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Summary. Problem optimization in dynamic environments has atrracted a grow-
ing interest from the evolutionary computation community in reccent years due
to its importance in real world optimization problems. Several approaches have
been developed to enhance the performance of evolutionary algorithms for dynamic
optimization problems, of which the memory scheme is a major one. This chap-
ter investigates the application of explicit memory schemes for evolutionary algo-
rithms in dynamic environments. Two kinds of explicit memory schemes: direct
memory and associative memory, are studied within two classes of evolutionary al-
gorithms: genetic algorithms and univariate marginal distribution algorithms for
dynamic optimization problems. Based on a series of systematically constructed dy-
namic test environments, experiments are carried out to investigate these explicit
memory schemes and the performance of direct and associative memory schemes are
campared and analysed. The experimental results show the efficiency of the memory
schemes for evolutionary algorithms in dynamic environments, especially when the
environment changes cyclically. The experimental results also indicate that the effect
of the memory schemes depends not only on the dynamic problems and dynamic
environments but also on the evolutionary algorithm used.

1.1 Introduction

Evolutionary algorithms (EAs) have been widely applied to solve stationary
optimization problems. However, many real world problems are actually dy-
namic optimization problems (DOPs) . For DOPs, the fitness function, design
variables, and/or environmental conditions may change over time due to many
reasons, e.g., machine breakdown and financial factors. Hence, for DOPs the
aim of an optimization algorithm is no longer to locate an optimal solution
but to track the moving optima with time. This challenges traditional EAs
seriously since they cannot adapt well to the changing environment once con-
verged. However, traditional EAs with proper enhancements are still good
tools of choice for optimization problems in dynamic environments. This is
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because EAs are basically inspired by principles of natural evolution, which
has been taking place in the ever-changing dynamic environments in nature.

In recent years, there has been a growing interest in investigating EAs for
DOPs. This trend reflects the importance of the practical application of EAs
for real world optimization problems, many of which are DOPs [4]. Several
approaches have been developed into EAs to address DOPs, such as main-
taining diversity during the run via random immigrants [8, 23, 25], increasing
diversity after a change [6, 7], using memory schemes to store and reuse useful
information [3, 26], and multi-population approaches [12].

Among the approaches developed for EAs in dynamic environments, mem-
ory schemes have proved to be beneficial for many DOPs. Memory schemes
work by storing useful information from the current environment and reusing
it later in new environments. The useful information may be stored in two
mechanisms: by implicit memory or by explicit memory. For implicit memory
schemes, EAs use genotype representations that contain redundant informa-
tion to store good (partial) solutions to be reused later. Typical examples are
genetic algorithms (GAs) based on multiploidy representations [9, 9, 10, 12],
structured encoding [7], or dualism mechanisms [24, 29]. Explicit memory
schemes use precise representations but split an extra memory space to ex-
plicitly store useful information, e.g., good solutions [2, 3, 13, 22] and/or
environmental information [21, 25], from the current generation for reuse in
later generations or environments.

In this chapter, we focus on studying explicit memory schemes for EAs in
dynamic environments. Two kinds of explicit memory schemes, direct memroy
and associative memory, are investigated within two classes of EAs, GAs
and univariate marginal distribution algorithms (UMDAs), for DOPs. For the
direct memory scheme good solutions are stored in the memory and reused
in new environments. For the associative memory scheme, the environmental
information as well as good solutoins are stored and associated in the memory.
When a change occurs, the stored environmental information associated with
the best re-evaluated memory solution is used to create new individuals into
the population. Using the dynamic problem generator proposed in [24, 29, 30],
a series of dynamic test problems are constructed from a set of stationary
functions and experiments are carried out to compare the performance of
investigated GAs and UMDAs, with and without explicit memory schemes.
The experimental results validates the efficiency of the memory scheme for
GAs and UMDAs in dynamic environments.

The outline of this chapter is given as follows. The next section briefly
reviews explicit memory schemes developed for EAs in dynamic environments.
Section 1.3 describes the memory enhanced GAs investigated in this study
while Section 1.4 describes the memory enhanced UMDAs investigated in
this study. Section 1.5 presents the dynamic test environments for this study.
The experimental results and relevant analysis are presented in Section 1.6.
Section 1.7 concludes this paper with discussions on relevant future work.
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1.2 Explicit Memory for EAs in Dynamic Environments

The application of memory schemes has proved to be able to enhance EA’s per-
formance in dynamic environments, especially when the environment changes
cyclically in the search space1. In these environments, with time going an old
environment will reappear exactly and the associated solution in the memory,
which exactly remembers the old environment, will instantaneously move EAs
to the reappeared environment.

As mentioned before, the basic principle of memory schemes is to, im-
plicitly or explicitly, store useful information from the current environment
and reuse it later in new environments. Implicit memory schemes for EAs
in dynamic environments depend on redundant representations to store use-
ful information for EAs to exploit during the run. On the contrast, explicit
memory schemes make use of precise representation but split an extra storage
space where useful information from the current generation can be explicitly
stored and reused in later generations or environments. For explicit memory
schemes there are three major technical considerations: what to store in the
memory, how to update the memory, and how to retrieve the memory.

For the first aspect, a natural choice is to store good solutions and reuse
them when the environment change is detected. This is called direct memory
scheme. For example, Louis and Xu [13] studied the open shop re-scheduling
problem. Whenever a change (in a known pattern) occurs, the GA is restarted
from a population with partial (5-10%) individuals inherited from the old run
while the rest are randomly initialized. The authors reported a significant im-
provement of their GA over the GA with totally random restart scheme. In-
stead of storing good solutions only, the environmental information can also be
stored and associated with good solutions in the memory. When the environ-
ment changes, the stored environemntal information can be used to associate
with certain stored good solutions and reuse them more efficiently or used to
create new individuals into the population. This memory scheme is called as-
sociative memory scheme. For example, Ramsey and Greffenstette [21] studied
a GA for robot control problem, where good candidate solutions are stored in
a permanent memory together with information about the robot current envi-
ronment. When the robot incurs a new environment that is similar to a stored
environment instance, the associated stored controller solution is re-activated.
This scheme was reported to yield significant improvements. In Yang [26]
and Yang and Yao [30], an associative memory scheme was introduced into
population-based incremental learning (PBIL) algorithms [1]. In this mem-
ory scheme, the best sample in the population together with the propability
vector, which represents the current environment, is stored in the memory.
1 For the convenience of description, we differentiate the environmental changing

periodicality in time and space by wording periodical and cyclic respectively. The
environment is said to be periodically changing if it changes in a fixed time interval,
e.g., every certain EA generations, and is said to be cyclically changing if it visits
several fixed states in the search space in a certain order repeatedly.
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When a change is detected, the probability vector associated with the best
re-evaluated memory sample is used to create new samples. The associative
memory greatly improves PBIL’s performance in dynamic environments.

