.

Definition (Correct-restriction). Let P be any property. We define the
correct-restriction of P , denoted C[P], as follows. For any run R, C[P](R) =
true if and only if ∃R′ such that ∀p ∈ correct(R), R/p = R′/p and P (R′) = true.

Proposition 4. Let P be any safety property and A any indulgent algorithm.
If A satisfies C[P] then A satisfies P .

A General Characterization of Indulgence 27

Proof. (Sketch) Let P be any safety property and A any indulgent algorithm
that satisfies C[P].

Assume by contradiction that A does not satisfy P . This implies that there is
a run of A, say R, such that P (R) is false. Because P is a safety property, there
is a partial run of R, R′, such that P (R′) is false.

By the indulgence of A, and our assumption that any interleaving has a failure-
free extension, A has an extension of R′, say R′′, where all processes are correct.

Because P is a safety property and P (R′) is false, P (R′′) is also false. Hence,
C[P](R′′) is false because all processes are correct in R′′ and C[P](R′′) = P (R′′).
A contradiction with the fact that A satisfies C[P].

Example: Consensus

An immediate corollary of Proposition 4 concerns for instance the consensus [9]
and uniform consensus problems (resp. total order broadcast and uniform total
order broadcast) [14]. Before stating our corollary, we recall below the consensus
problem.

We assume here a set of values V . For every value v ∈ V and every process
p ∈ Π , there is an initial state ep of p associated with v and ep is no associated
with any other value v′ 	= v; v is called the initial value of p (in state ep).
Hence, each vector of n values (not necessarily different ones) correspond to an
initial configuration of the system. We also assume that, among other distributed
services used by the processes, a specific one models the act of deciding on a value.
The service, called the output service, has an operation output(); when a process
p invokes that operation with an input parameter v, we say that p decides v.

An algorithm A solves the consensus problem if, in any run R = (C, S), the
three following properties are satisfied.

– Validity: the value decided by any process pi in R is the initial value of some
process pj in C.

– Agreement: no two processes decide different values in R;
– Termination: every correct process in R eventually decides in R.

Clearly, agreement and validity are safety properties whereas termination is a
liveness property. Two weaker, yet orthogonal, variants of consensus have been
studied in the literature. One, called non-uniform consensus, only requires that
no two correct processes decide different values. (May be counter intuitively, this
is a liveness property.) Another variant, called k-agreement [5], requires that the
number of different values decided by all processes (in any run) is at most k.

The following is a corollary of Proposition 4.

Corollary 1. Any indulgent algorithm that solves consensus also solves uniform
consensus.

This is not the case with non-indulgent algorithms as we explain below. Consider
a system of 2 processes {p1, p2} using two services: an atomic shared register

28 R. Guerraoui and N. Lynch

and a perfect failure detector. The latter service ensures that any process is
eventually informed about the failure of the other process and only if the other
process has indeed failed. The idea of a non-indulgent algorithm solving non-
uniform consensus is the following: process p1 decides its initial value and then
writes it in the shared register; process p2 keeps periodically consulting its failure
detector and reading the register until either (a) p1 is declared faulty by the
failure detector or (b) p2 reads p1’s value. In the first case (a) p2 decides its own
value and in the second (b) p2 decides the value read in the register. If both
processes are correct, they both decide the value of p1. If p1 fails after deciding,
p2 might decide a different value.

7 Failure Sensitivity

In the following, we show that no indulgent algorithm can solve certain problems
if at least one process can fail, even if this process can do so only initially, i.e., if
the algorithm is 1�-resilient. To simplify, we call a 1�-resilient indulgent algorithm
simply a 1�-indulgent algorithm.

The problems we show impossible are those we call failure sensitive. In short,
these are problems that resemble consensus with the particularity that the de-
cision value might be considered valid or not depending on whether certain
processes have failed. These problems include several classical problems in dis-
tributed computing like terminating reliable broadcast, interactive consistency
and non-blocking atomic commit [14].

To prove our impossibility, we proceed as follows. We first define a simple
failure sensitive problem, which we call failure signal, and which we show is im-
possible with a 1�-indulgent algorithm. Then we show that any solution to termi-
nating reliable broadcast, interactive consistency or non-blocking atomic commit
solves failure signal: in this sense, failure signal is weaker than all those problems
which are thus impossible with a 1�-indulgent algorithm.

The Failure Signal Problem

In failure signal, just like in consensus, the goal is for processes to decide on a
value based on some initial value. As we explain however, unlike consensus, no
agreement is required and a process can decide different values.

More specifically, in failure signal, a specific designated process p has an initial
binary value, 0 or 1, as part of p’s initial state. The two following properties need
to be satisfied: (1) every correct process eventually decides and (2) no process
(a) decides 1 if p proposes 0, nor (b) decides 0 if p proposes 1 and p is correct.

Interestingly, we prove the impossibility of failure signal by reduction to our
uniformity result (Proposition 4). We prove by contradiction that, if there is
a 1�-indulgent algorithm that solves failure signal, then there is an algorithm
that ensures the corrected-restriction of a safety property, without ensuring the
actual property.

A General Characterization of Indulgence 29

Proposition 5. There is no solution to failure signal using a 1�-indulgent
algorithm.

Proof. (Sketch) Assume by contradiction that there is a 1�-indulgent algorithm
that solves failure signal. Consider the designated process p and some other
process q. (Remember that we assume a system of at least two processes).

Define property P such that P (R) is false in every run R where p proposes 1
and q decides 0 and true in all other runs. By definition of a correct-restriction,
C[P] is false in runs where p proposes 1, q decides 0 and all processes are correct,
and true in all other runs.

We now show that if there is a 1�-indulgent algorithm that solves failure
signal, then A ensures C[P] but not P .

It is easy to show that A ensures C[P]. Indeed, because A solves failure signal,
in any run R where p proposes 1 and all processes are correct, all processes
decide 1.

We now show that A does not ensure P . Remember that A is a 1�-resilient
algorithm: A tolerates at least one initial failure. Consider a run R where p
proposes 0 and does not take any step whereas all other processes are correct (p
initially fails). Any 1�-resilient algorithm that solves the failure signal problem
has such a run R. In this run, every process that decides decides 0.

Consider now a run R′ with the same schedule as R, except that p initially
proposes 1 (and fails before taking any step). Such a run R is also a run of A
and, because no process else that p, which fails initially, can distinguish R from
R′, all processes but p decide 0. This run R′ is thus a run of A and P (R′) is
false. This contradicts the uniformity of A.

Example 1: Terminating Reliable Broadcast

In terminating reliable broadcast, also called Byzantine generals, a specific des-
ignated process is supposed to broadcast one message m 	= ⊥ that is a priori
unknown to the other processes. (In our model, the process invokes a specific
service with m as a parameter.) In a run R where the sender p does not fail, all
correct processes are supposed to eventually receive m. If the sender fails, then
the processes might or not receive m. If they do not, then they receive a specific
message ⊥ indicating that the sender has failed. More specifically, the following
properties need to be satisfied. (1) Every correct process eventually receive one
message; (2) No process receives more than one message; (3) No process receives
a message different from ⊥ or the message broadcast by the sender; (4) No two
processes receive different messages; and (5) No process receives ⊥ if the sender
is correct.

The following is a corollary of Proposition 5.

Corollary 2. No 1�-resilient algorithm solves terminating reliable broadcast.

Proof. (Sketch) We simply show how any solution to terminating reliable broad-
cast can be used to solve failure signal. Assume there is an algorithm A that

30 R. Guerraoui and N. Lynch

solves terminating reliable broadcast. Whenever the designated process p (in
failure signal) proposes a value, 0 or 1, p broadcasts a message with that value
to all, using terminating reliable broadcast. Any process that receives the message
delivers the value in the message (0 or 1). A process that delivers ⊥ decides 0.

Example 2: Non-blocking Atomic Commit

In non-blocking atomic commit, processes do all start with initial values 0 or 1,
and are supposed to eventually decide one of these values. The following proper-
ties need to be satisfied. (1) Every correct process eventually decides one value
(0 or 1); (2) no process decides two values; (3) No two processes decide different
values; (4) No process decides 1 if some process proposes 0 and no process de-
cides 0 if all processes propose 1 and no process fails.

The following is a corollary of Proposition 5.

Corollary 3. No 1�-resilient algorithm solves non-blocking atomic commit.

Proof. (Sketch) Assume there is a solution to non-blocking atomic commit. We
show how to obtain a solution to failure signal. All processes but p propose
1. Process p proposes exactly its initial value (of failure signal) to non-blocking
atomic commit. The processes decide the output of non-blocking atomic commit.
Because all processes but p propose 1, the decision can be 1 only if p proposes
1, and can be 0 only if p fails or proposes 0.

Example 3: Interactive Consistency

In interactive consistency, processes do all start with initial values, and are sup-
posed to eventually decide a n-vector of values. The following properties need
to be satisfied. (1) Every correct process eventually decides one vector; (2) No
process decides two vectors; (3) No two processes decide different vectors; (4) If
a process decides a vector v, then v[i] should contain the initial value of pi if pi

is correct. Otherwise, if pi is faulty, v[i] can be the initial value of pi or ⊥.

The following is a corollary of Proposition 5.

Corollary 4. No 1�-indulgent algorithm solves interactive consistency.

Proof. (Sketch) Assume there is a solution to interactive consistency. Assume p
is pi. We show how to obtain a solution to failure signal. All processes propose
to interactive consistency their identity, except p which proposes its initial value
of failure signal. If a process q outputs a vector v such that v[i] 	= ⊥, then q
decides v[i]. Else, q decides 0.

8 Divergence

We now capture, in a generalway, the traditional partitioning argument that is fre-
quently used in distributed computing, e.g., [2]. This argument was traditionally
used for message passing asynchronous algorithms where half of the processes can

A General Characterization of Indulgence 31

fail. In this case, the system can partition into two disjoint subsets that progress
concurrently. We precisely state that argument here in the context of indulgent
algorithms using timeless services which, as we pointed out, is a wider class than
the class of asynchronous ones using message passing, and for systems with sev-
eral possible partitions (the case with two partitions is just one particular case).

Definition (divergent property). We call a k−divergent property P a prop-
erty such that for any k disjoint non-empty subsets of processes Π1, Π2,..Πk,
there is a configuration C such that every k runs R1, R2,..Rk of A, such that
Ri involves only processes from Πi, have respective partial runs R′

1, R′
2,..,R′

k for
which S(P (R′

1.R
′
2...R

′
k)) is false.

Remember that S(P) denotes the safety part of P . We call configuration C the
critical configuration for Π1, Π2,..Πk with respect to P . Note that, by construc-
tion, any property that is k−divergent is also k + 1−divergent.

To intuitively illustrate the idea of a 2−divergent property, consider the spec-
ification of consensus in a system of 2 processes p1 and p2. Consider the initial
configuration where p1 has initial value 1 and p2 has initial value 2. Starting
from C, every run R1 involving only p1 eventually decides 1 and every run R2

involving only p2 eventually decides 2. Consider the partial run R′
1 of R1 com-

posed of all steps of R1 until the decision of p1 (1) is made, and the partial run
R′

2 of R2 until the decision of p2 (2) is made. Clearly, the safety of consensus (in
particular agreement) is violated in R′

1.R
′
2.

Definition (timeless service). We say that an algorithm A uses timeless ser-
vices if for any two partial runs R1 and R2 of A starting from the same initial
configurations C and involving disjoint subsets of processes, if A has an exten-
sion of R1, R1.R

′
1 such that I(R′

1) = I(R2), then R1.R2 is also a run of A.

Examples of timeless services include sequentially consistent shared objects [18]
as well as reliable message passing or broadcast primitives [14]. To illustrate the
underlying idea, consider an algorithm A in a system of 2 processes p1 and p2

using a message passing primitive which ensures that any message sent from
process p1 to process p2 is eventually received by p2, provided p2 is correct.
Assume that A has a partial run R1 where p1 executes steps alone and a partial
run R2 where p2 executes steps alone. (Clearly, p2 cannot have received any
message from p1 in R2.) Provided that A does not preclude the possibility of p2

to execute steps alone after R1, and because there is no guarantee on the time
after which the message of p1 arrives at p2, then R1.R2, the composition of both
partial runs, is also a possible run of A. This captures the intuition that the
message of p1 can be arbitrarily delayed.

Proposition 6. No (n − �n/x�)-indulgent algorithm ensures a x−divergent
property using x−timeless services.

Proof. (Sketch) Assume by contradiction that there is a (n − �n/x�)-resilient
indulgent algorithm A that ensures a x−divergent property P using timeless
services.

32 R. Guerraoui and N. Lynch

Divide the set of processes Π of the system into k subsets Π1, Π2,..Πx of
size at least �n/x� such that all the subsets are disjoint and their union is Π .
Consider the critical configuration C for Π1, Π2,..Πx with respect to P .

Because the algorithm A is (n − �n/x�)-resilient, and each Pii is of size at
least �n/x�, then A has x runs R1, R2,..Rx such that each such Ri involves only
processes in Πi, i.e., only processes of Pi take steps in Ri and every such Ri

start from C.
Because P is x−divergent, these runs have respective partial runs R′

1, R′
2,..,R′

k

such that S(P (R′
1.R

′
2...R

′
k)) is false. We need to show that R′

1.R
′
2...R

′
k is also a

partial run of A. Because S(P (R′
1.R

′
2...R

′
k)) is false, this would contradict the

very fact that A ensures P .
We first show that R′

1.R
′
2 is a partial run of A. By the assumption that A is

(n−�n/x�)-resilient, there is a partial run R0 of A such that I(R0) = I(R′
1.R

′
2).

(Remember that a x-resilient algorithm is one that tolerates all interleavings
where at least n− x processes appear infinitely often).

By the indulgence of A, there is a partial run R′′
2 such that R′

1.R
′′
2 is a partial

run of A and I(R′
1.R

′′
2) = I(R′

1.R
′
2). By the assumption that A uses timeless

services, R′
1.R

′
2 is also a partial run of A. By a simple induction, R′

1.R
′
2...R

′
k is

also a run of A.
Because S(P (R′

1.R
′
2...R

′
k)) is false, P is false in every extension of R′

1.R
′
2...R

′
k:

contradiction.

The following is a corollary of Proposition 6.

Corollary 5. No (n− �n/2�)-indulgent algorithm using message passing or se-
quentially consistent objects can implement a safe register.

There are non-indulgent algorithms that implement a safe register with any
number of failures and using only message passing. For instance, an algorithm
assuming a perfect failure detector. The idea is to make sure every value written
is stored at all processes that are not detected to have crashed and the value
read can then simply be a local value. On the other hand, Corollary 5 means
that an algorithm using eventually perfect failure detectors, and possibly also
sequentially consistent registers or message passing, cannot implement a safe
register if two disjoint subsets of processes can fail. This clearly also applies to
problems like consensus.

The following is also a corollary of Proposition 6.

Corollary 6. No (n−�n/k�)-indulgent algorithm using message passing or se-
quentially consistent objects can solve k-set agreement.

9 Concluding Remarks

This paper presents a general characterization of indulgence. The characteri-
zation does not require any failure detector machinery [4], or timing assump-
tions [7]. It is furthermore not restricted to a specific communication scheme.

A General Characterization of Indulgence 33

Instead, we consider a general model of distributed computation where processes
might be communicating using any kind of services, including shared objects, be
they simple read-write registers [18], or more sophisticated objects like compare-
and-swap or consensus [15], as well as message passing channels and broadcast
primitives [14].

May be interestingly, our characterization of indulgence abstracts the essence
of the concept of unreliable failure detection. This concept, informally introduced
in [4], captures the idea that failure detectors do not need to be accurate to be
useful in solving interesting problems. This concept has however never been pre-
cisely defined.4 Using our characterization, we can precisely define it by simply
stating that a failure detector is unreliable if any algorithm that uses that failure
detector is indulgent.

Generalizing the concept of a failure detector, one could also consider oracles
that inform a process that certain processes will be scheduled before others. (Say
an oracle that declares a run as being eventually synchronous.) Our character-
ization of indulgence also helps captures what it means for such oracles to be
unreliable.

To conclude, it is important to notice that we focused in this paper on the com-
putability of indulgent algorithms and did not discuss their complexity. There
are many interesting open problems in measuring the inherent overhead of in-
dulgence. This goes first through defining appropriate frameworks to measure
the complexity of indulgent algorithms, e.g., [6,16,25].

References

1. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, October 1985.

2. Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in
message passing systems. Journal of the ACM, 42(2):124–142, January 1995.

3. Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. Journal of the ACM, 43(4):685–722, July 1996.

4. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, March 1996.

5. Soma Chauduri. More choices allow more faults: Set consensus problems in totally
asynchronous systems. Information and Computation, 105(1):132–158, 1993.

6. Partha Dutta and Rachid Guerraoui. The inherent price of indulgence. In PODC
’02: Proceedings of the annual ACM symposium on Principles of distributed com-
puting, pages 88–97, 2002.

7. Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288–323, April 1988.

8. Christof Fetzer, Ulrich Schmid, and Martin Susskraut. On the possibility of con-
sensus in asynchronous systems with finite average response times. In International
Conference on Distributed Computing Systems, pages 271–280. ieee, 2005.

9. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–382,
April 1985.

4 Except in [10] for the message passing context.

34 R. Guerraoui and N. Lynch

10. Rachid Guerraoui. Indulgent algorithms. In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Computing, Portland, Oregon, USA,
pages 289–297. ACM, July 2000.

11. Rachid Guerraoui. On the hardness of failure sensitive agreement problems. In-
formation Processing Letters, 79, 2001.

12. Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed sys-
tems with failure detectors. Distributed Computing, 15(1):17–25, 2002.

13. Rachid Guerraoui and Michel Raynal. The information structure of indulgent
consensus. IEEE Trans. Computers, 53(4):453–466, 2004.

14. Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related prob-
lems. In Sape J. Mullender, editor, Distributed Systems, chapter 5, pages 97–145.
Addison-Wesley, 1993.

15. Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):123–149, January 1991.

16. Idit Keidar and Alex Shraer. Timeliness, failure detectors and consensus pefor-
mance. In PODC ’06: Proceedings of the annual ACM symposium on Principles
of distributed computing, New York, NY, USA, 2006. ACM Press.

17. Leslie Lamport. Proving the correctness of multiprocessor programs. Transactions
on software engineering, 3(2):125–143, March 1977.

18. Leslie Lamport. How to make a multiprocessor computer that correct executes mul-
tiprocess programs. IEEE Transactions on Computers, C-28(9):690–691, Septem-
ber 1979.

19. Leslie Lamport. The Part-Time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, May 1998.

20. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
21. Achour Moustefaoui, Michel Raynal, and Corentin Travers. Crash-resilient time-

free eventual leadership. In Proceedings of the International Symposium on Reliable
Distributed Systems, pages 208–217. IEEE, 2004.

22. Livia Sampaio and Francisco Brasileiro. Adaptive indulgent consensus. In Proceed-
ings of the International Conference on Dependable Systems and Networks (DSN),
pages 422–431, 2005.

23. Gadi Taubenfeld. Computing in the presence of timing failures. In Proceedings of
theInternational Conference on Distributed Computing Systems (DCS), 2007.

24. Pedro Vicente and Luis Rodrigues. An indulgent uniform total order broadcast
algorithm with optimistic delivery. In Proceedings of the International Symposium
on Reliable Distributed Systems (SRDS), pages 92–80, 2002.

25. Piotr Zielinski. Optimistically terminating consensus. In Proceedings of the Sym-
posium on Parallel and Distributed Computing, 2006.

Coverage, Connectivity, and Fault Tolerance

Measures of Wireless Sensor Networks

Habib M. Ammari and Sajal K. Das

Center for Research in Wireless Mobility and Networking (CReWMaN)
Department of Computer Science and Engineering

The University of Texas at Arlington, Arlington, TX 76019, USA
{ammari, das}@cse.uta.edu

Abstract. Connectivity and sensing coverage are two fundamental con-
cepts in the design of wireless sensor networks (WSNs). In this paper,
we investigate the relationship between coverage and connectivity for
k-covered WSNs (kCWSN), where every point in a field of interest is
covered by at least k sensors. Furthermore, we compute the connectiv-
ity of kCWSN based on the degree of sensing coverage. We also propose
measures of fault tolerance for kCWSN based on network connectivity
and sensing coverage. Random distributions of the sensors in a field have
been widely used in most of sensor networking protocols, in spite of the
fact that these deployment techniques do not always provide complete,
void-free coverage. On the contrary, we consider both deterministic and
random sensor deployment strategies to meet coverage degree require-
ments of sensing applications. Using our Augmented Equilateral Triangle
(AET) model, we prove that if the sensing coverage degree is k and
R ≥ 2 × r , the network connectivity is higher than k . Precisely, our
analysis of the geometric properties of deterministic sensor deployment
strategies, demonstrates that sensing k-coverage and R ≥ √

3 × r yield
kCWSN connectivity that is higher than k. These findings are of practical
use for network designers to build up sensing applications with prescribed
degrees of sensing coverage, network connectivity and fault tolerance.

Keywords: kCWSN, coverage, connectivity, fault tolerance, measures.

1 Introduction

Sensing coverage is an important issue in the design of wireless sensor networks
(WSNs), which does not exist in traditional ad hoc networks. It is a good indica-
tor of the quality of surveillance of a field of interest (field hereafter) offered by a
WSN. As pointed out in [13], coverage is a measure of the quality of service of a
WSN. For several sensing applications, a full sensing coverage is one of the main
requirements, which demands that every location in a field be covered by at least
one sensor. Moreover, to cope with the problem of faulty sensors and guarantee
network functionality, duplicate coverage of the same region is an appealing so-
lution through appropriate sensor redundancy strategies. Sensor redundancy is

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 35–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

36 H.M. Ammari and S.K. Das

strongly related to the degree of sensing coverage requested by sensing applica-
tions. Another fundamental aspect of WSNs is vertex connectivity (connectivity
hereafter) by which the sensors can mutually interact through communication
paths. Network connectivity implies the existence of at least one communica-
tion path between any pair of sensors. Similarly, some sensing applications are
required to be fault tolerant, where any pair of sensors is connected by multiple
communication paths. Hence, network fault tolerance is tightly dependent on
the degree of network connectivity. In this paper, network connectivity refers to
vertex connectivity.

While sensing coverage depends on the sensing range of the sensors and is an
inherent property of all the locations in a field, network connectivity relates to
the transmission range of the sensors and is a characteristic inherently associated
with the locations of the sensors. Notice that the concepts of sensing coverage
and network connectivity are not totally orthogonal. Wang, et al. [17] proved
that sensing coverage implies network connectivity provided that R ≥ 2r. They
also proved that if the degree of sensing coverage provided by the network is k,
the network connectivity is also k.

1.1 Contributions

In this paper, we consider isotropic sensors, where the sensing and transmis-
sion ranges of the sensors are modeled by disks of radii r and R, respectively.
However, we consider both cases of homogeneous and heterogeneous sensors in
our study of sensing coverage, connectivity and fault tolerance of WSNs in a
unified framework. Precisely, we focus on both deterministic and random sen-
sor deployment strategies, which provide us with a meaningful tool to perform
a fine-grained analysis of the relationships between sensing coverage, network
connectivity, and fault tolerance of WSNs. Using our proposed Augmented Equi-
lateral Triangle (AET) model to guarantee sensing k-coverage, we prove that
when the degree of sensing coverage is k and R ≥ 2r is satisfied, the network
connectivity is larger than k. Furthermore, through analysis of the geometric
properties of deterministic sensor placement strategies, we prove that when
sensing coverage is guaranteed and the relationship, R ≥

√
3r, holds, the net-

work connectivity is guaranteed. Similarly, we prove that sensing k-coverage and
R ≥

√
3r imply network connectivity higher than k. We also present measures

of network connectivity for homogeneous and heterogeneous kCWSN based on
the degree of sensing coverage and derive the corresponding network fault tol-
erance. We also propose a new measure of fault tolerance for kCWSN, called
field fault tolerance, which helps maintain sensing coverage in spite of the sensor
failures.

The remainder of this paper is organized as follows. Section 2 reviews related
work on the combination of coverage and connectivity as well as fault tolerance
of WSNs. Section 3 gives a few definitions. Section 4 discusses different rela-
tionships between the concepts of sensing coverage and network connectivity,
and computes fault tolerance measures of kCWSN based on these two concepts.
Section 5 concludes the paper.

Coverage, Connectivity, and Fault Tolerance Measures of WSNs 37

2 Related Work

This section discusses existing studies on the combination of sensing coverage
and network connectivity as well as fault tolerance of WSNs.

Ai and Abouzeid [1] proposed a directional sensors-based approach for sen-
sor network coverage. While the coverage area of isotropic sensors depends on
whether the event or target is within the sensing range of the sensors, the cov-
erage region of a directional sensor depends on the location and the orientation
of the sensors. Adlakha and Srivastava Cortes, et al. [3] proposed adaptive, dis-
tributed, and asynchronous coverage algorithms for mobile sensing networks.
Cardei and Wu [4] surveyed different approaches addressing energy-efficient cov-
erage problems. Du and Lin [7] proposed a differentiated coverage algorithm for
heterogeneous sensor networks as different network areas may require different
degrees of sensing coverage. Li, et al. [12] proposed efficient distributed algo-
rithms to optimally solve the best-coverage problem with the least energy con-
sumption. Ravelomanana [14] investigated several fundamental characteristics
of randomly deployed wireless sensor networks regarding transmission and sens-
ing range for connectivity and coverage in three-dimensional sensor networks.
Shakkottai, et al. [15] gave necessary and sufficient conditions for a 1-covered,
1-connected wireless sensor grid network. A variety of algorithms have been pro-
posed to maintain connectivity and coverage in large wireless sensor networks.
Zhang and Hou [18] proposed a distributed algorithm, called Optimal Geograph-
ical Density Control (OGDC), to keep a smallest number of active sensors in
a WSN regardless of the relationship between transmission and sensing ranges.
Tian and Georganas [16] improved on the work of Wang, et al. [17] and Zhang
and Hou [18] by proving that if the original network is connected and the iden-
tified active nodes can cover the same region as all the original nodes, then the
network formed by the active nodes is connected when the transmission range
is at least twice the sensing range. A more comprehensive survey on connec-
tivity and coverage issues in WSNs can be found in [8]. Also, for more details
about coverage processes, the interested reader is referred to [10]. Gupta, et al.
[9] proposed algorithms for self-organization of a sensor network as a response
to a query in order to reduce the communication cost incurred by its execu-
tion. Datta, et al. [6] proposed two self-stabilizing algorithms to the problem
of minimal connected sensor cover [9]. These approaches were shown to be self-
configuring and self-healing. Furthermore, the faults are contained within the
neighborhood of the faulty nodes. Li and Hou [11] proposed centralized and
localized fault-tolerant topology control protocols for WSNs based on a general-
ized version of Kruskal’s algorithm to construct k-connected spanning subgraphs.
Zhou, et al. [19] proposed a distributed and localized algorithm using the con-
cept of the kth-order Voronoi diagram to provide fault tolerance and extend the
network lifetime, while maintaining a required degree of coverage. Chelius, et
al. [5] proposed an approach that considers both the transmission and reception
costs in the evaluation of the energy consumption of a broadcasting task. They
also presented lower and upper bounds on the energy consumption for covering
a given region of the plane.

38 H.M. Ammari and S.K. Das

3 Definitions

This section gives useful terms to investigate different relationships between sens-
ing coverage and connectivity and compute fault tolerance of kCWSN. Through-
out this paper, we use the terms sensor and node interchangeably.

Definition 1 (Transmission range and neighbor set). The transmission
range of a sensor si is modeled as a disk of radius Ri including its boundary.
A sensor sj is said to be a neighbor of si if and only if δ(si, sj) ≤ Ri, where
δ(si, sj) is the Euclidean distance between si and sj. The neighbor set of si is
denoted by N(si).

Definition 2 (Sensing range). The sensing range of a sensor si is modeled
as a disk of radius ri including its boundary. A point p in a field Γ is said to be
covered by a sensor si if and only if δ(si, p) ≤ ri.

Definition 3 (Homogeneous and heterogeneous sensors). Two sensors
si and sj are said to be homogeneous if and only if they have the same sensing
and transmission capabilities, i.e., ri = rj and Ri = Rj. Otherwise, si and sj

are said to be heterogeneous. A WSN is said to be homogeneous if and only if
all the sensors are homogeneous. Otherwise, it is said to be heterogeneous.

Definition 4 (Communication graph). A communication graph of a homo-
geneous (heterogeneous) WSN is an undirected (directed) graph G = (S, E),
where S is the set of vertices or sensors and E is the set of (directed) edges or
links between sensors. Thus, (si, sj) ∈ E if si, sj ∈ S and sj is a neighbor of si.

Definition 5 (Mutually connected). Two sensors si, sj ∈ S are said to be
mutually connected in a communication graph G = (S, E) if and only if (si, sj) ∈
E and (sj , si) ∈ E.

Definition 6 (k-coverage). Let A be a geographical area of a field Γ and Sk

a set of k sensors. The region A is said to be k-covered if and only if any point
p ∈ A belongs to the intersection of the sensing range of all the k sensors in Sk.

Definition 7 (Vertex connectivity and fault tolerance). The vertex con-
nectivity (or connectivity) of a communication graph G = (S, E) is equal to K
if and only if G can be disconnected by the removal of at least K nodes. The
fault tolerance of G (or the underlying WSN), denoted by η(G), is computed as
η(G) = K − 1.

Definition 8 (Boundary and interior sensors). A boundary sensor is a
sensor whose sensing range does not lie entirely inside a field Γ . An interior
sensor is a sensor whose entire sensing range lies inside the field Γ .

Definition 9 (Width of a geographical area). Let A be a closed convex area.
The width of A, denoted by w(A), is the maximum distance between parallel lines
that bound it.

Coverage, Connectivity, and Fault Tolerance Measures of WSNs 39

4 Measuring Fault Tolerance of kCWSN

This section discusses optimal sensor deployment strategies to guarantee sensing
k-coverage and computes connectivity and fault tolerance measures of kCWSN.

4.1 Why Is kCWSN Connectivity Higher Than k?

The approach used by Wang, et al. [17] to prove that a kCWSN is k-connected
has a few shortcomings. To compute the connectivity of kCWSN, Wang, et al.
[17] assumed that there are k coinciding sensors located at one point, which
lies on the sensing range of another sensor, si, placed at one corner of a field.
Notice that this assumption is not realistic in real-world sensor network setups.
They also assumed that there is no other sensor whose sensing range intersects
with that of si. This means that the closest sensors to si should be located at
a distance equal to at least 2r + d, where d > 0. For instance, consider a field
which is a quarter of a circle of radius 2r. If we apply Wang, et al.’s strategy,
the field cannot be fully covered. Thus, sensing k-coverage of the network is not
guaranteed. Otherwise, more sensors need to be thrown in the field and hence
the actual network connectivity is larger than k. Also, if the field is just a circle
of radius r, then it is impossible to throw k non-coinciding sensors in the field to
achieve sensing k-coverage. Thus, Wang, et al.’s approach cannot always produce
a connected kCWSN. Our results prove that the connectivity of kCWSN is larger
than k and hence the network fault tolerance is higher than k − 1.

4.2 Homogeneous Wireless Sensor Networks

How Is Sensing k-Coverage Achieved? To guarantee sensing k-coverage,
we should compute the maximum size of a geographical area, denoted by Amax,
of a field Γ that is guaranteed to be k-covered. First, we prove theorem 1 which
characterizes the width of any sensing k-covered area of a field, where k ≥ 3.

Theorem 1 (Width of sensing k-covered areas). If a geographical area A
of a field Γ is k-covered with k ≥ 3, then the width of A satisfies w(A) ≤ r.

Proof. Each point q ∈ A is k-covered if δ(si, q) ≤ r, for all 1 ≤ i ≤ k. For any
pair of sensors si and sj covering A, the maximum distance between si and sj

is r so that any location in A is covered by k sensors. Otherwise, there must
be a pair of sensors s′i and s′j such that δ(s′i, s

′
j) > r, meaning that there is at

least one location that is not covered by both sensors at the same time. This
contradicts the hypothesis that any q ∈ A is covered by all k sensors, and in
particular by s′i and s′j . Thus, the width of the region A cannot exceed r. �
Lemma 1 states a necessary and sufficient condition for the intersection of the
sensing ranges of k sensors to be not empty.

Lemma 1 (Non-empty k-covered area). Let Γ be a field covered by a ho-
mogeneous WSN. Assume k ≥ 3 and let Sk be a set of k sensors. The area
simultaneously covered by the k sensors in Sk is not empty if and only if the
area simultaneously covered by any three sensors in Sk is not empty.

40 H.M. Ammari and S.K. Das

Proof. ”⇒ ” Let Ak be an area simultaneously covered by k sensors in Sk and
Dr(si) the sensing range (disk of radius r) of the sensor si. Mathematically,
Ak = ∩1≤i≤kDr(si). By definition of the intersection operator and since Ak 	= ∅,
it implies that the intersection of any subset Sk′ ⊆ Sk of sensing ranges of k′

sensors is not empty, where k′ ≤ k. In particular, this holds for k′ = 3 and hence
the area simultaneously covered by any three sensors in Sk is not empty.

”⇐ ” Assume that the area covered by any three sensors in Sk is not empty.
We proceed using a proof by construction. There are

(
k
3

)
ways of choosing

three sensors from the set Sk of k sensors, i.e., Sk = {s1, ..., sk}. Let Aj =⋂
1≤i≤j Dr(si) be the intersection of the sensing ranges of j distinct sensors.

The case of three sensors is trivial, i.e., A3 =
⋂

1≤i≤3 Dr(si) 	= ∅. Without loss
of generality, we can build the sets, Aj , in an incremental manner by considering
the next sensor in set, Sk. Consider the intersection of the sensing ranges of four
sensors, i.e., A4 =

⋂
1≤i≤4 Dr(si), which can be rewritten as A4 = A3 ∩Dr(s4).

There are four sets of three distinct sensors out of four sensors. By hypothesis, we
have Dr(si1)∩Dr(si2)∩Dr(si3) 	= ∅, for any subset {si1, si2, si3} ⊂ {s1, s2, s3, s4}
with si1 	= si2 	= si3. In particular, Dr(s4) ∩Dr(si1) ∩Dr(si2) 	= ∅, for any sub-
set {si1, si2} ⊂ {s1, s2, s3}. Using the hypothesis that A3 	= ∅, this implies that
A4 = A3 ∩Dr(s4) 	= ∅. We repeat the same reasoning for all sets Aj , 5 ≤ j ≤ k.
With the last set Ak =

⋂
1≤i≤k Dr(si), we obtain Ak 	= ∅. Thus, the intersection

of the sensing ranges of k sensors is not empty. �

Fig. 1. Augmented Equilateral Triangle (AET) model

Theorem 2 (Maximum size of k-covered area). Let k ≥ 3, Sk a set of k
sensors whose sensing range is r, and A a geographical area of a field Γ . The
maximum size of A, denoted by Amax(r), which is guaranteed to be simultane-
ously covered by all the sensors of Sk, is given by Amax(r) = (π −

√
3) r2

2 .

Proof. Let A be the intersection area of the sensing ranges of k sensors. From
theorem 1 and using the Venn diagram given in Fig. 1, the maximum size of the

Coverage, Connectivity, and Fault Tolerance Measures of WSNs 41

intersection of the sensing ranges of the sensors s1, s2, and s3, called augmented
equilateral triangle and denoted by AETr, is obtained when the sensors are
symmetrically located from each other so that the distance between any pair
of sensors is equal to their sensing range, r. Hence, the center of the sensing
range of each sensor is located at the intersection of the other two. We refer
to this model as the Augmented Equilateral Triangle (AET) model. Thus, The
maximum area size of A is upper-bounded by the area of AETr, which is given
by Amax(r) = A1 + 3A2 = (π −

√
3) r2

2 , where A1 =
√

3
4 r2 is the area of the

central equilateral triangle of side r and A2 = (π
6 −

√
3

4)r2 is the area of each of
the circular segments delimited by an arc α and the corresponding side of the
equilateral triangle. �
The maximum size of a k-covered area, say A, is Amax(r). Indeed, the sensors
located at the boundary of A can only sense the locations within distance r from
them. Corollary 2, which follows from theorem 2, computes the node spatial
density of a homogeneous kCWSN under the assumption of a uniform sensor
distribution.

Corollary 1 (Node spatial density). Assume a uniform sensor distribution.
The node spatial density of a homogeneous kCWSN, denoted by ρ(r, k), is given
by ρ(r, k) = 2k

(π−
√

3)r2 , where r is the sensing range of the sensors and k ≥ 3.

Proof. To achieve k-coverage, any area of the field Γ should be k-covered and
in particular the AETr area (theorem 2). Thus, k sensors should be deployed in
AETr and hence the node spatial density is equal to ρ(r, k) = 2k

(π−
√

3)r2 . �

Computing Fault Tolerance of Homogeneous kCWSN. Lemma 2 com-
putes the minimum size of the neighbor sets of interior and boundary sensors
for guaranteeing sensing k-coverage.

Lemma 2 (Neighbor set size). A field Γ is k-covered if the minimum size
of the neighbor sets of interior and boundary sensors si and sb, respectively, are
given by |Nmin(si)| = � 8π

π−
√

3
k − 1� and |Nmin(sb)| = � 2π

π−
√

3
k − 1�.

Proof. From corollary 1, the size of the neighbor set of an interior sensor, si,
which should be an integer, is given by |N(si)| = � 2k

(π−
√

3)r2 πR2 − 1�. Since

R ≥ 2r, the minimum size of the neighbor set of si is |Nmin(si)| = � 8π
π−

√
3
k−1�.

Similarly, the minimum size of the neighbor set of a boundary sensor, sb, located
at one of the corners of the field Γ is |Nmin(sb)| = � 2π

π−
√

3
k − 1�. �

Theorem 3 computes the minimum numbers of nodes of a homogeneous con-
nected kCWSN whose removal disconnect boundary and interior sensors.

Theorem 3 (Fault tolerance of homogeneous kCWSN). Assume a uni-
form node spatial density. The fault tolerance of a connected homogeneous
kCWSN with k ≥ 3 and R ≥ 2r is given by κb(G)−1 ≤ η(G) ≤ κi(G)−1, where
κb(G) = � 2π

π−
√

3
k − 1� and κi(G) = � 8π

π−
√

3
k − 1� are the minimum numbers of

sensors whose removal disconnect boundary and interior sensors, respectively.

42 H.M. Ammari and S.K. Das

Proof. Since we are interested in lower and upper bounds on network fault toler-
ance, we consider the following two extreme cases. Let sb be a boundary sensor
located at one of the corners of a square field Γ and consider R = 2r. The
network could be disconnected by splitting it into at least two components, one
of them is trivial and containing sb. To do so, all the neighbors of sb should be
removed. By lemma 2, the size of the neighbor set of sb is |N(sb)| = � 2π

π−
√

3
k−1�.

Thus, a lower bound on network connectivity is given by κb(G) = � 2π
π−

√
3
k− 1�.

To compute an upper bound on network connectivity, consider an interior sen-
sor, si. Disconnecting si would produce two components, where one of them
is trivial and including si. From lemma 2, the size of the neighbor set of si is
|N(si)| = � 8π

π−
√

3
k − 1�. Therefore, an upper bound on network connectivity is

computed as κi(G) = � 8π
π−

√
3
k − 1�. Hence, it follows from Definition 7 that

the fault tolerance of a connected homogeneous kCWSN satisfies the inequality
κb(G)− 1 ≤ η(G) ≤ κi(G)− 1. �

Wang, et al. [17] proved that disconnecting a boundary node and an interior
node requires the removal of k sensors and 2k sensors, respectively.

4.3 Heterogeneous Wireless Sensor Networks

Condition Guaranteeing Connectivity. It is clear that, in general, the con-
dition R ≥ 2r [17] does not guarantee network connectivity even when the
network is configured to provide sensing coverage [2]. Lemma 3 establishes a
condition that implies network connectivity provided that sensing coverage is
guaranteed.

Lemma 3 (Condition for connectivity in heterogeneous WSNs). The
communication graph G = (S, E) of a kCWSN is connected if for any node
si ∈ S, Ri ≥ ri + rmax, where ri and Ri are the sensing and transmission
ranges, respectively, of node si and rmax = max{rj : sj ∈ S}.

Proof. By hypothesis, each point of a field Γ is k-covered. Consider the extreme
case where the sensing ranges of the sensors si and sj are tangent to each other
at a point, say p . Also, consider the case where Ri = ri + rmax and Rj =
rj + rmax. This implies that Ri ≥ ri + rj and Rj ≥ ri + rj , and hence δ(si, sj) ≤
min{Ri, Rj}. Therefore, si and sj are mutually connected. This result applies
to any pair of sensors whose sensing ranges are either overlapping or tangent to
each other. Using the hypothesis of k-coverage of the field Γ and the above result,
there must be at least one communication path between any pair of sensors in
the network. We deduce that kCWSN is connected. �

Sensing k-Coverage, Connectivity, and Fault Tolerance of Heteroge-
neous kCWSN. To guarantee sensing k-coverage, the AET model should be
applied to the least powerful sensors in terms of their sensing ranges. The fol-
lowing results for heterogeneous kCWSN correspond to theorem 1, theorem 2,
and theorem 3, which were established for homogeneous kCWSN.

Coverage, Connectivity, and Fault Tolerance Measures of WSNs 43

Corollary 2 (Width of k-covered areas). If a geographical area of a field
Γ is k-covered with k ≥ 3, then the width of A satisfies w(A) ≤ rmin, where
rmin = min{rj : sj ∈ S}.

Proof. Any AETrmin with k sensors would guarantee k-coverage of the field Γ .
Furthermore, AETrmin has a constant width equal to rmin. �

Corollary 3 (Maximum size of k-covered area and node spatial den-
sity). Let Sk be a set of k heterogeneous sensors and A a geographical area of
a field Γ . The maximum size of A, denoted by Amax(rmin), which is k-covered
by the sensors of Sk with k ≥ 3, is given by Amax(rmin) = (π −

√
3) r2

min

2 and
the node spatial density to guarantee k-coverage is computed as ρ(rmin, k) =

2k
(π−

√
3)r2

min

, where rmin = min{rj : sj ∈ S}.

Proof. The size of the largest area to be k-covered should depend on the least pow-
erful sensors. Indeed, a given area could be covered by only the least powerful sen-
sors. Hence, k-coveragewill be guaranteed only if these k least powerful sensors are
deployed in an area whose width cannot exceed rmin. Using the AET model, we
can easily prove that Amax(rmin) = (π−

√
3) r2

min

2 . Thus, the node spatial density
required for achieving k-coverage is equal to ρ(rmin, k) = 2k

(π−
√

3)r2
min

. �

Network fault tolerance of connected heterogeneous kCWSN depends on the type
of sensors to be disconnected (boundary or interior). Corollary 4 computes its
tight lower and upper bounds, similar to the case of homogeneous kCWSN.

Corollary 4 (Fault tolerance). The fault tolerance of a heterogeneous
kCWSN with R ≥ 2r is given by κb(G) − 1 ≤ η(G) ≤ κi(G) − 1, where
�π(rmin+rmax)2

2(π−
√

3)r2
min

k − 1� ≤ κb(G) ≤ � 2πr2
max

(π−
√

3)r2
min

k − 1�, � 2π(rmin+rmax)2

(π−
√

3)r2
min

k − 1� ≤

κi(G) ≤ � 8πr2
max

(π−
√

3)r2
min

k − 1�, rmin = min{rj : sj ∈ S}, and rmax = max{rj :

sj ∈ S}.

Proof. To compute the lower and upper bounds on κb(G), we consider a
river containing only least powerful (minimum sensing range) and most powerful
(maximum sensing range) boundary sensors, respectively. Hence,
�π(rmin+rmax)2

2(π−
√

3)r2
min

k − 1� ≤ κb(G) ≤ � 2πr2
max

(π−
√

3)r2
min

k − 1�. Similarly, we consider the
same scenario for interior sensors to compute the lower and upper bounds on
κi(G), thus giving � 2π(rmin+rmax)2

(π−
√

3)r2
min

k − 1� ≤ κi(G) ≤ � 8πr2
max

(π−
√

3)r2
min

k − 1�. From

Definition 7, it follows that κb(G)− 1 ≤ η(G) ≤ κi(G)− 1. �

Next, given kCWSN with R < 2r, we address the following questions:

– Are kCWSN connected under the assumption that R < 2r?
– Are kCWSN connected under the assumption that R < r?

We will show that using optimal sensor deployment strategies, sensing cover-
age guarantees network connectivity even though R ≥ 2r, is not satisfied.

44 H.M. Ammari and S.K. Das

Fig. 2. Minimum gap between three
tangential sensing ranges

Fig. 3. Optimal sensor deployment for
1-coverage

4.4 Are kCWSN Connected When R < 2r?

In this section, we investigate the case where R < 2r and provide a configuration
using a minimum number of sensors, thus minimizing the overlap between their
sensing ranges, while achieving full sensing coverage. Theorem 4 proves that the
deployment of the sensors according to the configuration in Fig. 3 is optimal in
terms of minimum overlap between the sensing ranges of adjacent sensors.

Theorem 4 (Optimal sensor deployment for sensing 1-coverage). The
sensor deployment strategy according to the configuration in Fig. 3 is optimal.

Proof. Consider the configuration given in Fig. 2. The equilateral triangle, Δd,
in the gap area has a side length equal to d. In order to cover all the gap
area, we need to cover Δd. To do so, both of the sensors s2 and s3 should be
moved horizontally and in opposite directions until they intersect at the center
of gravity, g, of the triangle Δd. This action will not be able to cover the whole
gap as the triangle Δd is not fully covered. To cover the rest of Δd, the sensor s1

should move vertically and bottom-up until its sensing range hits the intersection
point of both sensing ranges of s2 and s3, i.e., the center of gravity, g. In fact, the
farthest point from any of the locations of the sensors s1, s2, and s3, is the point
g. Hence, covering the entire gap area require covering its center of gravity, g.
Therefore, the configuration given in Fig. 2, where any pair of sensing ranges of
adjacent sensors have a constant overlap and any adjacent three sensing ranges
intersect at only one point, is optimal. �
Theorem 5, which follows from theorem 4, states a condition that implies network
connectivity provided that sensing coverage is guaranteed.

Theorem 5 (Condition for connectivity given sensing 1-coverage). A
homogeneous kCWSN with k = 1 is guaranteed to be connected if the sensing
and transmission ranges of the sensors, r and R, respectively, satisfy R ≥

√
3r.

Coverage, Connectivity, and Fault Tolerance Measures of WSNs 45

Proof. Consider the configuration given in Fig. 2. The maximum distance be-
tween any pair of tangential sensors is 2r. To cover the entire gap area of the
tangential three sensing ranges of the sensors s1, s2, and s3, the distance sepa-
rating s2 and s3 should be equal to 2r− d. We have D = rcos(α) =

√
3

2 r, where
α = π

6 , and d = 2r − 2D = r(2 −
√

3). Hence, the distance between any pair
of adjacent sensors, given by 2r − d, is equal to

√
3r. Thus, if a field is sensing

1-covered, then the network is guaranteed to be connected if R ≥
√

3r holds. �

Theorem 6 proves that the network connectivity of a homogeneous kCWSN with
k ≥ 3 and R ≥ r is larger than k.

Theorem 6 (Fault tolerance of a homogeneous kCWSN with R ≥ r).
Let G = (S, E) be a communication graph corresponding to a homogeneous
kCWSN and consider the case where R ≥ r. The fault tolerance of a homogeneous
kCWSN is given by κb(G)−1 ≤ η(G) ≤ κi(G)−1, where κb(G) = π

2(π−
√

3)
k−1,

κi(G) = 2π
(π−

√
3)

k − 1, and k ≥ 3.

Proof. Let us first assume that k = 3. From corollary 1, any AETr region should
contain k sensors. Thus, for any sensor located in AETr, there is at least one
sensor located in the same AETr or in an adjacent one such that the distance
between this pair of sensors cannot exceed r. Given that R ≥ r, it implies that
any sensor is connected to at least another sensor. Precisely, there is at least
one communication path between any pair of sensors in the network. Thus, a
kCWSN is connected. For the case k > 3, more sensors need to be thrown in
any AETr region to achieve sensing k-coverage. Hence, network connectivity
is preserved and even increases. Thus, a kCWSN is connected, for all k ≥ 3.
It is easy to check that the minimum size of the neighbor set of a boundary
sensor, sb, is |N(sb)| = � π

2(π−
√

3)
k − 1�, and hence a lower bound on network

connectivity is given by κb(G) = π
2(π−

√
3)

k − 1. Also, the minimum size of the

neighbor set of an interior sensor, si, is |N(si)| = � 2π
(π−

√
3)

k − 1�, and hence an

upper bound on network connectivity is computed as κi(G) = � 2π
(π−

√
3)

k − 1�.
From definition 7, it follows that the fault tolerance of a connected homogeneous
kCWSN satisfies κb(G) − 1 ≤ η(G) ≤ κi(G) − 1. Notice that κb(G) > k and
κi(G) > k, thus implying η(G) > k−1. Using the Hopital’s theorem, we can prove
that limk→∞

k
κ(G) = 0, which implies that κ(G) > k and hence η(G) > k − 1. �

Corollary 5 establishes the previous result for heterogeneous kCWSN.

Corollary 5 (Fault tolerance of a heterogeneous kCWSN with R ≥ r).
Let G = (S, E) be a communication graph corresponding to a heterogeneous
kCWSN with R ≥ r. The fault tolerance of a heterogeneous kCWSN is given
by κb(G) − 1 ≤ η(G) ≤ κi(G) − 1, where �π(rmin+rmax)2

2(π−
√

3)r2
min

k − 1� ≤ κb(G) ≤

� 2πr2
max

(π−
√

3)r2
min

k− 1�, � 2π(rmin+rmax)2

(π−
√

3)r2
min

k− 1� ≤ κi(G) ≤ � 8πr2
max

(π−
√

3)r2
min

k− 1�, rmin =

min{rj : sj ∈ S}, and rmax = max{rj : sj ∈ S}.

46 H.M. Ammari and S.K. Das

Proof. A boundary sensor can be either the least or the most powerful sensor
in terms of the sensing range. Given that R ≥ r, it is easy to find that the min-
imum numbers of nodes to remove to disconnect the least powerful boundary
sensor and the most powerful boundary sensor are given by �π(rmin+rmax)2

2(π−
√

3)r2
min

k−1�

and � 2πr2
max

(π−
√

3)r2
min

k − 1�, respectively. Thus, �π(rmin+rmax)2

2(π−
√

3)r2
min

k − 1� ≤ κb(G) ≤

� 2πr2
max

(π−
√

3)r2
min

k − 1�. We apply the same reasoning for interior sensors to estab-

lish that � 2π(rmin+rmax)2

(π−
√

3)r2
min

k − 1� ≤ κi(G) ≤ � 8πr2
max

(π−
√

3)r2
min

k − 1�. Thus, the fault

tolerance of a connected heterogeneous kCWSN satisfies κb(G) − 1 ≤ η(G) ≤
κi(G) − 1. Notice that κb(G) > k, κi(G) > k, and hence η(G) > k − 1. �

4.5 Are kCWSN Connected When R < r?

Theorem 7 computes the distance between any pair of adjacent sensors leading
to an optimal sensor deployment strategy, which guarantees sensing 2-coverage.

Fig. 4. Sensing range overlap and distance between sensors

Theorem 7 (Optimal sensor deployment for sensing 2-coverage). An
optimal deployment of the sensors to guarantee sensing 2-coverage requires that
the distance, d, between any pair of adjacent sensors be equal to d = 0.84r.

Proof. Our goal is to maximize the overlap between the sensing ranges of pairs of
adjacent sensors, while minimizing the total number of deployed sensors. On the
one hand, to maximize the area simultaneously covered by a pair of sensors, the
distance between them should be minimized. This, however, would increase the
number of sensors needed to 2-cover a field Γ . On the other hand, to minimize
the number of sensors to 2-cover Γ , we need to maximize the distance between
the sensors. As shown in Fig. 4, the size of the intersection area of the sensing

Coverage, Connectivity, and Fault Tolerance Measures of WSNs 47

ranges of two adjacent sensors, is given by A(d) = 2r2cos−1(d
2r) − d

2

√
4r2 − d2.

Then, we consider the objective function g(d) = A(d) × d, which we want to
maximize. Notice that ∂2g(d)

∂2d ≤ 0 for all 0 ≤ d ≤ 2r. A theoretical solution, d0,
to ∂g(d)

∂d = 0 is not straightforward. Indeed, to solve ∂g(d)
∂d = 0, we need to solve

3d3

2 +2r2
√

4r2 − d2cos−1(d
2r)−6r2d = 0. We find that g(d) reaches its maximum

at d0 = 0.84r for r = 50m and d0 = 0.836r for r = 250m, as shown in Fig. 5
and Fig. 6, respectively. Thus, g(d) is maximum at approximately d = 0.84r. �

Fig. 5. g(d) for r = 50m Fig. 6. g(d) for r = 250m

Theorem 8, which follows from theorem 7, states the condition that guarantees
network connectivity given sensing 2-coverage and R < r.

Theorem 8 (Condition for connectivity given sensing 2-coverage and
R < r). Sensing 2-coverage guarantees network connectivity if the sensing and
transmission ranges of the sensors, r and R, respectively, satisfy R ≥ 0.84r.

4.6 Coverage-Based Fault Tolerance Measure

We propose to define network fault tolerance in terms of the sensing coverage,
which can be viewed as the fault tolerance of a monitored field. This means that
any target area of a field should remain covered by at least one sensor in spite
of the failure of a certain number of sensors. Next, we define a second measure
of fault tolerance, called field fault-tolerance, and compute its value for kCWSN.

Definition 10 (Critical coverage and field fault tolerance). Let G =
(S, E) be a communication graph of a WSN. The critical coverage, μ(Γ), of a field
Γ , which is covered by a WSN, is the smallest number of sensors whose removal
uncover Γ . The field fault-tolerance of a WSN is given by η(G) = μ(Γ)− 1.

Theorem 9 (Field fault tolerance). Assume k ≥ 3. The field fault-tolerance
of a homogeneous kCWSN is given by ηhom(G) = 4k− 1 and that of a heteroge-
neous kCWSN is given by 4k − 1 ≤ ηhet(G) ≤ �4k(rmax

rmin

2)− 1�.

48 H.M. Ammari and S.K. Das

Proof. Let AETσ be the area of interest. The farthest location in AETσ from
any sensor on the boundary of AETσ is its center of gravity, denoted by g. Thus,
any sensor that is located at distance r from g should be removed so g becomes
0-covered. Hence, if all sensors located in AETσ fail, where σ = 2r + ε and ε is
an infinitesimal value, the location g is guaranteed to be uncovered. Assuming a
uniform node spatial density, the minimum number of sensors (ε→ 0) in AETσ

is given by |AET2r| = ρ(r, k) × area(AET2r). Thus, the field fault-tolerance
of a homogeneous kCWSN with k ≥ 3 is given by η(G) = |AET2r| − 1 =
4k − 1. It is also easy to check that the field fault-tolerance of a heterogeneous
kCWSN with k ≥ 3 is given by |AET2rmin | − 1 ≤ ηhet(G) ≤ |AET2rmax | − 1,
where |AET2rmin | = ρ(rmin, k)×area(AET2rmin) and |AET2rmax | = ρ(rmin, k)×
area(AET2rmax). Hence, 4k − 1 ≤ ηhet(G) ≤ �4k(rmax

rmin

2)− 1�. �

5 Summary and Future Work

In this paper, we have investigated the relationships between sensing coverage,
connectivity and fault tolerance of kCWSN. Precisely, we have determined dif-
ferent relationships between sensing range, r, and transmission range, R, for
different degrees, k, of sensing coverage based on both deterministic and ran-
dom sensor deployment strategies. Using our Augmented Equilateral Triangle
(AET) model, which guarantees sensing k-coverage, we have proved that net-
work connectivity of homogeneous and heterogeneous kCWSN is higher than
k. We have also computed lower and upper bounds on network fault tolerance
based on network connectivity and sensing coverage. Although the relationship
R ≥ 2r seems at the first glance to be necessary to guarantee network con-
nectivity provided that sensing coverage is guaranteed, our fine-grained analysis
is able to give a tighter relationship, R ≥

√
3r. This result is based on the

use of deterministic and optimal sensor deployment strategies. Compared to
deterministic deployment strategies, which are more suitable for mathematical
analysis and effective for small-scale wireless sensor networks, random sensor dis-
tributions cannot guarantee complete, void-free coverage. We should, however,
mention the fact that random sensor deployment strategies are easier to use
in inhospitable environments, such as military battle-fields, for instance, than
deterministic deployment strategies.

Our findings are of practical use for wireless sensor network designers in devel-
oping sensing applications with prescribed degrees of sensing coverage, network
connectivity and fault tolerance. We plan to extend these results for irregular
sensing and transmission ranges. We also intend to exploit these results in the
design of topology control and data dissemination protocols for WSNs.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their helpful comments. This work is partially supported by a grant from the
NSF under award number IIS-0326505.

Coverage, Connectivity, and Fault Tolerance Measures of WSNs 49

References

1. Ai, J., Abouzeid, A.: Coverage by Directional Sensors in Randomly Deployed Wire-
less Sensor Networks. Journal of Combinatorial Optimization 11(1) (2006) 21–41

2. Ammari, H. M., Das, S. K.: On Computing Conditional Fault-Tolerance Measures
for k-Covered Wireless Sensor Networks. Proc. 9th ACM/IEEE Int. Symp. on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, Spain (2006)

3. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage Control for Mobile Sensing
Networks. IEEE Transactions on Robotics and Automation 20(2) (2004) 243–255

4. Cardei, M., Wu, J.: Energy-Efficient Coverage Problems in Wireless Ad-hoc Sensor
Networks. Computer Communications 29(4) (2006) 413–420

5. Chelius, G., Fleury, E., Mignon, T.: Lower and Upper Bounds for Minimum Energy
Broadcast and Sensing Problems in Sensor Networks. Proc. 11th Int. Conf. On
Parallel and Distributed Systems (ICPADS), Fukuoka, Japan (2005)

6. Datta, A. K., Gradinariu, M., Linga, P., Raipin-Parvedy, P.: Self-* Distributed
Query Region Covering in Sensor Networks. Proc. 24th IEEE Symp. on Reliable
Distributed Systems (SRDS), Orlando, Florida, USA, (2005)

7. Du, X., Lin, F.: Maintaining Differentiated Coverage in Heterogeneous Sensor
Networks. EURASIP Journal on Wireless Communications and Networking 5(4)
(2005) 565–572

8. Ghosh, A., Das, S. K.: Coverage and Connectivity Issues in Wireless Sensor Net-
works. Mobile, Wireless and Sensor Networks: Technology, Applications and Future
Directions, (Shorey, R., Ananda, A., Chan, M. C., Ooi, W. T. (ed.):), Wiley-IEEE
Press (2006)

9. Gupta, H., Das, S.R., Gu, Q.: Connected Sensor Cover: Self-Organization of Sensor
Networks for Efficient Query Execution. Proc. 4th ACM Int. Symp. on Mobile Ad
Hoc Networking and Computing (MobiHoc), Annapolis, Maryland, USA (2003)

10. Hall, P.: Introduction to the Theory of Coverage Processes. John Wiley & Sons
Inc., New York (1988)

11. Li, N., Hou, J.: A Fault-Tolerant Topology Control Algorithm for Wireless Net-
works. Proc. 10th Annual Int. Conf. on Mobile Computing and Networking (Mo-
biCom), Pennsylvania, USA (2004)

12. Li, X.-Y., Wan, P.-J., Frieder, O.: Coverage in Wireless Ad-hoc Sensor Networks.
IEEE Transactions on Computers 52 (2003) 753–763

13. Megerian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Worst and Best-case
Coverage in Sensor Networks. IEEE Transactions on Mobile Computing 4(1) (2005)

14. Ravelomanana, V.: Extremal Properties of Three-dimensional Sensor Networks
with Applications. IEEE Transactions on Mobile Computing 3(3) (2004)

15. Shakkottai, S., Srikant, R., Shroff, N.: Unreliable Sensor Grids: Coverage, Con-
nectivity and Diameter. Proc. 24th Annual Conf. IEEE Communications Societies
(INFOCOM), San Fransisco, USA (2003)

16. Tian, D., Georganas, N.: Connectivity Maintenance and Coverage Preservation in
Wireless Sensor Networks. Ad Hoc Networks 3 (2005) 744–761

17. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated Coverage and
Connectivity Configuration in Wireless Sensor Networks. Proc. 1st ACM Conf. on
Embedded Networked Sensor Systems (SenSys), California, USA, (2003)

18. Zhang, H., Hou, J.: Maintaining Sensing Coverage and Connectivity in Large Sen-
sor Networks. Ad Hoc & Sensor Wireless Networks 1(1-2) (2005) 89–124

19. Zhou, Z., Das, S., Gupta, H.: Fault Tolerant Connected Sensor Cover with Variable
Sensing and Transmission Ranges. Proc. 2nd Annual conf. on Sensor and Ad Ho
Communications and Networks (SECON), Santa Clara, California, USA (2005)

A Case Study on Prototyping Power

Management Protocols for Sensor Networks�

Mahesh Arumugam, Limin Wang, and Sandeep S. Kulkarni

Department of Computer Science and Engineering
Michigan State University
East Lansing MI 488824

{arumugam, wanglim1, sandeep}@cse.msu.edu

Abstract. Power management is an important problem in battery pow-
ered sensor networks as the sensors are required to operate for a long time
(usually, several weeks to several months). One of the challenges in devel-
oping power management protocols for sensor networks is prototyping.
Specifically, existing programming platforms for sensor networks (e.g.,
nesC/TinyOS) use an event-driven programming model and, hence, re-
quire the designers to be responsible for stack management, buffer man-
agement, flow control, etc. Therefore, the designers simplify prototyping
their solutions either by implementing their own discrete event simula-
tors or by modeling them in specialized simulators. To enable the design-
ers to prototype power management protocols in target platform (e.g.,
nesC/TinyOS), in this paper, we use ProSe, a programming tool for sen-
sor networks. ProSe enables the designers to specify their programs in
simple abstract models while hiding low-level challenges of sensor net-
works and programming-level challenges. As a case study, in this pa-
per, we specify a power management protocol with ProSe, automatically
generate the corresponding nesC/TinyOS code, and evaluate its perfor-
mance. Based on the performance results, we expect that ProSe enables
the designers to rapidly prototype, quickly deploy, and easily evaluate
their protocols.

1 Introduction

In the recent years, sensor networks have become popular due to their wide va-
riety of applications including border patrolling, hazard detection, habitat mon-
itoring, and micro-climate monitoring. These applications require the network
to operate for a long time (usually, several weeks to several months). However,
the sensors are typically battery powered (e.g., Mica [1], XSM [2], Telos [3]) and,
hence, they can operate continuously only for a few days. In addition, since the
sensors are deployed in large numbers and mostly in inaccessible fields, it is dif-
ficult to change the batteries after deployment. Therefore, power management
is crucial for extending the lifetime of the network.
� This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant

OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF Equipment Grant EIA-
0130724, and a grant from Michigan State University.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 50–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Case Study on Prototyping Power Management Protocols 51

One of the challenges in designing power management protocols for sensor
networks is prototyping. Specifically, existing platforms (e.g., nesC/TinyOS [4])
for programming sensor networks use event-driven programming model and,
hence, require the designer be responsible for stack management, buffer man-
agement, and flow control [5, 6]. Therefore, to rapidly prototype and quickly
evaluate protocols, the designers of existing power management protocols (e.g.,
[7, 8, 9, 10, 11, 12, 13]) implement their own simulators or model their protocols
in specialized simulators (e.g., GloMoSim [14]). However, it is desirable that the
designers prototype their protocols in nesC/TinyOS platform as it provides a
framework for generating both simulation as well as production code from the
same source.

In this paper, we consider the problem of rapid prototyping of power man-
agement protocols in nesC/TinyOS platform. To deal with programming level
challenges (e.g., stack management, buffer management, flow control, etc) and
network level challenges (e.g., message collision, corruption, synchronization, etc)
of sensor networks, we focus on ProSe [15], a programming tool for rapid pro-
totyping of sensor network protocols and applications. ProSe is based on the
theoretical foundation on computational model in sensor networks [16, 17]. It
enables the designers to (i) specify programs in simple abstract models (e.g.,
shared-memory model, read/write model) that hide several challenges of sensor
networks, (ii) automatically transform the programs into a model consistent with
sensor networks, and (iii) automatically generate and deploy (nesC/TinyOS)
binary.

In addition, we note that the transformation algorithms proposed in [16,
17] preserve self-stabilization and fault-tolerance properties of the programs in
shared-memory model or read/write model in the transformed programs. Since
we implement the transformation algorithms proposed in [16,17] in ProSe, ProSe
automates the process of transformation of abstract programs. And, it preserves
the self-stabilization and fault-tolerance properties of the transformed programs.
(We refer the reader to [16, 17, 15] for more details on preserving properties of
original programs.)

As a case study, we model pCover [13], a power management protocol that
provides partial (but high) sensor coverage of the target field, in ProSe. We
specify the pCover program in shared-memory model. We synthesize the cor-
responding nesC/TinyOS binary and study the performance of the generated
code. Through simulations, we show that the generated program extends the
lifetime of the network while providing a partial (but high) coverage.

Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we briefly discuss how programs are specified in ProSe. Then, in
Section 3, we prototype pCover in ProSe. We present a brief overview of the pro-
tocol and discuss how we synthesized the nesC/TinyOS binary. Subsequently, we
study the performance of the generated binary code. We show that the generated
program extends the lifetime of the network. In Section 4, we discuss the lessons
learned in prototyping power management protocols and in Section 5, we discuss
the related work. Finally, in Section 6, we make the concluding remarks.

52 M. Arumugam, L. Wang, and S.S. Kulkarni

2 ProSe: Overview

In this section, we briefly outline the structure of programs in ProSe and discuss
how nesC/TinyOS binaries are synthesized.

2.1 Structure of Programs

In ProSe, programs are specified in terms of guarded commands [18]; each com-
mand (or action) is of the form:

guard −→ statement,

where guard is a predicate over program variables, and statement updates pro-
gram variables. An action g −→ st is enabled when g evaluates to true and to
execute that action, st is executed. A computation of this program consists of a
sequence s0, s1, . . . , where sj+1 is obtained from sj by executing actions in the
program (0 ≤ j).

Computation model. A computation model limits the variables that an action
can read and write. Towards this end, we split the program actions into a set of
processes (sensors). Each action is associated with one of the processes (sensors)
in the program. We now describe how we model the restrictions imposed by
shared-memory model and read/write model.
Shared-memory model. In this model, in one atomic step, a sensor can read its
state as well as the state of its neighbors and write its own (public and private)
variables.
Read/Write model. In this model, in one atomic step, a sensor can either (1)
read the state of one of its neighbors and update its private variables, or (2)
write its own variables.

Programs written in shared-memory model or read/write model, however, are
not suitable for the constraints (and opportunities) provided by sensor networks.
For this reason, in [16,17], the authors have modeled the computations in sensor
networks as a write all with collision (WAC) model, discussed next.
Write all with collision (WAC) model. In this model, each sensor consists of
write actions (to be precise, write-all actions). Specifically, in one atomic action,
a sensor can update its own state and the state of all its neighbors. However, if
two or more sensors simultaneously try to update the state of a sensor, say k,
then the state of k remains unchanged. Thus, this model captures the fact that
a message sent by a sensor is broadcast. But, if multiple messages are sent to a
sensor simultaneously then, due to collision, it receives none.

To simplify programming sensor networks, recently, approaches have been pro-
posed for transforming programs into WAC model. They can be classified as: (a)
TDMA based deterministic transformation [16] and (b) CSMA based probabilis-
tic transformation [17]. With the help of these transformation algorithms, ProSe
allows the designer to specify programs in simple abstract models (e.g., shared-
memory model, read/write model). Then, ProSe automatically transforms them
into WAC model and, subsequently, generates the corresponding nesC/TinyOS
code.

A Case Study on Prototyping Power Management Protocols 53

2.2 Input/Output of ProSe

The input to ProSe consists of the guarded commands program in shared-
memory or read/write model, its initial states and (optionally) the topology of
the network. We discuss the input/output of ProSe in the context of an example.

Input guarded commands program. Consider a MAX program, where
each process (i.e., sensor) maintains a public variable x. The goal of MAX is
to eventually identify the maximum value of this variable across the network.
We specify the actions of each process in this program as shown in Figure 1
(keywords are shown in bold font):

1 program max
2 sensor j
3 var public int x.j;
4 begin
5 (x.k > x.j) -> x.j = x.k;
6 end
7 init state x.j = j;

Fig. 1. MAX program in ProSe

The designer also specifies zero or more initial states of the program. If no
initial states are specified, ProSe initializes the variables of the program to ar-
bitrary values. If more than one initial states are specified, ProSe initializes the
program to randomly selected state. In the above program, x.j is initialized to
j (i.e., ID of the sensor).

Auxiliary variables. ProSe provides abstractions to deal with failure of sensors
and presence of Byzantine sensors. To determine whether a neighbor (say, k)
is alive or failed, sensor j can just access the public variable up.k; if up.k is
TRUE (respectively, FALSE) then k is alive (respectively, failed). Designers
can use this abstract variable to simplify the design of sensor network protocols
while ProSe provides implementation of this variable through heartbeat protocol
(e.g., [19]). Similarly, ProSe also allows designers to model Byzantine sensors
through abstract variables (b.j).

Topology information. ProSe wires a component (NeighborState) that main-
tains the state information of the neighbors at each sensor, with the generated
code. Towards this end, each sensor should identify its neighborhood. ProSe al-
lows the designers to integrate a neighborhood abstraction layer (e.g., [20]) with
the generated code. Such an abstraction layer allows a sensor to learn its neigh-
borhood dynamically. Optionally, the designers can specify the static topology
of the network as an input to ProSe using the topology file. This file includes
the ID of the base station, size of the network, and the communication topology.
Based on the neighborhood information, ProSe configures the MAC layer and
NeighborState component.

54 M. Arumugam, L. Wang, and S.S. Kulkarni

Support for local component invocations in guarded commands. Since
ProSe allows the designers to specify programs in guarded commands format,
it makes protocol design highly intuitive and concise. However, it is not always
desirable to use guarded commands to specify protocols. For example, consider
the design of a routing protocol for sensor networks, where the sensors maintain
a spanning tree rooted at the base station. In this program, whenever the parent
of a sensor fails, it chooses one of its active neighbors for which the link quality
is greater than a certain threshold, as its parent. Towards this end, the sensor
has to compute the link quality of each of its neighbors. Specifying this action in
guarded commands is difficult. Moreover, nesC/TinyOS components may exist
that provide the desired functionality.

To simplify the design of sensor network protocols, ProSe allows component
invocations in guarded commands. In the design of routing protocol, in order to
find a neighbor that has a better link quality, the designer can invoke the compo-
nent LinkEstimator to compute the quality estimate of a given link. Thus, parent
update action in the routing protocol can be specified in guarded commands as
shown in Figure 2.

1 // current parent (p.j) has failed and j-k link quality is greater than the threshold
2 (up.(p.j) == FALSE) && (up.k == TRUE) && (LinkEstimator.getQuality(k) > LINK_THRESHOLD)
3 -> p.j = k; currentParentLinkQuality.j = LinkEstimator.getQuality(k);

Fig. 2. Component invocation in ProSe

In the above action, the getQuality(k) method of LinkEstimator component
returns the quality of the link j−k. This component may need certain variables to
compute the quality estimate. For example, it may need counters that maintain
the number of messages successfully transmitted over each link. The action by
which the counters are updated would be specified in guarded commands. The
variables used in the guarded commands program and the copies of the public
variables of the neighbors (maintained in NeighborState) are made available to
the invoked component.

The designer has to implement LinkEstimator in nesC/TinyOS platform. This
component, however, uses only local data (i.e., it uses NeighborState). ProSe
generates the code for NeighborState component. And, it wires the component
implemented by the designer with the generated code.

Output nesC/TinyOS code. In the generated nesC/TinyOS program, the
actions of the input program are executed whenever a timer fires. Once the
sensor executes each action for which the corresponding guard is enabled, it
marshals all the public variables as a message wacMsg and schedules it for trans-
mission (broadcast). Depending on the transformation algorithm and the MAC
layer selected by the user, it configures when the timer fires and how wacMsg is
transmitted. For example, in case of a TDMA based transformation [16], ProSe
configures the timer to fire in every TDMA slots assigned to the sensor. And, it
uses the TDMA service (e.g., [16,21,22]) to broadcast the message. In case of a

A Case Study on Prototyping Power Management Protocols 55

CSMA based transformation [17], ProSe configures the timer to fire in a random
interval whenever it receives a message containing values of public variables at
the sender. And, it uses a CSMA service (e.g., [23]) to broadcast wacMsg.

Similarly, ProSe generates code for NeighborState component that maintains
the state information of the neighbors whenever it receives an update message
from one of its neighbors. Finally, ProSe also generates code to (1) initialize all
the program variables, (2) configure network services (e.g., TDMA, CSMA), and
(3) configure and start middleware services (e.g., Timer).

3 Case Study: Prototyping pCover with ProSe

In this section, we present a case study on prototyping power management pro-
tocols with ProSe. We model pCover [13], a simple power management protocol
that provides partial (but high) sensor coverage of the target field. Specifically,
pCover maintains a certain degree of coverage through sleep-awake scheduling
of sensors. By trading little sensor coverage of the field, in [13], the authors show
(using C++ discrete event simulator) that pCover substantially improves the
network lifetime.

First, in Section 3.1, we discuss the pCover program (written in shared-
memory model). Then, in Section 3.2, we show how we synthesize the corre-
sponding nesC/TinyOS binary with ProSe. Finally, in Section 3.3, we evaluate
the performance of the generated code.

3.1 pCover: Overview

The pCover program written in shared-memory model is shown in Figure 3. The
basic idea of pCover is that a sensor should turn itself off if and only if its local
coverage is higher than a certain threshold, called OnThreshold. Local coverage
of a sensor is the percentage of the sensor’s sensing area that is covered by other
awake sensors.

Description of the program. In this program, each sensor is in one of 4
states: probe, awake, readyoff, and sleep. Each sensor j maintains one public
variable st.j that identifies the state of the sensor. In addition, j maintains a
copy of the public variables of its neighbors (in NeighborState). We discuss the
actions of the pCover program shown in Figure 3 in detail, next.

Probe state. A sensor in probe state probes the environment, determines whether
it should stay awake or go to sleep. After a timeout Y , the sensor computes its
local coverage. Note that the designer has to provide the LocalCoverage com-
ponent that returns the local coverage of a sensor. This component acts only
on the state information of the neighbors maintained at the sensor. The sensor
starts working if its local coverage is lower than the OnThreshold. Otherwise,
the sensor switches to sleep state. The timeout Y is used to ensure that when
the sensor decides whether it should stay awake or go to sleep, it has the fresh
state information of its neighbors.

56 M. Arumugam, L. Wang, and S.S. Kulkarni

1 program pCover
2 sensor j
3 const int X, Y, Z, S, W, OnThreshold, OffThreshold;
4 var
5 public int st.j;
6 private int timer.j;
7 component LocalCoverage;
8 begin
9 (st.j == SLEEP) && (timer.j >= X)

10 -> st.j = PROBE; timer.j = 0;
11 | (st.j == PROBE) && (timer.j >= Y) && (LocalCoverage.compute() > OnThreshold)
12 -> st.j = SLEEP; timer.j = 0;
13 | (st.j == PROBE) && (timer.j >= Y) && (LocalCoverage.compute() <= OnThreshold)
14 -> st.j = AWAKE; timer.j = Random(0, S);
15 | (st.j == AWAKE) && (timer.j >= Z)
16 -> st.j = READYOFF; timer.j = 0;
17 | (st.j == READYOFF) && (timer.j >= W)
18 -> st.j = AWAKE; timer.j = Random(0, S);
19 | (st.j == READYOFF) && (LocalCoverage.compute() > OffThreshold)
20 -> st.j = SLEEP; timer.j = 0;
21 | ((st.j == SLEEP) && (timer.j <= X)) ||
22 ((st.j == PROBE) && (timer.j <= Y)) ||
23 ((st.j == AWAKE) && (timer.j <= Z)) ||
24 ((st.j == READYOFF) && (timer.j <= W))
25 -> timer.j = timer.j + 1;
26 end

Fig. 3. pCover program in ProSe

Awake state. A sensor in awake state actively monitors the area within its
sensing range. It remains active until the timer reaches the timeout value Z.
Since we do not want all awake sensors to timeout at the same time, the timer is
initialized to a random value. Once the awake timer expires, the sensor changes
its state to readyoff.

Readyoff state. In readyoff state, the sensor still provides sensing coverage.
However, the neighbors of a readyoff sensor (say, j) consider j as a sleeping
sensor. In other words, the neighbors of j do not count it when they compute
local coverage. If a readyoff sensor finds that its local coverage is greater than
OffThreshold, it will change its state to sleep. Also, if a sensor is in readyoff state
for a long duration, it can switch to awake state. This action allows one to deal
with the case where a lot of sensors are in readyoff state although none of them
can go to sleep state (due to local coverage being less than OffThreshold).

Sleep state. A sensor in sleep state wakes up every X minutes. When it wakes
up, it changes its state to probe and proceeds to execute actions in that state.

3.2 Transformation and Code Generation

We use ProSe to generate the nesC/TinyOS implementation of the pCover pro-
gram and subsequently build the binary image. Towards this end, we use the
TDMA based transformation from [16] to transform the program into WAC
model and generate the nesC/TinyOS code. We integrate SS-TDMA [21] with
the generated program to implement the write-all action. As mentioned in Sec-
tion 2, since the pCover program includes component invocation (LocalCover-
age) in the actions, we require the designer of the protocol to implement this

A Case Study on Prototyping Power Management Protocols 57

component in nesC/TinyOS. We discuss how the designer implements this com-
ponent and how ProSe integrates it with the generated code, next.

LocalCoverage component. Based on the state information of the neighbors
of a sensor (say, j), LocalCoverage component computes the percentage of j’s
sensing area that is covered by its awake neighbors. This component provides a
method (compute()) that could be invoked in the guarded commands program.
This method returns the local coverage of the sensor.

In order to compute the local coverage of the sensor, LocalCoverage requires
the state information of the neighbors of the sensor. This information is main-
tained by NeighborState component (as mentioned in Section 2). Since, ProSe
wires NeighborState with LocalCoverage when generating the nesC/TinyOS
code for pCover, LocalCoverage component can obtain the state information
of the neighbors of the sensor by invoking NeighborState. Note that all accesses
to NeighborState are local and ProSe is responsible for updating NeighborState
with fresh values. Thus, the designer does not have to deal with programming
level challenges of nesC/TinyOS platform and low-level challenges of sensor net-
works (e.g., communication, collisions, corruption, etc).

3.3 Evaluation of the Synthesized Program

We evaluate the performance of the generated nesC/TinyOS code for pCover
with TOSSIM [24], a discrete event simulator for TinyOS sensor networks.

Simulation settings. We use the simulation setting similar to [13]. We deploy
the sensors in a grid topology over a 100mX100marea.We set the sensing range rof
the sensors to 10mand the radio interference range to 50m. We did two simulations:
one with network density of 1 node/r2 and another with 2 nodes/r2. Inter-sensor
separation and the number of sensors deployed varies depending on the density.
With 1 node/r2 (respectively, 2 nodes/r2), the inter-sensor separation is 10m (re-
spectively, 7m) and the network size is 10x10 (respectively, 14x14). SS-TDMA [21]
sets the TDMA period depending on the number of sensors falling in the interfer-
ence range of a sensor. With 1 node/r2 (respectively, 2 nodes/r2), SS-TDMA sets
the period to 50 (respectively, 100) slots, where one time slot = 30 ms.

We assume that the lifetime of a sensor is 20 minutes. We choose this value in
order to ensure that the simulation completes within a reasonable time. (With
density of 2 nodes/r2, the simulation takes 3 days to complete. Typically, sensors
are expected to work continuously for 1000 minutes. Simulating a sensor lifetime
of 1000 minutes in TOSSIM, however, would approximately take 150 days to
complete.) We simulate the lifetime of each sensor by maintaining a variable
and decrementing it appropriately in each time slot.

In all our simulations, we set the timeout values for pCover as follows: X = 1
minute, Y = 2 TDMA slots, Z = 3 minutes, and S = W = 2 minutes. We ran-
domly initialize the state of each sensor. We set OnThreshold and OffThreshold
to 0.7 and 0.6. We consider that a network is “dead” when the global coverage
of the network is less than a certain threshold even if all the alive nodes are
working. Global coverage (or degree of coverage) is the percentage of the field

58 M. Arumugam, L. Wang, and S.S. Kulkarni

that is covered by the working nodes. We define network lifetime as the duration
from the beginning of deployment until the network is dead. We use 50% as the
threshold in our simulations.

In our simulations, each link in the network has a bit error probability, rep-
resenting the probability that a bit can be corrupted if it is sent along the link.
Bit errors for each link is decided independently (using LossyBuilder, a Java
program in TinyOS release) based on empirical loss data gathered from real
world [25]. Next, we discuss our simulation results.

Coverage and network lifetime. In Figure 4, we show the degree of coverage
and number of active sensors over time. In our simulations, we compute the global
coverage for the entire 100m X 100m field and for the inner 80m X 80m field.
The border sensors contribute only a part of their sensing range in the field and,
hence, we consider the inner 80m X 80m field, where there is no such edge effect.
As we can see from Figures 4(a) and 4(b), the sensors maintain the coverage at
approximately the same level. With density = 2 nodes/r2, initially (i.e., around
3 minutes), we observe a drop in the coverage. This is due to the fact that
large number of sensors are initially set to active state (as a result of random
initialization) and the number of active sensors fluctuate before converging to
an appropriate number that maintains the coverage at a certain level (around
88.4%). Figure 4(c) shows the number of active sensors over time. As we can
observe from the figure, this number remains at the same level until the point
where the coverage starts dropping.

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

Time (in minutes)

C
ov

er
ag

e
in

 e
nt

ire
 1

00
m

 x
 1

00
m

 a
re

a

1 node/r2

2 nodes/r2

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

Time (in minutes)

C
ov

er
ag

e
in

 in
ne

r
80

m
 x

 8
0m

 a
re

a

1 node/r2

2 nodes/r2

0 10 20 30 40 50 60
0

20

40

60

80

100

Time (in minutes)

N
o.

 o
f a

ct
iv

e
se

ns
or

s

1 node/r2

2 nodes/r2

(a) (b) (c)

Fig. 4. Coverage and number of active sensors over time; (a) coverage of entire 100m
X 100m area, (b) coverage of inner 80m X 80m area, and (c) number of active sensors

From Figures 4(a) and 4(b), we observe that the coverage is well maintained
until one point, after which, the coverage drops suddenly, and the network dies in
a short period. This shows that pCover maintains a balanced energy consumption
as all sensors run out of power at around the same time. Also, we confirm the
result in [13]; by sacrificing little coverage, the network lifetime is extended.
Specifically, the lifetime with densities of 1 nodes/r2 (respectively, 2 nodes/r2)
is around 39.55 minutes (respectively, 57.9 minutes).

Quality of coverage. As mentioned in [13], in partially covered sensor net-
works, quality of coverage is an important metric. For example, in surveillance

A Case Study on Prototyping Power Management Protocols 59

networks, it is measured in terms of how fast the sensors detect a target object.
Since the sleep interval (i.e., X) is 1 minute, time to detect stationary objects in
the sensor field is bounded by 1 minute. Additionally, since the sensors rotate
their roles (working vs. sleeping), the set of active sensors changes continuously.
Hence, an undetected “hole” is likely to be detected as the set of active sensors
changes. In Figure 5, we show the snapshots of the field at different times.

−20 0 20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

−20 0 20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

(a) 10 minutes (b) 20 minutes

(coverage: 83.5%/87.6%) (coverage: 89.9%/90.9%)

−20 0 20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

−20 0 20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

(c) 30 minutes (d) 40 minutes

(coverage: 89.2%/91.6%) (coverage: 85.2%/89.8%)

Fig. 5. Snapshot of the field with density = 2 nodes/r2 (dark regions are covered).
Coverage data below each subfigure shows the coverage of entire area and the coverage
of inner 80m X 80m area respectively at that time.

From Figure 5, we observe that the location of “holes” change continuously.
In surveillance networks, the intruder does not know the location of such holes.
Hence, it is unlikely that the intruder can choose to move along the uncovered
path. Therefore, the time to detect the intruder is small on average.

4 Lessons Learned in Prototyping Power Management
Protocols

In this section, we discuss some of the lessons learned in prototyping power
management protocols with ProSe.

60 M. Arumugam, L. Wang, and S.S. Kulkarni

Rapid prototyping and quick evaluation. Most of the power management
protocols for sensor networks follow the event-driven model. For example, in
pCover (cf. Section 3), we observe that a sensor switches to either working mode
or sleeping mode whenever an event occurs (such as a timeout). Since guarded
commands format is event-driven in nature, prototyping power management pro-
tocols with ProSe is straightforward. Furthermore, the time required to proto-
type protocols with ProSe is small. For example, the time required to prototype
pCover with ProSe was in the order of few minutes. Also, the time required to
specify LocalCoverage, a component used to compute the percentage of a sen-
sor’s sensing region covered by other active neighbors, was in the order of couple
of hours. As mentioned in Section 3.2, this component uses only local data and,
hence, we did not have to worry about communication. As a result, specifying
this component in nesC/TinyOS platform was quick. By contrast, had we chosen
to prototype pCover directly in nesC/TinyOS, we would have to deal with all
low-level challenges of sensor networks and programming-level challenges of the
platform. Based on our experience in developing protocols with nesC/TinyOS,
we expect this effort to take considerable time (usually, few days to couple of
weeks).

In short, ProSe provides a way to rapidly prototype power management pro-
tocols and generate the corresponding nesC/TinyOS implementation. Hence, the
designers can quickly deploy and easily evaluate their protocols.

Preserving properties of interest. Since designers specify protocols in
guarded commands format (with ProSe), they can analyze them for properties
such as self-stabilization, fault-tolerance, and reliability. In addition, the design-
ers can automatically add new properties to the guarded commands program. For
example, the designers can use FTSyn [26] to automatically add fault-tolerance
properties to their programs. If the transformation algorithm used to transform
the input program (in shared-memory model or read/write model) into a model
consistent with sensor networks (i.e., write all with collision model [16,17]) pre-
serves properties of interest then ProSe also preserves such properties. ProSe
implements the transformation algorithms proposed in [16,17] that preserve self-
stabilization and fault-tolerance properties of the original programs. (We refer
the reader to [15, 16, 17] for more details on how properties of interest are pre-
served in the transformed programs.) Thus, ProSe simplifies the design of power
management protocols while ensuring that self-stabilization and fault-tolerance
properties are preserved in the transformed programs.

5 Related Work

Work related to rapid prototyping of power management protocols can be cate-
gorized as: (i) programming platforms and (ii) power management protocols.

Programming platforms. Related work that deals with programming ab-
stractions include [27,28,29,30] and tools for programming sensor networks in-
clude [31, 32,20,33, 34, 35, 36].

A Case Study on Prototyping Power Management Protocols 61

Programming abstractions. In [27], a state centric approach is proposed that
captures algorithms such as sensor fusion, signal processing and control. In this
model, the abstraction of collaboration groups hides the designer from issues such
as communication protocols, event handling, etc. In [28,29], macroprogramming
primitives that abstract communication, data sharing and gathering operations
are proposed. However, these primitives are application-specific (e.g., abstract
regions for tracking and gathering [28] and region streams for aggregation [29]).
And, in [30], semantic services programming model is proposed where users only
specify the end goal on what semantic data to collect. Unlike [27,28,29,30], ProSe
allows the designer to evaluate existing algorithms in the context of sensor net-
works. Moreover, since the programs are written in abstract models considered
in distributed systems, ProSe permits the designer to verify the correctness of
the programs as well as to manipulate the programs to meet new properties.

Programming tools. Techniques like virtual machine (e.g., Maté [31]), middle-
ware (e.g., EnviroTrack [32]), library (e.g., SNACK [33]), and database (e.g.,
TinyDB [34]) are proposed for simplifying programming sensor network appli-
cations. However, these solutions are (i) application-specific, and/or (ii) restrict
the designer to what is available in the virtual machine, middleware, library,
or network. In [36], macroprogramming model, called Kairos, that hides the
details of code-generation and instantiation, data management, and control is
proposed. However, unlike [31,32,20,33,34, 35,36], ProSe hides low-level details
such as message collisions, corruption, sensor failures, etc. Moreover, ProSe does
not require any runtime support.

Power management protocols. Related work on power management proto-
cols for sensor networks include [7, 9,8, 11, 10, 12, 13]. In [9], a sensor is allowed
to go to sleep if and only if one of its neighbors can completely cover its sensing
area. As identified by [7], this approach underestimates the coverage provided by
neighboring sensors and, hence, it leads to energy waste. Additionally, both [7]
and [9] require a global synchronization service. In [10], a coverage configuration
protocol is proposed where a sensor can switch to sleep state if all intersection
points inside its sensing range are at least k-covered (i.e., a point is covered by
at least k sensors). However, unlike [13], this approach requires more number of
active sensors.

Power management protocols proposed in [8,11,13] follow similar design prin-
ciples. However, unlike [13, 11], in [8], a working sensor is awake continuously
until its failure or depletion of power. In [8,11], by controlling the range of mes-
sages transmitted, the density of working sensors is controlled. However, online
estimation of transmission ranges and the number of working sensors are often
difficult and inaccurate.

6 Conclusion

In this paper, we considered the problem of rapid prototyping of power manage-
ment protocols for sensor networks. Since existing programming platforms (e.g.,

62 M. Arumugam, L. Wang, and S.S. Kulkarni

nesC/TinyOS) require the designers to be responsible for stack management,
buffer management, and flow control, the designers of power management pro-
tocols prototype the protocols either by implementing a discrete event simulator
or by modeling in a specialized simulator such as GloMoSim [14]. To enable rapid
prototyping and quick evaluation of power management protocols in the target
platform (e.g., nesC/TinyOS for Mica, XSM, or Telos based sensor networks),
in this paper, we used ProSe, a programming tool for sensor networks. As a
case study, we specified the power management program from [13] with ProSe,
generated the corresponding nesC/TinyOS code, and evaluated its performance
on TOSSIM [24]. We showed that the synthesized program provides partial (but
high) coverage of the sensor field.

Since ProSe hides low-level challenges of sensor networks (e.g., message col-
lision, corruption, synchronization, etc) and programming level challenges (e.g.,
buffer management, stack management, etc), the designers can rapidly proto-
type their protocols and generate code in the target platform. As a result, the
development time and deployment time are small. In this paper, we illustrated
this by prototyping pCover program [13]. We have also prototyped and evalu-
ated the differentiated surveillance program [7] with ProSe (cf. [37]). Thus, with
ProSe, we expect that the designers can rapidly prototype, quickly deploy and
easily evaluate power management protocols in the target platform.

References

1. J. Hill and D. E. Culler. Mica: A wireless platform for deeply embedded networks.
IEEE Micro, 22(6), 2002.

2. P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design of a wire-
less sensor network platform for detection of rare, random, and ephemeral events.
In Proceedings of the Conference on Information Processing in Sensor Networks
(IPSN), April 2005.

3. J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low power wireless
research. In Proceedings of the Fourth International Conference on Information
Processing in Sensor Networks, SPOTS track, 2005.

4. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
language: A holistic approach to networked embedded systems. In Proceedings of
Programming Language Design and Implementation, 2003.

5. A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur. Cooperative
task management without manual stack management or, event driven programming
is not the opposite of threaded programming. In Proceedings of 2002 USENIX
Annual Technical Conference, June 2002.

6. O. Kasten and K. Römer. Beyond event handlers: Programming sensor networks
with attributed state machines. In Proceedings of the Fourth Internation Confer-
ence on Information Processing in Sensor Networks (IPSN), 2005.

7. T. Yan, T. He, and J. A. Stankovic. Differentiated surveillance for sensor networks.
In Proceedings of the First ACM Conference on Embedded Networked Sensing Sys-
tems (SenSys), November 2003.

8. F. Ye, G. Zhong, J. Cheng, S. W. Lu, and L. X. Zhang. PEAS: A robust energy con-
serving protocol for long-lived sensor networks. In Proceedings of the International
Conference on Distributed Computing Systems, 2003.

A Case Study on Prototyping Power Management Protocols 63

9. D. Tian and N. D. Georganas. A node scheduling scheme for energy conservation in
large wireless sensor networks. Wireless Communications and Mobile Computing
Journal, May 2003.

10. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage
and connectivity configuration in wireless sensor networks. In Proceedings of the
Conference on Embedded Networked Sensing Systems, 2003.

11. C. Gui and P. Mohapatra. Power conservation and quality of surveillance in tar-
get tracking sensor networks. In Proceedings of the Tenth Annual International
Conference on Mobile Computing and Networking, 2004.

12. S. Ren, Q. Li, H. Wang, X. Chen, and X. Zhang. Analyzing object detection quality
under probabilistic coverage in sensor networks. In Proceedings of the International
Workshop on Quality of Service (IWQoS), June 2005.

13. L. Wang and S. S. Kulkarni. Sacrificing a little coverage can substantially in-
crease network lifetime. In Proceedings of Third Annual IEEE Communications
Society Conference on Sensor, Mesh, and Ad Hoc Communications and Networks
(SECON), September 2006, to appear.

14. X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A library for parallel simulation
of large scale wireless networks. In Proceedings of the Workshop on Parallel and
Distributed Simulations, May 2002.

15. M. Arumugam and S. S. Kulkarni. Programming sensor networks made easy.
Technical Report MSU-CSE-05-25, Department of Computer Science, Michigan
State University, September 2005.

16. S. S. Kulkarni and M. Arumugam. Transformations for write-all-with-collision
model. Computer Communications (Elsevier), 29(2):183–199, January 2006.

17. T. Herman. Models of self-stabilization and sensor networks. In Proceedings of the
5th International Workshop on Distributed Computing (IWDC), LNCS:2918:205–
214, December 2003.

18. E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, 1997.
19. M. G. Gouda and T. M. McGuire. Accelerated heartbeat protocols. In Proceedings

of the International Confernece on Distributed Computing Systems (ICDCS), 1998.
20. K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A neighborhood ab-

straction for sensor networks. In Proceedings of the ACM International Conference
on Mobile Systems, Applications, and Services, 2004.

21. S. S. Kulkarni and M. Arumugam. SS-TDMA: A self-stabilizing MAC for sensor
networks. In S. Phoha, T. F. La Porta, and C. Griffin, editors, Sensor Network
Operations. Wiley-IEEE Press, May 2006.

22. T. Herman and S. Tixeuil. A distributed TDMA slot assignment algorithm for
wireless sensor networks. In Proceedings of the Workshop on Algorithmic Aspects
of Wireless Sensor Networks, 2004.

23. A. Woo and D. Culler. A transmission control scheme for media access in sensor
networks. In Proceedings of the Seventh Annual International Conference on Mobile
Computing and Networking, pages 221–235, 2001.

24. P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable simu-
lation of entire tinyOS applications. In Proceedings of the Conference on Embedded
Networed Sensor Systems, 2003.

25. D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. An
empirical study of epidemic algorithms in large scale multihop wireless networks.
Technical Report IRB-TR-02-003, Intel Research, 2002.

26. S. S. Kulkarni and A. Ebnenasir. A framework for automatic synthesis of fault-
tolerance. Technical Report MSU-CSE-03-16, Michigan State University, 2003.

64 M. Arumugam, L. Wang, and S.S. Kulkarni

27. J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao. State-centric programming for
sensor-actuator network systems. Pervasive Computing, 2(4):50–62, 2003.

28. M. Welsh and G. Mainland. Programming sensor networks using abstract regions.
In Proceedings of the First USENIX/ACM Symposium on Networked Systems De-
sign and Implementation (NSDI), March 2004.

29. R. Newton and M. Welsh. Region streams: Functional macroprogramming for
sensor networks. In Proceedings of the First Workshop on Data Management for
Sensor Networks (DMSN), August 2004.

30. K. Whitehouse, F. Zhao, and J. Liu. Semantic streams: A framework for declarative
queries and automatic data interpretation. Technical Report MSR-TR-2005-45,
Microsoft Research, April 2005.

31. P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. ACM
SIGOPS Operating Systems Review, 36(5):85–95, December 2002.

32. T. Abdelzaher et al. EnviroTrack: Towards an environmental computing paradigm
for distributed sensor networks. In Proceedings of the International Conference on
Distributed Computing Systems, 2004.

33. B. Greenstein, E. Kohler, and D. Estrin. A sensor network application construc-
tion kit (SNACK). In Proceedings of the Second ACM Conference on Embedded
Networked Sensing Systems (SenSys), November 2004.

34. S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: An acquisitional
query processing system for sensor networks. ACM Transactions on Database
Systems (TODS), 2005.

35. R. Newton, Arvind, and M. Welsh. Building up to macroprogramming: An interme-
diate language for sensor networks. In Proceedings of the International Conference
on Information Processing in Sensor Networks, 2005.

36. R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor
networks using kairos. In Proceedings of the International Confernece on Dis-
tributed Computing in Sensor Systems (DCOSS), 2005.

37. M. Arumugam, L. Wang, and S. S. Kulkarni. Rapid prototyping of power manage-
ment protocols for sensor networks: A case study. Technical Report MSU-CSE-06-
26, Department of Computer Science, Michigan State University, July 2006.

Unconscious Eventual Consistency with Gossips

Roberto Baldoni1, Rachid Guerraoui2,3, Ron R. Levy2,
Vivien Quéma1, and Sara Tucci Piergiovanni1

1 DIS, Università di Roma “La Sapienza”, 00198 Roma, Italy
2 LPD, EPFL, CH 1015 Lausanne, Switzerland

3 CSAIL, MIT, Cambridge, MA 02139, USA

Abstract. This paper combines various self-stabilization techniques
within a replication protocol that ensures eventual consistency in large-
scale distributed systems subject to network partitions and asynchrony.
A simulation study shows that the resulting protocol is scalable and
achieves high throughput under load.

Our protocol does not rely on any form of consensus, which would lead
to block the replicas in case of partitions and asynchrony. Our protocol
instead ensures that (1) updates are continuously applied to the replicas
and (2) no two updates are ever performed in a different order. Gaps
might occur during periods of unreliable communication. They are filled
whenever connectivity is provided, and consistency is then eventually en-
sured, but without any conscious commitment. That is, there is no point
in the computation when replicas know that consistency is achieved. This
unconsciousness is the key to tolerating perpetual asynchrony with no
consensus support.

1 Introduction

A new class of so-called interactive distributed applications is emerging: dis-
tributed virtual environments, interactively steered scientific applications, col-
laborative design systems, etc [3]. These applications may need to run in a wide
area asynchronous environment with widely distributed users and resources and
no central authority. In such settings it is important for each user to have ac-
cess to a local copy (replica) of every object of interest. This is key to allowing
local progress without constantly relying on the network. The main technical
challenge is then to maintain some form of consistency among all replicas of the
same object [17].

Traditionally, many systems running on local area networks provide so-called
single copy semantics that gives the user the illusion of accessing a single, highly
available object. Typical solutions require users to access a quorum of replicas,
to acquire exclusive locks on data they wish to update or to agree on a total
order of updates to be applied at each replica. Maintaining single-copy semantics
in a worldwide deployed system is practically very expensive and theoretically
impossible [10]. It is thus necessary to use (weaker) consistency criteria. This is
precisely what eventual consistency [19] provides. It guarantees that whatever

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 65–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

66 R. Baldoni et al.

the current state of the replica, if no new updates are issued and replicas can
communicate freely for a long enough period, the contents of all replicas even-
tually become identical. From an implementation point of view, the issues to
solve in order to guarantee eventual consistency are [17]: (1) update dissemina-
tion: each update must eventually reach all replicas, and (2) update ordering: all
updates must be eventually applied in the same order at each replica.

Some solutions (Bayou [19], OceanStore [15]) have updates disseminated based
on epidemic (gossip) protocols. Update ordering [15,19,14,20,18] is achieved by
having replicas deliver updates locally in any order (tentative order) and using
rollbacks to eventually reach a total order. Total ordering is typically computed
a posteriori using some form of consensus. This requires a “synchrony island”
where agreement can be achieved to ensure that all replicas eventually agree on
the exact update order. When that happens, each replica is conscious of the fact
that total order has been reached.

This paper combines various self-stabilization techniques within a replication
protocol that achieves eventual consistency in large-scale distributed environ-
ments subject to network partitions and asynchrony. These techniques include
merging partition, electing stable processes and gossip-based propagation. Up-
date dissemination is performed using a classical gossip-based strategy [8]. Our
replication protocol differs from others by the fact that it does not use any form
of consensus, even only eventual. It defines an a priori total order that is never
explicitly agreed upon among replicas. Updates are disseminated using gossips
and subsequently delivered. In the case that some old update arrives after al-
ready having delivered subsequent messages, the replica has to roll back to the
old state, apply the old update and re-deliver all subsequent messages. This
means that, in theory, each replica should keep all delivered updates forever.
However, in practice, it is possible to reach consistency with high probability
without keeping all delivered updates.

A fundamental aspect of our protocol is that replicas are unconscious of when
total order is reached, i.e. when they are in a consistent state. This uncon-
sciousness is the key to reaching eventual consistency even if the network is
permanently asynchronous. Our protocol has the following characteristics:

– Non-blocking: the protocol enables update delivery even during periods when
the network is asynchronous or partitioned.

– Self-stabilizing: the protocol exploits periods of (even partial synchrony) and
merging of partitions to reduce the number of rollbacks. (Note that the
periods of synchrony are not relied on in order to reach consistency).

– Scalable: the protocol encompasses a self-sizing mechanism that guarantees
high throughput when the number of broadcasters and/or the rate at which
they broadcast updates increase.

Our simulations convey the fact that our protocol achieves reasonable latency
during synchronous periods (due to a small number of rollbacks) and achieves
high throughput under high load.

This paper is organized as follows. Section 2 presents the ramifications un-
derlying unconscious eventual consistency. Section 3 describes our protocol.

Unconscious Eventual Consistency with Gossips 67

A performance evaluation is presented in Section 4. Finally, related work is
presented in Section 5, before concluding the paper in Section 6.

2 Ensuring Unconscious Eventual Consistency

Roughly speaking, eventual consistency stipulates that all replicas eventually
converge to the same state, i.e. deliver the same set of updates in the same
total order. Eventual consistency can be achieved by having replicas (called
processes in the rest of the paper) deliver updates in their order of arrival and
then eventually re-order already delivered updates using a rollback mechanism.
This section starts by discussing few points that must be taken into account while
implementing eventual consistency. We then describe a naive implementation.
Finally, we discuss the drawbacks of this naive implementation to introduce the
improvements that are brought by the protocol presented in this paper.

2.1 Few Comments on Eventual Consistency Implementations

Update Ordering. As explained before, achieving eventual consistency requires
every process to eventually deliver updates in the same order. Since updates
can continuously be applied (i.e. processes can re-deliver updates until the total
order is reached), it is only needed that each two updates be univocally associ-
ated to unique sequence numbers. On the other hand, it is not necessary that
assigned sequence numbers be consecutive (i.e. gaps in the sequence are allowed).
Nevertheless, for avoiding rollbacks, it is better that they be consecutive as this
allows processes to know whether it is worth waiting for updates.

Update Dissemination. Eventual consistency requires that all updates eventu-
ally reach all processes. Reliable communication is therefore necessary. How-
ever, in a large scale environment, ensuring strong reliable communication can
be very expensive. Consequently, most solutions [15,19] rely on epidemic dis-
semination [13,4,7], even if they do not provide strong reliability. Therefore,
just like [15,19], our protocol only provides eventual consistency with high
probability.

Unconscious Consistency. The total order used to achieve eventual consistency
can be defined a priori (by associating to each update a pair composed of ID of
the process that issued the update and a local sequence number). This allows
achieving eventual consistency without relying on consensus. On the other hand,
not relying on consensus implies that processes never know when a consistent
state has been reached. As a consequence, we say that eventual consistency is
implemented in an unconscious manner.

2.2 A Naive Implementation

Eventual consistency can be naively implemented as follows. Consider a finite
and ordered set of processes {p1, . . . , pn}. Each process acts as a sequencer; it

68 R. Baldoni et al.

keeps a local sequence number that is increased before broadcasting a new mes-
sage (update). Along with the sequence number, each process tags the message
m with its id. The resulting message (m, id, seq) is then disseminated to all pro-
cesses. A total order is defined on these messages using the sequence number
and id. More precisely: for any pair of messages m and m′, m precedes m′ iff (i)
seq < seq′ or (ii) seq = seq′ and id < id′.

Upon reception of a message, a process cannot possibly know if it will ever
receive another message preceding it in the total order. Indeed, there may exist
gaps in the sequence of broadcast messages. It therefore doesn’t make sense for
a process to wait for other messages. Consequently, processes deliver messages
upon reception. If a message m1 is received after a message m2 preceding it in
the total order, a rollback is performed on m2. Subsequently, m1 and m2 are
delivered in the correct (total) order.

2.3 Towards a Better Implementation

The drawback of the naive implementation is that there is no mechanism to
reduce the number of rollbacks. In particular, with a large number of sequencers,
the number of rollbacks in the system drastically increases. Consider that there
are N sequencers in the system identified by s1 < . . . < sN . Each sequencer
sequences k messages. Moreover, consider that messages are broadcast using a
reliable FIFO broadcast primitive. If N = 1, all messages are received in the
correct order by all processes. Thus, no rollbacks are necessary. However, with a
larger number of sequencers, the number of possible rollbacks increases. Consider
the case N = 2 with s1 and s2 starting to broadcast at the same time and same
rate. Moreover, consider that messages sent by s2 are systematically received
before messages sent by s1. Messages arrive at each process in the following order:
(m2, s2, 1), (m1, s1, 1), (m4, s2, 2), (m3, s1, 2), etc. Consequently, each process
needs to rollback k messages (those sent by s2). Extending the previous example
to a system with N = m sequencers, it is trivial to demonstrate that each process
performs (m− 1)× k rollbacks.

The protocol described in the next section exploits periods of synchrony to
reduce the possible number of sequencers (and hence reduce the number of roll-
backs) and to assure that each sequencer (actually implemented by a set of
processes) gives consecutive sequence numbers.

3 Protocol

This section starts by an overview of the protocol. We then describe its basic
behaviour. Follow the presentation of a self-stabilization mechanism and the
description of a self-sizing mechanism that improves the protocol’s scalability.

3.1 Overview

For scalability and fault-tolerance reasons, the protocol we propose implements
each sequencer as a pool of processes organized in a coalition. Each process

Unconscious Eventual Consistency with Gossips 69

wishing to disseminate an update has access to a primitive called ecBroadcast.
This primitive first requests a sequence number from the coalition the process
relies on and then uses gossiping to disseminate the update together with its
sequence number.

Coalition Creation. If a process pi that does not rely on a coalition wants to
ecBroadcast a message, it first tries to discover an already existing coalition. If
it does not find one, it creates a new coalition including itself and some other
processes (to get the desired size of the coalition) in a new coalition.

Sequencing Using Coalitions. A coalition ck is a set of processes (called
members) acting as a common sequencer. Within a coalition, processes are sorted
using their identifiers. We note ck[x] the xth process in ck (x is called rank of
process ck[x]) and we note card(ck) the cardinality of coalition ck. Processes be-
longing to a coalition issue sequence numbers as follows: let ck be a coalition and
let pj be a process belonging to ck, pj = ck[x]. Process pj assigns monotonically
increasing sequence numbers belonging to the sequence SN ck[x] = (snn)n∈N with
snn = n× card(ck) + x. Along with this sequence number, messages are tagged
with the id of the process that issued the sequence number.

Note that the above-described mechanism ensures that a coalition issues dis-
tinct, totally-ordered sequence numbers. Moreover, the protocol is such that each
process requests sequence numbers to coalition members in a round-robin way.
This allows (1) balancing the load over all coalition members and (2) increasing
the probability that successively issued sequence numbers be consecutive.

Dissemination. We rely on a gossip-based protocol for message dissemina-
tion [8]. It has been shown that these protocols are able to ensure high delivery
ratios. Moreover, for improving reliability during periods when the network is
highly asynchronous or partitioned, the protocol uses a pull mechanism similar
to the one presented in [19].

Message Delivery. Processes try to deliver messages in sequence. This is done
by waiting until the preceding messages have been delivered before delivering
the current one. However, a process cannot possibly know about all preceding
messages for three reasons: (1) there might be other coalitions issuing sequence
numbers, (2) the sequence numbers issued by the coalition the process relies
on are not necessarily consecutive, and (3) the gossiping mechanism used for
dissemination is not reliable. Therefore, a process only waits for a given period
of time before delivering received messages. Consequently, a message can be
received after consecutive messages have already been delivered. In this case a
rollback mechanism is used to undeliver messages and re-deliver them in the
correct order. Our experiments show that in the case when only one coalition is
present in the system, the number of rollbacks is close to zero.

Self-stabilization. As explained above, it is desirable to have a single coalition
in the entire system. The protocol encompasses a self-stabilization mechanism

70 R. Baldoni et al.

that aims at leading to a system with only one coalition. Members of different
coalitions get to know each other when they receive messages sequenced by a
different coalition. If a member pi of a coalition A receives a message coming
from another coalition B, then it builds a new coalition C including all members
of A and B. As explained below, the size of the resulting coalition is readjusted
after the merger. Note that this sizing mechanism tries to select the most stable
processes, i.e. the processes that have been in the system for the longest time.

Each time a coalition member switches to another coalition, it starts issuing
new sequence numbers as explained above. Therefore a process could reissue the
same sequence number twice. This problem is solved by adding an epoch number
to each sequenced message. When a process joins a coalition, it associates an
epoch number to this new coalition. This epoch number must be greater than the
epoch number of the last coalition the process was a member of. Epoch numbers
do not change the way processes deliver messages. We just need to change the
way the total order on messages is defined such that the epoch number takes
precedence over the sequence number and finally the process id.

Coalition Self-sizing. Scalability of the sequencing service is obtained by dy-
namically adjusting coalition size according to the load on coalition members.
This load depends on the number of broadcasters and the rate at which they
broadcast. These two parameters are often impossible to determine a priori in the
target environments. The self-sizing mechanism described in Section 3.4 dynam-
ically modifies the size of coalitions, based on the average number of sequence
number requests that coalition members receive during a period of time.

3.2 Main Protocol

Data Structures. Each process p executing the algorithm contains the follow-
ing set of data structures. coalition represents the coalition process p relies on.
It is a list of processes. optimalSize is the size that the coalition must have.
epoch represents the epoch process p is in. nextSN is the next sequence number
from the coalition that p relies on and expects to deliver next. pending is the
list of messages that process p received but did not yet deliver. Each entry in
the pending list contains [m, sn, ts], where m is the message to be delivered, sn
is its sequence number (integrating the process id, epoch number and sequence
number attributed by the sequencing service), and ts the time at which message
m was received. The deliveryT imeout parameter indicates the time process p
should wait before delivering the first message in pending. All messages that
have been delivered so far are stored in the delivered list. Finally, nbOfRetries
refers to the number of attempts to retrieve a coalition process p must do before
creating its own coalition.

Note that for the sake of clarity, some functions (resp. messages) that are
described below take a parameter, named info, that is a data structure carrying
various data on the process that called the function (resp. sent the message). For
instance info.coalition contains the coalition the process relies on; info.epoch
carries its epoch; etc.

Unconscious Eventual Consistency with Gossips 71

The isNext() Function. To ease the reading of the algorithm, we have isolated
the isNext() function (Figure 1), whose role is to indicate if a message must be
delivered (returns true) or if it must stay in the pending list. This function
enforces the following policy: the protocol can only wait for messages that are
sequenced by the coalition the process relies on and at the same epoch as the
one the process is currently in. All other messages are delivered as soon as they
are received.

1: function isNext(sn, ts)
2: if (sn.pid ∈ coalition) ∧ (sn.epoch = epoch) then
3: if (sn.number = nextSN) ∨ (ts + deliveryTimeout < getTime()) then
4: nextSN := sn.number + 1
5: return true
6: else
7: return false
8: return true

Fig. 1. The isNext() function

Algorithm Executed by Any Process. Figure 2 depicts the algorithm ex-
ecuted by any process pi. The coalitionUpdate() function aims at updating the
knowledge pi has about existing coalitions. It is called each time a new message
is received. It simply changes pi’s coalition if pi’s epoch is lower than the epoch
of the coalition given in parameter.

For each process pi

1: procedure ecBroadcast(m)
2: 〈sn〉 := getSN()
3: gossip 〈m, sn, info〉
4: pending.add([m, sn, getTime()])

5: function getSN()
6: repeat nbOfRetries times
7: 〈info〉 := getCoalition()
8: if info = ∅ then
9: coalitionUpdate(info)

10: return snRequest()
11: info.coalition = {pi}
12: info.epoch = epoch + 1
13: coalitionUpdate(info)
14: return snRequest()

15: upon gossip〈m, sn, info〉 from pj do
16: coalitionUpdate(info)
17: pending.add([m, sn, getTime()])

For each process pi

18: upon pending.first = [m, sn, ts]
with isNext(sn, ts) do

19: rolledback = ∅
20: while m ≺ delivered.last do
21: rollback(delivered.last)
22: rolledback.add(delivered.removeLast())
23: ecDeliver (m)
24: delivered.add(m)
25: while rolledback = ∅ do
26: ecDeliver (rolledback.removeFirst())
27: pending.remove([m, sn, ts])

28: procedure coalitionUpdate(info)
29: if info.epoch > epoch then
30: coalition := info.coalition
31: epoch := info.epoch
32: nextSN := 0

Fig. 2. Algorithm executed by any process pi

Process pi can use the ecBroadcast() function to initiate the broadcast of
a message m. This function first gets a sequence number using the getSN()

72 R. Baldoni et al.

function; it then gossips the message together with its sequence number and
information about pi (coalition and epoch); finally, it adds message m to the
pending list. The getSN() function first tries to retrieve a coalition using the
getCoalition()1 function. Then, it uses the snRequest()2. function to get a se-
quence number from the coalition returned by the getCoalition() function. Note
that each time the snRequest function is invoked, it sends the request to a dif-
ferent member in order to balance the load over all coalition members and to
increase the probability to successively issue consecutive sequence numbers. Af-
ter nbOfRetries unsuccessful tries, the getSN() function creates a coalition.

When process pi receives a gossip message m, it first updates its coalition if
necessary; it then adds m to the pending list. Messages stored in the pending list
are delivered as soon as they are first in the list and that the isNext() function
returns true. Note that the delivery of a message may require rolling back and
re-delivering previously delivered messages (Lines ??-?? and ??-??).

3.3 Self-stabilization

The mechanism described in this section aims at leading to a system with only
one coalition. We start by describing a protocol executed by coalition members to
merge coalitions. Then, we present an age-based mechanism that allows selecting
stable processes, i.e. processes that remained in the system for the longest time.
Finally, we show how faults impacting coalition members are handled.

Coalition Merging. Each coalition member pi executes an algorithm in charge
of merging coalitions. This algorithm differs from the one executed by standard
processes by the coalitionUpdate() function (Figure 3). Its behavior is the fol-
lowing: when the coalition given in parameter is the same as pi’s coalition, the
function simply updates pi’s epoch if it is lower than the one passed as a param-
eter. When coalitions differ, the function merges the two coalitions and uses the
size() function to try to reach the coalition’s optimal size. This function either
truncates the coalition using the truncate() function, or adds processes returned
by the getProcess() function. Next paragraph explains how processes are selected
by these two functions.

Aging Mechanism. To improve the stability convergence time, the proto-
col encompasses an aging mechanism3 that aims at selecting the most stable
members. The aging mechanism shares similarities with the mechanism used to
improve the reliability of epidemic broadcast algorithms [8]. The basic idea un-
derlying this mechanism is that each process has an age that reflects the number

1 For space reasons, the getCoalition() function is not described. This function either
returns the coalition pi relies on (if such a coalition exists), or broadcasts a “coalition
request” message to discover a coalition.

2 For space reasons, the snRequest() function is not described. This function simply
requests a sequence number from one member of the coalition pi relies on.

3 For space reasons, we do not provide the pseudo-code of this mechanism.

Unconscious Eventual Consistency with Gossips 73

For each coalition member pi

1: procedure coalitionUpdate(info)
2: if info.coalition = coalition then
3: if info.epoch > epoch then
4: epoch := info.epoch
5: nextSN := 0
6: else
7: merge(coalition, info.coalition)
8: size(coalition)
9: epoch := max(epoch, info.epoch) + 1

10: nextSN := 0

For each coalition member pi

11: procedure merge(c1, c2)
12: c1 := c1 ∪ c2

13: procedure size(c)
14: if card(c) > optimalSize then
15: truncate(c)
16: else
17: while (card(c) < optimalSize) ∧

hasMoreProcesses()
18: c := c ∪ getProcess()

Fig. 3. Algorithm executed by any coalition member pi

of messages the process delivered (the age is incremented every N deliveries).
Each process stores the age of coalition members and propagates them with each
message (in the coalition list). Then, the truncate() function selects the mem-
bers with highest age. Eventually, stable processes will have a higher age than
all other processes, which guarantees that all coalition members will be stable.

Note that there is no guarantee that two executions of the truncate() function
by two different coalition members will produce the same result. Indeed, this
depends on the knowledge that these two members have about the ages of all
coalition members. Nevertheless, this is not an issue because the probability of
having different knowledge can be decreased by increasing N .

Moreover, to further increase the speed at which stability is reached, the
getProcess() function returns “old” processes. This is achieved by having each
coalition member maintain a (short) list of the oldest processes it knows.

Handling Faults in Coalitions. As described, the protocol does not handle
faulty coalition members. This does not affect the correctness of the protocol,
but it alters its stability convergence time. Faulty members are handled using a
heartbeat protocol among coalition members (Figure 4). Each member periodi-
cally (δ) sends a PING message to other members in the coalition. Members
maintain two data structures: alive is the list of processes from which a PING
message has been received. This list is reset periodically. suspected is the list of
processes that the member suspects. This list is built by adding members of the
coalition that are not in alive after (2∗δ) ms (Line ??), and by adding members
suspected by other members (Line ??). Processes that are in the suspected list
of a process pi will no longer be added by pi in a coalition (Line ??).

The above-described behavior requires some additional comments: the heart-
beat protocol does not prevent false suspicions. On the contrary, once a member is
suspected by some process pi, it will eventually be suspected by all other coali-
tion members. Nevertheless, if suspected lists were not propagated, coalitions
would oscillate as long as one process falsely suspects another member. More-
over, propagating suspected lists is not a real issue since (1) timeouts can be set
sufficiently large to prevent most cases of false suspicions and (2) it is possible

74 R. Baldoni et al.

For each coalition member pi

1: suspected := ∅
2: alive := ∅

3: task heartBeat every δ ms
4: send〈PING, info〉 to all pj ∈ coalition

5: upon receive〈PING, info〉 from pj do
6: alive := alive ∪ {pj}
7: suspected.add(info.suspected)
8: coalitionUpdate(info)

For each coalition member pi

9: task coalitionMaintenance every (2 ∗ δ) ms
10: info.epoch = epoch + 1
11: if alive = coalition then
12: suspected.add(coalition\alive)
13: info.coalition = alive
14: coalitionUpdate(info)
15: alive := ∅

16: procedure merge(c1, c2)
17: c1 := (c1 ∪ c2)\suspected

Fig. 4. Extension for handling coalition members faults

to remove processes from the suspected lists after some (long enough) period of
time, in order to allow falsely suspected processes to re-integrate coalitions.

3.4 Coalition Self-sizing

This section describes a mechanism in charge of improving the protocol’s scal-
ability. In our context, ensuring scalability consists in being able to handle a
large number of nodes and to guarantee high throughput in message deliveries
under high load. The protocol described so far already deals with scalability
issues by (1) using a gossip protocol to disseminate messages, (2) distributing
the sequencer role among several processes (coalition), and (3) balancing the
load among coalition members by requesting sequence numbers in a round-robin
fashion. Nevertheless, one limitation of the protocol is that it assumes a priori
knowledge of the optimal coalition size.

We have extended the protocol with a self-sizing mechanism4 that aims at dy-
namically computing the optimal coalition size. This mechanism is based on the
fact that during a long enough period of time, all coalition members experience
the same load (due to the round-robin load balancing mechanism). Therefore,
computing the optimal size can be done by a specific member (i.e. the member
that has rank 0, which we will call the “smallest member”), by simply looking
at the load it experienced during the last sizing period. If the node is overloaded,
it adds processes to the coalition; otherwise, it removes processes. This is the
responsibility of the application deployer to decide the maximal load (in terms
of request/seconds) a node in the system can support.

When two coalitions merge, the optimal size is set to the sum of the opti-
mal sizes of both coalitions. This is the only case when the optimal size can be
changed by a member other than the smallest one. Note that it is necessary to
determine if the optimal size is the one set by the smallest member or by the
process that executed the merger. This decision can easily be done by propagat-
ing a sizing number together with the optimal size sent in each message. This
sizing number allows knowing if a sizing decision precedes or not another one.

4 For space reasons, the pseudo-code of this extension is not shown.

Unconscious Eventual Consistency with Gossips 75

4 Performance

In this section, we present the performance results obtained by simulating our
algorithm. We start by describing the simulation settings and then give the
actual performance measurements. The goal of the simulations is to show that
the protocol is (1) self-stabilizing, (2) non-blocking, and (3) scalable.

4.1 Simulation Environment

We simulated our algorithm using the Peersim simulator [1]. Peersim allows
cycle-based simulations of distributed algorithms in large-scale environments.
Processes are connected using a random graph topology: every process knows
a fixed number of random processes. Moreover, processes disseminate messages
using an LPBCast-like broadcast protocol [8]. Note that we extended the simula-
tor in order to be able to simulate asynchrony: we can vary the time (i.e. number
of cycles) it takes for a message to be transferred from one process to another.
In our experiments, this time is bounded by maxLatency, and every message
transfer takes a random number of cycles ranging from 1 to maxLatency.

Finally, we model churn (i.e. continuous joining and leaving of processes) by
periodically replacing a percentage of processes. All experiments are run with
1000 processes, with a PING period (δ) of 20 cycles and a sizing period of 40
cycles. All the experiments start with a warm-up phase (first 100 cycles) in which
processes progressively join.

4.2 Self-stabilization

The first experiment illustrates the fact that the protocol is able to select sta-
ble processes. It consists in simulating 1000 processes that randomly broadcast
messages. The self-sizing mechanism was disabled and the optimal coalition size
was set to 8. The goal of the experiment is to show how the average number of
stable members in each coalition evolve. For the sake of clarity, the average was
only computed on coalitions that stayed in the system for longer than 20 cycles.

Figure 5 depicts the average number of stable processes in each coalition as
a function of time (i.e. cycle number). We varied both the latency (through the
maxLatency parameter) and the churn rate. The maxLantecy parameter ranges
from 1 to 15; the churn rate ranges from 4% to 8% every 15 cycles. We observe
that without any aging mechanism, the protocol does not reach stability (last
plot). On the contrary, the aging mechanism ensures that stability is reached
(first four plots), i.e. that eventually there will be 8 stable processes in the
coalition. Nevertheless, the speed at which stability is reached depends on the
level of asynchrony and churn.

– The stability time increases with asynchrony for two reasons: (1) more time
is necessary for coalitions to meet, and (2) asynchrony alters the knowledge
that processes have about the age of other processes. Therefore, the protocol
has a higher probability of selecting processes that are not stable.

76 R. Baldoni et al.

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200 1400 1600

time

n
b

 o
f

s
ta

b
le

 p
ro

c
e
s
s
e
s

C=4, L=1

C=4, L=15

C=8, L=1

C=8, L=15

C=8, L=15 - no aging

Fig. 5. Stable processes selection

– Increasing churn decreases the time it takes to reach stability. This result
might seem surprising, but it can easily be explained by the fact that: (1)
unstable members in the coalition have higher probability to fail (and thus
to be replaced), and (2) stable processes are proportionally older (and thus
have higher probability to be selected).

4.3 Non-blocking Behavior

The second experiment illustrates the fact that our protocol is non-blocking.
In particular, we show that it still provides service during periods when the
network is partitioned. The experiment consists in simulating 1000 processes
that randomly broadcast messages. The maxLatency parameter is set to 10.
Moreover, there is no churn. In order to simulate 3 network partitions, we group
processes into 3 groups. The interconnection graph is built in such a way that
each process has an equal number of (randomly chosen) neighbors in each group.
A network partition is simulated by disconnecting the groups.

Figure 6 plots the average latency of a message broadcast as a function of
the time at which the broadcast was initiated. The experiment starts with three
network partitions that merge at cycle 300. As explained in Section 3.1, messages
that are not delivered by the gossip primitive are retrieved using a pull mecha-
nism. In the depicted experiment, this is the case of most messages sent between
cycles 0 and 300. Indeed, our protocol keeps providing service, but the gossip
primitive only delivers messages to processes belonging to the same partition
as the one the message’s broadcaster is in. Other processes wait until the parti-
tions have merged to retrieve these messages using the pull mechanism. Messages
broadcast after cycle 300 have an average latency ranging from 5 to 40 cycles.
This is reasonable considering that the maximum latency of a point-to-point
communication is equal to 10 cycles.

Figure 7 plots the average number of rollbacks that were done before deliv-
ering a message as a function of the time at which the broadcast was initiated.

Unconscious Eventual Consistency with Gossips 77

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450 500

time

la
te

n
c
y
 (

n
b

 o
f

c
y
c
le

s
)

3 partitions no partition

Fig. 6. Average message latency

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500

time

n
b

 o
f

ro
ll

b
a
c
k
s

3 partitions no partition

Fig. 7. Average number of rolled-back messages

The experiment is the same as the previously described one. We observe that
messages broadcast between cycles 0 and 300 require rollbacks before being
delivered. This can be explained by the fact that these messages were previously
delivered in the partition of their respective broadcasters. After the network
merger, these messages are retrieved using the pull mechanism. Their delivery
requires rolling-back part of messages that were delivered during the network
partition. We also observe that messages sent after cycle 300 do (almost) not re-
quire any rollback before being delivered. This shows that our protocol behaves
like a traditional total ordering protocol when the network is not partitioned.

78 R. Baldoni et al.

As a consequence, it is possible in such periods to truncate the memory, while
still ensuring eventual consistency with a very high probability.

4.4 Scalability

The last experiment we present demonstrates that the protocol is scalable. In
particular, we show that the protocol ensures (almost) constant throughput even
during periods when the number of initiated broadcasts drastically increases.

The experiment consists in simulating 1000 processes that have a probability
to broadcast messages that varies over time. In this experiment, the maxLatency
parameter is set to 10 and there is no churn. Moreover, the warm-up phase is
not represented for the sake of clarity. Figure 8 plots both the average number of
sequence number (SN) requests received by each coalition member at the start
of each round (first Y axis) and the average number of broadcasts initiated at
the start of each round (second Y axis). Each “coalition X” plot depicts the
life cycle of a coalition (i.e. the cycle at which it is created/destroyed) and the
average number of SN requests received by each member.

-40

-20

0

20

40

60

80

0 100 200 300 400 500 600 700 800 900

time

n
b

 o
f

S
N

 r
e
q

u
e
s
ts

0

5

10

15

20

25

30

35

40

n
b

 o
f

b
ro

a
d

c
a
s
ts

Coalition 1

Coalition 2

Coalition 3

Coalition 4

Coalition 5

Nb of broadcasts

Fig. 8. Self-sizing mechanism

The self-sizing mechanism was parameterized to maintain the average num-
ber of SN requests by member between 30 and 40. From cycle 0 to cycle 300,
processes have a low probability to initiate a new broadcast. During this period,
messages are sequenced by coalition 1, which contains 3 members that handle
(on average) 32,5 SN requests per cycle. Then, the broadcast rate significantly
increases between cycles 300 and 600. Coalition 1 is first replaced by coalition
2 (6 members and 64,7 SN requests per cycle). Thus coalition 2 does not yet
have enough members to handle the load. Consequently, coalition 2 is replaced
by coalition 3 (12 members and 38,5 SN requests per cycle) after a short period
of time. At time 600, the broadcast rate suddenly decreases. Coalition 3 is first

Unconscious Eventual Consistency with Gossips 79

replaced by coalition 4 (7 members and 15 SN requests per cycle), and then by
coalition 5 (4 members and 31,3 SN requests per cycle). This experiment shows
that the self-sizing ensures that coalitions can sustain a constant throughput,
regardless of the broadcast rate.

5 Related Work

Update ordering for eventual consistency can be ensured by using total order
protocols like the ones described in [6]. However, only optimistic total order
protocols can efficiently support eventual consistency in a large scale setting
[20,18]. Other approaches to total ordering are too strong and would decrease
responsiveness.

A interesting work is the one presented in [9] that presents a formalization
of a related problem (eventual serializability) and an algorithm that solves it.
Nevertheless, targeted environments are much smaller scale than the one we
target and it is assumed that each replica is able to know if an update is stable
(i.e. has been applied to every replica). Thus, the algorithm would not work
correctly in highly asynchronous systems. Another work related to our work is
the one done by Golding who proposes protocols for weak consistency group
communications [11]. Proposed protocols assume a knowledge of the number of
replicas in the system. Thus, they are not usable in the environments we target.

Moreover, several optimistic total order protocols have been proposed. They
distinguish between tentative delivery and committed delivery of messages. This
approach has been proposed by Kemme et al. in [14] to improve the responsive-
ness of the system in a LAN. The optimistic approach in this case is based on
the spontaneous total ordering in LANs. The protocol proposed by Vincente and
Rodrigues in [20,18] guarantees that the tentative order is equal to the commit-
ted one during synchrony periods of the network. During periods of asynchrony
rollbacks might occur. Finally, the protocol proposed by Sousa et al. in [18]
does its best to guarantee that the tentative order is equal to the committed
by artificially delaying messages received at a process before delivery through a
mechanism called delay compensation. This delay based approach aims at cre-
ating the right conditions for spontaneous total ordering in WANs. All these
protocols deterministically guarantee eventual consistency by relying on strong
reliable update dissemination. As a consequence, they do not scale and cannot
be employed in weakly connected environments. This is contrary to our protocol
that uses epidemic dissemination.

There exist other examples of protocols relying on epidemic dissemina-
tion [19,15,16,2]. For instance, Bayou [19] is a storage system designed for a
weakly connected computing environment. In Bayou, one server, designated as
the primary, takes responsibility for totally ordering updates and thus for decid-
ing the committed order. Each secondary replica executes updates in a tentative
order while the committed order is being decided. Update propagation follows an
anti-entropy [7] mechanism: pairs of replicas periodically exchange information
to update their states. This pair-wise communication copes with arbitrary net-

80 R. Baldoni et al.

work connectivity and after an arbitrary number of communication exchanges,
replicas converge to an identical state.

Oceanstore [15] targets extremely wide distributed environments with huge
numbers of users. Consistency is reached using a two-tier architecture: a specific
small set of untrusted servers, called the inner ring of the object, store the
primary object replicas (primary tier). Other replicas, called secondaries, are
deployed on a large number of nodes, mostly for caching reasons (secondary
tier). The inner-ring totally orders updates coming from any node hosting a
replica using a Byzantine agreement protocol [5]. Contrarily to our protocol,
in Oceanstore and Bayou, consistency is achieved in a conscious manner. Note
that a similar notion of unconsciousness has been introduced in the context of
self-stabilizing communication protocols [12].

6 Concluding Remarks

This paper combines various self-stabilization techniques within a replication
protocol that ensures unconscious eventual consistency. The protocol is stable,
non-blocking, and scalable. Our simulations convey the reasonable latency of the
protocol during synchronous periods, and its high throughput under load.

In contrast to a conscious notion of eventual consistency, where the repli-
cas would know when they reached a stable consistent state, the guarantee we
provide can be implemented in permanently asynchronous environments, while
still supporting important classes of distributed applications such as interactive
applications based on continuous shared data.

References

1. PeerSim: A Peer-to-Peer Simulator, 2006. http://peersim.sourceforge.net/.

2. Karl Aberer, Magdalena Punceva, Manfred Hauswirth, and Roman Schmidt. Im-
proving data access in p2p systems. IEEE Internet Computing, 6(1):58–67, 2002.

3. Sumeer Bhola and Mustaque Ahamad. 1/k phase stamping for continuous shared
data. In Proceedings of the Symposium on Principles of Distributed Computing,
pages 181–190, 2000.

4. Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and
Yaron Minsky. Bimodal multicast. ACM Transactions on Computer Systems,
17(2):41–88, 1999.

5. Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance and Proac-
tive Recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

6. Xavier Defago, Andre Schiper, and Peter Urban. Total Order Broadcast and Mul-
ticast Algorithms: Taxonomy and Survey. ACM Comput. Surv., 36(4):372–421,
2004.

7. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database mainte-
nance. In Proceedings of the Symposium on Principles of Distributed Computing,
pages 1–12, 1987.

Unconscious Eventual Consistency with Gossips 81

8. P. Th. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Ker-
marrec. Lightweight Probabilistic Broadcast. ACM Transanctions on Computer
Systems, 21(4):341–374, 2003.

9. A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman. Eventually-
serializable data services. Theoretical Computer Science, 220(1):113–156, 1999.

10. M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM, 32(2):374–382, 1985.

11. R. Golding. A weak-consistency architecture for distributed information services.
Computing Systems, 5(4):379–405, 1992.

12. M. Gouda and N. Multari. Stabilizing communication protocols. IEEE Trans.
Comput., 40(4):448–458, 1991.

13. I. Gupta, K. Birman, and R. van Renesse. Fighting fire with fire: using randomized
gossip to combat stochastic scalability limits. Journal of Quality and Reliability
Engineering International, 2002.

14. B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing Transactions over
Optimistic Atomic Broadcast Protocols. In Proceedings of International Conference
on Distributed Computing Systems, 1999.

15. J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture
for global-scale persistent storage. In Proceedings of ASPLOS, November 2000.

16. Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming Aggres-
sive Replication in the Pangaea Wide-area File System. ACM SIGOPS Operating
Systems Review, 36, 2002.

17. Yasushi Saito and Marc Shapiro. Optimistic Replication. ACM Computing Survey,
37(1):42–81, 2005.

18. Antonio Sousa, Jos Pereira, Francisco Moura, and Rui Oliveira. Optimistic Total
Order in Wide Area Networks. In Symposium on Reliable Distributed Systems,
pages 190–199, October 2002.

19. D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and
C. H. Hauser. Managing update conflicts in bayou, a weakly connected replicated
storage system. In Proceedings of the Symposium on Operating Systems Principles,
pages 172–182. ACM Press, 1995.

20. Pedro Vicente and Lúıs Rodrigues. An Indulgent Uniform Total Order Algorithm
with Optimistic Delivery. In 21st Symposium on Reliable Distributed Systems
(SRDS 2002), pages 92–101, Osaka, Japan, 2002.

All k-Bounded Policies Are Equivalent for

Self-stabilization

Joffroy Beauquier, Colette Johnen, and Stéphane Messika

L.R.I./C.N.R.S., Université Paris-Sud 11, bat 490, 91405 Orsay Cedex, France
jb@lri.fr, colette@lri.fr, messika@lri.fr

Abstract. We reduce the problem of proving the convergence of a
randomized self-stabilizing algorithm under k-bounded policies to the
convergence of the same algorithm under a specific policy. As a con-
sequence, all k-bounded schedules are equivalent: a given algorithm is
self-stabilizing under one of them if and only if it is self-stabilizing under
any of them.

Keywords: randomized algorithms, distributed algorithm, self-
stabilizing system, scheduler.

1 Introduction

By their very nature, distributed algorithms have to deal with a non-deterministic
environment. The speeds of the different processors (machines) or the message
delays are generally not known in advance and may vary substantially from one
execution to the other.

For representing the environment in an abstract way, the notion of scheduler
(also called deamon or adversary) has been introduced. The scheduler is in par-
ticular responsible of which machines take a step in a given configuration or
of which among the messages in transit arrives first. It is well known that the
correctness of a distributed algorithm depends on the considered scheduler. This
remark also holds for self-stabilizing distributed algorithm.

Different classes of schedulers have been considered in the literature on self-
stabilization. Very often, the scheduler is viewed as a machine that chooses the
subset of activable machines to be activated. For instance the synchronous sched-
uler chooses all enabled machines which take an elementary step concurrently,
the central scheduler (central demon) chooses a single machine and then the ma-
chines take their steps one after the other, the distributed scheduler chooses a
subset of enabled machines which take a step concurrently and the probabilistic
scheduler draws randomly a subset of enabled machines. It can be assumed that
the scheduler disposes of no memory at all, or of a bounded finite memory, or
of an infinite memory. The second case corresponds to bounded schedulers (that
can be either centralized or distributed).

If the synchronous scheduler is able to produce one policy, there is infinity
of policies produced by the distributed schedulers (corresponding to all possible
choices of subsets along the computation). Then stating that an algorithm is
correct under a given scheduler means it is correct for each policy ‘produced’

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 82–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

All k-Bounded Policies Are Equivalent for Self-stabilization 83

by the scheduler. A ”proof” that does not take into account all policies can
hardly be considered as correct even if the algorithm is deterministic, and it
is still worst for probabilistic algorithms, since the probabilistic measure of the
executions depends on the considered policy. For instance under some policies
the algorithm converges in a finite bounded number of steps (the stabilization
time) while with others it can not converge at all. Even when the stabilization
time is always finite, it can differ according to the policy.

Since it is not feasible to have a special proof for each policy, a convenient way
to treat correctly the problem would be to prove general equivalence properties
for some classes of policies. These properties would express that if an algorithm
is correct for a particular policy of the class, then it is correct for any policy in
the class. The aim of this paper is to present such an equivalence property.

We prove that all bounded policies are equivalent for self-stabilization for a
large class of protocols. That means that if an algorithm can be proved to be
self-stabilizing under a particular bounded policy, then it is also self-stabilizing
for any bounded policy. Note that this class contains the synchronous policy.
The class contains all potential stable protocols (see Definition 10) such that
every computation step is serializable, although several machines concurrently
perform a action during the computation step. Any distributed protcol may
be transformed into a potential stable protocol (the converse is not true). The
requirement that a computation step is serializable, is a strong requirement that
is not verified by all protocols. For instance, a protocol that converges only under
the centralized deamon has some computation steps that are not serializable.

We also establish a bound of the convergence time in any bounded policy
according to the convergence time in a specific policy.

Then, as a corollary we get that self-stabilization under the synchronous pol-
icy implies self-stabilization under any bounded policy. This leads to drastic
simplifications in the proofs of already known results. For instance the result of
[1], can be deduced directly from [2].

Related works. In [3], Dolev, Israeli and Moran introduced the idea of a two
players game between the scheduler and what they call luck, i.e. random values,
without defining formally the probabilistic space of computations. The structure
(informally presented) behind a scheduler-luck game is a policy (formally defined
in this paper) where some branches have beeen cut. In [4], [5], and [6], Lynch,
Pogosyants and Segala present a formal method for analyzing probabilistic I/O
automata which model distributed systems. A clear distinction between the al-
gorithm, which is probabilistic, and the scheduler, which is non-deterministic,
is made. The notion of cone, that is at the basis of the probabilistic space, is
also used. These works do not consider self-stabilization. In [7,8] the notion of
randomized distributed algorithms under a fixed policy is studied using methods
issued from Markov theory, in [8] the authors adapt these methods to Markov
Decision Processes. In [9], we reduce the problem of computing the convergence
time of a probabilistic self-stabilizing algorithm to an instance of the Stochastic
Shortest Path problem (SSP). The reduction gives us a way to compute auto-
matically the stabilization time against the worst and the best policy.

84 J. Beauquier, C. Johnen, and S. Messika

2 Notion of Markov Decision Process

In this section we adopt the notation of de Alfaro [10].
Informally, a Markov Decision Process is a generalization of the notion of

Markov chain in which a set of possible actions is associated with each state.
To each state-action pair corresponds a probability distribution on the states,
which is used to select the successor state. A Markov chain corresponds thus to
a Markov decision process in which there is exactly one action associated with
each state. The formal definition is as follows.

Definition 1 (Markov Decision Process). A Markov decision process (MDP)
(S, Act, A, p) consists of a finite set S of states, a finite set Act of actions,
and two components A, p that specify the transition structure.

• For each s ∈ S, A(s) is the non-empty finite set of actions available at s.
• For each s, t ∈ S and a ∈ A(s), pst(a) is the probability of a transition from

s to t when action a is selected. Moreover, p verifies the following property :
∀s, ∀a ∈ A(s)

∑
t∈S pst(a) = 1.

Definition 2 (Behavior of MDP). A behavior of a Markov decision process
is an infinite sequence of alternating states and actions, constructed by iterating
a two phases selection process. First, given the current state s, an action a ∈
A(s) is selected non deterministically; second the successor state t of s is chosen
according to the probability distribution P (t|s, a) = pst(a).

Given a state s we denote Ωs the set of all the behaviors starting in s.

Definition 3 (cylinder sets). The basic cylinder associated with the sequence
h = s0a0s1a1...sn contains all behaviors of a MDP starting at s0 and having the
same prefix h: Ch = {hw ∈ Ωs0}.

Now, we define some measurable sets of behaviors. For every state s, let Bs ∈ 2Ωs

be the smallest algebra of subsets of Ωs, that contains all the basic cylinder sets
and that is closed under complement and countable unions and intersections.
This algebra is called the Borel σ-algebra of the basic cylinder sets and its
elements are the measurable sets of behaviors (see [10]).

To be able to talk about the probability of behaviors, we associate with each
ω ∈ Bs a probability measure P (ω). However this measure is not well defined,
since the probability that a behavior belongs to ω depends on how the actions
have been nondeterministically chosen.

To represent these choices, we use the concept of policy (see [10]). Policies are
closely related to the adversaries of Segala and Lynch [4] to the schedulers of
Lehman and Rabin [11], Vardi [12] and Pnueli and Zuck [13], and to the notion
of strategy [14]. Informally, a policy defines the probabilities with which the
actions are chosen knowing the history of the machine states.

All k-Bounded Policies Are Equivalent for Self-stabilization 85

Definition 4 (Policy). A policy η is a set of conditional probabilities
Qη(a|s0s1...sn), for all n ≥ 0, all possible sequences of states s0, ..., sn and all
a ∈ A(sn), such that

0 ≤ Qη(a|s0, s1..., sn) ≤ 1 and
∑

a∈A(sn)

Qη(a|s0, s1..., sn) = 1.

Definition 5 (Probability measure of a cylinder under a policy). Let η
be a policy. Let h = s0a0s1a1...sn be a sequence of computation steps. In η, the
probability of the basic cylinder associate with the history h is

P η
s (w ∈ Ch) =

n−1∏
k=0

psksk+1(ak)Qη(ak|s0, s1..., sk)

It is well-known that there is an unique extension of the probabilistic measure
P η

s to any element of Bs. Thus the triple (η, Bs, P
η
s) defines a probabilistic space

on Bs.
Note that a policy of a randomized distributed algorithm can be seen as a

Markov chain.

3 Randomized Distributed Algorithms as Markov
Decision Processes

We present how we model a randomized distributed algorithm as a Markov
Decision Process (see [7,8]for more details).

In a distributed system, the topology of the network of machines is usu-
ally given under the form of a communication graph G = (V, E), where the
set V = {1, ..., N} corresponds to the machine set. There is an edge between
two vertices when the corresponding machines can communicate directly. We
assume that all the machines are finite state machines. A configuration X of
the distributed system is the N -tuple of all the states of the machines. Given
a configuration X , the state of the ith machine is written X(i). The code is a
finite set of guarded rules: (i.e. label:: guard → action). The guard of a rule
on p is a boolean expression involving p’s state. The action of a p rule updates
the p state. A machine p is enabled in a configuration c, iff a rule guard of p is
true, in c. The simultaneous execution by several machines of rules is called a
computation step.

The MDP associated with a distributed algorithm is defined by (i) S, the set
of configurations, (ii) Act, the set of machine sets, (iii) A(c), contain all subsets
of enabled machines in c, (iv) pst(a), the probability to reach the configuration
t from a configuration s by a computation step where all machines in a execute
a rule.

Scheduler. A scheduler (adversary) is a mechanism which selects, at each step,
a nonempty subset of enabled machines for applying the guarded rules of the

86 J. Beauquier, C. Johnen, and S. Messika

algorithm. Basically, a scheduler is intended to be an abstraction of the ex-
ternal non-determinism. Because the effect of the environment is unknown in
advance, the scheduler must have the ablility to formalize any external
behavior.

Definition 6. Let DS be a distributed system. A scheduler D is a set of DS
policies.

The synchronous daemon [2] is the scheduler which “chooses” all enabled ma-
chines. This scheduler is a memoryless scheduler (see Definition 7). A single
deterministic policy is produced by the synchronous scheduler.

A computation is k-bounded [15] if along any sequence where a machine p is
continuously enabled, any other machine p′ performs at most k actions before p
performs an action. A policy is k-bounded if it contains only k-bounded computa-
tions. For a randomized distributed algorithm, an infinity of k-bounded policies
exist. For instance, for any positif value of f , Policy(f) (defined in Section 6)
is a 2-bounded policy. Because all enabled machines execute a rule during an
even-numbered computation steps.

The k-bounded scheduler is the set of k-bounded policies. The memory k-
bounded scheduler is the set of memory k-bounded policies (defined below).
In Section 6, we compare the memory k-bounded scheduler with the k-bounded
scheduler. We prove that a memory k-bounded policy is a k-bounded policy. But
there are some k-bounded policies that are not memory K-bounded policies, for
any value of K.

Definition 7. A policy is deterministic iff for each state s there is an action
a ∈ A(s) such that Qη(a|s0, s1..., sn) = 1.

A policy η is a memory k-bounded policy if for all n ≥ 0, all possible sequences
of states s0, ..., sn we have Qη(a|s0, s1..., sns′1s

′
2..., s

′
k) = Qη(a|s′1s′2..., s′k).

A policy is called memoryless if it is a memory 1-bounded policy.

3.1 Probabilistic Convergence of a Randomized Protocol

The main idea behind these definitions is simple : to analyze a self-stabilizing
algorithm under a scheduler, one has to analyze every Markov chain derived from
the MDP associated with the algorithm combined with each policy “produced”
by the scheduler.

Definition 8 (Probabilistic convergence). Let L be a predicate defined on
configurations. A probabilistic distributed algorithm A under a scheduler D prob-
abilistically converges to L iff : in any policy η of D, from any configuration c,
the probability of the set of computations reaching a configuration satisfying L is
equal to 1.

Formally, limn→∞ P η
c (∃m ≤ n | Xm ∈ L) = 1 where Xm is the reached state

after m computation steps in the Markov chain defined as the MDP associated
with A, c and η.

All k-Bounded Policies Are Equivalent for Self-stabilization 87

4 Extension to All k-Bounded Policies

We will show in the sequel that, under some simple conditions, the probabilistic
convergence under a policy guarantees the probabilistic convergence under any
k-bounded policies. After that, it is only needed to prove the convergence under
a policy to formally prove the probabilistic convergence under the k-bounded
scheduler for any value of k.

The first hypothesis we will assume is the serializability, a classical concur-
rency notion. It ensures that a schedule for executing concurrent machine rules
is equivalent to one that executes the machine rule serially in some order.

Definition 9. A computation step sas′ is serializable iff s′ is reachable from s
by a series of computation steps where only a machine performs an action.

An history h = s0a0s1a1...sl is serializable iff each computation step of h is
serializable.

The second hypothesis is a property of probabilistic algorithms.

Definition 10. A probabilistic distributed algorithm is potentially stable if and
only if for each guarded rule there is a no zero probability that the execution of
the rule does not change the machine state.

Observation 1. For a potentially stable distributed algorithm, there exists a real
number εb, such that for any rule performed by any machine, the probability that
this machine state does not change, is at least εb. (Because, the number of rules
is finite). Thus, in any case, the probability that no machine changes its state
during a computation step is at least εb

N where N is the number of machines in
the system.

Notice that any distributed algorithm A can be transformed into a potential
stable algorithm accoding the the following recIpe. Each rule of A G → A is
remplaced by the rule

G → if (random(1, 0) == 0) then A.

Notation 1. |h| denotes the length of the sequence h.
N is the number of machines in the system.

Sketch of the proof. The proof is almost constructive. We suppose that for a
policy the algorithm converges, and then under the two assumptions desccripted
above we find a bound in which the algorithm will be convergent for any arbitrary
policy. To make it clearer we’ve done it step by step (first, when the action
performed is only a one state action and then for any serializable algorithm).
The conclusion is given in the last theorem.

Lemma 1. Let A be a potentially stable algorithm. Assume that there exist two
configurations s, s′, and an action a such that pss′(a) > 0 and a contains a
machine. Then, there is a real number ε > 0 such that in any k-bounded policy
η, for any initial configuration s0, for any history h ending at the configuration
s, there exists a sequence h′ of computation steps such that

88 J. Beauquier, C. Johnen, and S. Messika

(i) P η
s0

(w ∈ Chh′) > P η
s0

(w ∈ Ch)ε, (ii) |h′| ≤ kN , (iii) ε ≥ εb
kN2

pss′(a), and
(iv) the last configuration of h′ is s′.

Proof. We prove that under any policy, it possible to reach s′ after an history
reaching s, in less that kN computation steps with a probability greater than ε.

Let η be a k-bounded policy. Let h be an history s0a0s1a1s2...ams such that
P η

s0
(w ∈ Ch) 	= 0.
An action a is the set of machines that perform a rule during the associated

computation step. We study the case where only one machine performs a rule;
we name it machine 1.

The η policy is k-bounded, thus there exists an action ai in which the machine
1 executes a rule such that (i) Qη(ai|s0, s1..., sm+i−1) > 0 assuming that sm+j =
s ∀j ∈ [0, i − 1], and (ii) 1 ≤ i < kN . Note that by definition of a k bounded
policy, we have the following property: ∀l ∈ [0, i − 1] there exists an action al

such that Qη(ai|s0, s1..., sm+1) > 0 assuming that sm+j = s ∀j ∈ [0, l].
We denote by h′ the sequence sa1sa2..sais

′ defined as: (i) during the execution
of aj where j < i no machine changes its state, and (ii) during the execution of
ai only the machine 1 changes its states. We have (i) P η

s0
(w ∈ Chh′) > P η

s0
(w ∈

Ch)ε, (ii) ε > εb
i+1N2

pss′(a), (iii) |h′| < kN .

Lemma 2. Let A be a potentially stable algorithm. Assume that there exist two
configurations s, s′, and an action a such that pss′(a) > 0 and cs = sas′ is
serializable. Then, there is a real number ε > 0 such that in any k-bounded policy
η, for any initial configuration s0, for any history h ending at the configuration
s, there exists a sequence h′ of computation steps such that

(i) P η
s0

(w ∈ Chh′) > P η
s0

(w ∈ Ch)ε, (ii) |h′| ≤ kN2, (iii) ε ≥ εb
kN3

pss′(a), and
(iv) the last configuration of h′ is s′.

Proof. We prove that under any policy, it possible to reach s′ after an history
reaching s, in less that kN2 computation steps with a probability greater than ε.

cs = sas′ is serializable thus there exists a sequence of computation steps
s0a

′
1s

′
1a

′
2s

′
2..a

′
ns′n of length n < N that reaches s′ from s and along this sequence,

at most one machine performs an action at a time. We call i the machine exe-
cuting a rule during ai. ∀i ∈ [0, n−1], we have ps′

is
′
i+1

(a′
i) > 0 and, by definition,

pss′(a) =
∏n−1

i=0 ps′
is

′
i+1

(a′
i).

Let η be a k-bounded policy. Let h be an history s0a0s1a1s2...s such that
P η

s0
(w ∈ Ch) 	= 0.
According to Lemma 1, for 1 ≤ i ≤ n, there exists an history hi = hi−1a1s2a2...

having the following properties :

(i) h0 = h, (ii) P η
s0

(w ∈ Chi) > P η
s0

(w ∈ Chi−1)εi > 0, (iii) |hi| < hi−1 + kN ,
(iv) εi ≥ εb

kN2
psi−1s′

i
(a′

i), and (v) the last configuration of hi is s′i.

We conclude that the history hn has the following properties (i) P η
s0

(w ∈
Chn) > P η

s0
(w ∈ Ch)ε (ii) |hn| < |h| + kN2, (iii) ε ≥ εb

kN3
pss′(a), and (iv) the

last configuration of hn is s′.

All k-Bounded Policies Are Equivalent for Self-stabilization 89

Lemma 3. Let A be a potentially stable algorithm. Assume that there exists
ηs, a policy such that there is an history hs of length l reaching a legitimate
configuration and there is a real number εs > 0 such that (i) P ηs

s0
(w ∈ Chs) > εs,

and (ii) hs is serializable.
Then, there is a real number ε > 0 such that in any k-bounded policy η, for

any initial configuration c, for any history h ending at the configuration s0, there
is a sequence h′ such that (i) P η

c (w ∈ Chh′) > P η
c (w ∈ Ch)ε, (ii) |h′| ≤ lkN2,

(iii) ε > εb
lkN3

εs, and (iv) h′ reaches a legitimate configuration.

Proof. We prove that under any policy, it possible to reach a legitimate config-
uration after an history reaching s0, in less that lkN2 computation steps with a
probability greater than εb

lkN3
εs.

There exists a sequence hs = s0a0s1a1s2..al−1sl such that P ηs
s0

(w ∈ Chs) >

εs and sl is a legitimate configuration. We have εs =
∏l

i=1 psi−1si(ai−1) > 0.
Thus ∀i ∈ [1, l], we have psi−1si(ai−1) > 0. Moreover, si−1ai−1si is serializable,
∀i ∈ [1, n].

Let η be a k-bounded policy. Let h be an history such that P η
s (w ∈ Ch) 	= 0

and the last configuration of h is s0.
According to Lemma 2, for 1 ≤ i ≤ n, there exists an history hi having the

following properties (i) P η
c (w ∈ Chi) > P η

c (w ∈ Chi−1)εi > 0 where h0 = h (ii)
εi > εb

kN3
psi−1si(ai−1), (iii) i < kN2 and (iii) the last configuration of hi is si.

We conclude that the history hl has the following properties (i) P η
c (w ∈

Chl
) > P η

c (w ∈ Ch)ε, (ii) |hl| < |h| + lkN2, (iii) ε > εb
lkN3

εs, and (iv) the last
configuration of hl is legitimate.

Lemma 4. Let A be a potentially stable algorithm. Assume that there exist a
policy ηs, a real number εs > 0 and an integer l such that from any initial
configuration c there is an history h reaching a legitimate configuration with (i)
P ηs

c (w ∈ Ch) > εs, (ii) h is serializable, and (iii) |h| ≤ l.
Then there is a real number ε > 0 such that in any k-bounded policy η, for

any initial configuration c, for any history h there is an sequence h′ such that
(i) P η

c (w ∈ Chh′) > P η
c (w ∈ Ch)ε, (ii) |h′| ≤ lkN2, (iii) ε > εb

lkN3
εs, and (iv)

h′ reaches a legitimate configuration.

Proof. We prove that under any policy, it possible to reach a legitimate configu-
ration after any history, in less that lkN2 computation steps with a probability
greater than εb

lkN3
εs.

Let η be a k-bounded policy. Let h be an history such that P η
c (w ∈ Ch) 	= 0;

we name s0 the reached configuration after the execution of h.
According to the hypothesis, there is an history hs of length lesser than l

reaching a legitimate configuration such that (i) P ηs
s0

(w ∈ Chs) > εs and (ii) hs

is serializable.
According to Lemma 3, there exists a sequence h′ having the following prop-

erties (ii) P η
c (w ∈ Chh′) > P η

c (w ∈ Ch)ε > 0, (iii) ε > εb
lkN3

εs, (iv) |h′| < klN2

and (iii) the last configuration of h′ is legitimate.

90 J. Beauquier, C. Johnen, and S. Messika

Theorem 1. Let A be a potentially stable algorithm. Assume that there exist
a policy ηs, a real number εs > 0 and an integer l such that from any initial
configuration c there is an history reaching a legitimate configuration with (i)
P ηs

c (w ∈ Ch) > εs, (ii) h is serializable, and (iii) |h| ≤ l.
Under the k-bounded scheduler, Algorithm A probabilistically converges to the

legitimate configuration set.
The expected number of computation steps for reaching a legitimate configu-

ration is bounded by lkN2

εb
lkN3εs

.

Proof. Let η be a k-bounded policy. Let c be a configuration.
According to Lemma 4, there is a real number ε > 0 and an integer D such

that for any history h there is an sequence h′ such that (i) P η
c (w ∈ Chh′) >

P η
c (w ∈ Ch)ε, (ii) |h′| ≤ D, (iii) h′ reaches a legitimate configuration.
Let L be the set of legitimate configurations.
Thus we have P η

c (Xn reaches L) > 1 − (1 − ε)n where Xn contains all the
histories of length lesser or equal to Dn.
We conclude that limn→∞ P η

c (Xn reaches L) = 1. Under the policy η, Algorithm
A probabilistically converges to the legitimate configurations set.

In summary under any k-bounded policy, algorithm A probabilistically con-
verges to the legitimate configurations set. The expected number of computa-
tion steps for reaching a legitimate configuration is bounded by D

ε . Notice that
1 > ε > εb

lkN3
εs and D ≤ lkN2, according Lemma 4.

5 Examples

The aim of these examples is to illustrate how our results can be used. For each al-
gorithm, we exhibit a particular k-bounded policy for which the stabilization proof
is easy. Then, we get, than the algorithm is stabilizing for any k-bounded policy.

5.1 Self-stabilizing Vertex Coloring

In this section, we study a very simple self-stabilizing vertex coloring algo-
rithm (Algorithm 1). The algorithm converges from any configuration to a con-
figuration where neighboring machines do not have the same color. A machine
that has the same color as one of its neighbors is enabled. An enabled machine
can randomly choose any color in the colors set (i.e. execute the R action). All

Algorithm 1. Self-stabilizing vertex coloring algorithm
Constant in p:

B is a constant in N , we assume that B > Δ (the degree)

Variable on p: cp color of p machine, taking its values in B

Action on p:
R:: ∃q ∈ Np such that cp = cq −→ cp = random(1, B)

All k-Bounded Policies Are Equivalent for Self-stabilization 91

colors have the same probability to be chosen: 1/B (B being the color set size).
We assume that B is greater than the maximum machine degree, denoted Δ.

Let us study the algorithm under the memoryless policy η that chooses at each
computation step one of the enabled machine. At each computation step, the
probability that the executing machine chooses a color distinct of its neighbor
colors is at least B−Δ

B . Using the measure technique proposed in [16], one proves
that from any initial configuration c, there is an history h reaching a legitimate
configuration such that (i) P η

c (w ∈ Ch) > (B−Δ
B)N−1, and (ii) |h| ≤ N − 1.

Using the Theorem 1, we directly establish that the vertex coloring algorithm
converges under any k-bounded policy.

5.2 Token Circulation

Consider the following property:

Proposition 1. there is a real εs > 0 and an integer l such that from any initial
configuration c, there is an history h reaching a legitimate configuration such that
(i) P ηs

c (w ∈ Ch) > εs, (ii) h is serializable, and (iii) |h| ≤ l.

We showed in the previous section that once this proposition is true for a pol-
icy η then the algorithms converges to its legitimate configuration under any
k-bounded policy.

Herman [2] has proposed a token circulation algorithm under unidirectional
rings of size 2N+1. This algorithm is a randomly delayed circulation (see code in
Algorithm 2). Only a machine holding a token can take a step. A step consists
in tossing a coin (probability 1/2 for head and tail) and if head to transmit the
token. Finally, the specification is that eventually, only one token circulates in
the ring. In [2], the algorithm was proven under the synchronous policy. This
algorithm is very interesting to analyse because there exists memoryless policy
under which the algorithm does not converge. For instance, under the memo-
ryless policy that chooses at each computation step one of the token in the set
FAR, the set of tokens at maximum distance of predecessor.

Algorithm 2. Token circulation on anonymous and unidirectional rings
Variables on p: vp is a boolean variable;

Random Variables on p:
rand boolp taking value in {1, 0}. Each value has a probability 1/2.

Action on p: lp is the machine preceeding p
R:: vp == vlp → if rand boolp = 1 then vp := (vp + 1) mod 2;

Let us study the algorithm under the memoryless policy η that chooses at each
computation step one of the tokens in the set NEAR, the set of tokens at
minimum distance from teh predecessor. All computations under this policy are
serializable, because in a computation step, a single machine performs an action.
Using the measure technique proposed in [16], it can be proven that from any

92 J. Beauquier, C. Johnen, and S. Messika

initial configuration c, there is an history h reaching a legitimate configuration
such that (i) P η

c (w ∈ Ch) > 1
22N , and (ii) |h| ≤ 2N .

Using the Theorem 1, we directly establish that Herman’s algorithm converges
under any k-bounded policy. Note that the policy η is not a k-bounded policy.
Five years after the publication of this algorithm, Beauquier and al., [1], have
proven the convergence of this algorithm under any memory k-bounded policy,
Beauquier and al., in [15], have proven the convergence of this algorithm under
any k-bounded policy.

6 Comparison of k-Bounded and Memory k-Bounded
Policies

In this section, we assume that all policies are fair. Informally, a fair policy
is a policy that “produces” only fair computations. The notion of fair/unfair
computation is well known; but we need to define the meaning of the expression
“produced computations by a policy η”. If the probability of any prefix of a
computation is not null in η the we say that η “produces” this computation.

A policy η is unfair if (i) there is an infinite computation in which a machine
is continously enabled and never activated (ii) any prefix of this computation
has a positive probability in η.

Definition 11 (Fairness). Let η be a policy. Let comp be a computation where p
is always enabled. η is said fair iff it exists ncomp such that p ∈ a and
Qη(a|prefix of length ncomp of comp)> 0 or P η(prefix of length ncomp of comp)= 0.

Proposition 2. Let A be an algorithm such that any machine has a bounded
number T of states. Any fair memory k-bounded policy is α-bounded with α =
T Nk + k + 1.

Proof. Let η be a fair memory k-bounded policy.
Note that the number of distincts configuration sequences of length k is

bounded by T k.
Consider a computation comp of length α = T Nk +k+1 where some machine

p is always enabled and never performs a rule with P η(comp) > 0. If no such
computation exists then the algorithm is α-bounded. In comp, A same sequence
of length k, s necesseraly appears twice: Thus comp = s0, s, s

′, s, sf ,. We have
P η(s, s′) > 0. Let us study the computation comp′ = (s, s)∗. p is always enabled
during comp′, for any value of n we have P η(prefix of length n of comp’)> 0. η
is not fair because p is never in the set of selected machines by the policy along
comp′: if Qη(a|prefix of length ncomp of comp) > 0 then p is not an element of
a. There is a contradiction: η is a fair policy.

This proves that the class of memory k-bounded policies is included in the class
of k-bounded policies.

There are k-bounded policies that are not memory K-bounded policies. For
any value of f , Policy(f) (Policy(f) defined below) are 2-bounded, because all

All k-Bounded Policies Are Equivalent for Self-stabilization 93

enabled machines execute a rule during even computation steps, but it is not
memory K-bounded for any K. A possible sequence of choices of Policy(2) is:

({p1, p2}, p1)2
1
, ({p1, p2}, p2)2

2
, ({p1, p2}, p1)2

3
, ({p1, p2}, p1)2

4
, ...

A possible sequence of choices of Policy(3) is:

({p1, p2}, p1)3
1
, ({p1, p2}, p2)3

2
, ({p1, p2}, p1)3

3
, ({p1, p2}, p1)3

4
, ...

Policy 1. Policy(f)
Constant: N : the network size

Initialisation: counter0 := 1; counter1 := 0; pn := 0;

Policy(f) where f is an positif integer :
if the history length is an even number then all enabled machines are selected;
else

if (count1 == 0) then
counter0 := counter0*f; counter1 := counter0-1; np := np+1 mod N;

else counter1 := counter1-1;
fi
while machine np is not enabled do np:=np+1 mod N; done
The machine np is selected;

fi

7 Conclusion

In this paper we show that under assumptions all the k-bounded policies are
equivalent for self-stabilization. Then, when an algorithm can be proven to
be self-stabilizing for a particular k-bounded policy, it is also self-stabilizing
for any k-bounded policy. This property is specially interesting when the self-
stabilization proof is easy for a particular policy. The more obvious choice is the
synchronous policy, but as we demonstrate it in the examples, some othe policies
may be used in each particular case. The property allows to simplify existing
proofs, to make some of them unnecessary (Herman’s example). An important
future work issue will be now to compare the convergence time between all these
policies.

References

1. Beauquier, J., Cordier, S., Delaët, S.: Optimum probabilistic self-stabilization on
uniform rings. In: Second Workshop on Self-Stabilizing Systems (WSS95). (1995)
15.1–15.15

2. Herman, T.: Probabilistic self-stabilization. Information Processing Letters 35
(1990) 63–67

3. Dolev, S., Israeli, A., Moran, S.: Analyzing expected time by scheduler-luck games.
IEEE Transactions on Software Engineering 21 (1995) 429–439

94 J. Beauquier, C. Johnen, and S. Messika

4. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: 5th
International Conference on Concurrency Theory (CONCUR’94), Springer-Verlag,
LNCS:836. (1994) 481–496

5. Pogosyants, A., Segala, R.: Formal verification of timed properties of random-
ized distributed algorithms. In: 14th Annual ACM Symposium on Principles of
Distributed Computing (PODC95). (1995) 174–183

6. Pogosyants, A., Segala, R., Lynch, N.: Verification of the randomized concensus
algorithm of Aspnes and Herlihy: a case study. In: 11th International Workshop
in Distributed Algorithms (WDAG97), Springer-Verlag, LNCS:1320. (1997) 22–36

7. Fribourg, L., Messika, S., Picaronny, C.: Coupling and Self-stabilization. In: 18th
International Conference on Distributed Computing (DISC’04), Springer-Verlag,
LNCS 3274, Springer (2004) 201–215

8. Fribourg, L., Messika, S.: Brief announcement: Coupling for markov decision pro-
cesses - application to self-stabilization with arbitrary schedulers. In: 24th Annual
ACM Symposium on Principles of Distributed Computing (PODC’05). (2005) 322

9. Beauquier, J., Johnen, C., Messika, S.: Brief announcement: Computing automat-
ically the stabilization time against the worst and the best schedulers. In: 20th
International Conference on Distributed Computing (DISC’06). (2006)

10. de Alfaro, L.: Formal Verification of Probabilistic systems. PhD Thesis, Stanford
University (1997)

11. Lehmann, D., Rabin, M.O.: On the advantages of free choice: a symmetric and
fully-distributed solution to the dining philosophers problem. In: 8th Annual ACM
Symposium on Principles of Programming Languages (POPL’81). (1981) 133–138

12. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: 26th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society (FOCS’85). (1985) 327–338

13. Pnueli, A., Zuck, L.: Verification of multiprocess probabilistic protocols. Dis-
tributed Computing 1(1) (1986) 53–72

14. Johnen, C.: Service time optimal self-stabilizing token circulation protocol on
anonymous unidrectional rings. In: 21th Symposium on Reliable Distributed Sys-
tems (SRDS 2002), IEEE (2002)

15. Beauquier, J., Gradinariu, M., Johnen, C.: Memory space requirements for self-
stabilizing leader election protocols. In: 18th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC’99). (1999) 199–208

16. Duflot, M., Fribourg, L., Picaronny, C.: Finite-state distributed algorithms as
markov chains. In: 15th International Symposium on Distributed Computing
(DISC’01), Springer-Verlag LNCS:2180. (2001) 240–254

A 1-Strong Self-stabilizing Transformer

Joffroy Beauquier, Sylvie Delaët, and Sammy Haddad

Université Paris-Sud, PCRI, LRI (CNRS UMR 8623), INRIA Futurs, Orsay, France
jb@lri.fr,

{delaet, haddad}@lri.fr

Abstract. In this paper we study k-strong self-stabilizing systems, which sat-
isfy the properties of strong confinement and of k-linear time adaptivity. Strong
confinement means that a non faulty processor has the same behavior with or
without the presence of faults elsewhere in the system (in other words faults are
confined). k-linear time adaptivity means that after k or less faults hitting the
system in a correct state, the recovery takes a number of rounds linear in k.

We show, under some conditions, how an asynchronous self-stabilizing sys-
tem can be automatically transformed into an equivalent synchronous 1-strong
self-stabilizing system where the recovery takes at most 3 rounds. We present in
detail the transformer as well as a 1-strong synchronous unison algorithm. We
also discuss how the construction can be extended to the k-strong case, for an
arbitrary k.

Keywords: Self-stabilization, Fault Containment, k-strong, Transformer.

1 Introduction

Self-stabilization was introduced by Dijkstra in 1974 under the form of three algo-
rithms for mutual exclusion. Nowadays this notion has been proven to be one of the
most important in the field of fault tolerance for distributed systems. The reason is that
self-stabilization guarantees, regardless of its initial state, that a system will eventually
reach a legitimate state (a state from which the executions satisfy the specification), in
particular when the initial state results from transient faults.

One of the actual challenge for stabilization is scalability. Most of the existing self-
stabilizing algorithms are not scalable, in the sense that, even if a single processor is
corrupted in a legitimate state, the convergence time may be proportional to the size of
the system. In fact if no particular care is taken, a correct processor that has a faulty
neighbor, detecting then an inconsistency, can ”think” it is the culprit and change its
state. Then in some sense the fault has been propagated and the same phenomenon
can possibly be repeated again with the neighbors of the neighbors and so on. Thus
even if the property of self-stabilization will take back the system in a legitimate state,
first it will take a long time (especially in large systems), second a large number of
processors (possibly all) will be involved in the recovery. For obvious reasons such
systems are not scalable. Fault-containment is a major issue for the scalability of self-
stabilizing solutions. Being able to confine the effect of the faults in a small perimeter

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 95–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

96 J. Beauquier, S. Delaët, and S. Haddad

is a necessary condition for translating theoretical solutions into real world solutions.
But being able to confine the faults is not enough for most applications, because when
a fault hits a self-stabilizing system, as long as a legitimate state is not reached, the
behavior is incorrect and some safety conditions may not hold. Thus the best solution
one could think of is to regain the consistency in a very small number of transition.
As soon as a single fault appears, it is immediately corrected but if multiple faults hit
simultaneously several processors, then the general self-stabilizing mechanism is used.
Such a system would be instantaneously stabilizing for isolated faults and at the same
time stabilizing for the most serious situations. Such a solution would be very high
priced in terms of stabilization time and memory enlargement because every single
move of the system should be carefully controlled. We choose here a trade-off between
correction efficiency, memory enlargement and stabilization slow down. The systems
will stabilize in 3 rounds or less in the former situation and be self-stabilizing in the
latter.

