

Shengxiang Yang, Yew-Soon Ong, Yaochu Jin (Eds.)

Evolutionary Computation in Dynamic and Uncertain Environments

Studies in Computational Intelligence, Volume 51

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 31. Ajith Abraham, Crina Grosan, Vitorino Ramos
(Eds.)
Stigmergic Optimization, 2006
ISBN 978-3-540-34689-0

Vol. 32. Akira Hirose
Complex-Valued Neural Networks, 2006
ISBN 978-3-540-33456-9

Vol. 33. Martin Pelikan, Kumara Sastry, Erick
Cantú-Paz (Eds.)
Scalable Optimization via Probabilistic
Modeling, 2006
ISBN 978-3-540-34953-2

Vol. 34. Ajith Abraham, Crina Grosan, Vitorino
Ramos (Eds.)
Swarm Intelligence in Data Mining, 2006
ISBN 978-3-540-34955-6

Vol. 35. Ke Chen, Lipo Wang (Eds.)
Trends in Neural Computation, 2007
ISBN 978-3-540-36121-3

Vol. 36. Ildar Batyrshin, Janusz Kacprzyk, Leonid
Sheremetor, Lotfi A. Zadeh (Eds.)
Preception-based Data Mining and Decision Making
in Economics and Finance, 2006
ISBN 978-3-540-36244-9

Vol. 37. Jie Lu, Da Ruan, Guangquan Zhang (Eds.)
E-Service Intelligence, 2007
ISBN 978-3-540-37015-4

Vol. 38. Art Lew, Holger Mauch
Dynamic Programming, 2007
ISBN 978-3-540-37013-0

Vol. 39. Gregory Levitin (Ed.)
Computational Intelligence in Reliability Engineering,
2007
ISBN 978-3-540-37367-4

Vol. 40. Gregory Levitin (Ed.)
Computational Intelligence in Reliability Engineering,
2007
ISBN 978-3-540-37371-1

Vol. 41. Mukesh Khare, S.M. Shiva Nagendra (Eds.)
Artificial Neural Networks in Vehicular Pollution
Modelling, 2007
ISBN 978-3-540-37417-6

Vol. 42. Bernd J. Krämer, Wolfgang A. Halang (Eds.)
Contributions to Ubiquitous Computing, 2007
ISBN 978-3-540-44909-6

Vol. 43. Fabrice Guillet, Howard J. Hamilton (Eds.)
Quality Measures in Data Mining, 2007
ISBN 978-3-540-44911-9

Vol. 44. Nadia Nedjah, Luiza de Macedo
Mourelle, Mario Neto Borges,
Nival Nunes de Almeida (Eds.)
Intelligent Educational Machines, 2007
ISBN 978-3-540-44920-1

Vol. 45. Vladimir G. Ivancevic, Tijana T. Ivancevic
Neuro-Fuzzy Associative Machinery for Comprehensive
Brain and Cognition Modeling, 2007
ISBN 978-3-540-47463-0

Vol. 46. Valentina Zharkova, Lakhmi C. Jain
Artificial Intelligence in Recognition and Classification
of Astrophysical and Medical Images, 2007
ISBN 978-3-540-47511-8

Vol. 47. S. Sumathi, S. Esakkirajan
Fundamentals of Relational Database Management
Systems, 2007
ISBN 978-3-540-48397-7

Vol. 48. H. Yoshida (Ed.)
Advanced Computational Intelligence Paradigms
in Healthcare, 2007
ISBN 978-3-540-47523-1

Vol. 49. Keshav P. Dahal, Kay Chen Tan, Peter I. Cowling
(Eds.)
Evolutionary Scheduling, 2007
ISBN 978-3-540-48582-7

Vol. 50. Nadia Nedjah, Leandro dos Santos Coelho,
Luiza de Macedo Mourelle (Eds.)
Mobile Robots: The Evolutionary Approach, 2007
ISBN 978-3-540-49719-6

Vol. 51. Shengxiang Yang, Yew-Soon Ong, Yaochu Jin
(Eds.)
Evolutionary Computation in Dynamic and Uncertain
Environments, 2007
ISBN 978-3-540-49772-1

Shengxiang Yang
Yew-Soon Ong
Yaochu Jin
(Eds.)

Evolutionary Computation
in Dynamic and Uncertain
Environments

With 272 Figures and 89 Tables

123

Dr. Shengxiang Yang
Department of Computer Science

University of Leicester

University Road

Leicester LE1 7RH

United Kingdom

E-mail: s.yang@mcs.le.ac.uk

Dr. Yaochu Jin
Honda Research Institute Europe

Carl-Legien-Str. 30

63073 Offenbach

Germany

E-mail: Yaochu.Jin@honda-ri.de

Dr. Yew-Soon Ong
School of Computer Engineering

Nanyang Technological University

Block N4, Nanyang Avenue

Singapore 639798

E-mail: ASYSOng@ntu.edu.sg

Library of Congress Control Number: 2006939142

ISSN print edition: 1860-949X
ISSN electronic edition: 1860-9503
ISBN-10 3-540-49772-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-49772-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: deblik, Berlin
Typesetting by the editors using a Springer LATEX macro package
Printed on acid-free paper SPIN: 11431411 89/SPi 5 4 3 2 1 0

To our families

Preface

Evolutionary computation is a class of problem optimization methodology
with the inspiration from the natural evolution of species. In nature, the
population of a species evolves by means of selection and variation. These
two principles of natural evolution form the fundamental of evolutionary al-
gorithms (EAs). During the past several decades, EAs have been extensively
studied by the computer science and artificial intelligence communities. As a
class of stochastic optimization techniques, EAs can often outperform classical
optimization techniques for difficult real world problems.

Due to the ease of use and robustness, EAs have been applied to a wide
variety of optimization problems. Most of these optimization problems tack-
led are stationary and deterministic. However, many real-world optimization
problems are subjected to dynamic and uncertain environments that are often
impossible to avoid in practice. For example, the fitness function is uncertain
or noisy as a result of simulation errors, measurement errors or approximation
errors. In addition, the design variables or environmental conditions may also
perturb or change over time. For these dynamic and uncertain optimization
problems, the objective of the EA is no longer to simply locate the global
optimum solution, but to continuously track the optimum in dynamic envi-
ronments, or to find a robust solution that operates optimally in the presence
of uncertainties. This poses serious challenges to classical optimization tech-
niques and conventional EAs as well. However, conventional EAs with proper
enhancements are still good tools of choice for optimization problems in dy-
namic and uncertain environments. This is because EAs are inspired by prin-
ciples of natural evolution, which takes place in the ever-changing dynamic
and uncertain environment in nature.

Handling dynamic and uncertain optimization problems has been a topic
since the early days of evolutionary computation and has received increasing
research interests over recent years due to its challenge and its importance in
practice. Several events, e.g., journal special issues, workshops and conference
special sessions, have taken place in recent years in the field of evolutionary
computation in dynamic and uncertain environments. A variety of methods

VIII Preface

have been reported across a broad range of application backgrounds in recent
years. This motivated the project of this book. This book aims to timely reflect
the most recent advances, present sophisticated real-world applications, and
explore future research directions in the field.

We have a total of 26 chapters in this book, which cover a broad range
of topics relevant to evolutionary computation in dynamic and uncertain en-
vironments. Further, the chapters in this book are presented as the following
four categories:

• Part I: Optimum Tracking in Dynamic Environments
• Part II: Approximation of Fitness Functions
• Part III: Handling Noisy Fitness Functions
• Part IV: Search for Robust Solutions

Part I: Optimum Tracking in Dynamic Environments

Most problems studied by the evolutionary computation community are sta-
tionary optimization problems where no change occurs over time. For station-
ary optimization problems, the goal is to design EAs that can quickly and
precisely locate the optimal solution(s) to the problem at hand. However, for
dynamic optimization problems (DOPs) where change occurs over time, the
main task is not to find one optimal solution but to track the moving optimum
as soon and narrow as possible. This poses a serious challenge to conventional
EAs due to the convergence problem. For stationary optimization problems,
convergence at a proper pace other than premature convergence is exactly
what is expected for EAs to locate the optimal solution. However, conver-
gence becomes a big problem for DOPs because once converged, it is difficult
for conventional EAs to adapt to the changing environment. DOPs usually
require EAs to maintain certain level of diversity in the population. In order
to deal with this problem, several approaches have been developed in recent
years to enhance the performance of EAs in dynamic environments. Part I
of the book encapsulates nine chapters that reflect the state-of-the-art re-
search on EAs for problem optimization in dynamic environments and their
application to real world dynamic problems.

The first six chapters of Part I present advanced EA approaches for gen-
eral DOPs. In Chapter 1, Yang investigates the application of two kinds of
explicit memory schemes, direct memory and associative memory, for genetic
algorithms (GAs) and univariate marginal distribution algorithms (UMDAs)
for DOPs. Based on a series of systematically constructed dynamic test envi-
ronments, experiments are carried out to compare the direct and associative
memory schemes for GAs and UMDAs. Blackwell in Chapter 2 studies the
use of charged swarms in the particle swarm optimization (PSO) algorithm
for DOPs. A self-adapting multi-swarm approach with an exclusion operator
that provides effective repulsion between swarms is advocated in this chapter.

Preface IX

A simple rule for swarm birth and death is proposed so that the multi-swarm
may adjust its size dynamically and in relation to the number of peaks in the
dynamic environments. Chapter 3 by Schönemann experimentally investigates
evolution strategies (ESs) for dynamic numerical optimization problems. The
results demonstrates that self-adaptive ESs are powerful methods for dynamic
environments. To avoid the handicaps of existing performance measures, a
new measurement, called average best function value (ABFV), is developed
to compare EAs for DOPs. This chapter also discusses the choice for differ-
ent strategy parameters, e.g., the optimal number of mutation step sizes, for
ESs for practical application. An orthogonal dynamic hill-climbing algorithm
(ODHC) is presented by Zeng et al. in Chapter 4 for continuous DOPs. In
ODHC, the local peak climber is not a solution, but a “niche” (a small hyper-
rectangle). An orthogonal design method is employed on the niche in order to
seek a potential peak more quickly. An archive is also used to store the latest
found higher peaks, so the ODHC algorithm can learn from the past search.
Chapter 5 by Tinós and Yang presents a self-organizing random immigrants
scheme for GAs to address DOPs. In this scheme, the worst individual and
its neighbours are replaced by random immigrants, which are placed in a sub-
population to protect them from being replaced by fitter individuals in the
main population. In this way, when the fitness of the individuals are close,
one single replacement of an individual can affect a large number of individ-
uals of the population in a chain reaction. This simple approach can take the
system to a self-organization behaviour, which is useful for GAs in dynamic
environments. Bosman in Chapter 6 investigates the use of learning and an-
ticipation for EAs for online DOPs. The time–linkage property, i.e., decisions
taken now may influence the score in the future, has been identified as an
important source of problem–difficulty. A means to address time–linkage is to
predict the future (i.e. anticipation) by learning from the past. This is for-
malized into an algorithmic framework. Experimental results show that in the
presence of time–linkage EAs based on this algorithmic framework outperform
conventional EAs.

The last three chapters of Part I present work on the application of EAs
for real world dynamic problems. In Chapter 7, Dam et al. investigates XCS,
a genetics-based learning classifier system, for online dynamic data mining
problems with different degrees of concept changes. In order to reduce the
recovery time of XCS after concept changes, three strategies are proposed to
force the system to learn quickly after severe changes. The effect of noise on
the recovery time after a concept change is also experimentally investigated.
Chapter 8 by Michalewicz et al. discusses the prediction and optimization
issues in dynamic environments and suggests a system architecture, called
Adaptive Business Intelligence, to handle a kind of real world problems where
the evaluation functions are based on the prediction of the future values of
some variables. Three diverse case studies in dynamic environments: pollu-
tion control, ship navigation, and car distribution, are presented. All these
problems require some level of prediction and optimization for recommending

X Preface

the best course of action. Quintão et al. in Chapter 9 present the applica-
tion of EAs to the area coverage and node connectivity problems in wireless
sensor networks (WSNs), a kind of ad-hoc networks with distributed commu-
nication, sensing, and processing capacities. EAs are provided to support the
network manager with the concern of controlling the energy consumption in
the network and the quality of service.

Part II: Approximation of Fitness Functions

A continuing trend in science and engineering is the use of increasingly ac-
curate simulation codes in the design and analysis process so as to produce
ever more reliable and high quality products. Such technologies now play a
central role in aiding scientists validate crucial designs and to study the effects
of altering key design parameters on product performance. Nonetheless, the
use of accurate simulation methods can be very timing consuming, leading
to possibly unrealistic design cycle. Further, it poses a serious impediment to
the practical application of existing optimization methods for automatically
establishing the critical design parameters present in real world problems in
science and engineering. Particularly, EAs typically require many thousands
of function calls to the simulation codes in order to locate a near optimal solu-
tion. One promising way to significantly reduce the computational cost of EAs
by employing computationally cheap approximation models or surrogates in
place of the original computationally expensive fitness functions during evo-
lutionary optimization. The five chapters showcased in Part II of the book
reflect the recent state-of-the-art research on single and multi-objective evo-
lutionary frameworks for tackling problems with computationally expensive
optimization functions in the context of real world applications.

To reduce the number of expensive fitness function evaluations in evolu-
tionary optimization, Graning et al. in Chapter 10 present a study on several
individual-based and generation-based adaptive strategies for neural network
metamodel management. In their preliminary study, it was reported that some
of adaptation mechanisms proposed do not perform well as expected. The
individual-based meta-model management was found to be most promising
among all and subsequently applied to real world 3D blade design optimiza-
tion problem. Song in Chapter 11 considers the use of approximation models
based on Gaussian Processes for structural shape optimization. Application
examples of the proposed surrogate-assisted evolutionary approaches are given
in areas of firtree shape optimization using finite element method and engine
nacelle optimization using computational fluid dynamics.

The next three chapters contributed by Reyes-Sierra and Coello in
Chapter 12, Deb and Nain in Chpater 13, and Mack et al. in Chapter 14
present three independent studies on using approximation models in the con-
text of multi-objective optimization. In particular, Reyes-Sierra and Coello
present an empirical study on using fitness inheritance over approximation

Preface XI

models in the context of PSO and multi-objective optimization for enhancing
evolutionary search. Deb and Nain, on the other hand, present a successive fit-
ness landscape modelling for reducing the exact function evaluation calls while
retaining the basic search capability of NSGA-II. Using a case study in space
propulsion, Mack et al. show that besides obtaining substantial improvements
in the efficiency of the evolutionary search, surrogate-based optimization is
also useful for novel or exploratory design tasks by offering a global view of
the characteristics of the design space, thus enabling one to define previously
unknown feasible design space boundaries and to reveal important physics in
the design.

Part III: Handling Noisy Fitness Functions

It rarely happens that the fitness of real-world problems can be calculated by
a deterministic analytical function. In most cases, the quality of a candidate
solution has either to be measured by sensors or estimated using a numerical
method. The sensory measurements are usually contaminated with noise in the
environment, and the estimations are often subject to randomness. Though
EAs are more robust against noise compared to derivative-dependent opti-
mization methods, special attention needs to be paid in many cases. This part
of the book presents four interesting chapters describing various approaches
to handling noise in fitness evaluations.

Chapter 15 by Neri and Mäkinen describes a hierarchical EA for optimal
design of an electrical grounding grid and an elastic structure. In this hierar-
chical algorithm, the fitness of a population depends on the results from an-
other population, which is therefore noisy. To achieve reliable results, counter
measures including population sizing, sampling sizing and survivor selection
are taken. Evolution of multi-rover systems in noisy environments has been
discussed in Chapter 16 by Tumer and Agogino. Since it is unpractical to
evaluate the fitness of rovers in collective, the authors presented different
methods for designing the fitness function for individual rovers without de-
grading the performance. Noise introduced by sensors are also considered. A
memetic algorithm combining a trust-region based local search with evolu-
tionary global search is presented in Chapter 17 where a trust-region method
is combined with an evolutionary search. It is shown that on the one hand,
evolutionary algorithms are inherently more robust against noise due to their
derivative-free characteristics, the quadratic model used for fitness estimation
also contributes to reducing the influence of noise. Chapter 18 by Tezuka et al
deals with a financial optimization problem where the fitness values are based
on a Monte Carlo method. The explicit sampling method is adopted for re-
ducing the influence of noise. To reduce the computational costs, a selection
efficiency index is proposed and the sampling size is adapted in such a way
that the selection efficiency is maximized.

XII Preface

Part IV: Search for Robust Solutions

Solving optimization problems using EAs has always been perceived as finding
the optimal solution over the entire search space. However, the global optima
may not always be the most desirable solution in many real world engineering
design problems. In practice, if the global optimal solution is very sensitive
to uncertainties, for example, small changes in design variables or operating
conditions, then it may not be appropriate to use this highly sensitive solution.
Part III showcases eight chapters primarily on new methodologies of EAs for
robust search.

Lim et al. in Chapter 19 report a study on several single and multi-
objective inverse robust evolutionary optimization schemes that make little
assumption on the uncertainty structure. The inverse approach searches for
solutions that guarantee a certain degree of maximum uncertainty and, at
the same time, satisfy the desired nominal performance of the final design
solution. A multi-objective algorithm is also proposed in Chapter 20 by Goh
and Tan for robust optimization. Their method incorporates the features of
micro-GA (as a local search) to locate a worst case scenario of the candi-
date solution, a memory-based feature of tabu restriction to guide the evo-
lutionary process and periodic re-evaluation of archived solutions to reduce
uncertainty of evolved solutions. In the context of real world robust design
applications, Hu et al. in Chapter 21 describe a robust design approach that
exploits the open-ended topological synthesis capability of genetic program-
ming and bond graph modelling (GPBG) for evolving robust lowpass and
highpass analog filters with respect to parameter perturbations. Handa et al.
on the other hand, describes a novel route planning memetic optimization
system for a fleet of salting trucks that remains robust under different road
temperatures and different temperature distributions in a road network in
Chapter 22. Fan et al. in Chapter 23 report a method for robust layout syn-
thesis of micro-electromechanical resonators subjected to inherent geometric
uncertainties such as the fabrication error on the sidewall of the structure.
An alternative technique that hybridizes EAs and Interval Arithmetic is also
described in Chapter 24 by Rocco et al. Barrico and Antunes in Chapter 25
present the concept of degree of robustness in a multi-objective evolutionary
approach. The information on the degree of robustness of solutions can then
be used to support the decision maker in the selection of a robust compromise
solution. Finally, Ling et al. report a study on the effect of the sampling num-
ber of Monte-Carlo simulation method used in a standard crowding genetic
algorithm for robust optimal design of varied-line-spacing holographic grating
in recording optics in Chapter 26.

Generally speaking, this book fulfils the original aims quite well. The four
parts represent a great variety of work in the area of evolutionary computation
in dynamic and uncertain environments. We hope that the publication of this
book will further promote this emerging research field.

Preface XIII

Finally, we would like to thank Dr. Janusz Kacprzyk for inviting us to edit
this book in the Springer book series “Studies in Computational Intelligence”.
We acknowledge the authors for their fine contributions and cooperation dur-
ing the book preparation. We are grateful to Thomas Ditzinger and Heather
King of Springer for their kind support for this book.

Shengxiang Yang
Yew-Soon Ong

Yaochu Jin
November 2006

Contents

Part I Optimum Tracking in Dynamic Environments

1 Explicit Memory Schemes for Evolutionary Algorithms
in Dynamic Environments
Shengxiang Yang . 3

2 Particle Swarm Optimization in Dynamic Environments
Tim Blackwell . 29

3 Evolution Strategies in Dynamic Environments
Lutz Schönemann . 51

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC
Sanyou Zeng, Hui Shi, Lishan Kang, Lixin Ding . 79

5 Genetic Algorithms with Self-Organizing Behaviour
in Dynamic Environments
Renato Tinós, Shengxiang Yang . 105

6 Learning and Anticipation in Online Dynamic Optimization
Peter A.N. Bosman . 129

7 Evolutionary Online Data Mining: An Investigation
in a Dynamic Environment
Hai H. Dam, Chris Lokan, Hussein A. Abbass . 153

8 Adaptive Business Intelligence: Three Case Studies
Zbigniew Michalewicz, Martin Schmidt, Matthew Michalewicz,
Constantin Chiriac . 179

9 Evolutionary Algorithms for Combinatorial Problems
in the Uncertain Environment of the Wireless
Sensor Networks

XVI Contents

Frederico Paiva Quintão, Fab́ıola Guerra Nakamura, Geraldo Robson
Mateus . 197

Part II Approximation of Fitness Functions

10 Individual-based Management of Meta-models
for Evolutionary Optimization with Application
to Three-Dimensional Blade Optimization
Lars Gräning, Yaochu Jin, Bernhard Sendhoff . 225

11 Evolutionary Shape Optimization
Using Gaussian Processes
Wenbin Song . 251

12 A Study of Techniques to Improve the Efficiency
of a Multi-Objective Particle Swarm Optimizer
Margarita Reyes-Sierra, Carlos A. Coello Coello . 269

13 An Evolutionary Multi-objective Adaptive Meta-modeling
Procedure Using Artificial Neural Networks
Kalyanmoy Deb, Pawan K.S. Nain . 297

14 Surrogate Model-Based Optimization Framework: A Case
Study in Aerospace Design
Yolanda Mack, Tushar Goel, Wei Shyy, Raphael Haftka 323

Part III Handling Noisy Fitness Functions

15 Hierarchical Evolutionary Algorithms and Noise
Compensation via Adaptation
Ferrante Neri, Raino A. E. Mäkinen . 345

16 Evolving Multi Rover Systems in Dynamic and Noisy
Environments
Kagan Tumer, Adrian Agogino . 371

17 A Memetic Algorithm Using a Trust-Region Derivative-
Free Optimization with Quadratic Modelling for Optimization
of Expensive and Noisy Black-box Functions
Yoel Tenne, Steven William Armfield . 389

18 Genetic Algorithm to Optimize Fitness Function
with Sampling Error and its Application to Financial
Optimization Problem
Masaru Tezuka, Masaharu Munetomo, Kiyoshi Akama 417

Contents XVII

Part IV Search for Robust Solutions

19 Single/Multi-objective Inverse Robust Evolutionary
Design Methodology in the Presence of Uncertainty
Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim, Yaochu Jin 437

20 Evolving the Tradeoffs between Pareto-Optimality
and Robustness in Multi-Objective Evolutionary Algorithms
Chi Keong Goh, Kay Chen Tan . 457

21 Evolutionary Robust Design of Analog Filters Using
Genetic Programming
Jianjun Hu, Shaobo Li, Erik Goodman . 479

22 Robust Salting Route Optimization Using Evolutionary
Algorithms
Hisashi Handa, Lee Chapman, Xin Yao . 497

23 An Evolutionary Approach For Robust Layout Synthesis
of MEMS
Zhun Fan, Jiachuan Wang, Min Wen, Erik Goodman, Ronald Rosenberg 519

24 A Hybrid Approach Based on Evolutionary Strategies
and Interval Arithmetic to Perform Robust Designs
Claudio M. Rocco S., Daniel E. Salazar A. 543

25 An Evolutionary Approach for Assessing the Degree
of Robustness of Solutions to Multi-Objective Models
Carlos Barrico, Carlos Henggeler Antunes . 565

26 Deterministic Robust Optimal Design Based
on Standard Crowding Genetic Algorithm
Qing Ling, Gang Wu, Qiuping Wang . 583

Index . 599

List of Contributors

Hussein A. Abbass
Artificial Life and Adaptive Robotics
Laboratory
School of Information Technology
and Electrical Engineering
The University of New South Wales
Australian Defence Force Academy
Canberra ACT 2600, Australia
abbass@itee.adfa.edu.au

Adrian Agogino
UC Santa Cruz
NASA Ames Research Center
Mailstop 269-3
Moffett Field, CA 94035, USA
adrian@email.arc.nasa.gov

Kiyoshi Akama
Information Initiative Center
Hokkaido University
Kita 11 Nishi 5
Sapporo, 060-0811, Japan
akama@iic.hokudai.ac.jp

Carlos Henggeler Antunes
Department of Electrical Engineering
and Computers
University of Coimbra
3000-033 Coimbra, Portugal
ch@deec.uc.pt

Steven William Armfield
School of Aerospace, Mechanical
and Mechatronic Engineering
University of Sydney
Sydney NSW 2006, Australia
armfield@aeromech.usyd.edu.au

Carlos Barrico
Department of Informatics
University of Beira Interior
6201-001 Covilhã, Portugal
cbarrico@inescc.pt

Tim Blackwell
Department of Computing
Goldsmiths College
University of London
New Cross, London SE14 6NW, U.K.
t.blackwell@gold.ac.uk

Peter A. N. Bosman
Centre for Mathematics
and Computer Science (CWI)
P.O. Box 94079
1090 GB Amsterdam, Netherlands
Peter.Bosman@cwi.nl

Lee Chapman
School of Geography, Earth,
and Environmental Science
The University of Birmingham
Edgbaston
Birmingham B15 2TT, U.K.
l.chapman@bham.ac.uk

XX List of Contributors

Constantin Chiriac
SolveIT Software
PO Box 3161
Adelaide, SA 5000, Australia
cc@solveitsoftware.com

Carlos A. Coello Coello
CINVESTAV-IPN (Evolutionary
Computation Group)
Departamento de Ingenieŕıa
Eléctrica, Sección Computación
Av. IPN No. 2508
Col. San Pedro Zacatenco
México D.F. 07360, México
ccoello@cs.cinvestav.mx

Hai H. Dam
Artificial Life and Adaptive Robotics
Laboratory
School of Information Technology
and Electrical Engineering
The University of New South Wales
Australian Defence Force Academy
Canberra ACT 2600, Australia
z3140959@itee.adfa.edu.au

Kalyanmoy Deb
Kanpur Genetic Algorithms
Laboratory (KanGAL)
Dept. of Mechanical Engineering
Indian Institute of Technology
Kanpur
Kanpur, PIN 208 016, India
deb@iitk.ac.in

Lixin Ding
State Key Laboratory of Software
Engineering
Wuhan University
Wuhan 430072, Hubei, P. R. China.
lx ding@263.net

Zhun Fan
Technical University of Denmark
Dept. of Mechanical Engineering
Lynby, 2800, Denmark
zf@mek.dtu.dk

Tushar Goel
231 MAE-A, P.O. Box 116250
Mechanical and Aerospace
Engineering Department
University of Florida
Gainesville, FL 32611-6250, USA
tusharg@ufl.edu

Chi Keong Goh
Department of Electrical and
Computer Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576
ckgoh@nus.edu.sg

Erik Goodman
2120 Engineering Building
Michigan State University
East Lansing, MI 48824, USA
goodman@egr.msu.edu

Raphael Haftka
231 MAE-A, P.O. Box 116250
Mechanical and Aerospace
Engineering Department
University of Florida
Gainesville, FL 32611-6250, USA
haftka@ufl.edu

Hisashi Handa
Graduate School of Natural Science
and Technology
Okayama University,
Tsushima-Naka 3-1-1,
Okayama, 700-8530, JAPAN
handa@sdc.it.okayama-u.ac.jp

Jianjun Hu
MCB 403D
University of Southern California
Los Angeles, CA, 90089, USA
jianjunh@usc.edu

List of Contributors XXI

Yaochu Jin
Honda Research Institute Europe
Carl-Legien-Str 30
63073 Offenbach am Main, Germany
yaochu.jin@honda-ri.de

Lishan Kang
State Key Laboratory of Software
Engineering
Wuhan University
Wuhan 430072, Hubei, P. R. China.
kang whu@yahoo.com

Shaobo Li
CAD/CIMS Institute
Guizhou University
Guiyang 550003, Guizhou,
P. R. China
lishaobo@gzu.edu.cn

Dudy Lim
School of Computer Engineering
Nanyang Technological University
Nanyang Avenue, Singapore 639798
dlim@ntu.edu.sg

Meng-Hiot Lim
School of Electrical and Electronics
Engineering
Nanyang Technological University
Nanyang Avenue, Singapore 639798
emhlim@ntu.edu.sg

Qing Ling
Department of Automation
University of Science and Technology
of China
Hefei 230026, P. R. China
qingling@mail.ustc.edu.cn

Chris Lokan
Artificial Life and Adaptive Robotics
Laboratory
School of Information Technology
and Electrical Engineering
The University of New South Wales
Australian Defence Force Academy
Canberra ACT 2600, Australia
cjl@itee.adfa.edu.au

Yolanda Mack
231 MAE-A, P.O. Box 116250
Mechanical and Aerospace
Engineering Department
University of Florida
Gainesville, FL 32611-6250, USA
tiki@ufl.edu

Raino A. E. Mäkinen
Dipartimento di Elettrotecnica ed
Elettronica
Politecnico di Bari
Via E. Orabona 4, 70125
Bari, Italy
rainom@it.jyu.fi

Geraldo Robson Mateus
Computer Science Department
Universidade Federal de Minas
Gerais (UFMG)
Av. Antônio Carlos, 6627
Belo Horizonte, MG, Brazil
mateus@dcc.ufmg.br

Matthew Michalewicz
SolveIT Software
P.O. Box 3161
Adelaide, SA 5000, Australia
mm@solveitsoftware.com

Zbigniew Michalewicz
School of Computer Science
University of Adelaide
Adelaide, SA 5005, Australia
zbyszek@cs.adelaide.edu.au

Masaharu Munetomo
Information Initiative Center
Hokkaido University
Kita 11 Nishi 5
Sapporo, 060-0811, Japan
munetomo@iic.hokudai.ac.jp

XXII List of Contributors

Pawan K. S. Nain
Kanpur Genetic Algorithms
Laboratory (KanGAL)
Dept. of Mechanical Engineering
Indian Institute of Technology
Kanpur
Kanpur, PIN 208 016, India
pksnain@iitk.ac.in

Fab́ıola Guerra Nakamura
Computer Science Department
Universidade Federal de Minas
Gerais (UFMG)
Av. Antônio Carlos, 6627
Belo Horizonte, MG, Brazil
fgnaka@dcc.ufmg.br

Ferrante Neri
Department of Mathematical
Information Technology,
P.O. Box 35 (Agora), FI-40014
University of Jyväskylä, Finland
neferran@cc.jyu.fi

Yew-Soon Ong
School of Computer Engineering
Nanyang Technological University
Blk N4, 2b-39
Nanyang Avenue, Singapore 639798
asysong@ntu.edu.sg

Frederico Paiva Quintão
Computer Science Department
Universidade Federal de Minas
Gerais (UFMG)
Av. Antônio Carlos, 6627
Belo Horizonte, MG, Brazil
fred@dcc.ufmg.br

Margarita Reyes-Sierra
CINVESTAV-IPN (Evolutionary
Computation Group)
Departamento de Ingenieŕıa
Eléctrica, Sección Computación
Av. IPN No. 2508
Col. San Pedro Zacatenco
México D.F. 07360, México
mreyes@computacion.cs.cinvestav.mx

Claudio M. Rocco S.
Facultad de Ingenieŕıa
Universidad Central de Venezuela
Apartado Postal 47937
Los Chaguaramos
Caracas 1041A, Venezuela
crocco@reacciun.ve

Ronald Rosenberg
Department of Electrical and
Computer Engineering
Michigan State University
East Lansing, MI 48823, USA
rosenben@egr.msu.edu

Daniel E. Salazar A.
Instituto de Sistemas Inteligentes y
Aplicaciones Numéricas en
Ingenieŕıa (IUSIANI)
Universidad de Las Palmas de Gran
Canaria
Edif. Central del Parque Cient́ıfico y
Tecnológico
2 planta, Campus de Tafira Baja
Las Palmas 35017, Spain
danielsalazaraponte@gmail.com

Martin Schmidt
SolveIT Software
P.O. Box 3161
Adelaide, SA 5000, Australia
ms@solveitsoftware.com

Lutz Schönemann
Department of Computer Science
University of Dortmund
D-44221 Dortmund, Germany
lutz.schoenemann@cs.uni-dortmund.de

Hui Shi
School of Computer Science
China University of GeoSciences
Wuhan 430074, Hubei, P. R. China.
shihui0205@163.com

List of Contributors XXIII

Wei Shyy
Dept. of Aerospace Engineering
University of Michigan
1320 Beal Avenue
Ann Arbor, MI 48109-2140, USA
weishyy@umich.edu

Wenbin Song
School of Engineering Sciences
University of Southampton
University Road
Southampton SO17 1BJ, UK
w.song@soton.ac.uk

Kay Chen Tan
Department of Electrical
and Computer Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576
eletankc@nus.edu.sg

Yoel Tenne
School of Aerospace, Mechanical
and Mechatronic Engineering
University of Sydney
Sydney NSW 2006, Australia
joel.tenne@aeromech.usyd.edu.au

Masaru Tezuka
Research and Development Section
Hitachi East Japan Solutions Ltd.
2-16-10, Honcho, Aoba
Senadi, 980-0014, Japan
tezuka@hitachi-to.co.jp

Renato Tinós
Departamento de F́ısica e
Matemática
Universidade de São Paulo (USP)
Av. Bandeirantes 3900
Ribeirão Preto, SP, 14040-901, Brazil
rtinos@ffclrp.usp.br

Kagan Tumer
NASA Ames Research Center
Mailstop 269-4
Moffett Field, CA 94035, USA
ktumer@mail.arc.nasa.gov

Jiachuan Wang
Systems Department
United Technologies Research Center
East Hartford, 06128, USA
WangJ2@utrc.utc.com

Qiuping Wang
National Synchrotron Radiation
Laboratory
University of Science and Technology
of China
Hefei 230026, P. R. China
qiuping@ustc.edu.cn

Min Wen
Technical University of Denmark
Department of Informatics and
Mathematical Modelling
Lynby, 2800, Denmark
mw@imm.dtu.dk

Gang Wu
Department of Automation
University of Science and Technology
of China
Hefei 230026, P. R. China
wug@ustc.edu.cn

Shengxiang Yang
Department of Computer Science
University of Leicester
University Road
Leicester LE1 7RH, U.K.
s.yang@mcs.le.ac.uk

Xin Yao
CERCIA
School of Computer Science
The University of Birmingham
Edgbaston,
Birmingham B15 2TT, U.K.
x.yao@cs.bham.ac.uk

Sanyou Zeng
School of Computer Science
China University of GeoSciences
Wuhan 430074, Hubei, P. R. China.
sanyou-zeng@263.net

Part I

Optimum Tracking in Dynamic Environments

1

Explicit Memory Schemes for Evolutionary
Algorithms in Dynamic Environments

Shengxiang Yang

Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom
s.yang@mcs.le.ac.uk

Summary. Problem optimization in dynamic environments has atrracted a grow-
ing interest from the evolutionary computation community in reccent years due
to its importance in real world optimization problems. Several approaches have
been developed to enhance the performance of evolutionary algorithms for dynamic
optimization problems, of which the memory scheme is a major one. This chap-
ter investigates the application of explicit memory schemes for evolutionary algo-
rithms in dynamic environments. Two kinds of explicit memory schemes: direct
memory and associative memory, are studied within two classes of evolutionary al-
gorithms: genetic algorithms and univariate marginal distribution algorithms for
dynamic optimization problems. Based on a series of systematically constructed dy-
namic test environments, experiments are carried out to investigate these explicit
memory schemes and the performance of direct and associative memory schemes are
campared and analysed. The experimental results show the efficiency of the memory
schemes for evolutionary algorithms in dynamic environments, especially when the
environment changes cyclically. The experimental results also indicate that the effect
of the memory schemes depends not only on the dynamic problems and dynamic
environments but also on the evolutionary algorithm used.

1.1 Introduction

Evolutionary algorithms (EAs) have been widely applied to solve stationary
optimization problems. However, many real world problems are actually dy-
namic optimization problems (DOPs) . For DOPs, the fitness function, design
variables, and/or environmental conditions may change over time due to many
reasons, e.g., machine breakdown and financial factors. Hence, for DOPs the
aim of an optimization algorithm is no longer to locate an optimal solution
but to track the moving optima with time. This challenges traditional EAs
seriously since they cannot adapt well to the changing environment once con-
verged. However, traditional EAs with proper enhancements are still good
tools of choice for optimization problems in dynamic environments. This is

S. Yang: Explicit Memory Schemes for Evolutionary Algorithms in Dynamic Environments,

Studies in Computational Intelligence (SCI) 51, 3–28 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

4 Shengxiang Yang

because EAs are basically inspired by principles of natural evolution, which
has been taking place in the ever-changing dynamic environments in nature.

In recent years, there has been a growing interest in investigating EAs for
DOPs. This trend reflects the importance of the practical application of EAs
for real world optimization problems, many of which are DOPs [4]. Several
approaches have been developed into EAs to address DOPs, such as main-
taining diversity during the run via random immigrants [8, 23, 25], increasing
diversity after a change [6, 7], using memory schemes to store and reuse useful
information [3, 26], and multi-population approaches [12].

Among the approaches developed for EAs in dynamic environments, mem-
ory schemes have proved to be beneficial for many DOPs. Memory schemes
work by storing useful information from the current environment and reusing
it later in new environments. The useful information may be stored in two
mechanisms: by implicit memory or by explicit memory. For implicit memory
schemes, EAs use genotype representations that contain redundant informa-
tion to store good (partial) solutions to be reused later. Typical examples are
genetic algorithms (GAs) based on multiploidy representations [9, 9, 10, 12],
structured encoding [7], or dualism mechanisms [24, 29]. Explicit memory
schemes use precise representations but split an extra memory space to ex-
plicitly store useful information, e.g., good solutions [2, 3, 13, 22] and/or
environmental information [21, 25], from the current generation for reuse in
later generations or environments.

In this chapter, we focus on studying explicit memory schemes for EAs in
dynamic environments. Two kinds of explicit memory schemes, direct memroy
and associative memory, are investigated within two classes of EAs, GAs
and univariate marginal distribution algorithms (UMDAs), for DOPs. For the
direct memory scheme good solutions are stored in the memory and reused
in new environments. For the associative memory scheme, the environmental
information as well as good solutoins are stored and associated in the memory.
When a change occurs, the stored environmental information associated with
the best re-evaluated memory solution is used to create new individuals into
the population. Using the dynamic problem generator proposed in [24, 29, 30],
a series of dynamic test problems are constructed from a set of stationary
functions and experiments are carried out to compare the performance of
investigated GAs and UMDAs, with and without explicit memory schemes.
The experimental results validates the efficiency of the memory scheme for
GAs and UMDAs in dynamic environments.

The outline of this chapter is given as follows. The next section briefly
reviews explicit memory schemes developed for EAs in dynamic environments.
Section 1.3 describes the memory enhanced GAs investigated in this study
while Section 1.4 describes the memory enhanced UMDAs investigated in
this study. Section 1.5 presents the dynamic test environments for this study.
The experimental results and relevant analysis are presented in Section 1.6.
Section 1.7 concludes this paper with discussions on relevant future work.

1 Explicit Memory Schemes for EAs in Dynamic Environments 5

1.2 Explicit Memory for EAs in Dynamic Environments

The application of memory schemes has proved to be able to enhance EA’s per-
formance in dynamic environments, especially when the environment changes
cyclically in the search space1. In these environments, with time going an old
environment will reappear exactly and the associated solution in the memory,
which exactly remembers the old environment, will instantaneously move EAs
to the reappeared environment.

As mentioned before, the basic principle of memory schemes is to, im-
plicitly or explicitly, store useful information from the current environment
and reuse it later in new environments. Implicit memory schemes for EAs
in dynamic environments depend on redundant representations to store use-
ful information for EAs to exploit during the run. On the contrast, explicit
memory schemes make use of precise representation but split an extra storage
space where useful information from the current generation can be explicitly
stored and reused in later generations or environments. For explicit memory
schemes there are three major technical considerations: what to store in the
memory, how to update the memory, and how to retrieve the memory.

For the first aspect, a natural choice is to store good solutions and reuse
them when the environment change is detected. This is called direct memory
scheme. For example, Louis and Xu [13] studied the open shop re-scheduling
problem. Whenever a change (in a known pattern) occurs, the GA is restarted
from a population with partial (5-10%) individuals inherited from the old run
while the rest are randomly initialized. The authors reported a significant im-
provement of their GA over the GA with totally random restart scheme. In-
stead of storing good solutions only, the environmental information can also be
stored and associated with good solutions in the memory. When the environ-
ment changes, the stored environemntal information can be used to associate
with certain stored good solutions and reuse them more efficiently or used to
create new individuals into the population. This memory scheme is called as-
sociative memory scheme. For example, Ramsey and Greffenstette [21] studied
a GA for robot control problem, where good candidate solutions are stored in
a permanent memory together with information about the robot current envi-
ronment. When the robot incurs a new environment that is similar to a stored
environment instance, the associated stored controller solution is re-activated.
This scheme was reported to yield significant improvements. In Yang [26]
and Yang and Yao [30], an associative memory scheme was introduced into
population-based incremental learning (PBIL) algorithms [1]. In this mem-
ory scheme, the best sample in the population together with the propability
vector, which represents the current environment, is stored in the memory.
1 For the convenience of description, we differentiate the environmental changing

periodicality in time and space by wording periodical and cyclic respectively. The
environment is said to be periodically changing if it changes in a fixed time interval,
e.g., every certain EA generations, and is said to be cyclically changing if it visits
several fixed states in the search space in a certain order repeatedly.

6 Shengxiang Yang

When a change is detected, the probability vector associated with the best
re-evaluated memory sample is used to create new samples. The associative
memory greatly improves PBIL’s performance in dynamic environments.

The memory space is usually limited (and fixed) for the efficiency of com-
putation and searching. This leads to the second consideration of explicit
memory schemes: memory organization and updating mechanisms. As to the
memory organization, there exist two mechanisms: local mechanism where
the memory is individual-oriented and global mechanism where the memory
is population-oriented. Trojanowski and Michalewicz [22] introduced a local
memory approach, where for each individual the memory stores a number of
its ancestors. When the environment changes, the current individual and its
ancestors are re-evaluated and compete together with the best becoming the
active individual while the others stored in the memory. The global memory
mechanism is more natural and popular. In the global memory mechanism,
the best individual of the population is replaced into the memory every certain
or random generations according to a certain replacement policy, see [3, 3].

As to the memory updating mechanism, a general principle is to select one
memory individual to be removed for or updated by the best individual from
the population in order to make the stored individuals to be of above average
fitness, not too old, and distributed across several promising areas of the
search space. Branke [3] has discussed several memory replacement strategies:
1). replacing the least important one with the importance value of individuals
being the linear combination of age, contribution to diversity, and fitness;
2). replacing the one with least contribution to memory variance; 3). replacing
the most similar one if the new individual is better; and 4). replacing the less
fit of a pair of memory individuals that has the minimum distance among all
pairs. The third strategy seems the most practical one due to its simplicity
and will be applied in the memory enhanced EAs studied in this chapter.
Bendtsen and Krink [2] proposed a different memory updating scheme where
the memory individual closest to the best population individual is moved
toward the best population individual, instead of being replaced from the
memory by the best population individual.

For the third concern regarding how to retrieve the memory, a natural
idea is to retrieve the best memory individual(s) to replace the least fit indi-
vidual(s) in the population. This can be done every generation or only when
the environment changes. The memory retrieval is sort of coupled with the
above two concerns. For example, for the direct memory scheme the whole
memory individuals may enter the new population as in [13] or compete with
the population individuals for the new population as in [3], while for the as-
sociative memory scheme only the associated memory individual(s) [21] or
new individuals created by the associated environmental information [26, 30]
may enter the new population. And for the local memory organization scheme
the best ancestor of an active individual competes with it to become active
in the population [22], while for the global memory scheme the best memory
individual(s) may compete with all individuals in the population.

1 Explicit Memory Schemes for EAs in Dynamic Environments 7

t := 0 and initialize population P (0) randomly
repeat

evaluate(P (t))
replace the worst individual in P (t) by elite from P (t− 1)
P ′(t) := selectForReproduction(P (t))
crossover(P ′(t), pc)
mutate(P ′(t), pm)

until termination condition holds // e.g., t > tmax

Fig. 1.1. Pseudo-code for the standard GA (SGA) where elitism of size 1 is used

In the following two sections we will respectively describe the GAs and
UMDAs with direct and associative memory schemes, which are investigated
in this chapter.

1.3 Description of Investigated GAs

1.3.1 The Standard GA

The standard GA maintains and evolves a population of candidate solutions
through selection and variation. New populations are generated by first prob-
abilistically selecting relatively fitter individuals from the current population
and then performing crossover and mutation on them to create new off-spring.
This process continues until some termination condition becomes true, e.g.,
the maximum allowable number of generations tmax is reached. The pseudo-
code for the standard GA (SGA) investigated in this chapter is shown in
Fig. 1.1, where pc and pm are the crossover and mutation probabilities re-
spectively and the elitism is used.

Usually, with the iteration of SGA, individuals in the population will even-
tually converge to the optimam or near optimum solution(s) in stationary
environments due to the pressure of selection. Convergence at a proper pace,
instead of pre-mature, may be beneficial and, in fact, is expected in many
optimization problems for GAs to locate expected solutions in stationary en-
vironments. However, convergence becomes a big problem for GAs in dynamic
environments. In fact, it is the main reason why traditional GAs do not per-
form well in dynamic environments. Convergence deprives the population of
genetic diversity. Consequently, when a change occurs, it is hard for GAs
to adpat to the new environment. Hence, in dynamic environments additional
approaches are required to maintain the population diversity by random immi-
grants or adapt the GA directly to the new environment by memory schemes.
The next two sub-sections describe respectively GAs with direct memory and
associative memory enhancements, which are the main concern of this chapter.