The memory space is usually limited (and fixed) for the efficiency of com-
putation and searching. This leads to the second consideration of explicit
memory schemes: memory organization and updating mechanisms. As to the
memory organization, there exist two mechanisms: local mechanism where
the memory is individual-oriented and global mechanism where the memory
is population-oriented. Trojanowski and Michalewicz [22] introduced a local
memory approach, where for each individual the memory stores a number of
its ancestors. When the environment changes, the current individual and its
ancestors are re-evaluated and compete together with the best becoming the
active individual while the others stored in the memory. The global memory
mechanism is more natural and popular. In the global memory mechanism,
the best individual of the population is replaced into the memory every certain
or random generations according to a certain replacement policy, see [3, 3].

As to the memory updating mechanism, a general principle is to select one
memory individual to be removed for or updated by the best individual from
the population in order to make the stored individuals to be of above average
fitness, not too old, and distributed across several promising areas of the
search space. Branke [3] has discussed several memory replacement strategies:
1). replacing the least important one with the importance value of individuals
being the linear combination of age, contribution to diversity, and fitness;
2). replacing the one with least contribution to memory variance; 3). replacing
the most similar one if the new individual is better; and 4). replacing the less
fit of a pair of memory individuals that has the minimum distance among all
pairs. The third strategy seems the most practical one due to its simplicity
and will be applied in the memory enhanced EAs studied in this chapter.
Bendtsen and Krink [2] proposed a different memory updating scheme where
the memory individual closest to the best population individual is moved
toward the best population individual, instead of being replaced from the
memory by the best population individual.

For the third concern regarding how to retrieve the memory, a natural
idea is to retrieve the best memory individual(s) to replace the least fit indi-
vidual(s) in the population. This can be done every generation or only when
the environment changes. The memory retrieval is sort of coupled with the
above two concerns. For example, for the direct memory scheme the whole
memory individuals may enter the new population as in [13] or compete with
the population individuals for the new population as in [3], while for the as-
sociative memory scheme only the associated memory individual(s) [21] or
new individuals created by the associated environmental information [26, 30]
may enter the new population. And for the local memory organization scheme
the best ancestor of an active individual competes with it to become active
in the population [22], while for the global memory scheme the best memory
individual(s) may compete with all individuals in the population.
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t := 0 and initialize population P (0) randomly
repeat

evaluate(P (t))
replace the worst individual in P (t) by elite from P (t− 1)
P ′(t) := selectForReproduction(P (t))
crossover(P ′(t), pc)
mutate(P ′(t), pm)

until termination condition holds // e.g., t > tmax

Fig. 1.1. Pseudo-code for the standard GA (SGA) where elitism of size 1 is used

In the following two sections we will respectively describe the GAs and
UMDAs with direct and associative memory schemes, which are investigated
in this chapter.

1.3 Description of Investigated GAs

1.3.1 The Standard GA

The standard GA maintains and evolves a population of candidate solutions
through selection and variation. New populations are generated by first prob-
abilistically selecting relatively fitter individuals from the current population
and then performing crossover and mutation on them to create new off-spring.
This process continues until some termination condition becomes true, e.g.,
the maximum allowable number of generations tmax is reached. The pseudo-
code for the standard GA (SGA) investigated in this chapter is shown in
Fig. 1.1, where pc and pm are the crossover and mutation probabilities re-
spectively and the elitism is used.

Usually, with the iteration of SGA, individuals in the population will even-
tually converge to the optimam or near optimum solution(s) in stationary
environments due to the pressure of selection. Convergence at a proper pace,
instead of pre-mature, may be beneficial and, in fact, is expected in many
optimization problems for GAs to locate expected solutions in stationary en-
vironments. However, convergence becomes a big problem for GAs in dynamic
environments. In fact, it is the main reason why traditional GAs do not per-
form well in dynamic environments. Convergence deprives the population of
genetic diversity. Consequently, when a change occurs, it is hard for GAs
to adpat to the new environment. Hence, in dynamic environments additional
approaches are required to maintain the population diversity by random immi-
grants or adapt the GA directly to the new environment by memory schemes.
The next two sub-sections describe respectively GAs with direct memory and
associative memory enhancements, which are the main concern of this chapter.
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t := 0 and initialize population P (0) randomly
tM := rand(5, 10) and initialize memory M(0) randomly
repeat

evaluate(P (t), M(t))
replace the worst individual in P (t) by elite from P (t− 1)

if environmental change detected then
if DMGA then P ′(t) := retrieveBestMembers(P (t), M(t))
else // for AMGA and HMGA

denote the best memory point <BM (t),DM (t)>
I(t) := create α ∗ (n−m) individuals from DM (t)
P ′(t) := replace the worst individuals in P (t) by ones in I(t)
if HMGA then P ′(t) := retrieveBestMembers(P ′(t), M(t))

else P ′(t) := P (t)

if t = tM then tM := t + rand(5, 10) // time to update memory
denote the best individual in P ′(t) by BP (t)
if not DMGA then DP (t) := allele distribution vector in P ′(t)

if still any random point in M(t) then
if DMGA then replace a random memory point by BP (t)
else replace a random memory point by <BP (t),DP (t)>

else // memory is full
if DMGA then Sc

M (t) := the memory point closest to BP (t)
if f(BP (t)) ≥ f(Sc

M (t)) then Sc
M (t) := BP (t)

else <Sc
M (t),Dc

M (t)>:= the memory point closest to <BP (t),DP (t)>
if f(BP (t)) ≥ f(Sc

M (t)) then <Sc
M (t),Dc

M (t)>:=<BP (t),DP (t)>

// standard genetic operations
P ′(t) := selectForReproduction(P ′(t))
crossover(P ′(t), pc)
mutate(P ′(t), pm)

until termination condition holds // e.g., t > tmax

Fig. 1.2. Pseudo-code for the memory enhanced GAs: GA with direct memory
(DMGA), GA with associative memory (AMGA), and GA with hybrid memory
(HMGA)

1.3.2 GA with Direct Memory

The pseudo-code for the GA with direct memory, denoted DMGA in this
chapter, is shown in Fig. 1.2, where f(·) is the fitness function. DMGA (and
other memory enhanced EAs in this study) uses a memory of size m = 0.1∗n,
which is randomly initialized. When the memory is due to update, if any of
the randomly initialized points still exists in the memory, the best individ-
ual of the population will replace one of them randomly; otherwise, it will
replace the closest memory point if it is better (the most similar memory
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updating strategy). Instead of updating the memory in a fixed time interval,
the memory in DMGA is updated in a stochastic time pattern. After a mem-
ory updating at generation t, the next memory updating time tM is given by:
tM = t + rand(5, 10). This way, the potential effect that the environmental
change period coincides with the memory updating period (e.g., the memory
is updated whenever the environment changes) can be smoothed away.