Related works. The first time adaptive algorithms, as well as the notion of fault locality,
were both introduced in [20] and [17], in the context of non reactive problems. These
articles present algorithms for the persistent bit task. They stabilize in a time propor-
tional to the number of corrupted nodes in the initial state of the system if that number
does not exceed a fixed value. A first asynchronous fault containing algorithm for the
same problem was introduced in [18]. General methods for transforming silent self-
stabilizing algorithms into time adaptive algorithms were studied in [11], [17] and [14].
In [11] the authors present a transformation with a stabilization time in θ(1) if k = 1
and in θ(ST.D) for k ≥ 2, where k is the number of faults, ST the stabilization time of
the non transformed algorithm and D the diameter of the network. In [17], the idea is
to replicate data and to use a voting strategy to repair data corrupted by transient faults.
This transformation has an output stabilization time in θ(k) for a number of corrupted
nodes lower or equal to n/2 (where n is the number of nodes in the system). Other-
wise it stabilizes in θ(diam). [14] extends the idea of [17] to any number of corrupted
nodes. In [6] appears the first time adaptive solution to a reactive problem, the mutual
exclusion, but if the number of faults exceeds a predefined value then the system does
not stabilize. Two algorithms for broadcast are presented in [19] and [4]. The algorithm
of [19] is used to prove that any non silent algorithm in synchronous systems has an
adaptive solution. In [4] the measure of agility which quantifies the strength of a reac-
tive algorithm against state corrupting faults, is also defined and a broadcast algorithm
is proven to guarantee error containment with optimal agility within a constant factor.

Other approaches of fault containment can be found in [1], [9], [15] and [21]. In
[1] and [9] the notion of superstabilization is presented. A superstabilizing algorithm is
a self-stabilizing algorithm that satisfies a passage predicate during recovery and thus
restrains the effect of the faults. In [1] a local stabilizer transforming any algorithm
into a self-stabilizing algorithm that stabilizes in θ(k) is presented. This transformation
was the first to introduce the use of snapshots in order to locally detect and correct
inconsistencies due to transient failures. The correction was performed by a system of
votes based on the snapshots. The first algorithms for the problems of graph coloring
and the dining philosophers locally resistant to Byzantine faults are presented in [21].
In this article a definition of fault containment in regard to a certain class of faults that

A 1-Strong Self-stabilizing Transformer 97

limits the effect of a fault within a certain diameter is also presented. An interesting
impossibility result can be found in [10]. In this article it is proven that a large class of
reactive problems do not have an adaptive solution in asynchronous networks. The first
article to introduce the problem of correcting a single failure in one computation step
is [13]. The authors present a transformer of self-stabilizing algorithms into algorithms
that may correct the fault in the next transition (with a certain probability given by the
transformer) or stabilizes normally otherwise.

Our contribution. The first non-probabilistic 1-adaptive algorithm is presented in [5].
In this article the definition of 1-adaptivity is given, together with necessary and suffi-
cient conditions for a self-stabilizing algorithm to be 1-adaptive under the asynchronous
demon. A 1-adaptive self-stabilizing system is a self-stabilizing system that corrects any
memory corruption of a single process in just one computation step. In other words it is
a 1-strong self-stabilizing algorithm with an optimal convergence time of 1 transition if
the system is hit by a single fault. Two algorithms (election on hypercubes and naming)
show how the conditions can be used for building by hand 1-adaptive algorithms. In
the present paper we go one step further in presenting an automatic transformer. We
introduce k-strong self-stabilizing systems, which satisfy the properties of strong con-
finement and of k-linear time adaptivity. Strong confinement means that the execution
of the algorithm by a non faulty processor from a legitimate configuration has the same
behavior with or without the presence of faults in the system. k-linear time adaptiv-
ity means that after k or less faults hitting the system in a correct state, the recovery
takes a number of rounds linear in k. We show, under some conditions, how an asyn-
chronous self-stabilizing system can be automatically transformed into an equivalent
synchronous 1-strong self-stabilizing system, becoming then resilient to the effect of
scattered faults and so more likely to be used in real large systems.

The input of the transformer is a self-stabilizing algorithm under the asynchronous
demon, the output an equivalent 1-strong self-stabilizing algorithm, correct under the
synchronous demon. Roughly speaking the transformer manages for each processor a
local snapshot (the view is reduced to the processor and its neighbors). The idea of
using snapshots is not new, but previous works used to manage a complete snapshot of
the system, while we use a memory enlargement only proportional to the degree of the
network. Thanks to these snapshots, a corrupted processor can detect inconsistencies
and regain its consistency by consensus with the neighbor’s snapshots. On the contrary,
the neighbors, that also detect the inconsistency, are made unable to take any step and
then the corruption is not propagated. We restrain our attention to the case of a single
fault. Note that the general case of k faults, for an integer k, could be treated with the
same basic ideas, but in a more complicated way (Cf. conclusion).

2 Model

We will use in this article the widely adopted state reading model for self-stabilizing
systems. It is inspired from [3] for the description of the communication network and
from [22] for its representation by a transition system. A distributed algorithm is a set of
processors connected by communication links. It is represented by a communication
graph G = (P , E) where P is a set of processors and E a set of edges, l = (pi, pj),

98 J. Beauquier, S. Delaët, and S. Haddad

where (pi, pj) ∈ P2 and pi 	= pj . Two processors pi and pj of G are said to be
neighbors and can communicate in G if and only if (pi, pj) ∈ E or (pj , pi) ∈ E . We
note Npi the set of pi’s neighbors in G and δpi = |Npi | the number of this neighbors.
A processor pi is a state machine. Its state, noted epi , is the vector of all the values of
its variables. The set of all the possible state of a processor pi is noted Spi . A processor
has a set of guarded rules also called moves and noted Api = {l1pi

, ..., l
αpi
pi }, where

each rule is of the form < label >::< guard >→< action >, label is the identifier
of the rule, label ∈ Api , guard is a boolean expression over pi’s and pi’s neighbors’
variables and action updates the values of pi’s variables.

A distributed system is a transition system S = (C, T), where C is the set of con-
figurations of the system and T the set of its transitions. A configuration of the system
C ∈ C is a vector C = (epi , ..., epj) of the processors’ states of S. We note C|P the
restriction of the configuration C to a set of processors P = {pi, ..., pj}, P ⊂ P and
Dist(C, C′), the distance between two configurations C and C′ (Dist(C, C′) is the
number of processors which have a different state in C and C′). We say that a guarded
rule ljpi

∈ Api is executable in a configuration C if and only if its guard is true in
C. We consider that every processor pi has for each guarded rule lkpi

∈ Api a func-
tion gk

pi
: Spi ×

∏
pj∈Npi

Spj → {true, false} where gk
pi

(C|pi
, {C|pj

| pj ∈ Npi})
returns true if the guard lkpi

of pi is evaluated to true in C and false otherwise. A tran-
sition of T is a triple (C, t, C′), where (C, C′) ∈ C2 and t is a set of label ljpi

such
that ljpi

∈ Api and gj
pi

(C|pi
, {C|pj

| pj ∈ Npi}) = true. C′ is obtained by updat-
ing the state in C of every processor pi by executing the action aj

pi
of the guarded

rule ljpi
, ljpi

∈ t, where aj
pi

is a function, aj
pi

: Spi ×
∏

pj∈Npi
Spj → Spi and

aj
pi

(C|pi
, {C|pj

| pj ∈ Npi}) = C′
|pi

. We say that a processor pi is enabled in a
configuration C if and only if one of its guarded rule is executable in C, formally:
∃ljpi
∈ Api , g(C|pi

, {C|pk
| pk ∈ Npi}, ljpi

) = true. An execution Eα of a system S
is a maximal sequence of configurations, Eα = (C0, C1, ...), so either the sequence is
infinite or the last configuration is terminal (no processor is enabled). We have C0 = α
and for every configuration Ci ∈ Eα there is a t such that (Ci−1, t, Ci) ∈ T .

It is well known that the two models of distributed algorithms and distributed systems
are canonically equivalent (the variables of the algorithm yield the configurations of the
system, the actions yield the transitions). We will freely use this two models in the
sequel.

The set of the possible executions of a system is restricted by the demon. The dis-
tributed demon chooses for each transition any subset of the enabled processors in C
to apply one of their executable rules. A system that works under the distributed demon
is said to be asynchronous. The synchronous demon chooses for each transition the set
of all the enabled processors.

The specification of a problem is a predicate over the system executions. The spec-
ification of a static problem is a predicate over the system configurations. We call
output variables of a system the set of variables which have to verify the specifica-
tion. Let S = (C, T) be a transition system and Spe be a specification of a problem.
Then S is self-stabilizing for Spe if and only if there is a subset L of configura-
tions, called legitimate configurations such that: (i) Every execution that starts in a

A 1-Strong Self-stabilizing Transformer 99

configuration of L satisfies Spe; (ii) Every execution reaches a configuration of L. A
silent self-stabilizing system is a self-stabilizing system such that all the legitimate
configurations are terminal. A self-stabilizing system S has the property of strong con-
finement if and only if for any pair of configurations (C, C′) of S such that C ∈ L,
C′ 	∈ L and C′ is obtained by corrupting any number of processors (arbitrarily chang-
ing their state), there is for every execution EC′ of S an execution EC of the system
such that for every processor pi having the same state in C and C′, the projection of the
execution on the output variables of pi are identical in EC and EC′ . A self-stabilizing
system has the property of k-linear adaptivity if and only if, for every execution of S
starting in an illegitimate configuration at distance at most k from the nearest legitimate
configuration, these executions reach a legitimate configuration in a number of transi-
tion smaller or equal to α×k, where α is a constant. Finally we define a self-stabilizing
system S as being k-strong if and only if it has the property of strong confinement
for any configuration with no more than k faulty process and the property of linear k-
adaptivity. By extension we say that an algorithm associated to a distributed system S is
synchronous, asynchronous, self-stabilizing or 1-strong if and only if S is synchronous,
asynchronous, self-stabilizing or 1-strong.

3 Transformer

We present in this article a general transformer of asynchronous silent self-stabilizing
algorithms into synchronous silent 1-strong self-stabilizing algorithms. Both, the origi-
nal and the transformed algorithm, work on the same identified communication graphs
with no processor of degree 1. The transformed algorithm is composed of a set of
snapshots actions (Cf. section 3.2), noted Snap, and a set of modified actions of the
input algorithm, noted Stab (Cf. section 3.3). The transformed algorithm alternates
synchronous rounds of stabilization with rounds of snapshots (respectively named:
snapshot round and stabilization round). This alternation is obtained by the com-
position of the transformed algorithm with a 1-strong synchronous unison algorithm
that can regain the unison after a single fault in a single round (Cf. section 3.1). This
algorithm stabilizes in at most 4D rounds where D is the diameter of the system. The
final transformed algorithm has then, after the stabilization of the unison, a stabilization
time of 2 times the stabilization time of the input algorithm (because of the alternation
of rounds). In the case of a single fault the system will correct the output variables of the
faulty process as soon as it will make a transition involving the output variables (that is
in at most 2 rounds) and regain a legitimate configuration during the following round,
in the snapshot part.

The assumption on the topology is made for the sake of performance. Consider a
processor of degree one and assume it detects an inconsistency on its output variables.
There are at least two possible reasons for that: it has been the only processor hit by a
fault or its unique neighbor is the only processor hit by a fault. The isolated processor
cannot distinguish between the two situations by itself. It has to wait that its neighbors
take a step (we exclude the case of a network of two processors of degree 1). That would
imply that the general correction mechanism would take 5 rounds instead of 3 when the
hypothesis is made, as we need an idle stabilization round before the correction.

100 J. Beauquier, S. Delaët, and S. Haddad

The hypothesis for the algorithm to be silent is used for the same reason. The main
difference between silent and not silent is that, for the latter, a processor cannot know
immediately whether one of its neighbor has changed its state because of a normal
step or because of a corruption. In the case of a normal step the processor must ex-
ecute the algorithm normally, and perhaps take a step itself in the next round, but in
the case of a corruption it has to freeze, waiting for the corrupted processor to be
corrected. Clearly the processor has not enough information to distinguish between
the two cases, but this information will be allowable to him during the next round,
if it decides not to do anything during the present one. This case can be treated by
adding an idle round after each effective round (a round in which the algorithm is
executed) and then an extra dilatation factor passing from 2 to 3 for each execution
step.

The need to identify the processors comes from the use of snapshots. Finally the hy-
pothesis of asynchrony for the input algorithm comes from the fact that we cannot avoid
that some processor has to be frozen sometimes for not taking the risk to propagate a
fault. Thus the processors may sometimes move asynchronously. We can note that many
common topologies have no processor of degree one like rings, grids, hypercubes, etc.
Moreover most of the common problems concerning in distributed systems have silent
self-stabilizing asynchronous solutions (leader election, topology construction, proces-
sor naming, construction of routing tables, etc.).

3.1 Synchronous Unison

To be able to alternate synchronously this succession of rounds we need to use a syn-
chronizer. Several self-stabilizing algorithms for the problem of synchronous unison
already exist ([12], [2], [16] and [7]). The unison algorithm has to correct immediately
a single corruption so that the faulty processor can recover immediately the unison.
Otherwise the fault would be propagated as the processors would start to move asyn-
chronously.

We use the synchronous unison presented in [7] with slight modifications (Cf. algo-
rithm 1-Strong-SS-MinSU). The general self-stabilizing mechanism is still the same.
We have added a correction action for the faulty processor (in case of a single local
fault), action 1A, and a specific action of no propagation of fault for its neighbors, ac-
tion RF . Action RF has the property that it cannot be executed two rounds in a row.
Thus a processor is not affected by a fault (in case of a single fault) and is not blocked
for the stabilization, having the same behavior as in the input algorithm afterwards. Due
to the lack of space we do not give the proof here but this algorithm verifies the two
following theorems.

Theorem 1. Algorithm 1-Strong-SS-MinSU is self-stabilizing and has a stabilization
time of 4D, where D is the diameter of the system.

Theorem 2. Algorithm 1-Strong-SS-MinSU is 1-strong and recover the unison in a sin-
gle transition in the case of a single fault.

We have now a 1-strong self-stabilizing synchronous unison algorithm (here we chose
K=1). We will compose this algorithm with the actions of Snap and Stab produced

A 1-Strong Self-stabilizing Transformer 101

Algorithm 1. 1-Strong-SS-MinSU
Constants and Variables:
Np : set of neighbors of process p;
N+

p : N+
p = Np ∪ {p};

r : synchronizer value in χ = (tail∗ϕ = {−(2D), ...,−1}) ∪ (stabϕ = {0, ..., K});
RPF : counter in {0, 1} indicating the possible non-propagation of a reset in the past round;
Boolean Functions:
LocalUnison ≡ ∀q ∈ Np : (r = q.r);
NormalStep ≡ r ∈ Stabϕ ∧ LocalUnison;
TailStep ≡ ∃q ∈ N+

p : q.r ∈ tail∗ϕ;
ResetInit ≡ (∀q ∈ N+

p : q.r ∈ stabϕ ∧ ¬LocalUnison)
ResetFrozen ≡ ∃q ∈ Np : r �= q.r,∀k ∈ Np \ {q} : (r = k.r) ∧ r ∈ Stabϕ ∧ RPF = 0;
1-faulty ≡ ∀q ∈ Np, ∀k ∈ Np \ {q}, (r �= q.r) ∧ (q.r = k.r) ∧ q.r ∈ Stabϕ ;
1-local-fault ≡ 1-faulty ∨ResetFrozen
Functions:
RPF-Reset ≡ if (RPF = 1) then RPF := 0;
RPF-Set ≡ if (RPF = 0) then RPF := 1;
ϕ(r) ≡ if (r = 1) then r:=0 else r := r+1 ;
Actions:
NA : NormalStep → r := ϕ(r), RPF-Reset ;
TA : TailStep ∧ ¬ 1-local-fault → r := ϕ(min{q.r, q ∈ N+

p }), RPF-Reset ;
RA : ResetInit∧ ¬ 1-local-fault → r := −2D, RPF-Reset ; (*Reset*)
RF : ResetFrozen → r := ϕ(r), RPF-Set ;
1A : 1-faulty → r := ϕ(q.r), q ∈ Np, RPF-Reset ;

by the transformer by using a fair composition (Cf. [8]). The transformer will alternate
two types of rounds by checking that either r is equal to 0 for stabilization rounds (Stab
actions) or 1 for snapshot rounds (Snap actions). If r is negative then the transformed
algorithm only executes stabilization rounds to let the system stabilize faster.

3.2 Local Snapshots

The principle of the transformation is to keep in every processor an image of the local
partial configuration of the system. Then, because the system is assumed to be silent,
a faulty processor is able to detect and correct a fault in a legitimate state by detecting
an inconsistency between its state and the image of its past state that its neighbors have
stored in their snapshots.

In the sequel we will use the following notations and definitions. We call partial
state of a processor pi for a transformed algorithm in a configuration C the projection
of C|pi

on the variables of the input algorithm and we note it eppi
. We call local partial

configuration of the system for a processor pi in a configuration C the set of the partial
states of pi and all of its neighbors.

Each processor maintains three local views of the system named StabSnap, Cur-
Snap and LastSnap. CurSnap contains a local partial image of the system at the
beginning of the current round. LastSnap contains the local partial image of the sys-
tem at the beginning of the past snapshot round. Finally StabSnap is updated if and
only if the system locally stays in the same local partial configuration during two
stabilization rounds. This corresponds to the fact that a processor detects that the

102 J. Beauquier, S. Delaët, and S. Haddad

Algorithm 2. Snap
Functions:
/* CorrectSnaps() returns true if the 3 snapshots of pi contain the current local partial configura-
tion of the system. */
CorrectSnaps():
return(StabSnap = CurSnap = LastSnap ∧ StabSnap[pi] = eppi∧ ∀pj ∈ Npi , StabSnap[pj] = eppj

);

/* SnapCorCond() returns true if all the snapshots of all the neighbors of pi are consistent and
they all contains the current local partial configuration of the system. */
SnapCorCond():
return(∀pj ∈ Npi , pj .StabSnap = pj .LastSnap ∧ pj .StabSnap[pi] = eppi

∧pj .StabSnap[pj] = eppj

∀pk ∈ Npi ∩Npj , pj .StabSnap[pk] = eppk∀pl ∈ Npj ∩Npk , pj .StabSnap[pl] = pk.StabSnap[pl]);

Actions:
Snap1 (Snapshots Correction 1):

¬CorrectSnaps() ∧ SnapCorCond()
→ CurSnap := StabSnap,LastSnap := StabSnap,∀pj ∈ Npi ∪ {pi},

StabSnap[pj] := eppj
;

Snap2 (Snapshots Correction 2):
gSnap1

pi
(epi , {epj | pj ∈ Npi}) = false ∧ ¬CorrectSnaps()

∧ ∀pj ∈ Npi ∪ {pi}, StabSnap[pj] = LastSnap[pj] = eppj

∧ ∀pk ∈ Npi ∪ {pi} \ {pj}StabSnap[pk] = CurSnap[pk] = LastSnap[pk] = eppk→ CurSnap := StabSnap;
Snap3 (Snapshots):

gSnap1
pi

(epi , {epj | pj ∈ Npi}) = false ∧ gSnap2
pi

(epi , {epj | pj ∈ Npi}) = false
∧ ¬CorrectSnaps() ∧ ∀pj ∈ Npi ∪ {pi}, CurSnap[pj] = eppj

→ StabSnap := CurSnap,LastSnap := CurSnap;
Snap4 (Snapshots):

gSnap1
pi

(epi , {epj | pj ∈ Npi}) = false ∧ gSnap2
pi

(epi , {epj | pj ∈ Npi}) = false
∧ gSnap3

pi
(epi , {epj | pj ∈ Npi}) = false ∧ ¬CorrectSnaps()

→ LastSnap := CurSnap,∀pj ∈ Npi ∪ {pi}, CurSnap[pj] := eppj
;

system may be in a legitimate configuration. The snapshots are the key points of the
transformer. They are taken after each executions of the actions of Self-Stab and are
maintained thanks to the actions of Snap. Snap is composed of four actions, respec-
tively named Snap1, Snap2, Snap3 and Snap4 (Cf. algorithm 3.2). Here are their in-
tuitive descriptions. Snap1: If a processor pi detects that the systems seems to be in a
configuration where only pi’s snapshots are corrupted, then pi corrects its snapshots by
replacing the corrupted values of its snapshots by the current local partial states. Snap2:
If pi detects that the system was in a legitimate state (or seemed so) and that there
has been one corrupted processor in its neighborhood that has already been corrected,
then it replaces its CurSnap view by the current local partial configuration, in order
to remove from CurSnap the corrupted state of its neighbor. Snap3: If the system has
not locally moved during the past round and so seems to be stabilized, then pi puts in
its three snapshots the current local partial view of the system if they do not already

A 1-Strong Self-stabilizing Transformer 103

contain it. Snap4: If at least one processor in the neighborhood of pi (including pi) has
changed its partial state during the last transition, then it puts in its LastSnap view
the value of its CurSnap view and it puts in its CurSnap view the local view of the
system.

If no processor has changed its partial state and all the snapshots of the processors
contain the current value of the local partial configuration, then the processor executes
no action and do not change the snapshots. The actions are mutually exclusive.

As already said in the introduction, the idea of taking snapshots to detect and correct
an inconsistency is not new in the field of self-stabilization. But here, contrary to what
was done before ([1], [5]) we just keep a local (not global) snapshot of the system.
Indeed we enlarge the memory of a processor pi by a factor 3 ∗ δpi . The global memory
space used by the algorithm is enlarged by a factor not greater than 3 ∗ δ, where δ is the
degree of the system.

3.3 Transformed Actions of the Input Algorithm

The second step of the transformation consists in slightly modifying the actions of the
input algorithm (actions TAk

) and adding a correction action (CA) such that the system
becomes 1-strong. CA detects a possible inconsistency between the current state of
the processor and the partial local configuration stored in its neighbor snapshot. This
action is executed by the faulty processor in case of a single local fault. The corrupted
processor is corrected thanks to a consensus on its neighbors snapshots that contain its
former correct partial state.

All the other actions are the actions of the original algorithm to which we add the test
of the function F reeze, that is used to block any fault propagation. All the functions
used by the transformer are presented here. Transition(): The function Transition tests
wether or not the current partial state of the processor is reachable by a normal transition
of the system from the last local partial state stored in the snapshots of its neighbors.
Consensus(): The function Consensus() tests wether or not in every StabSnap view of
a neighbor there is a same partial state different from the current one. If it is the case
then Consensus() returns this partial state, ∅ otherwise. (δ)-CNS(): The function (δ)-
CNS() tests wether or not the snapshots of the neighbors are mutually consistent and
also consistent with the current local partial configuration, more specifically if all the
values in the snapshots are equal to the current partial state of every common neighbor.
InconsistentSnapshot(): The function InconsistentSnapshot() returns true if a processor
in the neighborhood of p has a different value in its snapshots that the value stored in
p’s CurSnap view or LastSnap view for a common neighbor q. PSCC: The func-
tion PSCC() returns true if Consensus returns a partial state different from the current
partial state of pi and all its neighbors snapshots are consistent with each other and
either its snapshots are not consistent with their snapshots. or its partial state cannot
be obtained by a normal transition of the system from the local partial configuration
of the past round stored in the snapshots. Freeze: If, thanks to the local snapshots
in the neighborhood of the processor pi, pi detects that only one of its neighbors, pj ,
has made a move during the last two stabilization rounds, whereas all the other pro-
cessors did not move, then pi presumed that pj might be faulty and F reeze returns
true.

104 J. Beauquier, S. Delaët, and S. Haddad

Algorithm 3. Stab
Variables:

Valgo: Set of variables of the original algorithm;
LastSnap: array of PartialStates of size δ;
CurSnap: array of PartialStates of size δ;
StabSnap: array of PartialStates of size δ;

Functions:

Transition(e′ppi
, {eppj

| pj ∈ Npi}):

return (∃lkpi
∈ Api ,

gk
pi

(eppi
, {eppj

| pj ∈ Npi}) = true ∧ aj
i (e

′
ppi

, {eppj
| pj ∈ Npi}) = eppi

);
Consensus():
if (∀pj ∈ Npi ,∀pk ∈ Npi ,

pk �= pj ∧ pj .StabSnap[pi] = pk.StabSnap[pi] ∧ pj .StabSnap[pi] �= eppi
)

then return(pj .StabSnap[pi]);
else return(∅);
(δ)-CNS():

return(∀pj ∈ Npi , pj .StabSnap = pj .LastSnap
∧pj .StabSnap[pj] = pj .CurSnap[pj] = eppj

∀pk ∈ Npi ∩Npj \ {pi}, pj .StabSnap[pk] = pj .CurSnap[pk]
∀pl ∈ Npj ∩Npk , pj .StabSnap[pl] = pk.StabSnap[pl]
∀pl ∈ Npi ∩Npj ∩Npk \ {pi}, pj .StabSnap[pl] = eppl

);
InconsistentSnapshot():
return(∃pj ∈ Npi ,∃pk ∈ Npi ∩Npj ∪ {pi} ∪ {pj},

CurSnap[pk] �= pj .CurSnap[pk] ∨ LastSnap[pk] �= pj .LastSnap[pk]);
PSCC():
return (Consensus() �= 0 ∧ (δ) − CNS() ∧ (InconsistentSnapshot()

∨¬transition(Consensus, {eppj
| pj ∈ Npi})));

Freeze():
return(StabSnap = LastSnap

∧∃pj ∈ ∀pk ∈ Npi \ {pj},
pk.StabSnap = pk.LastSnap,∧pk.StabSnap[pi] = eppi

∧StabSnap[pk] = CurSnap[pk] = eppk
∧ StabSnap[pj] �= eppj

∀pl ∈ Npi ∩Npk \ {pj}, StabSnap[pl] = pk.StabSnap[pl]);
Correction Actions:
CA (Partial State Correction):
PSCC()
→ eppi

:= Consensus(),∀pj ∈ Npi ∪ {pi}, CurSnap[pj] := eppj
;

Stabilisation Actions:
∀lkpi

∈ Api ,
TAk (Stabilisation):

¬Freeze ∧ gCA
pi

(epi , {epj | pj ∈ Npi}) = false ∧ g
lkpi
pi (eppi

, {eppj
| pj ∈ Npi}) = true

→ ali ;

3.4 Proof

Due to the lack of space we do not give the complete proof here. In the sequel we need
and assume the following notations and hypothesis. Let G = (P , E) be an identified

A 1-Strong Self-stabilizing Transformer 105

communication graph with no processor of degree 1. Let Alg be a self-stabilizing al-
gorithm for the problem specification Spe that is correct under the distributed demon.
Let LA be the set of legitimate configurations of Alg. Let SA = (CA, TA) be its asso-
ciated transition system. Let Algt be the transformation of Alg by the transformer 3.3
for the communication graph G. Let SAlgt = (CAlgt , TAlgt) be its associated transition
system under the synchronous demon. We first prove that the transformed algorithm is
self-stabilizing.

Lemma 1. At most 4 rounds after the first round of unison, in which for every processor
r = RPF = 0 (Cf. section 3.1), then every processor pi of SAlgt has in its CurSnap
view the current partial local configuration, in its LastSnap view the partial local
configuration at the end of the second last stabilization round (except possibly for one
processor of its snapshots).

Sketch of the proof. After at most 4 rounds after the unison we have that the snapshots
of all the processors are almost correct. The only possibility for a snapshot not to be
correct is when a processor in the neighborhood changed its state during one round and
regained the previous state in the following round.

Every round of snapshot, every processor puts in its CurSnap view the current value
of its partial state and of the partial state of its neighbors, whatever action of Snap is
executed (Cf. Snap1, Snap2, Snap3, Snap4 p. 102). Otherwise if a processor does not
execute any action of Snap then its CurSnap view already contains this value.

Let T1 = (Ci, t1, Ci+1), T2 = (Ci+1, t2, Ci+2), T3 = (Ci+2, t3, Ci+3), T4 =
(Ci+3, t4, Ci+4), T1, T2, T3, T4 ∈ TAlgt such that in Ci: ∀pi ∈ P , pi.r = pi.RPF =
0. We get that in Ci+2 every processor has in its CurSnap view the current local partial
state of the system. Thus if a processor pi executes in T4 the action Snap4, then by defi-
nition there is at least one processor in the neighborhood of pi that changed its state dur-
ing T3. Thus pi puts in its CurSnap view the current local partial configuration and in
its LastSnap view the former value of its CurSnap view. We get for pi: ∀pj ∈ Npi ∪
{pi}, Ci+4|pi

.CurSnap[pj] = Ci+3|eppj
= Ci+4|eppj

, Ci+4|pi
.LastSnap[pj] =

Ci+1|eppj
= Ci+2|eppj

.

Now if pi executes Snap1, Snap2 or Snap3 then at most one processor in the
neighborhood of pi changed its state during T3. Then either we get the same prop-
erty as above if no processor changed its state during T3 or if processor pj did, we
get: ∃pj ∈ Npi ∪ {pi}, Ci+4|pi

.LastSnap[pj] = Ci+3|eppj
	= Ci+1|eppj

, ∀pk ∈ Npi ∪
{pi}, Ci+4|pi

.StabSnap[pk] = Ci+1|eppk
= Ci+3|eppk

, Ci+4|pi
.CurSnap[pk] =

Ci+3|eppk
, ∀pk ∈ Npi ∪ {pi} \ {pj}, Ci+4|pi

.LastSnap[pk] = Ci+1|eppk
. �

Lemma 2. At most 4 rounds after the first round of unison, in which for every processor
r = RPF = 0, no processor in the system can execute the correction action, CA.

Sketch of the proof. From the first lemma we have that no processor evaluates the
function Transition to false after the fourth round following the unison.

In fact, let T1 = (Ci, t1, Ci+1), T2 = (Ci+1, t2, Ci+2), T3 = (Ci+2, t3, Ci+3), T4 =
(Ci+3, t4, Ci+4), T1, T2, T3, T4 ∈ T such that in Ci: ∀pi ∈ Ppi.r = RPF = 0.
Suppose that pi evaluates the guard of CA to true in Ci+4. Then pi evaluates PSCC()

106 J. Beauquier, S. Delaët, and S. Haddad

to true and thus Consensus() to eppi
, eppi

	= Ci+4|eppi
and (δ)-CNS() to true which

means that: ∀pj ∈ Npi , pj.StabSnap[pi] = pj.LastSnap[pi] = eppi
and pj .Stab-

Snap[pj] = pj.CurSnap[pj] = Ci+4|ppj
. By lemma 1 we get that eppi

= Ci+2|eppi
=

Ci+2|eppi
(no processor changes its partial state in T3) and ∀pj ∈ Npi , Ci+2|ppj

=
Ci+4|ppj

. Finally, as there has been no fault or corruption during the transitions T1,T2,T3

and T4 we get that pi evaluates Transition(Ci+2|eppi
, {Ci+2|eppj

| pj ∈ Npi}) to true

in Ci+4 and consequently the guard of CA to false. �

Theorem 3. Algt is self-stabilizing.

Sketch of the proof. From section 3.1 we have that the system reaches after at most 4D
rounds a configuration in which all processor are in unison (and their variables RPF
are equal to 0). Thus from theorem 2 we get that after the first stabilization round that
follows the unison the only actions that the system can execute are the actions of the
input algorithm. The only difference with a synchronous execution of this algorithm is
that once in a while a processor can slow down. A processor can evaluate the function
F reeze to true if in the past stabilization rounds only one of its neighbors moved after a
locally stable period. But a processor cannot evaluate two rounds in a row the function
F reeze to true (Cf. F reeze p. 104). Thus the projection of the execution on Valg for
the stabilization rounds corresponds to an execution under the distributed demon. But
by assumption the input algorithm is self-stabilizing under this demon. We get that the
transformed algorithm is still self-stabilizing. �
From the proof above we get that the upper bound for the stabilization time is 4D plus
twice the normal stabilization time of the original algorithm (alternation of snapshots
rounds and stabilization round). Note that during the stabilization of the unison the
system is also executing actions of stabilization, and then is already converging to a
legitimate configuration. When the system is stabilized for the unison it might possibly
be already stabilized. Let us prove now that the transformed algorithm is 1-strong.

1-corrupted configurations. The aim of our transformer is to get in particular a 1-strong
algorithm, that is restraining the effect of a single corruption to the output variables
of the faulty processor. Due to the alternation of rounds if one processor is corrupted
during a stabilization round, at the end of the next snapshot round the corrupted value
of that processor is stored in its neighbor snapshot. Due to the fact that the unison
algorithm stabilizes in one round, a processor cannot change its output variables before
the next stabilization round. Then we will only consider executions starting from such a
round. Thus we have to consider the configurations reached after 1 corruption as being
as follows:

Definition 1. An illegitimate configuration C of SAlgt is 1-Corrupted with respect
to the legitimate configuration C′, noted 1-Cor(C, C′) = true if and only if either
Dist(C, C′) = 1 or Dist(C, C′) = δpi + 1 (where δpi is the number of neighbors of
pi) and : Dist(C|VAlg

, C′
|VAlg

) = 1∧C|eppi
	= C′

|eppi

∧∀pj ∈ Npi , C|pj
.StabSnap =

C′
|pj

.StabSnap ∧ C|pj
.LastSnap = C′

|pj
.LastSnap, ∀pk ∈ Npj \ {pi},

C|pj
.CurSnap[pk] = C′

|pj
.CurSnap[pk] = C|eppi

∧ C′
|pj

.CurSnap[pi] = C′
|eppi

.

A 1-Strong Self-stabilizing Transformer 107

Lemma 3. Let C be an illegitimate configuration of SAlgt , then if C′ is a legitimate
configuration of SAlgt such that 1-Cor(C, C′) = true and C|eppi

	= C′
|eppi

(pi is the

only corrupted processor in C and its partial state is corrupted) and all the processors
but pi are in a stabilization round in C, then in at most two rounds, any execution
starting from C reaches C′ and we have the property of strong confinement.

Sketch of the proof. Let Ci be an illegitimate configuration of SAlgt and C′
i a legitimate

configuration of SAlgt such that 1-Cor(Ci, C
′
i) = true, Ci|eppi

	= C′
i|eppi

and ∀pj ∈
P , pj.r = RPF = 0. Let T1 = (Ci, t1, Ci+1), T2 = (Ci+1, t2, Ci+2), T1, T2 ∈ TAlgt .

If the corrupted processor has its partial state corrupted in Ci, then it evaluates
SnapCorCond() to true and so the guard of CA to true. All its neighbors see that
it is the only one that changed its partial state during the last transition. Their snapshots
contain the partial state of their neighbors different from pi that did not move. Thus
they evaluate the function F reeze to true and they have no action enabled in Ci. The
action CA puts pi in its former state because Consensus() returns the value that all
its neighbors have in their StabSnap view which is by definition of Ci the partial state
that pi had in Ci. We get that the projection of the configurations Ci+1 and C′

i on VAlgt

are the same. Thus we have the property of strong confinement. Moreover in Ci+1 the
neighbors of pi evaluate the guard of Snap2 if their CurSnap views contain the cor-
rupted state of pi, Ci|eppi

and thus correct their snapshots. pi evaluates in Ci+1, Snap1
to true if its snapshots have been corrupted and thus also correct its snapshots. Finally
we have Ci+2 = Ci. �

Lemma 4. Let C be an illegitimate configuration of a system executing the transformed
algorithm, then if C′ is a legitimate configuration such that 1-Cor(C, C′) = true and
C|eppi

	= C′
|eppi

(pi is the only corrupted processor in C and only its snapshots are

corrupted) and all the processors but pi are in a stabilization round in C, then in at
most two rounds any execution starting from C reaches C′.

Sketch of the proof. If just the snapshots of a processor are corrupted, then Consensus()
returns 0 for pi and as the projection of Ci on VAlgt corresponds to a legitimate config-
uration of Alg we get that no processor is enabled in C. Moreover pi regains its correct
state thanks to the execution of the guarded rule Snap1 of Snap and no other processor
in the system can make any move. Thus we have the property of strong confinement as
no processor changed its output variables, t1 = ∅ and Ci+2 = Ci. �

Theorem 4. Algt is 1-strong.

Sketch of the proof. From theorems 3 and 4 we get that for any pair of configurations Ci

illegitimate and C′
i legitimate, 1-Cor(Ci, C

′
i) = true and Ci|eppi

= C′
i|eppi

, we have

for any pair of transitions T1 = (Ci, t1, Ci+1), T2 = (Ci+1, t2, Ci+2), T1, T2 ∈ T such
that in Ci: ∀pi ∈ P , pi.r = 0 the property of strong confinement and Ci+2 = Ci. Thus
for any single corruption of the system we have the property of strong confinement and
the system recovers a legitimate state in a constant time (at most three rounds). Thus
the transformed algorithm is 1-strong.

108 J. Beauquier, S. Delaët, and S. Haddad

4 Conclusion

In this paper we introduce the notion of k-strong self-stabilization which implies the
property of strong confinement and the property of linear k-time-adaptivity. We present
the first 1-strong synchronous unison algorithm. We show how, under some condi-
tions, a self-stabilizing system can be automatically transformed into a 1-strong self-
stabilizing system, although 1-strongness also takes into account the case of multiple
faults hitting simultaneously the system, provided that two faulty processors are at dis-
tance at least 3. Thus we obtain thanks to the transformer an algorithm with a slower
convergence time in the case of a badly corrupted initial configuration. But once the
system is stabilized, if it is only hit by faults scattered in space and time (what usually
happens in large systems), it becomes optimal in terms of fault containment and very
efficient in terms of stabilization time as it recovers a legitimate state in from 1 to 3
rounds (depending of the type of fault and when it occurs).

As a matter of fact the construction can be extended to the general case of k faults.
We will briefly describe how a general transformer could be built and how the construc-
tion made in the case k = 1 can be generalized. The first issue is strong confinement. In
the case k = 1, when a processor discovers an inconsistency, it can learn from the snap-
shots of its neighbors, that contain its state before the fault, whether or not it is faulty.
The hypothesis that there is no processor of degree 1 ensures that a non faulty processor
gets always a majority of correct views. In the general case we make the hypothesis
that every ball of radius k (a ball contains a processor, the center, and all the processors
at distance at most k) has at least 2k+1 processors. Note that this hypothesis general-
izes the hypothesis on the degree in the case k= 1. Now the snapshots contain more
information, namely the past local states of the processors at distance k or less. When a
processor detects an inconsistency, it freezes for k rounds, the time for the snapshots in
its ball of radius k to reach it. Then, like before, the processor has a majority of correct
information about its state before the faults and does not change its state if it appears
non faulty. The dilatation factor of the transformed system is k+2 (instead of 1+2= 3).
The k first rounds are described above and it is still needed one stabilization round for
the correction of the partial state of the faulty processors and one snapshot round for
the correction of all the corrupted view or views containing the corrupted states of the
faulty processors.

A last issue is to know whether or not it is possible to build a general transformer
into a totally adaptive strong self-stabilizing system (strong confinement and a dilata-
tion factor linear in the exact number f of faults, when f is unknown, but inferior to
some fixed integer k). We conjecture that the answer is negative and that getting strong
confinement in this case needs a dilatation factor of at least k+2.

References

1. Y. Afek and S. Dolev. Local stabilizer. In Israel Symposium on Theory of Computing Systems,
pages 74–84, 1997.

2. A. Arora, S. Dolev, and M. Gouda. Maintaining digital clocks in step. Parallel Processing
Letters, 1(1):11–18, September 1991.

A 1-Strong Self-stabilizing Transformer 109

3. H. Attiya and J. L. Welch. Distributed computing: fundamentals, simulations and advanced
topics. McGraw-Hill, Inc., Hightstown, NJ, USA, 1998.

4. Y. Azar, S. Kutten, and B. Patt-Shamir. Distributed error confinement. In Proceedings of
the twenty-second annual symposium on Principles of distributed computing, pages 33–42,
Boston, Massachusetts, July 2003.

5. J. Beauquier, S. Delaët, and S. Haddad. Necessary and sufficient conditions for 1-adaptivity.
In IPDPS, page 96, 2006.

6. J. Beauquier, C. Genolini, and S. Kutten. Optimal reactive k-stabilisation: the case of mu-
tual exclusion. In 18th Annual ACM Symposium on Principles of Distributed Computing
(PODC’99), May 1999.

7. Boulinier, Petit, and Villain. Synchronous vs. asynchronous unison. In WSS: International
Workshop on Self-Stabilizing Systems, LNCS, 2005.

8. S. Dolev. Self-Stabilization. MIT Press, Cambridge, MA, 2000. Ben-Gurion University of
the Negev, Israel.

9. S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed systems. In
PODC ’95: Proceedings of the fourteenth annual ACM symposium on Principles of dis-
tributed computing, page 255, New York, NY, USA, 1995. ACM Press.

10. C. Genolini and S. Tixeuil. A lower bound of dynamic k-stabilization in asynchronous sys-
tems. In 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02), pages 212–222,
Osaka University, Suita, Japan, Octobre 2002.

11. S. Ghosh, A. Gupta, T. Herman, and S.V. Pemmaraju. Fault-containing self-stabilizing algo-
rithms. In Symposium on Principles of Distributed Computing, pages 45–54, 1996.

12. Mohamed G. Gouda and Ted Herman. Stabilizing unison. Information Processing Letters,
35(4):171–175, 7 August 1990.

13. Herman and Pemmaraju. Error-detecting codes and fault-containing self-stabilization. IPL:
Information Processing Letters, 73, 2000.

14. T. Herman. Observations on time-adaptive self-stabilization, October 15 1997.
15. T. Herman. Superstabilizing mutual exclusion. Distributed Computing, 13(1):1–17, 2000.
16. Ted Herman and Sukumar Ghosh. Stabilizing phase-clocks. Information Processing Letters,

54(5):259–265, 9 June 1995.
17. S. Kutten and B. Patt-Shamir. Time-adaptive self stabilization. In Proceedings of the 16th

Annual ACM Symposium on Principles of Distributed Computing (PODC’97), pages 149–
158, 1997.

18. S. Kutten and B. Patt-Shamir. Asynchronous time-adaptive self stabilization. In PODC, page
319, 1998.

19. S. Kutten and B. Patt-Shamir. Adaptive stabilization of reactive protocols. FSTTCS: Foun-
dations of Software Technology and Theoretical Computer Science, 24, 2004.

20. S. Kutten and D. Peleg. Fault-local distributed mending. In Proceedings of the 14th Annual
ACM Symposium on Principles of Distributed Computing (PODC’95), pages 20–27, August
1995.

21. M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In The 21th IEEE
Symposium on Reliable Distributed Systems, (SRDS ’02), pages 22–31, Washington - Brus-
sels - Tokyo, October 2002. IEEE.

22. G. Tel. Introduction to distributed algorithms. Cambridge University Press, New York, NY,
USA, 1994.

Optimal Message-Driven Implementation

of Omega with Mute Processes

Martin Biely� and Josef Widder��

Technische Universität Wien, Embedded Computing Systems Group 182/2
Treitlstraße 3/2, A-1040 Wien, EU

{biely, widder}@ecs.tuwien.ac.at

Abstract. We consider the complexity of algorithms in message-driven
models, i.e., models of distributed computations where events can only be
caused by message receptions but not by the passage of time. Hutle and
Widder (2005) have shown that there is no self-stabilizing implementa-
tion of the eventually strong failure detector, and thus the eventual leader
oracle Ω in such models under certain assumptions. Under stronger as-
sumptions it was shown that even the eventually perfect failure detector
can be implemented in systems consisting of at least f + 2 processes —
f being the upper bound on the number of processes that crash during
an execution.

In this paper we show that f + 2 is in fact a lower bound in message-
driven systems, even if non stabilizing algorithms are considered. This
contrasts time-driven models where f + 1 is sufficient for failure detec-
tor implementations. After that, we provide an efficient message-driven
implementation of Ω. Our algorithm is efficient in the sense that not
all processes have to send messages forever, which is an improvement to
previous message-driven failure detector implementations.

1 Introduction

Fault-tolerant agreement problems are crucial for both practical applications
of distributed algorithms, as well as for understanding the principles of dis-
tributed computations. In this context, specifically the role of time — or rather
synchrony— is heavily researched, for example with respect to consensus, the
problem of agreeing on a common value despite faults [1,2,3,4]. As a result of
research on consensus, it was shown that if just crash faults are contemplated,
synchrony can be encapsulated by failure detectors [4] and that the eventual
leader oracle Ω is the weakest failure detector (FD) to allow solving consensus [5].
Intuitively, Ω is a distributed oracle that provides processes with the name of
a process guaranteeing that eventually all processes will be provided with the
name of a unique correct process. Obviously, implementing Ω presents a problem
on its own that can be solved with synchrony assumptions, and much work fo-
cused on contemplating timing models to that end and in fact very weak models
� Supported by the Austrian BM:vit FIT-IT project TRAFT (proj. no. 812205).

�� Partially supported by the Austrian FWF project Theta (proj. no. P17757).

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 110–121, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Optimal Message-Driven Implementation of Omega with Mute Processes 111

have been established [6,7,8]. But timing is not the sole parameter of distributed
computing models: others are for example atomicity of events (broadcast vs.
unicast) and event generation.

In this paper we do not focus on the timing of an execution but we investi-
gate the orthogonal issue of how the events that constitute a distributed com-
putation are triggered. Here we distinguish two possibilities: time-driven and
message-driven models. In time-driven models, events can be triggered locally
by the passage of time, i.e., by clocks or timers. In the message-driven model
of execution, events can only occur as immediate reaction to the reception of
a message. Therefore message-driven algorithms do not need to have access to
a clock. In other words, in message-driven executions, processes only perform
computations when necessary. Algorithms that perform steps only upon mes-
sage receptions were discussed in [9] and named “asynchronous” there (similar
to asynchronous network protocols that operate by explicit handshaking).

Although it might appear that message-driven models are artificially restric-
tive when considering the traditional systems under consideration in distributed
computing research— i.e., computers linked by a network— it is nevertheless the
case that message-driven models appear to be the natural choice when consider-
ing new application domains for distributed algorithms like the design of asyn-
chronous (delay insensitive [10]) circuits. Asynchronous hardware differs from
synchronous one in the way computations are triggered. In synchronous designs,
there exists a central clock whose ticks trigger each component (flip-flop) con-
ceptually simultaneously. The inputs of a component are ready when the tick
is generated, and its outputs are present at the next stage of the logic at the
beginning of the next tick. The concept of periodically executed steps is not
appropriate for asynchronous chip design (due to the lack of a central clock).
In [11] it was shown how a message-driven algorithm can be implemented in
asynchronous hardware. It was shown that the central clock can be replaced
by a VLSI implementation of a message-driven fault-tolerant clock generation
algorithm. Consequently, there is a requirement to understand possibilities and
restrictions of the message-driven model.

Most of the algorithms that solve consensus or implement a failure detector
(although often presented in a message-driven style) are based on time-driven
execution models, i.e., steps can be taken whether messages are in the incoming
buffers or not. Only little work exists in the context of consensus that considers
how events in a distributed computation are triggered [12]. In [13] it was shown
that there is a difference between the expressiveness of time-driven and message-
driven execution models, by showing that Ω cannot be implemented with a
self-stabilizing message-driven protocol under certain assumptions where self-
stabilizing time-driven protocols [14] can solve the problem. By strengthening the
assumptions it was shown that the problem has message-driven implementations
as well. The question of whether the choice of message-driven vs. time-driven
algorithms has consequences with respect to the complexity and resilience of
solutions for non stabilizing systems was not analyzed. With the present paper,
we intend to contribute to closing this gap: The aforementioned message-driven

112 M. Biely and J. Widder

implementations of Ω require a system of at least f + 2 processes— f being
the upper bound on the number of processes that may fail during an execution
(by crashing). Time-driven implementations of Ω are known that require just
f + 1 processes, therefore the question arises whether the algorithms in [13] are
optimal regarding the required number of processes. In this paper we answer
this question in the affirmative. We present an f +2 lower bound on the number
of processes required for message-driven implementations of Ω.

Additionally, we consider efficiency issues: It is known that for time-driven
systems, communication efficient failure detector implementations are possible
[15]. Here, communication efficiency refers to the number of processes that have
to keep sending messages forever. All known message-driven failure detector im-
plementations [13,16,17,18] require all correct processes to keep sending messages
forever. We show that this is not necessary for implementing Ω. Our algorithm
requires at most f + 2 processes to send messages while the other ones may
remain mute. Our lower bound theorem does also hold for such communication
efficient algorithms, that is, our algorithm is optimal in this respect.

This reduced complexity may not seem particularly relevant at first sight, but
the remarkable fact is that for solving consensus with Ω one requires 2f + 1
processes, while — with our algorithm— only f + 2 have to actively participate
in doing failure detection. It follows that only in the case where n = 3 and f = 1
all processes have to send messages. In all other systems in which consensus can
be solved, our implementation of Ω allows n − f − 2 > n

2 − 2 ≥ 0 processes to
remain silent.

1.1 Contribution

To the best of our knowledge, this paper establishes for the first time a lower
bound on the number of processes required to solve problems in the area of fault-
tolerant distributed computing with message-driven protocols. To this end, we
employ a rather conservative synchrony assumption in order to make explicit
the peculiarities of message-driven models. Even under our strong assumptions,
the difference in the lower bound follows— although time-driven protocols are
known that implement Ω with f + 1 processes even under far less restrictive
synchrony assumptions [15].

We also present an algorithm that shows that this bound is tight. Additionally,
the algorithmallows some processes to remain silent throughout the execution. We
thus contribute to the comparison of time-driven and message-driven protocols.

Knowing message-driven implementations of failure detectors [13], our results
appear to be obvious: Failure detection is done by comparing round-trips with at
least f + 1 other processes. This ensures that there will always be timely
(bounded by lower and upper bounds) communication between at least 2 correct
processes. This communication establishes some kind of time-base— or a source
of synchrony— for these two processes that allows to solve certain problems (like
timing out crashed processes).

We believe that our results contributes to the general understanding of the
term “synchrony”. What are sources of synchrony? How many do we need to solve

Optimal Message-Driven Implementation of Omega with Mute Processes 113

certain problems in a fault-tolerant manner? What semantics do these sources
have? We believe that due to the interleaving of event generation with synchrony
assumptions, the basic properties of synchrony are not perfectly understood by
now. By investigating different models and observing the commonalities, we hope
that it is possible to eventually get an abstract notion of synchrony (or time) in
fault-tolerant distributed computations.

1.2 Road Map

In the following section we introduce our model which we use to show our lower
bound theorem in Section 3. In Section 4, we present an efficient implementation
of Ω that is optimal with respect to the derived resilience bound.

2 Model

We consider a system consisting of N distributed processes, which run on a num-
ber of processors connected by a communication network. We assume the exis-
tence of a reliable (logically) fully connected message-passing network between
the processes. Every process has a unique name out of the set {1, 2, . . . , N}. The
set of all processes will be denoted Π = {p | 1 ≤ p ≤ N}.

The processes perform a distributed computation which proceeds by the com-
putational steps of processes in Π . Since we consider only message-driven compu-
tations, a computational step is either the initial step (by which the computation
is started at every process) or a message reception step. In a message reception
step a process must receive at least one message, performs a local computation,
and may send zero or more messages. The initial step is the only step a process can
ever take without receiving a message, and consists only of a local computation
and sending of messages.

Processes may fail by permanently crashing, i.e., they do not take any steps
after they have crashed. More precisely, the behavior of a faulty process p is de-
scribed by the fact that p only takes finitely many steps in an execution although
infinitely many messages are sent to p during this execution. A process that does
not crash in an execution is called correct in this execution. At most f out of
the N processes in Π may fail during an execution. Since we are interested in
FD implementations where only some processes ever send messages, we introduce
Λ = {p | 1 ≤ p ≤ n}, which is the set of n ≤ N active processes, i.e., processes
that send messages. The set of silent processes will be called Σ = Π−Λ. We define
s = |Σ| ≥ 0 and since N = |Π |, we have N = n + s.

For our algorithm we assume that n = f + 2 and in our lower bound result in
Section 3 we show that this is optimal. Further, for the algorithm analysis, we as-
sume the existence of a global Newtonian real-time clock. The processes, however,
do not have a way to access this clock, neither do they have any other means of
measuring passage of time locally. This does not only imply the absence of local
clocks but also that there are no lower or upper bounds that only restrict the time
for a computational step — these times are accounted for in the end-to-end delays
(read on).

114 M. Biely and J. Widder

2.1 Timing

Every communication network is bound to cause delays between the time a mes-
sage is sent in some step by some process p and the time when it causes a message
reception step at some other process q 	= p. For simplicity we assume for our algo-
rithm the existence of some unknown upper and lower bounds on these end-to-end
delays, i.e., time to transmit and queue the message (at both ends) plus the time
to process the message. We denote by τ+ < ∞ the upper and by τ− > 0 the
lower bound on the end-to-end delay between processes p and q with p 	= q, where
p, q ∈ Λ; that is, the delays of all links involving a process s ∈ Σ just have to
be finite. Our algorithm does not know these values. Indeed the knowledge of the
values would be useless as processes cannot measure time. Instead we assume the
knowledge of the ratio Θ = τ+/τ−. In our analysis we also use the transmission
uncertainty ε = τ+ − τ−. It has been shown in [19] that algorithms designed for
this model also work in a model where no bounds on end-to-end delays exists,
while just the ratio between the delays of messages concurrently in transit must
be bounded by some Θ. In other words, τ+ and τ− may change during the execu-
tion, as long as their ratio continues to be bounded by Θ. Note that Θ is in fact
the only (time-related) value that processes can observe.

Until now we have assumed that p 	= q for a message sent from p to q. For the
other case, i.e., self-receptions, we only assume that the transmission is reliable (in
order to strengthen our lower bound result in Section 3) while we do not assume
any bounds on transmission times except that they are finite. In fact, transmission
delays may as well be 0 (which would model writing the message into memory
directly instead of sending it over the network). Our algorithms, however, do not
use self-receptions.

2.2 Events

For our lower bound (Section 3) we require the following definitions to discrimi-
nate between different types of steps. Let p be some process that receives a set M
of messages in a message reception step. If all messages in M were sent by p, we
call the step a self reception step. If at least one message in M was sent by some
process q 	= p then the step is called extrinsic reception step.

We further need the following definitions: An extrinsic reception step of message
m at some process p, where it is locally impossible for p to determine that m was
not the last message received by p in the execution is called potentially final extrin-
sic reception step. By potentially final non self reception step we denote all steps
that are either a potentially final extrinsic reception step or an initial step. (A po-
tentially final extrinsic reception step occurs at p when p has received all messages
that causally precede the message that caused the step. In the case of f + 1 active
processes, it could be the case that there is only one surviving process p, and no
message except those sent by p will ever be received by p after this event.)

2.3 Failure Detectors

We consider two kinds of failure detectors, both of which will only output fail-
ure information about processes in Λ. The failure detector Ω [5] outputs a single

Optimal Message-Driven Implementation of Omega with Mute Processes 115

process (its leader estimate), which eventually must be the same correct process
at all processes. The formal definition for Ω reads as follows.

(EL) Eventual Leadership. There is a time after which all the correct processes
always trust the same correct process.

Additionally we will consider a variant of a stronger FD, i.e., the perfect FD P . It
was defined [4] to fulfill the following two properties:

(SC) Strong Completeness . Eventually, every process that crashes is perma-
nently suspected by every correct process.

(SA) Strong Accuracy. No process is suspected before it crashes.

As mentioned above, the FDs considered in this paper only output information
about Λ. Therefore we define the following generalization of the perfect FD. Thus
we define PΛ via two following properties:

(LSC) Limited Strong Completeness . Eventually, every process p ∈ Λ that
crashes is permanently suspected by every correct process q ∈ Λ.

(LSA) Limited Strong Accuracy. No process p ∈ Λ is suspected by any process
q ∈ Λ before it crashes.

Guerraoui and Schiper introduced Γ -accurate FDs [20] which are similar to PΛ.
PΛ, however, restricts both accuracy and completeness to some fixed subset Λ of
all processes while Γ -accurate FDs only restrict accuracy properties to some fixed
subset Γ .

We do not restrict the semantics of the algorithms that use our FDs, i.e., classic
query based execution models [4] can be employed as well as interrupt based mod-
els; discussions on the respective expressiveness can be found in [12]. If the whole
distributed computation (FDs and applications) should be message (i.e., inter-
rupt) driven as described in our model, the FDs have to be an additional source of
events for the application. That is, in addition to message reception steps, appli-
cations can also take steps whenever the output of the FD — the leader estimate
in case of Ω — changes.

3 Lower Bound on the Number of Processes

We show that it is impossible to implement Ω with a message-driven algorithm
when only n = f + 1 processes are active.

The proof of the following theorem is done by contradiction. We will assume
that there exists an implementation I of Ω. In the following, we show how I
must behave if n − 1 processes in Λ crash during an execution. Then we con-
sider executions where just n− 2 processes in Λ crash. By indistinguishability to
the first execution, I violates the properties of Ω thus providing the required
contradiction.

116 M. Biely and J. Widder

Theorem 1 (Lower Bound). There is no correct message-driven implementa-
tion of Ω in our model if n ≤ f + 1.

Proof. Assume by contradiction that there exists a message-driven implementa-
tion I of Ω, for a system where n ≤ f + 1.

Let E1 be the set of all executions of I where n− 1 processes in Λ crash. In all
these executions there is a final extrinsic reception step or (at least) the initial step
at the sole correct processes p ∈ Λ such that there must be at least one potentially
final non self reception step at p after which p takes a possibly infinite number
of self reception steps. By (EL), however, after some finite number � ≥ 0 of self
reception steps, p must set leaderp = p or leaderp = r ∈ Σ permanently— in both
cases the leader estimate of p satisfies (EL).

Let E2 be the set of all executions of I where n−2 processes in Λ crash initially
and there are two correct processes p, q ∈ Λ, p 	= q. Note that just n − 2 < f
processes in Λ are faulty such that there can be faulty processes also in Σ in E2.
Let all executions in E2 be such that all message end-to-end delays between the
processes p and q are equal. From this timing behavior it follows directly that all
extrinsic reception steps are potentially final extrinsic reception steps as causally
dependent events are perceived in temporal order.

We now consider finite prefixes of E2. Let these finite executions E ′2 have some
potentially final non self reception step s at some process p as their final step. For
p, every execution e ∈ E ′2 is indistinguishable from some finite prefix execution
e1 ∈ E1 that is identical to e except that either (1) q crashes in e1 directly after
sending the message that is the cause of s at p, if s is a potentially final extrinsic
reception step, or (2) q is initially crashed in e1, if s is the initial step at p. As
there are no synchrony assumptions on self receptions, we can construct a finite
execution e′ by extending e with � ≥ 0 self reception steps. By indistinguishability
of e′ to execution e1, p must set leaderp = p or leaderp = r ∈ Σ for some �. This
constructive argument can be applied to every potentially final non self reception
step at any of the two correct processes in Λ, such that these processes p and q
have to set their leader estimate as described above.

Since, by (EL), all correct processes must permanently trust one process, v ∈
{p, q} must either set leaderv = v or leaderv = r ∈ Σ upon every (following) po-
tentially final extrinsic reception step. It follows that they cannot set leaderp = p
and leaderq = q permanently, as this would violate the “the same correct pro-
cess” requirement. Thus, v ∈ {p, q} must set leaderv = r ∈ Σ. If |Σ| = 0, we
have already reached a contradiction since p and q cannot reach the same leader
estimate. If |Σ| > 0, we observe that only less than f processes in Λ crash in all E2
executions. That is, at least one process in Σ can crash in such executions. Since
r is in Σ, it never sends messages such that p and q cannot distinguish executions
where r is correct from ones where r crashes. It follows that there exist executions
where permanently leaderp = r but r is crashed which violates (EL). We again
reach a contradiction. ��

Corollary 1. There is no correct message-driven implementation of Ω in our
model if N ≤ f + 1.

Optimal Message-Driven Implementation of Omega with Mute Processes 117

Corollary 2. There is no correct message-driven implementation of Ω if N ≤
f + 1 where processes never send messages to themselves.

Corollary 1 shows that the self-stabilizing algorithms in [13] are optimal regarding
the number of processes required. (The impossibility of [13], however, even holds
if there are synchrony assumptions on self-receptions.) Note that self-stabilization
was not used in the proof of Theorem 1, such that the complexity gap is due to the
difference in the expressiveness of message-driven respectively time-driven models
(and not due to self-stabilization). Since the algorithms of this paper do not create
self receptions, Corollary 2 shows that our algorithms are optimal as well.

4 A Matching Algorithm

The algorithm has different code for the processes of Λ and Σ. The code for pro-
cesses p ∈ Λ is a variant of the bounded memory algorithm of [13]. Each active
process p exchanges (p, ph, k) messages with the other processes in Λ, where ph
is the phase number and k is an integer that is increased with every round trip.
When an active process q receives such a message, q just returns it to p (line 21).
For all q ∈ Λ, p holds a variable lastmsgp[q], where it stores the highest integer k
received in a (p, ph, k) reply from q. If Φ is chosen properly, p can correctly sus-
pect a process q of being crashed upon termination of Φ round trips if there was
no round trip terminated by q.

The code for processes q ∈ Σ simply sets the leader upon reception of an es-
timate sent by some p ∈ Λ. We assume that eventually all messages sent over
links from process p ∈ Λ to process q ∈ Σ are received after some finite time (no
message loss). Trivially, this algorithm works also in systems where links between
processes in Λ and Σ also obey the Θ assumption (cf. Section 2.1).

Lemma 1. For Algorithm 1 with Φ > Θ it holds that the set suspectsp implements
a perfect failure detector PΛ with respect to the set of potential leaders Λ.

Proof. To show that suspectsp acts as a perfect failure detector for processes in Λ,
we have to show (LSC) and (LSA).

We first show that no correct process q ∈ Λ is ever suspected by some process
p ∈ Λ. Assume by contradiction that some process p adds the correct process q to
its suspect list suspectsp. Then p must have performed Φ round-trips (via line 11
and line 7) since the beginning of the current phase with some other process, while
not receiving a response from q to the message p has sent in line 6 or line 17. This,
however, is impossible due to the definition of Θ in Section 2.1, the fact that Φ > Θ
and the fact that q is not crashed.

It remains to show that, when some process q does crash, p will eventually add
it to suspectsp. At some time after q crashes, p will start a new phase, and sub-
sequently perform Φ round-trips with some other correct process r, after which
line 13 will be executed for a phase during which q remained silent, therefore
lastmsgp[q] = 0 and q will be in the new suspectsp set. ��

118 M. Biely and J. Widder

Algorithm 1. Failure Detector Implementation
Code for processes p ∈ Λ:
1: phasep ∈ {0, 1} ← 0
2: leaderp ∈ Λ ← minr{r ∈ Λ}
3: suspectsp ⊂ Λ ← {}
4: ∀q ∈ Λ : lastmsgp[q] ∈ {0, . . . , Φ} ← 0

5: upon initialization do
6: send (p, phasep, 1) to Λ

7: upon reception of (p, ph, k) from q do
8: if ph = phasep and k > lastmsgp[q] then
9: lastmsgp[q] ← k

10: if k < Φ then
11: send (p,phasep, k + 1) to q
12: else
13: suspectsp ← {r | r ∈ Λ ∧ lastmsgp[r] = 0}
14: leaderp ← minr {r | r ∈ (Λ − suspectsp)}
15: phasep ← 1 − phasep

16: ∀r ∈ Λ : lastmsgp[r] ← 0
17: send (p,phasep, 1) to Λ a
18: if p = leaderp then
19: send (p) to Σ

20: upon reception of (q, ph, k) from q do
21: send (q, ph, k) to q

Code for processes p ∈ Σ:
22: leaderp ∈ Λ ← minr{r ∈ Λ}
23: upon reception of (q) from some q ∈ Λ do
24: leaderp ← q

Note that implementing PΛ is not identical to implementing PΠ , i.e., a perfect FD
for all processes including the mute ones, since crashes by mute processes cannot
be detected. This is obviously different for implementing Ω: Since Ω only outputs
one correct process, it is sufficient to choose the leader from a (large enough) subset
of all processes. Therefore ΩΛ = ΩΠ .

Lemma 2. For Algorithm 1 with Φ > Θ it holds that eventually all correct pro-
cesses p ∈ Λ have the same correct process q ∈ Λ as their leader.

Proof. Let t be the time the last process in Λ crashes during an execution and let
process q be such that

q = min
r
{r | r ∈ Λ ∧ r is correct}.

From line 14 we see that the leader is selected out of the set of non suspected pro-
cesses r ∈ Λ. By Lemma 1, all crashed processes in Λ will eventually be

Optimal Message-Driven Implementation of Omega with Mute Processes 119

suspected, and therefore at some time after t all correct processes in Λ suspect
the same processes, consequently all will determine the same minimum, i.e., the
same leader, that is q. ��

Lemma 3. Algorithm 1 ensures that processes in Σ will choose the process q ∈ Λ
as leader if q is the only process in Λ that keeps sending messages to Σ forever.

Proof. Since there is only one process q that keeps sending (q) messages to Σ for-
ever, eventually all messages (p) with p 	= q are received. From then on, only (q)
messages remain and by line 24 processes in Σ will select q as leader whenever
such message arrives.

Theorem 2. Algorithm 1 with Φ > Θ implements the eventual leader oracle Ω.

Proof. By Lemma 2, eventually there is only one unique leader among Λ, let q
denote this leader. It remains to show that the same processes becomes leader of
the processes in Σ.

By line 19 the leader q ∈ Λ keeps sending (q) messages forever. Thus (by
Lemma 3) q will also become the leader of the silent processes Σ. ��

5 Discussions

Note that Lemma 3 shows that the leader of Σ emerges from the message pat-
tern alone, and does not depend on the state of the processes. It can therefore
be argued that the code for processes in Σ is self-stabilizing, while the code for
Λ is not. To arrive at a self-stabilizing overall solution for message-driven leader
election with silent processes, it would be sufficient to adapt the algorithm for Λ.
Indeed one could use any self-stabilizing implementation of Ω that fulfills the req-
uisite in the lemma. In particular, the algorithms of [13,21] can be adapted in this
way by requiring every leader to broadcast its identifier, whenever it elects itself
as leader.

Another interesting point is that the dissemination of the leader to the processes
in Σ is not restricted by the impossibility result of [13] in the same way as it is the
case for the election of the leader in Λ. It follows that additional assumptions that
are required to circumvent the impossibility result of [13] only have to consider
processes in Λ respectively the links that connect them.

6 Conclusions

In this paper we explored the required properties for implementing the eventual
leader oracle Ω in the context of message-driven algorithms. For this, we found
limits for algorithms that implement Ω under the given system requirements: We
showed that it is harder to implement the failure detector Ω in message-driven
systems than it is in time-driven systems by proving that strictly more processes
are required to tolerate a given number of faults. The analysis reveals that the
absence of synchrony or timing assumptions regarding self-receptions is central

120 M. Biely and J. Widder

for our results. It is quite obvious that an assumption like some lower bound on
self-receptions would allow to implement a simulation for partially synchronous
models like the FAR model [22].

Previous results [13] showed that message-driven semantics are weaker than
time-driven semantics with respect to self-stabilization. Here we have shown that
message-driven semantics are weaker in non self-stabilizing systems as well. Apart
from resilience, to implement Ω other assumptions have to be stronger as well:
In order to guarantee liveness, message-driven solutions require reliable links or
bounded message-loss, such that enough messages always remain to trigger com-
putational steps. In contrast, time-driven solutions typically only demand the
eventual absence of message-loss to allow accurate discrimination between crashed
and alive processes; see e.g. [4,6,15].

References

1. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2) (1985) 374–382

2. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. Journal of the ACM 34(1) (1987) 77–97

3. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM 35(2) (1988) 288–323

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2) (1996) 225–267

5. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4) (1996) 685–722

6. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
Omega with weak reliability and synchrony assumptions. In: Proceeding of the 22nd
Annual ACM Symposium on Principles of Distributed Computing (PODC’03).
(2003)

7. Malkhi, D., Oprea, F., Zhou, L.: Ω meets paxos: Leader election and stability with-
out eventual timely links. In: Proceedings of the 19th Symposium on Distributed
Computing (DISC’05). Volume 3724 of LNCS., Cracow, Poland, Springer Verlag
(2005) 199–213

8. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system model for
implementing omega and consensus. Research Report 74/2005, Technische Univer-
sität Wien, Institut für Technische Informatik, Treitlstr. 1–3/182-2, 1040 Vienna,
Austria (2005) (appears as brief announcement at SSS 2006).

9. Fischer, M., Lamport, L.: Byzantine generals and transaction commit protocols.
Technical Report 62, SRI International (1982)

10. Ebergen, J.C.: A formal approach to designing delay-insensitive circuits. Dis-
tributed Computing 5 (1991) 107–119

11. Fuegger, M., Schmid, U., Fuchs, G., Kempf, G.: Fault-Tolerant Distributed Clock
Generation in VLSI Systems-on-Chip. Sixth European Dependable Computing
Conference (EDCC-6) (2006)

12. Gärtner, F.C., Pleisch, S.: (Im)possibilities of predicate detection in crash-affected
systems. In: 5th International Workshop on Self-Stabilizing Systems. Volume 2194
of LNCS., Springer Verlag (2001) 98–113

Optimal Message-Driven Implementation of Omega with Mute Processes 121

13. Hutle, M., Widder, J.: On the possibility and the impossibility of message-driven
self-stabilizing failure detection. In: Proceedings of the Seventh International Sym-
posium on Self Stabilizing Systems (SSS 2005). Volume 3764 of LNCS., Barcelona,
Spain, Springer Verlag (2005) 153–170 Appeared also as brief announcement in
Proceedings of the 24th ACM Symposium on Principles of Distributed Computing
(PODC’05).

14. Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: Impos-
sibility results and solutions using self-stabilizing failure detectors. International
Journal of Systems Science 28(11) (1997) 1177–1187

15. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: PODC
’04: Proceedings of the twenty-third annual ACM symposium on Principles of dis-
tributed computing, St. John’s, Newfoundland, Canada, ACM Press (2004) 328–337

16. Le Lann, G., Schmid, U.: How to implement a timer-free perfect failure detector
in partially synchronous systems. Technical Report 183/1-127, Department of Au-
tomation, Technische Universität Wien (2003)

17. Widder, J., Le Lann, G., Schmid, U.: Failure detection with booting in partially
synchronous systems. In: Proceedings of the 5th European Dependable Computing
Conference (EDCC-5). Volume 3463 of LNCS., Budapest, Hungary, Springer Verlag
(2005) 20–37

18. Hermant, J.F., Widder, J.: Implementing reliable distributed real-time systems with
the Θ-model. In: Proceedings of the 9th International Conference on Principles of
Distributed Systems (OPODIS 2005). Volume 3974 of LNCS., Pisa, Italy, Springer
Verlag (2005) 334–350

19. Widder, J.: Distributed Computing in the Presence of Bounded Asynchrony. PhD
thesis, Vienna University of Technology, Fakultät für Informatik (2004)

20. Guerraoui, R., Schiper, A.: ”Γ -accurate” failure detectors. In Babaoğlu, Ö.,
ed.: Proceedings of the 10th International Workshop on Distributed Algorithms
(WDAG’96). Volume 1151 of LNCS. (1996) 269–286

21. Hutle, M., Widder, J.: Self-stabilizing failure detector algorithms. In: Proc. IASTED
International Conference on Parallel and Distributed Computing and Networks
(PDCN’05), Innsbruck, Austria (2005)

22. Fetzer, C., Schmid, U., Süßkraut, M.: On the possibility of consensus in asyn-
chronous systems with finite average response times. In: Proceedings of the 25th
International Conference on Distributed Computing Systems (ICDCS’05), Colum-
bus, Ohio, USA (2005) 271–280

Incremental Synthesis of Fault-Tolerant Real-Time
Programs�

Borzoo Bonakdarpour and Sandeep S. Kulkarni

Department of Computer Science and Engineering
Michigan State University

East Lansing, MI 48824, USA
{borzoo, sandeep}@cse.msu.edu

http://www.cse.msu.edu/∼{borzoo, sandeep}

Abstract. In this paper, we focus on the problem of automated addition of fault-
tolerance to an existing fault-intolerant real-time program. We consider three lev-
els of fault-tolerance, namely nonmasking, failsafe, and masking, based on safety
and liveness properties satisfied in the presence of faults. More specifically, a
nonmasking (respectively, failsafe, masking) program satisfies liveness (respec-
tively, safety, both safety and liveness) in the presence of faults. For failsafe and
masking fault-tolerance, we consider two additional levels, soft and hard, based
on satisfaction of timing constraints in the presence of faults. We present a poly-
nomial time algorithm (in the size of the input program’s region graph) that adds
bounded-time recovery from an arbitrary given set of states to another arbitrary
set of states. Using this algorithm, we propose a sound and complete synthesis
algorithm that transforms a fault-intolerant real-time program into a nonmask-
ing fault-tolerant program. Furthermore, we introduce sound and complete al-
gorithms for adding soft/hard-failsafe fault-tolerance. For reasons of space, our
results on addition of soft/hard-masking fault-tolerance are presented in a techni-
cal report.

Keywords: Fault-tolerance, Real-time, Bounded-time recovery, Program synthe-
sis, Program transformation, Formal methods.

1 Introduction

Automated program synthesis is the problem of designing an algorithmic method to find
a program that satisfies a required set of properties. Such automated synthesis is desir-
able, as it ensures that the synthesized program is correct-by-construction. In existing
specification-based synthesis methods, a change in the specification requires us to redo
synthesis from scratch. Thus, it would be advantageous, if we could reuse the previous
efforts made to synthesize real-time programs and somehow incrementally add proper-
ties (e.g., fault-tolerance) to them. Moreover, such incremental synthesis is especially
useful if the given real-time program is designed manually, e.g., for ensuring that the

� This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF grant EIA-0130724, and a grant
from Michigan State University.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 122–136, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Incremental Synthesis of Fault-Tolerant Real-Time Programs 123

original program is efficient. More importantly, incremental synthesis is crucial when
the existing real-time program satisfies properties whose automated synthesis is unde-
cidable (e.g., precise eventuality ♦=δq) or lies in highly complex classes of complexity.

In this paper, we focus on designing incremental synthesis algorithms that solely
add fault-tolerance to existing fault-intolerant real-time programs, where processes can
read and write all program variables in one atomic step. In particular, we concentrate
on algorithms with manageable time and space complexity such that they can be used
in tools for synthesizing fault-tolerant real-time programs. To characterize such man-
ageable complexity, we require that the complexity of our algorithms are comparable
to that of existing model checking techniques in the dense real-time model.

In order to characterize fault-tolerance requirements of programs, in our work, we
consider three levels of fault-tolerance, namely nonmasking (respectively, stabilizing),
failsafe, and masking, based on safety and liveness properties satisfied in the presence
of faults. Furthermore, we propose two additional levels, namely soft and hard fault-
tolerance, based on satisfaction of timing constraints in the presence of faults. Precisely,
in the absence of faults, both soft and hard fault-tolerant programs are required to satisfy
their timing constraints. However, in the presence faults, a soft fault-tolerant program
is not required to satisfy its timing constraints while a hard fault-tolerant program is
required to do so. In this sense, for instance, a hard-failsafe program satisfies its safety
specification as well as its timing constraints in the presence of faults.

1.1 Related Work

In the literature of real-time computing, fault-tolerance has mostly been addressed in
the context of scheduling theory (e.g., [1, 2]). In fault-tolerant real-time scheduling, the
objective is to find the optimal schedule of a set of tasks on a set of processors dynam-
ically, such that the largest possible number of tasks meet their deadlines. Since time
complexity is a critical issue in dynamic scheduling, most of the proposed algorithms
are in the form of heuristics designed for specific platforms and special types of faults
(e.g., transient, fail-stop, Byzantine, etc.).

Recently, we studied the problem of incremental synthesis of timed automata in the
absence of faults in [3]. More specifically, we developed synthesis algorithms and hard-
ness results for adding different types of bounded response properties to a given timed
automaton. We also studied the problem of incremental addition of UNITY [4] proper-
ties to untimed programs in [5].

The problem of synthesizing untimed fault-tolerant programs has been studied in the
literature from different perspectives. In [6, 7, 8], the authors propose synthesis meth-
ods for adding fault-tolerance and multitolerance to existing untimed programs. In [9],
Attie, Arora, and Emerson study the problem of synthesizing fault-tolerant concurrent
untimed programs from temporal logic specifications expressed in CTL formulas.

Synthesis of real-time systems has mostly been studied in the context of controller
synthesis and game theory [10,11,12,13,14,15]. In these papers, the common assump-
tion is that the existing program (called a plant) and/or the given specification are de-
terministic. Moreover, since the authors consider highly expressive specifications, the
complexity of proposed methods is very high. For example, synthesis problems pre-
sented in [15,10,11,14] are EXPTIME-complete. Moreover, deciding the existence of a
solution (called a controller) in [12, 13] is 2EXPTIME-complete.

124 B. Bonakdarpour and S.S. Kulkarni

1.2 Contributions

In this paper we (i) introduce a generic fault-tolerance framework for real-time pro-
grams independent of platform, architecture, and type of faults; (ii) extend the previous
work by Kulkarni and Arora [6] to the context of real-time programs; (iii) consider
a general notion of real-time programs that covers both deterministic and nondeter-
ministic programs in both synchronous and asynchronous models; and (iv) introduce
various levels of fault-tolerance for real-time systems based on satisfaction of proper-
ties and timing constraints in the presence of faults. Furthermore, we present a class
of specifications where we can express typical requirements for specifying real-time
and fault-tolerant systems and we show that the complexity of synthesis algorithms
for this class of specifications is comparable to existing model checking techniques for
real-time programs [16]. Moreover, since we follow the standard model of timed au-
tomata [17], many of the problems in fault-tolerant scheduling theory can be modeled
in our framework [18].

The main results in this paper are as follows. First, we present a polynomial time al-
gorithm (in the size of the input program’s region graph) that adds bounded-time recov-
ery from an arbitrary given set of states to another arbitrary set of states. Then, using this
algorithm, we propose sound and complete synthesis algorithms that transform a fault-
intolerant real-time program into a (1) nonmasking or soft-failsafe fault-tolerant pro-
grams, or (2) hard-failsafe fault-tolerant program where the synthesized fault-tolerant
program is required to satisfy at most one bounded response property in the presence
of faults. For reasons of space, in a technical report [19], we also present a synthesis
algorithm for adding soft-masking fault-tolerance. Moreover, we show that the problem
of adding hard-masking fault-tolerance where the synthesized program is required to
satisfy at least two bounded response properties in the presence of faults is NP-hard.

Organization of the paper. In Section 2, we present formal definitions of real-time
programs, specifications, and regions graphs. We introduce the notions of faults and
fault-tolerance in the context of real-time programs in Section 3. In Section 4, we for-
mally state the problem of adding fault-tolerance to real-time programs. We present
our synthesis algorithms for adding nonmasking, soft-failsafe, and hard-failsafe fault-
tolerance in sections 5, 6, and 7, respectively. Finally, in Section 8, we make the con-
cluding remarks.

2 Real-Time Programs, Specifications, and Region Graphs

In our framework, programs are specified in terms of their state space and their transi-
tions [20]. The definition of specifications is adapted from Henzinger [21]. Finally, the
notion of region graph is due to Alur and Dill [17].

2.1 Real-Time Program

Let V be a finite set of discrete variables and X be a finite set of clock variables.
Each discrete variable is associated with a finite domain D of values. A location is
a function that maps each discrete variable to a value from its respective domain. A

Incremental Synthesis of Fault-Tolerant Real-Time Programs 125

clock constraint over the set X of clock variables is a Boolean combination of formulas
of the form x � c or x − y � c, where x, y ∈ X , c ∈ Z≥0, and � is either < or
≤. We denote the set of all clock constraints over X by Φ(X). A clock valuation is a
function ν : X → R≥0 that assigns a real value to each clock variable. Furthermore,
for τ ∈ R≥0, ν + τ = ν(x) + τ for every clock x. Also, for λ ⊆ X , ν[λ := 0] denotes
the clock valuation for X which assigns 0 to each x ∈ λ and agrees with ν over the rest
of the clock variables in X .

A state (denoted σ) is a pair (s, ν), such that s is a location and ν is a clock valuation
for X at location s. A transition (denoted (σ0, σ1)) is of the form (s0, ν0) → (s1, ν1).
Transitions are classified into two types:

– Delay: for a state σ = (s, ν) and a time duration δ ∈ R≥0 (denoted (σ, δ)),
(s, ν) → (s, ν + δ).

– Jump: for a state (s0, ν), a location s1, and a set λ of clock variables, (s0, ν) →
(s1, ν[λ := 0]).

A program P is a tuple 〈Sp, ψp〉, where Sp is the state space, and ψp is a set of tran-
sitions. Let ψs

p and ψd
p denote the set of jump and delay transitions in ψp, respectively.

A state predicate is a subset of Sp such that it is definable by the above syntax of
clock constraints, i.e., in the corresponding Boolean expression clock variables are
only compared to nonnegative integers. A state predicate S is closed in program P
if ((∀(σ0, σ1) ∈ ψs

p : (σ0 ∈ S ⇒ σ1 ∈ S)) ∧ (∀(σ, δ) ∈ ψd
p : (σ ∈ S ⇒ ∀ε ≤

δ : σ+ ε ∈ S))). A timed state sequence 〈(σ0, τ0), (σ1, τ1), · · · 〉, where τi ∈ R≥0, is a
computation ofP if the following conditions are satisfied: (1) ∀j > 0 : (σj−1, σj) ∈ ψp,
(2) if it is finite and terminates in (σl, τl) then there does not exist state σ such that
(σl, σ) ∈ ψp, and (3) the sequence 〈τ0, τ1, · · · 〉 satisfies the following constraints:

Monotonicity: τi ≤ τi+1 for all i ∈ N.
Divergence: For all t ∈ R≥0, there exists j such that τj ≥ t.

The projection of a set of program transitions ψp on state predicate S (denoted ψp|S)
is the set of transitions {(σ0, σ1) ∈ ψs

p | σ0, σ1 ∈ S} ∪ {(σ, δ) ∈ ψd
p | σ ∈ S ∧ (∀ε ≤

δ : σ + ε ∈ S)}.

2.2 Specification

A specification (or property), denoted Σ, is a set of timed state sequences of the form
〈(σ0, τ0), (σ1, τ1), · · · 〉. Following Henzinger [21], we require that the sequence
〈τ0, τ1, · · · 〉 satisfies monotonicity and divergence. We now define what it means for
a program P to satisfy a specification Σ. Given a program P , a state predicate S, and
a specification Σ, we write P |=S Σ and say that program P satisfies Σ from S iff (1)
S is closed in P , and (2) every computation of P that starts where S is true is in Σ. If
P |=S Σ and S 	= {}, we say that S is an invariant of P for Σ.

Notation. Whenever the specification is clear from the context, we will omit it; thus,
“S is an invariant of P” abbreviates “S is an invariant of P for Σ”.

We say that program P maintains Σ iff for all finite timed state sequences α of P ,
there exists a timed state sequence β such that αβ ∈ Σ. We say that P violates Σ iff it

126 B. Bonakdarpour and S.S. Kulkarni

is not the case that P maintains Σ. Note that, the definition of maintains identifies the
property of finite timed state sequences, whereas the definition of satisfies expresses the
property of infinite timed state sequences.

Following Alpern and Schneider [22] and Henzinger [21], we let the specification
consist of a liveness specification and a safety specification. The liveness specification
is represented by a set of infinite computations. A program satisfies the liveness spec-
ification, if every computation prefix of the program has a suffix that is in the liveness
specification.

Remark 2.1: In the synthesis problem, we begin with an initial fault-intolerant pro-
gram that satisfies its specification (including the liveness specification) in the absence
of faults. We will show that our synthesis algorithms preserve liveness specification.
Hence, the liveness specification need not be specified explicitly.

In this paper, with abuse of notation, we let the safety specification consist of (1) a set
Σbt of location switch bad transitions that should not occur in the program computation,
and (2) a conjunction of zero or more bounded response properties of the form Σbr ≡
((P1 �→≤δ1 Q1) ∧ (P2 �→≤δ2 Q2) ∧ ... ∧ (Pm �→≤δm Qm)), i.e., it is always the
case that a state in Pi is followed by a state in Qi within δi time units, where Pi and
Qi are state predicates and δi ∈ Z≥0, for all i such that 1 ≤ i ≤ m. Observe that we
abuse the |= notation for the set Σbt of bad transitions. This is because it is possible
to trivially translate this concise representation of safety into the corresponding set of
infinite computations. The same concept applies to definitions of maintains and violates.

2.3 Region Graph

Real-time programs can be analyzed with the help of an equivalence relation of finite
index on the set of states [17]. Given a real-time program P , for each clock x ∈ X ,
let cx be the largest constant in the guards of transitions and invariant of P that involve
x, where cx = 0 if x does not occur in any guard or invariant of P . Two clock valu-
ations ν, μ are clock equivalent if (1) for all x ∈ X , either �ν(x)� = �μ(x)� or both
ν(x), μ(x) > cx, (2) the ordering of the fractional parts of the clock variables in the
set {x ∈ X | ν(x) < cx} is the same in μ, and (3) for all x ∈ {y ∈ X | ν(y) < cy},
the clock value ν(x) is an integer if and only if μ(x) is an integer. A clock region
ρ is a clock equivalence class. Two states (s0, ν0) and (s1, ν1) are region equivalent,
written (s0, ν0) ≡ (s1, ν1), if (1) s0 = s1 and (2) ν0 and ν1 are clock equivalent.
A region is an equivalence class with respect to ≡. Using the region equivalence re-
lation, we construct the region graph of P〈Sp, ψp〉 (denoted R(P)〈Sr

p, ψr
p〉) as fol-

lows. Vertices of R(P) (denoted Sr
p) are regions. Edges of R(P) (denoted ψr

p) are of
the form (s0, ρ0) → (s1, ρ1) iff for some clock valuations ν0 ∈ ρ0 and ν1 ∈ ρ1,
(s0, ν0) → (s1, ν1) is a transitions in ψp. We say that a region (s0, ρ0) of region graph
R(P) is a deadlock region iff for all regions (s1, ρ1), there does not exist an edge of
the form (s0, ρ0) → (s1, ρ1). A region predicate Sr with respect to a state predicate S
is defined by Sr = {(s, ρ) | ∃(s, ν) : ((s, ν) ∈ S ∧ ν ∈ ρ)}. Likewise, the region
predicate with respect to invariant S of a program P is called region invariant Sr. The
projection of a set of edges ψr

p on region predicate Sr (denoted ψr
p|Sr) is the set of

edges {(r0, r1) ∈ ψr
p | r0, r1 ∈ Sr}.

Incremental Synthesis of Fault-Tolerant Real-Time Programs 127

Region graphs are time-abstract bisimulation of real-time programs [17]. In our syn-
thesis algorithms in section 5, 6, and 7, we transform a real-time program P〈Sp, ψp〉
into its corresponding region graph R(P)〈Sr

p, ψr
p〉 by invoking the procedure

ConstructRegionGraph. We also let this procedure take state predicates and sets of
transitions in P (e.g., S and Σbt) and return the corresponding region predicates and
sets of edges in R(P) (e.g., Sr and Σr

bt). Likewise, we transform a region graph R(P)
back to a real-time program by invoking the procedure ConstructRealTimeProgram.

A clock region β is a time-successor of a clock region α iff for each ν ∈ α, there
exists τ ∈ R≥0, such that ν + τ ∈ β, and ν + τ ′ ∈ α∪β for all τ ′ < τ . We call a region
(s, ρ) a boundary region, if for each ν ∈ ρ and for any τ ∈ R≥0, ν and ν + τ are not
equivalent. A region is open, if it is not a boundary region. A region (s, ρ) is called an
end region, if ν(x) > cx for all ν ∈ ρ and for all clocks x ∈ X .

3 Faults and Fault-Tolerance in Real-Time Programs

In this section, we extend formal definitions of faults and fault-tolerance due to Arora
and Gouda [23] to the context of real-time programs. The faults that a program is sub-
ject to are systematically represented by transitions. A class of faults f for program
P〈Sp, ψp〉 is a subset of the set Sp × Sp. Faults are also categorized into delay faults
and jump faults. We use ψp[]f to denote the transitions obtained by taking the union of
the transitions in ψp and the transitions in f .

We say that a state predicate T is an f -span (read as fault-span) of P from S iff the
following conditions are satisfied: (1) S ⊆ T , and (2) T is closed in ψp[]f . Observe that
for all computations of P that start from states where S is true, T is a boundary in the
state space of P up to which (but not beyond which) the state of P may be perturbed by
the occurrence of the transitions in f . As we defined the computations of P , we say that
a timed state sequence, 〈(σ0, τ0), (σ1, τ1), · · · 〉, is a computation of P in the presence
of f iff the following four conditions are satisfied: (1) ∀j > 0 : (σj−1, σj)∈ (ψp ∪ f),
(2) if it is finite and terminates in state (σl, τl) then there does not exist state σ such that
(σl, σ) ∈ ψp, (3) 〈τ0, τ1, · · · 〉 satisfies monotonicity and divergence, and (4) ∃n ≥ 0 :
(∀j > n : (σj−1, σj)∈ψp).

We consider three levels of fault-tolerance, namely nonmasking, failsafe, and mask-
ing based on satisfaction of safety and liveness properties in the presence of faults. For
failsafe and masking fault-tolerance, we propose two additional levels, namely soft and
hard, based on satisfaction of timing constraints in the presence of faults. Intuitively, a
soft fault-tolerant real-time program is not required to satisfy its timing constraints in
the presence of faults. A hard fault-tolerant real-time program must satisfy its timing
constraints even in the presence of faults.

Let specification Σ consist of Σbt and Σbr . Since a nonmasking fault-tolerant pro-
gram need not satisfy safety in the presence of faults, P is nonmasking f -tolerant from
S for Σ with recovery time δ, where δ ∈ Z≥0, iff (1) P |=S Σbt, (2) P |=S Σbr , and
(3) there exists T such that T is an f -span of P from S, and every computation of
P〈Sp, ψp[]f〉 that starts from a state in T , reaches a state in S within δ time units. We
say that P is soft-failsafe f -tolerant from S for Σ iff (1) P |=S Σbt, (2) P |=S Σbr , and
(3) there exists T such that T is an f -span of P from S, and P〈Sp, ψp[]f〉 maintains

128 B. Bonakdarpour and S.S. Kulkarni

Σbt from T . A program P is hard-failsafe f -tolerant from S for Σ iff P is soft-failsafe
f -tolerant from S for Σ andP〈Sp, ψp[]f〉maintains Σbr from T . A programP〈Sp, ψp〉
is soft-masking f -tolerant from S for Σ with recovery time δ, where δ ∈ Z≥0, iff (1)
P |=S Σbt, (2) P |=S Σbr , (3) there exists T such that T is an f -span of P from S and
P〈Sp, ψp[]f〉 maintains Σbt from T , and (4) every computation of P〈Sp, ψp[]f〉 that
starts from a state in T , reaches a state in S within δ time units. A program P〈Sp, ψp〉
is hard-masking f -tolerant from S for Σ with recovery time δ, where δ ∈ Z≥0, iff P is
soft-masking f -tolerant from S for Σ with recovery time δ, and P〈Sp, ψp[]f〉maintains
Σbr from T .

Notation. Whenever the specification Σ and the invariant S are clear from the context,
we omit them; thus, “f -tolerant” abbreviates “f -tolerant from S for Σ”.

Assumption 3.1: Since P satisfies Σbr ≡ ((P1 �→≤δ1 Q1) ∧ ...∧ (Pm �→≤δm Qm))
in the absence of faults (cf. Remark 2.1), without loss of generality, we assume that
for each bounded response property (Pi �→≤δi Qi), where 1 ≤ i ≤ m, the intolerant
program already has a clock variable that is reset on transitions that go from a state in
¬Pi to a state in Pi to keep track of time as soon as Pi becomes true.

Assumption 3.2: We assume that faults are immediately detectable and that given
a state of the program, we can determine the number of faults that have occurred in
reaching that state. This assumption is needed only for addition of hard fault-tolerance
and is realistic in many commonly considered systems. For instance, in multiproces-
sor scheduling theory, a processor-crash is immediately detectable and its number of
occurrences is easily traceable.

Assumption 3.3: We assume that the number of occurrence of faults in a program
computation is bounded by a pre-specified value n. This assumption is required since
for commonly considered faults, it can be shown that bounded-time recovery in the
presence of unbounded occurrence of faults is impossible.

4 Problem Statement

Given are a fault-intolerant real-time program P〈Sp, ψp〉, its invariant S, a set of faults
f , and a safety specification Σ such that P |=S Σ. Our goal is to synthesize a real-
time program P ′〈Sp, ψ

′
p〉 with invariant S′ such that P ′ is f -tolerant from S′ for Σ.

As mentioned in the introduction, our synthesis methods obtain P ′ from P by adding
fault-tolerance alone to P , i.e., P ′ does not introduce new behaviors to P when no
faults have occurred. Observe that:

1. If S′ contains states that are not in S then, in the absence of faults, P ′ may include
computations that start outside S. Since we require that P ′ |=S′ Σ, it would imply
that P ′ is using a new way to satisfy Σ in the absence of faults.

2. If ψ′
p|S′ contains a transition that is not in ψp|S′ then P ′ can use this transition in

order to satisfy Σ in the absence of faults.

Thus, the synthesis problem is as follows (we instantiate this problem for soft/hard-
failsafe, nonmasking, and soft/hard-masking f -tolerance in the obvious way):

Incremental Synthesis of Fault-Tolerant Real-Time Programs 129

Problem Statement 4.1. Given P〈Sp, ψp〉, S, Σ, and f such that P |=S Σ.
Identify P ′〈Sp, ψ

′
p〉 and S′ such that

(C1) S′ ⊆ S
(C2) ψ′

p|S′ ⊆ ψp|S′, and
(C3) P ′ is f -tolerant from S′ for Σ.

Soundness and completeness. We say that an algorithm for the synthesis problem is
sound iff its output meets the constraints of the Problem Statement 4.1. We say that an
algorithm for the synthesis problem is complete iff it finds a solution to the Problem
Statement 4.1 iff there exists one.

5 Adding Nonmasking Fault-Tolerance

Algorithm sketch. Since a nonmasking program is not required to satisfy its safety
specification in the presence of faults, it only suffices to provide bounded-time recov-
ery from the fault-span Sp − S to the invariant S. We develop a general procedure
that adds bounded-time recovery to a given region graph from any arbitrary given state
predicate P to another state predicate Q within δ time units (i.e., P �→≤δ Q). Notice
that bounded-time recovery from fault-span to the invariant can be formally defined by
R ≡ (Sp − S) �→≤δ S. The algorithm has four main steps. First, we transform the re-
gion graph to a weighted directed graph (called MaxDelay digraph [24]), in which the
length of a path from vertex vs to vt is equivalent to the maximum delay for reaching
the region that corresponds to vt from the region that corresponds to vs. We use this
property to remove the computations that violate P �→≤δ Q. To this end, in Step 2,
we rank vertices of the MaxDelay digraph by simply applying an adjusted Dijkstra’s
shortest path algorithms. For instance, suppose that a computation starts from a state
σ0 ∈ P . If a fault perturbs the program to a state σj where “something” should be
redone, the maximum delay of that computation to reach Q is obviously increased.
Hence, we adjust the length of the shortest path from σ0 to Q such that the amount
of time wasted by every occurrence of faults is considered (cf. Figure 1). In Step 3,
we include regions and edges whose rank is at most the required response time δ.
Then, in Step 4, we transform the synthesized MaxDelay digraph back into a region
graph.

Construction of MaxDelay digraph. We now describe the procedure Construct-
MaxDelayGraph that transforms a region graph to a MaxDelay digraph. The pro-
cedure takes a region graph R(P)〈Sr

p , ψr
p〉 and a set f r of fault edges as input, and

constructs a MaxDelay digraph G〈V, A〉 as follows. Vertices of G consist of the re-
gions in R(P).

Notation. We denote the weight of an arc (v0, v1) by Weight(v0, v1). Let γ denote a
bijection that maps each region r ∈ Sr

p to its corresponding vertex in G; i.e., γ(r) is a
vertex of G that represents region r of R(P). Also, let γ−1 denote the inverse of γ; i.e.,
γ−1(v) is the region of R(P) that corresponds to vertex v in V . Let Γ be a function
that maps a region predicate in R(P) to the corresponding set of vertices of G and let

130 B. Bonakdarpour and S.S. Kulkarni

Γ−1 be its inverse. Finally, for a boundary region r with respect to clock variable x, we
denote the value of x by r.x (equal to some nonnegative integer in Z≥0).

Arcs of G consist of the following:

– Arcs of weight 0 from v0 to v1, if γ−1(v0) → γ−1(v1) represents a jump transition
in R(P).

– Arcs of weight c′ − c, where c, c′ ∈ Z≥0 and c′ > c, from v0 to v1, if γ−1(v0)
and γ−1(v1) are both boundary regions with respect to clock variable xi, such that
γ−1(v0).xi = c, γ−1(v1).xi = c′, and there is a path in R(P) from γ−1(v0) to
γ−1(v1), which does not reset xi.

– Arcs of weight c′ − c − ε, where c, c′ ∈ Z≥0, c′ > c, and 0 < ε 1, from v0

to v1 , if (1) γ−1(v0) is a boundary region with respect to clock xi, (2) γ−1(v1) is
an open region whose time-successor γ−1(v2) is a boundary region with respect to
clock xi, (3) γ−1(v0) → γ−1(v1) represents a delay transition in R(P), and (4)
γ−1(v0).xi = c and γ−1(v2).xi = c′.

– Self-loop arcs of weight∞ at vertex v, if γ−1(v) is an end region.

In order to compute the maximum delay between regions in P r and Qr, it suffices to
find the longest distance between Γ (P r) and Γ (Qr) in G.

We now describe the procedure Add BoundedRecovery (cf. Figure 2) in detail.
Given a region graph R(P), we first transforms it into a MaxDelay digraph G〈V, A〉
(Line A1). Recall that, by Assumption 3.2, faults are detectable and P has a variable
that shows how many faults have occurred in a computation. Thus, let Gi〈V i, Ai〉 be the
portion of G, in which n− i faults have occurred, where 0 ≤ i ≤ n. More specifically,
initially, a computation starts from the portion Gn where no faults have occurred. If
a fault occurs in a computation that is currently in portion Gi, the computation will
proceed in portion Gi−1. We use these portions to see whether it is possible to reach a
vertex in Γ (Qr) from each vertex in Γ (P r) within δ time units.

Next, we rank vertices of all portions of G using a modified Dijkstra’s shortest path
algorithm, which takes state perturbations into account (lines A2-A9 and A22-A23).
More specifically, since no faults occur in G0, we first let the rank of each vertex v ∈
V 0 be the length of Dijkstra’s shortest path from v to Γ (Qr)0 (Line A2). Now, let
v0 be a vertex in V i where 1 ≤ i ≤ n, and let v1 be a vertex in V i−1, such that
(γ−1(v0), γ−1(v1)) is a fault edge in R(P) and both v0 and v1 are on a path from Γ (P r)
to Γ (Qr). There exist two cases: (1) the fault edge (γ−1(v0), γ−1(v1)) decreases or

rank=
0

Pr)
v0

v1

Gi

Gi-1

f

Qr)

rank=
3

rank=
4

rank=
5

rank=
3

rank=
2

rank=
1

rank=
0

Fig. 1. Adjusted shortest path

Incremental Synthesis of Fault-Tolerant Real-Time Programs 131

procedure Add BoundedRecovery(R(P)〈Sr
p, ψr

p〉: region graph, fr : set of edges,
P r , Qr : region predicate, n, δ: integer)

// Adds bounded-time recovery from P r to Qr in the presence of fr

{
step 1: G〈V, A〉 := ConstructMaxDelayGraph(R(P)〈Sr

p, ψr
p〉, fr); (A1)

Let Gi〈V i, Ai〉 be the portion of G, in which (n − i) faults have occurred, where 0 ≤ i ≤ n;
step 2: for each vertex v ∈ V 0 : Rank(v) := Length of the shortest path from v to Γ (Qr)0; (A2)

for i = 1 to n (A3)
for each vertex v0 ∈ V i : (A4)

Vf := {v1 | (v1 ∈ V i−1 ∧ (γ−1(v0), γ−1(v1)) ∈ fr)}; (A5)
if Vf = {} then MinRank(v0) := (A6)

max{(Rank(v1) + Weight(v0, v1)) for all v1 ∈ Vf}; (A7)
else MinRank(v0) := 0; (A8)

AdjustShortestPaths(Gi〈V i, Ai〉, Γ (P r)i, Γ (Qr)i); (A9)
// Constructing a subgraph of each portion such that the longest distance between Γ (P r) and Γ (Qr) is at most δ

and then adding the arcs and vertices that do not appear on paths from Γ (P r) to Γ (Qr)
step 3: for i = 0 to n (A10)

G′i〈V ′i, A′i〉 = {}; (A11)
for each vertex v ∈ Γ (P r)i : (A12)

if Rank(v) ≤ δ then (A13)
Π := the shortest path from v to Γ (Qr)i; (A14)
V ′i := V ′i ∪ {u | u is on Π}; (A15)
A′i := A′i ∪ {a | a is on Π}; (A16)

A′i := A′i ∪ {(u, v) | (u, v) ∈ Ai ∧ (u /∈ V ′i ∨ (u ∈ Γ (Qr)i))}; (A17)
V ′i := (V ′i ∪ {u | (∃v : (u, v) ∈ A′i ∨ (v, u) ∈ A′i)}); (A18)

// Transforming weighted digraph G into a region graph
step 4: ψ′r

p := {(r0, r1) | (r0, r1) ∈ ψr
p ∧ (γ(r0), γ(r1)) ∈ A′} ∪

{(r1, r2) | (r1, r2) ∈ ψr
p ∧ (γ(r1), γ(r2)) /∈ A′ ∧

∃r0 : Weight(γ(r0), γ(r1)) = 1 − ε}; (A19)
ns := {r | γ(r) ∈ (V − V ′)}; (A20)
return ψ′r

p , ns (A21)
}
procedure AdjustShortestPaths(Gi〈V i, Ai〉 : directed weighted graph, Vq : set of vertices)
// Adjusts the rank of each vertex based on the ranks computed in Add BoundedRecovery
{

for each vertex v ∈ V i apply Dijkstra’s shortest path with the following change:
if Dijkstra’s shortest path computes a length less than MinRank(v) then

Rank(v) := MinRank(v); (A22)
else Rank(v) := length of Dijkstra’s shortest path from v to Vq

using the assigned rank of other vertices (A23)
}
algorithm Add Nonmasking(P〈Sp, ψp〉 :real-time program f :transitions, S: state predicate, n, δ: integer)
{

R(P)〈Sr
p, ψr

p〉, Sr , fr := ConstructRegionGraph(P〈Sp, ψp〉, S, f); (B1)
ψr

p := ψr
p ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ Sr ∧
∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ − {t} := 0])}; (B2)

ψr
p, ns := Add BoundedRecovery(R(P)〈Sr

p, ψr
p1

〉, fr, Sr
p − Sr, Sr , n, δ); (B3)

rs := {r0 | ∃r1, r2, ...rn : (∀j : 0 ≤ j < n : (rj , rj+1) ∈ fr) ∧ rn ∈ (ns ∩ P r)}; (B4)
rt := {(r0, r1) | (r0, r1) ∈ ψr

p ∧ r1 ∈ rs)}; (B5)
S′r, ψ′r

p := Sr − rs, ψr
p − rt; (B6)

ψ′r
p := EnsureClosure(ψr

p, S′r); (B7)
P′〈Sp, ψ′

p〉, S′ := ConstructRealTimeProgram(R(P)〈Sr
p, ψ′r

p 〉, S′r) (B8)
}
procedure EnsureClosure(ψr

p : set of edges, Sr : region predicate)
{ return ψr

p−{(r0, r1) | r0∈Sr ∧ r1 ∈ Sr}}

Fig. 2. Adding Bounded-Time Recovery/Nonmasking Fault-Tolerance

does not change the computation delay, i.e, the shortest distance from v1 to Γ (Qr)i−1

is less than or equal to the shortest distance from v0 to Γ (Qr)i, and (2) the fault edge
(γ−1(v0), γ−1(v1)) increases the computation delay, i.e., the shortest distance from v1

132 B. Bonakdarpour and S.S. Kulkarni

to Γ (Qr)i−1 is greater than the shortest distance from v0 to Γ (Qr)i (cf. Figure 1 for an
example). While the former case does not cause violation of P �→≤δ Q in the presence
of faults, the later may do. Hence, the rank of v0 ∈ V i must be at least the rank of
v1 ∈ V i−1. Moreover, if there exist multiple fault edges at γ−1(v0) then we take the
maximum rank (Line A7). After computing the rank of vertices from where faults may
occur, we adjust the rank of the rest of vertices from where faults do not occur by
invoking the procedure AdjustShortestPath (Line A9).

Now, for each portion Gi, we construct a subgraph of Gi whose longest distance
from each vertex in Γ (P r)i to Γ (Qr)i is at most δ as follows (lines A11-A16). We
begin with an empty digraph G′i〈V ′i, A′i〉 and we first include the shortest paths from
each vertex v ∈ Γ (P r)i to Γ (Qr)i, provided Rank(v) ≤ δ (lines A13-A16). Next,
we include the remaining arcs and vertices in G′i, so that no arcs of the form (v0, v1),
where v0 is on a path from Γ (P r)i to Γ (Qr)i are added (lines A17-A18).

Now, we transform the digraph G′ back into a region graph (Line A19). Finally, we
return the set ψ′r

p of edges from where P �→≤δ Q is not violated even in the presence of
faults, and the set ns of regions from where P �→≤δ Q may be violated in the presence
of faults (lines A20-A21).

Using Add BoundedRecovery to Add Nonmasking Fault-Tolerance. In order to
add nonmasking fault-tolerance with bounded-time recovery δ, we first transform the
real-time programP〈Sp, ψp〉, invariant S, and the set of fault transitions f into a region
graph R(P)〈Sr

p, ψr
p〉, region invariant Sr, and fault edges f r by invoking the procedure

ConstructRegionGraph (Line B1), as described in Subsection 2.3. Next, in order to
ensure that S′ is reachable from all the states in Sp−S′, we add recovery edges that start
from each region in Sr

p − Sr and go to regions where the time monotonicity condition
is preserved, i.e., time is not decreased (Line B2). Notice that the algorithm allows
arbitrary clock resets (except the clock that keeps track of the recovery time time δ)
during recovery, which is fine according to the definition of nonmasking fault-tolerance
(such “new” clock resets occur only in states outside the invariant). Then we invoke
the procedure Add BoundedRecovery. This invocation identifies the set rs of regions
and the set rt of edges from where faults alone may violate R (lines B4-B5). Then,
it removes such regions (respectively, edges) from Sr (respectively, ψr

p). Finally, the
algorithm ensures the closure of the invariant (Line B7) and transforms the synthesized
region graph R(P ′) back to a real-time program P ′ (Line B8).

6 Adding Soft-Failsafe Fault-Tolerance

As mentioned in Subsection 2.2, the safety specification identifies a set Σbt of bad
transitions and a conjunction Σbr of multiple bounded response properties. Also, recall
that in the presence of faults, a soft-failsafe program is required to maintain Σbt only.

Algorithm sketch. We adapt the proposed algorithm in [6], which adds failsafe fault-
tolerance to untimed programs. Intuitively, our algorithm, consists of three main steps.
First, we prohibit the program from reaching the set ms of states from where a sequence
of faults takes the program to a state where safety (Σbt) is violated. Since our goal is to
synthesize a maximal program, we find ms by computing the smallest fixpoint of states

Incremental Synthesis of Fault-Tolerant Real-Time Programs 133

from where safety may be violated. In step 2, after removing ms from the program
invariant S, we make sure that this removal do not create new finite computations in the
absence of faults. To this end, we remove deadlock states from the invariant which is
in turn computing the largest fixpoint of the invariant. Finally, in step 3, we ensure that
removal of transitions from where safety may be violated does not violate the closure
of the output program.

We now describe the algorithm Add SoftFalisafe (cf. Figure 3). We first transform
the program P into its region graph R(P) (Line C1). Then, the algorithm adds failsafe
fault-tolerance to R(P), so that no edge of Σr

bt occurs in computations of R(P) in the
presence of faults by invoking the procedure Add UntimedFailsafe (Line C2). This
procedure first finds the set ms of regions and the set mt of edges from where safety
of P may be violated by faults alone (lines E1-E2). Next, it removes such regions (re-
spectively, edges) from the region invariant Sr (respectively, set of edges ψr

p) of R(P).
Then, it removes deadlock regions from Sr (Line E3), ensures the closure of ψr

p in
Sr (Line E5), and returns a failsafe region graph R(P ′)〈Sr

p , ψ′r
p 〉 (Line E6). Finally,

we transform the region graph R(P ′) back into a real-time program P ′ (Line C3) as
described in Subsection 2.3.

7 Adding Hard-Failsafe Fault-Tolerance with One Bounded
Response Property

In this section, we present our algorithm Add HardFailsafe (cf. Figure 3) for the case
where the synthesized hard-failsafe program is required to satisfy at most one bounded
response property in the presence of faults, i.e., Σbr ≡ P �→≤δ Q.

Algorithm sketch. Intuitively, the algorithms works in five main steps. First, we add
soft-failsafe to R(P) to ensure that a transition in Σbt occurs in no computation of P ′.
Note that, the outcome of adding soft-failsafe is a maximal program and every transition
that is removed by Add SoftFailsafe has to be removed, i.e., such transitions cannot
be in any fault-tolerant program that satisfies the constraints of Problem Statement 4.1.
In Step 2, we remove the behaviors that violate the bounded response property Σbr ≡
P �→≤δ Q in the presence of faults using the procedure Add BoundedRecovery. In
step 3, we remove deadlock states due to removal of states and transitions in step 2. In
Step 4, if a state σ1 ∈ Q is removed and some state, say σ0, in P uses σ1 to satisfy
P �→≤δ Q then another path from σ0 must be provided to satisfy P �→≤δ Q. Hence,
we remove σ1 from Q and repeat steps 2, 3, and 4 until no such Q-states exist. Finally,
in Step 5, we ensure the closure of the output program.

We now describe the pseudo-code of the algorithm. In order to ensure that P ′ main-
tains Σbt, we first add soft-failsafe fault-tolerance to R(P) (Line D1). Next, we trans-
form P into its region graph R(P) (Line D2). Next, we modify R(P), such that any
computation that starts from a region in P r, reaches a region in Qr in at most δ time
units even in the presence of faults. Towards this end, we compute the set of regions
and edges from where Σbr is maintained (lines D3-D14). Precisely, in order to ensure
that Q is reachable from all the states in P ∧ ¬S, we first include edges that start from
each region in Sr

p −Sr and go to regions where the time monotonicity condition is pre-
served, i.e., time is not decreased (Line D4). Notice that the algorithm allows arbitrary

134 B. Bonakdarpour and S.S. Kulkarni

algorithm Add SoftFailsafe(P〈Sp, ψp〉 :real-time program f :transitions, S: state predicate, Σbt: specification)
{

R(P)〈Sr
p, ψr

p〉, Sr , fr , Σr
bt := ConstructRegionGraph(P〈Sp, ψp〉, S, f , Σbt); (C1)

ψ′r
p , S′r := Add UntimedFailsafe(R(P)〈Sr

p , ψr
p〉, fr, Sr, Σr

bt); (C2)
P′〈Sp, ψ′

p〉, S′ := ConstructRealTimeProgram(R(P)〈Sr
p, ψ′r

p 〉, S′r); (C3)
return P′〈Sp, ψ′

p〉, S′; (C4)
}
algorithm Add HardFailsafe(P〈Sp, ψp〉 :real-time program f :transitions,

S, P, Q: state predicate, Σbt: specification, n, δ: integer)
{
step 1: P〈Sp, ψp〉, S := Add SoftFailsafe(R(P)〈Sr

p , ψr
p〉, fr, Sr, Σr

bt); (D1)
R(P)〈Sr

p, ψr
p〉, Sr , P r , Qr, fr , Σr

bt :=
ConstructRegionGraph(P〈Sp, ψp〉, S, P, Q, f, Σbt); (D2)

repeat
IsQRemoved := false; (D3)

step 2: ψr
p := ψr

p ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ Sr ∧
∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ − {t} := 0])} − mt; (D4)

ψr
p, ns := Add BoundedRecovery(R(P)〈Sr

p, ψr
p〉, fr, P r , Qr , n, δ); (D5)

rs := {r0 | ∃r1, r2, ...rn :
(∀j : 0 ≤ j < n : (rj , rj+1) ∈ fr) ∧ rn ∈ (ns ∩ P r)}; (D6)

rt := {(r0, r1) | (r0, r1) ∈ ψr
p1

∧ r1 ∈ rs)}; (D7)
step 3: S′r := RemoveDeadlocks(Sr − (ns ∪ rs), ψr

p − rt); (D8)
if (S′r ={}) then

declare no hard-failsafe f-tolerant program P′ exists; exit; (D9)
step 4: if (Qr ∩ (Sr − S′r) = {}) then (D10)

IsQRemoved := true; (D11)
Sr := S′r ; (D12)
ψr

p := ψr
p − {(r, r0), (r0, r) | r0 ∈ Qr ∩ (Sr − S′r)}; (D13)

Qr := Qr ∩ (Sr − S′r); (D14)
until (IsQRemoved = false);

step 5: ψ′r
p := EnsureClosure(ψr

p, S′r); (D15)
P′〈Sp, ψ′

p〉, S′ := ConstructRealTimeProgram(R(P)〈Sr
p, ψ′r

p 〉, S′r) (D16)
}
procedure Add UntimedFailsafe(R(P)〈Sr

p , ψr
p〉: region graph, fr : set of edges,

Sr : region predicate, Σr
bt : specification)

{
step1: ms := {r0 | ∃r1, r2, ...rn :

(∀j | 0≤j <n : (rj , rj+1) ∈ fr) ∧ (rn−1, rn) ∈ Σr
bt }; (E1)

mt := {(r0, r1) | (r1∈ms) ∨ ((r0, r1) ∈ Σr
bt) }; (E2)

step2: Sr := RemoveDeadlocks(Sr − ms, ψr
p−mt); (E3)

if (Sr ={}) then
declare no soft/hard-failsafe f-tolerant program P′ exists; exit; (E4)

step3: ψr
p :=EnsureClosure(ψr

p−mt, Sr); (E5)
return ψr

p, Sr (E6)
}
procedure RemoveDeadlocks(Sr : region predicate, ψr

p : set of edges)
// Returns the largest subset of Sr from where all computations of R(P) are infinite
{

while (∃r0 | r0∈Sr : (∀r1 ∈ Sr : (r0, r1) ∈ψr
p))

Sr := Sr − {r0};
return Sr

}

Fig. 3. Adding Failsafe Fault-Tolerance

clock resets as long as safety is not violated (by excluding the edges in mt). Then, we
invoke the procedure Add BoundedRecovery to ensure that P �→≤δ Q is maintained
in the presence of faults (Line D5). Then, we identify the set rs of regions and rt of
transitions from where Σbr may be violated (lines D6-D7). We remove such regions
and edges along with the deadlock regions from Sr in the same fashion that we did for
adding soft-failsafe (Line D8). However, we need to consider a special case where a

Incremental Synthesis of Fault-Tolerant Real-Time Programs 135

region, say r1, in Qr becomes a deadlock region. In this case, it is possible that all the
regions along the paths that start from a region, say r0, in P r and end in r1 become
deadlock regions. Hence, we need to find another path from r0 to a region in Qr other
than r1. Thus, in this case, we remove r1 (and similar regions) from Sr and Qr and
start over (lines D10-D14). Finally, the algorithm ensures closure of the invariant (Line
D15) and transforms the synthesized region graph R(P ′) back to a real-time program
P ′ (Line D16).

Theorem 7.1. The algorithms Add Nonmasking and Add Soft/HardFalisafe are
sound and complete. ��
Theorem 7.2. The problem of adding nonmasking and soft/hard-failsafe fault-tolerance
to a real-time program, where the synthesized program is required to satisfy at most one
bounded response property in the presence of faults, is PSPACE-complete in the size of
the input program. ��

8 Conclusion

In this paper, we focused on the problem of automatic addition of fault-tolerance to
real-time programs. We considered three levels of fault-tolerance, namely failsafe, non-
masking, and masking. For failsafe and masking, we proposed two cases, soft and hard,
based on satisfaction of timing constraints in the presence of faults. We first intro-
duced a generic framework to formally define the notions of faults and fault-tolerance in
the context of real-time programs. Then, we presented sound and complete algorithms
for transforming fault-intolerant real-time programs into soft-failsafe and nonmasking
fault-tolerant programs. We also proposed a sound and complete algorithm that synthe-
sizes hard-failsafe fault-tolerant real-time programs, where the fault-tolerant program
is required to satisfy at most one bounded response property in the presence of faults.
The complexity of our algorithms are in polynomial time in the size region graphs. The
results on synthesis of soft/hard-masking fault-tolerance are presented in a technical
report [19].

References

1. M. Pandya and M. Malek. Minimum achievable utilization for fault-tolerant processing of
periodic tasks. IEEE Transations on Computers, 47(10):1102–1112, 1998.

2. D. Mossé, R. G. Melhem, and S. Ghosh. A nonpreemptive real-time scheduler with recovery
from transient faults and its implementation. IEEE Transactions on Software Engineering,
29(8):752–767, 2003.

3. B. Bonakdarpour and S. S. Kulkarni. Automated incremental synthesis of timed automata. In
International Workshop on Formal Methods for Industrial Critical Systems (FMICS), 2006.

4. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.
5. A. Ebnenasir, S. S. Kulkarni, and B. Bonakdarpour. Revising UNITY programs: Possibil-

ities and limitations. In 9th International Conference on Principles of Distributed Systems
(OPODIS), 2005.

6. S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In Formal Tech-
niques in Real-Time and Fault-Tolerant Systems (FTRTFT), pages 82–93, 2000.

136 B. Bonakdarpour and S.S. Kulkarni

7. S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial time synthesis of Byzantine agree-
ment. In 20th Symposium on Reliable Distributed Systems (SRDS), pages 130–140, 2001.

8. S. S. Kulkarni and A. Ebnenasir. Automated synthesis of multitolerance. In International
Conference on Dependable Systems and Networks (DSN), pages 209–219, 2004.

9. P. C. Attie, A. Arora, and E. A. Emerson. Synthesis of fault-tolerant concurrent programs.
ACM Transactions on Programming Languages and Systems, 26(1):125–185, 2004.

10. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In
IFAC Symposium on System Structure and Control, pages 469–474, 1998.

11. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata. In
Hybrid Systems: Computation and Control (HSCC), pages 19–30, 1999.

12. D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications. In 19th
Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 571–582,
2002.

13. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial observability.
In Computer Aided Verification (CAV), pages 180–192, 2003.

14. L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The element of
surprise in timed games. In 14th International Conference on Concurrency Theory (CON-
CUR), 2003.

15. M. Faella, S. LaTorre, and A. Murano. Dense real-time games. In Logic in Computer Science
(LICS), pages 167–176, 2002.

16. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information and
Computation, 104(1):2–34, 1993.

17. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
235, 1994.

18. Y. Abdeddam. Scheduling with Timed Automata. PhD thesis, INPG, Grenoble, November
2002.

19. B. Bonakdarpour and S. S. Kulkarni. Automatic addition of fault-tolerance to real-time
programs. Technical Report MSU-CSE-06-13, Department of Computer Science and Engi-
neering, Michigan State University, 2006.

20. R. Alur and T. A. Henzinger. Real-time system = discrete system + clock variables. Interna-
tional Journal on Software Tools for Technology Transfer, 1(1-2):86–109, 1997.

21. T. A. Henzinger. Sooner is safer than later. Information Processing Letters, 43(3):135–141,
1992.

22. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21:181–
185, 1985.

23. A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-tolerant com-
puting. IEEE Transactions on Software Engineering, 19(11):1015–1027, 1993.

24. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-time
systems. In Computer-Aided Verificaion (CAV), pages 399–409, 1991.

Toward a Time-Optimal Odd Phase Clock

Unison in Trees

Christian Boulinier, Franck Petit, and Vincent Villain

LaRIA, CNRS FRE 2733
Université de Picardie Jules Verne, France

Abstract. We address the self-stabilizing unison problem in tree net-
works. We propose two self-stabilizing unison protocols without any reset
correcting system. The first one, called Protocol SU Min, being sched-
uled by a synchronous daemon, is self-stabilizing to synchronous unison
in at most D steps, where D is the diameter of the network. The second
one, Protocol WU Min, being scheduled by an asynchronous daemon, is
self-stabilizing to asynchronous unison in at most D rounds. Moreover,
both are optimal in space. The amount of required space is independent
of any local or global information on the tree. Furthermore, they work
on dynamic trees networks, in which the topology may change during
the execution.

1 Introduction

We consider the problem of phase synchronization [1] in uniform distributed
systems liable to transient faults. Phase synchronization consists in designing a
synchronization mechanism devoted to a distributed protocol made of a sequence
of phases 0, 1, . . . such that no process starts to execute its phase i + 1 before all
processes have completed their phase i. In a distributed environment, each pro-
cess maintains its own copy of the phase clock. Therefore, the problem consists
in the design of a protocol insuring that all the phase clocks are in phase. The
phrase “in phase” has a natural meaning in synchronous systems.

In asynchronous systems, there is no global signal. So, one can at most en-
sure that no process starts to execute its phase i + 1 before all processes have
completed their phase i. But this kind of synchronization needs O(D) rounds
between two phases. So, in general, the synchronization requirement is relaxed
as follows: the clocks are in phase if the value of two neighboring processes does
not differ by no more than 1, and the clock value of each process is incremented
by 1 infinitely often. The asynchronous unison [2] deals with this criteria.

Unison can be used as an underlayer mechanism to solve many local synchro-
nization problems like, Local Mutual Exclusion, Local Reader-Writers,
Local Group Mutual Exclusion, or Local Resource Allocation [3,4]. Recently, uni-
son was also used in the design of a Publish/Subscribe protocol in peer-to-peer
networks [5].

Self-stabilization [6,7] is the most general technique to design a system that
tolerates arbitrary transient faults, i.e., faults that may corrupt the state of

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 137–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

138 C. Boulinier, F. Petit, and V. Villain

processes or links. Regardless of the initial state of the system, the self-stabilizing
unison consists to settle all clocks in phase—the clocks are in phase after a finite
number of steps—, and to keep all clocks in phase thereafter—the clocks are
infinitely often incremented in phase.

1.1 Related Works

Numerous works in the area of self-stabilization deals with the phase synchro-
nization problem. In this paper, we focus on deterministic solutions for uniform
systems only. Moreover, we limit our discussion to trees. In the rest of this sec-
tion, K is the size of the clock, S is the number of states the processes are
required to have, D is the diameter of the network, n the number of processes,
and Δ is the maximum degree of a process.

Self-stabilizing Synchronous Unison in trees. The first self-stabilizing synchro-
nous unison is given in [8]. It works on a general graph but it requires unbounded
clocks. The first protocol with a bounded memory space is proposed in [9]. It
needs K ≥ 2ΔD, and stabilizes in 3ΔD steps. As it is noticed in [10], the
Δ factor is due to the model: it is assumed that a process cannot read more
than the state of one neighbor at a time. From now on, all the protocols we
discuss will be assumed to work on a model where every process can read the
state of all its neighbors at a time. In this model, the solution in [9] needs
K ≥ 2D (S = K) and stabilizes in at most 3D steps only. [11] gives a new
solution which needs K ≥ 2 (S ≥ n + K) and stabilizes in at most 2D steps
only.

A solution for tree networks is proposed in [10]. It requires K = 3m (m > 0),
S = K, and stabilizes in (D(K − 1))/2 steps. Note that the stabilization time
is equal to D only for m = 1 (K = 3), but is greater than 2D when m ≥ 2.
Thus, in the case 3m ≥ 2D, the solution in [9] is better. In terms of stabilization
time, the best solution in trees is proposed in [12]. It stabilizes in at most D
steps only. Moreover, this protocol is “universal”, meaning that K can take
any value greater than or equal to 2. But, the state requirement depends on Δ
only: S = (Δ + 1)K. In [11], we provide a universal self-stabilizing synchronous
unison for trees which is optimal in memory space. It works with any K ≥ 3,
S = K, and stabilizes within 2D steps. We can also remark that for K = 3,
the stabilization time is equal to D only, i.e., that reaches the performance
of [10].

Self-stabilizing Asynchronous Unison in trees. The self-stabilizing asynchronous
unison was introduced in [2]. Two deterministic protocols are proposed. The
former works assuming unbounded clock, the latter needs K ≥ n2 (according
to our model) (S = K). The second and last solution is proposed in [3]. The
authors show that in trees K must be greater than 2, and S, the amount of
space, must be greater than K. The stabilization time is upper bounded by
2D rounds. D rounds in the case K = 3. In the same paper, they present an
algorithm reaching these bounds. This protocol is optimal in terms of state
requirement.

Toward a Time-Optimal Odd Phase Clock Unison in Trees 139

1.2 Contribution

In this paper the contribution is twofold. We give a new self-stabilizing
synchronous unison (resp. asynchronous unison) in trees which is optimal in
space and better than, or as good than all known algorithms in terms of self-
stabilization time.

More precisely. Let K be an odd integer, greater than 1, and let M be such
that (K = 2M + 1). Let χ = {0, ..., K − 1} and Let b ∈ χ. We are able to define
a total order ≤b on χ defined by the ordered sequence b−M ≤b ... ≤b b ≤b

... ≤b b + M . Where U is the unique element a ∈ χ such that a ≡ U to modulus
K. Consequently, from ≤b we are able to define a minimum notion denoted by
minb.

Let Np be the set of neighbors of a process p and CN p = Np ∪ {p} is the
closed neighbor set of p . We define on a tree of processes, each process p labeled
by p.r ∈ χ, the distributed algorithm defined on each process p by

cond −→ p.r := minp.r{q.r, q ∈ CN p}+ 1

We claim that:

1. If cond ≡ true then the protocol, being scheduled by a synchronous daemon,
is self-stabilizing to synchronous unison in at most D steps.

2. If cond ≡ p.r 	= minp.r {q.r, q ∈ CN p}+ 1 ∧ (∀q ∈ Np, q.r ≤p.r p.r + 1) then
the protocol, being scheduled by an asynchronous daemon, is self-stabilizing
to asynchronous unison in at most D rounds.

Example 1. Consider the graph G in Figure 1, with K = 7. For Process p1 the
total order defined by its register r = 6 is 3 <6 4 <6 5 <6 6 <6 0 <6 1 <6 2,
and for the process p2 the total order is 6 <2 0 <2 1 <2 2 <2 3 <2 4 <2 5.
It is easy to calculate the minimum in each case: minp1.r {q.r, q ∈ CN p1} =
min6 {5, 2, 6} = 5 and minp2.r {q.r, CN p2} = min2 {1, 4, 0, 5, 6, 2, } = 6. It fol-
lows that minp1.r {q.r, q ∈ CN p1}+ 1 = 6 and minp2.r {q.r, q ∈ CN p2}+ 1 = 0.
We can see an execution of the protocol in the synchronous case in
Figure 2.

�������	5

���
��
�������	1

���
��
�������	4 �������	0

���
��

�������	6 �������	2 �������	5

p1 p2

Fig. 1. A configuration with register values, for K=7

This algorithms are without reset correcting system. The definition of this
protocols is quasi-trivial. But the correction proofs are not. Moreover, both are
optimal in space. The amount of required space is independent of any local or

140 C. Boulinier, F. Petit, and V. Villain

global information on the tree. Furthermore, they work in dynamic tree net-
works, in which the topology may change during the execution. In this family
of protocols in trees, only the case K = 3 was studied [11]. This case is triv-
ial, any configuration is correct for asynchronous unison. In the synchronous
case, the convergence is a consequence of Theorem ”WU � SU” in [11] under
a synchronous Daemon. We can say that this paper is a generalization of this
case to any odd phase clocks. The difficulty (and the originality) is that this
algorithms are without reset, and so the proof methods of [11] cannot be used
directly. An improvement of the methods is necessary. The success of this im-
provement shows the robustness and the generality of the methods developed in
[11,3].

�������	5
��

�
�������	1

��
�
�������	4 �������	0

��
�

�������	6
��

�
�������	2

��
�
�������	3 �������	1

��
�

�������	0
��

�
�������	1

��
�
�������	1 �������	1

��
�

�������	1
��

�
�������	1

��
�
�������	1 �������	1

��
�

�������	6 �������	2 �������	5 ���� �������	6 �������	0 �������	3 ���� �������	0 �������	0 �������	1 ���� �������	1 �������	1 �������	1

Fig. 2. A synchronous protocol execution on the example

1.3 Paper Outline

In Section 2, we first present the algebraic framework needed in the paper. In the
same section, we describe the distributed system and the model. We also state
what it means for a protocol to be self-stabilizing, we present the unison problem,
and we generalize the framework developed in [3] and [11]. An Unison Protocol
working in a synchronous environment in presented in Section 3, followed by the
Asynchronous Unison Protocol—Section 4. Finally, we make concluding remarks
in Section 5.

2 Preliminaries

In this section, we define congruence and local comparison relationship. Then
we introduce the distributed systems considered in this paper. We state what it
means for a protocol to be self-stabilizing.

2.1 Congruence to Modulus K, Local Comparison Relationship

Let Z be the set of integers. Let M be a strictly positive integer and let K =
2M +1. We say that a and b are congruent to modulus K, denoted by a ≡ b [K],
if and only if there exists λ in Z such that b = a + λK. We denote ā the only
element of [0, K[such that a ≡ ā [K]. We define dK (a, b) = min

(
a− b, b− a

)
,

it is a distance on [0, K[. In the following χ = {0, ..., K − 1}.
A local order on a set χ is an antisymmetric and reflexive binary relation on

χ. For every integers a and b, we have dK (x, y) ≤ M . Let us define the local

Toward a Time-Optimal Odd Phase Clock Unison in Trees 141

order relation ≤l as follows: a ≤l b
def⇔ 0 ≤ b− a ≤ M . Note that this relation

is not transitive, nor a total order on χ. We define a local minimum as follows:
Let a1, a2...an be a sequence of elements of χ, and let b ∈ χ. Every element ai is
locally comparable to b. This remark suggests the following definition:

Definition 1. If ai and aj are two integers in χ, then we say that ai ≤b aj if and
only if one of the three following propositions is satisfied: (1) ai ≤l b and b ≤l aj,
(2) ai ≤l b and aj ≤l b and ai ≤l aj, or (3) b ≤l ai and b ≤l aj and ai ≤l aj.

Proposition 1. Let a and b be two items in χ, then the binary relation induced
by ≤b is a total order on χ and we have a ≤a b ⇐⇒ a ≤b b ⇐⇒ a ≤l b. Denote
by minb the min operator defined by the total order ≤b on χ.

Definition 2. We define b " a by: if a ≤l b then b " a
def= b− a else b " a

def=
−a− b.

Clearly, b"a ≡ b−a [K]. Let a0, a1, a2, ...aα be a sequence of integers. The local

variation of this series is the sum S =
α−1∑
i=0

(ai+1 " ai).

Obviously, S ≡ aα − a0 [K].

2.2 Self-stabilizing Distributed System and Unison

Distributed System. A distributed system is an undirected connected graph,
G = (V, E), where V is a set of nodes—|V | = n, n ≥ 2—and E is the set
of edges. Nodes represent processes, and edges represent bidirectional communi-
cation links. A communication link (p, q) exists iff p and q are neighbors. The
set of neighbors of every process p is denoted as Np. The degree of p is the
number of neighbors of p, i.e., equal to |Np|. The program of a process consists
of a set of registers (also referred to as variables) and a finite set of guarded
actions of the following form: < label >:: < guard > −→< statement >. Each
process can only write to its own registers, and read its own registers and regis-
ters owned by the neighboring processes. The guard of an action in the program
of p is a boolean expression involving the registers of p and its neighbors. The
statement of an action of p updates one or more registers of p. An action can
be executed only if its guard evaluates to true. The actions are atomically exe-
cuted, meaning, the evaluation of a guard and the execution of the correspond-
ing statement of an action, if executed, are done in one atomic step. We assume
that each transition from a configuration to another is driven by a distributed
scheduler called daemon. In this paper, we consider two types of distributed
daemons:

– The synchronous daemon (Ds) chooses all enabled processes to execute an
action in each computation step;

– The asynchronous daemon (Da) chooses any nonempty set of enabled pro-
cesses to execute an action in each computation step (unfair Daemon).

142 C. Boulinier, F. Petit, and V. Villain

The space of states of the network is denoted by Γ . Structured by possible
transitions by a given distributed algorithm and a given Daemon, we obtain
an oriented graph S = (Γ, →) called transition graph. To study dynamic of
a distributed algorithm scheduled by a given daemon, is to give topological
properties of its transition graph.

A sequence e = γ0, γ1, . . . , γi, γi+1, . . . is called an execution of P iff ∀i ≥
0, γi → γi+1 holds. A process p is said to be enabled in a configuration γ (γ ∈
Γ) if there exists an action A such that the guard of A is true for p in γ.
When there is no ambiguity, we will omit γ. We consider that any enabled
process p is neutralized in the computation step γi → γi+1 if p is enabled in
γi and not enabled in γi+1, but does not execute any action between these two
configurations. (The neutralization of a process occurs when p is enabled in γi,
but at least one neighbor of p changes its state during γi → γi+1, and this change
effectively made the guard of all actions of p false in γi+1.)

The distributed systems considered in this paper are assumed to be uniform.
A distributed protocol is uniform if every process with the same degree executes
the same program. In particular, we do not assume unique process identifier
or some consistent orientation of links in the network such that any dynamic
deterministic election of a master clock can be feasible.

In order to compute the time complexity, we use the definition of round [13].
This definition captures the execution rate of the slowest process. Given an
execution e, the first round of e (let us call it e′) is the minimal prefix of e
containing the execution of one action of the protocol or the neutralization of
every enabled process from the first configuration. Let e′′ be the suffix of e, i.e.,
e = e′e′′. Then second round of e is the first round of e′′, and so on.

Self-Stabilization. Let X be a set. A predicate P is a function that has a Boolean
value—true or false—for each element x ∈ X . A predicate P is closed for a
transition graph Γ iff every state of an execution e that starts in a state satisfying
P also satisfies P . A predicate Q is an attractor of the predicate P , denoted by
P � Q, iff Q is closed for Γ and for every execution e of Γ , beginning by a state
satisfying P , there exists a configuration of e for which Q is true. A transition
graph Γ is self-stabilizing for a predicate P iff P is an attractor of the predicate
true, i.e., true � P .

Distributed Unison. We assume that each process p maintains a clock register
p.r ∈ χ . Let γ a system configuration, we define the two predicates:

SU(γ)
def≡ ∀p ∈ V, ∀q ∈ Np : p.r = q.r in γ.

WU(γ)
def≡ ∀p ∈ V, ∀q ∈ Np : dK(p.r, q.r) ≤ 1 in γ.

In the remainder, we will abuse notation, referring to the corresponding set
of configurations simply by SU , or WU .

The synchronous (distributed) unison problem is specified as follows:

Unison (Safety): SU is closed;
No Lockout (Liveness): In SU , every process p increments its clock variable

infinitely often.

Toward a Time-Optimal Odd Phase Clock Unison in Trees 143

With a synchronous daemon, the problem is trivially solved by:

true −→ p.r := (p.r + 1);

The asynchronous (distributed) unison problem is to design a uniform proto-
col so that the following properties are true in every execution:

Unison (Safety): WU is closed;
Synchronization: In WU , a process can increment its clock p.r only if the

value of p.r is lower than or equal to the clock value of all its neighbors;
No Lockout (Liveness): In WU , every process p increments its clock p.r in-

finitely often.

With a asynchronous daemon, the problem is trivially solved by :

∀q ∈ Np : (q.r = p.r) ∨ (q.r = p.r + 1) −→ p.r := (p.r + 1); (1)

The only interesting question is to stabilize these protocols, i.e., to solve the
above problems with the extra global specification: true � SU (resp. true �
WU).

2.3 Local Variation and Delay

We call delay on the path c = p0p1....pk, noted $c the local variation of the

series p0.r, p1.r,, pk.r: $c =
k−1∑
i=0

(pi+1.r "l pi.r), and $c = 0 if the length of

the path is 0.
The delay is intrinsic if for every couple of vertices (p, q) and every paths

μ and υ from the vertex p to the vertex q there is the equality: $μ = $ν .
Roughly, delay is intrinsic iff it is independent of the choice of the path between
two vertices. In this paper, delay is always intrinsic because G is a tree. Let γt

be a configuration, then pt.r denotes the value of the register p.r at time t, and
$t

μ denotes the local variation along the path μ at time t. Let γt → γt+1 be a
transition. Let μ a path p0...pk then the following congruence holds:

$t+1
μ ≡ $t

μ + pt+1
k .r " pt

k.r − pt+1
0 .r " pt

0.r[K]

Definition 3. Distributed algorithm scheduled by the daemon Di (iin{a, s}) is
path-compatible if and only if for any state γt ∈ Γ and any transition γt → γt+1

scheduled by Di and any path μ = p0p1...pk there is the equality $t+1
μ = $t

μ +
pt+1

k .r " pt
k.r − pt+1

0 .r " pt
0.r.

Let γ be an element in Γ . Denote Δpq the value of delay on the path from p to q.
We say that p “precedes” q in a configuration γ iff Δpq ≤ 0. Similarly, p and q are
“γ-synchronous” if Δpq = 0 in γ. Since the network is connected, the precedence
relation is a preorder. According to precedence relation, minimal processes are
γ-synchronous. The set of minimal processes is never empty because the network
is finite. We denote by V0 the set of minimal processes at each state.

144 C. Boulinier, F. Petit, and V. Villain

3 Protocol for Synchronous Daemon

Let G be a tree network. M ∈ N − {0} and K = 2M + 1. The notion of minp

is defined in Proposition 1. We are able to define the operation minp.r{q.r, q ∈
CN p} for every p ∈ V .

Algorithm 1. SU M in algorithm for process p

Action:

NA : True −→ p.r := minp.r{q.r, q ∈ CN p} + 1;

Under a synchronous daemon, the algorithm SU M in has a nice property,
it is path-compatible, this property assures the stability of the set of minimal
processes V0 . Thus, to prove the convergence to SU, it is sufficient to prove
that V0 is strictly increasing until V0 = V . In the example, we can see this
phenomenon on the Figure 3. We first prove the path-compatibility, afterwards
we prove the convergence.

An immediate consequence of the definition of the protocol is the following
lemma:

Lemma 1. Let γt → γt+1 a transition and p a process. There exists α ∈
{0, ..., M} such that pt+1.r = pt.r − α + 1.

Let q1 ∈ CN p such that qt
1.r = minp.r{qt.r, q ∈ CN p}. Then α = pt.r " qt

1.r
and pt+1.r " pt.r = −α + 1.

In the following, we consider the transition γt → γt+1. To lighten the nota-
tions, we define p.r = pt.r, q.r = qt.r , p.r′ = pt+1.r, and q.r′ = qt+1.r. From
Lemma 1 there exists α and β in {0, .., M} such that p.r′ = p.r − α + 1 and
q.r′ = q.r − β + 1. Trivially q.r′ " p.r′ ≡ q.r " p.r + α − β [K]. The crux of the
proof is to show that under a synchronous daemon this congruence is an equality.
We have to explore four cases.

Lemma 2. Under a synchronous daemon, if q.r ≥l p.r and q.r′ ≥l p.r′ then the
equality q.r′ " p.r′ = q.r " p.r + α− β holds.

Proof. From the hypothesis, q.r " p.r = q.r − p.r ∈ {0, ..., M} and q.r′ "
p.r′ = q.r′ − p.r′ ∈ {0, ..., M}. But, q.r′"p.r′ = q.r − p.r − β + α. It follows that
q.r − p.r − β + α ∈ {0, ..., M} . Since q.r ≥l p.r, we deduce that q.r′ ≤l p.r + 1.
So, β ∈ {q.r − p.r, . . . , M}, it follows α − β ∈ {−M, ..., M − q.r − p.r}. So,
q.r − p.r − β + α ∈ {−M + q.r − p.r, ..., M}. Assume that q.r − p.r − β + α ∈
{−M + q.r − p.r, ...,−1}. Then, q.r − p.r − β + α ∈ {M + 1 + q.r − p.r, 2M},
which is impossible since q.r − p.r − β + α ∈ {0, ..., M}. Thus, q.r − p.r−β+α ∈
{0, ..., M}. We conclude that q.r − p.r − β + α = q.r − p.r−β+α and the lemma
holds. �

Lemma 3. Under a synchronous daemon, if q.r ≥l p.r and q.r′ ≤l p.r′ then the
equality q.r′ " p.r′ = q.r " p.r + α− β holds.

Toward a Time-Optimal Odd Phase Clock Unison in Trees 145

Proof. From the hypothesis, q.r" p.r = q.r − p.r ∈ {0, ..., M} and q.r′ " p.r′ =
−p.r′ − q.r′ = −p.r − q.r + β − α ∈ {−M, ..., 0} . From q.r ≥l p.r we deduce
β ∈ {q.r − p.r, ..., M} and β−α ∈ {−M +q.r − p.r, ..., M}. From q.r′ ≤l p.r′ we
deduce β −α ≥ q.r − p.r and β − α ∈ {q.r − p.r, ..., M}. So, p.r − q.r + β − α ∈
{q.r − p.r + p.r − q.r, ..., M + p.r − q.r}. If p.r = q.r then the lemma holds, else
q.r − p.r+p.r − q.r = 2M +1 and p.r − q.r+β−α ∈ {2M +1, ..., M +p.r − q.r}.
So p.r − q.r + β − α = p.r − q.r+β−α− (2M +1). From q.r − p.r+p.r − q.r =
2M + 1 we deduce −p.r − q.r + β − α = q.r − p.r − β + α. We conclude that
q.r′ " p.r′ = q.r " p.r − β + α. The lemma holds. �

Lemma 4. In each case, under a synchronous daemon, q.r′" p.r′ = q.r" p.r +
α− β.

Proof. There are two cases. If q.r ≥l p.r, then by Lemmas 2 and 3, the lemma
is proved. Otherwise (p.r ≥l q.r), by exchanging the processes p and q, remark
that q.r " p.r = −p.r " q.r. So, this case is identical to the first case. �
An important corollary is the following proposition:

Proposition 2 (Path-compatibility). Scheduled by a synchronous daemon,
the SU M in algorithm is path− compatible.

Proof. We prove the proposition by induction on the length of the path μ.
If length(μ) = 0 the proposition holds. Assume that the proposition is true
for the path μ = p0p1...pk, let μ1 = μpk+1 be a new path then: Δt

μpk+1
=

Δt
μ + pt

k+1.r " pt
k.r and Δt+1

μpk+1
= Δt+1

μ + pt+1
k+1.r " pt+1

k .r. Let α be such that
pt+1

k .r " pt
k.r = 1− α. Let β be such that pt+1

k+1.r " pt
k+1.r = 1− β.

Induction hypothesis: Δt+1
μ = Δt

μ + pt+1
k .r " pt

k.r − pt+1
0 .r " pt

0.r. We have:
Δt+1

μpk+1
= Δt+1

μ + pt+1
k+1.r " pt+1

k .r. By induction:

Δt+1
μpk+1

= Δt
μ + pt+1

k .r " pt
k.r − pt+1

0 .r " pt
0.r + pt+1

k+1.r " pt+1
k .r

=
(
Δt

μ + pt
k+1.r " pt

k.r
)

+ pt+1
k+1.r " pt

k+1.r − pt+1
0 .r " pt

0.r + R

= Δt
μˆpk+1

+ pt+1
k+1.r " pt

k+1.r − pt+1
0 .r " pt

0.r + R

with R = −pt
k+1.r " pt

k.r +
(
pt+1

k .r " pt
k.r + pt+1

k+1.r " pt+1
k .r − pt+1

k+1.r " pt
k+1.r

)
.

From Lemma 4, we have: pt+1
k+1.r"pt+1

k .r = pt
k+1.r"pt

k.r+α−β. By definition
of α and β, we have: pt+1

k .r " pt
k.r = 1 − α and pt+1

k+1.r " pt
k+1.r = 1 − β. We

deduce: R = −pt
k+1.r " pt

k.r + 1 − α + pt
k+1.r " pt

k.r + α − β − 1 + β = 0. The
proposition follows by induction. �

Proposition 3 (Stability of V0). For every transition γt → γt+1 scheduled
by the synchronous daemon: if p ∈ V0 in γt, then p ∈ V0 in γt+1 and pt+1.r =
pt.r + 1.

Proof. With the same notations than above, let p be a minimal process in γt.
From the minimality of p, we deduce Δt

pq ≥ 0 in γt for any process q in V . p is

146 C. Boulinier, F. Petit, and V. Villain

minimal in γt, thus for the transition to t+1, so α = 0 and pt+1.r = pt.r + 1. The
equality Δt+1

pq = Δt
pq − β holds from the path− compatibility (Proposition 2).

If β = 0 then Δt+1
pq ≥ 0. If β > 0 then there exists q1 ∈ Nq such that

qt.r " qt
1.r = β. So Δt

pq1
= Δt

pq − β, and the fact that p is minimal in γt, we
deduce that Δt

pq ≥ β and that Δt+1
pq ≥ 0. The proposition follows. �

The distance between two processes p and q, denoted by d (p, q) is the length of
the shortest path between p and q. Let p ∈ V , we define δp as maxq∈V d(p, q).
Let k be a positive integer. Define B(p, k) as the set of processes such that
d(p, q) ≤ k.

Theorem 1 (Self-stabilization). For every execution starting from any γ ∈ Γ
and scheduled by the synchronous daemon, SU is an attractor for Γ . The time
of convergence from Γ to SU is tightly upper bounded by D.

Proof. Consider an infinite execution e = γt0 , γt1 , Let V t
0 be the set of

minimal processes at time t. Let p be an element of V t0
0 with the lowest δp = w.

We prove by induction that: ∀i ∈ N, B(p, i) ⊆ V t0+i
0 . This will prove that for

i = w, then V t0+i
0 = V . Hence, the time convergence is less than or equal to w,

which is less than or equal to D.
If i = 0 then p ⊆ V t0

0 . Assume that i ≥ 0 and B(p, i) ⊆ V t0+i
0 . Let q ∈

B(p, i+1). Then, q is a neighbor of an element q′ of B(p, i). There are two cases:

1. q ∈ V t0+i
0 . From Proposition 3 then q ∈ V t0+i+1

0 .
2. q /∈ V t0+i

0 . Then, q′.r = minq.r{s.r, s ∈ CN p} and from Proposition 3 q ∈
V t0+i+1

0 .

In both cases, q ∈ V t0+i+1
0 . We deduce B(p, i+1) ⊆ V t0+i+1

0 . And by induction
∀i ∈ N, B(p, i) ⊆ V t0+i

0 . The first part of the theorem follows.
Let p be one extremity on a diameter of G (δp = maxq∈V δq). Assume that

p.r = 0 in γ0. We define for each q such that d(q, p) = α (α ∈ {1, ..., D}), q.r = α.
Starting from such a configurationγ0, SU is reached in at leastD steps. We showed
that D can be reached, and the second part of the theorem is proved. �

�������	
������5
��

�
�������	1

��
�
�������	4 �������	0

��
�

�������	
������6
��

�
�������	2

��
�
�������	3 �������	1

��
�

�������	
������0
��

�
�������	1

��
�
�������	1 �������	1

��
�

�������	
������1
��

�
�������	
������1

��
�
�������	
������1 �������	
������1

��
�

�������	6 �������	2 �������	5 ���� �������	
������6 �������	0 �������	3 ���� �������	
������0 �������	
������0 �������	1 ���� �������	
������1 �������	
������1 �������	
������1

Fig. 3. Growth of the V0 set in the example

4 Protocol for Asynchronous Daemon

The algorithm defined in the previous part is not self-stabilizing for an asyn-
chronous daemon. It is not path-compatible for the distributed asynchronous
daemon. A counter-example is given by the asynchronous transition γt → γt+1

shown in Figure 4.

Toward a Time-Optimal Odd Phase Clock Unison in Trees 147

Let μ = p0p1p2. p0 and p2 are invariant. But $t
μ = 2M and $t+1

μ = −1.
There are not equal but only congruent to modulus K = 2M + 1.

��������0 ��������M ��������2M �������� ��������0 ��������1 ��������2M

Fig. 4. Counter-example for an asynchronous transition

4.1 The Protocol

As we have seen, the correction proof in the synchronous case cannot help us
in the asynchronous case. In the synchronous case the predicate of the guard is
true. First, to avoid starvation in our asynchronous model, we must add in the
following predicate: p.r 	= minp.r{q.r, q ∈ CN p}+ 1. But it is not sufficient. If
we keep only this condition, there is possibility of livelock. So we must add a
second condition which requires an order between the local adjustments. This
condition is: ∀q ∈ Np, q.r ≤lp p.r + 1.

We can remark that this predicate is true on WU . It is why our new predicate
Move is the conjunction of both above conditions.

Algorithm 2. WU M in algorithm for process p

Predicate:
Move ≡ (p.r �= minp.r {q.r, q ∈ CN p} + 1) ∧ (∀q ∈ Np, q.r ≤p p.r + 1)

Action:

NA : Move −→ p.r := minp.r{q.r, q ∈ CN p} + 1;

Note that in WU , Predicate Move is equivalent to Predicate (1)—refer to
Subsection 2.2. Also, when the predicate Move is satisfied in WU we have the
equality: minp.r{q.r, q ∈ CN p}+ 1 = p.r + 1.

We deduce that the safety property and the no lockout property are satisfied
in WU . There is still to prove the convergence property: true � WU .

4.2 Liveness and Self-stabilization

Because the protocol WU M in is not path-compatible, we cannot use the delay
notion. We must be perceptive. We will use Occam razor to eliminate incre-
menting actions and we will link the others actions by a causal relationship,
the adjustment DAG. When an action is not an incrementing action, it is an
adjustment action. Let us define a notion of adjustment action.

Definition 4. Let e = γ0γ1...γk.... be a maximal execution of WU M in. An
adjustment is an ordered pair (p, t) where p is a process and t = 0, or t > 0
such that p executes action NA at time t with α 	= 0. Namely, pt.r " pt−1.r 	= 1
(Lemma 1). If t > 0, we say that p adjusts at time t.

We now prove the liveness property. Then, we prove the convergence to WU .

148 C. Boulinier, F. Petit, and V. Villain

Theorem 2 (Liveness). In trees, WU M in is without any deadlock.

Proof. Let γ ∈ Γ , a configuration, we define from γ a binary relation on V by:

∀ (p, q) ∈ V 2, p ↪→γ q
def⇔

{
q ∈ Np

p.r <p q.r − 1

Remark that if p ↪→γ q then p.r <p q.r − 1, and from Proposition 1 we have
p.r <q q.r − 1 and consequently q ↪→γ p is not true. There is no stutter for this
relation which defines a directed graph on a tree, thus it is an acyclic directed
graph on V .

Let p1 ↪→γ p2 ↪→γ ↪→γ pk be a maximal path on this graph. If k = 1 then
γ ∈WU and γ is not a deadlock configuration. If k > 1 then pk is enable for an
adjustment action. The proposition follows. �
We introduce now the notion of adjustment DAG. This structure contains all
the information about the propagation of the adjustments on the tree. The task
is to prove that during a maximal execution, this structure is finite.

Lemma 5. If (p, t1) is an adjustment with t1 > 0, then there exists q ∈ Np and
t0 < t1 such that: (1) pt1 .r " qt1−1.r = 1, (2) ∀τ ∈ [t0, t1[, qτ+1.r = qτ .r or
qτ+1.r = qτ .r + 1 i.e. there are only incrementing actions for q during]t0, t1],
and (3) t0 = 0 or q adjusts at time t0.

Proof. Let (p, t1) be an adjustment, with t1 > 0. By definition, there exists a
neighbor q of p such that pt1 .r " qt1−1.r = 1. We proved the first claim. Let t0
the smallest date such that: ∀τ ∈ [t0, t1[, qτ+1.r = qτ .r or qτ+1.r = qτ .r + 1. t0
is defined. Then either t0 = 0 or t0 > 0. In this last case, because the minimality
of t0, q adjusts at time t0 this proved the third property. �
Remark that, in Lemma 5, q is not necessarily unique.

Definition 5. Let (p0, t0) and (p1, t1) two adjustments.
We say that (p0, t0) adjusts (p1, t1) , denoted by (p0, t0) � (p1, t1) if and only

if: (1) t0 < t1, (2) ∀τ ∈ [t0, t1[, pτ+1
0 .r = pτ

0 .r or pτ+1
0 .r = pτ

0 .r + 1, i.e. only
incrementing action for p0 during [t0, t1[, and (3) pt1

1 .r " pt1−1
0 .r = 1.

From this definition and Lemma 5, we obtain the following proposition:

Proposition 4. For every adjustment (p1, t1) with t1 > 0 there exists an ad-
justment (p0, t0) such that (p0, t0) � (p1, t1).

Since (p0, t0) � (p1, t1) implies t0 < t1, the relation � defines a Directed Acyclic
Graph, called adjustment DAG. An adjustment (p1, t1) is not generate by an
other one if and only if t1 = 0.

To prove self-stabilization of WU M in algorithm, it is sufficient to prove that
the adjustment DAG is always finite. To reach this task, we must prove that
there is no stutter on the adjustment DAG, that is to say that there is no path
of the following form: (p0, t0) � (p1, t1) � (p0, t2).

Toward a Time-Optimal Odd Phase Clock Unison in Trees 149

Proposition 5. If (p0, t0) � (p1, t1) then for every t ∈]t0, t1[, neither p0 nor
p1 do any action and at time t1, only p1 does an action, which is an adjustment.
Namely: (1) ∀τ ∈ [t0, t1[, pτ+1

0 .r = pτ
0 .r and ∀τ ∈]t0, t1[, pτ

1 .r = pτ−1
1 .r, (2)

pt1
1 r " pt0

0 .r = 1.

Proof. Assume that (p0, t0) � (p1, t1). The question is: What happens during
the period [t0, t1]? Let t′0 be the smallest time such that during the period]t′0, t1[,
there is no action for p0 and p1. We have: t0 ≤ t′0. If t0 = t′0 the proposition is
proved. We suppose now that t0 < t′0. By assumption, there is one action for p0

or p1 at time t′0. In fact, there are only 2 possible actions for p0 and p1. Remark
that, due to the added condition in the guard, if a process p increments at time
t0 + 1 then at time t0 we have: ∀q ∈ Np, q.r ∈

{
p.r, p.r + 1

}
. We discuss from p0

at time t′0:

1. p0 does no action. So, p1 does an action and there are two cases:
(a) If p1 increments at time t′0 then, because p0 does not do any action, p1

is correct with p0 at this time and p1.r ∈ {p0.r, p0.r + 1}. Because there is
no action for p1 and p0 until the date t1. p1 cannot adjust from p0 at time
t1. So this case is impossible.
(b) If p1 adjusts at time t′0 then at this time p1.r ≤p1.r p0.r + 1 and so p1

cannot adjust from p0 at time t1. So this case is impossible.
2. p0 increments at time t′0. There are three cases:

(a) If p1 does nothing, then at this time: p0.r ∈ {p1.r, p1.r + 1} Because
there is no action for p1 and p0 until the date t1, p1 cannot adjust from p0

at time t1. So this case is impossible.
(b) If p1 does an incrementing action, then at time t′0 we have p1.r = p0.r
which is impossible.
(c) If p1 adjusts. First we note that, because p0 increments at time t′0 then
at time t′0 − 1: p

t′0−1
0 .r ∈

{
p

t′0−1
1 .r − 1, p

t′0−1
1 .r

}
and at time t′0: p

t′0
0 .r ∈{

p
t′0−1
1 .r, p

t′0−1
1 .r + 1

}
. Secondly, since p1 adjusts from p0, then we have

p
t′0
1 .r ∈

{
p

t′0−1
1 .r −M, ..., p

t′0−1
1 .r

}
. We deduce that at time t′0 − 1, we have

p1.r ≤l p0.r. Once again, because there is no action for p1 and p0 until the
date t1, p1 cannot adjust from p0 at time t1. So this case is impossible.

3. p0 adjusts is the only possibility. By definition of the adjustment relation,
we obtain t0 = t′0.

Moreover at t1, p0 is locked by p1, so p0 does not do any action at time t1. �
An immediate consequence of Proposition 5 is the following lemma:

Lemma 6. The adjustment DAG is without any stutter. If (p0, t0) � (p1, t1)
is an adjustment then]t0, t1] is less than or equal to a round.

Theorem 3 (Self-stabilization). The adjustment DAG is finite, and the pro-
tocol WU M in is self-stabilizing to WU . The Stabilization time is less than or
equal to D Rounds.

150 C. Boulinier, F. Petit, and V. Villain

Table 1. Performances of Self-stabilizing Unison in Synchronous Trees

Table 2. Performances of Self-stabilizing Unison in Asynchronous Trees

Proof. Let (p0, t0) � (p1, t1) ... � (pk, tk) ... be a maximal path on the
adjustment DAG. Then, by Proposition 4, t0 = 0. From Lemma 6, there is
no stutter. So, since G is a tree, the length of the path is at most D. So, the
DAG is finite, and after D rounds (Lemma 6), there no adjustment and states
are in WU . �

5 Concluding Remarks

We discussed the self-stabilizing unison problem in trees. We proposed two pro-
tocols: Protocol SU M in, being scheduled by a synchronous daemon, is self-
stabilizing to synchronous unison in at most D steps. Protocol WU M in, being
scheduled by an asynchronous daemon, is self-stabilizing to asynchronous unison
in at most D rounds. Moreover, both are optimal in space. Comparisons of the
results of this paper are presented in Tables 1 and 2 for tree general synchronous
networks, and tree generals asynchronous networks, respectively.

Remark that, following [11], the second algorithm converges to SU under a
synchronous daemon, but we cannot assure the convergence in D steps, but only
in 2D steps. It is possible to give a proof of the convergence of the first algorithm
to SU by using a kind of proof like for the second algorithm. Unfortunately, this
possible proof is not able to tighten the upper bound of the time convergence.
Actually, with this approach we obtain only 2D steps as a bound, which is
not enough tightened. It is why the mathematical analysis of each algorithm is
different.

Toward a Time-Optimal Odd Phase Clock Unison in Trees 151

We believe that, due to the presence of cycles, this protocols cannot be gen-
eralized directly to the general graphs. This question remains open. Improving
the time complexity of unison on the general graph should require to explore
other ways. An important question arising from this study is the following: ”Is
the self-stabilization time optimal for both algorithms?”

References

1. Misra, J.: Phase synchronization. Information Processing Letters 38(2) (1991)
101–105

2. Couvreur, J., Francez, N., Gouda, M.: Asynchronous unison. In: Proceedings
of the 12th IEEE International Conference on Distributed Computing Systems
(ICDCS’92). (1992) 486–493

3. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In:
PODC ’04: Proceedings of the twenty-third annual ACM symposium on Principles
of distributed computing. (2004) 150–159

4. Cantarell, S., Datta, A., Petit, F.: Self-stabilizing atomicity refinement allowing
neighborhood concurrency. In Springer-Verlag, ed.: DSN SSS’03 Workshop: 6th
Symposium on Self-Stabilizing Systems (SSS ’03). Volume 2704 of Lecture Notes
in Computer Science. (2003) 102–112

5. Xu, Z., Srimani, P.: Self-stabilizing publish/subscribe protocol for P2P networks.
In: Seventh International Workshop on Distributed Computing (IWDC 2005),
LNCS 3741. (2005) 129–140

6. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communica-
tions of the Association of the Computing Machinery 17 (1974) 643–644

7. Dolev, S.: Self-Stabilization. The MIT Press (2000)
8. Gouda, M., Herman, T.: Stabilizing unison. Information Processing Letters 35

(1990) 171–175
9. Arora, A., Dolev, S., Gouda, M.: Maintaining digital clocks in step. Parallel

Processing Letters 1 (1991) 11–18
10. Herman, T., Ghosh, S.: Stabilizing phase-clocks. Information Processing Letters

54 (1995) 259–265
11. Boulinier, C., Petit, F., Villain, V.: Synchronous vs. asynchronous unison. In: 7th

Symposium on Self-Stabilizing Systems (SSS’05), LNCS 3764. (2005) 18–32
12. Nolot, F., Villain, V.: Universal self-stabilizing phase clock protocol with bounded

memory. In: IPCCC ’01, 20th IEEE International Performance, Computing, and
Communications Conference. (2001) 228–235

13. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems 8(4) (1997) 424–440

Recovery Oriented Programming�

(Extended Abstract)

Olga Brukman and Shlomi Dolev

Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, 84105, Israel

{brukman, dolev}@cs.bgu.ac.il

Abstract. Writing a perfectly correct code is a challenging and a nearly
impossible task. In this work we suggest the recovery oriented program-
ming paradigm in order to cope with eventual Byzantine programs.
The program specification composer enforces the program specifications
(both the safety and the liveness properties) in run time using predi-
cates over input and output variables. The component programmer will
use these variables in the program implementation. We suggest using
the “sand-box” approach in which every instruction of the program
that changes a specification variable, is executed first with temporary
variables and that is in order to avoid execution of an instruction that
violates the specifications. In addition, external monitoring is used for
coping with transient faults and for ensuring convergence to a legal state.
The implementation of these ideas includes the definition of new instruc-
tions in the programming language with the purpose of allowing addition
of predicates and recovery actions. We suggest a design for a tool that
extends the Java programming language. In addition to that, we pro-
vide a correctness proof scheme for proving that the code combined with
the predicates and the recovery actions is self-stabilizing and, under the
restartability assumption, eventually fulfills its specifications.

Keywords: self-stabilization, autonomic computing.

1 Introduction

Writing a perfectly correct code is a challenging and a nearly impossible task.
Paradigms, tools and programming environments, including structured program-
ming, object oriented programming, design patterns and others, were created to
assist the programmer in writing a manageable and correct code. Tools that en-
sure testing during the programming phase complement the above effort [2,5,13].
Still, in many cases the program specifications are not fulfilled [19] – a situation
that can cause a great deal of damage. In our previous work on self-stabilizing
autonomic recoverer [4], we suggested a formal framework for the recovery ori-
ented paradigm [20]. The suggested approach fitted existing (black box) software
� Partially supported by the Lynn and William Frankel Center for Computer Sciences,

by Deutsche Telecom grant, by IBM faculty award, the Israeli Ministry of Science,
and the Rita Altura Trust Chair in Computer Sciences.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 152–168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Recovery Oriented Programming 153

packages, which resulted in high overhead, as each IO action had to be inter-
cepted to detect a faulty state.

Fault tolerance paradigms and eventual Byzantine software. Self-stabili-
zation [9] is a strong fault tolerance property for systems that ensures automatic
recovery once faults stop occurring. A self-stabilizing system is able to start
from any possible configuration in which processors, processes, communication
links, communication buffers and any other process-related components are in an
arbitrary state (e.g., arbitrary variable values, arbitrary program counter). The
designer can only assume that the system’s programs are executed. Based on
that assumption, he or she proves that the system converges to a legal state, i.e.,
to a state in which the system satisfies its specifications. If the system is started
from a legal initial state, the execution will ensure that the system remains in
a legal state. This is called “closure property”. In case the system is started
in an illegal state (possibly after encountering transient faults), the execution of
the self-stabilizing program will ensure that eventually (within a finite number of
steps) a legal state will be reached. This is called “convergence property”. Again,
once the program reaches a legal state, it will continue running and will remain in
a legal state until a (transient) fault reoccurs. A self-stabilizing algorithm never
terminates. The algorithm does not necessarily need to “identify” the failure
occurrence and to recover, but rather it continues to be executed and brings the
system into a legal state. The time complexity of a self-stabilizing algorithm is
the number of steps required for an algorithm started in an arbitrary state to
converge to a legal state. Note that when all the processors execute incorrect
programs (programs with bugs), they may exhibit any kind of behavior and,
therefore, there is no guarantee for convergence.

The Byzantine fault model [16,10] is used for modeling arbitrary (in fact,
malicious) behavior of a program that contains bugs and, therefore, does not
obey the specifications. Systems that tolerate a bounded number of Byzantine
processors (typically, less than one third of the processors can be Byzantine)
were designed and proved to be correct.

Research on self-stabilizing systems and systems that model faults through
Byzantine behavior has not yet provided solutions for systems in which software
packages contain bugs with a very high probability. We observe that software
packages usually function as required for a long period of time after being started
from an initial state. The initial correct behavior can be attributed to the testing
done by the software manufacturer. Therefore, programs started from an initial
state run correctly for bounded length executions. System administrators and
users occasionally restart such software in order to cope with failures.

Our contribution. Our goal is to incorporate the program predicates and the
recovery actions provided by the program specification composer with the pro-
gram code so that the predicates violation would be detected and avoided during
run-time. Both predicates and recovery actions will be an integral part of the
program specification. In this scope we are interested in a new programming

154 O. Brukman and S. Dolev

paradigm that complements the case of black box software packages (addressed
in [4]).

This approach alters the responsibility of the program specification composer
(e.g., project manager). In addition to providing complete formal specifications,
the composer has to state critical safety and liveness properties, and provide
recovery actions for each property (there can be a few recovery actions for each
property). The recovery actions will be executed if the predicate is violated. The
programmer will make the best effort to write a program that satisfies these
specifications. Still, the program may encounter some unpredicted states due
to bugs or transient faults. Our framework automatically generates additional
code for the program. This code will enforce the program satisfactory behavior
(assuming the restartability property of programs [20]) by checking the pred-
icates supplied by the program specification composer during runtime and by
executing recovery actions, e.g., restart, in case of predicates failures.

Execution of an instruction that violates the specifications should be avoided.
We suggest using the “sand-box”: every instruction of the program that changes
a specification variable will be first executed on temporary variables. In case the
predicates are not violated with regard to the temporary variables, the instruc-
tion is executed. Otherwise, the execution of this instruction is stalled and a
recovery action takes place.

A program may be in an illegal state (possibly, infinite loop), executing por-
tions in which no predicate variable is updated. Therefore, the specifications may
not be checked, possibly ever. In such cases external monitoring is required in
order to cope with transient faults and to ensure convergence to a legal state.
The external monitor will check the specifications periodically and enforce a
state in which the specifications hold.

We suggest a design for a generic tool that extends an object oriented lan-
guage, e.g., the Java programming language. The pre-compiler is designed to
support new primitives for recovery oriented programming. Moreover, we pro-
vide a correctness proof scheme for proving that under the assumption of rsf-
execution (Definition 1) the code combined with the predicates and the recovery
actions fulfills its specifications.

Our framework is the first, to the best of our knowledge, to ensure the eventual
validity of the specifications starting in any initial state. This is achieved by
relying on self-stabilizing software platform, by using sandbox and by using
external monitoring. We address full monitoring of liveness properties, while
other works consider safety properties only.

While full specifications define in fact a program [22], we consider abstract task
specifications, that leaves freedom to the programmer to choose the (efficient)
way to write the program, including the specific data structures and algorithms.
The abstract task specifications reflect the minimal desired functionality of the
system.

The suggested framework is able to cope with transient faults. In addition, we
assume that the software is either correct or eventually Byzantine. The software is
called eventually Byzantine if, after being restarted, it can be trusted to perform

Recovery Oriented Programming 155

correctly throughout the execution for a significant portion of the execution. The
correct execution after restart is attributed to the testing and debugging process
the software undergoes when being released. Our framework is not intended for
dealing with totally incorrect (Byzantine) programs, such as empty programs
(programs with no code).

The suggested approach is more efficient than the approach proposed in our
previous work [4] as we now assume that we have access to the program. In our
previous work we had to intercept all IO actions in order to detect a faulty state
– a feature that implied a substantial overhead. In this work we consider the case
in which the code is given and we are able to avoid this overhead by monitoring
the variables, mainly when their values are changed.

Related work. There are tools that monitor safety by augmenting the pro-
grams with monitoring code for safety problems [13,7] and making some kind of
recovery, e.g., throwing exception or executing predefined recovery action.

The well known and widely used exception mechanism [14] is a technique
for handling illegal input or underlying system failures. In [23] transactions are
used as a tool for achieving atomic actions and use exceptions as a recovery
tool in case a transaction fails. However, practice shows that exceptions are not
practical for programming an alternative flow of the program in case of a failure
[12].

The recovery block concept [21] suggested to use component redundancy (e.g.,
N -programming) for dealing with failures in critical parts of the system. The
recovery block concept does not support full monitoring of liveness properties
and does not provide guarantees for stability of a monitoring mechanism.

There are several well known languages, Nurpl [8], ASM [15] and IO Au-
tomata [18], that provide a formal language for writing program specifications
and framework for gradually and manually translating them into a fully verified
program. Still, since the process is not fully automated, there is no guarantee
that the resulting code is correct.

Writing a program as a collection of SRC (Software Cost Reduction) specifi-
cations (detailed specification describing in full the program automata) and then
automatically transforming them into the code is suggested in [22]. However the
produced program may have the same problems as the same program written
from scratch by a programmer due to mistake in the detailed SRC specifications,
which is, in fact, the program.

The work in [1,17] attempts to model a monitoring and correcting middleware
layer for arbitrary faulty software. The correcting actions are arbitrary. Thus,
the system original software can be completely ignored or its private state can
be altered by the correcting layer. Therefore, the programmer of the component
correcting actions is, in fact, the component programmer. In our work we limit
ourselves only to non-intruding recovery actions, such as restarting.

The rest of the paper is organized as follows. The system architecture appears
in the Section 2. The design and implementation details of our framework are
presented in Section 3. Section 4 presents a study case that uses our framework.