8 Shengxiang Yang

t := 0 and initialize population P (0) randomly
tM := rand(5, 10) and initialize memory M(0) randomly
repeat

evaluate(P (t), M(t))
replace the worst individual in P (t) by elite from P (t− 1)

if environmental change detected then
if DMGA then P ′(t) := retrieveBestMembers(P (t), M(t))
else // for AMGA and HMGA

denote the best memory point <BM (t),DM (t)>
I(t) := create α ∗ (n−m) individuals from DM (t)
P ′(t) := replace the worst individuals in P (t) by ones in I(t)
if HMGA then P ′(t) := retrieveBestMembers(P ′(t), M(t))

else P ′(t) := P (t)

if t = tM then tM := t + rand(5, 10) // time to update memory
denote the best individual in P ′(t) by BP (t)
if not DMGA then DP (t) := allele distribution vector in P ′(t)

if still any random point in M(t) then
if DMGA then replace a random memory point by BP (t)
else replace a random memory point by <BP (t),DP (t)>

else // memory is full
if DMGA then Sc

M (t) := the memory point closest to BP (t)
if f(BP (t)) ≥ f(Sc

M (t)) then Sc
M (t) := BP (t)

else <Sc
M (t),Dc

M (t)>:= the memory point closest to <BP (t),DP (t)>
if f(BP (t)) ≥ f(Sc

M (t)) then <Sc
M (t),Dc

M (t)>:=<BP (t),DP (t)>

// standard genetic operations
P ′(t) := selectForReproduction(P ′(t))
crossover(P ′(t), pc)
mutate(P ′(t), pm)

until termination condition holds // e.g., t > tmax

Fig. 1.2. Pseudo-code for the memory enhanced GAs: GA with direct memory
(DMGA), GA with associative memory (AMGA), and GA with hybrid memory
(HMGA)

1.3.2 GA with Direct Memory

The pseudo-code for the GA with direct memory, denoted DMGA in this
chapter, is shown in Fig. 1.2, where f(·) is the fitness function. DMGA (and
other memory enhanced EAs in this study) uses a memory of size m = 0.1∗n,
which is randomly initialized. When the memory is due to update, if any of
the randomly initialized points still exists in the memory, the best individ-
ual of the population will replace one of them randomly; otherwise, it will
replace the closest memory point if it is better (the most similar memory

1 Explicit Memory Schemes for EAs in Dynamic Environments 9

updating strategy). Instead of updating the memory in a fixed time interval,
the memory in DMGA is updated in a stochastic time pattern. After a mem-
ory updating at generation t, the next memory updating time tM is given by:
tM = t + rand(5, 10). This way, the potential effect that the environmental
change period coincides with the memory updating period (e.g., the memory
is updated whenever the environment changes) can be smoothed away.

The memory in DMGA is re-evaluated every generation to detect envi-
ronmental changes. The environment is detected as changed if at least one
individual in the memory is detected having changed its fitness. If a change
is detected, the memory is merged with the current population and the best
n−m individuals are selected as an interim population to undergo standard
genetic operations for a new population while the memory remains unchanged.

1.3.3 GA with Associative Memory

In [26, 30], an associative memory has been developed for PBILs in dynamic
environments. The idea can be extended to GAs for DOPs [28]. That is, we
can store the environmental information together with good solutions in the
memory for later reuses. Here, the key thing is how to represent the current
environment. As mentioned before, given a problem in a certain environment
the population of a GA will eventually converge toward the optimum or near
optimum of the environment when the GA progresses its searching. The con-
vergence information, i.e., the allele distribution in the population, can be
taken as the natural representation of the current environment. Each time
when the best individual of the population is stored in the memory, the sta-
tistics information on the allele distribution for each locus, called the allele
distribution vector, can also be stored in the memory and associated with the
best individual.

The pseudo-code for the GA with the associative memory, denoted AMGA,
is also shown in Fig. 1.2. Within AMGA, the memory is used to store solu-
tions and associated environmental information. That is, each memory point
consists of a pair < S,D >, where S is the stored solution and D is the as-
sociated allele distribution vector. For binary encoding (as per this study),
the frequency of ones over the population in a gene locus can be taken as the
allele distribution for that locus.

As in DMGA, the memory in AMGA is re-evaluated every generation.
If an environmental change is detected, the allele distribution vector of the
best memory point < BM (t),DM (t) >, i.e., the memory point with its solu-
tion BM (t) having the highest re-evaluated fitness, is extracted. And a set of
α ∗ (n − m) new individuals are created from this allele distribution vector
DM (t) and swapped into the population by replacing the worst individuals.
Here, the parameter α ∈ [0.0, 1.0], called associative factor, determines the
number of new individuals to be generated and hence the impact of the asso-
ciative memory to the current population. A new individual S = {s1, · · · , sl}
is created by DM (t) = {d1, · · · , dl} (l is the encoding length) as follows:

10 Shengxiang Yang

si =

{
1, if rand(0.0, 1.0) < di

0, otherwise
(1.1)

The memory replacement strategy in AMGA is similar to that in DMGA.
When the memory is due to update, if there are still any randomly ini-
tialized memory points in the memory, a random one will be replaced by
< BP (t), DP (t) >, where BP (t) and DP (t) are the best individual and al-
lele distribution vector of the current population respectively; otherwise, we
first find the memory point <Sc

M (t),Dc
M > with its solution Sc

M (t) closest to
BP (t). If BP (t) is fitter than Sc

M (t), i.e., f(BP (t)) > f(Sc
M (t)), the memory

point is replaced by <BP (t),DP (t)>.
The aforementioned direct and associative memory can be combined into

GAs. The resulted GA is called the hybrid memory based GA (HMGA in
short). The pseudo-code of HMGA is also shown in Fig. 1.2. HMGA differs
from AMGA only as follows. When a change is detected, new individuals
are created from the allele distribution vector of the best memory point and
swapped into the population. Then, the original memory solutions M(t) are
merged with the main population to select n − m best ones as the interim
population to go though standard genetic operations.

1.4 Description of Investigated UMDAs

1.4.1 The Standard UMDA

Mühlenbein [19] introduced the UMDA as the simplest version of estimation
of distribution algorithms (EDAs) [18]. Thereafter, there have been several
modifications of UMDAs [14] and UMDAs have been applied to many opti-
mization problems [11]. In the binary search space, UMDAs evolve a prob-
ability vector p(t) = (p(1, t), . . . , p(l, t)) where all the variables are assumed
to be independent of each other. The pseudo-code for the standard UMDA
(SUMDA) studied in this chapter is shown in Fig. 1.3, where the mechanisms
of mutation and elitism are used.

SUMDA starts from the central probability vector that has a value of 0.5
for each locus and falls in the central point of the search space. Sampling
this probability vector creates random solutions because the probability of
creating a 1 or 0 on each locus is equal2. At iteration t, a population S(t) of
n individuals are sampled from the probability vector p(t). The samples are
evaluated and an interim population D(t) is formed by selecting µ (µ < n)
best individuals, denoted x1(t), · · · ,xµ(t), from S(t). Then, the probability
vector is updated by extracting statistics information from D(t) as follows:
2 Without loss of generality, a binary-encoded solution x = (x1, . . . , xl) ∈ {0, 1}l is

sampled from a probability vector p(t) as follows: for each locus i, if a randomly
created number r = rand(0.0, 1.0) < p(i, t), its allele xi is set to 1; otherwise, xi

is set to 0.

1 Explicit Memory Schemes for EAs in Dynamic Environments 11

t := 0 and initialize the probability vector p(0) := 0.5
repeat

sample a population S(t) of individuals by p(t)
evaluate(S(t))
replace the worst individual in S(t) by elite from S(t− 1)
select the best µ individuals from S(t) to form D(t)
build p′(t) according to D(t) by Eqn. (1.2)
mutate p′(t) by Eqn. (1.3)

until termination condition holds // e.g., t > tmax

Fig. 1.3. Pseudo-code of the standard UMDA (SUMDA) with mutation and elitism

p′(t) :=
1
µ

k=µ∑
k=1

xk(t) (1.2)

After the probability vector is updated according to D(t), in order to
keep the diversity of generated samples in dynamic environments, a bitwise
mutation is applied in SUMDA. The mutation operation always changes the
probability vector toward the central probability vector as follows. For each
locus i = {1, . . . , l}, if a random number r = rand(0.0, 1.0) < pm (pm is the
mutation probability), then mutate p(i, t) using the following formula:

p′(i, t) =

⎧⎨
⎩

p(i, t) ∗ (1.0− δm), p(i, t) > 0.5
p(i, t), p(i, t) = 0.5
p(i, t) ∗ (1.0− δm) + δm, p(i, t) < 0.5,

(1.3)

where δm is the mutation shift that controls the amount a mutation operation
alters the value in each bit position. After the mutation operation, a new set of
samples is generated by the new probability vector and this cycle is repeated.

As the search progresses, the elements in the probability vector move away
from their initial settings of 0.5 towards either 0.0 or 1.0, representing smaples
of high fitness. The search stops when some termination condition holds, e.g.,
the maximum allowable number of iterations tmax is reached.

1.4.2 UMDA with Direct Memory

The direct memory scheme for GAs can be easily extended to UMDAs for
DOPs. The pseudo-code for the investigated UMDA with the direct memory,
denoted DMUMDA, is shown in Fig. 1.4. In Fig. 1.4, n is the number of
evaluations per iteration including the memory samples and f(x) denotes the
fitness of individual x.

As in DMGA, DMUMDA uses a memory to store best samples from the
population. And the memory in DMUMDA is updated using the same sto-
chastic time pattern as in DMGA: after a memory update at time t, the next

12 Shengxiang Yang

t := 0 and initialize p(0) := 0.5
tM := rand(5, 10) and initialize memory M(0) randomly
repeat

sample a population S(t) of individuals by p(t)
evaluate(S(t), M(t))
replace the worst individual in S(t) by elite from S(t− 1)

if environmental change detected then
if DMUMDA then S′(t) := retrieveBestMembers(S(t), M(t))
else // for AMUMDA and HMUMDA

denote the best memory point <BM (t),pM (t)>
I(t) := create α ∗ (n−m) individuals from pM (t)
S′(t) := replace the worst individuals in S(t) by ones in I(t)
if HMUMDA then S′(t) := retrieveBestMembers(S′(t), M(t))

else S′(t) := S(t)

if t = tM then tM := t + rand(5, 10) // time to update memory
denote the best individual in S′(t) by BS(t)
if still any random point in M(t) then

if DMUMDA then replace a random memory point by BS(t)
else replace a random memory point by <BS(t),p(t)>

else // memory is full
if DMUMDA then Sc

M (t) := the memory point closest to BS(t)
if f(BS(t)) ≥ f(Sc

M (t)) then Sc
M (t) := BS(t)

else <Sc
M (t),pc

M (t)>:= the memory point closest to <BS(t),p(t)>
if f(BS(t)) ≥ f(Sc

M (t)) then <Sc
M (t),pc

M (t)>:=<BS(t),p(t)>

select the best µ individuals from S′(t) to form D(t)
build p′(t) according to D(t) by Eqn. (1.2)
mutate p′(t) by Eqn. (1.3)

until termination condition holds // e.g., t > tmax

Fig. 1.4. Pseudo-code for the memory enhanced UMDAs: UMDA with direct mem-
ory (DMUMDA), UMDA with associative memory (AMUMDA), and UMDA with
hybrid memory (HMUMDA)

memory updating time is tM = t + rand(5, 10). When the memory is due to
update, we first find the memory point closest to the best population sample
in terms of Hamming distance. If the best population sample has higher fit-
ness than this memory sample, it is replaced by the best population sample;
otherwise, the memory stays unchanged.

The memory in DMUMDA is re-evaluated every iteration. If any memory
sample has its fitness changed, the environment is detected to be changed.
Then, the memory will be merged with the current population to form an
intermit population. If no environmental change is detected, DMUMDA pro-
gresses just as the standard UMDA does.

1 Explicit Memory Schemes for EAs in Dynamic Environments 13

1.4.3 UMDA with Associative Memory

Using associative memory for UMDAs is more straightforward than for GAs
because the probability vector that is evolved within UMDAs can be directly
taken as the environmental information without any cost of further calcu-
lation. Each time when the best sample of the population is stored in the
memory, the probability vector is also stored in the memory and associated
with the sample. The pseudo-code of the UMDA with the associative memory,
denoted AMUMDA, is also shown in Fig. 1.4.

The memory in AMUMDA has m = 0.1∗n points, each consisting of a pair
<S,p>, where S is a stored sample and p is the associated probability vector.
The memory is re-evaluated every generation. If an environmental change is
detected, the probability vector of the best memory point <BM (t),pM (t)> is
extracted to create a set of α∗(n−m) new samples to replace the worst ones in
the population. Here, the parameter α ∈ [0.0, 1.0] is the associative factor. The
memory in AMUDMA is updated similarly as in AMGA. When the memory
is due to update, if there are still any randomly initialized memory points in
the memory, a random one is replaced by <BS(t),p(t)>, where BS(t) is the
best sample in the population; otherwise, the memory point <Sc

M (t),pc
M (t)>

closest to BS(t) is replaced by <BS(t),p(t)> if BS(t) is fitter than Sc
M (t).

Similarly, the above direct and associative memory can be combined into
UMDAs. The pseudo-code of the UMDA with a hybrid direct and associative
memory, denoted HMUMDA, is also shown in Fig. 1.4. In HMUMDA, when
a change is detected, after integrating the individuals that are sampled from
the best memory probability vector into the population, the memory samples
M(t) are also merged with the population to select n − m best ones as the
interim population to build a new model.

1.5 Dynamic Test Environments

The dynamic problem generator proposed in [24, 29] can construct random
dynamic environments from any binary-encoded stationary function f(x) (x ∈
{0, 1}l) by a bitwise exclusive-or (XOR) operator. Suppose the environment
changes every τ generations. For each environmental period k, an XORing
mask M(k) is incrementally generated as follows:

M(k) = M(k − 1)⊕T(k), (1.4)

where “⊕” is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1, 0 ⊕ 0 = 0) and
T(k) is an intermediate binary template randomly created with ρ × l ones
for environmental period k. For the first period k = 1, M(1) is set to a zero
vector. Then, the population at generation t is evaluated as below:

f(x, t) = f(x⊕M(k)), (1.5)

where k = �t/τ� is the environmental period index. With this generator, the
parameter τ controls the change speed while ρ ∈ (0.0, 1.0) controls the severity
of environmental changes. Bigger ρ means severer environmental change.

14 Shengxiang Yang

Recently, the XOR dynamic problem generator has been extended to con-
struct cyclic dynamic environments in [27] and cyclic dynamic environments
with noise further in [30]. With the XOR generator, cyclic dynamic environ-
ments are constructed as follows. First, we can generate 2K XORing masks
M(0),M(1), · · · ,M(2K − 1) as the base states in the search space randomly.
Then, the environment can cycle among these base states in a fixed logical
ring. Suppose the environment changes every τ generations, then the individ-
uals at generation t is evaluated as follows:

f(x, t) = f(x⊕M(It)) = f(x⊕M(k%(2K))), (1.6)

where k = �t/τ� is the index of the current environmental period and It =
k%(2K) is the index of the base state the environment is in at generation t.

The 2K XORing masks can be generated in the following way. First, we
construct K binary templates T(0), · · · ,T(K − 1) that form a random par-
tition of the search space with each template containing ρ × l = l/K bits of
ones3. Let M(0) = 0 denote the initial state. Then, the other XORing masks
are generated iteratively as follows:

M(i + 1) = M(i)⊕T(i%K), i = 0, · · · , 2K − 1 (1.7)

The templates T(0), · · · ,T(K − 1) are first used to create K masks till
M(K) = 1 and then orderly reused to construct another K XORing masks till
M(2K) = M(0) = 0. The Hamming distance between two neighbour XORing
masks is the same and equals ρ× l. Here, ρ ∈ [1/l, 1.0] is the distance factor,
determining the number of base states.

From the XOR generator, we can further construct cyclic dynamic envi-
ronments with noise as follows. We can construct a set of base states and let
the environment cycles among the base states just as above. However, each
time the environment is about to move to a next base state M(i), M(i) is
bitwise flipped with a small probability, denoted pn in this chapter.

In this experimmental study, three 100-bit binary functions, denoted
OneMax, Royal Road and Deceptive respectively, are selected as the base
stationary functions to construct dynamic test environments. They all consist
of 25 contiguous 4-bit building blocks and have an optimum fitness of 100.
As shown in Fig. 1.5, the building block for each function is defined based
on the unitation function, i.e., the number of ones inside the building block.
The building block for OneMax is just a OneMax sub-function, which aims
to maximize the number of ones in a chromosome. The building block for
Royal Road contributes 4 to the total fitness if its unitation is 4; otherwise,
it contributes 0. The building block for Deceptive is fully deceptive. These
three stationary functions have increasing difficulty for EAs in the order from
OneMax to Royal Road to Deceptive.
3 In the partition each template T(i) (i = 0, · · · , K − 1) has randomly but exclu-

sively selected ρ× l bits set to 1 while other bits to 0. For example, T(0) = 0101
and T(1) = 1010 form a partition of the 4-bit search space.

1 Explicit Memory Schemes for EAs in Dynamic Environments 15

4

3

2

1

0

43210

Fi
tn

es
s

Unitation

OneMax
Royal Road
Deceptive

Fig. 1.5. Building block of the three stationary functions

Three kinds of dynamic environments, cyclic, cyclic with noise and ran-
dom, are constructed from each base function using the XOR DOP generator.
For each kind of dynamic environments, the landscape is periodically changed
every τ generations during the run of an EA. In order to compare the perfor-
mance of EAs in different dynamic environments, the parameters τ is set to
10 and 25 and ρ is set to 0.1, 0.2, 0.5, and 1.0 respectively. For cyclic dynamic
problems with noise, the noise probability pn is set to 0.05. Totally, a series
of 24 DOPs, 2 values of τ combined with 4 values of ρ under three kinds of
dynamic environments, are constructed from each stationary function.

1.6 Experimental Study

1.6.1 Experimental Design

Experiments were carried out to compare the performance of investigated
EAs on the dynamic test environments. For all EAs, the parameters are set
as follows: the total population size is set to n = 100, including memory size
m = 0.1∗n = 10 if used, and the elitism size is set to 1. For all GAs, parameters
are set as: standard uniform crossover with the crossover probability pc = 0.6,
bit flip mutation with the mutation probability pm = 0.01. For all UMDAs,
the mutation probability pm = 0.02 with the mutation shift δm = 0.05, µ is
set to 0.5 ∗n for SUMDA or 0.5 ∗ (n−m) for memory enhanced UMDAs. For
AMGAs and AMUMDAs, in order to test the effect of the associative factor
α on their performance, α is set to 0.1, 0.5, and 1.0 respectively. For HMGAs
and HMUMDAs, the associative factor α is set to 0.5. And an EA with as-
sociative memory will be reported as α-AMGA, α-HMGA, α-AMUMDA, or
α-HMUMDA respectively in the experimental results.

For each experiment of an EA on a dynamic test problem, 50 independent
runs were executed with the same set of random seeds. For each run 5000
generations were allowed, which are equivalent to 500 and 200 environmental
changes for τ = 10 and 25 respectively. For each run the best-of-generation
fitness was recorded every generation. The overall offline performance of an
algorithm on a problem is defined as:

16 Shengxiang Yang

FBOG =
1
G

G∑
i=1

(
1
N

N∑
j=1

FBOGij
), (1.8)

where G = 5000 is the total number of generations for a run, N = 50 is the
total number of runs, and FBOGij

is the best-of-generation fitness of genera-
tion i of run j. The offline performance FBOG is the best-of-generation fitness
averaged over 50 runs and then averaged over the data gathering period.

1.6.2 Experimental Results and Analysis of GAs on DOPs

The experimental results of GAs on the dynamic test problems under cyclic,
cyclic with noise, and random dynamic environments are plotted in Fig. 1.6 to
Fig. 1.8 respectively. The corresponding statistical results of comparing GAs
by one-tailed t-test with 98 degrees of freedom at a 0.05 level of significance
are given in Table 1.1 to Table 1.3 respectively. In Table 1.1 to Table 1.3,
the t-test result regarding Alg. 1 − Alg. 2 is shown as “=”, “+”, “−”, “s+”
or “s−” if Alg. 1 is statistically equivalent to, insignificantly better than,
insignificantly worse than, significantly better than, or significantly worse than
Alg. 2 respectively. From the figures and tables several results can be observed.

First, both DMGA and AMGAs perform significantly better than SGA
on most dynamic problems, especially in cyclic environments. This result
validates the efficiency of introducing memory schemes, either direct or as-
sociative, into GAs in dynamic environments. Viewing across Fig. 1.6 to
Fig. 1.8, it can be seen that both DMGA and AMGAs achieve the largest
performance improvement over SGA in cyclic environments. For example,
when τ = 10 and ρ = 0.5, the performance difference of DMGA over SGA,
FBOG(DMGA)− FBOG(SGA), is 94.1− 58.9 = 35.2, 67.2− 59.8 = 7.4, and
67.2 − 65.6 = 1.6 under cyclic, cyclic with noise, and random environments
respectively. This result indicates that the effect of memory schemes depends
on the cyclicity of dynamic environments. When the environment changes
randomly and slightly (i.e., ρ is small), both DMGA and AMGAs are beaten
by SGA. This is because under these conditions, the environment is unlikely
to return to a previous state that is memorized by the memory scheme. And
hence inserting stored solutions or creating new ones according to the stored
allele distribution vector may mislead or slow down the progress of the GAs.

Second, comparing AMGAs over DMGA, it can be seen that AMGAs
outperform DMGA on many DOPs, especially under cyclic environments.
This happens because the extracted memory allele distribution vector is much
stronger than the stored memory solutions in adapting the GA to the new en-
vironment. However, when ρ is small and the environment changes randomly,
AMGAs are beaten by DMGA for most cases, see the t-test results regarding
α-AMGA – DMGA. This is because under these environments the negative
effect of the associative memory in AMGAs may weigh over the direct memory
in DMGA.

1 Explicit Memory Schemes for EAs in Dynamic Environments 17

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 10

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 10
SGA

DMGA
0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 25

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 25

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 25
SGA

DMGA
0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

Fig. 1.6. Experimental results of GAs on cyclic DOPs

Table 1.1. The t-test results of comparing GAs on cyclic DOPs

t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ −
0.1-AMGA − DMGA s+ s+ s− s− s+ s− s− s− + s− s− s−
0.5-AMGA − DMGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s−
1.0-AMGA − DMGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s−

0.5-AMGA − 0.1-AMGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s−
1.0-AMGA − 0.5-AMGA s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s−
0.5-HMGA − 0.5-AMGA − s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMGA − DMGA s− s− s+ − − + s+ s+ s− − − −
0.5-AMGA − DMGA − + s+ s+ s+ s+ s+ s+ s+ s+ s+ s−
1.0-AMGA − DMGA s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ −

0.5-AMGA − 0.1-AMGA + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ −
1.0-AMGA − 0.5-AMGA s− s− s+ s+ − s+ s+ s+ s+ s+ s+ −
0.5-HMGA − 0.5-AMGA s+ + s+ s+ + s+ s+ + s+ s+ + s+

In order to better understand the performance of GAs, the dynamic per-
formance of GAs regarding best-of-generation fitness against generations on
dynamic OneMax functions with τ = 10 and ρ = 0.5 under different cyclicity
of dynamic environments is plotted in Fig. 1.9. In Fig. 1.9, the first and last
10 environmental changes (i.e., 100 generations) are shown and the data were

18 Shengxiang Yang

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 10

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 10
SGA

DMGA
0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 25

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 25

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 25
SGA

DMGA
0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

Fig. 1.7. Experimental results of GAs on cyclic DOPs with noise

Table 1.2. The t-test results of comparing GAs on cyclic DOPs with noise

t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s− s+ s+ s+ s− s+ s+ s− − − − −

0.5-AMGA − SGA s− s+ s+ s+ s− s+ s+ s+ s− s− s− s−
0.1-AMGA − DMGA s− s+ s+ − s− s+ + s− s− − − s−
0.5-AMGA − DMGA s− s+ s+ s+ s− s+ s+ s+ s− s− s− s−
1.0-AMGA − DMGA s− s+ s+ s+ s− s+ s+ s+ s− s− s+ s−

0.5-AMGA − 0.1-AMGA s− s+ s+ s+ s− s+ s+ s+ s− s− s− s−
1.0-AMGA − 0.5-AMGA s− s− s+ s+ s− s− s+ s+ s− = s+ s−
0.5-HMGA − 0.5-AMGA − s+ s+ s+ s+ s+ s+ s+ + + s+ +

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s− s− s+ s+ s− s− s+ s+ − − + +

0.5-AMGA − SGA s− s− s+ s+ s− + s+ s+ s− s− s+ s−
0.1-AMGA − DMGA − s− s+ s+ − − s+ s+ − − s+ s−
0.5-AMGA − DMGA s− s− s+ s+ s− s+ s+ s+ s− − s+ s−
1.0-AMGA − DMGA s− s− s+ s+ s− s− s+ s+ s− s+ s+ s−

0.5-AMGA − 0.1-AMGA s− s− s+ s+ s− s+ s+ s+ s− − s+ s−
1.0-AMGA − 0.5-AMGA s− s− s+ s+ s− s− s+ s+ s− s+ s+ s−
0.5-HMGA − 0.5-AMGA + + + s+ + s+ s+ s+ + + s+ +

averaged over 50 runs. From Fig. 1.9, it can be seen that, under cyclic and cyclic
with noise environments, after several early stage environmental changes, the
memory schemes start to take effect to maintain the performance of DMGA
and AMGAs at a much higher fitness level than SGA. And the associative
memory in AMGAs works better than the direct memory in DMGA, which

1 Explicit Memory Schemes for EAs in Dynamic Environments 19

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 10

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 10
SGA

DMGA
0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 25

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 25

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 25
SGA

DMGA
0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

Fig. 1.8. Experimental results of GAs on random DOPs

Table 1.3. The t-test results of comparing GAs on random DOPs

t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s+

0.5-AMGA − SGA s− s− s+ s+ s− s− s+ s+ s− s− s+ −
0.1-AMGA − DMGA s− s− s+ s− s− s− s+ s− s− s− s+ s−
0.5-AMGA − DMGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s−
1.0-AMGA − DMGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s−

0.5-AMGA − 0.1-AMGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s−
1.0-AMGA − 0.5-AMGA s− s− s− s+ s− s− s+ s+ s− s− s+ s−
0.5-HMGA − 0.5-AMGA + + s+ s+ + s+ s+ s+ + + s+ s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s− s− s+ s+ s− s− s+ s+ − s− s+ s+

0.5-AMGA − SGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s+
0.1-AMGA − DMGA − s− s+ + − − s+ s+ − s− s+ s−
0.5-AMGA − DMGA s− s− s+ s+ s− s− s+ s+ − s− s+ s−
1.0-AMGA − DMGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s−

0.5-AMGA − 0.1-AMGA s− s− s+ s+ s− s− s+ s+ + s− s+ +
1.0-AMGA − 0.5-AMGA s− s− s− s+ s− s− s− s+ s− s− s+ −
0.5-HMGA − 0.5-AMGA − − s+ s+ − + s+ + + + + s+

can be seen in the late stage behaviour of GAs. Under random environments
the effect of memory schemes is greatly deduced where all GAs behave al-
most the same and there is no clear vision regarding the effect of the memory
schemes on the performance of DMGA and AMGAs.

20 Shengxiang Yang

 40

 50

 60

 70

 80

 90

 100

100806040200

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Cyclic OneMax, τ = 10, ρ = 0.5

SGA
DMGA

0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

 50

 60

 70

 80

 90

 100

500049804960494049204900

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Cyclic OneMax, τ = 10, ρ = 0.5

SGA
DMGA

0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

 40

 50

 60

 70

 80

 90

 100

100806040200

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Cyclic OneMax with Noise, τ = 10, ρ = 0.5

SGA
DMGA

0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

 50

 55

 60

 65

 70

 75

 80

 85

 90

500049804960494049204900

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Cyclic OneMax with Noise, τ = 10, ρ = 0.5

SGA
DMGA

0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

 50

 55

 60

 65

 70

 75

 80

100806040200

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Random OneMax, τ = 10, ρ = 0.5

SGA
DMGA

0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

 50

 55

 60

 65

 70

 75

 80

500049804960494049204900

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Random OneMax, τ = 10, ρ = 0.5

SGA
DMGA

0.1-AMGA
0.5-AMGA
1.0-AMGA
0.5-HMGA

Fig. 1.9. Dynamic performance of GAs on the dynamic OneMax problems

Third, when examining the effect of α on AMGA’s performance, it can
be seen that 0.5-AMGA outperforms 0.1-AMGA on most dynamic problems,
see the t-test results regarding 0.5-AMGA – 0.1-AMGA. This is because in-
creasing the value of α enhances the effect of associative memory for AMGA.
However, 1.0-AMGA is beaten by 0.5-AMGA on many cases, especially when
ρ is small, see the t-test results regarding 1.0-AMGA – 0.5-AMGA. When

1 Explicit Memory Schemes for EAs in Dynamic Environments 21

α = 1.0, all individuals in the population are replaced by the new individuals
created by the re-activated memory allele distribution vector when a change
occurs. This may be disadvantageous. Especially, when ρ is small, the envi-
ronment changes slightly and good solutions of the previous environment are
likely also good for the new one. It is better to keep some of them instead of
discarding them all.

Finally, comparing the performance of HMGA over AMGAs for DOPs, it
can be seen that HMGA outperforms AMGAs for most dynamic problems,
see the t-test results regarding 0.5-HMGA – 0.5-AMGA. For example, on the
cyclic dynamic Royal Road function with τ = 10 and ρ = 0.5, the performance
of 0.5-HMGA is FBOG(0.5-HMGA) = 94.0, which is significantly better than
the performance of 0.5-AMGA with FBOG(0.5-AMGA) = 87.2. However, the
performance improvement of α-HMGA over α-AMGA is relatively small in
comparison with the performance improvement of α-AMGA over SGA.

1.6.3 Experimental Results and Analysis of UMDAs on DOPs

The experimental results of UMDAs on the dynamic test problems under
cyclic, cyclic with noise, and random dynamic environments are plotted in
Fig. 1.10 to Fig. 1.12 respectively. The corresponding statistical results of
comparing UMDAs by one-tailed t-test with 98 degrees of freedom at a 0.05
level of significance are given in Table 1.4 to Table 1.6 respectively. And the
dynamic performance of UMDAs with respect to best-of-generation fitness
against generations on the dynamic OneMax problems with τ = 10 and
ρ = 0.5 is plotted in Fig. 1.13, where the first and last 10 environmental
changes are shown and the data were averaged over 50 runs. From the tables
and figures, several results can be observed. The observations are similar to
the previous observations regarding the experimental results of GAs and will
be briefly recapped below. The main concern will be focused on the differences
between the performance of UMDAs and GAs.

First, both direct and associative memory schemes significantly improve
the performance of UMDAs on most DOPs, see the t-test results regard-
ing DMUMDA – SUMDA and 0.5-AMUMDA – SUMDA. And it seems the
memory schemes have a more consistent positive effect on the performance
of UMDAs on all DOPs than on the performance of GAs. For example, 0.5-
AMUMDA significantly outperforms SUMDA not only on all cyclic DOPs but
also on almost all noisy and random DOPs. For example, from the dynamic
behaviour of UMDAs shown in Fig. 1.13, it can be see that memory enhanced
UMDAs maintain a much higher fitness level than SUMDA not only on cyclic
OneMax problem but also on the random OneMax problem. This result in-
dicates that the effect of memory schemes depends not only on the dynamic
problems and environments but also on the EA used.

Second, the associative factor α has the similar effect on the performance
of AMUMDAs as on the performance of AMGAs. Increasing the value of α

22 Shengxiang Yang

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 10

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 10
SUMDA

DMUMDA
0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 25

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 25

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 25
SUMDA

DMUMDA
0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

Fig. 1.10. Experimental results of UMDAs on cyclic DOPs

Table 1.4. The t-test results of comparing UMDAs on cyclic DOPs
t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA − s− s− + s+ − s− s+ s− s− s− =
0.5-AMUMDA − DMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − DMUMDA s− − s+ s+ s+ s+ s+ s+ s+ s+ s+ −

0.5-AMUMDA − 0.1-AMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − 0.5-AMUMDA s− s− s+ + s− s− s+ s+ s− + s+ −
0.5-HMUMDA − 0.5-AMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ −

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA s+ s− s− s+ s+ + s− s− s− s− s− s−
0.5-AMUMDA − DMUMDA s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+ −
1.0-AMUMDA − DMUMDA s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+ +

0.5-AMUMDA − 0.1-AMUMDA s+ − s− s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − 0.5-AMUMDA s− − + + s− − + s+ − + s+ +
0.5-HMUMDA − 0.5-AMUMDA + + s+ s+ + + s+ s+ + + s+ +

from 0.1 to 0.5 improves the performance of AMUMDA while further rais-
ing the value of α to 1.0 degrades the performance of AMUMDA, see the
t-test results regarding 0.5-AMUMDA – 0.1-AMUMDA and 1.0-AMUMDA –
0.5-AMUMDA in Table1.4 to Table1.6. This result can also be seen in their
dynamic performance shown in Fig. 1.13, where 1.0-AMUMDA achieves a

1 Explicit Memory Schemes for EAs in Dynamic Environments 23

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 10

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 10

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 10
SUMDA

DMUMDA
0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 25

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 25

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 25
SUMDA

DMUMDA
0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

Fig. 1.11. Experimental results of UMDAs on cyclic DOPs with noise

Table 1.5. The t-test results of comparing UMDAs on cyclic DOPs with noise

t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA s+ + − s− s+ s+ s+ s+ s+ s− s+ s+
0.5-AMUMDA − DMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
1.0-AMUMDA − DMUMDA s− s− s− s+ s− s− s− s− s− s− s− s−

0.5-AMUMDA − 0.1-AMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
1.0-AMUMDA − 0.5-AMUMDA s− s− s− + s− s− s− s− s− s− s− s−
0.5-HMUMDA − 0.5-AMUMDA + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +

0.5-AMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA s+ s+ s− s− s+ s+ s+ s+ s+ + s− s+
0.5-AMUMDA − DMUMDA s+ s+ s− s− s+ s+ s+ s+ s+ s+ + s+
1.0-AMUMDA − DMUMDA s− s+ s− s− − + s+ s+ s− s− s− s−

0.5-AMUMDA − 0.1-AMUMDA s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − 0.5-AMUMDA s− s− − + s− s− s− − s− s− s− s−
0.5-HMUMDA − 0.5-AMUMDA − s+ s+ + − s+ s+ s+ + s+ s+ +

much lower fitness level than 0.5-AMUMDA during each environmental pe-
riod, especially under cyclic with noise and random environments.

Third, combining the direct memory with the associative memory further
improves the performance of AMUMDAs, see the t-test results with respect
to 0.5-HMUMDA − 0.5-HMUMDA. This result can be further seen in the

24 Shengxiang Yang

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 10

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 10

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 10
SUMDA

DMUMDA
0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

OneMax, τ = 25

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Royal Road, τ = 25

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

li
ne

 P
er

fo
rm

an
ce

ρ

Deceptive, τ = 25
SUMDA

DMUMDA
0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

Fig. 1.12. Experimental results of UMDAs on random DOPs

Table 1.6. The t-test results of comparing UMDAs on random DOPs
t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA − s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

0.5-AMUMDA − SUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA s+ s+ s− + s+ s+ s+ + s+ s+ s− −
0.5-AMUMDA − DMUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − DMUMDA s− s− s− s+ s− s− s− s+ s− s− s− −

0.5-AMUMDA − 0.1-AMUMDA + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
1.0-AMUMDA − 0.5-AMUMDA s− s− s− + s− s− s− s+ s− s− s− s−
0.5-HMUMDA − 0.5-AMUMDA − s+ s+ s+ + s+ s+ s+ s+ s+ s+ −

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMUMDA − SUMDA s− − s+ s+ − s+ s+ s+ s− s+ s+ s+

0.5-AMUMDA − SUMDA + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
0.1-AMUMDA − DMUMDA + s+ s− s+ s+ s+ s+ s− s+ s+ s− +
0.5-AMUMDA − DMUMDA s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s− −
1.0-AMUMDA − DMUMDA s− s− s− s+ s− s− s− s+ s− s− s− +

0.5-AMUMDA − 0.1-AMUMDA + s+ s− s+ s+ s+ s+ s+ s+ s+ s− −
1.0-AMUMDA − 0.5-AMUMDA s− s− s− + s− s− s− s+ s− s− s− s+
0.5-HMUMDA − 0.5-AMUMDA = + s+ s+ + s+ s+ s+ + s+ s+ −

dynamic performance of 0.5-HMUMDA shown in Fig. 1.13, where 0.5-
HMUMDA maintains the highest level of fitness during each environmental
period under cyclic, noisy and random environments.

Finally, let’s compare the performance of investigated UMDAs and GAs
on DOPs. The t-test results of comparing UMDAs and GAs on the dynamic

1 Explicit Memory Schemes for EAs in Dynamic Environments 25

 30

 40

 50

 60

 70

 80

 90

 100

100806040200

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Cyclic OneMax, τ = 10, ρ = 0.5

SUMDA
DMUMDA

0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

 40

 50

 60

 70

 80

 90

 100

500049804960494049204900

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Cyclic OneMax, τ = 10, ρ = 0.5

SUMDA
DMUMDA

0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

 30

 40

 50

 60

 70

 80

 90

 100

100806040200

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Cyclic OneMax with Noise, τ = 10, ρ = 0.5

SUMDA
DMUMDA

0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

 40

 45

 50

 55

 60

 65

 70

 75

 80

500049804960494049204900

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Cyclic OneMax with Noise, τ = 10, ρ = 0.5

SUMDA
DMUMDA

0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

 50

 60

 70

 80

 90

 100

100806040200

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Random OneMax, τ = 10, ρ = 0.5

SUMDA
DMUMDA

0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

 50

 55

 60

 65

 70

 75

 80

 85

 90

500049804960494049204900

B
es

t-
O

f-
G

en
er

at
io

n
F

it
ne

ss

Generation

Random OneMax, τ = 10, ρ = 0.5

SUMDA
DMUMDA

0.1-AMUMDA
0.5-AMUMDA
1.0-AMUMDA
0.5-HMUMDA

Fig. 1.13. Dynamic performance of UMDAs on the dynamic OneMax problems

test problems with τ = 10 are given in Table 1.7. From Table 1.7, it can
be seen that GAs outperform corresponding UMDAs on most dynamic test
problems.

26 Shengxiang Yang

Table 1.7. The t-test results of comparing UMDAs and GAs on DOPs with τ = 10

t-test Result OneMax Royal Road Deceptive

Cyclic, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
SUMDA − SGA s− s− s− s− s− s− s− s+ s− s− s− s+

DMUMDA − DMGA s− s+ s− s− s− s− s− s− s+ s+ s− s+
0.1-AMUMDA − 0.1-AMGA s− s− s− s− s− s− s− − s+ s+ s+ s+
0.5-AMUMDA − 0.5-AMGA s− s− s− s− s− s− s− s− s+ s+ s− s+
1.0-AMUMDA − 1.0-AMGA s− s− s− s− s− s− s− s− s− s− − s+
0.5-HMUMDA − 0.5-HMGA s− s+ s− s− s− s− s− s− s− s− s− s+

Cyclic with Noise, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
SUMDA − SGA s− s− s− s− s− s− s− s− s− s− s− s−

DMUMDA − DMGA s− s− + s− s− s− s− s− s− s− s− s−
0.1-AMUMDA − 0.1-AMGA s− s− s− s− s− s− s− s− s− s− s− s−
0.5-AMUMDA − 0.5-AMGA s− s− s− s− s− s− s+ s− s− s+ s+ s−
1.0-AMUMDA − 1.0-AMGA s− s− s− s− s− s− s− s− s− s− s− s−
0.5-HMUMDA − 0.5-HMGA s− s− s− s− s− s− s− s− s− s− s+ s−

Random, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
SUMDA − SGA s− s− s− s− s− s− s− s+ s− s− s− s+

DMUMDA − DMGA s− s− s+ s− s− s− s− s− s− s− + s+
0.1-AMUMDA − 0.1-AMGA s− s− s− s− s− s− s− s− s− s− s− s+
0.5-AMUMDA − 0.5-AMGA s− s− s+ s− s− s− s+ s− s− s− s+ s+
1.0-AMUMDA − 1.0-AMGA s− s− s− s− s− s− s− s− s− s− s− s+
0.5-HMUMDA − 0.5-HMGA s− s− s+ s− s− s− s− s− s− s− s+ s+

1.7 Conclusions

This chapter investigates the application of explicit memory schemes for EAs
in dynamic environments. Two kinds of explicit memory schemes, i.e., direct
memory and associative memory, are applied into two kinds of EAs, i.e., GAs
and UMDAs, to address dynamic optimization problems. The direct memory
scheme just stores and reuses best solutions in the memory. In the contrast,
in the associative memory scheme, best solutions together with the current
environmental information, (the allele distribution vector for GAs or working
probability vector for UMDAs) are stored in the memory. When an environ-
mental change is detected, the stored allele distribution vector (for GAs) or
probability vector (for UMDAs) that is associated with the best re-evaluated
memory solution is extracted to create new individuals into the population.

Based on the XOR dynamic problem generator, a series of dynamic test
problems were systematically constructed, featuring three kinds of dynamic
environments: cyclic, cyclic with noise, and random. Based on this dynamic
test problems, experimental study was carried out to test the memory schemes
for GAs and UMDAs. From the experimental results, the following conclusions
can be drawn on the dynamic test environments. First, memory schemes are
efficient to improve the performance of GAs and UMDAs in dynamic envi-
ronments and the cyclicity of dynamic environments greatly affect the perfor-
mance of memory schemes for GAs and UMDAs in dynamic environments.
Second, generally speaking the associative memory scheme outperforms tradi-
tional direct memory scheme for GAs and UMDAs in dynamic environments.
Third, the associative factor has an important impact on the performance of
AMGAs and AMUMDAs. Setting α to 0.5 seems a good choice for AMGAs

1 Explicit Memory Schemes for EAs in Dynamic Environments 27

and AMUMDAs. Fourth, combining direct memory with associative memory
may further improve the performance of GAs and UMDAs in dynamic envi-
ronments. The hybrid memory scheme is a good approach for EAs for DOPs.

The work studied in this chapter can be extended in several ways. De-
veloping other memory management and retrieval mechanisms would be an
interesting future work for memory-based UMDAs and other estimation of
distribution algorithms [1, 18] in dynamic environments. Comparing the in-
vestigated explicit memory schemes with implicit memory schemes is another
future work. And it is also an interesting work to further investigate the
integration of the memory schemes with other approaches, such as multi-
population, diversity approaches, and adaptive operators, for EAs in dynamic
environments.

References

1. S. Baluja (1994). Population-based incremental learning: A method for inte-
grating genetic search based function optimization and competitive learning.
Technical Report CMU-CS-94-163, Carnegie Mellon University, USA.

2. C. N. Bendtsen and T. Krink (2002). Dynamic memory model for non-stationary
optimization. Proc. of the 2002 Congress on Evol. Comput., pp. 145-150.

3. J. Branke (1999). Memory enhanced evolutionary algorithms for changing op-
timization problems. Proc. of the 1999 Congress on Evolutionary Computation,
vol. 3, pp. 1875-1882.

4. J. Branke, T. Kaußler, C. Schmidth, and H. Schmeck (2000). A multi-population
approach to dynamic optimization problems. Proc. of the 4th Int. Conf. on
Adaptive Computing in Design and Manufacturing, pp. 299-308.

5. J. Branke (2002). Evolutionary Optimization in Dynamic Environments. Kluwer
Academic Publishers.

6. H. G. Cobb and J. J. Grefenstette (1993). Genetic algorithms for tracking chang-
ing environments. Proc. of the 5th Int. Conf. on Genetic Algorithms, pp. 523-
530.

7. D. Dasgupta and D. McGregor (1992). Nonstationary function optimization
using the structured genetic algorithm. PPSN II, pp. 145-154.

8. D. E. Goldberg and R. E. Smith (1987). Nonstationary function optimization
using genetic algorithms with dominance and diploidy. Proc. of the 2nd Int.
Conf. on Genetic Algorithms, pp. 59-68.

9. D. E. Goldberg (1989). Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley.

10. J. J. Grefenstette (1992). Genetic algorithms for changing environments. Par-
allel Problem Solving from Nature II, pp. 137-144.

11. P. Larrañaga and J. A. Lozano (2002). Estimation of Distribution Algorithms:
A New Tool for Evolutionary Computation. Kluwer Academic Publishers.

12. E. H. J. Lewis and G. Ritchie (1998). A comparison of dominance mechanisms
and simple mutation on non-stationary problems. Proc. of the 5th Int. Conf. on
Parallel Problem Solving from Nature, pp. 139-148.

13. S. J. Louis and Z. Xu (1996). Genetic algorithms for open shop scheduling
and re-scheduling. Proc. of the 11th ISCA Int. Conf. on Computers and their
Applications, pp. 99-102.

28 Shengxiang Yang

14. T. Mahnig and H. Mühlenbein (2000). Mathematical analysis of optimization
methods using search distributions. Proc. of the 2000 Genetic and Evolutionary
Computation Conference Workshop Program, pp. 205-208.

15. N. Mori, H. Kita and Y. Nishikawa (1997). Adaptation to changing environments
by means of the memory based thermodynamical genetic algorithm. Proc. of
the 7th Int. Conf. on Genetic Algorithms, pp. 299-306.

16. R. W. Morrison and K. A. De Jong (1999). A test problem generator for non-
stationary environments. In Proc. of the 1999 Congress on Evolutionary Com-
putation, vol. 3, pp. 2047-2053.

17. R. W. Morrison and K. A. De Jong (2000). Triggered hypermutation revisited.
In Proc. of the 2000 Congress on Evolutionary Computation, pp. 1025-1032.

18. H. Mühlenbein and G. Paaß(1996). From recombination of genes to the esti-
mation of distributions I. Binary parameters. Proc. of the 4th Int. Conf. on
Parallel Problem Solving from Nature, pp. 178-187.

19. H. Mühlenbein (1998). The equation for response to selection and its use for
prediction. Evolutionary Computation, 5: 303–346.

20. K. P. Ng and K. C. Wong (1997). A new diploid scheme and dominance change
mechanism for non-stationary function optimisation. Proc. of the 6th Int. Conf.
on Genetic Algorithms.