The memory in DMGA is re-evaluated every generation to detect envi-
ronmental changes. The environment is detected as changed if at least one
individual in the memory is detected having changed its fitness. If a change
is detected, the memory is merged with the current population and the best
n−m individuals are selected as an interim population to undergo standard
genetic operations for a new population while the memory remains unchanged.

1.3.3 GA with Associative Memory

In [26, 30], an associative memory has been developed for PBILs in dynamic
environments. The idea can be extended to GAs for DOPs [28]. That is, we
can store the environmental information together with good solutions in the
memory for later reuses. Here, the key thing is how to represent the current
environment. As mentioned before, given a problem in a certain environment
the population of a GA will eventually converge toward the optimum or near
optimum of the environment when the GA progresses its searching. The con-
vergence information, i.e., the allele distribution in the population, can be
taken as the natural representation of the current environment. Each time
when the best individual of the population is stored in the memory, the sta-
tistics information on the allele distribution for each locus, called the allele
distribution vector, can also be stored in the memory and associated with the
best individual.

The pseudo-code for the GA with the associative memory, denoted AMGA,
is also shown in Fig. 1.2. Within AMGA, the memory is used to store solu-
tions and associated environmental information. That is, each memory point
consists of a pair < S,D >, where S is the stored solution and D is the as-
sociated allele distribution vector. For binary encoding (as per this study),
the frequency of ones over the population in a gene locus can be taken as the
allele distribution for that locus.

As in DMGA, the memory in AMGA is re-evaluated every generation.
If an environmental change is detected, the allele distribution vector of the
best memory point < BM (t),DM (t) >, i.e., the memory point with its solu-
tion BM (t) having the highest re-evaluated fitness, is extracted. And a set of
α ∗ (n − m) new individuals are created from this allele distribution vector
DM (t) and swapped into the population by replacing the worst individuals.
Here, the parameter α ∈ [0.0, 1.0], called associative factor, determines the
number of new individuals to be generated and hence the impact of the asso-
ciative memory to the current population. A new individual S = {s1, · · · , sl}
is created by DM (t) = {d1, · · · , dl} (l is the encoding length) as follows:
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si =

{
1, if rand(0.0, 1.0) < di

0, otherwise
(1.1)

The memory replacement strategy in AMGA is similar to that in DMGA.
When the memory is due to update, if there are still any randomly ini-
tialized memory points in the memory, a random one will be replaced by
< BP (t), DP (t) >, where BP (t) and DP (t) are the best individual and al-
lele distribution vector of the current population respectively; otherwise, we
first find the memory point <Sc

M (t),Dc
M > with its solution Sc

M (t) closest to
BP (t). If BP (t) is fitter than Sc

M (t), i.e., f(BP (t)) > f(Sc
M (t)), the memory

point is replaced by <BP (t),DP (t)>.
The aforementioned direct and associative memory can be combined into

GAs. The resulted GA is called the hybrid memory based GA (HMGA in
short). The pseudo-code of HMGA is also shown in Fig. 1.2. HMGA differs
from AMGA only as follows. When a change is detected, new individuals
are created from the allele distribution vector of the best memory point and
swapped into the population. Then, the original memory solutions M(t) are
merged with the main population to select n − m best ones as the interim
population to go though standard genetic operations.

1.4 Description of Investigated UMDAs

1.4.1 The Standard UMDA

Mühlenbein [19] introduced the UMDA as the simplest version of estimation
of distribution algorithms (EDAs) [18]. Thereafter, there have been several
modifications of UMDAs [14] and UMDAs have been applied to many opti-
mization problems [11]. In the binary search space, UMDAs evolve a prob-
ability vector p(t) = (p(1, t), . . . , p(l, t)) where all the variables are assumed
to be independent of each other. The pseudo-code for the standard UMDA
(SUMDA) studied in this chapter is shown in Fig. 1.3, where the mechanisms
of mutation and elitism are used.

SUMDA starts from the central probability vector that has a value of 0.5
for each locus and falls in the central point of the search space. Sampling
this probability vector creates random solutions because the probability of
creating a 1 or 0 on each locus is equal2. At iteration t, a population S(t) of
n individuals are sampled from the probability vector p(t). The samples are
evaluated and an interim population D(t) is formed by selecting µ (µ < n)
best individuals, denoted x1(t), · · · ,xµ(t), from S(t). Then, the probability
vector is updated by extracting statistics information from D(t) as follows:
2 Without loss of generality, a binary-encoded solution x = (x1, . . . , xl) ∈ {0, 1}l is

sampled from a probability vector p(t) as follows: for each locus i, if a randomly
created number r = rand(0.0, 1.0) < p(i, t), its allele xi is set to 1; otherwise, xi

is set to 0.
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t := 0 and initialize the probability vector p(0) := 0.5
repeat

sample a population S(t) of individuals by p(t)
evaluate(S(t))
replace the worst individual in S(t) by elite from S(t− 1)
select the best µ individuals from S(t) to form D(t)
build p′(t) according to D(t) by Eqn. (1.2)
mutate p′(t) by Eqn. (1.3)

until termination condition holds // e.g., t > tmax

Fig. 1.3. Pseudo-code of the standard UMDA (SUMDA) with mutation and elitism

p′(t) :=
1
µ

k=µ∑
k=1

xk(t) (1.2)

After the probability vector is updated according to D(t), in order to
keep the diversity of generated samples in dynamic environments, a bitwise
mutation is applied in SUMDA. The mutation operation always changes the
probability vector toward the central probability vector as follows. For each
locus i = {1, . . . , l}, if a random number r = rand(0.0, 1.0) < pm (pm is the
mutation probability), then mutate p(i, t) using the following formula:

p′(i, t) =

⎧⎨
⎩

p(i, t) ∗ (1.0− δm), p(i, t) > 0.5
p(i, t), p(i, t) = 0.5
p(i, t) ∗ (1.0− δm) + δm, p(i, t) < 0.5,

(1.3)

where δm is the mutation shift that controls the amount a mutation operation
alters the value in each bit position. After the mutation operation, a new set of
samples is generated by the new probability vector and this cycle is repeated.