156 O. Brukman and S. Dolev

In this study case we investigate the producer-consumer classical problem. Con-
clusions appear in Section 5.

2 The System Architecture

A processor is a multitasking entity that may execute several processes. Each
process is modeled by a state machine that executes atomic steps of a program
that might be faulty. An atomic step a = 〈j, s, s′, io〉 of a process is a transition
from state s to state s′ by a process pj . The transition consists of internal calcu-
lations and of a single interaction of pj with other processes by an input/output
operation (io). The communication capabilities of the processes are defined by
a directed communication graph G(V, E). An edge (i, j) in G(V, E) denotes
the ability of a process pj to receive information from a process pi by means
of messages or shared memory. The system configuration consists of a vector
〈s1, s2, . . . , sn〉, where si is a state of a process pi in the system, and of the con-
tents of the communication devices. The contents of the communication devices
are either the contents of the messages queues 〈m1,2, m1,3, . . . , mi,j , . . .〉, where
mi,j is a queue for messages sent by a process pi to a process pj , or the shared
communication registers 〈r1,2, r1,3, . . . ri,j , . . .〉, where ri,j is a register shared by
processes pi and pj . An execution is a sequence E = c1, a1, c2, a2, . . . of configu-
rations ci and atomic steps ai so that ci+1 is reached from ci by the execution of
ai. An execution E is fair if every process executes a step infinitely often in E.

A subsystem is a set of dependent processes that may include one or more
processes. Subsystems can be nested according to a directed acyclic graph (DAG)
defined by the system designer. The composition of subsystems is required to
ensure that both the state of each subsystem component and the combined state
of the subsystem components are legal. The DAG hierarchy implies conclusive
recovery scenario, where a cyclic dependencies graph may cause infinite recovery
loop. Further discussions concerning processes and subsystems will be in terms
of subsystems.

The software/task specification function is a function sf(I)=IO, where I ∈ I
is a particular sequence of inputs in the set I of all possible (finite and infinite)
sequences of inputs, and IO ∈ IO is a particular sequence 〈i1, o1, i2, o2, . . .〉 of
alternating inputs and outputs in the set IO. The set IO defines the desired
behavior of the software. A (sub)system subi respects its specification function
sfi in an execution E with input/output sequence IO if IO ∈ IO.

A legal state of a process/subsystem is a state in which process/subsystem does
not violate any safety properties and in which any fair execution that starts in
this state does not violate any safety or liveness properties.

For the sake of a correctness proof we assume that a recovery action of
a process/subsystem results in a process/subsystem that respects its specifi-
cation function sf forever, i.e., after executing the recovery action the pro-
cess/subsystem will be in a legal state. Once a process/subsystem reaches a
legal state, the process will continue and stay in a legal state.

We suggested modeling the behavior of software as eventually Byzantine, and
to use restarts as recovery actions that bring the system to a legal state.

Recovery Oriented Programming 157

Definition 1 (Rsf-execution). An execution E is a recovery supporting fair
execution (rsf-execution) iff E is a fair execution in which every subsystem subi

that executes a recovery action during E, respects its specification function sfi.

We are now ready to state the system requirement.

Requirement 1. Every rsf-execution E has a suffix in which the system re-
spects its specification function sf.

We will prove that any process or subsystem that starts from an arbitrary state
will satisfy Requirement 1 in every sufficiently long execution. This proof tech-
nique is frequently used for proving self-stabilization [9].

3 Recovery Oriented Programming

Subsystems configuration file. A program specification composer provides a
file with the subsystems dependencies graph. A process is the name of a thread
or of an object (phantom process) instance. Each process forms a (minimal)
subsystem. For each subsystem sub the following information is provided: the
subsystem name and the list of all the subsystems names that constitute sub.

Recovery tuple. We suggest that the code contract between the specification
composer and the programmer will be in the form of recovery tuples for sub-
systems. There might be more than one recovery tuple for a subsystem. Each
recovery tuple is a list consisting of a triggering event, a snapshot instruction,
a predicate, a list of recovery actions, and a rule for trimming the history log.
The recovery tuples are used for augmenting the program with monitoring and
recovery code. Next, we elaborate on each field of the recovery tuples.

• Triggering event. A triggering event is defined by the name of a specification
(input/output) variable and a method used for modifying the variable value.
The augmented code produced for this tuple is activated whenever there is a
modification of the variable value using the method.
• Snapshot instruction. The snapshot instruction is a tuple
〈subtag, {var1, . . . vark}, {vark+1, . . . , varl}〉, where subtag is the name of the
subsystem the recovery tuple is for, and vari is a variable that its value should be
recorded during the snapshot. The variables in the first clause ({var1, . . . vark})
are recorded before the triggering event is executed. The variables from the
second clause ({vark+1, . . . varl}) are recorded immediately after the triggering
event execution. After the snapshot is completed a new entry is added to the
history log of the subsystem subtag and to the history log of each subsystem
subj, such that subtag ⊂ subj. That is, historytag is an ordered list consisting of
snapshots made for subsystem subtag and for all subsystems that subtag consists
of. This is done to ensure that the recovery tuple predicate for some subsystem
subi would use history log of subi only and would not need access to the history
log of some subj, where subj ⊂ subi.
• Predicate. The predicate is a linear temporal logic (LTL) expression specify-
ing the required program behavior using the input and output variables of the

158 O. Brukman and S. Dolev

program. In addition, the linear temporal logic expression may have the history
log as one of its variables.

For the sake of simplicity, we assume that a predicate that contains the LTL
operator eventually is a liveness predicate. Otherwise, it is a safety predicate. The
predicate can be either a process predicate or a subsystem predicate. A process
predicate is a logical expression on process variables and the process history
only. The subsystem predicate is a logical expression on variables from several
different processes and on the subsystem history log entries. A recovery tuple
with a safety predicate can be either for an event-driven check or for external
monitoring. The recovery tuple with safety predicate for external monitoring will
have an empty triggering event field.

The scope of the recovery tuple is the scope of the tuple snapshot instruction
and of the predicate.

Recovery tuples are classified according to their predicate to be either a live-
ness recovery tuple or a safety recovery tuple.
• Recovery actions. The recovery actions field of a recovery tuple is a list of
several procedure calls or actual code segments. Whenever the activated aug-
mented monitoring code discovers that a predicate of a recovery tuple does not
hold, some recovery action is invoked. Typical recovery action procedures use
non-intrusive actions such as rolling back to a safe state, waiting, rescheduling
or restarting.

The recovery actions of a recovery tuple are listed in the severity order. Each
time the predicate of the recovery tuple does not hold, the next more severe
recovery action from the list is invoked. The last recovery action in the list of re-
covery actions is always the restart of the whole subsystem and the initialization
of the subsystem history.

The programmer must implement the Restartable interface for each process
that might be restarted. The Restartable interface provides the structure for
implementing several recovery action functions. A recovery action for a process
is a call for one of its recovery action function.
• History trimming rule. A history trimming rule is a (simple) function on the
history log of a subsystem subi, where the scope of the recovery tuple, for which
the history trimming field belongs to, is subi as defined by the tag in the snapshot
field.

Roughly speaking, history trimming is used for efficiency reasons and as a
way for supporting a liveness indication. A liveness event (such as entrance to
the critical section) associated with a recovery tuple is identified during run time
when (1) the triggering event of the recovery tuple occurs and (2) the liveness
predicate of the tuple holds. Whenever the liveness event occurs, the history log
is trimmed according to the function defined in the history trimming field. Lack
of liveness is detected when the subsystem is in the same state twice, executing
steps in between, without making progress. This implies that the system can
repeat this behavior forever.

Theoretically, since non-terminating computation can infinitely increase a
variables, an unbounded history log might be required. In reality, the possible

Recovery Oriented Programming 159

values of variables are bounded by the type of the variable. Therefore, the his-
tory log can be considered to be bounded. Moreover, a program specifications
composer that would like to have an efficient liveness detection, may choose vari-
ables with very limited possible values. The bounded history log implies that if
there is a failure of a liveness property it will be detected.

Next we will elaborate on the way recovery tuples are used in creation of the
monitoring augmented code.

Monitoring of a subsystem. The augmented monitoring code has two main
components: a code for event driven monitoring and a code for the external
monitoring. The external monitoring of a subsystem is required for two reasons.
The first reason is to ensure that the system would be able to recover from
transient faults. That is, even if the subsystem does not reach a triggering event
that activates augmented monitoring code (possibly due to its state corruption),
the predicates will be checked, and the specifications will be enforced by invoking
a recovery action. The second reason is the fact that the detection of livelock is
sometimes impossible from within the subsystem.

Each subsystem has an external monitor process (thread). The existence of the
external monitor threads and their scheduling is ensured by a self-stabilizing OS
[11] and by the framework of the self-stabilizing autonomic recoverer [4]. The ex-
ternal monitor of the subsystem repeatedly checks the subsystem recovery tuples.

An external monitor will have an additional responsibility, namely, checking
the syntax and the length bounds (that may be related to the number of possible
states of the subsystem) of the history log entries.

Next we describe the augmented code for each type of the recovery tuple.

Liveness recovery tuple. Every liveness recovery tuple has a triggering event,
a snapshot instruction, a predicate, and a history trimming rule. Event driven
monitoring for liveness recovery tuples only trims the subsystem history log upon
the predicate satisfaction.

The external monitor uses only the snapshots recorded in the history and the
recovery actions. Namely, in case the value of the variables of this set appear
twice in the history, while the subsystem has been scheduled to execute steps in
between, the external monitor invokes a recovery action.

For each recovery tuple with a liveness predicate event the pre-compiler
(Figure 1) inserts a code for checking the predicate each time the triggering
event takes place.

Event driven safety recovery tuple. If a safety recovery tuple has a triggering
event, then such an event driven safety recovery tuple yields augmented code for
monitoring that uses temporary variables for checking the predicate before the
actual modification. For each such recovery tuple the pre-compiler (Figure 1)
inserts code for checking the predicate in a “sand-box” and only if the predicate
is satisfied the actual assignment takes place. Otherwise, a recovery action is
invoked.

160 O. Brukman and S. Dolev

Externally checked safety recovery tuple. A non event driven safety recov-
ery tuple yields a code for the external monitor only. The generated code implies
repeated snapshots, a predicate check and recovery action when needed.

Pre-Compiler
input: F , G
output: F ′, EM1, EM2, . . . , EMN

1 analyze G and form subsystems sub1, . . . , subN

Transforming code of subi processes
2 ∀subi

3 new historyi

(* Add new parameter, historyi,
to the constructor of each process in subi *)

4 ∀pj ⊆ subi

5 linkHistory(constructorj , historyi)
6 ∀ rt = event = {var, method};

〈tag, {var1, . . . , vark}, {vark+1, . . . , varl}〉;
pred;
actions = {ra1, ra2, . . . , ram};
trimmingRule

(* Event Driven Recovery Tuple *)
7 if rt.event = ∅
8 new global int rairt := 0
(* Safety Recovery Tuple *)
9 if evetually ∈ rt.pred
10 replace rt.event in F with
11 snapshot(var1, ..., vark)
12 temp=rt.event.var
13 if (!pred(rt.event.method(temp)))
14 rarairt
15 rairt = (rairt + 1)%m
16 else
17 snapshot(vark+1, ..., varl)
18 ∀subk : subrt.tag ⊆ subk

19 historyk = historyk◦
〈rt.tag, snapshot(var1, ..., varl)〉

20 trimmingRule()
21 rt.event.method(rt.event.var)
(* Liveness Recovery Tuple *)
22 else
23 replace rt.event in F with
24 historytag = historytag◦

〈tag, snapshot(var1, ..., varl)〉
25 if (rt.pred)
26 trimmingRule()
Creating external monitors
27∀ subi

28 create an instance of external
monitor for the subsystem,

EMi(code in Figure 2)

Fig. 1. Pre-compiler pseudocode

Pre-compiler. The pseudo-
code for the pre-compiler is
presented in Figure 1. The
pre-compiler receives as an in-
put the program file F and
the file G with a definition
of the subsystems hierarchy.
The pre-compiler output is the
transformed program file F ′

and files with code for external
monitors, em1, em2, . . . , emN ,
where N is the number of
subsystems in the system as
stated in G. We denote the
augmented code inserted by
the pre-compiler during the
program file transformation
by

{}
brackets.

In line 1 the pre-compiler
analyzes G and forms data
structures for subsystems ac-
cording to the information
stated in G. For each sub-
system subi, the pre-compiler
declares a new variable for
the subsystem history log –
historyi (line 3). Then, the
pre-compiler adds historyi as
an additional constructor pa-
rameter for each process in
subi (lines 4-5).

Next, the pre-compiler it-
erates over each recovery tu-
ple rt (line 6). If the recovery
tuple has a non-empty event
trigger field, the pre-compiler
declares a new global variable – recovery action index rairt (lines 7-8). If the
recovery tuple predicate is a safety predicate, the pre-compiler replaces the trig-
gering event execution according to the code in lines 11-21, i.e., by taking a
snapshot of some variable before the event execution, by creating a variable

Recovery Oriented Programming 161

temp and by assigning it with the current value of the variable from the triggering
event and by checking if the predicate still holds with regards to the temp variable
after the execution of the triggering event method on temp (lines 12-13). If the
predicate does hold, the snapshot of the rest of the variables from the snapshot
field is made (line 17). If the predicate does not hold, then the current recovery
action is invoked and the recovery action index is updated (lines 14-15). The new
entry is added to the history log of subrt.tag and to all history logs of subsystems
subk, that contain the subrt.tag subsystem (line 19). Next, the trimming rule
is executed (line 20). Finally, the triggering event is executed on the triggering
event variable (line 21).

External monitor thread
input: subi
(* Declaring recovery action index

variable for each tuple *)
1 ∀ rt = 〈event;

〈tag, {var1, . . . , vark}, {vark+1, . . . , varl}〉;
pred;
actions = {ra1, ra2, . . . , ram};
trimmingRule〉 : subtag ⊆ subi

2 new int rairt := 0
(* Monitoring loop *)
3 do forever
4 ∀rt = 〈event; 〈tag, var1, ..., varl〉; pred;

actions = {ra1, ra2, . . . , ram};
trimmingRule〉 : subtag ⊆ subi

5 snap := snapshot(var1, . . . , varl)〉 ∈ subi

6 ∀subk : subrt.tag ⊆ subk

7 historyk = historyk ◦ 〈rt.tag, snap〉
(* Safety Repeated Recovery Tuple *)
8 if evetually ∈ rt.pred & rt.event = ∅
9 if (!rt.pred)
10 rarairt
11 rairt := (rairt + 1)%m
12 else
13 trimmingRule()
(* Liveness Recovery Tuple *)
14 if eventually ∈ rt.pred
15 if ∃j, k : j = k:

historytag [j] = historytag [k]
& stepssubtag (j, k)

16 rarairt
17 rairt := (rairt + 1)%m

Fig. 2. Pseudocode for an external monitor of
a subsystem

If the recovery tuple predicate
is a liveness predicate, the pre-
compiler adds code according to
lines 24-26 after the execution
of the triggering event. The aug-
mented code checks the predicate;
if the predicate holds, the history
trimming rule is executed.

In lines 27-28, the pre-compiler
creates a file called EMi with code
for the external monitor for each
subsystem subi.

The pseudocode for the ex-
ternal monitor for a subsys-
tem is presented in Figure 2.
The parameter of the exter-
nal monitor is the subsystem to
monitor. The monitor declares
a new variable rairt for each
recovery tuple rt in the sub-
system (lines 1-2). Next, the
monitor repeatedly executes the
loop in lines 3-17. For each recov-
ery tuple in the subsystem, the
monitor creates a snapshot accord-
ing to the snapshot instruction
field in the recovery tuple and adds
the snapshot to the history log of the subrt.tag subsystem and to all history logs
of subsystems subk that contain subrt.tag (lines 6-7).

Next, if the recovery tuple predicate is a safety predicate and if the recovery
tuple is intended for external monitoring, i.e., the event field is empty (line
8), the monitor checks that the predicate is satisfied (line 9). If the predicate
is unsatisfied, the current recovery action is executed and the recovery action
index is updated (lines 10-11). If the predicate is satisfied, the history trimming
rule from the recovery tuple is applied on the subsystem history log (line 13).

162 O. Brukman and S. Dolev

If the recovery tuple predicate is a liveness predicate, the monitor checks the
subsystem history log for identical entries. In case there are identical entries and
between these entries the subsystem processes were scheduled to make steps,
then the subsystem is in a livelock. Thus, the recovery action is executed and
the recovery action index is updated (lines 14-17).

The snapshot instruction for a subsystem is equivalent to making a distributed
snapshot of (part of) the system. There are several algorithms, e.g., [6], for mak-
ing a distributed snapshot. Another possible solution is to enable the external
monitor to request the operating system scheduler to activate solely the monitor
(while not activating the processes that are the snapshot subjects) for a number
of steps that suffices for executing the snapshot.

Proof outline of an automatic recovery for a transformed program.
Next we prove that a system satisfies the requirements for automatic recovery
with relation to the specifications after the program was transformed by the
pre-compiler using the recovery tuples. The system is a collection of processes
p1, . . . , pn with code in the file F . The processes form subsystems sub1, . . . , subN ,
where subi = {subi1, subi2 , . . . , subik

}. In order to show that a system eventu-
ally satisfies Requirement 1, we need to demonstrate that the super-subsystem
containing all other subsystems (there is such super-subsystem as we use a DAG
hierarchy) respects Requirement 1. This implies that each subsystem respects
Requirement 1 too. A subsystem respects its specification function if it respects
the subsystem safety and the liveness requirements, i.e., if there is an execution
suffix E′ = {cj, aj , . . .}, such that for each configuration ck the subsystem safety
predicates are satisfied and there are infinitely many configurations ck ∈ E′ in
which the liveness predicates are satisfied. Lemma 1 formalizes the claim that
need to be proven for each subsystem.

Lemma 1. Every rsf-execution has a suffix in which a subsystem subi eventu-
ally satisfies Requirement 1, i.e., the subsystem satisfies its safety and liveness
requirements.

Note that our framework uses event-driven approach for recording predefined
state changes and for trimming the histories log for detecting liveness. The spec-
ification composer has to include event-driven snapshot instructions in order for
the history log to have enough information for liveness detection. The alternative
approach that does not use event driven history trimming is to use a flag vari-
able for each recovery tuple with a liveness predicate. Initially, the flag would be
set to false. Each time the liveness predicate variables are updated, the liveness
predicate is checked. If the predicate holds, the flag is updated to be true. Each
time an external monitor of a subsystem is scheduled, the monitor checks the
flag. If the flag is true, the monitor executes the history trimming rule and resets
the flag to false, so the liveness would be identified further on. If the flag is set
to false, the history log has two or more identical entries, and the subsystem
processes execute several steps, the monitor regards this situation as livelock
and initiates recovery.

Recovery Oriented Programming 163

Lastly, we remark that the predicate verification that occurs while some pred-
icate variables are being updated, may yield a false negative, since the predicate
will be satisfied only after the updates completion. The programmer may use
record assignment in order to overcome this technicality. The predicate variables
are stored in a record data structure rec. We accomplish simultaneous update
of several predicate variables by creating a copy of the record, copy. Then, we
execute all the assignments on the copy variable. Finally, we assign record rec
with the updated copy variable.

4 Producer-Consumer Example

In this section we describe in detail how the classical producer-consumer task is
enhanced by our framework. The code produced by our framework is a recovery
oriented code for the producer-consumer task. We present the original code with
the recovery tuples. We provide the formal correctness proof for the claim that
the system with the transformed program is able to recover from any initial state
automatically.

The producer-consumer task consists of two threads and a shared queue ob-
ject. The producer thread repeatedly produces an item and enqueues the item
into the queue. The enqueue attempt can be unsuccessful if the queue is full.
The consumer thread repeatedly dequeues an item from the queue (and con-
sumes it). The dequeue attempt can be unsuccessful if the queue is empty. The
liveness requirements for the producer and the consumer processes are stated in
Requirement 2 and 3 respectively.

Requirement 2 (Producer Liveness). Every rsf-execution has a suffix in
which there are infinitely many enqueue events (either successful or unsuccessful).

Requirement 3 (Consumer Liveness). Every rsf-execution has a suffix in
which there are infinitely many dequeue events (either successful or unsuccessful).

The producer-consumer task liveness and safety requirements are stated in Re-
quirements 4 and 5 respectively.

Requirement 4 (Liveness). Every rsf-execution has a suffix in which there
are infinitely many successful enqueue and successful dequeue events.

Requirement 5 (Safety). Every rsf-execution E has a suffix E′ = ci, ai, ... in
which every item dequeued by the consumer thread has been in the queue, i.e.,
aj = {dequeue, item}⇒ [

∃k i ≤ k ≤ j : ∀l k ≤ l < j item ∈ cl(queue)
]

and items are dequeued in the same order they were enqueued:
ak = {dequeue, item1}, al = {dequeue, item2}, k < l ⇒ [

∃m, n : m < n < k <

l ∧ ∀j m ≤ j ≤ k item1 ∈ cj(queue) ∧ ∀j n ≤ j ≤ l item2 ∈ cj(queue)
]

In this system there are two processes: the producer and the consumer threads. In
addition, we have one “phantom” process: the queue object. The queue object is
not a real process, but rather a collection of related variables. We choose treating

164 O. Brukman and S. Dolev

the queue object as a process. These three processes form six subsystems. The
first three subsystems are the processes themselves: the producer is sub1, the
consumer is sub2 and the queue is sub3. The producer thread (sub1) and the
queue object (sub3) form subsystem sub4. The consumer thread (sub2) and the
queue object (sub3) form subsystem sub5. The subsystem sub4 and sub5 form
the subsystem sub6. The subsystems configuration graph G for the system is
presented in Figure 3. Each of these subsystems has an external monitor as
presented in Figure 2.

sub1 : producer
sub2 : consumer
sub3 : queue
sub4 : sub1, sub3
sub5 : sub2, sub3
sub6 : sub4, sub5

Fig. 3. Subsystem con-
figuration graph for the
Producer-Consumer task

Next we present the code for the task processes.
The interface for the Queue object is presented
in Figure 4. The Queue object implements the
Restartable interface (i.e., implements the function
restart()) in order to meet the requirements of our
framework. The Queue is implemented as a limited
size cyclic queue based on an array. The Queue is
a non-blocking queue: the dequeue function returns
null if the queue is empty and enqueue function re-
turns false if the queue is full. The Queue object has
a public variable N – the queue capacity.

Queue implements Restartable
1 int N;
2 Queue(n);
3 boolean enqueue(item);
4 item dequeue();
5 void restart(){this = new Queue(N);}

Fig. 4. Pseudocode for the queue object

The producer thread is implemented
by the Producer class (Figure 5).
The Producer class implements the
Restartable interface. Therefore, it imple-
ments the function restart (lines 7-10), in
which the thread is suspended and then
is started again.

We denote initHistory to be the func-
tion that receives a subsystem subi as a parameter and initializes the history
logs of subi and of each subj, such that subj ⊆ subi.

Recovery tuple I is a liveness recovery tuple for the producer thread. The tuple
predicate checks that eventually the producer makes some enqueue attempts.
The event trigger variable is the queue object and the event trigger method is
an invocation of the enqueue function of the queue object. Upon execution of
the event the snapshot adds a new record with label “sub1” to the history log of
the producer thread. The first recovery action is to restart the producer thread
(sub1) and to initialize the producer process history. The second recovery action
is to restart the whole system and to initialize all history logs. If the predicate
holds, the history log of sub1 is initialized.

The predicate of recovery tuple II is a safety predicate for sub4 (the pro-
ducer thread and the queue). As in recovery tuple I, the event trigger variable
is the queue object and the event trigger method is an invocation of the en-
queue function of the queue object. The snapshot records the values of the vari-
able success and the hash code value of item immediately after the triggering
event. The predicate checks whether the number of successful enqueue events
in the history log of sub4 (which equals to the number of currently enqueued

Recovery Oriented Programming 165

items in the queue) is less than the queue capacity. If so, the executed enqueue
event must have been successful. The first recovery action is to restart sub4

and to initialize all sub4 history logs. The second recovery action is to restart
the whole system and to initialize all history logs. The history trimming rule is
empty.

Producer implements Restartable
//Liveness for sub1
I〈queue.enqueue;

〈“sub1”, {}, {}〉;
eventually 〈“sub1”; {}; {}〉 ∈ historysub1 ;
{{this.restart(); initHistory(sub1); },
{queue.restart(); this.restart();

consumer.restart(); initHistory(sub6); }};
{initHistory(sub1); }〉

//Safety for sub4
II〈queue.enqueue;

〈“sub4”, {}, {success, item.hashCode()}〉
|〈“sub4”; {}; {true, ¬null}〉 ∈ historysub4 |

< queue.N ⇒ success;
{{this.restart(); queue.restart();

initHistory(sub4)};
{queue.restart(), this.restart(),

consumer.restart(); initHistory(sub6);}};
{}〉

1 Producer(Queue queue, Consumer consumer);
2 void run() {
3 do forever
4 item = produce item();
5 success=queue.enqueue(item);
6 }
7 void restart() {
8 this.suspend();
9 this.start();
10}

Fig. 5. Pseudocode for the producer thread

The items in the queue are nor-
mally large pieces of data. Hav-
ing items recorded in the history
log would be expensive. Thus, we
record a certain key instead of an
item, e.g., hash code of the item
object.

The consumer thread is simi-
lar to the producer thread. The
predicate of recovery tuple I is a
liveness predicate for the consumer
process that checks that eventually
the consumer makes some dequeue
attempts. The event trigger vari-
able is the queue object and the
event trigger method is an invo-
cation of the dequeue function of
the queue object. The first recov-
ery action is to restart the con-
sumer process (sub2) and to ini-
tialize the history log of sub2. The
second recovery action is to restart
the whole system and to initial-
ize all history logs. If the predicate
holds, the history log of sub2 is initialized.

The predicate of recovery tuple II is a safety predicate for sub5 (the consumer
thread and the queue). The event trigger variable is the queue object and the
event trigger method is an invocation of the dequeue function of the queue
object. The predicate checks whether the number of the history entries of sub4

that reflect successful enqueue events is bigger than zero (i.e., the number of
currently enqueued items in queue is bigger than zero). If so, the last dequeue
event should have been successful. The first recovery action is to restart sub5

and to initialize the history logs of sub5. The second recovery action is to restart
the whole system and to initialize all of the history logs. The history trimming
rule is empty.

The predicate of recovery tuple III is the safety predicate for the whole sys-
tem. The event trigger variable is the queue object and the event trigger method
is an invocation of the dequeue function of the queue object. The predicate checks
that each dequeued item has been previously enqueued and that the dequeued
item is the first successfully enqueued item from the current queue. The recovery

166 O. Brukman and S. Dolev

action is a restart of the whole system and an initialization of all history logs.
The trimming rule is to remove the enqueue event entries of the successfully
dequeued item from the history log of sub6.

The correctness proof of the producer-consumer task is based on the guidelines
provided in Lemma 1. The proofs for Lemmas 2, 3 and 4 appear in [3].

Lemma 2 (Liveness of Producer Thread). In any rsf-execution E the pro-
ducer thread executes a call for the queue.enqueue function infinitely often.

Lemma 3 (Liveness of Consumer Thread). In any rsf-execution E, the
Consumer thread executes a call for the queue.dequeue function infinitely often.

Lemma 4 (Producer-Consumer Task Correctness). The Producer-
Consumer task that uses the pseudocode presented in Figures 4, 5, and 6, even-
tually satisfies Requirements 4 and 5.

Consumer implements Restartable
//Liveness for sub2
I〈queue.dequeue;

〈“sub2”{}; {}〉
eventually 〈“sub2”{}; {}〉 ∈ historysub2 ;
{{this.restart(); initHistory(sub2)},
{queue.restart(); this.restart();

consumer.restart(); initHistory(sub6)}};
{initHistory(sub2)}〉

//Safety for sub5
II〈queue.dequeue;

〈〉
|〈“sub4”; {}; {true, item.hashCode}〉 ∈ historysub4 | > 0 ⇒

item = null;
{{this.restart(); queue.restart(); initHistory(sub5)},
{queue.restart(); this.restart();

consumer.restart(); initHistory(sub6)}};
{}〉

Safety for sub6
III〈queue.dequeue;

〈〉
item = null ⇒
∃i : historysub6 [i] = 〈“sub4”, {}, {true, hashCodeitem}〉∧
∀j < i historysub6 [j] = 〈“sub4”, {}, {false, hashCodeitem}〉
{{queue.restart(); this.restart(); consumer.restart();

initHistory(sub6)}}
{historysub6 = historysub6\historysub6 [1, ..., i]}〉

1 Consumer(Queue queue, Producer producer);
2 void run(){
3 do forever
4 item = queue.dequeue();
5 consume item(item);
6 }
7 void restart() {
8 this.suspend();
9 this.start();
10}

Fig. 6. Pseudocode for the consumer thread

The code produced by
our framework for the
producer-consumertask
is self-stabilizing only
if the uniqueness of
the object hash codes
is guaranteed. Oth-
erwise, the produced
code is pseudo self-
stabilizing [9] with re-
gards to the safety
property as explained
in [3].

5 Conclusions

In this work we have
combined fault toler-
ance paradigms such
as self-stabilization
and (eventual) Byzan-
tine faults with the
restartability recovery
paradigm into a sin-
gle framework for writ-
ing recovery oriented
programs.

We view the new
framework as an important infrastructure that allows the specification composer
to monitor the specifications on-line and to act upon violation of the safety and

Recovery Oriented Programming 167

the liveness specifications. There is no doubt that such an approach is vitally
important for gaining autonomous, robust and fault-tolerant systems.

Acknowledgment. We thank Marcelo Sihman for discussions during the first
stage of this research.

References

1. A. Arora and M. Theimer. “On Modeling and Tolerating Incorrect Software”.
Microsoft Research Technical Report MSR-TR-2003-27, 2003.

2. K. Beck, C. Andres. “ Extreme Programming Explained : Embrace Change”.
Second Edition, Addison-Wesley, 1999.

3. O. Brukman, S. Dolev. “Recovery Oriented Programming”. Technical Report
#06-06, Department of Computer Science, Ben-Gurion University, Israel, June
2006.

4. O. Brukman, S. Dolev, E. K. Kolodner. “Self-Stabilizing Autonomic Recoverer for
Eventual Byzantine Software”. Proc. of the IEEE SWSTE, pp. 20-29, 2003.

5. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
E. Poll. “An overview of JML tools and applications”. International Journal on
Software Tools for Technology Transfer, vol. 7(3), pp. 212-232, June 2005.

6. K. M. Chandy, L. Lamport. “Distributed snapshots: Determining global states of
distributed systems”. ACM TOCS, vol. 3(1), pp. 63-75, February 1985.

7. F. Chen, G. Rosu. “Java-MOP: A Monitoring Oriented Programming Environment
for Java”. Proc. of the TACAS , pp. 546-550, Edinburgh, U.K., April 2005.

8. R. L. Constable, T. B. Knoblock, J. L. Bates . “Writing Programs that Construct
Proofs ”. Journal of Automated Reasoning, vol. 1(3), pp. 285-326, 1984.

9. S. Dolev. Self-stabilization. The MIT press, March 2000.

10. S. Dolev, J. L. Welch. “Self-Stabilizing Clock Synchronization in the Presence of
Byzantine Faults”. Journal of the ACM, vol. 51(5), pp. 780-799, September 2004.

11. S. Dolev, R. Yagel. “Toward Self-Stabilizing Operating Systems”. Proc. of the
SAACS , pp. 684-688, 2004.

12. Thinking in Java. Prentice Hall PTR, December 2002.

13. Eiffel. Eiffel Programming Language. http://www.eiffel.com.
14. D. P. Friedman, M. Wand, C. T. Haynes. “Essentials of Programming Languages”.

The MIT press, 2nd edition, 2001.

15. Y. Gurevich, B. Rossman, W. Schulte. “Semantic Essence of AsmL”. Microsoft
Research Technical Report MSR-TR-2004-27, March 2004.

16. L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals Problem”. ACM
Trans. on Programming Languages and Systems, vol. 4(3), pp. 382-401, 1982.

17. W. Leal, A. Arora. “Scalable self-stabilization via composition”. Proc. of the
ICDCS, Tokyo, Japan, March 2004.

18. N. Lynch Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

19. P. G. Neumann. “Computer-Related Risks”. Addison-Wesley/ACM Press, 1995.
20. D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez,

A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J.
Traupman, and N. Treuhaft. “Recovery Oriented Computing(ROC): Motivation,
Definition, Techniques and Case Studies”. UC Berkeley Computer Science Tech-
nical Report UCB/CSD-02-1175, Berkeley, CA, March 2002.

168 O. Brukman and S. Dolev

21. B. Randell, J. Xu. “The Evolution of the Recovery Block Concept”. Software Fault
Tolerance, pp. 1-22, 1994.

22. T. Rothamel, Y. A. Liu, C. L. Heitmeyer, E. I. Leonard. “Generating Optimized
Code from SCR Specifications”. Proc. of the LCTES, pp. 135-144, Ottawa, Ontario,
Canada ,June 2006.

23. J. Xu, B. Randell, A. Romanovsky, R. J. Stroud, A. F. Zoro. “Rigorous Develop-
ment of a Safety-Critical System Based on Coordinated Atomic Actions”. IEEE
Transactions on Computers, vol. 51(2), pp. 164-179, 2002.

Evaluation of a Tracking Architecture

in Wireless Sensor Networks

Florent Claerhout

IRISA, Université de Rennes 1, France
fclaerho@irisa.fr

Abstract. A wireless sensor network is a collection of tiny and cheap
devices deployed over a physical surface and able to gather and process
in a collaborative way some information about a specified phenomenon
occuring in their surroundings. Particularly, in tracking applications, the
end-user is interested in the statistics of mobile targets crossing the region
monitored by the network (i.e. trajectory forecast, speed, etc.). Those
statistics share the common need for causally and temporally correlated
data. In this paper, we evaluate the energetics cost of TRAC, a high level
tracking architecture designed to respond to the requirements of tracking
applications. We compare TRAC to a basic flooding-based mechanism,
which does not offer any guarantee on the correlation of the disseminated
data. Via theoritical analysis and simulations we show that the complex-
ity of TRAC is O(2x) while the complexity of the flooding-based solution
is O(x3) (where x2 is the number of nodes in the network). These results
emphasize the extra cost of high level properties. We conjecture that a
careful aggregation of the data managed by TRAC drops its complexity
to O(x2) and we provide some hints to implement these optimizations.

1 Introduction

A wireless sensor is a tiny and cheap electronic device equipped with several
modules including a processing module, a wireless communication module, a
sensing module and an energy source. Some wireless sensors may be also equipped
with actuators allowing it to interact with its environment. The main idea is
that even if such a device is very versatile, its resources are always limited:
its processing power, communication bandwidth and additional parameters are
weak, and in particular its energy source (typically a mere battery) can last only
for a limited amount of time (we do not consider the possibility of recharging it).
Once deployed over the region of interest the set of sensors implicitely form a
network through the wireless communication links, and therefore, they are able
to cooperate at a higher-level in order to achieve their task(s). In the following,
we will use the term node instead of wireless sensor.

The applications considered in this paper are tracking applications. The term
’tracking application’ is in fact a language abuse refering to an application (run-
ning on each node, and corresponding, for instance, to the 7th layer in the OSI
model) using a tracking service (also running on each node); In the following

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 169–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

170 F. Claerhout

the term application will designate the top-level application. In this context, a
wireless sensor network is expected to detect all the targets crossing the covered
region and to report various statistics (past trajectory, estimated trajectory,
velocity, etc.) to the end-users (interfaced to the network by some fixed base sta-
tions or mobile devices like a pda or a phone). The targets, as well as the reported
statistics are application-dependent (the application specifies to the tracking ser-
vice which are the requirements). A general specification of the tracking service
can be found in [3].

A lot of works can be found in the literature concerning the traking prob-
lem, but in general those works are focused only on a specific sub-problem of
a complete architecture ([2] focuses on the classification part, for instance). A
tracking service brings together several specific problems (detection, estimation,
classification, etc.) but also requires a lot of additional basic protocols (time syn-
chronization, communication, etc.), thus also importing the difficulties related
to those supplementary protocols. An interesting description of the method to
design and implement such an architecture can be found in [1] along with the
presentation of each specific component (detection, estimation, classification).

In this paper we will consider two architectures: the most simple one, based
only on a flooding mechanism, and a more complicated one, TRAC [3], based on
two levels of overlays designed to optimize some network metrics. In particular,
we expect with this second architecture, a diminution of the energy expense, but
possibly a worse latency. The interesting problem is: how to evaluate the design
of a wireless sensor network (including hardware and software)? There exists a
lot of established metrics [4,7] (including the network lifetime, the average energy
consumption, the accuracy, etc.). Unfortunately, those metrics are all influenced
by multiple parameters caracterizing the protocols, the nodes, the network, and
its expected activity (including the nodes communication and sensing scopes,
the number of targets and their trajectory, etc.). In fact, the main metrics can
only be evaluated according to a ’fixed’ scenario corresponding to a particular
activity in the covered region.

Contribution – In this paper, we are interested in the energy consumption
of two tracking architectures, TRAC (a complex assembly using the combination
of two overlays) and a flooding-based approach. In order to evaluate those two
solutions, a general scenario has been defined, with several parameters fixed
and some variable ones (e.g. the network size). For each solution, we provide a
formal analysis (of the general case and the specific case in our scenario); the
analysis corresponding to our scenario is checked against simulations. We show in
this paper that a basic implementation of a complex system like TRAC results
in performances less interesting than the ones of the flooding-based approach
(except that the flooding-based solution requires post-processing as explained
later, this cost is not taken into account in our evaluation). We explain, first,
how to optimize the implementation to achieve better results, and second, in
which cases TRAC should be preferred.

Paper Overview – The paper is organized as follows: we start by describ-
ing the sensor network used for the evaluations and the simulation tool. The

Evaluation of a Tracking Architecture in Wireless Sensor Networks 171

next part consists in the presentation of the two architectures as well as their
respective models (of energy consumption). The results are then discussed and
the paper concludes on the future works to be done.

2 Case Study

The case study for the evaluation, called S1, is the following: we consider a simple
square-shaped network with an uniform distribution of the nodes as shown on the
following figure. The side of the network is denoted x (so the network contains
x2 nodes). A single target appears at the bottom of the network and moves in a
straight line alongside it and until it leaves the covered region: the sensing scope
(cs) of the nodes has been limited to 0.5 so the target is only detected by the
x nodes at the bottom of the network. There is a single sink at the top-right.
The communication scope (ss) is set to 1.5 (each node is separated from its
side and up/down neighbors (if any) by 1 ’space unit’ (the real unit is of no
importance). It will be considered that all the nodes are active (their sensing
and communication devices always on).

The evaluated network (S1)

We use the communication energy cost model proposed in [5,6]:

Etx = Ptx · (
s

W
+ Tstartup) + αamp · cs2 · s

W
(1)

Erx = Prx · (
s

W
+ Tstartup) (2)

Etx is the energy cost of the transmission of a packet of size s bytes, using a
channel of bandwidth W , where the power of the modulator (roughly) is Ptx

and the power of the amplifier is αamp · cs2. Similarly, Erx is the energy cost of
the reception of a packet of size s, with Prx as the power of the demodulator. In
our case, this model has been simplified to the following equations:

172 F. Claerhout

Etx = s · (ptx + αamp · cs2) = s · εtx (3)

Erx = s · (prx) = s · εrx (4)

The following values have been arbitrary used (a set of coherent values has been
chosen but the individual values do not necessarily correspond to real ones, as
we only wish to do comparisons):

ss cs ptx prx αamp εtx εrx

0.5 1.5 0.1 0.1 0.1 0.325 0.1

Additionally, the initial battery capacity of each node is set to 2400 ’units of
capacity’ (the real unit for battery capacities is the mAh). Communications
are considered as perfect (no collisions, no fading, no delay) and a node can
send/received as many packets as it wishes at the same time.

3 Simulator

In order to check the theoritical results and test more complex protocols, a
simulator as be developped, allowing to put aside some low-level details which
are not interesting for our study and difficult to manage (i.e. communication
protocol, clock synchronisation, etc.) The simulator (WSNS1) allows to design
accurately a network topology (including the sinks location) and to describe an
approximation of each target trajectory and speed through a polygonal line as-
sociated with the speed on each segment; this whole description constitutes a
so-called scenario. As most distributed systems simulators, a simple evolution
model is used: a simulation is a sequence of cycles during which each node is
allowed to perform the actions described by its protocol. These actions include
the emission/reception of messages, target detection and the protocol specific in-
ner tasks. Concerning communications, collisions are not taken into account (a
node can send/ receive as many packets as it wishes at the same time) and there
are, by default, no loss or corruptions. Besides, transmissions and propagation
delays are all considered to be negligeable. The energy consumption and packet
emissions are always interesting statistics, so the simulator records their pro-
gression. The simulator communication energy cost model is the one described
previously. Additionally, the usage of the sensing and communication devices is
not free, the cost per cycle and per node has been arbitrary fixed to the following
values:

εsensing εcom

0.1 0.1

The other parameters are fixed as detailed in the previous section. At last, for
our experiments, the number of cycles has been fixed to 1000 and the target
enters the region at cycle 400.

1 WSNS (Wireless Sensor Network Simulator) can be freely provided on demand.

Evaluation of a Tracking Architecture in Wireless Sensor Networks 173

4 Notations

We will use the following notations: N is the the set of nodes in the network,
its cardinal |N | corresponds to the number of nodes in the network. S the set
of sources and K the set of sinks ((S ∪ K) ⊂ N). ∀n ∈ N , d(n) is the degree
of the node n (its number of neighbors) and N(n) is the set of neighbors of n
(|N(n)| = d(n)). Additional (specific) notations are added later. All those values
might vary with time but we will only consider situations in which time doesn’t
affect anything.

5 Flooding

The very obvious algorithm (we can barely speak of an ’architecture’) for a
tracking service consists in sending the raw data packets as soon as a node
sensed a target; then each packet is broadcast/forwarded in the entire network.
Thanks to the symplifying hypothesis on the communications, we are guaranteed
that each node will indeed receive each packet (in particular, the sinks will
receive it). However, in addition to the classical flooding problems (duplication of
packets, network overload, supplementary energy consumption, etc.) the problem
of infinite looping occurs because a node doesn’t record which packet it has
already sent. There are two possible solutions: the first one consists in adding
the equivalent of a TTL2 field to each packet, but the initial value of this field is
proportional to the network diameter, which is not known by a node in advance
(in the general case); the second solution, more simple, consists in recording in
each node a trace of each packet it has already sent (so a packet is sent only
once by a node). The main drawback of this algorithm (at the end-user level) is
that the sinks only get back unordered information implying the necessity of a
post-processing either at the application level or before it.

The energy cost model of this algorithm is fairly simple: as explained be-
fore, each node in the network will emit/forward exactly one time each packet.
There are |S| packets emitted initially (one per source) so the number of packets
emitted and forwarded is:

P = |S| · |N | (5)

According to our implementation, a packet has a size of 4 bytes3, so the total
emission cost is:

Etx = 4 · P · εtx (6)

The reception cost is less trivial as it depends on each node number of neighbors,
this total number of neighbors is: A =

∑
n∈N d(n), so:

Erx = 4 · |S| · A · εrx (7)

2 TCP/IP TTL (Time To Live).
3 In WSNS a byte is an unsigned long integer, the exact size is platform-dependent.

174 F. Claerhout

Those functions show that, in the general case, the energy expense of the flood-
ing algorithm only depends on the total number of nodes, the total number of
neighbors and the number of sources.

We can now rewrite everything for S1, our case study. Let’s denote α(x) = x2.
The emission cost is now:

Etx(x) = 4 · x · α(x) · εtx (8)

A can be calculated easily with a square-shaped network: the 4 nodes in the
corners have 3 neighbors, the others nodes on the sides have 5 neighbors and
they are exactly 4 · (x−2), at last, all the nodes except the ones on the side have
8 neighbors: 8 · (x− 2)2.

A(x) =

⎧⎨
⎩

0 if x ≤ 1
12 if x = 2
12 + 20 · (x − 2) + 8 · (x− 2)2 if x ≥ 3

Hence the total reception cost:

Erx(x) = 4 · x ·A(x) · εrx (9)

To those costs, we must add the sensing and communication devices usage costs.
As initially all the devices are off (they are enabled when the node starts up)
then they cost something only during 999 cycles on the 1000, so the total cost
for a network of side x is:

E(x) = Etx(x) + Erx(x) + 999 · (εsensing + εcom) · α(x) (10)

The final function can be rewritten as:

E(x) = 4.5 · x3 + 195 · x2 + 1.6 · x (11)

Which means that we obtain, for example, with a network of 100 nodes (x = 10),
the emission of x ·α(x) = 1000 packets and a total cost of E(10) = 24016 ’units
of energy’ (the standard unit is the Joule, [J]), those results are confirmed by the
simulations. The following graph shows the energy consumption for an increasing
number of nodes.

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

 4e+12

 4.5e+12

 5e+12

 0 2000 4000 6000 8000 10000

C
on

su
m

pt
io

n

Network square side size

ContextBcast Energy Consumption (S1)

4.5*x**3+195*x**2+1.6*x

Flooding energy consumption for S1

Evaluation of a Tracking Architecture in Wireless Sensor Networks 175

6 TRAC

A detailed description of the TRAC architecture can be found in [3]. The essen-
tial points are presented below. TRAC is an architecture built from 4 modules:
the detection module, the neighbor probing module, the optimization block (built
from the trajectory overlay manager module and the trajectory overlay builder
module) and, at last, the publish/subscribe block (built from the notification
overlay manager module and the notification overlay builder module), as repre-
sented on the following figure.

The detection module (which abstracts the detection, the estimation and the
classification sub-modules) provides detection reports (the target signature and
the detection time) to the optimization block. When a detection report is sub-
mitted to this last block, the trajectory module builder first tries to find out
whether the current node has a neighbor which has detected the same target
before4. If this is the case, the trajectory overlay manager sends a ’delegation
packet’ (a packet containing the local data) to the previous node (on the target
trajectory) which simply concatenates the delegated data to its own data; this
is considered as a new detection report and the process is restarted from the
beginning on this new node.

TRAC Architecture

If a node doesn’t have any ’previous’ node (which is the case for border nodes,
or if the concerned neighbor is crashed, for instance) then the local data (a
detection report or concatenated data) is handed off to the publish/subscribe
block. The goal of the notification overlay builder is simply to create an overlay
allowing to publish the data to the sinks. Once this overlay is built, the local
data are distributed to the sinks thanks to the notification overlay manager.

An example is shown on the following figure: all the nodes having detected
the target are linked together (each source node knows the previous source node
on the target trajectory, according to the detection time, there can be sev-
eral possible ’previous’ node, a simple election based on the node id is done
4 This is based on the locality principle: it a node has sensed a target, then at least

one of its neighbors has sensed the same target before (assuming the target cannot
jump). This is true except for the border nodes.

176 F. Claerhout

in this case). A single node, the first one having detected the target is respon-
sible to publish all the data to the sinks, this is done thanks to the second
overlay (the ’notification overlay’). This last overlay is, for instance, a span-
ning tree between the sinks and the root, intermediate nodes are marked as
gateways.

It should be emphasized here that TRAC is an architecture, thus, as explained
already, the algorithms can be changed easily (in particular the both overlays).
However we need a concrete implementation for our evaluation, so we stick to
the initial choices.

The delegation mechanism form a so-called trajectory overlay which links
together all the source nodes: the interest is first to perform some filtering/
smoothing to ensure the coherency and the order of data and second to perform
some compression operation to reduce the amount of data sent. The aggregation
operations are not considered in this paper to keep it simple, but these are major
advantages when considering data processing (which cannot easily be achieved
with a flooding-based design for instance).

TRAC overview

Fault-tolerance – The algorithms associated to this architecture are self-
stabilizing, but to keep the evaluation simple, the stabilization part has been
removed, except for the neighor probing: it simply means that we tolerate crash-
type faults (due to battery exhaustion for instance) but no longer transient
faults. Crashes, however, won’t be considered.

Packets sizes – At last, each algorithm (described in the next sections) of the
standard implementation of TRAC uses different types of packets. We will need
those packets size for the analytical model (in the following table, L is the ’use-
ful’ size of data, i.e. the data collected by the nodes, the other values are the
overheads):

Evaluation of a Tracking Architecture in Wireless Sensor Networks 177

Message Type Size
PING 3
PONG 3

TARGETADV 5
TARGETACK 6

PUBDELEGREQ 7 + L
PUBDELEGACK 6

ROUTEIN 8
ROUTEACK 5
ROUTEMSG 6 + L

Neighbor Probing (NP) – This proactive algorithm maintains for each node
the list of its neigbors (with which the communication link is bidirectional).
Initially a node doesn’t know its neigbors, so it begins by broadcasting a PING
message and its neigbors reply by a PONG. However the neighbors don’t know
whether their link with this node is bidirectional or not for themselves so they
also send a PING message. The initial node reply to the PINGs by a PONG to
each of its neighbors. Up to now, the number of emitted packets is:

P init = |N |+ 2 · A + A (12)

Which results in the following emission and reception costs:

Einit
tx = 3 · P · εtx (13)

Einit
rx = 3 · (A + 2 · Γ + Γ) · εrx (14)

Where Γ is the number of neighbors of order 2 (i.e. the number of neighbors
of each neighbor of a node: Γ (N) =

∑
n∈N

∑
m∈N(n) d(m)). Besides, as a node

is prone to fail (from energy exhaustion in our case), each node must update
its neighbor list. This is simply done by broadcasting periodically a PING to
which the already known neighbors reply by a PONG. The new packet emission
number is:

P stab = |N |+ A (15)

The emission/reception costs are thus:

Estab
tx = 3 · P · εtx (16)

Estab
rx = 3 · (A + Γ) · εrx (17)

Therefore, by denoting f the update frequency, we obtain as total cost:

ENP = Einit
tx + Einit

rx + f · (Estab
tx + Estab

rx) (18)

Clearly, and as expected, this algorithm cost depends only on the total number
of nodes in the network, the number of neighbors (of order 1 and 2), and the
update frequency f .

178 F. Claerhout

Applied to our case study, we get:

Γ (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x ≤ 1
36 if x = 2
200 if x = 3
492 if x = 4
492 + 356 · (x− 4) + 64 · (x− 4)2 if x ≥ 5

P init(x) = α(x) + 2 ·A(x) + A(x) (19)

The other functions are similar. For p = 10 and c = 1000, f = floor((c−1)/p) =
99, the final function can be rewritten as:

ENP (x) = 3091.5 · x2 − 6327 · x + 3333 (20)

And the simulations confirm this result.

Trajectory Overlay Builder (TB) – As quickly explained before, this algo-
rithm tries to find the previous neighbor source node on the target trajectory
(from the current node point of view), so each source node, after having detected
the target, starts by emitting a TARGETADV message containing its detection
parameters, the number of packets is:

PADV = |S| (21)

The emission/reception costs are:

EADV
tx = 5 · PADV · εtx (22)

EADV
tx = 5 ·AS · εrx (23)

Where AS denotes the number of neighbors of the sources: AS =
∑

n∈S d(n).
Each source node, except the ones not having a successor on the trajectory
(i.e. all the last nodes having detected the target) will reply by a TARGETACK
message (including the root nodes). Let’s denote F the set of nodes without
a successor (without a ’next’ node). Let R denotes the set of root nodes. the
number of packets is:

PACK = |S ∪ R − F| (24)

The emission/reception costs are:

EACK
tx = 6 · PACK · εtx (25)

EACK
rx = 6 ·AS∪R−F · εrx (26)

Where AS∪R−F =
∑

n∈(S∪R−F) d(n). The total cost ETB is the sum of the four
functions:

ETB = EADV
tx + EADV

rx + EACK
tx + EACK

rx (27)

Applied to S1, we get respectively:

PADV = x, PACK = (x− 1), AS = 2 · 3 + 5 · (x− 2), AS∪R−F = 3 + 5 · (x− 2)

Evaluation of a Tracking Architecture in Wireless Sensor Networks 179

In a ’real’ case, with more sources and a less simple topology, a node may select
temporarily a wrong ’previous’ node. We can ignore this case here. The total
cost for S1 (confirmed by the simulations) can be rewritten as:

ETB(x) = 9.075 · x− 8.150 (28)

Trajectory Overlay Manager (TM) – This algorithm simply makes a node
to delegate its local data to the previous source node on the trajectory if it
knows it, or hand off the data to the publish/subscribe block otherwise. The
idea, here, is that we try first the optimized method to publish the data but if it
doesn’t work, as a node must do its publication, it falls back on a basic method
to do it (achieved thanks to the publish/subscribe block). In our case, first we
are guaranteed that each node indeed knows it previous node and second, we
will assume there is no aggregation, so a node re-send its data augmented with
the delegated data recursively until the border node.

The trick here is that the expression of this recursive delegation highly depends
on the form of the trajectory overlay. Due to space limitation, and as this part
is quite long to explain, we will limit ourselves to the particular expressions of
the case study.

Delegation mechanism on the trajectory overlay

Each node delegates its currently possessed set of data, and each time a node
get back some delegated data, it concatenates this new data to its local data to
create a new data packet (the size is the size of the both concatenated packets)
which will be, in turn, delegated at the next step. For the delegation part, we
get:

EDRQ
tx (x) =

x−1∑
i=1

i∑
j=1

(7 + 2j) · εtx (29)

EDRQ
rx (x) = 3 · (7 + 2) · εrx + 5 ·

x−1∑
i=2

i∑
j=1

(7 + 2j) · εrx (30)

180 F. Claerhout

And for the acknowlegments:

EDACK
tx (x) =

x−1∑
i=1

i∑
j=1

6 · εtx (31)

EDACK
rx (x) = 3 ·

x−1∑
j=1

6 · εrx + 5 ·
x−2∑
i=1

i∑
j=1

6 · εrx (32)

Clearly this part is really expensive (with a complexity in O(2x) for the total
cost).

Notification Overlay Builder (NB) – The objective of this module is to
built a spanning tree between the current node (the root of the tree) and the
sinks distributed in the network (and which locations are unknown). The node
starts by emitting a ROUTEIN packet to advertise the entire network about
the fact it possesses some information about a target (the ROUTEIN packet
contains only meta-data5). Those packets allow each node in the network to
select its parent ensuring the shortest path between itself and the root, so each
time a ROUTEIN packet is forwarded, its data about the parent and distance
to the root is updated. As, in the general case, there are possibly several targets
crossing the region of interest, there are possibly several root nodes (there is at
least one root node per target6).

The sinks will also receive the ROUTEIN packets, and, as they are interested
they reply by a ROUTEACK to activate the shortest path between itself and
the root. Let P denotes the set of nodes belonging to the shortest paths between
the sinks in K and the roots R, and Pr the subset of P for which r ∈ R is the
root. In our case study there is only one sink in the upper-right corner of the
network, and only one root node at the bottom-left corner so the ROUTEACK
messages are forwarded on the diagonal of the square-shaped network. Due to
space limitation, we won’t detail this part, however, in our case study, the total
cost (confirmed by simulation results) can be rewritten as:

ENB(x) = 9 · x2 − 3.975 · x− 4.925 (33)

Notification Overlay Manager (NM) – At last, once a notification tree is
ready, it remains to send the data to the sinks. The trick is that, as we didn’t
considered aggregation, we have to send the progressive concatenation of the
packets (as explained for the trajectory overlay manager).

5 In our case the meta-data about a target is simply reduced to its signature as re-
turned by the sensing device of the node, however it may be much more complicated
in a ’real’ case.

6 Ideally, there is exactly one root node per target, which is our case as we do not
consider node failures.

Evaluation of a Tracking Architecture in Wireless Sensor Networks 181

In the particular case of S1, there is only one root (R = {r}), and only one
set of node forming a shortest path to the sink (the diagonal of the network):

|P| = |Pr| = x− 2 and AP = APr = 8 · (x− 2)

Therefore, we obtain the following simplified functions:

EMSG
tx (x) = (x− 1) ·

x∑
i=1

(6 + 2i) · εtx (34)

EMSG
rx (x) = (3 + 8 · (x − 2)) ·

x∑
i=1

(6 + 2i) · εrx (35)

TRAC – The total cost for the architecture is the sum of each algorithm to-
tal cost plus the usage of the sensing and communication devices during the
simulation cycles.

ETRAC(x) = ENP (x) + ETB(x) + ETM (x)+

ENB(x) + ENM (x) + 999 · (εsensing + εcom) · α(x) (36)

This function has a complexity of O(2x).

7 Optimization

TRAC for the case study S1, with its default algorithms has a complexity of
O(2x) (where x is the network square side size) against a complexity of O(x3) for
the flooding. So the immediate conclusion is that TRAC is much more expensive
when the number of nodes increases, as shown on the following figure.

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 1e+35

 10 100

C
on

su
m

pt
io

n

Network square side size

Default TRAC vs Context Bcast (S1, p=10)

’TRAC10.func.data’
4.5*x**3+195*x**2+1.6*x

Comparison of the consumption of TRAC with the default algorithms (p = 10) and

the flooding method for S1 (log scale)

182 F. Claerhout

However, as explained before, the used algorithms are not optimized and
there’s plenty of room for improvement:

– Neighbor Probing – A reactive version of the algorithm may be more attrac-
tive according to the hypothesis on the fault occurences;

– Trajectory Overlay Manager – This is one of the expensive parts, with a com-
plexity in O(2x). The fact that all the local data, augmented with the dele-
gated data are re-emitted recursively is good relatively to the fault-tolerance
as it ensures redundancy, but this is expensive. The redundancy dropped,
in the best case, each source node should simply delegate data packets with
a (small) constant size, in our case, without considering aggregation, only 2
bytes should be recursively delegated along the trajectory overlay:

EDRQ
tx (x) =

x−1∑
i=1

i∑
j=1

(7 + 2) · εtx (37)

Which makes us fall back on a complexity in O(x2);
– Notification Overlay Builder – This is an algorithm based on a broadcast so

it fundamentally depends on the network size, its complexity in O(x2) may
not be improved much, however there are different publish algorithms which
could be used instead;

– Notification Overlay Manager – The expensive complexity of this part (also
in O(2x)) is due to the Trajectory Overlay Manager, but in the ideal case a
single packet (containing all the data) will be emitted by the root nodes, so
the complexity is proportional to the number of nodes on the paths between
the roots and the sinks, in our case study, this is O(x). So this part is
interesting if |K| |N |.

Concretely with the modifications suggered above, the TRAC complexity falls
back in O(x2) which become much more interesting and less expensive than the
standard flooding method for S1. In the general case, TRAC is more interesting
when the supplementary overlays are justified, which corresponds, at least, to
the following condition: |S ∪ K| |N |. The following table summarizes the
different characteristics of the architectures studied in this paper:

Flooding Default TRAC Optimized TRAC

S1 Consumption Complexity x3 2x x2

Data Correlation No Yes Yes
Aggregation Difficult Easy Easy

8 Conclusion

In this paper, we evaluated two types of architectures, a simple flooding-based
mechanism and a more complicated architecture based on two levels of overlays
(called TRAC), in order to determine whether a simple design is more inter-
esting or not from the energy consumption viewpoint. Those evaluations were

Evaluation of a Tracking Architecture in Wireless Sensor Networks 183

conducted in a well-defined case study, consisting of, mainly, a square-shaped
network crossed by a single target. With TRAC, the expectations were that
the overall consumption expense should be better than the simple solution and,
additionally, TRAC allows to achieve easily data processing (ensuring, in partic-
ular, the correlation properties needed by the application). Our first conclusion
is that, despite the different components of TRAC were assembled to optimize
the tracking service, it clearly appears that this is not sufficient: each component
itself must be carefully optimized to, indeed, improve the global performances.
From a complexity in O(2x), we show how to optimize the algorithms to achieve
a complexity in O(x2) for the general consumption, which is better than the
flooding-based method, which complexity is in O(x3). We also show that using
our optimization mechanism is interesting only if the number of source and sink
nodes is smaller than the size of the network |S ∪ K| |N | or if ensuring the
data correlation properties is more critical than the consumption metric.

In our future works, we intend to evaluate the cost of the fault-tolerance in the
algorithms, with more complex scenarios, and to evaluate TRAC with different
combinations of algorithms (adding also the additional components left aside in
this paper: the time synchronization and the communication protocols).

References

1. Anish Arora, Prabal Dutta, Sandip Bapat, Vinod Kulathumani, Hongwei Zhang,
Vinayak Naik, Vineet Mittal, Hui Cao, Murat Demirbas, Mohamed G. Gouda,
Young ri Choi, Ted Herman, Sandeep S. Kulkarni, Umamaheswaran Arumugam,
Mikhail Nesterenko, Adnan Vora, and M. Miyashita. A line in the sand: A wireless
sensor network for target detection, classification, and tracking. Computer Networks,
46(5):605–634, 2004.

2. R.R. Brooks, P. Ramanathan, and A.M. Sayeed. Distributed target classification
and tracking in sensor networks. In Proceedings of the IEEE, volume 91, pages
1163–1171, aug 2003.

3. F. Claerhout, A.K. Datta, M. Gradinariu, and M. Hurfin. Self-� architecture for
trajectory tracking in wireless sensor networks. In The 5th IEEE International
Symposium on Network Computing and Applications, 2006. To be published.

4. D. Estrin. An introduction to wireless sensor networks: Applications and challenges.
Course Slides.

5. W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy efficient com-
munication protocol for wireless microsensor networks. In Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences (HICSS), pages 3005–
3014, jan 2000.

6. E. Shih, B.H. Calhoun, H.C. Seong, and A.P. Chandrakasan. Energy efficient link
layer for wireless microsensor networks. In Proceedings of the IEEE Computer So-
ciety Workshop on VLSI, pages 16–21, 2001.

7. S. Tilak, N.B. Abu Ghazaleh, and W. Heinzelman. A taxonomy of wireless mi-
crosensor network models. In ACM Mobile Computing and Communications Review
(MC2R), 2002.

Self-protection for Distributed

Component-Based Applications

Benoit Claudel1, Noël De Palma1, Renaud Lachaize2, and Daniel Hagimont3

1 Institut National Polytechnique de Grenoble, France
2 Université Joseph Fourier, Grenoble, France

3 Institut National Polytechnique de Toulouse, France

Abstract. The complexity of today’s distributed computing environ-
ments is such that the presence of bugs and security holes is statistically
unavoidable. A very promising approach to this issue is to implement a
self-protected system, similarly to a natural immune system which has
the ability to detect the intrusion of foreign elements and react while it
is still in progress.

This paper describes an approach relying on component-based soft-
ware engineering to ease the protection of distributed systems. The
knowledge of the application architecture is used to detect foreign ac-
tivities and to trigger counter measures. We focus on a mean to rec-
ognize known and unknown attacks independently from legacy software
and avoiding false positives. Hence, the scope of the detected attacks is,
for the moment, limited to the detection of illegal communications. We
describe how this approach can be applied to provide self-protection for
clustered J2ee applications with a very low overhead.

1 Introduction

Today, human activity is getting ever more dependent on computing systems.
They are used extensively to process and store confidential information. However,
computers remain fragile systems: in addition to hardware breakdowns, other
troubles threaten them, especially when they are connected to an open network
such as the Internet.

Modern software is plagued by security flaws at many levels. In this context,
hackers and intruders make successful attempts to attack company networks and
web services on a daily basis. Hence, security is now a major concern for any IT
infrastructure.

Enforcing the security of a computing system lies on some key abilities. First,
as preventive measures, it is important to define tight access control policies, so
that hackers can hardly break into the system and hide their tracks. Second, one
should be able to distinguish suspicious activities from the normal operations of
the system. Third, once detected, the malicious processes must be stopped in a
comprehensive and efficient way.

Unfortunately, these goals are very hard to meet in practice, for several
reasons.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 184–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Self-protection for Distributed Component-Based Applications 185

1. It is notoriously complex to specify and maintain access policies that are
effective, globally consistent (across different programs and computers) and
not overly restrictive for users.

2. The complexity of today’s software components (and their interactions) is
such that the presence of bugs and security holes is statistically unavoidable.
This leaves the opportunity for hackers to develop new hijacking techniques
(“exploits”) at a very high pace. Keeping up with the appropriate security
patches requires a continuous vigilance.

3. Detecting malicious activities within the system is, in general, far from triv-
ial and relies almost exclusively on human expertise. For this reason, most
intrusions are only noticed once much damage has been done.

Overall, most problems stem from the fact that (human) administrators are
unable to cope with the amount of work required to properly secure a computing
infrastructure at the age of the Internet.

We propose to address the above problem through the construction and im-
plementation of a self-protected system. As a first step towards the fulfillment of
this vision, this paper addresses two main goals: (i) simplifying the configuration
(and reconfiguration) of security components according to the knowledge of the
system structure and (ii) easing the development of automated counter measures
to various classes of attacks. As a first case study, we focus on the context of
multi-tier applications (such as clustered J2EE servers) hosted in a data center.

Section 2 presents the concepts of autonomic computing and self-protection.
Section 3 describes related work. The design principles of a self-protected sys-
tem are presented in section 4. Section 5 describes our implementation of such
a system for clustered J2ee applications. Section 6 presents our experimental
results. The limitations of our prototype and the perspectives of our work are
presented in section 7. We conclude in section 8.

2 Autonomic Computing

Self-protection is the ability of an autonomic system to secure itself against
attacks, i.e. to detect illegal activities and to trigger counter measures in order
to stop them. This section describes the main concepts of autonomic computing
(2.1), as well as the more specific concern of self-protection (2.2).

2.1 General Principles

As computing systems have become more complex and distributed, the hu-
man resources involved in managing and administrating them have considerably
grown. Autonomic computing [7] aims at enabling computing infrastructures to
perform administration tasks without (or with minimal) human intervention;
such tasks include application deployment, platform configuration, reaction to
events like node failures, wide variation in load, and various kind of attacks.
Successful autonomic systems require to be self-configuring, self-optimizing, self-
healing and self-protecting.

186 B. Claudel et al.

One approach to build an autonomic system [1] is to implement a control
loop that regulates (according to high level policies) a part of the system, called
the managed system. The managed system may consist of a single elementary
hardware or software component, or may be a complex system itself, such as a
cluster of machines, or a distributed middleware infrastructure. An autonomic
manager adjusts the behavior of the system according to its constraints. It relies
on two connections to the managed system: sensors to watch the state of the
system, and actuators to modify it. In order to manage themselves, these systems
must be able to discover and act on their own structure through introspection
and adaptation.

2.2 Self-protection

In order to prevent network intrusions, many methods have been developed
(section 3.1) notably firewalls and intrusion detection systems (IDS). But these
techniques have a certain number of limitations. First of all, most of these tools
report abnormal behaviors (perhaps attacks) to administrators, who must then
carry out a manual analysis of the problem. These analysis may take time and
allow the pirate to freely exploit the flaw whereas a fast answer would have
stopped the attack while it was still in an early stage. Moreover, current secu-
rity tools can often only protect systems against known attacks and pirates are
always a length ahead. Finally, security tools are very difficult to configure in a
distributed computing environment and errors from administrators are becoming
a significant source of security flaws.

A very promising approach to address this issue is to implement a self-
protected system which has the ability to detect illegal activities within the sys-
tem and to trigger counter measures without human intervention. The purpose
of our work is not to replace the existing tools but rather to provide a systematic
approach that allows more closely-coupled interactions between them, so that
the cluster-wide, coordinated reaction against an attack can become automated,
and thus, more efficient.

3 Related Work

This section briefly reviews (3.1) the main tools and techniques currently used by
security experts to fight against intrusions (some of these techniques can be used
as basic building blocks to implement a self-protected system) and the existing
systems that implement a self-protected behavior (3.2).

3.1 Common Security Tools

We make the distinction between different functions (protection filters, detectors
of suspicious activity, logging and backtracking tools) although many available
solutions integrate several of them.

Protection filters are used to restrict interactions among machines (or, more
generally, distributed processes/resources) to a given set of limited, well estab-
lished set of patterns. For instance, a firewall acts as a network filter that checks if

Self-protection for Distributed Component-Based Applications 187

any given packet can be forwarded according to its related protocol, source/des-
tination addresses and ports.

Detectors (or scanners) used to recognize malicious activity fall generally into
two categories [13,6]: (i) misuse intrusion detection and (ii) anomaly detection
intrusion.The former approach compares the data packets passing through the
detector with a library of patterns typical of known attacks, while the latter tries
to spot irregular behaviors of the system. In addition, scanners can sometimes
react themselves against the intrusion, but their action is usually limited in scope
(block offending request/packet, quarantine suspect resource) and context (no
coordination between the different servers). Thus, (quick) human intervention is
generally required anyway for further study and containment of the problem.

Loggers record detailed data about the system activity so that once an in-
trusion attempt has been detected, it is possible to determine the sequence of
events that led to the intrusion and the potential extent of the damage (e.g. data
theft/loss).

3.2 Self-protected Systems

The Vigilante system [5] is an antivirus system where detectors are based on
the immune system analogy and are able to find unknown viruses. Furthermore,
when a new virus is found, its signature is spread across the network to all other
protected computers.

Self-cleansing [9] is another solution to build self-protected software. This pes-
simistic approach makes the assumption that all intrusions cannot be detected
and blocked. In fact, the system is considered to be compromised after a certain
time. Hence, this approach periodically reinstalls a part of the system from a
secure repository. However, this solution only applies to stateless components.

When a computer is compromised, another important function is the ability
to restore the system in a trusted state. The Taser system [8] provides the file
system with a selective self-recovery capability. Taser logs all file system access
for each process. If a process is compromised, Taser computes illegal access for
each file and is able to rollback illegal modification. However if a dependency is
found between an illegal and a legal access, Taser requires a human intervention.

3.3 Summary

As we have seen, most security tools can only protect the system against known
attacks. Furthermore, human administrators are heavily solicited by the alarms
produced by the scanners. In particular, after checking the relevance of alarms,
they are usually in charge of initiating lots of actions, both for coordinated de-
fense at the cluster scale (e.g. through reconfiguration of the filters and scanners)
and investigation (e.g. with backtracking tools). As a consequence, the human
resources still represent the main bottleneck of the security infrastructure, which
tends to increase the vulnerability of a system exposed to a new kind of attack.
Besides, very little research has been performed on how to combine well-known
security tools to create an autonomic security system.

188 B. Claudel et al.

4 Design Principles

Research on self-protected systems is a recent initiative, still in its prospective
stage. The self-protection approach is notably inspired by the operations of the
human body and has led to the concept of computer immune system, in the mid
90s.

The main goal of natural immune systems is to protect a live being from
dangerous foreign pathogens. This mission relies on a key ability, the sense of
self, that is, the capacity to detect the intrusion of foreign elements within the
“system” (in this case, the body), through the distinction of self from nonself.
Once an intruder is properly detected, measures can be taken to destroy it (or
at least contain its damages and progression). In the context of a computing
system, nonself may correspond to the activity of a malicious program or an
unauthorized user.

Inspired by this principle, we propose architectural patterns to improve the
coordination between multiple elements which compose a security infrastructure.
Our focus is not on the development of new specific techniques for access control,
intrusion detection or backtracking but rather on the mechanisms that allow an
efficient and flexible integration of these various tools within a global, automated
control process.

Furthermore, many studies have shown that the magnitude of the damages
caused by an attack increases with the time afforded to an intruder within the
system. However, as we have seen previously, the human administrators are the
main bottleneck of the security infrastructure and, thus, the intruder residence
time in the system is often relatively long. The most generic intrusion detectors
(i.e. those able to detect new kinds of attacks) rely on statistical methods and
generate a non negligible amount of false positives. As a consequence, it is not
possible to use such detectors in order to trigger counter-measures autonomously
and we aim at developing new means to detect abnormal behaviors while avoiding
false positives.

4.1 Requirements

The main design principles required to build a self-protected system are sum-
marized below:

1. An autonomic system needs to be able to detect intrusions. It requires a
definition of its own operations: this is the sense of self capacity or the
self-knowledge aspect. In other words, it must be able to distinguish le-
gal behaviors from illegal behaviors. As the countermeasures are triggered
autonomously, this distinction must be done while avoiding false positives.
Moreover, the legal operations or the system structure could evolve over time:
as a consequence, self-knowledge requires dynamic introspection capabilities.

2. The system must have the ability to respond to attacks. This capacity relies
on the capacity for the system to reconfigure all its individual components.

3. A wide variety of systems must be protected, including legacy software not
designed to be autonomic.

Self-protection for Distributed Component-Based Applications 189

4. The components, involved in the self-protection of the system, can become
themselves a target of attacks. Those, if compromised, can be used by the
attackers in an unintended way. Hence, the system must prevent the self-
protection components from being compromised.

The remainder of this paper describes our propositions to partially address
the first three challenges mentioned above. We more particularly investigate how
some “sense of self” abilities can be derived from the architecture of a distributed
application (which can easily be obtained from its deployment/monitoring infras-
tructure). Note that this generic technique is not sufficient to protect a system
against all kinds of attacks and should thus be combined with more application-
specific mechanisms. More generally, the current limitations of our work are
discussed in section 7.

4.2 Context

As a first application domain, we have chosen to focus on data servers, which
have very high security requirements since they host sensible data and services in
every organization. Before describing our approach, we briefly introduce J2EE,
a popular platform for multi-tier, server-side applications and Jade, the middle-
ware on which we built our self-protection logic.

Multi-tier applications. J2ee (Java 2 Enterprise Edition) [11] platforms allow
the construction of web application services, which typically include e-commerce,
on line banking, web portals and so on. Such applications are generally organized
in 3 or 4 tiers: a web server tier, a presentation tier, a business tier (optional),
and a database tier.

The web tier is an Http server (such as Apache). Its function is to receive
and process the client’s requests. If the answer to a request is a static content
page, it is directly delivered by this tier; if dynamic content needs to be pro-
vided, the request is dispatched to a server of the next tier. The function of the
presentation tier (e.g. a Tomcat server) is to manage the execution of Servlets,
which drive the execution of the application and synthesize its results in the
form of dynamic pages. The (optional) business tier (e.g. EJB Enterprise Java
Beans) implements the application logic (data access and processing) if it is not
provided by the presentation tier. Last, the database tier (e.g. a MySQL server)
is to provide persistent storage and access functions for the information needed
by the application.

J2ee multistage applications allow a separation of concerns and can be easily
clustered. The different tiers may run on distinct nodes and be replicated for
increased performance and robustness.

Middleware for autonomic applications. Our approach is based on the
knowledge of the system operation and its architectural representation. We aim
to provide such a representation of the environment using a component model.
According the overall organization proposed for autonomic computing, we de-
signed and implemented Jade, a framework for building autonomic systems. It

190 B. Claudel et al.

Presentation
tier

Web tier Business tier
Database

tier

Clients

Fig. 1. Architecture of a J2ee platform

relies on the Fractal component architecture [3] to reconfigure applications ac-
cording to observed events. Jade provides abilities for encapsulation of legacy
entities, introspection, deployment and reconfiguration. Next, we detail the fea-
tures of Fractal and Jade, and explain how they can ease the development of
self-protection mechanisms.

Fractal Component Model. The component model we use in Jade is Fractal
[3], a reflective component model intended for the construction of dynamically
configurable and monitored systems.

A Fractal component is a run-time entity that is encapsulated and communi-
cates with its environment through well-defined access points called interfaces.
Fractal components communicate through explicit bindings. A binding corre-
sponds to a communication path between two or more components. The Fractal
specification specifies several useful controllers: the binding controller allows cre-
ating or removing bindings between components; the life-cycle controller allows
starting and stopping the component; the attribute controller allows setting and
getting configuration attributes.

Jade. The choice of a component model is justified by needs for encapsulation
of legacy software, system representation and reconfiguration.

Wrapping Legacy Software. Jade uses Fractal to manage legacy entities using
a uniform model, instead of relying on resource-specific, hand-managed, config-
uration files.

This approach is illustrated in the case of a clustered J2ee architecture. In
figure 2, an L5-switch balances the requests between two replicated (Apache) web
servers. The latter are connected to two (Tomcat) servlet engines. The Tomcat
servers are both connected to the same (MySQL) database server.

The vertical dashed arrows represent management relationships between com-
ponents and the wrapped software entities. In the legacy layer, the dashed lines
represent relationship (or bindings) between legacy entities, whose implementa-
tions are proprietary. These bindings are represented in the management layer
by component bindings (full lines in the figure).

In the management layer, all components provide the same (uniform) man-
agement interface for the encapsulated resources, and the corresponding imple-
mentation is specific to each resource (e.g. in the case of J2ee: Apache, Tomcat,
MySQL, ...). The interface allows managing the attributes, bindings and life
cycle of the resources.

Self-protection for Distributed Component-Based Applications 191

L5
Switch

Apache Tomcat

Tomcat

MySQL

L5
Switch

Apache Tomcat

MySQL

Apache

Apache Tomcat

Management Layer

Legacy middleware layer

Management
interface

J2EE

Fig. 2. Component-based management of legacy applications with JADE

Relying on this management layer, sophisticated administration programs can
be implemented, without having to deal with complex, proprietary configuration
interfaces, which are hidden in the wrappers.

Introspection and System Representation. An introspection interface enables
the monitoring of the managed resources and the expression of the system struc-
ture in terms of components. For instance, an administration program can in-
spect an Apache managed resource (i.e. the component encapsulating the Apache
server) to discover that this server runs on node1:port80 and is bound to a Tom-
cat server running on node2:port66. It can also inspect the overall J2ee infras-
tructure, considered as a single managed resource, to discover that it is composed
of two Apache servers interconnected with two Tomcat servers connected to the
same MySQL server. This introspection ability provides an architectural repre-
sentation of the system, which can be leveraged to define a set of legal operations
for the system.

Reconfiguration. A reconfiguration interface allows the control over the com-
ponent architecture. In particular, this interface allows to modify component
attributes and bindings. These changes are reflected onto the legacy layer. For
instance, an administration program can add or remove an Apache replica in the
J2ee infrastructure to adapt the available resources according to the workload
variations.

4.3 Architecture-Based Configuration and Protection

Sense of Self Capacity. Since Jade maintains an architectural representation
of the system in terms of components and communication channels, it provides
a notion of sense of self independently of the legacy software.

For instance, Figure 3 represents a clustered J2ee application in terms of com-
ponents. This representation is autonomously generated during the deployment.
The J2ee component contains node components which themselves contain the
application tiers (i.e. Apache, Tomcat and MySQL servers). A legal communica-
tion between two nodes is represented by a binding between two components (full
lines in the figure), the port on which the application is running (in the applica-
tion wrapper) and the addresses of the nodes (in the components encapsulating
the nodes).

192 B. Claudel et al.

Any communication attempt that is not associated with a legal channel is
considered as an attack. This allows the detection of any attack breaking the
structural rules of an application, with no false positives.

Sensors and Actuators. As we have previously mentioned, Jade is built
according to the overall organization proposed for autonomic computing (section
2.1). Hence, it uses sensors to observe the managed system and actuators to
manipulate it.

In the context of self-protection, sensors are used to detect attacks. They use
the system’s self-knowledge in order to distinguish illegal operations from legal
ones. For instance, in the context of our architecture-based protection scheme,
they must detect illegal communications.

Actuators, in a self-protected system, allow fighting against attacks by ma-
nipulating the managed system according to the decisions from the autonomic
manager. For instance, they can isolate a node, apply more thorough checks
to the packets that it sends or even force the reboot and reinstall of a node
(assuming that we are in a controlled environment with the proper hardware
support).

In order to prevent a compromised node from bypassing the protection filters
thanks to spoofed reconfiguration requests, the orders emitted by the autonomic
manager are authenticated thanks to asymmetric cryptography.

Control Loops for Self-protection. We describe here a simple control loop
for self-protection that we implemented in Jade (section 5). It is aimed at iso-
lating compromised nodes from the rest of the system. The actuators are able

J2EE

Node 1

Apache

S A

Node 5

Tomcat

S A

Node 2

Apache

S A

Node 4

Tomcat

S A
Node 9

S A

Autonomic Manager
Analysis & Decision

Node 3

Sensors Actuators

S

A Actuator

Illegal
communication

Sensor

MySQL

Initial state

J2EE

Node 1

Apache

S A

Node 5

Tomcat

S A

Node 2

Apache

S A

Node 4

Tomcat

S A
Node 9

S A

Autonomic Manager
Analysis & Decision

Node 3

Sensors Actuators

Illegal
communication

MySQL

Node's 5
isolation

Fig. 3. Detection of an illegal communication and isolation of a node

Self-protection for Distributed Component-Based Applications 193

to allow certain types of traffic, or disallow others on each node. The sensors
detect illegal communications and provide information about the dropped net-
work packets to the autonomic manager. The latter can then take the decision to
isolate the node that sparked off the attack. For this purpose, it removes, at the
management layer level, all the bindings towards the component encapsulating
the compromised machine. These modifications are reflected onto the system by
the actuators.

For instance, in the J2ee architecture represented in figure 3, no communi-
cation is allowed between nodes 4 and 5. However, the sensor on node 4 detects
an illegal communication and sends this information to the autonomic manager,
which decides to isolate node 5 (considered as compromised). This results in a
reconfiguration of the actuators on nodes 1,2 and 9 (figure 3).

5 Implementation Details

This section presents the implementation details of the control loop described
previously (4.3). Actuators and sensors are based on communications over TCP/
IP channels. The autonomic manager must be able to isolate nodes in reaction
to alarms. This component has two interfaces: the first one receives alert notifi-
cations from sensors while the second one outputs reconfiguration directives to
the actuators.

The goals of our prototype can be summarized as follows:

1. Auto-configuration: the security components should be automatically de-
ployed and (re)configured according to the description of the application.

2. Low overhead: the security mechanisms must not significantly impact the
performance of server-class applications.

To implement the actuators and sensors, we used Netfilter [12], a packet fil-
tering framework provided by the Linux kernel. Iptables is used as a front-end
to add or remove configuration rules. Next, we describe how to use this tool to
build sensors able to detect illegal communications and actuators for filtering
and isolation.

5.1 Actuators

In our prototype, the actuators allow (i) to automatically configure the Netfilter
firewall running on each node of the cluster and (ii) to isolate compromised
machines. A modification at the administrated level (e.g. a new binding between
components, the change of an application’s port number, ...) is reflected onto
the Netfilter configuration by the actuators.

The automatic configuration of security components by the actuators and the
autonomic manager lowers the burden of the human administrators as well as
the risks of errors. Let us now describe the required rules for a subset of the
configuration from figure 3 (nodes 2, 4 and 9):

194 B. Claudel et al.

Rules Required to Enforce the Overall Security Policy. First, it is necessary to
enforce an efficient security policy: all the packets not explicitly allowed are
blocked. The following rules allow to drop all the packets by default:

1. iptables -t filter -P INPUT DROP

2. iptables -t filter -P OUTPUT DROP

3. iptables -t filter -P FORWARD DROP

This set of rules is required on each node.

Rules on the Apache Node. In order to communicate with clients and the Tomcat
server, the Apache server needs the four following rules:

1. iptables -t filter -A INPUT -j ACCEPT -p tcp --dport 8080

-m state --state NEW,ESTABLISHED

2. iptables -t filter -A OUTPUT -j ACCEPT -p tcp -d 192.168.0.4

--dport 8098 -m state --state NEW,ESTABLISHED

3. iptables -t filter -A INPUT -j ACCEPT -p tcp -s 192.168.0.4

--sport 8098 -m --state ESTABLISHED

4. iptables -t filter -A OUTPUT -j ACCEPT state-p tcp

--sport 8080 -m state --state ESTABLISHED

These rules are generated thanks to the system representation. A binding be-
tween two components at the administration level involves two filtering rules in
order to allow a bidirectional communication between two legacy software. The
first rule (arrow number 1) allows node 2 to accept connections from clients on
the port 8080. The second one (arrow number 2) allows the machine 192.168.0.2
to establish a connection towards the machine 192.168.0.4 on the port 8098.
This rule represents the binding between the Apache component and the Tom-
cat component in the “Apache towards Tomcat” direction. The third rule rep-
resents the same binding but from Tomcat towards Apache. Finally, the last
rule allows the Apache server to answer client requests. The rules for the other
nodes are not presented here but are in the same vein that the above-mentioned
ones.

The configuration of a set of firewalls, even more in a complex distributed
environment, is a difficult task. The autonomic manager and actuators allow
to automate this task from the information provided by the deployment and
introspection features of Jade. In addition, it is possible to randomly choose on
the port number for a given service. In this way, the security level is improved
because attackers must then resort to port scanning, and are thus more likely to
be discovered.

5.2 Sensors

In our prototype, the sensors are able to detect illegal communications. For this,
they use a special feature of Netfilter, which provides a mechanism for passing
packets out of the network stack for queuing in userspace, then receiving these
packets back into the kernel with a verdict specifying what to do with the packets

Self-protection for Distributed Component-Based Applications 195

(such as Accept or Drop). These packets may also be modified in userspace
prior to reinjection back into the kernel. In this way, the sensors are able to send
the illegal packets to the autonomic manager before these packets are destroyed.

6 Evaluation

We evaluated our prototype in a J2ee cluster running RUBiS [2], a standard
benchmark modeled according to an online auction service such as eBay. RUBiS
provides a load injector to emulate clients.

Experiments ran on the grillon cluster [4], with a switched Gigabit Ethernet
network and nodes featuring two 2Ghz AMD Opteron processors and 2GB of
RAM.

Protection Level. As we have seen, our sensors detect all the communication not
explicitly authorized in the system representation without any false positive.
Hence, it is possible to react to all kind of attacks (known and unknown) using
an illegal communication channel. For instance, it is possible to detect a port
scanner and block the attack before the real intrusion.

Control Loop Reactivity. This experience aims at measuring the time between the
detection of an illegal communication and the isolation of compromised nodes.
We implemented the scenario described in section 4.3. The average time mea-
sured (over 1000 runs) is 2.133 ms with a 0.146 ms standard deviation. Hence,
our prototype is very reactive and can quickly block an intruder.

Performance overhead. The following experience aims at measuring the impact
of the protection control loop on the performance of RUBiS. The deployed J2ee
architecture corresponds to the one on figure 3.

The load injector of RUBiS emulates a variable number of clients (from 0 to
3000 in our experiments) sending a series of requests.

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

R
eq

ue
st

s
nu

m
be

r
pe

r
se

co
nd

e

Number of concurrent client

Rate functions of concurrent clients

without_self_protection
with_self-protection

Fig. 4. Scalability of the RUBiS benchmark with and without self-protection

196 B. Claudel et al.

As shown in figure 4, the overhead induced by the use of a firewall on each
cluster node is very low (less than 2%).

As the netfilter processing time increases according to the number of filtering
rules, we checked the scalability of our solution by adding a hundred fictive rules
to each firewall. The overhead, induced by this experimental setup, remained
very low (less than 3%). Furthermore, even in a complex J2ee platform, the
number of rules should not reach such a number.

7 Limitations and Perspectives

Limitations. We have designed and implemented a self-protected system for clus-
tered J2ee applications. Our approach relies on a software component architec-
ture to provide a sense of self to the system (i.e. to distinguish illegal behaviors
from legal ones). For the moment, the scope of the detected attacks is limited to
illegal communications over TCP/IP. We are thus unable to spot intruders re-
specting the expected control flow and/or targeting different protocols.

Our work mostly targets controlled environments such as server rooms (where
most nodes are trusted) and “silent” attacks (aimed at quietly stealing or de-
stroying data) rather than open grids and denial-of-service attacks. Our approach
is well suited to the context of multi-tier applications deployed in a data cen-
ter because an attacker knows a priori little about the structure of the system
and will likely have to expose itself while exploring the network and trying to
hijack other nodes. However, our current proposition may not be very helpful
for peer-to-peer systems, where anyone acts as a router and can easily determine
the architecture of the application.

Currently, the only counter-measure implemented in the autonomic manager
is the isolation of compromised nodes. Our prototype nonetheless provides an
easy way to develop various counter-measures (e.g. reinstalling compromised
nodes, starting an intrusion backtracking procedure, etc.).

Besides, self-protected systems, similarly to natural immune systems, must
not have a unique point of failure (i.e. several security components must be
distributed over the network). However, our implementation relies on a single
security manager. Hence, this crucial component must be fault-tolerant. Indeed,
in addition to hardware of software breakdowns (fail-stop failures), it can become
a victim of attacks or complex bugs and become compromised or corrupted
(byzantine failures).

Last, in our prototype, the communications between security components are
not fully authenticated. Hence, attackers with a good knowledge of our middle-
ware could take advantage of this this flaw to control sensors and actuators in
an unintended way.

Future work. As mentioned in section 4, we propose to define self-knowledge of
legal operations in the system at two levels: (i) in a legacy independent way at
a system’s architecture level and (ii) in a more specific way at a legacy software
level. This paper focuses on our work at the former level but we also intend to
investigate the latter, i.e. develop mechanisms to spot and block attacks targeted

Self-protection for Distributed Component-Based Applications 197

at legacy software (buffer overflows, SQL injection, etc.). Since, in our model,
legacy software are wrapped by manageable components, it is possible to encap-
sulate information about their normal behaviors. For instance, one could specify
the children processes expected from a particular application in order to block
an illegal fork/exec. We may also add the definition of well formed requests to
prevent exploits like SQL injections on the database.

The main weakness of our prototype is the security of the self-protection
mechanisms themselves. Existing solutions [10] have not been implemented and
evaluated yet. The autonomic manager must be replicated (m + 2 replicas to
detect the presence of m compromised autonomic manager) and any decision
will require majority voting (and a more elaborate authentication scheme).

8 Conclusion

Today, distributed computing environments are increasingly complex and dif-
ficult to administrate. This complexity is such that the presence of bugs and
security holes is statistically unavoidable. Therefore, access control policies be-
come very difficult to specify and to enforce.

Following the autonomic computing vision, a very promising approach to deal
with this issue is to implement a self-protected system which is able to distinguish
legal (self) from illegal (nonself) operations. The detection of an illegal behavior
triggers a counter-measure to isolate the compromised resources and prevent
further damages.

In this vein, we have designed and implemented a system called Jade which
allows the construction of autonomous administration programs. Jade relies on
a component model for wrapping administrated resources and provides support
for the definition of autonomic managers which capture significant events from
the computing environment and trigger relevant actions.

In this paper, we investigated the application of Jade features to implement
a self-protected system. We showed how to take advantage of the knowledge of
a component-based application to provide a means of distinction between legal
and illegal operations. We implemented a prototype system for a realistic use
case, clustered J2ee applications. Our prototype is able to configure a firewall
on each cluster node according to the system representation. When an illegal
communication is detected, the autonomic manager quicly isolates the compro-
mised nodes. Moreover, the overhead induced by our approach is very low and
acceptable for high-performance data servers.

References

1. An architectural blueprint for autonomic computing. IBM and Autonomic Com-
puting, April 2003. http://www-306.ibm.com/autonomic/pdfs/ACwpFinal.pdf.

2. C. Amza, E. Cecchet, A. Chanda, Alan L. Cox, S. Elnikety, R. Gil, J. Marguerite,
K. Rajamani, and W. Zwaenepoel. Specification and Implementation of Dynamic
Web Site Benchmarks. In 5th Annual IEEE Workshop on Workload Characteri-
zation, 2002.

198 B. Claudel et al.

3. E. Bruneton, T. Coupaye, and J.B. Stefani. Recursive and dynamic software com-
position with sharing. In Proceedings of the 7th ECOOP International Workshop
on Component-Oriented Programming (WCOP’02), June 2002.

4. F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jegou, S. Lanteri, N. Melab,
R. Namyst, P. Primet, O. Richard, E. Caron, J. Leduc, and G. Mornet. Grid’5000:
A large scale, reconfigurable, controlable and monitorable grid platform. In
Grid2005 6th IEEE/ACM International Workshop on Grid Computing, 2005.

5. M. Costa, J Crowsoft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham.
Vigilante: end-to-end containment of Internet worms. In SOSP ’05: Proceedings of
the Twentieth ACM Symposium on Operating Systems Principles, pages 133–147,
New York, NY, USA, 2005. ACM Press.

6. H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion-detection
systems. Computer Networks, 31(9):805–822, 1999.

7. A.G. Ganek and T.A. Corbi. The dawning of the autonomic computing era. IBM
Systems Journal, 40(1), 2003.

8. A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara. The Taser intrusion recovery
system. In SOSP ’05: Proceedings of the Twentieth ACM Symposium on Operating
Systems Principles, pages 163–176, New York, NY, USA, 2005. ACM Press.

9. Y. Huang and Sood A. Self-cleansing systems for intrusion containment. In Work-
shop on Self-Healing, Adaptive and self-MANaged Systems (SHAMAN), 2002.

10. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. In
Advances in Ultra-Dependable Distributed Systems, N. Suri, C. J. Walter, and M.
M. Hugue (Eds.), IEEE Computer Society Press. 1995.

11. Sun Microsystems. Java 2 platform enterprise edition (J2EE).
http://java.sun.com/j2ee/.

12. Netfilter. Firewalling, NAT, and packet mangling under linux.
http://www.nefilter.org.

13. A. Sundaram. An introduction to intrusion detection. ACM Crossroads Student
Magazine, 2(4):3–7, 1996.

From Self- to Snap- Stabilization

Alain Cournier, Stéphane Devismes, and Vincent Villain

LaRIA CNRS FRE 2733
University of Picardie Jules Verne, Amiens, France

firstname.lastname@u-picardie.fr

http://www.laria.u-picardie.fr/~lastname

Abstract. A snap-stabilizing protocol, starting from any configuration,
always behaves according to its specification. In this paper, we propose
a light semi-automatic method allowing to snap-stabilize self-stabilizing
wave protocols for arbitrary networks with a unique initiator. To that
goal, we consider such a self-stabilizing protocol A. We then slightly
update A to obtain a protocol B that can be automatically transformed,
using a black box protocol, into a snap-stabilizing protocol. B is easy to
obtain from A compared to the design of a snap-stabilizing protocol.

1 Introduction

The quality of a distributed system depends on its tolerance to faults. Many
fault-tolerant schemes have been proposed. For instance, self-stabilization [1]
allows to design a system tolerating arbitrary transient faults. A self-stabilizing
system, regardless of the initial states of the processors and messages initialy in
the links, is guaranteed to converge into the intended behavior in finite time.
Recently, a new paradigm called snap-stabilization has been introduced in [2].
A snap-stabilizing protocol guarantees that, starting from any configuration, it
always behaves according to its specification. In other words, a snap-stabilizing
protocol is a self-stabilizing protocol which stabilizes in 0 time unit. Designing
and proving self- or snap- stabilizing protocols is usually a complicated task.
That is why some protocols, called transformers, were proposed to automatically
perform such a task, e.g., [3,4]. In [3], Katz and Perry design a protocol that
transforms almost all non-self-stabilizing protocols into self-stabilizing protocols.
In [4], the authors propose a transformer providing a snap-stabilizing version of
any protocol which can be self-stabilized with the transformer of [3], but, this
transformer is designed in a higher level model than the one used in [3]. The
transformers of [3,4] use heavy mechanisms to transform an initial protocol into
a self- or snap- stabilizing protocol and the overcost of the stabilization is often
difficult to evaluate. Indeed, they use snapshots to regulary evaluate a predicate
defined on the variables of the protocol to transform. This predicate characterizes
the normal configurations of the system. This technique is used for preventing
the system from deadlocks and livelocks. The main drawbacks of these solutions
are: (i) such a predicate is generally difficult to formalize; (ii) the number of
snapshots used by the transformer protocol cannot be bounded compared to

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 199–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

200 A. Cournier, S. Devismes, and V. Villain

the number of actions of the initial protocol. In this paper, we propose a light
semi-automatic method allowing to snap-stabilize self-stabilizing wave protocols
for arbitrary networks with a unique initiator. To that goal, we consider such
a self-stabilizing protocol A. We then slightly update A to obtain a protocol
B that can be automatically transformed, using a black box protocol, into a
snap-stabilizing protocol. B is easy to obtain from A compared to the design of
a snap-stabilizing protocol. In contrast with the solution in [4], our black box
does not use any snapshot to snap-stabilize B and keeps the same fairness as the
protocol to transform. Finally, to show the feasibility of our method, we propose
to transform a self-stabilizing depth-first token circulation of Huang and Chen
[5] into a snap-stabilizing token circulation.

The rest of the paper is organized as follows. In Section 2, we describe the
model. In Section 3, we present and justify how our black box works. A sketch of
proof and the complexity analysis are provided in Section 4. We show in Section
5 how to snap-stabilize the protocol of [5]. Finally, we conclude in Section 6.

2 Preliminaries

We consider a network as an undirected connected rooted graph G = (V ,E,r)
where V is a set of processors, E is the set of bidirectional asynchronous commu-
nication links, and r ∈ V . The particular processor r, called root, corresponds to
the protocol initiator. In the network, a communication link (p,q) exists if and
only if p and q are neighbors. Every processor p can distinguish all its links. To
simplify the presentation, we refer to a link (p,q) of a processor p by the label
q. We assume that the labels of p, stored in the set Ngp, are locally ordered
by ≺p. We also use the following notations: respectively, N is the size, Δ the
degree, and D the diameter of the network. Our protocols are semi-uniform, i.e.,
each processor executes the same program except r. We consider a local shared
memory model of computation (see [6]) where the program of every processor
consists in a set of shared variables (henceforth, referred to as variables) and an
ordered finite set of actions inducing a priority. This priority follows the order
of appearance of the actions into the text of the protocol. A processor can write
to its own variable only, and read its own variables and that of its neighbors.
Each action is constitued as follows: < label > :: < guard > → < statement > .
The guard of an action in the program of p is a boolean expression involving
variables of p and its neighbors. The statement of an action of p updates one
or more variables of p. An action can be executed only if its guard is satisfied.
The state of a processor is defined by the value of its variables. The state of a
system is the product of the states of all processors. We will refer to the state of
a processor and the system as a (local) state and (global) configuration, respec-
tively. We note C the set of all configurations of the system. Let γ ∈ C and A
an action of p (p ∈ V). A is said enabled at p in γ if and only if the guard of
A is satisfied by p in γ. Processor p is said to be enabled in γ if and only if at
least one action is enabled at p in γ. When several actions are simultaneously
enabled at a processor p: only the priority enabled action can be activated. Let a

From Self- to Snap- Stabilization 201

distributed protocol P be a collection of binary transition relations denoted by
�→, on C. An execution of a protocol P is a maximal sequence of configurations
e = (γ0,γ1,...,γi,γi+1,...) such that, ∀i ≥ 0, γi �→ γi+1 (called a step) if γi+1 exists,
else γi is a terminal configuration. Maximality means that the sequence is either
finite (and no action of P is enabled in the terminal configuration) or infinite.
All executions considered here are assumed to be maximal. E is the set of all
executions of P . As we already said, each execution is decomposed into steps.
Each step is shared into three sequential phases atomically executed: (i) every
processor evaluates its guards, (ii) a daemon chooses some enabled processors,
(iii) each chosen processor executes its priority enabled action. When the three
phases are done, the next step begins. A daemon can be defined in terms of fair-
ness and distribution. There exists several kinds of fairness assumption. In this
paper, we consider the strongly fairness, weakly fairness, and unfairness assump-
tion. Under a strongly fair daemon, every processor that is enabled infinitively
often is chosen by the daemon infinitively often to execute an action. When a
daemon is weakly fair, every continuously enabled processor is eventually chosen
by the daemon. Finally, the unfair daemon is the weakest scheduling assumption:
it can forever prevent a processor to execute an action except if it is the only
enabled processor. To simplify the notation, we will denote (when necessary) the
strongly fair, weakly fair, and unfair daemon by SF , WF , and UF . Concerning
the distribution, we assume that the daemon is distributed meaning that, at each
step, if one or more processors are enabled, then the daemon chooses at least
one of these processors to execute an action. We consider that any processor p is
neutralized in the step γi �→ γi+1 if p was enabled in γi and not enabled in γi+1,
but did not execute any action in γi �→ γi+1. To compute the time complexity,
we use the definition of round [7]. This definition captures the execution rate of
the slowest processor in any execution. The 1st round of e ∈ E , noted e′, is the
minimal prefix of e containing the execution of one action or the neutralization
of every enabled processor from the initial configuration. Let e′′ be the suffix of
e such that e = e′e′′. The 2nd round of e is the 1st round of e′′, and so on.

Definition 1 (Wave Protocol [6]). A wave protocol is a protocol P that sat-
isfies the following requirements: (i) each execution of P (called wave) is finite
and contains at least an action of decision; (ii) each action of decision is causally
preceded by an action of each processor.

Definition 2 (Snap-stabilization). Let T be a task, and ST a specification of
T . A protocol P is snap-stabilizing for ST if and only if ∀e ∈ E, e satisfies ST .

Consider a wave protocol having a unique initiator, r, and performing a specific
task in a safe system. In the safe system, starting from a pre-defined configura-
tion called normal starting configuration, r initiates the protocol by executing
a special action called initialization action. This initialization occurs upon an
external (w.r.t. the protocol) request. Before this request, all the processors are
“asleep” (i.e., disabled). In particular, r is on standby of a request. Similary, at
the termination of the protocol, the processors become asleep again until the
next request occurs at the initiator. In contrast, in a self-stabilizing system, the

202 A. Cournier, S. Devismes, and V. Villain

protocols achieve a convergence to a specified behavior of the system in a finite
time. So, the execution of the first waves of such a protocol may not satisfy its
specification and, as a consequence, the waves have to be repeated so that the
system eventually satisfies its specification. Hence, self-stabilizing protocols are
inherently cyclic and the notion of request is simply kept in the background.
On the contrary, the snap-stabilization guarantees that after the first initial-
ization action, the execution of the protocol works as expected (i.e., according
to its specification). Thus, snap-stabilization does not require to design cyclic
protocols and the initialization of the protocols is similar to the one in a safe
system, i.e., the initialization is assumed to occur only upon an external request
(see [4] for further details). So, in our protocols, we will explicitly mention this
external request using the shared variable Reqr ∈ {W ,I,O} (noted P .Reqr for
the specific protocol P). We consider Reqr as an input into the algorithm of
the protocol initiator (r). Reqr = W means that an execution of the protocol is
required. When the initialization of the protocol occurs, Reqr switches from W
to I meaning that r has taking in account of the request. Finally, Reqr switches
from I to O at the termination of the wave meaning that the system is now
ready to receive another request. Of course, the switching of Reqr from W to
I and from I to O is managed by the task itself while the switching from O to
W (which means that another execution of the protocol is required) is managed
externally. Note that all other transitions (for instance, I to W) are forbidden.
The external action, noted IR, that manages the switching from O to W is of
the following form:

IR :: AppliReq(r) ∧ (Reqr = O) → Reqr := W ; AppliReleaser ;

AppliReq(r) is a predicate which is true when an application of the initia-
tor r needs an execution of the snap-stabilizing protocol. AppliReleaser is a
macro which contains the code of the application that has to be executed when
the system takes the request into account. In particular, this macro has to
make AppliReq(r) false. In the following, we will assume that, since satisfied,
AppliReq(r) is continuously satisfied until IR is executed.

From Definitions 1, 2, and the above discussion, follows:

Remark 1. Let T be a task, ST a specification of T , and P a wave protocol with
one initiator, r. To prove that P is snap-stabilizing for ST , we must show that
any execution of P satisfies two conditions: (i) since r requests a P wave, the
requested P wave is initiated in a finite time; (ii) from any configuration where
r has initiated a P wave, the system computes T according to ST .

3 The Approach

Principle. Let A be a self-stabilizing protocol with a unique initiator, r, designed
for stabilizing to a specific task T . In addition, assume that the decision actions
are at the root only. We want to snap-stabilize A without using the snapshot

From Self- to Snap- Stabilization 203

Algorithm 1. Reset(B) for p = r
Input: Ngp: set of (locally) ordered neighbors of p;

Constants: Pp =⊥; Lp = 0;

Variables: Sp ∈ {B,F ,P ,C}; Quep ∈ {Q,R,A};
Macro: Cldp={q∈ Ngp::(Sq =C)∧(Pq=p)∧(Lq=Lp+1)∧[(Sq =Sp)⇒(Sp∈{B,P}∧Sq=F)]};
Predicates:
CF (p) ≡ (∀q ∈ Ngp :: Sq = C)
Leaf(p) ≡ [∀q ∈ Ngp :: (Sq = C) ⇒ (Pq = p)]
BLeaf(p) ≡ (Sp = B) ∧ [∀q ∈ Ngp :: (Pq = p) ⇒ (Sq = F)]
AnsOk(p) ≡ (Quep = A) ∧ [∀q ∈ Ngp :: (Sq = C) ⇒ (Queq = A)]
Bst(p) ≡ (Sp = C) ∧ Leaf(p)
Fck(p) ≡ BLeaf(p) ∧ CF (p) ∧ AnsOk(p)
PreC(p) ≡ (Sp = F) ∧ [∀q ∈ Ngp :: (Pq = p) ⇒ (Sq ∈ {F ,C})]
Clean(p) ≡ (Sp = P) ∧ Leaf(p)
Requi(p) ≡ (Sp∈{B,F})∧[(Sp=B)⇒CF (p)]∧[[(Quep=Q)∧(∀q∈Ngp::(Sq =C)⇒(Queq∈{Q,R}))]

∨ [(Quep=A) ∧ (∃q∈Ngp::(Sq =C) ∧ ((Queq=Q)∨(q∈Cldp∧Queq=R)))]]
Ans(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CF (p)] ∧ (Quep = R)

∧ (∀q∈Cldp::Queq∈{W ,A}) ∧ [∀q∈Ngp::(Sq =C)⇒(Queq =Q)]
Actions:
PIF Part:
B-action :: (B.Reqp = W) ∧ B.Endp ∧ Bst(p) → Sp := B; Quep := Q; B.Reqp := I;
F -action :: Fck(p) → Sp := F ; B.Initp; B.Endp := false;
P -action :: PreC(p) → Sp := P ;
C-action :: Clean(p) → Sp := C;
T -action :: (B.Reqp = I) ∧ B.Endp ∧ (Sp = C) → B.Reqp := O;
Question Part:
QR-action :: Requi(p) → Quep := R;
QA-action :: Ans(p) → Quep := A;

techniques. In [3,4], the snapshots are used for detecting deadlocks and livelocks
in the execution of the initial protocol. Since A is self-stabilizing, we know that,
starting from any configuration, it will never generates deadlocks or livelocks.
We now propose to slightly modify A to obtain a protocol B which is automat-
ically snap-stabilized by a black box protocol. From now on, we note SSBB(B)
the snap-stabilizing version of B obtained with our Snap-Stabilizing Black Box
(SSBB). By Remark 1, the code of B must insure the following property:

(i) Starting from any configuration and upon an external request on r, r even-
tually initiates SSBB(B).

(ii) As soon as SSBB(B) is initiated, it executes the task T as expected.

First, by (i), starting from any configuration, the system must reach a config-
uration from which SSBB(B) can properly start. This implies that when the
root requests an execution of SSBB(B), SSBB(B) must start in a finite time
but without aborting a previously initiated computation of T . One way to get
this property is to use in B a variable B.Endr such that when r is ready to
decide in A, then r is also ready to decide in B and sets B.Endr to true. Also,
since B.Endr is equal to true, the initialization actions of B (at r) have to be
disabled until SSBB(B) can execute the computation of T as expected (ii). To
that goal, we have just to modify the guards of the initialization actions of A
so that they become disabled when B.Endr = true. B.Endr will be set to false
by SSBB(B) when the system will be in a configuration from which SSBB(B)
can execute the computation of T as expected (ii). Assuming the existence of

204 A. Cournier, S. Devismes, and V. Villain

B.Endr and the associated modifications in B, we now just need to reset the
variables of B since B.Endr is true in order to verify (ii). To that goal, ∀p ∈ V ,
all the variables assignments required to generate a normal starting configura-
tion of A have to be stored in a macro of B noted B.Initp. For sake of clarity,
we note B.Init the set of the macros B.Initp defined on all the processors p.
Using B.Init, the reset phase is trivially initiated at the initialization action of
SSBB(B) and, as soon as the reset terminates, B.Endr is set to false and B
executes the task T as A in a non-faulty situation. In particular, this means
that the initialization action of SSBB(B) corresponds to the the initialization
action of reset and, of course, SSBB(B) will take in account of the requests
for B (using B.Reqr) instead of B itself. SSBB(B) will reset the B variables
(using B.Init) so that the system reaches a normal starting configuration of A
and, then, give the execution control to B so that it performs the task T . A
well-known technique to perform a reset in distributed systems is based on the
Propagation of Information with Feedback (PIF). Some PIF protocols for arbi-
trary networks have been proposed in the snap-stabilizing literature, e.g., [8,9].
A PIF scheme can be informally described as follows: the initiator, r, starts the
protocol by broadcasting a message m (broadcast phase), then, ∀p ∈ V \ {r}, p
will send an acknowledgment to r for the receipt of m (feedback phase). Using the
PIF scheme, the reset protocol can be performed as follows: (i) r broadcasts an
“abort” message, (ii) upon the reception of the message, the processors abort
the execution of B, (iii) finally, the processors reset their B variables during
the feedback phase. To implement SSBB, we need to use a snap-stabilizing PIF
protocol working under a distributed unfair daemon. Indeed, we want to apply
our technique to self-stabilizing protocols working with any daemon, so, we need
a reset protocol that works with the most general daemon. Such a protocol is
provided in [9].

Snap-Stabilizing PIF. A snap-stabilizing PIF protocol satisfies the following
specification: starting from any configuration, when r has a message m to broad-
cast, it starts the broadcast in a finite time. Then, ∀p ∈ V \ {r}, p will both
receive m and send an acknowledgment (for the receipt of m) which will reach r
in a finite time.

Theorem 1 ([9]). The PIF protocol proposed in [9] is snap-stabilizing under a
distributed unfair daemon.

As the distributed unfair daemon is the most general daemon, Theorem 1 im-
plies that the protocol of [9], called PIF , works with any daemon. The another
important consequence of Theorem 1 is that, starting from any configuration,
each PIF wave performed by PIF is bounded in terms of steps. We now roughly
present the main actions and variables of PIF (see [9] for details). PIF is di-
vided in three parts: the PIF, question, and correction parts. The PIF part is
the most important part of the protocol because it contains the actions related
to the three phases of a PIF wave: the broadcast phase, the feedback phase
following the broadcast phase, and the cleaning phase which cleans the trace
of the feedback phase so that the root is ready to broadcast a new message.

From Self- to Snap- Stabilization 205

The two other parts of the algorithm implement two mechanisms allowing the
snap-stabilization of the PIF part. Due to the lack of space, we do not present
these mechanisms here. Informally, the PIF part maintains in every processor
p a variable crucial for SSBB: Sp. Indeed, Sp allows to know in which phase
of the PIF the processor p is. Sp is set to B when p switches to the broadcast
phase (B-action). Then, Sp is set to F when p switches to the feedback phase
(F -action). The cleaning phase is managed with two states: P and C. After r
detects the end of the feedback phase (r is the last processor which switches to
the feedback phase), r initiates the propagation of the P value into the S vari-
ables following the computed spanning tree in order to inform all the processor
of this termination (P -action). Then, the processors successively switches to C
(C-action) in a bottom up fashion (from the leaves of the spanning tree to r)
meaning that they now ready to receive another broadcast message. Hence, the
PIF wave terminates when r sets Sr to C (C-action). Finally, note that two more
states exists in Sp for p 	= r: EB and EF . But, they are used by the correction
part only. So, we do not explain the goal of these states here.

Property 1. From [9], follows:

1. After r initiates a broadcast (B-action), the system eventually reaches a
configuration where every processor is in the feedback phase associated to
the broadcast of r.

2. From any configuration, r executes B-action in at most 9N − 1 rounds and
O(Δ ×N3) steps.

3. From any configuration, a complete PIF wave costs at most 15N − 3 rounds
and O(Δ ×N3) steps.

Remark 2. By Property 1, from any configuration, r executes B-action at most
9N−1 rounds. Actually, this time complexity corresponds to the following worst
case: the maximal number of rounds starting from any configuration before the
system reaches a configuration where B-action at r is the only enabled action of
the system (see the technical report for details [10]).

SSBB Protocol. To build SSBB(B), we use the following composition technique.
This composition technique is closed to the hierarchical composition of Gouda
and Herman [11]. Let P1 and P2 be two protocols. The composition of P1 and
P2, noted P2 ◦|G P1, is the program satisfying the following conditions:

- P2 ◦|G P1 contains all the variables and actions of P1 and P2.
- G is a predicate defined on the variables of P1.
- Any action Li :: Hi → Si in P2 is replaced by Li :: G ∧ Hi → Si in P2 ◦|G P1.

Following these rules, SSBB(B) = B ◦|Ok(p) Reset(B) with Ok(p) ≡ (Sp = C).
Reset(B) is a slightly modified PIF (Algorithms 1 and 2). It is used for resetting
the B variables when it is necessary. To that goal, we modify the guard of its
initialization action: B-action at r (the initialization action of SSBB(B)) so that
it is enabled only when a request for B occurs at the root (B.Reqr = W) and
B.Endr = true (to avoid the aborting a previous initiated wave of B). Also,
we modify the F -action to reset the B variables using B.Initp (∀p ∈ V) and to

206 A. Cournier, S. Devismes, and V. Villain

set B.Endr to false (for the root only and so that the actions of B at r will be
unlocked at the end of the reset) during the feedback phase. We use the predicate
Ok(p) in the composition so that any processor p aborts its local execution of B
when receiving the reset and until the local termination of the reset at p. Indeed,
we already know that p continuously satisfies Sp 	= C during its participation to
a reset. So, while p participates to a reset, Ok(p) is false and any action of B in
SSBB(B) is disabled at p. Finally, we add an action, noted T -action, so that r
switches B.Reqr from I to O at the termination of each wave of SSBB(B).

Algorithm 2. Reset(B) for p 	= r
Input: Ngp: set of (locally) ordered neighbors of p;

Variables: Sp ∈ {B,F ,P ,C,EB,EF}; Pp ∈ Ngp; Lp ∈ ; Quep ∈ {Q,R,W ,A};
Macros:
Cldp = {q∈Ngp::(Sq =C)∧(Pq=p)∧(Lq=Lp+1)∧[(Sq =Sp)⇒((Sp∈{B,P}∧Sq=F)∨(Sp=EB))]};
PPotp = {q ∈ Ngp :: Sq = B };
Potp = {q ∈ Ngp :: ∀q′ ∈ PPotp, Lq ≤ Lq′};
Predicates:
CF (p) ≡ (∀q ∈ Ngp :: Sq = C)
Leaf(p) ≡ [∀q ∈ Ngp :: (Sq = C) ⇒ (Pq = p)]
BLeaf(p) ≡ (Sp = B) ∧ [∀q ∈ Ngp :: (Pq = p) ⇒ (Sq = F)]
AnsOk(p) ≡ (Quep = A) ∧ [∀q ∈ Ngp :: (Sq = C) ⇒ (Queq = A)]
GoodS(p) ≡ (Sp = C) ∨ [(SPp = Sp) ⇒ ((SPp = EB) ∨ (Sp = F ∧ SPp ∈ {B,P}))]
GoodL(p) ≡ (Sp = C) ⇒ (Lp = LPp + 1)
AbR(p) ≡ ¬GoodS(p) ∨ ¬GoodL(p)
EFAbR(p) ≡ (Sp=EF) ∧ AbR(p) ∧ [∀q∈Ngp :: (Pq=p∧Lq>Lp)⇒(Sq∈{EF ,C})]
EBst(p) ≡ (Sp ∈ {B,F ,P}) ∧ [¬AbR(p) ⇒ (SPp = EB)]
EFck(p) ≡ (Sp = EB) ∧ [∀q ∈ Ngp :: (Pq = p ∧ Lq > Lp) ⇒ (Sq ∈ {EF ,C})]
Bst(p) ≡ (Sp = C) ∧ (Potp = ∅) ∧ Leaf(p)
Fck(p) ≡ BLeaf(p) ∧ CF (p) ∧ AnsOk(p)
PreC(p) ≡ (Sp = F) ∧ (SPp = P) ∧ [∀q ∈ Ngp :: (Pq = p) ⇒ (Sq ∈ {F ,C})]
Clean(p) ≡ (Sp = P) ∧ Leaf(p)
Requi(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CF (p)] ∧ [[(Quep = Q) ∧ (∀q ∈ Ngp ::

(Sq = C) ⇒ (Queq ∈ {Q,R}))] ∨ [(Quep ∈ {W ,A}) ∧ (∃q ∈ Ngp :: (Sq = C)
∧ ((Queq = Q) ∨ (q ∈ Cldp ∧ Queq = R)))]]

Wait(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CF (p)] ∧ (Quep = R) ∧ (QuePp = R)
∧ (∀q ∈ Cldp :: Queq ∈ {W ,A}) ∧ (∀q ∈ Ngp :: (Sq = C) ⇒ (Queq = Q))

Ans(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CF (p)] ∧ (Quep = W) ∧ (QuePp = A)
∧ (∀q ∈ Cldp :: Queq ∈ {W ,A}) ∧ (∀q ∈ Ngp :: (Sq = C) ⇒ (Queq = Q))

Actions:
Correction Part:
EC-action :: EFAbR(p) → Sp := C;
EB-action :: EBst(p) → Sp := EB;
EF -action :: EFck(p) → Sp := EF ;
PIF Part:
B-action :: Bst(p) → Sp:=B; Pp:=min≺p(Potp); Lp:=LPp+1; Quep:=Q;
F -action :: Fck(p) → Sp := F ; B.Initp;
P -action :: PreC(p) → Sp := P ;
C-action :: Clean(p) → Sp := C;
Question Part:
QR-action :: Requi(p) → Quep := R;
QW -action :: Wait(p) → Quep := W ;
QA-action :: Ans(p) → Quep := A;

4 Correctness

Let A be self-stabilizing wave protocol under a daemon D such that A has a
unique initiator (r) and such that the decision actions ofA are at r only. Let T be

From Self- to Snap- Stabilization 207

the task solved by A in a self-stabilizing manner. Let B the modified version of A
according to the explanation provided in Section 3. We now prove that SSBB(B)
is snap-stabilizing for the specification of T under D (D ∈ {SF ,WF ,UF}). First,
as A is designed to solve the specific task T only, we make the following remark
about B:

Remark 3. B does not write into the Reset(B) variables.

We now show that SSBB(B) is a fair composition of Reset(B) and B.

Definition 3 (Fair Execution [6]). An execution e of the composite protocol
P2 ◦|G P1 is fair w.r.t. Pi (i ∈ {1,2}), if one of these conditions holds: (i) e is
finite, (ii) e contains infinitively many steps of Pi, or (iii) e contains an infinite
suffix in which no step of Pi is enabled.

From Assumption 3, it is easy to see that the number of steps of each protocol
in a wave of the composition is finite, so we can deduce the following theorem.

Theorem 2. SSBB(B) is a fair composition of Algorithms Reset(B) and B.

Since Algorithm A allows r to restart the protocol infinitely often it is clear that
B sets B.Endr to false in a finite time. So, the system needs a computation of
T , SSBB(B) is initiated in a finite time and the two next lemmas are proved.

Lemma 1. Starting from any configuration where B.Reqr = W , SSBB(B) is
initiated in a finite time.

The next lemma shows that since r requests a computation of T , the system
eventually takes this request into account by executing B.Reqr := W .

Lemma 2. Starting from any configuration where r requests a SSBB(B) wave,
r executes IR in a finite time.

By Lemmas 1 and 2, the following theorem holds. This theorem means that,
since r requests an execution of SSBB(B), SSBB(B) is initiated in a finite time.

Theorem 3. Starting from any configuration where r requests a SSBB(B) wave,
the requested SSBB(B) wave is eventually initiated.

The next theorem shows that each computation of T initiated by r is executed as
expected. This result is based on the snap-stabilizing reset of B when r initiates
SSBB(B).

Theorem 4. From any configuration where r initiates SSBB(B), the system
computes T as expected.

By Remark 1, Theorems 3 and 4, follows:

Theorem 5. SSBB(B) is snap-stabilizing for the specification of T under D.

208 A. Cournier, S. Devismes, and V. Villain

4.1 Complexity Analysis

Space Complexity. Let M(A) be the memory requirement of A. B differs from
A by just a boolean at r. So, the memory requirement of B is in the same order
than A and by taking into account of Reset(B), follows:

Theorem 6. The memory requirement of SSBB(B) is O(log(N) + log(Δ) +
M(A)) bits per processor.

Time Complexity. In the following, we assume that A is self-stabilizing under
D such that D ∈ {WF ,UF}. So, let R1(A) be the maximal number of rounds
starting from any configuration before r decides in A and let R2(A) be the
maximal number of rounds that A requires to perform T starting from the
configuration generated by B.Init.

Theorem 7. If A is self-stabilizing under D such that D∈{WF ,UF}, then,
starting from any configuration where r requests a SSBB(B) wave, the requested
SSBB(B) wave is initiated in O(N + R1(A) + R2(A)) rounds.

Proof. Assume that, from a configuration γi, r requests a wave of SSBB(B)
(i.e., AppliReq(r) is satisfied). According to B.Reqr, three cases are possible:

- B.Reqr = O in γi. In such a configuration, IR is enabled (the guard of IR
is AppliReq(r) ∧ (B.Reqr = O)). Also, no action of SSBB(B) can modify
B.Reqr until B.Reqr is set to W by IR (see Algorithms 1 and 2). So, IR
is continuously enabled at r and, r executes IR, i.e., B.Reqr := W , in at
most one round. Then, B.Reqr is continuously equal to W until r initiates
SSBB(B) by B-action (see Algorithms 1 and 2). Also, as B does not write
into the Reset(B) variables (Assumption 3), in the worst case, the system
reaches a configuration γj from which Bst(r) is continuously satisfied and
no action of Reset(B) different of B-action at r is enabled until r executes
B-action in at most 9N − 2 rounds by Property 1 (Claim 2) and Remark
2. This configuration corresponds to a configuration of PIF where every
processor are waiting for a new broadcast, i.e., ∀p ∈ V , Sp = C. Now, in
at most R1(A) rounds from γj , the system reaches a configuration γk from
which B.Endr is continuously true. Thus, B-action becomes continuously
enabled at r from γk and r executes B-action in the next round. Hence,
starting from any configuration where B.Reqr = O, SSBB(B) is initiated in
at most 9N + R1(A) rounds.

- B.Reqr = I in γi. As B does not write into the Reset(B) variables (As-
sumption 3), in the worst case, the system reaches a configuration γj from
which Bst(r) is continuously satisfied and no action of Reset(B) different of
B-action at r is enabled until r executes B-action in at most 9N − 2 rounds
by Property 1 (Claim 2) and Remark 2. This configuration corresponds to
a configuration of PIF where every processor are waiting for a new broad-
cast, i.e., ∀p ∈ V , Sp = C. Then, in at most R1(A) rounds from γj, the
system reaches a configuration from which B.Endr is continuously true. As
B-action is disabled until B.Reqr = W , two rounds are necessary so that

From Self- to Snap- Stabilization 209

B.Reqr switches from I to O by T -action (Bst(r)⇒ (Sr = C)) and from O
to W by Action IR. Then, B-action will be continuously enabled at r and
r will execute it in the next round. Hence, starting from any configuration
where B.Reqr = I, SSBB(B) is initiated in at most 9N +R1(A)+1 rounds.

- B.Reqr = W in γi. In this case, the system has to perform a complete
SSBB(B) wave before r satisfies B.Reqr = O. A SSBB(B) wave becomes
by a reset of the B variables (a Reset(B) wave). B does not write into the
Reset(B) variables by Assumption 3. So, actions of Reset(B) are executed
like in PIF except for B-action at r (which now also depends on B.Endr).
So, compared to the round complexities of a complete PIF wave (at most
15N−3 rounds, by Property 1 (Claim 3) and similary to the previous cases,
we have an additional cost of R1(A) rounds before SSBB(B) starts. After
the initialization action (B-action at r), B.Reqr = I and Reset(B) works
with a same cost than PIF . So, the cost of the reset is globally at most
15N + R1(A)− 3 rounds. After the reset, the system is in the configuration
generated by B.Init (SSBB(B) is snap-stabilizing by Theorem 5) and R2(A)
additional rounds are necessary to perform the specific task T . Finally, after
performing T , SSBB(B) terminates the wave with T -action: B.Reqr := O
(this latter action is executed in at most one round). After T -action, the
system is in a configuration where ∀p ∈ V , Sp = C, i.e., the normal starting
configuration ofPIF (indeed, Property 1 implies that the abnormal behavior
related to PIF are erased from the system during the first wave), B.Reqr =
O, and B.Endr = true. From such a configuration, the root executes IR
followed by B-action in the two next steps (resp. rounds): they are the only
enabled action of the system. Hence, starting from any configuration where
B.Reqr = W , SSBB(B) is initiated in at most 15N +R1(A)+R2(A) rounds.

�

Corollary 1. If A is self-stabilizing under D such that D∈{WF ,UF}, then,
starting from any configuration, a complete requested SSBB(B) wave is executed
in O(N + R1(A) + R2(A)) rounds.

For the following result, we assume that A is self-stabilizing under D = UF .
We have proved that, if A is self-stabilizing under D = UF , then SSBB(B)
is snap-stabilizing under D = UF . This means, in particular, that B can only
execute a finite number of actions between each action of Reset(B). Actually,
this number of actions, noted S(A), is equal to the maximal number of steps
starting from any configuration so that A decides and then reaches a configura-
tion from which r executes an initialization action (n.b., in the worst case, the
unfair daemon prevents A to execute an initialization action until the system
reaches a configuration where only the initialization actions are enabled). Ac-
tually, in B, this number corresponds to the maximal number of actions that
B can execute to set B.Endr to true and then reaches a configuration where
none of its actions are enabled (the initialization actions are disabled because
B.Endr = true).

210 A. Cournier, S. Devismes, and V. Villain

Theorem 8. If A is self-stabilizing under D = UF , then, starting from any
configuration where r requests a SSBB(B) wave, the requested SSBB(B) wave is
initiated in O(Δ ×N3 × S(A)) steps.

Proof. In the proof of Theorem 7, we have seen that, in the worst case, a
requested SSBB(B) wave is initiated after a complete non-requested wave of
SSBB(B). By Property 1 (Claim 3), we know that this non-requested wave
contains O(Δ × N3) actions of Reset(B) (i.e., the steps complexities of PIF
provided in [10] except for a constant factor due to the T -action). Also, we
have stated that at most S(A) actions of B are executed between each action of
Reset(B). Hence, a loose estimate of the delay to start a requested SSBB(B)
wave is the product of these two complexities and the theorem holds. �

Corollary 2. If A is self-stabilizing under D = UF , then, starting from any
configuration, a complete requested SSBB(B) wave is executed in O(Δ ×N3 ×
S(A)) steps.

5 Example

In this section, we propose to snap-stabilize the self-stabilizing depth-first token
circulation (DFTC) protocol of Huang and Chen [5] using our transformer. In
the following, the protocol of Huang and Chen will be denoted by DFS.

Protocol DFS. In arbitrary rooted networks, a DFTC protocol works as follows:
a token is first created at the root and, then, is passed from one processor to
another in the depth-first order such that every processor eventually gets it
during a single traversal. From [5], follows:

Theorem 9 ([5]). DFS is a self-stabilizing DFTC protocol assuming a weakly
fair daemon.

Informally, DFS is divided in two parts. The first part manages the token cir-
culation strictly speaking. The other part handles abnormal behaviors due to
the initial configuration. We first focus on the token circulation part. This part
maintains two variables: D and C. D is a descendant pointer variable; C, a color
variable. The token circulation uses two colors: 1 and 2. At the beginning of a
new circulation, the root switches to a color different from the color of all the
other processors. A processor having the token searches its neighbors to find one
with a different color. The processor then passes the token to the neighbor if
such a neighbor exists. Otherwise, it backtracks the token to its parent - the
processor which passed the token to it. A processor changes its color to the color
of its parent when its receives the token. In this way, all visited processors in
the current circulation have the same color of the root, and all unvisited proces-
sors have a different color. The descendant relationship is indicated by variable
D and this relationship is destroyed by letting Dp := NULL when the token
backtracks from p. Starting from the root and tracing through the descendant

From Self- to Snap- Stabilization 211

pointers, a segment of processors can be described with the token on the front
of it. The segment lengthens when the token moves to an unvisited processor,
and shrinks when the token backtracks. The token finally backtracks to the root
when all the processors are visited. The root then changes its color and initiates
a new circulation. We now explain the error handling strategy. First, due to the
initial configuration, the D value of some processors may describe a cycle. A
level variable L is thus used for detecting such cycles. The level of the root is
fixed to 0. Levels of others processors have a value from 1 to n − 1. During a
circulation, a processor computes its level when it receive the current token for
the first time: its level is set to one plus the level of its parent. When a processor
p is in a segment and does not satisfy Lp = Lq + 1 where q is its parent, it know
that it is in a cycle. So, p break the circle by setting Dp to NULL. Then, the
system may contain some illegal segments, i.e., the segment rooted at another
processor than r. To erase such illegal segments, the protocol uses an additionnal
color: ERROR. The root of an illegal segment knows it is in an error state and
hence changes its color to ERROR. The error color then propagates along the D
pointers to the front of the segment. When the parent of the front processor sees
the color of the front processor is already changed to ERROR, it drops the front
processor away by setting the pointer D to NULL. The dropped processor then
recovers itself by changing its color to a normal one. Repeating the dropping
and recovering process will correct the processors on the illegal segments.

How to snap-stabilize DFS using SSBB. First, we know that:
- DFS is a protocol with a unique initiator: r.
- The decision actions of DFS occurs at r only: the token finally backtracks

to the root when all the processors are visited.

So, by Theorem 5, we know that a slightly modified version of DFS can be
snap-stabilized by SSBB. According to the principles exposed in Section 3, we
now explain how to modify DFS into DFS′ such that SSBB(DFS ′) is a snap-
stabilizing DFTC protocol assuming a weakly fair daemon:
1. A boolean variable Endr must be declared in DFS.
2. In DFS, r decides when setting Dr to NULL. So, we must modify each

action of DFS such that Dr := NULL appears in its statement so that
each time Dr := NULL is executed, Endr := true is also executed.

3. We add the condition ¬Endr at the guard of the initialization of the token
circulation action at r.

4. Finally, we know that a normal starting configuration of DFS satisfies
∀p, q ∈ V , Dp = NULL ∧ Cp = Cq ∧ Cp 	= ERROR. So, a normal starting
configuration of DFS can be the following: ∀p ∈ V , Dp = NULL ∧ Cp = 1.
Hence, we can define in DFS the macro Initp (∀p ∈ V) with the following
assignments: Dp := NULL;Cp := 1.

With such modifications, we obtain a protocol DFS ′ and, by Theorem 5, the
following theorem holds:

Theorem 10. SSBB(DFS ′) is a snap-stabilizing DFTC protocol assuming a
weakly fair daemon.

212 A. Cournier, S. Devismes, and V. Villain

DFS of Huang and Chen does not works assuming an unfair daemon. Indeed,
under an unfair daemon, a possible execution of DFS is the following: the pro-
tocol can perform infinitively often uncomplete token circulation because some
isolated processors p satisfying Dp = NULL ∧ Cp = ERROR remains in the
network. This is due to the fact that a processor that holds the token from the
root simply ignores its neighbors such that D = NULL ∧ C = ERROR. How-
ever, starting from any configuration, if the unfair daemon eventually blocks the
progression the legal segment, then this blocking can last only a finite number
of steps because the number of actions that can be executed, the actions on
the legal segment apart, is finite. So, this means that the unfair daemon can-
not prevent forever the tokens from the root to circulate in the network. This
also implies that the unfair daemon cannot prevent forever the root to decide.
Transposed to DFS′, these properties insures that:

1. Only a finite number of actions of DFS ′ can be executed before Endr :=
true.

2. Since Endr = true, only a finite number of actions of DFS ′ can be executed
before Reset(DFS′) moves (indeed, since Endr = true, the initialization
action of DFS′ are disabled until F -action at r sets Endr to false).

Clearly, 1. and 2. implies the following theorem:

Theorem 11. SSBB(DFS ′) is a snap-stabilizing DFTC protocol assuming an
unfair daemon.

By Theorem 7, we know that, starting from any configuration, a requested wave
of SSBB(DFS ′) is initiated in O(N +R1(DFS)+R2(DFS)) where R1(DFS) is
the maximal number of rounds starting from any configuration before r decides
in DFS and R2(DFS) be the maximal number of rounds that DFS requires to
perform a DFTC starting from a configuration γi where ∀p ∈ V , Dp = NULL
∧ Cp = 1. In the same way, by Corollary 1, starting from any configuration,
a complete requested wave of SSBB(DFS ′) is executed in O(N + R1(DFS) +
R2(DFS). Clearly, starting from any configuration, r decides in DFS in O(N)
rounds and starting from γi, a DFTC is also performed in O(N) rounds. So,
R1(DFS) and R2(DFS) are both in O(N) rounds and follows:

Theorem 12. Starting from any configuration, a requested DFTC is initiated
(resp. performed) using SSBB(DFS ′) in O(N) rounds.

This latter result is very surprising because DFS alone stabilizes in Ω(D ×N)
rounds. Actually, Theorems 11 and 12 show that our transformer (SSBB) allows
not only to snap-stabilize some self-stabilizing protocols but also, in some case,
it enhances the fairness and the time complexity of the protocols. We conjecture
that we can obtain the same results with the self-stabilizing protocols in [12,13].

6 Conclusion

We propose a semi-automatic method to snap-stabilize self-stabilizing wave pro-
tocols for arbitrary networks with one initiator and such that their decision

From Self- to Snap- Stabilization 213

actions are at the initiator only. The snap-stabilizing solution we obtain with
our technique works at least with the same daemon than the self-stabilizing
protocol to snap-stabilizing. But, in some case like the DFTC protocol of [5],
we obtain a solution working with a weaker scheduling assumption. Also, the
solution we obtain could be better in time complexities than the self-stabilizing
protocol we want to transform. For instance, despite the DFTC protocol of [5]
stabilizes in Ω(D ×N) rounds, its snap-stabilizing version executes a requested
DFTC (as expected) in O(N) rounds.

References

1. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communica-
tions of the Association of the Computing Machinery 17 (1974) 643–644

2. Bui, A., Datta, A., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in tree
networks. In: Proceedings of the Fourth Workshop on Self-Stabilizing Systems,
Austin, Texas, USA, IEEE Computer Society Press (1999) 78–85

3. Katz, S., Perry, K.: Self-stabilizing extensions for message-passing systems. Dis-
tributed Computing 7 (1993) 17–26

4. Cournier, A., Datta, A., Petit, F., Villain, V.: Enabling snap-stabilization. In:
23th International Conference on Distributed Computing Systems (ICDCS 2003),
Providence, Rhode Island USA, IEEE Computer Society Press (2003) 12–19

5. Huang, S., Chen, N.: Self-stabilizing depth-first token circulation on networks.
Distributed Computing 7 (1993) 61–66

6. Tel, G.: Introduction to distributed algorithms. Cambridge University Press, Cam-
bridge, UK (Second edition 2001)

7. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems 8(4) (1997) 424–440

8. Blin, L., Cournier, A., Villain, V.: An improved snap-stabilizing PIF algorithm.
In: DSN SSS’03 Workshop: Sixth Symposium on Self-Stabilizing Systems (SSS’03),
LNCS 2704 (2003) 199–214

9. Cournier, A., Devismes, S., Villain, V.: Snap-stabilizing PIF and useless computa-
tions. In: The Twelfth International Conference on Parallel and Distributed Sys-
tems (ICPADS’06). Volume 1., Minneapolis, USA, IEEE Computer Society Press
P2612 (2006) 39–46

10. Cournier, A., Devismes, S., Villain, V.: Snap-stabilizing PIF and useless computa-
tions. Technical Report LaRIA-2006-04, LaRIA, CNRS FRE 2733 (2006) Available
at www.laria.u-picardie.fr/∼devismes/LaRIA-2006-04.pdf.

11. Gouda, M.G., Herman, T.: Adaptive programming. IEEE Trans. Softw. Eng. 17(9)
(1991) 911–921

12. Johnen, C., Beauquier, J.: Space-efficient distributed self-stabilizing depth-first
token circulation. In: Proceedings of the Second Workshop on Self-Stabilizing Sys-
tems, Las Vegas (UNLV), USA, Chicago Journal of Theoretical Computer Science
(1995) 4.1–4.15

13. Datta, A., Johnen, C., Petit, F., Villain, V.: Self-stabilizing depth-first token cir-
culation in arbitrary rooted networks. In: SIROCCO’98, The 5th International
Colloquium On Structural Information and Communication Complexity Proceed-
ings, Carleton University Press (1998) 229–243

Self-stabilizing Philosophers with

Generic Conflicts

Praveen Danturi1, Mikhail Nesterenko1,�, and Sébastien Tixeuil2,��

1 Department of Computer Science, Kent State University, Kent, OH, USA
{pdanturi, mikhail}@cs.kent.edu

2 LRI-CNRS UMR 8623 & INRIA Grand Large Université Paris Sud, France
tixeuil@lri.fr

Abstract. We generalize the classic dining philosophers problem to sep-
arate the conflict and communication neighbors of each process. Com-
munication neighbors may directly exchange information while conflict
neighbors compete for the access to the exclusive critical section of code.
This generalization is motivated by a number of practical problems in
distributed systems including problems in wireless sensor networks. We
present a self-stabilizing deterministic algorithm — KDP that solves a
restricted version of the generalized problem where the conflict set for
each process is limited to its k-hop neighborhood. Our algorithm is ter-
minating. We formally prove KDP correct and evaluate its performance.
We then extend KDP to handle fully generalized problem. We further ex-
tend it to handle a similarly generalized drinking philosophers problem.
We describe how KDP can be implemented in wireless sensor networks
and demonstrate that this implementation does not jeopardize its cor-
rectness or termination properties.

1 Introduction

Self-stabilization (or just stabilization) [12,17] is an elegant approach to forward
recovery from transient faults as well as initializing a large-scale system. Re-
gardless of the initial state, a stabilizing system converges to the legitimate set
of states and remains there afterwards. In this paper we present a stabilizing
solution to our generalization of the dining philosophers problem.

The dining philosophers problem [11] is a fundamental resource allocation
problem. The name of the problem is frequently shortened to diners [27]. The
diners, as well as its generalization — the drinking philosophers problem [8], has
a variety of applications. In diners, a set of processes (philosophers) request ac-
cess to the critical section (CS) of code. For each process there is a set of neighbor
processes. Each process has a conflict with its neighbors: it cannot share the CS
� This author was supported in part by DARPA contract OSU-RF #F33615-01-C-

1901 and by NSF CAREER Award 0347485.
�� This author was supported in part by the FNS grants FRAGILE and SR2I from

ACI “Sécurité et Informatique”. Some of the research for this paper was done while
the author was visiting Kent State University.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 214–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Self-stabilizing Philosophers with Generic Conflicts 215

with any of them. In spite of the conflicts, each requesting process should even-
tually execute the CS. To coordinate CS execution, the processes communicate.
In classic diners it is assumed that each process can directly communicate with
its conflict neighbors. In other words, for every process, the conflict neighbor set
is a subset of the communication neighbor set.

However, there are applications where this assumption does not hold. Con-
sider, for example, wireless sensor networks. A number of problems in this area,
such as TDMA slot assignment, cluster formation and routing backbone main-
tenance can be considered as instances of resource allocation problems. Yet, due
to radio propagation peculiarities, the signal’s interference range may exceed its
effective communication range. Moreover, radio networks have so called hidden
terminal effect. The problem is as follows. Let two transmitters t1 and t2 be
mutually out of reception range, while receiver r be in range of them both. If t1
and t2 broadcast simultaneously, due to mutual radio interference, r is unable
to receive either broadcast. The potential interference pattern is especially in-
tricate if the antennas used by the wireless sensor nodes are directional (see for
example [23]). Such transmitters can be modeled as conflict neighbors that are
not communication neighbors. To accommodate such applications, we propose
the following extension. Instead of one, each process has two sets of neighbors:
the conflict neighbors and the communication neighbors. These two sets are not
necessarily related. The only restriction is that each conflict-neighbor has to be
reachable through the communication neighbors.

Some solutions to classic diners can potentially be extended to this prob-
lem. Indeed, if a separate communication channel is established to each conflict
neighbor the classic diners program can be applied to the generalized case. How-
ever, such a solution may not be efficient. The channels to conflict neighbors
go over the communication topology of the system. The channels to multiple
neighbors of the same process may overlap. Moreover, the sparser the topology,
the greater the potential overlap. Yet, in a diners program, the communication
between conflict neighbors is only of two kinds: a process either requests the per-
mission to execute the CS from the neighbors, or releases this permission. Due
to channel overlap, communicating the same message to each conflict neighbor
separately leads to excessive overhead. This motivates our search for a solution
to generic diners that effectively combines communication to separate conflict
neighbors.

Related work. There exist a number of deterministic self-stabilizing solutions
to classic diners [1,4,5,16,20,21,25,26]. Cantarell et al [7] solve the drinking
philosophers problem. Datta et al [10] solve a specific extension of diners. None
of these solutions separate conflict and communication neighbors.

Meanwhile, researchers working in the area of self-stabilization studied spe-
cific problems that require such separation. A few studies [3,18,22] address the
aforementioned problem of TDMA slot assignment in the presence of the hid-
den terminal effect. This problem requires the processes to agree on a fixed
schedule of time intervals (slots) such that each slot is allocated exclusively to a

216 P. Danturi, M. Nesterenko, and S. Tixeuil

single process in the conflict neighborhood. Herman and Tixeuil [18] present a
self-stabilizing probabilistic TDMA slot assignment algorithm for wireless sensor
networks. They deal with channel conflicts that may arise between nodes that
cannot communicate directly by assuming an underlying probabilistic CSMA/CA
mechanism that provides constant time correct transmission with high proba-
bility. The authors assume that the network is tightly synchronized so that the
phases that use the CSMA/CA mechanism are clearly distinguished from the
phases that use TDMA mechanism. Arumugam and Kulkarni [3,22] propose de-
terministic solutions to the same problem. In [3], to avoid conflicts they propose
to serialize channel assignments by circulating a single assignment token (priv-
ilege) throughout the network. In [22], they consider a regular grid topology
where each node is aware of its position in the grid. Gairing et al [13] propose an
interesting stabilizing algorithm for conflict neighbor sets containing the com-
munication neighbors of distance at most two. They apply their algorithm to a
number of graph-theoretical problems. However, their algorithm cannot solve the
diners as it is not designed to allow each requesting process to enter the CS if its
continuously request as well. That is, their program allow unfair computations.
Goddard et al [14] propose a solution to the conflict neighbor sets of communica-
tion neighbors at most k-hops away. Their solution recursively extends Gairing’s
algorithm. It is unfair as well.

Our contribution and paper outline. We generalize the diners problem to
separate the conflict and communication neighbor sets of each process. We for-
mally state this problem, as well as describe our notation and execution model
in Section 2. To the best of our knowledge, this problem has not been defined
or addressed before either inside or outside of context of self-stabilization. In
Section 3, we present a self-stabilizing deterministic terminating solution to a
restricted version of this problem where the conflict set comprises the set of pro-
cesses that are at most a fixed number of hops k away from the process. We call
this program KDP . In the same section we provide a formal correctness proof
of KDP and discuss its stabilization performance. We extend KDP to solve
generalized diners in Section 4. In Section 5 we describe how KDP can be im-
plemented in wireless sensor networks without compromising its correctness or
performance properties. We describe a number of further extensions to KDP in
Section 6. Specifically, we generalize KDP to handle arbitrary conflict neighbor
sets, as well as solve generalized drinking philosophers; we simplify our solution
to handle problems that do not require fairness of CS access.

2 Preliminaries

Program model. For the formal description of our program we use simplified
UNITY notation [9,15]. A program consists of a set of processes. A process
contains a set of constants that it can read but not update. A process maintains
a set of variables. Each variable ranges over a fixed domain of values. We use
small case letters to denote singleton variables, and capital ones to denote sets.

Self-stabilizing Philosophers with Generic Conflicts 217

An action has the form 〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a Boolean
predicate over the variables of the process and its communication neighbors. A
command is a sequence of statements assigning new values to the variables of the
process. We refer to a variable var and an action ac of process p as var.p and ac.p
respectively. A parameter is used to define a set of actions as one parameterized
action. For example, let j be a parameter ranging over values 2, 5, and 9; then
a parameterized action ac.j defines the set of actions: ac.(j := 2)][ac.(j :=
5)][ac.(j := 9).

A state of the program is the assignment of a value to every variable of each
process from the variable’s corresponding domain. Each process contains a set
of actions. An action is enabled in some state if its guard is true at this state.
A computation is a maximal fair sequence of states such that for each state si,
the next state si+1 is obtained by executing the command of an action that
is enabled in si. Maximality of a computation means that the computation is
infinite or it terminates in a state where none of the actions are enabled.

In a computation the action execution is weakly fair. That is, if an action is
enabled in all but finitely many states of an infinite computation then this action
is executed infinitely often.

A state conforms to a predicate if this predicate is true in this state; oth-
erwise the state violates the predicate. By this definition every state conforms
to predicate true and none conforms to false. Let R and S be predicates over
the state of the program. Predicate R is closed with respect to the program
actions if every state of the computation that starts in a state conforming to R
also conforms to R. Predicate R converges to S if R and S are closed and any
computation starting from a state conforming to R contains a state conforming
to S. The program stabilizes to R iff true converges to R.

Problem statement. An instance of the generalized diners problem defines
for each process p a set of communication neighbors N.p and a set of conflict
neighbors M.p. Both relations are symmetric. That is for any two processes p and
q if p ∈ N.q then q ∈ N.p. Same applies to M.p. Throughout the computation
each process requests CS access an arbitrary number of times: from zero to
infinity. A program that solves the generalized diners satisfies the following two
properties for each process p: safety — if the action that executes the CS is
enabled in p, it is disabled in all processes of M.p; liveness — if p wishes to
execute the CS, it is eventually allowed to do so.

A desirable performance property of a solution to diners is termination: if a
computation contains finitely many states where processes wish to execute the
CS, then this computation is itself finite. To put another way, if there are no
requests for the CS, a terminating solution to diners should eventually arrive at
a state with all actions disabled.

A restriction of the generalized diners problem which we call k-hop diners
specifies that M.p for each process p contains the processes whose distance to p
in the graph formed by the communication topology is no more than k.

218 P. Danturi, M. Nesterenko, and S. Tixeuil

process p
const

M : k-hop conflict neighbors of p
N : communication neighbors of p
(∀q : q ∈M : dad.p.q ∈ N,KIDS.p.q ⊂ N)

parent id and set of children ids for each k-hop neighbor
parameter

r : M
var

state.p.p : {idle, req},
(∀q : q ∈M : state.p.q : {idle, req, rep}),
Y IELD : {∀q : q ∈M : q > p} lower priority processes to wait for
needcs : boolean, application variable to request the CS

∗[
join: needcs ∧ state.p.p = idle ∧ Y IELD = ∅ ∧

(∀q : q ∈ KIDS.p.p : state.q.p = idle) −→
state.p.p := req

][
enter : state.p.p = req ∧

(∀q : q ∈ KIDS.p.p : state.q.p = rep) ∧
(∀q : q ∈M ∧ q < p : state.p.q = idle) −→

/* CS */
Y IELD := {∀q : q ∈M ∧ q > p : state.p.q = rep},
state.p.p := idle

][
forward : state.p.r = idle ∧ state.(dad.p.r).r = req ∧

((KIDS.p.r = ∅) ∨ (∀q : q ∈ KIDS.p.r : state.q.r = idle)) −→
state.p.r := req

][
back : state.p.r = req ∧ state.(dad.p.r).r = req ∧

((KIDS.p.r = ∅) ∨ (∀q : q ∈ KIDS.p.r : state.q.r = rep)) ∨
state.p.r 	= rep ∧ state.(dad.p.r).r = rep −→

state.p.r := rep
][

stop: (state.p.r 	= idle ∨ r ∈ Y IELD) ∧
state.(dad.p.r).r = idle −→

Y IELD := Y IELD \ {r},
state.p.r := idle

]

Fig. 1. Process of KDP

Self-stabilizing Philosophers with Generic Conflicts 219

3 KDP Algorithm

3.1 Description

Algorithm overview. The main idea of the algorithm is to coordinate CS
request notifications between multiple conflict neighbors of the same process.
We assume that for each process p there is a tree that spans M.p. This tree
is rooted in p. A stabilizing breadth-first construction of a spanning tree is a
relatively simple task [12].

The processes in this tree propagate CS request of its root. The request reflects
from the leaves and informs the root that its conflict neighbors are notified. This
mechanism resembles information propagation with feedback [6].

The access to the CS is granted on the basis of the priority of the requesting
process. Each process has an identifier that is unique throughout the system.
A process with lower identifier has higher priority. To ensure liveness, when
executing the CS, each process p records the identifiers of its lower priority
conflict neighbors that also request the CS. Process p then waits until all these
processes access the CS before requesting it again.

Detailed description. Each process p has access to a number of constants. The
set of identifiers of its communication neighbors is N , and its conflict neighbors
is M . For each of its conflict neighbors r, p knows the appropriate spanning tree
information: the parent identifier — dad.p.r, and a set of ids of its children —
KIDS.p.r.

Process p stores its own request state in variable state.p.p and the state of each
of its conflict neighbors in state.p.r. Notice that p’s own state can be only idle or
req, while for its conflict neighbors p also has rep. To simplify the description,
depending on the state, we refer to the process as being idle, requesting or
replying. In Y IELD, process p maintains the ids of its lower priority conflict
neighbors that should be allowed to enter the CS before p requests it again.
Variable needcs is an external Boolean variable that indicates if CS access is
desired. Notice that CS entry is guaranteed only if needcs remains true until p
requests the CS.

There are five actions in the algorithm. The first two: join and enter manage
CS entry of p itself. The remaining three: forward, back and stop — propagate
CS request information along the tree. Notice that the latter three actions are
parameterized over the set of p’s conflict neighbors.

Action join states that p requests the CS when the application variable needcs
is true, p itself, as well as its children in its own spanning tree, is idle and there
are no lower priority conflict neighbors to wait for. As action enter describes, p
enters the CS when its children reply and the the higher priority processes do
not request the CS themselves. To simplify the presentation, we describe the CS
execution as a single action1.

1 In Section 6, we demonstrate how to extend our algorithm to perform CS entry and
exit in separate actions.

220 P. Danturi, M. Nesterenko, and S. Tixeuil

Action forward describes the propagation of a request of a conflict neighbor r
of p along r’s tree. Process p propagates the request when p’s parent — dad.p.r is
requesting and p’s children are idle. Similarly, back describes the propagation of
a reply back to r. Process p propagates the reply either if its parent is requesting
and p is the leaf in r’s tree or all p’s children are replying. The second disjunct
of back is to expedite the stabilization of KDP . Action stop resets the state of
p in r’s tree to idle when its parent is idle. This action removes r from the set
of lower-priority processes to await before initiating another request.

Fig. 2. Phases of KDP operation

Example operation. The operation of KDP in legitimate states is illustrated
in Figure 2. We focus on the conflict neighborhood M.a of a certain node a.
We consider representative nodes in the spanning tree of M.a. Specifically, we
consider one of a’s children — e, a descendant — b, b’s parent — c and one of
b’s children — d.

Initially, the states of all processes in M.a are idle. Then, a executes join and
sets state.a.a to req (see Figure 2, i). This request propagates to process b, which
executes forward and sets state.b.a to req as well (Figure 2, ii). The request reaches
the leaves and bounces back as the leaves change their state to rep. Process b then
executes back and changes its state to rep as well (Figure 2, iii). After the reply
reaches a and if none of the higher priority processes are requesting the CS, a ex-
ecutes enter. This action resets state.a.a to idle. This reset propagates to b which
executes stop and also changes state.b.a to idle (Figure 2, iv).

3.2 Proof of Correctness

Proof outline. We present KDP correctness proof as follows. We first state a
predicate we call InvK and demonstrate that KDP stabilizes to it in Theorem 1.

Self-stabilizing Philosophers with Generic Conflicts 221

We then proceed to show that if InvK holds, then KDP satisfies the safety and
liveness properties of the k-hop diners in Theorems 2 and 3 respectively.

Proof notation. Throughout this section, unless otherwise specified, we con-
sider the conflict neighbors of a certain node a (see Figure 2). That is, we im-
plicitly assume that a is universally quantified over all processes in the system.
We focus on the following nodes: e ∈ KIDS.a.a, b ∈ M.a, c ≡ dad.b.a and
d ∈ KIDS.b.a.

Since we discuss the states of e, b, c and d in the spanning tree of a, when it
is clear from the context, we omit the specifier of the conflict neighborhood. For
example, we use state.b for state.b.a. Also, for clarity, we attach the identifier
of the process to the actions it contains. For example, forward.b is the forward
action of process b.

Our global predicate consists of the following predicates that constrain the states
of each individual process and the states of its communication neighbors. The
predicate below relates the states of the root of the tree a to the states of its
children.

(state.a = idle) ⇒ (∀e : e ∈ KIDS.a : state.e �= req) (Inv.a)

The following sequence of predicates relates the state of b to the state of its
neighbors.

state.b = idle ∧ state.c �= rep ∧ (∀d : d ∈ KIDS.b : state.d �= req) (I.b.a)
state.b = req ∧ state.c = req (R.b.a)
state.b = rep ∧ (∀d : d ∈ KIDS.b : state.d = rep) (P.b.a)

We denote the disjunction of the above three predicates as follows:

I.b.a ∨ R.b.a ∨ P.b.a (Inv.b.a)

The following predicate relates the states of all processes in M.a.

(∀a :: Inv.a ∧ (∀b : b ∈ M.a : Inv.b.a)) (InvK)

To aid in exposition, we mapped the states and transitions for individual
processes in Figure 3. Note that to simplify the picture, for the intermediate
process b we only show the states and transitions if Inv holds for each ancestor
of b. For b, the I.b, R.b and P.b denote the states conforming to the respective
predicates. While the primed versions I ′.b and P ′.b signify the states where b is
respectively idle and replying but Inv.b.a does not hold. Notice that the primed
version of R does not exist if Inv.c holds for b’s parent c. Indeed, to violate R,
b should be requesting while c is either idle or replying. However, if Inv.c holds
and c is in either of these two states, b cannot be requesting.

For a, IR.a and RR.a denote the states where a is respectively idle and
requesting while Inv.a holds. In states IR′.a, a is idle while Inv.a does not

222 P. Danturi, M. Nesterenko, and S. Tixeuil

Fig. 3. State transitions for an individual process

hold. Notice that since state = req falsifies the antecedent of Inv.a, the predicate
always holds if a is requesting. The state transitions in Figure 3 are labeled by
actions whose execution effects them. Loopback transitions are not shown.

Theorem 1 (Stabilization). Program KDP stabilizes to InvK.

Proof: By the definition of stabilization, InvK should be closed with respect
to the execution of the actions of KDP , and KDP should converge to InvK.
We prove the closure first.

Closure. To aid in the subsequent convergence proof, we show a property that
is stronger than just the closure of InvK. We demonstrate the closure of the
following conjunction of predicates: Inv.a and Inv.b.a for a set of descendants of
a up to a certain depth of the tree. To put another way, in showing the closure of
Inv.b.a for b we assume that the appropriate predicates hold for all its ancestors.
Naturally, the closure of InvK follows.

By definition of a closure of a predicate, we need to demonstrate that if the
predicate holds in a certain state, the execution of any action in this state does
not violate the predicate.

Let us consider Inv.a and a root process a first. Notice that the only two
actions that can potentially violate Inv.a are enter.a and forward.e. Let us
examine each action. If enter.a is enabled, each child of a is replying. Hence,
when it is executed and it changes the state of a to idle, Inv.a holds. If forward.e
is enabled, a is requesting. Thus, executing the action and setting the state of e
to req does not violate Inv.a.

Let us now consider Inv.b.a for an intermediate process b ∈ M.a. We examine
the effect of the actions of b, b’s parent — c, and one of b’s children — d in this
sequence.

We start with the actions of b. If I.b holds, forward.b is the only action that
can be enabled. If it is enabled, c is requesting. Thus, if it is executed, R.b holds

Self-stabilizing Philosophers with Generic Conflicts 223

and Inv.b.a is not violated. If R.b holds then back.b is the only action that can
be enabled. However, if back.b is enabled and R.b holds, then all children of b
are replying. If back.b is executed, the resultant state conforms to P.b. If P.b
holds, then stop.b can exclusively be enabled. If P.b holds and stop.b is enabled,
then c is idle and all children of b are replying. The execution of back.b sets
the state of b to idle. The resulting state conforms to I.b and Inv.b.a is not
violated.

Let us examine the actions of c. Recall that we are assuming that Inv.c and
the respective invariants of all of b’s ancestors hold. If I.b holds, forward.c and
join.c (in case b is a child of a) are the actions that can possibly be enabled. If
either is enabled, b is idle. The execution of either action changes the state of c to
req. I.b and Inv.b.a still hold. If R.b holds, none of the actions of c are enabled.
Indeed, actions forward.c, back.c, join.c and enter.c are disabled. Moreover, if
R.b holds, c is requesting: since Inv.c holds, c must be in R.c. Which means
that c’s parent is not idle. Hence, stop.c is also disabled. Since P.b does not
mention the state of c, the execution of c’s actions does not affect the validity
of P.b.

Let us now examine the actions of d. If I.b holds, the only possibly enabled
action is stop.d. The execution of this action changes the state of d to idle,
which does not violate I.b. R.b does not mention the state of d. Hence, its action
execution does not affect R.b. If P.b holds, all actions of d are disabled. This
concludes the closure proof of InvK.

Convergence. We prove convergence by induction on the depth of the tree
rooted in a. Let us show convergence of a. The only illegitimate set of states is
IR′.a. When a conforms to IR′.a, a is idle and at least one child e is requesting.
In such state, all actions of a that affect its state are disabled. Moreover, for
every child of a that is idle, all relevant actions are disabled as well. For the
child of a that is not idle, the only enabled action is stop.e. After this action is
executed, e is idle. Thus, eventually IR.a holds.

Let a conform to Inv.a. Let also every descendant process f of a up to depth
i confirm to Inv.f . Let the distance from a to b be i + 1. We shall show that
Inv.b.a eventually holds. Notice that according to the preceding closure proof,
the conjunction of Inv.a and Inv.f for each process f in the distance no more
than i is closed.

Note that according to Figure 3, there is no loop in the state transitions
containing primed states. Hence, to prove that b eventually satisfies Inv.b.a we
need to show that b does not remain in a single primed state indefinitely. Process
b can satisfy either I ′.b or P ′.b. Let us examine these cases individually.

Let b ∈ I ′.b. Since Inv.c holds, if b is idle, c cannot satisfy P.c. Thus, for b to
satisfy I ′.b, at least one child d of b must be requesting. However, if b is idle then
stop.d is enabled. Notice that when b is idle, none of its non-requesting children
can start to request. Thus, when this stop is executed for every requesting child
of b, b leaves I ′.b.

224 P. Danturi, M. Nesterenko, and S. Tixeuil

Suppose b ∈ P ′.b. This means that there exists at least one child d of b that is
not replying. However, for every such process d, back.d is enabled. Notice that
when b is replying, none of its replying children can change state. Thus, when
back is executed for every non-replying child of b, b leaves P ′.b.

Hence, KDP converges to InvK. �

Theorem 2 (Safety). If InvK holds and enter.a is enabled, then for every
process b ∈ M.a, enter.b is disabled.

Proof: If enter.a is enabled, every child of a is replying. Due to InvK, this
means that every descendant of a is also replying. Thus, for every process x
whose priority is lower than a’s priority, enter.x is disabled. Note also, that
since enter.a is enabled, for every process y whose priority is higher than a’s,
state.a.y is idle. According to InvK, none of the ancestors of a in y’s tree,
including y’s children, are replying. Thus, enter.y is disabled. In short, when
enter.a is enabled, neither higher nor lower priority processes of M.a have enter
enabled. The theorem follows. �

Lemma 1. If InvK holds, and some process a is requesting, then eventually
either a stops requesting or none of its descendants are idle.

Proof: Notice that the lemma trivially holds if a stops requesting. Thus, we
focus on proving the second claim of the lemma. We prove it by induction on the
depth of a’s tree. Process a is requesting and so it is not idle. By the assumption
of the lemma, a will not be idle. Now let us assume that this lemma holds for
all its descendants up to distance i. Let b be a descendant of a whose distance
from a is i + 1. And let b be idle.

By inductive assumption, b’s parent c is not idle. Due to InvK, if b is idle, c
is not replying. Hence, c is requesting. If there exists a child d of b that is not
idle, then stop.d is enabled at d. When stop.d is executed, d is idle. Notice that
when b and d are idle, all actions of d are disabled. Thus, d continues to be idle.
When all children of b are idle and its parent is requesting, forward.b is enabled.
When it is executed, b is not idle. Notice, that the only way for b to become idle
again is to execute stop.b. However, by inductive assumption c is not idle. This
means that stop.b is disabled. The lemma follows. �

Lemma 2. If InvK holds and some process a is requesting, then eventually all
its children in M.a are replying.

Proof: Notice that when a is requesting, the conditions of Lemma 1 are satisfied.
Thus, eventually, none of the descendants of a are idle. Notice that if a process
is replying, it does not start requesting without being idle first (see Figure 3).
Thus, we have to prove that each individual process is eventually replying. We
prove it by induction on the height of a’s tree.

If a leaf node b is requesting and its parent is not idle, back.b is enabled. When
it is executed, b is replying. Assume that each node whose longest distance to
a leaf of a’s tree is i is replying. Let b’s longest distance to a leaf be i + 1. By

Self-stabilizing Philosophers with Generic Conflicts 225

assumption, all its children are replying. Due to Lemma 1, its parent is not idle.
In this case back.b is enabled. After it is executed, b is replying. By induction,
the lemma holds. �

Lemma 3. If InvK holds and the computation contains infinitely many states
where a is idle, then for every descendant there are infinitely many states where
it is idle as well.

Proof: We first consider the case where the computation contains a suffix where
a is idle in every state. In this case we prove the lemma by induction on the depth
of a’s tree with a itself as a base case. Assume that there is a suffix where all
descendants of a up to depth i are idle. Let us consider process b whose distance
to a is i + 1 and this suffix. Notice that this means that c remains idle in every
state of this suffix. If b is not idle, stop.b is enabled. Once it is executed, no
relevant actions are enabled at b and it remains idle afterwards. By induction,
the lemma holds.

Let us now consider the case where no computation suffix of continuously idle
a exists. Yet, there are infinitely many states where a is idle. Thus, a leaves the
idle state and returns to it infinitely often. We prove by induction on the depth
of the tree that every descendant of a behaves similarly. Assume that this claim
holds for the descendants up to depth i. Let b’s distance to a be i + 1.

When InvK holds, the only way for b’s parent c to leave idle is to execute
forward.c (see Figure 3). Similarly, the only way for c to return to idle is to
execute stop.c while c is replying 2. However, forward.c is enabled only when b is
idle. Also, according to InvK when c is requesting, b is not idle. Thus, b leaves
idle and returns to it infinitely many times as well. By induction, the lemma
follows. �

Lemma 4. If InvK holds and process a is requesting such that and a’s priority
is the highest among the processes that ever request the CS in M.a, then a
eventually executes the CS.

Proof: If a is requesting, then, by Lemma 2, all its children are eventually
replying. Therefore, the first and second conjuncts of the guard of enter.a are
true. If a’s priority is the highest among all the requesting processes in M.a,
then each process z, whose priority is higher than that of a is idle. According
to Lemma 3, state.a.z is eventually idle. Thus, the third and last conjunct of
enter.a is enabled. This allows a to execute the CS. �

Lemma 5. If InvK holds and process a is requesting, a eventually executes the
CS.

Proof: Notice that by Lemma 2, for every requesting process, the children are
eventually replying. According to InvK, this implies that all the descendants
of the requesting process are also replying. For the remainder of the proof we
assume that this condition holds.
2 The argument is slightly different for c = a as it executes join.a and enter.a instead.

226 P. Danturi, M. Nesterenko, and S. Tixeuil

We prove this lemma by induction on the priority of the requesting processes.
According to Lemma 4, the requesting process with the highest priority even-
tually executes the CS. Thus, if process a is requesting and there is no higher
priority process b ∈ M.a which is also requesting then, by Lemma 4, a eventually
enters the CS.

Suppose, on the contrary, that there exists a requesting process b ∈ M.a
whose priority is higher than a’s. If every such process b enters the CS finitely
many times, then, by repeated application of Lemma 4, there is a suffix of the
computation where all processes with priority higher than a’s are idle. Then,
by Lemma 4, a enters the CS. Suppose there exists a higher priority process
b that enters the CS infinitely often. Since a is requesting, state.b.a = rep.
When b executes the CS, it enters a into YIELD.b. We assume that b enters
the CS infinitely often. However, b can request the CS again only if YIELD.b
is empty. The only action that takes a out of YIELD.b is stop.b. However, this
action is enabled if state.b.a is idle. Notice that, if InvK holds, the only way
for the descendants of a to move from replying to idle is if a itself moves from
requesting to idle. That is a executes the CS. Thus, each process a requesting
the CS eventually executes it. �

Lemma 6. If InvK holds and process a wishes to enter the CS, a eventually
requests.

Proof: We show that a wishing to enter the CS eventually executes join.a. We
assume that a is idle and needcs.a is true. Then, join.a is enabled if Y IELD.a
is empty. a adds a process to Y IELD only when it executes the CS. Thus, as a
remains idle, processes can only be removed from Y IELD.a.

Let us consider a process b ∈ Y IELD.a. If b executes the CS finitely many
times, then there is a suffix of the computation where b is idle. According to
Lemma 3, for all descendants of b, including a, state.a.b is idle. If this is the case
stop.a is enabled. When it is executed b is removed from Y IELD.a.

Let us consider the case, where b executes the CS infinitely often. In this case,
b enters and leaves idle infinitely often. According to Lemma 3, state.a.b is idle
infinitely often. Moreover, a moves to idle by executing stop.a, which removes b
from Y IELD.a. The lemma follows. �

The theorem below follows from Lemmas 5 and 6.

Theorem 3 (Liveness). If InvK holds, a process wishing to enter the CS is
eventually allowed to do so.

We draw the following corollary from Theorems 1, 2 and 3.

Corollary 1. Program KDP is a self-stabilizing solution to the k-hop diners
problem.

Due to the space restrictions we state the following theorem without proof.

Theorem 4 (Termination). Program KDP is terminating.

Self-stabilizing Philosophers with Generic Conflicts 227

3.3 Stabilization Efficiency Evaluation

Observe (see Figure 3) that each process executes at most two of its own actions
before satisfying the stabilization predicate. Each of these action executions may
only be interleaved by the action execution of the process neighbors. Let δ be the
maximum degree of a process. Since stabilization proceeds from the root, there
could be at most 2(δ + 1)k executions of actions in the conflict neighborhood
before it stabilizes. If δ is not related to the number of processes in the system,
the stabilization time of KDP depends only on k and thus independent of the
system size.

Notice that the stabilization of one conflict neighborhood is independent of
stabilization of another. Thus, the spacial extent of the state corruption is at
most 2k. Notice also that the locality extends to the trees used by KDP . The
individual tree construction is independent of construction of other trees. Thus,
these trees can be built or stabilized in parallel.

4 Solution to Generalized Dining Philosophers

Notice that we presented KDP for the case of a rather strictly defined conflict
neighborhood. However, KDP can be extended to handle an arbitrary symmetric
conflict neighborhood relation.

In this case, each process p still has to have a spanning tree to all its conflict
neighbors. Notice that, unlike KDP , it is possible that some conflict neighbor q
is only reachable through a process r that is not a conflict neighbor of p. In this
case, r is included in p’s spanning tree. Process r still propagates the requests
and replies along p’s tree. However, r ignores the state of p for its own CS access.
For instance, r never enters p in Y IELD.r.

Notice, that it may happen that some branches of the constructed tree for
some process of p do not contain its conflict neighbors at all. The CS request
propagation from p to such a branch is not necessary. To avoid such propagation
our program can be further optimized as follows. If a leaf of a tree is not a
conflict neighbor of p, it so informs its parent. If process q does not have conflict
neighbors of p in a certain branch, q does not forward p’s requests to that branch.
If process q does not have any conflict neighbors of p at all among its descendants
and q itself is not a conflict neighbor of p, q informs its parent about it. Thus, the
tree is pruned to contain only p’s conflict neighbors and their ancestors which
further improves the efficiency of our program.

5 Implementation in Wireless Sensor Networks

As we motivated KDP by the problems arising in wireless sensor networks, we
would like to discuss implementing our algorithm in this environment. From
algorithm correctness standpoint, this environment is a variant of a message-
passing system with lossy channels. The broadcast nature of the radio signal
allows certain performance gains.

228 P. Danturi, M. Nesterenko, and S. Tixeuil

In implementing KDP in this environment the concern is to preserve its cor-
rectness and termination properties. We discuss the modifications to preserve
the algorithm’s correctness first. Note that in order to satisfy non-trivial liveness
properties we assume that our environment conforms to transmission fairness:
if a process attempts to send infinitely many messages, all of its communica-
tion neighbors will receive infinitely many of them. Note that this assumption
is weaker than used previously for self-stabilizing algorithms in sensor networks
[19,24]: it is usually assumed that the expected message transmission time for
one hop neighbors is constant. Our idea is to use the timeouts such that the lost
messages are recovered. There are two phases where the message recovery is im-
portant: request and release propagation. In case of request propagation, when
the parent changes its state to req, it sends a message to its children and starts
a timeout. When the timeout expires, the parent resubmits the request. Upon
the receipt of the request, the child’s actions differ depending on its state. As in
the original algorithm, in case the child is in idle, it switches to req and further
propagates the request; similarly, if the child is in req, it ignores the request. In
case the child is in rep, it sends back the message informing the parent of its
state. These actions ensure that the request will be propagated along the routing
tree and the reply will be collected. As an efficiency optimization, a child may
acknowledge the request message from its parent. This acknowledgment is done
either explicitly or by broadcasting the its own request to its children. The par-
ent then resubmits its request only to the children that have not acknowledged
it yet. Recall that for release propagation, the parent needs to ascertain that its
children are idle before switching to req and starting to propagate the next re-
quest. Similar to the case of request propagation, the parent has to keep the list
of its non-idle children and keep informing its children of its idle state until all of
its children acknowledge (explicitly or implicitly) that they also switched to idle.
When all its children are idle the parent can turn of its notification timeout.