21. C. L. Ramsey and J. J. Greffenstette (1993). Case-based initializtion of genetic
algorithms. Proc. of the 5th Int. Conf. on Genetic Algorithms.

22. K. Trojanowski and Z. Michalewicz (1999). Searching for optima in non-
stationary environments. Proc. of the 1999 Congress on Evolutionary Com-
putation, pp. 1843-1850.

23. F. Vavak and T. C. Fogarty (1996). A comparative study of steady state and
generational genetic algorithms for use in nonstationary environments. AISB
Workshop on Evolutionary Computing, LNCS 1143, pp. 297-304.

24. S. Yang (2003). Non-stationary problem optimization using the primal-dual ge-
netic algorithm. Proc. of the 2003 Congress on Evolutionary Computation, vol. 3,
pp. 2246-2253.

25. S. Yang (2005). Memory-based immigrants for genetic algorithms in dynamic
environments. Proc. of the 2005 Genetic and Evolutionary Computation Con-
ference, vol. 2, pp. 1115-1122.

26. S. Yang (2005). Population-based incremental learning with memory scheme for
changing environments. Proc. of the 2005 Genetic and Evolutionary Computa-
tion Conference, vol. 1, pp. 711-718.

27. S. Yang (2005). Memory-enhanced univariate marginal distribution algorithms
for dynamic optimization problems. Proc. of the 2005 Congress on Evolutionary
Computation, vol. 3, pp. 2560-2567.

28. S. Yang (2006). Associative memory scheme for genetic algorithms in dynamic
environments. Applications of Evolutionary Computing, LNCS 3907, pp. 788-
799.

29. S. Yang and X. Yao (2005). Experimental study on population-based incremen-
tal learning algorithms for dynamic optimization problems, Soft Computing,
9(11): 815–834.

30. S. Yang and X. Yao (2006). Population-based incremental learning with asso-
ciative memory for dynamic environments, submitted to IEEE Transactions on
Evolutionary Computation.

2

Particle Swarm Optimization in Dynamic
Environments

Tim Blackwell

Department of Computing, Goldsmiths College, University of London
New Cross, London SE14 6NW, UK
t.blackwell@gold.ac.uk

Summary. This chapter reviews the application of particle swarms to dynamic
optimization and explains why the canonical particle swarm optimization (PSO)
algorithm must be modified for good performance in environments such as the mov-
ing peaks benchmark. The chief obstacle to good performance, namely diversity loss,
can be overcome in various ways; this article focusses on the use of charged swarms
to provide particle repulsion between members of a sub-swarm. Although diversity
enhancing mechanisms can help a population track a single peak, they cannot help
the population to watch other peaks that may become optimal as the landscape
changes. For this reason, a multi-swarm approach is advocated here; an exclusion
operator provides effective repulsion between swarms so that each may settle on a
peak. New results on self-adaptation are also presented; a simple rule for swarm birth
and death is proposed so that the multi-swarm may adjust its size dynamically and
in relation to the number of peaks. The self-adapting multi-swarm is demonstrated
to be competitive with the best results for a hand-tuned multi-swarm.

2.1 Introduction

Particle Swarm Optimization (PSO) is a versatile population-based optimiza-
tion technique, in many respects similar to evolutionary algorithms (EAs).
PSO has been shown to perform well for many static problems [30]. However,
many real-world problems are dynamic in the sense that the global optimum
location and value may change with time. The task for the optimization al-
gorithm is to track this shifting optimum. It has been argued [14] that EAs
are potentially well-suited to such tasks, and a review of EA variants tested
in the dynamic problem is given in [13, 15]. It might be wondered, therefore,
what promise PSO holds for dynamic problems.

Optimization with particle swarms has two major ingredients, the particle
dynamics and the particle information network. The particle dynamics are de-
rived from swarm simulations in computer graphics [21], and the information
sharing component is inspired by social networks [25, 32]. These ingredients
combine to make PSO a robust and efficient optimizer of real-valued objective

T. Blackwell:Particle SwarmOptimization inDynamicEnvironments, Studies in Computational

Intelligence (SCI) 51, 29–49 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

30 Tim Blackwell

functions (although PSO has also been successfully applied to combinatorial
and discrete problems too). PSO is an accepted computational intelligence
technique, sharing some qualities with Evolutionary Computation [1].

The application of PSO to dynamic problems has been explored by various
authors [6, 9, 17, 23, 24, 30]. The overall consequence of this work is that PSO,
just like EAs, must be modified for optimal results on dynamic environments
typified by the moving peaks benchmark (MPB). (Moving peaks, arguably
representative of real world problems, consist of a number of peaks of changing
with and height and in lateral motion [7, 12].) The origin of the difficulty lies
in the dual problems of outdated memory due to environment dynamism, and
diversity loss, due to convergence.

Of these two problems, diversity loss is by far the more serious; it has
been demonstrated that the time taken for a partially converged swarm to
re-diversify, find the shifted peak, and then re-converge is quite deleterious
to performance [3]. Clearly, either a re-diversification mechanism must be
employed at (or before) function change, and/or a measure of diversity can be
maintained throughout the run. There are four principle mechanisms for either
re-diversification or diversity maintenance: randomization [23], repulsion [5],
dynamic networks [24, 36] and multi-populations [6, 29].

Multi-swarms combine repulsion with multi-populations [6, 7]. Interest-
ingly, the repulsion occurs between particles, and between swarms. The multi-
population in this case is an interacting super-swarm of charged swarms. A
charged swarm is inspired by models of the atom: a conventional PSO nu-
cleus is surrounded by a cloud of ‘charged’ particles. The charged particles
are responsible for maintaining the diversity of the swarm. Furthermore, and
in analogy to the exclusion principle in atomic physics, each swarm is subject
to an exclusion pressure that operates when the swarms collide. This prohibits
two or more swarms from surrounding a single peak, thereby enabling swarms
to watch secondary peaks in the eventuality that these peaks might become
optimal. This strategy has proven to be very effective for MPB environments.

This chapter starts with a description of the canonical PSO algorithm
and then, in Section 3, explains why dynamic environments pose particular
problems for unmodified PSO. The MPB framework is also introduced in
this section. The following section describes some PSO variants that have
been proposed to deal with diversity loss. Section 5 outlines the multi-swarm
approach and the subsequent section presents new results for a self-adapting
multi-swarm, a multi-population with swarm birth and death.

2.2 Canonical PSO

In PSO, population members (particles) possess a memory of the best (with
respect to an objective function) location that they have visited in the past,
pbest, and of its fitness. In addition, particles have access to the best location
of any other particle in their own network. These two locations (which will

2 Particle Swarm Optimization in Dynamic Environments 31

coincide for the best particle in any network) become attractors in the search
space of the swarm. Each particle will be repeatedly drawn back to spatial
neighborhoods close to these two attractors, which themselves will be updated
if the global best and/or particle best is bettered at each particle update.
Several network topologies have been tried, with the star or fully connected
network remaining a popular choice for unimodal functions. In this network,
every particle will share information with every other particle in the swarm so
that there is a single gbest global best attractor representing the best location
found by the entire swarm.

Particles possess a velocity which influences position updates according to
a simple discretization of particle motion

v(t + 1) = v(t) + a(t + 1) (2.1)
x(t + 1) = x(t) + v(t + 1) (2.2)

where a, v, x and t are acceleration, velocity, position and time (iteration
counter) respectively. Eqs. 2.1, 2.2 are similar to particle dynamics in swarm
simulations, but PSO particles do not follow a smooth trajectory, instead
moving in jumps, in a motion known as a flight [28] (notice that the time
increment dt is missing from these rules). The particles experience a linear
or spring-like attraction, weighted by a random number, (particle mass is set
to unity) towards each attractor. Convergence towards a good solution will
not follow from these dynamics alone; the particle flight must progressively
contract. This contraction is implemented by Clerc and Kennedy with a con-
striction factor χ, χ < 1, [20]. For our purposes here, the Clerc-Kennedy PSO
will be taken as the canonical swarm; χ replaces other energy draining fac-
tors extant in the literature such as a decreasing ‘inertial weight’ and velocity
clamping. Moreover the constricted swarm is replete with a convergence proof,
albeit about a static attractor (although there is some experimental and theo-
retical support for convergence in the fully interacting swarm where particles
can move attractors [10]).

Explicitly, the acceleration of particle i in Eq.2.1 is given by

ai = χ[cε · (pg − xi) + cε · (pi − xi)]− (1− χ)vi (2.3)

where ε are vectors of random numbers drawn from the uniform distribution
U [0, 1], c > 2 is the spring constant and pi, pg are particle and global attrac-
tors. This formulation of the particle dynamics has been chosen to demon-
strate explicitly constriction as a frictional force, opposite in direction, and
proportional to, velocity. Clerc and Kennedy derive a relation for χ(c): stan-
dard values are c = 2.05 and χ = 0.729843788. The complete PSO algorithm
for maximizing an objective function f is summarized as Algorithm 1.

32 Tim Blackwell

Algorithm 1 Canonical PSO
FOR EACH particle i

Randomly initialize vi,xi = pi

Evaluate f(pi)
g = arg max f(pi)

REPEAT
FOR EACH particle i

Update particle position xi according to eqs.. 2.1, 2.2 and 2.3
Evaluate f(xi)
//Update personal best
IF f(xi) > f(pi) THEN

pi = xi

//Update global best
IF f(xi) > f(pg) THEN

pg = arg max f(pi)
UNTIL termination criterion reached

2.3 PSO Problems with Moving Peaks

As has been mentioned in Sect 22.1, PSO must be modified for optimal results
on dynamic environments typified by the moving peaks benchmark (MPB).
These modifications must solve the problems of outdated memory, and of lost
diversity. This explains the origins of these problems in the context of MPB,
and shows how memory loss is easily addressed. The following section then
considers the second, more severe, problem.

2.3.1 Moving Peaks

The dynamic objective function of MPB, f(x, t), is optimized at ‘peak’ lo-
cations x∗ and has a global optimum at x∗∗ = arg max{f(x∗)} (once more,
assuming optimization means maximizing). Dynamism entails a small move-
ment of magnitude s, and in a random direction, of each x∗. This happens
every K evaluations and is accompanied by small changes of peak height and
width. There are p peaks in total, although some peaks may become obscured.
The peaks are constrained to move in a search space of extent X in each of
the d dimensions, [0,X]d.

This scenario, which is not the most general, nevertheless has been put
forward as representative of real world dynamic problems [12] and a bench-
mark function is publicly available for download from [11]. Note that small
changes in f(x∗) can still invoke large changes in x∗∗ due to peak promotion,
so the many peaks model is far from trivial.

2 Particle Swarm Optimization in Dynamic Environments 33

2.3.2 The Problem of Outdated Memory

Outdated memory happens at environment change when the optima may shift
in location and/or value. Particle memory (namely the best location visited
in the past, and its corresponding fitness) may no longer be true at change,
with potentially disastrous effects on the search.

The problem of outdated memory is typically solved by either assuming
that the algorithm knows just when the environment change occurs, or that
it can detect change. In either case, the algorithm must invoke an appropriate
response. One method of detecting change is a re-evaluation of f at one or
more of the personal bests pi [17, 23]. A simple and effective response is to
re-set all particle memories to the current particle position and f value at this
position, and ensuring that pg = arg max f(pi). One possible drawback is that
the function has not changed at the chosen pi, but has changed elsewhere.
This can be remedied by re-evaluating f at all personal bests, at the expense
of doubling the total number of function evaluations per iteration.

2.3.3 The Problem of Lost Diversity

Equally troubling as outdated memory is insufficient diversity at change. The
population takes time to re-diversify and re-converge, effectively unable to
track a moving optimum.

It is helpful at this stage to introduce the swarm diameter |S|, defined
as the largest distance, along any axis, between any two particles [2], as a
measure of swarm diversity (Fig. 2.1). Loss of diversity arises when a swarm
is converging on a peak. There are two possibilities: when change occurs, the
new optimum location may either be within or outside the collapsing swarm.
In the former case, there is a good chance that a particle will find itself close to
the new optimum within a few iterations and the swarm will successfully track
the moving target. The swarm as a whole has sufficient diversity. However,
if the optimum shift is significantly far from the swarm, the low velocities
of the particles (which are of order |S|) will inhibit re-diversification and
tracking, and the swarm can even oscillate about a false attractor and along
a line perpendicular to the true optimum, in a phenomenon known as linear
collapse [5]. This effect is illustrated in Fig. 2.2.

These considerations can be quantified with the help of a prediction for
the rate of diversity loss [2, 3, 10]. In general, the swarm shrinks at a rate
determined by the constriction factor and by the local environment at the
optimum. For static functions with spherical symmetric basins of attraction,
the theoretical and empirical analysis of the above references suggest that the
rate of shrinkage (and hence diversity loss) is scale invariant and is given by
a scaling law

|S(t)| = Cαt (2.4)

34 Tim Blackwell

Fig. 2.1. The swarm diameter.

for constants C and α < 1, where α ≈ 0.92 and C is the swarm diameter
at iteration t = 0. The number of function evaluations between change, K,
can be converted into a period measured in iterations, L by considering the
total number of function evaluations per iteration including, where necessary,
the extra test-for-change evaluations. We might expect that, for peak shift
distance s and box size X = |S(0)|, if s >> SL = XαL, tracking will be very
hard since the swarm has already converged to a very small ball at the first
change. The experiments reported in [3] show that canonical PSO fails to track
a single peaked dynamic environment defined by s = 8.7, L = 100,X = 10.
Since SL computes to 0.0024, this is hardly surprising.

2.4 Diversity Lost and Diversity Regained

There are two solutions in the literature to the problem of insufficient diversity.
Either a diversity increasing mechanism can be invoked at change (or at pre-
determined intervals), or some permanent means can be put in place to ensure
there is sufficient diversity at all times [7]. These modifications are the subject
of this section.

2.4.1 Re-diversification

Hu and Eberhart [23] study a number of re-diversification mechanisms. These
all involve randomization of the entire, or part of, the swarm. This happens
when re-evaluation of the objective function at one or several of the attractors
detects change, or at a pre-set interval. Clearly the problem with this approach
is the arbitrariness of the extra parameters. Since randomization implies infor-
mation loss, there is a danger of erasing too much information and effectively
re-starting the swarm. On the other hand, too little randomization might not
introduce enough diversity to cope with the change. And, of course, if tests
for change happen at pre-determined intervals, there is a danger of missing
a shift. The arbitrariness of the extra parameters can only be solved if much

2 Particle Swarm Optimization in Dynamic Environments 35

Fig. 2.2. Sequence of frames showing possible behavior when optimum shift is
greater that swarm diversity. When the attractor T (square box, frame 1) shifts,
particle a is at the global best, pg. a continues along trajectory v since it is not
accelerated in this update (frame 2). Particle a continues to move along v, repo-
sitioning pg at each update, becoming in effect the swarm leader (frame 3). After
a while, the swarm oscillates along v, about a point perpendicular to T (frame 4).
Eventually random fluctuations will cause another particle to deviate from v and
move closer towards the attractor. The swarm soon follows and converges on T .

prior knowledge about f ’s dynamism is available, or some other higher-level
modification mechanism scheme is implemented. Such a scheme could infer
details about f ’s dynamism during the run, making appropriate adjustments
to the re-diversification parameters. So far, though, higher level modifications
such as these have not been studied.

2.4.2 Maintaining Diversity by Repulsion

A constant, and hopefully good enough, degree of swarm diversity can be
maintained at all times either through some type of repulsive mechanism, or
by adjustments to the information sharing neighborhood. Repulsion can either
be between particles, or from an already detected optimum. For example,
Krink et al [34] study finite-size particles as a means of preventing premature
convergence. The hard sphere collisions produce a constant diversification
pressure. Alternatively, Parsopoulos and Vrahatis [30] place a repeller at an
already detected optima, in an attempt to divert the swarm and find new
optima. Neither technique, however, has been applied to the dynamic scenario.

36 Tim Blackwell

An example of repulsion that has been tested in a dynamic context is the
atom analogy [4–6, 9]. In this model, a swarm is comprised of a ‘charged’
and a ‘neutral’ sub-swarm. The model can be depicted as a cloud of charged
particles orbiting a contracting, neutral, PSO nucleus, Fig. 2.3. The charged
particles can be either classical or quantum particles; either type are discussed
in some depth in references [6, 7] and in the following section. Charge enhances
diversity in the vicinity of the converging PSO sub-swarm, so that optimum
shifts within this cloud should be trackable. Good tracking (outperforming
canonical PSO) has been demonstrated for unimodal dynamic environments
of varying severities [3].

Fig. 2.3. The Atom Analogy. The situation depicted here shows a PSO sub-swarm
of neutral particles (filled circles), converging at an optimum. The neutral swarm
diameter, |S0|, is shrinking by a factor of 0.92 at each iteration. This sub-swarm
is surrounded by a number of charged particles with constant diversity |S−|. Both
sub-swarms share the same global attractor pg. Optimum moves to locations within
the charged sub-swarm will be rapidly re-optimized by the swarm as a whole.

2.4.3 Maintaining Diversity with Dynamic Network Topology

Adjustments to the information sharing topology can be made with the in-
tention of reducing, maybe temporarily, the desire to move towards the global
best position, thereby enhancing population diversity. Li and Dam use a grid-
like neighborhood structure, and Jansen and Middendorf test a hierarchical

2 Particle Swarm Optimization in Dynamic Environments 37

structure, reporting improvements over unmodified PSO for unimodal dy-
namic environments [24, 36].

2.4.4 Maintaining Diversity with Multi-populations

A number of research groups have considered multi-populations as a means
of enhancing diversity. The multi-population idea is particularly helpful in
multi-modal environments such as many peaks. The aim here is to allow each
population to converge on a promising peak. Then, if any secondary peak be-
comes the global optimum as a result of change, a population is close at hand.
Multi-population techniques include niching, speciation and multi-swarms.

In the static context, the niching PSO of Brits et al [16] can successfully
optimize some static benchmark problems. In nichePSO, if a particle’s fitness
changes very little (the variance in fitness is less than a threshold) over a small
number of iterations, a two particle sub-swarm is created from this particle and
its nearest spatial neighbor. This technique, as the authors point out, would
fail in a dynamic environment because niching depends on a homogeneous
distribution of particles in the search space, and on a training phase.

A speciation PSO variation, known as clearing [31] has been adopted by
Li in the static context and generalized by Parrot and Li to dynamic func-
tions [27, 29]. Under clearing, the number and size of swarms is adjusted dy-
namically by constructed an ordered list of particles, ranked according to their
fitness, with spatially close particles joining a particular species. This method
relies on a speciation radius and has no further diversity mechanism. Other
related work includes using different swarms in cooperation to optimize differ-
ent parts of a solution [35], a two swarm min-max optimization algorithm [33]
and iteration by iteration clustering of particles into sub-swarms [26]. Apart
form Parrot and Li’s speciation, none of these multi-population techniques
have been generalized as dynamic optimizers. The multi-swarm approach of
Blackwell and Branke is described in detail in the next section.

2.5 Multi-swarms

A combined approach might be to incorporate the virtues of the multi-
population approach and of swarm diversity enhancing mechanisms such as
repulsion. Such an optimizer would be well suited to the many peaks environ-
ment. Multi-swarms, first proposed in a non-optimization context [8] would
seem to do just this. The extension of multi-swarms to a dynamic optimizer
was made by Blackwell and Branke [6], and is inspired by Branke’s own self-
organizing scouts (SOS) [13]. The scouts have been shown to give excellent
results on the many peaks benchmark.

A multi-swarm is a colony of charged swarms interacting locally via ex-
clusion and globally by anti-convergence. The motivation for these operators

38 Tim Blackwell

is that a mechanism must be found to prevent two or more swarms from try-
ing to optimize the same peak (exclusion) and also to maintain multi-swarm
diversity, that is to say the diversity amongst the population of swarms as a
whole (anti-convergence). Multi-swarms have been compared very favorably
to both hierarchical swarms and to self-organizing scouts.

We consider below the main ingredients of the multi-swarm algorithm in
more depth. In particular we will assess the values of parameters with relation
to the many peaks benchmark. A complete discussion of parameter choices is
given in [7]. The multi-swarm algorithm is presented in Algorithm 2.

2.5.1 Atom Analogy

In the atom analogy, each swarm is pictured as an atom with a contracting
nucleus of neutral PSO particles, and an enveloping cloud of charged parti-
cles. All particles are in fact members of the same information network so
that they all (in the star topology) have access to pg. The mutual repul-
sions between the charged particles may follow a deterministic, classical, rule
(Coulomb repulsion, parameterized by particle charge Q). Alternatively, in a
quantum atom, the particles are positioned within a hypersphere of radius
rcloud centered on pg according to a probability distribution. So far, two uni-
form distributions have been tested. References [6, 7] consider a uniform shell
distribution, p(r, dr) = ρ(r)dr = const, where ρ is a probability density, r
is a shell radius, dv is a volume element and p is a probability. Recent work
has investigated a uniform volume distribution, p(x, dv) = ρ(x)dv = const. In
both cases, the distributions are normalized so that p(r > rcloud) = 0. Other,
non-uniform and possibly dynamic distributions might be favorable for the
quantum swarm in some cases, but such distributions remain unexplored.

The quantum atom has the advantages of lower complexity and an easily
controllable distribution: the Coulomb repulsion has quadratic complexity and
highly fluctuating electron orbits [2, 3]. An order of magnitude estimation for
the parameters rcloud (for quantum swarms), or Q, for classically charged
clouds, can be made by supposing that good tracking will occur if the mean
charged particle separation < |x−−pg| > is comparable to s. This separation
is easy to compute for the quantum swarm: only empirical data is available
for classical charged particles.

2.5.2 Exclusion

In order to demonstrate the necessity for exclusion, first consider an assembly
of non-interacting swarms, also known as a many-swarm. A many-swarm has
M swarms, and each swarm, for symmetrical configurations has N0 neutral
and N− charged particles. Such a many-swarm is written M ∗ (N0 + N−).
Since the swarms do not interact - either dynamically through the particle
velocity and positions updates, or by sharing information - the M swarms are
completely independent, and any number of them may try to optimize the

2 Particle Swarm Optimization in Dynamic Environments 39

Algorithm 2 Multi-Swarm
//Initialization
FOR EACH particle ni

Randomly initialize vni,xni = pni

Evaluate f(pni)
FOR EACH swarm n

png := argmax{f(pni)}
REPEAT

// Anti-Convergence
IF all swarms have converged THEN

Re-initialize worst swarm.
FOR EACH swarm n

// Test for Change
Evaluate f(png).
IF new value is different from last iteration THEN

Re-evaluate each particle attractor.
Update swarm attractor.

FOR EACH particle i of swarm n
// Update Particle
Apply equations (3) - (9) depending on particle type.
// Update Attractor
Evaluate f(xni).
IF f(xni) > f(pni) THEN

pni := xni.
IF f(xni) > f(png) THEN

png := xni

// Exclusion.
FOR EACH swarm m �= n

IF swarm attractor png is within rexcl of pmg THEN
IF f(png) ≤ f(pmg) THEN

Re-initialize swarm n
ELSE

Re-initialize swarm m
FOR EACH particle in re-initialized swarm

Re-evaluate function value.
Update swarm attractor.

UNTIL number of function evaluations performed > max

same peak. This is undesirable because it is clearly inefficient to have two or
more swarms on the same peak, and in any case, we wish to distribute the
swarms throughout the search space for peak watching. Hence the swarms
must interact in some way. One possibility is to allow the swarms to interact
topologically and share a single information network. The multi-swarm ap-
proach is to seek a spatial interaction between swarms. Such an interaction
might repel entire swarms from already occupied peaks. However, Coulomb
repulsion, or some such similar physics-inspired repulsion would not be sat-
isfactory, because the attractive pull towards the peak might be balanced by

40 Tim Blackwell

the repulsive force away from other nearby swarms. In such an equilibrium,
no swarm would be able to optimize the peak.

Exclusion is inspired by the exclusion principle in atomic and molecular
physics. This principle states that no two electrons may occupy the same
state. The exclusion principle provides an effective repulsive force between
two gas molecules with overlapping electron clouds [22]. However the effective
force does not arise from any deterministic equation that governs the electron
motion, but is a rule imposed on the probability distributions of the electron
positions. A version of this principle for interacting swarms is a rule that
forbids two swarms moving to within rexcl of each other, where the distance
between swarms is defined as the distance between their pg’s. The exclusion
operator simple randomizes, in the entire search space, the worse swarm in any
collision, as judged by the current best value determined by the swarm, f(pg).
The configuration of the interacting multi-swarm is written M(N0 + N−).

An order of magnitude estimation for rexcl can be made by assuming that
all p peaks are evenly distributed in Xd. The linear diameter of the basin
of attraction of a peak is then, on average, dboa = X/p1/d. It is reasonable
to assume that swarms that are closer than this distance should experience
exclusion, since the overall strategy is to place one swarm on each peak.

2.5.3 Anti-Convergence

Anti-convergence is a simple operator that is designed to ensure there is at
least one free swarm in the multi-swarm at all times. A free swarm is one
that is patrolling the search space rather than converging on a peak. A swarm
is assumed to be converging when the neutral swarm diameter is less than
a convergence diameter, 2rconv. The idea is that if the number of swarms
is less than the number of peaks, all swarms may converge, leaving some
peaks unwatched. One of these unwatched peaks may later become optimal.
The presence of free swarms maintains multi-swarm diversity and encourages
response to peak promotion.

Estimations of rconv are difficult, but some progress can be made by con-
sidering the rate of convergence of the neutral swarm, as given by Equation
2.4. A lower bound on rconv can be estimated from the ideal case that a swarm
immediately tracks a shifted peak. This means that the swarm size at the shift
is about s and the swarm has K function evaluations worth of time to contract
around the peak. On the other hand, rconv should certainly be less than rexcl

because exclusion occurs before convergence.
Note that there are two levels of diversity. Diversity at the swarm level, as

enforced by exclusion, enables a single swarm to track a single moving peak
and diversity at the multi-swarm level enables the multi-swarm as a whole to
find new peaks.

2 Particle Swarm Optimization in Dynamic Environments 41

2.5.4 Multi-swarm Cardinality

The multi-swarm cardinality M can be estimated from p. If possible we would
expect that M > p is undesirable since free swarms absorb valuable function
evaluations and there is no need to have many more swarms than peaks. Anti-
convergence is expected to be beneficial for M < p. Optimally, we suppose
that M = p, and in this case anti-convergence can be switched off, since the
multi-swarm has just the right number of swarms.

2.5.5 Results

A exhaustive series of multi-swarm experiments has been conducted for the
many peaks benchmark. The standard settings for MPB are number of peaks,
p = 10, change period in function evaluations, K = 5000, peak shift severity,
s = 1.0, dimensionality, d = 5 and search space range X = 100. The peak
heights and widths vary randomly but are constrained to [30, 70] and [1, 12]
respectively. Each experiment actually consists of 50 runs for a given set of
multi-swarm parameters. Each run uses a different random number genera-
tor seed for initialization of the swarms, the swarm update algorithm and the
MPB generator. Other non-standard MPB’s were also tested for comparisons.
Multi-swarm performance is quantified by the offline error which is the av-
erage, at any point in time, of the error of the best solution found since the
last environment change. This measure is commonly used for scenarios such
as the MPB and is zero for perfect tracking.

Various values of multi-swarm cardinality M were tested for fixed total
number of particles as given by the expression Ntotal = M(N0 + N−). As
expected, M = p was found to be optimal. The multi-swarm coped well with
shift severities between 1.0 and 6.0. The multi-swarm offline errors for MPB’s
with different numbers of peaks were lass than 3.0 for 5 ≤ p ≤ 200. Anti-
convergence was found to bring a significant improvement when M < p. The
robustness of the algorithm, and its generalizability into higher dimensions,
was also tested by taking d = 10 and varying the predicted optimal parameter
settings (i.e. rexcl, rconv, rcloud and Q) by 20%. The multi-swarm is most
sensitive to rexcl, but even here offline errors varied by less than 10%.

In all cases, the multi-swarms with charge outperform many-swarms, PSO
and multi-swarms without charge. Furthermore, quantum swarms perform
better than classical charged swarms. The offline error, as compared to hier-
archical swarms and self-organizing scouts, is cut by a half, and the improve-
ment over a randomization scheme is about an order of magnitude. It seems,
therefore, that the multi-swarm is a very promising approach for problems of
the MPB class.

42 Tim Blackwell

2.6 Self-adapting Multi-swarms

The multi-swarm model of the previous section introduced a number of new
parameters. Although recommendations can be made for these settings, this
analysis depends on prior knowledge of the environment and on many test
runs. A laudable goal for any optimization technique is the reduction of
hand-tunable parameters. Although parameter adjustments might improve
performance for any particular problem, a general purpose method that might
perform reasonably well across a spectrum of problems is certainly attractive.
We therefore wonder to what extent PSO and PSO-variants can find their own
best parameter settings during a single run. Such self-adapting algorithms
might not return the best performance on any particular problem instance.
However to make fair comparisons, the total number of function evaluations
(or iterations) involved in all the trials of the hand-tuned method must be
taken into account. This point is emphasized by Clerc in his explorations of
‘Tribes’, a self-adapting PSO [18, 19].

Here we will describe self-adaptations at the level of the multi-swarm.
Future work will seek to incorporate adaptations of individual swarms into
this scheme. The following will assume (50 + 5−) swarms with canonical PSO
neutral particles and quantum charged particles and with the swarm diversity
parameter, rcloud, determined by the peak shift severity. This recipe gave
the best results for the environments studied in the previous section. The
parameters at the multi-swarm level are the number of swarms M and the
exclusion and convergence radii rexcl and rconv. It is assumed in the following
that the multi-swarm has access to the dimensionality d and the extent of the
search space X, but not the MPB parameters p or K. (Previously, rexcl, rconv

and M were determined with knowledge of p and K.)

2.6.1 Swarm Birth and Death

The basic idea is to allow the multi-swarm to regulate its size by bringing new
swarms into existence, or by removing redundant swarms. The aim, as before,
is to place a swarm on each peak, and to maintain multi-swarm diversity with
(at least one) patrolling swarm. The multi-swarm therefore needs a new swarm
if all swarms are currently converging. Alternatively, if there are too many free
swarms (i.e. those that fail the convergence criterion), a free swarm should
be removed. If there is more than one free swarm, the choice for removal is
arbitrary and a simple rule might be to remove the worst of the free swarms,
as judged by f(pg).

This simple birth/death mechanism removes the need for the anti-con-
vergence operator, and for specifying the multi-swarm cardinality. The self-
adapting version of Algorithm 2 is given below in Algorithm 3, where Mfree

is the number of free swarms at iteration t, and identical steps in Algorithm
2 have been abbreviated.

2 Particle Swarm Optimization in Dynamic Environments 43

Algorithm 3 Self-adapting multi-swarm
Begin with a single free swarm, randomized in Xd

At each iteration t:
IF Mfree = 0, generate a new free swarm
ELSE If Mfree > nexcess, remove worst free swarm
FOR EACH swarm n

test for change
IF swarm n is excluded, randomize
ELSE update particle velocities and positions
update attractors
test for convergence

apply exclusion
REPEAT

For generality, Algorithm 3 also specifies a redundancy parameter nexcess

which is set to the desired number of free swarms. A simple choice is to sup-
pose that nexcess = 1, but this may not give sufficient diversity if there are
many peaks. Alternatively, nexcess = ∞ means that no swarm can ever be re-
moved. Intermediate values control the amount of multi-swarm diversity. Part
of the purpose of the experiments reported below is to assess the algorithm
for robustness in nexcess.

The multi-swarm size M(t) is dynamic and at any iteration t is given by

M(0) = 1

M(t) =
{

M(t− 1) + 1, Mfree = 0
M(t− 1)− 1, Mfree > nexcess

(2.5)

Swarm convergence and exclusion are now determined by a dynamic con-
vergence radius r(t) defined by

r(t) =
X

2M1/d
(2.6)

which has been chosen to ensure a mean volume per swarm of (2r)d = Xd

M ,
a condition which might be expected to be if the peaks are, on average, uni-
formly distributed in Xd. The number of free swarms at any time is the differ-
ence between the multi-swarm size and the number of converging swarms. A
swarm is defined as ‘converging’ if its diameter is less than 2r. The exclusion
radius is replaced by r(t). Hence two parameters, M and rexcl and one oper-
ator, anti-convergence, have been removed from the multi-swarm algorithm,
at the expense of introducing a new parameter, nexcess.

2.6.2 Results

A number of experiments using the MPB of Section 2.5.5 with 10 and 200
peaks were conducted to test the efficacy of the self-adapting multi-swarm

44 Tim Blackwell

for various values of nexcess. The uniform volume distribution described in
Section 2.5.1 was used. An empirical investigation revealed that rcloud = 0.5s
for shift length s yields optimum tracking for these MPB’s, and this was the
value used here.

Table 2.1 shows the raw and rounded offline errors for 1 ≤ nexcess ≤ 7 and
for nexcess = ∞. Only the rounded errors are significant, but the pre-rounded
values have been reported in order to examine algorithm functionality. For
comparison, the best performance of an unadapted 10(100+10−) multi-swarm
for the p = 10 and p = 200 environments is, respectively, 1.75(0.06) and
2.26(0.03) [7]. The best self-adapting multi-swarm errors are 1.77(0.05) and
2.37(0.03), only slightly higher than the hand-tuned values. The constancy of
the raw offline error for nexcess ≥ 5 shows that the algorithm never tries to
generate 6 or more swarms: nexcess = 5 is equivalent to setting nexcess to ∞.

Table 2.1. Variation of offline error with nexcess for 10 and 200 dynamic peaks.
The raw data demonstrates identical algorithm behavior for nexcess ≥ 5.

Raw Rounded (standard error)
nexcess p = 10 p = 200 p = 10 p = 200

1 1.9729028458116666 2.5383187958098343 1.97(0.09) 2.54(0.04)
2 1.879641879674056 2.398361911062971 1.88(0.07) 2.40(0.02)
3 1.7699076299648027 2.386396596554201 1.77(0.05) 2.39(0.03)
4 1.8033988974332964 2.372590853208213 1.80(0.06) 2.37(0.03)
5 1.8013758537004643 2.365026825401844 1.80(0.06) 2.37(0.03)
6 1.8010120393728533 2.3651325663361167 1.80(0.06) 2.37(0.03)
7 1.8010120393728533 2.3651325663361167 1.80(0.06) 2.37(0.03)

infinity 1.8010120393728533 2.3651325663361167 1.80(0.06) 2.37(0.03)

2.6.3 Discussion

Theoretically, nexcess = 1 would appear to be an ideal setting, allowing the
multi-swarm to adapt to the number of peaks, whilst always maintaining a
single free swarm. However, inspection of the numbers of free and converged
swarms for a single function instance revealed that the self-adaptation mech-
anism at nexcess = 1 frequently adds a swarm, only to remove one at the
subsequent iteration. The explanation is believed to be the following: suppose
a swarm (swarm A) has started to converging on a peak. A new free swarm,
swarm B, will be created. Since A is just at the edge of convergence, fluctua-
tions in the swarm size may cause the swarm to appear to be free at the next
iteration. Hence there will be two free swarms, and one must be removed -
almost certainly swarm B, since this has had little chance to improve its pg.
Swarm A will again start to converge (according to the criterion), causing the

2 Particle Swarm Optimization in Dynamic Environments 45

creation of a new free swarm at the next iteration. Such repeated creations
and annihilations of the free swarm waste valuable function evaluations.

Another possible setting is nexcess = ∞. This effectively turns swarm re-
moval off. Although there is no check to the number of swarms, it is not
unreasonable to suppose that given enough time, the multi-swarm would sta-
bilize at Mconv = p and Mfree = 1. The convergence criterion is rather naive
and may mark a free swarm as converging even though it is not associated
with a peak. This will cause the generation of another free swarm, with no
means of removal. This will only be a problem when Mconv > p, a situation
that might not even happen within the time-scale of the run. For example,
Figures 2.4 and 2.5 show convergence data for a single run at p = 10 and
p = 200. For p = 10, the eleventh swarm is generated at function evaluation,
neval, = 254054. There are 500000 evaluations in a run, and in the remaining
evaluations the multi-swarm size is, at most 13, and remains fairly steady
after the 400000th evaluation. The p = 200 trial shows a steadily growing
multi-swarm, which never attains complete coverage of all peaks, ending with
47 converging swarms and 1 free swarm.

0 100000 200000 300000 400000 500000
10

0

10
1

Evaluations

O
ffl

in
e

er
ro

r

0 100000 200000 300000 400000 500000
0

5

10

15

Evaluations

conv
free

Fig. 2.4. Convergence of the self-adapting nexcess = ∞ multi-swarm for a single
instance of the 10 peak MPB environment. Upper plot shows offline error, lower plot
shows number of converged and free swarms.

The flexibility of a swarm removal mechanism is desirable for a number of
reasons. For example, two peaks might move within rexcl of each other, causing

46 Tim Blackwell

0 100000 200000 300000 400000 500000
10

0

10
1

10
2

O
ffl

in
e

er
ro

r

0 100000 200000 300000 400000 500000
0

10

20

30

40

50

Evaluation

conv
free

Fig. 2.5. Convergence of the self-adapting Mexcess = ∞ multi-swarm for a single
instance of the 200 peak MPB environment. Upper plot shows offline error, lower
plot shows number of converged and free swarms.

a previously converged swarm to vaporize through exclusion (the better swarm
remains). Or maybe a peak i becomes invisible if its height is smaller than
other peak heights at its optimizer i.e. if f(x∗

i) < f(xj) for some j �= i. In
either case, superfluous free swarms will consume function evaluations.

The redundancy nexcess can be set at any value between the two extremes
of nexcess = 1 and nexcess = ∞. (nexcess = 0 gives very bad performance, no
swarms at all may be added and the single swarm converges, and remains on,
the first peak it finds.) The results for p = 10 and p = 200 indicate that tuning
of nexcess can improve performance for runs where the multi-swarm has found
all the peaks. Tuning can prevent the multi-swarm from generating too many
free swarms - for example 3 free swarms are optimal for p = 10. However,
setting nexcess at either extreme still produces good performance, and better
than the comparison algorithms cited in Section 2.5.5. Perhaps the multi-
swarm itself could tune nexcess during a run. A more sophisticated convergence
criterion would also have to be devised. For example, the convergence criterion
could take into account both the swarm diameter and the rate of improvement
of f(pg).

2 Particle Swarm Optimization in Dynamic Environments 47

2.7 Conclusions

This chapter has reviewed the application of particle swarms to dynamic op-
timization. The canonical PSO algorithm must be modified for good perfor-
mance in environments such as many peaks. In particular the problem of
diversity loss must be addressed. The most promising PSO variant to date
is the multi-swarm; a multi-swarm is a colony of swarms, where each swarm,
drawing from an atomic analogy, consists of a canonical PSO surrounded by
a cloud of charged particles. The underlying philosophy behind multi-swarms
is to place a separate PSO on the best peaks, and to maintain a population
of patrolling particles for the purposes of identifying new peaks. Movement of
any peak that is being watched by a swarm is tracked by the charged particles.
An exclusion operator ensures that only one swarm can watch any one peak,
and anti-convergence seeks to maintain a free, patrolling swarm.

New work on self-adaptation has also been presented here. Self-adaptation
aims at reducing the number of tunable parameters and operators. Some
progress has been made at the multi-swarm level, where a mechanism for
swarm birth and death has been suggested; this scheme eliminates one oper-
ator and allows the number of swarms and an exclusion parameter to adjust
dynamically. One free parameter, the number of patrolling swarms, still exists,
but results suggest that the algorithm is not overly sensitive to this number.
Self-adaptations at the level of each swarm, in particular allowing particles
to be born and to die, and self-regulation of the charged cloud radius remain
unexplored.

References

1. A. Engelbrecht. Computational Intelligence. John Wiley and sons, 2002.
2. T. M. Blackwell. Particle swarms and population diversity I: Analysis.

In J. Branke, editor, GECCO Workshop on Evolutionary Algorithms for
Dynamic Optimization Problems, pages 9–13, 2003. http://www.ubka.uni-
karlsruhe.de/cgi-bin/psview?document=2003%2Fwiwi%2F1.

3. T. M. Blackwell. Particle swarms and population diversity II: Experiments.
In J. Branke, editor, GECCO Workshop on Evolutionary Algorithms for
Dynamic Optimization Problems, pages 14–18, 2003. http://www.ubka.uni-
karlsruhe.de/cgi-bin/psview?document=2003%2Fwiwi%2F1.

4. T. M. Blackwell and P. Bentley. Don’t push me! collision avoiding swarms. In
Congress on Evolutionary Computation, pages 1691–1696, 2002.

5. T. M. Blackwell and P. J. Bentley. Dynamic search with charged swarms. In
W. B. Langdon et al., editors, Genetic and Evolutionary Computation Confer-
ence, pages 19–26. Morgan Kaufmann, 2002.

6. T. M. Blackwell and J. Branke. Multi-swarm optimization in dynamic environ-
ments. In G. R. Raidl, editor, Applications of Evolutionary Computing, volume
3005 of LNCS, pages 489–500. Springer, 2004.

48 Tim Blackwell

7. T. M. Blackwell and J. Branke. Multi-swarms, exclusion and anti-convergence
in dynamic environments. IEEE transactions on Evolutionary Computation,
10(4): 459–472, 2006.

8. T. M. Blackwell. Swarm music: Improvised music with multi-swarms. In Proc
AISB’03 Symposium on artificial intelligence and creativity in arts and science,
pages 41–49, 2003.

9. T. M. Blackwell. Swarms in dynamic environments. In E. Cantu-Paz, edi-
tor, Genetic and Evolutionary Computation Conference, volume 2723 of LNCS,
pages 1–12. Springer, 2003.

10. T. M. Blackwell. Particle swarms and population diversity. Soft Computing,
9(11): 793–802, 2005.

11. J. Branke. The moving peaks benchmark website. http://www.aifb.uni-
karlsruhe.de/jbr/movpeaks.

12. J. Branke. Memory enhanced evolutionary algorithms for changing optimi-
zation problems. In Congress on Evolutionary Computation CEC99,
volume 3, pages 1875–1882. IEEE, 199. ftp://ftp.aifb.uni-karlsruhe.de/pub/
jbr/branke cec1999.ps.gz.

13. J. Branke. Evolutionary approaches to dynamic environments - updated
survey. In GECCO Workshop on Evolutionary Algorithms for Dynamic
Optimization Problems, pages 27–30, 2001. http://www.aifb.uni-karlsruhe.de/
jbr/EvoDOP/Papers/gecco-dyn2001.pdf.

14. J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer, 2001.
http://www.aifb.uni-karlsruhe.de/jbr/book.html.

15. J. Branke and H. Schmeck. Designing evolutionary algorithms for dynamic
optimization problems. Theory and application of evolutionary computation:
recent trends, pages 239–262, 2002. S. Tsutsui and A. Ghosh, editors.

16. R. Brits, A. P. Engelbrecht, and F. van den Bergh. A niching particle swarm op-
timizer. In Fourth Asia-Pacific conference on simulated evolution and learning,
pages 692–696, 2002.

17. A. Carlisle and G. Dozier. Adapting particle swarm optimisationto dynamic
environments. In Proc of int conference on artificial intelligence, pages 429–
434, 2000.

18. M. Clerc. Think locally act locally - a framework for adaptive particle swarm
optimizers. Technical report, 2002. http://clerc.maurice.free.fr/pso/ (accessed
June 29, 2006).

19. M. Clerc. Particle Swarm Optimization. ISTE publishing company, 2006.
20. M. Clerc and J. Kennedy. The particle swarm: explosion, stability and conver-

gence in a multi-dimensional space. IEEE transactions on Evolutionary Com-
putation, 6:158–73, 2000.

21. C. Reynolds. Flocks, herds and schools: a distributed behavioral model. Com-
puter Graphics, 21:25–34, 1987.

22. A. P. French and E. F. Taylor. An introduction to quantum physics. W. W.
Norton and Company, 1978.

23. X. Hu and R. C. Eberhart. Adaptive particle swarm optimisation: detection and
response to dynamic systems. In Proc Congress on Evolutionary Computation,
pages 1666–1670, 2002.

24. S. Janson and M. Middendorf. A hierachical particle swarm optimizer for dy-
namc optimization problems. In G. R. Raidl, editor, Applications of evolutionary
computing, volume 3005 of LNCS, pages 513–524. Springer, 2004.

2 Particle Swarm Optimization in Dynamic Environments 49

25. J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of
the 1995 IEEE International Conference on neural networks, pages 1942–1948,
1995.

26. J. Kennnedy. Stereotyping: improving particle swarm performance with cluster
analysis. In Congress on Evolutionary Computation, pages 1507–12, 2000.

27. X. Li. Adaptively choosing neighborhood bests in a particle swarm optimizer
for multimodal function optimization. In K. Deb et al, editor, Proceedings of
the Genetic and Evolutionary Copmutation Conference, GECCO-2004, volume
3102 of LNCS, pages 105–116. Springer, 2004.

28. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and Company,
1983.

29. D. Parrott and X. Li. A particle swarm model for tracking multiple peaks in a
dynamic environment using speciation. In Congress on Evolutionary Computa-
tion, pages 98–103, 2004.

30. K. E. Parsopoulos and M. N. Vrahatis. Recent approaches to global optimization
problems through particle swarm optimization. Natural Computing, pages 235–
306, 2002.

31. A. Petrowski. A clearing procedure as a niching method for genetic algorithms.
In J. Grefenstette, editor, Int’l Conference on Evolutionary Computation, pages
798–803. IEEE, 2003.

32. R. Eberhart and Y. Shi. Swarm intelligence. Morgan Kaufmann, 2001.
33. Y. Shi and A. Khrohling. Co-evolutionary particle swarm optimization to solve

min-max problems. In Congress on Evolutionary Computation, pages 1682–
1687, 2002.

34. J. Vesterstrom T. Krink and J. Riget. Particle swarm optimisation with spatial
particle extension. In Congress on Evolutionary Computation, page 14741479,
2002.