As the search progresses, the elements in the probability vector move away
from their initial settings of 0.5 towards either 0.0 or 1.0, representing smaples
of high fitness. The search stops when some termination condition holds, e.g.,
the maximum allowable number of iterations tmax is reached.

1.4.2 UMDA with Direct Memory

The direct memory scheme for GAs can be easily extended to UMDAs for
DOPs. The pseudo-code for the investigated UMDA with the direct memory,
denoted DMUMDA, is shown in Fig. 1.4. In Fig. 1.4, n is the number of
evaluations per iteration including the memory samples and f(x) denotes the
fitness of individual x.

As in DMGA, DMUMDA uses a memory to store best samples from the
population. And the memory in DMUMDA is updated using the same sto-
chastic time pattern as in DMGA: after a memory update at time t, the next
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t := 0 and initialize p(0) := 0.5
tM := rand(5, 10) and initialize memory M(0) randomly
repeat

sample a population S(t) of individuals by p(t)
evaluate(S(t), M(t))
replace the worst individual in S(t) by elite from S(t− 1)

if environmental change detected then
if DMUMDA then S′(t) := retrieveBestMembers(S(t), M(t))
else // for AMUMDA and HMUMDA

denote the best memory point <BM (t),pM (t)>
I(t) := create α ∗ (n−m) individuals from pM (t)
S′(t) := replace the worst individuals in S(t) by ones in I(t)
if HMUMDA then S′(t) := retrieveBestMembers(S′(t), M(t))

else S′(t) := S(t)

if t = tM then tM := t + rand(5, 10) // time to update memory
denote the best individual in S′(t) by BS(t)
if still any random point in M(t) then

if DMUMDA then replace a random memory point by BS(t)
else replace a random memory point by <BS(t),p(t)>

else // memory is full
if DMUMDA then Sc

M (t) := the memory point closest to BS(t)
if f(BS(t)) ≥ f(Sc

M (t)) then Sc
M (t) := BS(t)

else <Sc
M (t),pc

M (t)>:= the memory point closest to <BS(t),p(t)>
if f(BS(t)) ≥ f(Sc

M (t)) then <Sc
M (t),pc

M (t)>:=<BS(t),p(t)>

select the best µ individuals from S′(t) to form D(t)
build p′(t) according to D(t) by Eqn. (1.2)
mutate p′(t) by Eqn. (1.3)

until termination condition holds // e.g., t > tmax

Fig. 1.4. Pseudo-code for the memory enhanced UMDAs: UMDA with direct mem-
ory (DMUMDA), UMDA with associative memory (AMUMDA), and UMDA with
hybrid memory (HMUMDA)

memory updating time is tM = t + rand(5, 10). When the memory is due to
update, we first find the memory point closest to the best population sample
in terms of Hamming distance. If the best population sample has higher fit-
ness than this memory sample, it is replaced by the best population sample;
otherwise, the memory stays unchanged.

The memory in DMUMDA is re-evaluated every iteration. If any memory
sample has its fitness changed, the environment is detected to be changed.
Then, the memory will be merged with the current population to form an
intermit population. If no environmental change is detected, DMUMDA pro-
gresses just as the standard UMDA does.
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1.4.3 UMDA with Associative Memory

Using associative memory for UMDAs is more straightforward than for GAs
because the probability vector that is evolved within UMDAs can be directly
taken as the environmental information without any cost of further calcu-
lation. Each time when the best sample of the population is stored in the
memory, the probability vector is also stored in the memory and associated
with the sample. The pseudo-code of the UMDA with the associative memory,
denoted AMUMDA, is also shown in Fig. 1.4.

The memory in AMUMDA has m = 0.1∗n points, each consisting of a pair
<S,p>, where S is a stored sample and p is the associated probability vector.
The memory is re-evaluated every generation. If an environmental change is
detected, the probability vector of the best memory point <BM (t),pM (t)> is
extracted to create a set of α∗(n−m) new samples to replace the worst ones in
the population. Here, the parameter α ∈ [0.0, 1.0] is the associative factor. The
memory in AMUDMA is updated similarly as in AMGA. When the memory
is due to update, if there are still any randomly initialized memory points in
the memory, a random one is replaced by <BS(t),p(t)>, where BS(t) is the
best sample in the population; otherwise, the memory point <Sc

M (t),pc
M (t)>

closest to BS(t) is replaced by <BS(t),p(t)> if BS(t) is fitter than Sc
M (t).

Similarly, the above direct and associative memory can be combined into
UMDAs. The pseudo-code of the UMDA with a hybrid direct and associative
memory, denoted HMUMDA, is also shown in Fig. 1.4. In HMUMDA, when
a change is detected, after integrating the individuals that are sampled from
the best memory probability vector into the population, the memory samples
M(t) are also merged with the population to select n − m best ones as the
interim population to build a new model.

1.5 Dynamic Test Environments

The dynamic problem generator proposed in [24, 29] can construct random
dynamic environments from any binary-encoded stationary function f(x) (x ∈
{0, 1}l) by a bitwise exclusive-or (XOR) operator. Suppose the environment
changes every τ generations. For each environmental period k, an XORing
mask M(k) is incrementally generated as follows:

M(k) = M(k − 1)⊕T(k), (1.4)

where “⊕” is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1, 0 ⊕ 0 = 0) and
T(k) is an intermediate binary template randomly created with ρ × l ones
for environmental period k. For the first period k = 1, M(1) is set to a zero
vector. Then, the population at generation t is evaluated as below:

f(x, t) = f(x⊕M(k)), (1.5)

where k = �t/τ� is the environmental period index. With this generator, the
parameter τ controls the change speed while ρ ∈ (0.0, 1.0) controls the severity
of environmental changes. Bigger ρ means severer environmental change.
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Recently, the XOR dynamic problem generator has been extended to con-
struct cyclic dynamic environments in [27] and cyclic dynamic environments
with noise further in [30]. With the XOR generator, cyclic dynamic environ-
ments are constructed as follows. First, we can generate 2K XORing masks
M(0),M(1), · · · ,M(2K − 1) as the base states in the search space randomly.
Then, the environment can cycle among these base states in a fixed logical
ring. Suppose the environment changes every τ generations, then the individ-
uals at generation t is evaluated as follows:

f(x, t) = f(x⊕M(It)) = f(x⊕M(k%(2K))), (1.6)

where k = �t/τ� is the index of the current environmental period and It =
k%(2K) is the index of the base state the environment is in at generation t.