Let us now address termination preservation of KDP . Note that co-satisfaction
of stabilization and termination in message-passing systems is a rather difficult
objective. However, Arora and Nesterenko [2] demonstrated that mutual exclu-
sion and, by extension, diners admits a solution with both of these properties.
Notice that, as described, it is possible that the algorithm refined to operate
in wireless sensor networks starts in an illegitimate terminal state where some
child is in rep and its parent is in idle. This state is illegitimate: if there is a
further request and the parent switches to req, then the parent may mistake
the child’s reply as the answer to its new request. This mistake may result in
a safety violation (see [2] for a detailed discussion of this issue). A stabilizing
algorithm cannot terminate in an illegitimate state. Thus, this particular ter-
minal state has to be eliminated. The mechanism is as follows. If a process is
in req, it periodically informs its parent about its state. If parent is in idle,
it messages back with its state and forces the child to switch to idle as well.
With this modification, the only terminal state is the one where every process
is in idle. This is a legitimate state and our algorithm remains terminating
and stabilizing.

Self-stabilizing Philosophers with Generic Conflicts 229

6 Further Extensions

Extension to generic drinking philosophers. In the classic drinking philoso-
phers problem, the set of conflict neighbors for each process p may vary with
each CS access. This problem can be extended to the generic case of conflict
neighbors in a straightforward manner.

KDP can be extended to solve the generalized drinking philosophers problem
as well. In this case, p has to construct a spanning tree to the union of all of
its possible conflict neighbors. Each process q in the tree has the list of all its
descendants. Thus, p has the list of all its potential conflict neighbors. When
p requests the CS, it advertises the list of the actual conflict neighbors for this
request. The child of p propagates the request only if it has a descendant in this
set. The process repeats at each node.

Simplification to unfair case. Notice that some problems, such as distance-
k vertex coloring, maximal irredundant sets, etc. [14] do not require fairness of
CS access specified by the diners: in any computation of such a problem there
are only finitely many CS accesses. If KDP is to be used for such a problem,
it can be simplified. In the unfair case, an idle higher priority process does not
have to wait for a lower priority neighbor. This obviates the need for YIELD
and simplifies actions stop, enter and join. Moreover, the computations of such
program are finite. Thus, this program is capable of operating without the weak
fairness assumption about action execution.

Future research directions. It is unclear if KDP is an optimal solution
to generalized diners with respect to space complexity. If the communication
topology is dense, statically maintaining spanning trees may be expensive. Hence,
the construction of a more space-efficient algorithm is an attractive area of future.

References

1. G. Antonoiu and P.K. Srimani. Mutual exclusion between neighboring nodes in an
arbitrary system graph that stabilizes using read/write atomicity. In EuroPar’99,
volume 1685 of LNCS, pages 823–830. Springer-Verlag, 1999.

2. A. Arora and M. Nesterenko. Unifying stabilization and termination in message-
passing systems. Distributed Computing, 17(3):279–290, March 2005.

3. M. Arumugam and S.S. Kulkarni. Self-stabilizing deterministic TDMA for sensor
networks. Technical Report MSU-CSE-05-19, Michigan State University, 2005.

4. J. Beauquier, A.K. Datta, M. Gradinariu, and F. Magniette. Self-stabilizing local
mutual exclusion and daemon refinement. In 14th International Symposium on
Distributed Computing, volume 1914 of LNCS, pages 223–237. Springer, 2000.

5. C. Boulinier, F. Petit, and V. Villain. When graph theory helps self-stabilization. In
PODC ’04: Proceedings of the twenty-third annual ACM symposium on Principles
of distributed computing, pages 150–159, New York, NY, USA, 2004. ACM Press.

6. A. Bui, A.K. Datta, F. Petit, and V. Villain. Space optimal PIF algorithm: self-
stabilized with no extra space. In IEEE International Conference on Performance,
Computing and Communications, pages 20–26, 1999.

7. S. Cantarell, A.K. Datta, and F. Petit. Self-stabilizing atomicity refinement allow-
ing neighborhood concurrency. In 6th International Symposium on Self-Stabilizing
Systems, volume 2704 of LNCS, pages 102–112. Springer, 2003.

230 P. Danturi, M. Nesterenko, and S. Tixeuil

8. K.M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions
on Programming Languages and Systems, 6(4):632–646, October 1984.

9. K.M. Chandy and J. Misra. Parallel Program Design: a Foundation. Addison-
Wesley, Reading, Mass., 1988.

10. A.K. Datta, M. Gradinariu, and M. Raynal. Stabilizing mobile philosophers. In-
formation Procesing Letters, 95(1):299–306, 2005.

11. E. Dijkstra. Cooperating Sequential Processes. Academic Press, 1968.
12. S. Dolev. Self-Stabilization. MIT Press, 2000.
13. M. Gairing, W. Goddard, S.T. Hedetniemi, P. Kristiansen, and A.A. McRae.

Distance-two information in self-stabilizing algorithms. Parallel Processing Let-
ters, 14(3-4):387–398, 2004.

14. W. Goddard, S.T. Hedetniemi, D.P Jacobs, and V Trevisan. Distance-k informa-
tion in self-stabilizing algorithms. to appear in the Proceedings of the 13th Collo-
quium on Structural Information and Communication Complexity (SIROCCO’06).

15. M.G. Gouda. Elmnts. of Network Protocol Design. John Wiley & Sons, Inc., 1998.
16. M.G. Gouda and F. Haddix. The alternator. In Proceedings of the Fourth Workshop

on Self-Stabilizing Systems, pages 48–53. IEEE Computer Society, 1999.
17. T. Herman. A comprehensive bibliography on self-stabilization (working paper).

CJTCS: Chicago Journal of Theoretical Computer Science, 1995.
18. T. Herman and S. Tixeuil. A distributed TDMA slot assignment algorithm for

wireless sensor networks. In Proceedings of the First International Workshop on
Algorithmic Aspects of Wireless Sensor Networks, pages 45–58, 2004.

19. Ted Herman and Sébastien Tixeuil. A distributed TDMA slot assignment algo-
rithm for wireless sensor networks. In Proceedings of the First Workshop on Algo-
rithmic Aspects of Wireless Sensor Networks (AlgoSensors’2004), number 3121 in
LNCS, pages 45–58. Springe, July 2004.

20. S.T. Huang. The fuzzy philosophers. In J. Rolim et al., editor, Proceedings of the
15th IPDPS 2000 Workshops, volume 1800 of Lecture Notes in Computer Science,
pages 130–136, Cancun, Mexico, May 2000. Springer-Verlag.

21. C. Johnen, L.O. Alima, A.K. Datta, and S. Tixeuil. Optimal snap-stabilizing
neighborhood synchronizer in tree networks. Parallel Processing Letters, 12(3-
4):327–340, 2002.

22. S.S. Kulkarni and M. Arumugam. Collision-free communication in sensor networks.
In Proceedings of the Symposium on Self-Stabilizing Systems (SSS), Springer-
Verlag LNCS:2704, pages 17–31, San Francisco,CA, June 2003.

23. M. Malhotra, M. Krasniewski, C. Yang, S. Bagchi, and W. Chappbell. Location
estimation in ad-hoc networks with directional antennas. In the 25th IEEE Inter-
national Conference on Distributed Computing Systems, pages 633–642, 2005.

24. Nathalie Mitton, Eric Fleury, Isabelle Guérin-Lassous, Bruno Séricola, and
Sébastien Tixeuil. On fast randomized colorings in sensor networks. In Proceedings
of ICPADS 2006, page to appear. IEEE Press, July 2006.

25. M. Mizuno and M. Nesterenko. A transformation of self-stabilizing serial model
programs for asynchronous parallel computing environments. Information Process-
ing Letters, 66(6):285–290, 1998.

26. M. Nesterenko and A. Arora. Stabilization-preserving atomicity refinement. Jour-
nal of Parallel and Distributed Computing, 62(5):766–791, 2002.

27. P.A.G. Sivilotti, S.M. Pike, and N. Sridhar. A new distributed resource-allocation
algorithm with optimal failure locality. In Proceedings of the 12th IASTED Inter-
national Conference on Parallel and Distributed Computing and Systems, volume 2,
pages 524–529. IASTED/ACTA Press, November 2000.

Selfish Stabilization

Anurag Dasgupta1, Sukumar Ghosh2,�, and Sébastien Tixeuil3,��

1 University of Iowa, USA
adasgupt@cs.uiowa.edu

2 University of Iowa, USA
ghosh@cs.uiowa.edu

3 LRI, Université Paris-Sud, France
tixeuil@lri.fr

Abstract. Stabilizing distributed systems expect all the component
processes to run predefined programs that are externally mandated. In
Internet scale systems, this is unrealistic, since each process may have
selfish interests and motives related to maximizing its own payoff. This
paper formulates the problem of selfish stabilization that shows how
competition blends with cooperation in a stabilizing environment.

1 Introduction

Motivation. Current research on the design of self-stabilizing (a.k.a. stabiliz-
ing) distributed systems [4,5] assumes that all processes run predefined programs
mandated by an external agency who is the owner or the administrator of the
entire system. The model is acceptable only when processes cooperate with one
another, and the goal is purely a global one. The model falls apart when the dis-
tributed system spans over multiple administrative domains or processes have
private goals too. On Internet-scale distributed systems, each process or each ad-
ministrative domain may have selfish motives to maximize its own payoff. In fact,
payoffs or cost functions have been the major driving force behind game theory,
but individual payoffs never figured into the realm of stabilizing distributed sys-
tems. There are many applications where individual payoffs are relevant, but the
spirit of competition need not conflict with the general spirit of cooperation that
is the driving force behind stabilizing algorithms. To clarify this issue, consider
that a system of n processes for which a legal configuration is any element of
the set of configurations {L0, L1, · · · , Lk}, but different processes have different
preferences about their ideal legal configurations. Attaining the individual goal
may be possible via the use of asymmetric cost functions that are statically de-
fined, or by the use of specific strategies that may be adopted at run time. Such
strategies refine the basic move, for example, to execute the step of choosing
a neighbor, different processes may adopt different strategies for choosing the
� This author’s research was supported in part by the Alexander von Humboldt Foun-

dation, Germany.
�� This author was supported in part by the FRAGILE, SR2I, and SOGEA projects.

Part of this work was done while the author was visiting University of Iowa.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 231–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

232 A. Dasgupta, S. Ghosh, and S. Tixeuil

neighbor. While the choice will impact the payoffs, it will not affect the global
goal, or the stabilization mechanism. As an example, consider the stabilizing
token circulation protocols that have been widely studied by the stabilization
community. If there are two kinds of processes with competing interests, then in
addition to the common goal of reducing the number of tokens to one, each class
may try to retain the token among themselves more often than their competitors.
Maximizing individual payoffs under the umbrella of stabilization characterizes
the notion of selfish stabilization.

Related Work. Selfish stabilization blends game theory with self-stabilization.
There are some strong similarities between the two paradigms, but there are
significant differences too. Considering the players in games to be equivalent to
processes in a stabilizing system, the equilibrium in games is comparable to the
legal configuration of stabilizing systems in as much as both satisfy the con-
dition of convergence and closure. However, unlike stabilizing systems, games
start from predefined initial configurations, and largely ignore faulty moves or
transient state corruptions. An exception is the notion of bounded rationality
(see Herbert Simon [17]) that suggests that economic agents employ the use of
heuristics to make decisions rather than a strict rigid rule of optimization in
light of the complexity of the situation. In the context of distributed systems,
the anarchic behavior of processes for meeting selfish goals can be viewed as a
weaker variation of byzantine failure. So far, game theory has been a hotbed of
activities in computational economics (like auctions) and algorithm design. It
is also receiving attention in interdomain routing protocols like BGP. For ex-
ample, in the stable path problem [8], each process has to choose the best path
according to some local routing policy, and conflicts between local interests can
lead to unstable or oscillating behavior. Cobb et al [3] proposed a stabilizing
solution to the stable path problem. In [12], Moscibroda, Schmid and Watten-
hofer studied the formation of the topology of a P2P network by selfish peers.
In [13] the same authors analyzed the impact of allowing some processes to be
malicious or byzantine whereas others are selfish, and determined the price of
malice. Mavronicolas [11] used a game-theoretic view to model security in wire-
less sensor networks as a game between the attackers and the defenders. Halpern
[9] presented a perspective of game theory for distributed systems researchers.
Other than these approaches, mixing game theory with distributed computing
is certainly on a fast growing curve [16], yet no specific work has addressed the
self-stabilizing setting. This paper aims at bridging the gap.

Contributions. This paper introduces the notion of selfish stabilization, and
addresses a specific problem in this domain. Given a graph G = (V, E), assume
that there are two different classes of nodes, white and black. For each class,
there is a separate cost function that maps the set of edges to the set of positive
integers. Starting from an arbitrary initial configuration, the two classes of nodes
cooperate with one another to form a spanning tree rooted at a designated
node, and at the same time compete against each other to minimize their cost
of communication with the root node. The communication cost may depend

Selfish Stabilization 233

on various factors: for example, ownership of the routers may be a factor in
determining the cost of routing traffic for any class of nodes. The processes are
free to choose a strategy from a given set of strategies, and may switch strategy
to satisfy their individual needs. We demonstrate how the two different classes
of processes stabilize to an equilibrium configuration after which no process can
unilaterally decrease its communication cost.

The paper has four sections. Section 2 introduces the model and the notations.
Section 3 describes a stabilizing algorithm for constructing the shortest path tree
by the competing classes of processes. Section 4 further analyzes various aspects
of the problem, and provides some food for thought.

2 Model and Notations

We model the topology of the network by a graph G = (V, E) where V =
{0, 1, 2, . . . , n − 1} denotes the set of nodes (processes) and E denotes the set
of edges connecting pairs of processes. All the nodes in V have a common goal:
to form a spanning tree with a given node designated as the root. We divide
V into two disjoint subsets of nodes: W (white nodes) and B (black nodes)1.
V = (W ∪ B). In addition to the common goal, these subsets have their own
agenda: we call them private goals. The private goals of the two subsets may
be conflicting - for example, the two sets of nodes may want to split a common
resource. To illustrate such private goals, let us first convert G into a weighted
graph by defining two cost functions (here N

∗ is the set of positive integers):

w : E −→ N
∗

b : E −→ N
∗

For each node in W , w(e) is the cost of using the edge e, and for each node
in B, b(e) is the cost of using the same edge. Once a spanning tree is generated,
for each node (black or white) there is a unique path leading to the root node.
Let {e1, e2, · · · , em} be the edges belonging to such a path p from a node i to the
root. Then the communication cost (or simply the cost) of the node i depends
on its color. Thus

cost(i) =
{∑

e∈p w(e) if i is white∑
e∈p b(e) if i is black

The private goal for each node i (black or white) is to minimize cost(i). In meet-
ing these goals, the two classes of nodes will compete with one another in choos-
ing the tree edges. Unlike traditional stabilization algorithms where all processes
execute the same algorithm, here processes are allowed to choose different algo-
rithms, or switch algorithms from a set Σ = {P0, P1, · · · , Pm} (each Pi reflects
a different strategy), to meet their goals. Let Sv denote the global state space
of all the processes in V . A computation is a sequence of states (s0, s1, s2, · · ·),
where ∀i ≥ 0 : si ∈ Sv, and the state transition (si, si+1) is caused by an action
of some algorithm Pj ∈ Σ.
1 Call (W,B) the composition of V .

234 A. Dasgupta, S. Ghosh, and S. Tixeuil

Our goal is to devise a stabilizing mechanism for the construction of such a
tree – the computation should lead to a tree configuration so that the conflicting
private goals of cost minimization do not interfere with the common goal of tree
formation. The two components of the mechanism are:

1. Equilibrium. The goal configuration corresponds to an equilibrium config-
uration such that no process can unilaterally decrease the cost of its own
color by any other means.

2. Convergence. Starting from an arbitrary initial configuration, the system
of processes must converge to an equilibrium configuration.

We add a few clarifications to explain the above two mechanisms:

Clarification 1. The equilibrium need not always correspond to a quiescent
state in which all guards are false. It can also represent the dynamic behavior of
a reactive system (like a token-passing system). For the current problem how-
ever, a quiescent equilibrium state will suffice, and it naturally reflects a Nash
equilibrium.
Clarification 2. In principle, the equilibrium condition can be further general-
ized to the case where no coalition of processes can decrease the cost of a subset
of them.
Clarification 3. Compared to the closure property [1] used in traditional sta-
bilizing systems, the equilibrium criteria is more general in as much as it allows
the processes to try out a different strategy that does not conflict with the spirit
of cooperation.

Indeed, a selfish strategy without cooperation (such as arbitrarily picking an
edge whose cost is minimal for its own color) can result in a graph that is not a
tree towards the destination, as is exemplified by Figure 1. Even if nodes have
global knowledge about other edge costs of their own color (e.g. they are aware
of the minimum costs path towards the destination), the resulting graph may
not be a tree, as is exemplified by Figure 2.

Let N(i) be the set of neighbors of a node i. Also, for each node i ∈ V , define
two variables p(i) and L(i) (commonly called the parent and the label or distance
variables). By definition, for the root node r, p(r) is non-existent. Every other
node picks a neighboring node as its parent. The label L(i) for each node has
two components L(i).w and L(i).b. By definition, L(r).w = L(r).b = 0, which is
also represented as L(r) = (0, 0) 2. For all i �= r, draw a directed edge from i to
p(i). In our shortest-path tree, the following three conditions must hold:

1. The set of edges {(i, p(i)) : i �= r} induce a spanning tree in G.
2. ∀i �= r : L(i) = L(p(i)) + (w(i, p(i)), b(i, p(i))). For a white node i, L(i).w

denotes its communication cost, and for a black node j, L(j).b represents its
communication cost.

3. For each white node i, the value of L(i).w, and each black node j, the value
of L(j).b, reflect the equilibrium condition introduced earlier, i.e. it cannot
be unilaterally lowered by choosing a different action or a different strategy.

2 By convention, the first component of L is always for the white nodes.

Selfish Stabilization 235

2,2

2,2

2,2

2,2

1,2

1,2

2,12,1 r

2,2

2,2

2,2

2,2

1,2

1,2

2,12,1 r

Fig. 1. Pure selfish strategies may not yield a tree. Each node picks an edge whose
cost is minimal for its own color, and this results in a cycle.

3,1

3,1

1,3

1,3

1,3

1,3

3,13,1 r

3,1

3,1

1,3

1,3

1,3

1,3

3,13,1 r

Fig. 2. Pure selfish strategies may not yield a tree. Each node picks an edge whose
path towards the root has minimal cost for its own color, and this results in a cycle.

In networks with selfish peers, the costs influencing decision-making are often
of commercial nature, and are thus kept private to the participating nodes. To
accommodate this feature in our framework, we assume that for each node, the
value of each component of L and the weights of the edges incident on it will be
stored in an encrypted form. All black nodes share a common secret key, and all
white nodes share another secret key. Thus, no node can access the component
of the costs of a different color from a neighboring node or link to decide its
course of action. However every node can securely extract the component of
the variables corresponding to its own color. This authentication mechanism
preserves fairness of the game and prevents possible foul play by deliberately
tampering the variables of the nodes of opposing color. We will designate the
encrypted version of a variable x by x̂. For the sake of simplicity, we assume that

x̂ + ŷ = x̂ + y

Homomorphic encryptions like Pallier’s scheme [14] satisfy this property.

236 A. Dasgupta, S. Ghosh, and S. Tixeuil

3 A Solution

Let L(i).w and L(i).b denote the total cost of the path from node i to the root
via the tree edges for the white and the black nodes respectively. Due to the
variable edge weights and competing goals, we first propose a greedy approach:
a black node i will select a parent p(i) that minimizes L(i).b and a white node
will make a similar choice that minimizes L(i).w. Each such choice will reduce
the cost of the tree for the nodes of its own color.

For the sake of brevity, we define the following:

Conditions

LabelOK(i) ≡ L̂(i) = L̂(p(i)) + ̂w(i, p(i)), ̂b(i, p(i))
ParentOK(i) ≡ (i = white) ∧

p(i) = j : L(j).w + w(i, j) = min{L(k).w + w(i, k) : k ∈ N(i)} ∨
(i = black) ∧
p(i) = j : L(j).b + b(i, j) = min{L(k).b + b(i, k) : k ∈ N(i)}

Actions

FixLabel(i) ≡ L̂(i) := L̂(p(i)) + ̂w(i, p(i)), ̂b(i, p(i))
FixParent(i) ≡ if i is white → p(i) := j :

L(j).w + w(i, j) = min{L(k).w + w(i, k) : k ∈ N(i)}
� i is black → p(i) := j :

L(j).b + b(i, j) = min{L(k).b + b(i, k) : k ∈ N(i)}
fi

The algorithm that we will propose here reflects only the greedy strategy,
but there could be other strategies too: we will discuss such alternatives shortly.
Regardless of these, we show that once an equilibrium is reached, no process can
reduce the cost for their group by switching strategies unless at least one process
from its competitors switches strategies as well.

The proposed algorithm has a single guarded action R0. The root r does
not execute any action. The action for node i �= r is described in the following
algorithm:

Program for process i

do
{R0: Correct the label}
(¬ LabelOK(i) ∨ ¬ ParentOK(i)) −→

FixParent(i);
FixLabel(i);

od

3.1 Proof of Correctness

Fig 3 shows a graph and three corresponding spanning trees that could be ob-
tained at some point of a computation (none of these necessarily denotes the

Selfish Stabilization 237

terminal configuration). For example, the cost of tree (b) is (10, 9), while the
cost of tree (c) is (9, 9) and the cost of tree (d) (11, 8). So different trees yield
different costs for different teams.

1,22,1 2,4

3,2

1,2

2,21,1

r

2,3

3,1

2,1

(a)

1,22,1 2,4

3,2

1,2

2,21,1

r

2,3

3,1

2,1

(b)

1,22,1 2,4

3,2

1,2

2,21,1

r

2,3

3,1

2,1

(c)

1,22,1 2,4

3,2

1,2

2,21,1

r

2,3

3,1

2,1

(d)

Fig. 3. Various spanning trees of the graph in part (a) (note that not all trees are
terminal configurations)

Theorem 1. The system of processes executing the proposed algorithm stabilizes
to an equilibrium configuration, and the edges connecting the processes with their
parents form a spanning tree of G.

Proof. The proof consists in two parts: first, we show that every execution is
finite, and then we show that in any terminal configuration, a spanning tree is
constructed towards the root and is an equilibrium configuration.

Finite executions. Assume for the purpose of contradiction that the execution
is infinite. This implies that there exists at least a node that executes an infinite
number of actions. In turn, either this node changes its parent an infinite number
of times, or it adjusts its label an infinite number of times (or both). If this node
changes its parent an infinite number of times (and since it has finitely many
potential parents) or updates its label an infinite number of times, at least one

238 A. Dasgupta, S. Ghosh, and S. Tixeuil

of its neighbors makes an infinite number of actions as well. By induction on the
(finite) size of the network, and the fact that the root node takes no action, this
implies that there exists at least one cycle of nodes in the network where every
node takes an infinite number of actions. Such cycles are in finite numbers, and
all remaining nodes (in set S, for silent) execute only a finite number of actions.
Assume that the execution has reached the point where all nodes in S execute
no further action.

If a node that belongs to a cycle changes its parent, three cases may occur:

1. The node chooses as a parent a node in the same cycle, then the size of the
cycle is decreased (as a node may only choose a new parent that decreases
the path cost for its color),

2. The node chooses as a parent a node in another cycle, then two sub-cases
may occur:
(a) if the second cycle only contains costs that are lower than those in the

first cycle, then the first cycle is cut and a chain is attached to the other
cycle (the number of cycles is reduced),

(b) if the second cycle contains both path costs that are lower and higher
than those in the first cycle, it may happen that two new cycles are
created while nodes from both cycles attach to the other one. However
the overall number of nodes in the resulting two cycles is lower than the
original number, because nodes with the highest path cost never become
new parents (the size of at least one cycle decreases).

3. The node chooses as a parent a node in S, then the cycle is cut and a chain
is attached to the nodes in S (the number of cycles is reduced).

Overall, there can only be a finite number of parent changes, since all cycles are
of finite size and in finite number. Now, assume that the execution has reached a
point where all nodes do not change parents any more. This means that in every
cycle, all nodes execute only label adjustment actions infinitely often. Since all
nodes in every cycle execute only label adjustment actions, the label of each
node in a cycle grows in an unbounded manner. Now, at least one node u of a
cycle is a neighbor to a node s in S, yet executes an infinite number of label
adjustments. After the label is larger than the label of s plus the cost of the edge
(u, s), u changes its parent to s, which contradicts the fact that no node changes
its parent from this point of the execution.

Overall, the hypothesis that the execution is infinite leads to a contradiction.

Final Equilibrium. Assume that the system has reached a terminal configu-
ration, where no node may execute an action. This means that for every node i,
LabelOK (i) and ParentOK (i) hold. Now consider the subgraph of G induced by
the edges connecting the nodes of G to their parents. By the strictly increasing
property of the labels, every path towards the parent is strictly decreasing, so
there can be no cycles in this subgraph. Also, by construction, every node except
the root has a parent. Thus, the induced subgraph is a tree that leads towards
the root. Now, since parentOK (i) holds for every node i, no node may change
its parent to minimize further the cost of the tree, implying that the final state
is an equilibrium. �

Selfish Stabilization 239

Once the stable configuration is reached, all guards are false, and the closure
property trivially holds. This proves the stabilization property.

3.2 Alternative Strategies

If there exists a set of strategies (synonymous with algorithms) with the prop-
erty that no process can lower its cost by changing its strategy while the other
processes keep their strategies unchanged, then that set of strategies and the
corresponding costs constitute the Nash Equilibrium.

To prove that the stable configuration reflects a Nash equilibrium, we need to
consider various strategies that can be adopted by the processes to lower their
costs. The algorithm we proposed uses a greedy strategy, (call it Strategy A) but
it is, by no means, the only possible strategy. Let us examine a second strategy
for cost minimization by the individual processes. It is an altruistic strategy:
each node picks a parent that lowers the communication cost of the nodes of the
opposite color (call it Strategy B). As a result, black processes will help lower
the cost of the white processes, and vice versa. To implement Strategy B, we
modify the definition of ParentOK and F ixParent as follows3:

ParentOK(i) ≡ (i = white) ∧ p(i) = j :
L(j).b + b(i, j) = min{L(k).b + b(i, k) : k ∈ N(i)} ∨

(i = black) ∧ p(i) = j :
L(j).w + w(i, j) = min{L(k).w + w(i, k) : k ∈ N(i)}

FixParent(i) ≡ if i is white → p(i) := j :
L(j).b + b(i, j) = min{L(k).b + b(i, k) : k ∈ N(i)}

� i is black → p(i) := j :
L(j).w + w(i, j) = min{L(k).w + w(i, k) : k ∈ N(i)}

fi

Once these are appropriately defined, the main algorithm remains unchanged.
Using the same line of arguments, we can show that this algorithm also stabi-
lizes the system, but to a different configuration. This leads to the following
observation:

Observation 1. Using Strategy B, the system of processes stabilizes to an equi-
librium configuration, and the edges connecting the processes with their parents
form a spanning tree.

The observation trivially follows from Theorem 1 if we swap the costs of the
white and the black nodes for each edge.

The Cost of Equilibrium. A natural component of such an exercise is to
analyze the quality of the equilibrium configuration: How bad is the cost of this
3 This apparently weakens the encryption mechanism since it requires x > y ⇒ x̂ > ŷ.

However, using the altruistic protocol, white processes lower their cost by helping
the black processes and vice versa, and this is more conducive to building a trust
relationship. So we will disregard the encryption symbol.

240 A. Dasgupta, S. Ghosh, and S. Tixeuil

configuration in comparison with the “optimal” configuration? For the nodes of
a given color, define the cost of a configuration as the sum of weights of all the
tree edges for that color. Define the optimal cost as the cost of the tree when all
nodes are of the same color. The issue is: By what extent will it increase if some
of the nodes belong to a different color? Here is an upper bound. Let emax =
max{w(e), b(e) : e ∈ E} and emin = min{w(e), b(e) : e ∈ E}. Then the following
theorem holds.

Theorem 2. For any set of processes of a given color, the ratio of the cost of
the equilibrium configuration to the cost of the optimal configuration is bounded
from above by emax

emin
.

Proof. A tree with N nodes has (N −1) edges, so the cost of the optimal config-
uration has a lower bound of (N − 1).emin. To determine the maximum possible
weight of the tree in an equilibrium configuration under any of the algorithms
A or B (or a mix of the two), think of an adversary that can switch the color of
zero or more processes so that each node chooses the edge with largest weight
as its link to its parent node. The cost of the resulting configuration is bounded
from above by (N − 1).emax. The ratio of the two costs will not exceed

emax

emin
. �

This is a loose upper bound. In general, when the number of white processes
is much larger than the number of black processes, Strategy A will lead to a
lower cost for the white processes, and Strategy B will lead to a lower cost
for the black processes. This is quite intuitive, since in Strategy A, each step
by the majority (i.e. white) processes helps lower their own cost at the ex-
pense of the competitors’ cost, whereas in Strategy B, each step by the ma-
jority processes lowers the cost of the competitors at the expense of their
own cost.

Simulations support this observation, although the costs do not necessarily
decrease (or increase) monotonically with the number of processes switching
strategies. The topology and the cost distribution play deciding roles. That said,
based on the knowledge acquired during the progress of the communication, pro-
cesses may be tempted to use different strategies. However, we will demonstrate
that the system is robust enough to guarantee convergence to a Nash equilib-
rium, where all processes choose Strategy A, and no process can unilaterally
lower its cost of communication with the root node.

Observation 2. The cost of the white(black) processes will be minimum when
they use Strategy A while the black(white) processes use strategy B.

Viewed from the perspective of the white processes, the validity of the above
observation is based on the fact that that every node picks the best edge for
the white processes, so the algorithm reduces to the classical stabilizing shortest
path algorithm (e.g. [10,6]) for the white nodes.

Selfish Stabilization 241

Theorem 3. For a given graph G = (V, E) with a given composition of the
processes in V , and the set of strategies (A, B), the equilibrium configuration is
unique, and it reflects the Nash equilibrium.

Proof. Assume that using whatever strategy the processes choose, the system
of processes stabilizes to some configuration that determines the payoffs for the
black and the white processes. Now consider three different cases:

1. Assume that all processes use Strategy B. Observe that one or more pro-
cesses of a certain group will switch to Strategy A, since this will lower their
cost (Observation 2). However the other group might apprehend this, they
will also switch from Strategy B to Strategy A.

2. Assume that the white processes use Strategy B, while the black processes
use Strategy A. However, altruism does not pay off unless everyone is al-
truistic. Since the white processes do not know what strategy the black
processes are using, they will switch to Strategy A, and their cost will go
down.

3. Assume that all processes use Strategy A. Now no process will be motivated
to switch to Strategy B, since such a switch will imply lowering the cost of
the other group even if it increases the cost of its own group. Thus this is a
stable configuration.

Thus, regardless of the initial strategies chosen by the black and the white
processes, all processes will eventually switch to Strategy A, and regardless
of the initial values of L and p, the system will stabilize in a bounded num-
ber of steps. Furthermore, since no process can unilaterally lower its cost by
switching to a different strategy, the stable configuration will reflect a Nash
equilibrium. �

Note. Both strategies (A and B) can be further optimized as follows. Consider
A first. There may be cases in which a white node i finds multiple neighbors j
satisfying the condition L(j).w + w(i, j) = min{L(k).w + w(i, k) : k ∈ N(i)}.
Instead of arbitrarily choosing one such node, i will choose a p(i) = j for which
the cost of the black component of L(i) is the lowest. A similar step can be
taken by the black nodes too, i.e. when a black node i finds multiple neighbors
j satisfying j : L(j).b + b(i, j) = min{L(k).b + b(i, k) : k ∈ N(i)}, it will pick a
p(i) = j such that the cost of the white component of L(i) is the lowest. Similarly,
for B, whenever a node i has more than one choice for the parent node, it will
break the tie by picking one that lowers the component of L(i) corresponding to
its own color.

The interesting aspect of this exercise is that not only does the network state
stabilize to a desirable configuration, but the strategies stabilize too, in as much
as regardless of the starting strategies, all processes end up using the same final
strategy. This does not rule out the invention of new strategies beyond what has
been considered for this exercise.

242 A. Dasgupta, S. Ghosh, and S. Tixeuil

4 Conclusion

Selfish stabilization reduces to classical stabilization when the private goals of
the constituent processes do not conflict. The following issues are relevant about
the approach taken in this paper:

The first is the separation of cooperation and competition. Assume that pro-
cesses first cooperate to form a spanning tree, then try to optimize it to improve
their individual payoffs. In presence of arbitrary initializations, failures, and self-
ish motives, such segregation of actions is difficult to implement.

The uniqueness of the equilibrium point is another significant issue. For the
current problem, under each strategy, the system of processes reaches a unique
equilibrium point, and the resulting Nash equilibrium is also unique. If this were
not true, then there could be multiple trees, possibly of different costs, where
the system of processes could stabilize to, the choice being determined by the
schedule and the relative speeds of actions. However, once reaching an equilib-
rium point, an unhappy (or ambitious) process could deliberately introduce a
perturbation (by corrupting a local variable) to possibly reach a different equi-
librium point with a better payoff, and jeopardize the common goal. There is
no guarantee that this will happen. But the uniqueness of the equilibrium point
will prevent the constituent processes from using deliberate perturbation as a
strategy to improve payoff, or at least probe the possibility of a better payoff.

Non-compliance to global mandates can have an overall negative impact on the
payoffs when the Nash equilibrium corresponds to an inferior equilibrium. One
approach can be the development of a payment scheme to reward compliance.
Another approach involves detecting cheaters and appropriately penalizing them
to force compliance. Quantification of these issues is an open problem, and is a
topic of future research.

The paradigm of selfish stabilization can easily be extended in several ways.
First, it can easily be extended to systems involving more than two compet-
ing groups, in the extreme case, each process caring for itself and no one else.
Second, the metric used here (simple additive metric) could be replaced by any
strictly monotonic metric, such as those presented in [7,6]. This would extend
those previous results on stabilizing generic routing, since our scheme allows the
possibility to use different metrics for different groups of players. This would also
subsume previous approaches that investigated a specific metric [3].

References

1. Arora, A., Gouda, M.G.: Closure and Convergence: A foundation of fault-tolerant
computing. IEEE Trans. Software Engineering 19, (1993) 1015–1027.

2. Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for constructing a
spanning tree. Information Processing Letters 39 (1991) 147–151.

3. Cobb, J.A., Gouda, M.G, Musunuri, R.: A stabilizing solution to the stable path
problem. Workshop on Self-stabilizing Systems (2003) 169–183.

4. Dijkstra, E.W.: Self-stabilization in spite of distributed control. Communications
of the ACM 17 (1974), 643–644.

Selfish Stabilization 243

5. Dolev, S.: Self-stabilization. MIT Press (2000).
6. Ducourthial, B., Tixeuil S.: Self-stabilization with r-operators. Distributed Com-

puting 14 (2001) 147–162.
7. Gouda, M.G., Schneider, M.: Stabilization of maximal metric trees. Workshop on

Self-stabilizing Systems (1999) 10–17.
8. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdo-

main routing. IEEE/ACM Transactions on Networking 10 (2002).
9. Halpern, J.Y.: A computer scientist looks at game theory. Invited talk at Games

2000. Available from http://www.econwpa.wustl.edu/listings/0411.html.
10. Huang, T.C.: A self-stabilizing algorithm for the shortest path problem assuming

read/write Atomicity. J. Computer and System Sciences 71 (2005) 70–85.
11. Mavronicolas, M., Papadopoulou, V.G., Philippou, A., Spirakis, P.: A graph-

theoretic network security game. First International Workshop in Internet and
Network Economics (WINE 2005) 969–978.

12. Moscibroda, T., Schmid, S., Wattenhofer, R.: On the topology formed by selfish
peers. ACM Conference on Principles of Distributed Computing (PODC), Denver,
2006.

13. Moscibroda, T., Schmid, S., Wattenhofer, R.: When selfish meets evil: Byzantine
players in a virus inoculation game. ACM Conference on Principles of Distributed
Computing (PODC), Denver, 2006.

14. Pallier, P.: Public-key cryptosystems based on composite degree residue classes.
Eurocrypt (1999).

15. Osborne, M.J., Rubinstein, A.: A course in game theory. MIT Press (1994).
16. Roughgarden, T., Tardös E.: How bad is selfish routing? Journal of the ACM 49

(2002) 236–259.
17. Simon, H.: Models of Bounded Rationality: Volumes 1 and 2. MIT Press (1982)

Reliability and Availability Analysis of

Self-stabilizing Systems�

Abhishek Dhama, Oliver Theel, and Timo Warns

Carl von Ossietzky University of Oldenburg,
Department of Computing Science,

D-26111 Oldenburg, Germany

Abstract. Self-stabilizing systems are often only evaluated in terms of
worst-case time and space complexities for the recovery from arbitrary
state disruptions. In this paper, we interpret and formalize well-known
fault tolerance measures for masking fault-tolerant systems, namely
reliabilty, instantaneous availability, and limiting availability in the con-
text of self-stabilizing systems. This allows to additionally evaluate self-
stabilizing systems by these well-accepted measures. The calculation is
challenging due to a large (and possibly infinite) state space. We present
an analysis procedure that comprises a suitable state abstraction thereby
making the calculation tractable. Exemplarily, we apply the procedure
to a system that constructs a depth-first search spanning tree showing
that our approach is feasible and yields meaningful results.

1 Introduction

Forms of fault tolerance can be divided into four categories, two important cate-
gories thereof being masking fault tolerance and non-masking fault tolerance [1].
A system that is masking fault-tolerant with respect to a given fault class F
“covers” the appearance of failures of sub-components from an outside observer
who inspects the system at it’s application interface, at least as long as the as-
sumptions stated by F hold. If the fault class holds, a service provided by the
system to the environment at the application interface behaves in accordance
to its problem specification. The problem specification consists of a safety and a
liveness property. A system is correct with respect to the problem specification
if the liveness as well as the safety property hold. In order for the system to be
masking fault-tolerant with respect to fault class F , the liveness as well as the
safety property must not be compromised by any fault in F . In other words:
the system does not fail. Only if the fault class is left, a violation of the prob-
lem specification may occur and incorrectness of the system could potentially be
observed in the manner stated. Examples of masking fault-tolerant systems are
data replication services [2] and distributed consensus services [3]: they behave
correctly as long as a certain number of sub-components do not fail.

� This work was supported by the German Research Foundation (DFG) under grants
GRK 1076/1 “TrustSoft” and SFB/TR 14 “AVACS.”

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 244–261, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reliability and Availability Analysis of Self-stabilizing Systems 245

In non-masking fault-tolerant systems with respect to a fault class F – even
if the fault class has not been not left – an observer may recognize a particu-
lar incorrectness of the system: the safety property is violated but the liveness
property still holds. For ease of description, let PS be a configuration predicate
that specifies all system configurations in which the safety property holds. Let
PA ⊇ PS be a configuration predicate that specifies all possible configurations
of the system assuming fault class F . Consequently, in PA the liveness property
must hold.

Note that due to PA ⊇ PS , configurations of the system may be observed
where PA holds but not PS . In those cases, the system has not completely failed
with respect to F but is nevertheless not performing “useful work.” In order to
still make productive use of such systems, situations in which PA ∧ ¬PS hold
must be bounded in space and/or time. Being in those configurations, the system
must somehow itself – in the way it is implemented – correct its configuration
such that the bounds are guaranteed and PS (and implicitly PA) finally holds.
Examples of non-masking fault-tolerant systems are self-stabilizing systems [4]
and asymptotically stable systems [5]. In the context of self-stabilizing systems,
the fault class covers transient faults affecting program variables only and PA

includes the entire configuration space [1].
Usually, different solutions to a problem are available forcing a developer to

choose a solution from the set of all possible solutions. Ideally, he or she thor-
oughly evaluates all possible solutions to support the design decision and to find
the solution that is best suited for given requirements. In order to differentiate
“good” from “bad” fault-tolerant systems that provide the same service using
the same fault class, measures of fault tolerance are used. The most prominent
measures are reliability, instantaneous availability, and limiting availability [6].
The latter is often referred to as simply availability (see details in Sect. 2).

These three fault tolerance measures are widely used and well understood
in the context of masking fault-tolerant systems [6,7,8,9,10]. In contrast, self-
stabilizing systems are commonly evaluated in terms of worst-case time and
space complexities only. These measures alone might be not expressive enough
in practice, because different solutions to the same problem may have an equal
worst-case complexity, but exhibit differing average case complexities: often av-
erage case complexity has a more significant impact in real-world settings. In
particular, the three fault tolerance measures given above address average case
complexities and, therefore, enable to identify suitable solutions in those settings.
But how can these measures be applied to non-masking fault-tolerant systems in
general and to self-stabilizing systems in particular? What do they mean in such
a context? How can they be derived and, finally, how can these measures help to
improve the quality of non-masking fault-tolerant and self-stabilizing systems?
We are unaware of any treatment of these issues in literature.

In this paper, we answer some of the above questions. In particular, we make
the following contributions. 1) We interpret and formalize classic fault tolerance
measures, namely reliability, instantaneous availability, and limiting availability,
for self-stabilizing systems enabling a meaningful evaluation of such systems. 2)

246 A. Dhama, O. Theel, and T. Warns

We present a system analysis procedure that makes the problem of calculating
fault tolerance measures tractable by abstracting configurations to configuration
classes. In particular, the procedure exhibits a trade-off between costs of system
analysis and achievable accuracy. This trade-off can be adapted to the actual
requirements by choosing an appropriate level of abstraction. 3) We exemplarily
apply the analysis procedure to a self-stabilizing system constructing a depth-
first search spanning tree and discuss the results.

The paper is structured as follows. In Sect. 2, we present our system model
and interpret and formalize fault tolerance measures for self-stabilizing systems.
Section 3 gives the basic ideas of the system analysis procedure, which is detailed
and – exemplarily – applied to a system constructing a depth-first search (DFS)
spanning tree in Sect. 4. Section 5 describes related work followed by a conclusion
in the final section.

2 Basic Notions and Preliminaries

System Model of a Self-Stabilizing System. Our system model is based
on the asynchronous shared-memory computation model [4]. A distributed ap-
plication (hereafter synonymously referred to as “system”) consists of a finite
set of processes, Π = {p1, . . . , pn}. The system executes a distributed algorithm
that consists of a set of sub-algorithms. Each process in the system executes a
sub-algorithm and is perceived as a (possibly infinite) state machine.

A process may communicate with certain other processes, called its neighbors.
Communication takes place using shared communication registers. Each process
has two sets of communication registers: read and write registers. A process owns
its write registers and uses them to communicate part of its local state to its
neighbors. The read registers are used to gather information about the states
of its neighbors. The communication structure of the system can be represented
by a communication graph that has a node for each process and a directed link
between each pair of neighboring processes: the graph has a link lji from process
pi to process pj iff pi may read from a register of pj . Each process pi has a
total ordering αi = 〈lui , . . . , lzi 〉 of its links that induces a total ordering of its
neighbors. Besides the communication registers, a process may use additional
local variables that cannot be accessed by other processes.

The local variables together with the communication registers of a process
pi form the local state space of pi, denoted by Si. A configuration c of the
entire system is a vector composed of the local states of all the constituent
processes of Π . The set of all possible system configurations is denoted by C =
S1 × . . . × Sn.

The execution semantics is modeled using a central scheduler. The scheduler
selects one of the processes in Π in a random manner and the selected process,
in turn, executes a single computation step. We assume read/write atomicity
for computation steps, that is, a computation step of a process consists of a
computation on the process’ local variables and either an atomic read or an
atomic write operation on a process’ communication register.

Reliability and Availability Analysis of Self-stabilizing Systems 247

An observed execution of the system is a sequence of configurations e =
〈c1, c2, . . .〉 such that a configuration ci+1 follows from configuration ci either
due to the execution of a single computation step by a constituent process or
due to a manifestation of a transient fault called a fault step. Compared to the
classical theory of self-stabilization [4], we generalize executions that can be per-
ceived by an observer to factor in intermittent transient faults to determine fault
tolerance measures.

We assume that the scheduler is fair, in the sense that it activates each process
infinitely often in every infinite execution. The executions that result using a fair
scheduler are called fair executions. Furthermore, we assume that the scheduler
can be described by a tuple of probability values 〈QS(p1), . . . , QS(pn)〉 repre-
senting a probability density function, where QS(pi) denotes the probability
that the scheduler activates process pi

1. As the scheduler always chooses a pro-
cess,

∑n
i=1 QS(pi) = 1. In order to fulfill the fairness requirement, it is necessary

that ∀p ∈ Π : QS(p) �= 0.
Due to our system model, time proceeds in discrete “time ticks”, that is, one

tick per computation step or per fault step. Therefore, we represent a point in
time with respect to the model simply by a non-zero number k. Furthermore,
for ease of presentation, we assume that any execution starts at time k = 0.

The system is assumed to be self-stabilizing, that is, eventually, the system
reaches a configuration that is in a set of safe configurations even if started in
an arbitrary configuration and stays in this set of safe configurations thereafter
in absence of faults leading to errors. The set of safe configurations is defined
using a configuration predicate PS. A configuration c ∈ C of a system is called
safe with respect to PS iff it satisfies the predicate PS . We denote the set of all
safe configuration by CS , that is, CS := {c : c ∈ C ∧ c satisfies PS}.

As already indicated, we augment the system model with additional fault
assumptions. A fault is a configuration transition that is not caused by a com-
putation step of a constituent process: within an execution, a fault may lead to
a configuration ci+1 from ci even if ci+1 may not be reached by a computation
step of a process. The manifestation of a fault is regarded as a fault step that –
in correspondence to a computational step – requires one time tick to be real-
ized. We can differentiate types of faults depending on whether the predicate PS

holds for the configurations it maps to or not. Figure 1 shows the configuration
space of a self-stabilizing system where solid arcs represent transitions due to
faults and dashed arrows represent the transitions due to computations by the
processes. For example, if a fault is a transition from a safe configuration to a
non-safe configuration such as transition 1 in Fig. 1, the fault leads to a partial
failure of the system in the sense that an outside observer perceives a violation
of the safety property PS . Other faults like transition 2 that lead from a non-safe
configuration to a safe configuration even help to correct the configuration. As
we only consider those safety properties which can be expressed by configuration

1 The approach does not exclude that QS varies over time. However, the associated
computations become significantly more involved such that we assume fixed QS for
ease of presentation.

248 A. Dhama, O. Theel, and T. Warns

4

2

3

1
PS

PA

Fig. 1. Illustration of the four different fault types that may occur in a self-stabilizing
system

predicates, a transition from a safe configuration to another safe configuration
(transition 3) owing to a fault does not constitute a failure. Transition 4, finally,
represents the effects of a fault leading the system from an non-safe to another
non-safe configuration. We describe faults by a probability qF denoting that a
fault occurs instead of the execution of a computation step. Next, we present
how to adapt the fault tolerance measures referred to in the introduction to
self-stabilizing systems.

Fault Tolerance Measures for Self-Stabilizing Systems. As already said,
we want to apply fault tolerance measures to self-stabilizing systems. We briefly
summarize the notions of reliability and availability and give formalizations and
interpretations in terms of our system model. Note that all fault tolerance mea-
sures are only given for discrete time points due to this model. Refer to, for
example, Trivedi [6, p. 124–129, 319–328] for a more detailed discussion of reli-
ability and availability in general.

We formalize the notions of reliability and availability for self-stabilizing sys-
tems whose safety property can be expressed in terms of a configuration pred-
icate. We assume that a self-stabilizing system is designed such that it does
something “useful” (i.e., it is functioning) when it is in a safe configuration or
transits between safe configurations. Therefore, the fact that a system is in an
“up” phase means that the system is in a safe configuration.

Intuitively, reliability is defined as the “continuity of correct service” of a sys-
tem [11]. Reliability analysis is done for systems where components are not re-
paired on a failure. Hence, the lifetime of these systems consists of a single “up”
phase from system start to failure and a subsequent permanent “down” phase.
Formally, the reliability of a general system R(t) is the probability that the sys-
tem has not failed in the continuous time interval [0, t], t > 0, with respect to the
problem specification under the constraint that is was correct at time t = 0 (i.e.,
R(0) = 1). Based on our model, the reliability R(k) of a self-stabilizing system
is the probability

R(k) := P (PS holds at time l = 0, . . . , k) (1)
In contrast to reliability, availability analysis is done for systems where compo-

nents are repaired on failures. Hence, the lifetime of a system can be divided into
alternating periods of “up” and “down”phases. Intuitively, availability is defined
as the“readiness for correct service”of a system [11]. Formally, the instantaneous
availability of a system A(t) is defined as the probability that a system is in an

Reliability and Availability Analysis of Self-stabilizing Systems 249

“up” phase at time t under the constraint that it was correct at time t = 0 (i.e.,
A(0) = 1). Note that instantaneous availability is equivalent to reliability in the
absence of repair operations. Consequently, instantaneous availability A(k) of a
self-stabilizing system in our model is the probability

A(k) := P (PS holds at time k | PS holds at time k = 0) (2)
Availability analysis often comprises the probability that the system is in an

“up” phase after a “sufficiently long time” after system start when looking at it
at an arbitrary point in time. In general, the limiting availability of a system A
is defined as the limiting value of A(t) as t approaches infinity. Consequently,
we define the limiting availability of a self-stabilizing system in our model as the
probability

A := lim
k→∞

A(k) (3)

These three fault tolerance measures allow to differentiate self-stabilizing sys-
tems in terms of the degree of dependability they provide. For example, having
multiple self-stabilizing system solutions to the same problem, high availability
solutions can be identified and preferably be used in safety-critical application
environments. However, the problem of determining concrete values for these
measures given a concrete system is challenging due to a large, possibly infinite
configuration space. Next, we present how we approach this problem.

3 Basic Ideas for Calculating Fault Tolerance Measures

For the calculation of fault tolerance measures, one would ideally consider every
possible configuration and all possible transitions between configurations. How-
ever, the configuration space of a system may consist of an infinite number of
configurations drawing such an approach infeasible. The problem can be made
tractable if the configuration space is reduced into a finite number of partitions
such that only these partitions and transitions between partitions are consid-
ered. The scalability of the approach can be further improved if we perceive
a distributed algorithm as a set of sub-algorithm classes where instances of a
class may be instantiated and executed by processes. If the analysis is based
on sub-algorithm classes instead of instances and classes are used by multiple
processes (as it is usually the case), we only need to analyze each sub-algorithm
class rather than each process. We now discuss the reduction of the configuration
space and the analysis of sub-algorithm classes in detail.

Reduction of Configuration Space. We reduce the possibly infinite set of
all possible configurations to a finite set of configuration classes by dividing the
configuration space into configuration classes such that such that the classes are
non-overlapping and completely and exactly cover the configuration space. All
configurations belonging to a class are characterized by local predicates defined
over the states of the individual processes.

A configuration class Ci is the set of all configurations c ∈ C satisfying a
configuration predicate Pi. The configuration space C is partitioned into g con-
figuration classes, C1, . . . , Cg. We subsume all safe configurations into a single

250 A. Dhama, O. Theel, and T. Warns

configuration class Cg by defining define Pg :≡ PS . This implies that the system
is in an“up”phase iff the system configuration belongs to configuration class Cg.

Pi can be defined using a “bottom-up” approach, that is in terms of local
predicates, because every predicate Pi is a configuration predicate and every
configuration is a tuple of local states. A local predicate for a process pi is
defined as a state predicate on the local state of pi. In particular, we define a
finite number of local predicates for each sub-algorithm class thereby partitioning
the local state space of each process that executes the sub-algorithm class.

Therefore, each configuration class predicate Pi, i = 1, . . . , g − 1, is defined
as conjunction of n local predicates Pij , j = 1, . . . , n, one local predicate Pij for
each process pj ∈ Π :

∀i ∈ {1, . . . , g − 1} : Pi :≡
n∧

j=1

Pij . (4)

Depending on the system specification, it may be the case that the configuration
predicate Pg ≡ PS is defined as a disjunction of multiple conjunction terms
rather than a single conjunction term. However, this does not affect the analysis.

The partitioning into configuration classes effectively reduces the possibly
infinite configuration space of a system to a finite number of configuration classes.
For example, if we define l local predicates for each sub-algorithm and the safety
predicate can be expressed by a single conjunction term, the configuration space
is reduced to ln configuration classes. The “bottom-up” approach of defining
configuration class predicates is highly advantageous, since it tremendously eases
the analysis of sub-algorithms: based on the knowledge of local states of processes
only – mirrored by Pij – one can quite conveniently identify all the possible
transitions from a configuration class.

Exemplarily, we calculate the fault tolerance measures for self-stabilizing sys-
tems whose safety predicate PS can be expressed by a single conjunction term
of local predicates, that is, Pg ≡ PS ≡ Pg1 ∧ . . . ∧ Pgn. Such systems allow to
partition the state space of each process pi into only two partitions leading to
2n configuration classes. In general, if the safety predicate can be expressed as
a single conjunction term, this – obviously – is the least number of configura-
tion classes with non-trivial partitionings of each process’ state space. The two
partitions of the state space can be characterized by two local predicates Si and
Ni, which are defined as follows. If none of the local variables or communication
registers of pi contains a value that violates the system’s safety predicate PS ,
then pi satisfies Si. Otherwise, pi satisfies Ni. Thus, Si ≡ ¬Ni always holds.
Obviously, PS ≡ S1 ∧ . . . ∧ Sn holds for our example system.

For simplifying the presentation in subsequent sections, we adopt the following
convention. Due to fact that the state of each process is characterized by two
local predicates, one can represent a configuration class as a binary number with
n bits such that 0 (or alternatively: 1) in the ith position corresponds to process
pi satisfying local predictae Ni (or Si respectively). This “encoding” also defines
a total ordering on configuration classes which may be used to assign classes
unambigiously to lines and rows of particular matrices. We define a distance

Reliability and Availability Analysis of Self-stabilizing Systems 251

function d(Ci, Cj) that gives the number of local predicates Pil, l = 1, . . . , n, that
define Pi, but do not hold for Pj . For our examples with two partitions of each
state space, we can define d(Ci, Cj) as being the Hamming distance [12] between
the binary notation of configuration classes. For example, for a three process
system, 1102 (equivalent to 610) “encodes”a configuration class C6 corresponding
to S1 ∧ S2 ∧ N3. The value of d(C3, C6) is 2 implying that two local predicates
change between P3 ≡ N1 ∧ S2 ∧ S3 and P6 ≡ S1 ∧ S2 ∧ N3.

Analysis of Distributed Algorithms. Depending on the distributed algo-
rithm, the individual processes either execute the same or different sub-
algorithms. As all processes that are an instance of the same sub-algorithm class
behave in a similar way, an analysis that is performed on a per-class basis and not
on a per-process basis facilitates the overall analysis. In particular, an analysis of a
sub-algorithm class that abstracts from concrete neighbors by differentiating be-
tween the algorithm and its communication structure (given, for example, via a
communication graph), can be re-used for all the processes using this class.

We now describe the analysis of a particular sub-algorithm class: The result
of a computation step of a process pi depends on the current values of pi’s
local state and, possibly, on the value of a neighbor’s communication register.
Thus, a computation step of pi only affects the local predicates of pi since the
step changes only the state of pi but local states of other processes are un-
changed. However, the result of the step may be affected by the current state of
a neighboring process. For example, if pi satisfies the predicate Si and reads a
communication register of a neighbor pj satisfying Nj , then pi itself may reach
a state satisfying Ni owing to error propagation.

For the analysis of a sub-algorithm class, we consider a generic process pi

that instantiates and executes the corresponding sub-algorithm. We determine
the probability that a computation step of pi leads from a state satisfying Px

to a state satisfying Py for each pair of local predicates Px and Py of pi. This
analysis requires detailed knowledge about the sub-algorithm and is challenging.
However, it needs to be performed only once per sub-algorithm class – and not
per process – since it is performed on the basis of a generic process.

For an example with two state partitions per process, we only need to deter-
mine the following four probabilities:

P (N k
i | pi executes step k and N k−1

i), (5)

P (N k
i | pi executes step k and Sk−1

i), (6)

P (Sk
i | pi executes step k and N k−1

i), and (7)

P (Sk
i | pi executes step k and Sk−1

i), (8)

where Sk
i and N k

i denote that predicates Si and Ni immediately hold after step
k, respectively.

Trading Analysis Feasibility vs. Accuracy. The two techniques presented
above allow for a quite convenient analysis of a self-stabilizing system. However,

252 A. Dhama, O. Theel, and T. Warns

these technique-inherent abstractions trade accuracy for feasibility. In particular,
we make the following additional assumptions that interfere with accuracy:

In our examples, we pessimistically assume error propagation between processes
if the communication register of a neighboring process pj is read whose predi-
cate Nj holds. That is, whenever a communication register of a process that is
erroneous is read, we assume that the reading process becomes erroneous as well
even if the particular value read from the communication register is not affected
by an error. Note that there is the possibility that an erroneous process corrects
itself if it overwrites erroneous values in its communication registers or local vari-
ables by correct values (e.g., by writing a fixed correct value to a communication
register). Furthermore, we assume that the result of an internal computation is
erroneous if one or more of the local variables or communication registers that
are read during the computation are erroneous. Note that we obtain a lower
bound on reliability and availability under this assumption.

Due to lack of further information, we adopt – as a best effort estimation –
a uniform distribution assumption for the probability that the system is in a
certain configuration of a configuration class Ci if it is known that the system is
in a configuration of Ci.

Clearly, the trade-off between accuracy and analysis feasibility can be adjusted
by the “granularity”of the local predicates. The finer granular the predicates are
chosen, the higher the accuracy of the results. However, finer granular local pred-
icates complicate the analysis of sub-algorithm classes and increase the number
of configuration classes to be considered in subsequent processing steps.

4 System Analysis Procedure

We will now describe the system analysis procedure in order to calculate the fault
tolerance measures of a self-stabilizing system both, generally and in terms of an
example. The procedure consists of three steps. First, each sub-algorithm class is
analyzed with respect to probabilities of configuration class transitions that are
caused by a computation step of a corresponding process. (Sect. 4.1). Second,
these probabilities are used to determine a Markov chain that characterizes the
overall system (Sect. 4.2). In addition to the probabilities identified in the first
step, the identification of an appropriate Markov chain also takes the influence of
the scheduler and of fault steps into account. Finally, the fault tolerance measures
are calculated based on the obtained Markov chain (Sect. 4.3).

Exemplarily, we apply the procedure to a system that executes the self-
stabilizing depth first search (DFS) distributed spanning tree algorithm of Collin
and Dolev [13]. Informally, the system calculates a DFS tree of the system’s com-
munication graph where the DFS tree is encoded as paths in communication reg-
isters. The distributed algorithm comprises two sub-algorithm classes: Figure 2
gives the sub-algorithm for a root process and Fig. 3 gives the sub-algorithm
used by non-root processes.

Both sub-algorithms are equivalent to the ones of Collin and Dolev [13] ex-
cept being written in terms of guarded commands. We consider a system with

Reliability and Availability Analysis of Self-stabilizing Systems 253

do1
true → write(path1 := ⊥)2

od3

Fig. 2. DFS sub-algorithm for the root process p1

do1
j �∈ {0, . . . , δ} → j := random value in {0, . . . , δ}2
j ∈ {0, . . . , δ} →3
do4

j ∈ {0, . . . , δ − 1} → j := j + 1; read(read pathj := pathαi(j)
)5

j = δ → j := 0; write(pathi := min{|read pathl ◦ αi(l)|N , 1 ≤ l ≤ δ})6
od7

od8

Fig. 3. DFS sub-algorithm for non-root process pi, i > 0

p1

p2 p3

Fig. 4. Communication graph of the DFS example

three processes, Π = {p1, p2, p3}, where process p1 executes the sub-algorithm
of Fig. 2, and the processes p2 and p3 execute the sub-algorithm given in Fig. 3.
Figure 4 shows the communication graph of the system illustrating which process
can read the communication registers from what other process. As indicated, the
distributed algorithm encodes the DFS tree as paths in communication registers.
A path is denoted by ⊥ followed by a sequence of links. Each process pi owns
a single communication register pathi that contains the path from pi to the
root process p1. The constant δ denotes the number of neighbors of a process.
The process p1 repeatedly writes the empty path denoted by “⊥” to its commu-
nication register. The processes p2 and p3 repeatedly read the communication
registers of their neighbors and store these values in their local read path vari-
able. Both processes calculate different paths to the root from the values in the
read path variables, which contain paths read from neighbors and information
about the link ordering. Finally, they determine the correct path with respect to
the DFS tree and write it to their communication register. The correct path is
the shortest path of the calculated paths. The iteration over the neighbors and
the final calculation is done using the local variable j.

4.1 Analysis of Sub-algorithm Classes

First, we characterize the behavior of the system if no faults occur by analyz-
ing each class of sub-algorithms with respect to probabilities of configuration
class transitions that are caused by a single computation step of a process that
executes a corresponding sub-algorithm as given by Eqs. (5)–(8) in Sect. 3.

In the scope of the example, for a generic process pi that executes the sub-
algorithm given in Fig. 2, Si holds iff pathi = ⊥. Thus”

∀k ∈ N : P (Sk
i | pi exec. step k) = 1,

254 A. Dhama, O. Theel, and T. Warns

because pi always overwrites the pathi register by the correct value ⊥ no matter
whether Sk−1

i or N k−1
i .

For a generic process pi that executes the sub-algorithm given in Fig. 3, the
analysis is more complex: The predicate Si holds iff the read path variables
and the pathi communication register of pi contain correct values as given by
the problem specification of the DFS spanning tree problem. This is obvious
for pathi as it is a part of the encoding of the spanning tree. The read path
variables must contain correct values as well, because an erroneous value can
affect computations to determine the value of pathi and, therefore, lead to a
violation of the system’s safety predicate PS . However, the local variable j may
contain an arbitrary value as j does not affect the problem specification.

If Sk−1
i and N k

i , an error propagation must have occurred. Error propagation
to pi occurs iff pi reads an erroneous value from a neighbor in line 5. This happens
if the value of the local variable j, which has δ +1 possible values, is such that a
value from a neighbor with N k−1 is read. Let f denote the number of neighbors
with N k−1. Thus, the probability that N k

i if Sk−1
i is f/(δ + 1) assuming every

neighbor being equally probable as the source. More precisely,

∀k ∈ N : P (N k
i | pi exec. step k and Sk−1

i) =
f

δ + 1
.

Obviously,

∀k ∈ N : P (Sk
i | pi exec. step k and Sk−1

i) = 1 − P (N k
i | pi exec. step k and Sk−1

i).

Let us assume that N k−1
i and pi executes step k. Sk

i can only hold due to the
execution of line 5 or 6. The probability of Si becoming true due to line 5 is

∀k ∈ N :P (Sk
i | pi exec. line 5 in step k and N k−1

i)

=
δ

2δ+1 − 1
· δ − f

δ
· 1

δ + 1
=

δ − f

(δ + 1) · 2δ+1 − δ − 1

for the following reasons that are given term by term from left to right: 1) Only
the local variable read pathl of the overall δ read path variables may contain an
incorrect value and pathi must contain a correct value. The process pi has δ local
variables and one communication register that influence the predicates Si and Ni.
There are 2δ+1 overall combinations of the local variables and communication
register being correct or incorrect. However, as N k−1

i , the combination with
all local variables and communication registers being correct cannot occur after
step k. Therefore, the probability for a single incorrect read pathl variable and a
correct communication register is δ/(2δ+1 −1). 2) The predicate S must hold for
the neighboring process, whose communication register is read. The probability
for this is (δ−f)/δ as pi has δ neighbors with N k−1 holding for f of them. 3) The
local variable j must be equal to l. Thus, the according probability calculates to
1/(δ + 1) as j ∈ {0, . . . , δ}. The probability of Si becoming true due to line 6 is

∀k ∈ N :P (Sk
i | pi exec. line 6 in step k and N k−1

i)

=
1

2δ+1 − 1
· 1

δ + 1
=

1

(δ + 1) · 2δ+1 − δ − 1

Reliability and Availability Analysis of Self-stabilizing Systems 255

for the following reasons (again given term by term): 1) The pathi register must
contain an incorrect value and all read path variables must contain a correct
value. Likewise to the arguments from above, the probability of such a situation
is 1/(2δ+1−1). 2) The local variable j must be equal to δ which is probable with
1/(δ + 1) as j ∈ {0, . . . , δ}. Therefore, the probability that Si holds at time k if
Ni held at time k − 1 and pi executes step k is

∀k ∈ N : P (Sk
i | pi exec. step k and N k−1

i) =
δ − f + 1

(δ + 1) · 2δ+1 − δ − 1
.

Finally, the probability that Ni remains true from k − 1 to k is

∀k ∈ N : P (N k
i | pi exec. step k and N k−1

i) = 1 − P (Sk
i | pi exec. step k and N k−1

i).

4.2 Markov Chain Identification

We now determine the Markov chain for a system to be used for calculating
the fault tolerance measures. In Step 1, we calculate the transition probability
matrix for transitions between configuration classes due to a single computation
step of a process. In Step 2, we determine the transition probability matrix for
transitions between configuration classes due to fault steps. Finally, in Step 3, we
combine both matrices and obtain a transition probability matrix representing
an appropriate Markov chain of the entire system.

Step 1. The computation step probability matrix E := (ei,j) describes the
probabilities of transitions due to computation steps. An element ei,j gives the
probability that the system reaches a configuration in the configuration class Cj

from a configuration of Ci if a process executes a single computation step. This
captures the behavior of the distributed algorithm in the absence of faults leading
to errors. We determine this matrix using the analysis of the sub-algorithm
classes, the communication graph, and the information about the scheduler.

In our example, E is a 2n × 2n matrix as we have 2n overall configuration
classes. For a transition from a configuration of Ci to a configuration of Cj , let
Tl(Ci, Cj) denote the probability that has been derived in the analysis of the
sub-algorithms executed by process pl ∈ Π and for the local predicates of pl in
Ci and Cj . For the example,

Tl(Ci, Cj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P (N k
i | pi exec. step k and N k−1

i) if Nl holds in Ci ∧ Nl holds in Cj

P (N k
i | pi exec. step k and Sk−1

i) if Sl holds in Ci ∧Nl holds in Cj

P (Sk
i | pi exec. step k and N k−1

i) if Nl holds in Ci ∧ Sl holds in Cj

P (Sk
i | pi exec. step k and Sk−1

i) if Sl holds in Ci ∧ Sl holds in Cj

Moreover, let f be substituted by the number of neighboring processes of pl

whose predicate Nl hold in Ci. For example, consider the configuration classes
C4 and C6, given by P4 ≡ S1 ∧N2 ∧ N3 and P6 ≡ S1 ∧ S2 ∧N3. In this case, Nl

holds for f = 1 of δ = 2 neighbors of process p2 in C4 and, therefore, according
to Sect (4.1),

T2(C4, C6) = P (Sk
2 | p2 exec. step k and N k−1

2) =
2 − 1 + 1

(2 + 1) · 22+1 − 2 − 1
=

2

21

256 A. Dhama, O. Theel, and T. Warns

We can now give the matrix E with

ei,j =

⎧⎪⎪⎨
⎪⎪⎩

∑
pl∈Π

QS(pl) · Tl(Ci, Cj) if d(Ci, Cj) = 0

QS(pl) · Tl(Ci, Cj) if d(Ci, Cj)=1 ∧ Ci, Cj differ in a local predicate of pl

0 if d(Ci, Cj) > 1

This corresponds to the following facts stated case by case from above to below:
1) If no local predicate changes by a computation step, each process may be
responsible for the transition under the constraint that the scheduler chooses
the process. 2) If only the local predicate for process pl changes by a compu-
tation step, this step must be executed by pl, because only pl itself can af-
fect its local predicate. However, the probability for such a transition is con-
strained by the probability that the scheduler chooses pl. 3) No computation
step can affect more than one local predicate. The resulting computation step
probability matrix characterizes the behavior of the self-stabilizing system in
the absence of faults leading to errors. For the DFS example, matrix E is
as follows (all matrices given are rounded to four decimals after the
decimal point)

E =

⎛
⎜⎜⎝

0.6349 0.0159 0.0159 0 0.3333 0 0 0
0.2222 0.4127 0 0.0317 0 0.3333 0 0
0.2222 0 0.4127 0.0317 0 0 0.3333 0

0 0.1111 0.1111 0.4444 0 0 0 0.3333
0 0 0 0 0.9365 0.0317 0.0317 0
0 0 0 0 0.1111 0.8413 0 0.0476
0 0 0 0 0.1111 0 0.8413 0.0476
0 0 0 0 0 0 0 1.0000

⎞
⎟⎟⎠

Step 2. Next, the transient faults that may occur are characterized. A fault
may cause an arbitrary transition between configuration classes. Due to our
system model, we assume that one occurrence of a transient fault causes a single
transition either into a different or the same configuration class. We specify the
faults by a fault step probability matrix F := (fi,j) with the same dimensions as
matrix E, where the element fi,j gives the probability that the system transits
into a configuration of configuration class Cj from a configuration of configuration
class Ci in the event of a fault step.

There are different ways to arrive at a fault step probability matrix for a
system. Due to lack of more refined information, we adopt equal probabilities
for every transition from a configuration class, that is, ∀i, j ∈ {1, . . . , 2n} :
fi,j = 1/2n. For the DFS example, we use a fault step probability matrix F
with fi,j = 1/23 = 0.125. An alternative is to use a specific probability density
function to derive the transition probability between configuration classes. Such
a density function could be obtained by observing real-world systems.

Step 3. Using both, the computation step probability matrix E and the fault
step probability matrix F , we can determine the Markov chain that characterizes
the overall system by its corresponding system step probability matrix M . With
the probability qF that a fault occurs,

M := (mi,j) = (1 − qF) · E + qF · F (9)

Reliability and Availability Analysis of Self-stabilizing Systems 257

The element mi,j gives the probability that the system reaches a configuration in
configuration class Cj from a configuration in configuration class Ci if the system
performs a single computation or fault step. The matrix for the DFS example is

M =

⎛
⎜⎝

0.6344 0.0160 0.0160 0.0001 0.3331 0.0001 0.0001 0.0001
0.2221 0.4124 0.0001 0.0318 0.0001 0.3331 0.0001 0.0001
0.2221 0.0001 0.4124 0.0318 0.0001 0.0001 0.3331 0.0001
0.0001 0.1111 0.1111 0.4441 0.0001 0.0001 0.0001 0.3331
0.0001 0.0001 0.0001 0.0001 0.9357 0.0318 0.0318 0.0001
0.0001 0.0001 0.0001 0.0001 0.1111 0.8406 0.0001 0.0477
0.0001 0.0001 0.0001 0.0001 0.1111 0.0001 0.8406 0.0477
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.9991

⎞
⎟⎠

for qF = 0.001. In order to calculate steady-state probabilities, it must be checked
whether M is irreducible. If it is not in a particular case, the fault step probability
matrix F may be transformed to make M irreducible. Such transformations are
possible without significantly affecting the overall accuracy. Furthermore, M
always is finite, because the configuration space is abstracted to a finite set of
configuration classes. If M is irreducible, M is aperiodic in non-trivial cases
(i.e., qF < 1), because the system is self-stabilizing, that is, mg,g > 0. If M
is irreducible, finite, and aperiodic, the unique steady-state probabilities of the
corresponding Markov chain exist [6, p. 347–352]. Next, we describe how the
fault tolerance measures can be calculated from the Markov chain.

4.3 Determination of Fault Tolerance Measures

Based on the system analysis procedure described above and the system step
probability matrix M in particular, we will now determine lower bounds of the
discussed fault tolerance measures of self-stabilizing systems.

Reliability. For a self-stabilizing system, a lower bound for reliability R̂(k) at
time k = 1 is

R̂(1) = P (P1
S holds | P0

S holds) (10)

which is given by the element mg,g of the system step probability matrix M (as
the configuration class Cg contains all and only safe configurations). Note that
this probability not only comprises the probability of being in a safe configu-
ration and remaining there while executing a computation step in the absence
of a fault (which would calculate to (1 − qF)), but additionally the probability
that a fault step actually occurs instead of a computation step that carries the
system configuration from a safe configuration belonging to Cg into a possible
but not necessarily different safe configuration of Cg. For the DFS example, the
latter amounts for an additional probability mass of qF · 1/2n and, for the fault
probability of qF = 0.001, R̂(1) calculates to 0.999125 as given by element m8,8

of the matrix M . Generally, R̂(k) calculates as follows:

R̂(k) = (R̂(1))k, k > 0 (11)

This correctly takes into account that the configuration class Cg has never been
left in the course of k steps. Thus, the term expresses a lower bound of the
probability that the systems was correctly functioning and did not cease doing
so in the discrete time interval [0, 1, . . . , k].

258 A. Dhama, O. Theel, and T. Warns

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

time

re
lia

bi
lit

y

fault probability = 0.0005
fault probability = 0.001
fault probability = 0.002

(a) Reliability

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

time

in
st

an
ta

ne
ou

s
av

ai
la

bi
lit

y

fault probability = 0.0005
fault probability = 0.001
fault probability = 0.002

(b) Instantaneous availability

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fault probability

lim
iti

ng
 a

va
ila

bi
lit

y

(c) Limiting availability

Fig. 5. Reliability and availability of the DFS system

Figure 5(a) shows R̂(k) for the DFS example with fault probabilities qF of
0.0005, 0.001, and 0.002 over the course of 3000 steps. For example, when as-
suming a fault probability of 0.001, the reliability of the DFS system is at most
0.1122 after 2500 steps and with every further step not more than 1% are lost.
In other words, in the absence of activating any “repair actions,” the system will
cease to deliver correct service with a probability of 0.8879 no later than after
2500 steps. For a critical service, reliability might not be high enough. Fortu-
nately – except as in a trivial case where PS ≡ PA – self-stabilizing systems
inherently own those “repair actions.” Their effect on the probability that the
system can provide correct service is shown next.

Instantaneous availability. The lower bound for instantaneous availability
Â(k) can be derived for a given system by means of the system model as follows.

Â(k) = vk
g with vk = (MT)k · v0, k > 0 and v0 = (0, . . . , 0, 1)T (12)

Thus, Â(1) is the probability that the system remains in configurations belonging
to configuration class Cg either due to program or fault actions until the end of
step 1. This value is given by the entry in the g-th dimension of configuration
vector v1. Thus, Â(1) is always equal to R̂(1).

For further steps, always remaining in Cg is not necessarily required: the values
in dimensions 1 to g − 1 of vector v state the probabilities that faults cause
specific configuration class transitions that all leave class Cg. The probability
mass associated with these vector entries has positive impact on Â(k) for k > 1,
since either due to 1) faults or 2) program“repair actions”executed in subsequent
steps. Configuration class transitions from classes into configuration class Cg may
occur with some probability leading to a possible increase of the availability value
at time k. Thus – in contrast to reliability – repair actions occurring until time
k actually help to achieve a high probability level. The impact of faults can be
negative as well as positive: faults leading out of configuration class Cg decrease
availability whereas faults directly or indirectly leading into it cause an increase.
By “indirectly” we mean that certain combinations of subsequent repair actions
and/or faults might “steer the system” back into configuration class Cg.

Figure 5(b) shows Â(k) for the DFS example with fault probabilities qF of
0.0005, 0.001, and 0.002 during 3000 steps. As expected, when comparing the

Reliability and Availability Analysis of Self-stabilizing Systems 259

appropriate lower bounds of availability and reliability (see Fig. 5(a)), the posi-
tive impact of repair actions of a self-stabilizing systems is clearly visible: Even
for qF = 0.002, the instantaneous availability is always above 0.9. Compared to
a reliability of 0.1122 after 2500 steps, the instantaneous availability is 0.9072.

Limiting availability. Limiting availability A is defined as limt→∞ A(t) if the
limit exists. Thus, the lower bound on limiting availability Â for a given system
using the discrete time model evaluates to

Â = lim
k→∞

Â(k) (13)

if the limit exists. If the system step probability matrix M is aperiodic, finite,
and irreducible then Â can also be obtained by calculating the g-th dimension
of the steady-state probability vector v∗ of the system, that is,

Â = v∗
g with v∗ being the solution of v∗ = MT · v∗ (14)

Note that in (14), under the assumptions given, only a single solution of v∗ exists.
Consequently, there exists only a single, unique steady-state probability vector
and, therefore, also only a single, unique value for Â given a particular system.
Thus, Â is independent of any initial probability vector v0. This is important to
note, since a self-stabilizing system generally does not exhibit any fixed initial
configuration.

The steady-state probability vector of the DFS example is

v∗ = (0.0007, 0.0003, 0.0003, 0.0003, 0.0323, 0.0078, 0.0078, 0.9507)T

Thus, the availability of the DFS example is 0.9507 denoting the probability that
a system is in safe configuration if the external observer inspects the system. Fig-
ure 5(c) gives the availability of the DFS example when the fault probability qF
ranges from 0 to 1. As can be expected, the availability exponentially decreases
with increasing qF . However, the availability does not asymptotically approach 0
as faults may take a system into a safe configuration. Such faults have a positive
impact on availability amounting to 1/2n for qF = 1 under the assumption of
equal transition probabilities due to faults.

5 Related Work

Infinite state systems can be abstracted to finite state systems using predicate
abstraction as firstly proposed in [14]. This technique is commonly used in model
checking to prove the correctness of a system. Predicate abstraction is used in
[15] for verifying multiprocessor cache coherence protocol. Predicate diagrams
[16] are used to abstract infinite state systems and have been applied to verify
Dijkstra’s self-stabilizing mutual exclusion algorithm [17] in [18]. The reduction
of configurations to configuration classes in our approach can be seen as an
application of predicate abstraction. In particular, we apply predicate abstraction
to serve the purpose of making a quantitatively evaluation tractable.

260 A. Dhama, O. Theel, and T. Warns

In [19] a method to calculate fault tolerance measures for a system given by
CSP processes [20] is presented. They give an algorithmic method to derive an
automaton from a CSP process specification and, subsequently, transform this
automaton to a Markov process. Using this Markov process, they calculate some
fault tolerance measures such as reliability and expected time to a catastrophic
failure. In particular, they only address systems that eventually suffer from a
permanent failure, that is, a failure that cannot be corrected. In contrast, in our
approach, we consider self-stabilizing systems that suffer from transient faults.
Such a difference in fault assumptions determines the applicable fault tolerance
measures. Obviously, the calculation of limiting availability is useless under the
assumption of an eventual permanent failure. Furthermore, in [19], too, abstrac-
tion has been applied. In contrast to our approach, the authors abstract from
traces and not from system states and they address finite state systems, only.

6 Conclusions

We presented an approach for evaluating self-stabilizing systems (representing
instances of particular non-masking fault-tolerant systems) in terms of well-
accepted fault tolerance measures for masking fault-tolerant systems, namely
reliability, instantaneous availablity, and limiting availablity.

The analysis procedure presented can also be used to systematically optimize
a system. For example, consider the fundamental matrix M ′ := (I−Q)−1, where
Q is the submatrix of the matrix E omitting the last row and the last column and
I is the identity matrix. The elements of the matrix M ′ can be used to calculate
the mean time to repair (while faults may occur) of a system (cf. [6, p. 392–396]).
This allows to systematically add repair operations to a self-stabilizing system
hence optimizing its availability. Likewise, the analysis procedure allows to opti-
mize the communication graph of a system in a systematic fashion, for example,
by reducing the number of neighbors of a process to limit error propagation.

In the scope of this paper, we restricted ourselfs to the use of a fixed system
model, for example, by assuming read/write atomicity. However, this is not an
inherent limitation of our approach. The approach can be extended to other
system models which will be a part of our future work.

References

1. Gärtner, F.C.: Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys 31(1) (1999) 1–26

2. Helal, A.A., Heddaya, A.A., Bhargava, B.B.: Replication Techniques in Distributed
Systems. Kluwer Academic Publishers (1996)

3. Pease, M., Shostak, R., Lamport, L.: Reaching Agreement in the Presence of Faults.
Journal of the ACM 27(2) (1980) 228–234

4. Dolev, S.: Self-Stabilization. MIT Press (2000)
5. Khalil, H.K., Teel, A.R., Georgiou, T.T., Praly, L., Sontag, E.: Stability. In Levine,

W.S., ed.: The Control Handbook. CRC Press, Inc (1995) 889 – 908

Reliability and Availability Analysis of Self-stabilizing Systems 261

6. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer
Science Applications. 2nd edn. John Wiley and Sons Ltd. (2002)

7. Somani, A.K., Vaidya, N.H.: Understanding Fault Tolerance and Reliability. Com-
puter 30(4) (1997) 45–50

8. Suri, N., Hugue, M.M., Walter, C.J.: Reliability Modeling of Large Fault-tolerant
Systems. In: 22nd Intern. Fault-Tolerant Comp. Symp. IEEE (1992) 212–220

9. Amir, Y., Wool, A.: Optimal Availability Quorum Systems: Theory and Practice.
IPL 65(5) (1998) 223–228

10. Babaog̃lu, Ö.: On the reliability of consensus-based fault-tolerant distributed com-
puting systems. ACM Transactions on Computer Systems 5(4) (1987) 394–416

11. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE ToDSC 1(1) (2004) 11–33

12. Hamming, R.W.: Error-detecting and Error-correcting Codes. Bell System Tech-
nical Journal 29(2) (1950) 147–160

13. Collin, Z., Dolev, S.: Self-stabilizing Depth First Search. IPL 49(6) (1994) 297–301
14. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: 9th

Intern. Conf. on CA Verification. No. 1254 in LNCS (1997) 72–83
15. Das, S., Dill, D.L., Park, S.: Experience with Predicate Abstraction. In: 11th

Intern. Conf. on CA Verification, Springer-Verlag (1999)
16. Cansell, D., Méry, D., Merz, S.: Predicate Diagrams for the Verification of Reactive

Systems. In: 2nd Intl. Conf. Integrated Formal Methods (IFM 2000). Vol. 1945 of
LNCS., Springer-Verlag (2000) 380–397

17. Dijkstra, E.W.: Self-stabilizing Systems in Spite of Distributed Control. CACM
17(11) (1974) 643–644

18. Cansell, D., Méry, D., Merz, S.: Formal Analysis of a Self-stabilizing Algorithm us-
ing Predicate Diagrams. In Wirsing, M., ed.: Workshop Integrating Diagrammatic
and Formal Spec. Techniques (GI-/ÖCG-Jahrestagung). Vol. 157/I. (2001) 39–45

19. Sorensen, E.V., Nordahl, J., Hansen, N.H.: From CSP mMdels to Markov Models.
IEEE ToSE 19(6) (1993) 554 – 570

20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall Int. (1985)

Circle Formation of Weak Mobile Robots

Yoann Dieudonné1, Ouiddad Labbani-Igbida2, and Franck Petit1

1 LaRIA CNRS FRE 2733, University of Picardie Jules Verne, Amiens, France
2 CREA, University of Picardie Jules Verne, Amiens, France

Abstract. The Circle Formation Problem (CFP) consists in the design
of a protocol insuring that starting from an initial arbitrary configura-
tion, n robots eventually form a regular n-gon. In this paper, we present
the first protocol which deterministically solves CFP in finite time for
any number of robots, provided that n /∈ {4, 6, 8}. The proposed protocol
works in the semi-synchronous model introduced in [1]. The robots are
assumed to be uniform, anonymous, oblivious, and they share no kind of
coordinate system nor common sense of direction.

1 Introduction

In this paper, we address the class of distributed systems where the computing
units are autonomous mobile robots (also sometimes referred to as sensors or
agents), i.e., devices equipped with sensors which do not depend on a central
scheduler and designed to move in a two-dimensional plane. Also, we assume
that the robots cannot remember any previous observation nor computation
performed in any previous step. Such robots are said to be oblivious (or memo-
ryless). The robots are also uniform and anonymous, i.e, they all have the same
program using no local parameter (such that an identity) allowing to differenti-
ate any of them. Moreover, none of them share any kind of common coordinate
mechanism or common sense of direction, and they communicate only by ob-
serving the position of the others.

The motivation behind such a weak and unrealistic model is the study of the
minimal level of ability the robots are required to have in the accomplishment
of some basic cooperative tasks in a deterministic way, e.g., [2,3,4,5]. Among
them, the Circle Formation Problem (CFP) has received a particular atten-
tion [6,7,8,9,10,11]. The CFP consists in the design of a protocol insuring that
starting from an initial arbitrary configuration, all n robots eventually form a
circle with equal spacing between any two adjacent robots. In other words, the
robots are required to form a regular n-gon when the protocol terminated.

Related Works. An informal CFP algorithm is presented in [6] to show the re-
lationship between the class of pattern formation algorithms and the concept of
self-stabilization in distributed systems [12]. In [7], an algorithm based on heuris-
tics is proposed for the formation of a circle approximation. A CFP protocol is
given in [3] for non-oblivious robots with an unbounded memory. Two determin-
istic algorithms are provided in [8,9]. In the former work, the robots asymptoti-
cally converge toward a configuration in which they are uniformly distributed on

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 262–275, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Circle Formation of Weak Mobile Robots 263

the boundary of a circle. This solution is based on an elegant Voronoi Diagram
construction. The latter work avoid this construction by making an extra assump-
tion on the initial position of robots. In [13], properties on Lyndon words are used
to achieve a Circle Formation Protocol (the exact n-gon is eventually built) for
a prime number of robots. All the above solutions work in the semi-synchronous
model introduced in [1]. The solution in [11] works in a fully asynchronous model,
but when n is even, the robots may only achieve a biangular circle—the distance
between two adjacent robots is alternatively either α or β.

A common strategy in order to solve a non trivial problem as CFP is to
combine subproblems which are easier to solve. In general, CFP is separated
into two distinct parts: The first subproblem consists in placing the robots along
the boundary of a circle C, without considering their relative positions. The
second subproblem, called uniform transformation problem (UTP), consists in
starting from there, and arranging robots, without them leaving the circle C,
evenly along the boundary of C. In [8], the authors present an algorithm, for
the second subproblem which converges toward a homogeneous distribution of
robots, but it does not terminate deterministically. They conjecture that there
is no deterministic solution solving UTP in finite time in the semi-synchronous
model in [1]—the robots being uniform, anonymous, oblivious, and none of them
sharing any kind of coordinate system or common sense of direction. In a recent
paper [14], the validity of the conjecture is proven. In the same paper, the authors
propose two deterministic solutions for UTP by assuming an extra assumption:
The robots agree on a clockwise direction of the circle. The first solution solves
UTP by assuming that the desired final distance d between two robots is know
to them. The second solution does not require that the robots knows d. This
solution leads the system in an ε-approximate regular n-gon, i.e., the actual
distance between the robots is eventually equal to d′ such that |d − d′| ≤ ε for a
given ε > 0.

Contribution. We propose the first protocol which deterministically solves CFP
in finite time for any number n of weak robots, provided that n /∈ {4, 6, 8}. The
proposed protocol works in the semi-synchronous model introduced in [1]. By
weak, we mean that the robots are assumed to be uniform, anonymous, oblivious,
and they share no kind of coordinate system nor common sense of direction. Our
protocol is not based on UTP, but it is based on concentric circles formed by
the robots.

Outline of the Paper. In the next section (Section 2), we describe the distributed
systems and the model we consider in this paper. In the same section, we present
the problem considered in this paper. The algorithm is proposed in Section 3.
Finally, we conclude this paper in Section 4.

2 Preliminaries

In this section, we define the distributed system, basic definitions and the prob-
lem considered in this paper.

264 Y. Dieudonné, O. Labbani-Igbida, and F. Petit

Distributed Model. We adopt the model introduced in [1], in the remainder
referred to as SSM . The distributed system considered in this paper consists of
n robots r1, r2, · · · , rn—the subscripts 1, . . . , n are used for notational purpose
only. Each robot ri, viewed as a point in the Euclidean plane, moves on this two-
dimensional space unbounded and devoid of any landmark. When no ambiguity
arises, ri also denotes the point in the plane occupied by that robot. It is assumed
that the robots never collide and that two or more robots may simultaneously
occupy the same physical location. Any robot can observe, compute and move
with infinite decimal precision. The robots are equipped with sensors allowing
to detect the instantaneous position of the other robots in the plane. Each robot
has its own local coordinate system and unit measure. The robots do not agree
on the orientation of the axes of their local coordinate system, nor on the unit
measure. They are uniform and anonymous, i.e, they all have the same program
using no local parameter (such that an identity) allowing to differentiate any
of them. They communicate only by observing the position of the others and
they are oblivious, i.e., none of them can remember any previous observation nor
computation performed in any previous step.

Time is represented as an infinite sequence of time instant t0, t1, . . . , tj , . . . Let
P (tj) be the multiset of the positions in the plane occupied by the n robots at
time tj (j ≥ 0). For every tj , P (tj) is called the configuration of the distributed
system at time tj . P (tj) expressed in the local coordinate system of any robot
ri is called a view, denoted vi(tj). At each time instant tj (j ≥ 0), each robot ri

is either active or inactive. The former means that, during the computation step
(tj , tj+1), using a given algorithm, ri computes in its local coordinate system
a position pi(tj+1) depending only on the system configuration at tj , moves
towards pi(tj+1) during (tj , tj+1), and takes place on the computed position
pi(tj+1) at time tj+1—pi(tj+1) can be equal to pi(tj), making the location of ri

unchanged. In the latter case, ri does not perform any local computation and
remains at the same position.

The concurrent activation of robots is modeled by the interleaving model in
which the robot activations are driven by a fair scheduler. At each instant tj
(j ≥ 0), the scheduler arbitrarily activates a (non empty) set of robots. Fairness
means that every robot is infinitely often activated by the scheduler.

The Circle Formation Problem. In this paper, the term “circle” refers to a circle
having a radius strictly greater than zero. Consider a configuration at time tk
(k ≥ 0) in which the positions of the n robots are located at distinct positions
on the circumference of a circle C. At time tk, the successor rj , j ∈ 1 . . . n, of
any robot ri, i ∈ 1 . . .n and i �= j, is the single robot such that no robot exists
between ri and rj on C in the clockwise direction. Given a robot ri and its
successor rj on C centered in O:

1. ri is said to be the predecessor of rj ;
2. ri and rj are said to be adjacent ;
3. r̂iOrj denotes the angle centered in O and with sides the half-lines [O, ri)

and [O, rj) such that no robots (other than ri and rj) is on C inside r̂iOrj .

Circle Formation of Weak Mobile Robots 265

Definition 1 (regular n-gon). A cohort of n robots (n ≥ 2) forms (or is
arranged in) a regular n-gon if the robots take place on the circumference of
a circle C centered in O such that for every pair ri, rj of robots, if rj is the
successor of ri on C, then r̂iOrj = δ, where δ = 2π

n . The angle δ is called the
characteristic angle of the n-gon.

The problem considered in this paper, called CFP (Circle Formation Problem)
consists in the design of a distributed protocol which arranges a group of n
(n > 2) mobile robots with initial distinct positions into a regular n-gon in finite
time. (We ignore the trivial cases n ≤ 2 because in that cases, they always form
a regular n-gon.)

3 Circle Formation Protocol

In this section, we present the main result of this paper. We first provide par-
ticular configurations of the system which we use for simplifying the design and
proofs of the protocol. Next, the protocol is presented.

3.1 Definitions and Basics Properties

Definition 2 (Biangular circle). A cohort of n robots (n ≥ 2) forms (or is
arranged in) a biangular circle if the robots take place on the circumference of
a circle C centered in O and there exist two non zero angles α, β such that for
every pair ri, rj of robots, if rj is the successor of ri on C, then r̂iOrj ∈ {α, β}
and α and β alternate in the clockwise direction.

Remark 1. In a biangular circle, α + β = 4π
n .

Obviously, if α = β then, for any n value, the n robots form a regular n-gon. If
α �= β, then n must be even (n = 2p, p > 1). In that case, the biangular circle
is called a strict biangular circle—refer to Figure 1.

Definition 3 (regular (k, n)-gon). A cohort of k robots (0 < k ≤ n) forms a
regular (k, n)-gon if their positions coincide with a regular n-gon such that n−k
robots are missing.

α

α

β

β

β

α

β

α

Fig. 1. An example showing a strict biangular circle (α �= β)

266 Y. Dieudonné, O. Labbani-Igbida, and F. Petit

An example of a (k, n)-gon is given in Figure 2 (Case (b)). Given a (k, n)-gon
such that k ≥ 2, if p robots are missing (w.r.t. the corresponding n-gon) between
two adjacent robots, then r̂Or′ = (p + 1)2π

n . Given a (1, n)-gon, the number of
missing robots is equal to n− 1. Remark that, since the uniqueness of any circle
is guaranteed by passing through only 3 points, there is an infinity of circles
passing through 1 or 2 robots. So, if k ≤ 2, then there is an infinity of (k, n)-gon
passing through k robots.

δ

δ δ

δ

δ

δδ

δ

(a) A 8-gon (α = π
4
)

δ

2 δ

2 δ

3 δ

(b) A (4, 8)-gon obtained
removing 4 robots from the

corresponding 8-gon

Fig. 2. An example showing a (k, n)-gon

LetC1 andC2 be two circles having their radius greater than0.C1andC2 are said
to be concentric if they share the same center but their radii are different. Without
loss of generality, in the remainder, given a pair (C1, C2) of concentric circles, C1

(resp. C2) indicates the circle with the greatest radius (resp. smallest radius).

Definition 4 (Concentric Configuration). The system is said to be in a
concentric configuration if there exists a pair of concentric circles (C1, C2) and
a partition of the n robots into two subsets A and B such that every robot of A
(respectively B) is located on C1 (resp. C2).

C

C1

2

(a) An example of a concentric
configuration with n = 12

(b) An example showing that the
pair of concentric circle may not

be unique with n ≤ 8

Fig. 3. Examples of concentric configurations

Circle Formation of Weak Mobile Robots 267

Remark 2. A �= ∅ and B �= ∅.
Remark 3. If n ≤ 8, then the pair (C1, C2) may not be unique.

An example illustrating Remark 3 is given in Figure 3.

Lemma 1. If the system is in a concentric configuration and if n > 8, then
there exists a single pair (C1, C2) in which all the robots are located.

Proof. Assume by contradiction, that the system is in a concentric configuration,
n > 8 and there exists two pairs γ = (C1, C2) and γ′ = (C′

1, C
′
2) such that γ �= γ′

(i.e., C1 �= C′
1, C1 �= C′

2, C2 �= C′
1 and C2 �= C′

2) and in which all the robots are
located. Since two different circles share at most two points, the pairs γ can share
at most eight robots with γ′ (refer to Case (b) in Figure 3). Since by assumption
n ≥ 9, there exists at least one robot which is located on either C1 or C2, but
which is located on neither C′

1 nor C′
2. This contradicts the fact that each robot

is located either on C′
1 or on C′

2. �

So, from Lemma 1, when the system is in a concentric configuration and n ≥ 9,
the pair (C1, C2) is unique. In such a configuration, given a robot r, proj(r)
denotes the projection of r on C1, i.e., the intersection between the half-line
[O, r) and C1, where c is the center of (C1, C2). Obviously, if r is located on
C1, then proj(r) = r. We denote by Π the projection set of the n robots. In a
concentric configuration, if |Π | = n, then the radii passing through the robots
on C1 split up the disk bounded by C1 into sectors. Note that the condition
“|Π | = n” induces that the sectors are defined if and only if, for any robot r
located on C2, no robot on C1 occupies proj(r)—refer to Figure 4.

C1

C2

(a)

r
i

C1

C2

r
k

(b)

Fig. 4. The concentric configuration shown in Case (a) is split up into sectors, whereas
the one in Case (b) is not because robots on C1 are located on the projections of ri

and rk

Definition 5 (quasi n-gon). A cohort of n robots (n ≥ 9) forms an (arbitrary)
quasi n-gon iff the three following conditions hold:

268 Y. Dieudonné, O. Labbani-Igbida, and F. Petit

1. The robots form a concentric configuration divided into sectors;
2. The robots on C1 form a regular (k, n)-gon;
3. In each sector, if p robots are missing on C1 to form a regular n-gon, then

p robots are located on C2 in the same sector.

A quasi n-gon is said to be aligned iff Π coincides with a regular n-gon. Two
quasi n-gon are shown in Figure 5, the first one is arbitrary, the other one is
aligned.

δ

δ

δ

δ

δ

2δ

3δ

4δ

2δ

(a) An arbitrary quasi n-gon

δ
δ δ

δ

δ

δ

δ

δ

δ
δδ

δ

δ

δ

δ

δ

(b) An aligned quasi n-gon

Fig. 5. Two quasi n-gon with n = 16

3.2 The Protocol

Let us consider the overall scheme of our protocol presented in Algorithm 1.
It is mainly based on the particular configurations presented in the previous
subsection.

As mentioned in the introduction, the proposed scheme is combined with the
protocol presented in [11] which leads a cohort of n robots from an arbitrary to
a biangular configuration, with n ≥ 2. In the remainder, we refer to the protocol
in [11] as Procedure <A�B>—from an Arbitrary configuration to a Biangular
configuration. The model used in [11], called Corda [5], allows more asynchrony
among the robots than the semi-synchronous model used in this paper—let us
call it SSM . However, we borrow the following result from [5]:

Theorem 1. [5] Any algorithm that correctly solves a problem P in Corda,
correctly solves P in SSM .

The above result means that Procedure < A � B > can be used in SSM .
Obviously, Procedure < A � B > trivially solves the CFP if the number of
robots n is odd. So, to solve CFP for any number of robots, it remains to deal
with a system in a strict biangular configuration when n is even.

In the remainder, we consider that the system is in an arbitrary configuration if
the robots do not form either (1) a regular n-gon, (2) a quasi n-gon, or (3) a strict
biangular circle. Let us describe the general scheme provided by Algorithm 1.

Circle Formation of Weak Mobile Robots 269

Procedure <A�B > excluded, the protocol mainly consists of three proce-
dures. The first one, called Procedure <aQ�Ngon> is used when the system
form an aligned quasi n-gon. It leads the system into a regular n-gon. The aim of
Procedure <Q�aQ> is to transform the cohort from an arbitrary quasi n-gon
into an aligned quasi n-gon. The last procedure, Procedure <B �Q>, is used
when the robots form a biangular circle and arranges them into either a regular
n-gon or an arbitrary quasi n-gon, depending on the synchrony of the robots.
The details of those procedures are given in the remainder of this section.

Let us explain how the procedures are used by giving the overall scheme of
Algorithm 1. Starting from an arbitrary configuration, using Procedure < A�

B >, the system is eventually in a biangular circle. If n is odd, then the robots
form a regular n-gon, i.e., CFP is solved. Otherwise (n is even), the robots form
either a regular n-gon or a strict biangular circle. Starting from the latter case,
each robot executes Procedure < B � Q >. As mentioned above, the resulting
configuration can be either a regular n-gon or a quasi n-gon. From a quasi n-gon,
the robots execute either Procedure <aQ�Ngon> or Procedure <Q�aQ>,
depending on whether the quasi n-gon is aligned or not. Both procedures <aQ�

Ngon> and < Q� aQ> require no ambiguity on the concentric configuration
forming the quasi n-gon, i.e n ≥ 9. However, since < aQ�Ngon> and <Q�

aQ > are called when n is even only, only the cases n = 4, 6 and 8 are not
solved by our algorithm. So, in the remainder, we assume that n /∈ {4, 6, 8}.
Finally, starting from an aligned quasi n-gon, the resulting configuration of the
execution of Procedure <aQ�Ngon> is a regular n-gon. Otherwise, the quasi
n-gon becomes aligned by executing Procedure <Q�aQ>.

Algorithm 1. Procedure < A � Ngon > for any ri in a cohort of n robots
(n �= 4, 6, or 8)
n:= the number of robots;
if n is even
then if the robots do not form a regular n-gon

then if the robots form a quasi n-gon
then if the robots form an aligned quasi n-gon

then Execute <aQ�Ngon>;
else Execute <Q�aQ>;

else if the robots form a strict biangular circle
then Execute <B�Q>;
else Execute <A�B>;

else Execute <A�B>;

Theorem 2. Procedure < A � Ngon > is a deterministic Circle Formation
Protocol for any number n of robots such that n /∈ {4, 6, 8}.
The above theorem follows from Procedure < A � Ngon>—Algorithm 1, [11],
Lemmas 2, 4, and 7. In the remainder of this section, the procedures and the
proofs of the three above lemmas are presented in separate paragraphs.

270 Y. Dieudonné, O. Labbani-Igbida, and F. Petit

Procedure <aQ�Ngon>. Starting from an aligned quasi n-gon, each robot on
C2 needs to move toward its projection on C1 whereas it is required that any
robot on C1 remains at the same position because it is located on its projection.
This obvious behavior is made of the following single instruction:

move to proj(ri)

Since we have n ≥ 9 in quasi n-gon, from Lemma 1, the pair (C1, C2) is unique.
Moreover, it remains unchanged while the regular n-gon is not formed. So, the
following result holds:

Lemma 2. Starting from an aligned quasi n-gon, Procedure < aQ � Ngon >
solves the Circle Formation Problem.

Procedure < Q � aQ >. The idea behind Procedure < Q � aQ > consists in
changing a quasi n-gon into an aligned quasi n-gon by arranging the robots on
C2 in each sector—refer to Figure 5.

In the following of the paragraph, denote a quasi n-gon by the corresponding
pair of concentric circles (C1, C2). Two quasi n-gons (Cα

1 , Cα
2) and (Cβ

1 , Cβ
2) are

said to be equivalent if Cα
1 = Cβ

1 , Cα
2 = Cβ

2 and the positions of the robots on Cα
1

and Cβ
1 are the same ones. In other words, the only allowed possible difference

between two equivalent quasi n-gons (Cα
1 , Cα

2) and (Cβ
1 , Cβ

2) is different positions
of robots between Cα

2 and Cβ
2 in each sector.

Procedure < Q � aQ > is shown Algorithm 2. This procedure assumes that
the initial configuration is an arbitrary quasi n-gon. In such a configuration, we
build, a partial order among the robots on C2 belonging to a common sector to
eventually form an aligned quasi n-gon.

Algorithm 2. Procedure < Q � aQ > for any robot ri in an arbitrary quasi
n-gon
C1 := greatest concentric circle; C2 := smallest concentric circle;
if ri are located on C2

then MySector := sector wherein ri is located;
PS := FindF inalPos(Mysector);
FRS := set of robots in MySector which are not located on a position in PS;
if FRS �= ∅
then EFR := ElectFreeRobots(FRS);

if ri ∈ EFR then move to Position Associate(ri);

Let p1, . . . , ps be the final positions on C2 in the sector S in order to form
the aligned quasi n-gon. Let B1, B2 be the two points located on C2 at the
boundaries of S. Of course, if only one robot is located on C1 (i.e. there exists
only one sector), then B1 = B2. For each i ∈ 1 . . . s, pi is the point on C2 in S such
that B̂1Opi = 2iπ

n , pi �= B1 and pi �= B2. Clearly, while the distributed system
remains in an equivalent quasi n-gon, all the final positions remain unchanged

Circle Formation of Weak Mobile Robots 271

for every robot. A final position pi, i ∈ 1 . . . s, is said to be free if no robot takes
place at pi. Similarly, a robot ri on C2 in S is called a free robot if its current
position does not belong to {p1, . . . , ps}.

Define Function F indF inalPos(S) which returns the set of final positions on
C2 in S with respect to B1. Clearly, in S all the robots compute the same set of
final positions, stored in PS. Each robot also temporarily stores the set of free
robots in the variable called FRS. Of course, since the robots are oblivious, each
active robot on C2 re-compute PS and FRS each time Procedure <Q�aQ>
is executed. Basically, if FRS = ∅ all the robots occupy a final position in the
sector S. Otherwise, the robots move in waves to the final positions in their sector
following the order defined by Function ElectFreeRobots(). In each sector, the
elected robots are the closest free robots from B1 and B2. Clearly, the result of
Function ElectFreeRobots() return the same set of robots for every robot in the
same sector. Also, the number of elected robots in each sector is at most equal
to 2, one for each point B1 and B2. Note that it can be equal to 1 when there
is only one free robot, i.e., when only one robot in S did not reach the last free
position.

Function Associate(r) assigns a unique free position to an elected robot as
follows:

If ElectFreeRobots() returns only one robot ri, then ri is associated to the
single free remaining position pi in its sector. This allows ri to move to pi. If
ElectFreeRobots() returns a pair of robots {ri, ri′} (ri �= ri′), then the closest
robot to B1 (respectively, B2) is associated with the closest position to B1 (resp.,
B2) in S. Note that, even if the robots may have opposite clockwise directions,
ri, ri′ , and their associated positions are the same for every robot in S.

Lemma 3. According to Procedure < Q � aQ >, if the robots are in a quasi
n-gon at time tj (j ≥ 0), then at time tj+1, the robots are in an equivalent quasi
n-gon.

Proof. By assumption, at each time instant tj , at least one robot is active. So, by
fairness, starting from a quasi n-gon, at least one robot executes Procedure <
Q�aQ>. Assume first that no robot executing Procedure <Q�aQ> moves
from tj to tj+1. In that case, since the robots are located on the same positions at
tj and at tj+1, the robots are in the same quasi n-gon at tj+1. Hence, the robots
remains in an equivalent quasi n-gon seeing that any quasi n-gon is equivalent
to itself. So, at least one robot moves from tj to tj+1. However, in each sector at
most two robots are allowed to move toward distinct free positions on C2 only
inside their sector. Thus, the robots remains in an equivalent quasi n-gon. �

The following lemma follows from Lemma 3 and fairness:

Lemma 4. Procedure <Q�aQ> is a deterministic algorithm transforming an
arbitrary quasi n-gon into an aligned n-gon in finite time.

Procedure < B � Q >. We assume that initially, the robots form a strict bian-
gular circle. In such a configuration, every active robot ri applies the following
scheme:

272 Y. Dieudonné, O. Labbani-Igbida, and F. Petit

α
α

α

α
α

α

δ

δ

δ

δ

δ

δδ

δ

δ

δ

δ

δ

(a) If all the robots are active at tj ,
then the robots form a regular n-gon

at tj+1

α
α

α

α
α

α

δ

δ

δ
2δ

3δ

4δ

(b) If some robots are inactive at tj ,
then the robots form a quasi n-gon at

tj+1

Fig. 6. An example showing the principle of Procedure <B�Q>

1. Robot ri computes the concentric circle C′ whose radius is twice the radius
of the strict biangular circle C;

2. Robot ri considers its neighbor ri′ such that r̂iOri′ = α and ri moves away
from r′i to the position pi(tj+1) on C′ with an angle equal to π

n − α
2 . More

precisely, ̂pi(tj+1)Opi(tj) = π
n − α

2 and ̂pi(tj+1)Opi′ (tj) = π
n + α

2 —refer to
Figure 6.

Let us consider two possible behaviors depending on the synchrony of the
robots.

1. Assume that every robot in the strict biangular circle is active at time tj . In
that case, at tj+1, the robots form a regular n-gon—see Case (a) in Figure 6.
Indeed, there are two cases:

(a) If ̂pi(tj)Opi′ (tj) = α, then ̂pi(tj+1)Opi′ (tj+1) = α + 2(π
n − α

2).

So, in that case, ̂pi(tj+1)Opi′ (tj+1) = 2π
n .

(b) If ̂pi(tj)Opi′ (tj) = β, then ̂pi(tj+1)Opi′ (tj+1) = β − 2(π
n − α

2).

So, in that case, ̂pi(tj+1)Opi′ (tj+1) = β − 2π
n + α, which also equal to

β − 4π
n + α + 2π

n . From Remark 1, we know that β = 4π
n − α. Hence,

̂pi(tj+1)Opi′ (tj+1) = β − β + 2π
n , which is equal to 2π

n .
Note that (1) the trajectories of the robots do not cross between them, and
(2) all the angles α (resp. β) increases up (resp. decrease down) to 2π

n .
2. Assume that some robots, in the strict biangular circle, are not active at

time tj . In that case, there is only a subset of robots moving toward C′

from tj to tj+1. Then, the robots form a quasi n-gon at time tj+1—see Case
(b) in Figure 6. Indeed at tj+1, the robots are in a concentric configuration

Circle Formation of Weak Mobile Robots 273

where C1 is C′ and C2 is the initial circle C (i.e the biangular circle at time
tj). Furthermore on C1, the robots form a regular (k, n)-gon where n − k
represent the subset of robots remaining inactive at time tj .

To show that, if the system eventually do not form a regular n-gon, we need to
prove that it eventually forms a quasi n-gon. Following the above explanations,
it remains to show that, in the above second case, the configuration is sliced
into sectors at time tj+1 such that, in each sector, the missing robots on C1 are
located on C2.

Lemma 5. Using Procedure <B�Q>, if all the robots are in a strict biangular
circle at time tj, then the configuration is sliced into sectors at tj+1 when the
n-gon is not formed.

Proof. As already stated previously, the robots form a concentric configuration
at time tj+1. Moreover, at tj , the robots are in a strict biangular circle such that
α+β = 4π

n . Since the biangular circle is strict, without loss of generality, we can
assume that α < β with 0 < α < 2π

n and 2π
n < β < 4π

n .
Assume, by contradiction, that there exists one robot ri on C2 located on

the radius passing through any robot ri′ on C1 at tj+1. This implies that at tj ,
r̂iOri′ = π

n − α
2 corresponding to the angle that ri′ moved away from ri on C′

from tj to tj+1. Furthermore, at tj , ri′ is active and ri is inactive. Note that
̂pi(tj)Opi′(tj) is either equal to α or β. Thus, either π

n − α
2 = α or π

n − α
2 =

β. However, π
n − α

2 < 2π
n , and 2π

n < β < 4π
n . Hence, π

n − α
2 = α, and then

̂pi(tj)Opi′(tj) = α. By executing Procedure < B � Q >, ri′ moves away from
ri with an angle π

n − α
2 , where 0 < π

n − α
2 < 2π

n . Since ri is inactive we have
̂pi(tj+1)Opi′(tj+1) = (π

n − α
2) + α. Furthermore, Procedure <B �Q> is called

only when n ≥ 9, and thus, we have 0 < (π
n − α

2) + α < 2π
9 + 2π

9 = 4π
9 and

0 < ̂pi(tj+1)Opi′ (tj+1) < 4π
9 . Thus, at tj+1, ri and ri′ are not on the same

radius. A contradiction. �

Lemma 6. Using Procedure <B�Q>, if all the robots form a strict biangular
circle at time tj, then in each sector, the missing robots on C1 are located on C2

at tj+1 when the n-gon is not formed.

Proof. Clearly, when all the robots are active and move simultaneously by ap-
plying our method, the trajectories do not cross between them (see Figure 6).
Assume by contradiction, that at time tj+1, there exists any sector with one
extra robot r. If all the robots have been active at time tj , r would have crossed
any other trajectory in order to form a regular n-gon. A contradiction. �

The following lemma directly follows from the algorithm, Lemmas 5 and 6:

Lemma 7. Procedure < B � Q > is a deterministic algorithm transforming a
biangular circle into either a regular n-gon or quasi n-gon in finite time.

274 Y. Dieudonné, O. Labbani-Igbida, and F. Petit

4 Concluding Remarks

In this paper, we studied the problem of forming a regular n-gon with a cohort of
n semi-synchronous robots (CFP). We presented a new approach for this problem
based on concentric circles formed by the robots. Combined with the solution
in [11], our solution works with any number of robots n, except if n = 4,6 or 8.
The main reasons that n must be different from 4, 6 or 8 comes from the fact
that the robots may confuse in the recognition of the particular configurations
if n is lower than 9. The CFP remains open for these three special cases. In a
future work, we would like to investigate CFP in a weakest model such Corda.

Acknowledgements

We are grateful to Vincent Villain for the valuable discussions on the subject and
to an anonymous reviewer who helped us improving the presentation of the paper.

References

1. Suzuki, I., Yamashita, M.: Agreement on a common x-y coordinate system by a group
of mobile robots. Intelligent Robots: Sensing, Modeling and Planning (1996) 305–321

2. Sugihara, K., Suzuki, I.: Distributed motion coordination of multiple mobile robots.
In: IEEE International Symosium on Intelligence Control. (1990) 138–143

3. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots - formation of
geometric patterns. SIAM Journal of Computing 28(4) (1999) 1347–1363

4. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak
robots: The role of common knowledge in pattern formation by autonomous mobile
robots. In: 10th Annual International Symposium on Algorithms and Computation
(ISAAC 99). (1999) 93–102

5. Prencipe, G.: Distributed Coordination of a Set of Autonomous Mobile Robots.
PhD thesis, Dipartimento di Informatica, University of Pisa (2002)

6. Debest, X.A.: Remark about self-stabilizing systems. Communications of the ACM
38(2) (1995) 115–117

7. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. Journal of Robotic Systems 3(13) (1996) 127–139

8. Defago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots
with no common sense of orientation. In: 2nd ACM International Annual Workshop
on Principles of Mobile Computing (POMC 2002). (2002) 97–104

9. Chatzigiannakis, I., Markou, M., Nikoletseas, S.: Distributed circle formation for
anonymous oblivious robots. In: 3rd Workshop on Efficient and Experimental
Algorithms. (2004) 159–174

10. Samia, S., Défago, X., Katayama, T.: Convergence of a uniform circle formation
algorithm for distributed autonomous mobile robots. In: Japan-Tunisia Workshop
on Computer Systems and Information Technology (JT-CSIT 2004). (2004)

11. Katreniak, B.: Biangular circle formation by asynchronous mobile robots. In: 12th
International Colloquium on Structural Information and Communication Complex-
ity (SIROCCO 2005). (2005) 185–199

12. Dolev, S.: Self-Stabilization. The MIT Press (2000)

Circle Formation of Weak Mobile Robots 275

13. Dieudonné, Y., Petit, F.: Circle formation of weak robots and Lyndon words. Tech-
nical Report TR 2006-05, LaRIA, CNRS FRE 2733, University of Picardie Jules
Verne, Amiens, France (2006) http://hal.ccsd.cnrs.fr/ccsd-00069724, submitted for
publication.

14. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment algorithms for mobile
sensors on a ring. In: 2nd International Workshop on Algorithmic Aspects of
Wireless Sensor Networks (Algosensors 2006). (2006) To appear.

Self-stabilizing Device Drivers�

(Extended Abstract)

Shlomi Dolev1 and Reuven Yagel1,2

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, 84105, Israel

{dolev, yagel}@cs.bgu.ac.il
2 Rafael Ltd. 3M, POB 2205, Haifa 31021, Israel

Abstract. This work presents approaches for designing the input-output
device management components of self-stabilizing operating systems. As
an example, we demonstrate the non-stability of the ata standard pro-
tocol for storage devices. We state the requirements that an operating
system and i/o devices should satisfy in order to become self-stabilizing.
Then we suggest two solutions to satisfy these requirements. The first
uses leases in order to guarantee progress from the i/o device side. The
second assumes stabilization of the i/o device, and uses snapshots to
perform consistency checks. By supplying an infrastructure for practical
self-stabilizing systems, robust and dependable systems can be achieved.

Keywords: self-stabilizing systems, device driver failures, ata interface
standard.

1 Introduction

Device drivers are known to be a major cause of operating system failures
[6,25,27]. This phenomena is often connected to a combination of reasons. First,
drivers are usually loaded into the operating system kernel’s address space and
are running in privileged processor modes where an error has a greater effect
on the total system behavior. Additionally, usually essential system parts are
designed, built, verified and tested with extra care while drivers are many times
brought from the outside. The following are techniques which are used to deal
with these failures: (a) reducing the driver’s access to system’s resources [34,13],
(b) containment of errors in realtime through kinds of virtualization [27,2], (c)
using typed languages [13,28], and (d) static analysis of the drivers’ code, and of
their resource usage [4,30]. Applying such techniques helps improve the system’s
robustness, but the bottom line is that in systems running for a long period
of time, errors (e.g., soft errors [17]) in device drivers accumulate and lead to
undesired behavior.
� Partially supported by Rafael, Israeli Ministry of Science, Deutsche Telekom, Rita

Altura Trust Chair in Computer Sciences and Lynn and William Frankel Center for
Computer Sciences.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 276–289, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Self-stabilizing Device Drivers 277

Device drivers are programs which are practically an essential part of any oper-
ating system. They serve as an adaption layer by managing the various operation
and communication details of i/o devices. They also serve as a translation layer
providing consistent and more abstract interface between other programs and
the hardware device resources (and sometimes they also add extra services not
provided by the hardware devices). Devices usually contain a controller which
is the electronic part with which drivers communicate. The communication is
carried out via the system bus, and is usually done through some standard pro-
tocols and interfaces e.g., ata and scsi for disk drives. In [23] it is stated that “a
modern Seagate drive contains roughly 400,000 lines of code”. In [34] it is noted
that “modern disk controllers often have many megabytes of memory inside the
controller”. The complexity of today’s i/o devices emphasize the need for robust
device drivers.

In this work we suggest enhancing the robustness of device-drivers by design-
ing them to be self-stabilizing. Generally, a system is self-stabilizing [8,9] if it
can be started in any possible state and subsequently it converges to a desired
behavior. A state of a system is an assignment of arbitrary values to the system’s
variables. Building a system, and specifically device drivers, in this way, ensures
that errors will be contained autonomously by each driver, leading eventually to
correct behavior of the whole system.

Self-stabilizing Operating System (SOS). In order to have a full self-
stabilizing system, the other system parts must also be self-stabilizing. This work
uses building blocks from our previous work [10] where simple self-stabilizing pro-
cess schedulers are presented, and from [11] where various memory management
schemes are suggested. We also rely on [7], which addresses self-stabilization of
the microprocessor. Thus, based on the idea of fair composition [9], once the
microprocessor stabilizes and starts fetching and executing instructions, the sys-
tem’s kernel converges to a legal behavior, in which other programs are executed
infinitely often to fulfill the system’s goal.

Related work. Extensive theoretical research has been done towards self-
stabilizing systems [8,9,31] and recovery-oriented/ autonomic-computing/ self-
repair, e.g., [15,24,32]. Fault tolerance properties and robustness of operating
systems (e.g., [27,22]) were also extensively studied.

As explained earlier, robustness of device drivers is of great importance in
system design. It is stated in [6] and [21] that about 70% percent of operating
system code is devoted to device drivers. It is stated in [25] that “In Windows
XP, for example, device drivers cause 85% of reported failures”. Moreover, in [6]
it is claimed that for some cases in Linux “the error rate for drivers is almost
seven times higher than the error rate for the rest of the kernel”. Here we shortly
survey various efforts in this field.

Device driver isolation and monitoring. The micro-kernel system architec-
ture (pioneered in the Mach system [1]), suggests achieving minimal trusted com-
puting base (tcb) by removing as much as possible from the kernel. For example,

278 S. Dolev and R. Yagel

in the last version (3) of Minix [34] the drivers’ access to system resources was
reduced. This was achieved by factoring the common low level and privileged
commands, such as access to i/o ports and interrupts, and moving most drivers
parts to user space, where they communicate with the kernel through a simple
messages mechanism (see [12] for another version).

Virtualization. A variation of this approach, lately suggested by many, is to
run the original drivers of common operating systems, but to monitor their
activity, and contain errors by different kinds of virtualization [27,2,20,21]. This
method counts heavily on the robustness of the core kernel (also known as Virtual
Machine Monitor), which we actually address in this work. In [14], [18] and [20]
this is combined with an io-mmu which adds hardware protection to i/o access.
In [2] it is claimed that this method is not enough, and “in the case of more
“sophisticated” statefull devices it may be in addition necessary to reset the
device to a known state”. In [26], a monitor which records the inputs sent to a
driver by an application is added. In case of a failure a restart of the driver is
carried out together with replaying the inputs.

Type safety and model checking. In Coyotos [28], the whole kernel includ-
ing drivers, is written in a typed language as a stage towards achieving formal
correctness. Static analysis of the drivers’ code appears in [4]. They claim that
kernel apis are usually too complex so there is a great chance for coding bugs.
They categorize bugs in order to find them automatically. This emphasizes the
need for a good understanding of the protocols between drivers and the rest
of the system. Many others (e.g., [6]) use code analysis to find kernel bugs in
general.

Singularity is a recent ongoing research project [13] which combines many of
the past system research advances, in order to achieve greater system depend-
ability. In Singularity drivers are also treated as user programs so their state
is separated from the rest of the system. Hardware resources are accessed only
through messages, and when the system is compiled or started, there is a ver-
ification process carried out according to meta-data resource declarations. In
[30], details concerning device drivers are provided. This project also relies on a
typed language to restrict drivers abilities. To prevent malicious code behavior,
runtime code changes are restricted by eliminating language features like reflec-
tion. On the other hand, all programs in Singularity run in privileged mode.
These settings do not prevent a transient error from corrupting system execu-
tion (to quote [13] itself a “malicious driver can program a dma capable device
to overwrite any part of memory”).

None of the above suggest a design for an operating system, or, in particular,
device driver design and implementation that can automatically recover from an
arbitrary state (that may be reached due to a combination of unexpected faults
and sequence of unexpected inputs).

Paper Organization. In this paper we demonstrate how device drivers can
be designed to be self-stabilizing. We start, in Section 2, by demonstrating how

Self-stabilizing Device Drivers 279

the current ata specification for storage devices (such as hard disks) requires a
behavior which can lead a system into undesirable combined states. Based on
the definitions and settings presented in Section 3, we demonstrate in Section 4
how the design can be augmented to behave in a self-stabilizing way. We also
sketch proofs of the correctness of the suggested solutions. Concluding remarks
are given in Section 5.

2 A Non-self-stabilizing Driver Specification

The at-attachment protocol (standard draft version 8, also historically known
as ide), defines a parallel transport protocol between host systems and devices
[33]. In the following we will first describe this protocol. Then we will show that
the protocol defines interactions which can lead to non-stabilizing executions.
Note that the standard defines only the interface between a host and a device.
Therefore an implementation can add states and transitions to achieve stability,
and still conform to this standard.

Fig. 1. ATA Host State Transitions

The communications between the host and the device is by means of in-
put/output registers (shared memory model). There are control, command, sta-
tus and data registers through which the host and the device communicate.
Additionally, the device might signal the host through an interrupt line. The re-
quired behavior is defined with state diagrams describing states and transitions

280 S. Dolev and R. Yagel

Fig. 2. ATA Device State Transitions

of both protocol parties. For the purpose of demonstrating the non-stability we
follow the diagrams describing the execution of a read command. In order to
carry out such a command the two parties move from an idle state to the ex-
ecuting command states and upon completion back to the idle state. Figures
41 and 43 in [33] describe the idle states of the host and the device respec-
tively. Figures 47 and 48 describe the pio (Programmed i/o) data-in command
states, which transfer blocks of data from the device to the host, without using
dma (Direct Memory Access). We combine these four diagrams into two state
machine diagrams each describing the possible executions of the host and the
device, respectively. In general, upon a read request the host checks whether the
device is ready (state #1 of Figure 1), it then configures the device, writes the
command parameters and waits for response through an interrupt (state #2)
or by repeatedly checking status (state #3). The device fills its transfer buffer
with part of the requested data (state #1 of Figure 2) and signals the host for
availability (states #2 and #3, by asserting the interrupt line or setting the
data request (drq) status bit). The host then reads this data (host state #4)
and the interaction continues until completion (buffer count reaches zero), when
they both return to their idle state (states #0). For this demonstration we omit
many technical details, e.g., selection of devices and media error handling. We
show that even if we make the model simpler and also assume perfect operation
of the device mechanics, the execution can still become erroneous.

2.1 Non-stability

The model above does not describe a behavior in which progress is achieved in-
finitely often. Even assuming correct behavior of each party, still the combined
execution can enter states in which progress is not achieved infinitely often. Fig-
ure 3 presents the various combinations of states that the system can reach.
The arrowed path demonstrates a possible correct execution which is cyclic and
includes the combined idle state (marked “h0d0”). Possible non-stabilizing exe-
cutions are described next:

Self-stabilizing Device Drivers 281

Fig. 3. Union State Transitions (h=host, d=device)

Deadlock. The upper dot-headed transition in Figure 3 demonstrates a scenario
in which the execution reaches the combined host state #2 with device state #3.
In host state #2, the host waits for an interrupt in order to transfer data. In
the meantime, the device (say, due to a transient error) assumes that interrupts
are disabled and waits in its state #3 for the host to read data from its buffer.
From such a combination of states there is no defined progress.

Livelock. Another case is demonstrated in Figure 3 where the other dot-headed
path causes to circle back to state “h2d1” without ever finishing the execution
of the current command. This happens when the host is cycling between states
#2 and #4, reading the device’s buffer content, but the buffer counter never
goes down to zero.

Another example is the host waiting for the device. It reads in the state register
that it is busy, while the device is really non-busy. The standard also addresses
some other scenarios. For example, if a command is issued by the host while the
device is busy with a previous command, the device should immediately start
executing the new command. However we require a design in which the system
converges from any combined state.

3 System Model and Requirements

Settings. We divide the system into four parts: (a) The operating system, which
contains processes (or programs) which can request i/o operations. The operat-
ing system contains a special program which schedules all the various processes,
including part b which will now be described. (b) The operating system device
driver (or os driver) is the special program which handles the i/o requests and
communicates with the device. (c) The device controller is the program executed
by a specialized micro-processor (it usually resides inside the i/o device itself)

282 S. Dolev and R. Yagel

which commands the i/o device to perform its task. (d) The (i/o) device is the
actual peripheral machinery that carries out the commands, e.g., rotating the
disk media under one of its reading head.

(a) and (b) together map to the host in the ata specification while (c) and
(d) are mapped to the device.

Assumptions. We concentrate on the correct behavior and interactions of one
os driver (b) and the corresponding device controller (c). Thus the state di-
agrams presented in Figures 1 and 2 are considered transitions made by the
os driver and the device controller. Concerning the operating system (a), using
methods described in our previous works [10], [11], we assume that the operating
system is self-stabilizing. Especially, it is guaranteed that, during the system ex-
ecution, whenever there are pending i/o requests, the scheduler will eventually
execute the driver program, thus allowing it to operate as required. Fair access
between processes with regard to the ability to queue i/o requests is achieved
either by assuming eventual correct behavior of the processes (we do not assume
the Byzantine model) or by leasing the right to queue messages in ways that will
guarantee fairness as done before by the memory manager (see [11]).

It is also assumed that the i/o device’s micro-processor is self-stabilizing,
which means that it keeps fetching and executing the device controller pro-
gram. Methods to achieve such behavior are described in [7]. Additionally, the
device mechanics (or other equivalences in other devices) always eventually re-
spond to the device controller commands either by carrying them out or by
reporting an error in case of say physical disabilities, e.g., bad sectors on the
disk media.

The os driver and the device controller communicate by writing in each others
registers. It is assumed that every read/write operation is performed atomically
and without errors.

Definitions. We describe briefly a set of definitions related to states and state
transitions (see [10,11] for details concerning processor executions, interrupt and
register settings, and additional requirements). A state of the operating system
driver or the device controller is an assignment to its registers including the
program counter resister. Each party is modeled by a program which specifies
its behavior. It has a clock which triggers a step which is a state transition.
The transition is done according to the current state (including input regis-
ters and the program counter). A configuration is a pair of states, the first of
which is of the os driver, and the second belongs to the device controller. An
example of such a configuration is “h0d0” which appears in Figure 3 in which
both parties are in their idle state. An execution is a sequence of alternating
configurations and steps E = (c1, s1, c2, s2, ...), such that configuration ci+1 is
reached from configuration ci by one step si taken by one of the parties. A
configuration like “h0d0” is called a safe configuration since an execution that
starts from this configuration carries out the task of executing i/o commands
correctly.

Self-stabilizing Device Drivers 283

Table 1 lists, for each protocol party, the various register roles used in the
described read command.

Table 1. ATA Registers

Owner Register i/o Role

os driver OsCommand I Command parameters written by os

OsINT I Interrupt Configuration written by os

int Line I Interrupt line∗ asserted by device controller
(∗Not a register)

Device controller Command I Command parameters written by os driver

int I Interrupt status written by os driver

bsy O Controller working status read by os driver

drq O Data ready status read by os driver

Buffer Count i/o Data ready status written by os driver and
decremented by device controller

The Error Model. The os driver and the device controller states, including
their program counters, might become corrupted (assigned any possible value).

Requirements. We now define the requirements which should be satisfied in
order for the described system to be self-stabilizing.

(r1) Liveness. Assuming that there is an infinite system execution, in which
there are infinitely many i/o requests, the os driver and the device controller
are infinitely often exchanging requests and replies.

(r2) Safety. Eventually every i/o request is executed completely and correctly
according to the ata specification. As explained, the result can be a success,
e.g., data moved according to the command’s parameters, or a failure due to
bad parameters, some transient error (such as dust on the disk surface) or even
non-transient device errors such as bad sectors.

A self-stabilizing os driver and device controller combination ensures that
every infinite execution of a system has a suffix in which both requirements
hold.

4 Self-stabilizing Driver

The os driver and the device controller can be viewed as a master and a slave
working together according to the protocol to achieve their mission. Thus, the
driver acting as a master can check that the slave is following, say the ata
protocol, correctly. We suggest two solutions. In the first solution the device
controller is not required to be self-stabilizing, and the os driver leases the
device controller some (usually enough) time to complete its tasks. Then we
relax the timing constrains by assuming that the device controller itself is also
self-stabilizing. Therefore we only need to guarantee that the execution is carried
out by both parties according to the protocol. This is achieved by the os driver

284 S. Dolev and R. Yagel

performing consistency checks according to its current state. Note that the device
controller itself is working against the underlying device so an implementation
of the controller-device protocol can use either the leasing or the consistency
checks solutions for this level as well.

4.1 Leasing

In order to satisfy our requirements we suggest that the device controller should
be augmented by a counter register which is used to implement a watchdog. The
os driver is able to write some value to this register, while the device hardware
is lowering the register value towards zero, say in every clock tick. Additionally
the os driver is augmented with additional transitions which guarantee that in
case the lease expires, which means that there is no progress from the device
controller side, the os driver resets the device controller’s state and also moves
to the idle state. Figure 4 describes the new os driver transitions.

0. Idle

1. Check Status

OsCommand=READ / Lease:=MAXBSY=1, Lease=0 / RESET

BSY=1, Lease>0

2. INT Wait

BSY=0, OsINT=0

/ Command:=READ

3. Check Status

BSY=0, OsINT=1

/ Command:=READ

INT Pending, Lease=0

/ RESET

INT Pending, Lease>0

INT Asserted

BSY=1, Lease=0

/ RESET
BSY= 0, DRQ=0

BSY=1, Lease>0

4. Reading Buffer

BSY=0, DRQ=1

Lease=0

/ RESET
Buffer Count=0

Buffer Count> 0, INT=1 Buffer Count> 0, INT=0

More to Read, Lease>0

Fig. 4. A Leasing Host (OS Driver)

Next we prove the correctness of the leasing solution:

Lemma 1. The os driver reaches its idle state infinitely often.

Sketch of proof: The os driver always converges towards the idle state. This
can be observed by examining the possible state transitions. We can see that in
every state the os driver can either move to a higher numbered state (modulo the
number of states) or stay in the current state. The only exception to this rule is
the move from state #4 to states #2 or #3 (depending on the interrupt status),
but the number of such possible backward moves is bounded by the countdown

Self-stabilizing Device Drivers 285

of buffer reads, which is decreased towards zero every time such a back move
is taken. So the os driver is guaranteed either to proceed through the protocol
stages and eventually reach the idle state, or else to get stuck in some state. In
the latter case, since the os driver stopped leaving the idle state, the only state
where it updates the device leasing counter, this register will eventually reach
zero causing the os driver to perform a move to the idle state. ��
Lemma 2. From any configuration a safe configuration is eventually reached.

Sketch of proof: From Lemma 1, the os driver reaches the idle state infinitely
often. Usually according to the protocol design, the device controller will reach
the idle state following the os driver. Whenever the os driver starts a new
command it advances along the protocol stages waiting for the device controller
to follow it as they carry out the i/o request together. Whenever a command is
completed both parties proceed to the idle state, which is a safe configuration.
Otherwise, the os driver will eventually reset the device controller which will
bring it to its idle state, and also will move to its idle state, thus again reaching
a safe configuration (“h0d0”). Note that in case of successive commands the os
driver might wait in state #1 for the controller to finish the last command and
join. Therefore the configurations “h1d3” and “h1d0” are safe configurations as
well. ��
Corollary 1. Since a safe configuration is reached from any state, liveness
holds.

Lemma 3. Eventually safety holds.

Sketch of proof: From Lemma 2, a safe configuration is eventually reached.
From this configuration on the os driver and the device controller fulfill requests
according to the protocol specification. ��
Corollary 2. Since in every infinite system execution, the liveness and safety
requirements hold infinitely often, the os driver and device controller combina-
tion is self-stabilizing.

4.2 Consistency Check

Alternatively, if we can assume stabilization of the device controller, then it
is suffices to guaranty that the device follows the os driver while executing
commands. The os driver will be augmented with a consistency checker routine
that checks consistency of both parties. The timing of the execution of this
routine can be tuned to occur before each driver code execution, or periodically
by means of a watchdog timer and a non-maskable interrupt as described in
[10]. The routine freezes the os driver and reads its program counter register. It
also interrupts the device controller, which stops all activity and then reads a
snapshot of the device controller’s state. Then it ensures that the controller is in
a proper state according to the driver stage of the protocol. In case of consistency
violation, actions are taken e.g., resetting the controller.

286 S. Dolev and R. Yagel

For each (abstract) state of the diagrams presented by Figures 1 and 2, there
can actually be a set of program counter values which fits that state. The pro-
grams of the os driver and the device controller can be assembled in such a way
that there is a simple function which maps every program counter value to its
corresponding diagram state. We say that every diagram state is represented
by a Program Counter Segment (pcs). This can be implemented for example in
the Intel’s IA32 architecture [16] by allocating a full code segment for each pcs
(more details appear in a previous work [10]).

Table 2. Consistency Check Rules

OS Driver PCS Device Controller Snapshots

0,1 PCS=0
PCS=3

2 PCS=1, INT=1
PCS=2, INT=1

3 PCS=1
PCS=2, INT=1
PCS=3, INT=0

4 PCS=3

Table 2 includes for every such os driver pcs, the legal device controller pcs
and other register values. For example, when the os driver is waiting for an
interrupt (state #2) the device controller must be in states #1 or #2 but not in
state #3, where it is waiting for the driver forever. The interrupt status of the
device controller must also be checked to ensure that the device controller will
inform the os driver upon completion. As to other registers, such as drq, there
is no need to check consistency since the self-stabilization of the device controller
guarantees that it will eventually (and in bounded time) set the required values
needed for the execution to progress according to the protocol.

Lemma 4. Eventually liveness holds.

Sketch of proof: Similarly to Lemma 1 the os driver advances along the pro-
tocol stages. In every state it can either advance to the next stage or wait for
the device controller. Since we have the consistency checker assuring that the
device controller is in a proper matching state, and since the device controller is
self-stabilizing, eventually the device controller will perform the current stage,
and the os driver will advance to the next stage. ��
Lemma 5. Eventually safety holds.

Sketch of proof: Similar to the proof of Lemma 3. ��
Corollary 3. Since in every infinite system execution the liveness and safety
requirements hold infinitely often, the os driver and the device controller combi-
nation is self-stabilizing.

Self-stabilizing Device Drivers 287

5 Concluding Remarks

Self-stabilization methods enhance the robustness of device drivers, and conse-
quently of their including systems. We demonstrated the lack of such properties
in one of the well known standard protocols. The two solutions that were pro-
posed can be practically combined according to the level of stabilization that
can be expected from various i/o devices. The snapshot of the i/o device, taken
during a consistency check, can be enlarged if its stabilization ability is dimin-
ished. If not all the device producers can be relied upon, then one can have a fall
back that uses leases and restarts to achieve self-stabilization. Prototype imple-
mentations can be found in [29]. Finally, we predict that provable self-stabilizing
operating systems will be an essential part of every critical computing system in
the near future.

References

1. M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, M. Young.
“MACH: A New Kernel Foundation for UNIX Development”, Proceedings of the
USENIX Summer Conference, Atlants, GA, 1986.

2. P. Barham, B. Dragovich, K. Fraser, S. Hand, A. Ho, I. Pratt. “Safe Hardware
Access with the Xen Virtual Machine Monitor”, 1st Workshop on Operating System
and Architectural Support for On-Demand IT Infrastructure, May 2004.

3. O. Brukman, S. Dolev, H. Kolodner. “Self-Stabilizing Autonomic Recoverer for
Eventual Byzantine Software”, Proceedings of IEEE International Conference on
Software-Science Technology & Engineering, (SwSTE03), Israel, 2003.

4. T. Ball, S.K. Rajamani. “The SLAM Project: Debugging System Software via
Static Analysis”, Proceedings of the 29th Symposium on Principles of Programming
Languages (POPL 2002), Portland, OR, 200.

5. M. Castro, B. Liskov. “Proactive Recovery in a Byzantine-Fault-Tolerant System”,
Proceedings of the Fourth Symposium on Operating Systems Design and Implemen-
tation, pp. 273-288, San Diego, CA, October 2000.

6. A. Chou, J. Yang, B. Chelf, S. Hallem, D. Engler. “An empirical study of operating
systems errors”, Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP), 2001.

7. S. Dolev, Y. Haviv. “Self-Stabilizing Microprocessor: Analyzing and Overcoming
Soft Errors”, IEEE Trans. on Computers 55(4), 2006. Also at: 17th International
Conference on Architecture of Computing Systems (ARCS04), 2004.

8. E. W. Dijkstra. “Self-Stabilizing Systems in Spite of Distributed Control,” Com-
munications of the ACM, Vol. 17, No. 11, pp. 643-644, 1974.

9. S. Dolev. Self-Stabilization, The MIT Press, Cambridge, 2000.

10. S. Dolev, R. Yagel. “Toward Self-Stabilizing Operating Systems”, Proceedings of
the 15th International Conference on Database and Expert Systems Applications,
2nd International Workshop on Self-Adaptive and Autonomic Computing Systems
(SAACS04,DEXA), pp. 684-688, Zaragoza, Spain, August 2004.

11. S. Dolev and R. Yagel. “Memory Management for Self-Stabilizing Operating Sys-
tems (Extended Abstract)”. Proceedings of the 7th Symposium on Self Stabilizing
Systems, Barcelona, October 2005.

288 S. Dolev and R. Yagel

12. K. T. Van Maren. “The Fluke Device Driver Framework”, Master’s thesis, The
University of Utah, 1999.

13. G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham, M. Fahndrich, C. Haw-
blitzel, O. Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber,
B. Zill. “An Overview of the Singularity Project”, Microsoft Research Technical
Report MSR-TR-2005-135, Microsoft Corporation, Redmond, WA, October 2005.

14. H. J. Löeser, F. Mehnert, L. Reuther, M. Pohlack, A. Warg. “An I/O Architecture
for Mikrokernel-Based Operating Systems”, Proceedings of the Sixth Symposium
on Operating Systems Design and Implementation (OSDI), San Francisco, 2004

15. IBM. Autonomic computing initiative,
http://www.research.ibm.com/autonomic, 2001.

16. Intel Corporation. “The IA-32 Intel Architecture Software Developer’s Manual”,
http://developer.intel.com/design/pentium4 /documentation.htm, 2006.

17. M. Kistler, P. Shivakumar, L. Alvisi, D. Burger, and S. Keckler. “Modeling the
effect of technology trends on the soft error rate of combinational logic”. In ICDSN,
volume 72 of LNCS, pages 216–226, 2002.

18. B. Leslie, G. Heiser. “Towards untrusted device drivers”, Technical Report UNSW-
CSE-TR-0303, School of Computer Science and Engineering, 2003.

19. L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals Problem”, ACM
Trans. on Programming Languages and Systems, Vol. 4, No. 3, pp. 382-401, 1982.

20. J. LeVasseur, V. Uhlig. “A Sledgehammer Approach to Reuse of Legacy Device
Drivers”, Proceedings of the 11th ACM SIGOPS European Workshop, Belgium,
2004.

21. J. LeVasseur, V. Uhlig, J. Stoess, S. Götz. “Unmodified Device Driver Reuse and
Improved System Dependability via Virtual Machines”, Proceedings of the Sixth
Symposium on Operating Systems Design and Implementation (OSDI), San Fran-
cisco, 2004

22. P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, L. Robinson. “A prov-
ably secure operating system: The system, its applications, and proofs”, Technical
Report CSL-116, SRI International, 1980.

23. V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau. “IRON File Systems”, Proceedings of the 20th
ACM Symposium on Operating Systems Principles (SOSP ’05) Brighton, UK, Oc-
tober 2005.

24. D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez,
A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J.
Traupman, N. Treuhaft. “Recovery Oriented Computing(ROC): Motivation, def-
inition, techniques and case studies”, UC Berkeley Computer Science Technical
Report UCB/CSD-02-1175, Berkeley, CA, March 2002.

25. M. Swift. “Improving the Reliability of Commodity Operating Systems”, Ph.D.
Dissertation, University of Washongton, 2005.

26. M. Swift, M. Annamalai, B. N. Bershad, H. M. Levy. “Recovering Device Drivers”,
Proceedings of the 6th ACM/USENIX Symposium on Operating Systems Design
and Implementation (ODSI), San Francisco, 2004.

27. M. Swift, B. N. Bershad, H. M. Levy. “Improving the reliability of commodity
operating systems”, Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), Bolton Landing, NY, October 2003.

28. J. Shapiro, M. S. Doerrie, E. Northup, S. Sridhar, M. Miller. “Towards a verified,
general-purpose operating system kernel”. Available at http://www.coyotos.org,
2005.

Self-stabilizing Device Drivers 289

29. http://www.cs.bgu.ac.il/∼yagel/sos

30. M. Spear, T. Roeder, O. Hodson, G. Hunt, S. Levi. “Solving the Starting Problem:
Device Drivers as Self-Describing Artifacts”, Proceedings of EuroSys2006. Leuven,
Belgium, April 2006.

31. http://www.selfstabilization.org

32. Sun Microsystems, Inc. ‘Predictive Self-Healing in the SolarisTM10 Operating Sys-
tem”, White paper, September 2004. http://www.sun.com/software/whitepapers
/solaris10/self healing.pdf.

33. InterNational Committee for Information Technology Standards,T13 ATA Storage
Interface - T13/1532D Vol. 2. Revision 4a (working drafts).
http://www.t13.org/#Projects.

34. A. S. Tanenbaum, A. S. Woddhull. Operating Systems Design and Implementation,
3nd edition, (p. 225). Prentice Hall, New Jersey, 2006.

Secure Communication for RFIDs

Proactive Information Security Within
Computational Security�

(Extended Abstract)

Shlomi Dolev1 and Marina Kopeetsky2

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, 84105, Israel
dolev@cs.bgu.ac.il

2 Department of Software Engineering, Sami-Shamoon College of Engineering,
Beer-Sheva, 84100, Israel
marinako@sce.ac.il

Abstract. We consider repeated communication sessions between a
sender (e.g., Radio Frequency Identification, RFID, reader) and a re-
ceiver (RFID). A proactive information security scheme is proposed. The
scheme is based on the assumption that the information exchanged dur-
ing at least one of every n successive communication sessions is not ex-
posed to an adversary. Then a computational secure scheme based on
the information secure scheme is used to ensure that even in the case
that the adversary listens to all the information exchanges, the commu-
nication between the sender and the receiver is secure. In particular, the
scheme can be used in the domain of remote controls (e.g., for cars).

Keywords: authentication protocol, information security, computational
security, RFID tags, pseudo-random numbers.

1 Introduction

RFID tag is a small microchip, supplemented with an antenna, that transmits a
unique identifier in response to a query by a reading device. The RFID technology
is designed for the unique identification of different kinds of objects. According
to [9] RFID communication systems are composed of three major elements: (a)
the RFID tag carries object identifying data; (b) the RFID reader interfaces
with tags to read or write tag data; (c) the back-end database aggregates and
utilizes tag data collected by readers.

RFID sender (or reader) broadcasts an RF signal to access data stored on
tags that usually includes a unique identification number. RFID tags are de-
signed as low cost devices that use cheap radio transmission media. Such tags
� Partially supported by Microsoft, IBM, NSF, Intel, Deutsche Telekom, Rita Altura

Trust Chair in Computer Sciences, Intel, vaatat and Lynn and William Frankel
Center for Computer Sciences.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 290–303, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Secure Communication for RFIDs Proactive Information Security 291

have no internal source of power, nevertheless they receive their power from the
reading devices. The range of the basic tags transmission is up to several meters.
Possible applications of the RFID devices include: RFID-enabled banknotes, li-
braries, passports, pharmaceutical distribution of drugs, and organization of the
automobile security system or any key-less entry system. Nevertheless, the wide
deployment of RFID tags may cause new security and privacy protecting issues.
RFID tags usually operate in insecure environment. The RFID reader privacy
may be compromised by the adversary that extracts unencrypted data from the
unprotected tags. RFID tags are limited devices that cannot support compli-
cated cryptographic functions. Hence, there is nowadays an interest in achieving
high security and privacy level for the RFID devices, without usage of compu-
tationally expensive encryption techniques.

The focus of our paper is the authentication protocol for the basic passive
RFID tags. We present new proactive and cost effective information and com-
putationally secure authentication protocols for RFIDs. The main scope is one
sided authentication, where the receiver has to identify the sender. Such (non
mutual) one sided authentication is useful in applications in which the sender
may have other means to identify (that it is communicating with) the desired
receiver (say by being geographically close to the receiver). We also exclude the
possibility of man-in the-middle attacks, having similar applications in minds,
where the sender may identify the existence of a man-in the-middle. Still, we
conclude and suggest ways to cope with these limitations.

Background and related work. A brief introduction to RFID technology ap-
pears in [9] where potential security and privacy risks are described. Schemes
for providing desired security properties in the unique setting of low-cost RFID
devices are discussed in [9]. The authors of [9] depict several advantages of the
RFID tags over traditional optical bar codes. Unlike the optical bar codes, RFID
tags are able to read data automatically through non-conducting material at a
rate of several hundred tags per second and from a distance of several meters.
The authors state that low-cost smart RFID tags may become an efficient re-
placement for optical bar codes. The main security risks stated in that paper
are the violations of “location privacy” and denial of service that disable the
tags. With the RFID resource constraints in mind, the cryptography techniques
proposed in developing the RFID security mechanisms are: (a) a simple ac-
cess mechanism based on hardware-efficient one-way hash functions, low-cost
traditional symmetric encryption schemes, randomizing tag responses based on
random number generator; (b) integrating RFID systems with a key manage-
ment infrastructure. Regardless of the mechanisms used for privacy and access
control, management of tag keys is an important issue. The new challenge in
the RFID system design is to provide access control and key management tools
compatible with the tags cost constraints.

The research survey in [6] examines different approaches proposed by re-
searches for providing privacy protection and integrity assurance in RFID sys-
tems. In order to define the notions of “secure” and “private” for RFID tags
a formal model that characterizes the capabilities of potential adversaries is

292 S. Dolev and M. Kopeetsky

proposed. The author state that it is important to adapt RFID security mod-
els to cope with the weakness of the RFID devices. Few weak security models
that reflect real threats and tag capabilities are discussed. A “minimalist” se-
curity model that serves low-cost tags is introduced in [7]. The basic model
assumption is that the potential RFID adversary is necessarily weaker than the
one in traditional cryptography. Besides, such an adversary comes into scan-
ning range of a tag only periodically. The minimalist model aims to take into
account the RFID adversary characteristics. Therefore, this model is not per-
fect, but it eliminates some of the standard cryptographic assumptions that
may be not appropriate for the deployment in other security systems that are
based on a more powerful adversary model. The author of [7] states that stan-
dard cryptographic functionality is not needed to achieve necessary security in
RFID tags.

An adversary model adapted to RFID protocols is introduced in [1]. Many
existing privacy protecting RFID protocols are examined for their traceability.
Traceability is defined as the capability of the adversary to recognize a tag which
the adversary has already seen, at another time or in another location [1]. The
traceability is stated as a serious problem related to the privacy protection in the
RFID systems. The paper concludes that in a realistic model, many protocols
are not resistant to traceability.

The Newsletter of the RFID Society [4] proposes zero-knowledge proofs tech-
nology in solving the privacy issue for RFID. The main idea is to enhance RFID
chips with additional cryptographic functions supporting zero knowledge iden-
tity proofs. This approach requires a large amount of memory and long compu-
tational time. Note that basic RFID tags are low-memory devices and are not
capable to store and process large amount of data.

Existing techniques and secure protocols proposed for implementation in ex-
isting RFID systems are described next.

Inexpensive RFID tag known as Electronic Product Code (EPC) tag is
proposed in [5] to protect against RFID tag cloning. Basic EPC tags do pos-
sess features geared toward privacy protection and access control mechanisms,
notwithstanding they do not possess explicit authentication functionality. That
is, EPC standards prescribe no mechanism for RFID-EPC readers to authen-
ticate the validity of the tags they scan. The authors show how to construct
tag-to-reader and reader-to-tag authentication protocols.

However, the security analysis of the basic EPC RFID tags is described
in [2]. The authors present in detail the successful strategy for defeating the
security of an RFID device known as Digital Signature Transponder (DST).
The main conclusion of [2] is that basic EPC tags are no longer secure due
to the tags weakness caused by the inadequate short key length of 40 bits.
Note that it is possible to increase the computational security level by increas-
ing the length of the key, still the resulting scheme will not be information
secure but only computationally secure. Hence, it is of interest to design a proac-
tive information secure scheme within computational secure scheme as we do in
the sequel.

Secure Communication for RFIDs Proactive Information Security 293

Our contribution. Our goal in this paper is to design new algorithms for
providing authentication for the computationally limited basic RFID systems
with small amount of storage capability.

We propose a new security protecting model that is information and compu-
tationally secure. The security power of the basic and combined authentication
protocols is provided by maintaining at the sender and the receiver’s sides square
n-dimensional matrix B. The XOR of the appropriate columns elements is used
as the secret key for performing the authentication procedure by the RFID. A
row of the matrix B is replaced by a row with randomly chosen elements at any
communication session.

The basic information secure protocol AP1 is based on the the limited adver-
sarial capabilities. The underlining assumption of this protocol is that the adver-
sary is not listening in at least one of each n successive interactions between the
sender and the receiver. In essence, this protocol follows the “minimalist” secu-
rity model in [7]. The underlying assumption of AP1 is that each communication
session is atomic. We mean that the adversary cannot modify part of the com-
munication in a session. The adversary may either listen to the communication
during a session, or try to communicate (on behalf of the RFID sender) dur-
ing an entire session. AP1 is not resistant against active intruder-in the-middle
attacks [10]. Compared with [7] our scheme also works when we do not know
explicitly which session the adversary is not listening in. Moreover, the security
failure in a certain session does not bear on successful implementation of the next
sessions since our algorithms are proactive. The restriction imposed on the ad-
versary is dropped in the combined proactive computational secure protocol AP2

that operates successfully even if the adversary has gotten access to any num-
ber of successive interactions between the sender and the receiver. AP2 protocol
does not follow the “minimalist model” proposed in [7]. There are only (rea-
sonable) computation limitations on the adversarial capabilities. AP2 does not
rely on atomic sessions and it is resistant against active intruder-in the-middle
attacks [10]. The proactive combined computational secure protocol has several
advantages.

Low computational cost combined with a very high security level. Our
algorithms continuously use random numbers generator as a source for preserv-
ing the security level. Low computational power is required compared with the
standard cryptographic techniques like stream and block ciphers.

Protocols’ robustness. Our proactive computational secure protocol is not
based on the refreshing procedure as suggested in [7]. The refreshing proce-
dure in [7] provides the complete initialization of the protocol’s secure pa-
rameters on the assumption that the adversary is not listening in the refresh-
ing session. Moreover, the trusted party or RFID verifier in [7] accesses the
RFID system on a periodic basis refreshing the system. Our model provides
high computational security level by involving a trusted party only during
initialization.

294 S. Dolev and M. Kopeetsky

Security system reliability. AP1 does not rely on information concerning the
specific session among consecutive n sessions the adversary was listening in and
the sessions in which the adversary was not present (as [7] assumes).

Functionality in the proactive mode. According to [3] proactive security
provides a method for maintaining the overall security of a system, even when
individual components are repeatedly broken into and controlled by an attacker.
The automated recovery of the security protocol is provided in the proactive
security model [3]. Any listening adversary’s success and consequent protocol’s
security failure do not affect further functionality of the protocol. Recovery from
a failure (assuming nonfatal effect of failures) is automatic. That is to say, as-
suming that no fatal damage is caused when the adversary reveals the clear text,
the future communication security is established.

Possibility of proactive information security within computational
security. Our second protocol AP2 assumes that if the adversary was not listen-
ing in at least for a single session among n consecutive sessions between the RFID
sender and the RFID receiver the proposed protocol automatically becomes in-
formation and computationally secure and, therefore the original security level
is established.

We believe that our protocol is useful in several domains including remote
keys, e.g., automobile security system.

Paper organization. The formal system description appears in Section 2. The
basic information secure protocol AP1 is introduced in Section 3. The combined
computational secure protocol AP2 is described in Section 4. The extended ab-
stract is completed with conclusions and extensions. Proofs are only sketched in
this extended abstract.

2 Security Model for RFID Tags

We consider the (RFID) sender and the (RFID) receiver denoted by S and
R, respectively. The sender and the receiver communicate by sending and re-
ceiving messages according to their predefined programs, that form together a
communication protocol. We denote the ith message sent by the sender and
by the receiver as si and ri, respectively. The sequence of alternating mes-
sages M = s1, r1, s2, r2, · · · sent during the course of the protocol execution
can be divided into non overlapping subsequences, so that each subsequence
Si = sik

, rik
is called communication session. The union of the communication

sessions forms the entire sequence of messages M . Each Si starts with a mes-
sage sent by the sender and ends when the receiver decides to send a message
rik

=Open or rik
=DoNotOpen. Any message sk sent by the RFID sender is de-

fined as a key message. Actually, the message rik
represents a change in state

of the receiver which corresponds to the sender password authentication as the
one that can enter to use a resource.

We assume a Byzantine adversary denoted as A, that listens in to part or
all of the sequence M and may try to send complete messages on behalf of the

Secure Communication for RFIDs Proactive Information Security 295

sender. The goal of the adversary is either making the receiver sending message
r = Open or driving the receiver into a state after which the receiver will not
send the message r = Open to the sender.

Given the features of the proposed model, we describe basic and combined
authentication protocols. The first basic authentication protocol AP1 is the
proactive information secure protocol. The information security feature of this
protocol is provided by the assumption that within any n consecutive commu-
nication sessions Si1 = si1 , ri1 , · · ·Sin = sin , rin there is at least one message
sik

sent by the RFID sender S which the adversary is not aware of. The strict
limitation imposed on the adversary is lessened in the combined computational
secure protocol AP2. The security power of AP1 and AP2 protocols is based on
random numbers generation and their updating at each communication session.
AP1 and AP2 are introduced and analyzed in the next sections.

3 Proactive Information Secure Protocol

Step 1

(
b11 · · · · · · · · · b1n

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 · · · · · · · · · a1n

... · · ·
... · · ·

...
... · · ·

... · · ·
...

an−11 · · ·
... · · · an−1,n

an,1 · · · · · · · · · ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 2

(
b21 · · · · · · · · · b2n

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 · · · · · · b1n−1 b1n

... · · ·
... · · ·

...
... · · ·

... · · ·
...

an−21 · · ·
... an−2n−1 an−2n

an−11 · · · · · · an−1n−1 an−1n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. Operation of Proactive In-
formation Secure Protocol

The proactive information secure protocol
AP1 is described in Figure 2. Here the ma-
trix B is defined as a linked list data struc-
ture. Denote the space of the matrix’s B el-
ements by {aij , bij}. Here the sub-set {aij}
denote the elements of B′s granted to S and
R respectively during the initialization pro-
cedure while the sub-set {bij} consist of ran-
dom numbers that update B matrix during
the communication sessions. At the initial-
ization stage S and R both get a unique
square matrix B = (aij) so that dim (B) = n
(Figure 2, Protocols for RFID Sender and
Receiver, lines 1-5). In order to perform the
authentication procedure, S starts the com-
munication session and passes to R the key
message s1 = (X1, b1) (lines 6-9 in Figure
2, Protocol for RFID Sender). s1 consists
of the following pair: XOR of the nth col-
umn elements X1 = a1n ⊕ a2n ⊕ . . . ⊕ ann

and randomly generated n-dimensional vec-
tor b1 = (b11, b12, . . . , b1n).

After transmission of the first key message
s1, S and R, respectively, shift B′s rows be-
low so that b1 = (b11, b12, . . . , b1n) is treated
as the first B′s row and the last row is
deleted (lines 10-11 in Figure 2, Protocol for
RFID Sender).

During the next authentication session
S and R repeat the same procedure: S

296 S. Dolev and M. Kopeetsky

Fig. 2. Proactive Information Secure Protocol

generates the new random n-dimensional vector b2 = (b21, b22, . . . , b2n), calcu-
lates XOR of (n − 1) B′s column elements X2 = b1n−1 ⊕ a1n−1 ⊕ . . .⊕ an−1n−1

and sends the newly generated key message s2 = (X2, b2) to R.
The authentication procedure is repeated continually scanning the matrix

columns (one after the other) and changing the appropriate row. After each ith

authentication success both S and R, respectively, shift the B′s rows below so
that the last matrix’ B row is deleted and the vector bi occupies the first B’s
row. Note that bi has been previously randomly generated by S and has been
sent to B in the message sj−1. Updating procedure and calculation of XOR for

Secure Communication for RFIDs Proactive Information Security 297

the corresponding B′s column elements are described in Figure 2 (lines u1-u4
and c1-c8, respectively, Protocol for RFID Sender).

In order to confirm the correct authentication, the RFID receiver R executes
the authentication procedure in the following manner: upon receiving the key
message si = (Xi, bi) R verifies that Xi is the correct XOR of the appropriate
(n−(i−1)(mod(n)))th column. If so, then R confirms the correct authentication,
“transmits” to S the message ri = Open and updates the matrix B (lines 6-11
in Figure 2, Protocol for RFID Receiver). Otherwise, R “transmits” to S the
message ri = DoNotOpen and does not update the matrix B.

Assume that during the course of executing AP1 it holds that in any sequence
of alternating messages M = s1, r1, s2, r2, . . . the following condition is satisfied:
in any n-length sequence M of alternating messages between S and R there is
at least a single message sjk

not captured by the adversary. Assume that in
order to break the security system of the RFID receiver, the adversary performs
authentication procedure on behalf of the RFID sender. To do so in any Sth

j

communication session the adversary has to forge the key message sji , namely,
to correctly guess the XOR of the corresponding (n−(ji−1)(mod(n)))th column
elements of the basic matrix B.

Assume that dim (B) = n. Assume that the single unknown to the adversary
key is nth B′s column (a1n, a2n, . . . , ann) and the appropriate row vector is
b1 = (b11, b12, . . . , b1n) that have been sent by S in the message s1 = (X1, b1)
during the first communication session (Figure 1, Step 1).

After transmitting the first key message s1 = (X1, b1), X1 = (a1n ⊕ a2n ⊕
. . . ⊕ ann), b1 = (b11, b12, . . . , b1n) to the RFID receiver both S and R shift the
rows of B′s according to the described above procedure.

Note that in the next trial S will send to R the XOR of the updated (n−1)th

B′s column X2 = (b1n−1⊕a1n−1⊕ . . .⊕an−1n−1) and a new randomly generated
vector b2 = (b2n, b2n−1, . . . , b21) (Figure 1, Step 2).

Now matrix B differs from the previous one by the newly inserted first row
and the appropriate deletion of the last row. The matrix B updating is done by
S and R in each successful communication session.

The AP1 authentication protocol is information theoretic secure. It means
that the probability that the adversary will forge the key message and per-
form successfully the communication session on behalf of the RFID sender S, is
negligible for long enough l, where l is the number of bits of the entry in the
matrix B.

The following Theorem proves that the introduced protocol is information-
theoretic secure.

Theorem 1. AP1 protocol is theoretical information secure and proactive.

Proof sketch: The AP1 information security feature is based on the fact that
at any authentication step i the following conditions hold: (a) the RFID sender
S and the RFID receiver R maintain the same matrix B; (b) S and R are syn-
chronized in the sense that both S and R perform the authentication procedure
using as a key the XOR of the same n− (j −1)(mod(n)) column; (c) the matrix

298 S. Dolev and M. Kopeetsky

B shared by S and R contains at least one row unknown to the adversary. The
proof is implemented by induction of session number i.

Basis of induction i = 1
As it has been mentioned above, the first key message s1 = (X1, b1) at the
first communication session S1 contains XOR of nth column elements X1 =
a1n ⊕ a2n ⊕ . . . ⊕ ann that is unknown to the adversary. Evidently, S and R
maintain the same matrix B that has been defined at the initialization stage
when the adversary was not present.

S and R are synchronized because the first key message that S sends to R
and R expects to receive is the XOR of the nth column elements.

Induction step
(a) For i < n the B matrix in each communication session Sj among i commu-
nication sessions S1, . . . , Si contains at least one row unknown to the adversary.
The induction assumption is correct due to the initialization procedure per-
formed by S and R, respectively. In addition, for any i ≥ n the basic condition
that for each ith communication session B contains a row unknown to the ad-
versary also holds. It is based on the assumption that among any n successive
communication sessions there is at least a single session that the adversary was
not eavesdropping.

(b) Assume that during every i < n communication session S and R maintain
the same matrix B. Then the matrix B shared by S and R during the next
i, i ≥ n communication session will differ from the previous one by appropriate
inserting the new first random row and deleting the last one at the sender and
receiver’s side, respectively. For that reason, during any communication session,
S and R share the same matrix.

(c) Finally, assume that during any i < n communication session S and R
agree on the same B′s column n − (i − 1)(mod(n)) that is the basis for con-
structing the key message. Then, at the next i > n communication session the
column number is reduced by 1 mod(n). As a result, the basis for constructing
the key message at the sender and the receiver’ sides, respectively, is the same
B′s n − (i − 2)(mod(n)) column.

The AP1 proactive feature is proved in the following way. Assume that the
adversary has gotten access to the whole matrix B. Assume that in the jth

communication session Sj that follows this security failure, the adversary was
not listening in to the message sj sent by the RFID sender. In essence, during
any of the following (j + i)th session, i ≥ 1 the XOR of the appropriate B′s
column elements contains at least a single number bj+i,n−(j+i)+1 ∈ bj that the
adversary was not listening in. Here bj is the unknown to the adversary random
vector that has been sent by S in the secure message sj . Therefore, the basic
condition, that within n consecutive messages sent from S to R there is at least
a single message unknown to the adversary, is restored. As a result, the AP1

information security feature is regained.
Assume that the adversary tends to drive the RFID receiver to a deadlock

state after which the sender will not be able to cause the receiver to send a

Secure Communication for RFIDs Proactive Information Security 299

message r=Open. In order to do so the adversary must corrupt the matrix B,
say, by inserting a new row on behalf of the RFID sender. Nevertheless, the
adversary will fail in this attempt because in order to insert a new raw in the
matrix B the adversary has to authenticate himself or herself on behalf of the
RFID sender. The message sj that the adversary has to send to the receiver
must include the XOR Xj of the appropriate column elements.

As a matter of fact, AP1 has two parameters. The first parameter is matrix’ B
size n. The larger n is, the weaker is the assumption about the adversary. The
price payed for large n is the additional memory usage in the restricted memory
size of the RFID devices. The second secure parameter is the number of bits l
of an entry in B. The longer are B′s elements, the smaller is the possibility for
the adversary to guess the correct key.

Note that when the assumption concerning one session in each sequential
session, in which the adversary does not listen in, is violated, then the adversary
can drive the system into a deadlock by, say, replacing a row in the matrix B,
unknown to the sender.

4 Combined Computational Secure Protocol

We now allow the adversary to listen to any session between the RFID sender
S and the RFID receiver R. Our purpose is to enhance the basic proactive
information secure protocol AP1.

As in the AP1 case, both S and R get in the initialization stage the initial
n-dimensional square matrix B (Figure 3, lines 1-6, Protocols for RFID Sender
and Receiver). In addition a certain predefined key word string keyword[k] is
granted to S and R, respectively.

During the first authentication session S executes the following encryption
procedure: As in the case of the proactive information secure protocol, S calcu-
lates the XOR of the nth B’s column X1 = a1n ⊕ a2n ⊕ . . . ⊕ ann. New vector
row b1 = (b11, . . . , b1n) is also created as in the proactive information secure
protocol case. X1 is used as a seed for the generation of the pseudo-random
sequence (c11, . . . , c1m) of length m = n · l + k, where k is the keyword length
[8]. See [8], Chapter 12 for possible choices of the generation mechanism of the
pseudo-random numbers.

S creates a new vector row Y1 that should be sent to R in the first au-
thentication message. Y1 is equal to XOR of the previously generated pseudo-
random sequence (c11, . . . , c1m) with vector b1 concatenated with the keyword:
Y1 = (c11, . . . , c1m)⊕(b1‖keyword[k]) (Figure 3). Eventually, the secure informa-
tion encapsulation is provided. The first key message sent from S to R during the
first communication session is s1 = (Y1) (Figure 3, Protocol for RFID Sender,
lines 7-13).

Upon receiving the message s1 = Y1 R decrypts it by calculating Y1 ⊕
(c11, . . . , c1m). If the decrypted suffix of the string is equal to the predefined
string keyword[k], then the RFID receiver R authenticates the RFID sender
S and returns the message r1 = Open to the RFID sender S. The matrix B

300 S. Dolev and M. Kopeetsky

Fig. 3. Proactive Computational Secure Protocol

Secure Communication for RFIDs Proactive Information Security 301

updating is provided by the prefix of the decrypted string as in the basic in-
formation secure protocol. Otherwise, the message r1 = DoNotOpen is sent to
S (Figure 3, lines 7-14, Protocol for RFID Receiver). Updating procedure and
calculation of XOR for the corresponding B′s column elements is described in
Figure 2 (lines u1-u4 and c1-c8 respectively, Protocol for RFID Sender).

During any jth authentication session Sj, j = 1, 2, . . . the message sj sent by
S is as follows: Yj = (cj1, . . . , cjm) ⊕ (bj‖keyword[k]), where cj = (cj1, . . . , cjm)
is the pseudo-random sequence generated by the seed Xj ⊕Xj−1. Xj is equal to
XOR of (n − (j − 1)(mod(n)))th column elements, and bj is a newly generated
random vector that updates matrix B. Xj−1 is the seed that has been used in the
previous communication session Sj−1. It should be noted that the keyword and
the one way function that generates the pseudo-random numbers can be known
to the adversary. The computational security of the designed protocol AP2 is
provided by means of the random seed generation in each session. Moreover, the
recursive reuse of the seed used in the previous communication session enhance
the security of AP2 where the adversary does not listen in.

As a matter of fact, the seed X1 used in the first communication session S1

is unknown to the adversary. The reason is that the adversary has not been
present at the initialization stage. Therefore, the initial B′s elements are not
available for the adversary. The seed updating is performed continuously in each
communication session. Hence,the adversary does not get enough time to guess
the secret seeds by observing the transmitted messages.

In essence, the encryption scheme is based on the message encapsulation by
means of the One Time Pads techniques ([10]), whereas the pads are created by
pseudo-random sequence using a randomly created seed defined by the update
procedure of the matrix B. The following theorem proves the correctness of AP2.

Theorem 2. The AP2 protocol is proactive computationally secure protocol.

Proof sketch: Assume that the adversary is listening in all communication
sessions Si1 , . . . , Sin between S and R. Even though the one way function f that
generates the pseudo-random sequence is available to the adversary, calculating
its invert f−1 is computationally infeasible ([10]). Hence, correct prediction of
the seed Xin+1 and the corresponding pseudo-random sequence cin+1 for the next
communication session Sin+1 that the adversary wishes to provide in order to
break the security system, is computationally impossible.

The RFID receiver R confirms the sender S authentication at each jth commu-
nication session by revealing the keyword[k] string from the received decrypted
message si. If the decrypted keyword[k] string is correct, then R accepts S as a
correct authentication.

We now prove the proactive feature of AP2. Assume that the adversary has
successfully broken the security system and has gotten access to the whole matrix
B. Hence, the adversary can correctly calculate the seeds that should be used in
the following sessions. However, after the first session in which the adversary is
not present, AP2 satisfies the conditions of the information secure protocol AP1.
As a result, the information and computational security features are restored.

302 S. Dolev and M. Kopeetsky

The AP2’s parameters that define the pseudo-random sequence length are n, l
is the number of bits of an entry in the matrix B, and the keyword length k.

5 Conclusions and Extensions

We presented a secure authentication protocol that is based on the assumption
that among any n consecutive interactions between the RFID sender and the
RFID receiver there is at least a single session in which the adversary was not
listening in. This model is not perfect, nevertheless it takes into account the
restricted capabilities of the real world RFID adversary. Actually, AP1 provides
information theoretic security guarantees.

The AP2 protocol loosens the assumption of the RFID adversary’s weakness.
It provides computational security in a proactive manner. The computational
security of AP2 is provided by involving basic arithmetic operations and using
small size memory. The larger are the values of the matrix’ B elements, the larger
is its XOR Xj value and, consequently the generated pseudo-random sequence
is closer to a real random sequence ([8]).

Note that one can use symmetric authentication scheme to obtain mutual
authentication of the sender and the receiver. For example, we may double the
number of columns in the matrices of the sender and the receiver and use the
XOR of one column to authenticate the sender and the XOR of the next col-
umn to authenticate the receiver. Obviously, computational security “envelop”
can be implemented for the symmetric version as well, resulting in a proactive
computational secure symmetric scheme.

The AP1 and AP2 protocols can be used in the case of multiple RFID senders
and a single RFID receiver. In order to provide secure communication the RFID
receiver has to store different matrices and to share an unique matrix with each
RFID sender. As a matter of fact, the limitation imposed on the number of RFID
senders is only related to the limited storage capabilities of the RFID receiver.
More details concerning the extensions above are deferred to the full version of
the paper.

References

1. G. Avoine, “Radio Frequency Identification: Adversary Model and Attacks on Ex-
isting Protocols”, Technical Report LASES-REPORT-2005-001, September 2005.