35. F. van den bergh and A. P. Englebrecht. A cooperative approach to particle
swarm optimization. IEEE transactions on Evolutionary Computation, pages
225–239, 2004.

36. X. Li and K. H. Dam. Comparing particle swarms for tracking extrema in
dynamic environments. In Congress on Evolutionary Computation, pages 1772–
1779, 2003.

3

Evolution Strategies in Dynamic Environments

Lutz Schönemann

Chair of Algorithm Engineering and Computational Intelligence
Department of Computer Science, University of Dortmund
D-44221 Dortmund, Germany
lutz.schoenemann@cs.uni-dortmund.de

Summary. Numerical parameter optimization is an often needed task. In many
times, it is not necessary to find the exact optimum but a good solution in an
appropriate time. Especially in dynamic environments the main task is not to find
one nearly optimal solution but to track the moving optimum as narrow as possi-
ble. For this type of problems it is necessary for an optimization algorithm to own
mechanisms for adaptation to the problem at hand. Evolutionary algorithms with
self-adaptive features are state-of-the-art and known as good problem solvers for
this type of optimization tasks. In this chapter, we present a detailed description of
one main variant of this class of problem solvers, namely evolution strategies.

3.1 Introduction

Evolutionary algorithms (EA) are a class of nature inspired problem solvers.
They use mechanisms known from natural evolution and have in common
the transfer of their biological background into optimization. EA have proven
their potentials in many real world applications. It is known that in static
environments evolutionary algorithms find good or nearly optimal solutions
even for difficult problems in a short time. In addition, they own a high robu-
stness against changes of the problem instance over a certain range. Moreover,
state-of-the-art EA like evolution strategies (ES) can adapt to different situ-
ations during the run. Such a feature makes them interesting for application
in dynamic environments . These types of problems seem to be the more
interesting ones since most real world problems are of non-stationary type.

In dynamic optimization we can divide two distinct phases. At first, the
algorithm needs some time to search for the optimum. The period needed
for this task is called the searching phase. Once the algorithm has found
the optimum within a certain accuracy the algorithm must follow the moving
optimum with a distance as small as possible. This phase is called the tracking
phase and lasts potentially eternally.

Dynamic optimization problems are harder to optimize than static prob-
lems. The more difficulty of optimization in non-stationary environments is

L. Schönemann: Evolution Strategies in Dynamic Environments, Studies in Computational

Intelligence (SCI) 51, 51–77 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

52 Lutz Schönemann

reflected by the circumstance that only a few theoretical analyses were per-
formed on problems in dynamic environments. In contrast to this, many inves-
tigations concentrate on the case of static environments. Consequentially, for
this type of problems many theoretical results are known. But for the dynamic
case the situation is different. Here, the dependencies between the algorithm
and the changing environments are more difficult to analyze. Therefore, the
results are not transferable to the dynamic case in a straight forward manner.
Hence, experimental investigations are necessary in the foreseeable future.

ES benefit from their self-adaptive mechanisms. Algorithms with this fea-
ture are able to adjust their endogenous parameters to the problem at hand
during the evolutionary run. But the ability to let the adaptation process
work depends on good settings of exogenous parameters which are not var-
ied during the evolutionary run. One exogenous parameter is the number of
step sizes used for changing the object variables. With some experiments we
determine the influence of different choices for this parameter.

To get a deeper insight into the behavior of EA in dynamic environments it
is helpful to start with a thorough investigation of easier problems. This is done
in the remaining text, which is structured as follows. Section 3.2 illustrates in
general the underlying dynamic problems. Evolution strategies are introduced
in detail in Sect. 3.3. Beside the main algorithm some specialized variants are
mentioned. Section 3.4 gives an introduction into the topic of comparing two
or more strategies. A detailed specification of the test scenarios investigated
here is described in Section 3.5. Experiments concerning the optimal number
of mutation step sizes are then performed in Sect. 3.6. Finally, Sect. 12.9 offers
concluding remarks.

3.2 Problem Definition

Although evolution strategies were applied successfully to combinatorial as
well as discrete optimization problems, for ES the main field of application is
continuous numerical parameter optimization. Therefore, such problems are
lying in the main focus of this study. The reader who is interested in ES
working on other search spaces is referred to [2].

Real-valued parameter optimization deals with optimization problems
with which a user is often confronted. In the static case it is characterized
by a minimization problem of the type

min fs : R
n → R .

A maximization could be ascribed to a minimization by max fs = −min−fs.
In the static case, the problem to be optimized remains the same during the
whole run. In contrast to this, dynamic problems are non-stationary. This
circumstance causes that a good solution found once, get obsolete during the
shorter or longer next time. Hence, whereas for a static function it is sufficient

3 Evolution Strategies in Dynamic Environments 53

to find one good solution, in dynamic environments the algorithm must track
the moving target within a distance being as small as possible.

Depending on the type of changes the problem could be more or less
difficult to optimize. In one type the underlying function does not change,
but the optimum moves through the search space. Such problems could be
ascribed by

min
t

fd(x;x∗(t)) := fs(x− x∗(t))

to the static case where the optimum x∗(t) is included as an additional pa-
rameter. The optimum x∗(t) moves during the optimization process and de-
pends on t. Be aware, that despite the chance to wait some time, t could not
be influenced by the user.

The exact dynamic test scenarios used for our investigations are derived
from this general definitions and described in Sect. 3.5.

3.3 Evolution Strategies

Before we introduce evolution strategies in detail, we start with a brief history
of evolutionary algorithms. For a more detailed description of the historical
development of evolutionary algorithms the reader is referred to [8].

3.3.1 Evolution Strategies in the Historical Context
of Evolutionary Algorithms

In many scientific areas new theoretical ideas were developed before their
practical usefulness could be demonstrated. A similar development could be
seen in the field of evolutionary algorithms. These algorithms were inspired by
Darwins theory of natural selection [7]. Indeed, such a procedure suggested
itself since the nature is a complex search space and had developed well-
adapted life-forms.

The origins of nature inspired methods could be followed back to the
last 1950s [4, 6, 11, 12]. But at these times computational power was less
developed to support their practical importance. This changes in the early
1960s when the demand for numerical optimization methods grew more and
more. Several authors started independently from each other to search for
nature inspired techniques. From these, three main variants were established
and exist today. Namely, these are genetic algorithms (GA) developed by
Holland [15, 16], evolutionary programming (EP) schemed by Fogel [9, 10],
and evolution strategies designed by Rechenberg and Schwefel [19, 25]. Nowa-
days all methods firm under the term of evolutionary algorithms.

Whereas the former two methods started more or less as design studies,
evolution strategies have shown their practical power in several applications
in early days. Evolution strategies were not developed for numerical optimiza-
tion problems. Instead, they were used to assist a user in adjusting a discrete

54 Lutz Schönemann

system to find an optimal shaping. The most famous example is the develop-
ment of a two-phase nozzle, which results in a so-far optimal shape of strange
appearance. These early successes helped ES to become known to a greater
circle of researchers. Afterwards, evolution strategies left the application area
of system design and entered the field of numerical (continuous) optimization
problems. In numerical optimization the task is to find an optimal setting
for real-valued parameters resulting in a minimum or maximum of a given
function. Today, this is the main application area for evolution strategies.

The development of evolution strategies started with the simplest possible
strategy. One given solution called the parental individual is slightly varied
by applying variation operators resulting in a new solution called offspring
individual. In this so-called (1 + 1)-ES the new solution is tested against
its parent. If the offspring has a better (more fitter) function value the new
solution becomes the next parent. Otherwise the offspring is discarded. The
execution of the complete loop is called one generation and repeated for a
given number of generations.

Whereas this is an easy to use and resource sparing variant the increas-
ing power of computer systems allowed more sophisticated implementations.
Consequently, the next step was the introduction of the (1 + λ)-ES in which
the parent generates λ offspring in one generation. Then the best solution
from this offspring population substitutes the parent if it has a better fitness.
Otherwise the parent is transferred to the next generation.

Although very unlikely it is possible for the parent to survive for the com-
plete evolutionary run. This is the case if all generated offspring have a worse
function value. Now, the introduction of more than one offspring admits a
different proceeding. Since the offspring compete against each other a natural
selection exists independently from the competition with the parent. There-
fore it is possible to prevent the parent to be transferred to the next generation
regardless of its fitness. This idea results in the (1, λ)-ES in which the best
offspring becomes the parent of the next generation. It was observed that due
to this proceeding in many applications the EA was able to find a solution of
adequate quality in a shorter time. This means that the so-called mechanism
of adaptation often works better than in an (1 + λ)-ES. If the exact selection
method does not matter both methods are summarized to the (1 +, λ)-ES.

A last step was the introduction of more than one parent. In the (1 +, λ)-
ES every offspring is derived slightly modified from the only parent. In the
multimembered (µ +, λ) strategy exists a population of parents. If an offspring
is generated directly from one parent, every parent generates in the mean λ/µ
offspring. But the multimembered ES allows more. Here, several parents could
be combined to one recombinant. This solution is then mutated to form a new
offspring. The next parental population may be the best individuals from the
offspring or the union of offspring and parent population.

3 Evolution Strategies in Dynamic Environments 55

3.3.2 State-of-the-art: the (µ, κ, λ, ρ)-ES

In this section we present the most general form of evolution strategies in
detail.

General evolutionary loop

Every evolutionary algorithm has so-called strategy parameters that influ-
ence the working of the variation operators. An improper setting of these
parameters may hamper the EA from finding the optimum. We distinguish
exogenuous and endogenuous parameters. On the one hand, exogenuous para-
meters are those parameters which are set at the start of the ES and are not
changed by the ES during the run. E.g., such parameters are the population
sizes which usually remain constant during the evolutionary run. On the other
hand, endogenuous parameters could change during the run. An ES in which
strategy parameters could change is called an adaptive ES. This change could
be done from time to time by a routine which use the current progress for the
parameter control. Alternatively, the strategy parameters may be coded in
the individuals. In this case the strategy parameters are part of the variation
process. The selection of good strategy parameters is done indirectly through
the selection of the whole individuals. As seen above the selection of an in-
dividual is based on the fitness of the individual which reflects the quality of
the object variables. An ES with this feature is called self-adaptive. In static
environments self-adaptation is known as a helpful mechanism to locate the
optimum with a high accuracy. But it is even more useful in dynamic environ-
ments than in static ones since the problem changes from time to time and
therefore the strategy parameters are frequently obsolete.

Today there exists several variants of ES designed to met the efforts of
different users. The most popular one is a generalization of the ones mentioned
above and was introduced by Schwefel and Rudolph [26]. Fig. 3.1 presents
the basic evolutionary loop of their (µ, κ, λ, ρ)-ES. In the (µ, κ, λ, ρ)-ES the
algorithms work on a set of µ parental solutions. With the help of variation
operators a set of λ additional solutions are generated. The variation is split
into the recombination of ρ parents to one new solution and subsequently
mutating this solution resulting in one offspring.

Because it is supposed that we optimize in dynamic environments the opti-
mization process never ends. Hence, in real scenarios the following procedure,
called generational loop, is repeated for infinity: In every generation t a mul-
tiset Ot of λ offspring are generated by variation operators. After evaluation,
the µ best elements from the union of offspring and old parents are selected
for the next parent population. In contrast to this plus strategy the comma ES
takes only the offspring into account. This is regarded as helpful for the adap-
tation process, especially if the environment changes with a high frequency
(every generation).

56 Lutz Schönemann

t ← 0
Pt ← init()
evaluate(Pt)
while TRUE do

move of the optimum
Ot ← mutate(recombine(Pt))
evaluate(Ot)
Pt+1 ← select(Ot ∪ Pt)
t ← t + 1

end while

Fig. 3.1. Basic (µ, κ, λ, ρ)-ES

The selection operator choses the new parents from the parental and the
offspring population depending on the fitness and the age of each individ-
ual. Every individual could survive for up to κ ∈ {1, . . . ,∞} generations. A
whole cycle of the loop of performing the variation operators and the selection
operator is called a generation.

After selecting the new population, the age of every parent and the gen-
eration counter are increased and the loop starts anew.

Representation

The evolutionary loop starts with initializing and evaluating the initial pop-
ulation P0 of potential solutions. A single solution (individual) comprises of
n object variables xi, one for every problem dimension, and a set of up to
nσ +nα strategy parameters which affects the working of the variation opera-
tors. The nσ mutation step sizes control the mean amount of changes affected
by the mutation operator. Due to their values new solutions are found nearby
old solutions or they are lying more far away. The optional nα rotation angles
facilitates the ES to walk along directions independently of the coordinate
axes. Although it is possible to use 1 < nσ < n step sizes usual choices are
nσ ∈ {1, n}. The usage of rotation angles is very rare since otherwise the
adaptation process lasts often very long.

Initialization

The first population is mostly initialized equally distributed over the complete
or a wide range of the domain. If a good solution is known the whole popu-
lation could be initialized with this solution. The same holds for constrained
problems. In such a case it could be difficult to find a valid solution. Then the
algorithm could be initialized with one or more known valid solution(s). The
step sizes are initialized depending on the size of the domain.

3 Evolution Strategies in Dynamic Environments 57

Reproduction and Variation

The variation of solutions is done in two steps. In the first one, the recom-
bination operator often combines two individuals to produce one offspring.
Frequently, the object variables of every coordinate of the child are chosen
independently from each other randomly from one of the parents (discrete
recombination). Whereas the strategy parameters are set to the mean of the
corresponding strategy parameters of both parents (intermediate recombina-
tion).

In the second step, the mutation operator changes the values (x, σ) of
a formally generated offspring to the new values (x′, σ′) using the following
operations:

• In case of one mutation step size:

σ′ = σ · exp(τ0 ·N(0, 1)),

where τ0 ∝ 1√
n
.

• In case of 1 < nσ ≤ n mutation step sizes:

σ′
i = σi · exp(τ ′ ·N(0, 1) + τ ·Ni(0, 1)),

where τ ∝ 1√
2
√

n
and τ ′ ∝ 1√

2n
.

In both variants the mutation of the object variables is usually done by

x′
i = xi + Ni(0, σ′

i) ∀i ∈ {1, . . . , n}

Here, N(·) is a normally distributed random variable common for all i. Ni(·) is
a normally distributed random variable chosen independently from each other
for every coordinate. τ0, τ, τ

′ > 0 are so-called learning rates, that follow the
rules given above. From theory it is known that in static environments the
optimal settings for the learning rates depend on the used population sizes [1,
S. 302]. Since the underlying function as well as the optimal population sizes
are unknown in advance, in most cases this holds for the optimal settings
for the learning rates, too. Hence, in static environments the proportionality
factor of the learning rates are often set to one. In dynamic environments
no theoretical analyses regarding the optimal settings for the learning rates
are known. Because the function to optimize changes during the evolutionary
run, a higher setting for the learning rates seems to be favorable. Therefore,
in the experimental investigations in this study the proportionality factors of
the learning rates are set to three.

The mutation of the object variables is done using a normally distributed
random variable. It is a nearby idea to try other random variables. Several
attempts in this direction were taken. Some theoretical analyses proved that
other distributions guarantee that an EA could leave a local optimum in the
static case [21, 22]. But since the results are only valid for infinity long runs,

58 Lutz Schönemann

none of the distributions have etablished as a standard for some problem
classes.

Principally, the number of mutation step sizes can be varied between the
two extremes of one and n. If 1 < nσ < n step sizes are used, nσ−1 coordinates
get their own step size and the remaining n − nσ + 1 coordinates share one
step size. The number of used strategy parameters has an influence on the
obtainable results. First, they affect the time needed for adaptation. The
higher the number of strategy parameters the higher is the time needed for
adaptation. Second, depending on the underlying moving type, with a less
number of strategy parameters grows the distance in which the algorithm
follows the optimum. In Sect. 3.6, our main focus is the effect of different
choices for the number of mutation step sizes.

Selection

The algorithm uses the κ selection scheme in which the best µ individuals of
the set of parents and offspring are chosen for the next reproduction cycle as
long as their age are less than or equal to the maximal life span κ. The κ
selection is the generalization of the comma and plus selection. In the comma
strategy the new parents are chosen as the µ best individuals from the set
of offspring. This means that the total population is exchanged after every
generation. Hence, every individual survives for exactly one generation. Here,
the quotient λ/µ is called the selection pressure of the strategy. In the plus
selection scheme the new parents are selected from the union of sets of par-
ents and offspring. In this case, every individual could survive potentially for
eternity. It is ensured that the best individual found so far is transferred to
the next generation. Such a strategy is called elitist.

The κ selection was introduced in the 1990s and it is assumed that in many
situations the best choice for κ is different from one and infinity. But since
then, no theoretical analysis were done in this research area and the knowl-
edge of an optimal maximal life span is still outstanding. Indeed, it seems to
be a difficult task to analyze an ES with a maximal life span 1 < κ < ∞. To
brighten this field the author made a first fundamental experimental investi-
gation [24]. In that study the influence of different κ values on the obtainable
results were tested. Although this study only looked at static environments
the results give hints for the dynamic case. It was observed that on the rela-
tive easy test functions used after a short period the adaptation process works
well. This is also reflected by the fact that almost all individuals do not exceed
a life span of three. Mostly, the individuals died with an age of one or two.
Hence, a limitation of the life span to a value greater than three showed no
effect on the obtained results. In dynamic environments the situation is three-
fold. If the changes occur very seldom the environment remains constant for
longer periods. In this case the situation is similar to the static case and dif-
ferent settings for κ do not promise better results. If the environment changes
very often a permanent adaptation is necessary and almost all individuals are

3 Evolution Strategies in Dynamic Environments 59

replaced in the next generation automatically. Again, a limitation of the life
span seems not promising. If the changes occur in moderate intervals ∆g the
limitation of the life span to exact this value (κ = ∆g) is a close-by idea. But
first investigations in this direction were not successful.

Additionally, in [24] it was shown that a single individual of high fitness
and with bad settings for the strategy parameters could hamper a proper
adaptation to the problem at hand. Hence, it should be guaranteed that an
individual could not survive for too long. So, in practical applications a small
value like κ = 5 is chosen. Hence, a single individual can bequeath their genes,
but dies after a few generations.

Parameter Settings

Theoretical analyses on the behavior of evolutionary algorithms in dynamic
environments are very rare. Often they look at simple strategies or test prob-
lems. These analyses failure if harder problems or more sophisticated EA are
regarded. Such EA uses self-adaptation and complex variation mechanisms
like a whole set of n mutation step sizes. With more complicated dynam-
ics the analysis gets even harder. Due to this, at the moment experimental
investigations are necessary to get a deeper insight into the functioning of
evolutionary algorithms.

Beside setting the initial values of the endogenuous parameters as the
mutation step sizes, it is necessary to choose good values for the exogenu-
ous parameters. The main ones of these parameters are the population sizes.
As optimal values are unknown, researchers use often an (15, 100) strategy
because this have proven as a good compromise. In our experimental investi-
gations in Sect. 3.6 we try other settings for these parameters.

The learning rates τ, τ ′, τ0 described above are chosen based on theoretical
analyses of some test functions. On other functions these heuristics are not
optimal. Kursawe examined the best settings for the learning rates on some
test functions empirically [17]. The resulting optimal settings follow no obvious
rule. Hence, most authors fall back on the heuristic settings.

3.3.3 Other ES variants

In addition to the standard forms of EA, several variants were developed for
particular purposes. Especially for the case of dynamic environments some so-
phisticated evolutionary algorithms exist [5, 18]. Mostly, they have in common
that they use several subpopulations to search and follow moving local optima
of different quality. In these cases, it is hoped that a formally local optimum
which changed to be the global one during the run, is already occupied by a
subpopulation. Such mechanisms are even known from optimization in static
environments [27].

An open question is the usefulness of derandomized mutation schemes.
Two of those strategies are the cumulative step size adaptation (CSA) and

60 Lutz Schönemann

the covariance matrix adaptation (CMA) developed by Hansen and Oster-
meier [14]. The underlying idea of both strategies is to adapt the mutation
based on the information about the length and direction realized so far. The
second variant is able to rebuild correlated mutations by adapting a covariance
matrix. The exact working mechanism of both strategies lies beyond the scope
of this introductory article. For a detailed discussion the reader is referred to
the original literature cited above.

Of course, there exists other EA variants which may be an interesting
approach for our problem definition [2]. But none of them has reached the
status of a standard method. We use the type of ES described above because
of two reasons. First, a user with only a small knowledge of EA would prefer an
easy to use algorithm. Often, specialized EA have some additional parameters
which must be set by the user in advance. A wrong setting of these parameters
may hamper the EA to follow the optimum. Thus, many users fall back on
standard variants for which only some parameters must be set by the user.
Second, the used algorithm must behave well in static environments, too.
Evolution strategies follow these demands.

3.4 Performance Measures and Comparison of Strategies

Although it is interesting to investigate the time needed to search for the
optimum, we are only interested in the behavior of the algorithm during the
tracking phase.

An investigation concerning the best strategy to use needs a ranking of
the tested strategies. Such a ranking is done by comparing the strategies. A
comparison of two strategies needs an objective criteria. Usually, such a crite-
ria is based on an unary performance measure for a single strategy. Measuring
the performance of an EA is not easy even in the static case. It is a matter of
opinion whether a local or global performance measure is taken. In addition,
the performance could be measured in the fitness space or in the search space.
For a detailed discussion of this topic see [3].

Especially in the case of dynamic environments the comparison of different
strategies is a difficult task. To define a helpful measurement it is necessary to
have an imagination of the exact object of investigation. An EA in a dynamic
environment passes two phases. In the first one (searching phase) the EA
starts from an initial point and moves into the direction of the optimum.
If it falls below a particular distance the tracking phase begins. During the
tracking phase the EA follows the optimum with more or less equal distance.
The mean distance to the optimum depends on the abilities of adaptation
of the EA. If the changes are not too large, this period lasts for the rest of
the run. Otherwise a new searching phase starts, because the optimum had
departed too far from its old position. If the EA diverges from the optimum
it is not able to reach the tracking period.

3 Evolution Strategies in Dynamic Environments 61

Several attempts were done to define an appropriate measurement [28]. But
all of them have more or less deficiencies. First, often the user is only interested
in one of the two phases. But most measures do not distinguish between them.
Hence, an algorithm may be handicapped if its searching phase lasts longer,
but follows the optimum within a smaller distance. Second, a necessity is to
abstract from one single run and to regard the general behavior observed in
multiple runs. All existing measurements calculate the arithmetic mean of the
observed function values. This has one disadvantage. The arithmetic mean is
vulnerable against large outliers. In extreme, a single outlier of large intense
could distort the result in an improper manner. This is almost undesirable.

To get rid of these deficiencies, in [23] we defined a new measurement
for comparing two or more strategies in dynamic environments. It is called
average best function value (ABFV). Abridging, the ABFV is a robust
measure for the average fitness of a mean run. In the case of minimization,
a smaller ABFV means a better behavior. In the following we present this
measurement in a nutshell. Fig. 3.2 (top) shows a common single run of an
ES in a dynamic environment. After a few generations (searching period) the
EA has found a solution with a certain accuracy. Due to statistical fluctuations
in the next generations (tracking period) the function values oscillate around
this value.

In the following we concentrate our investigations on the tracking period.
The period to find the optimum for the first time is not considered any more.
Although in dynamic environments the process of optimization is infinite we
have to restrict our investigations to a limited time horizon. Depending on the
objective function, the problem dimension, the moving frequency and severity
we run every EA for an equal number of function evaluations. This guarantees
that the results are comparable within the same optimization problem.

As a first measurement we could calculate the mean function value of a
single run during the tracking period. But a single run of one strategy is
not sufficient to get meaningful results. We reduce the random fluctuations
by taking the median (0.5-quantile) of every generation of repeated runs. In
contrast to the mean the median is more resistant against statistical outliers.
To get an impression of the statistical fluctuations fig. 3.2 (bottom) shows in
addition to the median the 0.05- and 0.95-quantiles of 50 runs of the same
experiment. Adding these quantiles leads to an approximative 90% confidence
interval for the function value of every generation of a single run.

For a simple comparison of two strategies we need a single measurement
for every strategy. We calculate such a measurement in the following way.
In every single run and every generation of the tracking period we print the
best function value of the current population. To reduce inaccuracies due to
random fluctuations every strategy is performed m times. Repeating it m
times we get m function values for every generation. For every generation we
take the median of these m function values and get a median run. The mean of
this median run during the tracking period serves as the tracking measurement
M(µ,λ), which we call the average best function value. Fig. 3.3 demonstrates our

62 Lutz Schönemann

0 500 1000 1500 2000

1e
−

03
1e

−
01

1e
+

01

generations

be
st

 fu
nc

tio
n

va
lu

e

0 500 1000 1500 2000

1e
−

03
1e

−
01

1e
+

01

generations

be
st

 fu
nc

tio
n

va
lu

e

Fig. 3.2. Results of a (15, 100)-ES on the dynamic sphere with n = 30. The optimum
moved every generation in one dimension with a constant s = 0.1. Single run (top)
and 0.05-, 0.5- and 0.95-quantiles of the best function values of every generation of
50 runs of the same ES (bottom).

approach. In this example the average best function value of the generations
from 1000 to 2000 is approximately M(15,100) = 0.03. Keep in mind that if the
EA is already in the tracking period and we increase the number of function
evaluations the resulting value will not change substantially. This is because
we calculate the mean function value of the tracking period and the expected
value will not change if we calculate it for more generations.

Although the ABFV was developed for dynamic environments we can de-
fine it for static environments, too. In static environments we do not have
a tracking period. In most cases, the ES reaches the global optimum with a
certain distance or it gets stuck in a local optimum. In both situations we
define the tracking period of the ES as the last generation of a single run.
This definition has advantages as well as disadvantages. But it includes the
situation that in static environments the ES may improve till the last gener-
ation. Using a certain number of runs will make sure that this value is not a
statistical outlier.

3 Evolution Strategies in Dynamic Environments 63

We return to the former experiment. As an alternative to the (15, 100)-
ES we use a (10, 100)-ES on the same problem. Fig. 3.4 (top) shows the
median runs for both strategies. In this figure we see a noticeable better
performance of the variant with µ = 10. The respective tracking measurement
is M(10,100) = 0.01. On this problem, the ABFV of the (10, 100)-ES is better
than the ABFV of the (15, 100)-ES.

The ABFV gives a first hint which strategy performs better on a given
problem instance. But it is not sufficient to decide if two strategies are signif-
icant different. To get statistical certainty we need additional calculations.
For every generation we sort the belonging m values of the m runs. Af-
ter this we join the best value of every generation to a new best virtual
run, the second best value of every generation to a new second best vir-
tual run, . . ., and the worst value of every generation to a new worst vir-
tual run. Totally, we get m virtual runs which we call the α-quantile runs
(α ∈ {0, 1/(m − 1), 2/(m − 1), . . . , (m − 2)/(m − 1), 1). The 0.5-quantile run
forms the median run from above. This median run has a counterpart in sta-
tistical time series analyses. In this area, the mean value function is calculated.
This is nearly exact our median run, abstained from the fact that instead of
the median the mean of all values of a generation is regarded. But as noticed
before, the mean is not robust against already one single large outlier.

Be aware that every α-quantile run may be compounded of values of dif-
ferent real runs and must not reflect a real single run. Imagine two single runs.
For generations 101-200 the first one has the function value 1 and the other
one has value 10. For generations 201-300 the first one has the value 10 and
the other one has value 1. So both runs have an equal mean function value.
The resulting virtual runs have the function value 1 for the best virtual run

1000 1200 1400 1600 1800 2000

0.
01

0.
02

0.
05

0.
10

generations

be
st

 fu
nc

tio
n

va
lu

e

Fig. 3.3. The median function values of generations 1000 − 2000 of 50 runs of
a (15, 100)-ES on the dynamic sphere with n = 30. The optimum moved every
generation in one dimension with a constant s = 0.1. Additionally, the horizontal
line shows the mean of the 1001 plotted values, which we call the average best
function value

64 Lutz Schönemann

0 500 1000 1500 2000

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01

generations

be
st

 fu
nc

tio
n

va
lu

e

m=10 l=100
m=15 l=100

m=10 l=100 m=15 l=100

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Fig. 3.4. Comparison of 50 runs of a (10, 100)- and a (15, 100)-ES on the dynamic
sphere with n = 30. The optimum moved every generation in one dimension with a
constant s = 0.1. Median runs (top) and boxplot of the mean function values of the
α-quantile runs (bottom).

and 10 for the worst one. But no one of them reflect the real situation in which
every single run has a mean function value of 5.5. This is an extreme exam-
ple and we can assume that the median run will reflect the average situation
regarding the median function value of a single run.

If we calculate the mean value of every α-quantile run we get m values
for the mean best function value. These m values can serve for a statistical
test, which tests the median of two distributions on equality. To do this, the
strategies m mean values are compared with the ones of another strategy. We
do not know the exact underlying distribution of these values. So it is the best
to use a non-parametric test. Due to space limitation, in this study we are
not presenting an example for this statistical test. Instead, we demonstrate
a graphical method to show the differences between two strategies. For the
example given above, fig. 3.4 (bottom) shows the boxplots of the mean values
of the α-quantile runs. The non-overlapping notches of the boxplots show that

3 Evolution Strategies in Dynamic Environments 65

the median of the function values reached by the (10, 100)-ES is significant
(at the 5%-level) better than the one of the (15, 100)-ES.

In this study we want to investigate the performance of several ES. Com-
paring two strategies with disparate number of offspring is somewhat prob-
lematic. Think of strategy A as a (15, 100)-ES and strategy B as a (15, 200)-ES
and a total number of 100,000 function evaluations. Taking the fitness after
every generation, in the first case one has 1,000 values (one after every 100
function evaluations) and in the second case one has only 500 values (one
after every 200 function evaluations). The ABFV calculates the mean of these
values. Regard the situation when we have a true continuous movement, that
means, that the optimum moves during every function evaluation. Hence, the
function values probably grow higher between two complete generations. But
the new value is taken after calculating the whole population. And this be-
havior increases with an increasing number of offspring. Fig. 3.5 makes this
connection clearer. It shows a possible run of a (µ, 100)-ES and a (µ, 200)-ES

800 1000 1200 1400 1600

0
10

20
30

40
50

function evaluation

A
B

F
V

lambda=100
lambda=200

Fig. 3.5. The process of dynamic, the point of function evaluations and a probable
fitness development (see text)

on a fictitious dynamic function. Every strategy calculates a whole generation
and prints the ABFV of this population. In the case of λ = 100 this is done
at function evaluations 100, 200, 300, . . . (indicated by circles) and for λ = 200
this is done at 200, 400, 600, . . . Assume that both strategies are able to find
the minimum with function value 0 at every generation. Due to this, for both
strategies the according ABFV has the same value 0. But between the gen-
erations the optimum moves. And this is not noticed by the strategies. So,
between two complete generations the real function values of the current pop-
ulation may increase with increasing time. Because for the (µ, 200)-ES the
time between two generations is longer than for the (µ, 100)-ES the effects
may be greater there. In the test cases below we disregard these difficulties
and assume that the environment changes after every generation.

66 Lutz Schönemann

3.5 Test Scenarios

In the next section we investigate some aspects of evolution strategies with a
series of test experiments. It is the topic of this section to define the underlying
test scenarios.

The type of dynamic optimization problems with which a user is faced is
very manifold. One is the moving direction which could be linear, cyclic or
random. We assume that the number of changes is high enough to speak of a
dynamic problem. If the problem changes only once we will be confronted with
two static problems (one before the change and one after it). Therefore, the
moving frequency is a second one and could vary between a change after every
generation (∆g = 1) and a high number (∆g � 1). The moving severity s
is another criteria. It is obvious that an algorithm can not follow a moving
optimum if the moving severity is extremely high. In addition it is likely that
it is a difference if the severity is constant or not.

Our experimental investigations are conducted on three test functions.
Every test function is a representative of a class of similar optimization prob-
lems. We use

• the sphere model as a representative of the class of unimodal functions,
• the Ackley function which is a multimodal function of moderate difficulty,

and
• the Rastrigin function since it is considered to be more multimodal and

therefore harder to optimize.

All test functions have their optimum in the origin. This makes it easy to
handle the position of the moving optimum. The first test function used here
is the well-known sphere model

fSphere(x) =
n∑

i=1

x2
i .

The sphere model as well as the following two other functions is almost always
included in a catalog of standard test problems. This is a simple function
with one local optimum, which is therefore also global. In the static case the
consideration of this function serves for measuring the convergence velocity
of an algorithm.

The Ackley function

fAckley(x) = −20 exp

⎛
⎝−0.2×

√√√√ 1
n

n∑
i=1

x2
i

⎞
⎠− exp

(
1
n

n∑
i=1

cos (2πxi)

)
+20+e

is an often used function with a moderate multimodal structure. The Ackley
function should cause no complications to an optimization algorithm.

3 Evolution Strategies in Dynamic Environments 67

The Rastrigin function

fRastrigin(x) =
n∑

i=1

(
x2

i − 3× cos (2π · xi)
)

+ 3n

used here is regarded to have a much higher multimodality. Assumingly, the
results on this function should be significant different from the ones on the
other two functions.

Many different choices for the type of dynamics are possible. For a demon-
stration of the effects of different parameter settings we concentrate on selected
types of dynamics. For every test the optimum is relocated in one of three
ways:

I: The optimum moves only in one (the first) coordinate, all other coordi-
nates remain constant.

II: The optimum moves in all n coordinates. In every coordinate the moving
strength is equal.

III: Here, the optimum moves in all coordinates, too. But the covered distance
is different in every coordinate. The covered distance in every coordinate
increases from the first coordinate to the last one. For an n-dimensional
problem this means that the optimum moves in the first coordinate with
an amount a, in the second one with

√
2 · a, in the third one with

√
3 · a,

. . ., and in the last coordinate with an amount of
√

n · a. To result in a
total severity s the factor must be set to a = s ·

√
2/(n2 + n).

Figure 3.6 demonstrates an example for all moving types in case of two di-
mensions.

0 2 4 6 8 10

0
2

4
6

8
1
0

dimension 1

d
im

e
n

s
io

n
 2

0 2 4 6 8 10

0
2

4
6

8
1
0

dimension 1

d
im

e
n

s
io

n
 2

0 2 4 6 8 10

0
2

4
6

8
1
0

dimension 1

d
im

e
n

s
io

n
 2

Fig. 3.6. Moving types I–III (from left to right). In every case the optimum starts
in the origin and moves with a total covered distance of 10

All moving types give us freedom in choosing the moving frequency and
severity. In our study the moving frequency stays constant over a whole run. It
will mostly be ∆g = 1 meaning that the optimum moves every generation. We
call this pseudo-continuous movement . It is obvious that an algorithm can not
follow a moving optimum if the moving severity s is too high. Therefore, the

68 Lutz Schönemann

moving intensity will vary over a moderate range. Additionally, the changes
must not be constant. We use a moving deviation d specifying the standard
deviation of the normal distributed random variable with mean s. The results
for the different moving types are comparable because d is chosen small in
relation to s and the mean total severity remains constant for all runs. It is
hoped that the algorithm could adapt to the mean severity and follows the
optimum with a small distance.

3.6 Experimental Investigations

In this study the main focus of our experiments lies on the choice of the number
of step sizes. Doing this, we start with a short consideration about the total
number of combinatorial possibilities to choose the number of step sizes and
to allocate them to the single coordinates. But before this, a description of
the experimental setup is given.

In [23] we presented a study concerning the choices for population sizes.
It was observed that good settings depend on the characteristics of the given
problem. The characteristics are namely the problem dimension and the fitness
landscape. For an unknown problem often standard settings are used. The
population sizes are frequently set to µ = 15, λ = 100 resulting in an (15, 100)-
ES. These settings have revealed to guarantee a minimal diversity in the
parental population and a sufficient selection pressure of λ/µ ≈ 7 ([2, 13, 20]).
Thus, we follow these suggestions and use a (15, 100)-ES.

Since we are only interested in ES behavior during the tracking phase the
first population is initialized in the optimum and the mutation step sizes are
set near to the optimal values. This means, that the step sizes match the
expected distance of the moving optimum in the next step. This procedure
reduces the time the ES needs to adapt to the problem. Experimental inves-
tigations showed that other initial step sizes only have the effect that the ES
needs a longer period for adaptation. After adaptation the behavior is still the
same. Optimization in dynamic environments is an endless task. Obviously,
for testing a strategy the user has to stop the optimization process at a cer-
tain time. Because the ES was initialized nearly optimal, no time is needed to
reach the tracking phase in which the ES follows the optimum with a certain
mean distance. Therefore, the used run time of 1000 generations is sufficient
for informative results. To compare the results for different strategies and
moving types we use the performance measure ABFV described above.

The main task in dynamic environments is to track the moving optimum.
We assume that the movement is continuously meaning that the optimum
changes every generation. As described in Sect. 3.5 the movement itself is
linear. The only unknowns are the moving severity and the direction. It may
occur that the optimum moves only in one coordinate or in all coordinates.
But other variants may be appear as well. E.g., the optimum may move in

3 Evolution Strategies in Dynamic Environments 69

coordinates 2, 3, 5, 7 – each with a different amount –, whereas the other co-
ordinates remain constant. It is obvious that two coordinates should share a
common step size only in the case when the necessary changes are nearly the
same. Otherwise the coordinates need separate step sizes.

This example shows that there exist numerous possibilities for choosing
the number of step sizes and the assignment to the coordinates. We can differ
three cases:

• nσ = 1
• nσ = n
• 1 < nσ < n

In the first case everything is easy. The one step size is responsible for chang-
ing all coordinates. Of course, if the coordinates must change with different
amounts an appropriate adaptation may be impossible. This is because the
single step size has an average amount which is too high for the coordinates
which must change slow and too low for the coordinates which must change
fast.

This problem could be avoided if we use n step sizes. In this case every
coordinate has its own step size. Under the condition that the step sizes have
their optimal settings the optimum could be reached fast (static case) or
the optimum could be followed with a small distance (dynamic case). After
initialization the step sizes are presumably not optimal. It is known as a
difficulty that a growing number of step sizes increases the time needed to
find the best settings for every step sizes. To reduce this time, it seems to be
a good idea to regard other choices.

When choosing 1 < nσ < n step sizes some coordinates share a common
step size. Then two main problems arise. First, the exact number of step sizes
must be chosen. Second, the step sizes must be assigned to the coordinates.
Assume the easiest case, meaning that nσ = 2. Then it is possible that one
coordinate has an own step size and the remaining n − 1 coordinates share
the second step size. Becaus the movement could appear in every of the n
coordinates, we have now n possibilities to assign the single step size to one
coordinate. As another alternative, we may decide to assign the two step sizes
to one half of the coordinates each. In this situation we have

(
n

n/2

)
possibilities

to assign the first step size to n/2 coordinates and the second step size to the
other n/2 coordinates. Other distributions are possible. E.g., the first step
size could be shared among two coordinates and the second step size could be
shared by the remaining n− 2 coordinates. Then we have

(
n
2

)
possibilities to

select the two coordinates for the first step size.
These few examples should point out that learning the right number of

step sizes and the correct assignment to the coordinates is an almost impos-
sible task even in dynamic environments. Hence, it is necessary to choose a
seemingly optimal number of step sizes and an appropriate assignment to the
coordinates. In the lack of problem dependent knowledge one decides to con-
centrate on the two extreme cases of nσ = 1 and nσ = n. This is exactly

70 Lutz Schönemann

what we do in the next paragraphs. We investigate the influence of the used
number of different step sizes on the obtainable results. For this, the three
types of dynamics described above are used in conjunction with several sever-
ities. Moreover, in some experiments the severity underlies a stochastically
variation during the run.

The first experiments are conducted on the sphere model fS. If the opti-
mum moves following moving type I the usage of one mutation step size is
an inappropriate choice, because the ES must move in the first coordinate
whereas the other coordinates remain constant. Hence, the results of such a
strategy are very poor (Fig. 3.7). Notice, that on the y-axis the square root

0 20 40 60 80 100 120

0
10

0
20

0
30

0

severity (s)

sq
rt

(A
B

F
V

)

s=1
s=10

Fig. 3.7. ABFV of an (15, 100)-ES with one and ten mutation step size/s on the
dynamic 10-dimensional sphere. The optimum moves every generation in one coor-
dinate with a total severity s (moving type I).

of the ABFV is plotted. The linear run of the curve proofs that the results
perfectly depend quadratically on the moving severity s. The ES is able to fol-
low the moving optimum for the moving severities tested here. This behavior
was recognized for all moving types. Random samples assists the assumption
that this assertion is true even for much higher severities. In contrast to the
worse results with one step size, an ES with n strategy parameters is able
to follow the moving optimum with a smaller distance. This result holds for
higher problem dimensions, too.

If the optimum moves in all dimensions with an equal severity only one
step size is necessary. Because an ES with n step sizes must adapt n strategy
parameters instead of only one, the reader could assume that an ES with one
mutation step size would perform better than an ES with n mutation step
sizes. Figure 3.8 compares the behavior of both strategies for moving type II.
The curves are nearly the same. This means that the ES with n step sizes
behaves not worse than the ES with only one step size. Figure 3.9 shows the

3 Evolution Strategies in Dynamic Environments 71

0 20 40 60 80 100 120

0
50

10
0

15
0

20
0

25
0

30
0

severity (s)

sq
rt

(A
B

F
V

)
s=1
s=10

Fig. 3.8. ABFV of an (15, 100)-ES with one and ten mutation step size/s on the
dynamic 10-dimensional sphere. The optimum moves every generation in all coordi-
nates with moving type II and a total severity s.

results for moving type III. Here, the ES with n step sizes performs better.
But the differences are smaller than expected. One reason may be that in this
situation the trade off to adapt n step sizes is so high that the benefits of
the different step sizes is compensated. If this holds we expect that for much
higher problem dimensions the situation changes meaning that the ES with
one step size performs better. For n = 30 the observed results are depicted in
Fig. 3.10. Indeed, the results for the ES with n mutation step sizes are worse.

Moreover, the results are similar if we use stochastically distributed sever-
ities with a moderate standard deviation (less than 10% of the severity). The

0 20 40 60 80 100 120

0
50

10
0

15
0

20
0

25
0

30
0

severity (s)

sq
rt

(A
B

F
V

)

s=1
s=10

Fig. 3.9. ABFV of an (15, 100)-ES with one and n mutation step size/s on the
dynamic 30-dimensional sphere. The optimum moves every generation in all coordi-
nates with moving type III and a total severity s.

72 Lutz Schönemann

0 20 40 60 80 100 120

0
20

0
40

0
60

0
80

0
10

00
12

00

severity (s)

sq
rt

(A
B

F
V

)
s=1
s=10

Fig. 3.10. ABFV of an (15, 100)-ES with one and 30 mutation step size/s on the
dynamic 30-dimensional sphere. The optimum moves every generation in all coordi-
nates with moving type III and a total severity s.

influence of this stochastically term is negligible. Going ahead we remark that
the same holds for the other test functions used in this study.

An interesting question concerns the optimal number of step sizes which
should be used if we know in advance in how many coordinates the optimum
moves. The number of step sizes could then be chosen suitable for the number
of moving coordinates. In the case of moving type I the best choice are two
step sizes. One for the moving coordinate and the other for the n−1 constant
coordinates. Using nσ step sizes, the first nσ − 1 coordinates have their own
step size. The last step size is then shared between the remaining n− nσ + 1
coordinates. Figure 3.11 shows the different ABFV if the number of step sizes
is varied. The best results are obtained as expected with two step sizes. The
worst performance is observed for one step size. Be aware that we still hang
on to a logarithmic y-axis. For an increasing number of step sizes the ABFV
grows more and more worse. But even for n step sizes it is relatively small.

In another experiment the number of different step sizes is varied, too. The
assignment of the nσ different step sizes are chosen as before, meaning that
the first nσ − 1 coordinates have their own step size and that the last step
size is shared by the last n−nσ +1 coordinates. But now the optimum moves
in the last coordinate. This means that the moving coordinate shares its step
size with some other (constant) coordinates. Figure 3.12 depicts the results for
such a setting. Somewhat surprising, the worst results are not gotten for one
step size but with nσ = 8 and nσ = 9 step sizes. On the one hand it is better
if the last step size is used for as few as possible other coordinates. On the
other hand the more step sizes are used the more difficult is the adaptation.

The next experiments are fulfilled on the Ackley function fAckley. The
results are very similar to the ones observed for the sphere model. Therefore,

3 Evolution Strategies in Dynamic Environments 73

0 5 10 15 20 25 30

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

number step sizes

A
B

F
V

Fig. 3.11. ABFV of an (15, 100)-ES with different number mutation step sizes on
the dynamic 30-dimensional sphere. The optimum moves every generation in one
(the first) coordinate (moving type I) and a severity s = 1.

0 5 10 15 20 25 30

1
5

10
50

50
0

number step sizes

A
B

F
V

Fig. 3.12. ABFV of an (15, 100)-ES with different number mutation step sizes on
the dynamic 30-dimensional sphere. The optimum moves every generation in one
(the last) coordinate (moving type I) and a severity s = 1.

we do not want to show the exact results for this function. Instead we go
directly to the consideration of the Rastrigin function.

The problem difficulty of the Rastrigin function fRastrigin should be demon-
strated by a simple experiment on the static Rastrigin. Figure 3.13 shows a
representative run of two ES variants. The ES with one mutation step size
converges very fast. Whereas in the first generations the convergence velocity
of the ES with n mutation step sizes is identical, in the following generations
it is much slower. Moreover, at generation ≈ 150 the ES stagnates for about
25 generations. We observe a slight regression before the ES starts to converge
again. At the end, the ES runs in a local optimum, but has the ability to leave

74 Lutz Schönemann

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

generations

be
st

 fu
nc

tio
n

va
lu

e

#sigma=1
#sigma=30

Fig. 3.13. Exemplary run of an (15, 100)-ES with one and n mutation step size/s
on the static 30-dimensional Rastrigin

it. The quality of the overall reached optimum is better than the one reached
by the ES with one step size.