The 2K XORing masks can be generated in the following way. First, we
construct K binary templates T(0), · · · ,T(K − 1) that form a random par-
tition of the search space with each template containing ρ × l = l/K bits of
ones3. Let M(0) = 0 denote the initial state. Then, the other XORing masks
are generated iteratively as follows:

M(i + 1) = M(i)⊕T(i%K), i = 0, · · · , 2K − 1 (1.7)

The templates T(0), · · · ,T(K − 1) are first used to create K masks till
M(K) = 1 and then orderly reused to construct another K XORing masks till
M(2K) = M(0) = 0. The Hamming distance between two neighbour XORing
masks is the same and equals ρ× l. Here, ρ ∈ [1/l, 1.0] is the distance factor,
determining the number of base states.

From the XOR generator, we can further construct cyclic dynamic envi-
ronments with noise as follows. We can construct a set of base states and let
the environment cycles among the base states just as above. However, each
time the environment is about to move to a next base state M(i), M(i) is
bitwise flipped with a small probability, denoted pn in this chapter.

In this experimmental study, three 100-bit binary functions, denoted
OneMax, Royal Road and Deceptive respectively, are selected as the base
stationary functions to construct dynamic test environments. They all consist
of 25 contiguous 4-bit building blocks and have an optimum fitness of 100.
As shown in Fig. 1.5, the building block for each function is defined based
on the unitation function, i.e., the number of ones inside the building block.
The building block for OneMax is just a OneMax sub-function, which aims
to maximize the number of ones in a chromosome. The building block for
Royal Road contributes 4 to the total fitness if its unitation is 4; otherwise,
it contributes 0. The building block for Deceptive is fully deceptive. These
three stationary functions have increasing difficulty for EAs in the order from
OneMax to Royal Road to Deceptive.
3 In the partition each template T(i) (i = 0, · · · , K − 1) has randomly but exclu-

sively selected ρ× l bits set to 1 while other bits to 0. For example, T(0) = 0101
and T(1) = 1010 form a partition of the 4-bit search space.



1 Explicit Memory Schemes for EAs in Dynamic Environments 15

4

3

2

1

0

43210

Fi
tn

es
s

Unitation

OneMax
Royal Road
Deceptive

Fig. 1.5. Building block of the three stationary functions

Three kinds of dynamic environments, cyclic, cyclic with noise and ran-
dom, are constructed from each base function using the XOR DOP generator.
For each kind of dynamic environments, the landscape is periodically changed
every τ generations during the run of an EA. In order to compare the perfor-
mance of EAs in different dynamic environments, the parameters τ is set to
10 and 25 and ρ is set to 0.1, 0.2, 0.5, and 1.0 respectively. For cyclic dynamic
problems with noise, the noise probability pn is set to 0.05. Totally, a series
of 24 DOPs, 2 values of τ combined with 4 values of ρ under three kinds of
dynamic environments, are constructed from each stationary function.

1.6 Experimental Study

1.6.1 Experimental Design

Experiments were carried out to compare the performance of investigated
EAs on the dynamic test environments. For all EAs, the parameters are set
as follows: the total population size is set to n = 100, including memory size
m = 0.1∗n = 10 if used, and the elitism size is set to 1. For all GAs, parameters
are set as: standard uniform crossover with the crossover probability pc = 0.6,
bit flip mutation with the mutation probability pm = 0.01. For all UMDAs,
the mutation probability pm = 0.02 with the mutation shift δm = 0.05, µ is
set to 0.5 ∗n for SUMDA or 0.5 ∗ (n−m) for memory enhanced UMDAs. For
AMGAs and AMUMDAs, in order to test the effect of the associative factor
α on their performance, α is set to 0.1, 0.5, and 1.0 respectively. For HMGAs
and HMUMDAs, the associative factor α is set to 0.5. And an EA with as-
sociative memory will be reported as α-AMGA, α-HMGA, α-AMUMDA, or
α-HMUMDA respectively in the experimental results.

For each experiment of an EA on a dynamic test problem, 50 independent
runs were executed with the same set of random seeds. For each run 5000
generations were allowed, which are equivalent to 500 and 200 environmental
changes for τ = 10 and 25 respectively. For each run the best-of-generation
fitness was recorded every generation. The overall offline performance of an
algorithm on a problem is defined as:
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FBOG =
1
G

G∑
i=1

(
1
N

N∑
j=1

FBOGij
), (1.8)

where G = 5000 is the total number of generations for a run, N = 50 is the
total number of runs, and FBOGij

is the best-of-generation fitness of genera-
tion i of run j. The offline performance FBOG is the best-of-generation fitness
averaged over 50 runs and then averaged over the data gathering period.

1.6.2 Experimental Results and Analysis of GAs on DOPs

The experimental results of GAs on the dynamic test problems under cyclic,
cyclic with noise, and random dynamic environments are plotted in Fig. 1.6 to
Fig. 1.8 respectively. The corresponding statistical results of comparing GAs
by one-tailed t-test with 98 degrees of freedom at a 0.05 level of significance
are given in Table 1.1 to Table 1.3 respectively. In Table 1.1 to Table 1.3,
the t-test result regarding Alg. 1 − Alg. 2 is shown as “=”, “+”, “−”, “s+”
or “s−” if Alg. 1 is statistically equivalent to, insignificantly better than,
insignificantly worse than, significantly better than, or significantly worse than
Alg. 2 respectively. From the figures and tables several results can be observed.