2. S. Bono, M. Green, A. Stubblefield, A. Juels, A. Rubin, M. Szydlo, “Security
Analysis of a Cryptographically Enabled RFID Device”,P. McDaniel, ed.,USENIX
Security 05, pp. 1-16, 2005.

3. R. Canetti, Rosario Gennaro, A. Herzberg, D. Naor, “Proactive Security: Long-
term Protection Against Break-ins”, RSA CryptoBytes, No.1, Vol. 3, p.p. 1-8, 1997.

4. R. Goossens, F. Lambi, “RFID Society Newsletter”, http://informationweek.com/
story/showArticle.jhtml?articleID=163101002, May, 2005.

5. A. Juels, “Strengthening EPC Tags Against Cloning”, ACM Workshop on Wireless
Security, pp.67-76, 2005.

Secure Communication for RFIDs Proactive Information Security 303

6. A. Juels, “RFID Security and Privacy: A Research Survey”, RSA Laboratories
http://www.rsasecurity.com/rsalabs/node.asp?id=2937, Condensed version to ap-
pear in 2006 in the IEEE Journal on Selected Areas in Communication.

7. A. Juels, “Minimalist Cryptography for Low-Cost RFID Tags”, RSA Laboratories
http://www.rsasecurity.com/rsalabs/node.asp?id=2937. In C. Blundo, ed., Secu-
rity of Communication Networks (SCN), 2004. To appear.

8. A. Menezes, P. van Oorschot, S. Vanstone, “Handbook of Applied Cryptography”,
CRC Press, 1-st edition, 1996.

9. S. E. Sarma, S. A. Weis, D. W. Engels, “Radio-Frequency Identification: Security
Risks and Challenges”, RSA CryptoBytes, No. 1, Vol. 6, 2003.

10. D. R. Stinson, Cryptography. Theory and Practice, CRC Press, 3-rd edition, 2006.

Fault Masking in Tri-redundant Systems

Mohamed G. Gouda1, Jorge A. Cobb2, and Chin-Tser Huang3

1 Department of Computer Sciences
The University of Texas at Austin

gouda@cs.utexas.edu
2 Department of Computer Science
The University of Texas at Dallas

cobb@utdallas.edu
3 Department of Computer Science and Engineering

University of South Carolina at Columbia
huangct@cse.sc.edu

Abstract. A tri-redundant version of a system S is a system T that
is specified from S as follows. First, system T has the same number of
processes and the same topology as system S. Second, each variable x in
a process in system S is replaced by three variables x, x′, and x′′ in the
corresponding process in system T . Third, the actions in each process in
system S are modified before they are added to the corresponding process
in system T and some new actions are added to the corresponding process
in system T . In this paper, we show that a tri-redundant version T of a
system S has interesting stabilization and fault-masking properties. In
particular, we show that if S is stabilizing, then T is also stabilizing. We
also show that if T ever reaches stabilization, and then a “visible fault”
occurs, then the effect of the fault is masked and the reached stabilization
of T remains in effect.

1 Introduction

A system S is called P -stabilizing, where P is a boolean expression over the
variables in S, iff the following two conditions hold. First, any computation of S,
that starts at a state where P is false, reaches a state where P is true. Second,
the execution of any action in system S that starts at a state where P is true,
ends at a state where P is true. See for example [4,5,9].

The fact that a system S is P -stabilizing indicates that S is fault-tolerant to
some degree. In particular, if a fault ever causes system S to reach a state where
P is false, further executions of the actions in S causes S to return to a state
where P is true. Moreover, once S reaches a state where P is true, P continues
to be true at each subsequent state of S.

There are (at least) two research directions that can be followed in order
to enhance the relationship between stabilization and fault-tolerance. The first
research direction is called fault-containment and it has been explored in [7,8,10].
The second research direction is called fault-masking and it is the subject of the
current paper. We compare these two research directions next.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 304–313, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fault Masking in Tri-redundant Systems 305

Let S be a P -stabilizing system, and let F be a class of faults each of which
can change the value of some variable in S. Assume that each fault f in F is
assigned a “severity measure” m(f). System S is called F -containing iff for each
fault f in F , any computation of S, that starts at a state sf , where sf can be
reached by applying fault f to a state where P is true, reaches a state where
P is true after at most O(m(f)) transitions from the starting state sf . In other
words, F -containment ensures that the time that system S needs to recover from
a fault f in F is proportional to some measure of the severity of fault f .

Let S be a P -stabilizing system, and let F be a class of faults each of which can
change the value of some variable(s) in S. System S is called F -masking iff for
each fault f in F , and for each variable x whose value is changed by fault f , any
computation of S, that starts at a state sf , where sf can be reached by applying
fault f to a state where P is true, has an execution of some action ac that restores
the value of variable x to its value before f is applied, and moreover any action
execution, that preceeds the execution of ac in the computation, neither reads
nor writes variable x. In other words, F -masking ensures that the application of
any fault f in F has a limited effect on the action execution in system S.

In this paper, we describe a transformation that can transform any stabilizing
system S to a “tri-redundant” version T such that T is both stabilizing and F -
masking, where F is a rich class of faults called visible faults.

The concept of fault masking presented in this paper has somewhat similar
objectives, if not the same technical details, as two earlier concepts: supersta-
bilization and snap stabilization. A superstabilizing system [6] is a stabilizing
system that dampens the effects of its own “topology changes” when they oc-
cur. This is accomplished by ensuring that the system satisfies a specified safety
predicate from the instant when the topology of the system changes, causing the
system to lose its stabilization, until the instant when the stabilization of the
system is restored. A snap stabilizing system [3] is a stabilizing system that is
guaranteed to always behave according to its specification regardless of how the
state of the system is changed due to fault occurrence. Clearly, snap stabilization
is a lofty goal. Unfortunately, many systems cannot be made snap stabilizing.

2 Stabilizing Systems

The topology of a system is a connected undirected graph, where each node
represents one process in the system, and each edge between two nodes p and q
indicates that processes p and q are neighbors in the system, and so each of the
two processes can read the variables of the other process, as discussed below.

Each process in a system is specified by a finite set of variables and a finite
set of actions. The values of each variable are taken from some bounded domain
of values. Each action of a process p is of the form

〈guard〉 → 〈assignment〉
where 〈guard〉 is a boolean expression over the variables of process p and the
variables of all neighboring processes of p, and 〈assignment〉 is a sequence of
assignment statements, each of which is of the form

306 M.G. Gouda, J.A. Cobb, and C.-T. Huang

x := E(y, . . .)

where x is a variable in process p, E is an expression of the same type as variable
x, and y is a variable either in process p or in any neighboring process of p.

A state of a system S is specified by one value for each variable, taken from
the domain of values of that variable, in each process in S.

A transition of a system S is a triple of the form

(s, ac, s′)

where s and s′ are two states of system S and ac is an action in some process in
S such that the following two conditions hold.

i. Enablement: The guard of action ac is true at state s.
ii. Execution: Executing the assignment of action ac, when system S is in

state s, yields system S in state s′.

A computation of a system S is a sequence of the form

(s0, ac0, s1), (s1, ac1, s2), . . .

where each element (si, aci, s(i+1)) is a transition of S such that the following
two conditions hold.

i. Maximality: Either the sequence is infinite or it is finite and its last ele-
ment (s(z−1), ac(z−1), sz) is such that the guard of every action in system
S is false at state sz.

ii. Fairness: If the sequence has an element (si, aci, s(i+1)) and the guard
of some action ac is true at state s(i+1), then the sequence has a later
element (sk, ack, s(k+1)) where ac is ack or the guard of ac is false at state
s(k+1).

A predicate P of a system S is a boolean expression over the variables in all
processes in system S.

A predicate P of a system S is said to be closed in S iff for every transition
(s, ac, s′) of system S, if predicate P is true at state s, then P is true at state s′.

A system S is called P -stabilizing iff predicate P satisfies the following two
conditions [1].

i. Closure: Predicate P is closed in system S.
ii. Convergence: Predicate P is true at a state in every computation of

system S.

3 Systems with Tri-redundancy

In the previous section, we discussed how to specify a system S. Next, we describe
how to specify a tri-redundant version T of any system S. The tri- redundant
version T is specified from S as follows.

Fault Masking in Tri-redundant Systems 307

i. Topology: System S has the same number of processes and the same
topology as system T . Thus, there is a natural one-to-one correspondence
between the processes in S and those in T . For convenience, each process
p in S has the same name as that of the corresponding process p in T .

ii. Variables: For each variable x in a process p in system S, there are three
corresponding variables x, x′, and x′′ in the corresponding process p in
system T . Each of the variables x, x′, and x′′ in system T is of the same
type and has the same domain of values as variable x in system S. We
refer to x in T as the original copy of variable x in S, and refer to x′

and x′′ in T as the shadow copies of x in S.
iii. Actions: For each action of the form 〈guard〉 → 〈assignment〉 in a process

p in system S, there is a corresponding action of the form 〈guard′〉 →
〈assignment′〉 in the corresponding process p in system T such that the
following three conditions hold.
(a) First, each occurrence of a variable x in 〈guard〉 is replaced by an

occurrence of the original copy of x, also called x, in 〈guard′〉.
(b) Second, for each variable x that occurs in 〈guard〉 or in 〈assignment〉,

add a conjunct of the form (x = x′ ∧ x′ = x′′) to 〈guard′〉.
(c) Third, each statement of the form x := E(y, . . .) in 〈assignment〉

is replaced by a statement of the form (x, x′, x′′) := E(y, . . .) in
〈assignment′〉. The latter statement computes the value of expression
E and then assigns the computed value to each of the three copies
x, x′, and x′′ in T .

iv. Additional Actions: For each original copy x in a process p in system T ,
add an action of the following form to process p in T

x �= x′ ∨ x′ �= x′′ → (x, x′, x′′) := MJR(x, x′, x′′)

where MJR(x, x′, x′′) is the bit-wise majority function applied to the
three variables x, x′, and x′′. This function is defined in some detail
next.

Recall that each variable in a system has a bounded domain of values and that
the three copies x, x′, and x′′ have the same (bounded) domain D(x) of values.
Thus, every value of each of the three copies x, x′, and x′′ can be represented by
the same number, say r, of bits. The function MJR(x, x′, x′′) computes a value
in the same domain D(x) of values, and so each value of MJR(x, x′, x′′) can be
represented by r bits.

The bits of MJR(x, x′, x′′) can be computed from the bits of x, x′, and x′′

as follows. For every i in the range 0 . . (k − 1), the i-th bit of MJR(x, x′, x′′) is
computed as the majority of three bits: the i-th bit of x, the i-th bit of x′, and
the i-th bit of x′′.

4 Stabilization Theorem

In this section, we show that if a system S is stabilizing, then any tri-redundant
version T of S is also stabilizing.

308 M.G. Gouda, J.A. Cobb, and C.-T. Huang

Theorem 1. (Stabilization of Tri-Redudant Systems).
Let S be a P -stabilizing system, and T be a tri-redundant version of S. System
T is Q-stabilizing, where Q is the predicate

P ′ ∧ (for every original copy of x in T , x = x′ ∧ x′ = x′′)

and predicate P is syntactically identical to predicate P ′. (Note that P is a
predicate of system S and P ′ is a predicate of system T . Thus, each occurrence
of x in P refers to a variable x in system S, and each occurrence of x in P ′

refers to the original copy of x in system T .)

Proof. The proof is divided into two parts. In the first part, we show that pred-
icate Q is closed in system T , and in the second part, we show that Q is true at
a state in every computation of system T .

First Part: Let (t, ac′, t′) be a transition of system T and assume that predicate
Q is true at state t, we need to show that Q is true at state t′.

Because Q is true at t, we conclude that the predicate (for every original copy
of x in T , x = x′ ∧ x′ = x′′) is true at t. Thus, the guard (x �= x′ ∨ x′ �= x′′)
of each additional action in system T is false at t, and so ac′ in the transition
(t, ac′, t′) is not an additional action in system T . Rather, ac′ is an action in
system T that corresponds to an action ac in system S. The two actions ac and
ac′ are of the form

ac : 〈guard〉 → 〈assignment〉
ac′ : 〈guard′〉 → 〈assignment′〉

where 〈guard′〉 is the predicate 〈guard〉 ∧ (for every variable x that occurs in
ac, x = x′ ∧ x′ = x′′), also, 〈assignment〉 and 〈assignment′〉 are identical except
that each statement x := E(y, . . .) in 〈assignment〉 is replaced by the statement
(x, x′, x′′) := E(y, . . . ,) in 〈assignment′〉.

Let s and s′ be the two states of system S that correspond to states t and
t′, respectively, of system T . It follows that the triple (s, ac, s′) is a transition of
system S. Moreover, because predicate Q is true at state t, we conclude that P
is true at state s.

From the fact that system S is P -stabilizing (and so P is closed in system S),
and the fact that triple (s, ac, s′) is a transition of system S, and the fact that
P is true at state s, it follows that P is true at state s′. Thus, both P ′ and Q
are true at state s′.

Second Part: Let the sequence (t0, ac0, t1), (t1, ac1, t2), . . . be a computation
of system T . We need to show that predicate Q is true at some state in this
computation.

Let x be an original copy in system T where the predicate (x �= x′ ∨ x′ �= x′′) is
true at the initial state t0 of this computation. Then the guard of the additional
action x �= x′ ∨ x′ �= x′′ → (x, x′, x′′) := MJR(x, x′, x′′) in T is true at t0.
From the fairness condition of the computation, it follows that the predicate
(x = x′∧x′ = x′′) is true at a later state tj in the computation. Moreover, because

Fault Masking in Tri-redundant Systems 309

each action in system T either keeps the values of x, x′, and x′′ unchanged, or
assigns each of them the same new value, the predicate (x = x′ ∧ x′ = x′′)
remains true at each of the states that occur after tj in the computation.

From the above discussion, the computation (t0, ac0, t1), (t1, ac1, t2), . . . has
a suffix (tk, ack, t(k+1)), (t(k+1), ac(k+1), t(k+2)), . . . where the predicate (for each
original copy x in T , x = x′ ∧ x′ = x′′) is true at each state tk, t(k+1), . . .
in this suffix. Along this suffix, the execution of system T mirrors that of sys-
tem S. Because system S is P -stabilizing, predicate P ′ is true at some state
tz in this suffix. Therefore, predicate Q is true at the same state tz in the
computation. ��

5 Fault Masking Theorem

Let S be a P -stabilizing system and T be a tri-redundant version of S. From
the stabilization theorem of tri-redundant systems (in the previous section), T
is Q-stabilizing where Q is the predicate (P ′ ∧ (for each original copy x in T ,
x = x′∧x′ = x′′)). In this section, we argue that if T is at a legitimate state, one
where Q is true, and then some fault, from a rich class of faults called visible
faults, occurs, then the effects of the fault are masked and the system quickly
returns to a legitimate state, one where Q is true. We start by defining visible
faults.

A fault f is visible iff it changes the values of some variables in system T such
that the following two conditions hold:

i. Legitimacy: Immediately before f occurs, system T is at a legitimate
state where predicate Q is true. It follows that for every original copy x
in T , xa = xa′∧xa′ = xa′′, where (xa, xa′, xa′′) is the value of (x, x′, x′′)
immediately before f occurs.

ii. Transparency: For every original copy x in T ,

MJR(xa, xa′, xa′′) = MJR(xb, xb′, xb′′),

where (xa, xa′, xa′′) is the value of (x, x′, x′′) immediately before f occurs
and (xb, xb′, xb′′) is the value of (x, x′, x′′) immediately after f occurs.

Assume that a visible fault f occurs in system T , and also assume that f
changes the value of some (x, x′, x′′) in T from (xa, xa′, xa′′) to (xb, xb′, xb′′).
From the legitimacy condition of f , xa = xa′ ∧ xa′ = xa′′. Thus, from the
transparency condition of f and from the fact that f has changed the value of
(x, x′, x′′), xb �= xb′ ∨ xb′ �= xb′′.

Let t be the state of system T immediately after f occurs. Then, the predicate
(x �= x′∨x′ �= x′′) is true at state t. System T has two types of actions where the
triple (x, x′, x′′) occurs: actions ac0, ac1, . . . that correspond to some actions,
where x occurs, in system S and the added action ac:

ac : (x �= x′ ∨ x′ �= x′′) → (x, x′, x′′) := MJR(x, x′, x′′)

310 M.G. Gouda, J.A. Cobb, and C.-T. Huang

The guard of each action aci in T has a conjunct (x = x′ ∧ x′ = x′′) and so
none of these actions can be executed until after action ac is executed. From
the transparency condition of f , executing action ac changes back the value
of (x, x′, x′′) from (xb, xb′, xb′′) to (xa, xa′, xa′′). Thus, the effect of fault f on
the triple, and ultimately on system T , is masked. This argument proves the
following theorem.

Theorem 2. (Fault-Masking of Tri-Redundant Systems).
Let S be a P -stabilizing system and T be a tri-redundant version of S. System
T is F -masking, where F is the class of visible faults.

6 A Tri-redundant Spanning Tree

As an example, consider a system S that consists of n processes p[i : 0 . . n − 1].
The processes in S maintain an outgoing spanning tree whose root is process
p[0]. Each process p[i] has a variable ds[i] to store the smallest number of hops
needed to go from p[0] to p[i]. Also each process p[i], other than process p[0] has
a variable pr[i] to store index g of the parent p[g] of p[i]. The processes in S can
be specified as follows.

process p[0]

var ds[0] : 0 . . n

begin
true → ds[0] := 0

end

process p[i : 1 . . n − 1]

var ds[i] : 0 . . n
pr[i] : index of parent of p[i] in spanning tree

par g : index of an arbitrary neighbor of p[i]

begin
ds[i] �= min(n, ds[pr[i]] + 1) →

ds[i] := min(n, ds[pr[i]] + 1)

ds[i] > ds[g] + 1 →
ds[i] := ds[g] + 1;

pr[i] := g
end

Fault Masking in Tri-redundant Systems 311

This system has been shown to be stabilizing [2]. Unfortunately the system is
not F -masking for any reasonable class F of faults. Consider for example a fault
that changes the value of ds[0] in process p[0] from 0 to 1. The first action in
any neighboring process p[g] can be executed and read the faulty value of ds[0]
before the correct value of ds[0] is restored (by the action of process p[0]).

To achieve F -masking, for class F of visible faults, system S needs to be
transformed to a tri-redundant version T . The processes in system T are specified
as follows.

process p[0]

var ds[0], ds′[0], ds′′[0] : 0 . . n

begin
(ds[0] = ds′[0] ∧ ds′[0] = ds′′[0]) →

(ds[0], ds′[0], ds′′[0]) := 0

(ds[0] �= ds′[0] ∨ ds′[0] �= ds′′[0]) →
(ds[0], ds′[0], ds′′[0]) := MJR(ds[0], ds′[0], ds′′[0])

end

process p[i : 1 . . n − 1]

var ds[i], ds′[i], ds′′[i] : 0 . . n
pr[i], pr′[i], pr′′[i] : index of parent of p[i] in spanning tree

par g : index of an arbitrary neighbor of p[i]

begin
ds[i] �= min(n, ds[pr[i]] + 1) ∧
(ds[i] = ds′[i] ∧ ds′[i] = ds′′[i]) ∧
(pr[i] = pr′[i] ∧ pr′[i] = pr′′[i]) ∧
(ds[pr[i]] = ds′[pr[i]] ∧ ds′[pr[i]] = ds′′[pr[i]])

→
(ds[i], ds′[i], ds′′[i]) := min(n, ds[pr[i]] + 1)

ds[i] > ds[g] + 1∧
(ds[i] = ds′[i] ∧ ds′[i] = ds′′[i]) ∧
(pr[i] = pr′[i] ∧ pr′[i] = pr′′[i]) ∧
(ds[g] = ds′[g] ∧ ds′[g] = ds′′[g])

→

312 M.G. Gouda, J.A. Cobb, and C.-T. Huang

(ds[i], ds′[i], ds′′[i]) := ds[g] + 1;

(pr[i], pr′[i], pr′′[i]) := g

(ds[i] �= ds′[i] ∨ ds′[i] �= ds′′[i])

→
(ds[i], ds′[i], ds′′[i]) := MJR(ds[i], ds′[i], ds′′[i])

(pr[i] �= pr′[i] ∨ pr′[i] �= pr′′[i])

→
(pr[i], pr′[i], pr′′[i]) := MJR(pr[i], pr′[i], pr′′[i])

end

7 Concluding Remarks

In this paper, we described a transformation to transform any system S to a tri-
redundant version T . We showed that if S is stabilizing then T is both stabilizing
and F -masking for the class F of visible faults.

In our presentation, we assumed that system S is stabilizing under the as-
sumption that the actions of S are executed one at a time. Nevertheless, the
presentation can be extended in straightforward manner to the case where sys-
tem S is stabilizing under the assumption that any subset of actions (at most
one action from each process) in S are executed at a time. In this case, system
T is stabilizing and F -masking under the same assumption that any subset of
actions (at most one action from each process) in T are executed at a time.

In the above presentation, we assumed that the redundant version of any
system S has “three” copies (x, x′, x′′) of every variable x in S. However, the
only magic that is associated with this number “three” is that it is odd, and so
when any fault occurs in the redundant system, the MJR function can always
return a meaningful value. Therefore, the above presentation can be generalized
in a straightforward manner such that the redundant version of a system has
(2 · r + 1) copies of every variable in that system, where r is a positive integer.

In [11], Huang and Gouda have shown how to utilize two ideas, namely state
checksums and tri-redundancy, to design a stabilizing token system that masks
visible faults. Surprisingly, the theory of fault masking presented in the current
paper is based solely on the idea of tri-redundancy. The question, of how to enrich
this theory by injecting the idea of state checksums into it, seems interesting and
enticing, but so far remains open.

Acknowledgment

The work of M. G. Gouda is supported in part by the National Science Founda-
tion under Grant No. 0520250. The work of J. A. Cobb is supported in part by

Fault Masking in Tri-redundant Systems 313

a UTD Project Emmitt startup grant. The work of C. T. Huang is supported in
part by by the AFRL/DARPA under grant No. FA8750-04-2-0260. The authors
would like to thank Professor Eunjin (EJ) Jung, at the University of Iowa, for
her comments on an earlier version of this paper.

References

1. A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-
tolerant computing. IEEE Transactions on Software Engineering, 19:1015–1027,
November 1993.

2. N.-S. Chen, H.-P. Yu, and S.-T. Huang. A self-stabilizing algorithm for constructing
spanning trees. Inf. Process. Lett., 39(3):147–151, 1991.

3. A. Cournier, A. K. Datta, F. Petit, and V. Villain. Enabling Snap Stabilization.
Proceedings of the 23rd International Conference on Distributed Computing Sys-
tems (ICDCS-03), 2003.

4. E. W. Dijkstra. Self-stabilization in spite of distributed control. ACM Communi-
cations, 17:643–644, 1974.

5. S. Dolev. Self-Stabilization. MIT Press, 2000.
6. S. Dolev and T. Herman. Superstabilizing Protocols for Dynamic Distributed

Systems. Chicago Journal of Theoretical Computer Science, Vol. 1997, Article 4,
1997.

7. S. Ghosh, A. Gupta, T. Herman, and S. Pemmaraju. Fault-containing self-
stabilizing algorithms. In Proceedings of 15th Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC ’96), pages 45–54, 1996.

8. S. Ghosh, A. Gupta, and S. Pemmaraju. A fault-containing self-stabilizing algo-
rithm for spanning trees. Journal of Computing Information, 2:322–338, 1996.

9. T. Herman. A comprehensive bibliography on self-stabilization. Chicago Journal
of Theoretical Computer Science, 1996.

10. T. Herman and S. Pemmaraju. Error-detecting codes and fault-containing self-
stabilization. Information Processing Letters, 73:41–46, 2000.

11. C. T. Huang and M. G. Gouda. State Checksum and Its Role in System Stabiliza-
tion. Proceedings of the 4th International Workshop on Assurance in Distributed
Systems and Networks (ADSN 2005), 2005.

Logarithmic Keying of Communication Networks

Mohamed G. Gouda1, Sandeep S. Kulkarni2, and Ehab S. Elmallah3

1 University of Texas at Austin
gouda@cs.utexas.edu
2 Michigan State University
sandeep@cse.msu.edu

3 University of Alberta
ehab@cs.ualberta.ca

Abstract. Consider a communication network where each process needs to se-
curely exchange messages with its neighboring processes. In this network, each
sent message is encrypted using one or more symmetric keys that are shared only
between two processes: the process that sends the message and the neighboring
process that receives the message. A straightforward scheme for assigning sym-
metric keys to the different processes in such a network is to assign each process
O(d) keys, where d is the maximum number of neighbors of any process in the
network. In this paper, we present a more efficient scheme for assigning sym-
metric keys to the different processes in a communication network. This scheme,
which is referred to as logarithmic keying, assigns O(log d) symmetric keys to
each process in the network. We show that logarithmic keying can be used in rich
classes of communication networks that include star networks, acyclic networks,
limited- cycle networks, and planar networks.

Keywords: Secure communications, symmetric keys, keying scheme.

1 Introduction

A communication network consists of processes and connecting channels such that for
each pair of processes p and q, either there are no connecting channels between p and
q, or there is a single two-way channel between p and q. Two processes in a commu-
nication network are called neighbors iff there is a two-way channel between the two
processes in the network. Two neighboring processes can exchange messages over the
two-way channel between them. A communication network is said to be of degree d iff
the network has a process that has exactly d neighbors, and each process in the network
has at most d neighbors.

Let p and q be two neighboring processes in a communication network and assume
that both p and q know a symmetric key s and that no other process in the network
knows s. In this case, each exchanged message between p and q can be encrypted using
s before it is sent (by p or q) and can be decrypted using s after it is received (by q or p,
respectively) in order to guarantee the confidentiality of the communication between p
and q. This simple arrangement suggests that if a process p in a communication network
has d neighbors, then p needs to store and use d symmetric keys in order to guarantee
the confidentiality of its d communications with each one of its neighbors.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 314–323, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Logarithmic Keying of Communication Networks 315

We refer to any keying scheme, where O(d) symmetric keys are assigned to each
process in a communication network whose degree is d, as a linear keying scheme.

As it happened, recently published results [1], [2], and [3] have shown that linear key-
ing is not the most efficient scheme, for assigning symmetric keys to the processes in a
communication network, in the case where the network is fully connected (i. e. where
each two distinct processes in the network are neighbors). In [1], Gong and Wheeler
described a keying scheme where O(

√
d) symmetric keys are assigned to each process

in a fully connected communication network. In [2], Kulkarni, Gouda, and Arora de-
scribed a variation of the scheme in [1], and showed that this scheme is optimal if each
pair of distinct processes share no more than two symmetric keys. In [3], Aiyer, Alvisi,
and Gouda described a keying scheme where O(log2 d) symmetric keys are assigned
to each process in a fully connected network. They also showed, using a probabilistic
but non-constructive argument, that there exists a keying scheme where O(log d) sym-
metric keys are assigned to each process in a fully connected communication network.
Note that all these results apply only communication networks that are fully connected.
So far, there are no corresponding results to arbitrary communication networks; hence,
this paper.

We refer to any keying scheme, where O(log d) symmetric keys are assigned to
each process in a communication network, whose degree is d, as a logarithmic keying
scheme.

In this paper, we describe logarithmic keying schemes for assigning symmetric keys
to the processes in rich classes of communication networks, which include star net-
works, acyclic networks, cycle-limited networks, and planar networks.

2 Logarithmic Keying of Star Networks

Consider a star network where a process p needs to communicate securely with each
of its d neighboring processes, q.0, q.1, · · · , q.(d − 1). This requirement can be easily
fulfilled by assigning d symmetric keys s.0, s.1, · · · , s.(d− 1) to the network processes
as follows. Each symmetric key s.i is assigned only to the two processes p and q.i.
Thus, the messages exchanged between p and q.i can be encrypted using the symmetric
key s.i before they are sent, and they can be decrypted using s.i after they are received.

This straightforward assignment of symmetric keys to processes requires that process
p stores d symmetric keys, namely s.0, s.1, · · · , s.(d − 1), and each other process q.i
stores one symmetric key, namely s.i. Next, we describe a more balanced assignment
of symmetric keys to the processes in this star network. According to this assignment,
process p needs to store only (2 ∗ log d) symmetric keys, and each other process q.i
needs to store (log d) symmetric keys. We refer to this scheme of assigning symmetric
keys to the processes in a star network as a logarithmic keying of the star network.
(Throughout this paper, we adopt the convention that log x denotes the smallest integer
whose value is at least log x.)

The main idea of our logarithmic keying scheme is as follows. First, process p is
assigned a set S of (2 ∗ log d) symmetric keys. Second, each process q.i is assigned a
distinct subset B.i, that has (log d) symmetric keys, of set S. Later, if process p needs to
send a secure message to process q.i, then p applies the bit-wise, exclusive-or operator

316 M.G. Gouda, S.S. Kulkarni, and E.S. Elmallah

to the keys in subset B.i in order to compute a single symmetric key that is used to
encrypt the message before p sends it to q.i. When process q.i receives the encrypted
message from process p, then q.i applies the bit-wise, exclusive-or operator to the keys
in subset B.i in order to compute a single symmetric key that is used to decrypt the
message after q.i receives it from p. Similar procedure can be used to send an encrypted
message from any process q.i to process p.

The (2 ∗ log d) symmetric keys in set S, assigned to process p, are named:

s.(0, 0), s.(0, 1),
s.(1, 0), s.(1, 1),
· · · · · ·
s.(log d − 1, 0), s.(log d − 1, 1)

In other words, these symmetric keys can be viewed as forming a two-dimensional
matrix that has (log d) rows and two columns. We refer to this matrix as the S-matrix.

Next, we describe how to compute from set S a distinct subset B.i of (log d) keys
to be assigned to process q.i. Subset B.i has exactly one key from each row in the S-
matrix. Which of the two keys in the j-th row of the S-matrix is in subset B.i depends
on the j-th bit, b.j, in the bit representation of index i of process q.i as follows.

if b.j = 0
then key s.(j, 0) is in B.i
else key s.(j, 1) is in B.i

Therefore, each process q.i is assigned a subset B.i that is defined as follows:

B.i = { s.(j, b.j) | 0 ≤ j < log d }

where b.0, b.1, · · · , b.(log d − 1) is the bit representation of index i.
As an example, we describe a logarithmic keying of a star network that has five

processes p, q.0, q.1, q.2, q.3. In this case, d = 4 and the logarithmic keying assigns
(2 ∗ log 4) = 4 symmetric keys to process p. These four keys are named as follows.

s.(0, 0), s.(0, 1),
s.(1, 0), s.(1, 1)

The index, 0, of process p.0 can be represented by the two bits b.0 = 0 and b.1 = 0.
Thus, q.0 is assigned the two keys s.(0, 0) and s.(1, 0). The index of process q.1 can
be represented by the two bits b.0 = 1 and b.1 = 0. Thus, q.1 is assigned the two keys
s.(0, 1) and s.(1, 0). The index of process q.2 can be represented by the two bits b.0 = 0
and b.1 = 1, and so q.2 is assigned the two keys s.(0, 0) and s.(1, 1). Finally, the index
of process q.3 can be represented by the two bits b.0 = 1 and b.1 = 1, and so q.3 is
assigned the two keys s.(0, 1) and s.(1, 1). Note that no two of the four processes q.0
through q.3 are assigned the same subset of symmetric keys.

If each process q.i uses the symmetric keys in its subset B.i merely to encrypt mes-
sages before sending them to p and to decrypt messages after receiving them from p,
then q.i does not need to keep the keys in B.i as separate keys. Instead, process q.i

Logarithmic Keying of Communication Networks 317

can apply the bit-wise exclusive-or operator to the keys in B.i and end up with a single
key. Process q.i needs to store only this one key (instead of storing the log d keys in
subset B.i) and uses it to encrypt messages before sending them to p and to decrypt
messages after receiving them from p. However, as discussed in the next section, there
are other uses for the keys in subset B.i that require these keys to remain separate and
not be combined into a single key. Henceforth, we assume that the keys in each subset
are stored as separate keys.

We end this section by showing that the logarithmic keying of a star network (de-
scribed above) is asymptotically optimal. Assume that there is another keying scheme
of the star network where process p is assigned a set T that has |T | symmetric keys.
To achieve security, it is necessary (but not sufficient) that process p shares with each
process q.i a distinct nonempty subset of set T . Because set T has 2|T | − 1 distinct
nonempty subsets, and there are d of the q.i processes, we have

|T | ≥ log(d + 1)

This implies that |T | is of O(log d) which is the same size as that of set S in our
logarithmic keying scheme.

3 Authenticated Broadcast in Star Networks

Consider the star network described in the previous section, and assume that symmetric
keys are assigned to the processes in this network according to the logarithmic key-
ing scheme discussed in the previous section. Thus process p is assigned (2 ∗ log d)
symmetric keys named

s.(0, 0), s.(0, 1),
s.(1, 0), s.(1, 1),
· · · · · ·
s.(log d − 1, 0), s.(log d − 1, 1)

Also each process q.i is assigned the (log d) symmetric keys s.(0, b.0), · · · , s.(logd −
1, b.(logd − 1)) where the bit string b.0, b.1, · · · , b.(logd − 1) is the bit representation
of index i of process q.i.

Now assume that process p needs to broadcast a message m to all the processes
q.0, q.1, ..., q.(d − 1), and it needs to attach to message m an “authentication code”
so that when a process q.i receives the message, process q.i can verify that only pro-
cess p could have sent this message, and accept the message. But how to design this
authentication code?

Thanks to the logarithmic keying scheme that we adopted for this star network, the
authentication code for any broadcast message m can have a logarithmic length. Specif-
ically, the authentication code for message m consists of the following (2∗log d) digests
of m:

md.(0, 0), md.(0, 1),
md.(1, 0), md.(1, 1),
· · · · · ·
md.(log d − 1, 0), md.(log d − 1, 1)

318 M.G. Gouda, S.S. Kulkarni, and E.S. Elmallah

Each digest md.(x, y) is defined as MD .(m|s.(x, y)), where MD is a well known digest
function, “|” is the concatenation operation, and s.(x, y) is one of the symmetric keys
assigned to process p by the logarithmic keying scheme.

Therefore, the format of the message that process p ends up broadcasting to each of
the processes q.0, q.1, ..., q.(d − 1) is as follows.

(m, md.(0, 0), md.(0, 1), ..., md.(logd − 1, 1))

In other words, the broadcasted message consists of message m followed by (2 ∗ log d)
digests of m.

When a process q.i receives a copy of the broadcasted message, q.i computes (log d)
digests of m using the symmetric keys in subset B.i. (Each digest md.(x, y) is com-
puted as MD .(m|s.(x, y)), where s.(x, y) is a symmetric key in subset B.i.) If process
q.i detects that every one of its computed digests is present in the received message,
q.i concludes that the received message was sent by p and accepts m. Otherwise, q.i
concludes that the message was not sent by p and rejects it.

So far, we have presented a logarithmic keying scheme of star networks, and dis-
cussed how to take advantage of this scheme to encrypt and decrypt unicast messages,
and to authenticate broadcast messages in any star network. In the next section, we
extend this logarithmic keying scheme to a richer class of networks, called acyclic
networks.

4 Logarithmic Keying of Acyclic Networks

The topology of a network is a connected undirected graph, where each node p.j corre-
sponds to a distinct process, also called p.j, in the network, and where each (undirected)
edge connecting nodes p.j and p.k corresponds to a two-way channel that can be used
in exchanging messages between the two corresponding processes p.j and p.k in the
network.

(It follows from this definition that if a network topology has no edge between two
nodes p.j and p.k, then the two corresponding processes p.j and p.k cannot directly
exchange messages in the network.)

A network is called a star iff the network topology consists of one center node and
several peripheral nodes, and each peripheral node is connected only to the center node
(by an edge).

A network is called acyclic iff the network topology is an acyclic undirected graph.
Thus each star network is also acyclic, but not vice versa. In this section, we extend our
logarithmic keying scheme for star networks to acyclic networks.

Consider an acyclic network that has n processes:

p.0, p.1, ..., p.(n − 1)

Assume that the degree of this network is d. Therefore, we can use a straightforward
edge coloring algorithm to assign an index in the range 0..d − 1 to each (two-way)
channel in the network such that the indices of any two channels incident at the same
process are distinct.

Logarithmic Keying of Communication Networks 319

Each process p.j in this network is assigned (2 ∗ log d) symmetric keys named

s.j.(0, 0), s.j.(0, 1),
s.j.(1, 0), s.j.(1, 1),
· · · · · ·
s.j.(log d − 1, 0), s.j.(log d − 1, 1)

Before we can describe how to compute the symmetric keys assigned to each process,
we need first to describe how can a process use its assigned keys to encrypt and decrypt
messages that this process exchanges with its neighboring processes.

Assume that a process p.j needs to securely send a message m to a neighboring pro-
cess p.k via a channel whose index has the bit representation b.0, b.1, ..., b.(logd − 1).
In this case, p.j applies the bit-wise exclusive-or operator to the symmetric keys

s.j.(0, b.0), s.j.(1, b.1),, s.j.(log d − 1, b.(log d − 1))

and ends up with a single key that p.j uses to encrypt each message m before sending
it to p.k via the channel. When process p.k receives the encrypted message via the
channel whose binary representation is b.0, b.1, ..., b.(logd − 1), then p.k applies the
bit-wise exclusive-or operator to the symmetric keys

s.k.(0, b.0), s.k.(1, b.1),, s.k.(logd − 1, b.(log d − 1))

and ends up with a single key that p.k uses to decrypt the received message and obtain
the original message m.

Clearly, the symmetric key that p.j used to encrypt message m needs to be identi-
cal to the symmetric key that p.k used to decrypt the received message. This can be
achieved by requiring that the following log d equalities hold

s.j.(0, b.0) = s.k.(0, b.0),
s.j.(1, b.1) = s.k.(1, b.1),
· · ·
s.j.(log d − 1, b.(log d − 1)) = s.k.(log d − 1, b.(log d − 1))

These log d equalities can be written more succinctly as the following condition.

For every i in the range 0..(log d − 1), s.j.(i, b.i) = s.k.(i, b.i)

We refer to this condition as the key consistency condition.
The key consistency condition states that half the keys in a process p.j are equal to

the corresponding keys in a process p.k, provided that p.j and p.k are neighbors, i.e.,
they are connected by a two-way channel. Hence, in computing the symmetric keys in
each process in an acyclic network, one needs to ensure that the keys in each pair of
neighboring processes satisfy the key consistency condition.

An algorithm for computing the (2∗log d) keys in each process in an acyclic network
consists of the following two steps.

320 M.G. Gouda, S.S. Kulkarni, and E.S. Elmallah

Step 0: choose any process p.j in the network and randomly selects its (2 ∗ log d) keys:
s.j.(0, 0), · · · , s.j.(log d − 1, 1)

Step 1: while the network has two neighboring processes p.j and p.k such that
a. the secrets in p.j are already computed,
b. the secrets in p.k are not yet computed, and
c. the connecting channel between p.j and p.k has an index whose bit

representation is b.0, · · · , b.(log d − 1)
do
for each i in the range 0..(log d − 1), compute the i-th secrets in p.k as follows
s.k.(i, b.i) := s.j.(i, b.i)
s.k.(i, 1 − b.i) := any random value

od

Note that this algorithm is written under the reasonable assumption that the network
is connected. It is straightforward to extend this algorithm to the general case where the
network is partitioned into two or more components.

The (2 ∗ log d) keys assigned to each process p.j in an acyclic network can also be
used by p.j to compute the authentication code for any message m that p.j needs to
broadcast to all its neighboring processes. Specifically, the authentication code for mes-
sage m consists of (2∗ log d) digests, and each digest is of the form MD .(m|s.j.(x, y))
where MD is the message digest function, “|” is the concatenation operation, and
s.j.(x, y) is one of the symmetric keys assigned to process p.j by logarithmic keying.

When a neighboring process p.k receives a copy of the broadcast message (along
with its authentication code) via a channel whose index has the binary representation
b.0, ..., b.(log d − 1), then p.k computes, for every i in the range 0..(log d − 1), the
message digest MD .(m|s.k.(i, b.i)) and checks whether this message digest is part of
the authentication code of the received message. If every computed message digest is
part of the authentication code of the received message m, then p.k concludes correctly
that message m is sent by p.j and accepts m. Otherwise, p.k rejects message m.

5 Logarithmic Keying of Limited-Cycle Networks

In this section and the next, we describe two methods for extending our logarithmic
keying scheme for acyclic networks to networks with cycles. These two methods are
called superimposition and decomposition.

In the superimposition method, we start with an acyclic network. We then observe
that some of the keys that are assigned to the network processes using our logarithmic
keying are spare, i. e. they are not used in encrypting or decrypting any message that is
exchanged over any edge in the acyclic network. Thus, we superimpose new edges on
the acyclic network to add cycles to it, and use the spare keys to encrypt and decrypt
the messages that are exchanged over the superimposed edges.

In the decomposition method, we start with a network with cycles. We then partition
this network into a small number of edge-disjoint acyclic subnetworks. Then, we use
our logarithmic keying scheme, described in the previous section, to assign symmetric

Logarithmic Keying of Communication Networks 321

keys to each process in each acyclic subnetwork. The net effect is that each process is
assigned O(log d) symmetric keys, where d is the degree of the original network with
cycles. Thus, the resulting keying scheme is logarithmic.

In the remainder of this section, we show that the superimposition method can be
used in the logarithmic keying of a special class of communication networks, called
limited-cycle networks. (In the next section, we show that the decomposition method
can be used in the logarithmic keying of a special class of networks, called
planar networks.)

Consider an acyclic network whose degree is d, and without loss of generality, as-
sume that d is at least 2. This network has at least two processes p.j and p.k such that
the following two conditions hold. (For example, these two conditions hold for any two
leaf processes in the network.)

1. Process p.j has a.j incident edges and
(log d − log a.j) is at least one.

2. Process p.k has a.k incident edges and
(log d − log a.k) is at least one.

As the network is acyclic, the network processes are assigned symmetric keys ac-
cording to the logarithmic keying scheme described in the previous section. From Con-
dition 1, at least one of the keys assigned to process p.j is spare, i.e. this key is not
used to encrypt or decrypt any message sent or received by process p.j over any of its
incident edges. Similarly, from Condition 2, at least one of the keys assigned to process
p.k is spare.

Let s.j.(x.j, y.j) be a spare key assigned to p.j, and let s.k.(x.k, y.k) be a spare
key assigned to p.k. Because these two keys are spare, they are selected at random by
the two-step algorithm in the previous section. Now, assume that these two keys are
selected to be identical. In this case, a new edge can be superimposed between the two
processes p.j and p.k in the acyclic network causing the network to have a cycle. For
convenience, we refer to this superimposed edge as a c-edge in order to distinguish it
from the edges in the original acyclic network, which we call a-edges.

As mentioned above, each a-edge has an index in the range 0..d − 1. Now, we adopt
the convention that the superimposed c-edge has two indices: one index (x.j, y.j) is
known only to process p.j, and the other index (x.k, y.k) is known only to process p.k.

When process p.j needs to send a message over the c-edge (x.j, y.j) to process
p.k, p.j encrypts the message using its symmetric key s.j.(x.j, y.j) before sending the
message over the c-edge. When process p.k receives the encrypted message over the
c-edge (x.k, y.k) from process p.j, p.k decrypts the message the message using its
symmetric key s.k.(x.k, y.k) after receiving the message over the c-edge.

When process p.j needs to broadcast a message m to all its neighbors, p.j computes
the authentication code of m using all the symmetric keys assigned to p.j, as described
in the previous section. Then p.j sends a copy of the message

(m, authentication code of m)

over every edge incident at p.j, including the c-edge (x.j, y.j). When process p.k re-
ceives the broadcasted message over the c-edge (x.k, y.k), p.k computes the message

322 M.G. Gouda, S.S. Kulkarni, and E.S. Elmallah

digest MD.(m|s.k.(x.k, y.k)) and checks whether this digest is part of the authentica-
tion code in the received message. If so, p.k accepts m. Otherwise, p.k discards m.

So far, we discussed how to superimpose one (the first) c-edge on the original acyclic
network to create one cycle in the network. In fact, many c-edges can be superimposed,
sequentially one after the other, in order to create many cycles in the network. The only
requirement needed to superimpose one more c-edge between two nodes in the network
is that each of the two nodes satisfies the following condition.

(log d − log a − c) is at least one

where d is the network degree, a is the numbers of a-edges that are currently incident
at the node, and c is the number of c-edges that are currently incident at the node.

We are now ready to define the class of limited-cycle networks that can be logarith-
mically keyed using the above superimposition method. A limited-cycle network is one
where each edge in its topology graph G can be classified as either an a-edge or c-edge
such that the following two conditions hold.

1. The subgraph of G that consists of a-edges only
is acyclic.

2. For each process p in G, (log d − log a − c)
is at least zero, where
d is the network degree,
a is the number of a-edges incident at p, and
c is the number of c-edges incident at p.

6 Logarithmic Keying of Planar Networks

In this section, we utilize a decomposition method to extend our logarithmic keying
scheme for acyclic networks to a scheme for planar networks, where a planar network
is one whose topology is a planar graph.

It is well known, e.g. [4] and [6], that any planar graph G can be decomposed into
at most three acyclic subgraphs, called factors, such that the following two conditions
hold. First, every factor has the same nodes as the original graph G. Second, each edge
in the original graph G appears in exactly one factor. It follows that the degree of each
factor is at most the degree of the original graph G.

The decomposition method works as follows. Given a planar network G, whose de-
gree is d, the keying scheme proceeds by decomposing the edges of G into k factors,
where 0 ≤ k ≤ 3. Each edge in G is then given an index (r, i), where r is an index of
the factor that contains the edge, 0 ≤ r < k, and i is the index of the edge in factor r,
0 ≤ i < d. (Recall that any two edges that are incident to the same node in a factor are
assigned distinct indices.) Hence, in the network G, if a node has two incident edges
labeled (r, i) and (r′, i), then these two edges must belong to two different factors (i.e.,
r �= r′). The logarithmic keying scheme for acyclic graphs mentioned above is then
applied independently to each of the k factors. As a result, each node is assigned k sets
of keys, where each set has at most (2 ∗ log d) keys. Since computing the key of any

Logarithmic Keying of Communication Networks 323

given edge in G can be deduced from the index of that edge, we conclude that O(log d)
keys per process are sufficient for keying any planar network.

We note that this decomposition method can be equally applied to other classes of
networks. For example, any graph with treewidth ≤ k, for constant k > 0, can be
decomposed into k acyclic factors, as discussed in [5] and [6]. Therefore, using the
decomposition method, any bounded treewidth graph can be logarithmically keyed.

7 Concluding Remarks

In this paper, we described logarithmic keying schemes for assigning symmetric keys
to the different processes in several classes of communication networks, which include
acyclic networks, limited-cycle networks, and planar networks. We also described two
methods, namely superimposition and decomposition, for extending logarithmic keying
schemes of acyclic networks to networks with cycles.

Two open problems are suggested by the investigation described in this paper. The
first problem is to design a logarithmic keying scheme that can be used in any fully con-
nected communication network. The second problem is to design a logarithmic keying
scheme that can be used in any communication network, regardless of the network
topology. Note that the second open problem is a generalization of the first problem.
But we believe that solving the first problem first will make the second problem easier
to tackle.

Acknowledgment

The work of M. G. Gouda is supported in part by the National Science Foundation
under Grant No. 0520250. The work of S. Kulkarni is supported in part by the National
Science Foundation under Grant No. CCR-0092724. The work of E. S. Elmallah is
supported by NSERC Canada.

References

[1] L. Gong and J. Wheeler. A Matrix Key-Distribution Scheme. Journal of Cryptology: The
Journal of the International Association for Cryptologic Research. Vol. 2, No. 1, pp. 51-59,
1990.

[2] S. S. Kulkarni, M. G. Gouda, and A. Arora. Computer Communications. Vol. 29, pp. 200-
215, 2006.

[3] A. S. Aiyer, L. Alvisi, and M. G. Gouda. Key Grids: A protocol Family for Assigning
Symmetric Keys. Proceedings of the IEEE International Conference on Network Protocols
(ICNP-06), 2006.

[4] B. Bollobás. Modern Graph Theory. Springer-Verlag, 1998.
[5] A. Brandstädt, V. B. Le, and J. Spinrad. Graph Classes: A Survey. SIAM Monographs on

Discrete Mathematics and Applications, 1999.
[6] C. J. Colbourn. The Combinatorics of Network Reliability. Oxford University Press, 1987.

Safe Peer-to-Peer Self-downloading

Kajari Ghosh Dastidar1,�, Ted Herman1, and Colette Johnen2,��

1 Department of Computer Science, University of Iowa
2 LRI-CNRS, Université Paris-Sud 11, 91405 Orsay cedex, France

Abstract. Peer-to-peer applications share files between users them
selves rather than downloading files from file servers. Self-downloading
protocols have the property that eventually, every user downloads only
from other users. This paper considers efficient ways of dividing files into
segments so that users can exit the system as soon as file downloading is
complete. One vulnerability of file sharing between peers is the possibil-
ity that files or segments could be counterfeit or corrupt. Protocols that
are d-safe tolerate some number of instances of faulty segments in a file be-
ing downloaded, because each segment is downloaded d times before being
uploadable. It is shown that d -safe self-downloading is possible for a suf-
ficiently large arrival rate of users to the system. In addition, the paper
presents upper and lower connectivity and sharing bounds for d = 2.

1 Introduction

File sharing is the most popular peer-to-peer application in the Internet. Much
peer-to-peer research investigates problems of locating files and interesting over-
lay networks have been developed that make finding content efficient [2,5]. Most
of these overlay networks assume a relatively stable population of peers. In the
Internet, users join and leave peer-to-peer software systems frequently and the
costs are mainly related to the bandwidth needed for downloading content and
sharing files. File sharing between users, rather than downloading files from a few
servers, can be a useful solution to the flash crowd phenomenon [1]. At present,
the BitTorrent protocol [3] is the dominant protocol for peer-to-peer download-
ing of files (although estimates range widely, 10-15% is a conservative figure for
the amount of Internet traffic due to BitTorrent [6,7]).

BitTorrent succeeds by splitting files into parts, allowing users to download
different parts from different peers, and enforcing an incentive motivating users
to share files. This incentive is important because peer-to-peer file sharing can
be vulnerable to the problem of freeloaders (a freeloader is a user who downloads
significantly more content than the user shares with other peers). Our research
is motivated by the BitTorrent model. We investigate file sharing for some ideal
assumptions about user arrival rates and download bandwidth, but also for the
extreme case where users continuously download while in the system, yet exit
the system immediately upon completing the download.
� Work supported by the National Science Foundation under Grant Number 0519907.

�� This research was supported in part by FRAGILE, an aciSI “security and depend-
ability” project.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 324–334, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Safe Peer-to-Peer Self-downloading 325

Related Work. Several studies have evaluated BitTorrent’s performance (a sur-
vey is presented in [14] along with a brief explanation of how BitTorrent selects
the download order of pieces). Some improvements to BitTorrent’s policies are
investigated in [9,14,13] (and [9] proposes a hybrid to bypass BitTorrent for
the case of small files). Newer protocols [10,11,16] exploit dynamic properties of
network connections and location-awareness to get better results than BitTor-
rent. The general problem of efficient and fast downloading predates the field of
peer-to-peer research; it is known that more efficient downloading is achievable
if files can be coded with some redundancy and content is mirrored or other-
wise placed properly [8,12]. The downloading problem has been formalized as an
optimization problem [15] and also as a game-theoretic problem [13].

Our paper builds on [4], which introduced the topic of deterministic strategies
for self-downloading when users depart the system as soon as downloading is
completed, yet users continuously download the desired content so long as they
are present in the system. The questions raised and answered in [4] do not touch
on the safety issue raised here. The main results of [4] are about various rates of
user arrival and minimizing the number of connections needed for downloading.

Contributions. This paper introduces the notion of d-safety. Protocols that are
d-safe detect and tolerate some number of instances of faulty segments in a file
being downloaded. Each segment is downloaded d times from distinct sources
before being uploadable. This safety property makes a protocol more robust to
certain types of attack or failure by containing the effect of corrupt or counterfeit
data. For instance, any user can retrieve the correct segment from 2x + 1 copies
by voting if there are at most x corrupt pieces. One of our strategies is shown
to be optimal with respect to the number of connections needed to for self-
downloading streams of users. An additional result shows how self-downloading
can accommodate a slower user arrival rate than was previously known, though
at the cost of more connections needed for downloading.

2 Application Model

For this paper, we suppose that there is one file F residing at some root location,
and initially any user must get a file from this root location. Later, after some
users have copied the file, or even parts of the file, a newly arriving user should
be able to copy from other users rather than from the root location. The process
of a user fetching a file or a portion of a file is called downloading; the process
of a user providing a file or a portion of a file to another user is called sharing.

File F is divided into k segments of equal size and users download F ’s seg-
ments in some prescribed order. Let Fi denote the i-th segment of the file,
1 ≤ i ≤ k. Operationally, a user entering the system first contacts the track-
ing service, which we assume to be aware of all users currently in the system,
tracking the progress of each user and directing users on where to find segments
(BitTorrent implements this using a tracking server [14]).

Let H denote a (possibly unbounded) history of all user downloads, which
includes for each user the sequence of events (copying segments) while that user

326 K.G. Dastidar, T. Herman, and C. Johnen

downloads. Events in H include the copying of segments from the root location as
well as users copying segments from other users. A protocol for fetching segments
and providing concurrent sharing of segments is called self-downloading if for
every possible history H, at most a constant number of events in H copy segments
from the root location. Self-downloading protocols therefore have the property
that eventually the root location is no longer required to disseminate the file.

Definition 1. Within an execution of a downloading protocol, a user u is called
d-safe if (a) u downloads Fi d times before leaving the system, (b) u does not
download any segment Fi more than once from any other user, and (c) u does
not share any segment Fi until u has first downloaded d copies of Fi.

A self-downloading protocol is d-safe if there is a t such that every user joining
after time t is d-safe. Notice that if d > 1, a user will download the same segment
more than once; we use the term piece to distinguish between copies of segments.
In a d-safe protocol, a user downloads d ·k pieces (which constitute k segments).

Our intended application of d-safety is for robustness of downloading protocols
to limited cases of transient faults or malicious users who share counterfeit pieces.
With values of d greater than 2, voting can be used for tolerating (d− 1)/2 bad
pieces. Even for d = 2 a single malicious user will be detected and the counterfeit
piece will not be propagated. The last sentence may imply that if a user cannot
tell which of two pieces is corrupt, then self-downloading may not proceed. For
instance, the user in such a case may need to get a segment from the root, or just
quit the system. However, even if the self-downloading cannot proceed, no new
user gets infected by copying and sharing a corrupt piece. So there is a safety
value for d = 2 in any case.

An alternative to comparing or voting among d copies to achieve safety would
be to use message digests. While detecting a corrupt segment may be possible
using message digests, the timing of a self-downloading scheme is disrupted by
the injection of a corrupt segment: the digest comparison completes only after
the segment is retrieved, and refetching from another source delays sharing of
that segment to others in a self-downloading stream of users. The delay incurred
may include queries to the tracking server and to the root server, and such delay
can cascade to affect many other users the self-downloading stream. Our self-
downloading strategies are robust to limited injection of corrupt segments, that
is, the self-downloading property is preserved, without any extra delay, even if
some corrupt segments are encountered. The issue of message digests is discussed
further in Section 5.

We assume that the time taken to download or share any piece is μ, and this
is the same for all users. A user cannot download a piece p and concurrently
share p to another user: copies can only be provided for completely downloaded
pieces. We consider only serial download strategies for users, so no user is al-
lowed to concurrently download two or more pieces (we remark in the conclusion
that concurrent downloading is possible by applying parallel incarnations of our
protocols). After a user downloads a piece, that user immediately begins down-
loading the next piece, so the total time to download all pieces is d · kμ.

Safe Peer-to-Peer Self-downloading 327

Users arrive at times that are integral with respect to μ−1. That is, we suppose
user arrival times are normalized to the download rate. For convenient analysis,
let μ = 1 and call integer tu the arrival time of user u. Users arriving earlier than
tu are called seniors to u, whereas users who arrive later than tu are juniors to
u; users other than u who arrive at time tu are called peers of u. The protocols
given in this paper suppose a fixed arrival rate λ. Arrival rate is measured in
users per time unit, however the self-downloading strategies in this paper specify
particular patterns of arrival. We denote by λ = i/j that i users arrive in j time
units. For example, if one user arrives at each of times 1, 3, 5, . . ., with no user
arriving at an even-numbered time, then λ = 1/2; if four users arrive at time 1,
none at times 2 and 3, another four at time 4, none at times 5 and 6, and so on,
then λ = 4/3. Rate λ = 4/3 can also be realized by two users arriving at time
1, two at time 2, and none at time 3. For a self-downloading strategy specifying
a particular pattern, say with λ = 4/3, a sustained1 arrival rate of 1.3333 users
per time unit can be coerced into the needed pattern by having some arriving
users wait before commencing the self-downloading.

Two metrics of interest for a downloading protocol are the number of connec-
tions needed to download and the number of times that a user shares a segment.
Let r be the number of times that a user can share a copy of a segment to
another user: for example, if r = 3 then no user shares any particular segment
with four or more users. For the root location, there is no restriction on the
number of times that a segment could be shared, however for a self-downloading
protocol, eventually the root no longer supplies copies for downloading. Let c be
the number of network connections that a user has to make in order to download
all pieces. We assume that copying any individual piece requires no more than
one connection.

3 Safe Self-downloading

The results of this section show possibility and limits for d-safe downloading.
Lemma 1’s proof describes a protocol for d-safe downloading using d · k/2 con-
nections. As observed in [9,7], the BitTorrent protocol can suffer from high over-
head when the number of connections is large2. Can the number of connections
be reduced below d · k/2 for d-safe downloading? Lemma 2 finds a lower bound
of c = 3 for the case d = 2, and Lemma 4’s proof shows an optimal construc-
tion using three connections for d = 2 and k = 4 (which is less than 2 · 4/2
connections), however the cost of this optimality is a higher user arrival rate.

Lemma 1. For λ = 1/1, d-safe self-downloading is possible with c = d ·k/2 and
r = 2d, with even k > 2 and d ≥ 2.
1 Characteristics of the sustained rate would need to be further constained to achieve

the pattern transformation; we consider this to be outside the scope of our study of
self-downloading strategies.

2 In fact, BitTorrent suboptimizes performance by allowing a user to have many con-
nections to reduce downloading time, yet the overall effect of establishing many
connections could actually reduce overall network performance (see [7]).

328 K.G. Dastidar, T. Herman, and C. Johnen

Proof. The construction for this proof has user ui downloading d · k pieces,
numbered by segment (1,2,. . . ,k), according to the following pattern. Let i be
the arrival time of user ui. For even i, ui downloads d copies of segment 1, then
d copies of segment 2, and so on. For odd i, ui downloads d copies of segment
1 + k/2, then d copies of segment 2 + k/2, and so on up to d copies of segment
k; then ui downloads d copies of segment 1, followed by downloading d copies of
segment 2, and so on up to downloading d copies of segment k/2.

User ui departs at time i+d·k, immediately upon downloading the final piece.
Observe that ui is concurrent with d · k − 1 seniors and d · k − 1 juniors. In the
time interval [i, i + d · k/2), there are d · k/2 seniors concurrent to ui, and half of
these have the same download pattern as ui (that is, d · k/4 concurrent seniors
have the same pattern). The first d · k/2 pieces in ui’s pattern are therefore
downloaded by ui from these d · k/4 ≥ d seniors having the same pattern: this
supplies d independent copies of the first k/2 segments to ui. The remaining
d · k/2 pieces in ui’s patterns are downloaded from its juniors and arguments
symmetric to the case for seniors show that there are sufficient juniors with the
other pattern (compared to ui) to supply the needed pieces. This completes our
examination of ui’s downloading, with the result that d ·k/2 connections suffice.

To evaluate r (other users connecting to ui), we observe that the pattern of
ui’s downloads is to copy only the first k/2 pieces, hence ui only shares the first
k/2 segments downloaded with others. These segments are shared with d juniors
and d seniors, hence r = 2d. ❐

Figure 1 illustrates the construction of Lemma 1’s proof for k = 4 and d = 2.
Each successive line is indented to show sequential arrival times. The figure
focuses on one user u, represented by the line with all segment numbers circled.
This user copies segments 1 and 2 from its seniors, and the lines representing
these seniors have circles around the numbers of the pieces shared to u. Similarly,
numbers circled in u’s juniors are pieces shared to u. The lines in the figure
without circled numbers represent users that copy segments from u. Note that
the source of every piece copied is to the left of the target of the copy, reflecting
that a segment can only be shared after it has been fully downloaded.

Lemma 2. No 2-safe self-downloading protocol is possible for c < 3.

Proof. Proof by contradiction. Suppose c = 2 (that c = 1 is impossible is shown
in [4] even for a protocol that is not d-safe). The first and second piece that u
downloads cannot come from a peer or junior because no segment can be shared
until both copies are downloaded from independent sources; therefore, u connects
to at least one senior user s. Notice that s cannot share all k segments that it
downloads, because s exits the system as soon as the final segment is obtained.
So, u can copy at most k − 1 pieces from s. This implies u copies at least one
segment v from a user different from s, but because v has to be obtained from
two different sources, u has to connect to two other users, hence c ≥ 3. ❐

Lemma 3. No 2-safe self-downloading protocol is possible for r < 3.

Safe Peer-to-Peer Self-downloading 329

1 ➀ 2 ➁ 3 3 4 4
3 3 4 4 1 1 2 2

1 ➀ 2 ➁ 3 3 4 4
3 3 4 4 1 1 2 2

➀ ➀ ➁ ➁ ➂ ➂ ➃ ➃
3 ➂ 4 ➃ 1 1 2 2

1 1 2 2 3 3 4 4

3 ➂ 4 ➃ 1 1 2 2
1 1 2 2 3 3 4 4

Fig. 1. Downloading two copies with four connections for k = 4

Proof. Because, eventually, users only download from other users and the arrival
rate is equal to the rate of departure from the system, it follows that on average,
users share as many pieces as they download. That observation implies that at
least one user u shares at least 2k pieces. However, no user can share the final
segment it downloads, which implies that u can share at most k − 1 segments.
If r = 2, then user u shares 2k − 2 pieces which contradicts the required sharing
bound. ❐

The proof of Lemma 2 notes that u cannot copy the first two pieces from a peer
or junior; the same observation holds of u’s immediate senior, that is, u cannot
copy its first two pieces from a user arriving at time tu − 1. This observation
partly motivates the construction for the following result.

Lemma 4. For λ = 24/2, a 2-safe self-downloading protocol is possible with
r = 3, c = 3, and k = 4.

Proof. The proof is based on a particular user arrival schedule. The number
of arrivals at time 2t + 1 is 24, and at time 2t is zero. Each user downloads
the pieces according to the following generic pattern 〈i, i, j, j, k, l, k, l〉 where
i �= j �= k �= l, called GP . A specific GP is completely defined by the values
of i, j, and of k; thus there are 4! = 24 specific downloading orders. A specific
order of GP is denoted by 〈i, j, k, l〉. Users that start at the same time have
distinct downloading orders; these downloading orders belong to GP . Clearly,
every specific downloading order of GP is used by exactly one user starting at
time 2t + 1. All users that start at time 1 download their pieces from the root.
User u that follows the pattern 〈i, j, l, k〉 and starts at time 2t + 1 where t > 0
downloads its pieces following the schema:

– the 1st, 3rd, and 6th pieces are downloaded from the user that starts at time
2t − 1 and follows the pattern 〈i, j, k, l〉.

– the 2nd, and 5th, pieces are downloaded from the user that starts at time
2t − 1 and follows the pattern 〈i, l, k, j〉.

– the 4th, 7th and 8th pieces are downloaded from the user that starts at time
2t + 1 and follows the pattern 〈j, l, k, i〉.

330 K.G. Dastidar, T. Herman, and C. Johnen

ii j j k l k l

i i l l k j k j

i ij j l l k k

ji i j k l kl

ii

i i

j j

j j

i i

j j

i i j j

A: Downloading schema B: Sharing schema

l k l k

k l k l

k k l l

kk l l

Fig. 2. Downloading and Sharing Schema

Figure 2.A presents the piece downloading for the user following the downloading
order 〈i, j, l, k〉 at time 2t + 1 where t > 0. Notice the user needs to open only
three network connections to download the 8 pieces thus c = 3. Each segment is
downloaded two times from distinct users.

According figure 2.A, one may automatically compute from the downloading
schema of a user u, the following downloading order 〈i, j, l, k〉. Figure 2.B presents
this sharing schema. Notice that r = 3. A specific segment is shared after two
copies of this segment have been downloaded by the user u from distinct sources.

Studying Figure 3, we establish that all users arriving at time 2t + 3 are able
to download each segment two times from two distinct users arriving at time
2t + 1 or at time 2t + 3. For instance, from the users 〈1, 2, 3, 4〉 and 〈1, 4, 3, 2〉,
arriving at time 2t + 1, 10 pieces are copied to provide 5 of the 6 first pieces to
the user 〈1, 2, 4, 3〉, and to the user 〈1, 4, 2, 3〉 arriving at time 2t + 3. The other
pieces are downloaded from users arriving at time 2t + 3: the user 〈1, 2, 4, 3〉
gets these pieces from 〈2, 4, 3, 1〉; the user 〈1, 4, 2, 3〉 gets these pieces from
〈4, 2, 3, 1〉. ❐

Observation 1. In the protocol presented in the proof of lemma 4, 8 pieces are
downloaded from a user. At any time slot, at most two pieces are simultaneously
shared.

Fault Tolerance Properties. The protocol of Lemma 4 tolerates some cases of
corrupt pieces, as explained in following lemmas. In the following, we assume
that an user is able to retrieve the correct value of a segment from two versions
of this segment with at most one corrupt copy. Hence, u’s segment is corrupt iff
u has downloaded two corrupt versions of this segment or if u is byzantine.

Lemma 5. Assume that at time 2t + 1, one user has a corrupt segment, and
that no corruption will occur in the following step. No user arriving at time 2t+3
has a corrupt segment.

Proof. Let us name u the user that provides a corrupt segment. Any user u′ that
copies a corrupt piece from u copies an uncorrupt piece of the same segment from

Safe Peer-to-Peer Self-downloading 331

<1, 2, 4, 3><1, 2, 3, 4>

<1, 4, 3, 2>
<1, 4, 2, 3>

<2, 4, 3, 1>

<2, 1, 3, 4>
<2, 4, 1, 3>

<3, 2, 1, 4>

<3, 4, 1, 2> <3, 2, 4, 1>

<4, 1, 3, 2>

<2, 3, 4, 1>

<1, 3, 2, 4> <1, 2, 3, 4><1, 2, 4, 3>

<1, 3, 4, 2>

<3, 4, 1, 2>

<3, 1, 4, 2>

<3, 2, 4, 1>

<4, 1, 2, 3>

<4, 3, 2, 1>

<3, 1, 2, 4>

<2, 4, 3, 1>

<4, 3, 1, 2>

<3, 1, 2, 4>

<3, 4, 2, 1>
<3, 1, 4, 2>

<4, 2, 1, 3>

<4, 3, 1, 2>

<2, 3, 1, 4>

<4, 2, 3, 1>

<3, 2, 1, 4>

<2, 1, 4, 3>

<1, 4, 2, 3>

<1, 4, 3, 2>

<4, 3, 2, 1>

<2, 3, 1, 4>

<2, 4, 1, 3>

<4, 1, 3, 2>

<4, 2, 3, 1> <4, 1, 2, 3>

<2, 3, 4, 1>

<2, 1, 4, 3>

<3, 4, 2, 1>

<2, 1, 3, 4>

<1, 3, 4, 2>

<4, 2, 1, 3>

<1, 3, 2 ,4>

a time 2t+3a time 2t+1

Fig. 3. Overview of downloading process for users arriving at the same time

another user. u′ is able to retain a correct piece from the two copied versions if
at least one of them is correct. Thus u′ will keep the correct segment version. ❐

Lemma 6. Assume that at time 2t+1, at most two users have a corrupt segment
and that no new corruption will be injected during the two following steps. Then
at most 2 users arriving at time 2t + 3 have a corrupt segment; no user arriving
at time 2t + 5 has a corrupt segment.

Proof. Assume that the two users arriving at time 2t + 1, who follow the down-
loading order 〈i,−, l,−〉, have a corrupt segment i. Only the two users arriving
at time 2t + 3 who follow the downloading order 〈i,−,−, l〉 (called u1 and u2)
will have a corrupt segment i. Other users will not have a corrupt segment. No
user copies the segment i from u1 and from u2. Thus, no user arriving at time
2t + 5 has a corrupt version of segment i. In any other cases, no user arriving at
time 2t + 3 has a corrupt segment. ❐

Lemma 7. Assume that at time 2t + 1, at most five users have a corrupt piece,
and that no corruption will occur in the three following steps. No user arriving
at time 2t + 7 has a corrupt segment.

332 K.G. Dastidar, T. Herman, and C. Johnen

Proof. Assume that at time 2t + 7, one user have a corrupt segment. We name
this segment i. According to the proof of lemma 6, at time 2t + 5, at least two
users have a corrupt segment i. Suppose, without loss of generality, that both
of these users follow some segment downloading pattern of the form 〈i,−, j,−〉.
Having a user at time 2t + 7 with a corrupt segment is possible only if at least
4 users arriving at time 2t + 3 have a corrupt segment i: two of the four users
follow some pattern 〈i,−, k,−〉 and the other ones follow some pattern 〈i,−, l,−〉
where l �= i �= k, l �= j �= k, and k �= l. Having a corrupt segment at time 2t + 7
is possible only if the 6 users arriving at time 2t + 1 who follow some pattern
〈i,−,−,−〉 have a corrupt segment i. ❐

4 Self-downloading with Lower Arrival Rate

This section shows that self-downloading is possible at a smaller arrival rate
than is given in [4]. Although this protocol is not d-safe for d > 1, the result
here echoes one theme of the previous section: by allowing more connections,
the user arrival rate can be smaller. Enabling a lower user arrival rate extends
the domain of rates for which self-downloading is possible, which motivates the
result of this section. However the result of Lemma 8 below shows this lower rate
has a cost: three download connections are required instead of two connections
per user.

The least user arrival rate permitted by protocols in [4] is obtained when
users arrive at times 0, k/4, 2k/4, 3k/4, . . . , that is, λ = 1/(k/4) (here, we have
simplified the [4] results by supposing k is a multiple of 4). In that protocol,
c = 2 because ui copies from ui−2 and ui+1.

Lemma 8. Self-downloading is possible for r = 2, c = 3, k ≥ 3, and k divisible
by 3 with an arrival rate λ = 1/(k/3).

Proof. Supposing μ = 1 to simplify the presentation, one new user arrives to
the system at each time i · k/3: users arrive at times k/3, 2k/3, . . . , that is,
λ = 1/(k/3). Because k ≥ 3, ui is concurrent with two seniors ui−1 and ui−2

and two juniors. Because k is divisible by 3, we may consider ui’s downloading
in three groups of k/3 segments. While it is downloading the first group, ui is
concurrent with both ui−1 and ui−2; while downloading the second group, ui

is concurrent with one senior ui−1 and one junior ui+1; while downloading the
third group, ui is concurrent with two juniors.

We now develop some constraints on where ui can find segments to copy;
these constraints will suggest the download pattern. Because ui is not con-
current with any senior while it downloads its last group, ui copies the third
group from a junior, say ui+1. The users in downloading protocols do not copy
segments they already have, so we deduce that ui+1 does not copy from ui

the segments it shares to ui: these segments ui+1 must copy from another se-
nior, namely ui−1. ui+1 cannot download the first two groups from ui−1, for
the simple reason that ui−1 departs the system after ui+1 downloads the first
group.

Safe Peer-to-Peer Self-downloading 333

These constraints suggest the following pattern. First, ui downloads a group
from ui−2, then ui downloads the second group from ui−1, and the third group
is downloaded from ui+1.

To complete the proof, we show a pattern that satisfies this recurrent
download schema for all ui. Label the three groups a, b, c, which are pairwise
disjoint with respect to the segments they contain. User ui’s pattern, for even
i, is to download sequence 〈a b c〉; for odd i the pattern is 〈c b a〉. Notice that
group b occupies the middle third of both patterns: each user ui copies group b
from its immediate senior ui−1. Each user copies its final group from the first
group of its immediate junior, and this explains why the successive patterns are
reflections. ❐

5 Conclusion

We showed the possibility of d-safe downloading and an optimal protocol for
d = 2. The results given in this paper suggest that higher user arrival rates
may enable self-downloading schemes with fewer connections per download. An
intuition for this is that with larger arrival rates, the cohort of concurrent users
can be larger, with a diversity of distinct downloading patterns.

We have limited the study here to serial downloading, that is, protocols where
a user fetches only one piece of a file at any time. A natural question is how
to treat the possibility of concurrent downloading for any user – a user will
presumably download the file more quickly by parallel downloading. Our results
can apply to parallel downloading by applying the scheme in parallel threads:
first split the file into
, equal-size parts, and then use a serial downloading
scheme for each part.

Another direction is to consider self-downloading in the context of multi-
ple files. If users request a set of files, then one could investigate different
sets of files, which have significant intersection. Under what conditions can
different sets enable self-downloading while allowing users to depart the sys-
tem after completing the downloading (similar to the hypotheses of
this paper)?

Finally, we return to the issue of message digests and how their availability
could be exploited in our self-downloading schemes. As noted in Section 2, the
timing of self-downloading is disrupted if a segment has to be refetched, trig-
gered by message digest comparison that indicates corruption. An alternative
interpretation of our self-downloading schemes is the following. In a d-safe self-
downloading protocol, each segment is potentially downloaded d times. If the
first copy is correct, as validated by a trusted message digest, then no subse-
quent copy of that segment is fetched. More generally, a d-safe protocol could
thus tolerate up to d − 1 corrupt pieces, only refetching pieces until a correct
copy is obtained. In any case, a user waits for the time it would take to download
d copies of a segment before sharing that segment to other users. This wait is
pessimistic, but guarantees the timing of the self-downloading strategy in spite
of the injection of corrupt pieces.

334 K.G. Dastidar, T. Herman, and C. Johnen

References

1. S Adler. The slashdot effect, an analysis of three Internet publications. In Linux
Gazette, Issue 38, March 1999.

2. J Aspnes, G Shah. Skip graphs. In SODA 2003. Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 284-393, 2003.

3. B Cohen. Incentives build robustness in BitTorrent. In First Workshop
on Economics of Peer-to-Peer Systems, Berkeley, California, June, 2003.
http://www.sims.berkeley.edu/research/conferences/p2pecon

4. T Herman and C Johnen. Strategies for peer-to-peer downloading. Information
Processing Letters, 94(5):203-209, 2005.

5. C Wang, B Li. Peer-to-peer overlay networks: a survey. Technical Report, Depart-
ment of Computer Science, HKUST, Feb. 2003.

6. P Sevcik. Peer-to-peer traffic: another internet myth is born. Business Communi-
cation Review, November 2005.

7. RX Cringely. Net neutered. Electric Money, Volume 7.25, June 22, 2006.
8. J Byers, M Luby, M Mitzenmacher. Accessing multiple mirror sites in parallel:

using tornado codes to speed up downloads. In Proceedings of the 18th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM99),
pp. 275-284, 1999.

9. W Baohua, G Fedak, F Cappello. Scheduling independent tasks sharing large data
distributed with BitTorrent. In Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing, pp. 219-226, 2005.

10. R Sherwood, R Braud, B Bhattacharjee. Slurpie: a cooperative bulk data transfer
protocol. In Proceedings of the Twenty-third Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM04), pp. 941-951, 2004.

11. S Sohail, CT Chou, SS Kanhere, S Jha. On large scale deployment of parallelized
file transfer protocol. In Proceedings of the 24th IEEE International Conference on
Performance, Computing, and Communications (IPCCC05), pp. 225-232, 2005.

12. M Ciglan, O Habala, L Hluchy. Striped replication from multiple sites in the grid
environment. In Proceedings of Advances in Grid Computing (EGC05), LNCS 3470,
pp. 778-785, 2005.

13. S Jun, M Ahamad. Incentives in BitTorrent induce free riding. In Proceeding of
the 2005 ACM SIGCOMM workshop on Economics of Peer-to-Peer Systems, pp.
116-121, 2005.

14. G Wu, T Chiueh. How efficient is BitTorrent? In Proceedings of SPIE Conference
on Multimedia Computing and Networking, Volume 6071, 2006.

15. D Bickson, D Dolev, Y Weiss. Efficient peer-to-peer content distribution.
http://citeseer.ist.psu.edu/738516.html, 2006.

16. BG Chun, P Wu, H Weatherspoon, J Kubiatowicz. ChunkCast: an anycast service
for large content distribution. In Proceedings of the International Workshop on
Peer-to-Peer Systems (IPTPS06), February 2006.

Best Paper: Stabilizing Clock Synchronization

for Wireless Sensor Networks

Ted Herman� and Chen Zhang

Department of Computer Science, University of Iowa

Abstract. One of the simplest protocols for clock synchronization in
wireless ad hoc and sensor networks is the converge-to-max protocol,
which has the simple logic of adjusting each node’s clock to be at least
as large as any neighbor’s. This paper examines the converge-to-max
protocol, showing it to be stabilizing even when node clocks have skew,
bounded domains, and dynamic communication links.

1 Introduction

Clock synchronization is an important service in wireless sensor networks. Be-
cause wireless sensor platforms have limited resources and some sensor appli-
cations need precise time measurements, traditional synchronization protocols
may not be appropriate. Sensor hardware and communication should be fault
tolerant and self-managing, and their low-cost construction tends to make faults
more likely. A lightweight, self-stabilizing protocol for clock synchronization is
thus well motivated for wireless sensor networks.

1.1 Protocol Designs

Quite a few clock protocols have been described in the literature for wireless
sensor networks [3], with various assumptions about platform, application re-
quirements, and fault tolerance. The following five design approaches (1)–(5)
indicate the rich design space in this area. (1) Leader-based clock synchroniza-
tion seeks to enslave all clocks to one leader clock. General examples of leader-
based synchronization are GPS and NTP [9]. Within multihop wireless sensor
networks, a fault tolerant (and conceptually self-stabilizing) protocol is to elect
one node, say the node with smallest identifier, to be the leader and construct
a spanning tree rooted at the leader [6,8]. Each node periodically transmits a
timestamped beacon message, and each node except the root upon receiving a
beacon copies the timestamp to its clock. (2) Pulse-based clock synchronization
[2] has biological inspiration and could be promising for pulse-coded radio proto-
cols (ultra wide-band, see [5]); this type of protocol is self-stabilizing [4], however
the type of processing and encoding for the protocol is not well-suited to cur-
rent sensor networks. Also, after all nodes have stabilized on pulse timing, an

� Work supported by the National Science Foundation under Grant Number 0519907.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 335–349, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

336 T. Herman and C. Zhang

additional protocol may be needed for agreement on a clock value. (3) Reference-
broadcast synchronization was originally developed for single-hop wireless sensor
networks with noisy timestamping. A repeatedly transmitted pulse signal is si-
multaneously recorded at all nodes, and subsequent conversation among the
nodes results, post facto, in consensus times for the pulses. Statistical techniques
overcome noise. In theory, reference-broadcast also applies to multihop networks
distributively if multiple overlapping time zones are established, but significant
memory and processing resource would be needed in practice. (4) Averaging is
an intuitively appealing way to synchronize clocks. Each node periodically trans-
mits a timestamped beacon, and a node adjusts its clock to be the average of
its neighborhood (including its own clock). Unfortunately, this method has been
shown to converge slowly [7]; it can also be difficult in practice to adjust beacon
rates and define the neighborhood average for a node when messages are lost. (5)
Converge-to-max clock protocols are perhaps the simplest distributed synchro-
nization algorithms. Periodically, each node transmits a timestamped beacon.
Upon receiving a beacon, if the timestamp of that beacon is greater than the
node’s global clock, then the node adjusts its clock to agree with the beacon. This
protocol is the technique specified in IEEE 802.11 ad hoc networks [10,11,12].
Two advantages of (5) are that it is inherently monotonic (clocks only increase)
and it can synchronize in networks with links that are too dynamic for method
(1) to work; this latter advantage motivated the use of (5) in [1].

1.2 Contributions and Roadmap

This paper investigates method (5), called here the “converge to max” proto-
col. Section 2 presents the basic model, which is used in Section 3 to present
the protocol. Section 3 also looks at questions of finite clock domain and fault
containment.

The contribution of this research goes in two directions. We show how concepts
of self-stabilization can be useful for a practical problem in sensor networks. In
the other direction, the contribution to the field of self-stabilization is the choice
of model: we advance the topic of real-time, stabilizing synchronization, which
has not been widely investigated. The research takes into account practical model
details like clock skew and bounded clock domain, discovering some interesting
behaviors in the analysis.

2 Sensor Network

Protocol design is generally constrained by platform limitations and metrics,
and knowledge of the platform is especially important for sensor networks with
limited resource. This section gives an abridged presentation of platform and
application considerations that motivate and define the computation model used
to verify and analyze clock protocols.

For clock synchronization, there is considerable variability in application re-
quirements. Sensor network applications need clocks to measure elapsed time,

Stabilizing Clock Synchronization for Wireless Sensor Networks 337

schedule wakeups, and compare time coordinates of sensor readings at differ-
ent nodes. A protocol design should therefore relate clock readings at different
nodes, e.g., there is a synchrony bound stating how far apart simultaneous clock
readings can be at different nodes.

Sensor platforms do not have hardware clocks as such, instead providing coun-
ters with wakeup and rollover interrupts to the processor. The rate of counter
incrementing deviates from real time; we assume in this paper that the rate for
any particular node v is fixed at ρv, which is a value in the range (1−κ, 1+κ) for
some known manufacturing tolerance κ. Conceptually, ρv is the first derivative
of the counter value with respect to time, and ρv is called skew: if ρv > 1, the
node’s counter increments faster than real time. The second derivative of the
counter with respect to time is called drift.

The operating system encapsulates the counter by a software module called
the native clock ; the native clock, in turn, is encapsulated by a module called
the local clock to extend the range (so that it can increment for a longer period
without rollover); and one more layer of encapsulation creates the global clock
module, which is the basic unit used in this paper. The global clock module
offers two interfaces to the protocol designer, read and adjust. The goal of the
designer is to invent a protocol so that nodes adjust their global clocks to satisfy
a synchrony bound useful to applications. We denote by Cv the value that a
global clock read operation returns at sensor node v.

Sensor nodes communicate by sending and receiving small-size messages on a
single-frequency radio, and access to the shared wireless media is mediated by
randomized media access control (MAC) delay. Any node transmission implicitly
sends to all nodes within that node’s vicinity, limited by radio range. The network
topology is modeled as a graph (V, E) of connections with nodes as vertices and
links between nodes where communication is possible. Let |V | = n be the number
of nodes. If unidirectional links are allowed, then the graph is directed and (x, y)
is a directed link signifying that node x’s transmissions may be received by node
y. For bidirectional (x, y), call x and y neighbors in the network. The static model
has bidirectional links and the graph is undirected and connected. The dynamic
model allows links to be unidirectional and transient, motivated by networks
where radio properties or node mobility varies the network connectivity. We
suppose the graph is strongly connected in the dynamic model. For either model,
let dxy be the graph distance from x to y and let diam be the maximum distance
between any pair of vertices.

Rather than proposing a detailed model of link behavior, we make the fol-
lowing assumption for an (x, y) link: if node x sends messages periodically, once
every φ time units, then within Φ time units, y receives a message from x. This
assumption allows us to treat (x, y) as a link that can be reliable within a given
time period. Links do not queue more than one message: the issue of old messages
arriving after new ones cannot arise in this model. For the dynamic model, we
assume that the network is sufficiently connected such that diffusion completes
within a time bound T . Suppose, for example, that node v has a message m to
broadcast throughout the network. Node v periodically broadcasts m every φ

338 T. Herman and C. Zhang

time units, and when any node w receives message m, then w periodically broad-
casts m every φ time units. Each link guarantees delivery of m within time Φ,
and network connectivity (which is a property of maximum graph diameter and
the evolution of links) satisfies the property that every node receives m within
T seconds of v’s initial transmission of m.

Ideally, a synchronization protocol could use as a building block an instanta-
neous transfer of a clock reading to another node. Implementing (approximately)
instantaneous transfer of timestamps using messages is nontrivial: though prop-
agation delay is not significant, the latency of transferring a timestamp using a
message includes other contributors: media access control (MAC) delay, routing
and device driver processing overhead, and possibly nondeterministic scheduling
of concurrent sensor tasks competing for processor time. For some networks, fre-
quency distribution of these contributors is such that statistical techniques like
linear regression or building profiles of upper and lower bounds provide adequate
estimates for offset and skew between sender and receiver clocks [9,17,18,8,20].
Several sensor network platforms give programmer access to delays introduced at
the MAC layer, or even the ability to timestamp almost precisely at the instant
of message transmission; this is called the sender timestamp of the message. The
same platforms can also record the clock at the instant of message reception,
which is called the receiver timestamp. The pseudorandom MAC delay is the
dominant component of the noise, so subtracting the receiver timestamp from
the sender timestamp is a good approximation to the difference between sender
and receiver clocks [19,8]. We assume MAC-layer adjustments to timestamps are
used for our model.

The timestamp mechanism effectively transfers a global clock reading instan-
taneously between neighboring nodes. The layered implementation (global clock,
local clock, native clock) compensates for delays in processing a message, how-
ever such compensation does not enable precise comparison of the clocks of
sender and receiver, because the compensation is implemented by addition or
subtraction in terms of the native clock, which includes skew. Thus if a message
is timestamped by a clock synchronization protocol at some time t0, transmitted
at a later time t1, then given a corresponding timestamp by the receiver at time
t2, and finally processed at the receiver at a later time t3, the compensation for
the delay t1 − t0 includes sender skew whereas compensation for delay t3 − t2 in-
cludes receiver skew. We assume that skews and delays are small enough so that
the inaccuracy due to the skews (as well as the difference t2 − t1) are negligible:
the difference between the timestamp at t2 and the timestamp at t0 is therefore
taken to be the difference in offsets of the two clocks at the instant t3.

3 Converge-to-Max

The technique (5), briefly explained in Section 1, is presented in more detail here,
using read and adjust interfaces of the global clock and assuming timestamping
of beacon messages. Each node executes the following thread concurrently with
a sensor application:

Stabilizing Clock Synchronization for Wireless Sensor Networks 339

event(timeout):
read global clock & prepare beacon message m ;
local-broadcast(m) to neighborhood ;
schedule next timeout in φ seconds ;

We assume that the system’s timeout mechanism is such that the above event
eventually occurs every φ seconds, even for arbitrary initial state. To complete
the protocol, there is an event to handle an incoming beacon.

event(receive beacon m):
c = read global clock ;
if m.timestamp > c then

adjust global clock by + (m.timestamp − c) ;

One should expect that such a simple protocol has a simple proof of correctness.
This is the case if every node has zero skew and clocks are unbounded, and
we sketch the argument here. A legitimate state is one where the global clocks
of all nodes have the same value. The closure property holds for a legitimate
state because every receive beacon event contains a timestamp equal to the
node’s global clock (recall that we assume a MAC timestamping mechanism that
compensates for all message latencies), hence no global clocks are adjusted; since
all clocks increment at the same rate, all global clocks remain equal. Convergence
is also straightforward. In the initial state (or some time after the initial state if
we consider arbitrary messages initially in queues and arbitrary timeout values),
there is some maximum clock value at some set of nodes M . Invariantly, no global
clock of a node in M adjusts (easily shown by contradiction) in the subsequent
execution. Within time φ, each node v of M performs a local broadcast of a
beacon. For a static network, within Φ time units after the local broadcast, each
neighbor w of v receives and processes a beacon from v; if w �∈ M , then w
adjusts its global clock to be equal to v’s. Hence w joins M , and V \ M is a
decreasing variant function to establish convergence to a legitimate state. The
static network’s convergence time is O((φ + Φ) · diam). For a dynamic network,
each node w �∈ M receives a beacon within time T after some node in m transmits
a beacon, and convergence time is O(φ + T).

Defining a legitimate state, showing closure, and proving convergence are
more difficult when clocks have skews. We introduce some definitions that help
us with the analysis. A clock history is a projection of the system execution
consisting of the global clock operations and protocol steps of the converge-to-
max protocol. Let ck

p denote the kth protocol operation by node p: ck
p is either a

read and beacon-transmit or a beacon reception and possible adjust of p’s global
clock. The clock history is a sequence of such operations. Each operation has an
associated real time, and the clock history is ordered by time. For any ck

p, we
refer to its real time as t(ck

p) and its global clock value by ck
p. Our convention

when ck
p is an adjust operation is to associate with ck

p the global clock value
resulting from the adjustment. The expression ck

p < cj
q compares global clock

values for two operations. Arguments about executions of a clock protocol may
refer to operations in the clock history, or to points in real time; our convention

340 T. Herman and C. Zhang

for references to points in time is that operations are atomic (consuming no real
time), and points in time are moments between operations.

The relation ck
p ≺ cj

q holds if ck
p causally precedes cj

q. In the static network
model, we have a special case of ≺ for a chain of beacon transmissions and
receptions. Let ck

p ≺1 cj
q hold if p and q are neighbors, ck

p is a beacon transmission
operation, and cj

q is the first subsequent receive by q from p; by assumption cj
q

occurs no more than Φ time after ck
p. Let ck

p ≺2 cj
q hold if there are ci

r and ci′
r so

that ck
p ≺1 ci

r, ci′
r ≺1 cj

q, and ci′
r is the first beacon transmission by r following the

receive operation ci
r. Notice that by our model assumptions, cj

q occurs no more
than φ+2Φ time after ck

p, because r may wait at most φ time after reception for
its next beacon transmission, and latency for a successful beacon transmission
is at most Φ for both p and r. More generally, let ≺� be an �-hop causal chain
of beacon operations.

Corresponding to ≺�, we define ≺min for the dynamic network model. Let
ck
p ≺min cj

q hold iff k is the largest index such that ck
p ≺dpq cj

q. Let ρv denote the
skew of node v, let ρmax be the maximum skew of any node, and let ρmin be the
minimum skew in the network.

Lemma 1. In the static network model, for distinct p �= q, beacon transmission
operation ck

p and beacon reception cj
q satisfying ck

p ≺dpq cj
q,

cj
q ≥ max

(
cj
q + tpq · ρq , ck

p + tpq · ρmin

)
(1)

tpq ≤ dpq · (Φ + φ) (2)
where tpq = t(cj

q) − t(ck
p)

Bound (1) holds also for the dynamic network model, if ck
p ≺min cj

q.

Proof. To verify (1), observe that between the timestamp and beacon transmis-
sion ck

p and cj
q, it is possible that each hop in a path of length dpq causes an

increase to the global clock along the path, and the clock value at each hop in
the path is affected by the skew of that node, which is at least ρmin. There-
fore the timestamp arriving at q, in the last hop along the path, is at least
ck
p + (t(cj

q) − t(ck
p)) · ρmin. Meanwhile during this clock propagation along the

path, q’s global clock increases by at least (t(cj
q) − t(ck

p)) · ρq. The value of q’s
global clock cj

q is bounded below by the minimum of these two quantities, which
derives (1). The other cases to verify are global clock increases at q or the event
in the path from p to q where a beacon’s timestamp is no larger than the global
clock at the recipient. For any of these cases, (1) is a conservative lower bound.
To complete the proof, inequality (2) holds by induction on the path, considering
the worst case for the time φ until the next beacon transmission (in fact, the
bound could be sharpened because the delay for p’s initial beacon transmission
is zero rather than φ, by definition of ≺dpq). ❐

Lemma 2. In the static network model, for distinct p �= q and any point in any
execution, within a delay of at most dpq · (Φ + φ) time, there occurs a beacon re-
ception cj

q satisfying ck
p ≺dpq cj

q for some previous beacon transmission operation
ck
p in the execution.

Stabilizing Clock Synchronization for Wireless Sensor Networks 341

Proof. The lemma is a corollary of the proof of Lemma 1. ❐

To quickly show the utility of Lemma 1, we show a case where it allows compar-
ison of global clocks. Recall that Cv at a given state is the value that v would
obtain from a read of the global clock at that state. Similarly, we let Cv at any
real time instant denote the value that v would obtain should a read execute at
that instant.

Lemma 3. In the static network model, suppose there is an execution where p
never adjusts its global clock. Then at any time at least dpq(Φ + φ) following the
execution’s start,

Cq ≥ Cp − dpq · (Φ + φ) · 2(ρp − ρmin) (3)

In the dynamic network model the bound is Cq ≥ Cp − T · 2(ρp − ρmin).

Proof. After time dpq(Φ + φ), node q has executed some event cj
q causally pre-

ceded by one of p’s beacon transmissions ck
p with a real time satisfying (2).

Because p never adjusts its clock, at time t(cj
q) we know that

Cp = ck
p +

(
t(cj

q) − t(ck
p)
) · ρp

which implies, at time t(cj
q),

ck
p = Cp − (

t(cj
q) − t(ck

p)
) · ρp

Therefore at time t(cj
q) we may substitute Cq for cj

q and the equation for ck
p

above into (1) to obtain

Cq ≥ Cp − (
t(cj

q) − t(ck
p)
) · ρp +

(
t(cj

q − t(ck
p)
) · ρmin

≥ Cp − (
t(cj

q) − t(ck
p)
) · (ρp − ρmin)

The worst case for this inequality occurs when the amount being subtracted
from Cp is maximized, which by (1) results in

Cq ≥ Cp − dpq · (Φ + φ) · (ρp − ρmin) (4)

This inequality verifies the lemma for those times when q receives a beacon along
a minimum-length path from p to q; it remains to consider the value of Cq during
the time interval between two beacon receive events cj

q and cj′
q . By Lemma 2,

such a time interval’s duration is at most x
def= dpq · (Φ + φ), which implies Cq

increases by at least xρq in the worst case, and Cp increases by at least xρp. If
ρq ≥ ρp, then (4) continues to hold throughout the interval because the quantity
added on the left-hand side is at least as large as the quantity added on the
right-hand side. However if ρq < ρp, then to preserve the lower bound on Cq, we
add the larger quantity, with factor ρp, on the left-hand side, and the smaller
quantity on the right:

Cq + xρp ≥ Cp − x(ρp − ρmin) + xρq

342 T. Herman and C. Zhang

This simplifies to

Cq ≥ Cp − x(ρp − ρmin) − x(ρp − ρq) = Cp − x · (2ρp − ρmin − ρq)

Therefore a looser inequality than (4) holds throughout the execution, namely
(3). ❐

Suppose we apply Lemma 3 to the case where node p has the maximum global
clock value in the system throughout the execution (and hence never adjusts
its clock by beacon reception). For such a case, we have both upper and lower
bounds on Cq, since Cp ≥ Cq by assumption and (3) provides a lower bound.

Lemma 4. In the static network model, suppose there is an execution where p
never adjusts its global clock and Cp ≥ Cr for any r throughout the execution.
Then at any time at least dpq(Φ + φ) following the execution’s start,

Cp − Cq ≤ diam · (Φ + φ) · 2(ρmax − ρmin) (5)

In the dynamic network model the bound is Cp − Cq ≤ T · 2(ρmax − ρmin).

Proof. Taking the worst case on distance and skew, (3) reduces to (5). ❐

Inequality (5) provides a synchrony bound for applications. If the range of
possible skews is known and a bound on the network diameter is given, and
application-specific constants Φ and φ are established, the application program-
mer can derive a bound on the difference between clocks at different nodes.

3.1 Legitimate State

Self-stabilization is verified by showing closure of, and convergence to, a set of
legitimate states. Previous observations suggest that a definition of legitimate
state will imply one node has a global clock of maximum value in the system,
and that clock does not adjust by any beacon reception operation. This turns
out to be a simple obligation to satisfy. Let Vmax be the set of nodes which have
maximum skew:

v ∈ Vmax ≡ (∀w ∈ V : ρv ≥ ρw)

Definition 1. With respect to an execution E, let a network state σ be called
consistent if every receive beacon operation cj

q subsequent to σ has, for every
p ∈ V \ {q}, some beacon transmission operation ck

p in E satisfying ck
p ≺ cj

q.

Consistency is an invariant: any state following a consistent state is also consis-
tent. Definition 1 can be extended to apply to an initial state of an execution
E in the standard way: if some prefix A can be constructed so that Definition 1
holds for A · E, and prefix A has a duration of at least diam · (Φ + φ) time for a
static network or at least T + φ time for a dynamic network, then all states of
E are defined to be consistent. An execution is called consistent if all its states
are consistent under this extended notion of consistency.

Stabilizing Clock Synchronization for Wireless Sensor Networks 343

Definition 2. State σ is legitimate if it is consistent and at least one v ∈ Vmax

satisfies Cv ≥ Cw for every w ∈ V .

Closure and convergence are simple arguments, which we sketch as follows. For
any v ∈ Vmax with maximal Cv, no beacon reception operation ck

v will adjust the
clock: this can be shown by contradiction, based on the assumption that Cv and
ρv are maximal. This establishes the invariance of v ∈ Vmax having maximum
clock values, which is all we need for closure. Convergence is likewise simple
to argue. If |Vmax| = 1, then Cv for v ∈ Vmax increases at a faster rate than
any other clock in the system, so eventually it obtains a larger clock value than
any other clock (even without adjustment). Similar reasoning applies to the case
where |Vmax| > 1.

3.2 “Pseudo” Legitimate Execution

Definition 2 may not be useful in practice because the convergence time is de-
pendent on the difference in rates of skew. For example, consider p and q with
dpq ≈ diam, ρq is the maximum skew, and ρp is the second largest skew in the
network. From a state where Cp is the maximum global clock, it can be happen
that a beacon transmission ck

p causally precedes reception cj
q, however the inter-

mediate nodes along the path from p to q have minimum skews, so the global
clock of q is only guaranteed to be at least ck

p + ρmin · (t(cj
q)− t(ck

p)). Eventually,
p overtakes q, but the rate of overtaking could be ρp −ρq, which might be a very
small quantity. One would prefer a convergence result in terms of diam or T ,
which better relates to application assumptions. The following lemma provides
a useful insight for this purpose.

Lemma 5. Suppose there is a consistent execution E such that Cp ≥ Cr for all
r holds continuously for some time interval of length t, but immediately after
time t, there exists Cq such that Cq > Cp; then ρq > ρp.

Proof. Consider q such that Cq is the first global clock to become larger than
Cp. There are two cases for this event, either it is the result of an adjustment
or it is due to the advancement of q’s global clock at the rate ρq. Suppose Cq

increases by adjustment ahead of Cp, by some reception operation cj
q. Then the

timestamp in the received message is larger than Cp, and this timestamp was
created by some node r satisfying Cr > Cp; but this contradicts q having the
first global clock to exceed Cp. If q’s clock rate advances Cq ahead of Cp, then
ρq ≤ ρp cannot hold, hence the lemma. ❐

In an execution whose states are all consistent, we say that node p is demoted at
time t if Cp is the maximum clock at t, and Cq > Cp for some node q immediately
following time t.

Lemma 6. In any consistent execution, there occur at most n − 1 demotions.

Proof. Each demotion implies the existence of a node with larger skew than had
the previous maximum clock-holder, by Lemma 5. The number of different skew
values in the system is |V | = n, and the last global clock to become maximum
would be one with maximum skew, which cannot be overtaken subsequently. ❐

344 T. Herman and C. Zhang

Lemma 3 may not hold throughout an execution of consistent states subject
to demotions, however a modified version of the lemma, useful as an ongoing
synchrony bound, can be proved (we omit details). Lemma 6 clarifies the struc-
tured behavior of the converge-to-max protocol. It is “pseudo” stabilizing to a
consistent state within time diam · (Φ + φ) (or T + φ for the dynamic network),
and the network experiences at most n− 1 epochs in which some node (perhaps
joined by others) has the maximum clock value. During each epoch, Lemma 4
provides a synchrony bound after a delay of diam·(Φ+φ) (we speculate that syn-
chrony bounds can also be derived for transitions from one epoch to the next).
Strictly speaking, execution is not pseudo-stabilizing in the sense of [13], because
eventual convergence to a state satisfying Definition 2 is deterministic, whereas
pseudo-stabilization [13] is based on nondeterministic selection. Nonetheless, we
feel that pseudo-stabilization is an appropriate characterization of the behav-
ior of Lemma 6, particularly when we consider that in practice, skews are not
constant, and could nondeterministically fluctuate (one could also call this “pro-
visional” stabilization, however we do not formally investigate any new definition
here).

3.3 Finite Clocks

Practical computer clocks are based on counters with finite domains, whereas
the protocol and verification in Section 3 supposes global clocks have no finite
limit. The issue of infinite clocks is more important for self-stabilizing monotonic
clock protocols, because a transient failure could move global clocks close to a
finite limit value long before this otherwise would occur. Sensor network models
motivate using a small domain for clocks because messages have small payloads
(saving even a few bytes, or piggybacking to reduce the number of messages, can
be useful).

A bounded global clock has domain [0, L]. The standard way to deal with
the event of a bounded clock reaching maximum value L is rollover: Cv + b

def=
(Cv+b) mod (L+1) for any b; this is also how the hardware counters behave. The
event of a clock rollover from L to zero disrupts the converge-to-max protocol,
since a large clock instantly becomes a small one. Two relevant techniques from
the literature of self-stabilizing phase-clocks are (a) to redefine comparison of
clock values in the clock protocol to behave modulo L + 1 [14], or (b) let the
event of a clock reaching L initiate a system reset, after which all clocks begin
from zero [15]. Neither of (a) nor (b) is directly applicable to the converge-
to-max protocol because the model of phase clocks differs in key aspects from
real-time clock behavior. Below, we adapt the theme of (a) in a modification of
converge-to-max, but first we show a surprising result.

Lemma 7. For bounded clocks with rollover in domain [0, L], where in the static
network model L � diam · (Φ + φ) and L � T in the dynamic network, the
converge-to-max protocol is stabilizing.

Proof. We examine three cases for an initial state. The first case is where no
clock is near to rollover, and the behavior is the that of an unbounded clock for

Stabilizing Clock Synchronization for Wireless Sensor Networks 345

long enough for convergence. Let R = diam ·(Φ+φ)/ρmax. The first case consists
of states where Cv < L − R for all nodes v. Here, no global clock advances to
L in diam · (Φ + φ) time, which makes behavior with respect to convergence the
same as an unbounded clock. Hence arguments of Section 3 are applicable.

The second case is where all clocks are near or just past rollover:

(∀v ∈ V : Cv ≥ L − R ∨ Cv ≤ R)

Call Cv large if Cv ≥ L−R and small if Cv ≤ R. If no Cv is large, then the second
case reduces to the first case. Our proof obligation is to show that any execution
reduces to zero the number of large clocks. Let Cmin

def= min{Cv | Cv ≥ L − R}.
We claim that within diam · (Φ + φ) time, Cmin reaches the point of rollover. In
reaching this point, small clocks may copy values from large clocks, and some
large clocks may roll over to become small. If Cmin = L and a beacon is trans-
mitted with timestamp L, then either a rollover occurs in the message processing
layers, or in the beacon processing, or immediate after beacon processing. Thus
within diam · (Φ + φ) time, no clock is large.

The third case is an initial state σ0 with at least one large clock, in [L−R, L],
and with at least one clock that is neither large nor small, in the range (R, L−R).
After diam·(Φ+φ) time, a state σ1 occurs where each node has received a beacon
that is causally preceded by a large clock beacon (we ignore trivial cases where
all large clocks roll over before beacon transmission). It can thus occur that every
clock is high or has rolled over, so that σ1 is a state of the second case, which
would complete the lemma. Therefore we suppose that in the execution reaching
σ1, large clock beacons roll over during propagation, and some Cp does not adjust
to become large; in σ1, nodes with maximum clock value did not have large clocks
in σ0. Again, if σ1 is a state of the first case, the lemma holds. Therefore, suppose
some Cp has increased to at least L − R, but not by adjustment, which implies
σ1 is a state of the third case. Another important observation concerning Cp’s
increase is that σ0 had at least one clock in the range (L − 2R, L − R), so that
diam · (Φ + φ) time is enough for Cp to become large. Notice that all the large
clocks of σ0 roll over in the execution leading to σ1. Let σ′ be the first state for
which Cp, not a large clock, becomes large. Although other clocks may be greater
than Cp, they will all roll over in this execution and Cp will not adjust under
their influence. By Lemma 3, in the diam · (Φ+φ) time after σ′, Cp does not roll
over and every other node receives a beacon causally preceded by a transmission
of p’s beacon. The result is a state fitting the second case. ❐

The proof of Lemma 7 shows that clock behavior can be chaotic when clocks
roll over: for instance, a node with a large clock can become small, then adjust
to a large value, then roll over again, all within a brief period. Strategy (a)
avoids this by redefining clock comparison so that, for example, L − ε < ε holds
for small values of ε; in this way, comparison wraps around the domain [0, L].
To avoid pathological race conditions preventing convergence, a new reset mode
is introduced to the algorithm. Each node p has a reset clock Up in the range
[0, S], where S = diam · (Φ + φ) · (1 + κ) (recall that 1 + κ is an upper bound
on ρmax). We suppose S � L. The reset clock Up advances at the same rate ρp

346 T. Herman and C. Zhang

as the global clock, until Up = S, whereat the reset clock stops and an event is
triggered. We explain below how the reset clock is used to coordinate a resetting
of global clocks.

Cp ≤ Cq
def= (∃b : 0 ≤ b ≤ 2 · S : Cq = (Cp + b) mod (L + 1))

Cp � Cq
def= ¬ (Cp ≤ Cq ∨ Cq ≤ Cp)

This redefinition of inequality is not a total order of clock values, and that fact
motivates the definition of � to test for incomparable timestamps (see [14]).
Beacon transmission for node p changes to the following.

event(timeout):
if Up < S then prepare beacon message m from Up ;
else prepare beacon message m from Cp ;
local-broadcast(m) to neighborhood ;
schedule next timeout in φ seconds ;

Beacons are thus of two types, either a normal beacon with a timestamp from a
global clock or a beacon containing a reset clock. When node receives the latter
type, the reset clock value is handled like a timestamp by lower layers so that
MAC and other processing delays are added to the reset clock value (topping
out, of course, at the maximum possible reset clock value S). Beacon processing
at node p changes to:

event(receive beacon m):
if m contains reset clock value u then Up = min(Up, u) ;
if Up = S and m contains a global clock value, then

if m.timestamp � Cp then assign Up = 0 ;
else if m.timestamp > Cp then

adjust global clock Cp by + (m.timestamp − Cp) ;

Finally, this protocol handles the event of p’s reset clock increasing to
the maximum:

event(reset clock Up increases to S):
adjust global clock Cp to be zero ;

A legitimate state for the strategy (a) protocol is a consistent state where all
clocks are comparable and all reset clocks are at S, so that (3) holds; the syn-
chrony bound (3) should be loosened for pseudo-stabilization (we omit details).

Lemma 8. The strategy (a) clock protocol is stabilizing.

Proof. If all reset clocks are S and all beacon receive operations find times-
tamps that are comparable to the receiver’s global clock, then the behavior of
the protocol is that same as for the converge-to-max protocol, using unbounded
clocks. Moreover, in an execution where no node assigns Up = 0 due to an
incomparable timestamp detection, all reset clocks equal S within O(S) time,

Stabilizing Clock Synchronization for Wireless Sensor Networks 347

because the minimum reset clock not equal to S increases (beacon processing
does not lower the minimum). Now suppose we have an execution starting from
a consistent state and consider the first node p to assign Up = 0. At such an
assignment, Up is the smallest reset clock in the network. Within a diam ·(Φ+φ)-
length time interval, every reset clock Uq satisfies Uq < S (including Up in the
case that ρp = ρmax, because even if p’s reset clock runs faster than real time,
the κ-bound in the definition of S assures that p will not reach S in this time
interval). Following a state with all reset clocks below S, reset clocks advance
to S and the global clocks restart from zero. Therefore the execution has a
state where all global clocks are in the range [0, S], no reset clock is below
S, and subsequently no beacon receive operation detects an incomparable
timestamp. ❐

3.4 Fault Containment

The converge-to-max protocol’s weakness with respect to transient faults is the
span of its reaction to small perturbations. Even one global clock stricken by
a fault that increases the clock value will propagate throughout the network
before the system converges. The same can occur with traditional algorithms,
such as leader-based clock synchronization, presumably with lower probabil-
ity than for the fully distributed converge-to-max protocol. We suggest using
single-fault containment to decrease the probability of such widespread con-
tamination (generalization to k-fault containment is likely unrealistic given the
limited space resource of sensor network platforms). Each node q can maintain
a list of recent beacon value for its neighbors; a list item for neighbor p con-
tain the difference between Cq and the corresponding timestamp of p’s most
recent beacon. In this way, q has the ability to estimate the value of Cp for any
neighbor p.

We describe fault containment for node q upon receiving a beacon m from
neighbor p. To begin, q estimates the set Q of global clock values for its neigh-
borhood, including Cq itself, Cp from the timestamp of m, and estimates for
the remaining neighbors from the list of recent beacon values. The next step of
containment is for q to test Q for a single outlier: set Q has a single outlier if

(∃x ∈ Q : (∀y, z ∈ Q \ {x} : |y − z| ≤ ξ0) ∧ (∀y ∈ Q \ {x} : |x − y| > ξ1))

for appropriate constants ξ0 and ξ1. When there is a positive test for an outlier
x ∈ Q, we have two cases, either x = q or x represents some neighbor of q. If
x = q, then node q can adopt a new global from beacon m; if x �= q, then q can
discard m because it is presumably faulty.

There are pitfalls in the fault containment described above. First, the notion
of an outlier is ambiguous when a node q has only one neighbor: in this situation,
fault containment should not be used. Second, fault containment could inhibit
self-stabilization. For example, suppose a single link (p, q) joins two dense sub-
networks, and nodes p and q find each other to be outliers while agreeing with
many other neighbors. Here, discarding beacons prevents clock synchronization

348 T. Herman and C. Zhang

in the network. A practical remedy to this is to use the idea of a reset timer to
limit the application of fault containment (see [16]), so that the heuristic of fault
containment is used infrequently and the protocol falls back to self-stabilization
if containment does not quickly repair the state.

4 Conclusion

The apparently simple converge-to-max protocol turns out not to be so simple
when realistic factors of the sensor network model (skew, message delay, finite
clock domain), and this is seen in the stabilization analysis. It is our opinion
that real-time protocols, widely used in practice, should be further investigated
with regard to stabilizing fault tolerance.

One reviewer of this paper commented on the presentation’s lack of formality,
finding amusement that we “get away with defining legitimate states opera-
tionally” (likely referring to Section 3.2). We agree that the structure of provi-
sional stability during a sequence of demotions, can be further formalized. The
results of Section 3.2 were motivated by observing the behavior of the converge-
to-max protocol during experiments on a testbed of 35 MicaZ motes. Whereas
previous papers [11,12] describe the protocol as synchronizing to the fastest
clock, we sometimes observed that the property of being “fastest” changed over
the course of several hours; we also observed cases where multiple “fastest” clocks
occured. While these experimental results could be attributed to factors such as
noise in the timestamping of messages and nonzero drift, we found that even in
the model of this paper, there can occur periods of provisional stability. Users of
sensor networks and application programmers care about the stability of prop-
erties relevant to application requirements, mainly in some synchrony bound on
the difference between clocks at different nodes, and a bound relating elapsed
time, as measured by clocks, to real time. Ultimately, one would like to formally
relate characterizations of clock protocol stability (including demotions, bounded
nonzero drift, and bounded noise in timestamping) to application requirements.

References

1. A Arora, P Dutta, S Bapat, V Kulathumani, H Zhang, V Naik, V Mittal, H Cao, M
Demirbas, M Gouda, Y Choi, T Herman, S Kulkarni, U Arumugam, M Nesterenko,
A Vora, M Miyashita. A line in the sand: a wireless sensor network for target
detection, classification, and tracking. Computer Networks 46(5):605-634, 2004.

2. G Werner-Allen, G Tewari, A Patel, M Welsh, R Nagpal. Firefly-inspired sensor
network synchronicity with realistic radio effects. Sensys’05, pp. 142-153, 2005.

3. B Sundararaman, U Buy, A Kshemkalyani. Clock synchronization for wireless sen-
sor networks: a survey. Ad Hoc Networks, 3:281-323, 2005.

4. RE Mirollo, SH Strogatz. Synchronization of pulse-coupled biological oscillators.
SIAM Journal of Applied Mathematics 50(6):1645-1662, 1990.

5. YW Hong, A Scaglione. Time synchronization and reach-back communications
with pulse-coupled oscillators for UWB wireless ad hoc networks. In Proceedings
of IEEE Conference on Ultra Wideband Systems and Technologies, pp. 190-194,
2003.

Stabilizing Clock Synchronization for Wireless Sensor Networks 349

6. T Herman. Mote timesync implementation, 2003: http://tinyos.cvs.

sourceforge.net/tinyos/tinyos-1.x/contrib/minitasks/02/osu/timesync/

7. Q Li, D Rus. Global clock synchronization in sensor networks. IEEE Transactions
on Computers, 55(2):214-216, 2005.

8. M Maroti, B Kusy, G Simon, A Ledeczi. The flooding time synchronization pro-
tocol. In Proceedings of the Second ACM Conference on Embedded Networked
Sensor Systems (SenSys’04), pp. 39-49, 2004.

9. DL Mills. The network time protocol. IEEE Transactions on Communications, pp.
1482-1493, 1991.

10. TH Lai, D Zhou. Efficient and scalable IEEE 802.11 ad hoc mode timing pattern
formation function. In 17th International Conference on Advanced Information
Networking and Applications, pp. 318-323, 2003.

11. TH Lia, D Zhou. A scalable and adaptive clock synchronization protocol in IEEE
802.11-based multihop ad hoc networks. In The 2nd IEEE International Conference
on Mobile Adhoc and Sensor Systems, pp. 551-558, 2005.

12. P Rauschert, A Honarbacht, A Kummert. The predictive timer synchronization
function - efficient network synchronization of MANETs. In Proceedings of the 7th
IASTED International Conference on Signal and Image Processing (SIP’05), 2005.

13. JE Burns, MG Gouda, RE Miller. Stabilization and pseudo-stabilization. Dis-
tributed Computing 7:35-42, 1993.

14. JM Couvreur, N Francez, MG Gouda. Asynchronous unison. In Proceedings of the
12th International Conference on Distributed Computing Systems (ICDCS’92), pp.
486-493, 1992.

15. A Arora and MG Gouda. Distributed reset. IEEE Transactions on Computers
43(9):1026-1038, 1994.

16. S Ghosh, A Gupta, T Herman, SV Pemmaraju. Fault-containing self-stabilizing
algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on Principles
of Distributed Computing (PODC’96), pp. 45-54, 1996.

17. M Lemmon, J Ganguly, L Xia. Model-based clock synchronization in networks with
drifting clocks. In Proceedings of the 2000 Pacific Rim International Symposium
on Dependable Computing, pp. 177-185, 2000.

18. JE Elson, L Girod, D Estrin. Fine-grained network time synchronization using
reference broadcasts. The Fifth Symposium on Operating Systems Design and
Implementation (OSDI02), pp. 147-163, 2002.

19. S Ganeriwal, R Kumar, MB Srivastava. Timing-sync protocol for sensor networks.
In Proceedings of the First ACM Conference on Embedded Networked Sensor
Systems (SenSys’03), pp. 138-149, 2003.

20. JP Sheu, CM Chao, CW Sun. A clock synchronization algorithm for multi-hop
wireless ad hoc networks. In Proceedings of the 24th International Conference on
Distributed Computing Systems (ICDCS’04). pp. 574-581, 2004.

Self-stabilizing Byzantine Digital Clock
Synchronization

Ezra N. Hoch, Danny Dolev�, and Ariel Daliot

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel
{ezraho, dolev, adaliot}@cs.huji.ac.il

Abstract. We present a scheme that achieves self-stabilizing Byzantine
digital clock synchronization assuming a “synchronous” system. This syn-
chronicity is established by the assumption of a common “beat” delivered
with a regularity in the order of the network message delay, thus enabling
the nodes to execute in lock-step. The system can be subjected to severe
transient failures with a permanent presence of Byzantine nodes. Our
algorithm guarantees eventually synchronized digital clock counters, i.e.
common increasing integer counters associated with each beat. We then
show how to achieve regular clock synchronization, progressing at real-
time rate and with high granularity, from the synchronized digital clock
counters.

There is one previous self-stabilizing Byzantine clock synchronization
algorithm, which also converges in linear time (relying on an underlying
pulse mechanism), but it requires to execute and terminate Byzantine
agreement in between consecutive pulses. Such a scheme, although it
does not assume a synchronous system, cannot be easily transformed to
a synchronous system in which the pulses (beats) are in the order of
the message delay time apart. The only other digital clock synchroniza-
tion algorithm operating in a similar synchronous model converges in
expected exponential time. Our algorithm converges (deterministically)
in linear time.

1 Introduction

Clock synchronization is a very fundamental task in distributed systems. The
vast majority of distributed tasks require some sort of synchronization; and clock
synchronization is a very straightforward and intuitive tool for supplying this. It
thus makes sense to require an underlying clock synchronization mechanism to
be highly fault-tolerant. A self-stabilizing algorithm seeks to attain synchroniza-
tion once lost; a Byzantine algorithm assumes synchronization is never lost and
focuses on containing the influence of the permanent presence of faulty nodes.

We consider a system in which the nodes execute in lock-step by regularly
receiving a common “pulse” or “tick” or “beat”. We will use the “beat” notation
� Part of the work was done while the author visited Cornell University. This research

was supported in part by ISF, NSF, CCR, and AFSOR.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 350–362, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Self-stabilizing Byzantine Digital Clock Synchronization 351

in order to stay clear of any confusion with “pulse synchronization” or “clock
ticks”. Should the beat interval be at least as long as the worst-case execution-
time for terminating Byzantine agreement, then the system becomes, in a sense,
similar to classic non-stabilizing systems, in which algorithms are initialized syn-
chronously.1 On the other hand, should the pulse interval length be in the order
of the communication end-to-end delay, then the problem becomes agreeing on
beat-counters or on “special” beats among the frequent common beats received.

The digital clock synchronization problem is to ensure that eventually all the
correct nodes hold the same value of the beat counter (digital clock) and as long
as enough nodes remain correct, they will continue to hold the same value and
to increase it by one following each beat.

The mode of operation of the scheme proposed in this paper is to initialize at
every beat Byzantine consensus on the digital clocks. Thus, after a number of
beats (or rounds), which equals the bound for terminating Byzantine consensus,
say Δ, all correct nodes have identical views on an agreed digital clock value
of Δ rounds ago. Based on this global state, a decision is taken at every node
how to adjust its local digital clock. At each beat, if the two most recently
terminated consensus instances show consecutive digital clock values then the
node increments its digital clock and initializes a new consensus instance on this
updated digital clock value. If the digital clocks are not synchronized, the new
consensus instance is initialized with the “zero” value. The algorithm converges
within 3 · Δ rounds. We use “clock”and “digital clock” interchangeably.

Related work: We present a self-stabilizing Byzantine clock synchronization
algorithm that assumes that common beats are received synchronously (simul-
taneously) and in the order of the message delay apart. The clocks progress
at real-time rate. Thus, when the clocks are synchronized, in-spite of perma-
nent Byzantine faults, the clocks may accurately estimate real-time.2 Following
transient failures, and with on-going Byzantine faults, the clocks will synchro-
nize within a finite time and will progress at real-time rate, although the actual
clock-reading values will not be directly correlated to real-time. Many appli-
cations utilizing the synchronization of clocks do not really require the exact
real-time notion (see [12]). In such applications, agreeing on a common clock
reading is sufficient as long as the clocks progress within a linear envelope of
any real-time interval. Clock synchronization in a similar model has earlier been
denoted as “digital clock synchronization” ([1,8,10,14]) or “synchronization of
phase-clocks” ([11]), in which the goal is to agree on continuously incrementing
counters associated with the beats. The convergence time in those papers is not
linear, whereas in our solution it is linear.

The additional requirement of tolerating permanent Byzantine faults poses
a special challenge for designing self-stabilizing distributed algorithms due to
the capability of malicious nodes to hamper stabilization. This difficulty may be

1 See [6] for such a self-stabilizing Byzantine clock synchronization algorithm, which
executes on top of a self-stabilizing Byzantine pulse-synchronization primitive.

2 All the arguments apply also to the case where there is a small bounded drift among
correct clocks.

352 E.N. Hoch, D. Dolev, and A. Daliot

indicated by the remarkably few algorithms resilient to both fault models (see
[3] for a short review). The digital clock synchronization algorithms in [9] are, to
the best of our knowledge, the first self-stabilizing algorithms that are tolerant
to Byzantine faults. The randomized algorithm, presented in [9], operating in
the same model as in the current paper, converges in expected exponential time.

In [6] we have previously presented a self-stabilizing Byzantine clock syn-
chronization algorithm, which converges in linear time and does not assume
a synchronous system. That algorithm executes on top of a pulse synchro-
nization primitive with intervals that allow to execute Byzantine agreement in
between. The solution presented in the current paper only assumes that the
(synchronously received) beats are on the order of the message delay apart and
also converges in linear time. In [2] and [5] two pulse synchronization procedures
are presented that do not assume any sort of prior synchronization such as com-
mon beats. One is biologically inspired and the other utilizes a self-stabilizing
Byzantine agreement algorithm developed in [4]. Both these pulse synchroniza-
tion algorithms are complicated and have complicated proofs, while the cur-
rent solution is achieved in a relatively straightforward manner and its proofs
are simpler. Due to the relative simplicity of the algorithm, formal verification
methods, as were used in [13], can be used to increase the confidence in the
correctness of the proposed algorithm. An additional advantage of the current
solution is that it can be implemented without the use of local physical timers
at the nodes.

2 Model

We consider a fully connected network of n nodes. All the nodes are assumed to
have access to a “global beat system” that provides “beats” with regular intervals.
The communication network and all the nodes may be subject to severe transient
failures, which might eventually leave the system in an arbitrary state. The
algorithm tolerates a permanent fraction, f < n

4 , of faulty Byzantine nodes.
We say that a node is Byzantine if it does not follow the instructed algorithm

and non-Byzantine otherwise. Thus, a node that has crashed or experiences some
other fault that does not allow it to exactly follow the algorithm as instructed,
is considered Byzantine, even if it does not behave maliciously. A non-Byzantine
node will therefore be called non-faulty.

We assume that the network has bounded time on message delivery when it
behaves coherently. Nodes are instructed to send their messages immediately af-
ter the delivery of a beat from the global beat system. We assume that message
delivery and the processing involved can be completed between two consecutive
global beats. More specifically, the time required for message delivery and mes-
sage processing is called a round, and we assume that the time interval between
global beats is greater than and in the order of such a round.

At times of transient failures there can be any number of concurrent Byzantine
faulty nodes; the turnover rate between faulty and non-faulty behavior of the
nodes can be arbitrarily large and the communication network may behave

Self-stabilizing Byzantine Digital Clock Synchronization 353

arbitrarily. Eventually the system behaves coherently again. At such a state
a non-faulty node may find itself in an arbitrary state.

Definition 1. The system is coherent if there are at most f Byzantine nodes,
messages arrive and are processed at their non-faulty destinations between two
consecutive beats.

Since a non-faulty node may find itself in an arbitrary state, there should be
some time of continues non-faulty operation before it can be considered correct.

Definition 2. A non-faulty node is considered correct only if it remains non-
faulty for Δnode rounds during which the system is coherent.3

Denote by DigiClockp(r) the value of the digital clock at node p at beat r. We
say that the system is in a synchronized_state if for all correct nodes the value
of their DigiClock is identical.

Definition 3. The digital-clock synchronization problem
Convergence: Starting from an arbitrary system state, the system reaches a
synchronized_state after a finite time.

Closure: If at beat r the system is in a synchronized_state then for every r′,
r′ ≥ r,

1. the system is in a synchronized_state at beat r′; and
2. DigiClock(r′) = (DigiClock(r)+r′−r) mod overlap, 4 at each correct node.

Note that the algorithm parameters n, f, as well as the node’s id are fixed
constants and thus considered part of the incorruptible correct code. Thus we
assume that non-faulty nodes do not hold arbitrary values of these constants.

2.1 The Byzantine Consensus Protocol

Our digital clock synchronization algorithm utilizes a Byzantine consensus proto-
col as a sub-routine. We will denote this protocol by BC. We require the regular
conditions of Consensus from BC, in addition to one additional requirement.
That is, in BC the following holds:

1. Agreement: All non-faulty nodes terminate BC with the same output value.
2. Validity: If all non-faulty nodes have the same initial value v, then the output

value of all non-faulty nodes is v.
3. Termination: All non-faulty nodes terminate BC within Δ rounds.
4. Solidarity. If the non-faulty nodes agree on a value v, such that v �=⊥ (where

⊥ denotes a non-value), then there are at least n − 2 · f non-faulty nodes
with initial value v.

3 The assumed value of Δnode in the current paper will be defined later.
4 “overlap” is the wrap around of the variable DigiClock. All additions to DigiClock

in the rest of the paper are assumed to be (mod overlap).

354 E.N. Hoch, D. Dolev, and A. Daliot

Remark 1. Note that for n > 4f the “solidarity” requirement implies that if the
Byzantine consensus is started with at most n

2 non-faulty nodes with the same
value, then all non-faulty nodes terminate with the value ⊥ .

As we commented above, since BC requires the nodes to maintain a consistent
state throughout the protocol, a non-faulty node that has recently recovered
from a transient fault cannot be considered correct. In the context of this paper,
a non-faulty node is considered correct once it remains non-faulty for at least
Δnode = Δ + 1 and as long as it continues to be non-faulty.

In Appendix A we discuss how typical synchronous Byzantine consensus pro-
tocols can be used as such a BC protocol. The specific examples we discuss have
two early stopping features: First, termination is achieved within 2f + 4 of our
rounds. If the number of actual Byzantine nodes is f ′ ≤ f then termination is
within 2f ′+6 rounds. Second, if all non-faulty nodes have the same initial value,
then termination is within 4 rounds.

The symbol Δ denotes the bound on the number of rounds it takes BC to
terminate at all correct nodes. That is, if BC has some early stopping feature, we
still wait until Δ rounds pass. This means that the early stopping may improve
the message complexity, but not the time complexity. By using the protocols in
Appendix A, we can set Δ := 2f + 4 rounds.

3 Digital Clock Synchronization Algorithm

The following digital clock synchronization algorithm tolerates up to f < n
4

concurrent Byzantine faults. We target for the digital clocks to be incremented
by “1” every beat and we target at achieving synchronization of these digital
clocks.

3.1 Intuition for the Algorithm

The idea behind our algorithm is that each node runs many simultaneous
Byzantine consensus protocols. In each round of the algorithm it executes a
single round in each of the Byzantine consensus protocols, but each Byzantine
consensus protocol instance is executed with a different round number. That is,
if BC takes Δ rounds to terminate, then the node runs Δ concurrent instances
of it, where, for the first one it executes the first round, for the second it exe-
cutes the second round, and in general for the ith BC protocol it executes the ith

round. We index a BC protocol by the number of rounds passed from its invo-
cation. When the Δth BC protocol is completed, a new instance of BC protocol
is initiated. This mechanism, of executing concurrently Δ BC protocols, allows
the non-faulty nodes to agree on the clock values as of Δ rounds ago. The nodes
use the consistency of these values as of Δ rounds ago and the exchange of their
current values to “tune” the future clock values.

3.2 Preliminaries

Given a Byzantine consensus protocol BC, each node maintains the following
variables and data structures:

Self-stabilizing Byzantine Digital Clock Synchronization 355

Algorithm Digital-SSByz-ClockSync /* executed at each beat */

1. for each i ∈ {1, .., Δ} do
execute the ith round of the Agree[i] BC protocol;

2. send value of DigiClock to all nodes and store the received clocks of other
nodes in ClockV ec;

3. set the following:
(a) v:= the agreed value of Agree[Δ];
(b) DigiClockmost:= the value appearing at least �n

2
�+ 1 times in ClockV ec,

and 0 otherwise;
4. (a) if (v = 0) or (v = vprev + 1) then

DigiClock := DigiClockmost + 1 (mod overlap);
(b) else

DigiClock := 0;
5. for each i ∈ {2, ..., Δ} do

Agree[i] := Agree[i − 1];
6. initialize Agree[1] by invoking BC(DigiClock).
7. vprev := v.

Fig. 1. The digital clock synchronization algorithm

1. DigiClock holds the beat counter value at the node.
2. ClockV ec holds a vector containing the value of DigiClock each node sent

in the current round.
3. DigiClockmost holds the value that appears at least n

2 +1 times in ClockV ec,
if one exists.

4. Agree[i] is the memory space of the ith instance of BC protocol (the one
initialized i rounds ago).

5. v holds the agreed value of the currently terminating BC.
6. vprev holds the value of v one round ago.

Note that all the variables are reset or recomputed periodically, so even if
a node begins with arbitrary values in its variables, it will acquire consistent
values. The consistency of the variable values used for BC are taken care of
within that protocol.

Figure 1 presents the digital clock synchronization algorithm.

Remark 2. The model allows for only one message to be sent from node p to p′

within one round (between two consecutive beats). The digital clock synchro-
nization algorithm in Figure 1 requires sending two sets of messages in each
round. Observe that the set of messages sent in Step 2 is not dependent on the
operations taking place in Step 1, therefore, all messages sent by the algorithm
during each round can be sent right after the beat and will arrive and processed
before the next beat, meeting the model’s assumptions.

Note that a “simpler” solution, such as running consensus on the previous
DigiClock, adding to it Δ + 1 and setting it as the current DigiClock would
not work, because for some specific initial values of DigiClock the Byzantine
nodes can cause the non-faulty nodes to get “stuck” in an infinite loop of alter-
nating values.

356 E.N. Hoch, D. Dolev, and A. Daliot

4 Lemmata and Proofs

All the lemmata, theorems, corollaries and definitions hold only as long as the
system is coherent. We assume that all nodes may start in an arbitrary state,
and that from some time on, no more than f of them are Byzantine. We will
denote by G a group of nodes that behave according to the algorithm, and that
are not subject to (for some pre-specified number of rounds) any new transient
faults. If, |G| ≥ n − f and remain non-faulty for a long enough period of time
(Ω(Δ) global beats), then the system will converge.

For simplifying the notations, the proof refers to some “external” round num-
ber. The nodes do not maintain it, it is only used for the proofs.

Definition 4. We say that the system is Calm(α, σ), σ > α, if there is a set
G, |G| = n − f, of nodes that are non-faulty during all rounds in the interval
[α, σ − 1].

The notation Calm(α, σ ≥ β) denotes that Calm(α, σ) and σ ≥ β. Specifically,
the notation implies that the system was calm for at least β rounds. Notice that
all nodes in G are considered correct when the system is Calm(α, σ ≥ Δ).

Note that in typical self-stabilizing algorithms it is assumed that eventually
all nodes behave correctly, and therefore there is no need to define Calm(). In
our context, since some nodes may never behave correctly, and additionally some
nodes may recover and some may fail we need a sufficiently large subset of the
nodes to behave correctly for sufficiently long time in order for the system to
converge.

In the following lemmata, G refers to the set implied by Calm(α, σ), without
stating so specifically.

Lemma 1. If the system is Calm(α, σ ≥ Δ + 1), then for any round β, β ∈
[α + Δ + 1, σ], all nodes in G have identical v values after executing Step 2 of
Digital-SSByz-ClockSync.

Proof. Irrespective of the initial states of the nodes in G at the beginning of
round α (which is after the last transient fault in G occurred), the beats received
from the global beat system will cause all nodes in G to perform the steps in
synchrony. By the end of round α, all nodes in G reset BC protocol Agree[1].

Note that at each round another BC protocol will be initialized and after Δ
rounds from its initialization each such protocol returns the same value at all
nodes in G, since all of them are non-faulty and follow the protocol. Hence, After
Δ + 1 rounds, the values all nodes in G receive as outputs of BC protocols are
identical. Therefore v is identical at all g ∈ G, after executing Step 2 of that
round.

Since this claim depends only on the last Δ+1 rounds being “calm”, the claim
will continue to hold as long as no node in G experiences a transient fault. Thus,
this holds for any round β, α + Δ ≤ β ≤ σ. ��
Lemma 2. If the system is Calm(α, σ ≥ Δ + 2), then for any round β ∈
[α + Δ + 1, σ], either all nodes in G perform Step 4.a, or all of them perform
Step 4.b.

Self-stabilizing Byzantine Digital Clock Synchronization 357

Proof. By Lemma 1, after the completion of Step 2 of round α+Δ+1 the value
of v is the same at all nodes of G, hence after an additional round the value
of vprev is the same at all nodes of G. Since the decision whether to perform
Step 4.a or Step 4.b depends only on the values of v, and vprev, all nodes in G
perform the same line (either 4.a or 4.b). Moreover, because this claim depends
on the last Δ + 2 rounds being “calm”, the claim will continue to hold as long as
no node in G is subject to a fault. ��

Denote Δ1 := Δ + 2. All the following lemmata will assume the system is
Calm(α, β), for rounds β ≥ Δ1. Therefore, in all the following lemmata, we
will assume that in each round β, all nodes in G perform the same Step 4.x
(according to Lemma 2).

Lemma 3. If the system is Calm(α, σ ≥ Δ1), and if at the end of some β ≥
α +Δ1 − 1, all nodes in G have the same value of DigiClock, then at the end of
any β′, β ≤ β′ ≤ σ, they will have the same value of DigiClock.

Proof. Since we consider only β ≥ α + Δ1 − 1, by Lemma 2 all nodes in G
perform the same Step 4.x. For round β′ = β +1, the value of DigiClock can be
changed at Lines 4.a or 4.b. If it was changed at 4.b then all nodes in G have the
value 0 for DigiClock. If it was changed by Step 4.a, then because we assume
that at round β all nodes in G have the same DigiClock value, and because
|G| = n − f ≥ �n

2 + 1�, the value of DigiClockmost computed at round β′ is the
same for all nodes in G, and therefore, executing Step 4.a will produce the same
value for DigiClock in round β′ for all nodes in G.

By induction, for any β ≤ β′ ≤ σ, all nodes in G continue to agree on the
value of DigiClock. ��

Denote Δ2 := Δ1 + Δ + 1. All the following lemmata will assume the system is
Calm(α, σ), for σ ≥ Δ2.

Lemma 4. If the system is Calm(α, σ ≥ Δ2), then at the end of any round
β, β ∈ [α + Δ2 − 1, σ], the value of DigiClock at all nodes in G is the same.

Proof. Consider any round β′ ∈ [α + Δ1 − 1, α + Δ1 + Δ − 1]. If at the end
of β′ all nodes in G hold the same DigiClock value, then from Lemma 3 this
condition holds for any β, β ∈ [α + Δ2 − 1, σ]. Hence, we are left to consider
the case where at the end of any such β′ not all the nodes in G hold the same
value of DigiClock. This implies that Step 4.b was not executed in any such
round β′. Also, if Step 4.a was executed during any such round β′, and there
was some DigiClock value that was the same at more than n

2 nodes in G, then
after the execution of Step 4.a, all nodes would have had the same DigiClock
value. Hence, we assume that for all β′, only Step 4.a was executed, and that no
more than n

2 from G had the same DigiClock value.
Consider round β′′ = α + Δ1 +Δ. The above argument implies that at round

β′′ − Δ, Step 4.a was executed, and there were no more than n
2 nodes in G with

the same DigiClock value. Since n
2 < n − 2 · f, the “solidarity” requirement of

358 E.N. Hoch, D. Dolev, and A. Daliot

BC implies that the value entered into v at round β′′ is ⊥ . Hence, at round β′′

Step 4.b would be executed.
Therefore, during one of the rounds β ∈ [α + Δ1 − 1, α + Δ1 + Δ], all the

nodes in G have the same value of DigiClock, and from Lemma 3 this condition
holds for all rounds, until σ. ��
Remark 3. The requirement that f < n

4 stems from the proof above. That is
because we require that n

2 < n−2·f (to be able to use the “solidarity” requirement
of BC). We note that this is the only place that the requirement f < n

4 appears,
and that it is a question for future research whether this can be improved to the
known lower bound of f < n

3 .

Corollary 1. If the system is Calm(α, σ ≥ Δ2), then for every round β, β ∈
[α + Δ2 − 1, σ − 1], one of the following conditions holds:

1. The value of DigiClock at the end of round β + 1 is “0” at all nodes in G.
2. The value of DigiClock at the end of round β + 1 is identical at all nodes

in G and it is the value of DigiClock at the end of round β plus “1”.

Lemma 5. If the system is Calm(α, σ ≥ Δ2 + Δ), then for every round β ∈
[α + Δ2 + Δ − 1, σ], Step 4.b is not executed.

Proof. By Corollary 1, for all rounds β, β ∈ [α + Δ2 − 1, σ − 1] one of the two
conditions of the DigiClock values holds. Due to the “validity” property of BC,
after Δ rounds, the value entered into v is the same DigiClock value that was at
the nodes in G, Δ rounds ago. Therefore, after Δ rounds, the above conditions
hold on the value of v, vprev. Hence, for any round β, β ∈ [α+Δ2 +Δ−1, σ] one
of the conditions holds on v, vprev. Since for both of these conditions, Step 4.a
is executed, Step 4.b is never executed for such a round β. ��
Corollary 2. If the system is Calm(α, σ ≥ Δ2 + Δ), then for every round
β, β ∈ [α + Δ2 + Δ − 1, σ], it holds that all nodes in G agree on the value of
DigiClock and increase it by “1” at the end of each round.

Corollary 2 implies, in a sense, the convergence and closure properties of algo-
rithm Digital-SSByz-ClockSync.

Theorem 1. From an arbitrary state, once the system stays coherent and there
are n − f correct nodes that are non-faulty for 3Δ + 3 rounds, the
Digital-SSByz-ClockSyncensures converges to a synchronized_state. Moreover,
as long as there are at least n − f correct nodes at each round the closure prop-
erty also holds.

Proof. The conditions of the theorem implies that the system satisfies
Calm(α, σ ≥ Δ2 + Δ). Consider the system at the end of round Δ2 + Δ and
denote by Ḡ a set of n − f correct nodes implied by Calm(α, σ ≥ Δ2 + Δ).
Consider all the Δ instances of BC in their memory. Denote by BCi the instance
of BC initialized i (0 ≤ i ≤ Δ−1) rounds ago. By Lemma 5, Step 4.b is not going
to be executed (if the nodes in Ḡ will continue to be non-faulty). Therefore, at
the end of the current round,

Self-stabilizing Byzantine Digital Clock Synchronization 359

1. the set of inputs to each BCi contained at least �n
2 �+1 identical values from

non-faulty nodes, when it was initialized (denote that value Ii);
2. for every i, 0 ≤ i ≤ Δ − 1, either Ii = Ii+1 or Ii = 0;
3. I0 is the value that at least �n

2 �+ 1 non-faulty hold in their DigiClockat the
end of the current round.

The first property holds because otherwise, by the “solidarity” property of BC,
the agreement in that BC will be on ⊥ and Step 4.b will be executed. The second
property holds because otherwise Step 4.b will be executed. The third property
holds since this is the value they initialized the last BC with.

Observe, that each BCi will terminate in Δ− i rounds with a consensus agree-
ment on Ii, as long as there are n − f non-faulty nodes that were non-faulty
throughout its Δ rounds of execution. Thus, under such a condition, for that
to happen some nodes from Ḡ may fail and still the agreement will be reached.
Therefore, Corollary 2 holds for each node that becomes correct, i.e., was non-
faulty for Δ rounds, because it will compute the same values as all the already
correct nodes.

By a simple induction we can prove that the three properties above will hold
in any future round, as long as for each BC there are n−f non-faulty nodes that
executed it.

Thus, the three properties imply that the basic claim in Corollary 2 will con-
tinue to hold, which completes the proof of the convergence and closure proper-
ties of the system. ��
Note that if the system is stable and the actual number of Byzantine faults f ′

is less than f, then Theorem 1 implies that any non-faulty node that is not in
G (there are no more than f − f ′ such nodes) synchronizes with the DigiClock
value of nodes in G after at most Δ global beats from its last transient fault.

5 Complexity Analysis

The clock synchronization algorithm presented above converges in 3 · Δ + 3
rounds. That is, it converges in Ω(f) rounds (since Δ = 2 · f + 4 for our BC of
choice).

Once the system converges, and there are at least |G| = n − f correct nodes,
BC protocol will stop executing after 4 rounds for all nodes in G (due to the early
stopping feature of BC we use). During each round of BC, there are n2 messages
exchanged. Note that we execute Δ concurrent BC protocols; hence, over a period
of Δ rounds, Δ · 4 · n2 messages. Therefore, the amortized message complexity
per round is O(n2). Note that the early stopping of BC does not improve the
convergence rate. It only improves the amortized message complexity.

6 Discussion

A Scheme for “Rotating Consensuses”. Although the current work is pre-
sented as a digital clock synchronization algorithm, it actually surfaces a more

360 E.N. Hoch, D. Dolev, and A. Daliot

general scheme for “rotating” Byzantine consensus instances, which allows all
non-faulty nodes to have a global “snapshot” of the state that was several rounds
ago. This mechanism is self-stabilizing and tolerates the permanent presence of
Byzantine nodes. This mechanism ensures that all non-faulty nodes decide on
their next step at the next round, based on the same information.

Our usage of consensus provides agreement on a global “snapshot” of some
global state. By replacing each Byzantine consensus with n Byzantine agree-
ments, this mechanism can provide a global “snapshot” of the states of all the
nodes several rounds ago. That is, instead of agreeing on a single state for
the entire system, we would agree on the local state of each node. Every time
the agreement instances terminate the nodes may evaluate a predicate that can
determine whether the past global state was legal. The nodes may then decide
whether to reset the non-stabilizing algorithm accordingly.

The next subsection specifies some additional results which can be achieved
using this scheme.

Additional Results. The digital clock synchronization algorithm presented
here can be quickly transformed into a token circulation protocol in which the
token is held in turn by any node for any pre-determined number of rounds and
in a pre-determined order. The pre-determined variables are part of the required
incorruptible code. E.g. if the token should be passed every k beats, then node
pi, i = 1 + DigiClock

k mod n holds the token during rounds [k · (i − 1) + 1, k · i].
Similarly, it can also produce synchronized pulses which can then be used to
produce the self-stabilizing counterpart of general Byzantine protocols by using
the scheme in [3]. These pulses can be produced by setting overlap to be the
pulse cycle interval, and issuing a pulse each time DigiClock = 0.

Digital Clock vs. Clock Synchronization. In the described algorithm, the
non-faulty nodes agree on a common integer value, which is regularly incre-
mented by one. This integer value is considered “the synchronized (digital) clock
value”. Note that clock values estimating real-time or real-time rate can be
achieved in two ways. The first one, is using the presented algorithm to cre-
ate a new distributed pulse, with a large enough cycle, and using the algorithm
presented in [6] to synchronize the clocks. The second, is to adjust the local
clock of each node, according to the value of the common integer value, multi-
plied by the predetermined length of the beat interval.5 This way, at each beat
of the global beat system, the clocks of all the nodes are incremented at a rate
estimating real-time.

Future Work. We consider three main points to be interesting for future re-
search.

– Can the tolerance of the algorithm be improved to support f < n
3 ?

– Can the above mechanism be applied in a more general way, leading to a
general stabilizer of Byzantine tolerant algorithms without using the scheme
proposed in [3], which requires pulses that are sufficiently spaced apart?

5 This value need also be defined as part of the incorruptible code of the nodes.

Self-stabilizing Byzantine Digital Clock Synchronization 361

– What happens if the global beats are received at intervals that are less than
the message delay, i.e. common clock beats. Is there an easy solution to
achieve synchronized clocks? If yes, can it attain optimal precision like the
current solution? If no, is the only option then to synchronize the clocks
in a fashion similar to [2,5,6]? i.e. by executing an underlying distributed
pulse primitive with pulses that are far enough apart in order to be able
to terminate agreement in between. In that case, is there any advantage in
having a common source of the clock ticks or is it simply a replacement for
the local timers of the nodes?

References
1. A. Arora, S. Dolev, and M.G. Gouda, “Maintaining digital clocks in step”, Parallel

Processing Letters, 1:11-18, 1991.
2. A. Daliot and D. Dolev, “Self-stabilizing Byzantine Pulse Synchronization ”, Tech-

nical Report TR2005-84, Schools of Engineering and Computer Science, The
Hebrew University of Jerusalem, August 2005. A revised version appears in
http://arxiv.org/abs/cs.DC/0608092

3. A. Daliot and D. Dolev, “Self-stabilization of Byzantine Protocols”, Proc. of the
7th Symposium on Self-Stabilizing Systems (SSS’05 Barcelona), pp. 48-67, 2005.

4. A. Daliot and D. Dolev, “Self-stabilizing Byzantine Agreement”, Proc. of Twenty-
fifth ACM Symposium on Principles of Distributed Computing (PODC’06), Den-
ver, Colorado, July 2006.

5. A. Daliot, D. Dolev and H. Parnas, “Self-stabilizing Pulse Synchronization In-
spired by Biological Pacemaker Networks”, Proc. of the 6th Symposium on Self-
Stabilizing Systems (SSS’03 San-Francisco), pp. 32-48, 2003.

6. A. Daliot, D. Dolev and H. Parnas, “Linear Time Byzantine Self-Stabilizing
Clock Synchronization”, Proc. of 7th International Conference on Principles of
Distributed Systems (OPODIS’03 La Martinique, France), December, 2003. A
corrected version appears in http://arxiv.org/abs/cs.DC/0608096 .

7. D. Dolev, R. Reischuk, H. R. Strong, “‘Eventual’ Is Earlier than ‘Immediate’”,
In Proceedings, 23nd Annual Symposium on Foundations of Computer Science,
196-203, Nov. 1982

8. S. Dolev, “Possible and Impossible Self-Stabilizing Digital Clock Synchronization
in General Graphs”, Journal of Real-Time Systems, no. 12(1), pp. 95-107, 1997.

9. S. Dolev, and J. L. Welch, “Self-Stabilizing Clock Synchronization in the presence
of Byzantine faults”, Journal of the ACM, Vol. 51, Issue 5, pp. 780 - 799, 2004.

10. S. Dolev and J. L. Welch, “Wait-free clock synchronization”, Algorithmica,
18(4):486-511, 1997.

11. T. Herman, “Phase clocks for transient fault repair”, IEEE Transactions on Par-
allel and Distributed Systems, 11(10):1048-1057, 2000.

12. B.Liskov, “PracticalUseofSynchronizedClocks inDistributedSystems”,Proceedings
of 10th ACM Symposium on the Principles of Distributed Computing, 1991, pp. 1-9.

13. M. R. Malekpour, and R. Siminiceanu, “Comments on the “Byzantine Self-
Stabilizing Pulse Synchronization” Protocol: Counterexamples”, NASA/TM-2006-
213951, February 2006.

14. M. Papatriantafilou, P. Tsigas, “On Self-Stabilizing Wait-Free Clock Synchroniza-
tion”, Parallel Processing Letters, 7(3), pages 321-328, 1997.

15. S. Toueg, K. J. Perry, T. K. Srikanth, “Fast Distributed Agreement”, SIAM Journal
on Computing, 16(3):445-457, June 1987.

362 E.N. Hoch, D. Dolev, and A. Daliot

A BC Protocol

A typical synchronous Byzantine agreement / consensus protocol runs in a fixed
number of rounds (Δ) (for practical ones it is about 2f + 4) rounds (or phases).
If such a protocol will be invoked by at least n − f non-faulty nodes, without
having in their memory any residue of previous runs of the protocol, it will end
up producing a consensus value at all non-faulty nodes. Therefore, it is enough
to augment any such protocol with an initial action of resetting all variables used
in the protocol when it is invoked.

Our results require that the non-faulty nodes execute a consensus protocol. All
synchronous agreement protocols can be converted to consensus. The “Solidarity”
requirement poses no problem, since in consensus protocols all nodes exchange
values at the first round, and only a value that was sent by n− f nodes (at least
n − 2f of them are non-faulty) will be a candidate value at the next phase. It
requires setting the default value to ⊥ .

Specifically, the non-self-stabilizing protocols in [7,15] can be transformed to
the required BC protocol. Similarly the self stabilizing protocol in [4] can be
simplified to a synchronous protocol satisfying the required properties.

In the context of the current paper each node executes Δ copies of the mod-
ules, each copy is separated from the others, therefore, the messages of the non-
faulty nodes are separated for each copy. Faulty nodes may behave arbitrarily.
Notice that a node that just recovered from a transient fault invokes a clean
copy of BC which it executes correctly, while the other copies may still be af-
fected by the transient fault. Notice that after executing Line 5 of the digital
clock synchronization algorithm Digital-SSByz-ClockSync a non-faulty node can
distinguish between the Δ copies of BC.

Distributed Edge Coloration for Bipartite

Networks�

Shing-Tsaan Huang1 and Chi-Hung Tzeng2

1 National Central University, Chung-Li, Taiwan 32054
sthuang@csie.ncu.edu.tw

2 National Tsing Hua University, Hsin-Chu, Taiwan 30013
clark@cs.nthu.edu.tw

Abstract. This paper develops a distributed algorithm to color the
edges of a bipartite network in such a way that any two adjacent edges
receive distinct colors. The algorithm has the self-stabilizing property. It
works with an arbitrary initialization. Its execution model is assumed to
be the central daemon, and its time complexity is O(n2m) moves, where
n and m are the number of nodes and the number of edges, respectively.

Keywords: Distributed system, Edge coloring, Fault-tolerance, Self-
stabilization.

1 Introduction

This paper develops a distributed algorithm to color the edges of a bipartite
network in such a way that any two adjacent edges receive distinct colors. The
algorithm has the self-stabilizing property [1, 2]. That is, given any improper
edge coloring, the system will automatically adjust that coloring into a proper
one. Thus the system is fault-tolerant and can cope with transient faults.

Edge coloring is useful for many scheduling problems. For example, in the
resource-sharing problem there are a set of nodes and a set of resources. If a
node can access a certain resource, we then assign an edge between them and
thus construct a bipartite network. The next thing is to compute a proper edge
coloring for this network. After that, a node is allowed to access the resource
when the index of the time slot matches the color of the edge between them. In
this way, resource scheduling is done in advance and thus eliminating contention
for resources. Similar applications can be found in [3,4].

Edge-coloring bipartite graphs has been long investigated. In 1912, König
found that every bipartite graph is Δ-edge-colorable [5], where Δ is the maximum
degree of the graph. Such algorithms began to be widely developed in the late
1970s. In [6, 7], Gabow and Kariv used a divide-and-conquer technique called
euler-split, which splits the input graph G into two edge-disjoint graphs and
then colors them. In [8], Schrijver developed an O(Δm) time perfect matching

� This research was supported in part by the National Science Council of the Republic
of China under the Contract NSC94-2213-E008-001.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 363–377, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

364 S.-T. Huang and C.-H. Tzeng

algorithm and combined it with euler-split to yield an O(Δm) time edge coloring
algorithm, where m is the number of edges. Cole et al. later improved the result
of [8] by finding a perfect matching in O(m) time and achieved an O(m log Δ)
time algorithm [9].

Surprisingly, in the field of distributed computing, few edge-coloring algo-
rithms are known [4, 10, 11, 12, 13], because finding an optimal edge-coloring
(namely, using the least number of colors) usually involves global operations,
such as path augmentation. In addition, people sometimes prefer using more
colors in order to make the proposed algorithm faster and easier to comprehend
and implement [3, 11], or meet a more restricted fault-tolerant criteria, such as
Byzantine faults [12, 13]. In [11], Panconesi and Srinivasan proposed a random-
ized algorithm that uses roughly 1.58Δ + log n colors and runs in O(log n) time
In [10], they improved the result by using (1+ ε)Δ colors, where ε > 0 is a given
constant, and speeding up the time complexity to O(log log n) if Δ is sufficiently
large. In [4], Herman et. al utilized [10] to derive a TDMA time slot assignment
algorithm; they also use (1 + ε)Δ colors. In [12], Sakurai et. al aimed at not
only transient faults but also Byzantine faults and colored tree networks with
Δ+1 colors in three rounds. This result was later improved by [13], which colors
arbitrary anonymous networks with 2Δ − 1 colors.

In this paper, we propose the first self-stabilizing edge-coloring algorithm for
bipartite networks and get an optimal edge coloring by using only Δ colors. The
idea is to extend a partial edge coloring to a bigger one by the concept of alter-
native chain, an approach similar to path augmentation. We first demand each
node to assign distinct colors to adjacent edges, and thus each edge receives two
colors assigned by its endpoints. We say an edge is colored if the two colors are
the same, and uncolored, otherwise. It is easy to see that the colored edges of the
same color form a matching [14, 15, 16]. Our alternative chain mechanism guar-
antees that (1) the summation of the size of all the matchings is non-decreasing,
and (2) eventually the size of some matching increases. In this way, all the edges
are eventually colored properly.

The rest of the paper is organized as follows. Section 2 introduces the compu-
tation model and basic ideas. Section 3 presents the proposed algorithm. Sections
4 and 5 are the correctness proofs and time complexity analysis, respectively.
Finally, section 6 concludes this paper.

2 The Computation Model and Basic Ideas

A distributed system can be represented by a graph G = (V, E), where V is
the set of nodes and E is the set of edges. Two nodes are neighbors if they are
connected by an edge and can communicate with each other. In this paper, we
concentrate on edge coloration for bipartite graphs. Edge coloration for G is to
properly color the edges so that adjacent edges (i.e., edges incident to a common
node) are of different colors. For the edge-coloring problem, the system is said
to be in a legitimate state if and only if it has a proper edge coloring. Ideally, the
system should be always in legitimate states, but due to arbitrary initialization

Distributed Edge Coloration for Bipartite Networks 365

or unexpected transient faults, the system might be in an illegitimate state. To
cope with such situations, we propose a self-stabilizing edge-coloring algorithm
so that (1) the system converges to a legitimate state regardless of any initial
(possibly illegitimate) state in finite time, and (2) when it is in a legitimate state,
it remains so henceforth [1,2].

The proposed algorithm is described by a set of rules. Each rule has the
format: guard → action, where the guard is a boolean function of the state of
the node itself and the states of its neighbors and the action is a set of program
statements. When the guard of a rule for a node is true, we say that the node
is privileged and the rule is enabled. A privileged node can execute the action of
an enabled rule.

Several nodes may be privileged simultaneously. We assume that there is a
central daemon, which selects one privileged node to execute at a time [1]. When
the selected node finishes the action, the daemon randomly selects another priv-
ileged node to execute, and so on. If the selected node has many enabled rules,
it non-deterministically picks one to execute. We also assume that the central
daemon is fair in the sense that a privileged node eventually has the chance to
be selected, and an enabled rule eventually has the chance to be executed.

The proposed algorithm needs to deal with the symmetry problem. In order
to break the symmetry, each node is assumed to have a unique ID with the
range [1..n], where n is the number of nodes. In this paper, we assume that all
the nodes know the value of n.

Let Δ be the maximum degree of G. As already known in references [5] and
[17], Δ colors are sufficient to properly color the edges. For the rest of the paper,
the colors are numbered as 0, 1, 2 . . . , and Δ− 1. In this paper, we assume that
all the nodes know the value of Δ.

The color of an edge (x, y) is decided by nodes x and y. Let C(y).x be the color
assigned by node x and C(x).y be the color assigned by node y. We say that edge
(x, y) is colored if C(y).x = C(x).y And Is Uncolored,Otherwise. That is, a colored
edge has a consistent color and an uncolored edge has two colors on the two ends.

Let us deal with the simplest case first: there is only one edge being uncol-
ored while all other edges are properly colored. As shown in Fig. 1, there is an
alternative chain identified by the two colors of the uncolored edge. It is not
hard to see that a cyclic alternative chain with one uncolored edge in it must be
of odd size. However, for a bipartite network, every cycle must be of even size.
Therefore, for bipartite networks, the existence of a cyclic alternative chain with
one uncolored edge in it is impossible, and the alternative chain containing only
one uncolored edge must be a linear one, as in Fig. 1. For the rest of the paper,
we may simply use the term “chain” instead of “alternative chain”.

According to the above discussion, we can have a simple algorithm, which
considers only one uncolored edge with all others being properly colored. The
idea is to shift the uncolored edge in a constant direction until it reaches an end
of the chain. And then, it can be properly colored. The algorithm is as follows.

Each node x maintains two variables for each edge (x, y):

C(y).x: the color for edge (x, y) decided by node x with range [0..Δ − 1];

366 S.-T. Huang and C.-H. Tzeng

1
2

21

1
2 2

1

12

1

1

Fig. 1. An alternative chain with an uncolored edge

T (y).x: indicating the shifting direction on the chain with range [0, 1, 2]. The
operations on this variable are assumed under module 3.

The rules for each node x:

S1: C(y).x �= C(x).y ∧ (T (y).x = T (x).y) → T (y).x = T (x).y + 1;

S2: C(y).x �= C(x).y ∧ (T (x).y = T (y).x + 1) ∧ (∃z: C(z).x = C(x).y =
C(x).z) → Switch(C(z).x, C(y).x); T (z).x = T (x).z + 1;

S3: C(y).x �= C(x).y ∧ ¬(∃z : C(z).x = C(x).y) → C(y).x = C(x).y;

Rule S1 determines that the shifting direction is from node x to node y.
Rule S2 shifts the uncolored edge from edge (y, x) to edge (x, z). Repeating the
shifting, the uncolored edge will eventually reach the end of the chain, and then
can be properly colored via rule S3.

However, there may be many chains in the network and they may interfere
each other. Therefore, the problem is how to handle multiple uncolored edges,
or, how to concurrently shift multiple uncolored edges so that eventually all
uncolored edges can be properly colored.

3 The Algorithm

In concurrently shifting multiple uncolored edges, we shall face the problem
that shifting an uncolored edge in a chain in a constant direction may not reach
an end of the chain. This is because we may have a cyclic chain with even
number of uncolored edges in the cycle. We may also face the problem of different
chains interfering one another. We give an example in Fig. 2. In the illustration,
subfigure (a) is a partial edge coloring and subfigures (b), (c) and (d) are the
chains of color pair (0, 1), (0, 2) and (1, 2) respectively. It is easy to see that
the cyclic chain of color pair (0, 1) contains even number of uncolored edges,
which may be shifted in the same direction and in the same speed. Moreover,
that chain may interfere the acyclic chain of color pair (1, 2) because they both
contain a common edge of color 1.

To solve the interference problem, we use a locking mechanism with priorities
assigned to different chains. And, to solve the multiple uncolored edges in a cyclic
chain, we let the node with the maximum ID in the cycle be a turn-around point
so that the shifting of each uncolored edge in the cycle changes the direction at
the turn-around point, and in this way, two uncolored edges have the chance to
meet each other to become colored ones.

Distributed Edge Coloration for Bipartite Networks 367

0

1

2

0

0
0

0

0

1

1
1

1

2

1
2

2

(a)

2

1

1

2

1
2

(d)

2

0

0

0

2

2

(c)

0

1

0

0
0

0

1

1
1

1

(b)

Fig. 2. An example of multiple chains

When an uncolored edge shifts over an edge, we lock the edge and mark
it with its color pair, denoted as LockPair. LockPairs have priorities. We define
LockPair(C1, C2) ≥ LockPair(C3, C4) iff (min(C1, C2), max(C1, C2)) ≤ (min(C3,
C4), max(C3, C4)) in lexicographic order. That is, when we want to compare
the priorities for two LockPairs, we first sort the color pair for each of them
and then compare the two sorted pairs in lexicographic order. For example,
LockPair(2, 5) = LockPair(5, 2); LockPair(2, 5) > LockPair(6, 2). Moreover, we
define any LockPair ≥ nil. When two chains interfere each other, we allow the
higher-priority chain destroy a lock but not the other way around.

Finding the node with the maximum ID in a cyclic chain is not an easy task.
Each shifting uncolored edge can memorize the maximum ID that it has en-
countered. However, due to arbitrary initialization, the maximum ID, which the
shifting uncolored edge memorized, might not exist in the cycle. If this happens
on each shifting uncolored edges, then they may continuously shift in the same
direction. Here our solution is to use a counter to avoid shifting without an end.

The counter is reset to zero in two cases: (1) when the counter reaches its
upper bound, which is defined to be n, or (2) the shifted uncolored edge vis-
its a node with ID greater than the maximum ID that the shifting uncolored
edge memorized.

The uncolored edge also turns around its shifting direction when the counter
is reset. By this way, an uncolored edge may turn around its shifting direction
several times before it reaches the node with the maximum ID in the cycle, just
like a swing pendulum with increasing amplitude.

To sum up, node x maintains the following variables for each neighbor y:

C(y).x: the color assigned by node x on edge (x, y), [0..Δ − 1].

L(y).x: LockPair, the alternative pattern ([0..Δ − 1], [0..Δ − 1]) or nil if
unlocked.

T (y).x: the trace of the shifting direction, [0, 1, 2], 2 → 1 → 0 → 2. All the
operations on this variable are assumed under module 3. The arrow, such as
2 → 1, stands for the shifting direction for an edge (x, y). More precisely, if
C(y).x = C(x).y +1 holds, it implies that the latest uncolored edge is shifted in
the direction from x to y along a chain. On the other hand, if C(y).x = C(x).y
holds, it implies that no uncolored edge has been shifted over the edge (x, y).

K(y).x: the counter, [0..n], where n is the number of nodes.

M(y).x: the maximum node ID memorized by a shifting uncolored edge, [1..n].

368 S.-T. Huang and C.-H. Tzeng

In addition, we define two functions ID(x) and FreeColor(x). ID(x) returns
the ID of node x. FreeColor(x) returns a free color not appearing in C(y).x for
all neighbors y of x, or returns ∅, otherwise. According to the above discussion, we
can write down our edge-coloring algorithm, listed below. A node x is privileged
if one of the rules R0,..., R6 is evaluated to be true for an edge (x, y). For the
sake of simplicity, we assume that R0 has a higher priority than the other rules,
whereas R1,. . . ,R6 have the same priority. In the rest of this paper, when we say
that a node x executes a rule with respect to an edge (x, y), we mean that node
x executes that rule to change the variables maintained on the edge (x, y) (and
the variables on another edge (x, z), for rules R2 and R5).

R0: ∃z : C(y).x = C(z).x → C(y).x = FreeColor(x);
R1: C(y).x �= C(x).y ∧ (∀z : C(z).x �= C(x).y) → C(y).x = C(x).y;
R2: C(y).x �= C(x).y ∧ (∃ z: C(z).x = C(x).y ∧ C(z).x �= C(x).z)

→ Switch(C(z).x, C(y).x);
R3: C(y).x �= C(x).y ∧ (∃z: C(z).x = C(x).y = C(x).z) ∧ (T (y).x = T (x).y ∨

(T (y).x = T (x).y + 1 ∧ L(y).x �= LockPair(C(y).x, C(x).y)))
→ T (y).x = T (x).y + 1; L(y).x = LockPair(C(y).x, C(x).y); K(y).x = 0;
M(y).x = ID(x);
/*Initialize for shifting the uncolored edge in the chain.*/

R4: C(y).x �= C(x).y ∧ T (x).y = T (y).x+1 ∧ L(x).y = LockPair(C(y).x, C(x).y)
∧ (K(x).y = n ∨ M(x).y ≤ ID(x)) ∧ (∃z: C(z).x = C(x).y = C(x).z)
→ T (y).x = T (x).y + 1; L(y).x = LockPair(C(y).x, C(x).y); K(y).x = 0;
M(y).x = ID(x);
/*Initialize for a turn-around.*/

R5: C(y).x �= C(x).y∧T (y).x = T (x).y−1 ∧ L(x).y = LockPair(C(y).x, C(x).y)
∧¬(K(x).y = n ∨ M(x).y ≤ ID(x))
∧(∃z : C(z).x = C(x).y = C(x).z ∧ L(x).y ≥ L(z).x)
→ Switch(C(z).x, C(y).x); T (z).x = T (x).z + 1; L(y).x = L(x).y; L(z).x =
L(y).x; K(y).x = K(x).y + 1; K(z).x = K(y).x; M(y).x = M(x).y;
M(z).x = M(x).y;

R6: C(y).x = C(x).y ∧ L(y).x �= nil ∧
(

(T (y).x = T (x).y + 1 ∧ (L(y).x �= L(x).y ∨ K(y).x �= K(x).y − 1)) ∨
(T (y).x = T (x).y − 1 ∧

¬(∃z : L(y).x = L(z).x = L(x).y ∧ T (z).x = T (x).z + 1 ∧
K(y).x = K(z).x = K(x).y + 1)) ∨

(T (y).x = T (x).y)
)
→ L(y).x = nil;

Due to arbitrary initialization, a node may assign the same color to two neigh-
boring edges. Rule R0 is used to correct such a situation.

When an uncolored edge reaches the end of a chain, it can be properly colored.
Rule R1 is used in that case.

Distributed Edge Coloration for Bipartite Networks 369

When two uncolored edges (x, y) and (x, z) with C(z).x = C(x).y meet, at
least edge (x, y) can be properly colored. Rule R2 is used in that case.

Rule R3 is used to initialize the shifting direction and the LockPair mark of
a chain; it also initializes the counter K and memorizes the maximum node ID.

As mentioned before, there are two cases, viz. (K(x).y = n∨M(x).y ≤ ID(x)),
when the counter is reset to zero and the shifting direction changes at node x.
Rule R4 initializes such a turning around.

Two chains may interfere each other, so Rule R5 is used to allow the higher-
priority chain to destroy a lock by other chain but not the other way around.

A lock is legal only if it can be traced to an uncolored edge with a consistent
trace direction, counter values, and LockPair. Rule R6 is used to unlock an
illegal lock.

4 The Correctness Proof

The edge coloration stabilizes when all edges are properly colored and no lock is
on any edge, i.e., P1: (∀ node x : ∀ edges (x, y), (x, z) : y �= z : C(y).x �= C(z).x)
∧ P2: (∀ edge (x, y) : C(y).x = C(x).y) ∧ P3: (∀ edge (x, y) : L(y).x = nil).
When it stabilizes, no node is privileged. That is, the algorithm is silent when it
stabilizes.

It is obvious that by rule R0, P1: (∀ node x: ∀ edges (x, y), (x, z) : y �= z :
C(y).x �= C(z).x) will eventually be true. In the following we assume P1 is
already true.

To prove the convergence of P2: (∀ edge (x, y) : C(y).x = C(x).y), we define
a bounded function F =

∑
0≤i<j<Δ |Ei,j |, where Ei,j = {(x, y) ∈ E|(C(y).x =

i ∧ C(x).y = j) ∨ (C(y).x = j ∧ C(x).y = i)} is the set of uncolored edges with
color i on one end and color j on the other end. Intuitively, the value of F is
equal to the number of uncolored edges.

Lemma 1. After a node x executes R1 or R2, the bounded function F decreases
by at least one.

Proof. To prove this lemma, we check how R1 and R2 effect the bounded
function F .

First, consider R1. Since rule R1 makes edge (x, y) become colored without
generating any uncolored edge, F obviously decreases by one.

Now, consider R2. Since C(y).x �= C(x).y and C(x).y = C(z).x �= C(x).z
hold before the node x executes R2, which switches C(z).x and C(y).x, edge
(x, y) becomes a colored edge and edge (x, z) may become colored or remain
uncolored. That is, F decreases at least by one. ��
Lemma 2. After a node x executes R3, R4, R5 and R6, the bounded function
F remains the same.

Proof. Because rules R3, R4 and R6 do not alter any edge’s color, F does not
change by the moves of those rules. On the other hand, because rule R5 simply

370 S.-T. Huang and C.-H. Tzeng

transforms an uncolored edge (x, y) into a colored edge and another colored edge
(x, z) into an uncolored edge, the number of uncolored edges is unchanged, or,
F does not change. ��
Now, we are going to prove that certain nodes eventually execute rules R1 or
R2. And then by lemmas 1 and 2, eventually F decreases to 0. To do so, we
first show that illegal locks will be cleared. We then show that the node with
the maximum ID in a chain becomes a turn-around point. Finally, we show that
an uncolored edge eventually reaches the end of an acyclic chain so that the tail
node of the chain can execute R1, and that two uncolored edges in a cyclic chain
eventually coincide to a common node so that the common node can execute R2.

Lemma 3. Let (x, y) be a colored edge such that L(y).x �= nil. If all nodes
with the same lock of value L(y).x cannot execute R6, then there exists another
uncolored edge (u, v) with L(v).u = L(y).x.

Proof. To prove this lemma, we show that we can find a path x=x0,x1, x2, ..., x�

such that L(x�−1).x� = L(y).x, K(x�−1).x� = K(y).x + �, and edge (x�−1, x�) is
uncolored, where � > 0. And it suffices to prove this lemma by letting u = x�

and v = x�−1.
First, let us focus on node x. Since L(y).x �= nil and node x cannot execute

R6, the condition T (y).x �= T (x).y must hold. Because the possible values for
the variable T is 0, 1, or 2, we have two cases to consider.

Case (1) T (y).x = T (x).y + 1: Let x1 = y. Since node x cannot execute R6
to set L(x1).x = nil, we have L(x1).x = L(x).x1. By the statement of this
lemma, node x1 cannot execute R6 to set L(x).x1 = nil either. Combining the
condition T (x).x1 = T (x1).x−1, we can infer that node x1 has a neighbor x2 such
that L(x).x1 = L(x2).x1, T (x2).x1 = T (x1).x2 + 1 and K(x).x1 = K(x2).x1 =
K(x1).x+1. If the edge (x1, x2) is uncolored, the path x, x1, x2 is what we want
to find. Otherwise we repeat the above argument to infer that node x2 has a
neighbor x3 such that L(x2).x1 = L(x1).x2 = L(x3).x2, T (x3).x2 = T (x2).x3 +1
and K(x1).x2 = K(x3).x2 = K(x2).x1 + 1. Again, we check whether the edge
(x2, x3) is colored and decide whether to extend the path to another node x4.
The path finding thus proceeds in this way; each lock on the path is of the same
value L(y).x and the counter K(xi−1).xi is one more than K(xi−2).xi−1 for each
xi on the path. The path finding must terminate; namely, we eventually find an
uncolored edge (x�−1, x�) with L(x�−1).x� = L(y).x. Otherwise we trace to an
edge on which the counter variable K exceeds the value n, which is impossible
because its range is [0..n].