After this short excursion to the static case we look at the dynamic case.
From the point of characteristic of the curves the results with moving type I
are comparable to the ones on the sphere function. For both ES variants
Fig. 3.14 reveals that the ABFV increases quadratically with the moving sever-
ity. Again, the ES with n step sizes is superior to the ES with only one step
size. Due to the problem hardness the ABFV for the Rastrigin function are
somewhat worse than the obtained values on the sphere. But the differences
are not very high. For the reason of completeness we mention, that there exist

0 20 40 60 80 100 120

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

severity (s)

sq
rt

(A
B

F
V

)

s=1
s=10

Fig. 3.14. ABFV of an (15, 100)-ES with one and n mutation step size/s on the
dynamic 30-dimensional Rastrigin. The optimum moves every generation in one
coordinate with a total severity s (moving type I).

3 Evolution Strategies in Dynamic Environments 75

no differences between the results of the two ES variants when the optimum
moves following type II and III. For the last case Fig. 3.15 shows the exact

0 20 40 60 80 100 120

0
20

0
40

0
60

0
80

0
10

00

severity (s)

sq
rt

(A
B

F
V

)

s=1
s=10

Fig. 3.15. ABFV of an (15, 100)-ES with one and n mutation step size/s on the
dynamic 30-dimensional Rastrigin. The optimum moves every generation in all co-
ordinates with a total severity s (moving type III).

values. A similar result was already observed for the two other functions. A
direct comparison of the results with the according ones on the sphere model
(Fig. 3.10) shows no significant differences in the obtained function values.
This is an observation of high importance. Remember that the Rastrigin is a
function of high multimodality. In the static case, this resulted in a prema-
ture convergence to a local optimum. But for the dynamic case, the last figure
shows that the difficulties are dominated by the dynamics. If higher prob-
lem dimensions are used the basic results are the same. But the obtainable
function values increase with a growing problem dimension.

3.7 Conclusions

In this chapter we gave an introduction to current evolution strategies. The
main focus lies on dynamic numerical optimization problems. After an exact
description of the algorithm, the general working mechanisms of ES were ex-
amplarily shown by selected experimental investigations. The results demon-
strated that contemporary self-adaptive evolution strategies are powerful opti-
mization methods for dynamic environments. They are able to follow a moving
optimum of even high moving severity.

A new algorithm must compete against the older ones. The comparison of
two or more algorithms is based on the quality of every strategy. The quality
of an algorithm is usually specified as a performance measure based on the
fitness function. The main existing performance measures were introduced

76 Lutz Schönemann

with their advantages and disadvantages. To avoid the handicaps the ABFV
was developed as a new measurement.

The reader was then assisted in the choice for different strategy parameters
for practical application. The main investigated aspect was the choice for the
optimal number of mutation step sizes. Since in most cases it is not known in
how many and in which coordinates the optimum changes, we saw that it is
beneficial to choose n mutation step sizes, one for every problem dimension.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG)
as part of the Collaborative Research Center “Computational Intelligence”
(SFB 531).

References

1. H.-G. Beyer. The Theory of Evolution Strategies. Springer, Berlin, 2001.
2. H.-G. Beyer and H.-P. Schwefel. Evolution strategies: A comprehensive intro-

duction. Natural Computing, 1(1):3–52, 2002.
3. H.-G. Beyer, H.-P. Schwefel, and I. Wegener. How to analyse evolutionary

algorithms. Theoretical Computer Science, (287):101–130, 2002.
4. G. E. P. Box. Evolutionary operation: A method for increasing industrial pro-

ductivity. Applied Statistics, VI(2):81–101, 1957.
5. J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer, 2002.
6. H. J. Bremermann. Optimization Through Evolution and Recombination. In M.

C. Yovits, G. T. Jacobi, and G. D. Goldstein, editors, Proceedings of the Confer-
ence on Self-Organizing Systems, pages 93 – 106. Spartan Books, Washington,
D.C., 1962.

7. C. Darwin. The origin of species by means of natural selection. The Modern
Library — Random House, New York, 1872.

8. K. De Jong, D. B. Fogel, and H.-P. Schwefel. A history of evolutionary compu-
tation. Oxford University Press, New York, and Institute of Physics Publishing,
Bristol, 1997.

9. L. J. Fogel. Autonomous automata. Industrial Research, (4):14–19, 1962.
10. L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Sim-

ulated Evolution. Wiley, New York, 1966.
11. R. M. Friedberg. A learning machine: Part I. IBM Journal, 2(1):2–13, 1958.
12. R. M. Friedberg, B. Dunham, and J. H. North. A learning machine: Part II.

IBM Journal, 3(7):282–287, 1959.
13. J. Grefenstette. Rank-based selection. In T. Bäck, D. B. Fogel, and

Z. Michalewicz, editors, Handbook of Evolutionary Computation, pages C2.4:1–6.
Oxford University Press, New York, and Institute of Physics Publishing, Bristol,
1997. Release 97/1.

14. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 2(9):159–195, 2001.

3 Evolution Strategies in Dynamic Environments 77

15. J. H. Holland. Outline for a logical theory of adaptive systems. Journal of the
ACM, 9(3):297–314, 1962.

16. J. H. Holland. Adaptation in natural and artificial systems. Ann Arbor: The
University of Michigan Press, 1975.

17. F. Kursawe. Grundlegende empirische Untersuchungen der Parameter von
Evolutionsstrategien — Metastrategien. PhD thesis, University of Dortmund,
Germany, 1999.

18. R. W. Morrison. Designing Evolutionary Algorithms for Dynamic Environ-
ments. Springer, Berlin, 2004.

19. I. Rechenberg. Cybernetic solution path of an experimental problem. 1965. Royal
Aircraft Establishment, Farnborough, Library Translation no. 1122.

20. G. Rudolph. Evolution strategies. In T. Bäck, D. B. Fogel, and Z. Michalewicz,
editors, Handbook of Evolutionary Computation, pages B1.3:1–6. Oxford Univer-
sity Press, New York, and Institute of Physics Publishing, Bristol, 1997. Release
97/1.

21. G. Rudolph. Local convergence rates of simple evolutionary algorithms with
cauchy mutations. IEEE Trans. Evolutionary Computation, 4(1):249–258, 1997.

22. G. Rudolph. Asymptotical convergence rates of simple evolutionary algorithms
under factorizing mutation distributions. In J.-K. Hao, E. Lutton, E. Ronald,
M. Schoenauer, and D. Snyers, editors, Artificial Evolution: Third European
Conf. (AE’97), pages 223–233, Berlin, 1998. Springer.

23. L. Schönemann. On the influence of population sizes in evolution strategies in
dynamic environments. In J. Branke, editor, GECCO Workshop on Evolution-
ary Algorithms for Dynamic Optimization Problems (EvoDOP), pages 123–127,
2003.

24. L. Schönemann. Maximal life span in evolutionary algorithms. In B. Filipič
and J. Šilc, editors, Proc. Int’l Conf. Bioinspired Optimization Methods and
Their Applications (BIOMA’04), pages 21–30. Jožef Stefan Institute, Ljubljana,
Slowenien, 2004.

25. H.-P. Schwefel. Kybernetische Evolution als Strategie der experimentellen
Forschung in der Strömungstechnik. PhD thesis, Technical University of Berlin,
Hermann Fttinger-Institute for Fluid Dynamics, 1965.

26. H.-P. Schwefel and G. Rudolph. Contemporary evolution strategies. In
F. Morán, A. Moreno, J. J. Merelo, and P. Chacón, editors, Advances in Ar-
tificial Life, Proc. of the Third European Conference on Artificial Life, pages
893–907. Springer, Berlin, 1995.

27. J. Sprave. A unified model of non-panmictic population structures in evolu-
tionary algorithms. In P. J. Angeline and V. W. Porto, editors, Proc. 1999
Congress on Evolutionary Computation (CEC’99), Washington D.C., volume 2,
pages 1384–1391. IEEE Press, Piscataway NJ, 1999.

28. K. Weicker. An analysis of dynamic severity and population size. In
M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and
H.-P. Schwefel, editors, Proc. Parallel Problem Solving from Nature (PPSN VI),
pages 159–168. Springer, Berlin, 2000.

4

Orthogonal Dynamic Hill Climbing Algorithm:
ODHC

Sanyou Zeng1,2, Hui Shi1, Lishan Kang3, and Lixin Ding3

1 School of Computer Science, China University of GeoSciences
Wuhan 430072, Hubei, P. R. China
sanyou-zeng@263.net, shihui0205@163.com

2 Department of Computer Science, Hunan University of Technology
Zhuzhou 412008, Hunan, P. R. China

3 State Key Laboratory of Software Engineering, Wuhan University
Wuhan 430072, Hubei, P. R. China
kang whu@yahoo.com, lx ding@263.net

Summary. An orthogonal hill-climbing algorithm for dynamic optimization prob-
lems with continuous variables, labeled ODHC, is proposed in this chapter. The local
peak climber is not a solution, but a “niche” (a small hyperrectangle). An orthogo-
nal design method is employed on the niche, in order to seek a potential peak more
quickly. An archive is used to store the latest found higher peaks, so the ODHC
algorithm can learn from the past search, this can also enhance the performance of
the ODHC algorithm. The randomly created niches implement the global search.
Numerical experiments show that the ODHC algorithm performs much better than
the Self Organizing Scouts algorithm.

4.1 Introduction

Most research in evolutionary computation focuses on the optimization of
static problems. Many real world optimization problems, however, are actu-
ally dynamic. Hence, optimization methods, capable of continuously adapting
to a changing environment, are needed. The solution to dynamic optimiza-
tion problems (DOPs) using genetic algorithms (GAs) was first introduced by
Goldberg and Smith [1] and has attracted growing interest from the evolution-
ary algorithm (EA) community in recent years [2, 3]. Researchers have used
many GA based approaches to address this problem, as surveyed in [4, 18],
such as the hypermutation scheme [6, 7], the random immigrants scheme [8],
memory-based methods [9–11], and multi-population approaches [12].

We restrict our attention in this chapter to those problems whose fitness
values (usually objective function values) vary only a little over a small region
of the search space and whose fitness landscapes display some exploitable sim-
ilarities before and after a change. The approaches mentioned above, all try to

S. Zeng et al.: Orthogonal Dynamic Hill Climbing Algorithm: ODHC, Studies in Computational

Intelligence (SCI) 51, 79–104 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

80 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

exploit landscape similarities before and after a change, but do not fully em-
ploy those similarities in small regions. The “orthogonal” design [13] however
does make use of such similarities. Zeng et al [14, 15] designed an orthogonal
multi-objective evolutionary algorithm (OMOEA) for multi-objective opti-
mization problems. The OMOEA algorithm employed an orthogonal design
to find Pareto-optima statistically. By the way, another excellent character-
istic of the “orthogonal” design is its uniform exploration of the experiment
space, which was used in the literatures [14, 15] and [16, 17]. One of the char-
acteristic features of the ODHC algorithm is its fast and robust exploration
of small regions of the fitness landscape.

4.2 Background on Dynamic Optimization Problems

4.2.1 Definition of Dynamic Optimization

Whenever a change in a dynamic optimization problem occurs, i.e., when the
optimization goal, the problem instance, or some restrictions change, the op-
timum to that problem might change as well. If this is the case, an adaptation
of the old solution is necessary.

The goal of dynamic optimization is to find the optimal control profile of
one or more control variables or control parameters of a system. Optimality is
defined as the minimization or maximization of a objective function without
violating given constraints.

A definition of dynamic optimization problems, which the Orthogonal Dy-
namic Hill-Climbing (ODHC) algorithm manages to solve in this chapter, is
described as follows:

Definition 1. Dynamic Optimization Problem:
−→x max(t) = arg Maximize−→x ∈S

f(−→x , t) (4.1)

where −→x = (x1, x2, ..., xN) is continuous variables and S is the search space.

In addition to depending on the variables −→x , the function values of f
are time dependable in Definition 1. But the dimension N of −→x and the
search space S are fixed with time. −→x max(t) is the optimal solution at time
t. We know it is easy to turn minimization into maximization. Hence, only
maximization is discussed here.

It is impractical and even impossible to find the precise time-dependent
optimal solutions −→x max(t) for an optimization approach. The practical way
is to track the moving optimum. The optimization approaches must spend
time on finding the optimal solution at any time point. We must, therefore,
suppose that the environment has a sudden change with a comparative long
static stage. That is, the function values of f are only dependent on variables
−→x without time-dependent in the static stage where we hope the algorithm
approaches the optimum as much as possible in addition to adapt to dynamic
environments.

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 81

4.2.2 Detecting Changes in the Environment

In order to be able to react to changes explicitly, one first has to detect that
a change in the environment actually takes place. For many applications,
changes can be made explicitly known to the system, e.g., when a new job
arrives in the queue to be scheduled. However, in other applications, e.g., when
the quality of raw material varies over time, such changes have to be detected
by the system.

A commonly used indicator for changes in the environment is deterioration
of the performance or the time-averaged best performance of the algorithms.
However, this assumes more or less that a change in the environment will
actually decreases the quality of the old solution, which is not necessarily
the case. The fitness values are also used to decide when the new optimum
is reached, which of course implies that the new optimum has at least the
quality of the old one.

Slightly less restrictive is the approach in [18], where several individuals
are reevaluated every generation and a change in the environment is detected
if the fitness of at least one individual has changed.

Fogarty et al. [18] briefly mentioned the idea of using a “validation module”
to evaluate the performance of EAs and restart EAs when a certain limit value
is exceeded, i.e., when the environment has changed so much that the EA’s
performance is no longer satisfactory. However, no clues were given as to how
this validation module might work.

Some other approaches [19–21] explicitly maintain a module of the envi-
ronment and constantly monitor whether the module is still consistent with
the real environment. If the response predicted by the module and the actual
response obtained from the environment differ too much, it is concluded that
the environment has changed. The model is then updated and the EA can be
restarted.

4.2.3 Benchmark Problems

Common Characteristics of Benchmark Problems

So far, a number of different types of dynamic optimization problems have
been used to test algorithms, ranging from simple mathematical functions over
all kinds of scheduling problems to applications in artificial life. We restrict
our attention here to a small subset of problems that might eventually form a
common benchmark suite and thus will be discussed in more detail here. The
following aspects have been considered to be relevant for a suite of benchmark
problems:

• It should be possible to vary many of the environmental variables.
• There should be benchmarks for at least binary and real-valued encoding.
• They should be simple to implement and to describe.
• They should be computationally efficient.
• They should allow conjectures to real world problems.

82 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

The Moving Peaks Function

Branke [4] suggested a problem called “the moving peaks function” that con-
sisted of a multi-dimensional landscape with several peaks. Independently,
Morrison and De Jong [22] and Yang [23] suggested other benchmarks.

With the aim to bridge the gap between very complex, hard to understand
real-world problems and all too simple toy problems, in [4], Branke suggested a
problem with a multidimensional landscape consisting of several peaks, where
the height, the width and the position of each peak is altered slightly every
time a change in the environment occurs.

Note that a small change in the landscape may have two consequences:
sometimes it may be sufficient to adapt the current solution to reach the new
optimum, and sometimes it may be necessary to switch to another, previously
slightly inferior but now better solution. The former happens when the opti-
mum shifts slightly, the latter happens when the height of the peaks changes
such that a different peak becomes the maximum peak. In these cases, the
optimization algorithm basically has to “jump”, or cross a valley, to reach the
new maximum peak.

A test function with N dimensions and m peaks can be formulated as:

F (−→x , t) = max(B(−→x), max
i=1...m

P (−→x , hi(t), wi(t),−→pi (t))),⎧⎪⎪⎨
⎪⎪⎩

hi(t) = hi(t− 1) + height severity · σ
wi(t) = wi(t− 1) + width severity · σ
−→pi (t) = −→pi (t− 1) +−→vi (t)−→vi (t) = s

|(1−λ)−→r +λ−→vi(t−1)| ((1− λ)−→r + λ−→vi (t− 1))
where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B(−→x) : variant with −→x
P (−→x , hi(t), wi(t),−→pi (t))) : variant with both −→x and t
hi(t), wi(t),−→pi (t) : variant with t
mh ≤ hi(t) ≤ Mh, mw ≤ wi(t) ≤ Mw

m−→x ≤ xj ≤ M−→x , j = 1, 2, ..., N
and where⎧⎪⎪⎨
⎪⎪⎩

height severity, width severity, s, λ : constant
mh, Mh; mw, Mw;m−→x , M−→x : constant
σ, −→r : random constant
0 ≤ λ ≤ 1, σ ∈ N(0, 1), ‖ −→r ‖= s

(4.2)

Where B(−→x) is a time-invariant “basis” landscape, and P is the function
defining a peak shape, where each of the m peaks has its own time-varying
parameters: height (h), width (w), and location (−→p).

For the shape of function P , two examples are given here, one with cone
shape of peaks, the other with hilly peaks. They are defined as follows respec-
tively:
Cone shape function:

P (−→x , hi(t), wi(t),−→pi (t)) = hi(t)− wi(t)∗ ‖ −→x −−→pi (t) ‖, (4.3)

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 83

Hilly shape function:

P (−→x , hi(t), wi(t),−→pi (t)) = hi(t)− wi(t)∗ ‖ −→x −−→pi (t) ‖2
−0.1 ∗ sin(20∗ ‖ −→x −−→pi (t) ‖2),

(4.4)

where ‖ x − −→pi (t) ‖=
√

N∑
j=1

(xj − pj(t))2, −→pi (t) = (pi,1(t), pi,2(t), ..., pi,N (t))

and −→x = (x1, x2, ..., xN).
The location, the height and the width of each peak are initialized accord-

ing to an in-built random number generator4. Then, every ∆e evaluations,
the height and width of every peak are changed by adding a random gaussian
variable. The location of every peak i is moved by a vector −→vi of fixed length
s in a random direction (for λ = 0) or a direction depending on the previous
direction (for λ > 0).

Overall, the parameter s allows to control the severity of a change, ∆e will
determine the frequency of change, λ allows to control whether the changes
exhibit a trend. More formally, a change of environment can be described as
t− 1 ⇒ t, see Equation(4.2). The shift vector −→vi is a linear combination of a
random vector −→r and the previous shift vector −→vi (t − 1), and normalized to
length s. The random vector −→r is created by drawing random numbers for
each dimension and normalizing its length to s.

The function’s complexity may easily be scaled by increasing the num-
ber of dimensions or the number of peaks, or by using complex peak- and
base-functions. Furthermore, the benchmark provides a number of differ-
ent peak functions P and allows to vary the step size s over time in many
ways. For more details of the moving peaks function, please visit the website:
http://www.aifb.uni-karlsruhe.de/∼jbr/MovPeaks/.

4.2.4 Measuring the Performance

Since for dynamic optimization problems a single, time-invariant optimal so-
lution does not exist, the goal is not to find the extreme but to track their
progression through the space as closely as possible. To demonstrate superior-
ity of one approach over another, in the current literature it is quite common
to just display the convergence plots of the different approaches and to com-
pare them visually. For an accurate comparison, however, numeric measures
are definitely preferable.

Offline performance and offline error have been used for the dynamic case
in this chapter. They are defined as follows: let fclose−to−otp

t be the best
value found, and fotp

t the optimum, during the time between two consecutive
environmental changes [t − 1, t], denote et = |fotp

t − fclose−to−otp
t |, and let T

be the number of environmental changes considered. Then,
4 By seeding this random number generator differently, numerous test problems

with the same fundamental characteristics can be generated.

84 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

• Offline performance

f∗ = 1
T

T∑
t=1

fclose−to−otp
t (4.5)

is the average of the best values found so far at each time step, i.e. with and
being the last time step<t at which a change in the environment occurred.
This assumes that optimization is done in a simulated environment and
only the best solutions are actually transferred into the real world. Of
course this requires that the environmental changes are known to the
observer.

• Offline error

e∗ = 1
T

T∑
t=1

et (4.6)

is the average of all current errors, i.e. the average deviation of the cur-
rently best individual from the optimum since the last change.

Since in general the EA’s tracking ability is the interesting aspect, it may
be reasonable for either measurement to ignore the first few generations, i.e.
the adaptation process to the first solution, and only measure the performance
after the system has passed the initial startup. If the initial startup phase is
considered important, one might report on the startup phase performance and
the long-run performance separately.

4.3 Techniques Relevant to ODHC

4.3.1 Brief Introduction to the Hill-Climbing Algorithm

Generally speaking, there are two kinds of search strategies. The first kind of
search strategies does not have inspiration information as the guidance, so the
search is blind and the efficiency is low. The second kind is the heuristic search
strategy that uses the inspiration information as the guidance and hence the
search is toward the goal direction, avoiding detouring and enhancing the
solution efficiency.

Hill climbing is one of the heuristic search techniques. Hill climbing strate-
gies expand the current state in the search of the neighbors of the current
states and evaluate its children. The best child is selected for further expan-
sion and neither its siblings nor its parent are retained. Search halts when it
reaches a state that is better than any of its children. Hill climbing is named
for the strategy that might be used by an eager, but blind mountain climber
that goes uphill along the steepest possible path until he can go no further.

A major problem of hill climbing strategies is their tendency to become
stuck at foothills, a plateau or a ridge. If the algorithm reaches any of the
above mentioned states, then the algorithm fails to find a solution.

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 85

• Foothills or local maxima is a state that is better than all its neighbors but
is not better than some other states farther away. At a local maximum,
all moves appear to make things worse. Foothills are potential traps for
the algorithm.

• A plateau is a flat area of the search space in which a whole set of neigh-
boring states have the same value. On a plateau, it is not possible to
determine the best direction in which to move by making local compar-
isons.

• A ridge is a special kind of local maximum. It is an area of the search space
that is higher that the surrounding areas and that itself has a slope. But
the orientation of the high region, compared to the set of available moves
and the directions in which they move, makes it impossible to traverse a
ridge by single moves. Any point on a ridge can look like peak because
movement in all probe directions is downward.

To solve the above problem, group hill climbing is used or the size of
the search neighbors of the current state at each climbing step is expanded.
The basic operation of a hill-climbing algorithm, denoted Algorithm 1 in this
chapter, is described in Fig. 4.1.

Step 1: Pick a random point in the search space
Step 2: Create children in the neighbor of the current state
Step 3: Choose the child with the best quality and move to that state
Step 4: Repeat 2 to 4 until all the children states are of lower quality
Step 5: Return the current state as the solution state

Fig. 4.1. The basic operation of a hill-climbing algorithm

The neighbor is called niche in the hill-climbing algorithm in this chapter.
The children are created by using the orthogonal design method.

4.3.2 Orthogonal Design Method

An Example to Introduce the Orthogonal Design Method

We use a concrete example in this section to introduce the basic concept of
an “orthogonal design method”. For further details, see [13]. The example is
concerned with the yield of vegetable growth. The yield of a vegetable depends
on at least the following three factors:

1) the temperature
2) the amount of fertilizer used
3) the pH value of the soil

86 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

Table 4.1. Experimental design with three factors and three levels per factor

Level Factor

Temperature(oC) Fertilizer(g/m2) pH

Level 1 20 100 6
Level 2 25 150 7
Level 3 30 200 8

In this example, each factor has three possible values, as shown in Table 4.1.
We say that each factor has three “levels”.

To find the best combination of levels for a maximum yield, we can per-
form an experiment for each combination, and then select the combination
with the highest yield. In the above example, there are 3 × 3 × 3 = 27 com-
binations, and hence there are 27 experiments. In general, when there are N
factors, each with Q levels, there are QN possible combinations. When N and
Q are large, it may not be possible to perform all QN experiments. There-
fore, it is desirable to sample a small, but representative set of combinations,
for the experimentation. The “orthogonal design method” was developed for
this purpose [13], where an orthogonal array is constructed to represent the
sampled set of combinations which evenly distribute over the experimenta-
tion space. An orthogonal array LM (QN) is a M ×N array with Q levels for
each column, denoted by {1, 2, ..., Q}. We select M combinations to be tested,
where M may be much smaller than QN . Equation (4.7) is an example of an
orthogonal array where M = 9, N = 3, Q = 3.

L9(33) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 2 2
1 3 3
2 1 2
2 2 3
2 3 1
3 1 3
3 2 1
3 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.7)

The L9(33) has three factors, three levels per factor, and nine combinations
of levels. The three factors have respective levels 1, 1, 1 in the first combina-
tion, 1, 2, 2 in the second combination, etc. We apply the orthogonal matrix
L9(33) to select nine combinations to be tested. Assume the corresponding
yields of the M combinations are denoted by [yi]M×1, where the ith combi-
nation (experiment) has a yield yi. The nine combinations and their yields in
the above example are shown in Table 4.2.

From the yield of the selected combinations, a promising solution can be
obtained by the following statistical method.

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 87

Table 4.2. The yield of nine representative combinations, based on the orthogonal
matrix L9(3

3)

Combination Factor

Temperature Fertilizer pH yield

1 1(20oC) 1(100g/m2) 1(6) 2.75
2 1(20oC) 2(150g/m2) 2(7) 4.52
3 1(20oC) 3(200g/m2) 3(8) 4.65
4 2(25oC) 1(100g/m2) 2(7) 4.60
5 2(25oC) 2(150g/m2) 3(8) 5.58
6 2(25oC) 3(200g/m2) 1(6) 4.10
7 3(30oC) 1(100g/m2) 3(8) 5.32
8 3(30oC) 2(150g/m2) 1(6) 4.10
9 3(30oC) 3(200g/m2) 2(7) 4.37

1) Calculate the mean value of the yield for each factor at each level, where
each factor has a level with best mean value (cf. Fig. 4.4).
The mean yields of the temperature are:
• Γ1,1 = (2.75 + 4.52 + 4.65)/3 = 3.97 at level 1(20oC),
• Γ2,1 = (4.60 + 5.58 + 4.10)/3 = 4.76 at level 2(25oC),
• Γ3,1 = (5.32 + 4.10 + 4.37)/3 = 4.60 at level 3(30oC).

The mean yields of the fertilizer are:
• Γ1,2 = (2.75 + 4.60 + 5.32)/3 = 4.22 at level 1(100g/m2),
• Γ2,2 = (4.52 + 5.58 + 4.10)/3 = 4.73 at level 2(150g/m2),
• Γ3,2 = (4.65 + 4.10 + 4.37)/3 = 4.37 at level 3(200g/m2).

The mean yields of the PH value are:
• Γ1,3 = (2.75 + 4.10 + 4.10)/3 = 3.65 at level 1(6),
• Γ2,3 = (4.52 + 4.60 + 4.37)/3 = 4.50 at level 2(7),
• Γ3,3 = (4.65 + 5.58 + 5.32)/3 = 5.18 at level 3(8).

These mean yields are shown in Table 4.3.

Table 4.3. The mean yield for each factor at different levels

Level Mean yield

Temperature Fertilizer pH

Level 1 3.97 4.22 3.65
Level 2 4.76 4.73 4.50
Level 3 4.60 4.37 5.18

2) Choose the combination of the best levels as a promising solution
(cf. Fig. 4.5).
The temperature has the best mean yield, 4.76, at level 2 (i.e., 25oC).
The fertilizer has the best yield, 4.73, at level 2 (i.e., 150g/m2). The pH
value has the best yield, 5.18, at level 3 (i.e., 8). We therefore consider

88 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

(25oC, 150g/m2, 8) to be a promising and robust solution. The solution
may not be optimal when used with an orthogonal design. But for additive
and quadratic models, it is provably optimal.

Definition of an Orthogonal Array

Definition 2. An orthogonal array LM (QN) is a M × N array with Q lev-
els for each column, denoted by {1, 2, ..., Q}. Denote the orthogonal array
LM (QN) by [ai,j]M×N , such that

1) In any column {a1,j , a2,j , ..., aM,j}, each of the Q symbols 1, 2, ..., Q occurs
the same number of times, i.e. (M/Q), j = 1, 2, ..., N .

2) In any two different columns {(a1,j , a1,k), (a2,j , a2,k), ..., (aM,j , aM,k)}, each
of the Q2 possible pairs {(1, 1), (1, 2), ..., (1, Q), (2, 1), (2, 2), ..., (2, Q),,
(Q, 1), (Q, 2), ..., (Q,Q)} occurs the same number of times (M/Q2), j, k =
1, ..., N, j �= k.

Every row of LM (QN) = [ai,j]M×N represents a different combination of lev-
els, where ai,j means that the jth factor in the ith combination has a level
value ai,j, and ai,j takes a value from the set {1, 2, ..., Q}.

Steps of Orthogonal Design Method

As we will explain shortly, the technique proposed in this chapter may require
different orthogonal matrices for different optimization problems. The con-
struction of an orthogonal matrix is not a trivial task, since we do not know
whether an orthogonal matrix of a given size exists. Many orthogonal matrices
have been presented in the literature. It is impossible, however, to tabulate
them all. To construct a class of orthogonal matrices LM (QP), we introduce
a simple permutation method that is derived from the mathematical theory
of Galois fields (cf. [24]). The M,P,Q in LM (QP) fulfill the following:{

M = QJ

P = (QJ − 1)/(Q− 1), (4.8)

where Q is prime and J is a positive integer.
Denote the jth column of the orthogonal matrix [ai,j]M×P by −→a j . Column

−→a j for j = 1, 2, (Q2 − 1)/(Q − 1) + 1, (Q3 − 1)/(Q − 1) + 1, ..., (QJ−1 −
1)/(Q−1)+ 1 are called the basic columns. The others are called the non-basic
columns. The algorithm first constructs the basic columns and then generates
the non-basic columns. The details of the algorithm, denoted Algorithm 2, are
given in Fig. 4.2.

LM (QP), constructed by Algorithm 2, has P columns. For a problem with
N decision variables, we discard the last P − N columns of LM (QP) and
obtain a matrix LM (QN) which is still orthogonal, according to Definition
2. For example, let Q = 3, J = 2, we get an orthogonal array L9(34) with 4

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 89

// Construct the basic columns as follows
for k = 1 to J do

j = (Qk−1 − 1)/(Q− 1) + 1
for i = 1 to QJ do

ai,j = floor((i− 1)/(QJ−k)) mod Q
endfor

endfor
// Construct the non-basic columns as follows
for k = 2 to J do

j = (Qk−1 − 1)/(Q− 1) + 1;
for s = 1 to j − 1, t = 1 to Q− 1 do
−→a j+(s−1)(Q−1)+t = (−→a s × t +−→a j) mod Q;

endfor
endfor

Fig. 4.2. Constructing the orthogonal matrix LM (QP)

columns (P = 4) by Algorithm 2. For the problem of vegetable yield, there
are only 3 factors (N = 3). Therefore, we discard the last column of L9(34)
for yielding L9(33). Fig. 4.3 shows that the last column of L9(34) is discarded
for getting L9(33).

Fig. 4.3. Discard the last column of the L9(3
4) for yielding L9(3

3)

The orthogonal design method uses the mean value of the objective at
each level of each factor. We denote the objective values of the orthogonal
experiments by [yi]M×1 where the objective has the value yi at the ith combi-
nation, where the mean values are denoted by [Γk,j]Q×N , where the objective
has the mean value Γk,j at the kth level of the jth factor, and

Γk,j =
Q

M

∑
ai,j=k

yi, (4.9)

90 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

where the orthogonal matrix LM (QN) has the value ai,j at the ith row and jth
column, i.e., the jth factor has level ai,j in the ith combination (experiment).
The objective has value yi at the ith combination, and

∑
ai,j=k yi implies the

sum of yi where any i satisfies ai,j = k. The details of the algorithm, called
Algorithm 3, are shown in Fig. 4.4.

// Sum the objective results for each factor at each level
set Γi,j = 0 for i = 1, 2, ..., Q; j = 1, 2, ..., N
for i = 1 to M, j = 1 to N do

q = ai,j ; Γq,j = Γq,j + yi

endfor
// Average the results for each factor at each level
[Γk,j]Q×N = [Γk,j]Q×N ×Q/M

Fig. 4.4. Calculation of the mean value [Γk,j]Q×N

Each factor has its best level, found from the mean value matrix [Γk,j]Q×N .
Usually, the combination of the best levels is a good solution, and for additive
or quadratic models, it is optimal. The details of calculating the combination
of the best levels (Algorithm 4) are given in Fig. 4.5.

for j = 1 to N do
bj = arg max

i∈{1,2,...,Q}
Γi,j

endfor

return Potentially good combination
−→
b = (b1, b2, ..., bN)

Fig. 4.5. Calculation of potentially good combination [bj]1×N

4.3.3 The Concept of Niche

Niche is a function of a particular species in an ecological community; all
aspects of an organisms existence that enable it to survive and reproduce. For
example, an osprey primarily preys upon fish therefore its niche is near water,
and it could not survive in the desert.

The niche technology in this chapter simulates the principle of niche in
ecology. A niche W is a hyper-rectangle in the search space S here. Each
niche evolves (moves or shrinks). It has its fitness by which it is selected or
deleted. Each niche selects its best solution found so far as its representative,
and the fitness value of the representative is regarded as that of the niche.

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 91

4.4 The ODHC Algorithm

4.4.1 Brief Introduction to the ODHC Algorithm

In the ODHC algorithm, the climber is a niche. Each niche has its fitness.
Each one selects its best solution found so far as its representative, and the
fitness value of the representative is regarded as that of the niche.

Since the orthogonal design method works well for niches, it is used to find
a potentially good solution that probably is situated near the optimal solution
in the niche. The potentially good solution is probably the representative
of the niche. Because the representative is likely to be close to the optimal
solution in its niche, we determine whether or not the niche covers a peak of
the whole search space according to the position of the representative. The
representative must stay inside its niche, or at least at its boundary. If the
representative stays inside the niche, we say that the niche covers a peak. If
it stays at the boundary of the niche, we say the niche does not yet cover a
peak.

The operator of climbing to a peak for a niche in the ODHC algorithm
consists of two stages: At the first stage, the niche does not cover a peak.
ODHC repeats the moving operator to approach the niche toward a potential
peak until it covers a peak. Then, comes the second stage. At the second
stage, ODHC repeats the shrinking operator to shrink the niche to get a
“close-to-peak” with a higher precision until the niche size becomes less than
a threshold.

An efficient dynamic optimization method must approach the optimal as
much as possible in the static stage before the next environment change. We
suppose that a peak shifts to a position near its previous position without
changing much of its height after a sudden environment change. Group climb-
ing technique is used in the ODHC algorithm by using an archive mechanism.
The archive is to store the current found high peaks. Once the environment
changes, the ODHC algorithm searches peaks in the following two ways: One
is that the ODHC algorithm constructs niches (named exploiting niche), the
centers of which are the past peaks in the archive. These niches climb to get
back the known peaks. And the other is that it creates niches (named explor-
ing niche) randomly to explore new peaks. orthogonal design method is used
to speed up the climbing in the both ways. The former climbers learn from
the past search results. The later climbers implement the global search. By
the way, both searches can be implemented in parallel.

We implement the ODHC algorithm in the following way. Suppose the
archive can store K peaks. The representative of each niche is denoted by −→s .
We use a flag to signal whether or not a niche covers a peak. This flag is called
PeakIsInside, with one such flag per niche. PeakIsInside == false means
that the niche does not cover a peak, while PeakIsInside == true means
that the niche covers a peak. Let PeakIsInside = false be the initial value.
The design of the ODHC algorithm is as follows.

92 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

4.4.2 Design of the ODHC Algorithm

The Framework of the ODHC Algorithm

The ODHC algorithm finds peaks in the following ways: It constructs ex-
ploiting niches, the centers of which are the past peaks in the archive. These
niches climb to get back the known peaks. And the algorithm creates explor-
ing niches randomly to explore new peaks. The operations depicted above can
be run parallel. The exploiting climbers learn from the past search results.
The exploring climbers implement the global search. The framework of the
ODHC algorithm, denoted Algorithm 5, is given in Fig. 4.6

// Initiation
Empty the archive;
// Begin climbing
repeat

// Learn from past search
for each past peak in the archive do

Construct a niche W with the past peak being its center
Calculate the representative of the niche W
The niche W climbs to a peak; (cf. Algorithm 6)

endfor
repeat

// Explore new peaks
Randomly create an initial niche E (cf. Algorithm 7)
The niche E climbs to peak (cf. Algorithm 6)
Insert E into the archive
if the archive is full then

Delete an inferior peak, respecting the need for diversity
endif

until FALSE
until the termination criterion is satisfied

Fig. 4.6. The framework of the ODHC algorithm

NOTE: The “deletion of a peak, respecting the need for diversity” means
that if there are two peaks that have a distance to each other less than a given
threshold ε1 in the archive then delete any one of them, otherwise delete the
worst niche.

Climb to Peak

The operator of climbing to a peak for a niche in the ODHC algorithm consists
of two stages: At the first stage, the niche does not cover a peak. ODHC repeats
the moving operator to approach the niche toward a potential peak until it

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 93

covers a peak. Then, comes the second stage. At the second stage, ODHC
repeats the shrinking operator to shrink the niche to get a “close-to-peak”
with a higher precision until the niche size becomes less than a threshold.
This peak climbing algorithm, Algorithm 6, is shown in Fig. 4.7.

repeat
if PeakIsInside == false then

// W covers no peak
Store current representative −→s to −−→pres
Move W (cf. Algorithm 9)
Calculate a new representative −→s for W (cf. Algorithm 8)
if −→s stays inside W or −→s == −−→pres then

PeakIsInside = true
endif
if having detected an environmental change then

Reset the search pointer
endif

else
// W covers a peak
if the solution’s precision is inferior to the requirement then

Shrink W (cf. Algorithm 10);
Calculate a representative −→s for W (cf. Algorithm 8)
if having detected an environmental change then

Reset the search pointer
endif

endif
endif

until the niche size is less than the threshold ε2

Fig. 4.7. Climb to peak for niche W

NOTE: Resetting the search pointer means updating the niches in the
archive. The centers of those niches are the past peaks, while their sizes are
initially given. To create the initial size of a niche, each side of the search
space is divided into several equal portions. Hence the search space is equally
divided into units. Assume each unit covers no more than a single peak, which
conserves the availability of the orthogonal design. We let the size of the unit
be the size of the initial niche. The initial side lengths of each niche are denoted
by d1, d2, ..., dN .

Randomly Create a Niche

The operator that creates a niche randomly is shown as Algorithm 7 in
Fig. 4.8.

94 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

Randomly pick a unit from the search space as an initial niche W
Calculate a representative −→s for W (cf. Algorithm 8)
PeakIsInside = false

Fig. 4.8. Randomly create a niche

Calculate a Representative for a Niche

The algorithm for calculating a representative uses the orthogonal design
method which can speed up the search by statistical calculation. Suppose
the dynamic function has N factors, and the range of each factor is quantized
into Q levels. By executing Algorithm 2 (see Fig. 4.2), we obtain the orthog-
onal matrix LM (QP). P must be larger than or equal to N here. The details
of calculating a representative, Algorithm 8, are given in Fig. 4.9.

Step 1: Execute Algorithm 2 to construct the orthogonal matrix LM (QP)
Step 2: Delete the last P −N columns of LM (QP) to obtain LM (QN)
Step 3: Using LM (QN), execute Algorithm 3 to construct the matrix [Γq,j]Q×N

Step 4: Execute Algorithm 4 to obtain a promising solution
−→
b

Step 5: The best of the M combinations corresponding to LM (QN) is assigned

to
−→
b 1

Step 6: The superior value among
−→
b ,
−→
b 1 and the previous representative −−→pres is

assigned to current representative −→s .

Fig. 4.9. Calculate a representative for a niche

NOTE: Algorithm 8 ensures that the representative is the best solution
found so far in the niche.

Adjust a Niche

Given the following niche W

W = {−→x = (x1, x2, ..., xN)|lj � xj � uj , j = 1, 2, ..., N} (4.10)

and its representative −→s = (s1, s2, ..., sN). And niche W ′ is

W ′ = {−→x = (x1, x2, ..., xN)|l′j � xj � u′
j , j = 1, 2, ..., N} (4.11)

The details of moving niche W to W
′
, called Algorithm 9, are shown in

Fig. 4.10. Fig. 4.11 shows the process of moving a niche. The details of the
shrinking operator, denoted Algorithm 10, are given in Fig 4.12.

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 95

for j = 1 to N do
if (lj(t) ≤ sj ≤ uj(t)) then

l′j = sj − (uj − lj)/2;
u′

j = sj + (uj − lj)/2;
endif
if (lj(t) == sj) then

l′j = sj − (Q− 2)(uj − lj)/(Q− 1);
u′

j = sj + (uj − lj)/(Q− 1);
endif
if (uj(t) == sj) then

l′j = sj − (uj − lj)/(Q− 1);
u′

j = sj + (Q− 2)(uj − lj)/(Q− 1);
endif

endfor
if W ′ lies outside of the problem’s search space then

move it appropriately into the problem’s search space
endif

Fig. 4.10. Move the niche W to W
′

Fig. 4.11. An illustration of a moving niche where N = 2 and Q = 5

for j = 1 to N do
l′j = sj − (uj − lj)/(Q− 1);
u′

j = sj + (uj − lj)/(Q− 1);
endfor

Fig. 4.12. Shrink the niche W to W ′

96 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

4.5 Numerical Experiments

4.5.1 Parameter Setting for the ODHC Algorithm

Five parameters need to be set in the ODHC algorithm.

1) The initial size of the niche: d1, d2, ..., dN

2) The orthogonal array size for computing niche representative: M = QJ

3) The number of peaks the archive can store: K
4) The threshold for conserving peak diversity in the archive: ε1

5) The threshold for stopping niche shrinking operator: ε2

NOTES: Suppose that the side lengths of the search space have values
D1,D2, ...,DN and that they are divided respectively into Q1, Q2, ..., QN equal
portions. The side lengths of the initial niche are then d1 = D1/Q1, d2 =
D2/Q2, ..., dN = DN/QN . A niche should cover no more than a single peak,
to ensure that the ODHC algorithm can work efficiently. If the niche size is too
large, it may cover more than one peak, hence, the representative calculated
by Algorithm 4.9 would be poor, and the ODHC algorithm would fail to
track the moving best. On the other hand, if the niche size is too small, then
exploring the peak would be time consuming, because moving the niche would
be very slow. However, the ODHC algorithm is insensitive to the initial size
of the niches to some extent.

In the experiments mentioned below, each side of the search space is di-
vided into 30 equal portions, i.e., Q1 = Q2 = ... = QN = 30. This makes it
likely that a niche covers no more than a single peak for the test problems
below. For the orthogonal array size, we choose a small number of levels Q, be-
cause a large Q would increase the number of experiments QJ , so the number
of computations would increase. The default value for Q is 5. We let parameter
J be determined by both Q and the number of dimensions N . The orthogonal
matrix LM (QN) consists of the former N columns of the orthogonal matrix
LM (QP) constructed by Algorithm 4.2. According to Equation(4.8), we have
P = (QJ − 1)/(Q− 1). P,N must therefore satisfy

P = (QJ − 1)/(Q− 1) ≥ N (4.12)

Given N and Q, as J increases, the number of combinations QJ increases
exponentially. Therefore we choose the smallest integer J that satisfies Equa-
tion (4.12). Thus J is a parameter determined internally, and need not be
set outside the ODHC algorithm. The default setting is to have K = 10,
ε1 = d/(2 ∗ (Q− 1)), and ε2 = 0.001.

Parameter Setting for Test Function

We choose the moving peaks function which has been mentioned in the Equa-
tion (4.2) of sec 4.2.3 segment of this chapter as our test problem. Unless stated

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 97

otherwise, the default settings, defining the benchmark, are employed in our
experiments. These settings are shown in Table 4.4, where the change fre-
quency means the number of evaluations between two environmental changes.
The term “evaluation” refers to the creation and fitness measurement of an
individual. The term “shift length s” means that a peak will move randomly
with a length s, at the next environmental change.

Table 4.4. Default settings for the moving peaks benchmark used in this paper

Parameter

Number of peaks m 10
Change frequency 5000
Height severity 7.0
Width -severity 1.0

λ 0
Peak shap e cone(cf. Equation (4.3))

Basic function no
Shift length s 1.0

Number of dimension N 5
The range of decision vector [m−→x , M−→x] [0.0,100.0]

The range of peak height changing [mh, Mh] [30.0,70.0]
The range of peak width parameter [mw, Mw] [1,12]

Initial peak height for all peaks 50.0

Brief Introduction to the Self-Organizing Scouts Algorithm

The Self-Organizing Scouts (SOS) algorithm has been published in [25]. The
basic idea of SOS is that once a peak has been found (i.e. the population
converged to a high-performance region), the population should split: a small
fraction, called the “scout population”, should “watch” over that peak, while
the remainder of the population (“base population”) should spread out and
continue searching for new peaks. When a watched peak moves, the scout
population may follow it through the space, and even request reinforcement.
Since the population size is limited, individuals are continuously redistributed
to those populations where they seem to be needed most, and peaks that
seem too unpromising may be abandoned. In general, the SOS algorithm is
described as in Fig. 4.13.

4.5.2 Results of Experiments

In order to be able to derive conclusions independent of the algorithm’s ran-
dom seed and for a class of problems, instead of only a particular problem
instance, we need more than a single test run for comparison. There are two

98 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

repeat
Compute next generation of base population and scout population
Adjust search space of scout populations
if forking generation then

Create new scout population if suitable cluster is found
Adjust number of individuals in base and scout populations

endif
until termination criterion

Fig. 4.13. The basic SOS algorithm

principal possibilities to reduce the stochastic influence of random seed and
particular test instance: (1) Run both algorithms multiple times with different
random seeds on a single problem instance. (2) Run both algorithms multiple
times on different instances of a class of problems with similar characteristics.

For most results reported, we will be using an average over 50 runs of the
ODHC algorithm, each run with a specific random seed and a specific instance
of the problem, such that both SOS algorithm and ODHC algorithm face the
same 50 environments and have exactly the same starting position. Assuming
that the problem solutions fall into the same value range, or at least, that the
performance of one algorithm over the other is independent of the average
solution quality for a specific problem, this seems to be a viable compromise.

Since for dynamic fitness functions it is not useful to report the best so-
lution achieved, we will here mainly report on the average offline error (cf.
Equation(4.6)). The offline errors after 500,000 evaluations in the ODHC al-
gorithm are compared with those of the SOS algorithm.

Tables 4.5, 4.6, 4.7, and 4.8 show the effects of peak movements, frequencies
of change, changing the number of peaks and higher dimensionality in both
the ODHC and SOS algorithms respectively.