First, both DMGA and AMGAs perform significantly better than SGA
on most dynamic problems, especially in cyclic environments. This result
validates the efficiency of introducing memory schemes, either direct or as-
sociative, into GAs in dynamic environments. Viewing across Fig. 1.6 to
Fig. 1.8, it can be seen that both DMGA and AMGAs achieve the largest
performance improvement over SGA in cyclic environments. For example,
when τ = 10 and ρ = 0.5, the performance difference of DMGA over SGA,
FBOG(DMGA)− FBOG(SGA), is 94.1− 58.9 = 35.2, 67.2− 59.8 = 7.4, and
67.2 − 65.6 = 1.6 under cyclic, cyclic with noise, and random environments
respectively. This result indicates that the effect of memory schemes depends
on the cyclicity of dynamic environments. When the environment changes
randomly and slightly (i.e., ρ is small), both DMGA and AMGAs are beaten
by SGA. This is because under these conditions, the environment is unlikely
to return to a previous state that is memorized by the memory scheme. And
hence inserting stored solutions or creating new ones according to the stored
allele distribution vector may mislead or slow down the progress of the GAs.

Second, comparing AMGAs over DMGA, it can be seen that AMGAs
outperform DMGA on many DOPs, especially under cyclic environments.
This happens because the extracted memory allele distribution vector is much
stronger than the stored memory solutions in adapting the GA to the new en-
vironment. However, when ρ is small and the environment changes randomly,
AMGAs are beaten by DMGA for most cases, see the t-test results regarding
α-AMGA – DMGA. This is because under these environments the negative
effect of the associative memory in AMGAs may weigh over the direct memory
in DMGA.
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Fig. 1.6. Experimental results of GAs on cyclic DOPs

Table 1.1. The t-test results of comparing GAs on cyclic DOPs

t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ −
0.1-AMGA − DMGA s+ s+ s− s− s+ s− s− s− + s− s− s−
0.5-AMGA − DMGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s−
1.0-AMGA − DMGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s−

0.5-AMGA − 0.1-AMGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s−
1.0-AMGA − 0.5-AMGA s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s−
0.5-HMGA − 0.5-AMGA − s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMGA − DMGA s− s− s+ − − + s+ s+ s− − − −
0.5-AMGA − DMGA − + s+ s+ s+ s+ s+ s+ s+ s+ s+ s−
1.0-AMGA − DMGA s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ −

0.5-AMGA − 0.1-AMGA + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ −
1.0-AMGA − 0.5-AMGA s− s− s+ s+ − s+ s+ s+ s+ s+ s+ −
0.5-HMGA − 0.5-AMGA s+ + s+ s+ + s+ s+ + s+ s+ + s+

In order to better understand the performance of GAs, the dynamic per-
formance of GAs regarding best-of-generation fitness against generations on
dynamic OneMax functions with τ = 10 and ρ = 0.5 under different cyclicity
of dynamic environments is plotted in Fig. 1.9. In Fig. 1.9, the first and last
10 environmental changes (i.e., 100 generations) are shown and the data were
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Fig. 1.7. Experimental results of GAs on cyclic DOPs with noise

Table 1.2. The t-test results of comparing GAs on cyclic DOPs with noise

t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s− s+ s+ s+ s− s+ s+ s− − − − −

0.5-AMGA − SGA s− s+ s+ s+ s− s+ s+ s+ s− s− s− s−
0.1-AMGA − DMGA s− s+ s+ − s− s+ + s− s− − − s−
0.5-AMGA − DMGA s− s+ s+ s+ s− s+ s+ s+ s− s− s− s−
1.0-AMGA − DMGA s− s+ s+ s+ s− s+ s+ s+ s− s− s+ s−

0.5-AMGA − 0.1-AMGA s− s+ s+ s+ s− s+ s+ s+ s− s− s− s−
1.0-AMGA − 0.5-AMGA s− s− s+ s+ s− s− s+ s+ s− = s+ s−
0.5-HMGA − 0.5-AMGA − s+ s+ s+ s+ s+ s+ s+ + + s+ +

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s− s− s+ s+ s− s− s+ s+ − − + +

0.5-AMGA − SGA s− s− s+ s+ s− + s+ s+ s− s− s+ s−
0.1-AMGA − DMGA − s− s+ s+ − − s+ s+ − − s+ s−
0.5-AMGA − DMGA s− s− s+ s+ s− s+ s+ s+ s− − s+ s−
1.0-AMGA − DMGA s− s− s+ s+ s− s− s+ s+ s− s+ s+ s−

0.5-AMGA − 0.1-AMGA s− s− s+ s+ s− s+ s+ s+ s− − s+ s−
1.0-AMGA − 0.5-AMGA s− s− s+ s+ s− s− s+ s+ s− s+ s+ s−
0.5-HMGA − 0.5-AMGA + + + s+ + s+ s+ s+ + + s+ +

averaged over 50 runs. From Fig. 1.9, it can be seen that, under cyclic and cyclic
with noise environments, after several early stage environmental changes, the
memory schemes start to take effect to maintain the performance of DMGA
and AMGAs at a much higher fitness level than SGA. And the associative
memory in AMGAs works better than the direct memory in DMGA, which
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Fig. 1.8. Experimental results of GAs on random DOPs

Table 1.3. The t-test results of comparing GAs on random DOPs

t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s+

0.5-AMGA − SGA s− s− s+ s+ s− s− s+ s+ s− s− s+ −
0.1-AMGA − DMGA s− s− s+ s− s− s− s+ s− s− s− s+ s−
0.5-AMGA − DMGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s−
1.0-AMGA − DMGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s−

0.5-AMGA − 0.1-AMGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s−
1.0-AMGA − 0.5-AMGA s− s− s− s+ s− s− s+ s+ s− s− s+ s−
0.5-HMGA − 0.5-AMGA + + s+ s+ + s+ s+ s+ + + s+ s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s− s− s+ s+ s− s− s+ s+ − s− s+ s+

0.5-AMGA − SGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s+
0.1-AMGA − DMGA − s− s+ + − − s+ s+ − s− s+ s−
0.5-AMGA − DMGA s− s− s+ s+ s− s− s+ s+ − s− s+ s−
1.0-AMGA − DMGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s−

0.5-AMGA − 0.1-AMGA s− s− s+ s+ s− s− s+ s+ + s− s+ +
1.0-AMGA − 0.5-AMGA s− s− s− s+ s− s− s− s+ s− s− s+ −
0.5-HMGA − 0.5-AMGA − − s+ s+ − + s+ + + + + s+

can be seen in the late stage behaviour of GAs. Under random environments
the effect of memory schemes is greatly deduced where all GAs behave al-
most the same and there is no clear vision regarding the effect of the memory
schemes on the performance of DMGA and AMGAs.
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Fig. 1.9. Dynamic performance of GAs on the dynamic OneMax problems