Case (2) T (y).x = T (x).y−1: We skip the proof because this case is very similar
to case (1), except for x1 �= y.

According to the above discussion, this lemma holds. ��
According to our design, a legal lock should be able to trace to an uncolored edge
of the same color pair by the tracing procedure shown in the proof of lemma 3.
More precisely, given a lock L(y).x = LockPair(i, j), we can find a path from

Distributed Edge Coloration for Bipartite Networks 371

1
1

12

1
2 2

2

21

1

1

x

y

u v

Fig. 3. Given a legal lock L(y).x = LockPair(1, 2), we can trace to an uncolored edge
(u, v) ∈ E1,2 and all the locks on the tracing path are of the same value L(y).x

edge (x, y) to an uncolored edge (u, v) ∈ Ei,j such that all the locks from L(y).x
to L(v).u are of the same value, as the example shown in Fig. 3. If the uncolored
edge (u, v) is colored by rules R1 or R2, then the locks are cleared by rule R6
in the order from L(v).u to L(y).x, one after another. However, an arbitrary
initial state may lead to a similar, yet different case: Given a lock L(y).x =
LockPair(i, j), we trace to an uncolored edge (u, v) /∈ Ei,j . For such a case, node
u can execute R3, R4, or R5 to set L(v).u a value different from LockPair(i, j).
By Lemma 3, it also implies that all the locks on the tracing path are cleared
by rule R6, one after another. Therefore, we have the following lemma:

Lemma 4. Let (i, j) be a color pair such that (1) i = j or (2) i �= j and
|Ei,j | = 0. For an edge (x, y) with L(y).x = LockPair(i, j), node x eventually
can execute R6 to set L(y).x = nil.

Now, we begin to prove that rules R1 and R2 are eventually executed if there
are uncolored edges.

Lemma 5. (Deadlock-free). Let (i, j) be the least color pair in lexicographic or-
der such that i �= j and |Ei,j | > 0 and let (x, y) be an edge such that (x, y) ∈ Ei,j.
If no node can execute R1 and R2, node x (or node y) can execute R3, R4, or R5.

Proof. We prove this lemma by contradiction. Because node x cannot execute
R1 nor R2, it has a neighbor z1 such that C(z1).x = C(x).y = C(x).z1. Simi-
larly, node y has a neighbor z2 such that C(z2).y = C(y).x = C(y).z2. For the
sake of simplicity, we assume that no higher-priority lock than LockPair(i, j)
exists, according to lemma 4; that implies that LockPair(i, j) ≥ L(z1).x and
LockPair(i, j) ≥ L(z2).y.

Now we begin to deduce the contradiction. Suppose that neither node x nor
node y can execute R3, R4 or R5. According to the relation between T (y).x and
T (x).y, we have three cases to consider:

Case (1) T (y).x = T (x).y: It is easy to check that node x or node y can execute
R3.

Case (2) T (y).x = T (x).y − 1 : Since node y cannot execute R3 and the condi-
tion C(z2).y = C(y).x = C(y).z2) is true, we have L(x).y = LockPair(C(y).x,
C(x).y) = LockPair(i, j) ≥ L(z1).x. Now, focus on node x. Since it cannot exe-
cute R4 and the condition C(y).x �= C(x).y ∧ T (y).x = T (x).y − 1 ∧ L(x).y =
LockPair(C(y).x, C(x).y) ∧ (z1 : C(z1).x = C(x).y = C(x).z1) is true, we can

372 S.-T. Huang and C.-H. Tzeng

infer that the condition (K(x).y = n∨M(x).y ≤ ID(x)) is false, or equivalently,
¬(K(x).y = n∨M(x).y ≤ ID(x)) is true. By these conditions, it is easy to check
that node x can execute R5.

Case (3) T (y).x = T (x).y +1: In this case, node y can execute R5; the proof can
be easily got by switching the labels x with y and z1 with z2 in Case (2).

No matter which case is, either node x or node y can execute a rule, so
contradiction occurs. ��

Lemma 6. Let (i, j) be the least color pair in lexicographic order such that i �= j
and |Ei,j | > 0. After a node y executes R5 to shift an uncolored edge to (x, y),
node x can execute one of R1, R2, R4 and R5.

Proof. We prove this lemma by contradiction. Similar to lemma 5, we assume
that LockPair(i, j) has the highest priority in the system.

Suppose that node x cannot execute any of R1, R2, R4 and R5 after node
y executes R5. According to our design, after node y executes R5, we have
T (x).y = T (y).x + 1 and L(x).y = LockPair(i, j). Since node x cannot execute
R1 nor R2, it has a neighbor z such that C(z).x = C(x).y = C(x).z. In addition,
we have L(x).y ≥ L(z).x because L(x).y = LockPair(i, j) has the highest priority.
By these conditions and by the hypothesis that node x cannot execute R4 with
respect to edge (x, y), we can infer that (K(x).y = n ∨ M(x).y ≤ ID(x)) is
false. With these conditions, it is easy to see that node x can execute R5. It is
a contradiction. ��

As we mentioned in section 3, our idea of getting a proper edge coloring is to
shift uncolored edges, so that the uncolored edges in an acyclic chain will reach
the end of the chain and those in a cyclic chain will eventually coincide to a
common node. The shifting direction is decided by rules R3 and R4, whereas
the shifting is by rule R5. Recall that when a node x executes R3 or R4 with
respect to an edge (x, y), its state is M(y).x = ID(x) ∧ T (y).x = T (x).y+1 and
the node x is said to be a turn-around point in the chain containing the edge
(x, y). Also note that rules R3 and R4 do not change an edge’s color while rule
R5 not only shifts an uncolored edge but also copies the variable M , so the ID
of the turn-around point is propagated each time an uncolored edge is shifted.

After the shifting direction is initialized, the uncolored edges are shifted in
that direction. It is because each time a node y shifts an uncolored edge to an
edge (x, y), it also sets T (x).y = T (y).x + 1, meaning that node y specifies the
shifting direction for edge (x, y) in advance.

However, whether node x accepts that shifting direction depends on the con-
dition (K(x).y = n ∨ M(x).y ≤ ID(x)). If this condition is false, then node x
shifts the uncolored edge in that direction. But if this condition is true, node
x executes R4, setting M(y).x = ID(x) and T (y).x = T (x).y + 1 to become a
turn-around point. As a consequence, node y executes R5 to shift the uncolored
edge (x, y) in the opposite direction.

That’s how an uncolored edge is shifted in a chain: the uncolored edge’s shift-
ing direction is changed whenever the counter variable K reaches the upper

Distributed Edge Coloration for Bipartite Networks 373

bound n or node ID is greater than the memorized maximum ID. Informally
speaking, it is shifted in a chain like a swing pendulum, with increasing ampli-
tude. If this uncolored edge lies in an acyclic chain, it eventually reaches the end
of the chain and becomes colored because the tail node of the chain can execute
R1. On the other hand, if it lies in a cyclic chain, it and another uncolored edge
eventually coincide to a common node because they eventually have different
shifting directions. When this happens, the common node can execute R2 to
color these two edges.

Lemma 7. Let (i, j) be the least color pair in lexicographic order such that i �=
j and |Ei,j | > 0. For a chain of color pair (i, j) containing uncolored edges,
eventually its turn-around point is the node with the maximum ID in the chain.

Proof. To prove this lemma, we use extremity to show that the node with the
maximum ID in the chain eventually executes R3 or R4 to become a turn-
around point. For the sake of simplicity, we assume that no node can execute R1
or R2. In addition, by lemma 4, we assume that LockPair(i, j) has the highest
priority in the system. By these two assumptions, for any uncolored edge (x, y)
in the chain, node x has a neighbor z such that C(z).x = C(x).y = C(x).z ∧
LockPair(i, j) ≥ L(z).x; another endpoint node y has a similar property.

Now we begin to show that the node with the maximum ID becomes a turn-
around point. According to the existence of a turn-around point or not, we have
two cases to consider:

Case (1) there is no node yet regarded as the turn-around point: Because the
chain is of the least color pair, by lemma 5, either one of the endpoints of an
uncolored edge executes R3 or R4 to become a turn-around point, or the un-
colored edge keeps being shifted in the chain. In the former case, some node
becomes a turn-around point and we can then consider Case (2), so we focus
on the later case. Because rule R5 not only shifts an uncolored edge but also
increments counter variables K, eventually the counter variable K(x).y for cer-
tain edge (x, y) in the chain reaches the upper bound n, after node y shifts an
uncolored edge to (y, x). Then it is easy to check that node x can execute R4 to
become a turn-around point, and we can consider Case (2).

Case (2) the turn-around point is not the node with the maximum ID: Let
u be that turn-around point and let (u, v) be an edge in the chain such that
T (v).u = T (u).v + 1. Moreover, let x denote the node closest to node u in the
chain along the direction u → v such that ID(x) > ID(u). We show that node
x will replace node u as a turn-around point.

Because node u is a turn-around point and T (v).u = T (u).v+1, an uncolored
edge is shifted along edges (u, v) → ... → (z, y) → (y, x) in the chain. After node
x’s neighbor y executes R5 to shift an uncolored edge from (z, y) to (y, x), we
have C(x).y �= C(y).x, T (x).y = T (y).x+1, L(x).y = LockPair(C(y).x, C(x).y),
and M(x).y = ID(u). By these conditions and by ID(x) > ID(u), node x can
execute R4 to become a turn-around point and to set T (y).x = T (x).y + 1 and
K(y).x = 0. As a result, the uncolored edge (y, x) is shifted back: (y, x) →
(z, y) → ... → (u, v).

374 S.-T. Huang and C.-H. Tzeng

Now, consider the moment after node v shifts the uncolored edge back to edge
(u, v). According to lemma 6, node u can execute one of the rules R1, R2, R4
and R5. However, we have already assumed that no node can execute R1 and
R2. Moreover, it is impossible for node u to execute R4 because K(u).v, whose
value is the distance between nodes v and x in the chain, is less than n and
because M(u).v = ID(x) > ID(u). Thus the only rule for node u to execute
is R5. And after node u executes R5, we have M(v).u �= ID(u), meaning that
node u no longer serves as a turn-around point.

Since Case (1) implies that eventually there is a turn-around point and since
Case (2) implies that eventually the node with the maximum ID becomes a turn-
around point, this lemma holds. ��
Lemma 8. Eventually the bounded function F decreases to 0.

Proof. Consider a chain of color pair (i, j) containing uncolored edges, where
(i, j) is the least color pair in lexicographic order such that i �= j and |Ei,j | > 0.
To prove this lemma, we show that certain node in such a chain eventually
executes R1 or R2 so that F decreases, according to lemma 1. By lemma 7, we
assume that the turn-around point is the node with the maximum ID in this
chain.

Since a chain has two forms, one is acyclic and the other is cyclic, we have
two cases to consider:

Case (1) The chain is acyclic: According to our design, an uncolored edge is
shifted in the direction from the turn-around point to the end of the chain.
When it does, the tail node of the chain can execute R1 to color the uncolored
edge properly.

Case (2) The chain is cyclic: It is easy to see that the number of uncolored edges
in the chain is even because the network is bipartite. For those uncolored edges,
they eventually have different directions due to the existence of the turn-around
point. In other words, two uncolored edges eventually coincide to a common
node. When this happens, that common node can execute R2 to color the two
uncolored edges.

For either case, certain node in the chain can execute R1 or R2. Since lemmas
1 and 2 imply that F is a monotonically decreasing function (if the predicate P1
holds) and since lemma 1 implies that F does decrease when a node executes
R1 or R2, the bounded function F eventually decreases to 0 by repeating the
argument that certain node eventually executes R1 or R2. Thus this lemma
holds. ��
Theorem 1. Eventually the system stabilizes.

Proof. To prove this theorem, we show that after the predicate P1 holds, even-
tually P2 and P3 hold.

Given any initial state, it is easy to see that P1 eventually holds by rule R0. Af-
ter P1 holds, according to lemma 8, the bounded function F =

∑
0≤i<j<Δ |Ei,j |

eventually decreases to 0. It implies P2, since there is no uncolored edge.

Distributed Edge Coloration for Bipartite Networks 375

Now, we show that P3 eventually holds after P2 holds. Let (x, y) be an edge
such that L(y).x �= nil. According to the contrapositive part of lemma 3, certain
lock of the value L(y).x can be set to nil if there is no uncolored edge (u, v) with
L(v).u = L(y).x. Since P2 implies that no uncolored edge exists, certain such a
lock, and eventually all such locks, will be set to nil. By that time, the predicate
P3 holds. ��

5 Time Complexity Analysis

In this section, we show that the time complexity is O(n2m) moves, where a
move corresponds to an execution of a rule. It is easy to see that a node executes
R0 with respect to an edge at most once, so there are O(m) moves of R0. It
is also easy to see that, when there is a proper edge coloring, a node executes
R6 with respect to an edge at most once, and thus there are only O(m) moves
after getting a proper coloring. Therefore, the time for getting a proper coloring
dominates the time complexity, since its trivial lower bound is Ω(m) moves.
And our goal is to show that getting a proper edge coloring takes O(n2m) moves
under the assumption that the predicate P1 holds.

First of all, we explain that the time complexity can be got without considering
the interference between the chains. Note that two chains interference with each
other only when they share (at least) a colored edge, as shown in Fig. 2. Therefore,
let’s consider two chains that have uncolored edges and can interfere with each
other. Let (C0, C1) and (C1, C2) be the color pairs identify these two chains, re-
spectively, and assume that e is their common edge, which is of color C1. Without
loss of generality, we further assume that an uncolored edge of color pair (C0, C1) is
shifted to e. Focus on the moment after that shift. It is easy to see that e ∈ EC0,C1

so e is no longer a part of the chain of color pair (C1, C2). As a consequence, the
chain of color pair (C1, C2) is divided into two new chains. If the new chain contains
uncolored edges, then they are shifted as usual. On the other hand, if it contains
no uncolored edge, then all the locks of the value LockPair(C1, C2) in this chain
are cleared. Note that only the moves of lock-clearance are caused by the interfer-
ence between the two chains. They are not redaundant moves, because normally
they will be executed after coloring the uncolored edges in the original chain; i.e.,
they are just executed ahead of schedule.

Lemma 9. For a chain of color pair (i, j) containing uncolored edges, it takes at
most O(n2) moves to make the node with the maximum ID in the chain become
a turn-around point, where (i, j), i �= j, is the least color pair in lexicographic
order such that |Ei,j | > 0.

Proof. Similarly to lemma 7, we prove this lemma by showing that (1) it takes
O(n) moves for certain node to become a turn-around point and then (2) it takes
O(n2) moves for the node with the maximum ID to become a turn-around point.

Consider a chain with no node yet regarded as the turn-around point. We use
extremity to show that certain node can become a turn-around point in O(n)
moves. Since a node can become a turn-around point if it executes R3 or R4, the

376 S.-T. Huang and C.-H. Tzeng

worst case is that no node executes these two rules, meaning that an uncolored
edge is continuously shifted in the chain. Because each shifting, through rule
R5, increments the counter variables K, within n moves of R5 certain counter
variable K(x).y is equal to n when node y shifts an uncolored edge to an edge
(y, x). After that, node x cannot execute R5 to shift the uncolored edge (y, x)
because K(x).y = n holds; instead, it executes R4 and thus becomes a turn-
around point.

Now, we show that the node with the maximum ID in the chain becomes a
turn-around point in O(n2) moves. This can be easily seen. As mentioned in
lemma 7, an uncolored edge is shifted in a chain like a swing pendulum with
increasing amplitude. It takes at most n swings for the uncolored edge to reach
the node with the greater ID in the chain. And for each swing, it takes at most
n moves. Therefore, the node with the maximum ID in the chain becomes a
turn-around point in O(n2) moves.

According to the above discussion, the node with the maximum ID becomes
a turn-around point in O(n2) moves, so this lemma holds. ��

Lemma 10. For a chain of color pair (i, j) containing uncolored edges, some
node in the chain executes R1 or R2 in O(n2) moves, where (i, j), i �= j, is the
least color pair in lexicographic order such that |Ei,j | > 0.

Proof. By lemma 9, it takes O(n2) moves for the node with the maximum ID in
the chain to become a turn-around point. Then, in another O(n) moves of R5,
some node executes R1 if the chain is acyclic, or some node executes R2 if the
chain is cyclic, as shown in lemma 8. This suffices to prove this lemma. ��

Lemma 11. The bounded function F decreases to 0 in O(n2m) moves.

Proof. It is a direct consequence of lemmas 1, 2 and 10, since the value of F is
bounded by m. ��

Theorem 2. The system stabilizes in O(n2m) moves.

Proof. It is a direct consequence of lemma 11, based on the reason mentioned
at the beginning of this section. ��

6 Concluding Remarks

We have presented a distributed algorithm to color the edges of bipartite net-
works. The algorithm can be started with an arbitrary initialization of the vari-
ables because the algorithm has the self-stabilizing property.

There are three main ingredients in the algorithm. In a serial algorithm, one
can easily maintain the color of an edge no matter it is colored or not. However,
in a distributed environment, the color of an edge must be agreed by the two
nodes connected by the edge. The way we assign the color on either side of
an edge and decide the color of the edge is new. Locking mechanism is also

Distributed Edge Coloration for Bipartite Networks 377

an important ingredient of the algorithm. Finally, the way to make two shifted
uncolored edges in a cyclic chain meet is another important new idea.

The last idea has potential applications in self-stabilizing systems. Tokens are
widely used in self-stabilizing systems. Multiple tokens circulation in a cycle is
usually considered incorrect. If the cycle is embedded in a network and no one
knows the maximum node ID in the cycle, then the turning around mechanism
proposed in the algorithm can be adopted to maintain only one token circulating
in the cycle.

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17 (1974) 643–644

2. Dolev, S.: Self-stabilization. MIT Press (2000)
3. Durand, D., Jain, R., Tseytlin, D.: Parallel I/O scheduling using randomized,

distributed edge coloring algorithms. Journal of parallel and distributed computing
63 (2003) 611–618

4. Herman, T., Pirwani, I., Pemmaraju, S.: Oriented edge colorings and link schedul-
ing in sensor networks. In: International Conference on communication Software
and Middleware. (2006) 1–6

5. König, D.: Über graphen und ihre anwendung auf determinententheorie und men-
genlehre. Math. Ann 77 (1916) 453–465

6. Gabow, H.N., Kariv, O.: Algorithms for edge coloring bipartite graphs. In: Confer-
ence of the 10th annual ACM symposium on theory of computing. (1978) 184–192

7. Gabow, H.N., Kariv, O.: Algorithms for edge coloring bipartite graphs and multi-
graphs. SIAM Journal on Computing 11(1) (1982) 117–129

8. Schrijver, A.: Bipartite edge coloring in O(Δm) time. SIAM Journal on Computing
28 (1999) 841–846

9. Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in O(E log D)
time. Combinatorica 21(1) (2001) 5–12

10. Grable, D., Panconesi, A.: Nearly optimal distributed edge-coloring in O(log log n)
rounds. RSA 10(3) (1997) 385–405

11. Panconesi, A., Srinivasan, A.: Fast randomized algorithms for distributed edge
coloring. SIAM Journal on Computing. 26(2) (1992) 350–368

12. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In: OPODIS. (2004) 283–298

13. Masuzawa, T., Tixeuil, S.: A self-stabilizing link coloring algorithm resilient to
unbounded byzantine faults in arbitrary networks. Technical report, Laboratoire
de Recherche en Informatique (2005)

14. Chattopadhyay, S., Higham, L., Seyffarth, K.: Dynamic and self-stabilizing dis-
tributed matching. In: ACM symposium on principles of distributed computing.
(2002) 290–297

15. Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Infor-
mation processing letters 24 (1992) 77–81

16. Karaata, M.H., Saleh, K.A.: A distributed self-stabilizing algorithm for finding
maximum matching. Computer systems science and engineering 3 (2000) 175–180

17. Rizzi, R.: Konig’s edge coloring theorem without augmenting paths. Journal of
graph theory 29 (1998) 87

A Dependable Intrusion Detection Architecture

Based on Agreement Services�

Michel Hurfin1, Jean-Pierre Le Narzul2, Frédéric Majorczyk3, Ludovic Mé3,
Ayda Saidane3, Eric Totel3, and Frédéric Tronel4

1 INRIA Rennes / IRISA – Campus de Beaulieu, 35042 Rennes cedex – France
Michel.Hurfin@irisa.fr

2 GET ENST Bretagne – Campus de Rennes, 35512 Cesson-Sévigné – France
Jean-Pierre.LeNarzul@enst-bretagne.fr

3 Supélec, équipe SSIR EA 4039 – Campus de Rennes,
35511 Cesson-Sévigné – France
Surname.Name@supelec.fr

4 University of Rennes / IRISA – Campus de Beaulieu– 35042 Rennes cedex – France
Frederic.Tronel@irisa.fr

Abstract. In this paper, we show that the use of diversified COTS
servers allows to detect intrusions corresponding to unknown attacks. We
present an architecture that ensures both confidentiality and integrity at
the COTS server level and we extend it to enhance availability. Repli-
cation techniques implemented on top of agreement services are used to
avoid any single point of failure. On the one hand we assume that COTS
servers are complex softwares that contain some vulnerabilities and thus
may exhibit arbitrary behaviors. While on the other hand other basic
components of the proposed architecture are simple enough to be ex-
haustively verified. That’s why we assume that they can only suffer from
crash failures. The whole system is assumed to be asynchronous and
furthermore messages can be lost. In the particular case of Web servers
connected to databases, we identify the properties that have to be main-
tained and the alarms that have to be raised. We describe in details how
the different replicated levels interact together and, for each level, we pre-
cise the reasons that have led us to use a particular agreement service.
Performance evaluations are conducted to measure the quality of service
of the Intrusion Detection System (quantity of false positives and lack of
false negatives) and the additional cost induced by the mechanisms used
to ensure the availability of this secure architecture.

Keywords: Intrusion detection, dependability, diversity, COTS, agree-
ment protocols.

1 Introduction

In the context of computer security, the strategies carried out to ensure the con-
fidentiality and the integrity of a system often have a major drawback: they do
� This work is supported by the ACI-SI DADDi Project funded by the French ministry

of research.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 378–394, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Dependable Intrusion Detection Architecture 379

not include some specific mechanisms to ensure its availability in the event of
accidental or intentional faults. Hence, the system is sensible to crashes/attacks
as it can be interrupted temporarily or permanently when such failures
occur.

Due to their high complexity, COTS servers have bugs and vulnerabilities
that can be exploited by a remote attacker. Within the DADDi project (De-
pendable Anomaly Detection with Diagnosis), we have designed a first archi-
tecture [1] which provides an IDS (Intrusion Detection System) component in
charge of detecting intrusions in an information system by comparing the out-
puts delivered by several diverse servers. In this approach, the idea is to take
advantage of the existing software and hardware diversity in a way quite sim-
ilar to the ”n-version programming” strategy. As the COTS servers have been
designed and developed independently, they do not exhibit the same vulnerabili-
ties. Moreover, if the n different softwares (that provide the same functionalities)
are neither running on the same operating system, nor on the same hardware,
one can expect that a request carrying a malicious payload will exploit a vulner-
ability exhibited by at most one COTS server and will have no impact on the
others.

In case of an attack, the aforementioned solution guarantees confidentiality.
A confidential information (according to the COTS confidentiality policy) can
appear in at most one of the generated responses. Hence, it can be filtered by
simple comparison of the generated responses. An attack against integrity may
also be detected if the response returned by a server carries enough information
to identify all the modifications of the internal server state induced by the exe-
cution of the corresponding request. Moreover, this IDS has a nice property: it
can detect new attacks whose signatures are not already known.

However, this basic architecture ([1]) exhibits a single point of failure. The
availability of the IDS is not ensured. In order to enhance the dependabil-
ity of this component, we propose now a solution in which classical mecha-
nisms used in the domain of safety (such as replication and agreement ser-
vices) are combined to the new techniques used in the context of intrusion
detection that have been described above (diversity-based approaches). Com-
paratively to [1], the main contribution of this paper is to provide the design
and evaluation of an architecture where both availability and security issues are
addressed.

The paper is structured as follows. In Section 2 we briefly describe how to
benefit from the software and hardware diversity to detect intrusions. The basic
architecture, described in Section 2.1, allows to tolerate attacks against confiden-
tiality and some attacks against integrity. As this architecture does not ensure
availability, we identify the extensions required to ensure that the provided ser-
vices operate without noticeable interruption. Replication of the IDS is presented
in Section 2.2. The choice of both the replication scheme (active or passive) and
the level of replication n depends on the failure model that has been adopted.
We outline two particular failure models (the byzantine failure model and the
crash failure model) that are well suited in the context of our study. We argue

380 M. Hurfin et al.

in favor of the following motivated choice: while byzantine failures will be con-
sidered within the set of diversified COTS servers, a crash failure model will
be adopted within the group of replicated IDS. In Section 3, we discuss some
related works. Section 4 is dedicated to the description of the Eden [2,3] group
communication toolkit. In this section, we outline the fact that the key compo-
nent of Eden (namely, a consensus protocol) matches all the assumptions we
made regarding the failure models. Section 5 addresses a more specific problem,
namely, how to ensure simultaneously availability, confidentiality and integrity
in the particular case of web servers connected to databases. We complete the
proposed architecture by identifying four types of replicated entities. Then we
identify the agreement primitives that have to be used and describe how these
primitives are called at different stages of the execution of an HTTP request.
In Section 6, we provide some experimental results. Our aim on the one hand
is to evaluate the quality of service of the proposed detection mechanism and,
on the other hand, the cost induced by the use of replication mechanisms im-
plemented on top of agreement services such as an atomic broadcast service.
Finally, Section 7 concludes this paper.

2 Overview of a Generic Intrusion Detection Architecture

2.1 A Basic Architecture to Ensure Confidentiality

The architecture proposed in [1], shown on Figure 1, is clearly inspired by the
classical architecture of the ”n-version programming” technique used to mask
software design faults. Here, our goal is to provide a way to detect intrusions
that could affect a COTS server. The basic architecture is composed of three
different components: a proxy, an IDS, and a set of servers.

CO TS
Service 1

CO TS server 1

CO TS
Service 2

CO TS server 2

CO TS
Service 3

CO TS server 3

F
ll

a
w

eri

Service Proxy

Service IDS

Fig. 1. Basic architecture

The role of the proxy is to handle the client’s requests. It forwards the request
received from a client to the COTS servers and later forwards the response

A Dependable Intrusion Detection Architecture 381

received from the IDS to this client. It ensures that the COTS servers receive
the same sequence of requests and thus evolve consistently. It is the sole part
of the architecture directly accessible by the clients. The IDS is in charge of
comparing the responses returned by the COTS servers. To select the response
that has to be sent back to the client, it uses a majority voting algorithm. If
it detects some differences among the responses, it raises an alarm. A set of
COTS servers constitutes the core of the architecture: they provide the services
requested by the client. All these servers offer the same services but they are
diverse in terms of application software, operating system and hardware. This
helps reducing the probability of a common-mode failure as it is also the case
in the ”n-version programming” technique. In the context of our studies, the
vulnerabilities of the COTS servers are supposed to be different. If we assume
that a malicious payload contained in a request cannot take advantage of two
different vulnerabilities, then an intrusion may occur in only one COTS server
at a time. In this case, because the other COTS servers are not exhibiting the
same vulnerability, they are not affected by this attack and they all provide a
same response that is supposed to be different from the response provided by
the corrupted COTS server. A majority voting algorithm implemented within
the IDS allows to detect the intrusion and to tolerate it.

In the architecture shown on Fig. 1, we use three COTS servers. It allows to
tolerate one intrusion on one server without modifying the security properties of
the whole architecture. It provides also a way to identify the failed server with a
simple comparison algorithm: this would not have been possible on a two-versions
architecture without additional mechanisms (e.g., server diagnostic). Once an
intrusion has occurred, this architecture with three COTS servers cannot tolerate
another intrusion before the reconfiguration of the compromised server has been
completed. Of course it is possible to use more than three servers in order to
tolerate more intrusions before performing a reconfiguration. Let’s note that the
reconfiguration can be made periodically or as soon as an intrusion is detected.

This architecture was applied to the particular case of Web servers. In Sec-
tion 6, we provide some results that allow to measure the quality of service offered
by such an IDS mechanism. More experimental results can be found in [1].

2.2 Enhancing Availability of a Basic Architecture

The solution described in Section 2.1 relies on existing software diversity to
ensure confidentiality. Yet, as the proposed architecture is based on a single
proxy/IDS couple, failures that affect this couple cannot be masked. To enhance
availability, a classical solution consists in replicating the proxy/IDS couple. All
the replicas of the proxy/IDS couple form a group whose composition may evolve
dynamically and is controlled by a group membership service [4]. New replicas
can be added by the administrator to enhance the resilience of the architecture.
Replicas can be withdrawn from the group due to an administrative decision or
because their crash has been detected.

Even if the code of the proxy/IDS couple is quite simple (in particular, it does
not analyze the content of the requests issued by clients), one cannot preclude

382 M. Hurfin et al.

that some replicas will behave maliciously. For example, due to a buffer overflow
attack, a replica of the proxy/IDS could deviate from its specification. This
kind of faulty behavior is well-known and called byzantine behavior [5] in the
literature. In that case, an active replication scheme of the proxy/IDS couple
has to be chosen to resist to such faults. Different solutions have been proposed
to provide group communication protocols and output voting protocols in the
presence of malicious faults [6,7]. All these solutions require an high replication
degree: at least n > 3f replicas, where f is the maximal number of faulty replicas,
have to be executed concurrently. As all the replicas execute the same code and
react to the same external solicitations, a single attack can affect all of them.
Hence, the assumption that at most f < n/3 replicas can be malicious is a
strong assumption that is difficult to guarantee. As long as the risk of malicious
behaviors is not totally eradicated, relying on the fact that attacks will just
succeed on a limited number of replicas is not a realistic assumption. For this very
reason, we believe that byzantine faults have to be addressed at the server level
(thanks to diversity) but not necessarily at the proxy/IDS level. Using high-level
programming languages with safe memory management combined with formal
verification techniques could allow to reduce the risk of a malicious behavior to a
very low probability. In that case, less expensive solutions can be adopted. This
is the position we adopt in this paper. We assume that a replica of the proxy/IDS
couple behaves always according to its specification but may stop prematurely
at any time (fail/stop failure model). In this failure model, the set of processes is
partitionned into two subsets: the correct processes and the faulty processes. A
faulty process is a process that will eventually fail. Conversely, a correct process
is a process that never fails. This failure model is consistent with the assumption
that an intrusion occurs in only one COTS server at a time. Indeed, [8] shows
that there are very few common mode failures in a pool of COTS database
servers and a study of the vulnerabilities of IIS and Apache [9] exhibits the same
property. As COTS servers are not affected by the same vulnerabilities, our
architecture allows to detect intrusions and to tolerate them. This is true for
any kind of intrusion and we do not have to make any assumption about what
the attacker can or cannot do.

Nevertheless, if an attack has no impact on the behavior of the replicas, it may
(1) arbitrarily slow down processes and (2) affect the communication network.
This precisely characterizes a purely asynchronous system: there is no bound nei-
ther on relative speed of processes nor on transfer delays of messages. However,
we assume that this model is augmented with unreliable failure detectors [10]: it
allows to solve agreement problems. We also consider fair-lossy communication
links: if a message is sent infinitely often to a correct receiver, then it is received
infinitely often by that receiver.

3 Related Work

Delta-4 [11] was an European ESPRIT project ended in 1992. It focuses on build-
ing dependable secure and robust replicated systems that can tolerate both value

A Dependable Intrusion Detection Architecture 383

faults and crashes. The Delta-4 architecture provides fault-tolerance by replica-
tion in an open distributed processing environment (where clients are external
to the server group). Both active and passive replication schemes [12] are imple-
mented using a group communication sub-system that is structured as a layered
architecture and built on top of an atomic multicast protocol [13]. Replication
services are used to implement mechanisms that aim at masking intrusions [14]:
replicas of a server collaborate to agree on the response that will be provided to
the client. Assuming that a majority of the replicas generates correct and iden-
tical responses, a valid response is provided to the client even when an intruder
has successfully corrupted some replicas. Similarly to the approach adopted in
this paper, the replicated security services offered in Delta-4 rely on agreement
services. However, assumptions regarding the environment are different. Delta-4
assumes a synchronous communication network.

The DIT (Dependable Intrusion Tolerance) architecture [15,16] was developed
in the context of the OASIS program (Organically Assured and Survivable Infor-
mation Systems) of the DARPA. The goal was to develop Internet servers able
to provide continuously a correct service despite the presence of attacks. The
DIT architecture is based on the principles of redundancy and diversification.
Redundancy is used to increase system availability and diversification is used
to increase independence between the redundant sub-systems from the attacker
point of view. The design was funded on the two following assumptions. Firstly,
intrusions can succeed only on a limited number of components at the same
time. Secondly, all non-faulty and non-compromised servers are deterministic
(they generate the same response to a given request). The DIT architecture is
composed of redundant tolerance proxies that mediate requests to a redundant
bank of application servers which implement the application-specific functional-
ities needed to fulfill the client requests. The architecture includes a diversified
set of detection mechanisms chosen for their complementarity. They propose the
use of an adaptive redundancy level that is defined according to the alert level in
the system in order to make an optimal compromise between security and per-
formance. The proposed architecture is quite similar to the one described in this
paper. Yet, we focus on asynchronous systems and we use in our performance
evaluation a library of agreement components that do not rely on any strong
timing assumptions.

In [17], researchers from the University of Texas at Austin present an architec-
ture for byzantine fault tolerant state machine replication. In this work, several
levels of replication are distinguished. Agreement services that tolerate byzan-
tine failures [6] are used to coordinate the activities of the replicas. The system
is supposed to be asynchronous and messages can be lost. Our work differs from
this one on two points. Firstly, we consider that some components follow a crash
failure model while others (the COTS servers in particular) can exhibit arbitrary
behavior. Secondly, we are also interested in evaluating the quality of service of
the proposed IDS: in practice, a difference between the responses generated by
some Web servers does not imply that an attack has really occurred (existence
of false positives).

384 M. Hurfin et al.

4 The Eden Group Communication Toolkit

In Section 2.2, we expressed the need for availability of the proxy/IDS couple.
To fullfill this requirement, replication is a classical solution. However, due to
the considered asynchronous model, it can be difficult to implement correctly.
To circumvent this difficulty, we have recourse to the commonly used group
communication paradigm. We use a group communication toolkit, called Eden,
which has been designed for the particular fail/stop failure model.

More precisely, Eden [3,2] is a library of agreement components used to im-
plement group communication services in an asynchronous distributed system
prone to fail/stop failures. As it will be stated later, group membership and
atomic broadcast are the two main services required in the proposed architec-
ture. In the Eden toolkit, these services are provided using a consensus build-
ing block [18]. The design of this key component took as a starting point the
Chandra-Toueg ♦S algorithm [10]. The protocol is based on the rotating coor-
dinator paradigm. A sequence of rounds is executed. Each round is managed by
a coordinator that tries to converge to the decision value. Thanks to a sliding
window mechanism [19], each process can be involved simultaneously in up to n
consecutive rounds (rather than in a single round as it is the case in most ♦S
protocols). As each round has a fixed duration, the proposed solution allows to
tolerate the lost of consensus messages without requiring a strong synchroniza-
tion between the different local clocks. A failure detector is used to withdraw
crashed processes from the group. To limit the occurrences of erroneous sus-
picion, long timeouts are used; this has no impact on the performance of the
consensus protocol that does not use any information provided by the failure
detector. Moreover, a process remains within the group as long as it is not
suspected by a majority of the group members. Again, the aim is to avoid a
useless and dangerous crumbling of the group when some communication links
become temporarily very slow. This conservative strategy is not risky as long as
a majority of the members of the group are still alive. When this assumption is
satisfied, crashes, messages losses (fair-lossy assumption) and messages delays do
not prevent the consensus protocol to satisfy its safety properties (this protocol
is indulgent).

5 Case Study: Enhancing Integrity for Web Servers

In Section 2, we have proposed and discussed an architecture for intrusion detec-
tion whose availability has been improved. This solution guarantees confidential-
ity of data managed by the COTS servers. Indeed, even in case of an attack that
would reveal confidential information, the COTS servers diversity ensures that
only a minority of servers got corrupted. Hence, the majority voting algorithm
implemented in the proxy/IDS would filter such information.

Although, as stated in the introduction, ensuring the integrity of these data
is not an intrinsic property of this solution. To address this problem, we need
additional assumptions about the particular COTS servers that are deployed.

A Dependable Intrusion Detection Architecture 385

Our choice is to focus on a particular case study, namely a Web server that
delivers dynamic content. This technology traditionally implements the storage
of this content in a database backend that receives read/write operations issued
by the Web server. This latter executes scripts written in an interpreted language
(such as PHP) that can query the database backend. These scripts are in charge
of translating the SQL replies into HTML/XML code.

An interesting property of this technology resides in the fact that the whole
internal state of the COTS servers is located in the database backend. Further-
more, any change to the internal state is carried out by the means of SQL queries.
We take advantage of this property in order to ensure integrity of the data. To
that purpose, we introduce a second set of proxies located between the Web
servers and the database whose goal is to compare the SQL queries submitted
by the diverse Web servers to the database. Indeed, unexpected SQL queries
issued by a corrupted Web server can threaten data integrity. Using a majority
voting algorithm to compare queries submitted to the database allows to detect
and mask any attempt to data integrity.

We have identified several prerequisites that must be satisfied in order to
improve the dependability of the system : (1) availability of the SQL backend
must be guaranteed (2) SQL queries that are transmitted to the SQL backend
must not have been generated by a Web server under attack. To ensure these two
properties, we have chosen to replicate the SQL backend. In order to simplify
the architecture, we use the same replication degree for the SQL servers as for
the Web servers. Note that we do not assume that the different SQL servers
are functionally diversified, even if with small changes, our architecture would
be able to take advantage of such a diversification to detect and mask attacks
targeted at the SQL backend itself.

In this section we first briefly describe the proposed architecture and introduce
a model that allows us to formally describe the expected properties we want to
guarantee and also the kind of attacks we detect. Secondly, we describe the path
followed by an HTTP request submitted by a client up to the point it reaches
the Web servers. Finally, we depict the path followed by SQL queries induced
by a given HTTP request.

5.1 Models and Notations

The proposed solution relies on four distinct groups of entities, called WSPi,
WSi, DBPi and DBi, whose respective roles are explained later. For sake of
simplicity we assume that the replication degree is the same at each level. This
replication degree is denoted n. Assuming that 1 ≤ i ≤ n, the following notations
are used to identified these different entities: (1) WSPi denotes the ith proxy
that receives HTTP requests; (2) WSi denotes the ith diversified Web server.
By design, each WSi is equipped with a wrapper in charge of interacting with
the WSP s (its role will be detailed in Section 5.2); (3) DBPi denotes the ith

proxy that acts as an intermediary between the Web servers and their associated
databases; (4) DBi denotes the ith database. By design, DBi interacts only with
its corresponding DBPi proxy and conversely.

386 M. Hurfin et al.

HTTP requests addressed by external clients are ordered by the group of
WSP s. The unique sequence that is obtained is called the history H of HTTP
requests. By definition, the request that appears at position x is denoted hx and
thus H = h1.h2. · · ·hx · · ·.

The response generated by a server WSi, in reply to the request hx is denoted
rx,i. If WSi generates no response (consequently to a crash failure or an attack),
rx,i is assumed to be equal to ⊥.

During the execution of an HTTP request hx by a server WSi, a sequence
of SQL requests denoted Sx,i is generated. Of course this sequence is empty
when the execution of hx does not require access to the database. By defini-
tion, length(x, i) is equal to the number of SQL requests generated during the
execution of hx by WSi. The sequence Sx,i is equal to s1

x,i.s
2
x,i. · · · .slength(x,i)

x,i .
We now define the concept of legality for a SQL query. A query s is legal if

(1) it has been produced by a majority of Web servers and (2) its rank is the
same in all the sequences of queries produced by these servers. More formally:

Definition 1. A SQL query s is said to be legal if and only if ∃x such that
hx ∈ H, ∃I, a subset of indexes in [1, n] such that | I |> n/2, ∃u such that
∀i ∈ I, u ≤ length(x, i) and s = su

x,i ∈ Sx,i.

By definition, a legal SQL query s does not depend on the Web servers that
produced it (at least a majority of them). Hence, it is uniquely determined by
(1) the index x of its associated HTTP request and (2) its rank into the sequence
of SQL queries induced by hx. So, we will note s = su

x,−. By definition, when no
attack occurs all the SQL requests are legal even in a system prone to failure.

The proposed architecture implements an IDS that guarantees the confiden-
tiality and the integrity of the data managed by the Web servers. When an
attack against confidentiality or integrity is detected, the IDS raises an alarm.
This happens when one of the three scenarios occurs:

– ∃hx, ∃i, ∃j such that (rx,i �= ⊥) ∧ (rx,j �= ⊥) ∧ (rx,i �= rx,j)
An attack has occurred since two servers have provided different responses

to the same HTTP request.
– ∃hx, ∃i such that (rx,i = ⊥)

An attack or a failure has occurred since a server does not reply.
– ∃hx, ∃i, ∃u such that u ≤ length(x, i) and su

x,i ∈ Sx,i such that su
x,i is not

legal.
An illegal SQL query is detected which is the signature of an attack against

integrity.

In the rest of this section, we describe in a more detailed manner the path
of a request within the system. Each request follows a path composed of two
parts. The first part of its journey within the system is mandatory and deals
with its processing by the Web servers (we call this part the HTTP path). The
second part is optional and is related to the potential SQL requests induced by
the HTTP request (we call this part the SQL path).

A Dependable Intrusion Detection Architecture 387

5.2 HTTP Path of a Request

Leader Election. Each request to be submitted to the system is only ad-
dressed to the leader of the group of Web proxies WSP s. This leader is elected
by a group leader election that is part of the underlying GCS (Group Commu-
nication System) called Eden and described in Section 4. The leader election
algorithm has the following property: it maintains the previous leader in its role
if it does belong to the new view in order to minimize the perturbation of exter-
nal clients. Otherwise a new leader is deterministically chosen among the set of
proxies WSP that compose the new view. Note that due to the inherent asyn-
chrony of the system, the situation where at a given time multiple proxies may
have installed discordant views is still possible. However, all agreement proto-
cols implemented by the GCS (membership protocol, atomic broadcast, etc.) are
based on a consensus protocol. This protocol requires that all decisions to be
taken, must have been approved by a majority of processes. Hence only the last
view to be installed, and its associated leader can be promoted by a majority
of proxies at a given time. This property precludes old leader (when it exists)
to process any request. To sum up, at any given time, only one leader is sup-
ported by at least a majority of proxies and its role is to process requests sent
by external clients. Hence all the requests must be addressed to the leader. This
problem can be tackled by several mechanisms. We have chosen to use a vir-
tual IP address which is automatically associated to the current leader. When a
new view is installed, its leader will start an ARP cache update protocol whose
goal is to associated its MAC address with the virtual IP address. Once this
protocol has completed, layer 2 network equipment (such as Ethernet switch)
will automatically deliver to the leader, all messages addressed to the virtual
IP.

We now describe the fate of a request during the part of the path associated
to its processing by Web servers. We first describe what happens when no failure
occurs. Then we will detail the different possible scenarios in case of a leader
failure.

When the Leader Does Not Fail. When the leader receives a request hx,
it broadcasts it within the group of proxies WSP using an atomic broadcast
service. Hence, a unique order among concurrent requests is established by this
service, so all the Web server replicas WSi will process these requests in the
same order. When no attack occurs the global state of the replicas is maintained
consistent. We cannot ensure this property when the system suffers from an at-
tack, since local states of a minority of Web servers and/or associated databases
can be corrupted and diverged. But as explained in section 2.1, we are able to
detect attacks, hence we can mask them.

Once a request hx has been delivered by atomic broadcast service to the
leader, this latter broadcasts it to the set of Web servers WS. In fact, what really
happens is more convoluted than this simple schema, but we will detail this later
when we will discuss failure scenarios. For now, we can assume that a regular
HTTP request is opened with each of the Web server. This request makes its

388 M. Hurfin et al.

own progress within each copy WSi. The leader collects sufficiently many replies
rx,i, so that at least a majority of them are equal. It is by assumption ensured to
succeed since we assume that there is only a minority of failures. By comparing
these replies, intrusion alarms can be raised as explained in section 5.1. A unique
reply is transmitted back to the client. Once the connection with the client is
closed, the leader informs others replicas that the last atomically delivered HTTP
request has been processed, and that it can be discarded from their log. To sum
up, the set of proxies WSP is building a totally ordered sequence of HTTP
requests that can be submitted to the set of servers. By detecting inconsistency
in the set of replies rx,i associated with a given HTTP request hx, they can
detect and mask attacks targeted at the Web servers.

In Case of a Proxy Failure. During the processing of a request, failures can
occur. This can happen at several different places in time and space. Conse-
quences on the fate of a request are quite different depending on the compo-
nent that fails and when it occurs. First of all, a failure that concerns a Web
proxy that is not a leader is invisible to the outside world since it only trig-
gers the installation of a new view. As explained earlier, we guarantee that the
leader remains the same as long as possible such as to minimize the disturbance
of external clients. Hence now, we only focus on failures that may affect the
leader. Note that any failure of the leader that occurs during the processing of
a client request will affect the related TCP connection in two possible ways:
a timeout or a connection reset. Anyway, the end user will be notified by its
browser that an error has occurred. We assume that he will perform a reload
operation. However, we want to guarantee that this operation is safe. To that
purpose, we assume that an operation which modifies the database is uniquely
identified by the means of its request content (either through its URL that in-
cludes an unique identifier, or by cookies included in the body of the request).
This will help proxies to detect requests which have been partially processed
(i.e that have suffered of broken connections during a leader failure) by the use
of a replay detection cache that logs requests until it is safe to garbage collect
them.

WSP3

WSP2

WSP1 (leader)

WS1

WS2

WS3

1 2 3 4 5

Fig. 2. Critical points in the processing of an HTTP request by the leader

A Dependable Intrusion Detection Architecture 389

If we analyze the leader behavior, several critical points where failures can
occur can be identified : (1) before the leader has initiated the atomic broadcast,
(2) during or after the call to the atomic broadcast service but before the delivery
operation has occurred, (3) after the delivery operation, (4) during the broadcast
of the request to the Web servers WS, (5) after this broadcast. This is depicted
by Figure 2.

Case (1) is the most benign since the leader has not started processing the
request. Hence, the client will eventually be notified of a TCP timeout error.
It can safely reissue its request. In the meantime, a new leader will have been
elected, and be willing to process it.

Case (2). The atomicity property of the operation guarantees that all or none
of the proxies will deliver it. If they all deliver it, a future replay of the request
can be detected and the client can be informed of the returned value. Otherwise,
it is naturally safe for the client to replay its request.

Case (3) is similar to the previous case, but the processing of the request
has goes further, and we are sure that the request will be delivered to all other
proxies. Hence the detection replay cache will have to play its role if the leader
fails after this point.

Case (4) is handled by a dedicated mechanism. Recall that we previously
stated that once the leader has delivered the query by atomic broadcast, it will
initiate a broadcast of the HTTP request to all the Web servers. We stated
that it was doing so, by opening as many TCP connections as the number of
WS servers. This strategy, if employed, would lead to problematic situations in
case of a leader failure during this broadcast phase (broken TCP connections
with a Web server). To solve this issue we have introduced a set of dedicated
wrappers located on Web servers machines (one wrapper per Web server). Each
wrapper has in charge the receipt of a HTTP request, and its transmission to
the Web server. It supports broken connection that could arise from a failed
leader, and it also avoids duplicate transmission of a HTTP request that can
happened after the election of a new leader. Indeed, when a new leader is elected,
it starts its activity by replaying the latest HTTP requests which have not been
acknowledged by the previous leader. To sum up the role of a wrapper is to mask
the potential failure of a proxy leader.

Case (5) is handled similarly to case (4). The new elected leader will interact
with wrappers by replaying not acknowledged HTTP requests.

5.3 SQL Path of a Request

In this section, we describe the way we have chosen to deal with SQL queries
that can be generated by HTTP requests. Each SQL server DBi receives its
SQL queries from a dedicated proxy PDBi. This set of proxies forms a repli-
cated group PDB for the underlying group communication system. Contrarily
to the first replicated group of proxies, we have chosen here an active replication
schema. The goal of this set of proxies is to build a unique order among the set
of queries that are submitted to the SQL backend.

390 M. Hurfin et al.

To that purpose, we need to give the SQL proxies the ability (1) to link a SQL
query sv

x,i ∈ Sx,i with its associated HTTP request hx (2) to be able to retrieve
the index v of the query sv

x,i in the sequence Sx,i. This can only be achieved at
the Web server level. To achieve this goal, we have written a dedicated library as
a replacement for the SQL library loaded by the script language interpret (PHP)
used by the Web servers. This library can retrieve the index x of the associated
HTTP request being processed (by the use of information hidden in a cookie) and
it can also enumerate the SQL queries that belongs to the same HTTP request.
However, as we will see later, this piece of information is not sufficient to ensure
the detection of certain attacks. That’s why the total number of SQL queries
associated with the previous SQL query hx−1 is also logged by our library. This
number denoted length(x − 1, i) is equal to | Sx−1,i |.

The couple (sv
x,i, length(x − 1, i)) is broadcast by the library to the group

DBP of SQL proxies for each SQL query to be executed. Each proxy DBPi is
in charge of building a totally ordered sequence of SQL queries. This sequence
must preserve some important properties:

1. It contains only legal SQL queries.
2. Legal SQL queries are totally ordered using the total order relation < defined

by: s1 = su
x, < s2 = sv

y, if and only if x < y ∨ (x = y ∧ u < v).

Ensuring the first property. To ensure the first property each database proxy
submits only SQL queries that have been received from a majority of Web servers
and whose contents are identical. By definition, this is a non-blocking operation
for legal queries. A non legal query su

x,j associated with an HTTP request hx

will be detected by a proxy server DBPi according to the following rules : (i)
its content differs from the contents of the majority of queries received. It can
be discarded and an alarm can be raised. (ii) The query is surnumerous. The
detection of such a case might be delayed until the arrival of the next HTTP
request that generates SQL queries. To simplify the discussion1, assume it is
hx+1. Since hx+1 generates at least one SQL query, this one will be sent to
DBPi along with a counter length(x,). This counter length(x,) will be strictly
smaller than the rank u associated with the surnumerous query su

x,j. An alarm
can be raised. (iii) A query can be missing. This case can happen on a Web server
that is under attack. This may be detected either (a) by the first set of proxies
WSP that should detect differences in the replies of the corresponding HTTP
request (due to the fact that the missing SQL reply may induce a different reply
to the HTTP request from the corrupted server) or (b) by the inconsistency of
the counters associated with the next HTTP request that generates SQL queries
(similarly to rule (ii)).

Ensuring the second property. The second property which could be qualified of
a FIFO order is implemented by the use of counters carried by the SQL queries.
It ensures that the state of each database is maintained consistent, since they
will execute the same set of queries in the same order.
1 An HTTP request can generate no SQL query. In that case, SQL proxies will not be

able to detect that the last SQL query was surnumerous.

A Dependable Intrusion Detection Architecture 391

Dealing with the response to an SQL query. The reply value of the database to
a SQL query is simply transmitted by a SQL proxy to its associated Web server.
However, note that a database proxy can already have submitted a SQL query
to its associated database even before the Web server has initiated the corre-
sponding SQL query. This desynchronization can be due to either the asynchrony
assumption, or to a successful attack on the Web server. This problem is solved
by logging the results of SQL queries that have been anticipatory sent to the
database. It is sufficient to replay the results when the Web server will issue the
corresponding requests.

6 Experimental Results

The performance of the proposed solution can be analyzed according to two
metrics. First we analyze the quality of service of the IDS itself. Then we consider
the cost induced by the replication. The proposed solution has an impact on the
time required to execute a single request.

6.1 Quality of Service Offered by the IDS

The basic architecture presented in Section 2 was applied to Web servers and
the results were presented in [1].

In summary, in the test carried out, the architecture was composed of three
servers: an Apache server running on MacOS-X, a thttpd server running on
Linux, and an IIS 5.0 running on Windows. They contained a copy of the Su-
pelec institute Web site. They were configured so as to generate a minimum
of differences in their respective outputs. The three servers were fed with the
requests logged during one month (it represents more than 800.000 requests).

During the tests, we observed the alerts emitted by the IDS. Only 0.016% of
the HTTP requests generated an alert. In one month, the administrator must
thus analyze 150 alerts, that means about 5 alerts a day. We observed that only
four first alert types were false positives (22% of the alerts). These results show
that the IDS generates very few false alarms (false positives), and did not miss
any intrusion (no false negatives). This is quite a good result, and it demonstrates
the quality of the approach proposed.

6.2 Atomic Broadcast Performances

Let us now consider the mechanisms used to increase the availability of the
system. As each HTTP request involves the use of the atomic broadcast ser-
vice, its cost must be carefully evaluated. Moreover, since HTTP requests are
sequentially executed, the throughput of the service can be severely degraded.
This drawback is not specific to our solution [17]. In Figures 3 and 4, we aim
at identifying some of the parameters that may impact the cost of the atomic
broadcast service. Figure 3 gives the mean request delivering duration for a fixed
arrival frequency of external requests (one request every 400ms). We sample this
measure for a varying number of processes and different consensus round dura-
tions. Figure 3 clearly shows that the number of processes in the group (as long

392 M. Hurfin et al.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 2 3 4 5 6 7

M
ea

n
R

eq
ue

st
 D

el
iv

er
in

g
D

ur
at

io
n

(m
s)

Number of Processes

Consensus Round Timeout = 60ms
Consensus Round Timeout = 100ms
Consensus Round Timeout = 500ms

Consensus Round Timeout = 1000ms

Fig. 3. Mean request delivering duration (for fixed arrival frequency of requests =
400ms

as it remains in a reasonable range) only slightly influences the overall perfor-
mance of the atomic broadcast service. In this experiment, the arrival frequency
of external requests is rather low (one request every 400ms). In this case, the
consensus round duration is of limited influence. This parameter is of major in-
fluence only when a failure occurs. Indeed, the rotating coordinator paradigm
induces a penalty each time a round is coordinated by the failed process.

 10

 100

 2 3 4 5 6 7

M
ea

n
R

eq
ue

st
 D

el
iv

er
in

g
D

ur
at

io
n

(m
s)

Number of Processes

Interval of Requests = 60ms
Interval of Requests = 80ms

Interval of Requests = 100ms
Interval of Requests = 120ms
Interval of Requests = 200ms

Fig. 4. Mean request delivering duration for different requests interval (consensus
round timeout = 1000ms)

In Figure 4, we consider a fixed value for the duration of the round (1000 ms)
and we sample the mean delivering duration for various arrival frequencies of
the external requests and a varying number of processes. Figure 4 shows that
when the arrival frequency of requests reaches a critical value, the mean request
delivering duration increases significantly. However, this happens only when the
number of processes is larger than 6. Recall that when there are 5 processes in the
group, we can tolerate up to 2 failed processes (that is a reasonable assumption
for the considered application).

A Dependable Intrusion Detection Architecture 393

7 Conclusion

In this paper, we have presented a dependable intrusion detection architecture.
We started from a basic architecture that implements an intrusion detection
system (IDS) based on the functional diversification of a set of COTS servers.
This architecture is characterized by the fact that (1) it can detect previously
unknown attacks (2) it ensures the confidentiality policy enforced by the set of
non corrupted COTS servers. However, this architecture suffers from a single
point of failure. Indeed, if the proxy/IDS fails, the whole system is down. To
improve the availability of this architecture, we have employed a traditional so-
lution from the dependability domain: the replication of the proxy/IDS. Thanks
to this technique, we can tolerate up to a minority of failures among the set of
replicated proxy/IDS. We have argued in favor of a fail-stop failure model in the
case of the proxy/IDS, instead of the arbitrary failure model.

An inherent drawback of this architecture is that it is unable to ensure in-
tegrity of data manipulated by the COTS servers. This problem cannot be fixed
by a generic solution without any assumption about the application to be de-
ployed. Hence, we have focused on the particular case of a Web server for dynamic
content (stored into a database backend). We have proposed a solution that in
addition to ensuring confidentiality of data, also guarantees integrity of data
stored in the database backend with respect to the integrity policy enforced by
the Web servers. Replication of the different services in this architecture is made
possible through the use of a group communication system called Eden that
offers basic services such as atomic broadcast and membership.

Finally, we have conducted a series of tests to evaluate the relevance of our
solution along two axes. Firstly, we have shown that diversification of COTS
servers can improve the detection of attacks with respect to false positives. Sec-
ondly we have shown that the cost of the atomic broadcast service is reasonable
enough to be used in real applications where dependability is a key requirement.

References

1. Totel, E., Majorczyk, F., Mé, L.: COTS diversity based intrusion detection and
application to web servers. In: Proceedings of 8th International Symposium on
Recent Advances in Intrusion Detection (RAID ’2005), Seattle, WA (2005) 43–62

2. Tronel, F.: Applications des problèmes d’accord à la tolérance aux défaillances
dans les systèmes distribués asynchrones. PhD thesis, Université de Rennes (2003)

3. Greve, F.G.P.: Réponses efficaces au besoin d’accord dans un groupe. PhD thesis,
Université de Rennes I (2002)

4. Powell, D.: Group communication. Communications of the ACM 39(4) (1996)
50–53

5. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM
Transactions on Programming Languages Systems 4(3) (1982) 382–401

6. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI: Sympo-
sium on Operating Systems Design and Implementation, USENIX Association,
Co-sponsored by IEEE TCOS and ACM SIGOPS (1999)

394 M. Hurfin et al.

7. Reiter, M.K.: The Rampart toolkit for building high-integrity services. In: Selected
Papers from the International Workshop on Theory and Practice in Distributed
Systems, London, UK, Springer-Verlag (1995) 99–110

8. Gashi, I., Popov, P., Stankovic, V., Strigini, L.: On Designing Dependable Services
with Diverse Off-The-Shelf SQL Servers. Springer (2004)

9. Wang, R., Wang, F., Byrd, G.: Design and implementation of acceptance mon-
itor for building scalable intrusion tolerant system. In: Proceedings of the 10th
International Conference on Computer Communications and Networks. (2001)

10. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
Journal of ACM 43(2) (1996) 225–267

11. Powell, D.: Delta-4: A Generic Architecture for Dependable Distributed Comput-
ing. Springer (1992)

12. Speirs, N., Barrett, P.: Using passive replicates in delta-4 to provide dependable
distributed computing. In: Proceedings of the Nineteenth International Symposium
on Fault-Tolerant Computing, IEEE (1989)

13. Powell, D., Bonn, G., Seaton, D., Verissimo, P., Waeselynck, F.: The delta-4 ap-
proach to dependability in open distributed computing systems. In: Proceedings
of Twenty-Fifth International Symposium on Fault-Tolerant Computing, IEEE
(1995) 56

14. Deswarte, Y., Blain, L., Fabre, J.C.: Intrusion tolerance in distributed computing
systems. In: Proceedings of the IEEE Symposium on Research in Security and
Privacy. (1991) 110–122

15. Saidane, A., Deswarte, Y., Nicomette, V.: An intrusion tolerant architecture for
dynamic content internet servers. In Liu, P., Pal, P., eds.: Proceedings of the 2003
ACM Workshop on Survivable and Self-Regenerative Systems (SSRS-03), Fairfax,
VA, ACM Press (2003) 110–114

16. Valdes, A., Almgren, M., Cheung, S., Deswarte, Y., Dutertre, B., Levy, J., Saidi,
H., Stavridou, V., Uribe, T.: An adaptative intrusion-tolerant server architecture.
In: Proceedings of the 10th International Workshop on Security Protocols, Springer
(2003) 158–178

17. Yin, J., Martin, J.P., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating agree-
ment from execution for byzantine fault tolerant services. In: Proceedings of the
19th ACM Symp. on Operating Systems Principles (SOSP-2003). (2003)

18. Hurfin, M., Macêdo, R., Raynal, M., Tronel, F.: A generic framework to solve agree-
ment problems. In: Proc. of the 19th IEEE Symposium on Reliable Distributed
Systems (SRDS’99), Lausanne, Switzerland (1999) 56–65

19. Hurfin, M., Mostéfaoui, A., Raynal, M., Macêdo, R.A.: A consensus protocol based
on a weak failure detector and a sliding round window. In: 20th Symposium on
Reliable Distributed Systems (SRDS 2001). (2001) 120–129

Stabilizing Health Monitoring

for Wireless Sensor Networks

William Leal, Sandip Bapat, Taewoo Kwon, Pihui Wei, and Anish Arora�

Department of Computer Science and Engineering
The Ohio State University, Columbus, OH 43210

{leal, bapat, kwonta, weip, anish}@cse.ohio-state.edu

Abstract. Wireless sensor networks (WSNs) comprised of low-cost de-
vices tend to be unreliable, with failures a common phenomenon. Being
able to accurately observe the network health status — of nodes of each
type and links of each type — is essential to properly configure appli-
cations on WSN fabrics and to interpret the information collected from
them.

In this paper we study accurate network health monitoring in WSNs.
Specifically, we reconsider the well-known problem of message-passing
rooted spanning tree construction and its use in PIF (propagation of in-
formation with feedback) for the case of a WSN. We present a stabilizing
protocol, Chowkidar, that is initiated upon demand; that is, it does not
involve ongoing maintenance, and it terminates with accurate results,
including detection of failure and restart during the monitoring process.
Our protocol is distinguished from others in two important ways. Given
the resource constraints of WSNs, it is message-efficient in that it uses
only a few messages per node. And it tolerates ongoing node and link
failure and node restart, in contrast to requiring that faults stop during
convergence.

We have implemented the protocol as part of enabling a network
health status service that is tightly integrated with a remotely accessible
wireless sensor network testbed, Kansei, at The Ohio State University.
We report on experimental results.

1 Introduction

Wireless sensor networks (WSNs) are inherently unreliable. When WSN nodes,
generally built from low cost components, are deployed in large numbers, fail-
ures happen fairly often. Monitoring the health of nodes and interfaces of de-
ployed WSNs is thus a core requirement for application managers. Similarly,
WSN testbed users have a particular need for accurate information about the
health of the testbed. In running an experiment, it is easy to confuse a failed
node with a problem in the experiment itself. Experiments use controlled fault
injection that simulates node, interface and other failures, so the actual failure
� This work was supported in part by NSF grants NSF-NETS/NOSS-0520222 and

NSF-HDCCSR-0341703, and by DARPA contract OSU-RF #F33615-01-C-1901.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 395–410, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

396 W. Leal et al.

of a node or interface will give misleading results. Hence having an accurate
view of the network before and after an experiment is important in interpreting
results. In addition, the administrator of a testbed needs to know which nodes
have failed so that they can be restarted or repaired.

In WSN deployments, monitoring is typically done using exfiltration on multi-
hop radio paths that are unreliable and exhibit complex dynamics. Although
WSN testbeds generally use reliable, high-speed back channels for experiment
configuration and data retrieval that can be exploited to improve the efficiency
and accuracy of monitoring, these channels may not always be available due to
failures or policy issues such as interference with ongoing experiments. Thus, in
either situation, a monitor cannot assume a persistent structure for its status
collection, which motivates the need for a tolerant solution.

A simple way to gather health information for any WSN is to use the stan-
dard pattern of propagation of information with feedback (PIF). However, for
our purposes, the PIF must have certain properties. First, it must give ac-
curate, total results or else indicate that a problem occurred: node and in-
terface failures can (and do) happen at any time, including during the run-
ning of the protocol itself; this can result in dramatically inaccurate results if,
for example, a tree is formed but a node close to the root fails before feed-
back completes. Even if the node does not fail, its wireless link to its par-
ent could become unreliable due to complex WSN link dynamics or channel
interference, resulting in loss of information from that node. These scenarios
could result in a partial report where the entire subtree dominated by that
node is regarded as inaccessible when in fact an alternative reliable path to
those nodes might exist. In such cases, partial PIFs would yield information
that is, from the perspective of the users, potentially worse than no
information.

Second, the protocol should be fast. We wish to run it between experiments
on a testbed so it should not take long. Third, the protocol must be frugal
in its use of communication resources since it shares the network with other
user programs and might run on battery-based nodes. For the same reason,
the protocol should run on demand and should terminate, not using resources
when network information is not being collected. This precludes approaches that
perform automatic tree repair when nodes or links fail or restart.

Since WSNs can be heterogeneous there can be many paths from the root to
a node. A path that uses Ethernet will usually be more reliable than one that
uses radio, for instance. Hence we prefer least-cost paths, where the cost of a
link is a reflection of its reliability or other factors such as bandwidth. Thus,
for instance, we can avoid low bandwidth multi-hop radio paths that could have
higher bit error rates or be more prone to message interference unless they are
the only way to reach certain nodes.

Designing for heterogeneity means that our approach is easily extended to
new kinds of devices and networks. We are, for example, in the process of incor-
porating new motes that use new interfaces into our implementation.

Stabilizing Health Monitoring for Wireless Sensor Networks 397

Outline of our Chowkidar protocol.1 Existing PIF-style approaches do not
satisfy the above requirements. They either assume that faults have stopped to
assure termination, or else they run continuously, often using using substantial
resources when a fault occurs. By making judicious use of time, we present a
simple, efficient protocol that produces in one shot a tree structure such that,
in the presence of continuous faults, a subsequent PIF will either succeed or will
indicate that a fault has rendered the tree defective. In this latter case, the tree
can be rebuilt and a new PIF run.

Faults can cause a link or node to fail and a node to restart; in this latter
case, local variables are reset and a restart message is broadcast that can be
forwarded to the root2. Faults do not affect other variables.

Key to our approach is the tree-building protocol that includes a handshake
between a node and its potential parent. When X receives a wave broadcast from
Y with higher session number, it asks Y to become its parent. Y records X as a
child and sends an acknowledgement. If the acknowledgement fails then X does
not adopt Y as parent. In a subsequent PIF, Y expects to hear from X and when
it doesn’t, it knows there is a tree fault that requires a rebuild. We accomplish
formation of least-cost paths by phasing the delivery of the wave messages: on
links with lower cost, the messages are delivered earlier than on links with higher
cost. A node that is connected to a neighbor on multiple networks will receive the
message on the preferred network first. If faults do not occur during handshaking
then the tree will be least-cost.

If node or link failures do not happen during the tree formation, the result is a
tree with bidirectional edges: each child knows its parent and each parent knows
its children; when a PIF is run on the tree, each parent waits on its children to
report before it reports to its own parent and, if it fails to hear from a child in a
timely fashion, it initiates a failure message to the root. As noted, the handshake
process lets us handle failures that occur during the acknowledgement sequence.
If a node fails to receive the acknowledgement from the proposed parent then it
does not join the tree but waits for another wave message from another neighbor.
As shown in Fig. 1, this means that it is possible for a false parent to incorrectly
claim a node as child. In the figure, node A is the root and nodes B and C have
joined the tree. In Fig. 1(b) to Fig. 1(d), a wave message reaches node D and it
notifies B that it proposes adopting it as parent, so B includes D in its child set.
However, a failure just after that causes the link to fail, so D does not join the
tree. In Fig. 1(e) to Fig. 1(g), a wave message arrives from C and D joins with
C as parent. Note now that both B and C claim D as a child. In a subsequent
PIF, D will give feedback to C but not to B. When B fails to hear from D, it
will respond with an error message to the root.

When tree formation or PIF is complete, the protocol is quiescent, so there
is no ongoing message traffic unless a node restarts. In the absence of failures,
a total of three messages per node are required for tree formation: one for the

1 Chowkidar in the Hindi language stands for a watchman.
2 Links can restart silently; detecting a restart efficiently is an issue we do not deal

with here.

398 W. Leal et al.

wave, two for the parent acknowledgement. For a PIF, two messages per node
are required: one to propagate the token and one to propagate the feedback. If
failures occur during the parent acknowledgement process, additional messages
are required as a node attempts to confirm with subsequent potential parents.
However, this occurs only if a failure happens after the wave message is sent but
before the acknowledgement arrives.

D

sess=2
children={B,C}
parent=A

A

B c
sess=2
children={}
parent=A

sess=2
children={D}
parent=A

sess=1
children={}
parent=.

Wave
message

(e)

D

sess=2
children={B,C}
parent=A

A

B c
sess=2
children={D}
parent=A

sess=2
children={D}
parent=A

sess=2
children={}
parent=C

Acknowledgement
message

(g)

D

sess=2
children={B,C}
parent=A

A

B c
sess=2
children={}
parent=A

sess=2
children={D}
parent=A

sess=1
children={}
parent=.

(d)

D

sess=2
children={B,C}
parent=A

A

B c
sess=2
children={}
parent=A

sess=2
children={}
parent=A

Link

sess=1
children={}
parent=.

(a)

D

sess=2
children={B,C}
parent=A

A

B c
sess=2
children={}
parent=A

sess=2
children={}
parent=A

sess=1
children={}
parent=.

Wave
message

(b)

D

sess=2
children={B,C}
parent=A

A

B c
sess=2
children={}
parent=A

sess=2
children={}
parent=A

sess=1
children={}
parent=

Notification
message

(c)

Notification
messageD

sess=2
children={B,C}
parent=A

A

B c
sess=2
children={}
parent=A

sess=2
children={D}
parent=A

sess=1
children={}
parent=.

(f)

Interface
failure

False
parent

Fig. 1. Tolerating Failures During Acknowledgement: False Parents

Contributions. Our principal contribution is the message-passing terminat-
ing spanning tree protocol of Chowkidar that tolerates on-going faults. The

Stabilizing Health Monitoring for Wireless Sensor Networks 399

structure is produced in such a way that a subsequent PIF will either succeed
or will report that the structure is not a spanning tree.

Further, we analyze the protocol in the context of a formal network model,
and offer experimental validation of the protocol performance via an implemen-
tation on a heterogenous WSN testbed, Kansei, comprising hundreds of Motes
(of multiple types, specifically XSMs and TMoteSkys), Stargates, and PCs. The
latter is necessary in part for validating that the performance in a real network
(with associated complex dynamics) is consistent with that predicted by the
analysis. It is also necessary for enabling a health monitoring service that is a
crucial and tightly integrated component of Kansei.

Organization of the paper. The rest of the paper is organized is follows. We
discuss related work in Section 2. The Chowkidar tree and PIF protocols are
in Section 3. We give experimental results in Section 4 and present concluding
remarks in Section 5. Appendices in the extended technical report version [1]
contain the correctness proof for the tree protocol, a photo of the Kansei testbed,
and screenshots for an implementation of Chowkidar.

2 Related Work

Efficient PIF with ongoing faults. The notion of a self-stabilizing PIF has
been well-studied in distributed computing as it is an enabler for many other
tasks such as distributed reset, global snapshot, termination detection, and oth-
ers; see [2] for an overview of non-stabilizing, self-stabilizing and snap-stabilizing
PIF protocols; in fact, our protocol is snap-stabilizing, completing in zero rounds.
However, existing protocols that terminate do not tolerate ongoing faults, and
those that do are not terminating.

[3] presents a PIF in the form of distributed reset. It is tolerant to ongoing
faults, returning either a correct completion or an error indicating a tree fail-
ure. However, the protocol is not terminating since the tree structure is checked
periodically and repair occurs when a problem is detected. [4] and [5] give ter-
minating tree construction protocols but they make the standard stabilization
assumption that faults have stopped.

Network health monitoring. A variety of monitoring facilities have been
developed for testbeds and for deployed WSNs, but all those we are aware of fall
short of our needs. Experiments are assumed to run on homogeneous devices;
existing support tools do not handle the network heterogeneity of testbeds. Tools
do not distinguish between the health of a node and the health of its links. For
some, the reliability is too low to be useful and for others, there is a dependency
on the communication structure of the application.

Traditional networks such as the Internet use standard protocols such as
SNMP [6] for monitoring network devices and identifying faults. However, SNMP
assumes the IP routing layer in its operation and is therefore dependent on the
fault-tolerance of IP to be able to reach the monitored devices; this is not suffi-
cient for a WSN with non-IP networks such as mote radio. Other monitors like
Sympathy [7] only handle radio networks and do not admit heterogeneity.

400 W. Leal et al.

Similarly, Motelab [8], Tutornet [9] and Orbit [10] provide users with a ping-
based status for each device, indicating whether it is reachable or not. However,
simply detecting that a device is unresponsive on a given network is not suffi-
cient since it does not support heterogeneous networks and does not distinguish
network and link faults.

The Sensor Network Management System (SNMS) [11] supports monitoring
of WSNs by providing its own network stack that includes routing. SNMS al-
lows administrators to remotely query network devices and learn their status.
However, SNMS does not deal with heterogeneous networks, and studies such
as [12] show that reliability of SNMS does not suffice to provide accurate fault
status.

Sympathy [7] is designed for fault detection at a central base station in a
data collection application in which nodes periodically send data to the base.
Sympathy thus exploits knowledge of a specific application’s traffic pattern
to define certain fault metrics. A similar approach is used in [13] where the
fault management system exploits the continuous data traffic flow in the net-
work to piggy-back health information and uses route update messages to trace
failed nodes. The dependency on an application makes these inappropriate for
our purposes since monitoring is conducted only when an application is
running.

3 Tree Construction and PIF for WSN Health
Monitoring

In this section, we present our protocol for tree construction and for PIF. A
client using the protocol would first execute the tree construction and when that
terminates, execute the PIF. If the PIF returns an error then the tree must be
rebuilt and the PIF rerun. If not, the tree that has been formed can be used
again for the next PIF. For efficiency, the tree construction can be combined
with an initial feedback from the leaves.

Communication Model. For purposes of design and analysis, we assume that
links are bidirectional and reliable. Both assumptions need to be justified. In
WSNs, unidirectional links may occur since a node might hear from a distant
neighbor but messages sent in the other direction, for a variety of reasons, may
not be received. In our tree construction protocol, a node must both send and
receive on a selected link before it joins the tree, so a unidirectional link would be
ignored or regarded as failed, and another parent/link candidate, if any, would
be attempted. In any case, unidirectional links can be handled by estimating link
quality or using topological information so that a node only accepts messages
from near neighbors; however, link quality estimation usually requires exchang-
ing several messages, which our protocol does not support, so estimation would
have to be provided by a separate service.

To simplify our model we assume that links are reliable if they have not failed
due to an interface fault. In reality, radio-based links tend to be unreliable due
to contention for the channel. The problem can be mitigated by using low power

Stabilizing Health Monitoring for Wireless Sensor Networks 401

and randomized transmission times, but the results of a PIF collection will be
at best probabilistic. Alternatively, a TDMA-based scheme can be used to give
deterministic communication, but TDMA itself comes with an overhead cost
unless it is already provided for some other purpose.

Fault Model. We assume a base station as a fixed root that is not affected
by faults. This assumption is justified in our application since a base station
is relatively reliable. Failure of the base station is obvious to users, and it has
to be repaired or replaced for correct network operation. The session number
that is used to initiate tree construction is stored by the base station and is
assumed to be reliable. For convenience we assume that session numbers are
unbounded, but since the base is reliable, an integer with a sufficiently large
bound suffices.

Faults can cause node or link to failure or node restart; as mentioned earlier,
we do not consider link restart, which is postponed to future work. Node restart
is clean in that the session number and other protocol control variables are re-
initialized; it is detectable by the node so that when it happens, it broadcasts a
“restart” message that is passed to the root.

Notation and Semantics. We use guarded commands with interleaving seman-
tics for specifying the protocol. Parameters j and k range over nodes; i ranges
over links. Among commands with true guards, one is chosen and is atomically
executed. Communication actions are synchronous: after a node sends a message
to X, X executes the corresponding receive before any other action of X and be-
fore any other node sends to X. Environment actions can interleave send-receive
pairs, might or might not be executed when enabled, and execute at most finitely
often.

We use Gouda’s AP notation for timeouts, which are represented by global
state predicates. In the case of the child-parent acknowledgement sequence dur-
ing tree construction (T5 of Fig. 2), for instance, the timeout can be implemented
by setting a time to wait for an acknowledgement after notification has been sent.
Termination of each protocol can be given via a timeout predicate that negates
the conjunction of the guards.

Timing Assumptions. We use delayed delivery of wave messages to construct
a least-cost tree, implemented by an underlying broadcast service that delays
actual broadcast until a specified time. In our implementation we have the fol-
lowing delays: Ethernet, 0s; serial link between Stargates and XSMs, 0s; XSM
radio, 5s, where higher delay corresponds to higher link cost. From the base
station to a given XSM X0 there can be many potential paths, including B-E-
SG0-S-X0 and B-E-SG1-S-X1-R-X0, where B is base, SG is a Stargate, X is an
XSM, E is Ethernet, S is serial link and R is radio. The first path costs 0s and
the second 5s, so the first is preferred. Delayed delivery means that the wave via
the serial link arrives at X0 before the wave via the radio, so SG0 will be selected
as X0’s parent.

We assume that internal processing in nodes takes zero time and that links
have associated timing values, including the delay enforced by the broadcast

402 W. Leal et al.

primitive. This lets us associate an upper bound on the time to wait before
concluding that a timeout is satisfied.

Constants, Variables and Messages. We describe the constants, node vari-
ables, environment variables and message types. Constants. lktype is a con-
stant set of link types for a given node corresponding to interface types. id is the
identifier for a node; we assume that nodes have unique identities. Node Vars
for Both Protocols. sess is an unbounded integer session number, initially 0.
Node Vars for Tree Construction. parent is the (node id, interface) pair
for a parent, initially (-1,-1) for unassigned. children is a set of of (node id, in-
terface) pairs of children, initially ∅. busy ensures only one handshake at a time,
initially false. tk, ti, tsess, initially -1, -1, 0, resp., store parent candidate
information during handshake. newtree is true if a new tree should be formed,
initially true. Node Vars for PIF. pphase is a Boolean that is true during the
propagation phase, initially false. pchldcnt is a bounded integer that counts the
number of children heard from during feedback. Environment Vars. up is an
array of Booleans indexed by node ids that indicates whether the node is up or
not. link is an array of Booleans indexed by node id pairs and link type that
indicates whether the link is up or not; this is symmetric wrt nodes. Message
Types. Each message begins with a message type. ‘wave’ is for tree wave mes-
sages. ‘notify’ is for a child to notify a potential parent in tree construction.
‘ack’ is for the parent to acknowledge the child in tree construction. ‘token’ is
the propagation message for PIF. ‘fb’ is the feedback message for PIF. ‘err’
is the error message for the PIF when the structure is found to not be a tree.
‘restart’ is issued by a node that restarts.

Tree Construction Protocol. The Chowkidar protocol for tree construction
is given in Fig. 2. After action T1a initiates a new wave in response to the need
for a new tree, the normal sequence is as follows: a node gets a wave message
from a neighbor in T2 over some interface and enqueues it; the queue stores other
alternatives in case faults prevent the sender of the first wave message from being
adopted as a parent. T3 removes a wave message and, if it has a higher session
number, tries to adopt the sender as parent by sending it a notification. The
parent receives the notification in T4, adds the node as a new child, and returns
an acknowledgement to the child. The child receives the acknowledgement in
T1b and propagates the wave. Note that the broadcast service ensures that
wave messages are delivered in order of link cost.

Node and link faults may occur concurrently with the protocol. If a node
or link fails before the wave reaches it then this is the same as failing before
the protocol begins. If a node or interface used in the tree fails after the wave
has passed, this is the same as failing after the protocol terminates and will be
detected by a subsequent PIF since that node will fail to respond to its parent.

Now consider failures concurrent with the wave boundary. Suppose node Y
broadcasts via action T1a or T1b, but before delivery, neighbor X or the link
fails. This is the same as failure before the protocol begins and X will not be
included in the tree. Suppose X sends notification to Y via T3 but Y or the

Stabilizing Health Monitoring for Wireless Sensor Networks 403

link fails before receipt. This is the same as failing before the protocol starts.
Suppose Y receives a notification from X in T4 but the link fails before X receives
the acknowledgement. Then Y adopts X as a child but X does not learn this;
T5 will cause a timeout and X will solicit a new parent. Since Y has falsely
recorded X as a child, in a subsequent PIF will detect that X does not respond
to Y. Similarly, if Y receives a notification from X but X fails before receiving the
acknowledgement, X will not be responsive in the subsequent PIF.

Node restarts are clean and would normally be benign. However, if X starts
a handshake with Y1, then fails and restarts, it can start a new handshake with
Y2, perhaps in a later session, and either acknowledgement could arrive first.
To handle this, T1b will accept an acknowledgement only from the node/link it
notified last.

T1a (id=Base∧newtree) → // begin new tree
sess:=sess+1; parent:=(-1,-1); newtree:=false;
∀pi : (pi ∈ lktype) : broadcast (‘wave’,sess) on pi
atTime tdeliv[pi];

children:=∅; busy:=false;
T1b rcv (‘ack’) from k on i → // join parent & echo wave

if (k=tk ∧ i=ti)
sess:=tsess; parent:=(tk,ti);
∀pi : (pi ∈ lktype) : broadcast (‘wave’,sess) on pi
atTime tdeliv[pi];

children:=∅; busy:=false; fi
T2 rcv (‘wave’,xsess) from k on i → // enqueue waves

enqueue (k,i,xsess);
T3 ¬busy ∧ queue �= 〈〉 → // begin handshake

(tk,ti,tsess):=dequeue();
if (tsess>sess)
send (‘notify’) to tk on ti; busy:=true; fi

T4 rcv (‘notify’) from k on i → // acknowledge
send (‘ack’) to k on i;
children:=children ∪ (k,i);

T5 timeout (busy ∧ (¬up.tk ∨ ¬link.id.tk.ti)) →
busy:=false;

Fig. 2. Tree Construction Protocol

The protocol tolerates simultaneous sessions. In the absence of faults, the
protocol will form a spanning tree over the highest session number among non-
tree nodes that were up when the wave was propagated by a neighbor. In the
presence of faults that affect the tree structure, either the fault happens before
the wave or else the structure contains nodes with nonresponsive children. As we
have seen, a node listed as a child can be nonresponsive if it or its tree interface
is down, or if it has identified a different parent. In this case, a subsequent PIF
will detect the fact and initiate a new tree construction.

404 W. Leal et al.

In the protocol, wave messages are delivered in order according to cost of the
links. Hence the spanning tree formed is least-cost unless while handshaking with
node Y, the link fails before X’s notification is sent, causing X to attempt another
parent which, if available, might result in a path that is not least-cost. The
only active nodes are those that are at the wave boundary. Timeouts guarantee
that wave progresses until it is extinguished, so the protocol terminates. Since
we have assumptions about delivery and link times, we can calculate an upper
bound on the time required to terminate. Proofs are in the extended technical
version [1].

P1 (id=Base) ∧ (start new PIF) ∧ ¬newtree → //new PIF
sess:=sess+1;
∀pk,pi : (pk,pi) ∈ children : send (‘token’,sess)
to pk on pi;

pphase:=true; pchldcnt:=0;
P2 rcv (‘token’,psess) from k on i → //propagate or respond

if (psess > sess)
sess:=psess;
if (children �= ∅)

∀pk,pi : (pk,pi) ∈ children : send (‘token’,sess)
to pk on pi;

pphase:=true; pchldcnt:=0;
else
send (‘fb’,sess) to parent.node on parent.link;
pphase:=false; fi fi

P3 rcv (fb,psess) from k on i → //forward responses
if (psess=sess)
pchldcnt:=pchldcnt+1;
if (pchldcnt=|children|)
if (id �=Base) send (‘fb’,sess) to parent.node

on parent.link; fi
pphase:=false; fi fi

P4 timeout pphase ∧ (k,i)∈children ∧ (¬up.k ∨ ¬link.id.k.i ∨
parent.k �=(j,i)) → //timeout unresponsive child

if (id=Base) newtree:=true;
else send (‘err’) to parent.node on parent.link; fi
pphase:=false;

P5 rcv (‘err’) from k on i → //send error to Base
if (id=Base) newtree:=true;
else send (‘err’) to parent.node on parent.link; fi

Fig. 3. PIF Protocol

PIF Protocol. The Chowkidar PIF protocol is shown in Fig. 3. For WSN health
monitoring, PIF should return appropriate health information or assessment of
other predicates but this is an orthogonal issue.

Stabilizing Health Monitoring for Wireless Sensor Networks 405

P1 blocks if a tree fault has been detected and should be initiated only when
the tree protocol has terminated. A token is initiated on the tree in the form of
a message with a new sequence number. In P2, interior nodes forward the token
to their children while leaf nodes begin the feedback response. In P3, a node
that receives feedback from a child increments a counter; when all children have
responded, it sends its feedback response to its parent. In P4, a node waiting on
a child’s response times out if it is unresponsive. This creates a message that is
propagated up the tree by P5.

Implementation of timeout P4 can be based on the longest possible path in
the network. An initial PIF can refine the timeouts based on a node’s distance
from its leaves to get tighter values.

A PIF execution terminates within some bounded time and, if the structure
from the root is a spanning tree, then it completes with a report of success and
otherwise with a report of failure. If a restart message is received by a node before
it has completed feedback then the tree is not spanning; by our synchronous
communication assumptions, the restart message will reach the root before the
feedback message, triggering the creation of a new tree.

E1 id �=Base ∧ up → up:=false; //fail a node
E2 link.id.k.i → link.id.k.i,link.k.id.i:=false,false;

//fail a link
E3 ¬up → //restart a failed node

up:=true;
(reset all variables)
∀pi : (pi∈lktype) : broadcast (‘restart’) on pi

delivery now;
R1 rcv (‘restart’) from k on i → //send restart msg up tree

if (id=Base) newtree:=true;
else send (‘restart’) to parent.node on parent.link;
if (k=tk) busy:=false; fi fi

Fig. 4. Environment and Restart Actions

Environment Actions. The environment-related actions are shown in Fig. 4.
E1 causes a node to fail. E2 causes a link to fail. E3 causes a node to restart; a
restart message is broadcast on all available interfaces.

If R1 receives a restart message, it resets the tree construction busy flag in
case the restarted node had been involved in a handshake. To ensure correctness
of collection, the message is forwarded towards the root so that a new tree can
be formed. Consider the following cases. Suppose the restart message is received
by a node with a tree path to the root that stays up sufficiently long. Then the
message will arrive at the root. Suppose the receiving node’s tree path has a
failed node or interface closer to the root. Then a subsequent PIF will detect
the problem and when the ensuing tree is formed, the restarted node will be

406 W. Leal et al.

included. Suppose the node is partitioned from tree nodes but there is a newly-
restarted neighbor that is not. Then its reset message will trigger a tree rebuild
that includes both. Otherwise the node is not reachable by any path of up
nodes/links and would not be included the spanning tree even if it were rebuilt.

4 Experimental Results

At Ohio State, we have developed Kansei, a rich hardware-software platform
for high-fidelity WSN experimentation, testing, and validation [14]. Its hard-
ware platform couples a generic platform array with multiple domain sensing
and communication arrays. The generic platform array consists of a station-
ary component that can be operated in real-time and via the Internet. It has
several hundred static nodes that reside on an off-floor deck composed of 35
bench modules. The two main sensor node platforms in the stationary array,
mounted below the deck, are XSM and TMoteSky motes and Stargates. Each
XSM has a 4 MHz CPU, 4KB RAM and a low-power single channel 38.4kbps ra-
dio. Its sensors and actuators include photocell, PIR, temperature, magnetome-
ter, microphone, GPS, and buzzers. Each TMoteSky is an 802.15.4 compliant
device with a 250kbps radio, 8 MHz CPU and 10KB RAM. Each Stargate has
a 400MHz Intel PXA255 CPU and a daughter-card with interfaces to the XSM
and the TMoteSky and various other interfaces such as RS-232, Ethernet, USB
and 802.11(b). The generic platform array also includes mobile sensor nodes that
move on the deck above the static array.

We implemented and experimented with Chowkidar for stabilizing tree con-
struction and PIF in Kansei. The implementation for this heterogenous network
spans a PC-based Kansei server, Stargates running Linux and motes running
TinyOS [15]. It uses Ethernet, 802.11b wireless, mote radio and Stargate-mote
serial links for tree construction and data collection. Recall that our protocol uses
different delays on different links to construct a least-cost path tree. According to
Kansei policies, based on link characteristics such as reliability, available band-
width, potential interference, etc., we assign a link delay of 0s on Ethernet and
Stargate-XSM serial links, which are reliable, have high bandwidth and low in-
terference effects; a 5s delay on XSM radio links, which have less bandwidth and
more interference and a 10s delay on 802.11b links. 802.11b links are highest
cost since we have only a single channel available and Chowkidar could interfere
with concurrent experiments.

Our analysis and proofs assume that links are reliable and bidirectional. How-
ever, in reality, broadcast links such as wireless radio and even Ethernet suffer
from transient message losses. Indeed, a naive implementation of Chowkidar
where child-parent handshakes were initiated immediately upon receiving a wave
message led to message implosion on these shared channels and loss of messages
in the network due to contention. This network unreliability due to concurrent
message transmission by all nodes was in fact so high that it affected not only
the performance but also the correctness of our protocol since it resulted in an
incomplete tree being constructed in several runs.

Stabilizing Health Monitoring for Wireless Sensor Networks 407

To avoid message implosion on shared channels, our implementation intro-
duced a simple application-level backoff mechanism. Coarse-grained tuning of
backoffs enabled us to obtain correct performance for our protocol implemen-
tation in that a tree spanning all correct nodes was constructed, albeit with
increased execution time.

Table 1. Effect of faults on protocol performance for a 25 node network using a 2.5s

backoff

Percentage of failed Stargates 0% 8% 20% 40%
Average time for tree construction 1.2s 8.7s 9.9s 10.5s
Percentage of failed runs 0% 0% 10% 30%

Table 1 shows the results of the first series of experiments performed on a 25
node network using a 2.5 second backoff on wireless links for congestion avoid-
ance. We first ran our algorithm without introducing any failures. As expected,
our algorithm always constructed a least-cost spanning tree using only Ethernet
and serial links in very short time. We then injected failures by randomly stop-
ping multiple Stargate nodes, which forced more and more wireless links to be
used in tree construction. As the data shows, as the number of injected faults
increases, not only does the average tree construction time increase, but in the
worst case shown here, where 40% of the Stargates were failed, even correct-
ness was affected in some runs due to excessive message loss. Fortunately, the
degradation in performance is gradual and sublinear, so we can select a suitable
backoff period based on the expected worst case failures in the network.

Table 2. Linear scaling of backoff with network size for 40% Stargate failures

Number of network nodes 25 25 50 50
Maximum backoff for radio 2.5s 5s 5s 10s
Percentage of failed runs 30% 0% 25% 0%

We validate this assertion in Table 2 in which we measure the minimum backoff
period at which 100% of the runs are successful even in the worst failure case
considered in Table 1, i.e. 40% failed Stargates for networks with different sizes.
As seen from the data, using a 5 second backoff guarantees correct execution
when up to 10 out of 25 (40%) nodes fail; however the same backoff does not
guarantee correct execution if the network size is doubled to 50 nodes with the
same failure rate. Nevertheless, as expected, with a linear scaling of the backoff
period to 10 seconds, we observe correct protocol execution.

We thus conclude from our experiments that in WSNs, unreliability of mes-
sage transmission affects both protocol correctness and performance and hence
should be given careful consideration. However, as demonstrated by our experi-
ments, using a simple backoff mechanism is sufficient to achieve correctness at the

408 W. Leal et al.

expense of increased completion time. Our assumption of reliable, bidirectional
links can therefore be reasonably realized even in real network deployments.

An alternate means of obtaining reliable links and guaranteeing protocol cor-
rectness is to instrument reliability at the messaging layer either through MAC-
level retransmissions or by replacing the CSMA based wireless MAC protocols
with TDMA. In future work, we intend to evaluate the cost-benefit tradeoffs of
these approaches by comparing their performance with that of the best perfor-
mance that can be obtained using application-level tuning.

5 Conclusions

We have developed a WSN monitoring protocol that is extensible, has good
energy dynamics, and gives accurate results in the presence of ongoing faults.
We have given a theoretical model of the protocol and evaluated it against re-
alistic assumptions, so our validation is based not only on analysis but also
on experimentation with the Kansei WSN testbed. In the protocol, predicates
about network control state can be evaluated locally and consolidated in-network
to reduce message traffic; and further evaluation can take place at the base
station.

For future work, we will focus on a variety of issues. At present, health mon-
itoring in Kansei is an independent service. Users can view the network health
status, but it is not used by Kansei’s scheduler. We plan to integrate monitoring
so that experiments are run only on nodes known to be good.

Monitoring is presently done only on nodes not running any application. Mon-
itoring concurrently with a running application is desirable, but one would have
to deal with the issue of interference between the application and the monitoring.
This could be in part a policy issue for a network—an application may request
that monitoring of a certain sort not be run concurrently, say on motes—and
partly a research issue in case there is a way to exploit the semantics of an
application for monitoring while still offering correctness guarantees.

A node interface has two parts, a transmitter and a receiver. Evaluating the
receiver locally is easy; but a neighbor is needed to evaluate the transmitter.
Broadcasts may be heard by many neighbors and if they all report it, there is
excessive redundancy. Hence, we will study how to compress such information.
There may additionally be other predicates that involve a node’s neighbors, but
those neighbors could be in different subtrees, so the structure of the spanning
tree could work against us. We will study ways to ameliorate this problem.

Link quality is an important predicate for monitoring. This requires the ex-
change of several predicates before an evaluation can be made. Over time, if
experiments or monitoring are run sufficiently often, link quality status can be
assessed; or an estimation algorithm can be run periodically. This can provide
information to users, and can also feedback into the monitoring protocol itself:
a node can dynamically adjust link cost to build a better tree.

We are interested in the quality of sensors on nodes. The problem is difficult
for several reasons. First, sometimes ground truth is not available, so there is no

Stabilizing Health Monitoring for Wireless Sensor Networks 409

absolute reference point for evaluating the readings [16]. Second, an understand-
ing of the physical model is critical, especially when comparing the readings from
nearby sensors. Third, an understanding of the effect of hardware and other en-
vironmental faults is important.

As scale increases, the issue of bidirectional link reliability becomes increas-
ingly critical. We need to evaluate whether interference-detection CSMA ap-
proaches combined with appropriate timings give us sufficiently accurate results
or whether a deterministic scheme such as TDMA is necessary.

DAGs have been proposed as more suited to sensor networks than trees [17],
and we plan to investigate this option.

References

1. W. Leal, S. Bapat, T. Kwon, P. Wei, and A. Arora. Stabilizing health monitoring for
wireless sensor networks. Technical Report OSU-CISRC-6/06-TR62, Department
of Computer Science and Engineering, The Ohio State University, 2006.

2. A. Cournier, A. K. Datta, F. Petit, and V. Villain. Enabling snap-stabilization. In
Proceedings of ICDCS 2003, 2003.

3. S. Kulkarni and A. Arora. Multitolerance in distributed reset. Chicago Journal of
Computer Science, 4, 1998.

4. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking
and correction (extended abstract). In Proceedings of 32nd Annual IEEE Sympo-
sium on Foundations of Computer Science, pages 268–277, 1991.

5. A. Cournier, F. S. Devismes, and V. Villain. Snap-stabilizing PIF and useless
computations. In Proceedings of 12th International Conference on Parallel and
Distributed Systems - Volume 1 (ICPADS’06), pages 39–48, 2006.

6. IETF. RFC 1157. www.ietf.org/rfc/rfc1157.txt.
7. N. Ramanathan et al. Sympathy for the sensor network debugger. In SenSys ’05:

3rd Intl. Conf. on Embedded networked sensor systems, pages 255–267, 2005.
8. G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A Wireless Sensor

Network Testbed. In 4th Intl Conf on Information Processing in Sensor Networks,
2005.

9. Embedded Networks Laboratory, USC. Tutornet: A Tiered Wireless Sensor Net-
work Testbed. http://enl.usc.edu/projects/tutornet/index.html.

10. D. Raychaudhuri et al. Overview of the ORBIT Radio Grid Testbed for Evaluation
of Next-Generation Wireless Network Protocols. In IEEE Wireless Communica-
tions and Networking Conference (WCNC), 2005.

11. G. Tolle and D. Culler. Design of an Application-Cooperative Management System
for Wireless Sensor Networks. In Proceedings of the EWSN’04, 2004.

12. S. Bapat, V. Kulathumani, and A. Arora. Analyzing the Yield of ExScal, a Large-
Scale Wireless Sensor Network Experiment. In 13th IEEE Intl. Conf. on Network
Protocols (ICNP), pages 53–62, 2005.

13. J. Staddon, D. Balfanz, and G. Durfee. Efficient tracing of failed nodes in sensor
networks. In WSNA ’02: Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, pages 122–130, 2002.

14. A. Arora, E. Ertin, R. Ramnath, M. Nesterenko, and W. Leal. Kansei: A
high-fidelity sensing testbed. IEEE Internet Computing, 10(2):35–47, March/April
2006.

410 W. Leal et al.

15. J. Hill et al. System architecture directions for networked sensors. In Architectural
Support for Programming Languages and Operating Systems, pages 93–104, 2000.

16. N. Ramanathan et al. Rapid deployment with confidence: Calibration and fault
detection in environmental sensor networks. Technical Report CENS 62, Center
for Embedded Network Systems, UCLA, 2006.

17. S. Nath et al. Synopsis diffusion for robust aggregation in sensor networks. In 2nd
Intl. Conf. on Embedded Networked Sensor Systems, pages 205–262, 2004.

A Byzantine-Fault Tolerant Self-stabilizing

Protocol for Distributed Clock Synchronization
Systems

Mahyar R. Malekpour

NASA Langley Research Center Hampton, VA 23681, USA
m.r.malekpour@larc.nasa.gov

Abstract. Embedded distributed systems have become an integral part
of safety-critical computing applications, necessitating system designs
that incorporate fault tolerant clock synchronization in order to achieve
ultra-reliable assurance levels. Many efficient clock synchronization pro-
tocols do not, however, address Byzantine failures, and most protocols
that do tolerate Byzantine failures do not self-stabilize. Of the Byzantine
self-stabilizing clock synchronization algorithms that exist in the liter-
ature, they are based on either unjustifiably strong assumptions about
initial synchrony of the nodes or on the existence of a common pulse
at the nodes. The Byzantine self-stabilizing clock synchronization pro-
tocol presented here does not rely on any assumptions about the initial
state of the clocks. Furthermore, there is neither a central clock nor an
externally generated pulse system. The proposed protocol converges de-
terministically, is scalable, and self-stabilizes in a short amount of time.
The convergence time is linear with respect to the self-stabilization pe-
riod. Proofs of the correctness of the protocol as well as the results of
formal verification efforts are reported.

Keywords: Byzantine, fault tolerant, self-stabilization, clock synchro-
nization, distributed, protocol, algorithm, model checking, verification.

1 Introduction

Synchronization and coordination algorithms are part of distributed computer
systems. Clock synchronization algorithms are essential for managing the use of
resources and controlling communication in a distributed system. Also, a fun-
damental criterion in the design of a robust distributed system is to provide
the capability of tolerating and potentially recovering from failures that are not
predictable in advance. Overcoming such failures is most suitably addressed by
tolerating Byzantine faults [1]. A Byzantine-fault model encompasses all unex-
pected failures, including transient ones, within the limitations of the maximum
number of faults at a given time. Driscoll et al. [2] addressed the frequency of
occurrences of Byzantine faults in practice and the necessity to tolerate Byzan-
tine faults in ultra-reliable distributed systems. A distributed system tolerat-
ing as many as F Byzantine faults requires a network size of more than 3F

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 411–427, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

412 M.R. Malekpour

nodes. Lamport et al. [1, 3] were the first to present the problem and show that
Byzantine agreement cannot be achieved for fewer than 3F +1 nodes. Dolev et
al. [4] proved that at least 3F + 1 nodes are necessary for clock synchronization
in the presence of F Byzantine faults.

A distributed system is defined to be self-stabilizing if, from an arbitrary state
and in the presence of bounded number of Byzantine faults, it is guaranteed to
reach a legitimate state in a finite amount of time and remain in a legitimate
state as long as the number of Byzantine faults are within a specific bound. A
legitimate state is a state where all good clocks in the system are synchronized
within a given precision bound. Therefore, a self-stabilizing system is able to start
in a random state and recover from transient failures after the faults dissipate.
The concept of self-stabilizing distributed computation was first presented in
a classic paper by Dijkstra [5]. In that paper, he speculated whether it would
be possible for a set of machines to stabilize their collective behavior in spite of
unknown initial conditions and distributed control. The idea was that the system
should be able to converge to a legitimate state within a bounded amount of time,
by itself, and without external intervention.

This paper addresses the problem of synchronizing clocks in a distributed sys-
tem in the presence of Byzantine faults. There are many algorithms that address
permanent faults [6], where the issue of transient failures is either ignored or in-
adequately addressed. There are many efficient Byzantine clock synchronization
algorithms that are based on assumptions on initial synchrony of the nodes [6, 7]
or existence of a common pulse at the nodes, e.g. the first protocol in [8]. There
are many clock synchronization algorithms that are based on randomization and,
therefore, are non-deterministic, e.g. the second protocol in [8]. Some clock syn-
chronization algorithms have provisions for initialization and/or reintegration
[7, 9]. However, solving these special cases is insufficient to make the algorithm
self-stabilizing. A self-stabilizing algorithm encompasses these special scenarios
without having to address them separately. The main challenges associated with
self-stabilization are the complexity of the design and the proof of correctness
of the protocol. Another difficulty is achieving efficient convergence time for the
proposed self-stabilizing protocol.

Other recent developments in this area are the algorithms developed by Daliot
et al [10, 11]. The algorithm in [11] is called the Byzantine self-stabilization
pulse synchronization (BSS-Pulse-Synch) protocol. A flaw in BSS-Pulse-Synch
protocol was found and documented in [12]. The biologically inspired Pulse Syn-
chronization protocol in [10] has claims of self-stabilization, but no mechanized1

proofs are provided.
In this paper a rapid Byzantine self-stabilizing clock synchronization proto-

col is presented that self-stabilizes from any state, tolerates bursts of transient
failures, and deterministically converges within a linear convergence time with
respect to the self-stabilization period. Upon self-stabilization, all good clocks

1 A mechanized proof is a formal verification via either a theorem prover or model
checker.

A Byzantine-Fault Tolerant Self-stabilizing Protocol 413

proceed synchronously. This protocol has been the subject of rigorous verifica-
tion efforts that support the claim of correctness.

2 Topology

The underlying topology considered here is a network of K nodes that commu-
nicate by exchanging messages through a set of communication channels. The
communication channels are assumed to connect a set of source nodes to a set
of destination nodes such that the source of a given message is distinctly iden-
tifiable from other sources of messages. This system of K nodes can tolerate
a maximum of F Byzantine faulty nodes, where K ≥ 3F +1. Therefore, the
minimum number of good nodes in the system, G, is given by G = K -F and
thus G ≥ (2F + 1) nodes. Let KG represent the set of good nodes. The nodes
communicate with each other by exchanging broadcast messages. Broadcast of
a message to all other nodes is realized by transmitting the message to all other
nodes at the same time. The source of a message is assumed to be uniquely iden-
tifiable. The communication network does not guarantee any order of arrival of a
transmitted message at the receiving nodes. To paraphrase Kopetz [13], a consis-
tent delivery order of a set of messages does not necessarily reflect the temporal
or causal order of the events. Each node is driven by an independent local phys-
ical oscillator. The oscillators of good nodes have a known bounded drift rate,
1 >>ρ ≥ 0, with respect to real time. Each node has two logical time clocks,
Local Timer and State Timer, which locally keep track of the passage of time as
indicated by the physical oscillator. In the context of this report, all references
to clock synchronization and self-stabilization of the system are with respect to
the State Timer and the Local Timer of the nodes. There is neither a central
clock nor an externally generated global pulse. The communication channels and
the nodes can behave arbitrarily, provided that eventually the system adheres
to the system assumptions (see Section 3.5).

The latency of interdependent communications between the nodes is expressed
in terms of the minimum event-response delay, D, and network imprecision, d.
These parameters are described with the help of Figure 1. In Figure 1, a message
transmitted by node N i at real time t0 is expected to arrive at all destination
nodes N j , be processed, and subsequent messages generated by N j within the
time interval of [t0 + D, t0 + D + d] for all N j ∈ KG . Communication between
independently clocked nodes is inherently imprecise. The network imprecision,
d, is the maximum time difference between all good receivers, N j , of a message
from N i with respect to real time. The imprecision is due to the drift of the
clocks with respect to real time, jitter, discretization error, and slight variations
in the communication delay due to various causes such as temperature effects
and differences in the lengths of the physical communication medium. These
two parameters are assumed to be bounded such that D ≥ 1 and d ≥ 0 and
both have values with units of real time nominal tick. For the remainder of this
report, all references to time are with respect to the nominal tick and are simply
referred to as clock ticks.

414 M.R. Malekpour

D d

t0+D t0+D+dt0

Fig. 1. Event-response delay, D, and network imprecision, d

3 Protocol Description

The self-stabilization problem has two facets. First, it is inherently event-
driven and, second, it is time-driven. Most attempts at solving the self-
stabilization problems have focused only on the event-driven aspect of this
problem. Additionally, all efforts toward solving this problem must recognize
that the system undergoes two distinct phases, un-stabilized and stabilized, and
that once stabilized, the system state needs to be preserved. The protocol pre-
sented here properly merges the time and event driven aspects of this problem
in order to self-stabilize the system in a gradual and yet timely manner. Fur-
thermore, this protocol is based on the concept of a continual vigilance of state
of the system in order to maintain and guarantee its stabilized status, and a
continual reaffirmation of nodes by declaring their internal status. Finally, ini-
tialization and/or reintegration are not treated as special cases. These scenarios
are regarded as inherent part of this self-stabilizing protocol.

The self-stabilization events are captured at a node via a selection function
that is based on received valid messages from other nodes. When such an event
occurs, it is said that a node has accepted or an accept event has occurred.
When the system is stabilized, it is said to be in the steady state.

In order to achieve self-stabilization, the nodes communicate by exchanging
two self-stabilization messages labeled Resync and Affirm. The Resync mes-
sage reflects the time-driven aspect of this self-stabilization protocol, while the
Affirm message reflects the event-driven aspect of it. The Resync message is
transmitted when a node realizes that the system is no longer stabilized or
as a result of a resynchronization timeout. The Affirm message is transmitted
periodically and at specific intervals primarily in response to a legitimate self-
stabilization accept event at the node. The Affirm message either indicates that
the node is in the transition process to another state in its attempt toward syn-
chronization, or reaffirms that the node will remain synchronized. The timing
diagram of transmissions of a good node during the steady state is depicted in
Figure 2, where Resync messages are represented as R and Affirm messages are
represented as A. As depicted, the expected sequence of messages transmitted
by a good node is a Resync message followed by a number of Affirm messages,
i.e. RAAA . . .AAARAA.

The time difference between the interdependent consecutive events is ex-
pressed in terms of the minimum event-response delay, D, and network impreci-
sion, d. As a result, the approach presented here is expressed as a self-stabilization

A Byzantine-Fault Tolerant Self-stabilizing Protocol 415

time
A A R A A A A R A

Fig. 2. Timing diagram of transmissions of a good node during the steady state

of the system as a function of the expected time separation between the con-
secutive Affirm messages, ΔAA. To guarantee that a message from a good node
is received by all other good nodes before a subsequent message is transmitted,
ΔAA is constrained such that ΔAA ≥ (D + d). Unless stated otherwise, all time
dependent parameters of this protocol are measured locally and expressed as
functions of ΔAA. In the steady state, N i receives one Affirm message from ev-
ery good node between any two consecutive Affirm messages it transmits. Since
the messages may arrive at any time after the transmission of an Affirm mes-
sage, the accept event can occur at any time prior to the transmission of the
next Affirm message.

Three fundamental parameters characterize the self-stabilization protocol
presented here, namely K, D, and d. The bound on the number of faulty nodes,
F, the number of good nodes, G, and the remaining parameters that are sub-
sequently enumerated are derived parameters and are based on these three
fundamental parameters. Furthermore, except for K, F, and G which are integer
numbers, all other parameters are real numbers. In particular, ΔAA is used as a
threshold value for monitoring of proper timing of incoming and outgoing Affirm
messages. The derived parameters TA = G - 1 and TR = F + 1 are used as
thresholds in conjunction with the Affirm and Resync messages, respectively.

3.1 The Monitor

The transmitted messages to be delivered to the destination nodes are deposited
on communication channels. To closely observe the behavior of other nodes, a
node employs (K -1) monitors, one monitor for each source of incoming messages
as shown in Figure 3.

A node neither uses nor monitors its own messages. The distributed obser-
vation of other nodes localizes error detection of incoming messages to their
corresponding monitors, and allows for modularization and distribution of the
self-stabilization protocol process within a node. A monitor keeps track of the
activities of its corresponding source node. A monitor detects proper sequence
and timeliness of the received messages from its corresponding source node. A
monitor reads, evaluates, time stamps, validates, and stores only the last mes-
sage it receives from that node. Additionally, a monitor ascertains the health
condition of its corresponding source node by keeping track of the current state
of that node. As K increases so does the number of monitors instantiated in
each node. Although similar modules have been used in engineering practice
and, conceptually, by others in theoretical work, as far as the author is aware
this is the first use of the monitors as an integral part of a self-stabilization
protocol.

416 M.R. Malekpour

State
Machine

From Nk

From Ni+1

From N1

To other nodes

Node i

Monitor i+1

Monitor k

From N i-1 Monitor i-1

Monitor 1

Node i

Fig. 3. The ith node, N i , with its monitors and state machine

3.2 The State Machine

The assessment results of the monitored nodes are utilized by the node in the
self-stabilization process. The node consists of a state machine and a set of (K -1)
monitors. The state machine has two states, Restore state (T) and Maintain
state (M), that reflect the current state of the node in the system as shown in
Figure 4. The state machine describes the behavior of the node, N i , utilizing
assessment results from its monitors, M 1 .. M i−1 , M i+1 .. MK as shown in
Figure 3, where M j is the monitor for the corresponding node N j . In addition
to the behavior of its corresponding source node, a monitor ’s internal status
is influenced by the current state of the node’s state machine. In a master-
slave fashion, when the state machine transitions to another state it directs the
monitors to update their internal status.

A

MT
R

R, A A

Fig. 4. The node state machine

The transitory conditions enable the node to migrate to the Maintain state
and are defined as:

1. The node is in the Restore state,
2. At least 2F accept events in as many ΔAA intervals have occurred after the

node entered the Restore state,
3. No valid Resync messages are received for the last accept event.

A Byzantine-Fault Tolerant Self-stabilizing Protocol 417

The transitory delay is the length of time a node stays in the Restore
state. The minimum required duration for the transitory delay is 2FΔAA after
the node enters the Restore state. The maximum duration of the transitory de-
lay is dependent on the number of additional valid Resync messages received.
Validity of received messages is defined in Section 3.3. When the system is stabi-
lized, the maximum delay is a result of receiving valid Resync messages from all
faulty nodes. Since there are at most F faulty nodes present, during the steady
state operation the duration of the transitory delay is bounded by [2FΔAA,
3FΔAA].

A node in either of the Restore or Maintain state periodically transmits an
Affirm message every ΔAA. When in the Restore state, it either will meet the
transitory conditions and transition to the Maintain state, or will remain in the
Restore state for the duration of the self-stabilization period until it times out
and transmits a Resync message. When in the Maintain state, a node either
will remain in the Maintain state for the duration of the self-stabilization period
until it times out, or will unexpectedly transition to the Restore state because
TR other nodes have transitioned out of the Maintain state. At the transition,
the node transmits a Resync message.

The self-stabilization period is defined as the maximum time interval (during
the steady state) that a good node engages in the self-stabilization process. In this
protocol the self-stabilization period depends on the current state of the node.
Specifically, the self-stabilization period for the Restore state is represented by
PT and the self-stabilization period for the Maintain state is represented by
PM . PT and PM are expressed in terms of ΔAA. Although a Resync message
is transmitted immediately after the node realizes that it is no longer stabilized,
an Affirm message is transmitted once every ΔAA.

A node keeps track of time by incrementing a logical time clock, State Timer,
once every ΔAA. After the State Timer reaches PT or PM , depending on the
current state of the node, the node experiences a timeout, transmits a new
Resync message, resets the State Timer, transitions to the Restore state, and
attempts to resynchronize with other nodes. If the node was in the Restore
state it remains in that state after the timeout. The current value of this timer
reflects the duration of the current state of the node. It also provides insight
in assessing the state of the system in the self-stabilization process. In addi-
tion to the State Timer, the node maintains the logical time clock Local Timer.
The Local Timer is incremented once every ΔAA and is reset only when the
node has transitioned to the Maintain state and remained in that state for at
least �ΔPrecision , where ΔPrecision is the maximum guaranteed self-stabilization
precision. The Local Timer is intended to be used by higher level protocols
and is used in assessing the state of the system in the self-stabilization
process.

The monitor ’s status reflects its perception of its corresponding source node.
In particular, a monitor keeps track of the incoming messages from its cor-
responding source and ensures that only valid messages are stored. This pro-
tocol is expected to be used as the fundamental mechanism in bringing and

418 M.R. Malekpour

maintaining a system within a known synchronization bound. This protocol nei-
ther maintains a history of past behavior of the nodes nor does it attempt to
classify the nodes into good and faulty ones. All such determination about the
health status of the nodes in the system is assumed to be done by higher level
mechanisms.

3.3 Message Sequence

An expected sequence is defined as a stream of Affirm messages enclosed by
two Resync messages where all received messages arrive within their expected
arrival times. The time interval between the last two Resync messages is repre-
sented by ΔRR. As described earlier, starting from the last transmission of the
Resync message consecutive Affirm messages are transmitted at ΔAA intervals.
At the receiving nodes, the following definitions hold:

– A message (Resync or Affirm) from a given source is valid if it is the first
message from that source.

– An Affirm message from a given source is early if it arrives earlier than
(ΔAA - d) of its previous valid message (Resync or Affirm).

– A Resync message from a given source is early if it arrives earlier than
ΔRR,min of its previous valid Resync message.

– An Affirm message from a given source is valid if it is not early.
– A Resync message from a given source is valid if it is not early.

The protocol works when the received messages do not violate their timing
requirements. However, in addition to inspecting the timing requirements, ex-
amining the expected sequence of the received messages provides stronger error
detection at the nodes.

3.4 Protocol Functions

Two functions, InvalidAffirm() and InvalidResync(), are used by the monitors.
The InvalidAffirm() function determines whether or not a received Affirm mes-
sage is valid. The InvalidResync() function determines if a received Resync mes-
sage is valid. When either of these functions returns a true value, it is indicative
of an unexpected behavior by the corresponding source node.

The Accept() function is used by the state machine of the node in conjunc-
tion with the threshold value TA = G - 1. When at least TA valid mes-
sages (Resync or Affirm) have been received, this function returns a true value
indicating that an accept event has occurred and such event has also taken
place in at least F other good nodes. When a node accepts, it consumes all
valid messages used in the accept process by the corresponding function. Con-
sumption of a message is the process by which a monitor is informed that
its stored message, if it existed and was valid, has been utilized by the state
machine.

The Retry() function is used by the state machine of the node with the thresh-
old value TR = F +1. This function determines if at least TR other nodes have

A Byzantine-Fault Tolerant Self-stabilizing Protocol 419

transitioned out of the Maintain state. A node, via its monitors, keeps track of
the current state of other nodes. When at least TR valid Resync messages from
as many nodes have been received, this function returns a true value indicating
that at least one good node has transitioned to the Restore state. This function
is used to transition from the Maintain state to the Restore state.

The TransitoryConditionsMet() function is used by the state machine of the
node to determine proper timing of the transition from the Restore state to the
Maintain state. This function keeps track of the accept events, by increment-
ing the Accept Event Counter, to determine if at least 2F accept events in as
many ΔAA intervals have occurred. It returns a true value when the transitory
conditions (Section 3.2) are met.

The TimeOutRestore() function uses PT as a boundary value and asserts a
timeout condition when the value of the State Timer has reached PT . Such time-
out triggers the node to reengage in another round of self-stabilization process.
This function is used when the node is in the Restore state.

The TimeOutMaintain() function uses PM as a boundary value and asserts
a timeout condition when the value of the State Timer has reached PM . Such
timeout triggers the node to reengage in another round of synchronization. This
function is used when the node is in the Maintain state.

In addition to the above functions, the state machine utilizes the TimeOutAc-
ceptEvent() function. This function is used to regulate the transmission time of
the next Affirm message. This function maintains a DeltaAA Timer by incre-
menting it once per local clock tick and once it reaches the transmission time
of the next Affirm message, ΔAA, it returns a true value. In the advent of such
timeout, the node transmits an Affirm message.

3.5 System Assumptions

1. The source of the transient faults has dissipated.
2. All good nodes actively participate in the self-stabilization process and exe-

cute the protocol.
3. At most F of the nodes are faulty.
4. The source of a message is distinctly identifiable by the receivers from other

sources of messages.
5. A message sent by a good node will be received and processed by all other

good nodes within ΔAA, where ΔAA ≥ (D + d).
6. The initial values of the state and all variables of a node can be set to any

arbitrary value within their corresponding range. In an implementation, it
is expected that some local capabilities exist to enforce type consistency of
all variables.

3.6 The Self-stabilizing Clock Synchronization Problem

To simplify the presentation of this protocol, it is assumed that all time ref-
erences are with respect to a real time t0 when the system assumptions are
satisfied and the system operates within the system assumptions. Let

420 M.R. Malekpour

• C be the maximum convergence time,
• ΔLocal Timer(t), for real time t, the maximum time difference of the Lo-

cal Timers of any two good nodes N i and N j , and
• ΔPrecision the maximum guaranteed self-stabilization precision between the

Local Timer ’s of any two good nodes N i and N j in the presence of a maxi-
mum of F faulty nodes, ∀ N i , N j ∈ KG .

Convergence: From any state, the system converges to a self-stabilized state
after a finite amount of time.

1. N i , N j ∈ KG , ΔLocal Timer(C) ≤ ΔPrecision .
2. ∀ N i , N j ∈ KG , at C, N i perceives N j as being in the Maintain state.

Closure: When all good nodes have converged to a given self-stabilization pre-
cision, ΔPrecision , at time C, the system shall remain within the self-stabilization
precision ΔPrecision for t ≥ C, for real time t.

∀ N i , N j ∈ KG , t ≥ C, ΔLocal Timer(t) ≤ ΔPrecision ,

where, C = (2PT + PM) ΔAA,

ΔLocal Timer(t) = min(max(Local Timer i , Local Timer j) -
min(Local Timer i , Local Timer j),
max(Local Timer i - �ΔPrecision , Local Timer j - �ΔPrecision) -
min(Local Timer i - �ΔPrecision , Local Timer j - �ΔPrecision)),

where,

(Local Timer - �ΔPrecision) is the �ΔPrecision th previous value of the Lo-
cal Timer,

ΔPrecision = (3F - 1) ΔAA - D + ΔDrift ,

and the amount of drift from the initial precision is given by
ΔDrift = ((1+ρ) - 1/(1+ρ)) PM ΔAA.

4 The Byzantine-Fault Tolerant Self-stabilizing Protocol
for Distributed Clock Synchronization Systems

The presented protocol is described in Figure 5 and consists of a state machine
and a set of monitors which execute once every local oscillator tick.

Semantics of the pseudo-code:
• Indentation is used to show a block of sequential statements.
• ‘,’ is used to separate sequential statements.
• ‘.’ is used to end a statement.
• ‘.,’ is used to mark the end of a statement and at the same time to separate

it from other sequential statements.

A Byzantine-Fault Tolerant Self-stabilizing Protocol 421

Fig. 5. The self-stabilization protocol

5 Proof of the Protocol

The approach for the proof is to show that a system of K ≥ 3F + 1 nodes
converges from any condition to a state where all good nodes are in the Main-
tain state. This system is then shown to remain within the timing bounds of the

422 M.R. Malekpour

self-stabilization precision of ΔPrecision . A sketch of the proof of the protocol is
presented here. Details of the proof are documented in [14].

Assumptions: All good nodes are active and the system operates within the
system assumptions. In this proof, unless otherwise stated in the Lemmas and
Theorems, no other assumptions are made about the system.

A node behaves properly if it executes the protocol.

Theorem. ResyncWithinPT –A good node remaining in the Restore state trans-
mits a Resync message within at most PT ΔAA clock ticks.

Lemma. DeltaRRmin – The shortest time interval between any two consecu-
tive Resync messages from a good node is 2FΔAA + 1 clock ticks.

Theorem. RestoreToMaintain – A good node in the Restore state will always
transition to the Maintain state.

From Theorem RestoreToMaintain, the maximum possible transitory delay for
a node in the Restore state is 8FΔAA. However, in order to allow the node to
transition to the Maintain state at the next ΔAA, it has to be prevented from
timing out. Therefore, the required minimum period, PT ,min is constrained to
be PT ,min = (8F+2) ΔAA. Although PT can be any value larger than PT ,min ,
it follows from Theorem RestoreToMaintain that it cannot exceed that mini-
mum value. Also, in order to expedite the self-stabilization process, the con-
vergence time has to be minimized. Thus, PT is constrained to PT ,min . The
self-stabilization period for the Maintain state, PM , is typically much larger
than PT . Thus, PM is constrained to be PM ≥ PT .

Corollary. RestoreToMaintainWithin2PT – A good node in the Restore state
will always transition to the Maintain state within 2PT .

All good nodes validate an Affirm message from a good node if the minimum
arrival time requirement for that message is not violated. By Lemma DeltaR-
Rmin, consecutive Resync messages from a good node are always more than
ΔRR,min apart. Therefore, after a random start-up, it takes more than ΔRR,min
clock ticks for Resync messages from a good node to be accepted by all other
good nodes. If a node is in the Restore state, from Theorem ResyncWithinPT ,
it will either time out and transmit a Resync message within PT or from The-
orem RestoreToMaintain and Corollary RestoreToMaintainWithin2PT , it will
transition to the Maintain state within 2PT . Therefore, for the proof of this
protocol, and for the following lemmas and theorems, the state of the system is
considered after 2PT ΔAA clock ticks from a random start. At this point, the
system is in one of the following three states and all messages from the good
nodes meet their timing requirements at the receiving good nodes.

A Byzantine-Fault Tolerant Self-stabilizing Protocol 423

1. None of the good nodes are in the Maintain state
2. All good nodes are in the Maintain state
3. Some of the good nodes are in the Maintain state

Theorem. ConvergeNoneMaintain – A system of K ≥ 3F + 1 nodes, where
none of the good nodes are in the Maintain state and have not met the transi-
tory conditions, will always converge.

The self-stabilization precision, ΔPrecision , is the maximum time difference
between the Local Timer ’s of any two good nodes when the system is stabi-
lized. It is, therefore, the guaranteed precision of the protocol. From Theorem
ConvergeNoneMaintain, the initial precision after the resynchronization is de-
termined to be ΔLMEM = (3F - 1) ΔAA - D. After the initial synchrony and due
to the drift rate of the oscillators, Local Timers of the good nodes will deviate
from the initial precision. Therefore, the guaranteed self-stabilization precision,
ΔPrecision , after elapsed time of PM ΔAA clock ticks, is bounded by, ΔPrecision

= ΔLMEM + ΔDrift , where the amount of drift from the initial precision is given
by ΔDrift = ((1+ρ) - 1/(1+ρ)) PM ΔAA. The factors (1+ρ) and 1/(1+ρ) are,
respectively, associated with the slowest and fastest nodes in the system. There-
fore, ΔPrecision = (3F - 1) ΔAA - D + ΔDrift .

Corollary. MutuallyStabilized – All good nodes mutually perceive each other
as being in the Maintain state.

Theorem. ConvergeAllMaintain – A system of K ≥ 3F + 1 nodes, where all
good nodes are in the Maintain state, will always converge.

Theorem. ConvergeSomeMaintain – A system of K ≥ 3F + 1 nodes, where
some of the good nodes are in the Maintain state will always converge.

Theorem. ClosureAllMaintain – A system of K ≥ 3F + 1 nodes, where all
good nodes have converged such that all good nodes are mutually stabilized with
each other (in other words, all good nodes are in the Maintain state where
ΔLocal Timer(t) ≤ ΔPrecision), shall remain within the self-stabilization preci-
sion ΔPrecision .

Corollary. StateTimerLessThanPrecision – In a stabilized system and during
the re-stabilization process, the maximum value of the State Timer is always less
than the self-stabilization precision ΔPrecision .

Therefore, the Local Timer can be reset at any point where State Timer is
greater than or equal to the precision. In order to expedite the self-stabilization
process, Local Timer is reset when State Timer reaches the next integer value
greater than ΔPrecision , i.e. �ΔPrecision .

424 M.R. Malekpour

Theorem. LocalTimerWithinPrecision – The difference of Local Timers of all
good nodes in a stabilized system of K ≥ 3F + 1 nodes will always be within the
self-stabilization precision, i.e. ΔLocal Timer(t) ≤ ΔPrecision .

Theorem. StabilizeFromAnyState – A system of K ≥ 3F + 1 nodes self-
stabilizes from any random state after a finite amount of time.

Proof – The proof of this theorem consists of proving the convergence and clo-
sure properties as defined in the Self-Stabilizing Clock Synchronization Problem
section.

Convergence – From any state, the system converges to a self-stabilized state
after a finite amount of time.
1. Ni, Nj ∈ KG, ΔLocal T imer(C) ≤ ΔPrecision.
2. ∀ Ni, Nj ∈ KG, at C, Ni perceives Nj as being in the Maintain state.

Proof – The proof is done in the following four parts:

Convergence – None of the good nodes are in the Maintain state.

Proof – It follows from Theorems ConvergeNoneMaintain and ClosureAllMain-
tain that such system always self-stabilizes.

Convergence – All good nodes are in the Maintain state.

Proof – It follows from Theorems ConvergeNoneMaintain, ConvergeAllMaintain
and ClosureAllMaintain that such system always self-stabilizes.

Convergence – Some of the good nodes are in the Maintain state.

Proof – It follows from Theorems ConvergeNoneMaintain, ConvergeAllMaintain,
ConvergeSomeMaintain, and ClosureAllMaintain that such system always self-
stabilizes.

Mutually Stabilized –∀ N i , N j ∈ KG , at C, N i perceives N j as being in the
Maintain state.

Proof – It follows from Corollary MutuallyStabilized that all good nodes mutu-
ally perceive each other to be in the Maintain state.

Closure – When all good nodes have converged such that ΔLocal Timer(C) ≤
ΔPrecision , at time C, the system shall remain within the self-stabilization preci-
sion ΔPrecision for t ≥ C, for real time t.

∀ N i , N j ∈ KG , t ≥ C, ΔLocal Timer(t) ≤ ΔPrecision .

Proof – It follows from Theorems ClosureAllMaintain and LocalTimerWithin-
Precision that such system always remains stabilized and ΔLocal Timer(t) ≤
ΔPrecision for t ≥ C. ♦

A Byzantine-Fault Tolerant Self-stabilizing Protocol 425

This protocol neither maintains a history of past behavior of the nodes nor does
it attempt to classify the nodes into good and faulty ones. Since this protocol
self-stabilizes from any state, initialization and/or reintegration are not treated
as special cases. Therefore, a reintegrating node will always be admitted to par-
ticipate in the self-stabilization process as soon as it becomes active. Continual
transmission of the Affirm messages by the good nodes expedites the reintegra-
tion process.

Theorem. ConvergeTime – A system of K ≥ 3F + 1 nodes converges from
any random state to a self-stabilized state within C = (2PT + PM) ΔAA clock
ticks.

If PM = PT , then C = 3PM , but since typically PM >> PT , therefore, C can
be approximated to C ∼= PM . Therefore, the convergence time of this protocol
is a linear function of the PM .

6 Achieving Tighter Precision

Since the self-stabilization messages are communicated at ΔAA intervals, if ΔAA,
and hence ΔPrecision , are larger than the desired precision, the system is said
to be Coarsely Synchronized. Otherwise, the system is said to be Finely
Synchronized. If the granularity provided by the self-stabilization precision
is coarser than desired, a higher synchronization precision can be achieved in
a two step process. First, a system from any initial state has to be Coarsely
Synchronized and guaranteed that the system remains Coarsely Synchronized
and operates within a known precision, ΔPrecision . The second step, in con-
junction with the Coarse Synchronization protocol, is to utilize a proven pro-
tocol that is based on the initial synchrony assumptions to achieve optimum
precision of the synchronized system. The Coarse Synchronization protocol ini-
tiates the start of the Fine Synchronization protocol if a tighter precision of
the system is desired. The Coarse protocol maintains self-stabilization of the
system while the Fine Synchronization protocol increases the precision of the
system.

7 Conclusions

In this paper, a rapid Byzantine self-stabilizing clock synchronization protocol
is presented that self-stabilizes from any state. It tolerates bursts of transient
failures, and deterministically converges with a linear convergence time with
respect to the self-stabilization period. Upon self-stabilization, all good clocks
proceed synchronously. This protocol has been the subject of a rigorous veri-
fication effort. A 4-node system consisting of 3 good nodes and one Byzantine
faulty node has been proven correct using model checking. The proposed proto-
col explores the timing and event driven facets of the self-stabilization problem.
The protocol employs monitors to closely observe the activities of the nodes in

426 M.R. Malekpour

the system. All timing measures of variables are based on the node’s local clock
and thus no central clock or externally generated pulse is used. The proposed
protocol is scalable with respect to the fundamental parameters, K, D, and d.
The self-stabilization precision ΔPrecision , ΔLocal Timer(t), and self-stabilization
periods PT and PM are functions of K, D and d. The convergence time is a
linear function of PT and PM and deterministic. Therefore, although there is
no theoretical upper bound on the maximum values for the fundamental param-
eters, implementation of this protocol may introduce some practical limitations
on the maximum value of these parameters and the choice of topology. Since
only two self-stabilization messages, namely Resync and Affirm messages, are
required for the proper operation of this protocol, a single bit suffices to represent
both messages. Therefore, for a data message w bits wide, the self-stabilization
overhead will be 1/w per transmission.

A sketch of proof of this protocol has been presented in this paper. This
protocol is expected to be used as the fundamental mechanism in bringing and
maintaining a system within bounded synchrony. Integration of a higher level
mechanism with this protocol needs to be further studied. Furthermore, if a
higher level secondary protocol is non-self-stabilizing, it is conjectured that it can
be made self-stabilizing when used in conjunction with the protocol presented
here. We have started formalizing the integration process of other protocols with
this protocol in order to achieve tighter synchronization. We are also planning
to implement this protocol in hardware and characterize it in a representative
adverse environment.

References

1. L Lamport, R Shostak, and M Pease, The Byzantine General Problem, ACM Trans-
actions on Programming Languages and Systems, 4(3), pp. 382-401, July 1982.

2. K Driscoll, B Hall, H Sivencronam, and P Zumsteg, Byzantine Fault Tolerance,
from Theory to Reality: Computer Safety, Reliability, and Security, Publisher:
Springer-Verlag Heidelberg, ISBN: 3-540-20126-2, Volume 2788 / 2003, October
2003, pp. 235 – 248

3. L Lamport and P M Melliar-Smith, Synchronizing clocks in the presence of faults,
J. ACM, vol. 32, no. 1, pp. 52-78, 1985.

4. D Dolev, J Y Halpern, and R Strong, On the Possibility and Impossibility of Achiev-
ing Clock Synchronization, proceedings of the 16th Annual ACM STOC (Washing-
ton D.C., Apr.). ACM, New York, 1984, pp. 504-511. (Also appear in J. Comput.
Syst. Sci.)

5. B W Dijkstra, Self stabilizing systems in spite of distributed control, Commun.
ACM 17,643-644m 1974.

6. T K Srikanth and S Toueg, Optimal Clock Synchronization, proceedings of the
Fourth Annual ACM Symposium on Principles of Distributed Computing, 1985,
pp. 71-86.

7. J L Welch and N Lynch, A New Fault-Tolerant Algorithm for Clock Synchroniza-
tion, Information and Computation volume 77, no. 1, April 1988, pp.1-36.

8. S Dolev and J L Welch, Self-Stabilizing Clock Synchronization in the Presence of
Byzantine Faults, Journal of the ACM, Vol.51, Np. 5, September 2004, pp. 780-799.

A Byzantine-Fault Tolerant Self-stabilizing Protocol 427

9. D. Dolev, J. Y. Halpern, B. Simons, and R. Strong, Dynamic Fault-Tolerant Clock
Synchronization, J. ACM, Vol. 42, No.1, 1995.

10. A Daliot, D Dolev, and H Parnas, Self-Stabilizing Pulse Synchronization Inspired
by Biological Pacemaker Networks, Proceedings of the Sixth Symposium on Self-
Stabilizing Systems, DSN SSS ’03, San Francisco, June 2003.

11. A Daliot, D Dolev, and H Parnas, Linear Time Byzantine Self-Stabilizing Clock
Synchronization, Proceedings of 7th International Conference on Principles of Dis-
tributed Systems (OPODIS-2003), La Martinique, France, December 2003.

12. M R Malekpour and R Siminiceanu, Comments on the “Byzantine Self-Stabilizing
Pulse Synchronization” Protocol: Counterexamples, NASA/TM-2006-213951, Feb
2006, pp. 7.

13. H Kopetz, Real-Time Systems, Design Principles for Distributed Embedded Appli-
cations, Kluwar Academic Publishers, ISBN 0-7923-9894-7, 1997.

14. M R Malekpour, A Byzantine-Fault Tolerant Self-Stabilizing Protocol for
Distributed Clock Synchronization Systems, NASA/TM-2006-214322, August
2006, pp. 37.

A Memory Efficient Self-stabilizing Algorithm

for Maximal k-Packing

Fredrik Manne and Morten Mjelde

Department of Informatics, University in Bergen, Norway
{fredrik.manne, mortenm}@ii.uib.no

Abstract. The k-packing problem asks for a subset S of the nodes in a
graph such that the distance between any pair of nodes in S is greater
than k. This problem has applications to placing facilities in a network.

In the current paper we present a self-stabilizing algorithm for com-
puting a maximal k-packing in a general graph. Our algorithm uses a
constant number of variables per node. This improves the memory re-
quirement compared to the previous most memory efficient algorithm [9]
which used k variables per node. In addition the presented algorithm is
very short and simple.

Keywords: self-stabilizing algorithms, k-packing.

1 Introduction

Facility location problems in a network involve distributing a set of resources
such that the entire network is covered. Depending on the objective these can
either be minimization problems where one wants to use as few resources as
possible while covering the graph or maximization problems where one wants to
distribute as many resources as possible under some constraint. There exists a
number of such problems and they have been extensively studied in the literature
of sequential algorithms [1,10,12,13].

In this paper we present a self-stabilizing distributed algorithm for one such
problem, namely the k-packing problem. This involves selecting a set S of nodes
such that the length of the shortest path between any pair of nodes (v, w) ∈ S
is greater than k (a 1-packing is better known as an independent set). The set
S is referred to as black nodes while the remaining nodes are referred to as
white. A maximum k-packing implies that S is the set with largest cardinality,
and finding this is NP-hard on a general graph [6]. The simpler problem of
computing a maximal k-packing (i.e. no superset of S is also a legal solution)
can easily be solved by a sequential greedy algorithm in linear time.

Previous work on developing self-stabilizing algorithms for the k-packing prob-
lem has resulted in several different algorithms. Gairing et al. gave an algorithm
that computed a maximal 2-packing on a general graph [5]. This algorithm used an
exponential number of moves and a constant number of variables per node. God-
dard et al. subsequently developed a self-stabilizing algorithm for solving maximal
k-packing on a general graph [9]. This algorithm used an exponential number of

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 428–439, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 429

moves, and k variables per node. In a recent paper Goddard et al. also presented
a self-stabilizing algorithm for the same problem that runs in nO(log k) moves [8].
However, this algorithmrequires that eachnode stores informationabout the graph
within a radius of k from itself, thus substantially increasing the memory require-
ments. We also note that there exists a self-stabilizing algorithm for computing a
maximum k-packing on a tree graph with a moves complexity of O(n3) [11].

From the above exposition it follows that there is a trade off between the
number of moves and the amount of memory used on each node when design-
ing self-stabilizing algorithms for computing a maximal k-packing on a general
graph. In fact, if one first computed a spanning tree in the graph, a task which
is considerable simpler than computing a maximal k-packing [7], one could copy
the structure of the entire graph into each node in a polynomial number of
moves [2] and then solve the maximal k-packing problem by a local determin-
istic sequential algorithm on each node. The same approach could also be used
to compute a maximum k-packing (although this would require an exponential
local running time on every node).

In this paper we fill in one part in this trade off between moves complexity and
memory usage. We present an algorithm that computes a maximal k-packing for
a general graph using only a constant number of variables per node, each of which
hold at most O(log n) bits. However, the moves complexity of the algorithm is still
exponential. In addition to using less memory than other algorithms for this prob-
lem the algorithm itself is very short, and thus easy to understand and implement.

Limiting the amount of memory is an important factor in many applications
such as in sensor networks where the computational units are small and rely on
battery power to operate.

The rest of this paper is organized as follows. In Section 2 we present some
background on self-stabilizing algorithms. In Section 3 we present our algorithm
and show that any stable solution produced by it is also a legal solution and that
it will stabilize in a finite amount of time. Finally, we conclude in Section 4.

2 The Self-stabilizing Paradigm

Self-stabilizing algorithms are a variant of distributed systems first introduced by
Dijkstra in 1974 [3]. However, the significance of the work was not immediately
recognized, and serious work did not begin until the late 1980’s. One of the most
important properties of any self-stabilizing algorithm is its ability to recover
from any transient errors that occurs, and even changes in the graph itself. This
ability makes self-stabilizing algorithms extremely fault tolerant.

A self-stabilizing algorithm does not assume the existence of a central leader.
Instead, all nodes in the graph are considered equals, and each of them has the
same copy of the algorithm. Each node maintains a set of variables that together
make up the nodes local state. The union of all local states is the graphs global
state. In the normal self-stabilizing model any node has knowledge only of its
own and its neighbors’ local states. The algorithm itself is comprised of a set of
rules. These are typically written in the form:

430 F. Manne and M. Mjelde

Rule i
if p(v)
then M

The function p(v) is called the predicate, and M is called the move. The predicate
takes the node v as a parameter, and becomes true or false based on v’s local
state and the local state of its neighbors. The move M will change one or more
of v’s local variables. If the predicate is true the rule is called privileged, and
only then can it execute its corresponding move. For cases where there are more
than one privileged rule in the graph, the self-stabilizing model assumes the
existence of a central daemon that determines which rules will be permitted
to make its move. Various self-stabilizing algorithms employ different daemons,
and for the current algorithm we assume an adversarial daemon (as opposed
to a fair or random daemon). Regardless of the type of daemon used any self-
stabilizing algorithm has to guarantee to reach a solution in a finite number of
moves independent of the starting configuration. This is called to stabilize and
implies that no node in the graph has a privileged rule. For further reading on
self-stabilizing algorithms, see [4].

For our algorithm we assume the existence of an undirected graph G = (V, E)
where V is the set of nodes and E the set of edges. We further assume that each
node has a unique ID, and that these IDs can be ordered. The ID of a node v
is denoted by IDv. The set of nodes N(v) is the open neighborhood of v, and
contains all the neighbors of v.

3 The Algorithm

In the following we present and analyze our new algorithm. It is based on each
node determining the distance to its two nearest black nodes (possibly including
itself). Based on this information a node can then determine if it should be black
or white.

3.1 The Local Variables

As mentioned in Section 2, each node in a self-stabilizing algorithm maintains a
set of local variables that make up the nodes local state. In our algorithm, each
node v ∈ V has two pairs of variables: (pv, bv) and (p′v, b′v). The intention is that
pv denotes the shortest distance (i.e. number of edges) to v’s closest black node
y and with bv = IDy. The pair (p′v, b

′
v) gives the same information about v’s

second closest black node (assuming it exists). The range of pv is [0,∞] while
the range of p′v is [1,∞]. It then follows that in a stable configuration the black
nodes are identified by having p-values equal to 0 and p′-values larger than k.

In the case where a node has more than one black node at a minimum distance
from it we say that the black node with the smallest ID-value is the closest one.
Thus the term “closest black node” will always be well defined.

As we will explain in further detail later, the purpose of the (p′, b′) values is
for every black node in the graph to gain knowledge of its closest black node
other than itself.

A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 431

3.2 Definitions and Notations

Based on the local variables of each node we now give some definitions and
notations that we will be using. This is done to make the ensuing presentation
clearer and also more compact.

Two adjacent nodes v and w where bv = bw and pv = pw + 1 belong to the
same domain and we say that w is a predecessor of v in the domain. A node v
that does not have a predecessor is a leader of the domain. The domain relation
is transitive and thus each domain is a connected component of the graph. We
will also say that adjacent nodes v and w where either b′v = bw and p′v = pw + 1
or b′v = b′w and p′v = p′w +1 belong to the same domain. Thus a node can belong
to two domains at the same time depending on if we are looking at the (pv, bv)
or (p′v, b

′
v) values.

A domain U is proper if v is a leader of U and there exists a node w such
that bv = IDw. Note that w does not have to be part of U for U to be proper.
A domain that is not proper is improper.

We define the set Tv for a node v as being the pair (pv, bv) and (p′v, b
′
v). We

further define the set TM for some set of nodes M as ∪v∈MTv.

3.3 The Algorithm

The algorithm consists of one function and one rule. These are as follows:

support(v)
(α, β) = min{(γ, δ) ∈ TN(v) : δ �= IDv}
(α′, β′) = min{(γ, δ) ∈ TN(v) : δ �= IDv, δ �= β}

if (α ≥ k) ∨ (pv = 0 ∧ β > IDv)
return (0, IDv, α + 1, β)

else
return (α + 1, β, α′ + 1, β′)

Rule 1
if (pv, bv, p

′
v, b

′
v) �= support(v)

then set (pv, bv, p
′
v, b

′
v) = support(v)

The purpose of the support function is to return the correct (p, b) and (p′, b′)
values for a node v based on the local state of v and its neighbors. The function
starts by selecting a pair (α, β) from TN(v) such that α is as small as possible
while β �= IDv. In the case of a tie a pair with the smallest β value is selected.
Next the function selects a pair (α′, β′) in the same manner as above only with
the added constraint that β′ �= β. In both of the above cases, if no valid pair can
be found in TN(v) the pair (∞,∞) will be used.

Based on the selected values the function will now determine if v should be
black or not. With the assumption that (α, β) represents the distance to the
closest black node (other than v itself) it follows that either if α ≥ k or if pv = 0
(indicating that v is at present black) and the closest black node has higher ID

432 F. Manne and M. Mjelde

than v (β > IDv) then v can become (or remain) black. In the case where the
above condition was met, the function returns (0, IDv, α + 1, β), where the first
pair of values indicates that v should be black and the second pair gives the
distance and ID of the closest black other than v itself.

If v should not be black then it should become (or remain) white. All it has
to do in this case is to gather data about its two closest black nodes. Thus the
function returns (α + 1, β, α′ + 1, β′).

Rule 1 is the only rule in the algorithm. It simply determines if one or more of
the values returned by the support function does not correspond to the node’s
current values. If this is the case, the node is privileged for a move that corrects
them.

3.4 Correct Stabilization

We now show that the algorithm, when stable, has solved the maximal k-packing
problem. To do so we first show that in a stable configuration the values of p
and p′ will be set to the distance of the nearest and second nearest black node
respectively.

We again remind the reader that in the case where a node v has more than
one black node at minimum distance we will break ties by defining that which
ever has the smallest ID is the one closest to v. Note that this is consistent with
how the support function operates.

Lemma 1. Let (pv, bv) be the local values for a node v ∈ V in a stable configu-
ration. Then there exists a black node y such that y is the closest black node to
v of distance pv from v and such that IDy = bv.

Proof. Note first that we cannot have a node v with pv > k in a stable
configuration.

The proof of the claim is by induction on the value of pv. If pv = 0 then
v is black, and must have bv = IDv in a stable configuration. Assume
therefore that the claim is true for every w ∈ V where pw < l, 1 < l ≤ k,
and let v ∈ V be a node such that pv = l. Then by the construction
of the support function there must exist a node u ∈ N(v) such that
pu = pv −1 = l−1 and bv = bu. From the induction claim it follows that
there exists a black node y such that bu = IDy where y is the closest
black node at a distance l−1 from u. We therefore have that there exists
a path of length l between v and the black node y where bv = IDy.

If there was to exist a path from a black node x to v of length less
than l or of length l but with IDx < bv, then again by the induction
hypothesis there must exist a node z ∈ N(v) such that either pz +1 < pv

or pz + 1 = pv and bz < bv. In both of these cases v would be privileged
for a move. ��

Corollary 1. In a stable configuration, the maximum distance from any node
to a black node is at most k.

A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 433

Proof. Consider a white node v in a stable solution that has minimum
distance > k to the nearest black node. By Lemma 1 it then follows
that every w ∈ N(v) has pw ≥ k in which case the support function will
return 0 for pv thus contradicting the assumption that the configuration
is stable. ��

We now need to show that we cannot have two black nodes in a stable configu-
ration that are closer to each other than k. To do so we first show that the value
of p′v will be set to the distance to the second closest black node of a node v.

Lemma 2. Let (p′v, b′v) be the local values for some node v ∈ V in a stable
configuration containing at least two black nodes. Then there exists a black node
y such that y is the second closest black node to v of distance p′v from v and such
that IDy = b′v.

Proof. Note first that by the construction of the support function each
node that has 0 < p′v < ∞ in a stable configuration must have a neighbor
w where either (pw+1, bw) = (p′v, b′v) and bw �= bv or where (p′w+1, b′w) =
(p′v, b′v) and bw = bv. Thus starting from v there exists a path along
decreasing p or p′ values such that the b-value is unchanged. If the path
makes use of a p-value then since the p-values do not depend on the p′-
values, the path will lead to a black node. This must eventually happen
since a value of p′ = 1 must have been obtained from a black neighbor.
Thus it follows that if p′v = l then there exists a path of length l from v
to a black node y such that b′v = IDy. It now remains to show that this
path is the shortest path from v to a black node different from bv.

Let v be a node with bv = IDx in a stable configuration such that
among the nodes with b-value set to IDx, v has the shortest distance
l to a black node y where y �= x. Let y = w0, w1, . . . , wl−1, v be the
nodes on this path. Then y must be the closest black node to each wi,
1 ≤ i < l, and by Lemma 1 we must have pwi = i and bwi = IDy. The
support function applied to v then has the opportunity to return the
pair (l, bwl−1 = IDy) for (p′v, b

′
v). If it does not do so then this would

indicate that there exists a black node different from x that is closer to
v than y is. This is a contradiction and the result follows.

Assume by induction that p′v and b′v are set correctly for every node
with both bv = IDx and with shortest distance r, r ≥ l, to a black
node other than x. Let v now be a node with shortest distance r + 1
to a black node y other than x. Then if the shortest path from v to y
does not pass through any node with b-value set to x the same argument
as above shows that we must have p′v = r + 1 and b′v = IDy. If the
shortest path y = w0, w1, . . . , wr, v does pass through at least one node
with bwi = IDx then we must have bwr = IDx. This follows since as
soon as the shortest path from v to y leaves the x-domain it will not
re-enter it. Thus by induction we have p′wr

= r and b′wr
= IDy and in a

stable configuration we must have p′v = r + 1 and b′v = IDy. ��

434 F. Manne and M. Mjelde

Note that if there is only one black node y in G then each node v will have
bv = y and the pair (p′v, b′v) will be set to (∞,∞).

From Lemmas 1 and 2 it follows that in a stable configuration any white node
v has pv equal to the distance to the nearest black node while any black node w
has p′w equal to the distance to the nearest black node other than itself. Thus if
x and y are the two closest black nodes and with IDx < IDy and distance l from
each other where l ≤ k then in a stable configuration we will have p′y = l and
b′y ≤ IDy. But with this configuration y cannot keep py = 0 and is privileged
for a move. Thus we have the following result.

Lemma 3. In a stable configuration there does not exist a pair of black nodes
where the minimum distance between them is less than or equal to k.

Putting all of this together it is now straightforward to show that a stable solu-
tion is also a maximal k-packing.

Theorem 1. A stable configuration is a maximal k-packing.

Proof. From Lemma 3 it follows that in a stable configuration there
cannot exist black nodes within distance k of each other. Further from
Corollary 1 we know that there cannot exist a non-privileged white node
with distance greater than or equal to k to every black node in the graph.
Thus it follows that a stable configuration is a maximal k-packing. ��

3.5 Convergence

Now that we have shown that once the algorithm stabilizes it has reached a valid
solution we proceed to show that the algorithm will do so in a finite amount of
steps. To reduce the complexity of the presentation we will assume that the al-
gorithm in each move either updates (pv, bv) or (p′v, b′v) (and not both). While
this is not entirely keeping with how Rule 1 functions, making this assump-
tion does not affect the correctness of the analysis. Consider that once the sup-
port function for a node v has returned, updating the two pairs (pv, bv) and
(p′v, b

′
v) can be regarded as two separate moves where one has no bearing on the

other.
Starting with (pv, bv) we first divide the execution of Rule 1 into three differ-

ent cases depending on the outcome of the move. These three cases are as follows:

Black move. A node is said to make a black move if after the move it has
changed its color from white to black.

Decremental move. A node v is said to make a d-move if it has changed
pv to p̄v and bv to b̄v such that either p̄v < pv or b̄v < bv ∧ p̄v = pv.

Incremental move. A node v is said to make an i-move if it has changed
pv to p̄v and bv to b̄v such that either p̄v > pv or b̄v > bv ∧ p̄v = pv.

A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 435

Note that we label a move by the first condition in increasing order that
evaluates to true. For example, a node makes a black move if it has become
black, even if the move also qualified as a d-move. We note that both the d-
and i-moves can be defined for the (p′, b′)-values. It is then straightforward
to see that the three different types of moves cover every possible move that
the algorithm can make. In the following we will first reason that we cannot
have an infinite sequence of d- and i-moves when only applied to the (p, b)-
values.

To be able to reason about what causes a node to make a move we note that a
locally stable node v can only become privileged and make a new move if one of
its neighbors x first makes a move. If this is the first move among the neighbors
of v that causes v to become privileged we will say that the move made by x
initiated the subsequent move by v. With this definition we can now show the
following result.

Lemma 4. A d-move cannot initiate an i-move.

Proof. Consider a locally stable node v with values pv and bv. Then if v
is white there must exist a node w ∈ N(v) such that pw + 1 = pv and
bw = bv. If v is to make an i-move there cannot exist any node u ∈ N(v)
with either pu < pv−1 or with pu = pv−1 and bu ≤ bv. In the case where
w does not make a move this is not true. Also, if w makes a d-move then
w must decrease either its p-value or b-value (or both). In either case the
condition for v to make an i-move is not satisfied.

If v is a locally stable black node then it will only make an i-move if
some neighbor w has pw < k and bw < IDv. But if this is not the case
prior to when w makes an i-move it will not be true after the move. ��

From Lemma 4 it follows that in a sequence of moves by the nodes of G that
consists entirely of d- and i-moves one can analyze the number of i-moves inde-
pendently from the d-moves. We will do this in the following, but first we show
how many consecutive d-moves there can be.

Lemma 5. The number of consecutive d-moves is at most O(n2k).

Proof. After a node has executed its initial move (which might be a d-
move) it will have a p-value in the range [0, k]. Thus it follows that a node
can at most decrement its p-value k times before it has to make an i-
move. In addition a node can decrease its b-value while keeping its p-value
fixed. Each node in the graph can at most give rise to one unique b-value.
In addition there might be n additional b-values in the graph due to the
initial values. Thus for a fixed p-value a node might decrease its b-value
at most 2n times. This gives a total of at most 2nk d-moves per node. ��

Next, we analyze the i-moves and show that any sequence consisting entirely of
i-moves must stabilize.

436 F. Manne and M. Mjelde

Lemma 6. There cannot be an infinite sequence of i-moves.

Proof. Let β1, β2, . . . , βl, 1 ≤ l ≤ 2n, be an increasing sequence contain-
ing the set of distinct b-values that are used during the execution of the
algorithm. This contains the values given by the IDs of the nodes as well
as any initial b-values.

Define a vector A = [a(0,β1), a(0,β2), . . . , a(0,βl), a(1,β1), a(1,β2), . . . ,
a(1,βl), . . . , a(k,β1), a(k,β2), . . . , a(k,βl)] where entry a(i,βj) is the number
of nodes in the graph at any one time with p-value equal to i and b-value
equal to βj that are privileged for an i-move. Note that only a node v
with 0 ≤ pv < k can be privileged for an i-move, thus every node that
is privileged for an i-move is represented in A and the sum of the ele-
ments in A is always bounded by n. We will now show that if an i-move
changes A to A′ then A > A′ where the comparison is done by viewing
each vector as a number consisting of at most 2(k + 1)n digits.

Consider a node v that makes an i-move and let pv, bv be the associated
values of v before the move. Then the value in position (pv, bv) of A will
be reduced by one and since v will not be privileged for a new i-move im-
mediately after this move v will not directly cause any other entry in A to
change. In addition, any node w ∈ N(v) that had v as its only neighbor-
ing node with either pv < pw −1 or with pv = pw −1 and bv ≤ bw before
the move and where either pv > pw−1 or pv = pw−1 and bv > bw is true
after the move has now become privileged for an i-move. If this is the case
the entry a(pw ,bw) will increase by one for each such node w. But since
the initial value of pv is less than pw it follows that A > A′. To see that
any consecutive sequence of i-moves must terminate after a finite number
of moves it is sufficient to note that we cannot have negative numbers
in A and that the sum of the entries in A is always bounded by n. ��

The immediate bound obtained from the proof of Lemma 6 is fairly pessimistic as
there are an exponential number of distinct configurations of the A vector used
in the proof. Still, together with Lemmas 4 and 5 it shows that any sequence
of d-moves and i-moves must stabilize. The only time where the (p′, b′) values
might affect the (p, b) values is when making a black node privileged to perform
an i-move. But then the node ceases to be black and as long as we don’t allow
for any black nodes this can at most happen once for each node.

To see that the i- and d-moves on the (p′, b′) values also must stabilize it is
sufficient to note that for fixed (p, b) values the i- and d-moves on (p′, b′) behaves
in the same way as on the (p, b) values. Thus it follows that between each set of
i- and d-moves on the (p, b) values we can at most have a finite number of i- and
d-moves on the (p′, b′) values. Thus we have the following result.

Lemma 7. Any sequence of i- and d-moves applied to both the (p, b) and (p′, b′)
values is bounded.

It now remains to incorporate the black moves into the analysis. We do this with
in the following.

A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 437

Lemma 8. There cannot be an infinite sequence of black moves.

Proof. Any black node v at the start of the algorithm where bv �= IDv

will be corrected by the first move v makes and thus there can at most be
n such moves. Thus for the rest of the analysis we assume that bv = IDv

for every black node.
Similar to in the proof of Lemma 6 we define the vector A = [a(1,β1),

a(1,β2),. . . , a(1,βl), a(2,β1), a(2,β2),. . . , a(2,βl),. . . , a(k,β1), a(k,β2), . . . , a(k,βl)]
where entry a(j,βi) is the number of nodes in the graph at any one time
with p-value equal to j and b-value equal to βi that are privileged for
an i-move on the (p, b) values. Again, we also assume that the different
values of βi span all possible values (at most 2n) and that βi < βi+1.

It is then clear that only a domain where βi corresponds to the IDv

of some v ∈ V can contain a black node as a leader and there can only
be one such black node at a time (apart from at start up).

Let v be the node with lowest ID among the nodes in G. Then a(0,IDv)

is the leftmost position in A that can correspond to a black node. If v
is black it can only become white due to a node w ∈ N(v) with values
such that either pw < k and bw < bv or that p′w < k and b′w < bv

(in which case bw = bv). Denote the one of bw and b′w that caused
this to happen by b′′w and let U be the domain containing b′′w. Since v
had the lowest ID among the nodes in G it follows that U is improper,
and must have a leader u whose b-value does not equal the ID of any
node.

For v to become black again the value of pw must increase to at
least k. This cannot happen until u makes an i-move and increases
its p-value. Thus between each time v becomes black some node be-
longing to an improper domain must make an i-move. It follows from
the proof of Lemma 6 that this can only happen a finite number of
times.

Now assuming that the r nodes with lowest IDs, r ≥ 1, can only
change between white and black a finite number of times we will show
that this implies that the node v with the (r+1)st smallest ID also only
can change between white and black a finite number of times.

Let R denote the set of domains with lower IDs than v. Then using
the same argument as above it follows that between each time v changes
from black to white some node in R must have executed an i-move. We
know that each such move will cause A < A′ and that any d-moves will
not change any value of A. Thus between each time some domain in R
executes a black move v can only perform a finite number of black moves.
Since by assumption each proper domain in R can only execute a finite
number of black moves the result follows. ��

Combining the results from lemmas 5 through 8 we now have our main result.

Theorem 2. Algorithm Rule 1 will stabilize in a finite number of moves.

438 F. Manne and M. Mjelde

4 Conclusion

We have presented a very simple self-stabilizing algorithm that solves the k-
packing problem. In doing so it only uses a constant number of variables per
node. The main mechanism for solving the problem is a method for a black
node to compute the distance to its nearest black node other than itself. We
believe that this mechanism can be used in designing self-stabilizing algorithms
for other problems that also involves some k-distance property. This is something
we intend to study further in the future.

We do not believe that this idea can be extended to an anonymous network,
since a white node v would not be able to distinguish between black nodes that
are not in N(v).

Still, the main open question is to better understand the trade off between
memory usage and moves complexity in self-stabilizing algorithms. There are
currently few hardness results in terms of moves complexity in the literature on
self-stabilizing algorithms and even if some self-stabilizing algorithms require an
exponential number of moves there is still room for ranking these like one is
currently seeing in the field of exact sequential algorithms.

References

1. C. Berge, Theory of Graphs and its Applications, no. 2 in Collection Universitaire
de Mathematiques, Dunod, Paris, 1958.

2. J. Blair and F. Manne, Efficient self-stabilzing algorithms for tree networks, in
Proceedings of ICDS 2003, The 23rd IEEE International Conference on Distributed
Computing Systems, 2003, pp. 20–26.

3. E. W. Dijkstra, Self-stabilizing systems in spite of distributed control, CACM, 17
(1974), pp. 643–644.

4. S. Dolev, Self-stabilization, MIT press, 2000.
5. M. Gairing, R. M. Geist, S. T. Hedetniemi, and P. Kristiansen, A

self-stabilizing algorithm for maximal 2-packing, Nordic J. Comput., 11 (2004),
pp. 1–11.

6. M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman
and Co., 1978.

7. F. Gärtner, A survey of self-stabilizing spanning-tree algorithms, Tech. Report
IC/2003/38, Swiss Federal Institute of Technology, 2003.

8. W. Goddard, S. Hedetniemi, D. Jacobs, and V. Trevisan, Distance-k infor-
mation in self-stabilizing algorithms, in Proceedings of SIROCCO 2006, 2006. To
appear.

9. W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, Self-
stabilizing global optimization algorithms for large network graphs, Int. J. Dist.
Sensor Networks, 1 (2005), pp. 329 – 344.

10. M. A. Henning, Distance domination in graphs, in Domination in Graphs: Ad-
vanced Topics, T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, eds., Marcel
Dekker, New York, 1998, pp. 321–349.

A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 439

11. M. Mjelde, k-packing and k-domination on tree graphs, master’s thesis, Depart-
ment of Informatics, University of Bergen, Norway, 2004.

12. O. Ore, Theory of Graphs, no. 38 in American Mathematical Society Publications,
AMS, Providence, 1962.

13. P. J. Slater, R-domination in graphs, J. Assoc. Comput. Mach., 23 (1976),
pp. 446–450.

Bounding the Impact of Unbounded Attacks

in Stabilization

Toshimitsu Masuzawa1,� and Sébastien Tixeuil2,��

1 Osaka University, Japan
masuzawa@ist.osaka-u.ac.jp

2 LRI-CNRS UMR 8623 & INRIA Grand Large, France
tixeuil@lri.fr

Abstract. As a new challenge of containing the unbounded influence of
Byzantine processes in self-stabilizing protocols, this paper introduces a
novel concept of strong stabilization. The strong stabilization relaxes the
requirement of strict stabilization so that processes beyond the contain-
ment radius are allowed to be disturbed by Byzantine processes, but only
a limited number of times. A self-stabilizing protocol is (t, c, f)-strongly
stabilizing if any process more than c hops away from any Byzantine
process is disturbed at most t times in a distributed system with at
most f Byzantine processes. Here c denotes the containment radius and
t denotes the containment times.

The possibility and the effectiveness of the strong stabilization is
demonstrated using tree orientation. It is known that the tree orien-
tation has no strictly stabilizing protocol with a constant containment
radius. This paper first shows that the problem has no constant bound
of the containment radius in a tree with two Byzantine processes even
when we allow processes beyond the containment radius to be disturbed
any finite number of times. Then we consider the case of a single Byzan-
tine process and present a (1, 0, 1)-strongly stabilizing protocol, which
achieves optimality in both containment radius and times.

1 Introduction

Self-stabilization [5] is one of the most effective and promising paradigms for
fault-tolerant distributed computing [6]. A self-stabilizing protocol can achieve
its desired behavior eventually regardless of the initial configuration (i.e., global
state). This implies that a self-stabilizing protocol is resilient to any number and
any type of transient faults since it converges to its desired behavior from any
configuration resulting from transient faults. However the convergence to the
� This work is supported in part by MEXT: The 21st Century Center of Excellence

Program, JSPS: Grant-in-Aid for Scientific Research ((B)15300017), MEXT: Grant-
in-Aid for Scientific Research on Priority Areas (16092215) and MIC: Strategic In-
formation and Communications R&D Promotion Programme (SCOPE).

�� This author is supported in part by the FRAGILE and SOGEA projects of the ACI
“Sécurité et Informatique” of the French Ministry of Research. Part of this work was
done while visiting Osaka University.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 440–453, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Bounding the Impact of Unbounded Attacks in Stabilization 441

desired behavior is guaranteed only under the assumption that no further fault
occurs during convergence.

There exist several researches on self-stabilizing protocols that are also re-
silient to permanent and intermittent faults [1,2,3,7,8,9,10,11,12,13]. Most of
those consider only crash faults, and guarantee that each non faulty process
achieves its intended behavior regardless of the initial configuration. Nesterenko
and Arora [11] provided solutions that are self-stabilizing and tolerate an un-
bounded number of Byzantine faults. The main difficulty in this setting is caused
by arbitrary and unbounded state changes of Byzantine processes: processes
around the Byzantine processes may change their states in response to the state
changes of the Byzantine processes, and processes next to those processes may
also change their states. This implies that the influence of Byzantine processes
could spread to the whole system, preventing every process from conforming
to its specification forever. Nesterenko and Arora [11] introduced the concept
of strict stabilization: strictly stabilizing protocols manage to contain the influ-
ence of Byzantine processes within nearby processes, while remaining processes
eventually exhibit expected behavior. The measure for evaluating the contain-
ment quality is the containment radius, which is the maximum distance between
a Byzantine process and a process affected by this Byzantine process. They
also propose strictly stabilizing protocols for the vertex coloring problem and
the dining philosophers problem. The containment radius is one for the vertex
coloring problem and two for the dining philosophers problem. Following their
work, strictly stabilizing protocols for the link-coloring problem are presented for
rooted trees in [12] and for arbitrary anonymous networks in [9]. These protocols
achieve containment radius of two and containment radius of one, respectively.

Limitations of the strict stabilization are also investigated in [11]. The au-
thors introduce the class of r-restrictive problems for which the containment
radius cannot be less than r, and shows that there is no constant bound of the
containment radius for the problem of routing.

Our Contribution: In this paper, to circumvent the aforementioned limita-
tions of strict stabilization, we consider a new way of containing the unbounded
influence of Byzantine processes in self-stabilizing protocols. In more details,
we discuss the possibility of containment concerning the number of times that
correct processes are disturbed by Byzantine ones. The strict stabilization re-
quires that processes beyond the containment radius eventually achieve their
desired behavior and are never disturbed by Byzantine processes afterwards. We
relax this requirement in the following sense: we allow these correct processes
beyond the containment radius to be disturbed by Byzantine processes, but only
a limited number of times.

The most important contribution of this paper is to present new possibilities
of containing the influence of unbounded Byzantine behaviors. We define the
notion of strong stabilization as the novel form of the containment and introduce
containment times to quantify the quality of the containment. The notion of
strong stabilization is weaker than the strict stabilization but is stronger than
the classical notion of self-stabilization (i.e. every strongly stabilizing protocol is

442 T. Masuzawa and S. Tixeuil

self-stabilizing, but not necessarily strictly stabilizing). While strict stabilization
aims to tolerate an unbounded number of Byzantine processes, we explicitly
specify the number of Byzantine processes to be tolerated. A self-stabilizing
protocol is (t, c, f)-strongly stabilizing if any process more than c hops away
from any Byzantine process is disturbed at most t times in a distributed system
with at most f Byzantine processes. Here c denotes the containment radius and
t denotes the containment times.

To demonstrate the possibility and effectiveness of our notion of strong stabi-
lization, we consider tree orientation. It is shown in [11] that there is no strictly
stabilizing protocol with a constant containment radius for this problem. The
impossibility result can be extended even when the number of Byzantine pro-
cesses is upper bounded (by one). In this paper, we first show that the problem
has no constant bound for the containment radius in a tree with two Byzantine
processes even when we allow processes beyond the containment radius to be dis-
turbed a finite number of times. Then we consider the case of a single Byzantine
process and present a (1, 0, 1)-strongly stabilizing protocol: every correct process
eventually executes its desired behavior and is disturbed by the Byzantine pro-
cess at most once. This implies the protocol attains the containment radius of
zero and the containment times of one: both are trivially optimal.

2 Preliminaries

2.1 Distributed System

A distributed system S = (P, L) consists of a set P = {v1, v2, . . . , vn} of processes
and a set L of bidirectional communication links (simply called links). A link is
an unordered pair of distinct processes. A distributed system S can be regarded
as a graph whose vertex set is P and whose link set is L, so we use graph
terminology to describe a distributed system S.

Processes u and v are called neighbors if (u, v) ∈ L. The set of neighbors of
a process v is denoted by Nv, and its cardinality (the degree of v) is denoted
by Δv(= |Nv|). The degree Δ of a distributed system S = (P, L) is defined as
Δ = max{Δv | v ∈ P}. We do not assume existence of a unique identifier for
each process. Instead we assume each process can distinguish its neighbors from
each other by locally arranging them in some arbitrary order: the k-th neighbor
of a process v is denoted by Nv(k) (1 ≤ k ≤ Δv).

In this paper, we consider only tree systems, i.e. distributed systems containing
no cycles. We assume that all processes in a tree system are identical and thus
no process is distinguished as a root.

Processes can communicate with their neighbors through link registers. For
each pair of neighboring processes u and v, there are two link registers ru,v

and rv,u. Message transmission from u to v is realized as follows: u writes a
message to link register ru,v and then v reads it from ru,v. The link register
ru,v is called an output register of u and is called an input register of v. The
set of all output (resp. input) registers of u is denoted by Outu (resp. Inu), i.e.
Outu = {ru,v | v ∈ Nu} and Inu = {rv,u |v ∈ Nu}.

Bounding the Impact of Unbounded Attacks in Stabilization 443

The variables that are maintained by processes denote process states. Simi-
larly, the values of the variables stored in each link register denote the state of
the registers. A process may take actions during the execution of the system. An
action is simply a function that is executed in an atomic manner by the process.

A global state of a distributed system is called a configuration and is specified
by a product of states of all processes and all link registers. We define C to be
the set of all possible configurations of a distributed system S. For a process set
R ⊆ P and two configurations ρ and ρ′, we denote ρ

R%→ ρ′ when ρ changes to ρ′

by executing an action of each process in R simultaneously. Notice that ρ and
ρ′ can be different only in the states of processes in R and the states of their
output registers.

A schedule of a distributed system is an infinite sequence of process sets.
Let Q = R1, R2, . . . be a schedule, where Ri ⊆ P holds for each i (i ≥ 1).
An infinite sequence of configurations e = ρ0, ρ1, . . . is called an execution from

an initial configuration ρ0 by a schedule Q, if e satisfies ρi−1
Ri%→ ρi for each

i (i ≥ 1). Process actions are executed atomically, and we also assume that a
distributed daemon schedules the actions of processes, i.e. any subset of processes
can simultaneously execute their actions.

The set of all possible executions from ρ0 ∈ C is denoted by Eρ0 . The set
of all possible executions is denoted by E, that is, E =

⋃
ρ∈C Eρ. We consider

asynchronous distributed systems where we can make no assumption on sched-
ules except that any schedule is weakly fair : every process is contained in infinite
number of subsets appearing in any schedule.

In this paper, we consider (permanent) Byzantine faults: a Byzantine process
(i.e. a Byzantine-faulty process) can make arbitrary behavior independently from
its actions. If v is a Byzantine process, v can repeatedly change its variables and
its output registers arbitrarily.

In asynchronous distributed systems, time is usually measured by asyn-
chronous rounds (simply called rounds). Let e = ρ0, ρ1, . . . be an execution by a
schedule Q = R1, R2, The first round of e is defined to be the minimum prefix
of e, e′ = ρ0, ρ1, . . . , ρk, such that

⋃k
i=1 Ri = P . Round t (t ≥ 2) is defined recur-

sively, by applying the above definition of the first round to e′′ = ρk, ρk+1,
Intuitively, every process has a chance to update its state in every round.

2.2 Self-stabilizing Protocol Resilient to Byzantine Faults

Tree orientation considered in this paper is a so-called static problem, i.e. it
requires the system to find a static solution. For example, the spanning-tree
construction problem is a static problem, while the mutual exclusion problem is
not. Some static problems can be defined by a specification predicate (shortly,
specification), spec(v), for each process v: a configuration is a desired one (with
a solution) if every process satisfies spec(v). A specification spec(v) is a boolean
expression on variables of Pv (⊆ P) where Pv is the set of processes whose
variables appear in spec(v). The variables appearing in the specification are
called output variables (shortly, O-variables). In what follows, we consider a
static problem defined by specification spec(v).