The Effect of Peaks Movements

In the Moving Peaks Benchmark, the distance by which a peak shifts can be
set explicitly. For shift length s = 0, the peaks still stay at the same place,
but the optimum now switches irregularly between 10 peaks which are stored
in the archive. By increasing s slowly, we can examine the effect of different
algorithms on the performance.

Tables 4.5 displays the offline error after 500,000 evaluations over a range
of values for s. When the length s of the shift vector is increased, the per-
formance of both SOS algorithm and ODHC algorithm decreases. That is to
be expected, since in addition to the ability to jump from one location to the
other when the optimum peak changes, the algorithms now have to deal with
the additional challenge to trace the peaks as they move through the search
space.

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 99

The ODHC algorithm is less affected than SOS algorithm. The scout niches
in the ODHC algorithm seem to be able to successfully and simultaneously
trace the movements of “their” peaks, thus maintaining valid information
before and after the change of the environment.

Table 4.5. The offline errors of both SOS and ODHC for different shift lengths

Shift Length SOS ODHC

1.0 4.01 1.78
2.0 5.12 2.16
3.0 6.54 2.47

The Effect of Changing Frequency

So far, the environment gradually changed every 5000 evaluations. When the
change frequency increase (the numbers of individual evaluations between
changes decrease), the performance of both SOS algorithm and ODHC algo-
rithm suffers significantly (the offline error increase). In part, this may be due
to the nature of the offline error measure : When the environment changes too
fast, new peaks may hardly be explored, even in the worse situation, the past
known peaks in the archive may not be exploited before the next environment
change.

Tables 4.6 reveals that the ODHC algorithm performs better than the
SOS algorithm. The ODHC algorithm performs better because an archive
is used to store peaks. And the created exploit niches are able to find back
the old optimums which have been found before the change of environment.
Also, the ODHC algorithm creates new explore niches to find new optimums
after the change of environment. The explore niches implement the global
search. The niche technique might be capable of tracking the quickly moving
target. The orthogonal design method used in ODHC algorithm speeds up the
search. Thus, there is more time for convergence and a jump from one peak
to another is required less often.

The Effect of Changing the Number of Peaks

We now examine the number of peaks on the performance of both the SOS
algorithm and the ODHC algorithm. For the experiments reported here, we
varied the number of peaks from 1 to 200, always using a shift lengths s = 1.0.

The results are summarized in Table 4.7. Increasing the number of peaks
up to 20 reduce the performance of both the SOS algorithm and the ODHC
algorithm. Because with more than one peak it is no longer sufficient to follow
a peak, but it becomes more and more necessary to jump from one peak to
the other as the peaks change in height.

100 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

Table 4.6. The offline errors of both SOS and ODHC, for different numbers of
individual evaluations between changes

Evaluations between Environment Changes SOS ODHC

10000 3.62 1.71
5000 4.01 1.78
2500 4.93 2.19
1000 6.01 2.43
500 8.59 5.70

When the number of peaks is increased above 20, some of the offline error
becomes actually smaller. This may be due to two factors: first, the more
peaks there are, the easier it becomes to jump from one peak onto another,
simply because there will very likely be another peak nearby. And second,
due to the characteristics of the landscape always evaluating to the maximum
of all peaks, the average fitness of the landscape F (−→x , t) (cf. Equation(4.2))
increases with the number of peaks, and lower peaks may actually be hidden
by high, broad peaks, thus bounding the maximum possible error.

As can be seen, the ODHC algorithm again clearly outperforms the SOS
algorithm for any number of peaks in the landscape. The experiment results
indicate that the ODHC algorithm can make full use of the neighbor infor-
mation while the peaks move.

Table 4.7. The offline errors of both SOS and ODHC for different numbers of peaks

Peak numbers SOS ODHC

1 2.06 0.86
10 4.01 1.78
20 4.43 1.93
30 4.20 1.90
40 4.06 1.88
50 4.12 1.78
100 3.75 1.29
200 3.62 1.10

The Effect of Higher Dimensionality

To reduce the necessary computation time, most of the considered test prob-
lems are relatively simple. In our experiments, we look at a problem with 200
peaks and 20 dimensions. The offline error for the SOS algorithm and the
ODHC algorithm on that problem is depicted in Table 4.8.

Note that except for dimensionality and the number of peaks, all other
parameters of the Moving Peaks Benchmark are kept at their default value.

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 101

Thus, while the search space is much larger now, the shape and width parame-
ter of the peaks is kept, leading to an environment with a sparse distribution
of peaks, and a much lower average height of the landscape. Also, due to the
dimensionality, tracking of a peak becomes significantly more difficult.

Table 4.8 indicates that the SOS algorithm is not very useful in such an
environment, because the SOS algorithm may not be able to switch peaks due
to the diversity in the memory .

The ODHC algorithm performs reasonably well. Firstly, the ODHC al-
gorithm uses the hill climbing strategy. Hill climbing strategy is one of the
heuristic search techniques. The heuristic search strategy uses the inspiration
information as the guidance and hence the search is toward the goal direction,
avoiding detouring and enhancing the solution efficiency. And secondly, the
orthogonal design method is employed on niches. The orthogonal design meth-
ods selects a small number of evenly distributed samples from a space with
huge number of individuals and then finds a potentially good solution by sta-
tistical calculation. This potentially good solution probably is situated near
the optimal solution in the niche. Therefore, the niche climbs a potentially
peak fast.

The good performance of the ODHC algorithm indicates that the ODHC
algorithm is a new sound approach to solve dynamic optimization problems
which have a higher dimensionality.

Table 4.8. The offline errors of both SOS and ODHC on a moving peaks problem
with 200 peaks and 20 dimensions

SOS ODHC

12.67 5.17

Overall, all of these results displayed in Tables 4.5, 4.6, 4.7, and 4.8 show
that the ODHC algorithm can track the moving best solution a lot better than
can the SOS algorithm. We therefore conclude that the ODHC algorithm is
an improvement in algorithms of its type.

4.6 Conclusions

4.6.1 Advantages of ODHC Algorithm

The peak climber in the ODHC algorithm is not a solution −→x but rather
a “niche” which has a representative representing the best solution so far
found. An orthogonal design method is employed on niche. Therefore, the
niche climbs a potentially peak fast. The climbing operator for a niche to
climb a peak in the ODHC algorithm consists of two stages: At the first stage,
the niche does not cover a peak. It repeats moving operator to approach a

102 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

potential peak until covering a peak and then comes the second stage. At the
second stage, it repeats shrinking operator to obtain a “close-to-peak” with a
higher precision until the niche size less than threshold.

We suppose that a peak shifts to a position near its previous position
without changing much of its height after a sudden environment change. The
ODHC algorithm keeps an archive to store the current found higher peaks.
Once the environment change occurs, the ODHC algorithm searches peaks
in two ways: One is that it constructs exploiting niches, the centers of which
are the past peaks in the archive, and search from those niches to get back
the higher known peaks. The other is to create exploring niches randomly to
explore new peaks. The former search learns from the past search results. The
later implements the global search.

4.6.2 Limitations of ODHC Algorithm

Each niche should only cover a peak, such that the ODHC algorithm may work
well. If the distance of two peaks is too near, a niche may cover more than
two peaks, which will decrease the effectiveness of the orthogonal design, then
the ODHC algorithm may work comparatively poor. But, the robustness of
the orthogonal design conserves that it can statistically find potentially good
solutions no mater how many peaks the niche has. Therefore, the ODHC
algorithm should not work too poor.

Acknowledgments

This work was supported by the National Natural Science Foundation of China
(No. 60473037). We thank Dr. Shengxiang Yang for his assistance with the
expression of this chapter and helpful suggestions.

References

1. D. E. Goldberg and R. E. Smith. Nonstationary function optimization using
genetic algorithms with dominance and diploidy. In J. J. Grefenstette, editor,
Second International Conference on Genetic Algorithms, pages 59-68. Lawrence
Erlbaum Associates, 1987.

2. T. Back (1998). On the behavior of evolutionary algorithms in dynamic fitness
landscapes. In Proc. of the 1998 IEEE Int. Conf. on Evolutionary Computation,
pp 446-451. IEEE Press.

3. N. Mori, S. Imanishi, H. Kita, and Y. Nishikawa. Adaptation to changing envi-
ronments by means of the memory based thermodynamical genetic algorithm.
In T. Bäck, editor. Seventh International Conference on Genetic Algorithms,
pp 299-306. Morgan Kaufmann, 1997.

4. J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer Aca-
demic Publishers, 2002.

4 Orthogonal Dynamic Hill Climbing Algorithm: ODHC 103

5. J. Branke. Evolutionary approaches to dynamic optimization problems -
Instruction and recent trends-. in J. Branke, editor, Proceedings of the Work-
shop on Evolutionary Algorithms for Dynamic Optimization Problems, pp 1-3.
Chicago, USA, 2003.

6. H. G. Cobb. An investigation into the use of hypermutation as adaptive op-
erator in genetic algorithms having continuous, time-dependent nonstation-
ary environments. Technical Report AIC-90-001, Naval Research Laboratory,
Washington, USA, 1990.

7. R. W. Morrison and K. A. De Jong (2000). Triggered hypermutation revisited.
Proc. of the 2000 Congress on Evolutionary Computation, pp 1025-1032.

8. J. J. Grefenstette. Genetic algorithms for changing environments. In
R. Maenner and B. Manderick, editors, Parallel Problem Solving from Nature 2,
pp 137-144. North-Holland, 1992.

9. J. Lewis, E. Hart and G. Ritchie (1998). A comparison of dominance mecha-
nisms and simple mutation on non-stationary problems. Proc. of the 5th Int.
Conf. on Parallel Problem Solving from Nature, pp 139-148.

10. K. P. Ng and K. C. Wong (1995). A new diploids scheme and dominance change
mechanism for non-stationary function optimisation. In L. J. Eshelman (ed.),
Proc. of the 6th Int. Conf. on Genetic Algorithms.

11. S. Yang. Memory-based immigrants for genetic algorithms in dynamic environ-
ments. Proceedings of the 2005 Genetic and Evolutionary Computation Con-
ference, Vol. 2, pp 1115-1122, 2005.

12. J. Branke, T. Kaufler, C. Schmidt, and H. Schmeck. A multipopulation ap-
proach to dynamic optimization problems. Adaptive Computing in Design and
Manufacturing. Springer, 2000.

13. D. C. Montgomery, Design and Analysis of Experiments, 3rd ed. New York:
Wiley, 1991.

14. S. Zeng, L. Kang, L. Ding. An Orthogonal Multi-objective Evolutionary Algo-
rithm for Multi-objective Optimization Problems with Constraints. Evolution-
ary Computation. Vol.12, No.1, pp 77-98, MIT Press, 2004.

15. S. Zeng, S. Yao, L. Kang, and Y. Liu. An Efficient Multi-objective Evolutionary
Algorithm: OMOEA-II. In C. A. Coello Coello et al. (Eds.), proceedings of the
Third International Conference on Evolutionary Multi-Criterion Optimization,
LNCS series, Springer-Verlag, pp 108-119, 2005.

16. Y. W. Leung and Q. Zhang (1997). Evolutionary algorithms + experimental
design methods: A hybrid approach for hard optimization and search problems,
Res. Grant Proposal, Hong Kong Baptist Univ.

17. Y. W. Leung and Y. Wang (2001). An orthogonal genetic algorithm with quan-
tization for global numerical optimization. IEEE Trans. Evol. Comput. vol.5,
No.1, pp. 40-53.

18. T. C. Fogarty, F. Vavak, and P. Cheng. Use of the genetic algotithm for load
balancing of sugar beet presses. Proceedings of the 6th Int. Conf. on Genetic
Algorithms, pages 617-624. Morgan Kanufmann, 1995.

19. C. L. Karr. Genetic algorithms and fuzzy logic for adaptive process control. In
S. Goonatilake and S. Khebbal, editors, Intelligeht Hybrid Systems, chapter 4,
pages 63-64, John Wiley, 1995.

20. C. L. Karr. Adaptive process control using biologic paradigms, In L. C. Jain,
editor, Proceedings of Electronic Technology Directions to the Year 2000,
volume 1, pages 128-136, 1995.

104 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

21. C. L. Ramsey and J. J. Grefenstette. Case-based initialization of genetic algo-
rithms, In S. Forrest, editor, Proceedings of the 5th International Conference
on Genetic Algorithms, pages 84-91. Morgan Kaufmann, 1993.

22. R. W. Morrison and K. A. DeJong. A test problem generator for nonstationary
environments. Proceedings of the 1999 Congress on Evolutionary Computation,
volume 3, pages 2047-2053, 1999.

23. S. Yang. Constructing dynamic test environments for genetic algorithms based
on problem difficulty. Proceedings of the 2004 Congress on Evolutionary Com-
putation, Vol. 2, pages 1262-1269, 2004.

24. A. S. Hedayat, N. J. A. Sloane and J. Stufken. Orthogonal Arrays: Theory and
Applications. New York: Springer-Verlag, 1999.

25. J. Branke, T. Kaubler, and H. Schmeck. Guiding multiobjective evolutionary al-
gorithms towards interesting regions. Technical Report No. 399, Institute AIFB,
University of Karlsruhe, Germany, 2000

5

Genetic Algorithms with Self-Organizing
Behaviour in Dynamic Environments

Renato Tinós1 and Shengxiang Yang2

1 Departamento de F́ısica e Matemática, FFCLRP, Universidade de São Paulo
(USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
rtinos@ffclrp.usp.br

2 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom
s.yang@mcs.le.ac.uk

Summary. In recent years, researchers from the genetic algorithm (GA) commu-
nity have developed several approaches to enhance the performance of traditional
GAs for dynamic optimization problems (DOPs). Among these approaches, one
technique is to maintain the diversity of the population by inserting random im-
migrants into the population. This chapter investigates a self-organizing random
immigrants scheme for GAs to address DOPs, where the worst individual and its
next neighbours are replaced by random immigrants. In order to protect the newly
introduced immigrants from being replaced by fitter individuals, they are placed in
a subpopulation. In this way, individuals start to interact between themselves and,
when the fitness of the individuals are close, one single replacement of an individ-
ual can affect a large number of individuals of the population in a chain reaction.
The individuals in a subpopulation are not allowed to be replaced by individuals of
the main population during the current chain reaction. The number of individuals
in the subpopulation is given by the number of individuals created in the current
chain reaction. It is important to observe that this simple approach can take the
system to a self-organization behaviour, which can be useful for GAs in dynamic
environments.

5.1 Introduction

A significant part of optimization problems in real world is dynamic optimiza-
tion problems (DOPs), where the evaluation function and the constraints of
the problem are not fixed [24]. When changes occur in the problem, the so-
lution given by the optimization procedure may be no longer effective, and a
new solution should be found [4]. The optimization problem may change for
several factors, like faults, machine degradation, environmental or climatic
modifications, and economic factors. In fact, the natural evolution, which is
the inspiration for genetic algorithms (GAs), is always dynamic. The occur-
rence of natural cataclysms, geological modifications, competition for natural
R. Tinós and S. Yang: Genetic Algorithms with Self-Organizing Behaviour in Dynamic Envi-

ronments, Studies in Computational Intelligence (SCI) 51, 105–127 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

106 Renato Tinós and Shengxiang Yang

resources, coevolution between species, and climatic modifications are only a
few examples of changes related to natural evolution.

The simplest approach to deal with DOPs is to start a new optimization
process whenever a change in the problem is noticed. However, the optimiza-
tion process generally requires time and substantial computational effort. If
the new solution after the change in the problem is, in some sense, related to
the previous solution, the knowledge obtained during the search for the old
solution can be utilized to find the new solution [16]. In this case, the search
for new solutions based on the old solutions can save substantial processing
time. Evolutionary algorithms are particularly attractive to such problems as
individuals representing solutions of the problem before the changes can be
transferred into the new optimization process.

However, in GAs, the population of solutions generally converges in the
fitness landscape to points close to the best individual of the population. If
the fitness landscape abruptly changes, the actual population can be trapped
in local optima located close to the old solution. In fact, the premature con-
vergence of the solution to a local optima is not a problem exclusive to DOPs,
but it can be a serious problem in stationary optimization problems too [20].
In order to avoid the premature convergence, several approaches where the
diversity level is re-introduced or maintained throughout the run have ap-
peared in literature over the past years (see the surveys [4, 16, 24]). Typical
examples of such approaches are the random immigrants GA (RIGA) [14],
the sharing or crowding mechanisms [5], the variable local search [25], the
thermodynamical genetic algorithm [21], and the use of hypermutation [6].

RIGA, which is inspired by the flux of immigrants that wander in and
out of a population between two generations in nature, is very interesting
and simple [7, 14]. In RIGA, some individuals of the current population are
replaced by randomly generated individuals in each generation of the run.
A replacement strategy, like replacing random or worst individuals of the
population, defines which individuals are replaced by the immigrants. The
RIGA tries to maintain the diversity level of the population, which can be very
useful to prepare the population for possible fitness landscape changes [7].

However, in some cases, when the number of genes in the individual is
high and the local optimum where the population is found has fitness much
higher than the mean fitness of all possible solutions of the search space, the
survival probability of the new random individuals is generally very small. This
occurs because the selection methods employed in GAs preserve, directly or
indirectly, the best individuals of the population, and the probability that the
fitness of the new random individuals is higher than (or close to) the fitness
of the current individuals is generally small.

In this work, instead of substituting the worst individuals or the random
individuals in each generation like in the standard RIGA, the worst individual
and its next neighbours are replaced. In order to protect the newly introduced
immigrants from being replaced by fitter individuals, they are placed in a
subpopulation. In this way, individuals start to interact between themselves

5 GAs with Self-Organizing Behaviour in Dynamic Environments 107

and, when the fitness of the individuals are close, as in the case where the
diversity level is low, one single replacement of an individual can affect a large
number of individuals of the population in a chain reaction. The individuals
in the subpopulation are not allowed to be replaced by individuals of the main
population during the current chain reaction. The number of individuals in
the subpopulation is not defined by the programmer, but is given by the
number of individuals created in the current chain reaction. It is important to
observe that this simple approach can take the system to a self-organization
behaviour, which can be useful in DOPs.

The experimental results suggest that the proposed GA presents a kind of
self-organizing behaviour, known as self-organized criticality (SOC) [1], which
is described in Section 5.2. The proposed GA is presented in Section 5.3, and
the experimental results are presented in Section 16.4. In Section 5.4.3, the
proposed GA and the experimental results are analyzed. Finally, Section 5.5
concludes the work with discussions on relevant future work.

5.2 Self-Organized Criticality

Systems consisting of several interacting constituents may present an interest-
ing kind of self-organizing behaviour known as SOC [2], [15]. Researchers have
suggested that several phenomena exhibit SOC, like sand piles, earthquakes,
forest fires, electric breakdowns, and growing interfaces [1].

An interesting behaviour appears in systems exhibiting SOC: they self-
organize into a particular critical state without the need of any significant
tuning action from outside. The critical state is described by the response of a
system to external perturbation. In a system exhibiting noncritical behaviour,
the distribution of responses to perturbation at different positions and at
different times is narrow and well described by an averaged value. In a system
exhibiting critical behaviour, no single characteristic response exists, i.e., the
system exhibits scale invariance. A small perturbation in one given location
of the system may generate a small effect on its neighbourhood or a chain
reaction that affects all the constituents of the system.

The statistical distributions describing the response of the system exhibit-
ing SOC are given by power laws in the form

P (s) ∼ s−τ (5.1)

and
P (d) ∼ d−α, (5.2)

where s is the number of constituents of the system affected by the pertur-
bation, d is the duration of the chain reaction (lifetime), and τ and α are
constants. The sand pile model described in [2], where a single grain is added
at a random position in every interval of time ∆t is an example of a system
exhibiting SOC. In order to characterize the response of the sand pile model,

108 Renato Tinós and Shengxiang Yang

one can measure the number of sand grains (s) involved in each avalanche in-
duced by the addition of a single grain and the duration (d) of each avalanche.
In the critical state, the statistical distributions describing the response of the
system to the addition of a single grain are given by Eqs. 5.1 and 5.2, and the
addition of a single grain can affect only a grain in its neighbourhood or can
affect the whole sand pile.

Bak has suggested that SOC occurs in natural evolution too [1]. An evi-
dence of SOC in evolution would be the fact that it does take place through
bursts of activity intercalated by calm periods, instead of gradually at a slow
and constant pace [13]. There are many more small extinction events than
large events, such as the Cretaceous extinction of dinosaurs and many other
species, and extinction events occur on a large variety of length scales [23].
Bak has suggested that extinctions propagate through ecosystems, such as
avalanches in a sand pile, and perturbations of the same size can unleash
extinction events of a large variety of sizes [1]. In such hypothesis, species
coevolve to a critical state [17].

A very simple simulation model to study the connection between evolu-
tion and SOC was proposed by Bak and Sneppen [1]. In the one-dimensional
version of the model, the individuals (or species in the authors’ terminology)
are placed in a circle, and a random value of fitness is assigned to each one of
them. In each generation of the simulation, the values of fitness of the individ-
ual with the lowest fitness in the current population, one individual located
in its right position, and one located in its left position are replaced by new
random values. An analogy of the connection between neighbours in this sim-
ple model is the interaction between species in nature: if a prey is extinct, the
fitness of its predators will change. The Bak-Sneppen Model is summarized
in Fig. 5.1.

begin
Find the index j of the individual with the lowest fitness
Replace the fitness of the individuals with index j, j − 1, and j + 1 by random
values drawn with uniform density

end

Fig. 5.1. The Bak-Sneppen model

The Bak-Sneppen model presents an interesting behaviour. In the begin-
ning of the simulation, the mean fitness of the population is low, but, as the
number of generation increases, the mean fitness increases too. Eventually, the
mean fitness ceases to increase, and the critical state is reached. In the Bak-
Sneppen Model, a replacement of the fitness of the worst individual causes
the replacement of its two next neighbours. In the critical state, the values
of fitness of the neighbours are very often replaced by random numbers with

5 GAs with Self-Organizing Behaviour in Dynamic Environments 109

smaller values. The new worst individual can be then one of these two neigh-
bours, which are replaced with its two next neighbours, originating a chain
reaction, called replacement event in this work, that can affect all the individ-
uals of the population. The replacement events exhibit scale invariance and
their statistical distributions are given by power laws in the form of Eqs. 5.1
and 5.2. Large replacement events generally occur when almost all individuals
of the population have similar high values of fitness.

It is important to observe that SOC avoids the situation where the species
get trapped in local optima in the fitness landscape in the Bak-Sneppen evolu-
tion model. The idea is interesting and relatively simple, and soon researchers
proposed the use of SOC in optimization processes. Boettcher and Percus [3]
proposed the optimization with extremal dynamics, a local-search heuristic for
finding solutions in problems where constituents of the system are connected,
e.g., the spin glass optimization problem. Løvbjerg and Krink [19] extended
Particle Swarm Optimization with SOC in order to improve the optimization
process and to maintain the diversity level.

In GAs, Krink and Thomsen [18] proposed the use of the sand pile model
previously discussed to generate power laws to be utilized to control the size of
spatial replacement zones in a diffusion model. When an individual is extinct,
a mutated version of the best individual of the population is created in its
place. It is important to observe that, in the algorithm proposed in [18], SOC
appears in the sand pile model utilized to control the size of the replacements,
and not as a result of the self-organization of the constituents of the system
(individuals of the GA).

5.3 Random Immigrants Genetic Algorithm
with Self-Organizing Behaviour

In the standard RIGA, randomly chosen individuals of the current popula-
tion Pt are replaced by randomly generated individuals. A replacement rate
specifies the number of individuals replaced in each generation. The standard
RIGA can be summarized in Fig. 5.2, which differs from the generational
standard GA (SGA) only by the inclusion of the procedure “replace(Pt)”,
where randomly chosen individuals of the current population are replaced by
randomly generated individuals.

In this work, we propose the replacement of the individual with the lowest
fitness of the current population and its two next neighbours for new randomly
generated individuals in RIGA. The indices of the individuals are used to
determine the neighboring relations. In each generation of the algorithm, the
individual with the lowest fitness in the current population (index j), one
individual located in its right position (index j + 1), and one located in its
left position (index j − 1) are replaced by new random individuals. One can
observe that, as the proposed GA is not spatially distributed, the neighbouring
relations are random.

110 Renato Tinós and Shengxiang Yang

Require: N : population size; pc: crossover rate; pm: mutation rate
begin

t ← 1
initialize(Pt,N)
evaluate(Pt)
while (stop criteria are not satisfied) do

Pt ← replace(Pt)
for i = 1 to N do

Pt+1(i) ← selection(Pt,i)
end for
crossover(Pt+1,pc)
mutation(Pt+1,pm)
evaluate(Pt+1)
t ← t + 1

end while
end

Fig. 5.2. The random immigrants genetic algorithm (RIGA)

A second strategy is still adopted, where the new immigrants created dur-
ing the current chain reaction (called replacement event in this work), which
occurs along the generations, are preserved in a subpopulation. The size of
this subpopulation is not defined by the programmer, but is given by the num-
ber of individuals created in the current replacement event. The individuals
in the current population that do not belong to the subpopulation are not
allowed to replace individuals present in the subpopulation. The individuals
that belong to the subpopulation are allowed to evolve, i.e., they are sub-
mitted to selection, crossover, and mutation. It is important to observe that
selection and crossover are allowed only among individuals that belong to the
subpopulation.

We hope that, with such strategies, the system can exhibit SOC in order
to increase the diversity level of the population in a self-organized way and,
then, to avoid the situation where the individuals get trapped in local optima
in the fitness landscape when the problem changes.

In the proposed self-organizing random immigrants GA (SORIGA), there
are two major modifications from the standard RIGA. In the first modifica-
tion, the procedure “replace(Pt)” is modified as presented in Fig. 5.3. The
current size (or duration) of each replacement event, i.e., the number of times
that we replace the worst individual and its neighbours in the current replace-
ment event, is recorded and denoted by d, and the minimum and maximum
index values of the replaced individuals (imin − 1 and imax + 1) are employed
to compute the number of individuals affected by the current replacement
event. The number of individuals in the subpopulation, i.e., the size of sub-
population, equals to (imax+1)−(imin−1) = imax−imin+2. When the chain

5 GAs with Self-Organizing Behaviour in Dynamic Environments 111

reaction ceases, i.e., the individual with the lowest fitness does not belong to
the subpopulation, the size of the replacement is set to 1.

Procedure replace(Pt)
begin

Find the index j of the individual with the lowest fitness
Replace the individuals of Pt with indices j, j − 1, and j + 1 by randomly gene-
rated individuals
if (imin − 1 ≤ j ≤ imax + 1) then

d ← d + 1
if (j = imin − 1) then

imin ← j
end if
if (j = imax + 1) then

imax ← j
end if
else

d ← 1
imin ← j
imax ← j

end if
end

Fig. 5.3. The replace approach

Procedure selection(Pt, i)
begin

if (i < imin − 1) or (i > imax + 1) then
Select an individual from Pt

else
Select an individual from the subset of individuals of Pt with index in [imin−
1, imax + 1]

end if
end

Fig. 5.4. The selection approach

The second modification, which is presented in Fig. 5.4, lies in the selection
approach for each individual in the population. Two cases can occur. If the
index of the new individual was not affected by the current replacement event,
the new individual is selected according to the standard approach. Otherwise,
i.e., if the index was affected by the current replacement, the new individual

112 Renato Tinós and Shengxiang Yang

1 2 3 4 5 6 7 8 9 10
0

0.5

1

fit
ne

ss

1 2 3 4 5 6 7 8 9 10
0

0.5

1

fit
ne

ss

1 2 3 4 5 6 7 8 9 10
0

0.5

1

fit
ne

ss

individual

j i
max

+1i
min

−1

d=1

t=12

t=13

d=2

i
max

+1ji
min

−1

t=14

d=3

i
max

+1ji
min

−1

Fig. 5.5. Fitness of the individuals of the current population at generations 12, 13,
and 14 in a run of the SORIGA on the example problem

is selected from the subpopulation that consists of the individuals replaced in
the current replacement event (individuals with index values from imin− 1 to
imax + 1).

In order to illustrate its working, SORIGA is applied to a simple problem
where the fitness function is defined as

f(x) =
u(x)

l
, (5.3)

where u(x) is the unitation function of a binary vector (individual) x of length
l, which returns the number of ones in vector x. The individuals, which are
randomly generated in the first generation, are selected according to elitism
and the roulette wheel method. Mutation with rate pm = 0.01 and two-point
crossover with rate pc = 0.7 are employed. The number of individuals in the
population is equal to 10 and l = 20. Fig. 5.5 presents the first three steps of an
replacement event in a run of SORIGA on this example. The figure shows the
fitness of all individuals in the current population in generations 12, 13, and 14
respectively. In generation 12, the individual with index 5 (index j in Fig. 5.3)
has the lowest fitness in the population. In this way, individual with index 5
and its two next neighbours (individuals with indices 4 and 6) are replaced by
randomly generated individuals. In the next generation, the individual with
index j = 4 has now the lowest fitness, and it together with its two next

5 GAs with Self-Organizing Behaviour in Dynamic Environments 113

neighbours (individuals with indices 3 and 5) are then replaced. In generation
14, the individual with index j = 3 has the lowest fitness. It can be observed
that the chain reaction is propagated because the remaining individuals have
fitness values higher than the individuals in the subpopulation defined by the
limits imin − 1 and imax + 1 (see Fig. 5.3 and Fig. 5.4). The individuals that
do not belong to this subpopulation are not allowed to replace an individual
of this subpopulation.

5.4 Experimental Study

In order to evaluate the performance of proposed SORIGA, two sets of ex-
periments are carried out. In the first set of experiments, the dynamic test
environment for GAs proposed by Yang [26] is employed (Subsection 5.4.1). In
the second set of experiments, evolutionary robots are simulated in dynamic
environments (Subsection 5.4.2). In the experiments, SORIGA is compared
to SGA, and two versions of RIGA. In the first version, denoted RIGA1,
three individuals randomly chosen from the current population are replaced
by randomly generated individuals in each generation. In the second version,
denoted RIGA2, the three worst individuals, i.e., the individuals with the
lowest fitness, are replaced by randomly generated individuals. The analysis
of the results is presented in Subsection 5.4.3.

5.4.1 Dynamic Test Environment

In order to evaluate the performance of different GAs in DOPs, Yang [26]
proposed a dynamic environment generator based on unitation and trap func-
tions. A trap function is defined as follows

f(x) =

{
a
z (z − u(x)), if u(x) ≤ z

b
l−z (u(x)− z), otherwise,

(5.4)

where u(x) is the unitation function of a binary vector x of length l, a is
the local and possibly deceptive optimum, b is the global optimum, and z
is the slope-change location which separates the attraction basin sizes of the
two optima. A trap function can be a deceptive function for GAs, i.e., a
function where there exist low-order schemata that, instead of combining to
form high-order schemata, forms schemata resulting in a deceptive solution
that is sub-optimal [11]. A trap function is deceptive on average if the ratio of
the fitness of the local optimum to that of the global optimum is constrained
by the following relation [9]

r =
a

b
≥ 2− 1/(l − z)

2− 1/z
(5.5)

114 Renato Tinós and Shengxiang Yang

Deception is not the only element that can generate difficulty to a GA.
The problem difficulty can also be caused by exogenous noise and scaling.
The scaling problem arises in functions that consist of several schemata with
different worth to the solution [12]. A scaling problem can be simulated using
additively decomposable functions as follows

f(x) =
m∑

i=1

ci fi(xIi
), (5.6)

where m is the number of schemata that are juxtaposed and summed together,
Ii is the set of the fixed bit positions that form schema i, and ci is the scaling
factor for each sub-function fi.

z l
iu(

Ii
)x

f(
Ii
)x

b

0

A
min

A
max

non−deceptive

deceptive

Fig. 5.6. Illustration of the trap function f(x). The global optimum changes be-
tween b and Amax in every δt generations.

Employing Eqs. 5.4 and 5.6, it is possible to create different dynamic envi-
ronments where the problem difficulty can be adjusted. In this work, dynamic
environments where the deception difficulty is modified by changing the peak
heights of optima are employed [26]. In these dynamic environments, the fit-
ness of an individual x is given by additively decomposable trap functions
defined as follows

f(x) =
m∑

i=1

ci fi(xIi
, t) (5.7)

f(xIi
, t) =

⎧⎨
⎩

ai(t)
zi

(zi − u(xIi
)), if u(xIi

) ≤ zi

bi

li−zi
(u(xIi

)− zi), otherwise,
(5.8)

5 GAs with Self-Organizing Behaviour in Dynamic Environments 115

where i = 1, . . . ,m, xT = [xT
I1

. . . xT
Im

], xIi
= [x(i−1)li+1 · · ·x(i−1)li+li]

T,
bi = b=1.0, zi = z, the scaling is given by ci = 2i−1, and ai switches between
Amin > 0 and Amax > bi in every δt generations. The parameter Amin is
constrained by Eq. 5.5. That is, it is chosen in order that the trap functions are
deceptive on average. In this way, in every δt generations, the global optimum
changes between b and ai = Amax, and the problem changes between deceptive
and non-deceptive (Fig. 5.6).

Three dynamic environments are generated as the test bed for all GAs
in this work. In the first (Environment 1), l = 36, z = 5, m = 6, li=6,
Amin = 0.6, and Amax = 1.4. In the second (Environment 2), l = 36, z = 4,
m = 6, li=6, Amin = 0.9, and Amax = 1.9. In the third (Environment 3),
l = 45, z = 4, m = 9, li=5, Amin = 0.6, and Amax = 1.4.

Experimental Design

For each run of an algorithm in a dynamic environment, the individuals of the
initial population are randomly chosen. The individuals are selected in each
generation according to elitism and the roulette wheel method. Mutation with
rate pm and two-point crossover with rate pc are utilized. Nine experiments
with different parameters are presented in this section. Table 5.1 presents the
parameters utilized in each experiment.

Table 5.1. Experimental Setttings - Dynamic Test Environments

Experiment Environment Population Size pm pc δt

1a 1 100 0.01 0.7 5000
1b 1 20 0.01 0.7 5000
1c 1 300 0.01 0.7 5000
1d 1 100 0.001 0.7 5000
1e 1 100 0.05 0.7 5000
1f 1 100 0.01 0.2 5000
1g 1 300 0.01 0.7 10000
2 2 100 0.01 0.7 5000
3 3 100 0.01 0.7 5000

The comparison of the results obtained by different algorithms on DOPs
is more complex than the same comparison on stationary problems [24]. For
DOPs, it is necessary to evaluate not the final result, but rather the opti-
mization process itself. Here, the measure adaptability, proposed in [24] and
based on a measure proposed by De Jong [8], is utilized to evaluate the GAs.
Adaptability is computed as the difference, averaged over the entire run, be-
tween the fitness of the current best individual of each generation and the
corresponding optimum value. The best results for the adaptability measure
are those with the smallest values.

116 Renato Tinós and Shengxiang Yang

Table 5.2. Adaptability - Dynamic Test Environments

Experiment SGA RIGA1 RIGA2 SORIGA

1a 0.1882 (15.68%) 0.0177 (1.47%) 0.0217 (1.81%) 0.0086 (0.72%)
1b 0.1996 (16.63%) 0.0267 (2.22%) 0.0325 (2.71%) 0.0173 (1.44%)
1c 0.1622 (13.52%) 0.0137 (1.15%) 0.0132 (1.10%) 0.0068 (0.57%)
1d 0.2001 (16.67%) 0.0198 (1.65%) 0.0263 (2.19%) 0.0106 (0.88%)
1e 0.0368 (3.07%) 0.0071 (0.59%) 0.0076 (0.63%) 0.0064 (0.54%)
1f 0.1924 (16.03%) 0.0370 (3.08%) 0.0414 (3.46%) 0.0200 (1.67%)
1g 0.1491 (12.42%) 0.0071 (0.59%) 0.0073 (0.61%) 0.0036 (0.30%)
2 0.1956 (13.49%) 0.0143 (0.98%) 0.0166 (1.15%) 0.0084 (0.58%)
3 0.1655 (13.79%) 0.0090 (0.75%) 0.0104 (0.87%) 0.0052 (0.43%)

Table 5.3. Mean Fitness of the Population - Dynamic Test Environments

Experiment SGA RIGA1 RIGA2 SORIGA

1a 0.9286 1.0559 1.0755 1.0174
1b 0.9610 1.0340 1.0796 0.8730
1c 0.9198 1.0480 1.0569 1.0368
1d 0.9891 1.1356 1.1534 1.0865
1e 0.8590 0.8614 0.8729 0.8342
1f 0.9263 1.0566 1.0694 1.0330
1g 0.9323 1.0544 1.0631 1.0405
2 1.1519 1.2914 1.3199 1.2360
3 0.9503 1.0726 1.0930 1.0321

Experimental Results

Tables 5.2 and 5.3 respectively present the experimental results regarding
the adaptability and the mean fitness of all individuals of the population
averaged over 20 trials, each one with a different random seed. In Table 5.2, the
percentage inside the parentheses indicates the adaptability over the optimum
fitness values.

Hypothesis tests, considering the Student’s t-distribution, indicate that
the measure adaptability is smaller for SORIGA with a level of significance
equal to 0.01 in all experiments except Experiment 1e, where the level of
significance equals 0.095.

Fig. 5.7 shows the fitness of the best individuals averaged over the 20 trials
for SGA and SORIGA in Experiment 1a.

5.4.2 Evolutionary Robotics

Robots in which artificial evolution is used as a fundamental form of adapta-
tion or design are known as evolutionary robots [22]. In the experiments pre-
sented in this section, mobile robots are simulated in DOPs using a modified
version of the Evorobot simulator developed by S. Nolfi [22]. In the simulator

5 GAs with Self-Organizing Behaviour in Dynamic Environments 117

0.5 1 1.5 2 2.5 3

x 10
4

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

generation

fitn
es

s

Fig. 5.7. Averaged fitness of the best individual in Experiment 1a (dynamic test
environment). The solid and dashed lines represents the results for SORIGA and
SGA respectively.

utilized in the experiments presented in this section, the robots are controlled
by a recurrent artificial neural network (Elman Network). GAs have been
employed to perform several tasks in artificial neural networks (ANNs), such
as architecture design, synaptic weight adjustment, learning rule adaptation,
and synaptic weight initialization [21]. In the experiments presented here, the
synaptic weights of the ANN used to control the robot are adjusted by GAs.

Two evolutionary robot experiments are presented in this section. The
two experiments are inspired by the experiment proposed by Floreano and
Mondada [10], where a Khepera robot with eight infrared distance sensors
(six sensors in one side and two in another side of the robot), two ambient
light sensors, and one floor brightness sensor navigates in an arena. The robot
has a measurable limited energy, which is recharged every time the robot
crosses a battery recharge area. The battery recharge area is indicated by a
different color of the floor and by a light source mounted in a tower inside the
area.

Experimental Design

In the experiments presented in this section, the fitness function is given
by the accumulated averaged rotation speed of the two wheels of the robot
during its life time, i.e., while the battery has energy and while the robot
does not crash into a wall or an obstacle, considering a maximum limit of
60 seconds. A fully charged battery allows the robot to move for 20 seconds.
The fitness is not computed while the robot remains in the battery recharge
area. Although the fitness function does not specify that the robot should

118 Renato Tinós and Shengxiang Yang

return to the battery recharge area, the individuals that develop the ability
to find it and periodically return to it while exploring the arena without hitting
the obstacles accumulate more fitness. The neural network utilized to control
the robots has 17 inputs (8 infrared sensors, 2 ambient light sensors, 1 floor
brightness sensor, 1 sensor for the battery energy, and 5 recurrent units), 5
hidden neurons, and 2 outputs (2 motors).

Two experiments with 2000 generations each are presented in this section.
In the first experiment (Experiment 4), the environment where the robot is
evolving is changed after 1000 generations. Environment changes frequently
occur in real problems, where some aspects of the environment are frequently
modified. Besides, robots are frequently evolved in simulations to avoid dam-
age, and, when a satisfactory behaviour is reached, the neural networks em-
ployed to control the simulated robot are transferred to the real ones. In the
experiments, the robot evolves in an arena of 40cm × 45cm free of obstacles
during the first 1000 generations, and in an arena of 60cm × 35cm with four
cylindrical obstacles during the last 1000 generations.

In the second experiment (Experiment 5), the robot is affected by a failure
after 1000 generations. The responses of the six infrared sensors located in
one side of the robot are set to zero when it is affected by this failure. We
are interested in investigating the reconfiguration of the robot after an abrupt
failure. The robot should evolve in an arena of 60cm × 35 cm with three
cylindrical obstacles.

In the runs, the individuals of the initial population are randomly chosen.
The evolving robot always starts in a fixed position on the environment, but
with a random initial orientation. The individuals are represented by a vector
of real values corresponding to the synaptic weights of the ANN. In each
generation of the GAs, the 20 best individuals are selected and each one
generates 5 children (N = 100). In both experiments, pm = 0.01 and crossover
is not utilized.

Experimental Results

Table 5.4 presents the experimental results with respect to the adaptability
(supposing a maximum fitness equal to 1.0), the mean fitness of all individuals
of the population, and the fitness of the best individual after 2000 generations
averaged over 20 trials, each one with a diffente random seed, which indicates
the performance of the robot after the change in the problem. For most of
the times, a new solution is found, which allows the robot to navigate in the
environment and to return to the battery recharge area only when the battery
level is low. When the problem changes, the fitness values of the robot become
small, and a new solution is searched.

Hypothesis tests, considering the Student’s t-distribution, indicate that
the fitness of the best individual after 2000 generations is higher for SORIGA
in Experiment 4 with the level of significance equal to 0.04, 0.1, and 0.28
when compared to SGA, RIGA1, and RIGA2 respectively. In Experiment 5,

5 GAs with Self-Organizing Behaviour in Dynamic Environments 119

Table 5.4. Experimental Results - Evolutionary Robotics

Measure Algorithm Experiment 4 Experiment 5
(environment changing) (failure reconfiguration)

SGA 0.3614 (36.14%) 0.6002 (60.02%)
Adaptability RIGA1 0.3508 (35.08%) 0.5201 (52.01%)

RIGA2 0.3129 (31.29%) 0.6268 (62.68%)
SORIGA 0.3022 (30.22%) 0.5191 (51.91%)

SGA 0.2991 0.1861
Mean Fitness RIGA1 0.3406 0.2317

RIGA2 0.3540 0.1837
SORIGA 0.3484 0.2301

Fitness of the SGA 0.6380 0.2840
best individual RIGA1 0.6690 0.3880

(end of the RIGA2 0.7270 0.3590
simulation) SORIGA 0.7550 0.4410

200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

generation

fit
ne

ss

SGA
RIGA 1
RIGA 2
SORIGA

Fig. 5.8. Averaged fitness of the best individual in Experiment 4 (evolutionary
robots)

the fitness of the best individual after 2000 generations is higher for SORIGA
with the level of significance equal to 0.1, 0.34, and 0.25 when respectively
compared to SGA, RIGA1, and RIGA2.

Figure 5.8 and Figure 5.9 show the averaged fitness for all GAs in Exper-
iment 4 and Experiment 5 respectively.

120 Renato Tinós and Shengxiang Yang

200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

generation

fit
ne

ss

SGA
RIGA 1
RIGA 2
SORIGA

Fig. 5.9. Averaged fitness of the best individual in Experiment 5 (evolutionary
robots)

5.4.3 Analysis of the Results

In the experiments presented in Section 5.4.1, the values of adaptability for the
three GAs with random immigrants are smaller than the values for SGA, i.e.,
the averaged fitness of the best individuals is higher for the GAs with random
immigrants. These results can be explained by the fact that it is difficult for
the SGA to escape from the local optima induced by the deceptive problem
and by changing the global optima. However, random immigrants inserted in
every generation provide diversity to the populations of the last three GAs,
which explains their better results.

Let us now analyze the results of the three GAs with random immigrants.
First, let us investigate how the proposed SORIGA works. In the beginning of
the experiments, the individuals of the initial populations generally have low
fitness. In SORIGA, the new individuals that replace the individual with the
lowest fitness and its neighbours generally have low fitness too. Since several
individuals in the population have low fitness, the probability that one of the
neighbours of the current worst individual becomes the new worst is small.
As a consequence, a single replacement of an individual generally does not
generate large chain reactions of replacements. That is, the distribution of the
duration of replacement events is narrow and well described by a small aver-
age value. As the number of generations increases, the mean fitness increases
too. In this situation, several individuals of the current population have fitness

5 GAs with Self-Organizing Behaviour in Dynamic Environments 121

values higher than the average fitness of the new random individuals. Then,
the probability that one of the two neighbours of the old worst individual,
which were replaced in the last generation, becomes the new worst individ-
ual increases. When this new worst individual is replaced with its two next
neighbours, a chain reaction can be developed and the replacement events can
have, then, a large variety of sizes. In this case, the replacement events can
not be characterized by a narrow distribution.

The better results of SORIGA over other RIGA in the experiments pre-
sented here can be explained by two major factors. First, the number of differ-
ent individuals that are replaced in a fixed period of generations is generally
large for SORIGA. In the RIGA where the worst individuals are replaced, it is
common that new individuals replace individuals with the same index in next
generation, because the new individuals usually have small fitness values. In
this way, the number of different individuals that are replaced in a fixed pe-
riod of generations is usually smaller in comparison with SORIGA, and hence
the diversity becomes smaller too. This fact can be observed by analyzing
the results presented in Table 5.2. SORIGA presents the smallest values of
the mean fitness of the population, even though its fitness values of the best
individuals are the highest (i.e., its adaptability values are the smallest).