Third, when examining the effect of α on AMGA’s performance, it can
be seen that 0.5-AMGA outperforms 0.1-AMGA on most dynamic problems,
see the t-test results regarding 0.5-AMGA – 0.1-AMGA. This is because in-
creasing the value of α enhances the effect of associative memory for AMGA.
However, 1.0-AMGA is beaten by 0.5-AMGA on many cases, especially when
ρ is small, see the t-test results regarding 1.0-AMGA – 0.5-AMGA. When
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α = 1.0, all individuals in the population are replaced by the new individuals
created by the re-activated memory allele distribution vector when a change
occurs. This may be disadvantageous. Especially, when ρ is small, the envi-
ronment changes slightly and good solutions of the previous environment are
likely also good for the new one. It is better to keep some of them instead of
discarding them all.

Finally, comparing the performance of HMGA over AMGAs for DOPs, it
can be seen that HMGA outperforms AMGAs for most dynamic problems,
see the t-test results regarding 0.5-HMGA – 0.5-AMGA. For example, on the
cyclic dynamic Royal Road function with τ = 10 and ρ = 0.5, the performance
of 0.5-HMGA is FBOG(0.5-HMGA) = 94.0, which is significantly better than
the performance of 0.5-AMGA with FBOG(0.5-AMGA) = 87.2. However, the
performance improvement of α-HMGA over α-AMGA is relatively small in
comparison with the performance improvement of α-AMGA over SGA.

1.6.3 Experimental Results and Analysis of UMDAs on DOPs

The experimental results of UMDAs on the dynamic test problems under
cyclic, cyclic with noise, and random dynamic environments are plotted in
Fig. 1.10 to Fig. 1.12 respectively. The corresponding statistical results of
comparing UMDAs by one-tailed t-test with 98 degrees of freedom at a 0.05
level of significance are given in Table 1.4 to Table 1.6 respectively. And the
dynamic performance of UMDAs with respect to best-of-generation fitness
against generations on the dynamic OneMax problems with τ = 10 and
ρ = 0.5 is plotted in Fig. 1.13, where the first and last 10 environmental
changes are shown and the data were averaged over 50 runs. From the tables
and figures, several results can be observed. The observations are similar to
the previous observations regarding the experimental results of GAs and will
be briefly recapped below. The main concern will be focused on the differences
between the performance of UMDAs and GAs.

First, both direct and associative memory schemes significantly improve
the performance of UMDAs on most DOPs, see the t-test results regard-
ing DMUMDA – SUMDA and 0.5-AMUMDA – SUMDA. And it seems the
memory schemes have a more consistent positive effect on the performance
of UMDAs on all DOPs than on the performance of GAs. For example, 0.5-
AMUMDA significantly outperforms SUMDA not only on all cyclic DOPs but
also on almost all noisy and random DOPs. For example, from the dynamic
behaviour of UMDAs shown in Fig. 1.13, it can be see that memory enhanced
UMDAs maintain a much higher fitness level than SUMDA not only on cyclic
OneMax problem but also on the random OneMax problem. This result in-
dicates that the effect of memory schemes depends not only on the dynamic
problems and environments but also on the EA used.

Second, the associative factor α has the similar effect on the performance
of AMUMDAs as on the performance of AMGAs. Increasing the value of α
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Fig. 1.10. Experimental results of UMDAs on cyclic DOPs

Table 1.4. The t-test results of comparing UMDAs on cyclic DOPs
t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA − s− s− + s+ − s− s+ s− s− s− =
0.5-AMUMDA − DMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − DMUMDA s− − s+ s+ s+ s+ s+ s+ s+ s+ s+ −

0.5-AMUMDA − 0.1-AMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − 0.5-AMUMDA s− s− s+ + s− s− s+ s+ s− + s+ −
0.5-HMUMDA − 0.5-AMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ −

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA s+ s− s− s+ s+ + s− s− s− s− s− s−
0.5-AMUMDA − DMUMDA s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+ −
1.0-AMUMDA − DMUMDA s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+ +

0.5-AMUMDA − 0.1-AMUMDA s+ − s− s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − 0.5-AMUMDA s− − + + s− − + s+ − + s+ +
0.5-HMUMDA − 0.5-AMUMDA + + s+ s+ + + s+ s+ + + s+ +

from 0.1 to 0.5 improves the performance of AMUMDA while further rais-
ing the value of α to 1.0 degrades the performance of AMUMDA, see the
t-test results regarding 0.5-AMUMDA – 0.1-AMUMDA and 1.0-AMUMDA –
0.5-AMUMDA in Table1.4 to Table1.6. This result can also be seen in their
dynamic performance shown in Fig. 1.13, where 1.0-AMUMDA achieves a
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Fig. 1.11. Experimental results of UMDAs on cyclic DOPs with noise

Table 1.5. The t-test results of comparing UMDAs on cyclic DOPs with noise

t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA s+ + − s− s+ s+ s+ s+ s+ s− s+ s+
0.5-AMUMDA − DMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
1.0-AMUMDA − DMUMDA s− s− s− s+ s− s− s− s− s− s− s− s−

0.5-AMUMDA − 0.1-AMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
1.0-AMUMDA − 0.5-AMUMDA s− s− s− + s− s− s− s− s− s− s− s−
0.5-HMUMDA − 0.5-AMUMDA + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +

0.5-AMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA s+ s+ s− s− s+ s+ s+ s+ s+ + s− s+
0.5-AMUMDA − DMUMDA s+ s+ s− s− s+ s+ s+ s+ s+ s+ + s+
1.0-AMUMDA − DMUMDA s− s+ s− s− − + s+ s+ s− s− s− s−

0.5-AMUMDA − 0.1-AMUMDA s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − 0.5-AMUMDA s− s− − + s− s− s− − s− s− s− s−
0.5-HMUMDA − 0.5-AMUMDA − s+ s+ + − s+ s+ s+ + s+ s+ +

much lower fitness level than 0.5-AMUMDA during each environmental pe-
riod, especially under cyclic with noise and random environments.