444 T. Masuzawa and S. Tixeuil

A self-stabilizing protocol is a protocol that eventually reaches a legitimate con-
figuration, where spec(v) holds at every process v, regardless of the initial config-
uration. Once it reaches a legitimate configuration, every process never changes
its O-variables and always satisfies spec(v). From this definition, a self-stabilizing
protocol can tolerate any number and any type of transient faults. However,
when (permanent) Byzantine processes exist, Byzantine processes may not sat-
isfy spec(v). In addition, correct processes near the Byzantine processes can be
influenced and may be unable to satisfy spec(v). Nesterenko and Arora [11] define
a strictly stabilizing protocol as a self-stabilizing protocol resilient to unbounded
number of Byzantine processes.

Definition 1 ((c, f)-containment). A configuration ρ is (c, f)-contained for
specification spec if, given at most f Byzantine processes, in any execution start-
ing from ρ, every process v more than c hops away from any Byzantine process
always satisfies spec(v) and never changes its O-variables.

The parameter c of Definition 1 refers to the containment radius defined in [11].
The parameter f refers explicitly to the number of Byzantine processes, while
[11] dealt with unbounded number of Byzantine faults (that is f ∈ {0 . . . n}).
Definition 2 ((c, f)-strict stabilization). A protocol is (c, f)-strictly stabi-
lizing for specification spec if, given at most f Byzantine processes, any com-
putation e = ρ0, ρ1, . . . contains a configuration ρi that is (c, f)-contained for
spec.

An important limitation of the model of [11] is the notion of r-restrictive spec-
ifications. Intuitively, a specification is r-restrictive if it prevents combinations
of states that belong to two processes u and v that are at least r hops away. An
important consequence related to Byzantine tolerance is that the containment
radius of protocols solving those specifications is at least r. For some problems,
such as the tree orientation we consider in this paper, r can not be bounded to
a constant. As a result, there can not exist a strictly stabilizing protocol for this
problem.

To circumvent the impossibility result, we define a weaker notion than the
strict stabilization. Here, the containment radius is not constant, i.e. there may
exist processes outside the containment radius that invalidate the specification
predicate, due to Byzantine actions. However, the impact of Byzantine trig-
gered action is limited in times: the set of Byzantine processes may only impact
processes outside the containment radius a bounded number of times, even if
Byzantine processes execute an infinite number of actions.

Definition 3 ((t, c, f)-time containment). A configuration ρ is (t, c, f)-time
contained for specification spec if, given at most f Byzantine processes, in any
execution starting from ρ, every process v more than c hops away from any
Byzantine process executes at most t actions that change its O-variables, and
eventually always satisfies spec(v) and never changes its O-variables.

Note that a (t, c, f)-time contained configuration is a (c, f)-contained configura-
tion when t = 0. The (t, c, f)-time containment guarantees that every process

Bounding the Impact of Unbounded Attacks in Stabilization 445

outside the containment radius is disturbed at most t times by Byzantine pro-
cesses. In the remaining of the paper, t denotes the containment times of the
configuration.

Definition 4 ((t, c, f)-strong stabilization). A protocol is (t, c, f)-strongly
stabilizing for specification spec if, given at most f Byzantine processes, any
computation e = ρ0, ρ1, . . . contains a configuration ρi that is (t, c, f)-time con-
tained for spec.

A strongly stabilizing protocol is weaker than a strictly stabilizing one (as pro-
cesses outside the containment radius may take incorrect actions due to Byzan-
tine influence), but stronger than a classical self-stabilizing protocol (that may
never meet their specification in the presence of Byzantine processes).

The parameters t and c are introduced to quantify the strength of fault con-
tainment, we do not require each process to know the values of the parameters.
Actually, the protocol proposed in this paper assumes no knowledge on the pa-
rameters.

2.3 Discussion

There exists an analogy between the respective powers of (c, f)-strict stabiliza-
tion and (t, c, f)-strong stabilization for the one hand, and self-stabilization and
pseudo-stabilization for the other hand.

A pseudo-stabilizing protocol (defined in [4]) guarantees that every execution
has a suffix that matches the specification, but it could never reach a legiti-
mate configuration from which any possible execution matches the specification.
In other words, a pseudo-stabilizing protocol can continue to behave satisfying
the specification, but with having possibility of invalidating the specification
in future. A particular schedule can prevent a pseudo-stabilizing protocol from
reaching a legitimate configuration for arbitrarily long time, but cannot prevent
it from executing its desired behavior for arbitrarily long time. Thus, a pseudo-
stabilizing protocol is useful since desired behavior is eventually reached.

Similarly, every execution of a (t, c, f)-strongly stabilizing protocol has a suf-
fix such that every process outside the containment radius executes its desired
behavior. But (t, c, f)-strongly stabilizing protocol could never reach a config-
uration after which Byzantine processes cannot disturb the processes outside
the containment radius: every processes outside the containment radius can con-
tinue to execute its desired behavior, but with having possibility that it could
be disturbed at most t times by Byzantine processes in future. A notable but
subtle difference is that the invalidation of the specification is caused only by
the effect of Byzantine processes in a (t, c, f)-strongly stabilizing protocol, while
the invalidation can be caused by a scheduler in a pseudo-stabilizing protocol.

3 Tree Orientation

Informally, tree orientation consists in transforming a tree system (with no root)
into a rooted tree system. Each process v has an O-variable prntv to designate a

446 T. Masuzawa and S. Tixeuil

neighbor as its parent. Since processes have no identifiers, prntv actually stores
k (∈ {1, 2, . . . , Δv}) to designate its k-th neighbor as its parent. But for sim-
plicity, we use prntv = k and prntv = u (where u is the k-th neighbor of v)
interchangeably.

The goal of tree orientation is to set prntv of every process v to form a rooted
tree. However, it is impossible to choose a single process as the root because
of impossibility of symmetry breaking. Thus, instead of a single root process,
a single root link is determined as the root: link (u, v) is the root link when
processes u and v designate each other as their parents (Fig. 1(a)). From any
process w, the root link can be reached by following the neighbors designated
by the variables prnt.

When a tree system S has a Byzantine process (say w), w can prevent com-
munication between subtrees of S − {w}1. Thus, we have to allow each of the
subtrees to form a rooted tree system independently. We define the specification
predicate spec(v) of the tree orientation as follows.

spec(v) : ∀u (∈ Nv)[(prntv = u) ∨ (prntu = v) ∨ (u is Byzantine faulty)].

When every correct process v satisfies spec(v), the configuration is called a
legitimate configuration.

Figure 1 shows examples of legitimate configurations (a) with no Byzantine
process and (b) with a single Byzantine process w. The arrow attached to each
process points the neighbor designated as its parent. Notice that, from Fig. 1(b),
subtrees consisting of correct processes are classified into two categories: one is
the case of forming a rooted tree with a root link in the subtree (T1 in Fig. 1(b)),
and the other is the case of forming a rooted tree with a root process, where the
root process is a neighbor of a Byzantine process and designates the Byzantine
process as its parent (T2 in Fig. 1(b)).

Tree orientation seems to be a very simple task. Actually, for tree orientation
in a fault-free systems, we can design a self-stabilizing protocol that chooses a
link incident to a center process2 as the root link: in case that the system has
a single center, the center can choose a link incident to it, and in case that the
system has two neighboring centers, the link between the centers become the
root link. However, tree orientation becomes impossible if we have Byzantine
processes. By the impossibility results of [11], we can show that tree orientation
has no (o(n), 1)-strictly stabilizing protocol; i.e. the Byzantine influence cannot
be contained in the sense of ”strict stabilization”, even if only a single Byzantine
process is allowed.

An interesting question is whether the Byzantine influence can be contained
in a weaker sense of ”strong stabilization”. The following theorem gives a neg-
ative answer to the question: if we have two Byzantine processes, bounding the
1 For a process subset P ′ (⊆ P), S − P ′ denotes a distributed system obtained by

removing processes in P ′ and their incident links.
2 A process v is a center when v has the minimum eccentricity where eccentricity is

the largest distance to a leaf. It is known that a tree has a single center or two
neighboring centers.

Bounding the Impact of Unbounded Attacks in Stabilization 447

u v

(a) Case with no fault (b) Case with Byzantine process w

u v

w

T1
T2

u vu v

(a) Case with no fault (b) Case with Byzantine process w

u v

w

u v

w

T1
T2

Fig. 1. Tree orientation

contamination times is impossible. We prove the impossibility for more restricted
schedules, called the central daemon, which disallows two or more processes to
make actions at the same time. Notice that impossibility results under the central
daemon are stronger than those under the distributed daemon.

Theorem 1. Even under the central daemon, there exists no deterministic
(t, o(n), 2)-strongly stabilizing protocol for tree orientation where t is any (finite)
integer and n is the number of processes.

Proof. Let S = (P, L) be a chain (or a special case of a tree system) of n
processes: P = {v1, v2, . . . , vn} and L = {(vi, vi+1) | 1 ≤ i ≤ n − 1}.

For purpose of contradiction, assume that there exists a (t, o(n), 2)-strongly
stabilizing protocol A for some integer t. In the following, we show, for S with
Byzantine processes v1 and vn, that A has an execution where a center process
w = v�n/2� changes prntw infinitely often. Since w is outside the containment
radius o(n), this contradicts the assumption that A is a (t, o(n), 2)-strongly sta-
bilizing protocol.

It remains to construct an execution e where prntw changes infinitely often.
In S with Byzantine processes v1 and vn, A eventually reaches a configuration
ρ1 where w satisfies spec(w). This execution to ρ1 constitutes the prefix of e.

To construct e after ρ1, consider another chain S′ = (P ′, L′) of 3n pro-
cesses and an execution of A on S′, where let P ′ = {u1, u2, . . . , u3n} and
L = {(ui, ui+1) | 1 ≤ i ≤ 3n − 1}. We consider the initial configuration ρ′1
of S′ that is obtained by concatenating three copies (say S′

1, S
′
2 and S′

3) of S in
ρ1 where only the central copy S′

2 is reversed right-and-left (Fig. 2). The center
process w is copied to w′

1 = u�n/2�, w
′
2 = u2n+1−�n/2� and w′

3 = u2n+�n/2�, but
only prntw′

2
designates the neighbor in the different direction from prntw′

1
and

prntw′
3
. From the configuration ρ′1, protocol A eventually reaches a legitimate

configuration ρ′′1 of S′ when S′ has no Byzantine process. In the execution from
ρ′1 to ρ′′1 , at least one prnt variable of w′

1, w
′
2 and w′

3 has to change. Assume w′
i

changes prntw′
i
.

448 T. Masuzawa and S. Tixeuil

Fig. 2. Construction of S′ from three copies of S

Now, we construct the execution e on S after ρ1. Since v1 and vn are Byzantine
processes in S, v1 and vn can simulate behavior of the end processes of S′

i i.e.
u(i−1)n+1 and uin), and thus, S can behave in the same way as S′

i (containing
w′

i) does from ρ′1 to ρ′′1 . The execution constitutes the second part of e, where
prntw changes at least once. Let the resulting configuration be ρ2 (that coincides
with the configuration of S′

i in ρ′′i), and construct the initial configuration ρ′2 of
S′ from ρ2 in the same way. By repeating the argument, we can construct the
execution e of A on S where prntw changes infinitely often. ��

4 A Strongly-Stabilizing Tree Orientation for a Single
Byzantine Process

4.1 Protocol ss-TO

In the previous section, we proved that there is no strongly stabilizing protocol
for tree orientation if two Byzantine processes exist. In this section, we consider
the case with only a single Byzantine process and present a (1, 0, 1)-strongly
stabilizing tree orientation protocol ss-TO: every correct process v eventually
satisfies spec(v) and is disturbed by the Byzantine process at most once. Note
that we consider the distributed daemon for this possibility result.

In a fault-free tree system, orientation can be easily achieved by finding a
center process. A simple strategy for finding the center process is that each
process v informs each neighbor u of the maximum distance to a leaf from u
through v. The distances are found and become fixed from smaller ones. When
a tree system contains a single Byzantine process, however, this strategy cannot
prevent perturbation caused by wrong distances the Byzantine process provides:
by reporting longer and shorter distances than the correct one alternatively,
the Byzantine process can repeatedly pull the chosen center closer and push it
farther.

Bounding the Impact of Unbounded Attacks in Stabilization 449

constants of process v
Δv = the degree of v;
Nv = the set of neighbors of v;

variables of process v
prntv: a neighbor of v; // prntv = u if u is a parent of v.
levelv: integer;

variables in shared register rv,u

r-prntv,u: boolean; // prntv,u = true iff u is a parent of v.
r-levelv,u: integer; // the value of levelv

predicates

pred1 : ∃u ∈ Nv [r-levelu,v > levelv]
pred2 : ∃u ∈ Nv − {prntv}[(r-levelu,v = levelv) ∧ (r-prntu,v = false)]

atomic actions // represented in form of guarded actions
GA1:pred1 −→

prntv := u; levelv := r-levelu,v;
(rv,prntv -prnt, rv,prntv -level) := (true, levelv);
for each r (∈ Outv − {rv,prntv}) do (r-prnt, r-level) := (false, levelv);

GA2:¬pred1 ∧ pred2 −→
prntv := u; levelv := levelv + 1;
(rv,prntv -prnt, rv,prntv -level) := (true, levelv);
for each r (∈ Outv − {rv,prntv}) do (r-prnt, r-level) := (false, levelv);

Fig. 3. Protocol ss-TO (actions of process v)

The key idea of protocol ss-TO to circumvent the perturbation is to restrict
the Byzantine influence to one-sided effect: the Byzantine process can pull the
chosen root link closer but cannot push it farther. This can be achieved using a
non-decreasing variable levelv.

Protocol ss-TO is presented in Fig. 3. For simplicity, we regard constant Nv

as denoting the neighbors of v and regard variable prntv as storing a parent of
v. Notice that they should be actually implemented using the ordinal numbers
of neighbors that v locally assigns.

4.2 Legitimate Configurations of ss-TO

We refine legitimate configurations of protocol ss-TO and show their properties.
First we consider the fault-free case.

Definition 5 (legitimate configurations LC0). In a fault-free tree, a con-
figuration is legitimate if (a) spec(v) holds for every process v and (b) levelu =
levelv holds for any processes u and v. The set of all legitimate configurations
in a fault-free tree is denoted by LC0.

The following lemma obviously holds from protocol ss-TO.

Lemma 1. In a fault-free tree, once protocol ss-TO reaches a configuration ρ (∈
LC0), it remains at ρ. (No further action can be executed from ρ.)

For the case with a single Byzantine process, legitimate configurations are refined
as follows.

450 T. Masuzawa and S. Tixeuil

Definition 6 (legitimate configurations LC1). Let z be the single Byzan-
tine process in a tree system. A configuration is legitimate if every subtree (or
connected component) of S-{z} satisfies either the following (C1) or (C2).

(C1) (a) spec(u) holds for every correct process u, (b) prntv = z holds for the
neighbor v of z, and (c) levelw ≥ levelx holds for any neighboring correct
processes w and x where w is nearer than x to z.

(C2) (d) spec(u) holds for every correct process u, and (e) levelv = levelw holds
for any correct processes v and w.

The set of all legitimate configurations for a single Byzantine process is denoted
by LC1.

When every subtree of S-{z} satisfies (C1), the configuration is said to be
strictly legitimate.

For strictly legitimate configurations, the following lemma holds.

Lemma 2. Once protocol ss-TO reaches a strictly legitimate configuration ρ,
it remains in strictly legitimate ones and no correct process u changes prntu
afterwards. That is, any strictly legitimate configuration is (0, 1)-contained.

Proof. Consider any execution e starting from a strictly legitimate configuration
ρ. If no correct process u changes prntu in e, it is clear that every configuration
of e is strictly legitimate. We show that prntu never changes in e.

For contradiction, assume that a correct process y changes prnty first among
all correct processes. Let z be the Byzantine process. In ρ, prntx = w holds for
any neighboring correct processes w and x where w is nearer than x to z. From
condition (c), y cannot be x satisfying prntx = w for a correct process w. Thus,
y is a neighbor of z, where prnty = z holds from the condition (b). Process y
changes prnty from z to p (�= z) only when levelp > levely holds. But this never
holds in any execution starting from ρ. Thus, a contradiction. ��
Notice that a correct process u may change levelu even after a strictly legitimate
configuration. When the Byzantine process z increments levelz infinitely often,
every process u may also increment levelu infinitely often.

Lemma 3. Any configuration ρ in LC1 is (1, 0, 1)-time contained. In any sub-
tree satisfying the condition (C1) at ρ, no correct process u changes prntu after
ρ. In any subtree satisfying the condition (C2) at ρ, no correct process u changes
prntu in some execution starting from ρ. But, once some process u in the sub-
tree changes prntu after ρ, the subtree reaches a configuration satisfying (C1) in
O(n′) rounds where n′ is the number of processes in the subtree.

Proof. Consider any execution e starting from ρ. By the same discussion as the
proof of Lemma 2, we can show that any subtree satisfying (C1) at ρ always
satisfies the condition and no correct process u in the subtree changes prntu
afterwards.

Consider a subtree satisfying (C2) at ρ and let y be the neighbor of the
Byzantine process z in the subtree. It is clear that no process u in the subtree

Bounding the Impact of Unbounded Attacks in Stabilization 451

changes prntu or levelu unless y executes prnty := z in e. When prnty := z is
executed, levely becomes larger than levelu of any other process u in the subtree.
It is clear that the subtree satisfies (C1) in O(n′) rounds, and that each process
u changes prntu at most once during the execution. ��

4.3 Convergence of ss-TO

We first show convergence of protocol ss-TO to legitimate configurations in
fault-free case.

Lemma 4. In a fault-free tree system, protocol ss-TO reaches a legitimate con-
figuration of LC0 from any initial configuration in O(n) rounds.

Proof. For lack of space, we prove only the convergence to a legitimate configu-
ration and do not prove the round complexity.

Let u be any leaf process and v be its only neighbor. After v executes its action,
levelv ≥ levelu holds. Process u can execute only Action GA1 since prntu = v
always holds. Thus, after some configuration ρ1, prntu = v and levelv ≥ levelu
always hold for any leaf u and its neighbor v. Also, once levelv = levelu holds,
levelu never changes unless levelv increments.

Now, consider a tree S1 = S −Leaf(S) where Leaf(S) is the set of all leaves
in S. Let u be any leaf process of S1 and v be its only neighbor in S1. Since any
other neighbor w (�= v) of u in S is a leaf of S, prntw = u and levelu ≥ levelw
always hold after ρ1. It follows that u never executes prntu := w after ρ1. This
implies that either (i) prntu = w always holds for some w (�= v) after ρ1 or
(ii) prntu = v always holds after some configuration that may appear after ρ1.
Notice that levelu never changes after ρ1 in case (i). In case (ii), levelu may
increase but levelv ≥ levelu always holds after some configuration.
In case that (i) holds for some leaf u of S1: After v executes its action, levelv ≥
levelu always holds. From the fact that u never changes prntu or levelu, eventu-
ally levelv = levelu and prntv = u always hold. Since levelu never changes after
ρ1, eventually levelv becomes constant. Similarly, for every neighbor x (�= u) of
v, we can show that eventually levelx = levelv and prntx = v always hold. By
repeating the argument, we can show that ss-TO reaches a legitimate configu-
ration in LC0.
In case that (ii) holds for every leaf u of S1: Consider a tree S2 = S−(Leaf(S)∪
Leaf(S1)). By similar discussion to that for S1, we can show, for any leaf process
u of S2 and its only neighbor v in S2, that eventually either (i) prntu = w always
holds for some w (�= v) or (ii) prntu = v always holds.

By repeating the above argument until Sj becomes empty, we can show that
eventually prntu of every process u becomes constant and spec(u) holds. There-
fore, ss-TO eventually reaches a legitimate configuration in LC0. ��
Now, we consider the case with a single Byzantine process.

Lemma 5. In a tree system with a single Byzantine process, protocol ss-TO
reaches a legitimate configuration of LC1 from any initial configuration in O(n)
rounds.

452 T. Masuzawa and S. Tixeuil

Proof. We only show the outline of the convergence proof.
Let z be the Byzantine faulty process and S′ = (P ′, L′) be any subtree (or

connected component) of S − {z}. Let y be the neighbor of z in S′.
Eventually every leaf process u in S′ (except for y if it is a leaf) always satisfies

prntu = v and levelv ≥ levelu where v is the only neighbor of u.
Now consider S1 = S−(Leaf(S)−{y}). Let u be any leaf process of S1 (except

for y if it is a leaf) and v be its only neighbor in S1. By similar discussion to that
in proof of Lemma 4, we can show that eventually either (i) prntu = w always
holds for some w (�= v), or (ii) prntu = v always holds.
In case that (i) holds for some leaf u of S1: Process u never changes prntu or in-
crements levelu. This implies that eventually the variables level of all processes
in S′ have the same value and remain unchanged. In such a configuration, the
variables prnt of all processes form a rooted tree with a root link: the configu-
ration is in LC1.
In case that (ii) holds for every leaf u in S1: We consider S2 = S − ((Leaf(S)∪
Leaf(S1)) − {y}) and repeat the same argument. Consequently, we can show
that protocol ss-TO eventually reaches a legitimate configuration in LC1. ��
The following main theorem is obtained from Lemmas 1, 2, 3, 4 and 5.

Theorem 2. Protocol ss-TO is a (1, 0, 1)-strongly stabilizing tree-orientation
protocol. The protocol reaches a legitimate configuration of LC0∪LC1 from any
initial configuration in O(n) rounds. The protocol may move from a legitimate
configuration to an illegitimate one because of the influence of the Byzantine
process, but it can stay in illegitimate configurations during O(n) rounds (that
are not necessarily consecutive) in the whole execution.

5 Conclusions

We introduced strong stabilization and containment times as novel notions for
containing the unbounded influence of Byzantine behavior. The strong stabi-
lization is weaker than strict stabilization, but is stronger than classical self-
stabilization. We demonstrated the possibility and effectiveness of the strong
stabilization using the tree orientation as an example: the problem, even assum-
ing a single Byzantine process, is unsolvable in the context of strict stabiliza-
tion, but it is solvable in the context of strong stabilization. In addition, our
strongly stabilizing solution is optimal for all considered criteria: it achieves tol-
erance to the maximum possible number of Byzantine processes, with a contain-
ment radius of zero and a containment times of 1. Thus, the strong stabilization
sheds new light to self-stabilizing protocols resilient to transient and permanent
faults.

One of our future works is to investigate the sufficient and necessary conditions
for problems to admit a (t, c, f)-strongly stabilizing solution.

Bounding the Impact of Unbounded Attacks in Stabilization 453

References

1. E. Anagnostou and V. Hadzilacos. Tolerating transient and permanent failures. In
Proceedings of the 7th International Workshop on Distributed Algorithms (LNCS
725), pages 174–188, 1993.

2. J. Beauquier and S. Kekkonen-Moneta. Fault-tolerance and self-stabilization: im-
possibility results and solutions using self-stabiling failure detectors. International
Journal of Systems Science, 28(11):1177–1187, 1997.

3. J. Beauquier and S. Kekkonen-Moneta. On ftss-solvable distributed problems.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed
Computing, page 290, 1997.

4. J. E. Burns, M. G. Gouda, and R. E. Miller. Stabilization and pseudo-stabilization.
Distributed Computing, 7(1):35–42, 1993.

5. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the Association of the Computing Machinery, 17:643–644, 1974.

6. S. Dolev. Self-Stabilization. MIT Press, 2000.
7. A. S. Gopal and K. J. Perry. Unifying self-stabilization and fault-tolerance. In Pro-

ceedings of the 12th Annual ACM Symposium on Principles of Distributed Com-
puting, pages 195–206, 1993.

8. T. Masuzawa. A fault-tolerant and self-stabilizing protocol for the topology prob-
lem. In Proceedings of the 2nd Workshop on Self-Stabilizing Systems, pages 1.1–
1.15, 1995.

9. T. Masuzawa and S. Tixeuil. A self-stabilizing link-coloring protocol resilient to
unbounded byzantine faults in arbitrary networks. In Proceedings of the 9th Inter-
national Conference on Principles of Distributed Systems (OPODIS 2005), pages
283–298, 2005.

10. H. Matsui, M. Inoue, T. Masuzawa, and H. Fujiwara. Fault-tolerant and self-
stabilizing protocols using an unreliable failure detector (in Japanese). IEICE
Transactions on Information and Systems, E83-D(10):1831–1840, 2000.

11. M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In Pro-
ceedings of 21st IEEE Symposium on Reliable Distributed Systems, pages 22–29,
2002.

12. Y. Sakurai, F. Ooshita, and T. Masuzawa. A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In Proceedings of the 8th International
Conference on Principles of Distributed Systems, pages 196–206, 2004.

13. S. Ukena, Y. Katayama, T. Masuzawa, and H. Fujiwara. A self-stabilizing spanning
tree protocol that tolerates non-quiescent permanent faults (in Japanese). IEICE
Transaction, J85-D-I(11):1007–1014, 2002.

On Bootstrapping Topology Knowledge

in Anonymous Networks

Toshimitsu Masuzawa1,� and Sébastien Tixeuil2,��

1 Osaka University, Japan
masuzawa@ist.osaka-u.ac.jp

2 LRI-CNRS UMR 8623 & INRIA Grand Large, France
tixeuil@lri.fr

Abstract. In this paper, we quantify the amount of “practical” infor-
mation (i.e. views obtained from the neighbors, colors attributed to the
nodes and links) to obtain “theoretical” information (i.e. the local topol-
ogy of the network up to distance k) in anonymous networks. In more
details, we show that a coloring at distance 2k + 1 is necessary and suf-
ficient to obtain the local topology at distance k that includes outgoing
links. This bound drops to 2k when outgoing links are not needed. A
second contribution of this paper deals with color bootstrapping (from
which local topology can be obtained using the aforementioned mecha-
nisms). On the negative side, we show that (i) with a distributed daemon,
it is impossible to achieve deterministic color bootstrap, even if the whole
network topology can be instantaneously obtained, and (ii) with a cen-
tral daemon, it is impossible to achieve distance m when instantaneous
topology knowledge is limited to m − 1. On the positive side, we show
that (i) under the k-central daemon, deterministic self-stabilizing boot-
strap of colors up to distance k is possible provided that k-local topology
can be instantaneously obtained, and (ii) under the distributed daemon,
probabilistic self-stabilizing bootstrap is possible for any range.

1 Introduction

Topology update is an essential problem in distributed computing (e.g. see [14]).
It has direct applicability in practical systems. For example, link-state based
routing protocols such as OSPF use topology discovery mechanisms to compute
the routing tables. Recently, the problem came to the fore with the introduction
of ad hoc wireless sensor networks, such as Berkeley mote network [9], where
topology discovery is essential for routing decisions.

� This author is supported in part by MEXT: The 21st Century Center of Excel-
lence Program, JSPS: Grant-in-Aid for Scientific Research ((B)15300017), MEXT:
Grant-in-Aid for Scientific Research on Priority Areas (16092215) and MIC: Strate-
gic Information and Communications R&D Promotion Programme (SCOPE).

�� This author is supported in part by the FRAGILE and SOGEA projects of the ACI
“Sécurité et Informatique” of the French Ministry of Research. Part of this work was
done while visiting Osaka University.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 454–468, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Bootstrapping Topology Knowledge in Anonymous Networks 455

Self-stabilization is now considered to be the most general technique to de-
sign a system to tolerate arbitrary transient faults. A self-stabilizing system
guarantees that starting from an arbitrary state, the system converges to a le-
gal configuration in a finite number of steps and remains in a legal state until
another fault occurs (see also [4]). Intuitively, a self-stabilizing topology update
algorithm guarantees that, even if the system is started from a global state where
the topology information is erroneous, then within a finite number of steps, cor-
rect topology information is maintained at every node.

In this paper, we investigate the problem of distributed topology update in an
arbitrary anonymous network. Each node is only aware of its neighboring peers
and it needs to learn the topology of the network up to some finite distance k.
“Bootstrapping” topology knowledge refers to the fact that each node is required
to construct topology at distance k with only topology knowledge distance k−1.
While this task can be performed in identifier based networks (where each node
has a unique identifier) [5], no solution exists in anonymous networks, where
nodes have no identifier whatsoever. While most modern networks have identi-
fiers for nodes in the network (e.g. the address of the network card), it is also
likely (with the advent of very hydrogenous systems including RFIDs, comput-
ers, smartphones) that there are identifiers clashes (either unintentional due to
conflicting addressing schemes, or intentional due to e.g. a reconfiguration of the
network card). An algorithm that is able to perform in anonymous networks will
also behave correctly in a network with identifiers, but the converse is not true.

While most distributed algorithms dealing with topology information are self-
stabilizing [5,3,10], they only deal with networks where nodes have unique iden-
tifiers. In the context of anonymous networks, self-stabilizing solutions are either
run on networks where topology information is known (ring, tree, etc), or con-
sider problems that can be solved without topology information [2]. For classical
algorithms, [13] provides a classification of problems according to how much
asymmetry is initially provided in the system (e.g. a unique leader vs. a set of
k leaders). Also, [15] study the feasibility of leader election when the processor
identity numbers are not distinct, and use techniques based on (infinite) colored
views obtained from the neighbors as well as global knowledge (the size of the
network) and a synchronous setting.

Our contribution. In this paper, we quantify the amount of “practical” informa-
tion (i.e. views obtained from the neighbors, colors attributed to the nodes and
links) to obtain “theoretical” information (i.e. the local topology of the network
up to distance k) in anonymous networks. In more details, we show that a color-
ing at distance 2k + 1 is necessary and sufficient to obtain the local topology at
distance k that includes outgoing links. This bound drops to 2k when outgoing
links are not needed. A second contribution of this paper deals with color boot-
strapping (from which local topology can be obtained using the aforementioned
mechanisms). On the negative side, we show that (i) with a distributed daemon,
it is impossible to achieve deterministic color bootstrap, even if the whole net-
work topology can be instantaneously obtained, and (ii) with a central daemon,
it is impossible to achieve distance m when instantaneous topology knowledge is

456 T. Masuzawa and S. Tixeuil

limited to m−1. On the positive side, we show that (i) under the k-central dae-
mon, deterministic bootstrap of colors up to distance k is possible provided that
k-local topology can be instantaneously obtained, and (ii) under the distributed
daemon, probabilistic bootstrap is possible for any range.

2 Model

Distributed systems. A distributed system S = (P, L) consists of a set P =
{v1, v2, . . . , vn} of processes and a set L of bidirectional communication links
(simply called links). A link is an unordered pair of distinct processes. A dis-
tributed system S can be regarded as a graph whose vertex set is P and whose
link set is L, so we use some graph terminology to describe a distributed system
S. The girth of a graph is the length of a shortest (simple) cycle in the graph;
and the circumference, the length of a longest (simple) cycle. The girth and cir-
cumference of an acyclic graph are defined to be infinity (∞). The k-th power
Gk of a graph G is a supergraph formed by adding an edge between all pairs of
vertices of G with distance at most k.

Processes u and v are called neighbors if (u, v) ∈ L. The set of neighbors of
a process v is denoted by Nv, and its cardinality (the degree of v) is denoted
by Δv(= |Nv|). The degree Δ of a distributed system S = (P, L) is defined as
Δ = max{Δv | v ∈ P}. We do not assume existence of a unique identifier of
each process. Instead we assume each process can distinguish its neighbors from
each other by locally arranging them in some arbitrary order: the k-th neighbor
of a process v is denoted by Nv(k) (1 ≤ k ≤ Δv).

Processes can communicate with theirs neighbors through link registers. For
each pair of neighboring processes u and v, there are two link registers ru,v and
rv,u. Message transmission from u to v is realized as follows: u writes a message to
link register ru,v and then v reads it from ru,v. The link register ru,v is called an
output register of u and is called an input register of v. The set of all output (resp.
input) registers of u is denoted by Outu (resp. Inu), i.e., Outu = {ru,v | v ∈ Nu}
and Inu = {rv,u |v ∈ Nu}. The variables that are maintained by processes
denote their states. Similarly, the values of the variables stored in each register
denote the state of these registers. The algorithm executed by each processor is
described by a finite set of guarded actions of the form 〈guard〉 −→ 〈statement〉.
Each guard of process p is a boolean expression involving the variables of p and
its input registers. When there is no explicit register communication described
in the algorithm, it is implicitly assumed that the state of the process is copied
in each output register after the execution of any action.

A global state of a distributed system is called a configuration and is specified
by a product of states of all processes. We define C to be the set of all possi-
ble configurations of a distributed system S. For a process set R ⊆ P and two
configurations ρ and ρ′, we denote ρ

R%→ ρ′ when ρ changes to ρ′ by executing
an action of each process in R simultaneously. A schedule of a distributed sys-
tem is an infinite sequence of process sets. Let Q = R1, R2, . . . be a schedule,
where Ri ⊆ P holds for each i (i ≥ 1). An infinite sequence of configurations

On Bootstrapping Topology Knowledge in Anonymous Networks 457

e = ρ0, ρ1, . . . is called an execution from an initial configuration ρ0 by a schedule

Q, if e satisfies ρi−1
Ri%→ ρi for each i (i ≥ 1).

Process actions are executed atomically, and we consider in this paper three
kinds of scheduling possibilities:

1. the distributed daemon schedules the actions of processes, in such a way that
any subset of processes can simultaneously execute their actions,

2. the central daemon schedules the actions of processes such that exactly one
process executes its actions at a given time,

3. the k-central daemon schedules the actions of processes such that no two
processes that are k hops away or less execute their actions at the same
time.

Of course, the central scheduler is a special case of the k-central scheduler, which
in turn is a special case of the distributed scheduler. The most realistic scheduler
is the distributed scheduler but the other two can be emulated using a mutual
exclusion protocol (for the central scheduler) or a k-local mutual exclusion pro-
tocol (for the k-central scheduler), with an additional overhead.

The set of all possible executions from ρ0 ∈ C is denoted by Eρ0 . The set
of all possible executions is denoted by E, that is, E =

⋃
ρ∈C Eρ. We consider

asynchronous distributed systems where we can make no assumption on sched-
ules except that any schedule is weakly fair : every process is contained in infinite
number of subsets appearing in any schedule.

In this context, a protocol is self-stabilizing for some specification S if there
exists a global predicate P on configurations, such that the two following condi-
tions are satisfied: (i) any execution starting from a configuration satisfying P
satisfies the problem S (correctness), and (ii), any computation reaches a con-
figuration that satisfies P (convergence). In this paper, we also consider proba-
bilistic protocols, for which the convergence is only achieved with probability 1
(see [1] for more details).

Local view and topology. We now define notions that are centric in this paper,
and related to local views and local topology.

Definition 1 (Local Topology). The local topology at distance k of a node p
is the subgraph T k

p of the communication graph G that contains nodes and edges
of G up to distance k from p1.

A slightly different definition of local topology is given by Peleg in [12]:

Definition 2 (P -Local Topology). The P -local topology at distance k of a
node p is the subgraph P -T k

p of the communication graph G that contains nodes
of G up to distance k from p and edges of G up to distance k − 1 from p.

1 The distance from a node (say p) to an edge (say e = (q, r)) is defined as
min{dist(p, q), dist(p, r)}.

458 T. Masuzawa and S. Tixeuil

The significant difference between the local topology and the P -local topology
at distance k is that the former requires to recognize exactly the links between
processes at distance k but the latter does not.

Definition 3 (Local View). The local view at distance 0 of a node p is the set
V 0

p of locally labeled edges that are adjacent to p. The local view at distance 1 of
a node p is a tree V 1

p of height 1 rooted at p that contains one leaf V 0
q for every

neighbor q of p. The local view at distance k of a node p is a tree V k
p of height

k that contains one local view V k−1
q as subtree of p for each neighbor q of p.

Informally, the local view is the knowledge about the network that a node can
collect by getting information from its neighbors. In contrast, the local topology
is the exact knowledge.

It is obvious that the (P -)local topology coincides with the local view when
the (P -)local topology is acyclic. Thus, the following two observations hold.

Observation 1. Let k be a strictly positive integer. In any network of girth
2k + 2 or more, T k

p ⊂ V k
p holds for any process p.

Observation 2. Let k be a strictly positive integer. In any network of girth
2k + 1 or more, P -T k

p ⊂ V k
p holds for any process p.

3 Local View vs. Local Topology

In this section, we show that there exists a relation between views (resp. P -
views) and local topology. In more details, when sufficient node or link coloring
is provided, it is possible to construct the local topology from the local view
(resp. P -view).

Definition 4 (k-local Node Coloring). A coloring of the nodes is k-local,
if any two nodes that are at distance at most k from each other have different
colors.

Definition 5 (k-local Link Coloring). A coloring of the links is k-local, if any
two links that are at distance at most k from each other have different colors.

Observation 3. To provide k-local node coloring (resp. k-local link coloring),
at least min(n, k + 1) (resp. min(m, k + 1)) colors are required, where n (resp.
m) is the number of nodes (resp. links) in the network.

The first two lemmas (Lemmas 1 and 2) show that when cycles are sufficiently
small (or sufficiently large), there is no problem to identify the local topology
from the local view (resp. P -view).

Lemma 1 (Girth upper bound). Given a local view at distance k for each
process, it is possible to construct a local (resp. P -local) topology at distance k
at every node for any network of girth 2k + 2 (resp. 2k + 1) or more.

On Bootstrapping Topology Knowledge in Anonymous Networks 459

Proof. The lemma immediately follows from Observations 1 and 2.

Lemma 2 (Circumference lower bound). Given a local view at distance
k for each process, a node or a link coloring at distance 2k, it is possible to
construct a local (resp. P -local) topology at distance k at every node for any
network of circumference at most 2k.

Proof. In all cycles that can appear in such networks, all nodes (resp. links)
have different colors. Now, consider the view V k

p of a particular node p. If all
nodes (resp. links) in V k

p have different colors, then no cycle of size 2k or less
can be compatible with this view (this implies that there is no cycle in the local
topology at distance k). Now, if there is a node whose view presents twice (or
more) the same node (resp. link), this means that this node belongs to a cycle.
In this case, the node (resp. link) in the local topology is obtained by merging
the two nodes (resp.links) in the view. Since it is possible to identify all cycles
of length at most 2k, using either a node or a link coloring at distance 2k, it is
possible to obtain the local topology at distance k using the view at distance k,
for every node in the network.

The next two lemmas (Lemmas 3 and 4) prove that the previously obtained
bound for topology identification from local view (resp. P -view for Corollaries 1
and 2) are tight.

Lemma 3 (Even cycles lower bound). Given a local view at distance k for
each process, a node coloring at distance 2k − 1, a link coloring at distance
2k−1, there exists a network with an even cycle of size 2k where it is impossible
to construct a local topology at distance k for every node p.

Proof. Consider a 2k sized ring network where processes (numbered for the pur-
pose of this proof from p1 to p2k) up to distance 2k − 1 apart have different
colors, and links (numbered for the purpose of this proof from l1 to l2k) up to
distance 2k − 1 apart have different colors. As there are from Observation 3 at
least 2k available node colors and at least 2k available link colors, each node and
each link has a unique color in this network.

Now suppose that there exists one process p in this ring that is able to con-
struct the local topology at distance k. In the 2k sized ring, the local topology
at distance k includes the full ring. So, there exists a j such that pj is able to
construct the full 2k ring. This is exemplified as Figure 1.b for the particular
case of k = 3. Then, consider a 4k sized ring where processes (numbered from
p′1 to p′4k) and links (numbered from l′1 to l′4k) are colored as follows:

– for any i in {1 . . . 2k}, p′i and p′2k+i are colored as pi,
– for any i in {1 . . . 2k}, l′i and l′2k+i are colored as li,

This is exemplified as Figure 1.a for the particular case of k = 3. This new 4k
sized ring is also 2k − 1-local node and link colored. We can show for any i in
{1 . . .2k} that p′i and p′2k+i in the 4k sized ring can behave exactly in the same

460 T. Masuzawa and S. Tixeuil

way as pi in the 2k sized ring. This implies that p′j and p′2k+j construct the full
2k ring, which is incorrect.

Then, consider the complementary case, where p′j is able to correctly construct
the local topology at distance k in the 4k sized ring. Since pj in the 2k sized ring
can behave exactly in the same way as p′j in the 4k sized ring. This implies that
pj constructs a local topology at distance k which is a tree, which is incorrect.

So, every processor is unable to construct a local topology at distance k in
either of the two networks.

b

c
d

e

f

a

b

c
d

e

f

a

2

34

5

6

1

2

3 4

5

6

1

(a) A 4k sized 2k−1 node and link colored
ring

a

b

c

d

e

f

1

2

3 4

5

6

(b) A 2k sized 2k − 1
node and link colored
ring

Fig. 1. Example with k = 3 and even cycle of size 2k

Since the P -local topology of each process is same as the local topology in
networks considered in the above proof, a similar impossibility result holds for
the P -local topology.

Corollary 1. Given a local view at distance k for each process, a node coloring
at distance 2k− 1, a link coloring at distance 2k− 1, there exists a network with
an even cycle of size 2k where it is impossible to construct a P -local topology at
distance k for every node p.

The length 2k is tight since P -T k
p = V k

p holds for any process p if the network
has no cycle of length 2k or less (see Observation 2).

Lemma 4 (Odd cycles lower bound). Given a local view at distance k for
each process, a node coloring at distance 2k, a link coloring at distance 2k, there
exists a network with an odd cycle of size 2k+1 where it is impossible to construct
a local topology at distance k for any node p.

On Bootstrapping Topology Knowledge in Anonymous Networks 461

Proof. Consider a 2k + 1 sized ring network where processes (numbered for the
purpose of this proof from p1 to p2k+1) up to distance 2k apart have different
colors, and links (numbered for the purpose of this proof from l1 to l2k+1) up to
distance 2k apart have different colors. As there are from Observation 3 at least
2k + 1 available node colors and at least 2k + 1 available link colors, each node
and each link has a unique color in this network.

Now suppose that there exists one process p in this ring that is able to con-
struct the local topology at distance k. In the 2k+1 sized ring, the local topology
at distance k includes the full ring. So, there exists a j such that pj is able to
construct the full 2k +1 ring. This is exemplified as Figure 2.b for the particular
case of k = 3.

Then, consider a 4k + 2 sized ring where processes (numbered from p′1 to
p′4k+2) and links (numbered from l′1 to l′4k+2) are colored as follows:

– for any i in {1 . . . 2k + 1}, p′i and p′2k+i+1 are colored as pi,
– for any i in {1 . . . 2k + 1}, l′i and l′2k+i+1 are colored as li,

This is exemplified as Figure 2.a for the particular case of k = 3. This new
4k + 2 sized ring is also 2k-local node and link colored. We can show for any i
in {1 . . .2k + 1} that p′i and p′2k+i+1 in the 4k + 2 sized ring can behave exactly
in the same way as pi in the 2k + 1 sized ring. This implies that p′j and p′2k+j+1

construct the full 2k + 1 ring, which is incorrect.
Then, consider the complementary case, where p′j is able to correctly construct

the local topology at distance k in the 4k + 2 sized ring. Since pj in the 2k + 1
sized ring can behave exactly in the same way as p′j in the 4k+2 sized ring. This
implies that pj constructs a local topology at distance k which is a tree, which
is incorrect.

So, every processor is unable to construct a local topology at distance k in
either of the two networks.

Notice that the similar impossibility result does not hold for the P -local topol-
ogy. Actually, from Observation 2), the P -local topology and the local view of
distance k coincide, and thus, can be obtained from each other.

From the above lemma, we can immediately obtain the following corollary:

Corollary 2. Given a local view at distance k for each process, a node (resp.
link) coloring at distance 2k, it is possible to construct a P -local topology at
distance k at every node for any graph that has no cycle of size 2k.

We now present the main result of the section.

Theorem 1. Given a local view at distance k for each process, a node coloring
at distance 2k+1 (resp. 2k) or a link coloring at distance 2k+1 (resp. 2k), it is
possible to construct a local (resp. P -local) topology at distance k for every node.
The bounds on the coloring distance are tight.

462 T. Masuzawa and S. Tixeuil

b

c
d

e

f

g

a

b

c
d

e

f

g

a

2

34

5

6

7

1

2

3 4

5

6

7

1

(a) A 4k + 2 sized 2k node and link colored
ring

a

b

c

d

e

f

g
1

2

3 4

5

6

7

(b) A 2k + 1 sized 2k
node and link colored
ring

Fig. 2. Example with k = 3 and odd cycle of size 2k + 1

Proof. Assume that we wish to obtain the local topology at distance k. Now,
this local topology is a subgraph of the global graph G. The cycles of size 2k + 2
or more cause no problem to the topology discovery from the proof of Lemma 1.
Similarly, the cycles of size 2k or less cause no problem either from the proof
of Lemma 2. The tightness of the bounds is presented in Lemmas 3 and 4. The
results for the P -view result from Corollaries 1 and 2.

4 Bootstrapping Topology Knowledge

In this section, we discuss the possibility to bootstrap topology knowledge in
anonymous networks. Bootstrapping topology knowledge is the process of learn-
ing local topology at distance k + 1 assuming local topology at distance k is
known. As proved in Section 3, this is tantamount to requiring that node or
link coloring can be bootstrapped, i.e. being able to compute a node (link, re-
spectively) coloring at distance k +1 given a node (link respectively) coloring at
distance k.

On the negative side, Theorems 2 and 3 show that (i) with a distributed
daemon, it is impossible to achieve deterministic color bootstrap, even if the
whole network topology can be instantaneously obtained, and (ii) with a central
daemon, it is impossible to achieve distance m when instantaneous topology
knowledge is limited to m − 1.

Theorem 2 (DeterministicBootstrap with Distributed Daemon). Given
a m-local node and link coloring, the ability for each process to instantaneously get
a colored topology of the whole network, and a distributed daemon, it is impossible

On Bootstrapping Topology Knowledge in Anonymous Networks 463

to get either a node coloring at distance m + 1 or a link coloring at distance m + 1
with a deterministic algorithm.

Proof. The proof for the node coloring at distance m+1 is implied by the proof
of Theorem 5.4 in [13]. The basic argument is to consider a ring of size m × l,
where the node colors repeat along the cycle in the same order. If the schedule
is synchronous (which can occur with a distributed scheduler), all nodes that
were in the same state had the same view of the system. Since their code is
deterministic, they all reach the same new state. This is true for all nodes, so
we do not get more asymmetry in the network, and m + 1 colors can not be
generated.

Now, for the case of m + 1-local link coloring. We simply consider the fact
that the color of a link is determined by the state of its two incident pro-
cesses. From the previous argument, pairs of processes (pj , pm+j+1), for j ∈
{1 . . .m + 1}, remain in the same state infinitely often, so pairs of pairs of pro-
cesses ((pj , pm+j+1), (pj+1, pm+j+2)), for j ∈ {1 . . .m + 1} remain in the same
state. As a result, the colors of links lj and lm+j+1 remains the same forever, so
a m + 1 local link coloring is never achieved.

Theorem 3 (Deterministic Bootstrap with Central Daemon). Let k and
m be two integers such that m ≥ k ≥ 2. Given a m-local node and link coloring,
the ability of each process to instantaneously get a colored local topology at dis-
tance k, and a central daemon, it is impossible to get either a node coloring at
distance m+1 or a link coloring at distance m+1 with a deterministic algorithm.

Proof. Consider a 2m + 2 sized ring whose processes are numbered from p1 to
p2m+2 and whose links are numbered from l1 to l2m+2, with li corresponding to
the link between pi and pi+1 (if i < 2m+2) or p1 (if i = 2m+2). Since a m-local
node and link coloring is assumed, we have m + 1 possible colors for both nodes
and links. We consider that for every i ∈ {1 . . .m + 1}, processes pi and pm+i+1

share the same color, and that links li and lm+i+1 share the same color. This
case is exemplified in Figure 3 when m = k = 5.

As a result, for any k ≤ m, pi and pm+i+1 share the same local topology
at distance k. Now, the central scheduler indefinitely activates the processes as
follows:

– for j ∈ {1..m + 1}, pj then pm+j+1 are successively activated.

Now consider a starting configuration where all pairs of processes (pj , pm+j+1),
for j ∈ {1 . . .m+1}, are in the same state. Then, after all processes have been ac-
tivated exactly once by the central scheduler, all pairs of processes (pj , pm+j+1),
for j ∈ {1 . . .m+1} are still in the same state, because they run a deterministic
algorithm that is fed with the same input. Also, this process may repeat so that
all pairs of processes (pj , pm+j+1), for j ∈ {1 . . .m+1} remain in the same state
forever. As a result, no symmetry breaking at distance more than m can occur,
and nodes at distance m+1 from each other keep the same color, so a m+1-local
node coloring is never achieved.

464 T. Masuzawa and S. Tixeuil

Now, for the case of m + 1-local link coloring. We simply consider the fact
that the color of a link is determined by the state of its two incident pro-
cesses. From the previous argument, pairs of processes (pj , pm+j+1), for j ∈
{1 . . .m + 1}, remain in the same state infinitely often, so pairs of pairs of pro-
cesses ((pj , pm+j+1), (pj+1, pm+j+2)), for j ∈ {1 . . .m + 1} remain in the same
state. As a result, the colors of links lj and lm+j+1 remains the same forever, so
a m + 1 local link coloring is never achieved.

b

c
d

e

f

a

b

c
d

e

f

a

2

34

5

6

1

2

3 4

5

6

1

Fig. 3. Example with m=5

On the positive side, Theorems 4 and 5 show that (i) under the k-central daemon,
deterministic bootstrap of colors up to distance k is possible provided that k-
local topology can be instantaneously obtained, and (ii) under the distributed
daemon, probabilistic bootstrap is possible for any range.

Theorem 4 (Deterministic Self-stabilizing Bootstrap with k-Central
Daemon). Let k, m be two integers such that k > m ≥ 2. Given a m-local node
and link coloring, the ability of each process to instantaneously get a colored
local topology at distance k, and a central daemon, there exists a deterministic
self-stabilizing algorithm that permits to get a m+1 local node and link coloring.

Proof. In fact, we prove that knowing the local topology at distance k permits
to node and link color the network so that the coloring is k-local. Each process
p knows the local topology at distance k, so each process p is able to construct
the graph Gk. By the k-local central daemon hypothesis, no two neighbors in Gk

are activated at the same time. Then each process executes e.g. Algorithm [7]
(that performs under the 1-local central daemon) to node color Gk. Of course,
a 1-local node coloring of Gk is a k-local node coloring in G.

For the case of k-local link coloring, each process executes e.g. algorithm [11]
to edge color Gk (that requires a 1-local central daemon). By the k-local central

On Bootstrapping Topology Knowledge in Anonymous Networks 465

daemon hypothesis, no two neighbors in Gk are activated at the same time. Of
course, a 1-local edge coloring of Gk is a k-local edge coloring in G.

Theorem 5 (Probabilistic Self-stabilizing Bootstrap with Distributed
Daemon). Let k, m be two integers such that k > m ≥ 2. Given a m-local
node and link coloring, the ability of each process to get a colored local view at
distance k, and a distributed daemon, there exists a probabilistic self-stabilizing
algorithm that permits to get a m + 1 local node and link coloring.

Proof. The proof is by providing such a self-stabilizing probabilistic algorithm.
The core components of this protocol are described as Algorithms 4.1, 4.2,
and 4.3.

The first component is described as Algorithm 4.1, and essentially propagates
local variables of each node to neighboring nodes up to distance k. This algorithm
only assumes that a node is able to locally distinguish its neighbors, so that it can
update parts of its own view accordingly to updates provided by its neighbors.
This scheme is essentially the same as the one used in [5] (with the notable
exception that here node do not have unique identifiers) and [2], which were
proved to be self-stabilizing. So, Algorithm 4.1 is able to produce a view at
distance k, for any arbitrary k, in a self-stabilizing way.

Since a view at distance k for a limited set of variables can be achieved using
Algorithm 4.1, Algorithm 4.2 is run in parallel (using the fair composition of
[6]) to node color the network up to distance k. The algorithm is quite similar
to the neighborhood coloring of [8], with the notable exception that here the
local topology is not known, and the local view is used instead. Informally,
the algorithm runs as follows: each node checks whether its color conflicts with
another color visible in its view at distance k (excluding itself). If a conflict is
found, the node randomly draws a new color, in the set of available colors (i.e.
the set of colors that do not appear in its view at distance k).

Of course, it is still possible that a node actually detects a conflict with itself
if it gets a view at distance k in a cycle of size exactly k. To resolve this issue, a
node p detecting a conflict uses a probe mechanism. The node p first extracts the
path (using local labeling on edges stored in its view) towards and backwards the
conflicting node. Then p draws a big random number, stores it in a probep vari-
able, and sends the random number along the path. When the random variable
arrives at the destination q, q checks whether its last calculated probeq matches
the received one. If no, a “fail” response is sent using the backward path. If yes,
a “success” response is sent using the backward path. Now, when p receives a
“fail” response, it randomly chooses a new color, as in the original algorithm. If
p receives a “success”, it draws a new random number and sends a new probe.
As there is a strictly positive probability that two different nodes draw different
probe numbers, eventually every node changes its color only when it implies a
conflict with a different node. As a conflict in the view implies a conflict in the
topology, the same proof argument as in [8] can be applied here. As a result,
Algorithm 4.2 provides coloring at distance k, for any arbitrary k.

Algorithm 4.3 assumes that a node coloring at distance 1 is achieved, and
provides a distance 1 link coloring of the same graph. Distance 1 node coloring

466 T. Masuzawa and S. Tixeuil

is used to define domination between neighboring nodes as follows: the node
whose color is larger dominates the other node. In the link coloring protocol, the
dominating node is responsible for setting the color of a particular edge (since
the network is node colored, such a dominator always exists). The algorithm then
runs as follows. First, each node collects in a shared variable report the colors
of adjacent edges (Rule R1). Second, a node p detecting a conflict between an
edge it dominates (to another node j) and either:

Algorithm 4.1. View construction (distance k)
variables:

V k
p : view of p at distance k
//V k−1

p |j denotes the part of V k
p related to neighbor j

//V 0
p denotes the monitored variable of p

actions::
∃k > 0,∃j ∈ Np, V k−1

j �= V k−1
p |j

→ V k−1
p |j := V k−1

j

Algorithm 4.2. Probabilistic node coloring (distance k)
variables:

cp: color of node p (in domain Γ)
functions:

colors(V): returns the set of colors contained in view V
random(S): returns a random element of set S

actions::
∃j ∈ ∪i∈NpV k

p |i, cj = cp

→ ccp := random
(
Γ \ colors(∪i∈NpV k

p |i))

Algorithm 4.3. Probabilistic link coloring (distance 1)
variables:

lp→j : color of link (p, j), with cp > cj (in domain Γ ′)
reportp : multiset of colors

functions:
conflict(M, l): returns true if color l is present more than once in color multiset M

actions::
R1 :: reportp �= (∪k∈Np,cp>ck

lp→k

) ∪ (∪k′∈Np,ck′<cp lk′→p

)
→ reportp :=

(∪k∈Np,cp>ck
lp→k

) ∪ (∪k′∈Np,ck′<cp lk′→p

)
R2 :: ∃j ∈ Np, conflict(reportp, lp→j)
→ lp→j := random(Γ ′ \ {reportp ∪ report j})

R3 :: ∃j ∈ Np, conflict(report j , lp→j)
→ lp→j := random(Γ ′ \ {reportp ∪ report j})

On Bootstrapping Topology Knowledge in Anonymous Networks 467

1. another adjacent edge of p (Rule R2), or
2. another adjacent edge of j (Rule R3)

randomly chooses a new color for this particular link it dominates among the set
of available link colors. Self-stabilization of the protocol can be proved as follows.
Assume there is a conflict of link colors (without loss of generality, assume that
those links are (k, i) and (i, j)), then two cases may occur:

1. i dominates both k and j, then i randomly chooses a new color for one of
the links, and the conflict disappear,

2. k dominates i but i dominates j, then either k (by Rule R3), i (by Rule
R2), or both randomly choose a new color. In the first two cases, the conflict
is solved. In the last case, there is a strictly positive probability that the
conflict is solved (if k and i draw different colors).

3. i is dominated by both k and j, then either k (by Rule R3), j (by Rule
R3), or both randomly choose a new color. In the first two cases, the conflict
is solved. In the last case, there is a strictly positive probability that the
conflict is solved (if k and j draw different colors).

So at each step, there is at least a positive constant probability to reduce the
number of conflicting colors for links. As a result, Algorithm 4.3 is a probabilistic
self-stabilizing algorithm for distance 1 link coloring assuming distance 1 node
coloring.

We now construct the probabilistic self-stabilizing algorithm for distance k
link coloring. First, we execute distance 2k + 1 node coloring, which by Theo-
rem 1 results in constructing the topology at distance k. After stabilization of
this protocol, nodes are aware of Gk. The distance 1 probabilistic link coloring
algorithm we just presented in run in parallel on Gk, resulting in a link coloring
of Gk. Now, a distance 1 link coloring of Gk is a distance k link coloring of G.
Hence the claimed result.

5 Conclusion

We provided evidence that graph coloring (either node or link) is related to
topology knowledge as 2k + 1 coloring is necessary and sufficient for topology
knowledge up to distance k (if outgoing edges are necessary). Also, we proved
that deterministic algorithms are of no practical help for coloring at distance
k, as they require hypothesis that are either unrealistic (topology knowledge at
distance k, which is strictly stronger than distance k coloring, the output of
the algorithm), or have no known solutions in anonymous networks (k-central
scheduler). The probabilistic solution we provided practically solves the whole
problem: the network is anonymous, topology is not known, and the scheduling
daemon is distributed. The distance one probabilistic self-stabilizing link coloring
that we presented as a part of the solution may be of particular interest, as
it is the first self-stabilizing solution to this problem that performs under the
distributed scheduler (this problem is impossible to solve with a deterministic
self-stabilizing algorithm).

468 T. Masuzawa and S. Tixeuil

References

1. Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. Memory space require-
ments for self-stabilizing leader election protocols. In PODC, pages 199–207, 1999.

2. Paolo Boldi and Sebastiano Vigna. Universal dynamic synchronous self-
stabilization. Distributed Computing, 15(3):137–153, 2002.

3. Sylvie Delaët and Sébastien Tixeuil. Tolerating transient and intermittent failures.
Journal of Parallel and Distributed Computing, 62(5):961–981, May 2002.

4. S. Dolev. Self-stabilization. MIT Press, March 2000.
5. Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed

systems. Chicago J. Theor. Comput. Sci., 1997, 1997.
6. Mohamed G. Gouda and Ted Herman. Adaptive programming. IEEE Trans.

Software Eng., 17(9):911–921, 1991.
7. Maria Gradinariu and Sébastien Tixeuil. Self-stabilizing vertex coloring of arbi-

trary graphs. In International Conference on Principles of Distributed Systems
(OPODIS’2000), pages 55–70, Paris, France, December 2000.

8. Ted Herman and Sébastien Tixeuil. A distributed tdma slot assignment algorithm
for wireless sensor networks. In Proceedings of the First Workshop on Algorithmic
Aspects of Wireless Sensor Networks (AlgoSensors’2004), number 3121 in Lecture
Notes in Computer Science, pages 45–58, Turku, Finland, July 2004. Springer-
Verlag.

9. Jason L. Hill and David E. Culler. Mica: A wireless platform for deeply embedded
networks. IEEE Micro, 22(6):12–24, 2002.

10. T Masuzawa. A fault-tolerant and self-stabilizing protocol for the topology prob-
lem. In Proceedings of the Second Workshop on Self-Stabilizing Systems, pages
1.1–1.15, 1995.

11. Toshimitsu Masuzawa and Sébastien Tixeuil. A self-stabilizing link coloring algo-
rithm resilient to unbounded byzantine faults in arbitrary networks. In Proceedings
of OPODIS 2005, Lecture Notes in Computer Science, page to appear, Pisa, Italy,
December 2005. Springer-Verlag.

12. David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM,
Philadelphia, PA, 2000.

13. Naoshi Sakamoto. Structure of initial conditions for distributed algorithms. IEICE
Transactions on Information and Systems, E83-D(12):2029–2038, December 2000.

14. J.M. Spinelli and R.G. Gallager. Event driven topology broadcast without sequence
numbers. IEEE Transactions on Communications, 37:468–474, 1989.

15. Masafumi Yamashita and Tsunehiko Kameda. Leader election problem on networks
in which processor identity numbers are not distinct. IEEE Trans. Parallel Distrib.
Syst., 10(9):878–887, 1999.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 469 – 483, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Self-adaptive Disk Arrays

Jehan-François Pâris1,*, Thomas J.E. Schwarz2, and Darrell D.E. Long 3,*

1 Dept. of Computer Science, University of Houston
Houston, TX 77204-3010
paris@cs.uh.edu

2 Dept. of Computer Engineering, Santa Clara University
Santa Clara, CA 95053
tjschwarz@scu.edu

3 Dept. of Computer Science, University of California
Santa Cruz, CA 95064

darrell@cs.ucsc.edu

Abstract. We present a disk array organization that adapts itself to successive
disk failures. When all disks are operational, all data are mirrored on two disks.
Whenever a disk fails, the array reorganizes itself, by selecting a disk
containing redundant data and replacing these data by their exclusive or (XOR)
with the other copy of the data contained on the disk that failed. This will
protect the array against any single disk failure until the failed disk gets
replaced and the array can revert to its original condition. Hence data will
remain protected against the successive failures of up to one half of the original
number of disks, provided that no critical disk failure happens while the array is
reorganizing itself. As a result, our scheme achieves the same access times as a
mirrored organization under normal operational conditions while having a much
lower likelihood of loosing data under abnormal conditions. In addition it
tolerates much longer repair times than mirrored disk arrays.

Keywords: fault-tolerant systems, storage systems, repairable systems, k-out-
of-n systems.

1 Introduction

Today’s disks have mean time to failures of more than ten years, which means that a
given disk has a less than ten percent probability of failing during any given year of
its useful lifetime. While this reliability level is acceptable for all the applications that
only require the storage of a few hundreds of gigabytes of non-critical information
over relatively short time intervals, it does not satisfy the needs of applications having
to store terabytes of data over many years.

Backups have been the traditional way of protecting data against equipment
failures. Unfortunately, they suffer from several important limitations. First, they do
not scale well; indeed the amount of time required to make a copy of a large data set

* Supported in part by the National Science Foundation under award CCR-0204358.

470 J.-F. Pâris, T.J.E. Schwarz, and D.D.E. Long

can exceed the interval between daily backups. Second, the process is not as
trustworthy as it should be due to both human error and the frailty of most recording
media. Finally, backup technologies are subject to technical obsolescence, which
means that saved data risk becoming unreadable after only ten to twenty years. A
much better solution is to introduce redundancy into our storage systems

The two primary ways of introducing that redundancy are mirroring and m-out-of-
n codes. Both techniques have their advantages and disadvantages. Mirroring offers
the two main advantages of reducing read access times and having a reasonable
update overhead. Identifying failed disks can always be done by detecting which
replicas have become unavailable. On the other hand, m-out-of-n codes provide much
higher data survivability. Consider, for instance, the case of a small disk array
consisting of eight disks. A mirrored organization that maintains two copies of each
file on separate disks would protect data against all single disk failures and most
double disk failures. A simultaneous failure of three disks would have a bigger
impact as it would result in data loss in 43 percent of the cases. This is much worse
than an optimal 4-out-of-8 code that protects data in the presence of up to four
arbitrary disk failures. In fact, this is such an improbable event that erasure codes that
tolerate more than two simultaneous failures are never used in actual storage systems.

We propose a self-adaptive disk array organization that combines most of
advantages of mirroring and erasure coding. As long as most disks are operational, it
will provide the same read and write access times as a mirrored organization.
Whenever a disk fails, it will reorganize itself and quickly return to a state where data
are again protected against a single failure. As a result, data will remain protected
against the consecutive failures of up to one half of the original number of disks,
provided that no critical disk failure happens while the array is reorganizing itself.
This is a rather unlikely event as the reorganization process will normally take less
than a few hours.

The remainder of this paper is organized as follows. Section 2 will introduce our
self-adaptive disk array organizations. Section 3 will compare the mean times to
data loss (MTTDL) achieved by self-adaptive arrays with those achieved by
mirrored disk arrays. Section 4 will review previous work and Section 5 will have
our conclusions.

2 Our Approach

Consider the small disk array displayed on Fig. 1. It consists of four pairs of disks
with data replicated on each pair of disks. For instance, disks A1 and A2 contain
the same data set A. Assume now that disk B1 fails. As a result, only one
remaining copy of data set B remains and the array will become vulnerable to a
failure of disk B2. Waiting for the replacement of disk B1 is not an attractive
option as the process make take several days. To adapt itself to the failure, the
array will immediately locate a disk containing data that are replicated elsewhere,
say, disk A1, and replace its contents by the exclusive or (XOR) of data sets A and
B thus making the array immune to a single disk failure. Fig. 2 displays the
outcome of that reconfiguration.

 Self-adaptive Disk Arrays 471

A1

A2

B1

B2

C1

C2

D1

D2

Fig. 1. A small disk array consisting of four pairs of disks with data replicated on each pair of
disks

A⊕B

A2

B1

B2

C1 D1

D2

X

C2

Fig. 2. The same disk array after disk B1 has failed and the array is reconfigured

A⊕B

A2

B1

B2

C1 D1

D2

X X

C⊕D

Fig. 3. The same disk array after disk D1 has failed and the array is reconfigured

The array can again tolerate any single disk failure. The sole drawback of the
process is that accesses to data sets A and B will now be slightly slower. In particular,
updates to these two data sets will be significantly slower as each update will now
require one additional read operation. This condition is only temporary as the array
will revert to its original condition as soon as the failed disk is replaced.

Consider now what would happen if a second disk failed, say, disk D1, before disk
B1 was repaired. This second failure would remove one of the two copies of data set
D and make the array vulnerable to a failure of disk D2. To return to a safer state, the
array will locate a disk containing data that are replicated elsewhere, say, disk C2, and
replace its contents by the exclusive or (XOR) of data sets C and D. Fig. 3 displays
the outcome of this reorganization.

Under most circumstances, the two failing disks will be replaced before a third
failure could occur. Delays in the repair process and accelerated disk failures resulting

472 J.-F. Pâris, T.J.E. Schwarz, and D.D.E. Long

A2

B1

B2

C1 D1

D2

X X

D X

A⊕B⊕C⊕D

Fig. 4. The same disk array after disk D2 has failed

A2

B1

B2

C1 D1

D2

X X

D X

B

X

Fig. 5. The same disk array after disk B2 has failed

from environmental conditions could however produce the occurrence of a third
disk failure before disks B1 and D1 are replaced. Let us assume that disk D2 fails
this time. Observe that this failure destroys the last copy of data set D. The fastest
way to reconstitute this data set is to send the contents of disk C1 to the disk that
now contains C ⊕ D and to XOR the contents of these two disks in situ. While
doing that, the array will also send the old contents of the parity disk, that is,
C ⊕ D, to the disk that contains A ⊕ B in order to obtain there A ⊕ B ⊕ C ⊕ D. As
seen on Fig. 4, the disk array now consists of four disks holding data and one parity
disk.

Let us now consider for the sake of completeness the rather improbable case of a
fourth disk failure occurring before any of the three failed disks can be replaced.
Assume that disk B2 fails this time. As Fig. 5 indicates, the sole option left is to
reconstitute the contents of the failed disk by XORing the contents of the parity disk
(A ⊕ B ⊕ C ⊕ D) with those of disks A2, C1 and D and store these contents on the
former parity disk. This would keep all four data sets available but would leave all of
them vulnerable to a single disk failure.

In its essence, our proposal is to let the array adapt itself to the temporary loss of
disks by switching to more compact data representations and selecting when possible
a configuration that protects the data against a single disk failure. That process will
involve introducing parity disks, merging them and sometimes using them to
reconstitute lost data.

Figs. 6 and 7 give a more formal description of our scheme. The first algorithm
describes how the array reacts to the loss of a data disk. Two main cases have to be
considered, depending on whether the contents of the failed disk D can be found on

 Self-adaptive Disk Arrays 473

Assumptions:

disk D is failed data disk

Algorithm:
begin
 find disk E having same contents as disk D
 if found then
 find a disk F whose contents are replicated on another disk G
 if found then
 replace contents (F) by contents (E) XOR contents(F)
 else
 find parity disk Z whose contents are XORed contents of fewest
 data disks
 if found then
 replace contents (Z) by contents (E) XOR contents(Z)
 else
 do nothing
 endif
 endif
 else
 find sufficient set S of disks to reconstitute contents (D)
 if found then
 reconstitute contents (D) on a parity disk X in S
 replace parity disk X
 else
 declare failure
 endif
 endif
end

Fig. 6. Replacing a failed data disk

another disk E. When this is the case, the array will protect the contents of disk E
against of a failure of that disk by storing on some disk F the XOR of the contents of E
and the contents of one or more disks. To select this disk F, the array will first search
for disks whose contents are replicated on some other disk. If it cannot find one, it will
then select the parity disk Z whose contents are the XORed contents of the fewest data
disks. The second case is somewhat more complex. When the contents of the failed
disk D cannot be found on another disk, the array will attempt to find a sufficient set S
of disks to reconstitute the contents of the lost disk. If this set exists, it will reconstitute
the contents of the lost data disk D on a parity disk X in S. Once this is done, the array
will try to remedy the loss of the parity data on disk X by calling the second algorithm.

Our second algorithm describes how the array reacts to the loss of a parity disk X.
This loss can either be the direct result of a disk failure or a side-effect of the recovery
of the contents of a data disk D. In either case, the array checks first if it can
reconstitute the contents of the failed parity disk X. This will be normally possible
unless the array has experienced two simultaneous disk failures. If the contents of X

474 J.-F. Pâris, T.J.E. Schwarz, and D.D.E. Long

Assumptions:
disk X is failed parity disk

Algorithm:
begin
 find sufficient set S of disks to reconstitute contents(X)
 if found then
 find a disk F whose contents are mirrored on another disk G
 if found then
 replace contents (F) by contents (E) XOR contents (F)
 else
 find parity disk Z whose contents are XORed contents of fewest
 data disks
 if found then
 replace contents (Z) by contents(Z) XOR contents(X)
 else
 do nothing
 endif
 else
 declare failure
 endif
end

Fig. 7. Replacing a failed parity disk

can be reconstituted, the array will try to XOR them with the contents of a data disk
that was replicated elsewhere. If no such data disk exists, the array will XOR the
reconstituted contents of X with the contents of the parity disk Z whose contents are
the XORed contents of the fewest data disks.

Space considerations prevent us from discussing in detail how the array will handle
disk repairs. In essence, it will attempt to return to its original configuration, first by
splitting the parity disks whose contents are the XORed contents of the largest
number of parity disks then by replacing the remaining parity disks by pairs of data
disks. A more interesting issue is how the self-adapting array would react to the loss
of a disk involved in a reconfiguration step. Let us return to our previous example
and consider what would happen if disk B2 failed after disk B1 failed but before the
contents of disk A1 could be completely replaced by the XOR of the contents of disks
A1 and B2. Assuming that we do this replacement track by track, disk A1 would be left
in a state where it would contain some of its original tracks and some tracks
containing the XOR of the corresponding tracks of disks A1 and B2. This means that
some but not all the contents of disk B2 would be recoverable and that some but not
all contents of disk A1 would have become vulnerable to a single disk failure.

3 Reliability Analysis

Self-adaptive disk arrays occupy a place between mirrored disk organizations and
organizations using erasure coding. As long as most disks are operational, they

 Self-adaptive Disk Arrays 475

provide the same read and write access times as static mirrored organizations. In
addition, they are more resilient to disk failures. We propose to evaluate this
resilience and to compare it with that of mirrored disk organizations.

Estimating the reliability of a storage system means estimating the probability
R(t) that the system will operate correctly over the time interval [0, t] given that
it operated correctly at time t = 0. Computing that function requires solving a
system of linear differential equations, a task that becomes quickly unmanageable
as the complexity of the system grows. A simpler option is to focus on the mean
time to data loss (MTTDL) of the storage system. This is the approach we will
take here.

Our system model consists of a disk array with independent failure modes for each
disk. When a disk fails, a repair process is immediately initiated for that disk. Should
several disks fail, the repair process will be performed in parallel on those disks. We
assume that disk failures are independent events exponentially distributed with rate λ,
and that repairs are exponentially distributed with rate μ.

The MTTDL for data replicated on two disks is [9]

2

3

2
MTTDL

λ μ
λ
+

=

and the corresponding failure rate L is
22

3
L

λ
λ μ

=
+

.

Consider an array consisting of n disks with all data replicated on exactly two
disks. Since each pair of disk fails in an independent fashion, the global failure rate
L(n) of the array will be n/2 times the failure rate L of a single pair of disks

2

()
2 3

n n
L n L

λ
λ μ

= =
+

and the global mean time to data loss MTTDL(n) will be

2

1 3
()

()
MTTDL n

L n n

λ μ
λ
+

= = .

Fig. 8 shows the state transition diagram for a very small self-adaptive array
consisting of two pairs of disks with each pair storing two identical replicas of the
same data set. Assume that disks A1 and A2 contain identical copies of data set A
while disks B1 and B2 store identical copies of data set B. State <2, 2> represents the
normal state of the array when its four disks are all operational. A failure of any of
these disks, say disk A1 would bring the array to state <2, 1>. This state is a less than
desirable state because the array has now a single copy of data set A on disk A2.
Hence a failure of that disk would result in a data loss.

To return to a more resilient state, the array will immediately start replacing the
contents of either disk B1 or disk B2 with the XOR of data sets A and B, thus bringing
the system from state <2, 1> to state <1, 1, X>. We assume that the duration of this
self-adaptive process will be exponentially distributed with rate κ.

476 J.-F. Pâris, T.J.E. Schwarz, and D.D.E. Long

22 21

4λ
μ

11X 11

3λ
2μ

λ

κ 2λ2λ

Data loss

μ

Fig. 8. State transition diagram for a self-adaptive disk array consisting of two pairs of mirrored
disks

22 21

4λ
μ

11X 11

3λ
2μ

κ

2λ

2λ

λ

μ

Fig. 9. Modified state transition diagram for the same disk array. The two dotted gray arcs
returning the array to state <2, 2> represent data losses.

Once this reorganization is completed, the array will have single copies of both
data sets A and B on two of the three surviving disks as well as their XOR on the third
disk. A failure of either of the two redundant disks present in state <2, 1> or a failure
of any of the three disks in state <1, 1, X> would leave the array in state <1, 1>,
incapable of tolerating any additional disk failure.

Recovery transitions correspond to the repair of one of the disks that failed. They
would bring the array first from state <1, 1> to state <1, 1, X> and then from state
<1, 1, X> to state <2, 2>. A third recovery transition would bring the array from state
<2, 1> to state <2, 2>. It corresponds to situations where the failed disk was replaced
before the self-adaptive process can be completed.

 Self-adaptive Disk Arrays 477

100

1000

10000

100000

1000000

0 1 2 3 4 5 6 7

Mean disk repair time (days)

M
ea

n
 t

im
e

to
 d

at
a

lo
ss

 (
ye

ar
s)

Reorganization takes one hour

Reorganization takes two hours

Reorganization takes six hours

No Reorganization

Fig. 10. Mean times to data loss achieved by a self-adaptive disk array consisting of two pairs
of mirrored disks

Since data losses are essentially irrecoverable, the state corresponding to such a
loss is an absorbing state. Hence a steady state analysis of the array would provide no
insight on its performance.

Let us now consider the state transition diagram displayed in Fig, 9. It has the
same states and the same transitions as that of Fig. 8 but for the two transitions
leading to a data loss, which are now redirected to state <2, 2>. This diagram
represents what would happen if the array went through continuous cycles during
which it would first operate correctly then lose its data and get instantly repaired and
reloaded with new data [7]. The corresponding system of equations is

22 21 11 21 11

21 22

11 21 11

11 11 21

4 () 2

(3) 4

(3) , 2

(2 2) 3 2

X

X

X

p p p p p

p p

p p p

p p p

λ μ λ λ
λ μ κ λ
λ μ κ μ
λ μ λ λ

= + + +

+ + =

+ = +

+ = +

 (1)

together with the condition that p22 + p21 + p11X + p11= 1, where pij represents the
steady-state probability of the system being in state <i, j>. In addition, the rate at
which the array will fail before returning to its normal state is

21 112L p pλ λ= +
Solving system (1), we obtain

2 2 2

3 2 2 2 3

4 (9 3 3)

33 13 5 8
L

λ λ κλ λμ μ
λ κλ κλμ λμ κμ μ

+ + +
=

+ + + + +
.

478 J.-F. Pâris, T.J.E. Schwarz, and D.D.E. Long

222

221

211

111

211X

111Y 111X
κ

μ

2μ

κ

κ

3λ

2μ 2μ

6λ

2λ
4λ

3μ

4λ
3λ 2λ

μ

3λ
2λ

λ

λ

Fig. 11. State transition diagram for a self-adaptive disk array consisting of three pairs of
mirrored disks. The four dotted gray arcs returning the array to state <2, 2, 2> represent data
losses.

The mean time to data loss of our disk array (MTTDL) is then
3 2 2 2 3

2 2 2

1 33 13 5 8

4 (9 3 3)
MTTDL

L

λ κλ κλμ λμ κμ μ
λ λ κλ λμ μ

+ + + + +
= =

+ + +
.

Fig. 10 displays on a logarithmic scale the MTTDLs achieved by the self–adaptive
array for selected values of κ and repair times varying between half a day and seven
days. We assumed that the disk failure rate λ was one failure every one hundred
thousand hours, that is, slightly less than one failure every eleven years and
conservative relative to the values quoted by disk manufacturers. Disk repair times
are expressed in days and MTTDLs expressed in years.

Fig. 11 displays the state transition diagram for a self-adaptive disk array
consisting of three pairs of mirrored disks. Assume that disks A1 and A2 contain
identical copies of data set A, disks B1 and B2 store identical copies of data set B and
disks C1 and C2 have identical copies of data set C. State <2, 2, 2> represents the
normal state of the array when its six disks are all operational. A failure of any of
these six disks, say disk A1, would leave the system in state <2, 2, 1>. This state is a
less than desirable state as the array is left with only one copy of data set A. To return
to a more resilient state, the array will immediately start replacing the contents of one
of the four redundant disks, say, disks B1, with the XOR of data sets A and B, thus
bringing the system from state <2, 2, 1> to state <2, 1, 1, X> with the XOR of data
sets A and B on disk B1. Failure of a second disk would bring the array to either state
<2, 1, 1> or state <1, 1, 1, X>. Both states are less than desirable states, as they leave
the array vulnerable to a single disk failure. To return to a more resilient state, the
array will bring itself to state <1, 1, 1, Y>, having a single copy of each data set on
separate disks and their XOR (A ⊕ B ⊕ C) on disk Y.

 Self-adaptive Disk Arrays 479

100

1000

10000

100000

1000000

0 1 2 3 4 5 6 7

Mean disk repair time (days)

M
ea

n
 t

im
e

to
 d

at
a

lo
ss

 (
ye

ar
s)

Reorganization takes one hour

Reorganization takes two hours

Reorganization takes six hours

No reorganization

Fig. 12. Mean times to data loss achieved by a self-adaptive disk array consisting of three pairs
of mirrored disks

Finally, a failure of any of these four disks would bring the array from state
<1, 1, 1, Y> to state <1, 1, 1>, having survived three successive data losses and
being unable to tolerate a fourth disk failure. Less desirable outcomes would
result from the failure of the critical disk in state <2, 2, 1> and <1, 1, 1, X> or
from the failure of either of the two critical disks in state <2, 1, 1>. All these
failures would result in permanent data loss. As in Fig. 9, all failure transitions
that result in a data loss are represented by dotted gray arcs returning to the normal
state of the array.

Using the same techniques as in our previous model, we can compute the steady-
state probabilities of the system of being in any of its seven possible states and derive
from them the rate L at which the array will fail before returning to its normal state

221 211 111 1112 3
X

L p p p pλ λ λ λ= + + +

and its MTTDL

221 211 111 111

1 1

2 3
X

MTTDL
L p p p pλ λ λ λ

= =
+ + +

The outcome of these computations is a quotient of polynomials that is too large to
be displayed. We refer instead the reader to Fig. 12, which displays on a semi-
logarithmic scale the MTTDLs achieved by the self-adaptive array for selected values
of κ and repair times varying between half a day and seven days.

480 J.-F. Pâris, T.J.E. Schwarz, and D.D.E. Long

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

0 1 2 3 4 5 6 7

Mean repair time (days)

M
ea

n
 t

im
e

to
 d

at
a

lo
ss

 (
ye

ar
s)

Erasure Code
Reorganization takes one hour
Reorganization takes two hours
Reorganization takes six hours
No Reorganization

Fig. 13. Mean times to data loss achieved by (a) a self-adaptive disk array consisting of two
pairs of mirrored disks and (b) a 2-out-of-4 erasure code

Let us now see how our technique compares with erasure coding. Rather than
storing our data on two pairs of mirrored disks, we could use a 2-out-of-4 erasure
code that would tolerate the simultaneous loss of two disks. We can easily derive the
MTTDLs achieved by these erasure codes by observing they correspond to the limit
case when the reorganization rate κ goes to infinity. Hence, we would have

3

22

222

32223

4ofout2

12

513

)339(4

851333
lim

λ
μλμλ

μλμκλλλ
μκμλμκλμκλλ

κ

++=

+++
+++++= ∞→−−−MTTDL

.

Fig. 13 compares the MTTDLs achieved by a 2-out-of-4 erasure code, a pair of
self-adaptive mirrored disks and a pair of conventional mirrored drives. As we can
see, the 2-of-out-4 erasure code achieves much higher MTTDLs than a self-adaptive
disk array with four disks. These excellent results need however to be qualified in
two important ways. First, all our analyses have assumed that disk failures were the
only causes of data losses. We did not consider other types of system malfunctions
such as media errors, human errors, power failures, fires, floods and other acts of
God. As we consider solutions minimizing the impact of disk failures, these other
malfunctions will quickly become the main cause of data losses. Second, 2-out-of-4
erasure codes will result in much costlier write accesses that mirroring or even
conventional RAID level 5.

We can make four main observations from our results. First, our self-
adaptive array provides much better MTTDLs than a static array that makes no

 Self-adaptive Disk Arrays 481

attempt at reconfiguring itself after disk failures. The improvements vary between a
minimum of 200 percent and a maximum of almost 13,000 percent depending on the
disk repair rate and the array reorganization rate, with the best results achieved for a
combination of a slow disk repair rate and a fast array reconfiguration rate. This is a
very significant result as we have only considered arrays consisting of two and three
pairs of mirrored drives. Larger self-adaptive disk arrays should perform even better
as they can perform many more corrective actions to protect their data after
successive disk failures.

Second, these benefits remain evident even when the reconfiguration process takes
six hours. Since the reconfiguration process normally consists of reading the whole
contents of a disk and XORing these contents with the contents of a second disk, this
is clearly an upper bound. In reality we expect most reconfiguration tasks to take
between one and two hours depending on the disk bandwidths and capacities.

Third, the MTTDLs achieved by our self-adaptive organization remain nearly
constant over a wide range of disk repair times. This is a significant advantage
because fast repair times require maintaining a local pool of spare disks and having
maintenance personnel on call 24 hours a day. Since our self-adaptive organization
tolerates repair times of up to one week, if not more, it will be cheaper and easier to
maintain than a static mirrored disk organization with the same number of disks.

Finally, erasure codes ought to be seriously considered whenever we want to
provide the highest level of protection to data that are very unlikely to be ever
updated.

4 Previous Work

The idea of creating additional copies of important data in order to increase their
chances of survival is likely to be as old as the use of symbolic data representations
by mankind and could well have preceded the discovery of writing. Erasure coding
appeared first in RAID organizations as (n – 1)-out-of-n codes [3, 4, 6, 8, 9]. RAID
level 6 organizations use (n – 2)-out-of-n codes to protect data against double disk
failures [1].

The HP AutoRAID [11] automatically and transparently manages migration of data
blocks between a replicated storage class and a RAID level 5 storage class as access
patterns change. This system differs from our proposal in several important aspects.
First, its objective is different from ours. AutoRAID attempts to save disk space
without compromising system performance by storing data that are frequently
accessed in a replicated organization while relegating inactive data to a RAID level 5
organization. As a result, data migrations between the two organizations are normally
caused by changes in data access patterns rather than by disk failures. Self-adaptive
disk arrays only reconfigure themselves in response to disk failures and repairs.
Second, AutoRAID actually migrates data between its two storage classes while self-
adaptive disk arrays keeps most data sets in place. Finally, the sizes of the transfer
units are quite different. A self-adaptive disk array manages its resources at the disk
level. The transfer units managed by AutoRAID are physical extent groups (PEGs)
consisting of at least three physical extents (PEXes) whose typical size is a megabyte.
Consequently, AutoRAID requires a complex addressing structure to locate these

482 J.-F. Pâris, T.J.E. Schwarz, and D.D.E. Long

PEGs while a self-adaptive array must only keep track of what happened to the
contents of its original disks. Assuming that we have n data sets replicated on 2n
disks, the actual locations of data sets and their parities can be stored in 2n2 bits. In
addition, this information is fairly static as it is only updated after a disk failure or a
disk repair.

Another form of adaptation to disk failure is sparing. Adding a spare disk to a disk
array provides the replacement disk for the first failure. Distributed sparing [10]
gains performance benefits in the initial state and degrades to normal performance
after the first disk failure.

5 Conclusions

We have presented a disk array organization that adapts itself to successive disk
failures. When all disks are operational, all data are replicated on two disks.
Whenever a disk fails, the array will immediately reorganize itself and adopt a new
configuration that will protect all data against any single disk failure until the failed
disk gets replaced and the array can revert to its original condition. Hence data will
remain protected against the successive failures of up to one half of the original
number of disks, provided that no critical disk failure happens while the array is
reorganizing itself. As a result, our scheme achieves the same access times as a
mirrored disk organization under normal operational conditions while having a much
lower likelihood of loosing data under abnormal conditions. Furthermore, the
MTTDLs achieved by our self-adaptive organization remain nearly constant over a
wide range of disk repair times.

More work is still needed to investigate larger disk arrays. As the number of
possible reconfiguration steps increases with the size of the array, simulation will
become an increasingly attractive alternative to Markov models. We also plan to
investigate self-adaptive strategies for disk arrays where some data are more critical
than other and thus deserve a higher level of protection. This is the case for archival
storage systems implementing chunking to reduce their storage requirements. Chunk-
based compression, or chunking, partitions files into variable-size chunks in order to
identify identical contents that are shared by several files [5]. Chunking can
significantly reduce the storage requirements of archival file systems. Unfortunately,
it also makes the archive more vulnerable to the loss of chunks that are shared by
many files. As a result, these chunks require a higher level or protection than chunks
that are only present in a single file [2].

References

1. Burkhard, W. and J. Menon: Disk Array Storage System Reliability. Proc. 23rd
International Symposium on Fault-Tolerant Computing (FTCS-23), pp. 432-441, 1993.

2. Bhagwat, D., K. Pollack, D. D. E. Long, E. L. Miller, T. J. Schwarz and J.-F. Pâris:
Providing High Reliability in a Minimum Redundancy Archival Storage System. Proc. 14th
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, to appear, Sep. 2006.

 Self-adaptive Disk Arrays 483

3. Chen, P. M., E. K. Lee, G. A. Gibson, R. Katz, and D. Patterson: RAID, High-
Performance, Reliable Secondary Storage. ACM Computing Surveys, Vol. 26, No. 2, pp.
145–185, 1994.

4. Ganger, G., B. Worthington, R. Hou, Y. Patt: Disk arrays: High-performance, high-
reliability storage subsystems. IEEE Computer vol. 27(3), p. 30–36. 1994.

5. Muthitacharoen, A., B. Chen, and D. Mazieres: A Low-Bandwidth Network File System.
Proc. 18th Symposium on Operating Systems Principles, pp. 174-187, 2001.

6. Patterson, D. A., G. A. Gibson, and R. H. Katz: A Case For Redundant Arrays Of
Inexpensive Disks (RAID). Proc. SIGMOD 1988 International Conference on Data
Management, pp. 109–116, June 1988.

7. Pâris, J.-F., T. J. E. Schwarz and D. D. E. Long: Evaluating the Reliability of Storage
Systems. Technical Report UH-CS-06-08, Department of Computer Science, University of
Houston, June 2006.

8. Schwarz, T. J. E., and W. A. Burkhard: RAID Organization and Performance. Proc. 12th
International Conference on Distributed Computing Systems, pp. 318–325, June 1992.

9. Schulze, M., G. Gibson, R. Katz and D. Patterson: How Reliable is a RAID? Proc. Spring
COMPCON ‘89 Conference, pp. 118–123, March 1989.

10. Thomasian, A. and J. Menon: RAID 5 Performance with Distributed Sparing. IEEE
Transactions on Parallel and Distributed Systems, Vol. 8(6), pp. 640–657, June 1997.

11. J. Wilkes, R. Golding, C. Stealin, C. and T. Sullivan: The HP AutoRAID hierarchical
storage system. ACM Transactions on Computer Systems, Vol. 14(1), pp. 1–29, Feb.
1996.

Using Eventually Consistent Compasses to

Gather Oblivious Mobile Robots with Limited
Visibility�

Samia Souissi1, Xavier Défago1, and Masafumi Yamashita2

1 School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

{ssouissi, defago}@jaist.ac.jp
2 Department of Computer Science and Communication Engineering,

Kyushu University, Fukuoka, Japan
mak@csce.kyushu-u.ac.jp

Abstract. Reaching agreement between a set of mobile robots is one of
the most fundamental issues in distributed robotic systems. This prob-
lem is often illustrated by the gathering problem, where the robots must
self-organize and meet at some (not predetermined) location, without a
global coordinate system. While being very simple to express, this prob-
lem has the advantage of retaining the inherent difficulty of agreement,
namely the question of breaking symmetry between robots. In previous
works, it was proved that gathering is solvable in asynchronous model
with oblivious robots and limited visibility, as long as the robots share
the knowledge of some direction, as provided by a compass. However,
the problem has no solution in the semi-synchronous model when robots
do not share a compass and cannot detect multiplicity.

In this paper, we define a model in which compasses may be unreli-
able, and study the solvability of gathering oblivious mobile robots with
limited visibility in a semi-synchronous model. In particular, we give an
algorithm that solves the problem in finite time in a system where com-
passes are unstable for some arbitrary long periods, provided that they
stabilize eventually. In addition, our algorithm is self-stabilizing.

1 Introduction

The problem of reaching agreement among robots has attracted considerable
attention within the last few years. However, most of the algorithmic results we
are aware of do not consider cases when sensors are unreliable. In particular,
the models under which the majority of the problems are studied rely on the
assumption that compasses provide perfect information. However, these compo-
nents are frequently prone to failures, and are sensitive to magnetic interference.
In this paper, we revise the practical significance of this assumption. We thus,
define a model in which compasses are unreliable, and we study the solvability
of the gathering problem in the face of instability of the compasses for some
� Work supported by MEXT Grant-in-Aid for Young Scientists (A) (Nr. 18680007).

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 484–500, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using Eventually Consistent Compasses to Gather Oblivious Mobile Robots 485

arbitrary periods, with the guarantee that they stabilize eventually. However,
the time when the stabilization occurs is unknown to the robots. Moreover, we
consider that the robots have limited visibility and they are oblivious (i.e., state-
less). Since the problem is solvable with perfect compasses, one might argue that
the problem would be easy, since eventually the compasses show the correct di-
rection, and hence, the problem has almost the same complexity as in the case
of a perfect compass. However, this is not true, as the robots do not know when
the stabilization time will occur. Therefore, the algorithm designed for the case
must guarantee that the robots do not lose sight of each other when their com-
passes are inconsistent (safety condition), and when their compasses eventually
become consistent, the algorithm should allow the robots to progress and gather
at a single point in a finite number of steps (liveness condition). This is where
the difficulty of the problem arises, as one algorithm that can be designed sat-
isfying, for instance, the safety condition will not let the robots progress when
their compasses eventually stabilize, and vice versa. In this paper, in particular,
we study the solvability of the gathering problem relying on eventually consis-
tent compasses in the Suzuki and Yamashita model [1] (called ATOM), referred
to as a semi-synchronous model, by providing a deterministic solution to the
problem. Our algorithm is guaranteed to recover from any arbitrary configura-
tion when the compasses of the robots eventually stabilize. We can argue that
our algorithm is intrinsically self-stabilizing1 [1] and offers protection against
any number of transient failures in the compasses. Moreover, we show that our
algorithm proposed for the Suzuki and Yamashita model solves the problem in
the fully asynchronous model (called CORDA), for up to three robots.

Related Work. Despite its apparent simplicity, the problem of gathering robots
at a single point is surprisingly difficult, and has been studied extensively in the
literature, in different models and under several assumptions. In fact, several
factors render this problem difficult to solve [4,5,6,7,1]. In particular, in these
studies, the problem has been solved only by making some additional assump-
tions regarding the capabilities of the robots.

Earlier study of the gathering problem includes the work of Suzuki and Ya-
mashita [1]. In their model,2 they proposed an algorithm to solve the gathering
problem deterministically for three or more robots in the case where robots have
unlimited visibility and they are oblivious. In the same model, Ando et al. [8]
have proposed an algorithm to address the gathering problem in systems wherein
robots have limited visibility. Their algorithm converges toward a solution to the
problem, but it does not solve it within a finite time.

In the CORDA model [9], Cieliebak et al. [5] proposed a deterministic gath-
ering algorithm for systems in which robots have unlimited visibility. Among
other things, the algorithm requires that robots be able to detect multiple robots
1 Self-stabilization is the property of a system which, starting in an arbitrary state,

always converges toward a desired behavior [2,3].
2 The model of Suzuki and Yamashita [1] assumes that activations (look, compute,

move) occur atomically, resulting in a form of implicit synchronization. The model
is called semi-synchronous model for this reason.

486 S. Souissi, X. Défago, and M. Yamashita

located at a single point. In the same model, Flocchini et al. [6] proposed a de-
terministic gathering algorithm in the limited visibility setting. However, their
algorithm requires that robots share a compass which provides perfect informa-
tion. Later, Prencipe [7] proved that, in both ATOM or CORDA, it is impossible
to solve the gathering problem deterministically without additional assumption,
such as (1) non-oblivious robots, (2) multiplicity detection, or (3) compasses.
Other studies of gathering have been devoted to providing solutions to eventu-
ally converge to a point [10]. The gathering problem has been also studied in
the presence of faulty robots by Agmon and Peleg [11], both in synchronous
and asynchronous settings. In particular, they proposed an algorithm that tol-
erates one crash-faulty robot in a system of three or more robots, and show the
impossibility of tolerating Byzantine3 robots. Défago et al. [12] strengthen this
impossibility by showing that it still holds in stronger models. They also show
the existence of randomized solutions for systems with Byzantine-prone robots.

Contribution. The main contribution of this paper is to consider an important
agreement problem (gathering) in the face of eventually consistent compasses.
In particular, we study the solvability of the gathering problem deterministically
in oblivious and limited visibility settings in the ATOM model, and we provide a
solution to the problem. The proposed solution guarantees that the robots gather
at a single point in finite time, if their compasses provide correct output after
some unknown period of instability, during which our algorithm can tolerate
any number of transient failures of the compasses. In addition, we show that our
algorithm proposed for the ATOM model can solve the gathering of a maximum
of three robots in the CORDA model when compasses are eventually consistent.

Structure. The remainder of this paper is organized as follows. Section 2 de-
scribes the system model and introduces definitions used in the paper. In Sect. 3,
we define different classes of compasses. In Sect. 4, we discuss the solvability of
the gathering problem deterministically in the limited visibility and oblivious
settings. In Sect. 5, we describe our algorithm, and in Sect. 6, we prove its
correctness. Finally, Sect. 7 concludes the paper.

2 System Model and Definitions

2.1 System Model

In this paper, we consider the system model of Suzuki and Yamashita [1], which
is defined as follows. The system consists of a set of autonomous mobile robots
roaming on a two-dimensional plane. Each robot is modeled and viewed as a
point in the plane and equipped with sensors to observe the positions of the
other robots. In particular, each robot is able to sense its surroundings, perform
computations on the sensed data, and move toward the computed destination.
3 A robot is said to be Byzantine if it executes arbitrary steps that are not in accor-

dance with its local algorithm.

Using Eventually Consistent Compasses to Gather Oblivious Mobile Robots 487

This behavior constitutes its cycle of sensing, computing, moving and being
inactive. The sequence Look -Compute-Move-Wait is called the cycle of a robot.

The robots are anonymous, in the sense that they can not be distinguished
by their appearance, and they do not have any kinds of identifiers that can be
used during the computation. In addition, there is no direct means of commu-
nication among them. Hence, the only way for robots to acquire information is
by observing each other’s positions. In this paper, we further make the following
assumptions. First, we assume that the robots have limited visibility, in the sense
that each robot can sense only up to a distance VR > 0 from it. In other words,
each robot can see only the robots which are within its visibility radius VR. We
assume that all the robots have the same visibility radius. Second, we assume
that the robots are oblivious (i.e., stateless), which implies that they are unable
to remember past actions and observations, and thus, their computations can
not be based on previous observations. Finally, we assume that the robots are
unable to detect the presence of multiple robots at a single point.

In the ATOM model, time is represented as an infinite sequence of discrete
time instants t0, t1, t2, . . ., during which each robot can be either active or in-
active. When a robot becomes active, it observes the environment, computes a
new location, and moves. In particular, the robots execute their activity cycle
(observe-compute-move) atomically. Thus, a robot observes other robots only
when a cycle begins (i.e., when they are stationary). The cycle of a robot is fi-
nite, and the activation of robots is determined by an activation schedule, which
is unpredictable and unknown to the robots. At each time instant, a subset of
the robots become active, with the guarantees that: (1) every robot becomes
active at infinitely many time instants, (2) at least one robot is active dur-
ing each time instant,4 and (3) the time between two consecutive activations is
finite.

In every single activation, the distance that robot r can travel in a cycle is
bounded by σr > 0. Specifically, if the destination point computed at a given
cycle by robot r is farther than σr, then the algorithm returns a point of at most
σr. This distance may be different between two robots.

In the ATOM model, each robot uses its own local x-y coordinate system
which includes: an origin, a unit distance, and the directions/orientation of the
two x and y axes. However, the robots have no knowledge of the coordinate
systems of the other robots, nor of a global coordinate system.

2.2 The CORDA Model

The CORDA model [9] is similar to the ATOM model except for the total absence
of synchrony between the actions of the robots. In particular, in the CORDA
model, the amount of time spent in observation, computation, movement and in-
action is finite but, otherwise unpredictable. Consequently, each robot executes
its computation cycle as follows: a robot is initially in a waiting state (Wait).

4 As the duration of the interval between two time instants is by no means fixed, the
second condition incurs no loss of generality. It is only required for convenience.

488 S. Souissi, X. Défago, and M. Yamashita

Asynchronously and independently from the other robots, it observes the envi-
ronment (Look) by taking a snapshot of the positions of the robots. Then, it
computes a destination point based on the observed positions (Compute). Fi-
nally, the robot moves toward its destination (Move), and the move can end
anywhere before the destination point. The robots can be partitioned into sets
depending on their state at a given time t: W(t) and L(t) are the sets of all
robots that are respectively in state Wait and Look at time t. C(t) is the set of
all robots in the state Compute at time t; the subset C∅(t) contains the robots
whose computation results in executing a null move. Finally, M(t) is the set of all
the robots that are executing a movement at time t; the subset M∅(t) contains
the robots executing a null move.

In this model, the cycle of a robot is finite. In addition, there is the following
assumption related to the distance traveled by a robot in one cycle.

Assumption 1. It is assumed that the distance traveled by a robot r in a move
is not infinite. Furthermore, it is not infinitesimally small: there exists a constant
Δr > 0, such that, if the target point is closer than Δr , r will reach it; otherwise,
r will move toward it by at least Δr.

2.3 Notations and Geometric Properties

We denote by U = {r1, · · · , rn} the set of all robots in the system. Given some
robot r, r(t) is the position of r at time t. The circle Cr(t), centered at r with
radius VR denotes the visibility range of r at time t. Rr(t) is the region enclosed
by Cr(t). The parameter t is omitted whenever clear from context.

Let A and B be two points, with AB, we will indicate the segment starting
at A and terminating at B, and dist(A, B) is the length of such a segment. By
(AB), we denote the line passing through points A and B.

C(o, R)(t), denotes the circle centered at o, and with radius R at time t. Let θ
be a central angle with endpoints A and B are located on the circumference of
C, then �(AoB), denotes the circular sector at the central angle θ. Finally, we
denote by C(AB), the circle with diameter AB.

Given a region X , we denote by |X |, the number of robots in that region at
time t. S is a set of robots, |S| indicates the number of robots in the set S.

Finally, given three distinct points A, B, and C, we denote by '(A, B, C),
the triangle that they define, and B̂AC, the angle that A forms with B and C.

We now introduce important observations used later in the paper.

Observation 1. Every internal chord of a triangle has a length less than the
longest side of the triangle.

Observation 2. In an obtuse triangle, the side opposite the obtuse angle (angle
greater than π

2 and less than π) is the longest side in the triangle.

Observation 3. Every internal chord of a circle has a length less than or equal
to the diameter. That is the distance between any two points that belong to a
circle is less than or equal to the diameter.

Using Eventually Consistent Compasses to Gather Oblivious Mobile Robots 489

2.4 Definitions

We now introduce definitions and a lemma due to Flocchini et al. [6].

Definition 1 (Distance graph). Let G(0) = (N, E(0)) indicates the initial
distance graph of the robots, whose node set N is the set of input robots, and
∀r, s ∈ N , (r, s) ∈ E(0) if and only if r and s are at a distance no greater than
the visibility radius VR.

Lemma 1. If the initial distance graph G(0) is disconnected, the gathering prob-
lem is unsolvable.

Definition 2 (Mutual visibility). In the CORDA model, two robots r and r′

are mutually visible at time t, if both robots include each other in their com-
putations. Formally, r and r′ are mutually visible at time t if and only if both
conditions hold:

1. 0 < dist(r, r′) ≤ VR,
2. r, r′ ∈ L(t) ∪ C∅(t) ∪ M∅(t) ∪ W(t).

Note that mutual visibility does not include robots with the same location.

3 Definition of Compasses

Definition 3 (Compass). A compass is a function of time and robots. The
function outputs a north direction for some robot r at time t. By compassr (t),
we denote the north direction of the compass of robot r at time t.

3.1 Perfect Compass

With a perfect compass, the robots always agree on the same north direction. In
other words, the robots agree on the directions and orientations of both x and y
axes at any time t. Formally, the robots on the system share a perfect compass
if and only if the agreement and invariance properties are satisfied:

Definition 4 (Perfect compass). A perfect compass is defined as follows:

1. Agreement: ∀r, r′ ∈ U , ∀t, compassr(t) = compassr′(t)
2. Invariance: ∀r ∈ U , ∀t, t′, compassr(t) = compassr(t′)

3.2 Eventually Consistent Compass

With an eventually consistent compass, there exists a time after which all the
robots agree on the same north direction. The agreement holds after some time
GST (Global Stabilization Time) unknown to the robots. In other words, it is
only guaranteed that the agreement on the north direction will hold, but the
time for which the agreement holds is unknown to the robots. More precisely,
an eventually consistent compass has the following properties: (1) The north

490 S. Souissi, X. Défago, and M. Yamashita

direction of a robot’s compass can change with time. (2) At a given time, the
compasses of any two robots may disagree. (3) There exists some time GST after
which, the compasses of all the robots agree for a sufficiently long period. Yet,
the robots do not know when the time GST will occur.

Formally, the robots on the system share an eventually consistent compass if
and only if the eventual agreement and eventual invariance properties hold:

Definition 5 (Eventually consistent compass). An eventually consistent
compass is defined as follows:

1. Eventual agreement: ∃GST , ∀r, r′ ∈ U , ∀t≥GST , compassr(t)=compassr′(t)
2. Eventual invariance: ∀r ∈ U , ∀t, t′ ≥ GST , compassr(t) = compassr(t′)

Table 1. Solvability of the gathering problem deterministically with oblivious robots
and limited visibility for n ≥ 2 with no multiplicity detection

Compasses
Perfect Eventually None

Model consistent

Asynchronous Solvable Impossible for n > 4 Impossible
(CORDA) (proved in [6]) (Conjecture) (proved in [7])

Semi-synchronous Solvable Solvable Impossible
(ATOM) (Deduct. from [6]) (Sect. 5) (proved in [1] for n = 2)

(proved in [7] for n ≥ 2)

4 Solvability of the Gathering Problem

In this section, we discuss the solvability of the gathering problem determinis-
tically in both ATOM and CORDA models in the case of oblivious and limited
visibility settings, where robots cannot detect multiplicity. Flocchini et al. [6]
proved that the gathering problem is solvable deterministically when robots share
perfect compasses by providing a solution to the problem. It is easy to see that
the gathering problem is also solvable in the ATOM model, when robots are
equipped with perfect compasses, since all the possible executions in the ATOM
model are a subset of the possible executions in the CORDA model.

In the Suzuki and Yamashita model [1] (ATOM), the authors showed that
there is no oblivious algorithm for solving the gathering problem for the case of
two robots. At a more general level, Prencipe [7] showed that in both ATOM and
CORDA models, without a compass and without multiplicity detection, there
exists no deterministic oblivious algorithm that solves the gathering problem in
finite time for n ≥ 2 robots. Table 1 summarizes these results.

In this paper, we focus on the solvability of gathering using eventually consis-
tent compasses in limited visibility and oblivious settings. In particular, we show
that gathering is solvable deterministically in the ATOM model relying on even-
tually consistent compasses, by providing a solution to the problem (Sect. 5).

Using Eventually Consistent Compasses to Gather Oblivious Mobile Robots 491

Then, we show that our algorithm proposed for the ATOM model solves the
problem in the CORDA model for a maximum of three robots, and we conjec-
ture that in general, it is impossible to solve the gathering problem in a finite
time in the CORDA model, for a set of robots greater than 4 with eventually
consistent compasses.

δr

r
2

r
1

r

H

r
3

Cr

r
4

r
5

r
6

Ψ
r

δ r

r
3

r

r
1

H

Cr
r

2

r
4

Ψ
r

δr

r
3

rCr

r
2

r
1

Ψ
r

Fig. 1. Principle of the algorithm

5 Gathering with Eventually Consistent Compasses

In this section, we present a deterministic algorithm for solving the gathering
problem in the ATOM model, where robots are oblivious, they have limited
visibility, and they are equipped with eventually consistent compasses.

5.1 Description

The idea of the algorithm is to solve the problem by achieving the following two
sub-goals at every time instant t:

1. Robots that are visible at time t must remain visible at time t + 1, in spite
of the inconsistencies in their compasses;

2. Robots located on the leftmost side at time t move toward the visible ones
on their right side at time t + 1, and eventually gather at the rightmost and
bottommost robot in the system after GST .

The gathering algorithm is depicted in Algorithm 1, where the functions
Activation Step(Rr , compassr), Do nothing(), and Move to(Goal) are as follows:

492 S. Souissi, X. Défago, and M. Yamashita

Algorithm 1. Gathering with Eventually Consistent Compasses
1: Activation Step(Rr , compassr)
2: if (|Rr| = 1) then {Gathering terminated; r sees only itself.}
3: Do nothing();
4: else
5: Ψr:= vertical axis passing through robot r according to compassr;
6: Φr:= perpendicular to Ψr passing by r;
7: Leftr := any robot in Rr to the left of Ψr, but not on Ψr;
8: Topr := any robot in Rr above Φr;
9: Bottomr := any robot in Rr below Φr ;
10: Ψ+

r := Topr ∩ Ψr;

11: Ψ−
r := Bottomr ∩ Ψr;

12: if (|Leftr | > 0 ∨ |Ψ+
r | > 0) then {r sees robots on its left side or on Ψ+

r .}
13: Do nothing();
14: else
15: if (r is collinear with all robots in Rr) then
16: Goal := nearest robot to r;
17: else {r computes two outermost robots s1 and s2.}
18: ÂrB: biggest central angle of Cr with endpoints A and B that includes robots in Rr ;
19: s1 := farthest robot from r on the segment rA;
20: s2 := farthest robot from r on the segment rB;
21: H := foot of the height of the triangle �(r, s1, s2) starting from r;
22: end if
23: s := nearest robot to r among s1 and s2;
24: if (H ∈ �(r, s1, s2)) then
25: Goal := H;
26: else {H is outside the triangle �(r, s1, s2).}
27: Goal := s;
28: end if
29: Move to(Goal);
30: end if
31: end if

the function Activation Step(Rr , compassr) is executed by robot r when it be-
comes active, and it takes as input the parameters visibility region Rr and
compassr of robot r. The function Do nothing() is executed by r when it stays
still. Finally, the function Move to(Goal) terminates the computation of robot r
and moves it toward Goal .

Before we proceed to the description of the algorithm in more detail, we
further introduce the following notations. Let Ψr be the vertical axis passing
through robot r according to its compass at time t. Ψr is collocated with the
north direction indicated by the compass of r at time t. We denote by Leftr(t)
and Rightr(t), the regions respectively, to the left and to the right of Ψr ex-
cluding Ψr. Let also Φr, be the perpendicular axis to Ψr passing by r. Then, we
denote Topr(t) and Bottomr(t) as the regions respectively, above and below Φr

excluding Φr . When no ambiguity arises, we shall omit the temporal indication.
Finally, Ψ+

r and Ψ−
r denote the intersections of Topr and Ψr, and of Bottomr

and Ψr, respectively.
Algorithm 1 is described informally as follows. First, at every time instant t

where some robot r becomes active, r queries its compass, considers all the
robots in its visibility region Rr(t), and then decides its movement as follows:

– If r sees robots on its left side Leftr, or on Ψ+
r (above it on Ψr), then, r does

not move (line 13).

Using Eventually Consistent Compasses to Gather Oblivious Mobile Robots 493

– If r is collinear with all robots in Rr(t) (see Fig. 1(c)), then r moves linearly
to the nearest robot. In this case, r must be the topmost or leftmost robot
in the line (line 16).

– If r sees robots on its right side Rightr or on Rightr and some robots on
Ψ−

r , then r computes the two robots furthest away from it (we call them
outermost robots). The two outermost robots are the robots that form the
biggest sector with r in its circle of visibility Cr that contains all robots
visible to r. In other words, they are the two robots that form the biggest
central angle in Cr. When there are more than one pair of such robots, then
the robots with maximum distance from r is selected (e.g., r1 and r3 in
Fig. 1(a)). Thus, the two outermost robots are the two robots that form
the biggest central angle with r and are at the greatest distance from r.
Afterwards, r computes the height of the triangle that it forms with the two
outermost robots s1 and s2, and having a base segment s1s2. Let H be the
foot of a perpendicular starting at r. Then, r moves to H if H is inside the
triangle '(r, s1, s2) (see Fig. 1(a)). Otherwise, if H is outside '(r, s1, s2),
then r moves to the closest robot to it among s1 and s2 (see Fig. 1(b)).

6 Correctness

We prove the correctness of our algorithm in two steps. In the first step, we show
that the connectivity of the distance graph is preserved before and after GST .
That is, the robots that are initially visible remain always visible during the en-
tire execution of the algorithm. In a second step, we show that all the robots will
gather at one point in a finite number of steps after GST . Before proceeding, let
us recall an important lemma proved by Flocchini et al. [6]; if the initial distance
graph is disconnected, the gathering problem is unsolvable. Hence, throughout
we will always assume that the initial distance graph is connected.

6.1 Preserved Connectivity

We now prove that the connectivity of the distance graph is preserved during
the entire execution of the algorithm. Recall that the compasses of the robots
may be inconsistent, including the robots that are located at the same location.
From the algorithm, trivially, we derive the following lemma:

Lemma 2. Let r1 and r2 be the two outermost robots for some robot r, and
ÂrB, the central angle whose sides pass by r1 and r2, and with endpoints A
and B located on the circumference of Cr. Let G be the destination of r. Then,
G ∈ �(ArB).

Lemma 3. Let robot r be active at time t, and Leftr = ∅ and Ψ+
r = ∅ (i.e., no

robots are to its left, or on Ψ+
r). Let r1 and r2 be its two outermost robots, and

ÂrB, the central angle whose sides pass by r1 and r2, and with endpoints A and
B located on the circumference of Cr. Let also G be the destination of r. Then,
for all point p in �(ArB), we have dist(p, G) < VR.

494 S. Souissi, X. Défago, and M. Yamashita

r

H

r2

Cr

r4

Ψ

r3

A

B

r1

r5

p

(a) Case where H is inside the
triangle �(r, r1, r2) that r forms
with the two outermost robots r1

and r2

δr

r2

r
r1

H

Ψ

Cr

A

B

r3

(b) Case where H is outside the
triangle �(r, r1, r2) that r forms
with the two outermost robots r1

and r2

Fig. 2. The destination of r is within distance VR from all robots in �(ArB)

Proof (Lemma 3). Let H be the foot of the height of the triangle '(r, r1, r2)
starting at r, and G be the destination of r.

By the algorithm, G = H if H ∈ '(r, r1, r2); otherwise G = r1 or G = r2.
Then, two cases follow, depending on whether H is inside or outside the triangle
'(r, r1, r2):

1. H belongs to '(r, r1, r2) (see Fig. 2(a)).
Consider the triangle '(r, r1, H), by Lemma 1, for every point p in tri-
angle '(r, r1, H), we have dist(p, H) < dist(r, r1) ≤ VR. Similarly, ∀p ∈
'(r, r2, H), dist(p, H) < dist(r, r2) ≤ VR. Consider now the subregion
P(r1, r2, A, B) of the circular sector �(ArB) delimited by r1, r2, A, and B,
then ∀p ∈ P(r1, r2, A, B), the triangle that p forms with r and H is an obtuse
triangle at H since r̂Hr1 = 90◦. Consequently, by Lemma 2, ∀p ∈ �(ArB),
dist(p, H) < dist(p, r) ≤ VR. Hence, ∀p ∈ �(ArB), dist(p, G) < VR.

2. H does not belong to '(r, r1, r2) (see Fig. 2(b)).
In this case, G = r1 (nearest to r among r1 and r2). Since H is out-
side the triangle '(r, r1, r2), then '(r, r1, r2) is an obtuse triangle at r1.
By Lemma 2, the segment rr2 is the longest side of the triangle. Thus,
∀p ∈ '(r, r1, r2), dist(p, r1) < dist(r, r2) ≤ VR. Consider now the sub-
region P(r1, r2, A, B) of the circular sector �(ArB) excluding the point
B, then ∀p ∈ P(r1, r2, A, B), the triangle that forms p with r and r1 is
an obtuse triangle at r1, since r̂r1r2 > 90◦. Consequently, by Lemma 2,
∀p ∈ P(r1, r2, A, B), dist(r1, p) < dist(r, p) ≤ VR. Let us now consider the
point B, by hypothesis, dist(r, B) = VR and r1 ∈ rB, then dist(r1, B) < VR.
Consequently, ∀p ∈ �(ArB), dist(r1, p) < VR. Hence, for all point p in
�(ArB), we have dist(p, G) < VR.

In both cases, ∀p ∈ �(ArB), dist(p, G) < VR. This completes the proof. ��

Using Eventually Consistent Compasses to Gather Oblivious Mobile Robots 495

r

H=G

r
5

Cr
r

4

Ψ

r
3

A

B

r
1

r
7

G

r
2

= r

(a) r′ has the robots r and r7

as outermost robots, and com-
putes G′ as destination. Then,
dist(G, G′) < dist(r, r′) ≤ VR

r

H=G

Cr
r

5
= r

Ψ

r
3

A

B

r
1

r
8

G

r
2

e

r
4

(b) r′ has the robots r and r8

as outermost robots, and com-
putes G′ as destination. Then,
dist(G, G′) ≤ dist(r, e) ≤ VR

Fig. 3. The destination of r is within distance VR from all robots in �(ArB)

Lemma 4. Let S be the set of robots visible to r at some time t. Then, at any
time t′ > t, r is at a distance of at most VR from all robots in S.

Proof (Lemma 4). The proof consists of showing that the destination of r, and
the destination of any robot in S at time t+1, will not bring them to a distance
greater than VR from each other. Trivially, the case of two robots holds, since
one robot must move toward the other one. Thus, in the following, we assume
that the number of robots in S is greater than one. Let robot r be active at
time t. We distinguish the following cases depending on the movement of r and
whether the robots in S are active or not:

1. Robot r is active at time t; all robots in S are inactive at time t.
We distinguish the following cases depending on the movement of robot r.

(a) Robot r executes a null move.
If r has robots on Leftr or Ψ+

r then it does not move. In addition, by
hypothesis, ∀s ∈ S, s is inactive at time t. This means that at time
t+1, r remains at the original distance from all robots in S, which is by
hypothesis less than or equal to VR.

(b) Robot r is collinear with all robots in S.
Two possibilities follow: (1) Robot r can be in case a. above (i.e., it
executes a null move), so the lemma holds for case 1. (2) robot r can be
the leftmost or topmost robot, then it performs a real move. Let r1 be the
robot farthest away from r on the line. By hypothesis, dist(r, r1) ≤ VR
and by the algorithm, r moves on the segment rr1. Thus, at time t + 1,
r gets closer in distance to all robots in S.

496 S. Souissi, X. Défago, and M. Yamashita

(c) Robot r computes the positions of the two outermost robots.
Let r1 and r2 denote the two outermost robots of r at time t, and let
�(ArB) be the circular sector enclosing all the robots in S such that
dist(r, A) = dist(r, B) = VR, and r1 ∈ rA and r2 ∈ rB (see Fig. 2(a)).
We denote by G the destination of r. Then, by Lemma 3, for every point p
in �(ArB), we have dist(p, G) < VR. Thus, ∀ri ∈ S, dist(ri, G) < VR.

2. Robot r is active at time t; some or all robots in S are also active at time t.
We consider r′ ∈ S to be active at time t. Let G′ be its destination, and S′

be the set of robots visible to r′ at time t. Let also G be the destination of r.
In the following, we will show that at time t +1, dist(G, G′) ≤ VR. We only
prove the case for r′, but the same argument can be applied to the other
robots in S.
(a) Robot r executes a null move; Robot r′ executes a null move.

By hypothesis, dist(r, r′) ≤ VR, thus the case holds trivially.
(b) Robot r executes a null move; Robot r′ is collinear with all robots in S′.

This case is similar to case 1.b above, since r stays still at time t.
(c) Robot r executes a null move; Robot r′ computes the positions of its two

outermost robots.
This case holds by case 1.c above, since r stays still at time t.

(d) Robot r is collinear with all robots in S; Robot r′ computes the positions
of its two outermost robots.
Let �(A′r′B′) be the circular sector of robot r′ at time t. By Lemma 2,
G′ ∈ �(A′r′B′). In addition, r ∈ �(A′r′B′), and by the algorithm, G ∈
rr′ (r moves on rr′). Consequently, G ∈ �(A′r′B′), and by Lemma 3,
the proof holds for this case.

(e) Robot r computes the positions of its two outermost robots; Robot r′

computes the positions of its two outermost robots.
Depending where robot r′ is located in the circular sector �(ArB), and
where its visible robots (other than robot r) are located, its destination
G′ can either be within �(ArB) or outside it. We thus, distinguish the
following cases:

– The destination G′ of r′ belongs to �(ArB) (r can be an outermost
robot of r′ or not): In all cases where G′ ∈ �(ArB), by Lemma 3, ∀p ∈
�(ArB), dist (p, G) < VR. Therefore, dist(G′, G) < VR. This completes
the proof for this case.

– The destination G′ of r′ does not belong to �(ArB) (r can be an outer-
most robot of r′ or not):
Let r1 and r2 denote the two outermost robots of r at time t. In this case,
we assume that the destination G of r is the foot of the perpendicular
to the segment r1r2 starting from r. The case when the destination of r
is the location of one of its two outermost robots can be adapted easily.
We assume the same for the destination G′ of r′ (i.e., G′ is the foot of
the perpendicular to the segment defined by its two outermost robots).
(a) ∃s ∈ S′ such that s does not belong to �(ArB); and r′ is one of the

outermost robots of r (see Fig. 3(a)).

Using Eventually Consistent Compasses to Gather Oblivious Mobile Robots 497

In this case, assume that r′ is the robot r2, and its two outermost
robots are r and r7. We will show that dist(G, G′) ≤ VR. Consider
the circle C(rr′) with diameter rr′, we have G ∈ C(rr′) because r̂Gr′

is a right angle by construction (see Algorithm 1). Similarly, G′ ∈
C(rr′). Consequently, by Lemma 3, dist(G, G′) ≤ dist(r, r′) ≤ VR.

(b) ∃s ∈ S′ such that s does not belong to �(ArB); and r′ is not an
outermost robot for r (see Fig. 3(b)).
In this case, assume that r′ is the robot r5, and its two outermost
robots are r and r8. We will show that dist(G, G′) ≤ VR.
Let e = (r′G′) ∩ r1r2. Consider the circle C(re) with diameter re,
we have G ∈ C(re) because r̂Gr1 is a right angle by construction.
Similarly, G′ ∈ C(re). Consequently, by Lemma 3, dist(G, G′) ≤
dist(r, e) ≤ VR. This completes the proof.

In all cases, r remains within distance VR from all robots in S at time t + 1,
and the rest follows by induction. ��
From Lemma 4, we conclude that:

Theorem 1. Algorithm 1 preserves the connectivity of the distance graph.

6.2 Termination of the Algorithm

In this section, we show that Algorithm 1 solves the gathering problem deter-
ministically. Thus, in the following, we consider the system after time GST has
been reached. Thus, all robots agree on the direction of their compasses.

Lemma 5. In any collinear configuration of robots, all robots will gather in a
finite time at the rightmost or bottommost robot.

Proof (Lemma 5). In a configuration where robots are collinear, there exists two
cases; either all the robots are located on the same vertical axis Ψ or they are
collinear, but not on the same Ψ . Consider the first case, where all robots are
located on the same Ψ . By assumption, the activation schedule is fair. Then,
whenever the topmost robot becomes active, it will move to the nearest one
below it. Since, the cycle of a robot is finite, and the number of robots is finite,
then recursively, all robots in Ψ will gather at the bottommost robot in finite
time. Similarly, in the second case, the leftmost robot will reach the nearest one
to its right in a finite time. Thus, by using the same arguments, all robots will
gather at the rightmost robot in a finite time, and the lemma holds. ��
Lemma 6. In any configuration with three or more robots, all robots will gather
in a finite time at the rightmost and bottommost robot.

Proof (Lemma 6). We recall that the robots reach the time GST . The proof is
a simple adaptation of the proof of the Flocchini et al [6] algorithm.

Let Ψleft be the leftmost vertical axis that passes by the leftmost robot (one or
many robots) at time t. Let also Ψright be the rightmost vertical axis that passes

498 S. Souissi, X. Défago, and M. Yamashita

by the rightmost robot at time t. Let D be the horizontal distance between Ψleft

and Ψright . If D = 0, this means that all the robots in the system are located on
the same vertical axis. Then, by Lemma 5, they will gather at the bottommost
robot in a finite time.

We now consider the case when D �= 0. Assume by contradiction that some
robots never reach Ψright . This means that there are some axes that will not be
passed by all the robots that were to their left at the beginning of the algorithm:
we call them limit axes. Let Ψ be the leftmost such axis. Let A be the sets of
robots, initially to the left of Ψ , that will become arbitrarily close to Ψ but never
reach it. Let B be the sets of robots, initially to the left of Ψ , that will pass Ψ
within finite time. Finally, let C be the sets of robots, initially to the left of Ψ ,
that will reach Ψ without ever moving to its right.

First observe that since the robots reach the time GST , they only can move
to the right. Second, if some robot r leaves its vertical axis Ψr, then by Assump-
tion 1, it will progress toward Ψright by some distance d > 0, with d = δr sin βr,
where δr �= 0 is the distance between r and its target on the right, and 0 <
βr ≤ 90◦ is a non null angle that r forms with Ψr and its destination. Let β > 0
be the minimal angle that some robot can form with its vertical axis and its
destination to the right, and δ be the minimal distance traveled by any robot
toward its target.

Let t′ be a time when all robots in B have passed Ψ , and those in C have
reached Ψ . That is at time t′, the only robots to the left of Ψ are those in A.

Consider first the case when A = ∅. In this case, by Lemma 5, after a finite
number of moves, one of the robots in C will leave Ψ . A contradiction.

Now we assume that A �= ∅. Consider a vertical axis Ψ ′ to the left of Ψ , at
distance d′ < δ sin β from Ψ . Since Ψ is the leftmost limit axis, each r ∈ A will
be to the right of Ψ ′ within finite time. Observe that, once on the right of Ψ ′, r
must stop at least once, since by definition, it does not reach Ψ . Let t′′ > t′ be
a time when all robots in A have stopped at least once to the right of Ψ ′. Let
also Ψ ′′ be an axis between Ψ ′ and Ψ , such that at time t′′ no robot in A is to
its right. Since Ψ ′′ is not a limit axis, the robots of A will pass Ψ ′′ within finite
time. Since at time t′′ there are no robots between Ψ ′′ and Ψ , the first robot
r ∈ A that passes Ψ ′′ must have as destination a point to the right of Ψ or on
Ψ . According to the Algorithm, r will move on a straight line at an angle β′,
with β ≤ β′ ≤ 90◦; such a line intersects Ψ at a point H . Since this move by r is
started from a point S to the right of Ψ ′, then dist(S, H) < d′

sin β′ < sin β
sin β′ .δ ≤ δ.

Thus, in this move r will reach Ψ . A contradiction. Consequently, no limit axis
Ψ exists, and all robots reach the rightmost axis Ψright in finite time. ��
Lemma 7. Under Algorithm 1, all the configurations in which all the robots
gather at one point are stable.

Proof (Lemma 7). Assume that at some time t, all the robots gather at one point.
In such a configuration, none of the robots see other robots in their visibility
regions. Thus, by the algorithm, none of the robots will ever move. Consequently,
such a configuration is stable by the algorithm. ��

Using Eventually Consistent Compasses to Gather Oblivious Mobile Robots 499

Theorem 2. Under Algorithm 1, all robots gather at one point in finite time.

Proof (Theorem 2). By Lemma 5 and Lemma 6, any configuration of robots
is transformed to the gathering in a finite time. Moreover, by Lemma 7, the
gathering configuration is stable. This completes the proof. ��
From Theorem 1 and Theorem 2, it follows that:

Theorem 3. In a system, with n anonymous, oblivious mobile robots, with lim-
ited visibility, and eventually consistent compasses, the gathering problem is solv-
able deterministically in the ATOM model.

Theorem 4. Algorithm 1 solves the gathering problem deterministically for at
most three robots in the CORDA model, assuming eventually consistent com-
passes in oblivious and limited visibility settings.

The proof, straightforward, is omitted here.

7 Conclusion

In this paper, we took a new look at the gathering of a group of oblivious mobile
robots with limited visibility and no multiplicity detection. In particular, we
studied the solvability of gathering when robots are equipped with unreliable
compasses, and found that gathering can nevertheless be solved in finite time
with such compasses in the semi-synchronous model ATOM. The main benefit of
our approach is its practical value. In particular, eventually consistent compasses
allow the algorithm to tolerate transient faults, and also gives the algorithm the
nice property of self-stabilization.

We have also shown that our algorithm proposed for the ATOM model solves
the gathering for a maximum of three robots in the CORDA model, when robots
are equipped with eventually consistent compasses. Thus, we can argue that
eventually consistent compasses have the same computational power as a perfect
compass for solving the gathering problem for a maximum of three robots.

Finally, we conjecture that gathering has no deterministic solution for four
or more in the asynchronous model (CORDA) with eventually consistent com-
passes. This means that there is an inherent trade-off between the synchrony
of the system and the reliability of sensors. Currently, we are investigating this
issue. The results of this paper raise also new and interesting research questions.
For instance, we are also studying the solvability of gathering under another
class of unreliable compasses, namely, compasses with permanent bounded er-
rors (i.e., imprecise compass).

Acknowledgments

We are especially grateful to Hirotaka Ono, Matthias Wiesmann and Rami Yared
for their insightful comments regarding this work.

500 S. Souissi, X. Défago, and M. Yamashita

References

1. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal of Computing 28(4) (1999) 1347–1363

2. Dolev, S.: Self-Stabilization. MIT Press (2000)
3. Schneider, M.: Self-stabilization. ACM Computing Surveys 25(1) (1993) 45–67
4. Cieliebak, M.: Gathering non-oblivious mobile robots. In: Proc. 6th Latin American

Symp. on Theoretical Informatics (LATIN’04). (2004) 577–588
5. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering

problem. In: Proc. Intl. Colloquium on Automata, Languages and Programming
(ICALP’03). (2003) 1181–1196

6. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1–3) (2005) 147–168

7. Prencipe, G.: On the feasibility of gathering by autonomous mobile robots.
In: Proc. Colloquium on Structural Information and Communication Complexity
(SIROCCO’05). (2005) 246–261

8. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. on
Robotics and Automation 15(5) (1999) 818–828

9. Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile
robots. In: Proc. ERSADS’01, Bertinoro, Italy (2001) 185–190

10. Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In:
Proc. Colloquium on Structural Information and Communication Complexity
(SIROCCO’04). Number 3104 in LNCS (2004) 79–88

11. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mo-
bile robots. In: Proc. 15th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA’04), Philadelphia, PA, USA (2004) 1070–1078

12. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and
self-stabilizing mobile robots gathering. In Dolev, S., ed.: Proc. 20th Intl. Symp.
on Distributed Computing (DISC’06). LNCS (2006)

Self-stabilizing Asynchronous Phase

Synchronization in General Graphs�

Chi-Hung Tzeng1, Jehn-Ruey Jiang2, and Shing-Tsaan Huang2

1 National Tsing Hua University, Hsinchu, Taiwan 30013
clark@cs.nthu.edu.tw

2 National Central University, Chungli, Taiwan 32054
jrjiang@csie.ncu.edu.tw,

sthuang@csie.ncu.edu.tw

Abstract. The phase synchronization problem requires each node to
infinitely transfer from one phase to the next one under the restriction
that at most two consecutive phases can appear among all nodes. In
this paper, we propose a self-stabilizing algorithm under the parallel ex-
ecution model to solve this problem for semi-uniform systems of general
graph topologies. The proposed algorithm is memory-efficient; its space
complexity per node is O(log Δ + log K) bits, where Δ is the maximum
degree of the system and K > 1 is the number of phases.

Keywords: Distributed system, Fault tolerance, Phase Synchronization,
Self-Stabilization, Spanning tree.

1 Introduction

This paper proposes a self-stabilizing phase synchronization algorithm for asyn-
chronous systems of general graph topologies. A system may be disordered due
to unexpected transient faults. We can make the system resilient to such faults
by the concept of self-stabilization, introduced by Dijkstra [1]. A system is said to
be self-stabilizing if it has the following two properties: (1) Convergence: Start-
ing from any initial configuration (possibly illegal), the system can converge to a
legal one in finite time. (2) Closure: Once the system is in a legal configuration,
it remains so henceforth. When a self-stabilizing system encounters transient
faults, it can be thought as in an arbitrary initial configuration. With the con-
vergence property, it can reach a legal configuration; with the closure property,
it can then function correctly henceforth.

The proposed algorithm makes each node go through a cyclic sequence of K
phases: phase 0, phase 1,. . . , phase K − 1, phase 0, phase 1, . . . The phases of
all nodes must satisfy the following criterion:

Criterion 1 (Phase Synchronization)

– No node can proceed to phase k +1 (mod K) until all nodes are in phase k.
� This research was supported in part by the National Science Council of the Republic

of China under the Contract NSC 92-2213-E-008-029.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 501–515, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

502 C.-H. Tzeng, J.-R. Jiang, and S.-T. Huang

– When all nodes are in phase k, each node eventually proceeds to phase k+1
(mod K).

The above phase synchronization criterion follows that discussed in [2]. Since
the nodes in the system make moves in asynchronous mode, each time when we
observe the phases of all the nodes, the phase may not be identical, but should
be no more than one apart. (There is another kind of phase synchronization
which demands that the phases of two adjacent nodes differ by at most 1. For
interested readers, see [3,4, 5].) However, in illegitimate states caused either by
transient faults or by arbitrary initialization, the phases of the nodes may be
more than one apart.

The phase synchronization algorithm builds a synchronous environment over
asynchronous one. Thus, applications developing for a synchronous environment
can be executed on an asynchronous environments.

There are many self-stabilizing phase synchronization algorithms proposed in
the literature [2, 6, 7, 8, 9, 10, 11, 12, 13]. The algorithms in [2, 6, 7, 8, 9] are for
the asynchronous environment; the others, the synchronous environment. Since
we focus on the asynchronous environment in this paper, we only introduce the
former algorithms below. The algorithm in [2] is designed for uniform complete
graphs. (If all nodes have identical behavior, the system is said to be uniform.)
It demands a node to proceed to a proper phase by examining all others’ phases.
The algorithm in [6] is for non-uniform rings. It uses the concept of token cir-
culation: a node with a token can proceed to the next phase. The algorithm
in [7] devoted to rooted tree networks and classifies nodes into the root node,
internal nodes and leaf nodes. The root initiates a new phase whenever it detects
the end of the last phase, whereas any other node just copies that phase. The
algorithm in [8] is for uniform rings of odd size. It also uses token circulation to
carry out the synchronizer: a node receiving a token copies the sender’s phase
and increments the token’s counter by one. When the counter value is equal to
the number of nodes in the system, the token owner resets the counter, then
proceeds to the next phase and sends out the token. The algorithm in [9] is for
uniform rings of any size. It views a ring as a set of segments whose heads can
move from one node to another and make the number of segments decrease to
one. Therefore, it works by allowing only the head to change its phase.

The proposed algorithm is semi-uniform; i.e., all system nodes, except a spe-
cial node, have identical behavior. The basic idea of the algorithm is to utilize
token circulation to construct a spanning tree and then to achieve phase synchro-
nization. After the construction of the spanning tree, the tree root can initiate a
phase and then sends a token containing the phase number to all its children. On
receiving the token, a node just follows the phase and then again forwards the
token to all its children. The token bounces at leaf nodes; that is, on receiving
the token, leaf nodes just send it back to parents. Furthermore, a node sends
the bounced token to its parent if all its children have done so. In this manner,
the token circulates in the root-to-leaf and then the leaf-to-root directions. The
root can initiate a new phase when it receives bounced tokens from all its chil-
dren. The new phase then proceeds properly, and so do all phases. Note that the

Self-stabilizing Asynchronous Phase Synchronization in General Graphs 503

proposed algorithm is not just a combination [14] of a tree construction algo-
rithm, such as those in [15], and a phase synchronization algorithm for the tree
network, such as that in [7]. Instead, we use the the token circulation concept
to achieve spanning tree construction and phase synchronization simultaneously.
That is, by the time the tree is constructed, the system immediately meets the
criterion of phase synchronization.

The proposed algorithm has the advantage of memory efficiency; its space
complexity per node is O(log Δ + log K) bits, where Δ is the maximum degree
of the system and K > 1 is the number of phases (we note that nodes need
not to know what the value of Δ is). As we will show later, it works without
depending on any system parameter, such as the number of nodes [2, 6, 9, 8], or
on any property of the system topology, such as the diameter [5], the cyclomatic
characteristic [3], and the length of the longest simple cycle [4]. Another advan-
tage of the algorithm is that it operates correctly in the parallel model, which is
more general than the serial model adopted by the algorithm in [8].

The rest of the paper is organized as follows. Section 2 presents the system
model and some terms used throughout this paper. Section 3 shows the proposed
algorithm and its correctness proofs. Finally, section 5 concludes this paper.

2 The System Model

We model the system by a connected, undirected, n-node graph G = (V, E)
where V is the set of nodes and E is the set of edges representing the links
between a pair of nodes. Two nodes i and j are said to be neighbors if (i, j) ∈ E.
Each node keeps a set of variables, to which it can write its own state and
from which it can read the neighbors’ states. Throughout this paper, we use the
notation V AR.i to denote the variable V AR maintained by node i.

The behavior of a node is defined by a set of rules of the form “guard →
action”, where guard is a boolean formula while action is a set of program
statements instructing how to update the values of the variables. Once a node
evaluates the guard part of one rule to be true, we say that the node is privileged
and the rule is enabled. The privileged node can execute the action part of the
enabled rule; we say that it executes a rule. In this paper, we assume that the
system is semi-uniform; namely, each node except the special node r has the
same set of rules.

We use the term configuration to refer to a vector of all nodes’ states for
representing the system status. Given a configuration c and its successor c′, the
transition from c to c′ is called a computation step, denoted by c → c′. During
c → c′, one or more privileged nodes in the configuration c concurrently execute
rules and each of them executes exactly one rule. After executing the rules, the
system enters the configuration c′ and the next computation step starts. In this
paper, we assume a system running under the parallel model. That is, we assume
a daemon selecting an arbitrary non-empty subset of privileged nodes to execute
rules during every computation step.

504 C.-H. Tzeng, J.-R. Jiang, and S.-T. Huang

The computation of the system can be expressed by a series of configurations
(c0, c1, . . .), where c0 is an arbitrary initial configuration and each ck → ck+1 is
a computation step. We use ck � ck+m to denote m consecutive computation
steps, where m > 0 and k ≥ 0. Given a configuration, its successor may not be
unique, depending on how the daemon selects privileged nodes. A self-stabilizing
system must guarantee that it eventually reaches a legal configuration c� from
any possible initial configuration c0; that is, c0 � c�, where � is a finite integer.
This requirement is called convergence. Another requirement of self-stabilization
is called closure: Given a legal configuration, its successor is also legal.

For the sake of simplicity, we use round instead of computation step to explain
how the system converges to a legal configuration. Starting from a configuration
ck, a round is the least consecutive computation steps ck � ck+m such that every
privileged node in ck has executed one or more rules when the system is in ck+m.
The first round starts from c0, and its ending configuration is the beginning of
the second round, . . . , and so on. By this definition, the time complexity is the
number of rounds converging to the first legal configuration in the worst case.

3 The Algorithm

In this section, we develop a phase synchronization algorithm for semi-uniform
systems under the parallel execution model. Our idea is to construct a spanning
tree rooted at the special node r. The node r is responsible for initiating a new
phase when it detects the end of the last phase. Any other node simply copies
the phase of its parent; thus the new phase is propagated in a top-down manner
and eventually all nodes proceed to the new phase.

To realize the above idea, we define a conceptual object called token circu-
lating along tree edges only. (An edge is an tree edge if one of the endpoints
is the other’s parent.) There are two types of tokens: forward tokens and back-
ward tokens. Forward tokens travel the tree from the root to the leaf nodes,
while backward tokens travel reversely. During traveling, forward tokens help
(1) propagate the current phase, and (2) construct the spanning tree. On the
other hand, backward tokens help the root node to know when to initiate a new
phase, but they don’t have actual effects on tree construction.

The proposed algorithm is developed on the basis of token circulation mech-
anism adapted from [16], which is originally designed for a static tree rooted
at r. Fig. 1 shows the three rules of the token circulation mechanism, in which
P.i is the parent of node i and Child.i = {j|P.j = i} stands for the set of
i’s children nodes. In addition to the pointer variable P , every node keeps two
scalar variables D and C. The variable D stands for the token’s direction and
its value is either B (Backward) or F (Forward). The variable C stands for
the node’s color and its value is 0, 1, or 2. Throughout this paper, the arith-
metic operations on C are assumed to be under modulo 3 and such predicates as
(∀j ∈ Child.r : D.j = B ∧ C.j = C.r) are assumed to be true if Child.r = ∅. A
token is assumed to have the same color as its owner. A non-r node i is said to
own a forward token if (D.i = B)∧ (D.P.i = F)∧ (C.i �= C.P.i), and it is said to

Self-stabilizing Asynchronous Phase Synchronization in General Graphs 505

Variables:
P : Parent pointer
D ∈ {F, B}
C ∈ {0, 1, 2}

For the root node r, P.r = r and D.r = F .
R0: (∀j ∈ Child.r : D.j = B ∧ C.j = C.r) → C.r = C.r + 1;

For i �= r:
R1: (D.i = F)∧(∀j ∈ Child.i : D.j = B ∧ C.j = C.i) → D.i = B;
R2: (P.i �= nil) ∧ (D.i = B) ∧ (D.P.i = F) ∧ (C.i �= C.P.i) → D.i = F ; C.i = C.P.i;

Fig. 1. The token circulation for a static tree rooted at r

receive a backward token from its child j if (D.i = F)∧(D.j = B)∧(C.i = C.j).
For the root node r, the definition of receiving a backward token is the same as
that of a non-r node. However, the node r is assumed to have a forward token
once it receives backward tokens from all of its children.

Consider the following perfect state: ∀i �= r : (C.i = C.r)∧ (D.i = B)∧ (D.r =
F), in which only r has a forward token. From the perfect state, tokens circulate
the tree as follows: By executing R0, the root node r changes its color to C.r+1,
and propagates a forward token with this color to each of its children. When a
non-r node receives a forward token, it executes R2 to copy the parent’s color
and passes one forward token with the new color to each of its children. When a
leaf node receives a forward token, it will execute R2 and then R1. The forward
token thus becomes a backward token and travels back to the root. When a
non-r node receives backward tokens from all of its children, it merges those
tokens into one and passes the backward token to its parent by executing R1.
Once the node r receives backward tokens from all of its children, a period of
token circulation is assumed to be finished and the system enters another perfect
state. Afterwards, the root node will initiate a new token circulation. Note that
during the time of the token circulation, the colors of nodes are either C.r or
C.r−1. Therefore, the color variable C can be viewed as a kind of phase variable
and Fig. 1 is actually a 3-phase synchronizer.

Because the network topology in this paper is a general graph instead of a tree,
we define that the root node r always points to itself and that any other node
points to its neighbor or nil. When a node points to nil, it means that this node
has no parent node. By this setting, the system has three kinds of connected
components: R-tree, O-tree and Nil-tree. The R-tree is the tree rooted at the
node r; an O-tree contains a cycle and branches pointing to the cycle; a Nil-tree
is a tree rooted at a node pointing to nil. A Nil-tree of single node is especially
called an isolated node. We show an example in Fig. 2, in which r is labeled 0
and the arrows represent parent pointers. The set {0, 1}* (the symbol * stands
for the inclusion of the attached arrow edges) is the R-tree; {2, 3}* and {4, 5,
6, 7, 8, 9, 10, 11}* are two O-trees in which {8, 9, 10}* and {11}* are branches;

506 C.-H. Tzeng, J.-R. Jiang, and S.-T. Huang

Fig. 2. An example of connected components

{12, 13}* is a Nil-tree; node 14 is an isolated node. Note that the labels in Fig.
2 are only used for illustration since our algorithms don’t rely on node IDs.

As shown in [16], when we apply the token circulation mechanism in Fig. 1 to a
tree network, such as the R-tree, the system eventually reaches the perfect state
from any arbitrary initial state and then tokens circulate the system infinitely
often. However, when we apply the mechanism to an O-tree or a Nil-tree, there
will be no token eventually. This is because there is no root node r generating
and propagating tokens in O-trees/Nil-trees. In terms of phases, nodes in the
R-tree keep changing their phases, whereas no node in O-trees/Nil-trees can
change its phase. As it will be shown later, this asymmetric property is useful
to determine whether a node is in the R-tree.

Below, we start to develop the rules for constructing a spanning tree. The
basic idea is to break O-trees to be Nil-trees and then to be isolated nodes,
and isolated nodes then join the R-tree. Our solution requires a node to know
whether its neighbor has a forward token or not, so the range of the variable D
is extended to be {FT, F} for the root node r and to be {FT, F, B} for every
non-r node. When D.i = FT holds, it means that i is owning a token of the
direction “Forward”. Before passing a forward token, a node first sets D = FT
and renews its color. Afterwards, the node sets D = F and the token is sent out.
Due to this setting, R0 is divided into two rules (a) and (b):

(a) (D.r = F) ∧ (∀j ∈ Child.r : D.j = B ∧ C.j = C.r) → D.r = FT ; C.r =
C.r + 1;
(b) (D.r = FT) → D.r = F ;

Since the variable P of a non-r node i may point to nil, rule R1 becomes rule
(c) by adding the condition (P.i �= nil) into the guard part. On the other hand,
R2 becomes two rules (d) and (e) as R0 does.

(c) (P.i �= nil) ∧ (D.i = F) ∧ (∀j ∈ Child.i : D.j = B ∧ C.j = C.i) → D.i = B;
(d) (P.i �= nil) ∧ (D.i = B) ∧ (D.P.i = F) ∧ (C.i �= C.P.i) → D.i = FT ; C.i =
C.P.i;
(e) (D.i = FT) → D.i = F ;

Self-stabilizing Asynchronous Phase Synchronization in General Graphs 507

Now, we explain how to use forward tokens to break O-trees. As we mentioned
above, during the token circulation with color C.r in the R-tree, the colors of
nodes should be either C.r or C.r − 1. Also recall the asymmetric property that
there is always a token in the R-tree, whereas there will be no token in O-trees
eventually. Thus, if a node i detects that one of its neighbors j owns a forward
token of color C.i + 2, then i is aware that j is in the R-tree and itself is in an
O-tree/Nil-tree. For such a case, node i should set P.i = nil to break the O-
tree/Nil-tree. Let N.i denote the set of i’s neighbors. We thus have the following
rule:

(f) (P.i �= nil) ∧ (∃j ∈ N.i : D.j = FT ∧ C.j = C.i + 2) → P.i = nil;

By rule (f), an O-tree is broken to be a Nil-tree. The next thing is to break
the Nil-tree to be isolated nodes. This task is easy to achieve because a Nil-tree
can collapse in a top-down manner without the help of tokens:

(g) (P.i �= nil) ∧ (P.P.i = nil) → P.i = nil;

The last step is to make isolated nodes join the R-tree with the help of forward
tokens:

(h) (P.i = nil) ∧ (Child.i = ∅) ∧ (∃j ∈ N.i : D.j = FT ∧ P.j �= nil) → P.i = j;

Below, we discuss the issues caused by an adversary daemon. Let j be a node
not in the R-tree such that j and r are neighbors. When j evaluates the guard
of rule (f) to be true, r must also evaluate the guard of rule (b) to be true at
the same time. If r takes a move earlier than j does, j’s privilege vanishes. An
adversary daemon can make this always happen to prevent j from executing
rule (f). Therefore, we must modify (b) to demand node r to wait until j takes
a move.

(b*) (D.r = FT) ∧ (∀j ∈ N.i : C.j �= C.r + 1) → D.r = F ;

Similarly, rule (e) should be modified to be (e*):

(e*) (D.i = FT) ∧ (∀j ∈ N.i : C.j �= C.i + 1) → D.i = F ;

A Nil-tree root node i with (D.i = FT) should reset D.i unconditionally.
Thus rule (e*) is modified to be rule (e**):

(e**) (D.i = FT) ∧ ((∀j ∈ N.i : C.j �= C.i + 1) ∨ (P.i = nil)) → D.i = F ;

The last issue is to guarantee no disturbance in token circulation even when
isolated nodes join the R-tree. Therefore, rule (h) should be further modified:
When i sets P.i = j, it also sets D.i = B and C.i = C.j, as if i has already
received a token of color C.j in this period of token circulation.

(h*) (P.i = nil) ∧ (Child.i = ∅) ∧ (∃j ∈ N.i : D.j = FT ∧ P.j �= nil) →
P.i = j; D.i = B; C.i = C.j;

The above rules are sufficient to build a spanning tree as well as a 3-phase
synchronizer by the variable C. To extend the rules to be a K-phase synchronizer,
each node maintain another variable H ∈ {0, 1, ..., K − 1}, K > 1 to keep track

508 C.-H. Tzeng, J.-R. Jiang, and S.-T. Huang

of its phase. We add H.r = H.r + 1 mod K to the action part of rule (a) and
add H.i = H.P.i to that of rules (d) and (h*). The guard parts of all the rules
remain unchanged. That is, a node updates its phase variable H whenever it
changes its color. For this reason, the system satisfies criterion 1 as soon as the
spanning tree is constructed.

All the rules mentioned above constitute our algorithm, which is listed in
Fig. 3. The root node r has two rules (a) and (b*), corresponding to R0 and R1
respectively. For non-r nodes, the rules (f) and (g) are combined into one rule
R5, so it has five rules: R2 to R6. We assume that each rule has a priority and
a rule with a smaller number has a higher priority. As readers can check, the
memory space is quite low and is independent of system size. Each node keeps
a pointer variable P , a phase variable H , and two scalar variables of totally
6 (resp., 9) states for the node r (resp., for a non-r node.) Let Δ denote the
maximum degree of the graph; the variable P requires O(log Δ) bits. Combining
the number bits for the variables H , D, and C, the space complexity per node
is O(log Δ + log K).

Variables:
P : parent pointer
C ∈ {0, 1, 2} // for color
D ∈ {FT, F, B} // for direction
H ∈ {0, 1, .., K − 1} // for phase

For the root node r: P.r = r and D.r ∈ {FT, F}
R0: (D.r = F) ∧ (∀j ∈ Child.r : D.j = B ∧ C.j = C.r)
→ D.r = FT ;C.r = C.r + 1; H.r = H.r + 1;
R1: (D.r = FT) ∧ (∀j ∈ N.r : C.j �= C.r + 1) → D.r = F ;

For i �= r:
R2: (P.i �= nil) ∧ (D.i = F) ∧ (∀j ∈ Child.i : D.j = B ∧ C.j = C.i) → D.i = B;
R3: (P.i �= nil) ∧ (D.i = B) ∧ (D.P.i = F) ∧ (C.i �= C.P.i)
→ D.i = FT ; C.i = C.P.i; H.i = H.P.i;
R4: (D.i = FT) ∧ ((∀j ∈ N.i : C.j �= C.i + 1) ∨ (P.i = nil)) → D.i = F ;
R5: (P.i �= nil) ∧ ((∃j ∈ N.i : D.j = FT ∧ C.j = C.i + 2) ∨ (P.P.i = nil))
→ P.i = nil;
R6: (P.i = nil) ∧ (Child.i = ∅) ∧ (∃j ∈ N.i : D.j = FT ∧ P.j �= nil)
→ P.i = j; D.i = B; C.i = C.j; H.i = H.j;

Fig. 3. The proposed algorithm

4 Correctness and Time Complexity Analysis

In this section, we show that the system stabilizes in O(n2) rounds, regardless
of any arbitrary initial configuration. Let n = |V | denote the number of nodes
in the system; we first define the legal configuration as below.

Self-stabilizing Asynchronous Phase Synchronization in General Graphs 509

Definition 1. (Legitimate Configuration)
A configuration is legitimate if it satisfies the following three conditions:
(1) ∀i �= r : (C.i = C.r) ∧ (D.i = B).
(2) D.r = F .
(3) the number of nodes in the R-tree is n.
Furthermore, any configuration that arises from the one satisfying (1), (2) and
(3) by the completion of one or more moves is also a legal configuration.

Before showing that the system eventually reaches a legal configuration, we must
guarantee that at least one node is privileged for any arbitrary configuration. In
other words, the system is never deadlocked.

Lemma 1. For any configuration, at least one node is privileged.

Proof. We prove this lemma by contradiction. Assume that no node is privileged.
According to the value of the variable D, there are two cases to be considered:
Case (1) every node has either D = B or D = F :

Let h(i) ≥ 1 be the height of a node i in the R-tree. We first use induction on
h(i) to show that every non-r node i in the R-tree has D.i = B. (Basis) Since
a leaf node i (h(i) = 1) cannot execute R2, we have D.i = B. (Hypothesis)
D.j = B for any non-r node j with h(j) < λ. (Induction) Let i be a non-r
node with h(i) = λ and j be a child of i. We have D.j = B by the hypothesis.
Assume that D.i = F . If C.j �= C.i for some node j, then j can execute R3. If
C.j = C.i for any node j, node i can execute R2. Since no rule is enabled, the
case of D.i = F does not occur and we have D.i = B, as desired.

For the root node r, D.r = F holds because the range of D.r doesn’t contain
B. Since r cannot execute R0, it has a child j such that C.j �= C.r, by which the
node j can execute R3 due to (P.j �= nil) ∧ (D.j = B) ∧ (D.P.j = F) ∧ (C.j �=
C.P.j). Contradiction occurs.
Case (2) some node i has D.i = FT :

Because node i cannot execute R4, we have P.i �= nil and i has a neighbor
j with C.j = C.i + 1. We have two sub-cases to consider: (i) P.j �= nil: j can
execute R5 because (D.i = FT) ∧ (C.i = C.j − 1 = C.j + 2). (ii) P.j = nil:
Since j cannot execute R6, we have Child.j �= ∅. Node j’s child k can execute
R5 because (P.k �= nil) ∧ (P.P.k = P.j = nil). We get a contradiction for each
sub-case.

Below, we begin to prove the convergence property. We first define tokens as
follows:

Definition 2. (Forward Token)
The root node r is said to own a forward token iff

(D.r = F ∧ (∀j ∈ Child.r : D.j = B ∧ C.r = C.j)) ∨ (D.r = FT),
whereas a non-r node is said to own a forward token iff

(P.i �= nil) ∧ ((D.i = B ∧ D.P.i = F ∧ C.i �= C.P.i) ∨ D.i = FT).

510 C.-H. Tzeng, J.-R. Jiang, and S.-T. Huang

Definition 3. (Backward Token)
A non-leaf node i is said to receive a backward token from its child j iff

(D.i = F) ∧ (D.j = B) ∧ (C.i = C.j),
whereas a non-isolated leaf node i is said to have a backward token iff

(D.i = F).

Our ultimate goal is to show that eventually there is a fixed spanning tree. To
do this, we first prove some properties of tokens in lemmas 2, 3, 4, and 5. By
these lemmas, we can infer the property of tokens in O-trees, Nil-trees, and the
R-tree, as shown in lemmas 6, 7 and 8, respectively. Finally, lemmas 9 and 10
show how the system converge to the legal configuration.

Lemma 2. In fixed components(R-tree, O-trees, or Nil-trees), a non-r node does
not receive contiguous forward and contiguous backward tokens.

Proof. We first show that a non-r node i never receives contiguous forward
tokens. By definition, when node i owns a forward token, either D.i = B or
D.i = FT holds and it can execute R3 and then R4 (in case of D.i = B), or
simply execute R4 (in case of D.i = FT) to pass the token to its children. After
the token passing, its status is D.i = F . Before owning a forward token again,
node i has to execute R2 so that the value of D.i becomes B from F . Since the
guard of R2 implies the possession of (at least) a backward token, it means that
node i must own (at least) a backward token before getting a forward token
again. That is, node i never receives contiguous forward tokens.

Based on the same strategy, we can also prove that node i never receives
contiguous backward tokens, so this proof is skipped.

Lemma 3. Once a forward token meets a backward token, one of them disap-
pears.

Proof. Consider two nodes i and j, P.j = i and P.i �= nil, such that j can
execute R2 and i can execute R0 (if i = r) or R3 (if i �= r). By definition, node j
has a backward token, whereas node i has a forward token. We prove this lemma
by checking how many tokens are left after the node pass the tokens.

Because the tokens meet by node i or node j or both executing the rules, we
have the following three cases to consider:
Case (1) Only j passes the backward token by executing R2:

For this case, node j is of D.j = B so the backward token disappears. On the
other hand, node i still holds the forward token.
Case (2) Only i passes the forward token by executing R0 and R1 (or R3 and
R4):

For this case, node i is of D.i = F so the forward token disappears. On the
other hand, node j still holds the backward token.
Case (3) Both i and j pass tokens:

After j executes R2 and i executes R0 and then R1 (or R3 and then R4),
we have D.j = B, D.i = F and C.i = C.P.i. According to the relation between
C.i and C.j, we have two sub-cases to consider: (i) C.i = C.j: Node i has

Self-stabilizing Asynchronous Phase Synchronization in General Graphs 511

(D.j = B) ∧ (D.i = F) ∧ (C.i = C.j), so it has a backward token coming from
j. On the other hand, node j does not own the forward token. (ii) C.i �= C.j:
In this case, node j has (D.j = B) ∧ (D.P.j = F) ∧ (C.j �= C.P.j) so it has a
forward token. On the other hand, node i does not receive the backward token
coming from j.

Because either the forward token or the backward token disappears in each
case, this lemma holds.

For normal token circulation, tokens bounce between the root node r and leaf
nodes. That is, a backward token should become a forward token when it arrives
the node r, whereas a forward token should become a backward token when it
arrives a leaf node. However, in the beginning a token may change its direction
at an internal node because of the unpredictable initial configuration. And we
say that an internal node i performs an illegal forward (resp., backward) token
reverse if it receives a forward (resp., backward) token but sends out a backward
(resp., forward) token. In terms of rules, if node i perform an illegal forward
token reverse, it executes R3, R4, and R2 consecutively. (Note that node i can
execute R2 right after executing R4, but in normal situations it cannot do so.)
Similarly, if node i perform an illegal backward token reverse, it executes R2,
R3 and R4 consecutively.

Lemma 4. Eventually no internal node can perform illegal forward or backward
token reverse.

Proof. To prove this lemma, we show that an internal node i can perform at
most one illegal reverse of a forward token and of a backward token respectively.

Consider the case that node i performing an illegal forward token reverse. By
definition, it executes R3, R4 and R2 consecutively. After executing the three
rules, node i has (D.i = B) ∧ (∀j ∈ Child.i : C.j = C.i ∧ D.j = B). Let j be
a child of i. The next time i receives a forward token, node i has C.i �= C.P.i.
After i executes R3 and R4 to pass the forward token, the condition C.j �= C.i
holds so it cannot execute R2 immediately. That is, node i cannot reverse the
forward token.

Now, consider the case that node i performing an illegal backward token
reverse. Similarly, it means that node i executes R2, R3 and R4 consecutively.
After executing the three rules, node i has (D.i = F) ∧ (D.P.i = F) ∧ (C.i =
C.P.i). The next time i owns a backward token and executes R2, it cannot
execute R3 immediately because C.i = C.P.i holds. That is, node i cannot
reverse the backward token.

According the proof of lemma 4, an illegal token reverse never occurs at a node
having executed R2, R3, and R4, or never occurs at a node having received a
token. By the fact that a token transfer from a node to the next one in O(1)
rounds, we have the following lemma:

Lemma 5. After O(n2) rounds, no internal node can perform illegal forward or
backward token reverse.

512 C.-H. Tzeng, J.-R. Jiang, and S.-T. Huang

Proof. We call a node an illegal bouncing point if it is an internal node that
can perform an illegal token reverse. Similarly, we call a node a bouncing point
if it is the root node r, a leaf node, or an illegal bouncing point. To prove this
lemma, we show that no illegal bouncing point exists in O(n2) rounds. For the
sake of simplicity, we assume that no token disappears.

Because tokens travel along tree edges only and they swing between bouncing
points, in O(n) rounds a token reaches a bouncing point. If that bouncing point
is an internal node, according to lemma 4, the node no longer serve as a bouncing
point. That is, every O(n) rounds a token eliminates an illegal bouncing point,
or arrives either the root node or a leaf node. Because there may be O(n) illegal
bouncing points in the initial configuration, it takes O(n)×O(n) = O(n2) rounds
to get rid of all of them, as desired.

In the following three lemmas, we show the behavior of tokens in O-trees, Nil-
trees, and the R-tree, respectively.

Lemma 6. After O(n2) rounds, there will be no token in O-trees.

Proof. To prove this lemma, we show that, for any O-tree, tokens in the branches
go into the cycle in O(n) rounds and then disappear in O(n2) rounds. With the
help of lemma 5, we assume that no illegal token reverse would occur.

First, focus on the tokens in the O-tree branches. In such components, a
forward token becomes a backward when it arrives a leaf node and the backward
token either goes into the O-tree cycle or disappears. The time complexity for
this is O(n) rounds, including O(n) rounds for a forward token to become a
backward token and another O(n) rounds for the backward token to go into the
cycle.

Now, consider the tokens in the O-tree cycle. According to lemma 3, the
number of tokens decreases when two tokens of different directions meet; hence
eventually the tokens in the cycle are of the same direction, either forward or
backward. The time complexity for this is O(n)×O(n) = O(n2) rounds because
there may be O(n) tokens in the cycle and two tokens of different types meet
in O(n) rounds. Afterwards, these survival tokens disappear in O(n) rounds,
since a node never continuously receive tokens of the same direction, according
to lemma 2. In summary, all the tokens in the O-tree cycle disappear in O(n2)
rounds, as desired.

Lemma 7. After O(n) rounds, there will be no token in Nil-trees.

Proof. By definition, an isolated has no token. Therefore, we prove this lemma
by showing that any Nil-tree becomes a set of isolated nodes in O(n) rounds.

According to R5, a child of a Nil-tree root can point to nil, so the Nil-tree’s
height decreases by one every O(1) rounds. Combining the fact that the tree
height is O(n), the Nil-tree becomes a set of isolated nodes in O(n) rounds.

Below, we show that the R-tree eventually reaches the perfect state; viz. D.r = F
and any non-r node i in the R-tree has (C.i = C.r) ∧ (D.i = B).

Self-stabilizing Asynchronous Phase Synchronization in General Graphs 513

Lemma 8. After O(n2) rounds, the R-tree reaches the perfect state.

Proof. To prove this lemma, we first show that in O(n2) rounds only one token
exists in each tree path from a leaf node to the root node r. Afterwards, the
R-tree enters the perfect state in O(n) rounds. Similar to lemma 6, we assume
that no illegal token reverse would occur.

Consider a tree path from a leaf node to the root node r. By the proof of
lemma 1, there is at least one token in this path. Let the number of tokens in
this path be O(n). Because the tokens bounce between the root node and the
leaf node, they meet one another in O(n) rounds. By lemma 3, it means that the
number of tokens decreases by one every O(n) rounds, or, equivalently, decreases
to one in O(n) × O(n) = O(n2) rounds. If the last survival token is forward, it
reaches the leaf node in O(n) rounds and becomes a backward token traveling
back to the root node.

Now we consider the configuration in which there is exactly one backward
token in any tree path from a leaf node to the root node. For a non-r node i
receiving all of the backward tokens from its children, it executes R2 to pass
the merged backward token to its parent. After the execution, node i has D.i =
B∧C.j = C.i∧D.j = B, where j ∈ Child.i. Since every O(1) rounds a backward
token moves from the node of height k to the node of height k + 1, the root
node receives backward tokens from all the children in O(n) rounds. By that
time, the root node is of D.r = F and any non-r node i in the R-tree is of
D.i = B ∧ C.i = C.P.i = C.r. That is, the R-tree is in the perfect state.

According to the above proof, the R-tree enters the perfect state in O(n2)
rounds.

Lemma 9. Once the R-tree reaches the perfect state and there is no token in
O-trees/Nil-trees, the number of nodes in the R-tree is monotonically increasing.

Proof. To prove this lemma, we show that a node i in the R-tree does not execute
R5 to depart from the R-tree. Let j be a neighbor of i. Our attempt is to show
that C.j �= C.i − 2 holds when D.j = FT holds. This node j must be in the
R-tree; otherwise D.j = FT cannot hold since there is no token in O-trees/Nil-
trees. Below, we consider a token circulation in the R-tree, observe how the color
C changes, and prove the desired property: C.j �= C.j − 2.

Let’s consider a token circulation starting from the perfect state, in which
every node has the same color C.r = α − 1. During this token circulation, the
root node r executes exactly two rules R0 and R1, and any other R-tree node
executes exactly three rules R2, R3, and R4. Because a node changes its color to
be α only when it executes R0 or R3, and because these two rules set D = FT
as well, the condition C.j = α must hold when D.j = FT holds. For node i, its
color is either C.i = α or C.i = α − 1. It is easy to check that C.j �= C.i − 2, as
desired.

Lemma 10. Once the R-tree reaches the perfect state and there is no token in
O-trees/Nil-trees, the R-tree spans all the nodes in O(n2) rounds.

514 C.-H. Tzeng, J.-R. Jiang, and S.-T. Huang

Proof. Let i and j be two adjacent nodes such that j is in the R-tree, while i is
not. We can prove this lemma by showing that node i joins the R-tree in O(n)
rounds.

Consider the token circulations in the R-tree. During a token circulation prop-
agating color 0, node j is of D.j = FT and C.j = 0 at some time by execut-
ing R0 (if j = r) or R3 (if j �= r). Similarly, during the token circulations
propagating color 1 and color 2, node j is of (D.j = FT) ∧ (C.j = 1) and
(D.j = FT) ∧ (C.j = 2) at some point, respectively. Because node i has no
token and thus cannot change C.i, the condition (D.j = FT) ∧ (C.j = C.i + 2)
holds at some time within three consecutive token circulations. Since each token
circulation finishes in O(n) rounds, this condition holds within 3 ∗O(n) rounds.
The next step is to prove that node i points to node j within O(1) rounds when
this condition holds.

By the components where i locates, there are three cases to consider:
Case (1) i is an isolated node:
Node i executes R6 to set P.i = j to join the R-tree.
Case (2) i is in an O-tree:
Node i executes R5 to set P.i = nil and becomes a Nil-tree root. Then its
children, if any, execute R5 so node i becomes an isolated node. The remaining
proof of this case is similar to that of Case (1).
Case (3) i is in a Nil-tree containing more than one node:
The proof of this case is similar to that of Case (2).

The actions in all the three cases take O(1) rounds, so node i becomes a part
of the R-tree in O(1) rounds when (D.j = FT)∧ (C.j = C.i + 2) holds. Because
this condition holds in O(n) rounds, the number of nodes in the R-tree increases
by one every O(n) rounds, until the R-tree spans all the nodes. Thus the overall
time complexity is O(n) × O(n) = O(n2) rounds.

Theorem 1. The system enters legal configurations in O(n2) rounds. (conver-
gence)

Proof. This is a direct consequence of lemmas 5, 6, 7, 8, 9 and 10.

Theorem 2. Once the system is in a legal configuration, it remains so hence-
forth. (closure)

Proof. Note that criteria (1) and (2) in definition 1 are the conditions of perfect
states. Therefore, this theorem is a direct consequence of lemma 9.

5 Conclusion

We propose a self-stabilizing algorithm for the phase synchronization problem for
asynchronous systems of general graph topologies. The algorithm runs under the
parallel model and constructs a spanning tree rooted at the unique special node
r that is responsible for initiating a new phase. To the best of our knowledge,
it is the first such algorithm for general graphs. Its another advantage is the

Self-stabilizing Asynchronous Phase Synchronization in General Graphs 515

low space complexity: O(log Δ + logK) bits per node, where Δ is the maximum
degree of the graph and K > 1 is the number of phases. Moreover, it can be
refined to be a spanning tree construction algorithm and a 3-phase synchronizer
by removing the phase variable H .

In our algorithm, we assume a semi-uniform system. This assumption is for
constructing a spanning tree in a deterministic way, but it may be unnecessary
for a phase synchronizer. Therefore, it is an open problem of how to develop a
deterministic, memory-efficient phase synchronizer for uniform systems.

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11) (1974) 643–644

2. Kulkarni, S., Arora, A.: Multitolerant barrier synchronization. Information Pro-
cessing Letters 64(1) (1997) 29–36

3. Boulinier, C., Petit, F., Villain, V.: Synchronous vs. asynchronous unison. In:
Self-Stabilizing Systems. (2005) 18–32

4. Gouda, M.G., Haddix, F.F.: The alternator. In: WSS. (1999) 48–53
5. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time

optimal self-stabilizing synchronization. In: ACM Symposium on Theory of Com-
puting. (1993) 652–661

6. Kulkarni, S., Arora, A.: Fine-grain multitolerant barrier synchronization. Technical
report, Technical Report OSU-CISRC TR34, Ohio State University (1997)

7. Alima, L.O., Beauquier, J., Datta, A.K., Tixeuil, S.: Self-stabilization with global
rooted synchronizers. In: Proceedings of the 18th International Conference on
Distributed Computing Systems. (1998) 102–109

8. Huang, S.T., Liu, T.J.: Phase synchronization on asynchronous uniform rings with
odd size. IEEE Transactions on Parallel and Distributed System 12(6) (2001)
638–652

9. Huang, S.T., Liu, T.J., Hung, S.S.: Asynchronous phase synchronization in uniform
unidirectional rings. IEEE Transactions on Parallel and Distributed System 15(4)
(2004) 378–384

10. Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step. Parallel
Processing Letters 1 (1991) 11–18

11. Dolev, S.: Possible and impossible self-stabilizing digital clock synchronization in
general graphs. Real-Time Systems 12(1) (1997) 95–107

12. Gouda, M.G., Herman, T.: Stabilizing unison. Information Processing Letters 35
(1990) 171–175

13. Huang, S.T., Liu, T.J.: Self-stabilizing 2m-clock for unidirectional rings of odd size.
Distributed Computing 12 (1999) 41–46

14. Arora, A., Gouda, M.: Distributed reset. IEEE Transactions on Computers 43(9)
(1994) 1026–1038

15. Gärtner, F.C.: A Survey of Self-Stabilizing Spanning-Tree Construction Algo-
rithms. Technical report, Swiss Federal Institution of Technology (2003)

16. Kruijer, H.S.M.: Self-stabilization(in spite of distributed control) in tree-structured
systems. Information Processing Letters 8(2) (1979) 91–95

Composition of Fault-Containing Protocols

Based on Recovery Waiting Fault-Containing
Composition Framework

Yukiko Yamauchi1, Sayaka Kamei2, Fukuhito Ooshita1, Yoshiaki Katayama3,
Hirotsugu Kakugawa1, and Toshimitsu Masuzawa1

1 Graduate School of Information Science and Technology, Osaka University
2 Department of Information Systems Faculty of Environmental and Information

Studies, Tottori University of Environmental Studies
3 Graduate School of Computer Science and Engineering, Nagoya Institute of

Technology
{y-yamaut, f-oosita, kakugawa, masuzawa}@ist.osaka-u.ac.jp,

s-kamei@kankyo-u.ac.jp,

katayama@nitech.ac.jp

Abstract. Self-stabilizing protocols provide autonomous recovery from
finite number of transient faults. Fault-containing self-stabilizing pro-
tocols promise not only self-stabilization but also quick recovery from
and small effect of a small number of faults. However, existing com-
position techniques of self-stabilizing protocols (e.g. fair composition)
cannot preserve the fault-containment property when composing fault-
containing protocols. In this paper, we present Recovery Waiting Fault-
containing Composition (RWFC) framework that preserves the fault-
containment property of the composed protocol. We show an example
of fault-containing composition of a minimum spanning tree protocol on
arbitrary weighted graphs and a median finding protocol on trees via
RWFC.