The second major fact that explains the better results of SORIGA is that
the survival probability of a new random individual, which can be evolved to
become a solution of the problem, is generally smaller in the standard GAs
with random immigrants. This happens because the fitness values for the
current individuals, whose locations are generally located in (or close to) local
maxima after several generations, are generally much higher than the mean
fitness of the search space (i.e., the mean fitness of all possible individuals).
This occurs because the selection methods employed in GAs preserves, directly
or indirectly, the best individuals of the population. An immigrant usually
survives during the evolution only if its fitness is close to the mean fitness of
the population. This is a rare event when the number of parameters in the
solution is high or when the local optimum where the population is found has
fitness values much higher than the mean fitness of the search space. On the
other hand, SORIGA preserves a new potential solution in a subpopulation
and allows it to evolve while the current replacement event is in progress.
When the replacement event ends, evolved versions of possible new solutions
given by fair immigrants are generally present in the current population and
can be combined with the individuals of the main population to generate new
solutions.

Figures 5.10 and 5.11 show the mean fitness and the duration of the re-
placement events (d) in the first trial of Experiments 1a and 1e respectively. It
can be seen that when the global optimum changes from a smaller to a higher
value, the mean fitness of the population increases. This leads to higher mean
duration values of the replacement events and hence increases the diversity
of the population. Such interesting behaviour is reached by self-organization,
and not by a rule imposed by the programmer. The size of the subpopulation

122 Renato Tinós and Shengxiang Yang

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10

15

20

25

30

generation

d

0 0.5 1 1.5 2 2.5 3

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

generation

fit
ne

ss

Fig. 5.10. Mean fitness and duration of replacement events (in generations) in the
first trial of Experiment 1a

self-organizes according to the population diversity level. This fact can be
seen by comparing Figures 5.10 and 5.11. In Experiment 1e the mutation rate
is higher than in Experiment 1a (see Table 5.1), which results in a higher
diversity level. In this way, it is not necessary to generate large replacement
events to increase the diversity level. It can be observed that the duration of
the larger replacement events is higher in Experiment 1a. This fact explains
the worse results of SORIGA when compared to other GAs in Experiment 1e
(Table 5.2).

The same analysis can be done to the evolutionary robot experiments
(Table 5.4). In experiments 4 and 5, the changes in the problems are so strong
that new solutions completely different from the old ones should be found.
One can consider, as an example, the experiment where a failure is introduced
in the robots (Experiment 5). In the experiments with evolutionary robots,
navigation strategies where the robot always moves in the same direction are
initially developed. Most of the times, the developed direction of moving is
that one that provides more sensing capabilities to the robot, i.e. that one
where the front of the robot is the side with more infrared sensors (6). When
a failure in the 6 infrared sensors is introduced, the current navigation strategy
is no longer interesting. Moving the robot in the developed former direction
generally causes collision since it can not detect walls and obstacles in its
front side. In this case, a new navigation strategy should be developed, where

5 GAs with Self-Organizing Behaviour in Dynamic Environments 123

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10

15

20

25

30

generation

d

0 0.5 1 1.5 2 2.5 3

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

generation

fit
ne

ss

Fig. 5.11. Mean fitness and duration of replacement events (in generations) in the
first trial of Experiment 1e

the side originally chosen as the rear of the robot, i.e., the side with the two
infrared sensors that are working, is now in the front of the robot. Such changes
causes a drastic modification to the ANN responsible for the robot control. In
the SGA, the probalibity to find a new solution with such characteristics after
the introduction of the failure is generally smaller, as the SGA can became
trapped in local optima given by the old solution. The old solution is generally
better than most new solutions, where the robot generally does not know how
to navigate in a straight way.

However, SORIGA can eventually generate new solutions far from the lo-
cal optima and develop them in the subpopulation. These facts can explain
the better results of SORIGA regarding the final fitness of the best individu-
als presented in Table 5.4. Fig. 5.12 presents the fitness of the best individual
and the duration of the replacement events for SORIGA in the tenth trial of
this experiment. One can observe that, after the introduction of the failure at
generation 1000, the fitness of the best individual becomes low. After some
replacement events, a new solution is found (after generation 1800). This solu-
tion allows the robot to navigate in the environment and return to the battery
recharge area only when the battery level is low, even with the presence of 6
faulty infrared sensors. One can still observe that, like in the results shown
in Fig. 5.10, higher mean values for the duration of the replacement events
occur for higher fitness values.

124 Renato Tinós and Shengxiang Yang

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

generation

d

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

generation

fit
ne

ss

Fig. 5.12. Fitness of the best individual and duration of replacement events in the
tenth trial of the evolutionary robots Experiment 5 (failure reconfiguration)

In the experiments presented in the last section, like in the fossil recorded
data for the replacement events in nature [23], there are more small than
large replacement events, and the replacement events occur on a large variety
of length scales. In Figures 5.13 and 5.14, the distribution of the number of
replacement events against each size is plotted in a log-log scale for trials of
the dynamic test environment Experiment 1g and evolutionary robots Ex-
periment 5 respectively. One can observe that the results exhibit power laws
(see Section 5.2) even without any apparent tuning, indicating the presence of
SOC. This kind of self-organization behaviour arises in systems where many
degrees of freedom are interacting and the dynamics of the system is dom-
inated by the interaction between these degrees of freedom, rather than by
the intrinsic dynamics of the individual degrees of freedom [15]. In SORIGA,
the population self-organizes in order to allow the occurrence of replacement
events with a large variety of length scales. Large replacement events gener-
ally occur when the mean fitness of the population is high and the diversity
level of the population is low. The population diversity is controlled by self-
organization, allowing the GA to escape from local optima when the problem
changes.

5 GAs with Self-Organizing Behaviour in Dynamic Environments 125

10
0

10
1

10
0

10
1

10
2

10
3

10
4

log(d)

lo
g(

 n
(d

))

Fig. 5.13. Number of occurrences for each size of the replacement events in the
first trial of Experiment 1g

10
0

10
1

10
0

10
1

10
2

10
3

log(d)

lo
g(

 n
(d

))

Fig. 5.14. Number of occurrences for each size of the replacement events in the
fourth trial of Experiment 5

5.5 Conclusions

In this work, a GA with random immigrants where the worst individual and
its next neighbors are replaced in every generation is proposed. The new in-
dividuals are preserved in a subpopulation, which size is not defined by the
programmer, but is given by the number of individuals created in the cur-
rent replacement event. In SORIGA, the individual starts to interact between
themselves and, when the fitness of the individuals are close, as in the case

126 Renato Tinós and Shengxiang Yang

where the diversity level is low, one single replacement can affect a large num-
ber of individuals in an replacement event. It is important to observe that this
simple approach can take the system to a self-organization behaviour, which
can be useful for DOPs to maintain the diversity of the solutions and, then,
to allow the GA to escape from local optima when the problem changes. In
this way, the proposed GA is interesting for DOPs where the new solution is
located in a peak that is hardly reached from the location of the old solution
by traditional GA operators.

Studying and combining self-organizing behaviours, such as the self-
organized criticality studied in this work, into GAs have shown to be beneficial
for their performance under dynamic environments. Further work can be done
in this area. A relevant future work is to compare the self-organizing property
with other properties, such as the speciation schemes, for GAs under more
comprehensive dynamic environments. Another future work is to investigate
the use of other neighbouring relations in the proposed algorithm.

Acknowledgments

The authors would like to thank FAPESP (Proc. 04/04289-6) for the financial
support.

References

1. P. Bak. How nature works: the science of self-organized criticality. Oxford Univ-
ersity Press, 1997.

2. P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. an explanation
of 1/f noise. Physical Review Letters, 59(4):381–384, 1987.

3. S. Boettcher and A. G. Percus. Optimization with extremal dynamics. Com-
plexity, 8(2):57–62, 2003.

4. J. Branke. Evolutionary approaches to dynamic optimization problems - intro-
duction and recent trends. In J. Branke, editor, GECCO Workshop on Evol.
Alg. for Dynamic Optimization Problems, pages 2–4, 2003.

5. W. Cedeno and V. R. Vemuri. On the use of niching for dynamic landscapes. In
Proc. of the 1997 IEEE Int. Conf. on Evolutionary Computation, pages 361–366,
1997.

6. H. G. Cobb. An investigation into the use of hypermutation as an adaptive
operator in genetic algorithms having continuouis, time-dependent nonstation-
ary environments. Technical Report AIC-90-001, Naval Research Laboratory,
Washington, USA, 1990.

7. H. G. Cobb and J. J. Grefenstette. Genetic algorithms for tracking changing
environments. In S. Forrest, editor, Proc. of the 5th Int. Conf. on Genetic
Algorithms, pages 523–530, 1993.

8. K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.
PhD Dissertation, University of Michigan, 1975.

5 GAs with Self-Organizing Behaviour in Dynamic Environments 127

9. K. Deb and D. E. Goldberg. Analyzing deception in trap functions. In Foun-
dation of Genetic Algorithms 2, pages 93–108, 1993.

10. D. Floreano and F. Mondada. Evolution of homing navigation in a real mobile
robot. IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics,
26(3):396–407, 1996.

11. D. A. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Publishing Company, Inc., 1989.

12. D. A. Goldberg. The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Boston, MA: Kluwer Academic Publishers., 2002.

13. S. J. Gould. Wonderful Life: The Burgess Shale and the Nature of History.
W. W. Norton and Company, 1989.

14. J. J. Grefenstette. Genetic algorithms for changing environments. In R. Maenner
and B. Manderick, editors, Parallel Problem Solving from Nature 2, pages 137–
144. North Holland, 1992.

15. H. J. Jensen. Self-organized criticality: emergent complex behavior in physical
and biological systems. Cambridge University Press, 1998.

16. Y. Jin and J. Branke. Evolutionary optimization in uncertain environments - a
survey. IEEE Trans. on Evol. Computation, 9(3):303–317, 2005.

17. S. A. Kauffman. The origins of order: self-organization and selection in evolu-
tion. Oxford University Press, 1993.

18. T. Krink and R. Thomsen. Self-organized criticality and mass extinction in
evolutionary algorithms. In Proc. of the 2001 Congress on Evolutionary Com-
putation, volume 2, pages 1155–1161, 2001.

19. M. Løvbjerg and T. Krink. Extending particle swarm optimisers with self-
organized criticality. In Proc. of the 2002 Congress on Evolutionary Computa-
tion, volume 2, pages 1588–1593, 2002.

20. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.
21. N. Mori, H. Kita, and Y. Nishikawa. Adaptation to a changing environment

by means of the feedback thermodynamical genetic algorithm. In A. E. Eiben,
T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving
from Nature, number 1498 in LNCS, pages 149–158. Springer, 1998.

22. S. Nolfi and D. Floreano. Evolutionary robotics: the biology, intelligence, and
technology of self-organizing machines. MIT Press/Bradford Books: Cambridge,
USA, 2000.

23. D. M. Raup. Biological extinction in earth history. Science, 231:1528–1533,
1986.

24. K. Trojanowski and Z. Michalewicz. Evolutionary algorithms for non-stationary
environments. In M. A. Klopotek and M. Michalewicz, editors, Intelligent Inf.
Systems, Proc. of the 8th Int. Workshop on Intelligent Inf. Syst., pages 229–240,
1999.

25. F. Vavak, T. C. Fogarty, and K. Jukes. A genetic algorithm with variable range
of local search for tracking changing environments. In H.-M. Voigt, editor,
Parallel Problem Solving from Nature, number 1141 in LNCS. Springer Verlag
Berlin, 1996.

26. S. Yang. Constructing dynamic test environments for genetic algorithms based
on problem difficulty. In Proc. of the 2004 Congress on Evolutionary Computa-
tion, volume 2, pages 1262–1269, 2004.

27. X. Yao. Evolving artificial neural networks. Proc. of the IEEE, 87(9):1423–1447,
1999.

6

Learning and Anticipation in Online Dynamic
Optimization

Peter A.N. Bosman

Centre for Mathematics and Computer Science (CWI), P.O. Box 94079, 1090 GB
Amsterdam, The Netherlands, Peter.Bosman@cwi.nl

Summary. In this chapter we focus on the importance of the use of learning and
anticipation in (online) dynamic optimization. To this end we point out an important
source of problem–difficulty that has so far received significantly less attention than
the traditional shifting of optima. Intuitively put, decisions taken now (i.e. setting
the problem variables to certain values) may influence the score that can be obtained
in the future. We indicate how such time–linkage can deceive an optimizer and cause
it to find a suboptimal solution trajectory. We then propose a means to address
time–linkage: predict the future (i.e. anticipation) by learning from the past. We
formalize this means in an algorithmic framework and indicate why evolutionary
algorithms (EAs) are specifically of interest in this framework. We have performed
experiments with two benchmark problems that feature time–linkage. The results
show, as a proof of principle, that in the presence of time–linkage EAs based on this
framework can obtain better results than classic EAs that do not predict the future.

6.1 Introduction

The majority of the literature on dynamic optimization [11] involves the track-
ing of optima as the search space transforms over time. If evolutionary algo-
rithms (EAs) [14] are used to achieve this goal, issues such as maintaining
diversity around (sub)optima and continuously searching for new regions of
interest that may appear over time are the most important [1–4, 7–9, 13, 15,
16, 19, 23, 25, 29]. The shifting of optima in dynamic optimization problems
is important to study and to (re)design EAs for. However, there is another
feature of dynamic optimization problems that is common in real–world prob-
lems such as scheduling [10] and vehicle routing [21, 22, 27] that has received
less attention in the literature. We will call this feature time–linkage.

Intuitively put, the presence of time–linkage in a dynamic optimization
problem causes decisions that are made now, which are often made on the
basis of optimizing a certain score right now, to influence the optimal score
that can be obtained in the future. This in turn decreases the overall score
obtained in the long run. A typical and illustrative example is the case of

Peter A.N. Bosman: Learning and Anticipation in Online Dynamic Optimization, Studies in

Computational Intelligence (SCI) 51, 129–152 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

130 Peter A.N. Bosman

dynamic vehicle routing where the locations to visit are announced over time.
If locations are clustered, but the clusters themselves are far apart, routing on
the basis of the currently available locations will likely lead to oscillatory be-
havior of the vehicles if the announced locations oscillate between the clusters.
More efficient routes could be formed by keeping vehicles inside clusters and
only occasionally letting them move to another cluster. In addition, quality
of service (e.g. being on time) as determined by the routing influences future
customer demand. Poor performance for a specific customer will likely not re-
sult in repeated orders from that customer. Hence, the revenue of a company
over time is determined by the current performance, but also by the impact
the current way of routing has on future events.

The most important contribution made in this chapter is that we will
show that dependencies between decisions over time requires their explicit
processing during optimization to ensure the best performance in the long
run. Any approach that does not explicitly process these dependencies and
instead only solves the problem for the current time will never obtain an
optimal result.

In this chapter we also present an algorithmic framework for solving
dynamic optimization problems. The algorithmic framework is specifically
equipped with the possibility of processing time–linkage. To this end, we pro-
pose the incorporation of learning (e.g. statistical [28] or machine [20]) with
the explicit task of predicting the future to prevent being deceived over time.
An evolutionary approach in which the future is predicted for dynamic op-
timization has been proposed before [26]. However, the cited approach only
predicts the future for a single discrete time step. As a result, the algorithm
cannot process longer, arbitrarily sized, time–linkage intervals. Moreover, the
approach was only tested on a problem that doesn’t contain time–linkage. As
a result, no significant difference was observed in using either a good predictor
or a bad predictor. In this chapter, we present two new benchmark problems
that contain time–linkage and show, as a proof of principle, how they can be
solved using an instance of our proposed framework.

It should be noted that it is not our goal in this chapter to propose a new
state–of–the–art EA for dynamic optimization. Instead, we want to point out
the influence that time–linkage can have and how, in a general manner, EAs
can be equipped with tools to cope with time–linkage.

The remainder of this chapter is organized as follows. In Section 6.2 we
characterize online dynamic optimization problems. Next, in Section 6.3 we
discuss solving these problems. In Section 6.4 we describe our algorithmic
framework and in Section 6.5 we present results of running experiments with
EAs based on this framework. Finally, possible directions for future research
as well as conclusions are presented in Section 6.6.

6 Learning and Anticipation in Online Dynamic Optimization 131

6.2 Defining Online Dynamic Optimization Problems

In order to formally define the class of online dynamic optimization problems,
we first give a general definition of optimization problems. Without loss of
generality we assume that the goal is maximization.

Definition 1 (Optimization problem). An optimization problem is defined
as follows:

max
ζ∈P

{Fγ(ζ)} (6.1)

s.t. Cγ(ζ) = feasible

where Fγ : P → O is the optimization function, P is the parameter space,
O = R

no is the no–dimensional objective space, Cγ : P → {feasible, infeasible}
is the constraint function and γ ∈ G are problem–specific parameters.

6.2.1 Static versus Dynamic

An optimization problem can either be dynamic or not. If it is not dynamic,
it is said to be static (instead of non–dynamic).

Definition 2 (Static optimization problem). An optimization problem is
said to be static if it cannot be written as a dynamic optimization problem.

Definition 3 (Dynamic optimization problem). An optimization prob-
lem is said to be dynamic if the optimization function has the specific form of
a functional. Moreover, the function space to optimize over consists of func-
tions of a single variable t ∈ T = [0, tend], tend > 0. Variable t is commonly
referred to as time. An optimization problem is said to be dynamic if the op-
timization function and the constraint function can be written as below in
Equation 6.2 and there are no equivalent definitions of Fγ and Cγ that do
not involve the time variable.

Fγ(ζ) =

tend∫
0

F
dyn

γdyn(t,Z(t,ζ))

(
ζdyn

ζ (t)
)

dt (6.2)

Cγ(ζ) =

{
feasible if ∀t ∈ [0, tend] : Cγdyn(t,Z(t,ζ))

(
ζdyn

ζ (t)
)

= feasible
infeasible otherwise

where F
dyn

γdyn(t,Z(t,ζ))
: P

dyn → O
dyn is the dynamic optimization function, P

dyn

is the dynamic parameter space, O
dyn = O = R

no is the no–dimensional
dynamic objective space, ζdyn

ζ : T → P
dyn is the dynamic variable func-

tion that for any time t ∈ T returns the settings for the variables of func-
tion Fdyn, ζ ∈ P are the parameters of function ζdyn, Z : T × P →

132 Peter A.N. Bosman

{T × P
dyn} is a function that for any time t ∈ T and any setting ζ ∈ P

of the parameters of function ζdyn returns a set that contains the settings
of the parameters of function ζdyn for all times before t, i.e. Z(t, ζ) =⋃

0≤t′<t

{(
t′, ζdyn

ζ (t′)
)}

, γdyn : (T, {(T× P
dyn)}) → G

dyn is a function that
for any time t ∈ T and the dynamic variable function restricted to all earlier
times t′ < t returns the problem–specific parameters, Cγdyn(t,Z(t,ζ)) : P

dyn →
{feasible, infeasible} is the dynamic constraint function and tend > 0 is the
horizon of the dynamic optimization problem. Moreover, we use the conven-
tion that

∫ b

a
(f0(x), . . . , fno−1(x)) dx =

(∫ b

a
f0(x)dx, . . . ,

∫ b

a
fno−1(x)dx

)
Concordantly, the optimization problem to solve can now be written as:

max
ζ∈P

⎧⎪⎨
⎪⎩

tend∫
0

F
dyn

γdyn(t,Z(t,ζ))

(
ζdyn

ζ (t)
)

dt

⎫⎪⎬
⎪⎭ (6.3)

s.t. ∀t ∈ [0, tend] : Cγdyn(t,Z(t,ζ))

(
ζdyn

ζ (t)
)

= feasible

In the dynamic optimization problem as defined above it is assumed that
time is continuous. However, this does not always have to be the case. If time is
not continuous, the integral can be written as a discrete sum and the dynamic
optimization problem is said to be discrete.

6.2.2 Offline versus Online

A dynamic optimization problem can either be offline or not. If it is not offline
it is said to be online (instead of non–offline).

Definition 4 (Offline dynamic optimization problem). A dynamic op-
timization problem is said to be offline if the dynamic optimization function
can be evaluated completely.

From definition 4 we have that in offline dynamic optimization problems
the optimal dynamic variable function can be found by constructing complete
dynamic variable functions and subsequently evaluating their corresponding
optimization values by integrating over all time. The advantage of solving
offline dynamic optimization problems is that with the exception of a practical
one, there is no time–limit in solving the problem. In a sense, this type of
problem is very close to the traditional definition of optimization problems
in that we have a problem that must be optimized and we can evaluate the
optimization function. The only thing that we know additionally here is that
the optimization problem has the specific form of a dynamic optimization
problem.

Definition 5 (Online dynamic optimization problem). A dynamic op-
timization problem is said to be online if the dynamic optimization function

6 Learning and Anticipation in Online Dynamic Optimization 133

cannot be evaluated for all future times t > tnow and the dynamic optimization
problem must therefore be solved as time goes by.

Online dynamic optimization is by far the most practical variant of dy-
namic optimization. It must continually be decided what values to use for the
dynamic variables from one moment to the next. The only thing that can be
evaluated is how well the algorithm has done so far, which we call the history
function.

Definition 6 (History function). The history function is defined as follows:

Hdyn(tnow, ζ) =

tnow∫
0

F
dyn

γdyn(t,Z(t,ζ))

(
ζdyn

ζ (t)
)

dt (6.4)

Like many other optimization problems, online dynamic optimization
problems can be constructed artificially. Since the problem is then fully known,
there is in design no difference with the offline case. The difference only resides
in the fact that the problem is treated as being online. Online optimization
problems are however typically real–world problems in which the problem–
specific parameters actually change over time in an unknown fashion.

6.3 Solving Online Dynamic Optimization Problems

First we identify two important and commonly distinguished sources of
problem–difficulty in dynamic optimization problems in Section 6.3.1. In Sec-
tion 6.3.2 we then discuss solving online dynamic optimization problems by
only taking into account the current situation. Finally, in Section 6.3.3 we
describe the advantages of solving online dynamic optimization problems by
also taking into account future implications of decisions.

6.3.1 System Influence and Control Influence

We distinguish between two types of influence that cause the dynamic opti-
mization problem to change with time: system influence and control influence.

Definition 7 (System influence). System influence is the type of influence
that the problem solver has no control over. It is the part of the dynamic system
that changes over time, regardless of choices made for the problem variables.
It is the inherent reason why the optimization problem is dynamic and hence
why the optimization function parameters γdyn (t) are a function of time.

Definition 8 (Control influence). Control influence is the response of the
dynamic system at time tnow to the choices for the problem variables made in
the past by the problem solver, i.e. the trajectory ζdyn

ζ (t) with t ∈ [0, tnow).

134 Peter A.N. Bosman

Most EAs designed for dynamic optimization problems and studied in the
literature are specifically designed to cope with system influence. Without
taking into account the (possible) presence of control influence however, the
online dynamic optimizer risks falling victim to time–deception.

6.3.2 Optimizing the Present: Falling Victim to Time–Deception

The Approach

An often–used approach to solving online dynamic optimization problems is
to optimize Hdyn(tnow, ζ) continuously or whenever an event resulting from
system influence takes place. Since we cannot change the past, we can only
vary the settings of the variables at tnow. Hence, the optimization problem to
solve at time tnow using this approach is actually the optimization of the value
of the dynamic optimization function at time tnow. To cope with a variety
of system influences when using EAs, diversity preserving mechanisms are
often used to prevent convergence as are other techniques such as detecting
(major) changes in the landscape to trigger a restart or forking off multiple
sub–populations from a general optimizer to search various parts of the search
space more closely as they become more interesting over time.

How Bad Can It Be?

Unfortunately, the answer is arbitrarily bad. The most important reason for
this is the presence of control influence. Of course system influence could
make the problem change in a random way, clearly already making the prob-
lem arbitrarily difficult. However, even if system influence is smooth and the
landscape is not complex, optimizing only the current situation can lead to
arbitrarily bad results due to the presence of time–linkage.

Definition 9 (Time–linkage). A dynamic optimization problem is said to
contain time–linkage if and only if there exists at least one time 0 ≤ t ≤ tend

for which the dynamic optimization value at time t is dependent on at least
one earlier solution ζdyn

ζ (t′), 0 ≤ t′ < t.

As an example, consider the following unconstrained l–dimensional dy-
namic optimization problem; a simple adaptation of the sphere problem that
shifts with time:

max
ζdyn

ζ
(t)

⎧⎪⎨
⎪⎩

tend∫
0

ϕ
(
ζdyn

ζ (t), t
)

dt

⎫⎪⎬
⎪⎭ (6.5)

where

6 Learning and Anticipation in Online Dynamic Optimization 135

ϕ
(
ζdyn

ζ (t), t
)

=

⎧⎪⎪⎨
⎪⎪⎩
−
∑l−1

i=0

(
ζdyn

ζ (t)i − t
)2

if 0 ≤ t < 1

−
∑l−1

i=0

((
ζdyn

ζ (t)i − t
)2

+ ψ
(∣∣∣ζdyn

ζ (t− 1)i

∣∣∣)) otherwise

Now, when optimizing only the present in an online setting, a value for
ζdyn

ζ (tnow) is chosen by maximizing ϕ(ζdyn
ζ , tnow). For any t, ϕ(ζdyn

ζ , t) is
just a hyperparabola with a unique maximum for ζdyn

ζ (t)i = t. For 0 ≤
t < 1 the associated optimization value is 0 and for t ≥ 1 this value is
−
∑l−1

i=0 ψ
(∣∣∣ζdyn

ζ (t− 1)i

∣∣∣). It is this construction that deceives an approach
in which only the present is optimized because then the actual value of func-
tion ψ(·) is not taken into account although it may decrease at an arbitrary
rate, depending on its form. However, if the simple choice of ζdyn

ζ (t)i = 0 is
always made, then, assuming that ψ(0) = 0, the optimization value that is

reached is l
∫ tend

0
−t2dt = − l

3 (tend)3, regardless of function ψ(·).
Now if for instance ψ(x) = x2, the result is better if only the present

is optimized than if just ζdyn
ζ (t)i = 0 is chosen. Although a better result

can still be obtained because ζdyn
ζ (t)i = 0 is not the optimal solution, the

penalty of disregarding time–linkage is only small. But if ψ(·) is a higher–
order increasing function, such as ψ(x) = ex−1, a (much) worse optimization
value will be obtained and the price to pay for not taking into account time–
linkage is (much) higher. A graphical illustration of the difference in obtained
optimization values for the case of l = 1 is given in Figure 6.1.

Since in the online case the behavior of the optimization function in the
future is not known, optimizing only the present can thus significantly reduce
overall solution quality. Hence, optimizing only the present is not a good ap-
proach unless the problem provably does not contain time–linkage. Otherwise,
the problem is time–deceptive for this approach to solving online dynamic op-
timization problems.

Definition 10 (Time–deception). A dynamic optimization problem is said
to be time–deceptive for an optimizer if the problem contains time–linkage and
the optimizer has no means to efficiently take this time–linkage into account
during optimization and therefore cannot find the optimal solution trajectory.

6.3.3 Optimizing the Present and the Future: Learning to Avoid
Time–Deception

The Approach

The approach of optimizing only the present is deceived over time because
the true problem definition (i.e. Equation 6.2) is not used. Future changes
that occur as a result of decisions made earlier are neglected. To remedy this,
optimization over future choices is required. In the online case however, an
evaluable future is absent. Hence, the only option is to predict the future.

136 Peter A.N. Bosman

-60

-50

-40

-30

-20

-10

 0

 0 1 2 3 4 5

ψ(x) = x2, ζdyn
ζ

(t)0 = t

ψ(x) = ex − 1, ζdyn
ζ

(t)0 = t

ψ(x) = ∗, ζdyn
ζ

(t)0 = 0

F
d
y
n

γ
d
y
n
(t

)

(ζ
d
y
n

ζ
(t

))

t

Fig. 6.1. Illustration of the optimization values obtained for different variable tra-
jectories and different forms of ψ(·) in the case of l = 1 and tend = 5. ψ(x) = ∗ is
any function such that ψ(0) = 0.

The better the prediction, the closer the algorithm can get to optimality. The
available information to base the prediction upon besides problem–specific
information is information that was collected in the past.

The optimization problem to be solved using this approach at time tnow is
based on an approximation of the value of the dynamic optimization function
over a future time span of length tplen:

max
ζdyn

ζ
(t)

⎧⎪⎨
⎪⎩

min{tnow+tplen,tend}∫
tnow

F̂dyn
α

(
t, ζdyn

ζ (t)
)

dt

⎫⎪⎬
⎪⎭ (6.6)

s.t. ∀t∈ [tnow, min {tnow+tplen, tend}] : Ĉdyn
α

(
t, ζdyn

ζ (t)
)

= feasible

where ⎧⎨
⎩

F̂dyn
α

(
tnow, ζdyn

ζ (tnow)
)

= F
dyn

γdyn(tnow,Z(tnow,ζ))

(
ζdyn

ζ (tnow)
)

Ĉdyn
α

(
tnow, ζdyn

ζ (tnow)
)

= C
dyn

γdyn(tnow,Z(tnow,ζ))

(
ζdyn

ζ (tnow)
)

Prediction in the complete BBO case

The complete BBO (Black–Box Optimization) case is the most general case.
No prior knowledge is assumed on the problem to be solved other than the
number of variables and their types. Additional knowledge can only be gained

6 Learning and Anticipation in Online Dynamic Optimization 137

by evaluating solutions. Since nothing is known about the optimization func-
tion, only a very general form of induction can be performed to predict future
function values.

We assume that the number of variables and their semantics do not change.
To predict the (expected) value of the dynamic optimization function, an ap-
proximation based on previously evaluated solutions can be used. Computing
this approximation is a (statistical) learning problem. The available data in
the learning problem is:

ndata−1⋃
i=0

{((
ti, ζdyn

ζ (ti), Z(ti, ζ)
)

,yi

)}
(6.7)

where on the input–side of the pattern we have the time ti, 0 < ti ≤ tnow, the
value of the variables ζdyn

ζ (ti) at time ti and the history of the variable–value–
trajectory Z(ti, ζ) up to time ti and on the output–side of the pattern we
have the value of the dynamic optimization function yi for solution ζdyn,i at
time ti. Note that the use of an EA can greatly add to the availability of data
and can hence increase the accuracy of the predictions because a (diverse)
population is used. Each population member can serve as a pattern. Note
that the integration of the history of the solution–trajectory into the data set
is essential for the processing of time–linkage.

The goal of learning is to estimate the value of the dynamic optimization
function for future times (assuming that the constraint function does not need
to be estimated) by minimizing the generalization error over the time span
that contains the data to learn from. In the single–objective case the learning
problem can be formalized as follows:

min
α∈A

⎧⎨
⎩

tmax∫
tmin

(
F

dyn

γdyn(t,Z(t,ζ))

(
ζdyn

ζ (t)
)
− F̂dyn

α

(
ζdyn

ζ (t)
))2

dt

⎫⎬
⎭ (6.8)

where {
tmin = mini∈{0,1,...,ntrain−1}{ti}
tmax = maxi∈{0,1,...,ntrain−1}{ti}

and α ∈ A are the parameters of the function class from which to choose the
approximated optimization function.

Prediction in the partial BBO case

In the presence of problem–specific information, the learning task may be less
involved which may improve the reliability of the predictions. A typical case
is when the function can be evaluated for any 0 ≤ t < tend, as long as the
required parameters are set. Then, if we are able to predict the values for the
parameters accurately, we automatically get an accurate function evaluation.
The less parameters to be estimated, the better the hope is of obtaining good
approximations.

138 Peter A.N. Bosman

Prediction length, prediction base and history length

In addition to the choice of approximation class and learning mechanism, there
are two key issues of importance in using predictions in dynamic optimization:

1. How far into the future should predictions be made?
(we call this prediction length, denoted tplen)

2. From how far into the past should information be used to base
the prediction upon?
This question is actually twofold:
a) How far into the past should ti go in Equation 6.7?

(we call this prediction base, denoted tpbase)
b) For each pattern, how far into the past, starting from the

time of that pattern, should we take into account the history
of the variable trajectory?
(we call this history length, denoted thlen)

A proper choice for the prediction length and the history length depends
on the time–linkage time span, i.e. how far into the future do current choices
have a significant influence? Certainly this is also the minimal choice for the
prediction base. However, larger values for prediction length, prediction base
and history length may be required to look beyond the linkage and observe
the general dynamics of the optimization problem.

Another issue that influences the proper choice for the prediction length is
the reliability of predictions. As predictions are made further into the future,
they are bound to become less reliable, giving a trade–off between the required
prediction length as a result of time–linkage and the feasible prediction length
as a result of reliability issues.

How Good Can It Be?

Fortunately, the answer is arbitrarily good. However, although it is intuitively
clear that the optimum is attainable, this does require perfect predictions.
Then, the problem can be solved to optimality by optimizing at any time the
integral over the predictions with tplen = tend − tnow.

The strength of the optimization method (with respect to the problem at
hand) is still a key component to success. However, the success of the approach
now also heavily depends on the strength of the prediction method. Bad pre-
dictions may even lead to worse results than are obtained by optimizing only
the present. Hence, careful design and performance assessment of methods
that predict the future are certainly called for. In the following section we
present a general framework for solving dynamic optimization problems by
incorporating learning techniques as described above.

6 Learning and Anticipation in Online Dynamic Optimization 139

6.4 An Algorithmic Framework

6.4.1 Components

Solver

The solver, denoted S, is an optimization algorithm, possibly equipped with
tools to allow for adaptability as time goes by. The function to be optimized
is provided by the function component.

Predictor

The predictor, denoted P , is a learning algorithm that approximates either
the optimization function directly or several of its parameters. The data set
from which to estimate a function is provided by the database component.
When called upon, the predictor returns either the predicted function value
directly or predicted values for parameters.

Function

The function, denoted F , is the optimization function to be maximized by the
solver. If the future is not to be taken into account, this function is just the
dynamic optimization function. Otherwise, the dynamic optimization func-
tion is used to compute the optimization value that pertains to the current
time and the predictor is used to predict future optimization values. The tra-
jectory of the variables in the predicted future is to be set by the solver. To
specify this trajectory a dynamic variable function is needed that can supply
a solution for each possible time between tnow and min{tnow + tplen, tend}. It
is computationally convenient to divide the trajectory–future interval as well
as the trajectory–history interval into non–zero sub–intervals of length tpint

and thint respectively. The optimization value then is a discrete approxima-
tion of the integral over the future interval where future predictions are in
addition to other data based on a discretized past trajectory. If the dynamic
optimization function is not stochastic, a list of solutions can be used such
that there is one solution for each sub–interval. If the dynamic optimization
function is stochastic however, a predefined future list of actions may not be
optimal. The reason for this is that different actions may be optimal in dif-
ferent situations. Because the future is stochastic, the actual future situation
is unknown. Hence, a responsive strategy is then required instead to be able
to obtain optimality. The solution to optimize by the solver then is thus not
a list of assignments to the problem variables, but a strategy in the form of
a function of time that returns a solution conditioned on the actual future
situation. Note that the list of assignments in the non–stochastic case is a
specific form of the strategy.

140 Peter A.N. Bosman

Database

The database, denoted D, is a collection of patterns upon which the predictor
bases its predictions. Patterns are added either by the function component (i.e.
in the complete BBO case whenever a new solution is evaluated) or by the
system whenever an event occurs that is related to the parameters of interest
(i.e. in the partial BBO case). All patterns are time–stamped. The database
only contains patterns with a time stamp t such that tnow − tpbase ≤ t ≤ tnow.

Timer

The timer, denoted T , can provide the current time tnow.

6.4.2 Dividing Resources

Clearly, optimization becomes more involved if we also want to take into
account predictions of the future. Not only does the number of variables to
optimize over increase (at least if we regard the complete BBO case), but also
additional computation time is required for learning to make predictions.

It is important to note that there is a trade-off between how much time
should be spent on running the solver and how much time should be spent on
running the predictor. We propose to implement the solver and the predictor
components as threads. This allows both for a scheme in which the solu-
tion component and the predictor component run simultaneously as well as a
scheme where the predictor and solver are run sequentially by synchronization
using signals. An example of the second scheme is given by the scenario in
which the solver sends a signal when a certain number of generations have
passed and then awaits completion of the learning task before continuing.

6.4.3 Definition

To complete the framework, we provide an algorithmic description of how the
components are used together to solve online dynamic optimization problems.
First, the trajectory is made empty and all the components are initialized.
Then, the solver and the predictor are started and the actual optimization
begins. Although the solver may store a solution into the trajectory at any
time (e.g. at the end of each generation for an EA), we want to ensure that
at least a few solutions are stored in the trajectory. To this end, the solver is
requested for a solution at regular intervals of length tsint. These requests are
issued until tend is reached. Then, the solver and the predictor are halted and
the resulting trajectory is returned. Pseudo–code for the framework is given
in Figure 6.2.

An important part of the framework that is of a specific form is the way in
which a solution in the form of a future trajectory is evaluated. It is here that
the prediction component can influence the way in which the solver searches

6 Learning and Anticipation in Online Dynamic Optimization 141

Framework(S, P, F, D, T, tend, tpbase, tplen, tsint, tpint)

1 Z ← ()
2 S.Initialize(S, P, F, . . . , tpint)
3 P.Initialize(S, P, F, . . . , tpint)
4 F.Initialize(S, P, F, . . . , tpint)
5 D.Initialize(S, P, F, . . . , tpint)
6 T.Initialize(S, P, F, . . . , tpint)
7 S.Start()
8 P.Start()
9 do

9.1 tnow ← T.GetTime()
9.2 ζ ← S.RequestSolution()
9.3 Z ← Z
 ((ζ, tnow))
9.4 tnext ← min{tnext + tsint, tend}
9.5 AwaitTime(tnext)
while tnow ≤ tend

10 S.Stop()
11 P.Stop()
12 return(Z)

Fig. 6.2. Pseudo–code for the algorithmic framework

for a solution at time tnow because the predictor is used to evaluate all parts
of the trajectory that pertain to future times. Pseudo–code for this specific
part of the framework is given in Figure 6.3.

F.Evaluate(ζdyn
ζ)

1 tnow ← T.GetTime()
2 y ← tpint

F
dyn

γdyn(tnow,Z(tnow,ζ))
(ζdyn

ζ (tnow))

3 if CompleteBBOCase() then
3.1 D.AddPattern(((ζdyn

ζ (tnow), tnow), y))

3.2 for i ← 1 to �tplen/tpint� − 1 do
3.2.1 y ← y + tpintP.Predict(ζdyn

ζ , tnow + i·tpint)

4 else
4.1 for i ← 1 to �tplen/tpint� − 1 do

4.1.1 γpredicted ← P.Predict(ζdyn
ζ , tnow + i·tpint)

4.1.2 y ← y + tpint
F

dyn

γpredicted(ζdyn
ζ (tnow + i·tpint))

5 return(y)

Fig. 6.3. Pseudo–code for the evaluation of future trajectories

6.5 Experiments

6.5.1 EA

The optimization problems that we perform experiments with are real–valued,
but at any point in time not very daunting because the most important thing

142 Peter A.N. Bosman

we focus on in this chapter is time–linkage. Therefore, we opt for a simple and
fast real–valued EA. We use an EDA (Estimation–of–Distribution Algorithm)
for real–valued optimization [5, 18] without learning dependencies between
problem variables. The main difference with traditional EAs is that in EDAs
a probabilistic model is learned using the selected solutions. The probabilistic
model can capture various properties of the optimization problem. By drawing
new solutions from the probabilistic model these properties can be exploited
to obtain more efficient optimization.

In this chapter we performed experiments with a real–valued EDA based
on the normal distribution in which each variable is taken to be independent
of all the other variables. Such an EDA is also known as the naive IDEA (It-
erated Density–Estimation Evolutionary Algorithm) [6]. In the naive variant
the mean and standard deviation of a one–dimensional normal distribution
are estimated from the selected solutions for each variable separately. A new
solution is constructed by sampling one value per variable from the associ-
ated one–dimensional normal distribution. Since the optimization problem is
dynamic, we prevented total premature convergence by bounding the esti-
mated variance for each variable to a minimum of 0.1. Finally, all results were
averaged over 100 independent runs.

6.5.2 BBO: Time–Linkage Numerical Problem

The Problem

We first investigate the real–valued time–linkage problem introduced in Sec-
tion 6.3.2, Equation 6.5. We regard two variants by setting ψ(x) = x2 and
ψ(x) = ex − 1. Moreover, we have used a dimensionality of l = 1.

Instantiating the Framework

In this problem the goal of the predictor is to predict the value of the optimiza-
tion function directly. For clarity we point out that the predicted functions
are estimated from a set of patterns with timestamps at most tpbase time ago.
The patterns in the data set contain the actually chosen trajectory in the past
up to time ti − thlen in steps of thint, i.e. if thlen = thint = 1, a pattern is given
by ((ti, ζdyn

ζ (ti), ζdyn
ζ (ti − 1)),yi). We used three different predictor instances.

1. Optimal
Returns the true value of the dynamic optimization function.

2. Linear estimator
Returns the value of a linear function that was estimated using the least–
squares technique.

3. Quadratic estimator
Returns the value of a quadratic function that was estimated using the
least–squares technique.

6 Learning and Anticipation in Online Dynamic Optimization 143

For the case of ψ(x) = x2 only the function class used by the quadratic
estimator contains the target function. Hence, effective future predictions are
possible with proper estimations in this case, which should ensure the preven-
tion of time–deception. For the case of ψ(x) = ex−1, neither of the estimators
can represent the target function. However, the quadratic estimator should be
capable of far better approximations than the linear estimator.

Since we present a proof of principle, we do not investigate the selection of
tplen during optimization. Instead, we fix it to either 0, corresponding to the
traditional approach of not looking into the future, or to the optimal value of
1. Moreover, we set thlen = thint = tpbase = tpint = tplen.

Results

A population size of 25 was experimentally found to be adequate for solving
the optimization problem in each time step. We set tend = 10 and advanced
time by a time step of 0.001 every generation. Since the database contains
all patterns over a time span of length 1 and the time steps are of size 0.001,
the size of the database can become quite large. Although this allows for
a higher precision of estimations, it also results in large time requirements
for the learning task. Learning was performed after a predefined number of
generations. To investigate the impact on the overall quality of optimization,
we performed experiments with various values for the number of generations
between learning phases: 1, 10, 100 and 1000.

The average trajectories obtained for the quadratic and the exponential
time–linkage numerical problem are shown in Figures 6.4 and 6.5 respectively.
The overall results (i.e. the integral over t ∈ [0, 10]) are tabulated in Table 6.1.

Theoretically, under the assumption that the length of the time–linkage is
known, the optimal trajectory can be obtained if the target function is in the
function class used by the learner and the learner is competent in that it will
indeed find that target when learning. In the case of the quadratic time–linkage
numerical problem this is experimentally verified by the results. The use of the
quadratic estimator leads to results that are very close to optimality (i.e. when
the future is known). The discrepancy is explained by the startup time the
learner needs before being able to construct a model based upon previously
encountered data. Moreover, results improve if learning is performed more
frequently because the model is then constructed earlier.

In the case of the exponential time–linkage numerical problem, neither the
linear nor the quadratic estimator have a function class that contains the tar-
get exponential function. However, for the time–linkage in this problem that
depends only on a single point in the past over a distance of 1, a quadratic
function can quite closely approximate an exponential function. For this rea-
son the use of the quadratic estimator leads to good results here as well,
albeit not optimal. Small deviations from the optimal trajectory as a result
of a small learner error can indeed be seen in Figure 6.5. The linear estimator

144 Peter A.N. Bosman

Linear estimator Quadratic estimator

F
d
y
n

γ
d
y
n
(t

)

(ζ
d
y
n

ζ
(t

))

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0 2 4 6 8 10
-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 2 4 6 8 10

ζ
d
y
n

ζ
(t

) 0

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10

t

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10

t

Learn every gen.

Learn every 10 gen.
Learn every 100 gen.

Learn every 1000 gen.

Future known
Future ignored

Fig. 6.4. Results averaged over 100 runs on the time–linkage numerical problem
with ψ(x) = x2

is not capable of approximating a quadratic function well. For the exponen-
tial function, linear estimation is even worse. The use of the linear estimator
therefore leads to far worse results. An even more important point to note
is that the results using the linear estimator can be even worse than when
prediction is not used because of the large errors in the predictions. Hence,
another important issue in using learning for online dynamic optimization is
the assessment of the reliability of predictions and the use of predictions only
if this reliability is large enough.

6 Learning and Anticipation in Online Dynamic Optimization 145

Linear estimator Quadratic estimator
−

lo
g
(−

F
d
y
n

γ
d
y
n
(t

)

(ζ
d
y
n

ζ
(t

)))

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 50

 0 2 4 6 8 10
-10

-5

 0

 5

 10

 15

 0 2 4 6 8 10

ζ
d
y
n

ζ
(t

) 0

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

t

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10

t

Learn every gen.

Learn every 10 gen.
Learn every 100 gen.

Learn every 1000 gen.

Future known
Future ignored

Fig. 6.5. Results averaged over 100 runs on the time–linkage numerical problem
with ψ(x) = ex − 1

The results lead to the expected conclusion that competent learners are
called for and that reliability of predictions is a major issue. The competence
of the learner in the BBO case depends on general/overall competence which
is very hard to obtain. In the problem–specific case however, achieving learner
competence may be easier because the shape of the model to be learned (i.e.
parametric learning) is known from domain knowledge, ensuring that the tar-
get function is in the function class used by the learner.