Third, combining the direct memory with the associative memory further
improves the performance of AMUMDAs, see the t-test results with respect
to 0.5-HMUMDA − 0.5-HMUMDA. This result can be further seen in the
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Fig. 1.12. Experimental results of UMDAs on random DOPs

Table 1.6. The t-test results of comparing UMDAs on random DOPs
t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA − s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA s+ s+ s− + s+ s+ s+ + s+ s+ s− −
0.5-AMUMDA − DMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − DMUMDA s− s− s− s+ s− s− s− s+ s− s− s− −

0.5-AMUMDA − 0.1-AMUMDA + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − 0.5-AMUMDA s− s− s− + s− s− s− s+ s− s− s− s−
0.5-HMUMDA − 0.5-AMUMDA − s+ s+ s+ + s+ s+ s+ s+ s+ s+ −

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA s− − s+ s+ − s+ s+ s+ s− s+ s+ s+

0.5-AMUMDA − SUMDA + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA + s+ s− s+ s+ s+ s+ s− s+ s+ s− +
0.5-AMUMDA − DMUMDA s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s− −
1.0-AMUMDA − DMUMDA s− s− s− s+ s− s− s− s+ s− s− s− +

0.5-AMUMDA − 0.1-AMUMDA + s+ s− s+ s+ s+ s+ s+ s+ s+ s− −
1.0-AMUMDA − 0.5-AMUMDA s− s− s− + s− s− s− s+ s− s− s− s+
0.5-HMUMDA − 0.5-AMUMDA = + s+ s+ + s+ s+ s+ + s+ s+ −

dynamic performance of 0.5-HMUMDA shown in Fig. 1.13, where 0.5-
HMUMDA maintains the highest level of fitness during each environmental
period under cyclic, noisy and random environments.

Finally, let’s compare the performance of investigated UMDAs and GAs
on DOPs. The t-test results of comparing UMDAs and GAs on the dynamic
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Fig. 1.13. Dynamic performance of UMDAs on the dynamic OneMax problems

test problems with τ = 10 are given in Table 1.7. From Table 1.7, it can
be seen that GAs outperform corresponding UMDAs on most dynamic test
problems.
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Table 1.7. The t-test results of comparing UMDAs and GAs on DOPs with τ = 10

t-test Result OneMax Royal Road Deceptive

Cyclic, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
SUMDA − SGA s− s− s− s− s− s− s− s+ s− s− s− s+

DMUMDA − DMGA s− s+ s− s− s− s− s− s− s+ s+ s− s+
0.1-AMUMDA − 0.1-AMGA s− s− s− s− s− s− s− − s+ s+ s+ s+
0.5-AMUMDA − 0.5-AMGA s− s− s− s− s− s− s− s− s+ s+ s− s+
1.0-AMUMDA − 1.0-AMGA s− s− s− s− s− s− s− s− s− s− − s+
0.5-HMUMDA − 0.5-HMGA s− s+ s− s− s− s− s− s− s− s− s− s+

Cyclic with Noise, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
SUMDA − SGA s− s− s− s− s− s− s− s− s− s− s− s−

DMUMDA − DMGA s− s− + s− s− s− s− s− s− s− s− s−
0.1-AMUMDA − 0.1-AMGA s− s− s− s− s− s− s− s− s− s− s− s−
0.5-AMUMDA − 0.5-AMGA s− s− s− s− s− s− s+ s− s− s+ s+ s−
1.0-AMUMDA − 1.0-AMGA s− s− s− s− s− s− s− s− s− s− s− s−
0.5-HMUMDA − 0.5-HMGA s− s− s− s− s− s− s− s− s− s− s+ s−

Random, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
SUMDA − SGA s− s− s− s− s− s− s− s+ s− s− s− s+

DMUMDA − DMGA s− s− s+ s− s− s− s− s− s− s− + s+
0.1-AMUMDA − 0.1-AMGA s− s− s− s− s− s− s− s− s− s− s− s+
0.5-AMUMDA − 0.5-AMGA s− s− s+ s− s− s− s+ s− s− s− s+ s+
1.0-AMUMDA − 1.0-AMGA s− s− s− s− s− s− s− s− s− s− s− s+
0.5-HMUMDA − 0.5-HMGA s− s− s+ s− s− s− s− s− s− s− s+ s+

1.7 Conclusions

This chapter investigates the application of explicit memory schemes for EAs
in dynamic environments. Two kinds of explicit memory schemes, i.e., direct
memory and associative memory, are applied into two kinds of EAs, i.e., GAs
and UMDAs, to address dynamic optimization problems. The direct memory
scheme just stores and reuses best solutions in the memory. In the contrast,
in the associative memory scheme, best solutions together with the current
environmental information, (the allele distribution vector for GAs or working
probability vector for UMDAs) are stored in the memory. When an environ-
mental change is detected, the stored allele distribution vector (for GAs) or
probability vector (for UMDAs) that is associated with the best re-evaluated
memory solution is extracted to create new individuals into the population.

Based on the XOR dynamic problem generator, a series of dynamic test
problems were systematically constructed, featuring three kinds of dynamic
environments: cyclic, cyclic with noise, and random. Based on this dynamic
test problems, experimental study was carried out to test the memory schemes
for GAs and UMDAs. From the experimental results, the following conclusions
can be drawn on the dynamic test environments. First, memory schemes are
efficient to improve the performance of GAs and UMDAs in dynamic envi-
ronments and the cyclicity of dynamic environments greatly affect the perfor-
mance of memory schemes for GAs and UMDAs in dynamic environments.
Second, generally speaking the associative memory scheme outperforms tradi-
tional direct memory scheme for GAs and UMDAs in dynamic environments.
Third, the associative factor has an important impact on the performance of
AMGAs and AMUMDAs. Setting α to 0.5 seems a good choice for AMGAs
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and AMUMDAs. Fourth, combining direct memory with associative memory
may further improve the performance of GAs and UMDAs in dynamic envi-
ronments. The hybrid memory scheme is a good approach for EAs for DOPs.

The work studied in this chapter can be extended in several ways. De-
veloping other memory management and retrieval mechanisms would be an
interesting future work for memory-based UMDAs and other estimation of
distribution algorithms [1, 18] in dynamic environments. Comparing the in-
vestigated explicit memory schemes with implicit memory schemes is another
future work. And it is also an interesting work to further investigate the
integration of the memory schemes with other approaches, such as multi-
population, diversity approaches, and adaptive operators, for EAs in dynamic
environments.
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