Keywords: Fault-containment, Self-stabilization, Composition, Mini-
mum Spanning Tree, Median.

1 Introduction

A self-stabilizing protocol[1] converges to a legitimate configuration regardless
of the arbitrary initial configuration. This property provides autonomous adapt-
ability against any number and any type of faults. In practice, the adaptability
to small scale faults is important because catastrophic faults rarely occur. How-
ever, self-stabilization does not promise efficient recovery from small scale of
faults and sometimes the effect of small number of faults spreads over the entire
network.

A fault-containing self-stabilizing protocol[6][7][8] is a self-stabilizing protocol
which contains the effect of faults and promises rapid recovery for a small number
of faults. The motivation of fault-containment is that the time and effect should

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 516–532, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Composition of Fault-Containing Protocols Based on RWFC Framework 517

depend on the scale of the faults. The scale of faults is measured by the number of
corrupted processes. When the states of f processes are corrupted at a legitimate
configuration, we call the obtained configuration as an f -faulty configuration.
Many fault-containing protocols bound the time to recover and the number of
processes affected by the faults with polynomial in f or some constant[6][14][15].

Executing two different self-stabilizing protocols in parallel is known as fair
composition[10][11]. Fair composition composes two self-stabilizing protocols
such that a protocol (called an upper protocol) utilizes (as its input) the out-
put of the other (called a base protocol), and guarantees self-stabilization of the
obtained protocol. This composition provides a protocol, whose input is the in-
put to the base protocol and whose output is the output of the upper protocol,
and extends the scope of the upper protocol. However, a fair composition does
not preserve fault-containment when composing two fault-containing protocols.
This is because the upper protocol does not wait for the recovery of the base
protocol by fair composition. Then the effect of faults may spread by some pro-
cesses changing their local states of upper protocol according to the incorrect
output of the base protocol. When the base protocol recovers, the number of such
contaminated processes may become larger than the number that the upper pro-
tocol guarantees fault-containment and the upper protocol cannot recover in its
bounded recovery time.

The framework for composing fault-containing protocols preserving fault
containment is important both theoretically and practically. In this paper, we
present a simple framework for such compositions. Our strategy is to prevent the
execution of the upper protocol until the base protocol recovers. Our framework
suggests the possibility of an uniform framework for fault-containing compo-
sition, however the proposed framework currently put several assumptions on
protocols. So, we examine the sufficient conditions for the proposed framework.
As a case study, we show composition of a fault-containing minimum spanning
tree protocol on arbitrary graphs and a fault-containing median finding proto-
col on tree graphs, which yields a fault-containing minimum spanning tree and
median finding protocol on arbitrary graphs.

Related work. Self-stabilization was first introduced by Dijkstra[1]. Since then,
many self-stabilizing protocols have been designed for many problems e.g. span-
ning tree construction[2][3], leader election[4] and token circulation[5].

Fault-containing self-stabilizing protocols were presented by Ghosh et al.
[6][7][8]. Many fault-containing protocols can be obtained by adding the property
of fault-containment to self-stabilizing protocols. Katayama et al. proposed a 1-
fault-containing minimum spanning tree protocol in [14] from a self-stabilizing
minimum spanning tree protocol[13]. There are other fault-containing protocols
obtained in the same way[6][15]. Ghosh et al. introduced fault-containment using
priority scheduler in [9]. Priority scheduler provides a weak priority rule which
makes the recovery of faulty process precedent the actions of non-faulty pro-
cesses. There exists such fault-containing protocols obtained by composing multi-
ple layer of protocols where each protocol is not fault-containing by itself[17][18].

518 Y. Yamauchi et al.

Kutten et al. proposed time-adaptive self-stabilization in [20]. Time adaptability
guarantees the recovery time is polynomial in the number of faults.

Composition of self-stabilizing protocols is expected to ease the design and to
extend usability. A fair composition of self-stabilizing protocols was introduced
by [10][11]. Beauquier et al. introduced a cross-over composition in [16] which
uses the base protocol as a filter to the execution of the upper protocol and im-
proves the adaptability to scheduler. Dolev et al. proposed parallel composition
in [21], which accelerate the stabilization by executing self-stabilizing protocols
in parallel. However a composition of fault-containing protocols has not been
proposed and we first present such a composition.

Contribution. In this paper we present a framework for a fault-containing
composition which guarantees that the obtained protocol is also fault-containing.
Our strategy is to stop the upper protocol till the base protocol recovers. This
framework can be applied to a subclass of fault-containing protocols but the
constraint seems to be reasonable. We then show a fault-containing composition
of a minimum spanning tree protocol[14] and a median finding protocol on the
obtained tree based on [12].

2 Preliminary

2.1 Network and Processes

A system is a network which is represented by an undirected graph G = (V, E)
where the vertex set V is a set of processes and the edge set E is a set of
bidirectional communication links. Each process has a unique identity. Process p
is a neighbor of process q iff there exists a communication link between p and q,
which is denoted by (p, q). A set of neighbors of p is denoted by Np. Let N1

p = Np

and for i ≥ 2, N i
p = N i−1

p ∪⋃q∈Ni−1
p

Nq \ {p}. N i
p represents the set of processes

within distance i from process p.
Each process p owns local variables, and the values of local variables of p

define the local state of p. A configuration of a system is represented by a tuple
of local states of all processes.

Process p can communicate directly with process q ∈ Np by reading the local
variables of q. Each process changes its state by updating its local variables by
execution of a protocol. We define step as a computation at a single processor.
When c1 and c2 are two configurations of the system, such that c2 is reached from
c1 by a single step a, we use notation c1

a→ c2. An execution ε = 〈c1, a1, c2, a2, . . .〉
is an alternating sequence of configurations and steps such that ci−1

ai−1→ ci.

2.2 Self-stabilization

A distributed protocol P computes an output defined by the input. The in-
put (output) is represented by the conjunction of input (output, respectively)
variables at each process. P cannot change input variables during the execution.

A self-stabilizing protocol autonomously reaches a legitimate configuration.
We assume that the legitimate configuration is uniquely determined by the input.

Composition of Fault-Containing Protocols Based on RWFC Framework 519

Definition 1. Self-stabilization
A distributed protocol P is self-stabilizing iff it reaches a legitimate configuration
starting from any arbitrary initial configuration and once it reaches a legitimate
configuration it remains in legitimate configurations under any execution of P .

A fault we assume in this paper is a transient fault i.e. corruption of local
states. A self-stabilizing protocol autonomously recovers from a finite number of
arbitrary transient faults.

2.3 Fault-Containment

We consider a configuration resulting from occurrence of faults at a legitimate
configuration. We assume that no input variables are corrupted by the faults.

Definition 2. f-faulty configuration of P
An f -faulty configuration is a configuration that is obtained from a legitimate
configuration of P by corrupting the local variables except input variables of f
processes.

We call a process whose local state is different from the legitimate configura-
tion as faulty, and otherwise non-faulty. A self-stabilizing protocol is f -fault-
containing iff it reaches a legitimate configuration from any f ′-faulty configura-
tion (f ′ ≤ f) with a bounded contamination number and bounded recovery time.
Contamination number is the maximum (worst) number of processes that change
their variables during the recovery. Recovery time is the maximum (worst) time
to reach a legitimate configuration.

Definition 3. f-fault-containment
A self-stabilizing protocol P is f -fault-containing iff its recovery time is bounded
by a polynomial in f and contamination number is bounded by a polynomial in
f starting from f ′-faulty configuration for any f ′ ≤ f .

An f -fault-containing self-stabilizing protocol autonomously reaches a legitimate
configuration from f ′-faulty configuration (f ′ ≤ f) in a polynomial time in f ,
and the effect of faults is bounded by a polynomial in f e.g. f , f2 (not |V |). We
simply denote a f -fault-containing self-stabilizing protocol as f -fault containing
protocol. In this paper we consider a subclass of f -fault containing protocols P
that have the following properties.

Input and output. Local variables of P are classified into three classes: in-
put, output and inner. Each process p computes the values of inner variables
and output variables by the input, inner and output variables of p and all its
neighbors.

Recovery. During the recovery from any f ′-faulty configuration (f ′ ≤ f), faulty
processes can change their output and inner variables while non-faulty processes
can change only their inner variables.

Problem. Protocol P solves a problem Π iff ∀p ∈ V : ¬inconsp(P), where
inconsp(P) is a predicate on input and output variables of p and all its neigh-
bors. We say a process p is inconsistent iff inconsp(P) is true. Starting from

520 Y. Yamauchi et al.

any f ′-faulty configuration, until output variables of a faulty process p recover,
there exists at least one process q in Nk

p ∪ {p} in every configuration, such that
inconsq(P) is true. The value of k is defined by protocol P and we call this k
as inconsistency range. We call a process p which has recovered from f ′-faulty
configuration and inconsq(P) is false at all q ∈ Nk

p ∪ {p} as recovered process
and otherwise non-recovery process.

Non-reactive protocol. No process makes a move in a legitimate configuration.

Legitimate configuration. The input to P defines a unique legitimate con-
figuration of P , which means that the set of faulty processes is unique in an
f -faulty configuration and that P always recovers a unique configuration. The
legitimate configuration of P is defined by conjunction of local states of each
process, that is, a configuration is legitimate iff ∀p ∈ V : Lp(P). Lp(P) is a
predicate on input, inner and output variables of p and all q ∈ Np, and it is
defined as Lp(P) = ¬inconsp(P) ∧ �p(P). The predicate �p(P) is a predicate
on input and inner variables of p and its neighbors, and it defines the values of
inner variables in a legitimate configuration.

Guarded commands. A protocol at each process p is a set of guarded com-
mands of the form G → A, where G is a guard which is a boolean function of
local states of p and its neighbors, and A is an action to update p’s state when G
is true. We say a guard G is enabled when it is true. To distinguish the actions
that change output variables from those that change inner variables, we classify
guarded commands into the following two types without loss of generality.

– type1: can movep(P) → (update output variables)
– type2: (inner variables at p need updated) → (update inner variables)

Predicate can movep(P) consists of predicate inconsp(P) and some predicates
on states of p and its neighbors. It eventually becomes true at each faulty process
during the recovery from f ′-faulty configuration and triggers a recovery action.

Performance measures of a fault-containing are as follows.

– Stabilization time is the worst number of steps to reach a legitimate con-
figuration from an arbitrary initial configuration.

– Recovery time is the worst number of steps to reach a legitimate configu-
ration from any f ′-faulty configuration (f ′ ≤ f).

– Output contamination number is the worst number of processes that
change their output variables during the recovery from any f ′-faulty config-
uration (f ′ ≤ f).

– Contamination number is the worst number of processes that change their
inner or output variables during the recovery from any f ′-faulty configuration
(f ′ ≤ f).

The fault-containing composition is a composition of two fault-containing pro-
tocols P1 and P2 and the composition keeps fault-containment. Note that the
input to P2 can be corrupted because they are the output of P1. The max-
imum number of faults that a fault-containing protocol Pi guarantees fault-
containment is denoted by fi.

Composition of Fault-Containing Protocols Based on RWFC Framework 521

Definition 4. fault-containing composition
Let P1 be an f1-fault-containing protocol and P2 be an f2-fault-containing pro-
tocol. Consider a composition of P1 and P2 denoted by (P1 ∗ P2), such that the
input variables of P2 are the output variables of P1 and the output variables
of the composed protocol is the output variables of P2. The composed protocol
(P1 ∗ P2) is fault-containing composition iff it is f1,2-fault-containing for some
0 < f1,2 ≤ f1, f2.

3 Fault-Containing Composition

Executing two self-stabilizing protocols in parallel, which is introduced as fair
composition by [10][11], promises that the composed protocol is self-stabilizing.
However, a fair composition of fault-containing protocols cannot preserve the
property of fault-containment. Let P1 and P2 are fault-containing protocols such
that the output of P1 is input to P2. Consider a fair-composition of P1 and P2.
The input to P2 may be corrupted at a faulty process p because the input
variables of P2 at p are output variables of P1. The difficulty is that the number
of processes that change their output can be greater than the number of faults
and the faulty processes may change their output variables repeatedly. P2 cannot
adapt to this spacial and temporal dynamics of the input and cannot guarantee
fault containment.

3.1 Framework for Fault-Containing Composition

We present Recovery Waiting Fault-containing Composition (RWFC) framework
for a fault-containing composition. Our strategy is to stop the execution of P2

until P1 stabilizes. After P1 reaches its unique legitimate configuration from
f ′-faulty configuration(f ′ ≤ f1,2), there are at most f ′ processes whose inner
and output variables of P2 are corrupted. Then P2 regards the configuration as
f ′-faulty configuration and takes advantage of its fault-containment property.

For P2 to wait until P1 stabilizes, a process p should check if it is a neighbor
of a faulty process of P1 when it has an enabled guard of P2, because p’s guards
refer to the output variables of P1 at q ∈ Np ∪ {p} However p cannot determine
whether it is a neighbor of a faulty process of P1 by simply observing the variables
of neighbors. It is possible that variables of P1 at p and all its neighbors are
corrupted and happen to be consistent for p, that is, local view may be the same
as the one at a legitimate configuration.

Let k1(k2) be the inconsistency range of P1(P2, respectively). We prevent p to
execute P2 by checking inconsq of q ∈ Nk1+1

p . To simplify our logic, we assume
there exists a communication mechanism that allows each process p to check the
value of inconsq(P1) for any q ∈ Nk1+1

p immediately, since our focus is not on a
communication mechanism but on a fault-containing composition. We call this
mechanism IC(k1 + 1).

Definition 5. (IC(k1 + 1))
The system has a communication mechanism IC(k1 + 1) that allows a process
p ∈ V to check inconsq(P1) of any process q ∈ Nk1+1

p immediately.

522 Y. Yamauchi et al.

Figure 1 shows the (P1∗P2) via RWFC at process p. For each i ∈ {1, 2}, Gp(Pi) is
the disjunction of all guards of protocol Pi at p, and Ap(Pi) is the corresponding
action of Gp(Pi) at p. By S1, p executes P1 whenever there is an enabled guard
of P1. By S2, p executes P2 when p is not a neighbor of any faulty process of P1.

S1 : Gp(P1) → Ap(P1)
S2 : Gp(P2) ∧ ∀q ∈ Nk1+1

p ∪ {p} : ¬inconsq(P1) → Ap(P2)

Fig. 1. (P1 ∗ P2) via RWFC

We define the output variables of (P1 ∗ P2) is the output variables of P2.
A legitimate configuration of (P1 ∗ P2), is defined as ∀p ∈ V : Lp((P1 ∗ P2))
where Lp(P1 ∗ P2) = Lp(P1) ∧ Lp(P2), since in a legitimate configuration of a
fault-containing protocol, all of its variables stabilizes.

3.2 Correctness

In this section, we present the proof that (P1 ∗ P2) via RWFC is a f1,2-fault-
containing composition for f1,2 = min{f1, f2}.
Lemma 1. (Self-stabilization of (P1 ∗ P2))
Starting from an arbitrary initial configuration, (P1 ∗ P2) via RWFC eventually
converges to a legitimate configuration.

Proof. If P1 is in an illegitimate configuration, there is at least one process p
that has an enabled guard. Eventually p executes P1 by S1 and P1 eventually
stabilizes. During the recovery of P1, P2 may be executed, but it has no influence
on P1’s recovery. Then if P2 is still in an illegitimate configuration, there is
at least one process q that has an enabled guard. Since P1 has stabilized, q
eventually executes P2 by S2. Then P2 eventually stabilizes. ��
We show fault-containment of (P1 ∗ P2).

Lemma 2. (Recovery of output variables of P1)
Starting from any f ′-faulty configuration where f ′ ≤ f1,2, output variables of P1

at each faulty process p eventually recover, that is, inconsq(P1) is false at any
process q in Nk1

p ∪ {p}. During the recovery, each p and all its neighbors do not
execute P2.

Proof. Process p and its neighbors execute P1 by S1, and p eventually recovers
to the state which satisfies ¬inconsp(P1). Since the input to P1 defines a unique
legitimate configuration, p recovers to a unique state defined by the input to P1.
Sice inconsr(P1) is true at least one process r in Nk1

p ∪{p} until output variables
at p recover, p and its neighbors do not execute P2 by S2 until output variables
of P1 at p recover. ��

Composition of Fault-Containing Protocols Based on RWFC Framework 523

Lemma 3. (Recovery of inner variables of P1)
Starting from any f ′-faulty configuration where f ′ ≤ f1,2, after output variables
of P1 at each faulty process p recover, in which inconsp(P1) is false for any pro-
cess p ∈ V , P1 eventually reaches a legitimate configuration. During the recovery,
no process changes its output variables of P1.

Proof. After output variables at each faulty process p recover, if �p(P1) is false,
p fixes its inner variables by S1. If other correct processes need to execute P1,
they can execute P1 by S1. By our assumption Recovery, correct processes
changes only their inner variables during the recovery. So, they just fix their
inner variables by S1. Eventually p satisfies Lp(P1). During this recovery, p does
not change output variables. ��
Lemma 4. (Recovery of P2)
Starting from any f ′-configuration, after the output variables of P1 recovers, P2

eventually reaches a legitimate configuration.

Proof. While there exists a process q where inconsq(P1) is true in Nk1+1
p ∪{p},

p cannot execute P2 by S1. Eventually by Lemma 2 configuration reaches the
one in which there is no such process in Nk1+1

p ∪ {p} for each process p. Then
each process p starts to execute P2 by S2. By Lemma 2, the output variables of
P1 are the values uniquely defined by the input to P1, since consistent values of
output variables at each process r are defined by ¬inconsr(P1). And Lemma 2
guarantees P2 does not execute according to incorrect input. Then, P2 eventually
reaches a legitimate configuration by P2 which is uniquely defined by the unique
legitimate configuration of P1.

Although it is possible that inner variables of P1 change their values dur-
ing this recovery of P2, their recovery does not disturb the recovery of P2 by
Lemma 3. ��
We have the following assumption on the communication mechanism IC(k1 +1).

Assumption 1. The communication mechanism IC(k1 +1) of the system slows
down the protocols on the system at the rate of αk1+1 and causes state change
at processes in N

βk1+1
p for any p ∈ V to communicate q ∈ Nk1+1

p .

We simply denote αk1+1 as α and βk1+1 as β. We denote the performance mea-
sures of fi-fault-containing protocol Pi for each i ∈ {1, 2} as follows.

– Stabilization time : tsi

– Recovery time : tri

– Output contamination number : ci

– Contamination number : c′i

Lemma 5. (Metrics of fault-containment)
The maximum number of faults that (P1 ∗ P2) via RWFC framework promises
fault-containment is f1,2 = min{f1, f2}. The output contamination number is c2,
the contamination number is max{c′1, dβc′2} and the recovery time is (tr1+α tr2),
where the maximum degree of G is d.

524 Y. Yamauchi et al.

Proof. Since (P1∗P2) executes P1 and P2 in the coordinated order, each protocol
executes its own recovery actions. So the maximum number of faults that both
protocols recover in a fault-containing fashion is min{f1, f2}. The output con-
tamination number is c2, because the output of (P1∗P2) is the output variables of
P2. S2 makes a process p with an enabled guard of P2 to determine inconsq(P1)
of all q ∈ Nk1+1

p ∪{p} and the underlying communication mechanism IC(k1 +1)
causes state change of a process r ∈ Nβ

p . The contamination number of P2 is
now βc′2. P1 does not need such communication and its contamination number
is still c′1. So, RWFC ’s contamination number is max{c′1, βc′2}.

The recovery time is at most the sum of the two protocols, since those processes
which has recovered locally executes P2 before P1 recovers. However IC(k1 + 1)
slows down the execution of P2 and the recovery time is (tr1 + α tr2). ��
Theorem 1. (P1∗P2) via RWFC gives a fault-containing composition (P1∗P2).

From Lemma 1 ∼ 5, (P1 ∗ P2) via RWFC is f1,2-fault containing. ��

3.3 Multilayer Fault-Containing Composition

RWFC framework is able to compose more than three fault-containing protocols.
We define the interface of (P1 ∗ P2) via RWFC as follows.

– incons(P1 ∗ P2) = incons(P1) ∨ incons(P2)
– can move(P1 ∗ P2) = can move(P1) ∨ can move(P2).

Let P1, P2, . . . , Pj be fault-containing protocols and we will consider a com-
position where the input to Pi is output variables of Pi−1. The multilayer fault-
containing composition is obtained in this way : ((. . . ((P1 ∗ P2) ∗ P3) . . .) ∗ Pj).

4 Fault-Containing Composition of Median Finding and
Minimum Spanning Tree Construction

In this section we present a fault-containing composition of 1-fault-containing
minimum spanning tree constructing protocol MST [14] and 1-fault-containing
median finding protocol MF.

4.1 (MST ∗ MF) Via RWFC

A 1-fault-containing minimum spanning tree protocol MST for a weighted graph
G = (V, E, W) was proposed by Katayama et al.[14]. The detail of this protocol
is shown in appendix.

A self-stabilizing median finding protocol SMF was proposed by Bruell et
al.[12]. A median of a tree T = (V, E) is a process with a minimum weight where
a weight of a process p ∈ V is the sum of the distance from p to q, for each
q ∈ V . We propose a 1-fault-containing version of this protocol MF, and the
detail is also shown in appendix.

Composition of Fault-Containing Protocols Based on RWFC Framework 525

Fig. 2. Median Finding on Minimum Spanning Tree

S1 : Gp(MST) → Ap(MST)
S2 : Gp(MF) ∧ ∀q ∈ Np ∪ {p} : ¬inconsq(MST) → Ap(MF)

Fig. 3. (MST ∗ MF) via RWFC with IC(2)

The (MST ∗MF) via RWFC is shown in Figure 2. Fault-containing composi-
tion of MST and MF gives a 1-fault-containing median finding protocol on an
arbitrary graph.

Figure 2(c) shows an 1-faulty configuration of (MST∗MF). Processes r0, q, s,
and u are not allowed to execute MF because incons(MST) is enabled at q and s.
Eventually s changes its route to the root process to a correct value and becomes
recovered process of MST as shown in Figure 2(d). After that can move(MF)
is true at s and s changes its output variable of MF. The output contamination
number of (MST ∗ MF) is just 1 and recovery time is O(d3) where d represents
the maximum degree of G.

4.2 Communication Mechanism WIC(1)

In this section we show an implementation of communication mechanism IC(2)
for (MST ∗ MF) via RWFC on a model in which each process can read the
variables of its direct neighbors. Though we assume IC(2) for (MST ∗ MF) via
RWFC, the implementation does not guarantee immediate communication and
not always transit current information and our implementation WIC(1) is weak
on this point. In addition, though communication mechanism should be fault-
containing, we show that WIC(1) can be implemented by the question and
answer technique in [19] without developing a new fault-containing communica-
tion mechanism. The proof for (MST ∗ MF) via RWFC with WIC(1) is shown
in appendix.

In WIC(1), each process p asks inconsq(MST) to all q ∈ Np. This implemen-
tation uses the following variables at each process p.

– qp,q : p requests inconsq(P1) to q ∈ Np via this. When qp,q is 0, it means p
is not requesting and when 1, p is requesting.

526 Y. Yamauchi et al.

– ap,q : p answers the request from q ∈ Np via this. When ap,q is ⊥, it means
p is not answering.

– rp,q : p returns ACK to q ∈ Np via this variable. When rp,q is 1, it means p
accepted q’s reply and when 0 p has not accepted.

Figure 4 shows the implementation for (MST ∗MF) via RWFC with WIC(1).

S1-1 : Gp(MST) → execute MST
S2-1 : Gp(MF) ∧ ∀q ∈ Np : aq,p = false

→ execute MF, for each q ∈ Np do rp,q = 1
S2-2 : Gp(MF) ∧ ∃q ∈ Np : qp,q �= 1

→ for each q ∈ Np do if qp,q �= 1 then qp,q = 1, rp,q = 0
S2-3 : ∃q ∈ Np : (qq,p = 1 ∧ ap,q �= inconsp(MST))

→ for each q ∈ Np do if (qq,p = 1 ∧ ap,q �= inconsp(MST))
then ap,q = inconsp(MST)

S2-4 : ¬Gp(MF) ∧ ∃q ∈ Np : qp,q �= 0
→ for each q ∈ Np do if qp,q �= 0 then qp,q = 0

S2-5 : ∃q ∈ Np : (qp,q = 0 ∨ rp,q = 1)
→ for each q ∈ Np do if (qp,q = 0 ∨ rp,q = 1) then ap,q =⊥

S2-6 : ∀q ∈ Np : aq,p �=⊥ ∧∃q ∈ Np : aq,p = true → rp,q = 1
S2-7 : ∃q ∈ Np : (aq,p =⊥ ∧rp,q = 1) → rp,q = 0

Fig. 4. (MST ∗ MF) via RWFC with WIC(1)

5 Conclusion

We show RWFC framework which guarantees fault-containment for a composed
protocol. Our strategy to fault-containing composition (P1 ∗ P2) is to stop the
execution of P2 until P1 recovers. This concept is very simple but provides sig-
nificant improvement on fault-containment. Furthermore, this framework helps
designing new fault-containing protocols, and we can easily built new protocols
on top of other protocols. We assumed underlying communication mechanism
for RWFC which may have influence on the performance of obtained protocol.
As an example of fault-containing composition via RWFC, we show a composi-
tion of a minimum spanning tree protocol on an arbitrary weighted graph and
a median finding protocol on a tree, which provides median finding of the un-
derlying minimum spanning tree on arbitrary weighted graph. The performance
of obtained protocol is affected by the underlying communication mechanism at
the rate of d where d is a maximum degree of a graph. Though the example
is simple, it shows the possibility of fault-containing composition via RWFC of
more complicated protocols.

RWFC framework depends on the underlying communication mechanism
IC(k), which must be fault-containing. We show a weak implementation WIC(1)
is sufficient to (MST ∗ MF) via RWFC. In the same way, we can substitute for
a weaker implementation of IC(k) depending on protocols.

Composition of Fault-Containing Protocols Based on RWFC Framework 527

Future work. RWFC is depend on several assumptions on the source protocols
of the composition e.g. an unique legitimate configuration and output contam-
ination number. It is necessary to relax the assumptions on them to extend
the generality of our framework and extend the application of fault-containing
composition. For example, we assumed that only the faulty processes change
their output variables during the recovery from f -faulty configuration. However,
it is difficult for each process to determine whether it is faulty or non-faulty
and a non-faulty process may change its output variables. So it is necessary to
consider a framework for fault-containing protocols whose recoveries are more
complicated and there may be other keys to check the configuration of each
protocol to control the execution of the others.

Acknowledgments. This work is supported in part by MEXT: ”The 21st
Century Center of Excellence Program”, JSPS: Grant-in-Aid for Scientific Re-
search ((B)15300017 and (B)17300020), MEXT: Grant-in-Aid for Scientific Re-
search on Priority Areas (16092215), MEXT: Grand-in-Aid for Young Scientists
((B)18700059), MIC: Strategic Information, Communications R&D Promotion
Programme (SCOPE), and Ookawa Foundation Research Grant.

References

1. E. W. Dijkstra. Self-stabilizing system in spite of distributed control. Communi-
cations of the ACM, 17(11), pp.643–644. (1974)

2. S. Dolev, A. Israeli and S. Moran. Self-stabilization of dynamic systems assuming
only read/write atomicity. In Proceedings of the 9th Annual ACM Symposium on
Principles of Distributed Computing, pp.103–118. (1990)

3. N. S. Chen, H. P. Yu and S. T. Huang. A self-stabilizing algorithm for constructing
a spanning tree. Information Processing Letters, Vol.39, pp.147–151. (1991)

4. X. Lin and S. Ghosh. Maxima finding in a ring. In Proceedings of the 28th
Annual Allerton Conference on Computers, Communication and Control, pp.662–
671. (1991)

5. S. T. Huang and N. S. Chen. Self-stabilizing depth-first token circulation on net-
works. Distributed Computing, Vol.7(1). pp.61–66. (1993)

6. S. Ghosh and A. Gupta. An exercise in fault-containment: Self-stabilizing leader
election. Information Processing Letters, Vol.59, pp.281–288. (1996)

7. S. Ghosh and A. Gupta. A fault-containing self-stabilizing spanning tree algorithm.
Journal of Computing and Information, Vol.2, No.1, pp.322–338. (1996)

8. S. Ghosh, A. Gupta, T. Herman and S. V. Pemmaraju. Fault-containing self-
stabilizing algorithms. In Proceedings of 15th Annual ACM Symposium on Prin-
ciples of Distributed Computing, pp.45–54. (1996)

9. S. Ghosh and X. He. Fault-containing self-stabilization using priority scheduling.
Information Processing Letters, Vol.73, pp.145–151. (2000)

10. S. Dolev, A. Israeli and S. Moran. Self-stabilization of dynamic systems. In Pro-
ceedings of the MCC Workshop on Self-Stabilizing Systems, MCC Technical Report
No. STP-379-89. (1989)

11. S. Dolev, A. Israeli and S. Moran. Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Computing, 7:pp.3–16. (1993)

528 Y. Yamauchi et al.

12. S. C. Bruell, S. Ghosh, M. H. Karaata, S. V. Pemmaraju. Self-Stabilizing Algo-
rithms for Finding Centers and Medians of Trees. SIAM Journal on Computing,
Vol. 29, pp.600–614. (1999)

13. K. Kotani, Y. Katayama, T. Masuzawa and N. Tokura. A self-stabilizing algorithm
for constructing a minimum weight spanning tree. Technical Report of IEICE (In
Japanese), Vol.92, No.52.pp.37–44. (1992)

14. Y. Katayama and T. Masuzawa. A fault-containing self-stabilizing protocol for
constructing a minimum spanning tree. Transactions of the IEICE (In Japanese),
D-I, Vol.J-84-D-I, No. 9, pp.1307–1317. (2001.3)

15. S. Ghosh, A. Gupta and S. V. Pemmaraju. Fault-containing network protocols. In
Proceedings of the ACM Symposium on Applied Computing, pp.431–437. (1997)

16. J. Beauquier, M. Gradinariu and C. Johnen. Cross-Over composition - Enforce-
ment of fairness under unfair adversary. In Proceedings of 5th Workshop on Self-
Stabilizing Systems, pp.19–34. (2001)

17. Y. Azar, S. Kutten and B Patt-Shamir. Distributed Error Confinement. In Pro-
ceedings of 22nd Annual ACM Symposium on Principles of Distributed Computing,
pp.33–42. (2003)

18. A. Arora and H. Zhang. LSRP: Local Stabilization in Shortest Path Routing.
In Proceedings of International Conference of Dependable Systems and Networks,
pp.139–148. (2003)

19. S. Ghosh and A. Gupta. An exercise in fault-containment: Self-stabilizing leader
election. Information Processing Letters, Vol. 59, pp.281–288. (1996)

20. S. Kutten and B. Patt-Shamir. Time-Adaptive Self Stabilization. In Proceedings
of 16th Annual ACM Symposium on Principles of Distributed Computing, pp.149–
158. (1997)

21. S. Dolev and T. Herman. Parallel Composition of Stabilizing Algorithms. In
Proceedings of Fourth Workshop on Self-Stabilizing Systems, pp.25–32. (1999)

Appendix

6 Minimum Spanning Tree Protocol

Katayama et al.[14] proposed 1-fault-containing minimum spanning tree protocol
MST. Let a graph G = (V, E, W) is a weighted graph, whose number of processes
is n and whose communication links have unique weights. The weight of a link
(p, q) is denoted by w(p, q). The minimum spanning tree of G is a set of (n − 1)
edges of minimum total weight which form a spanning tree of the graph.

Model. Each communication link of G has a unique wight and each process
knows the weights of the connected communication links as input variables.

Non-fault-containing version. MST is based on self-stabilizing minimum
spanning tree constructing protocol SMST proposed in [13]. We first introduce
the sketch of SMST.

SMST is based on that a minimum spanning tree can be constructed by
applying the following operation repeatedly to an arbitrary spanning tree :

Consist a new spanning tree by adding a new link which is not the span-
ning tree link to the existing spanning tree and deleting the maximum
weighted link from the closed path.

Composition of Fault-Containing Protocols Based on RWFC Framework 529

Each process p owns an output variables and functions as follows.

– Variables
• mypathp : the output variable that represents the path from r0 to p

denoted by an alternating sequence of identity of a process and a weight
of a communication link starting with r0 :

〈r0, w(r0, s), s, w(s, t), . . . , o, w(o, p), p〉
– Functions

• parent(mypathp) returns the process preceding p in mypathp. If the size
of mypathp is smaller than two, it returns ∅.

• ischild(mypathp, mypathq) returns true iff there exists w and ID such
that mypathp is obtained by adding w and ID to mypathq.

MST converges to a configuration where each process p keeps a correct path
from r0 on the minimum spanning tree.

Fault-containing version. MST controls the execution of SMST so that start-
ing from 1-faulty configuration only the faulty process executes the SMST.

We say a process p is consistent iff the following predicate cons(p) holds.

cons(p) = ∀q ∈ Np :
{
ischild(mypathq, mypathp) ∨ ischild(mypathp, mypathq)

∨(maxl(mypathp, mypathq, w(i, j)) = w(i, j))
}

The function maxl(mypathp, mypathq, w) returns the maximum weight of a
closed path, which contains a link l, in a graph of mypathp, mypathq and l
with weight w, which is between the end of them. If there is no such closed path,
it returns 0.

MST defines the following predicates Q1, Q2, Q3 and Q4.

– Q1 is true when there exists mypath′ �= mypathp such that mypath′ is the
correct path from r0 on the minimum spanning tree.

– Q2 is true when there exists just one process q ∈ Np such that p can become
consistent by q changing mypathq.

– Q3 is true when there exists more than two processes in Np (denoted by P ′)
such that Q1 is true at any q ∈ P ′ and a process r ∈ P ′ can resolve the
inconsistency of other processes in P ′ by changing mypathr.

– Q4 is true when p is a leaf process and Q1is true at p’s parent process s and
p can be consistent by s changing mypaths.

In 1-faulty configuration, a faulty process p and its neighbors whose parent is
p may be inconsistent and a process where

{(
Q1 ∧ Q4

) ∨ Q2 ∨ Q3

}
is true is a

neighbor of a faulty process and should not execute SMST.
Each process should communicate with N2

p to determine its predicates. MST
consists of the implementation of N2

p communication mechanism and tree main-
tenance mechanism. The N2

p communication mechanism is implemented by ques-
tion and answer technique similar to [19]. The N2

p communication mechanism
and the tree maintenance mechanism of Figure 5 are executed in parallel.

530 Y. Yamauchi et al.

¬cons(p) ∧ ¬Q0 ∧ ((¬Q1 ∨ ¬Q4) ∧ ¬Q2 ∧ ¬Q3) → execute SMST

Fig. 5. Fault-containing Minimum Spanning Tree Protocol MST

The legitimate configuration of MST is the following.

∀p ∈ V :
[
cons(p) ∧ (local variables for communication mechanism stabilize)

]
The predicates that we assumed on a fault-containing protocol are as follows.

– �p(MST) = ∀q ∈ Np :
{
qpq = apq =⊥}

– inconsp(MST) = ¬cons(p)
– can movep(MST) = ¬cons(p) ∧ ¬Q0 ∧ ((¬Q1 ∨ ¬Q4) ∧ ¬Q2 ∧ ¬Q3)

7 Median Finding Protocol

We propose 1-fault-containing median finding protocol MF based on the self-
stabilizing median finding protocol SMF proposed by Bruell et al.[12] Consider
a tree T = (V, E) where the vertex set V is a set of processes and the edge set E
is a set of communication links. A weight of a process p is a sum of the distances
from p to ∀q ∈ V . A median of T is a process with the minimum weight.

Model. A tree T was given to the protocol as an input variable which represents
the parent on T at each process.

Non-fault-containing version. To construct fault-containing version MF, we
first consider the self-stabilizing median finding protocol SMF [13].

Each process p owns an output variable sp and a function S({s1, s2, . . . , sj})
which returns the sum of s1, s2, . . . , sj excluding one of the maximum items. A
legitimate configuration of SMF is defined as follows:

∀p ∈ V : sp = S({sr | r ∈ Np}) + 1

The self-stabilizing version SMF is shown in Figure 6. A process whose s value
is greater than or equal to that of all neighbor processes is the medians of T . It
is possible that there are more than one medians in T .

sp �= S({sr | r ∈ Np}) + 1 → sp := S({sr | r ∈ Np}) + 1

Fig. 6. Self-stabilizing Median Finding Protocol SMF [12]

Fault-containing version. We say a process p is consistent iff sp = S({sr | r ∈
Np}) + 1 and else inconsistent. In 1-faulty configuration, a faulty process p is

Composition of Fault-Containing Protocols Based on RWFC Framework 531

inconsistent, and if every such p fixes sp, MF recovers to a legitimate configu-
ration. Although r ∈ Np may be inconsistent, r cannot resolve inconsistency, p
must execute SMF and r should not execute SMF.

To implement this idea, we use additional variables and functions at each
process p.

– Inner variables
• qp,r : p proposes new value of sp to r ∈ Np via this. When qp,r is 0, it

means p is not proposing a new value.
• ap,r : the answer for the proposal of r ∈ Np. The value of ap,r is ⊥ when

p is not answering, and 0 when it agrees the proposed value qq,r and 1
when it disagrees.

– Function
• F (p, r, qr,p) is 0 if the proposal qr,p by r ∈ Np resolves inconsistency of

p, and otherwise it is S({st | t ∈ Np}) + 1.
– Predicate

• can stabilizep =
{
sp = S({sr | r ∈ Np}) + 1

}
• single faultp : this predicate is evaluated when p gets answers to its

proposal from all its neighbors. This predicate is true iff there exists just
one neighbor r whose ar,p �= 0 and r’s proposal resolves p’s inconsistency.

The legitimate configuration of MF is defined as follows :

∀p ∈ V :
{
sp = S({sr

∣∣ r ∈ Np}) + 1
} ∧ {∀r ∈ Np : (qp,r = 0 ∧ ap,r =⊥)

}
The predicates that we assumed are as follows:

– �p(MF) =
{∀r ∈ Np : (qp,r = 0 ∧ ap,r =⊥)

}
– inconsp(MF) =

{
sp �= S({sr | r ∈ Np}) + 1

}
– can movep =

[
can stabilizep ∧ {∀r ∈ Np : qp,r = S({st

∣∣ t ∈ Np}) + 1
} ∧{∀r ∈ Np : ar,p �=⊥}] ∧ [{∀r ∈ Np : ar,p = 0

} ∨ ¬single faultp
]

The correctness proof of fault-containing version is omitted due to the space
restriction.

8 Correctness of (MST ∗ MF) Via RWFC with WIC(1)

In this section we show the sketch of the proof of the correctness of (MST ∗MF)
via RWFC with WIC(1) shown in Figure 4.

Lemma 6. Starting from any initial configuration, (MST∗MF) via RWFC with
WIC(1) eventually converges to a legitimate configuration.

To show the fault containment property, we need to show the following lemma
for MST.

Lemma 7. A process p such that inconsp(MST) is false in a 1-faulty configu-
ration does not change inconsp(MST) to true during the recovery.

532 Y. Yamauchi et al.

Fig. 7. Fault-containing Median Finding Protocol MF

Now we return to the proof of fault-containment of communication (MST ∗MF)
via RWFC with WIC(1).

Lemma 8. Starting from 1-faulty configuration, a process p such that aq,p =
false for any process q ∈ Np is not a neighbor of a non-recovery process of
MST.

Lemma 9. Starting from any 1-faulty configuration, MF recovers to a legitimate
configuration in O(d3) time.

Then we obtain the following theorem.

Theorem 2. Fault-containing composition (MST∗MF) via RWFC with WIC(1)
is 1-fault-containing protocol and the recovery time of the obtained protocol is
O(d3), where d is the maximum degree of the graph.

Energy-Efficient and Non-interactive

Self-certification in MANETs�

Jeong Hyun Yi

Networking Technology Lab
Samsung Advanced Institute of Technology

jeong.yi@samsung.com

Abstract. Mobile ad hoc networks (MANETs) have many well-known
applications in military settings as well as in emergency and rescue op-
erations. However, lack of infrastructure and lack of centralized control
make MANETs inherently insecure, and therefore specialized security
services are needed for their deployment. Self-certification is an essential
and fundamental security service in MANETs. It is needed to securely
cope with dynamic membership and topology and to bootstrap other
important security primitives and services without the assistance of any
centralized trusted authority. An ideal protocol must involve minimal
interaction among the MANET nodes, since connectivity can be unsta-
ble. Also, since MANETs are often composed of weak or resource-limited
devices, self-certification protocol must be efficient in terms of computa-
tion and communication. Unfortunately, previously proposed protocols
are far from being ideal.

In this paper, we propose fully non-interactive self-certification pro-
tocol based on bi-variate polynomial secret sharing and threshold BLS
signature techniques. In contrast with prior work, our techniques do not
require any interaction and do not involve any costly reliable broadcast
communication among MANET nodes. We thoroughly analyze our pro-
posal and show that it compares favorably to previous mechanisms.

Keywords: Security protocol, self-configuration, threshold cryptogra-
phy, authentication, key management.

1 Introduction

Unlike cellular networks whose infrastructure includes base stations or access
points, routers and switches that are fixed and wired together, mobile ad hoc
networks (MANETs) are infrastructure-less and the mobile nodes act as wireless
routers. Lack of infrastructure and lack of centralized control, coupled with a dy-
namic network topology, results in vulnerabilities that do not exist in wired net-
works, and therefore specialized security services are needed for their deployment.

Self-certification is a fundamental security service in MANETs; it is required
to ascertain membership eligibility and to bootstrap other important security
services, such as secure routing and secure group communication.
� This work has been done while at UC Irvine.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 533–547, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

534 J.H. Yi

Node authentication in MANETs cannot be performed centrally. Since, re-
quiring constant presence (availability) of a central fixed entity is not realistic
for many types of MANETs. First, such an entity is a single point of failure.
Second, it represents an attractive and high-payoff target for attacks. Third,
topology changes due to mobility and node outages may cause the central en-
tity to be unreachable and thus unable to perform its duties in the parts of a
MANET not connected to it. This motivates us to investigate self-configurable
authentication techniques that function in a distributed or decentralized manner.
Since our emphasis is on security, the natural technology to consider is threshold
cryptography.

Two features of MANETs make self-certification a very challenging problem.
First, MANET devices often have very weak computational facilities and battery
power. Second, MANET nodes usually function in an asynchronous (on/off)
manner, often becoming temporarily unavailable. Therefore, an ideal solution
must be efficient in terms of both computation and communication1. It must
also involve minimal (ideally, none at all) interaction among the nodes of the
network which requires synchronous communications.

A number of self-certification techniques have been proposed in recent years
[2,3,4,5,6,7]. Most are based on (t, n) threshold cryptography and allow any set of
t-out-of-n nodes (called sponsors) to admit a new node by issuing to it: 1) a share
of a network secret (to be used in future admissions), and 2) a membership token
(used for authentication and secure communication). Unfortunately, all previous
schemes are far from ideal. They are heavily interactive among the sponsors.
This severely limits their practicality.

Contributions: We present fully non-interactive self-certification protocol
based on bi-variate polynomial secret sharing and threshold BLS signature tech-
niques. In contrast with prior work, our techniques do not require any interaction
and do not involve any costly reliable broadcast communication among MANET
nodes. We thoroughly analyze our proposal and show that it compares favorably
to previous mechanisms.

Organization: The rest of the paper is organized as follows: we first review prior
work in Section 2. Some cryptographic backgrounds are introduced in Section 3,
followed by the system model in Section 4. We then describe, in Section 5, the
proposed self-certification mechanism called NISC. Finally, the detailed perfor-
mance results, analysis and comparison are presented in Section 6.

2 Related Work

We now review relevant prior work for robust self-certification in MANETs.
Kong, et al. [2,8] proposed a set of self-certification protocols for providing ubiq-
uitous and robust security services for MANETs. The security of their protocols
relies upon a specific variant of the proactive threshold RSA signature scheme.
1 Communication is directly related to the consumption of battery power in MANET

devices [1].

Energy-Efficient and Non-interactive Self-certification in MANETs 535

Unfortunately, this scheme is neither robust [5] (i.e., it can not tolerate mali-
cious nodes) nor secure [9]. Narasimha, et al. [5] proposed similar protocols based
on threshold DSA [10]. While provably secure, the solution is quite inefficient
since it is at least heavily interactive among sponsoring nodes. In [7], Saxena,
et al. proposed the self-certification protocol that uses uni-variate polynomial
secret sharing [11] and threshold BLS [12] for certificate issuance. Although this
scheme is non-interactive when issuing a certificate for new node, its secret share
issuance still requires interaction due to the Lagrange interpolation of uni-variate
secret sharing. In the rest of the paper we compare our proposed scheme with
this protocol and refer to it as Interactive Self-Certification or ISC.

The self-certification technique developed in this paper is completely non-
interactive in a certificate issuance as well as secret share acquisition. It uses se-
cret sharing based on so-called bi-variate polynomials which have been employed
for related purposes in the literature [13,14,15]. In particular, [16] presents a key
pre-distribution scheme for sensor networks using bi-variate polynomials [15] in
the presence of a centralized authority. The protocol we propose is fully dis-
tributed and allows nodes in a MANET to readily and efficiently share pairwise
secret keys without any centralized support. [17] presents node admission proto-
col based on bivariate polynomials targeted only for short-lived MANETs, not
for long-lived ones. The proposed scheme works for both short- and long-lived
MANETs.

3 Preliminaries

3.1 Notation

Notation used in the rest of paper is summarized in Table 1.

3.2 Threshold Secret Sharing

In this section, we present Shamir’s secret sharing scheme [11] which is based on
uni-variate polynomial interpolation. We will refer to it as TSS. To distribute
shares of a secret x among n entities, a trusted dealer TD chooses a polynomial
f(z) over Zq of degree (t − 1): f(z) =

∑t−1
i=0 aiz

i (mod q) where the constant
term a0 is set to the network secret x; f(0) = a0 = x. TD computes each entity’s
share xi such that xi = f(idi), where idi is an identifier of entity Pi, and securely
transfers xi to Pi. Note that after distributing at least t secret shares, the dealer
is no longer required.

Then, any set of t entities who have their shares can recover the secret us-
ing the Lagrange interpolation formula: f(z) =

∑t
i=1 xi λi(z) (mod q), where

λi(z) =
∏t

j=1,j =i
z−idj

idi−idj
(mod q). Since f(0) = x, the shared secret may be

expressed as: x = f(0) =
∑t

i=1 xi λi(0) (mod q) Thus, the secret x can be re-
covered only if at least t shares are combined. In other words, no coalition of
less than t entities yields any information about x.

536 J.H. Yi

Table 1. Notation

Pi network node i
idi identity for Pi

t admission threshold
n total number of network nodes
G cyclic group in finite fields
G1, G2 cyclic GDH groups of order q
P generator of group G1

ê bilinear map s.t. ê : G1 × G1 → G2

H hash function such as SHA-1 or MD5
H1 special hash function s.t. H1 : {0, 1}∗ → G

∗
1

xi secret share of Pi

x
(j)
i partial share for Pi by Pj

Ti membership token for Pi

PKi temporary public key of Pi

Si(m) Pi’s signature on message m
Ki,j pairwise key between Pi and Pj

EKi,j encryption with Ki,j

3.3 BLS Signature Scheme

Boneh, et al. [18] proposed a short signature scheme that works in a EC-GDH
group G of order q and a generator P. In brief, the scheme operates as follows:

– Key Generation. Pick random x ∈ Z
∗
q and compute Q = xP. x is the

private key and Q is the corresponding public key.
– Signing. To sign a message m, compute σ = xH1(m), where H1 is a special

hash function that maps binary strings onto points in G1. σ is the signature
on m.

– Verification. Given (P, Q, m, σ), check if ê(Q, H1(m)) = ê(P, σ).

4 System Model

The basic operations in our self-certification protocol involve only a set of secret
share holders. A admission threshold (t) is an important system parameter that
needs to be carefully tuned. A protocol is composed of the following steps:

1. Bootstrapping: The network is initialized by either a trusted dealer or a
set of founding nodes. The dealer or founding nodes initialize the network
by choosing a network secret key, and computing and publishing the cor-
responding public parameters [19]. The network secret is shared among the
founding node(s) and the share possessed by each node is referred to as its
secret share.

2. Self-Certification: A prospective node Pn+1 who wishes to join the network
must be issued 1) its secret share for participating in future admission and 2)
a membership token for authentication and secure communication. Figure 1

Energy-Efficient and Non-interactive Self-certification in MANETs 537

Secure Channel

Pn+1Pn+1

xn+1 , Tn+1

JOIN_REQ

JOIN_RLY quorum of
t nodes

Pn

xn , Tn

PnPn

xn , Tn

P1

x1 , T1

P1

x1 , T1

Pi

xi , Ti

Pi

xi , Ti

Pi+1

xi+1 , Ti+1

Pi+1

xi+1 , Ti+1

Pn-1

xn-1 , Tn-1

Pn-1Pn-1

xn-1 , Tn-1

P2

x2 , T2

P2

x2 , T2

Pi+t-1

xi+t-1 ,Ti+t-1

Pi+t-1

xi+t-1 ,Ti+t-1

mobile nodePiPi

xi : secret share
Ti : membership token

Fig. 1. System Model

gives a high-level view of self-certification protocol. Note that, depending
on the underlying cryptographic technique, this step may involve multiple
rounds and/or co-ordination among the nodes who commit to Pn+1.

3. Pairwise Key Establishment: The purpose of pairwise key agreement be-
tween nodes is to enable the use of secure channels for communicating secret
shares during the self-certification process above. Therefore, pairwise key
establishment between a new node and each of the current nodes is also
required. Apart from self-certification, this functionality can also be applied
to achieve secure routing (e.g., in MANETs).

5 Non-interactive Self-certification

In this section, we now describe new self-certification technique for MANETs. By
coupling the bi-variate polynomial based secret share issuance technique with the
non-interactive threshold BLS signature [12], we obtain a fully non-interactive
self-certification protocol. We call the protocol Non-Interactive Self-Certification
or NISC.

5.1 Bootstrapping

The network can be initialized by either a single node called a trusted dealer,
denoted by TD, or a set of nodes in distributed way. For the sake of simplicity, we
describe only a centralized method in this section2. The set-up first involves the
following: elliptic curve parameters (p, Fp, a, b, P, q) are chosen, the curve being
represented by a equation: y2 = x3 + ax + b. G1 is set to be a group of order
2 In case of decentralized method, a set of t or more founding nodes agree on a random

bi-variate polynomial f(z, y) using the JSS protocol [20].

538 J.H. Yi

q generated by P, G2 is a subgroup of F
∗
p2 of order q, and ê : G1 × G1 → G2

is defined to be a public bilinear mapping [21,22]. Also, H1 : {0, 1}∗ → G1 is
the hash function that maps binary strings to non-zero points in G1. All of this
information is published and all network nodes (as well as prospective nodes)
are assumed to have access to it.

TD computes a two-dimensional sharing of the secret by choosing a random bi-
variate polynomial: f(z, y) =

∑t−1
α=0

∑t−1
β=0 fαβzαyβ (mod q) such that f(0, 0) =

x, for the network secret x. TD computes Wαβ (α, β ∈ [0, t−1]), called witnesses :
Wαβ = fαβP and publishes these Wαβ-s.

Then, it computes a share-polynomial xi(z) and a membership token Ti for
each node Pi (i ∈ [1, n]). The xi(z) is simply computed with idi in a way that
xi(z) = f(z, idi). The procedure to compute Ti is as follows: TD generates
public and secret key pair for Pi and then computes Ti = xH1(idi, PKi, etc.)
where PKi is a Pi’s public key. It then securely sends each node a distinct xi(z),
Ti, and a secret key SKi. Note that once the network is initialized, TD securely
erase the network secret x and all secret coefficients fαβ of the polynomial. After
that, TD is no longer needed.

5.2 Self-certification

To join the network, Pn+1 must collect at least t partial shares of the polynomial
and partial membership tokens from the current nodes, respectively. Figure 2
shows the protocol message flow for the self-certification process.

Step 1 (JOIN REQ). Pn+1 broadcasts:

Pn+1
m={idn+1,PKn+1,etc.}, Sn+1(m)−−−−−−−−−−−−−−−−−−→ {P1, · · · , Pn}

Step 2 (JOIN RLY). Each Pi (i ∈ [1, t′]) where t ≤ t′ ≤ n:
• computes its partial secret share xi(idn+1) = f(idn+1, idi),

• computes partial membership token T
(i)
n+1 = xiH1(m)

• encrypts xi(idn+1) and T
(i)
n+1.

Pn+1
m′={idi,PKi,EKi,n+1

{xi(idn+1)},T (i)
n+1}, Si(m

′)←−−−−−−−−−−−−−−−−−−−−−−−−−− {P1, · · · , Pt′}

Step 3. Pn+1:
• selects any t out of t′ partial shares and constructs its share-

polynomial xn+1(z) using Gaussian elimination,

• computes the membership token Tn+1 =
∑t

j=1 T
(j)
n+1λj(0).

Fig. 2. NISC Protocol

Energy-Efficient and Non-interactive Self-certification in MANETs 539

1. A prospective node Pn+1 broadcasts signed JOIN REQ message m which con-
tains its public key PKn+1 and identity idn+1 in order to prove the knowl-
edge of the corresponding private key3.

2. After verifying the signature on the JOIN REQ message, each receiving node
(Pi) willing to admit Pn+1 computes a partial share xi(idn+1) using its own
share-polynomial such that xi(idn+1) = f(idn+1, idi). Pi also issues a mem-
bership token for Pn+1 via the threshold BLS signing protocol (refer to
Section 3.3). It computes the partial membership token T

(i)
n+1 on the request

message m such that T
(i)
n+1 = xiH1(m) where xi = xi(0). (Note that T

(i)
n+1 is

computed without Lagrange coefficient λi(0) which means that the signing
does not require any interaction among t sponsoring nodes.)

Each sponsor Pi then replies to Pn+1 with a JOIN RLY message. Each
message is signed by the sender and contains encrypted xi(idn+1) and partial
membership token T

(j)
n+1 along with the respective values of idi and PKi.

The encryption key Ki,n+1 is computed using the technique described in
Section 5.3.

To compute their partial shares, sponsors do not need to be aware of each
other, and, thus, no interaction is needed. This is in contrast with ISC, where
each sponsor needs to be aware of all other sponsors in order to compute the
Lagrange coefficient λi(idn+1) in partial share issuance [7].

We note that, in ISC, since λj(idn+1)-s are publicly known, Pn+1 can de-
rive Pi’s secret share xi from partial share xiλj(idn+1). This is prevented us-
ing the random shuffling technique proposed in [24] by adding extra random
value Rij to each share. These Rij -s are securely shared between sponsors
Pi and Pj and sum up to zero by construction. Due to the random shuffling
procedure, ISC protocol becomes heavily interactive among the t sponsoring
nodes – it requires O(t2) point-to-point messages as well as extremely ex-
pensive O(t) reliable broadcast messages [25]. All this makes it impractical
for most MANET settings.

3. Upon receiving t′ (≥ t) JOIN RLY messages, Pn+1 selects any t of them and
computes its own share-polynomial xn+1(z) and membership token Tn+1.
First, the share-polynomial is constructed using standard Gaussian elimi-
nation [26]. Let us denote the share-polynomial xn+1(z) reconstructed by
Pn+1 as

∑t−1
α=0 Aαzα. Since xi(idn+1) = xn+1(idi) due to the symmetry, the

selected t partial shares {xn+1(id1), · · · , xn+1(idt)} can be represented as

A0 + A1id1 + A2id1
2 + · · · + At−1id1

t−1 = xn+1(id1)

A0 + A1id2 + A2id2
2 + · · · + At−1id2

t−1 = xn+1(id2)
...

A0 + A1idt + A2idt
2 + · · · + At−1idt

t−1 = xn+1(idt).

3 We note that it is necessary to include timestamps, nonces and protocol message
identifiers in order to secure the protocol against replay attacks [23]. However, we
omit these values to keep our description simple.

540 J.H. Yi

Thus, the problem of interpolating xn+1(z) using t xi(idn+1)-s is equivalent
to the problem of computing the matrix A such that XA = B:⎡

⎢⎢⎢⎣
(id1)0 (id1)1 · · · (id1)t−1

(id2)0 (id2)1 · · · (id2)t−1

...
(idt)0 (idt)1 · · · (idt)t−1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

A0

A1

...
At−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
xn+1(id1)
xn+1(id2)

...
xn+1(idt)

⎤
⎥⎥⎥⎦

The above system of linear equations yields a unique solution since the
idi values are distinct and the matrix X = [xij], where xij = (idi)j−1

for all i, j ∈ [0, t], is invertible. In order to validate the acquired share-
polynomial xn+1(z), Pn+1 must perform the verifiability procedure: Aα =∑t−1

β=0 fαβ(idn+1)β for α ∈ [0, t − 1]. Using the public witness values Wαβ =
fαβP, the polynomial can be verified: AαP =

∑t−1
β=0 (idn+1)βWαβ for α ∈

[0, , t−1]. Note that the right-hand side in the equation can be pre-computed
by Pn+1 prior to starting the process.

If the verification fails, Pn+1 must trace the faulty share providers by
performing the traceability procedure. This involves verifying the validity
of each partial share xi(idn+1) = f(idn+1, idi) by checking: xi(idn+1)P =∑t−1

α=0

∑t−1
β=0 (idn+1)α(idi)βWαβ . Similar to share verification, we note that∑t−1

α=0 (idn+1)αWαβ in the equation can be pre-computed since Wαβ -s and
idn+1 are known to Pn+1 in advance.

Next, Pn+1 also computes the threshold signature to construct its own
membership token by simply multiplying the appropriate Lagrange coef-
ficient with each partial signature and simply adding them, i.e., Tn+1 =∑t

j=1 T
(j)
n+1λj(0) =

∑t
j=1 (xjλj(0))H1(m) = xH1(m). Similar to the share

verifying and tracing as above, Pn+1 verifies the acquired signature, and if
required can trace the malicious signer(s). The membership token Tn+1 is
verified by checking ê(P, Tn+1) = ê(Q, H1(m)) where Q = xP. In case the
verification of Tn+1 fails, Pn+1 can trace sponsors that sent invalid partial
token(s) as ê(P, T

(j)
n+1) = ê(

∑t−1
β=0(idi)βW0β , H1(m)).

5.3 Pairwise Key Establishment

Once every node has its share-polynomial, pairwise key establishment is the
same as in [15] and [16]. Any pair of nodes Pi and Pj can establish shared
keys as follows: Pi uses its share-polynomial f(z, idi) to compute Kij such
that Kij = f(idj, idi). Similarly, Pj uses its share-polynomial f(z, idj) to com-
pute Kji such that Kji = f(idi, idj). Since f(z, y) is a symmetric polynomial,
Kij = Kji. Thus, Pi and Pj now have a shared key that can be used for secure
communication.

The security of above procedure is unconditional, i.e., not based on any as-
sumption. Refer to [15] for details regarding the security arguments of this pair-
wise key establishment.

Energy-Efficient and Non-interactive Self-certification in MANETs 541

6 Performance Analysis

In this section we discuss the implementation of ISC and NISC and compare them
in terms of self-certification, traceability and pair-wise key establishment costs.
We also summarize and compare some salient features in Table 2. As expected,
NISC significantly outperforms ISC in our overall evaluation.

Table 2. Feature Comparison

Key Features ISC NISC

DoS Resistance (traceability) Yes Yes

Interaction among Sponsors Required Yes No

Random Shuffling Required Yes No

Reliable Broadcast Required Yes No

6.1 Complexity Analysis and Comparison

We summarize computation and communication complexities in Table 3. More
specifically, for self-certification, NISC requires each sponsoring node Pi to per-
form O(t) scalar-point-multiplication (M) operations in ECC and the joining
node Pn+1 to perform only two Tate pairing (P) operations in ECC. On the
other hand, ISC requires each Pi to perform O(t2) M operations, and Pn+1 to
perform two P operations. For traceability, both the schemes require O(t2) M-s
and O(t) P-s with pre-computation. NISC is significantly more efficient than ISC
for computing pairwise keys, since the former requires only O(t) 160-bit modu-
lar multiplications, while the latter needs O(t) M ECC operations. Note that,
pairwise key establishment is a very frequent operation in a MANET, thus, its
efficiency is extremely important.

As far as overall communication costs4, NISC consumes O(t log q) and O(t log p)
bits, while bandwidth consumption in ISC is O(t2 log q) plus O(t log p) bits due to
the interactive random shuffling procedure.

6.2 Experimental Setups

ISC and NISC protocols have been implemented over the popular OpenSSL li-
brary [27] and MIRACL [28] (optimized using Comba method). We now describe
the experimental testbeds for measuring the performance of our proposed pro-
tocol. We ran experiments in a real wireless MANET environment and also
measured energy costs for each scheme with power measuring system below.

Wireless Mobile Ad Hoc Networks. We used five laptop computers for our
wireless experimental set-up: four laptop computers with Pentium-3 800 MHz

4 We assume that the identity and the public key are log q bits long and log p bits long,
respectively.

542 J.H. Yi

Table 3. Cost Comparison

Category ISC NISC

Computation

Self-Certification
M t2 + 2t + 1 3t
P 2 2

Traceability
M 2t2 + 3t 2t2 + 3t
P 2t 2t

Key Establishment
M t 0
P 0 0

Communication
Round

broadcast 1 1
unicast t2 + 2t t

Bandwidth
log q-bit 2t2 + 2t 3t
log p-bit 3t 3t

M: scalar-point-multiplication in ECC, P : Tate pairing operation in ECC

CPU and 256 MB memory and one laptop computer with Mobile Pentium 1.8
GHz CPU and 512 MB memory. Each machine is configured with 802.11b in
ad-hoc mode and runs the Optimized Link State Routing protocol (OLSR) [29].
Each machine runs Linux kernel 2.4.

Power Measurement Systems. To measure consumption of battery power, we
configured the following equipment, as shown in Figure 3. The test machine was
an iPAQ (model H5555) running Linux (Familiar-0.7.2). The CPU on the iPAQ
is a 400 MHz Intel XScale with 48MB of flash memory and 128MB of SDRAM. In
order to obtain accurate power measurements, we removed the battery from the
iPAQ during the experiment and placed a resistor in series with power supply.
We used a National Instruments PCI DAQ (Data AcQuisition) board to sample
the voltage drops across the resistor to calculate the current at 1000 samples per
second.

6.3 Test Methodology

Parameter Selection. To perform fair comparisons, we consider the following
parameters. The size of the parameter q was set to be 160-bit and p to be
1024-bit. For more details, we used the elliptic curve E defined by the equation:
y2 = x3 + 1 over Fp with p > 3 a prime satisfying p = 2 (mod) 3 and q being
a prime factor5 of p + 1. The parameter p is a 512-bit prime in order to make
sure that the security of pairing ê is equivalent to the security as in finite field
of 1024 bits6. The measurements were performed with different threshold values
5 By Euler’s theorem, q must divide #E(Fp). For the curve y2 = x3 + 1, #E(Fp) =

p + 1.
6 The G1 is a subgroup of points generated by P such that P ∈ E(Fp). The G2 is a

subgroup of F
∗
p2 of order q. The bilinear map ê : G1 × G1 → G2 is the well-known

Tate pairing. Computing discrete log in Fp2 is sufficient for computing discrete log
in G1. Therefore, for proper security of discrete log in Fp2 the prime p should be at
least 512-bits long (so that the group size is at least 1024-bits long).

Energy-Efficient and Non-interactive Self-certification in MANETs 543

External
Voltage
Supply

5 V

R = 22 ohm

VR

BNC-2110
Connector

DAQ Board
Windows XP

650 MHz

Power Measurement System

Serial Data
Connection

Wireless
LAN

Linux

ISC / NISC

TCP/IP

OpenSSL/MIRACL

Fig. 3. Power Measurement Testbed

t from 1 to 9. We used 1024-bit RSA signature algorithm with the fixed public
exponent 65537(= 216 +1) for protocol message authentication. All experiments
were repeated 1, 000 times for each measurement in order to get fairly accurate
average results.

Test Cases. We measured the respective costs of self-certification, traceability,
pairwise key establishment, and energy consumption.

1. Self-Certification. To measure the self-certification cost, four laptops with
same computing power were used as current nodes and the high-end laptop
was used as the joining/new node. In this experiment, each node (except the
joining node) was emulated by a daemon and each machine was running up
to three daemons. We then measured total processing time between sending
of JOIN REQ by the prospective node and receiving (plus verification) of
acquired secret shares. The measurement results thus include the average
computation time of the basic operations as well as communication costs,
such as packet en/decoding time, network delay, etc.

2. Traceability. We measured the computation time for tracing partial shares
that are received during the self-configuration protocol. We measured this
cost using pre-computed values as much as possible.

3. Pairwise Key Establishment. We measured the processing time for a
node to compute a pairwise key on the high-end laptop. Note that no com-
munication is involved in this measurement.

4. Energy Consumption. This experiment is quite tricky to measure fairly.
It is meaningless to measure energy consumption with all the test cases
above. However, it is well known that, in many small devices such as low-
end MANET nodes or sensors, sending a single bit is roughly equivalent to

544 J.H. Yi

performing 1,000 32-bit computations in terms of batter power consumption
[1]. Therefore, we measured power consumption in terms of communication
bandwidth required by each self-configuration protocol. For more details, we
sent some bulk data (e.g., 100 Mbytes) from a single iPAQ PDA (refer to
Figure 3), measured power consumed while sending out this data, and then
computed the average power consumption per bit. After that, we calculated
power consumption of each protocol by multiplying this measurement result
by the bit length of the transmitted data.

6.4 Experimental Results

We compare our experiment results in terms of self-certification, traceability,
pairwise key computation, and energy consumption.

Self-Certification. As observed from Figure 4(a), the self-certification cost with
NISC is much lower than that with ISC. The difference is even higher for higher
threshold values. The reason is quite intuitive: not only is NISC computationally
cheaper than ISC, but it also requires less communication.

Traceability. Figure 4(b) displays traceability costs for the two protocols. Even
in the worst case, NISC is as good as ISC for performing the (very infrequent)
operation of tracing malicious nodes.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

987654321

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(in

 s
ec

on
ds

)

Admission Threshold (t)

ISC
NISC

(a) Self-Certification

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

987654321

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(in

 s
ec

on
ds

)

Admission Threshold (t)

ISC
NISC

(b) Traceability

 0.01

 0.1

 1

 10

 100

987654321

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(in

 s
ec

on
ds

)

Admission Threshold (t)

ISC
NISC

(lo
ga

rit
hm

ic
 s

ca
le

)

(c) Key Establishment

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

987654321

C
on

su
m

ed
 E

ne
rg

y
(in

 μ
J)

Admission Threshold (t)

ISC
NISC

(d) Energy Consumption

Fig. 4. Experimental Results

Energy-Efficient and Non-interactive Self-certification in MANETs 545

Pairwise Key Establishment. Figure 4(c) shows that NISC is significantly
more efficient than ISC for computing pairwise keys. This result was actually
expected because in NISC the pairwise key computation requires only O(t) mul-
tiplications where the modular size is 160 bits. In contrast, ISC requires O(t)
exponentiations with a modular size of 1024 bits as well as O(t) multiplications
with 160-bit modulus.

Energy Consumption. Energy consumption results for self-certification oper-
ation are plotted in Figure 4(d). These results in Figure 4(d) clearly illustrate
that NISC is much more energy-efficient than ISC.

7 Conclusion

In this paper, we proposed NISC, a fully non-interactive self-certification protocol
by novel combination of bi-variate polynomial secret sharing and threshold BLS
signature scheme. We demonstrated from theoretical and experimental evalua-
tion that NISC is more efficient than previous mechanism, based on uni-variate
polynomial secret sharing and threshold BLS signature, in terms of computation,
communication, and energy consumption.

Acknowledgments

We are in debt to Nitesh Saxena and Gene Tsudik for making this work possible
and their insightful comments on it. We would like to thank the anonymous
reviewers for their valuable suggestions.

References

1. Barr, K., Asanovic, K.: Energy Aware Lossless Data Compression. In: ACM
International Conference on Mobile Systems, Applications, and Services. (2003)
231–244

2. Kong, J., Zerfos, P., Luo, H., Lu, S., Zhang, L.: Providing Robust and Ubiquitous
Security Support for MANET. In: IEEE International Conference on Network
Protocols. (2001) 251–260

3. Kong, J., Luo, H., Xu, K., Gu, D.L., Gerla, M., Lu, S.: Adaptive Security for
Multi-level Ad-hoc Networks. In: Wiley Journal of Wireless Communications and
Mobile Computing. Volume 2. (2002) 533–547

4. Luo, H., Zerfos, P., Kong, J., Lu, S., Zhang, L.: Self-securing Ad Hoc Wireless
Networks. In: IEEE Symposium on Computers and Communications. (2002) 567–
574

5. Narasimha, M., Tsudik, G., Yi, J.H.: On the Utility of Distributed Cryptography
in P2P and MANETs: The Case of Membership Control. In: IEEE International
Conference on Network Protocols. (2003) 336–345

6. Saxena, N., Tsudik, G., Yi, J.H.: Admission Control in Peer-to-Peer: Design and
Performance Evaluation. In: ACM Workshop on Security of Ad Hoc and Sensor
Networks. (2003) 104–114

546 J.H. Yi

7. Saxena, N., Tsudik, G., Yi, J.H.: Identity-based Access Control for Ad-Hoc Groups.
In: International Conference on Information Security and Cryptology. Volume 3506
of LNCS. (2004) 362–379

8. Luo, H., Kong, J., Zerfos, P., Lu, S., Zhang, L.: URSA: Ubiquitous and Robust
Access Control for Mobile Ad Hoc Networks. In: IEEE/ACM Transactions on
Networking. Volume 12. (2004) 1049–1063

9. Jarecki, S., Saxena, N., Yi, J.H.: An Attack on the Proactive RSA Signature Scheme
in the URSA Ad Hoc Network Access Control Protocol. In: ACM Workshop on
Security of Ad Hoc and Sensor Networks. (2004) 1–9

10. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust Threshold DSS Signa-
tures. In: CRYPTO’96. Volume 1070 of LNCS. (1996) 354–371

11. Shamir, A.: How to Share a Secret. In: Communications of the ACM. Volume 22.
(1979) 612–613

12. Boldyreva, A.: Efficient Threshold Signatures, Multisignatures and Blind Signa-
tures based on the Gap-Diffie-Hellman-Group Signature Scheme. In: International
Workshop on Practice and Theory in Public Key Cryptography. Volume 2567 of
LNCS. (2003) 31–46

13. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In: ACM Symposium on
the Theory of Computing. (1988) 1–10

14. Naor, M., Pinkas, B., Reingold, O.: Distibuted Pseudo-Random Functions and
KDCs. In: EUROCRYPT’99. Volume 1592 of LNCS. (1999) 327–346

15. Blundo, C., Santis, A.D., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.:
Perfectly-Secure Key Distribution for Dynamic Conferences. In: CRYPTO’92. Vol-
ume 740 of LNCS. (1999) 471–48

16. Liu, D., Ning, P.: Establishing Pairwise Keys in Distributed Sensor Networks. In:
ACM Conference on Computers and Communication Security. (2003) 52–61

17. Saxena, N., Tsudik, G., Yi, J.H.: Efficient Node Admission for Short-lived Mobile
Ad Hoc Networks. In: IEEE International Conference on Network Protocols. (2005)
269–278

18. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
ASIACRYPT’01. Volume 2248 of LNCS. (2001) 514–532

19. Kim, Y., Mazzocchi, D., Tsudik, G.: Admission Control in Peer Groups. In:
IEEE International Symposium on Network Computing and Applications. (2003)
131–139

20. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed Key Gener-
ation for Discrete-Log Based Cryptosystems. In: EUROCRYPT’99. Volume 1592
of LNCS. (1999) 295–310

21. Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. In:
CRYPTO’01. Volume 2139 of LNCS. (2001) 213–229

22. Frey, G., Müller, M., Rück, H.G.: The Tate Pairing and the Discrete Logarithm
Applied to Elliptic Curve Cryptosystems. In: IEEE Transactions on Information
Theory. Volume 45. (1999) 1717–1719

23. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press (1997) ISBN 0-8493-8523-7.

24. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Secret Sharing, Or
How To Cope With Perpetual Leakage. In: CRYPTO’95. Volume 963 of LNCS.
(1995) 339–352

Energy-Efficient and Non-interactive Self-certification in MANETs 547

25. Bracha, G.: An Asynchronous �(n − 1)/3�-resilient Consensus Protocol. In: ACM
Symposium on Priniciples of Distributed Computing. (1984) 154–162

26. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes
in C : The Art of Scientific Computing. Cambridge University Press (1992) ISBN
0-521-43108-5.

27. OpenSSL Project: (http://www.openssl.org)
28. MIRACL Library: (http://indigo.ie/ mscott)
29. OLSR Protocol: (http://menetou.inria.fr/olsr)

Self-adaptive Worms and Countermeasures

Wei Yu1, Nan Zhang2, and Wei Zhao1

1 Department of Computer Science
Texas A&M University, College Station, TX 77843-3112

{weiyu, zhao}@cs.tamu.edu
2 Department of Computer Science and Engineering

University of Texas at Arlington, Arlington, TX 76019-0015
nzhang@cse.uta.edu

Abstract. In this paper, we address issues related to defending against wide-
spreading worms on the Internet. We study a new class of worms called the self-
adaptive worms. These worms dynamically adapt their propagation patterns to
defensive countermeasures, in order to avoid or postpone detection, and to even-
tually infect more computers. We show that existing worm detection schemes
cannot effectively defend against these self-adaptive worms. To counteract these
worms, we introduce a game-theoretic formulation to model the interaction be-
tween worm propagator and defender. We show that the effective integration of
multiple defensive schemes (e.g., worm detection, forensics analysis) is critical
for defending against self-adaptive worms. We propose different combinations of
defensive schemes for different kinds of self-adaptive worms, and evaluate the
performance of defensive schemes based on real-world traffic traces.

Keywords: Worm, Game theory.

1 Introduction

In this paper, we address issues related to defending against wide-spreading worms on
the Internet. Worm is a malicious software program that propagates itself on the Internet
to infect other computers (by remotely exploiting vulnerabilities in these computers).
The ultimate goal of a worm is to infect as many computers as possible, such that the
worm propagator can remotely control these infected computers and use them as re-
sources to launch other attacks1 [1], which may bring significant damage to the Internet
[2].

Due to the substantial damage caused by wide-spreading worms, there has been ex-
tensive work on the modeling of worms and the design of defensive countermeasures.
Most existing work makes a tacit assumption that a worm will always propagate itself at
the highest possible speed. Nonetheless, some recently evolved worms contradict this
assumption by intentionally reducing their propagation speed to avoid detection. For
example, the “Atak” worm [3] and “self-stopping” worm [4] attempt to avoid detection
by hibernating (i.e., stop propagating themselves) periodically. If a worm can success-
fully avoid detection, it can eventually infect more computers, and bring more damage
to the Internet.

1 A common example is distributed denial-of-service (DDoS) attack.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 548–562, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Self-adaptive Worms and Countermeasures 549

In order to model the threats from such worms, we introduce a new class of worms
called self-adaptive worms. These worms dynamically adapt their propagation patterns
to defensive countermeasures, with the objective to avoid or postpone detection, and to
eventually infect more computers. Our contributions in this paper are two-fold:

– Self-adaptive Worm Modeling: We introduce a formal model of self-adaptive worm,
and classify such worm into two categories, namely static self-adaptive worm and
dynamic self-adaptive worm, respectively, based on the propagation growth rate
of worm (i.e., the percentage of maximum propagation speed that a worm actually
uses to propagate itself). Static self-adaptive worms propagate themselves with con-
stant propagation growth rate. Dynamic self-adaptive worms vary their propagation
growth rate over time.

– Defensive Countermeasures and Game Theoretic Analysis: We show that the in-
tegration of multiple defensive schemes can be used to effectively defend against
self-adaptive worms. In particular, we consider three kinds of defensive schemes
in this paper: the traditional threshold detection scheme [5],[6], the forensic trace-
back scheme [7],[8], and the spectrum-based detection scheme, which is first intro-
duced in this paper. We show that the integration of first two schemes can be used
to defend against static self-adaptive worms, while defending against dynamic self-
adaptive worms requires the integration of all three schemes. Table 1 shows a sum-
mary of the results in this paper. In order to analyze the performance of defensive
countermeasures, we introduce a game-theoretic formulation of the system, which
models the dynamic interaction between the self-adaptive worms and the defensive
countermeasures.

Table 1. Performance of Countermeasure Schemes

VT VT+TB VT + TB+SA
Traditional worm Effective Effective Effective

Static self-adaptive worm Effective Effective
Dynamic self-adaptive worm Effective
VT: Threshold scheme
TB: Trace-back scheme
SA: Spectrum analysis scheme

To the best of our knowledge, this paper is the first to formally address worms that
dynamically adapt their propagation pattern to defensive countermeasures. This paper
is also the first to introduce an effective integration of different defensive schemes (in-
cluding both worm detection and forensic analysis), and to use game-theoretic formula-
tion to model the dynamic interaction between the worm propagator and the defensive
countermeasure.

The rest of the paper is organized as follows. We briefly review the background and
some related work in Section 2. In Section 3, we present the formulation and classifi-
cation of self-adaptive worms, and demonstrate that existing detection schemes are not
effective on defending against such worms. In Section 4, we introduce a game-theoretic
formulation of the system that models the dynamic interaction between self-adaptive

550 W. Yu, N. Zhang, and W. Zhao

worms and defensive countermeasures. We present the defensive countermeasures
against static self-adaptive worms and dynamic ones in Section 5 and Section 6, respec-
tively. We evaluate the performance of our defensive countermeasures on real-world
traffic traces in Section 7, and conclude the paper with some final remarks in Section 8.

2 Background and Related Work

In this section, we first introduce the basic propagation mechanisms of worms. Then,
we briefly review some existing defensive countermeasure schemes.

2.1 Worm Propagation

Worm propagation on the Internet is an iterative process. Generally speaking, the prop-
agation of a worm starts with a computer called the worm propagator. The worm propa-
gator identifies vulnerable computers on the Internet, remotely exploits the vulnerability
to obtain access to these computers, and then infect the computers. Once a computer is
infected by the worm, the computer also starts propagating the worm to other computers
on the Internet.

As we can see, in order to propagate itself on the Internet, a worm must be capable
of identifying vulnerable computers that it can infect. Given the complicated Internet
topology and the diversified nature of the vulnerability of computers, such identification
can be hardly optimal in practice. A commonly used identification mechanism is Pure
Random Scan (PRS) approach [9]. Based on this approach, a worm-infected computer
continuously scans random IP addresses to identify vulnerable computers. Besides the
PRS approach, there has also been work that allows a worm to carry a pre-determined
“hit-list”, which contains a list of (possibly) vulnerable computers [10]. Note that the
number of computers in the hit-list is limited by the size of the worm. Thus, the hit-list
may not be able to support the wide propagation of a worm. Since we focus on wide-
spreading worm in this paper, we do not consider such propagation mechanism in our
system.

2.2 Defensive Countermeasures

In order to reduce the damage brought by worms, there are two kinds of defensive
schemes that have been proposed. One is the worm detection, which focuses on the
detection of propagating worms on the Internet. Once a propagating worm is detected,
many actions can be done to stop or slow down worm propagation. For example, patches
can be released to fix the vulnerability, worm scan traffic can be throttled, and infected
computer can be quarantined [9],[11].

The other scheme is forensic analysis, which aims to identify the original worm prop-
agator. Once the worm propagator is found, law enforcement can punish the propagator.
If successfully deployed, this scheme can prevent worm attacker from launching the at-
tack. We briefly review previous work on these two kinds of defensive countermeasures
respectively as follows.

Self-adaptive Worms and Countermeasures 551

Worm Detection. Many detection mechanisms have been proposed [12], [13]. A com-
mon worm detection mechanism requires one control center and numerous distributed
monitors on the Internet [14],[15]. The distributed monitors can be honeypots [16] and
Internet sinks [15], and are located at hosts, gateways, and border routers of local net-
works. These monitors passively record abnormal scan traffic (e.g., connection attempts
to unavailable IP address and/or restricted service ports), and periodically transmit the
logs to the control center, which processes such log files and determines if there is a
worm propagating on the monitored network.

As we can see, the control center relies on the collected scan traffic data to deter-
mine whether there is an on-going propagation of wide-spreading worm. Most existing
worm detection mechanisms measure the average volume of abnormal scan traffic, and
generate an alert if the volume exceeds a predetermined threshold [6]. We call these
mechanisms as mean-threshold mechanisms. Some other schemes measure the variance
[5] or trend [17] of abnormal scan traffic.

Forensic Analysis. The objective of forensic analysis is to identify the worm propaga-
tor accountable for the malicious acts [7], [8]. Most existing work uses a random walk
scheme to identify the origin of worm propagation [7], [8]. In order to enable forensic
analysis, the defender must be capable of analyzing audit data on attack reconstruction
(i.e., analyzing the structure of worm propagation to determine the attack origin). There
have been many real cases where the worm propagator was traced back, arrested, and
prosecuted based on electronic evidence [18].

3 Self-adaptive Worms

In this section, we introduce self-adaptive worms that adapt their propagation patterns
based on the defensive countermeasure in order to avoid or postpone detection. We first
introduce the propagation growth rate of a worm. Based on the growth rate, we define
self-adaptive worms and classify them into two categories: static self-adaptive worms
and dynamic self-adaptive worms.

3.1 Propagation Growth Rate

Recall that during worm propagation, a worm first scans the network to identify vul-
nerable computers, and then infects the identified vulnerable computers. Previous work
tacitly assumes that all worms scan the network with the maximum possible speed (i.e.,
scan as many computers as possible in every single time slot). Based on this assump-
tion, previous work detects worm by monitoring the number of illegal scans in a single
time slot, and then issues an alert when the number exceeds a predetermined threshold
[5], [6].

While the assumption is intuitive as the ultimate goal of a worm is to infect as many
computers as possible, we find that a worm can actually avoid or postpone detection (by
the defensive countermeasure) if the worm reduces the number of scans in a single time
slot. With the avoided (or postponed) detection, the worm can eventually infect more
computers.

552 W. Yu, N. Zhang, and W. Zhao

Let S be the maximum number of scans a worm host (i.e., an infected computer)
can perform in a single time slot. We use propagation growth rate p to denote the
percentage of such maximum speed that a worm propagator actually uses to propagate
a worm. That is, the number of scans a worm host actually performs in a single time slot
is p · S. Apparently, the worms studied in previous work have p = 1, as previous work
assumes that a worm always scans computers on the Internet at the maximum speed.

We now briefly show the propagation pattern of a worm with p < 1. Let N be the
number of vulnerable computers on the Internet. Let f(t) be the number of computers
the worm has infected at time t. Note that f(0) = 1. Recall that S is the maximum
number of scans a worm host can perform in a single time slot. Let β = S/V , where V
is the total number of IP addresses on the Internet. We have

df(t)
dt

= β · f(t) · p · [N − f(t)], (1)

where df(t)/dt is the number of computers newly infected at time t. Note that df(t)/dt
is statistically in proportion to the number of illegal scans detected by the detection
system. When the mean-threshold detection scheme is used, the system will issue an
alert when f(t) · p ≥ TR, where TR is the detection threshold. As we can see, when
f(t) < N/2, the smaller p is, the larger f(t) is at the moment when the worm is
detected. That is, a worm can (eventually) infect more computers by reducing p.

Figure 1 shows the number of computers that a Pure Random Scan (PRS) worm
can eventually infect when the mean-threshold and variance-threshold detection mech-
anisms [6],[5] are used, respectively. In the figure, we assume that the number of vul-
nerable computers on the Internet is 350,000. We show the cases where the propagation
growth rate changes from 0.03 to 1. As we can see, a worm can actually infect more
computers when p is smaller.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 10

5

Propagation Growth Rate p

N
um

be
r

of
 In

fe
ct

ed
 C

om
pu

te
rs

Mean threshold
Variance threshold

Fig. 1. Number of Infected Computers vs. Propagation growth rate

Note that the propagation growth rate is not necessarily constant during worm propa-
gation. In many cases, the worm propagator may deliberately change p during propaga-
tion in order to avoid or postpone detection. In this paper, we consider the cases where p

Self-adaptive Worms and Countermeasures 553

changes over time t. That is, the worm records the time it starts propagating. By count-
ing the time passed since the beginning of the propagation, each infected computer can
accurately estimate the number of infected computers as well as the number of scans
sent by such computers. As such, the worm can control the number of scans (to avoid
detection) by changing the propagation growth rate p over time t.

3.2 Classification of Self-adaptive Worms

We define self-adaptive worms as worms with propagation growth rate not always equal
to 1. Suppose tD is the time when a worm is detected. Formally speaking, a worm is
self-adaptive if and only if there exists time t0 which satisfies

– 0 < t0 < tD, and
– the propagation growth rate of the worm at time t0: p(t0) < 1.

Recall that a worm can arbitrarily change its propagation growth rate p over time t.
In this paper, we classify self-adaptive worms into two categories, namely static self-
adaptive worms and dynamic self-adaptive worms, respectively, based on the change of
propagation growth rate.

– Static self-adaptive worms are self-adaptive worms that have constant p(t). That is,
for all t0, t1 < tD with t0 �= t1, there is p(t0) = p(t1) < 1.

– Dynamic self-adaptive worms are self-adaptive worms that have variant p(t) over
time t. That is, there must exist t0, t1 < tD with t0 �= t1, such that p(t0) �= p(t1).

Table 2 depicts our classification of worms. As we can see, a self-adaptive worm
is either static or dynamic. In particular, the “Atak” worm [3] and the “self-stopping”
worm [4] mentioned in Section 1 are special cases of dynamic self-adaptive worms, as
their propagation growth rates are changing between 0 and 1 over time.

Table 2. Classification of Wide-Spreading Worms

Options Description

p(t) = 1 Traditional worm
0 < p(t) = c < 1 Static self-adaptive worm

p(t) varies over time Dynamic self-adaptive worm

4 System Model with Self-adaptive Worms

As we can see, a self-adaptive worm can adapt its propagation growth rate to the de-
fensive countermeasure, in order to avoid or postpone detection. In order to model the
interaction between the two parties (i.e., worm propagator and defender), we introduce
a game-theoretic formulation of the system. We first present the objective and strategies
of each party. Then we show the game-theoretic model of the interaction between the
two parties.

554 W. Yu, N. Zhang, and W. Zhao

4.1 Basic Notions

Recall that we suppose there are N vulnerable computers on the Internet. Also recall
that β = S/V , where S is the number of scans a worm host can perform within a single
time slot, and V is the total number of IP addresses on the Internet.

Recall that a worm propagator intends to infect as many computers as possible. Note
that it does not make much sense for a worm to propagate for an infinite amount of
time. Therefore, we assume that the objective of a worm propagator is to infect as
many computers as possible by a pre-determined time tE, given the moment that the
worm starts propagating as time 0. When a worm detection mechanism (e.g., threshold
detection scheme in Section 2.2) is employed, we use tD to denote the time when the
worm is detected. Apparently, the detection scheme is only effective when 0 ≤ tD < tE.

When a trace-back scheme is in place, we assume that the original worm propagator
can be tracked back if and only if at time max(0, tD − tB), the number of infected
computers is less than or equal to m. That is, the trace-back scheme can trace back up
to tB amount of time based on the network trace, and is capable of identifying the worm
propagator from m computers based on more comprehensive analysis on the log files
related to the m computers.

4.2 Parties

There are two parties in the system: the worm propagator and the defender. The worm
propagator has two objectives. One is to maximize the number of infected computers.
The other is to avoid being traced back and punished for its malicious actions. Different
worm propagators may have different priorities on these two objectives. Nonetheless, it
is commonly believed that most worm propagators on the Internet consider the penalty
of being traced back to be substantially more than the benefits they may receive from the
worm propagation [7],[8]. Thus, we assume that a worm propagator will not propagate
the worm if it knows that it will be traced back with probability more than PR. In this
paper, for the sake of simplicity, we assume that PR = 50%.

Formally speaking, the objective of the worm propagator is to maximize UA, which
satisfies

UA =
{

0, if traced back with probability of more than 50%;
f(min{tE, tD}), otherwise.

(2)

Recall that tE is the maximum propagation time of the worm, and tD is the time when
the worm is detected. We refer to UA as the utility function of the worm propagator.

The defender also has two objectives. One is to minimize the number of infected
computers. The other is to minimize the probability that a detection alarm is falsely
triggered when there is no worm propagation on the Internet. In our system model, we
assume that the worm propagator must ensure the false alarm rate Λ (i.e., the probabil-
ity that a false worm alarm is triggered when the system is not under worm attack) to
be lower than a predetermined threshold δ.

Formally speaking, the objective of the defender is to maximize

UD =
{−∞, if Λ > δ;

−UA, otherwise.
(3)

We refer to UD as the utility function of the defender.

Self-adaptive Worms and Countermeasures 555

4.3 Strategies

We now present the strategies of the two parties in the system. The strategy of the worm
propagator is to determine the propagation growth rate p. Recall that as we mentioned in
Section 3, the worm propagator can choose either to use a constant propagation growth
rate p or to vary p over time t.

The strategy of the defender is to determine the defensive countermeasures. Recall
that as we mentioned in Section 2.2, we consider two kinds of defensive countermea-
sures: worm detection and forensic analysis schemes (i.e., trace-back). As such, the
defender needs to determine the threshold TR for the detection scheme and the (maxi-
mum) trace-back time tB for the forensics analysis scheme. Since the trace-back time
is commonly determined by the traffic volume of the network as well as the computa-
tional power of the defensive system, we assume that the defender cannot change tB.
Thus, in our system model, the strategy of the defender is to determine the detection
threshold TR.

4.4 Game Formulation

We formulate the system as a two-player non-cooperative game. The worm propagator
and the defender are the two players in the game. The game is non-cooperative be-
cause the two players are in opposition and are unlikely to make any binding agreement
when choosing their strategies. As in many security studies, we make an conservative
assumption that the worm propagator has full knowledge of the strategy taken by the
defender. Nonetheless, the defender has no knowledge about the strategy of the worm
propagator. We assume that both players are rational, in that each player always chooses
the strategy that maximizes its utility function.

5 Defense Against Static Self-adaptive Worms

In this section, we consider systems with traditional worms (with p = 1) and static self-
adaptive worms (with constant p ∈ (0, 1)). Recall that the worm propagator can be
traced back if and only if at time max(0, tD − tB), the number of infected computers is
less than or equal to m. Also recall that the worm propagator will not propagate a worm
if it knows that it will be traced back with probability of more than 50%. We have the
following theorem [19].

Theorem 1. Let TR be the minimum detection threshold to satisfy the requirement on
false alarm rate Λ ≤ δ (recall that δ is the threshold defined in Section 4.2). The
propagator of a static self-adaptive worm will not propagate the worm if

tB ≥ tE

(
1 − 1

log TR
log

mN

N − m

)
≈ tE

(
1 − log m

log TR

)
. (4)

When tB does not satisfy the above condition, the worm propagator will choose p that
satisfies

f(tE) · p = TR. (5)

556 W. Yu, N. Zhang, and W. Zhao

Recall that in order to achieve a smaller false alarm rate, we have to set a larger TR. As
we can see from (5) (note that f(tE) is a monotonically increasing function of p), the
larger TR is, the larger p will be, and the more computers a worm can eventually infect.
Thus, in order to achieve a smaller false alarm rate, we have to afford a larger number
of infected computers.

6 Defense Against Dynamic Self-adaptive Worms

In this section, we consider systems with dynamic self-adaptive worms. That is, the
worm propagator can change the propagation growth rate p over time t, to better adapt
to the defensive countermeasure and avoid detection and trace-back. We first show that
the combination of threshold scheme and trace-back scheme no longer works with the
presence of dynamic self-adaptive worms. After that, we introduce a new defensive
scheme called spectrum detection scheme. We show that the combination of all three
schemes can effectively defend against dynamic self-adaptive worms.

6.1 Performance of Threshold and Trace-Back Schemes

We now show that in order for the combination of threshold detection scheme and trace-
back scheme to effectively defend against dynamic self-adaptive worms, the trace-back
time must be nearly equal to the predetermined worm propagation deadline tE. Since
such a long trace-back time is hard, if not impossible, to realize in practical systems,
the combination of threshold detection scheme and trace-back scheme cannot defend
against dynamic self-adaptive worms effectively. We have the following theorem [19].

Theorem 2. The propagator of a dynamic self-adaptive worm will not propagate the
worm if and only if tB ≥ tE − log m/β ≈ tE.

Apparently, the threshold detection scheme is no longer effective with the presence
of dynamic self-adaptive worms. In order to effectively defend against dynamic self-
adaptive worms, we have to prevent the worm from fast propagating itself at the initial
stage of worm propagation. This is the motivation for us to propose the spectrum-based
detection scheme presented below.

6.2 Spectrum-Based Detection Scheme

In the following, we introduce a spectrum-based detection scheme. This method has
been widely used to distinguish signal from noise [20]. Thus, the basic idea of spectrum-
based detection scheme is to detect a dynamic self-adaptive worm by distinguishing the
worm attack traffic (as signal) from the background traffic (as noise).

Recall from Section 2.2 that, the worm detection system features a control center
that collects reports from monitors distributed on the Internet. To conduct the spectrum
analysis, we consider a detection sliding window Wd which includes q(> 1) continuous
sampling windows (each of size Ws). Hence, within a sliding window Wd, there are q
detection samples denoted by (X(i− q − 1), X(i− q − 2), . . . , X(i)) recorded at time

Self-adaptive Worms and Countermeasures 557

i, where X(i− j−1) (j ∈ (1, q)) is the j − th data from time periods i− j−1 to i− j.
The workflow of spectrum-based scheme includes following three steps:

1) Data Filter. We use a low-pass filter, e.g., weighted moving average filter [21], to
filter high frequency terms in data series, e.g., (X(i− q − 1), X(i− q − 2), . . . , X(i)).
The output of digital filter becomes (X ′(i − q − 1), X ′(i − q − 2), . . . , X ′(i)).

2) Obtain Power Spectral Density (PSD) and Spectral Flatness Measure (SFM). We
calculate autocorrelation of X ′(t) (output of previous step) as

RX′(L) = E[X ′(t)X ′(t + L)]. (6)

In (6), RX′(L) is the correlation of worm detection data in an interval L. If a fast
growth or recurring behavior exists, a Fourier transform of the autocorrelation function
of RX′(L) can reveal such behaviors. Using the Discrete Fourier Transform (DFT), we
derive the PSD function as follows,

N−1∑
n=0

(RX′ [L]) · e−j2πK·n/N , (7)

where K = 0, 1, . . . , N − 1.
In order to distinguish worm attack traffic and non-worm traffic, we use SFM as the

detection feature, which is defined as the ratio of the geometric mean to the arithmetic
mean of the PSD coefficients [21]. It can be expressed as,

SFM =
[
∏N

k=1 S(fk)]
1
N

1
N

∑N
k=1 S(fk)

, (8)

where S(fk) is the kth PSD coefficient for the PSD obtained from the results in (7).
SFM is a well-known measure for discriminating frequencies in applications such as
voice frame detection in speech recognition [20]. Low values of SFM imply concentra-
tion of data at narrow spectrum ranges.

3) Detection. With the SFM as the detection feature, we apply following simple
detection rule. If the SFM value is smaller than a TM (predetermined threshold value for
SFM), then a worm detection is flagged. The value of threshold TM is fittingly set based
on the popular knowledge of PDF of SFM values that correspond to the background
traffic. Based on the PDF of SFM values of background traffic, we set a TM to obtain
a reasonable detection rate and false alarm rate. The effectiveness of spectrum-based
scheme can be justified based on the fact that the worm propagates faster in the early
stage, and thus the PSD of low frequency bands is much higher than other frequency
bands. Please refer to [19] for the detailed analysis.

6.3 Performance of Threshold, Trace-Back, and Spectrum-Based Detection
Schemes

With the spectrum-based detection scheme, we have the following result. Suppose that
the spectrum-based detection scheme can successfully detect a worm with more than
50% probability at time tS(p) if the worm propagates with p from time 0 to time tS(p).

558 W. Yu, N. Zhang, and W. Zhao

Recall that the number of infected computers by a static self-adaptive worm with p at
time t is

f(t) =
Neβ·p·t

eβ·p·t + N
. (9)

Apparently, the optimal strategy for the worm propagator is to follow the greedy
strategy, which is to choose the largest p possible (i.e., without being detected) before
the number of infected computers reaches m. After that, the only purpose of the worm
propagator is to maximize the number of infected computers. Note that if worm prop-
agator chooses p below a certain (very low) level, other human-scale countermeasures
(e.g., signature-based virus detection, machine quarantine) may become effective to
disrupt the propagation.

When the adversary chooses this optimal strategy, the number of computers infected
by a dynamic self-adaptive worm at time t satisfies

f(t) ≤
∫ 1

p0

Neβ·p·dtS(p)

eβ·p·dtS(p) + N−f(tS(p−dp))
f(tS(p−dp))

. (10)

where p0 is the maximum value that satisfies tS(p0) ≥ t.
As we can see, (10) is hard to solve. Nonetheless, we can estimate an upper bound

on f(t) by sampling several discrete values of p. For example, when 0 ≤ t ≤ tS(0.5),
there is

f(t) ≤ Neβ·tS(1)

eβ·tS(1) + N
+

Ne0.75·β·tS(0.75)

e0.75·β·tS(0.75) + N−f(tS(1))
f(tS(1))

+
Ne0.5·β·tS(0.5)

e0.5·β·tS(0.5) + N−f(tS(0.75))
f(tS(0.75))

.

(11)
where f(tS(1)) and f(tS(0.75)) can be estimated by the first and second item of (11),
respectively.

By solving (11), we can derive an upper bound on the value of f(t). In the same
manner, we can derive a lower bound on minimum value of tA such that f(tA ≥ m).
Let such lower bound be t̃A. Apparently, the worm propagator will not propagate the
worm if t̃A + tB ≥ tE.

7 Performance Evaluation

In this section, we present the experimental results of our system based on real-world
trace data. In particular, we evaluate the performance of our defensive countermeasures
with the presence of self-adaptive worms.

7.1 Evaluation Methodology

Evaluation Metrics. As we mentioned in Section 4.2, all worm detection mechanisms
have to make a tradeoff between worm detection accuracy and false alarm. In the ex-
periments, we require the false alarm rate to be less than or equal to 0.1%. Based on
this requirement, we measure the performance of worm detection by the maximum in-
fection ratio, which is defined as the ratio of the number of infected computers to the
total number of vulnerable computers at the moment when the worm is successfully
detected. Recall that all evaluation schemes are in Table 1.

Self-adaptive Worms and Countermeasures 559

Experiment Setup. We used the real world DShield logs provided by SANs Institute
which include the detail traces from 01/01/2005 to 01/15/2005 2. The traces used in our
experiments contain log files which have over 80 million scan records and total size
exceeds 80 GB [22]. We developed the tool to parse the data and provide the data input
for our experiment. The input data has the format in terms of the number of scans for
particular port in a given time window, i.e., 5 min, 20 min, etc. With the 15 days trace
serving as real-world scan traffic (e.g., port 8080), we add the simulated worm attack
traffic by using the parameters p(t) defined in Section 3.

In our experiment, we set the total number of vulnerable computers on the Internet
as 350, 000 which as described earlier. Using the unit of the scan rate S as number
of scans per unit, we set different scan rates for each of the infected computers The
scan rate (≥ 0) is predetermined assuming a normal distribution N(Sm, S2

σ) with Sm

and S2
σ ∈ (20, 70), similar to the way described in [17]. We set trace-back parameters:

m = 250, 500 and TB ∈ [3000, 8000] units. The detection sampling window Ws is set
to 5 units and the detection sliding window Wd is set to be incremental from 128 units
to 255 units. We choose detection sampling window to be short enough and detection
sliding window to be long enough to provide enough sampling and detection accuracy.

7.2 Performance of Detection Schemes

We evaluate the performance of detection schemes on static self-adaptive and dynamic
self-adaptive worms, respectively. Recall that in all experiments, the false alarm rate is
no more than 0.1%.

We first compare the performance of our approach with that of the previous ap-
proaches when static self-adaptive worm exists in the system. In particular, we perform
the experiments when p = 0.05, 0.1, and 0.2. For previous approaches, we use the
threshold detection scheme in [6] as the example. Note that volume variance-based
scheme in [5] shows the similar results. Recall that in order to defend against static
self-adaptive worms, we use a combination of threshold scheme and trace-back scheme
(VT+TB in short). Thus, the performance of our approach also depends on the maximum
trace-back time that the system can afford. We evaluate the performance of our scheme
with different amount of trace-back time: [3000, 7000] units. The result is shown in
Figure 2. As we can see, our scheme can achieve a much less maximum infection ratio
than previous schemes (e.g., VT only). That is, our scheme can defend against static
self-adaptive worm more effectively.

For dynamic self-adaptive worms, it is impossible to enumerate all possible functions
of p with time t. We evaluate the performance of our integrated scheme (VT+TB+SA
in short) based on the Nash equilibrium of the game. Note that the Nash equilibrium
represents a state whether neither the worm propagator nor the defender can benefit by
unitarily changing its strategy. Therefore, the Nash equilibrium contains the strategy
that a rational worm propagator will choose to propagate the worm. We thus measure
the performance of worm detection by the maximum infection ratio when both the
worm propagator and the defender use the strategies defined by the Nash equilibrium.

2 The authors would like to thank SANs Internet Storm Center (ISC) for providing us valuable
detailed traces [14].

560 W. Yu, N. Zhang, and W. Zhao

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
0

0.05

0.1

0.15

0.2

0.25

0.3

Trace Back Time (unit)

M
ax

im
al

 In
fe

ct
io

n
R

at
io

VT+TB(p=0.1)
VT+TB(p=0.2)
VT+TB(p=0.3)
VT(p=0.1)
VT(p=0.2)
VT(p=0.3)

Fig. 2. Performance of countermeasures on static self-adaptive worm

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Trace Back Time (unit)

M
ax

im
al

 In
fe

ct
io

n
R

at
io

VT+TB+SA(m=500)
VT+TB+SA(m=250)

Fig. 3. Performance of countermeasures on dynamic self-adaptive worm

The results are shown in Figure 3. As we can see from the figure, our scheme can
successfully bound the maximum infection ratio to 0.052 (when m = 500) and 0.073
(when m = 250).

8 Final Remarks

In this paper, we study a new class of worms called the self-adaptive worms, which
adapt their propagation pattern to defensive countermeasures in order to avoid or post-
pone detection. Based on the degree of control on the propagation growth rate, we clas-
sify self-adaptive worms into two categories: static self-adaptive worms and dynamic
ones. Since existing worm detection schemes are not sufficient to defend against these
self-adaptive worms, we propose new defensive countermeasures in order to counter

Self-adaptive Worms and Countermeasures 561

self-adaptive worms. We first introduce a game-theoretic formulation to model the dy-
namic interaction between the worm propagator and the defender. We show that an
effective integration of multiple defensive schemes is critical for defending against
self-adaptive worms. We present three schemes: traditional threshold detection scheme,
trace-back scheme, and spectrum-based detection scheme. We show that the combina-
tion of the first two schemes can be used to defend against static self-adaptive worms
while the combination of all three schemes can effectively defend against dynamic self-
adaptive worms.

Acknowledgments. This work was supported in part by the National Science Founda-
tion under Contracts 0081761, 0324988, 0329181, by the Defense Advanced Research
Projects Agency under Contract F30602-99-1-0531, and by Texas A&M University
under its Telecommunication and Information Task Force Program. Any opinions, find-
ings, conclusions, and/or recommendations expressed in this material, either expressed
or implied, are those of the authors and do not necessarily reflect the views of the spon-
sors listed above.

References

1. US-Cert: W32/MyDoom.B Virus. http://www.us-cert.gov/cas/techalerts/
TA04-028A.html

2. Moore, D., Shannon, C., Brown, J.: Code-red: a case study on the spread and victims of an
internet worm. Proceedings of the 2-th Internet Measurement Workshop (IMW), Marseille,
France, November 2002.

3. Zdnet: Smart worm lies low to evade detection. http://news.zdnet.co.uk/
internet/security/0,39020375,39160285,00.html

4. Voelker, G. M, Ma, J., Savage, S.: Self-stopping worms. Proceedings of the ACM Workshop
on Rapid Malcode (WORM), Washington D.C, November 2005.

5. Wu, J., Vangala, S., Gao, L. X.:An effective architecture and algorithm for detecting worms
with various scan techniques. Proceedings of the 11-th IEEE Network and Distributed Sys-
tem Security Symposium (NDSS), San Diego, CA, Febrary 2004.

6. Venkataraman, S., Song, D., Gibbons, P., Blum, A.: New streaming algorithms for super-
spreader detection. Proceedings of the 12-th IEEE Network and Distributed Systems Security
Symposium (NDSS), San Diego, CA, Febrary 2005.

7. Sekar, V., Xie, Y., Maltz, D., Reiter, M., Zhang, H.: Toward a framework for internet forensic
analysis. Proceeding of the 3-th Workshop on Hot Topics in Networks (HotNets-III), San
Diego, CA, November 2004.

8. Xie, Y., Sekar, V., Maltz, D. A., Reiter, M. K., Zhang, H.: Worm origin identification using
random moonwalks. Proceeding of the IEEE Symposium on Security and Privacy, Oakland,
CA, May 2005.

9. Chen, Z. S. , Gao, L.X., Kwiat, K.: Modeling the spread of active worms. Proceedings of the
IEEE Conference on Computer Communications (INFOCOM), San Francisco, CA, March
2003.

10. Staniford, S., Paxson, V., Weaver, N.: How to own the internet in your spare time. Proceed-
ings of the 11-th USENIX Security Symposium, San Francisco, CA, August 2002.

11. Staniford, S.: Containment of scanning worms in enterprise networks. Journal of Computer
Security, 2003.

562 W. Yu, N. Zhang, and W. Zhao

12. Jung, J., Paxson, V., Berger, A. W., Balakrishnan H.: Fast portscan detection using sequen-
tial hypothesis testing. Proceedings of the 25-th IEEE Symposium on Security and Privacy,
Oakland, CA, May 2004.

13. Kim, H., Karp, B.: Autograph: Toward automated, distributed worm signature detection.
Proceedings of the 13-th USENIX Security Symposium, San Diego, CA, August 2004.

14. SANS: Internet Storm Center. http://isc.sans.org/
15. Yegneswaran, V., Barford, P., Plonka, D.: On the design and utility of internet sinks for

network abuse monitoring. Proceeding of Symposium on Recent Advances in Intrusion De-
tection (RAID), Pittsburgh, PA, September 2003.

16. Spitzner, L.: Know Your Enemy: Honeynets, Honeynet Project. http://project.
honeynet.org/papers/honeynet

17. Zou, C., Gong, W. B., Towsley, D., Gao, L. X.: Monitoring and early detection for inter-
net worms. Proceedings of the 10-th ACM Conference on Computer and Communication
Security (CCS), Washington DC, October 2003.

18. Sanders, T.: Turk and Moroccan arrested for Zotob worm author caught within two
weeks. http://www.vnunet.com/vnunet/news/2141584/turk-moroccan-
arrested-zotob

19. Yu, W., Zhang, N., Zhao, W.: Self-adaptive worm and countermeasures. Technical Report
2006-8-2, Computer Science Dept., Texas A&M Univ., August 2006.

20. Allen, R. L., Mills, D. W.: Signal Analysis: Time, Frequency, Scale, and Structure. Wiley
and Sons, 2004.

21. Jayant, N. S., Noll, P.: Digital Coding of Waveforms. Prentice-Hall, 1984.
22. DShield.org: Distributed Intrusion Detection System. http://www.dshield.org/

Brief Announcement: Self-healing Algorithms for

Reconfigurable Networks

Iching Boman, Jared Saia�, Chaouki T. Abdallah, and Edl Schamiloglu

University of New Mexico, Albuquerque, NM 87131, USA
saia@cs.unm.edu

Abstract. We present an algorithm to self-heal reconfigurable networks.
This algorithm reconfigures the network during an attack to protect
two critical invariants. First, it insures that the network remains con-
nected. Second, it insures that no node increases its degree by more than
O(log n). We prove that our algorithm can successfully maintain these
invariants even for large networks under massive attack by a computa-
tionally unbounded adversary.

1 Motivation and Model

Many modern networks, such as peer-to-peer, are reconfigurable in the sense that
their topology can change dynamically. We design self-healing algorithms that
specifically exploit the reconfigurable nature of these networks. In contrast to
many previous results, our algorithms: provide more protection: for example,
we can guarantee that all nodes in the network stay connected instead of just
almost all of the nodes; and conserve resources: for example, our algorithms
devote no resources to defending the network until the time when an attack
occurs.

Model: We assume an initially connected network over n nodes where every
node knows not only its neighbors in the network but also the neighbors of
its neighbors i.e. neighbor-of-neighbor (NoN) information. In particular, for all
nodes x,y and z such that x is a neighbor of y and y is a neighbor of z, x
knows z. We further assume that there is an omniscient and computationally
unbounded adversary that is attacking the network. This adversary knows the
network topology and our algorithms, and has the ability to delete carefully se-
lected nodes from the network. However, we assume the adversary is constrained
in that in any time step it can only delete a small number of nodes from the
network. We further assume that after the adversary deletes some node x from
the network, that the neighbors of x become aware of this deletion and that they
have a small amount of time to react.

When a node x is deleted, we allow the neighbors of x to react to this deletion
by adding some set of edges amongst themselves. We constrain these edges to
only be between nodes which were previously neighbors of x. This is to ensure
that, as much as possible, edges are added which respect locality information
� Contact author.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 563–565, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

564 I. Boman et al.

in the underlying network. We assume that there is very limited time to react
to deletion of x before the adversary deletes another node. Thus, the algorithm
for deciding which edges to add between the neighbors of x must be fast and
localized.

2 Our Results

Our main results are summarized in the following two theorems. The theorems
are proven in the full version of this paper (available at http://www.cs.unm.edu/
~saia/sss06.pdf). We also include below a centralized version of the Line algo-
rithm that is used to prove Theorem 1. We omit the discussion of how to make the
algorithm distributed due to space limitations.

Theorem 1. There exists an algorithm, which we call the Line algorithm with
the following properties:

– Insures that the network is always connected
– Increases the degree of any vertex by at most log2 n where n is the number

of vertices in the network before attack
– Is locality aware in the sense that it adds edges only between nodes that have

just had a neighbor deleted.

Theorem 2. Any locality aware algorithm that insures network connectivity can
be forced to increase a node’s degree by at least log3 n.

2.1 The Line Algorithm

We first define several variables to aid with the description of our algorithm. For
a fixed time step we define the following:

Line Algorithm:
Initialize each vertex v to have weight w(v) = 1 before the first timestep. Then,
for each timestep:

– Let G, G′ be the graphs at a fixed timestep as defined above, and let x be
the node deleted by the adversary at the timestep.

– Let N∗(x) be a maximal set of neighbors of x that are unconnected in G−x.

1. Let v1, v2 be vertices in N∗(x) with maximal W (∗, x) values, i.e. W (v1, x) ≥
W (v2, x) and ∀j ∈ N∗(x) s.t. vj �= v1, W (v2, x) ≥ W (vj , x)

2. w(v1) ← w(v1) + w(x).
3. Add edges to connect the vertices in N∗(x) in a line, L, such that v1 and v2

are the endpoints of L.

Fig. 1. The Line Algorithm

Self-healing Algorithms for Reconfigurable Networks 565

– Let G(V, E) be the actual network at the given time step
– Let E′ be the edges that have been added by the algorithm up to that time

step. (note E′ ⊆ E).
– Let G′ = (V, E′). (We note, without proof here, that G′ is a forest)
– Let each vertex v have a weight, w(v).
– Let T (v, x) be the tree in G′ − x that contains v.
– For vertices v and x, let W (v, x) =

∑
v′∈T (v,x)

w(v′)

Brief Announcement: Distributed Synthesis of
Fault-Tolerance�

Borzoo Bonakdarpour, Sandeep S. Kulkarni, and Fuad Abujarad

Department of Computer Science and Engineering, Michigan State University
East Lansing, MI 48824, USA

{borzoo, sandeep, abujarad}@cse.msu.edu
http://www.cse.msu.edu/˜{borzoo, sandeep, abujarad}

1 Introduction

Synthesis algorithms usually suffer from two factors of time and space complexity. In
order to overcome the time complexity problem, several approaches have been pro-
posed in the literature to incrementally add properties to existing verified programs
(e.g., [1]). In order to overcome the space explosion problem, recently, an increasing
interest in parallel and distributed techniques has emerged in the model checking com-
munity (e.g., [2, 3]). Such techniques parallelize the state space of a given model over
a network or cluster of workstations and run a distributed model checking algorithm
over the parallelized state space. On the other hand, the space explosion problem is still
unaddressed in the context of automated program synthesis.

With this motivation, we concentrate on the problem of designing distributed algo-
rithms for automated program synthesis. More specifically, we parallelize two synthe-
sis algorithms (from [1]) for adding two levels of fault-tolerance, namely failsafe and
masking, to existing fault-intolerant programs. We assume that programs are in the high
atomicity model, where all processes can read and write all the program variables in one
atomic step.

2 Algorithm Sketches

In this paper, we only focus on designing a distributed algorithm that runs over a dis-
tributed state space. In particular, we assume that parallelization of state space is already
done using one of the known enumerative techniques in the literature. Precisely, we use
the parallelization technique proposed by Garavel, Mateescu, and Smarandache [2] with
some modifications tailored for the purpose of synthesis rather than model checking.
Although there exist more efficient ways for parallel construction of state space (e.g.,
using abstract interpretation), we cannot trivially use them as a means for synthesizing
programs. This is due to the fact that in synthesis (unlike model checking), we usually
require full information about the system being synthesized, as we need to manipulate
a program by removing or adding computations. Thus, we conservatively choose to
develop distributed algorithms that run over a detailed parallelized explicit state space.

� This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF grant EIA-0130724, and a grant
from Michigan State University.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 566–567, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Synthesis of Fault-Tolerance 567

Distributed Synthesis of Failsafe Fault-Tolerance. The essence of adding failsafe
fault-tolerance consists of three parts: (1) a smallest fixpoint calculation for identifying
the set of states from where safety may be violated, (2) a largest fixpoint calculation
for computing the invariant of the failsafe program, and (3) emptiness checking of the
synthesized program (to declare failure). Our distributed algorithm consists of a set
of processes each running on one machine across the network. Each process consists
of two threads, namely, Distributed Add failsafe and MessageHandler. Briefly, the
thread Distributed Add failsafe is in charge of initiating local fixpoint calculations and
synchronizing with other processes across the network. The thread MessageHandler
is responsible for handling messages sent by other processes and invoking appropriate
procedures. These messages inform a process whether a local state belongs to a global
state predicate. For instance, if (1) a state s0 is stored in machine i, (2) a state s1 is
stored in machine j, (3) there exists a fault transition (s0, s1), and (4) safety may be
violated from s1, then j sends a message to i indicating that s0 belongs to a global state
predicate from where safety of the program may be violated.

Distributed Synthesis of Masking Fault-Tolerance. Similar to the distributed addi-
tion of failsafe fault-tolerance, our algorithm for adding masking fault-tolerance con-
sists of two threads. For adding masking fault-tolerance, we first generate a failsafe
program and then add recovery paths from each state in the fault-span (the set states
reachable by both program and fault transitions) to a state in the invariant (a state pred-
icate which captures the normal behavior of the program). To this end, we identify two
types of recovery paths: (1) recovery paths consist of only local program transitions, and
(2) recovery paths consist of both local program transitions as well as cross transitions
(transitions whose source and target states reside in different machines). In particular,
we identify layers of states in the local fault-span corresponding to the number of steps
of recovery paths. Since we require that recovery to the invariant must happen in a
bounded number of steps, we identify the mentioned layers of states such that recovery
transitions form no cycles in the fault-span. In other words, we construct a distributed
tree whose leaves are states in the invariant in a distributed bottom-up fashion.

Implementation and performance. Since our synthesis algorithms are multithreaded
and one of the threads are expected to be mostly busy with local computations, the com-
putation time complexity is expected to be evenly distributed across the network. We
plan to implement the distributed algorithms as an extension of our tool FTSyn, which
is currently capable of synthesizing fault-tolerant programs using a single machine.

References

1. S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In Formal Techniques
in Real-Time and Fault-Tolerant Systems (FTRTFT), pages 82–93, 2000.

2. H. Garavel, R. Mateescu, and I. Smarandache. Parallel state space construction for model-
checking. In 8th International SPIN Workshop on Model Checking of Software, pages 217–
234, 2001.

3. M. Leucker, R. Somla, and M. Weber. Parallel model checking for LTL, CTL*, and Lμ
2 . In

International Workshop on Parallel and Distributed Model Checking (PDMC), 2003.

Brief Announcement: Exploration and

Mitigation of Deafness Problems in Directional
Antennas Based Wireless Ad-Hoc Networks

Kai Chen, Fan Jiang, and Zongyao Tang

Department of Computer Science, University of Science and Technology of China
Hefei, Anhui 230027, China

ckg@mail.ustc.edu.cn, fjiang@ustc.edu.cn, zytang@mail.ustc.edu.cn

1 Introduction

A switched antenna system can provide transmission or reception in any desired
direction by an array of directional antennas. Directional antennas have tremen-
dous potential for improving the performance of wireless ad hoc networks[1].
While offering higher spatial reuse and larger transmission range, they also pose
new challenges. Deafness is one of such problems, which arises when a transmit-
ter fails to communicate to its intended receiver either because the receiver is
beamforming towards a different direction[2]. As we have identified, generally,
there might be three kinds of deafness problems. First, deafness-I happens when
the intended receiver is a transmitter or receiver engaged in an ongoing trans-
mission. Second, deafness-II occurs when the intended receiver lies in the area
covered by an ongoing transmission and hence becomes deaf to the transmitter.
Third, unlike the former two kinds of deafness which occur because RTSs cannot
be heard by the intended receivers, deafness-III arises when the receiver has ac-
tually received RTS but cannot reply CTS, because it is aware of that this CTS
will interfere with an ongoing transmission nearby. If left unaddressed, deafness
problems not only severely degrade the performance at MAC layer but also con-
siderably influence the upper-layer protocols, which would probably offset the
benefits of directional antennas.

2 The Proposed Methods

In practice, it is hard to completely resolve all kinds of deafness problems. How-
ever, we can elaborate some strategies to mitigate their severe impacts. To miti-
gate deafness-I, we propose to incorporate start to send (STS) frame and deafness
allocation vector (DAV)[3]. STS has the same structure as RTS or CTS, aiming
at informing the neighboring nodes of both sender and receiver of the imminent
transmission, and DAV is used to record the deaf nodes in its neighborhood.
Only after the RTS-CTS handshake is completed and the medium is reserved
in corresponding directions, will both sender and receiver simultaneously send
rotary STS, respectively, to inform their neighboring nodes of this imminent
transmission. When receiving STS packets, each node in the vicinity will update

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 568–569, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Exploration and Mitigation of Deafness Problems in Directional Antennas 569

its DAV accordingly. To mitigate deafness-II, we suggest that the beam whose
directional network allocation vector (DNAV) is set by RTS should be compul-
sorily blocked from receiving to avoid idle-reception[3]. To mitigate deafness-III,
we propose to estimate the destination status (EDS)[3] before sending RTS, in
other words, the transmitter must make sure that its intended receiver can reply
back CTS without causing any collision to other ongoing transmission.

3 Simulation

We compare the performance of the proposed deafness mitigation methods (DM-
MAC) with DMAC, circular-DMAC, and omni-directional 802.11 DCF. Fig.1(a,
b) show the aggregate throughput of all the protocols with 4, 8 antenna beams,
respectively. Strikingly, DM-MAC outperforms all other protocols. This is be-
cause DM-MAC has effective deafness avoidance strategies like STS, compulsory
block, and EDS. Specifically, DM-MAC uses rotary STS to inform the neighbor-
hood about the imminent transmission, differentiates deafness from collision by
DAV, and suggests the beam be partially locked for deafness. However, other
protocols have no such strategies, and are prone to get affected by deafness.
Omnidirectional 802.11 performs smoothly in all scenarios because it has no
deafness or sweeping delay. Furthermore, when the number of antenna beams
increases from 4 to 8 (Fig.1(a to b)), we can see that DM-MAC achieves bet-
ter performance by increased spatial reuse. Fig.1(c, d) show the average delay
comparison. It is visible that DM-MAC has the lowest latency. Although using
rotary STS frames may increase the overhead to some extent, we can infer that
the delay consumed on rotation of STS could be eventually compensated by the
improved throughput due to the effective deafness mitigation. Circular-DMAC
and DMAC have high delay since deafness has not been well addressed therein.

Fig. 1. Aggregate throughput and end-to-end delay comparison. (20 nodes are ran-
domly distributed in a 300*300 meters square area).

References

1. R. Ramanathan, J. Redi, et.al, “Ad-hoc Networking with Directional Antennas: A
Complete System Solution,” IEEE J.SAC, vol. 23, no. 3, pp. 496-506, 2005.

2. R. R. Choudhury and N. H. Vaidya, “Deafness: A MAC Problem in Ad Hoc Net-
works when using Directional Antennas,” in Proc. of IEEE ICNP, Oct, 2004.

3. K. Chen and F. Jiang, “Addressing Deafness Problems in Wireless Ad-hoc Networks
with Directional Antennas,” Technical report, USTC, Jun, 2006.

Brief Announcement: A Synthetic Public Key

Management Scheme for Large-Scale MANET�

Pan Dong, Pei-dong Zhu, and Xi-cheng Lu

School of Computer, National University of Defense Technology,
Changsha, Hunan province, China

{pandong, pdzhu, xclu}@nudt.edu.cn��

Abstract. We introduce a new MANET structure model - party model
- for the large scale MANET environment. For the party model MANET,
we propose a new synthetic public key management scheme which ap-
plies web-of-trust and hierarchical trust simultaneously. The web-of-trust
is used to design high efficient authentication between two nodes from
the same party, and the frequent cooperation and communication inside
a party can help to improve the security of authentication. In order to
prevent falsification attack in remote authentication, we apply the hier-
archical trust to establish CA in each party and use CA’s certificate as
the trust intermediary. In the whole, our scheme can get a good tradeoff
among security, overhead and flexibility.

Problem Description. In our view, there are two trust models to build key
management (KM): hierarchical trust and web-of-trust. KM based on web-of-
trust can be self-organized easily, and has good robustness. However, this kind of
system has some drawbacks in the trust base and is vulnerable to the falsification
attack. By contrast, a hierarchical trust system has better reliability and security.
Nevertheless, when applied in MANET, this kind of system often introduces high
authentication overhead, and is difficult to be self-organized by nodes. So both
kinds of system are not suitable for the large-scale MANET.

Party model. From the viewpoint of relation within the users and their nodes,
we propose a universal MANET structure model, named party model. A party is
a group of members who have the common tasks, interests or goals, and a large-
scale MANET will contain a lot of parties. Trust relations inside (or among) the
practical human parties will be considered in our new KM design.

Synthetic Public Key Management. There are two modes for the authenti-
cation in the party model: authentication in the same party (we call it intra-party
authentication) and authenticating a node from different party (we call it remote
authentication).
� This work was supported by the National Basic Research Program

(No.2005CB321801), NSFC (No. 60573136) and High-Tech Research and De-
velopment Program (No. 2005AA121570).

�� A full version of this paper is available by sending an email to pandong@nudt.edu.cn.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 570–571, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Synthetic Public Key Management Scheme for Large-Scale MANET 571

We adopt web-of-trust to the intra-party authentication. In the initial phase
of network’s formation, users (nodes) join different parties according to their
tasks or interests, and each party has a unique party ID (PID). Nodes of a party
assign each of themselves a member ID (MID) coded form 0 to NPID − 1 in
a distributed way, where NPID is the (maximum) members’ number of party
PID. Every node creates its public/private key pair by itself. Then every node
issues certificates for some selected nodes in the same party by using the way as
follows:

for (counter =0; counter≤ �NPID/σ�; counter++)
computes w=(i+1+σ× counter) and then issue certificate for w;

where i is the MID of issuer, and σ is a fix integer named issuing interval.
The special manner of certificate issuing is very advantageous to intra-party

authentication. We give an algorithm that can compute several certificate chain
paths (CCP) from verifier’s key to the target key. Multiple authentication paths
can help to effectively redeem the security defect of web-of-trust system. Our
intra-party authentication does not need a node to maintain a local certificate
repository, so it reduces corresponding cost and is very efficient.

When a node u requires executing a remote authentication (to v in another
party), u pays more attention to the reliability of authentication process because
he may feel unfamiliar to participants (from another party). We build the au-
thentication on both the party trust and intra-party authentication foundation
by the following five steps.

- Firstly, every party creates its CA by using threshold cryptosystem. Each
CA consists of some nodes trusted by most nodes of their party.

- Secondly, party trusts are established by CAs issuing certificates for each
other.

- Thirdly, u queries whether his CA (CA1) has issued valid certificate (ξ) for
the CA of v (CA2). If the reply is negative, u abandons the authentication.
Otherwise, u requests CA2 to certificate v’s public key.

- Fourthly, CA2 summons its t (threshold) server nodes to authenticate v’s
public key in intra-party mode. If their results are all consistent success,
these server nodes issue a certificate (ε) for v’s public key.

- Fifthly, v transmits ε to u. After that u verifies CA2’s public key by CA1’s
public key, then verifies v’s public key by CA2’s public key.

In fact, trust between CAs acts as trust intermediary between nodes from
different parties, and this measure strengthen security of remote authentication.
Though the remote authentication is rather more complex, this kind of authen-
tications accounts for a few proportions of total. So our scheme can get a good
tradeoff among security, overhead and flexibility.

Brief Announcement: Termination Detection in

an Asynchronous Distributed System with
Crash-Recovery Failures

Felix C. Freiling1, Matthias Majuntke2, and Neeraj Mittal3

1 University of Mannheim, D-68131 Mannheim, Germany
2 RWTH Aachen University, D-52056 Aachen, Germany

3 The University of Texas at Dallas, Richardson, TX 75083, USA

1 Termination Detection

In practice, it cannot easily be detected whether a computation running in a
distributed system has terminated or not. Thus, suitable observing algorithms
are required to solve this problem of termination detection.

A termination detection algorithm involves a computation of its own and the
computation it observes without interfering it. Additionally, it satisfies two prop-
erties: (1) it should never announce termination unless the underlying computa-
tion has in fact terminated. (2) If the underlying computation has terminated,
the termination detection algorithm should eventually announce termination.

For the definition of termination, the states of processes are mapped to just
two distinct states: active and passive. An active process still actively participates
in the computation while a passive process does not participate anymore unless
it is activated by an active process. In message-passing systems, which we also
assume here, activation can only be done by receiving a message. A widely
accepted definition of termination is that (1) all processes are passive and (2)
all channels are empty.

Related Work. Many algorithms for termination detection have been proposed
in the literature (see the overview by Matocha and Camp [1]). Most of them
assume a perfect environment in which no faults happen. There is relatively little
work on fault-tolerant termination detection (e.g. [2,3]). All this work assumes
the crash-stop failure model meaning that the only failures which may occur are
crash faults where processes simply stop executing steps.

2 Problems in the Crash-Recovery Model

In this paper we revisit the termination detection problem in the more severe
crash-recovery failure model. Roughly speaking, in the crash-recovery model,
processes are allowed to crash just like in the crash-stop model but they are
also allowed to restart their execution later. We are unaware, however, of any
termination detection algorithm for the crash-recovery model.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 572–573, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Termination Detection in an Asynchronous Distributed System 573

Solving the termination detection problem in the crash-recovery model is not
an easy task. First of all, it is not clear what a sensible definition of termination is
in the crash-recovery model. On the one hand, the classical (fault-free) definition
of termination as mentioned above is clearly not suitable: If an active process
crashes, there is always the possibility that it recovers later but there is no
guarantee that it actually will recover. So an algorithm is in the dilemma to either
making a false detection of termination or to possibly waiting infinitely long. On
the other hand, the definition used in the crash-stop model is also not suitable:
An algorithm might announce termination prematurely if an active process which
was crashed recovers again. As a strict generalization, we introduce the definition
of robust-restricted termination: (1) all alive and temporarily crashed processes
have to be passive and (2) all the channels towards such processes have to be
empty. Only crashed processes that will never recover, need not to be taken into
account here.

Second, detecting robust-restricted termination in a crash-recovery system
— even equipped with failure detectors — proves to be impossible to solve.
Termination detection can be reduced to the problem of implementing a failure
detector which is able to predict the future — of course not being feasible.
Thus, we introduce the notion of stabilizing termination detection in which false
termination detection announcements are allowed and may be revoked a finite
number of times. The restriction to the stabilizing crash-recovery model in which
all processes eventually either stay up or stay down (that is, the crash-recovery
model eventually behaves like the crash-stop model) is also necessary. We present
an algorithm for solving the stabilizing termination detection problem in the
stabilizing crash-recovery model that uses a failure detector which is strictly
weaker than the perfect failure detector [4]. The main idea of the algorithm is
that every process logs the messages it sends and receives. By exchanging this
information every process knows which messages it still has to expect. When a
passive process does not expect any messages — its incoming channels are empty
— it proposes to announce termination using a broadcast primitive. Termination
is actually announced, if all live processes agree on announcing termination.

In summary, the results give insight into the additional complexities induced
by the crash-recovery model in contrast to the crash-stop model.

References

1. Matocha, J., Camp, T.: A Taxonomy of Distributed Termination Detection Algo-
rithms. J. Syst.Softw. 43(3) (1998) 207–221

2. Wu, L.F., Lai, T.H., Tseng, Y.C.: Consensus and Termination Detection in the
Presence of Faulty Processes. In: ICPADS, Hsinchu, Taiwan (1992) 267–274

3. Mittal, N., Freiling, F., Venkatesan, S., Penso, L.D.: Efficient Reduction for Wait-
Free Termination Detection in a Crash-Prone Distributed System. In: DISC, Cra-
cow, Poland (2005) 93–107

4. Majuntke, M.: Termination Detection in Systems Where Processes May Crash
and Recover. Diploma Thesis, RWTH Aachen University (2006) https://pi1.

informatik.uni-mannheim.de:8443/pub/research/theses/diplomarbeit-2006-

majuntke.pdf.

Brief Announcement: Self-stabilizing Spanning

Tree Algorithm for Large Scale Systems�

Thomas Herault, Pierre Lemarinier, Olivier Peres,
Laurence Pilard, and Joffroy Beauquier

LRI bat 490,
Universite Paris-Sud
91405 Orsay Cedex,

France
{herault, lemarini, peres, pilard, jb}@lri.fr

Abstract. We introduce a self-stabilizing algorithm that builds and
maintains a spanning tree topology on any large scale system. We as-
sume that the existing topology is a complete graph and that nodes
may arrive or leave at any time. To cope with the large number of pro-
cesses of a grid or a peer to peer system, we limit the memory usage
of each process to a small constant number of variables, combining this
with previous results concerning failure detectors and resource discovery.

Keywords: Distributed Algorithm, Large Scale Systems, Self-Stabiliza-
tion, Spanning Tree Construction, Failure Detectors.

1 Introduction

Peer to peer networks and grids are emerging large scale systems that gather
thousands of nodes. These networks usually rely on IP to communicate: each
node has a unique address used by other nodes to communicate with it and
every node can communicate with every other node provided it knows its address.
In such a system, it is not practical or even not possible for any one node to
know the whole list of its neighbors because of its size and also because of the
occurrence of failures.

Classical distributed applications, however, need a notion of neighborhood. In
a large scale systems, it is generally given by an overlay network built by a specific
algorithm. To account for this, we propose to abstract out these requirements
using theoretical devices that have to be implemented in a system-specific way.

An algorithm for such a system also needs to tolerate failures. We demon-
strated how to use self-stabilization [2] in order to build a bounded-degree span-
ning tree [3]. We claim that self-stabilization is appropriate for the purpose of
building an overlay network because it allows the system to recover from any
perturbation affecting either a link or a local variable. It then verifies its speci-
fication until the next failure.
� This work is partially funded by the PCRI/INRIA Futurs - Project Grand-Large

and ACI Grid (French incentive).

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 574–575, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Self-stabilizing Spanning Tree Algorithm for Large Scale Systems 575

2 Contributions

We introduce [3] a self-stabilizing algorithm that builds a bounded-degree span-
ning tree over a virtual complete graph. The nodes only store the identifiers of
their neighbors and only rely on the devices provided by our model to establish
and maintain the overlay network. Each node only has a constant number of
local variables.

Our first contribution is a new model for distributed algorithms. The main ad-
vantage that we claim for it is that it allows to run distributed algorithms in real-
world large scale systems. To achieve this, we abandon the notion of a system-
provided, automatically updated neighbor list found in most existing works and
replace it with two theoretical devices: an oracle for resource discovery and a
failure detector to deal with possible identifiers of stopped (crashed) processes.

The oracle, when queried, replies with a valid process identifier which may, or
not, be that of a process in the system. For our spanning tree algorithm, the only
requirement is to give the identifier of the highest process an infinite number of
times over any infinite number of queries.

The failure detector follows Chandra and Toueg’s definition [1]. We proved
that in our case, we need a *P detector, i.e. one that is eventually perfect.

Our second contribution is the algorithm itself. Each process has δ neighbor
fields, where δ is a user-provided integer constant. The algorithm is given [3] as
a set of guarded rules that eliminate inconsistent configurations, build the tree
and maintain it. We provide a formal proof of its correctness.

To guarantee that the tree is correctly built, the algorithm enforces a global
invariant: each process only accepts as a child a process whose identifier is lower
than its own identifier. Only the roots attempt to connect the topology, thus only
them query their oracles, which allows to design an efficient implementation.
Eventually there is a single root, so only one process queries its oracle. Finally,
when the system is converged, the algorithm only induces a very low overhead.

We implemented the algorithm and the two devices on which it depends and
measured its performances on the Grid Explorer high-performance experimental
cluster, comparing several approaches in places where the specification leaves
room for choices. This allowed us to show that the system displays the expected
scalability.

References

1. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43, March 1996.

2. E. Dijkstra. Self stabilizing systems in spite of distributed control. Communications
of the Association of the Computing Machinery, 17(11):643–644, 1974.

3. T. Herault, P. Lemarinier, O. Peres, L. Pilard, and J. Beauquier. Self-stabilizing
spanning tree algorithm for large scale systems. Technical Report 1457, LRI, 2006.

Brief Announcement: Chasing the Weakest

System Model
for Implementing Ω and Consensus

Martin Hutle1,3, Dahlia Malkhi2, Ulrich Schmid3, and Lidong Zhou2

1 Ecole Polytechnique Fédérale de Lausanne (EPFL)
2 Microsoft Research

3 Vienna University of Technology, Embedded Computing Systems Group 182-2

The chase for the weakest system model that allows to solve consensus has long
been an active branch of research in distributed algorithms. To circumvent the
FLP impossibility in asynchronous systems, many models in between synchrony
and asynchrony have been proposed over the years. Of specific interest is the
chase for the weakest system model that allows the implementation of an even-
tual leader oracle Ω, and thus also enables consensus to be solved.

Recently, Aguilera et al. [ADGFT04] and Malkhi et al. [MOZ05] presented
two system models which are weaker than all previously proposed models where
Ω can be implemented. The former model assumes unicast steps and at least
one correct process with f outgoing eventually timely links. The latter assumes
broadcast steps and at least one correct process with f bidirectional but moving
eventually timely links. Consequently, those models are incomparable.

Our main result in the full paper [HMSZ05:TR] shows that Ω can be imple-
mented in a system with at least one process with f outgoing moving eventually
timely links, assuming either unicast or broadcast steps. Our construction seems
to solve consensus (via Ω) in the weakest system model known so far.

Definition 1 (The weak model S→
f∗). Informally, a *moving-f -source is a

correct process that, eventually, if it sends a message to all other processes at time
t, at least f of these messages are timely. Our system S→

f∗ assumes the existence
of at least one *moving-f -source. All other links can be totally asynchronous.

Theorem 1. It is possible to implement Ω in system S→
f∗.

We also provide matching lower bounds for the communication complexity in
this model, which are based on an interesting “stabilization property” of infi-
nite runs. Those results reveal a price to be paid for the relaxation of synchrony
properties, compared, e.g., with the last algorithm in Aguilera et al. [ADGFT04]
where only f links are required to carry messages forever. Thus, these results
indicate an interesting tradeoff between synchrony assumptions and communi-
cation complexity.

Theorem 2. For all n > f + 1 ≥ 2, in a system S→
f∗ with reliable links and n

processes where up to f processes may crash, any implementation of Ω requires
at least nf

2 links to carry messages forever in some run. This holds even when
every process is a perpetual moving-f -source, and δ is known.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 576–577, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Chasing the Weakest System Model for Implementing Ω and Consensus 577

In the full paper [HMSZ05:TR] we give an algorithm that matches the Ω(nf)
lower bound, i.e., where only O(nf) links carry messages forever.

The Algorithm for S→
f∗. We now provide an informal description of the main

ingredients of our solution. The algorithm bears similarities to the algorithm of
[ADGFT04], with the following important distinctions: It introduces suspicion
sequence-numbers, and the agreement on suspicions is done on a per-sequence-
number basis.

The algorithm works as follows: Every process p periodically sends Alive
messages with increasing sequence numbers (seqp) to all. Every receiver process
q maintains a receiver-sequence number (rseqq), and expects to receive an Alive
message with a sequence number matching rseqq from every other process p
within a timeout period. A timer is used for terminating the wait; both rseqq

and the timeout value are incremented when the timer expires.
Every receiver process q maintains an array counterq[p], which essentially con-

tains the number of suspicions of sender p encountered at q so far: The sender
p is suspected at q if q is notified of the fact that at least n − f receivers ex-
perienced a timeout for the same sequence number s. This notification is done
via Suspect messages, which are sent to all by any receiver process that experi-
enced a timeout for sender p with sequence number s. In addition, counter values
are piggybacked onto Alive messages. If a larger counter value for process p is
observed in any Alive message, counterq[p] adopts this value. The process p = �
with minimal counter value in counterq[p] (or the minimal process id in case of
several such entries) is elected as q’s leader.

Informally, the correctness of the algorithm follows from the following reason-
ing: At the time the *moving-f -source becomes a moving-f -source, at least f
outgoing links of the source p carry timely messages at any time. Thus, even-
tually, it is impossible that the quorum of n − f Suspect messages is reached
for p for any sequence number. Note that this even holds true if some of the
f timely receiver processes have crashed. Consequently, all processes stop in-
creasing the counter for process p, whereas the counter of every crashed sender
process keeps increasing forever since every receiver obviously experiences a time-
out here. Since the counter values are continuously exchanged via the content of
the Alive messages, eventually all processes reach agreement upon all counters
that have stopped increasing. Hence, locally electing the process with minimal
counter indeed leads to a correct implementation of Ω.

References

[ADGFT04] Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Com-
munication-efficient leader election and consensus with limited link synchrony. In:
Proc. PODC 04, ACM Press (2004) 328–337

[MOZ05] Malkhi, D., Oprea, F., Zhou, L.: Ω meets paxos: Leader election and stability
without eventual timely links. In: Proc. DISC 05, Springer-Verlag (2005)

[HMSZ05:TR] Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest
system model for implementing omega and consensus. Research Report 74/2005,
Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-
2, 1040 Vienna, Austria (2005)

Brief Announcement: Wait-Free Dining for

Eventual Weak Exclusion

Scott M. Pike, Yantao Song, and Kaustav Ghoshal

Texas A&M University, Department of Computer Science
College Station, TX 77843-3112, USA
{pike, syt, kghoshal}@tamu.edu

Abstract. We present the first wait-free solution to dining philosophers
under eventual weak exclusion in partially synchronous environments
subject to crash faults. Potential applications include distributed daemon
refinement for self-stabilizing algorithms.

Problem Statement. We consider the generalized dining philosophers prob-
lem [4,5] in environments subject to permanent crash faults, and explore its
solvability in asynchronous message-passing systems augmented with unreliable
failure detectors [2]. Dining is a fundamental model of static resource allocation,
where distributed processes require periodic access to a fixed subset of mutually
exclusive shared resources. Processes with overlapping resource requirements are
connected as neighbors in a general conflict graph. Each diner is either thinking,
hungry, or eating. These states correspond to three basic phases of computation:
executing independently, requesting resources, and utilizing shared resources in
a critical section, respectively. The traditional safety and progress specification
for dining is that (1) No two live neighbors eat simultaneously (weak exclusion),
and (2) Every correct hungry process eventually eats.

Application. Stabilizing algorithms withstand transient faults by automatically
converging from any configuration to a closed set of safe states. Such algorithms
are often easier to design under interleaving semantics, whereby at most one
process is activated by a central daemon to take a step at any given time. In
practice, stabilizing algorithms need to execute correctly under parallel semantics
as well. This is often achieved via automatic model conversions, whereby an
underlying distributed daemon schedules consistent sets of processes to take
steps concurrently. Many existing transformations [1,6] use dining algorithms
to implement such daemons. Such approaches have considered daemons that
tolerate transient faults (such as data corruption), but they have not addressed
the need for wait-free scheduling guarantees in the presence of process crashes.

Fundamental Limitations. For many classic dining solutions, a single crash
fault can precipitate global starvation, whereby correct hungry diners never eat
again. Choy and Singh [3] proved that dining under weak exclusion is unsolvable
in asynchronous systems; the starvation neighborhood can be isolated, but pro-
cesses within two hops of any crashed node can still starve. Pike and Sivilotti [7]
strengthened this result for partial synchrony by showing that dining was still

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 578–579, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Wait-Free Dining for Eventual Weak Exclusion 579

unsolvable when using an eventually perfect failure detector ♦P from the classic
Chandra-Toueg hierarchy [2]. The starvation neighborhood can be isolated fur-
ther using ♦P , but immediate neighbors of crashed nodes will still starve.

Significance. The unsolvability of dining under weak exclusion is problematic
for proving the convergence of stabilizing algorithms. A necessary assumption
for convergence is that correct nodes take infinitely many steps. If distributed
daemons can stave nodes after crash faults, however, this assumption can be
violated. As such, convergence requires wait-free daemons to guarantee that
no correct process starves, regardless of how many processes crash. There are
two apparent avenues to wait-freedom: (1) use stronger oracles, or (2) examine
weaker exclusion models. The former is tantamount to greater synchrony, which
limits applicability to real systems. As such, our work examines the latter.

Primary Results. We consider dining under a more permissive model called
eventual weak exclusion (♦WX). This exclusion model requires that for each run,
there exists a time after which no two live neighbors eat simultaneously. The time
to convergence may be unknown, and it can vary from run to run. Still, ♦WX is
a sufficiently powerful scheduling primitive for systems where resources can be
recovered from crashed processes, and/or where sharing violations precipitate
only transient faults. Our primary result constructs a wait-free dining algorithm
for ♦WX using the oracle ♦P . The advantage of wait-freedom comes at the
cost of finitely many scheduling errors which may precipitate transient faults.
After the final scheduling mistake of any run, the stabilizing protocol may have
reached an arbitrary configuration. By convergence, however, the application
will eventually recover to a safe state and continue execution thereafter without
further errors by the underlying daemon. The full report can be found in [8].

References

1. J. Beauquier, A.K. Datta, M. Gradinariu, and F. Magniette. Self-Stabilizing Local
Mutual Exclusion and Daemon Refinement. Chicago J. Theor. Comput. Sci, 2002.

2. T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, 1996.

3. M. Choy and A.K. Singh. Localizing Failures in Distributed Synchronization. IEEE
Transactions on Parallel and Distribruted Systems (TPDS), 7(7):705–716, 1996.

4. E.W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica,
1(2):115–138, Oct 1971. Reprinted in Operating Systems Techniques, C.A.R. Hoare
and R.H. Perrot, Eds., pp. 72–93, Academic Press, 1972. Appeared also as EWD310.

5. N. Lynch. Fast allocation of nearby resources in a distributed system. In Proceedings
of the 12th ACM Symposium on Theory of Computing (STOC), pp. 70–81, 1980.

6. M. Nesterenko and A. Arora. Stabilization-Preserving Atomicity Refinement. Jour-
nal of Parallel and Distributed Computing, 62(5):766–791, May 2002.

7. S.M. Pike and P.A.G. Sivilotti. Dining Philosophers with Crash Locality 1. In
Proceedings of the 24th IEEE International Conference on Distributed Computing
Systems (ICDCS), pp. 22–29. IEEE, 2004.

8. S.M. Pike, Y. Song, and K. Ghoshal. Wait-Free Dining under Eventual Weak Ex-
clusion. Tech Report 2006-5-1, Texas A&M University, May 2006. Available at:
http://www.cs.tamu.edu/academics/tr/tamu-cs-tr-2006-5-1

Brief Announcement: An Efficient and

Self-stabilizing Link Formation Algorithm

Jun Kiniwa and Kensaku Kikuta

University of Hyogo, Japan
{kiniwa@econ, kikuta@biz}.u-hyogo.ac.jp

1 Introduction

We propose a self-stabilizing link formation algorithm based on a cooperative
network formation game. An underlying network G = (V, E) consists of n pro-
cessors represented by nodes V = {1, 2, . . . , n}, and communication links repre-
sented by edges E = {ij | i, j ∈ V }. An agent network L = (A, EL), where A = V
and EL ⊆ E, is defined on G. Let δi be a benefit that agent i provides others,
and cij a cost of linking i with j that agent i incurs. We assume a state-reading
model, a fair distributed daemon, and a token circulation for formation/severance
of links.

Let dij = α · δj − cij (α > 0) and Dij = dij +dji. We assume Dij + δi + δj > 0
for every edge ij ∈ E. Let C(i) = {j | i, j-path ⊆ EL exists} be a component
of agents to which i ∈ A belongs, and CN(i) = {j | ij ∈ EL} a set of directly
linked agents. We define the payoff Yi(L) of agent i as Yi(L) =

∑
k∈C(i) δk +∑

j∈CN(i)(α · δj − cij). We say that network L is efficient if v(L′) ≤ v(L) for any
L′ = (A, EL′), where v(L) =

∑
i∈A Yi(L) and EL′ ⊆ E. A network L is pairwise

stable with transfers[2] if

1. for all ij ∈ EL, Yi(L − ij) + Yj(L − ij) ≤ Yi(L) + Yj(L), and
2. for all ij �∈ EL, Yi(L) + Yj(L) ≥ Yi(L + ij) + Yj(L + ij).

2 Algorithm

A multiple MVI (minimal value inheritance)-BFS tree with FE (a forbidden
edge), motivated by [1], is a set of r-rooted BFS trees for every r ∈ A such that a
pointer to r is forbidden (indicated by forbid r) and the minimal Duv is inherited
in each path from the root. Let CNF (i) = {j | ij ∈ (EL\ a forbidden edge)}. Let
p be a parent of i in an r-rooted tree if it satisfies minp∈CNF(i)(dist

r
p, minDr

p, e),
where distr

p is the distance from r to p, minDr
p is the minimal Duv value for

some uv ∈ r, p-path, and e = min{u, v}. Similar to e, let e0 = min{i, j} for Dij .
We say that i, j-path is a positive path if Duv ≥ 0 for every link uv in the path.
Otherwise, i, j-path is a negative path. Let Negative(i) = {j ∈ CN(i) | Dij < 0}.
We represent Incorrect(X) ⇒ X := B instead of X �= B ⇒ X := B.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 580–581, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Efficient and Self-stabilizing Link Formation Algorithm 581

Incorrect(treei [i]) ⇒ treei [i] := (0,∞,⊥,⊥)

∀t ∈ Negative(i) : forbidi �= t ⇒ forbidi := ∃u ∈ Negative(i)

∃r ∈ A\i : Incorrect(treei [r]) ⇒ treei [r] := (distr
i ,minDr

i , e, p)

∃j �∈ CN(i) : (0 ≤ Dij) ∨ ((minDi
j , e) ≺ (Dij , e0)) ⇒ CN(i) := CN(i) ∪ j

forbid i = j : (Dij < 0) ∧ ((Dij , e0) ≺ (minDi
j , e)) ⇒ CN(i) := CN(i)\j

forbid i = j : (Dij < 0) ∧ (treej [i].p �= i) ⇒ forbid i := next(forbid i)

3 Our Claims

Lemma 1. Let Si =
∑

k∈C(i) δk. By the rule of pairwise stable with transfers,
there are three cases whether or not each link is formed: (1) any link ij ∈ EL is
severed if Dij < −(Si + Sj), (2) critical link ij �∈ EL is formed but noncritical
link ij ∈ EL is severed if −(Si + Sj) ≤ Dij < 0, and (3) any link ij �∈ EL is
formed if 0 ≤ Dij. ��
Lemma 2. The multiple MVI-BFS tree with FE is constructed after 2 · diamL

rounds, where diamL is the diameter of L. ��
Lemma 3. An efficient network L is connected and contains (1) every positive
link, and (2) critical, negative links with non-minimal cost in each semicircle
(i.e., a path without linking end nodes). ��
Theorem 1. Our algorithm restores an efficient network L in O(Δn) rounds for
the maximum degree Δ. The memory size required by each processor is bounded
by O(n log(n + δ)) bits, where δ = maxi∈A δi. ��

4 Conclusion

We focused on the network formation game from the view point of self-
stabilization. We showed that the dynamic game can be applied to convergence
in decentralized settings.

References

1. S.Dolev, Self-Stabilizing Routing and Related Protocols, Journal of Parallel and
Distributed Computing, vol.42, pp.122–127, 1997.

2. M.O.Jackson, A Survey of Models of Network Formation: Stability and Efficiency,
Chapter 1 in Group Formation in Economics; Networks, Clubs and Coalitions,
edited by G.Demange and M.Wooders, Cambridge University Press, 2004.

Brief Announcement: Analyzing the Interactions

of Self-propagating Codes in Multi-hop Networks

Sapon Tanachaiwiwat and Ahmed Helmy

University of Southern California, Los Angeles CA 90037, USA
{tanachai, helmy}@usc.edu

Abstract. ”War of the worms” is a war between opposing computer
worms, creating complex worm interactions. We propose a new Worm
Interaction Model focusing on random-scan worm interactions. We vali-
date our worm interaction model using extensive ns-2 simulations. This
study provides the first work to characterize and investigate multiple
worm interactions of random-scan worms in multi-hop networks. The
main finding of this study is that maximum number of infected hosts
can be drastically affected by the type of interaction.

1 Worm Interaction Model

Since the Morris worm incident in 1988, worms have been a major threat to
Internet users. In addition, more and more worms carry destructive payload
enabling them to perform denial-of-service attacks, steal username/password or
hijack victims’ files. Network worms such as Slammer, Witty, and Code Red
[4] aggressively scan and infect vulnerable machines. Basic operation of a worm
is to find susceptible nodes to infect and the main goal of attackers is to have
their worms infect the largest amount of hosts in the least amount of time,
and if possible, remain undetected by antivirus or intrusion detection systems;
however, recently the goal of attackers, has been expanded to eliminate opposing
worms. Thus we want to investigate the worm propagation behavior caused by
this and other types of interactions. Several worm propagation models have
been proposed [2] but those worm propagation models have not considered the
interaction among different worm types where interaction is the scenarios in
which one worm terminating and/or patching other worm [3]. We aim to build a
fundamental worm propagation model that captures worm interaction as a key
factor. Understanding of worm interaction will help us effectively design fully
distributed and automated security response mechanism.

In our model, number of infected hosts of one worm type affects number of
infected hosts of others. Because the constant removal rate in basic SIR model
[1] cannot directly portray such interactions, our model builds upon and extends
beyond the conventional epidemic model to accommodate the notion of inter-
action reflecting dynamic removal rate. Our model assumes no change of total
host population and multiple types of worms share the same susceptible hosts.
We further assume that human security responses to worm incidents are much
slower than the rates at which worms interact between each other.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 582–583, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analyzing the Interactions of Self-propagating Codes in Multi-hop Networks 583

2 Our Contributions

Worm interaction can be categorized as one-sided or two-sided interaction. One-
sided interaction means one worm type terminating and/or patching other worm
type. Two-sided interaction means two worm types terminating and/or patch-
ing each other. For every worm interaction type, there are two basic characters:
predator: a worm that terminates or patches another worm, prey: a worm that
is terminated or patched by another worm. To describe these interactions, we
develop a novel Worm Interaction Model extending the epidemic model. Note
that two-sided interaction model is built to explain the interaction between mali-
cious worms (both worms are predator and prey simultaneously) while one-sided
interaction model focuses on explaining benign worms (predator) terminating
malicious worms (prey).

Our Worm Interaction Model is validated through extensive ns-2 simulations
for investigating the effect of our proposed network-delay factor that is the func-
tion of packet size, link latency, queuing delay and bandwidth on the worm
interaction. Our Worm Interaction Model can be easily extended to cover com-
plex multiple worm interactions. In addition, we propose a new set of metrics to
measure the effectiveness of one worm terminating another worm: total infected
hosts and individual life span of terminated worm. The total infected host is the
number of prey infected hosts including infected hosts that have been removed
and the individual life span is the time between the start of infection and the
end of infection i.e. infectious period for individual replication of prey caused
by prey termination. We show the relationships of such metrics to the worm
interaction. Our model can accurately approximate these metrics with properly
chosen network-delay factors.

We also find that scan (attempt) rate ratio between predator and prey has
much more impact on worm propagation pattern than initial infected host ratio
between predator and prey for every type of interaction. With similar scan rate
ratios, for every type of interaction, it always results in the same maximum
prey infected hosts. While we focus on one-sided interaction, our model shows
promising accuracy in estimating individual life span and total infectives for
different scenarios.

References

1. Frauenthal, J.C.,. Mathematical Modeling in Epidemiology. Springer-Verlag,New
York,1988

2. Ganesh, A., Massoulie , L., and Towsley, D., The Effect of Network Topology on
the Spread of Epidemics, in IEEE INFOCOM 2005

3. Tanachaiwiwat, S., Helmy, A., ”Analyzing the Interactions of Self-Propagating
Codes in Multi-hop Networks”, Tech Report CS 06-884, CS Department, USC

4. Trend Micro Annual Virus Report 2004 http://www.trendmicro.com

Brief Announcement: Towards Modular

Verification of Stabilisation
in Self-adaptive Embedded Systems�

Ina Schaefer and Arnd Poetzsch-Heffter

Software Technology Group, Technische Universität Kaiserslautern, Germany
{inschaef, poetzsch}@informatik.uni-kl.de

Abstract. We introduce a formal semantic-based modelling framework
to model, specify and verify the functional and adaptive behaviour of
synchronous adaptive systems.

1 Motivation

Self-adaptive embedded systems, e.g. in the automotive domain, autonomously
adapt to changing environment conditions and increase their dependability by
downgrading functionality in case of failures. However, adaptation in embedded
systems significantly complicates system design, in particular, as adaptations
trigger further adaptations in other modules potentially leading to inconsistent
and unstable configurations. Hence, stabilisation of adaptation in self-adaptive
systems is crucial. Formal verification as applied in safety-critical applications
must therefore be able to consider not only temporal and functional properties,
but also dynamic adaptation according to external and internal stimuli.

2 Modelling Synchronous Adaptive Systems

While most approaches formalizing self-adaptation [1] so far intertwine func-
tionality and adaptation, the proposed modelling framework [3] decouples func-
tional and adaptive behaviour providing a clear formal account of both aspects
in separation. This reduces design complexity and enables explicit and uniform
reasoning about functional, adaptive and combined properties. The modelling is
based on state-transition systems. It describes adaptation of module behaviour
in terms of an adaptation aspect on top of a set of possible predetermined con-
figurations. Restricting adaptation to predetermined reconfiguration makes sys-
tems predictable and improves analysis results. Figure 1 depicts the intuitive
notion of a module. The configurations specify local state transitions and com-
putation of output. Before executing the actual functionality, the adaptation
aspect evaluates the configuration guards and selects an applicable configura-
tion. Furthermore, it computes adaptation signals for other system modules.
� Supported by the Rheinland-Pfalz Cluster of Excellence ’Dependable Adaptive Sys-

tems and Mathematical Modelling’ (DASMOD).

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 584–585, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Modular Verification of Stabilisation 585

Local

State

Adaptation

Aspect

Configuration 1 Configuration m

next_state
next_out

Guard

next_state
next_out

Guard

[...]
outin

adapt_outadapt_in

Fig. 1. Separating Functionality and Adaptation in a Module

Synchronous adaptive systems are composed from a set of modules connected
via links between input and output variables where data and adaptation flow
do not follow the same links. Adaptations in one module may trigger adapta-
tions in other modules by propagation of adaptation signals. The systems are
open systems with a non-deterministic environment and operate synchronously
as simultaneously invoked actions are executed in true concurrency.

3 Verifying Stabilisation of Adaptation

For specification purposes, we adopt a variant of the linear time logic LTL by
adding special basic predicates for functional and adaptive behaviour to standard
first-order and temporal connectives. Stabilisation of adaptation with respect to
a property ϕ is defined along the lines of [2]. It can be re-phrased in linear logic
as G (ψ → FGϕ) where ψ is a formula which first becomes true in a state
in which the adaptation occurs. The proposed framework enables modular rea-
soning exploiting the system’s modular specification. A global system property
can be decomposed into local properties of single modules entailing the global
property. Furthermore, incorporating abstraction mechanisms, for instance to
reduce unbounded data domains to finite discrete domains, facilitates the effi-
cient integration of existing model checking techniques into the verification of
self-adaptive systems for discharging certain sub-proof goals automatically.

References

1. J.S. Bradbury, J.R. Cordy, J. Dingel, and M. Wermelinger. A Survey of Self-
Management in Dynamic Software Architecture Specifications. In Proc. of Intl.
Workshop on Self-Managed Systems (WOSS’04), 2004.

2. E.W. Dijkstra. Self-Stabilizing Systems in spite of Distributed Control. Communi-
cations of the ACM 17(11), pages 643–644, 1974.

3. I. Schaefer and A. Poetzsch-Heffter. Using Abstraction in Modular Verification of
Synchronous Adaptive Systems. In Proc. of ”Workshop on Trustworthy Software”,
Saarbrücken, Germany, May 18-19, 2006.

Brief Announcement: An Adaptive Randomised

Searching Protocol
in Peer-to-Peer Systems Based on

Probabilistic Weak Quorum System

Yu Wu, Taisuke Izumi, Fukuhito Ooshita,
Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Graduate School of Information Science and Technology, Osaka University
{wu-yu, t-izumi, f-oosita, kakugawa, masuzawa}@ist.osaka-u.ac.jp

1 Background

Searching problem, which is to identify the peer that has some target resource,
is an important and unique problem in Peer-to-Peer (P2P) file sharing systems.
Since P2P file sharing systems maintain large and dynamic set of peers, the
searching protocol is desired to be scalable and adaptive. To achieve such require-
ments, many kinds of search protocols are proposed. As one of those protocols,
the searching protocol based on Probabilistic Weak Quorum System (PWQS)
is recently proposed [1]. The principle of this protocol is as follows: In advance,
a number of indices (location informations of an object) of each object are dis-
seminated to randomly selected peers. When searching, the searcher sends a
number of queries to randomly selected peers. If a query reaches a peer holding
the index of the target object, search succeeds. It is shown that the protocol has
advantages in the point of scalability, load balance and fault-tolerance.

In this paper we present Adaptive Randomized Search Protocol (ARSP),
which is an efficient extension of the PWQS-based search protocol. ARSP bor-
rows the random search principle from the PWQS based search protocol. The
objective of ARSP is to minimizes the system communication overhead, which
consists of index maintenance overhead and search query overhead.

In the original protocol, for any object, a same constant number of indices
are disseminated. Each index have time-to-live, and refreshed by periodical re-
dissemination. Then, the number of disseminated indices strongly affects the
system communication overhead. An object having more indices can be found
with less number of query messages per search. However, its index maintenance
consumes a large number of messages by periodical re-dissemination. Conversely,
the small number of indices yields the low index maintenance overhead and high
search query overhead. This implies that there is a trade-off between the two
kinds of overheads. The main idea of ARSP is to adjust the number of indices
according to objects’ popularity. That is, the popular objects have large number
of indices, and the unpopular ones have less indices. Interestingly, the protocol
works in the self-adaptive manner: it can automatically adapt to the dynamics
of network environments.

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 586–587, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Adaptive Randomised Searching Protocol in P2P Systems 587

2 Our Contribution

In the followings, we briefly explain the ARSP protocol. In ARSP, the system
message overhead is minimized when the message cost for each object is mini-
mized because the search mechanism for each object is independent. The message
cost for each object per time unit M consists of index maintenance overhead Mi

and searching overhead Ms. Letting T be the length of TTL for indices, the index
maintenance cost per time unit Mi for an object with qi indices is qi/T . Searchers
repeatedly send queries until the target object is found. To find an object with qi

indices in n peers, the expected number of query messages qs is n/qi. Letting f
be the search times of the object per time unit, we obtain E[Ms] = fn/qi. Thus,
the expectation of M is E[M] = Mi + E[Ms] = qi/T + fn/qi. Its minimum is
E[M]min = 2

√
fn/T when qi is

√
fnT .

The value of
√

fnT can not be computed directly because n and f are un-
known. However from the above equalities we obtain an interesting rule: No
matter how much qi is, Mi · E[Ms] = fn/T always holds. To the owner of the
object, Mi is known and E[Ms] can be estimated from the number of queries
used per search, which can be easily collected from searchers. Thus the owner of
the object can obtain

√
fnT by computing T

√
Mi · E[Ms] without any knowl-

edge of n and f . Because the above equalities holds regardless of the values of
n and f , ARSP can self-adapt to the change of n and f .

In the full version of this paper, we also consider the decrease of indices by
peer leave in one TTL period. We propose a more sophisticated mechanism of
index dissemination. This mechanism does not use periodical dissemination of
indices, but a continuous dissemination of indices. Under some assumption about
the peer leaving behavior, it is proven to be more effective than one proposed
above.

Acknowledgement

This work is supported in part by MEXT: ”The 21st Century Center of Excel-
lence Program”, JSPS: Grant-in-Aid for Scientific Research ((B)15300017 and
(B)17300020), MEXT: Grant-in-Aid for Scientific Research on Priority Areas
(16092215), MEXT: Grand-in-Aid for Young Scientists ((B)18700059), MIC:
Strategic Information, Communications R&D Promotion Programme (SCOPE),
and Ookawa Foundation Research Grant.

Reference

1. K. Miura, T. Tagawa, and H. Kakugawa. A quorum-based protocol for searching
objects in peer-to-peer networks. IEEE Transactions on Parallel and Distributed
Systems, 17(1):25–37, January 2006.

Author Index

Abdallah, Chaouki T. 563
Abujarad, Fuad 566
Ammari, Habib M. 35
Arora, Anish 395
Arumugam, Mahesh 50

Baldoni, Roberto 65
Bapat, Sandip 395
Beauquier, Joffroy 82, 95, 574
Biely, Martin 110
Boman, Iching 563
Bonakdarpour, Borzoo 122, 566
Boulinier, Christian 137
Brukman, Olga 152

Chen, Kai 568
Claerhout, Florent 169
Claudel, Benoit 184
Cobb, Jorge A. 304
Cournier, Alain 199

Daliot, Ariel 350
Danturi, Praveen 214
Das, Sajal K. 35
Dasgupta, Anurag 231
Dastidar, Kajari Ghosh 324
De Palma, Noël 184
Défago, Xavier 484
Delaët, Sylvie 95
Devismes, Stéphane 199
Dhama, Abhishek 244
Dieudonné, Yoann 262
Dolev, Danny 350
Dolev, Shlomi 1, 152, 276, 290
Dong, Pan 570

Elmallah, Ehab S. 314

Freiling, Felix C. 572

Ghosh, Sukumar 231
Ghoshal, Kaustav 578
Gouda, Mohamed G. 304, 314
Guerraoui, Rachid 16, 65

Haddad, Sammy 95
Hagimont, Daniel 184
Haviv, Yinnon 1
Helmy, Ahmed 582
Herault, Thomas 574
Herman, Ted 324, 335
Hoch, Ezra N. 350
Huang, Chin-Tser 304
Huang, Shing-Tsaan 363, 501
Hurfin, Michel 378
Hutle, Martin 576

Izumi, Taisuke 586

Jiang, Fan 568
Jiang, Jehn-Ruey 501
Johnen, Colette 82, 324

Kakugawa, Hirotsugu 516, 586
Kamei, Sayaka 516
Katayama, Yoshiaki 516
Kikuta, Kensaku 580
Kiniwa, Jun 580
Kopeetsky, Marina 290
Kulkarni, Sandeep S. 50, 122, 314, 566
Kwon, Taewoo 395

Labbani-Igbida, Ouiddad 262
Lachaize, Renaud 184
Le Narzul, Jean-Pierre 378
Leal, William 395
Lemarinier, Pierre 574
Levy, Ron R. 65
Long, Darrell D.E. 469
Lu, Xi-cheng 570
Lynch, Nancy 16

Majorczyk, Frédéric 378
Majuntke, Matthias 572
Malekpour, Mahyar R. 411
Malkhi, Dahlia 576
Manne, Fredrik 428
Masuzawa, Toshimitsu 440, 454,

516, 586
Mé, Ludovic 378

590 Author Index

Messika, Stéphane 82
Mittal, Neeraj 572
Mjelde, Morten 428

Nesterenko, Mikhail 214

Ooshita, Fukuhito 516, 586

Pâris, Jehan-François 469
Peres, Olivier 574
Petit, Franck 137, 262
Piergiovanni, Sara Tucci 65
Pike, Scott M. 578
Pilard, Laurence 574
Poetzsch-Heffter, Arnd 584

Quéma, Vivien 65

Saia, Jared 563
Saidane, Ayda 378
Schaefer, Ina 584
Schamiloglu, Edl 563
Schmid, Ulrich 576
Schwarz, Thomas J.E. 469
Song, Yantao 578
Souissi, Samia 484

Tanachaiwiwat, Sapon 582
Tang, Zongyao 568
Theel, Oliver 244
Tixeuil, Sébastien 214, 231, 440, 454
Totel, Eric 378
Tronel, Frédéric 378
Tzeng, Chi-Hung 363, 501

Villain, Vincent 137, 199

Wang, Limin 50
Warns, Timo 244
Wei, Pihui 395
Widder, Josef 110
Wu, Yu 586

Yagel, Reuven 276
Yamashita, Masafumi 484
Yamauchi, Yukiko 516
Yi, Jeong Hyun 533
Yu, Wei 548

Zhang, Chen 335
Zhang, Nan 548
Zhao, Wei 548
Zhou, Lidong 576
Zhu, Pei-dong 570

	Frontmatter
	Invited Talks
	Stabilization Enabling Technology
	A General Characterization of Indulgence

	Regular Papers
	Coverage, Connectivity, and Fault Tolerance Measures of Wireless Sensor Networks
	A Case Study on Prototyping Power Management Protocols for Sensor Networks
	Unconscious Eventual Consistency with Gossips
	All {\itshape k}-Bounded Policies Are Equivalent for Self-stabilization
	A 1-Strong Self-stabilizing Transformer
	Optimal Message-Driven Implementation of Omega with Mute Processes
	Incremental Synthesis of Fault-Tolerant Real-Time Programs
	Toward a Time-Optimal Odd Phase Clock Unison in Trees
	Recovery Oriented Programming
	Evaluation of a Tracking Architecture in Wireless Sensor Networks
	Self-protection for Distributed Component-Based Applications
	From Self- to Snap- Stabilization
	Self-stabilizing Philosophers with Generic Conflicts
	Selfish Stabilization
	Reliability and Availability Analysis of Self-stabilizing Systems
	Circle Formation of Weak Mobile Robots
	Self-stabilizing Device Drivers
	Secure Communication for RFIDs Proactive Information Security Within Computational Security
	Fault Masking in Tri-redundant Systems
	Logarithmic Keying of Communication Networks
	Safe Peer-to-Peer Self-downloading
	{\bfseries Best Paper: }Stabilizing Clock Synchronization for Wireless Sensor Networks
	Self-stabilizing Byzantine Digital Clock Synchronization
	Distributed Edge Coloration for Bipartite Networks
	A Dependable Intrusion Detection Architecture Based on Agreement Services
	Stabilizing Health Monitoring for Wireless Sensor Networks
	A Byzantine-Fault Tolerant Self-stabilizing Protocol for Distributed Clock Synchronization Systems
	A Memory Efficient Self-stabilizing Algorithm for Maximal {\itshape k}-Packing
	Bounding the Impact of Unbounded Attacks in Stabilization
	On Bootstrapping Topology Knowledge in Anonymous Networks
	Self-adaptive Disk Arrays
	Using Eventually Consistent Compasses to Gather Oblivious Mobile Robots with Limited Visibility
	Self-stabilizing Asynchronous Phase Synchronization in General Graphs
	Composition of Fault-Containing Protocols Based on Recovery Waiting Fault-Containing Composition Framework
	Energy-Efficient and Non-interactive Self-certification in MANETs
	Self-adaptive Worms and Countermeasures

	Brief Announcement
	Brief Announcement: Self-healing Algorithms for Reconfigurable Networks
	Brief Announcement: Distributed Synthesis of Fault-Tolerance
	Brief Announcement: Exploration and Mitigation of Deafness Problems in Directional Antennas Based Wireless Ad-Hoc Networks
	Brief Announcement: A Synthetic Public Key Management Scheme for Large-Scale MANET
	Brief Announcement: Termination Detection in an Asynchronous Distributed System with Crash-Recovery Failures
	Brief Announcement: Self-stabilizing Spanning Tree Algorithm for Large Scale Systems
	Brief Announcement: Chasing the Weakest System Model for Implementing $\it \Omega$ and Consensus
	Brief Announcement: Wait-Free Dining for Eventual Weak Exclusion
	Brief Announcement: An Efficient and Self-stabilizing Link Formation Algorithm
	Brief Announcement: Analyzing the Interactions of Self-propagating Codes in Multi-hop Networks
	Brief Announcement: Towards Modular Verification of Stabilisation in Self-adaptive Embedded Systems
	Brief Announcement: An Adaptive Randomised Searching Protocol in Peer-to-Peer Systems Based on Probabilistic Weak Quorum System

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