146 Peter A.N. Bosman

ψ(x) = x2 ψ(x) = ex − 1

Future known −1.21846·102 −1.55430·102

Future ignored −2.42940·102 −8.08692·103

Learn every gen. −1.09434·103 −2.04922·1065

Learn every 10 gen. −1.18946·103 −7.93853·10172

Learn every 100 gen. −9.98665·102 −3.02553·1096

L
in

ea
r

Learn every 1000 gen. −1.38907·102 −1.22634·1086

Learn every gen. −1.22010·102 −1.55966·102

Learn every 10 gen. −1.22013·102 −1.55969·102

Learn every 100 gen. −1.22062·102 −1.56069·102

Q
u
a
d
ra

ti
c

Learn every 1000 gen. −1.23178·102 −1.58092·102

Table 6.1. Overall results (i.e.
∫ tend

0
F

dyn

γdyn(t,Z(t,ζ))
(ζdyn

ζ (t))) on the time–linkage

numerical problem

6.5.3 Partial BBO: Dynamic Pick–up Problem

The Problem

The second problem that we investigate is a discrete partial BBO problem.
Although it is based on a simple model, the time–linkage in the problem is
large: any decision made now influences the result of the dynamic optimization
function for all future time steps. The intuitive description is that at time step
t a truck is located at xtruck(t) and a package appears at location xpackage(t).
It must now be decided whether to send the truck to go and pick up the
package or to drive elsewhere. If the package is not picked up, it disappears.
Picking up the package pays a value of 1, but driving costs a value equal to
the Euclidean distance traveled. The number of packages is npackages = tend +1,
i.e. the time steps are of size 1. A solution at time t now is a tuple ζdyn

ζ (t) =
(b(t),xalternative(t)) where b ∈ {0, 1} indicates whether the package at time t
should be picked up (b(t) = 1) and xalternative(t) is the location to drive to if
the package is not to be picked up (b(t) = 0). Mathematically:

F
dyn

γdyn(t)

((
b(t),xalternative(t)

))
=

{
1−‖xpackage(t)− xtruck(t)‖ if b(t) = 1
0−‖xalternative(t)− xtruck(t)‖ otherwise

(6.9)

where

xtruck(t) =

⎧⎪⎨
⎪⎩
∼
∏l−1

i=0N (0, 1) if t = 0
xpackage(t− 1) if t = 1 and b(t− 1) = 1
xalternative(t− 1) otherwise

For simplicity, the model used to generate new package locations is a uni-
variately factorized normal distribution with zero mean and unit variance, i.e.
xpackage(t) ∼

∏l−1
i=0N (0, 1).

6 Learning and Anticipation in Online Dynamic Optimization 147

Instantiating the Framework

A simple strategy is given by a hillclimber. The decision taken at each time
step is to move only to pick up a package and moreover only to do so if the
distance to the package is less than 1. In other words, a negative score is never
accepted.

We have compared the hillclimber with an EA instance of the general
framework. Since the optimization function is completely known with the ex-
ception of xpackage(t), the problem is only partially a BBO problem. Hence, we
can restrict the prediction task to predicting future values for xpackage(t). We
have performed experiments where we assumed the distribution of xpackage(t)
to be known and where we estimated this distribution from data, assuming
only that the data is indeed normally distributed.

In theory, the influence of any decision at time t influences the outcome
of the dynamic optimization function at any time t′ > t. However, the larger
t′ − t, the smaller the remaining impact on the situation at time t′. Although
in theory it would be optimal to set tplen to tend with tpint = 1, such a choice
gives rise to two practical problems. First, a large tplen gives extremely large
trajectories to optimize. This drastically increases the resources required by
the EA to solve the problem. Second, since the future is stochastic in this
problem, a proper estimation of the expected future profits requires averaging
evaluations over multiple calls. Moreover, the variability of these outcomes
increases as tplen increases because more uncertainty is introduced. Hence,
unless an infinite number of calls is used, a smaller value for ttplen is expected
to be optimal in practice.

Because the problem is stochastic, we require the solution in the solver
component to be a dynamic variable function. For the problem at hand this
means that we need to evolve a decision strategy for where to move the truck,
given a certain (predicted) situation. The strategy we choose here is a simple
one. For the current situation, a decision is directly subject to evolution. For
future, predicted, situations up to a time span of tplen, the hillclimber strategy
is used. Hence, the EA only provides a solution for the current time. Certainly,
better results may be obtained by allowing the EA to evolve a more elaborate
strategy. However, using the hillclimber already gives an impression of the
quality of a certain starting point. This information, albeit an approximation
of what can truly be achieved, can therefore still give additional insights into
the quality of a decision for the current situation, i.e. where to move the
truck to right now. Since the dynamic optimization function is stochastic,
we point out again that multiple calls are required to estimate the expected
future payoff even when using the hillclimber to evaluate the future. To reduce
the number of statistical errors, the best evolved decision is compared to
the default choice of doing nothing, i.e. b(tnow) = 0 and xalternative(tnow) =
xtruck(tnow). Only if the mean fitness of the best evolved decision averaged
over 100 calls to the dynamic optimization function is statistically significantly
larger than the mean fitness of the default decision, the evolved decision is

148 Peter A.N. Bosman

used. The statistical hypothesis test used to this end is the Aspin–Welch–
Satterthwaite (AWS) T–tests at a significance level of α = 0.05. The AWS
T–test is a statistical hypothesis test for the equality of means in which the
equality of variances is not assumed [17].

Results

A population size of 100 was experimentally found to be adequate for solving
the optimization problem in each time step. We set tend = 100 and advanced
time by a time step of 1 every 50 generations. Since only one pattern was added
to the data set each time step, and only a normal distribution is estimated
from data, learning can be done very fast for this problem. Therefore learning
was performed whenever time was advanced. The final scores (i.e. the integral
of the dynamic optimization function over [0, 100]) are shown in Figure 6.6
as a function of the prediction length tplen. Indeed as expected and motivated
earlier in the previous subsection, the best value for tplen is not the maximum
length of tend, but a smaller length, even if the model is fully known.

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 0 20 40 60 80 100

tplen

F
in

a
l
sc

o
re

Hillclimber
EA - model known

EA - model estimated if tnow ≥ 1
EA - model estimated if tnow ≥ 10

Fig. 6.6. Final score (i.e.
∫ tend

0
F

dyn

γdyn(t,Z(t,ζ))
(ζdyn

ζ (t))) averaged over 100 runs on

the dynamic pick–up problem as a function of the prediction length

The trajectory of the cumulative fitness for the best value and maximum
value of tplen are shown in Figure 6.7. This figure also reveals why the use of
information about the future leads to a better result in the end. All algorithms
other than the hillclimber are willing to accept negative scores in a single turn
if the prospect on future gains is larger. This happens if the truck moves more
towards the origin as the density of the normal distribution is the highest

6 Learning and Anticipation in Online Dynamic Optimization 149

there. The better strategy adopted by the system is thus to initially move
towards the region close to the origin and never move too far away from it,
even if doing so means making a profitable pick–up.

Finally, it is again interesting to note that postponing the use of learning
until a higher reliability is obtained leads to better results. This indicates
again the importance of reliable predictions in the proposed approach.

-2

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100

tnow

C
u
m

u
la

ti
v
e

sc
o
re

Hillclimber

EA, model known, tplen =5

EA, model known, tplen =100

EA, est. if tnow≥1, tplen =3

EA, est. if tnow≥1, tplen =100

EA, est. if tnow≥10, tplen =9

EA, est. if tnow≥10, tplen =100

Fig. 6.7. Cumulative score (i.e. H
dyn(tnow, ζ)) averaged over 100 runs on the dynamic

pick–up problem as a function of time

6.6 Discussion and Conclusions

In this chapter we have highlighted a specific source of difficulty in online
dynamic optimization problems. We have labeled the difficulty time–linkage.
In the worst case time–linkage can lead to time–deception. In that case any
optimization algorithm is mislead and finds suboptimal results unless future
implications of current decisions are taken into account. To tackle problems
exhibiting this type of problem difficulty, we have proposed a framework that
learns to predict the future and optimizes not only the current situation but
also future predicted situations. We have proposed and used two new bench-
mark problems, but a larger suite of problems containing time–linkage is called
for and should become a standard in dynamic optimization research.

In our experiments, we have fixed the future prediction time span as well
as the history data time span. An interesting question is whether the time
spans required to prevent deception can be measured during optimization.

150 Peter A.N. Bosman

This calls for techniques for time–linkage identification in a similar sense as
gene–linkage identification techniques are required in standard GAs to prevent
deception as a result of dependencies between a problem’s variables [12, 24].

Another important and related issue is how quickly the reliability of pre-
diction degrades into the future. Even if we know how far into the future we
must predict, these predictions are hardly of any use if they are unreliable.
The prediction reliability is influenced mostly by the difficulty of the function
to predict (i.e. relatively steady or heavily fluctuating) and by the availability
of data.

Ultimately, the expansion of dynamic EAs to process time–linkage infor-
mation should be integrated with current state–of–the–art dynamic EAs that
are capable of tackling other important problem difficulties that arise in dy-
namic optimization such as the overtaking of the optima by other local optima
as time goes by. An EA that is capable of efficiently tackling both sources of
problem difficulty is likely to be robust and well–suited to be used in practice
and hence to be tested in real–world scenario’s. To that end however, a further
expansion that makes the approach well–suited for the multi–objective case
is also likely to be crucial.

References

1. M. Andrews and A. Tuson. Diversity does not necessarily imply adaptability.
In J. Branke, editor, Proceedings of the Workshop on Evolutionary Algorithms
for Dynamic Optimization Problems at the Genetic and Evolutionary Comp.
Conference – GECCO 2003, pages 24–28, 2003.

2. P. J. Angeline. Tracking extrema in dynamic environments. In P. J. Angeline
et al., editors, Sixth Int. Conf. on Evol. Programming, pages 335–345, Berlin,
1997. Springer Verlag.

3. D. V. Arnold and H.-G. Beyer. Random dynamics optimum tracking with
evolution strategies. In J.J. Merelo et al., editors, Parallel Problem Solving from
Nature – PPSN VII, pages 3–12, Berlin, 2002. Springer Verlag.

4. T. M. Blackwell. Particle swarms and population diversity II: Experiments.
In J. Branke, editor, Proceedings of the Workshop on Evolutionary Algorithms
for Dynamic Optimization Problems at the Genetic and Evolutionary Comp.
Conference – GECCO 2003, pages 14–18, 2003.

5. P. A. N. Bosman and D. Thierens. Advancing continuous ideas with mixture
distributions and factorization selection metrics. In M. Pelikan and K. Sastry,
editors, Proc. of the Optimization by Building and Using Probabilistic Mod-
els OBUPM Workshop at the Genetic and Evolutionary Comp. Conference –
GECCO 2001, pages 208–212, 2001.

6. P. A. N. Bosman and D. Thierens. The naive MIDEA: a baseline multi–objective
EA. In C. A. Coello Coello et al., editors, Evolutionary Multi–Criterion Opti-
mization – EMO’05, pages 428–442, Berlin, 2005. Springer–Verlag.

7. J. Branke. Memory enhanced evolutionary algorithms for changing optimization
problems. In Proceedings of the 99 Congress on Evolutionary Computation –
CEC 99, pages 1875–1882, Piscataway, New Jersey, 1999. IEEE Press.

6 Learning and Anticipation in Online Dynamic Optimization 151

8. J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer, Nor-
well, Massachusetts, 2001.

9. J. Branke, T. Kaußler, C. Schmidt, and H. Schmeck. A multi–population ap-
proach to dynamic optimization problems. In I. C. Parmee, editor, Adaptive
Computing in Design and Manufacture – ACDM 2000, pages 299–308, Berlin,
2000. Springer Verlag.

10. J. Branke and D. Mattfeld. Anticipation in dynamic optimization: The schedul-
ing case. In M. Schoenauer et al., editors, Parallel Prob. Solving from Nature –
PPSN VI, pages 253–262, Berlin, 2000. Springer Verlag.

11. M. R. Caputo. Foundations of Dynamic Economic Analysis. Cambridge Uni-
versity Press, Cambridge, 2005.

12. K. Deb and D. E. Goldberg. Sufficient conditions for deception in arbitrary
binary functions. Annals of Mathematics and Artificial Intelligence, 10:385–
408, 1994.

13. S. M. Garrett and J. H. Walker. Genetic algorithms: Combining evolutionary
and ‘non’–evolutionary methods in tracking dynamic global optima. In W. B.
Langdon et al., editors, Proceedings of the Genetic and Evolutionary Computa-
tion Conference – GECCO 2002, pages 359–366. Morgan Kaufmann, 2002.

14. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley, Reading, Massachusetts, 1989.

15. J. Grefenstette. Evolvability in dynamic fitness landscapes: a genetic algorithm
approach. In Proceedings of the 99 Congress on Evolutionary Computation –
CEC 99, pages 2031–2038, Piscataway, New Jersey, 1999. IEEE Press.

16. K. De Jong. Evolving in a changing world. In Z. W. Ras and A. Skowron, edi-
tors, Foundations of Intelligent Systems, pages 512–519, Berlin, 1999. Springer
Verlag.

17. M. G. Kendall and A. Stuart. The Advanced Theory Of Statistics, Volume 2,
Inference and Relationship. Charles Griffin & Company Limited, 1967.

18. P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Optimization in con-
tinuous domains by learning and simulation of Gaussian networks. In M. Pelikan
et al., editors, Proceedings of the Optimization by Building and Using Probabilis-
tic Models OBUPM Workshop at the Genetic and Evolutionary Computation
Conference – GECCO 2000, pages 201–204, 2000.

19. A. M. L. Liekens, H. M. M. ten Eikelder, and P. A. J. Hilbers. Finite population
models of dynamic optimization with alternating fitness functions. In J. Branke,
editor, Proc. of the Workshop on Evolutionary Algorithms for Dynamic Opti-
mization Problems at the Genetic and Evol. Comp. Conference – GECCO 2003,
pages 19–23, 2003.

20. T. M. Mitchell. Machine Learning. McGraw-Hill, New York, New York, 1997.
21. W. B. Powell. Algorithms for the dynamic vehicle allocation problem. In B. L.

Golden and A. A. Assad, editors, Vehicle Routing: Methods and Studies, pages
249–292. Elsevier Science, Amsterdam, 1988.

22. H. N. Psaraftis. Dynamic vehicle routing problems. In B. L. Golden and A. A.
Assad, editors, Vehicle Routing: Methods and Studies, pages 223–248. Elsevier
Sc., Amsterdam, 1988.

23. L. Schöneman. On the influence of population sizes in evolution strategies in
dynamic environments. In J. Branke, editor, Proceedings of the Workshop on
Evolutionary Algorithms for Dynamic Optimization Problems at the Genetic
and Evolutionary Computation Conference – GECCO 2003, pages 29–33, 2003.

152 Peter A.N. Bosman

24. D. Thierens. Scalability problems of simple genetic algorithms. Evolutionary
computation, 7:331–352, 1999.

25. R. K. Ursem. Multinational gas: Multimodal optimization techniques in dy-
namic environments. In D. Whitley et al., editors, Proceedings of the Genetic
and Evolutionary Computation Conference – GECCO 2000, pages 19–26. Mor-
gan Kaufmann, 2000.

26. J. I. van Hemert, C. Van Hoyweghen, E. Lukschandl, and K. Verbeeck. A “fu-
turist” approach to dynamic environments. In J. Branke and T. Bäck, editors,
Proceedings of the Workshop on Evolutionary Algorithms for Dynamic Opti-
mization Problems at the Genetic and Evolutionary Computation Conference –
GECCO 2001, pages 35–38, 2001.

27. J. I. van Hemert and J. A. La Poutré. Dynamic routing problems with fruitful
regions: models and evolutionary computation. In X. Yao et al., editors, Par-
allel Problem Solving from Nature – PPSN VIII, pages 692–701, Berlin, 2004.
Springer Verlag.

28. V. Vapnik. Statistical learning theory. Wiley, New York, New York, 1998.
29. M. Wineberg and F. Oppacher. Enhancing the ga’s ability to cope with dynamic

environments. In D. Whitley et al., editors, Proceedings of the Genetic and
Evolutionary Computation Conference – GECCO 2000, pages 3–10.
Morgan Kaufmann, 2000.

7

Evolutionary Online Data Mining:
An Investigation in a Dynamic Environment

Hai H. Dam, Chris Lokan, and Hussein A. Abbass

Artificial Life and Adaptive Robotics Laboratory
School of Information Technology and Electrical Engineering
The University of New South Wales
Australian Defence Force Academy
Canberra ACT 2600, Australia
{z3140959,cjl,abbass}@itee.adfa.edu.au
http:://www.itee.adfa.edu.au/∼alar

Summary. Recently, traditional data mining algorithms are challenged by two
main problems: streaming data, and changes in the hidden context. These chal-
lenges emerged from real-world applications such as network intrusion detection,
credit card fraud detection, etc. Online or incremental learning becomes more im-
portant than ever for dealing with these problems. This chapter investigates XCS, a
genetics-based learning classifier system, which offers an incremental learning ability
and also is able to handle an infinite amount of continuously arriving data. XCS has
been tested on many data mining problems and demonstrated as a potential online
data mining approach. Most experiments with XCS assume a static environment.
Since environments are more likely to be dynamic in real life, noise and environ-
mental factors need to be taken into account in a good data mining approach. This
chapter investigates XCS in dynamic environments, in the presence of noise in the
training data. An essential requirement of an algorithm in dynamic environments is
to be able to recover quickly from hidden changes, while reusing previous knowledge.
Our results show that XCS is capable of recovering quickly from small changes in the
underlying concepts. However, it requires significant time to re-learn a model after
severe changes. We propose several strategies to force the system to learn quickly
after severe changes. These are adaptive learning rate; re-initializing the parameters;
and re-initializing the population. Experiments show improvement in the predictive
performance of XCS, when compared to the traditional XCS, in both noisy and
noise-free environments.

7.1 Introduction

Data mining is a sophisticated process to discover novel and potentially useful
knowledge from massive databases [14]. Data mining employs machine learn-
ing techniques to accomplish different tasks such as classification, regression,
prediction, and clustering. The focus of this chapter is on classification, which

Hai H. Dam et al.: Evolutionary Online Data Mining: An Investigation in a Dynamic

Environment, Studies in Computational Intelligence (SCI) 51, 153–178 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

154 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

attempts to develop a model from previous observed data for future prediction
of values in a finite set.

Genetics-based learning classifier systems (GBLCS) [18] are a modern
heuristic method of data mining in which a genetic algorithm (GA) and re-
inforcement learning (RL) are employed. In this framework, a population of
classifiers (or so-called rules) is evolved over time based on the concept of
natural selection. GA is involved to discover new classifiers and RL is used
to evaluate classifiers with guidance from the environment. The advantages
of using GA are robustness to tolerate noise and an ability to track changes
over time [16].

The first version of GBLCS was implemented by Holland in 1978 [20],
to simulate animal behaviors. The simulation showed that animal behaviors
were predicted successfully. Wilson [33] confirmed later that GBLCS can sim-
ulate knowledge growth in animals. Goldberg [15] applied GBLCS to a real
life application for controlling a pipeline system. Bernado [3] compared the
predictive performance of GBLCS with six other well known learning algo-
rithms on fifteen data sets, and claimed that GBLCS reach and even exceed
the performance of other traditional learning schemes.

Work on GBLCS can be grouped into two main strategies: the Pittsburgh
[28] and Michigan [19] approaches. The key difference is that an individual in
the Pittsburgh approach is a set of classifiers representing a complete solution
to the learning problem; while an individual in the Michigan approach is a
single classifier that represents a partial solution to the overall learning task.
Thus, the Michigan and Pittsburgh systems are quite different approaches.
Which is preferred depends on the nature of the application.

Many studies have compared the performance of the two approaches, on
several data mining problems, in order to determine circumstances in which
one approach would perform better than the other and to understand the
behavior of each system [1, 2, 24]. In some cases the Pittsburgh approach
is more robust, but it is computationally very expensive compared to the
Michigan approach (since the Pittsburgh approach maintains a population of
complete solutions, the cost of evaluating the population is high).

XCS [7, 34, 35] is widely accepted as one of the most reliable Michigan-style
GBLCS for data mining [2, 3, 5, 12]. The framework was introduced by Wilson
in 1995 as an enhanced version of the traditional GBLCS. The two major
changes in XCS are: fitness is based on the accuracy of the reward prediction,
instead of the strength (or reward directly received from an environment); and
a niche genetic algorithm. Many studies showed that XCS performs at least as
well as other traditional machine learning techniques on several data mining
problems [2, 26]. The advantages of XCS are its rule-based representation,
which can easily recognize the mining patterns; its online learning, which is
able to deal with an infinite stream of one-pass instances; and its incremental
learning, which continuously refines and revises the current knowledge.

Many experiments on XCS, as well as many data mining applications,
assume that an environment is static: once a model is learned, it can be

7 Evolutionary Online Data Mining 155

used indefinitely. However, in real life the environment is never static. Noise
may affect a data item; noise levels may vary over time; the underlying data
model may change. Being able to cope with noise and changes in the data is an
essential requirement for a good application in a dynamic environment. Branke
stated that a good system should be capable of continuously adapting its
solution to any changes in the environment, while reusing information gained
in the past [4]. If the problem changes completely, without any reference to the
history, it would be regarded as much simpler dynamic environment because
the system has to learn from scratch.

In this chapter, we investigate XCS in the dynamic environment with and
without noise in the training data. We also propose several strategies to help
XCS recover quickly in the face of changes in the dynamic environment. A
justification of each strategy is provided in terms of the recovery time.

The chapter is structured as follows. The next section explains about the
dynamic environment in data mining, and also discusses related work in the
field. Section 7.3 provides a brief review of XCS. Section 7.4 describes our ex-
periment setup and a test problem. Section 7.5 investigates XCS in noise-free
and noisy environments with different levels of concept change. Section 7.6
proposes several strategies for XCS to cope with dynamic environments. Sec-
tion 7.7 compares the performance of those strategies in noise-free and noisy
dynamic environments. Finally, conclusions and future work are presented in
the last section.

7.2 A Review of Dynamic Environments in Data Mining

7.2.1 Concept Change

In the literature of data mining, a dynamic environment is mainly concerned
with concept change (or concept drift), in which a target learning concept
changes over time [32]. In the real world, concept change occurs so frequently
that any online data mining application needs to take it into account seri-
ously. For example, a company’s policy may change every day to reflect the
consumer’s market.

The target learning concept can change in many ways under many aspects.
Abbass et al. [1] determined six common kinds of changes:

• Change in the model. A learned model may become incorrect after a period
of time. For example, customers’ preferences for shopping change due to
changes in seasons, fashion, etc. Hence a model of customers’ preferences
in summer is quite different to the one in winter.

• Change in the number of underlying concepts. The number of concepts
may not stay constant forever in real-life applications. Some new concepts
may be introduced and some old ones may become obsolete. For example, a
school may introduce a new class on network security, due to high demand
from students, and may stop teaching programming in Pascal because not

156 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

many students take the unit. A model to classify a unit based on students’
preferences needs to be modified to capture new concepts and eliminate
obsolete ones.

• Change in the number of features. The number of available features may
vary over time.

• Change in the level of noise. Noise is an unwanted factor but it occurs
very often in real world data. The noise level may change reflecting the
condition of an environment. For instance, voice data may have a high
level of noise at a supermarket during daytime, but may have a low level
of noise during nighttime.

• Change in the class distribution.
• Change in the sample bias.

Abbass et al. grouped these changes into two main areas: model bound-
ary changes and sample changes. The first three changes belong to the first
category and the last three changes belong to the latter category. This chap-
ter focuses mainly on changes in the model boundary, or the concepts of the
model, and on noise.

The target concepts may change at different rates depending on the nature
of the application. Some concepts may change slowly, resulting in ambiguity
and uncertainty in between periods of stability. Other concepts might change
suddenly; new instances become no longer consistent with the current concepts
of the learned model. In this chapter, we investigate the second case; we leave
the first one for future work.

7.2.2 Data Mining in the Presence of Concept Change

An effective learning algorithm for tracking concept change is one that can
identify changes in the target concept without being explicitly informed about
them; can recover quickly from changes by adjusting its knowledge; and can
use previous knowledge in the case that old concepts reappear [32].

The first system designed for concept change is STAGGER [27], using
probabilistic concept description. The system responds to concept change by
adjusting weights in the model, and discarding any concepts that fell below a
threshold accuracy.

Since then, researchers have proposed several rule-based algorithms for
dealing with concept change. A family of FLORA algorithms [32] is one of
them, which learns rules from an explicit window of training instances. A
window means that oldest examples are replaced by newly arrived ones so that
they fit into the window. The learner trusts only the latest examples. FLORA2
allows dynamic size of the window in response to the system performance.
FLORA3 stores concepts for future use and reassesses their utilities when
context changes are perceived. FLORA4 is designed to deal with noise in the
input data.

7 Evolutionary Online Data Mining 157

Klinkenberg and Thorsten [21] developed an alternative method to detect
concept change using the support vector machine. They also use a window of
recent instances to detect changes.

A drawback of the windowing technique is that the system becomes sen-
sitive to changes in the distribution of instances.

Classifier ensembles are an alternative approach in data mining for dealing
with concept change. A set of experts is maintained. The prediction is made
by combining the experts’ knowledge, using voting and/or weighted voting.

Street and Kim [30] suggest that building separate classifiers on sequential
chunks of training data is also effective to handle concept change. These clas-
sifiers are combined into a fixed size ensemble using a heuristic replacement
strategy. Kolter and Maloof [22] present an approach based on the weighted
majority algorithm to create and remove base learners in response to changes
in performance.

In general, a disadvantage of the ensemble approach is that the system
needs to have a strategy to create new experts and eliminate old ones to
adapt to the environment.

In this chapter, we will explain and explore XCS in the presence of noise
and concept change. XCS is an incremental learner. By its nature it is able
to handle a stream of data. After returning a prediction to the environment,
XCS updates its current knowledge of the instance based on the feedback in
terms of reward. The use of a genetic algorithm helps the system to explore the
search space and escape from a local optimum. The genetic algorithm is based
on natural selection, which aims at deleting weak rules and evolving good rules
over time. Therefore XCS is able to handle concept change effectively.

7.3 XCS

This section provides a brief description of the XCS system. XCS is a rule-
based evolutionary learning classifier system, in which each classifier repre-
sents a partial solution to the target problem. A typical goal of XCS is to
evolve a population of classifiers [P] to represent a complete solution to the
target problem. XCS relies on RL for evaluating classifiers in the population,
and GA for exploring a search space and introducing new classifiers in the
population.

During the learning process, the system receives inputs from the environ-
ment and returns its prediction. Feedback from the environment is given in
terms of a reward reflecting how good the prediction was.

XCS is designed for both single-step (receiving immediate reward from the
environment) or multi-step (receiving delayed reward from the environment)
environments. In classification, a single-step environment is mainly used.

Each classifier consists of the Condition (the body of the rule), the Action
(the prediction of the classifier) and some parameters. The Condition refers
to several environment states, to which the classifier may match. The Action

158 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

will be chosen as a system prediction if the classifier is fired. There are three
main parameters associated with a classifier that are used to determine how
good it is: reward prediction P, prediction error ε, and fitness F. The reward
prediction P refers to an amount of reward, which the classifier predicts to be
received from the environment if its prediction is chosen. The prediction error
ε is the absolute difference between the reward prediction P and the actual
reward received. The fitness is an inverse function of the reward prediction
error. Another two important parameters are numerosity and experience. Nu-
merosity records the number of copies the classifier has in [P]. Experience
indicates how often the classifier is chosen for prediction making; in other
words, how general the classifier is.

A classifier in XCS is a macro–classifier, which represents a distinct rule
(a pair of Condition:Action) in the population. Whenever a new classifier is
introduced, the population is scanned through to check if its copy already
exists. If it does not, the classifier is added to the population. Otherwise, the
numerosity of its copy is incremented by one.

Upon receiving an input from the environment, a match set [M] is formed.
It contains all classifiers in [P] whose condition matches the input. Classifiers
in [M] will participate in a system decision making to decide on the system
prediction. In exploitation phase, a prediction array [PA] is formed for esti-
mating the value of each possible action in [M]. An action having the highest
value in [PA] will be selected to export to the environment. The exploration
phase, on the other hand, chooses a random action in [M] so that it will give
a chance for every classifier to be evaluated. An action set [A] is then formed,
containing those classifiers in [M] that have the chosen action.

In exploration phase, the parameters of classifiers in [A] are updated in-
crementally and GA might be involved in [A]. The fitness, reward prediction
and prediction error parameters of the classifiers in [A] are updated, based on
the difference between the predicted and actual reward.

GA is activated only when the average experience of classifiers in [A] is
higher than a threshold defined by the user. Two parents are selected from [A]
with probability proportional to their fitness. Two offspring are generated by
reproducing, crossing–over, and mutating the parents with certain probabili-
ties. Offspring are inserted in [P]. The parents also remain in [P] to compete
with the offspring. If the population size exceeds the predefined limit, some
inaccurate classifiers are removed from [P].

The algorithm of XCS is presented in Fig. 7.1. The parameters it uses are
listed in Table 7.1.

7.4 Experiments

7.4.1 Test Problems

Some concept change handling systems have been tested on real-world data
such as spam filtering data [11], US Census Bureau data [30], and credit

7 Evolutionary Online Data Mining 159

Table 7.1. Parameters of XCS

Parameter Meaning

N maximum population size
P# don’t care probability
β learning rate

α, ε0, v accuracy determination parameters
θGA threshold to activate GA
χ probability of applying crossover
µ probability of applying mutation

θdel minimum experience to be considered during deletion
θsub minimum experience to be considered for subsumption

pI , εI , fI initial parameter values for each classifier
θnma minimum number of different actions in [M] for covering

Initialize XCS parameters and initialize [P] to empty
repeat

for each training instance Itrn from env do
Form a match set [M] of those classifiers in [P] that satisfy Itrn

while the number of different actions in [M] < θnma do
Generate a random classifier cl that covers Itrn

Add classifier cl to set [P] and set [M]
end while
Select an action randomly from those in [M]
Generate an action set [A] of classifiers in [M] that have the chosen action
Return the action to env
Receive a reward R from env estimating how good the action was w.r.t. Itrn

Adjust parameters of those classifiers in [A]
if an average experience of classifiers in [A] is higher than θGA then

Select and reproduce (mutation and crossover) two classifiers in [A]
Offspring inherit fitness, reward prediction, prediction error from parents
Insert offspring in [P]
while the current population size is larger than N do

Remove a classifier from [P] wrt the fitness and action set size
end while

end if
end for
for each testing instance Itst from env do

Form a match set [M]
Form a prediction array [PA] estimating the value of each possible action
in [M] based on the fitness and reward prediction
Select the best action that has the highest value in [PA]
Return the action to the environment

end for
until the termination conditions are met

Fig. 7.1. Algorithm of XCS

160 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

card fraud data [31]. A repository of such data sets [13] is maintained by the
University of California at Irvine (UCI).

The main disadvantage of those data is that they do not contain much
concept change. Thus concept changes are added artificially, and therefore it
becomes an artificial problem.

Artificial problems tend to be favored by researchers, however. They have
the advantage that the researcher can control the type and rate of concept
change, context recurrence, presence of noise, irrelevant features, etc.

The most popular artificial testing benchmark for concept change in data
mining is the STAGGER concept [17, 22, 27, 32]. The problem contains 3
simple Boolean concepts of 3 features with a total of 120 instances and 3
cycles of change. However, this problem can not be extended to a large scale
of data. Scalability is very important as concept change mostly occurs in a
stream of data.

In this chapter, we experiment on the multiplexer problem. A binary string
of length k + 2k is used as an input. The first k bits determine the position of
an output bit in the last 2k bits. The multiplexer problem is one of the most
popular testing benchmarks in learning classifier system research in general
and XCS in particular [6, 10, 34].

Wilson [36] extended the multiplexer problem to a continuous domain by
introducing a real-threshold to convert a real number to a binary number. For
example, assume a real number is in the range [0, 1) and the real-threshold
is 0.5. The real input number r will be converted to 0 in binary if r < 0.5,
otherwise it is set to 1 in binary. The real multiplexer problem then becomes
a traditional binary multiplexer problem.

The real multiplexer problem is also considered a challenging artificial
problem. It can extend to large scale data. The magnitude and rate of changes,
as well as noise in the system, can be controlled easily by the researcher.

7.4.2 Experimental Setup

We conducted two experiments to study the real-6-multiplexer problem in a
dynamic environment with/without noise.

To simulate the dynamic environment for the real-6-multiplexer problem,
we change the underlying concept of data by altering the real-threshold.
This influences the mapping from a real number to a binary number. The
concept at the continuous level is changed, but the concept at the bi-
nary level remains unchanged. Figure 7.2 illustrates the effect of concept
change to an actual label of an instance. In this case, a label of an in-
stance I =< 0.6, 0.2, 0.05, 0.7, 0.3, 0.4 > is changed from 1 to 0 when the
real-threshold is shifted from 0.1 to 0.5.

The first experiment aims to learn the impact of different magnitudes of
concept change (MoC) on the system’s predictive performance. A single run
consists of two cycles. The real-threshold of the first cycle is set to 0.1. After
100,000 time steps (each step in our experiment includes one training instance

7 Evolutionary Online Data Mining 161

and one testing instance) the threshold is changed. We choose the 100, 000th

time step because it gives any learning algorithm enough time to accumulate
full knowledge in this problem. Hence, we can evaluate accurately its adaptive
ability after the concept change. The real-threshold is altered with different
levels of MoC, such as MoC = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. For example,
if MoC = 0.4, the real-threshold of the second cycle will change from 0.1
to 0.5.

In essence, a low level of MoC will cause a small change to the underlying
model. A high level of MoC, in contrast, will affect a larger amount of data
and therefore present a bigger challenge for a learning system. For example, if
MoC is 0.1, approximately 10% of the data might be affected. If MoC is 0.4,
40% of the data might be changed.

The experiment is performed initially in a noise-free environment, and
then under different levels of noise. Noise is incorporated only in the training
instances by flipping their classes with a certain probability. For example, a
noise level of 0.05 means that the flipping probability is 5% (or approximately
5 noisy instances occur in each 100 training inputs).

The results of the first experiment are presented in Section 7.5.

Fig. 7.2. The real-threshold influences the class of an input instance. The instance
I =< 0.6, 0.2, 0.05, 0.7, 0.3, 0.4 > belongs to class 1 when the real-threshold is 0.1,
and class 0 when the real-threshold is 0.5.

The second experiment aims to compare the predictive performance of
XCS, using three different proposed strategies for dealing with concept change.

162 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

The strategies are presented in Section 7.6. The second experiment is also
performed initially in a noise-free environment, and then under different levels
of noise. The results of the experiment are presented in Section 7.7.

In [9], we found out that imbalance of class distribution has an effect on
the system performance. Experiments in this chapter avoid this problem, by
assigning equal distribution of each class.

All experiments presented in this paper are averaged over 30 independent
runs.

7.4.3 System Setup

XCS is set up with the same parameter values1 used by Wilson [36], Stone
and Bull [29], and Dam et al [8] as follows: N = 1, 000, β = 0.2, α = 0.1, ε0 =
10, v = 5, θGA = 12, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1, θsub = 20, pI =
10, εI = 0, fI = 0.01, θnma = 2.

7.5 Performance with Different Magnitudes of Change

7.5.1 Performance in a Noise-Free Environment

In the real multiplexer problem, concept change occurs when the real-threshold
for mapping a real number to a binary number is changed. The magnitude of
change (MoC) in this problem is the absolute difference in the real-threshold
before and after the change. For example, if the real-threshold is changed from
0.4 to 0.5, the MoC is 0.1.

Figure 7.3 shows the predictive performance of XCS over 200,000 time
steps, with the change occurring at the 100, 000th time step. The magnitudes of
change are MoC = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} respectively. Observing
the graphs, a sharp decrease in the predictive accuracy is obvious at the
100, 000th time step, where the concept change takes place.

When MoC is small (e.g. 0.1), the accuracy at the beginning of the second
cycle does not drop as low as the starting point of the first cycle. Also, XCS
adjusts very quickly to the change and soon returns to nearly 100% accuracy.
The time needed for XCS to learn in the second cycle is shorter than in
the first cycle. This is because XCS starts without any prior knowledge in
the first cycle. The system must rely on GA to explore new classifiers and
reinforcement component to evaluate these classifiers. XCS needs a sufficient
time to explore completely the environment. In the second cycle, on the other
hand, the system already has a complete knowledge of the environment. After
the change, only small part of the knowledge of the system becomes inaccurate.
Therefore the system has to discover only a few more concepts for completion.

Increasing MoC results in a more significant change to the underlying
model. Therefore, a longer time is required for the system to recover. When
1 The parameters are defined in Table 7.1

7 Evolutionary Online Data Mining 163

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

Ac
cu

ra
cy

The traditional XCS
 MoC=0.1; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

Ac
cu

ra
cy

The traditional XCS
 MoC=0.2; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

Ac
cu

ra
cy

The traditional XCS
 MoC=0.3; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

Ac
cu

ra
cy

The traditional XCS
 MoC=0.4; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

Ac
cu

ra
cy

The traditional XCS
 MoC=0.5; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

Ac
cu

ra
cy

The traditional XCS
 MoC=0.6; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

Ac
cu

ra
cy

The traditional XCS
 MoC=0.7; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

Ac
cu

ra
cy

The traditional XCS
 MoC=0.8; Noise=0.00

Fig. 7.3. The real-6-multiplexer problem; Performance with different MoC val-
ues in noise-free environments; The real threshold value is changed from 0.1 to
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 respectively; The curve plots the predictive accuracy of
the testing data over time.

164 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

MoC is 0.3 or more, the learning time in the second cycle is much longer than
in the first cycle.

The population in XCS contains a set of classifiers, which represent its
current knowledge of the environment. If a severe change happens to the un-
derlying model, a large number of classifiers that were accurate in the previous
cycle may become inaccurate under new concepts. These classifiers normally
acquired high fitness in the previous cycle. They are unlikely to be eliminated
quickly from the population. XCS needs time to re-evaluate these classifiers,
gradually reducing their fitness until it is small enough for them to be deleted
from the population as a result of natural selection. In other words, it takes
time for the system to unlearn the old concepts as well as to learn the new
ones. This is the key reason for the increased recovery time and decreased
performance when MoC is high.

Table 7.2 presents XCS’s performance right after a concept is changed,
and the number of time steps required for XCS to recover to 99% accuracy,
at each level of MoC.

Table 7.2. System performance with different magnitudes of change at the
100, 000th time step, when the real thresholding is changed from 0.1 to 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 respectively. The result is averaged over 30 runs.

MoC Performance after the change Time to recover to 99% accuracy

0.1 0.6433± 0.0495 11,500
0.2 0.5610± 0.0379 22,600
0.3 0.5353± 0.0581 34,000
0.4 0.5270± 0.0501 49,400
0.5 0.5227± 0.0715 54,600
0.6 0.5210± 0.0512 61,100
0.7 0.5193± 0.0449 70,400
0.8 0.5347± 0.0431 84,600

The table reveals that XCS can recover quickly from a small magnitude
of change. If MoC is large (more than 0.2), XCS requires a much longer time
to learn and adapt to the new concepts. If MoC>0.4, it is quicker to start
learning from scratch rather than continuing with the current knowledge.

7.5.2 Effect of Noise in Dynamic Environments

There are several studies of XCS in noisy static environments. Lanzi et. al [25]
found that XCS can only converge to an optimal solution when the level of
uncertainty is limited. They argued that XCS is unable to distinguish inaccu-
rate classifiers caused by over-generalization and inaccurate classifiers caused
by uncertainty. To cope with uncertainty they introduced a new parame-
ter, µ, in all classifiers for estimating its minimum prediction error overtime.

7 Evolutionary Online Data Mining 165

They explained that µ will help XCS to separate the inaccuracy due to over-
generalization from that due to uncertainty. Like other parameters in XCS, µ
is updated whenever a classifier appears in [A] with a step size depending on
a learning rate.

To the best of our knowledge, the literature does not include studies of
XCS in dynamic environments with noise effects. This section will explore
this area by investigating the performance and population of XCS in dynamic
environments with several levels of noise.

Figure 7.4 shows the population and performance of XCS before and after
an underlying concept is changed severely (MoC=0.8), under several noise
levels.

Observing the graph, we notice three regions of noise that affects the re-
covery time of XCS from concept changes. These are: low noise (Figure 7.4,
the first row), which results in a slow recovery; medium noise (Figure 7.4, the
second row), which helps the system to recover almost as fast as the original
learning; and high noise (Figure 7.4, the last row), which increases the recovery
time dramatically. The levels of noise in each region are [0.00, 0.03),[0.03, 0.15),
and [0.15, 1.00) for low, medium, and high respectively.

In the first cycle, XCS starts without prior knowledge. The population
curve increases dramatically after a few steps at the beginning for all three
regions. At this stage, GA is working hard to introduce new classifiers into
the system. Those classifiers might be either good or bad. The learning com-
ponent is responsible for updating their parameters accurately to reflect their
goodness.

When noise is small, XCS is able to differentiate effectively good classifiers
from the bad ones. As the result, the population curve starts to decrease grad-
ually after the peak. By the time the concept change happens the system has
achieved a compact population, which contains only accurate and maximally
general classifiers [23]. Since the concept change is severe (MoC = 0.8), most
of these classifiers become inaccurate after the change. GA starts working
hard again as a large number of classifiers are inserted in the population. In
order to recover completely, the incorrect classifiers need to be re-evaluated
and removed from the population. In order to remove those classifiers, it re-
quires a sufficient time to update their parameters from good to bad so that
they can be eliminated. This explains why the performance in the second cycle
improves much more slowly than in the first cycle.

Medium noise, on the other hand, affects the learning process as Lanzi [25]
has suggested. XCS is not able to compact the population as much as it could
in low noise cases. The population curve decreases insignificantly in the first
cycle. Before a concept change, the population contains both good and bad
classifiers. As a result, the performance can never achieve 100% accuracy.
Observing the decrease in the population suggests that XCS has achieved a
certain level of generalization. After the concept change, only a small number
of classifiers are inserted in the population. Some inaccurate classifiers in the
previous cycle might become accurate under new conditions. XCS does not

166 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y,
 p

op
ul

at
io

n
si

ze
(/

10
00

)

The traditional XCS
 Noise=0.01; MoC=0.80

accuracy
macro population size

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y,
 p

op
ul

at
io

n
si

ze
(/

10
00

)

The traditional XCS
 Noise=0.02; MoC=0.80

accuracy
macro population size

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y,
 p

op
ul

at
io

n
si

ze
(/

10
00

)

The traditional XCS
 Noise=0.05; MoC=0.80

accuracy
macro population size

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y,
 p

op
ul

at
io

n
si

ze
(/

10
00

)

The traditional XCS
 Noise=0.06; MoC=0.80

accuracy
macro population size

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y,
 p

op
ul

at
io

n
si

ze
(/

10
00

)

The traditional XCS
 Noise=0.15; MoC=0.80

accuracy
macro population size

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of steps

A
cc

ur
ac

y,
 p

op
ul

at
io

n
si

ze
(/

10
00

)

The traditional XCS
 Noise=0.20; MoC=0.80

accuracy
macro population size

Fig. 7.4. Performance and population of XCS on several noise levels under a severe
concept change (MoC=0.8)

have to remove and discover these classifiers. Hence the recovering time is
reduced significantly.

When the noise level is high, XCS is unable to eliminate bad classifiers
completely. The population always evolves both bad and good classifiers. The
last row of Figure 7.4 shows that the population curves don’t decrease at all

7 Evolutionary Online Data Mining 167

after the initial peak. A large population implies that the system was not able
to generalize. It seems that the population contains many bad and specific
classifiers. Unlike the previous cases, some inaccurate classifiers appear to be
still inaccurate after the concept change because they are over-specific. Hence,
the recovery time starts increasing as the noise level increases in this region.

7.6 Strategies for Recovering from Concept Change

In Section 7.5.1 we saw that it can be quicker to start learning from scratch
rather than continuing with current knowledge after severe changes. Figure 7.4
shows that this is also true in noisy environments.

This conclusion goes against the requirement of a good learning algorithm
in dynamic environments, where previous knowledge should be reused to re-
duce the learning time. This motivates us to propose some strategies to im-
prove XCS, where the system is able to reuse previous knowledge and thus
recover quickly from severe changes in the underlying concept.

We propose three strategies. The first involves adjusting the learning rate
dynamically. The other two involve first recognizing that a concept change
has occurred, and then changing the knowledge represented in the population
[P]. They differ in how the knowledge is changed.

7.6.1 An Adaptive Learning Strategy

The reinforcement learning component of XCS is responsible for updating pa-
rameters of the classifiers in the action set [A], based on feedback (reward)
from the environment. The Widrow-Hoff technique is used to adjust the re-
ward prediction P toward the actual reward received from the environment;
and also the prediction error ε toward the absolute difference between the
actual and predicted reward.

The following equations are used to update the parameters at time step i:

εi ← εi−1 + β(|R− Pi−1| − εi−1) (7.1)
Pi ← Pi−1 + β(R− Pi−1) (7.2)

where P is the reward prediction, ε is the prediction error, R is the actual
reward received from the environment, and β is a learning rate (0 < β ≤ 1).
The learning rate β determines how much the reward prediction and prediction
error parameters are adjusted at each time step.

Butz [5] has shown that XCS can perform better if the learning rate β is
lowered in a noisy environment. The lower learning rate effectively decreases
the noise in the parameter estimations of the classifiers. On the other hand,
increasing the learning rate is useful when the environment changes. XCS
then needs to accelerate the learning process in order to re-adjust quickly the
parameters of the affected classifiers. Increasing the learning rate makes these

168 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

parameters convert faster to the correct values. Thus in a noisy and dynamic
environment, we want the learning rate to be low when the concept is stable,
and raised when the concept changes.

Therefore, we propose an adaptive learning strategy that adjusts the learn-
ing rate according to the prediction performance of the system. The learning
rate become an adaptive variable and can be expressed in a formula as follows:

∆E =
current error − previous error

R
(7.3)

β′ =

⎧⎪⎨
⎪⎩

βmin + (βmax − βmin)e
∆E−1

∆E α

if ∆E > 0,

βmin if ∆E ≤ 0
(7.4)

βt =
βt−1 + β′

2
(7.5)

where βmin, βmax are minimum and maximum bounds of the learning rate
defined by the user; βt, βt−1 are the learning rate at the current and previous
time steps; ∆E is the change in the prediction error between the current and
previous time steps. α is a constant. R is the maximum reward given by the
environment.

β′ is a function of system error. A positive ∆E implies performance degra-
dation, a negative ∆E implies performance improvement. The learning rate is
increased (though not beyond a specified maximum value) when performance
degrades. However, when performance is stable or improving, the learning rate
is reduced (though not below a specified minimum value).

7.6.2 Recognizing a Concept Change

The previous subsection proposed an adaptive method for accelerating or de-
celerating the learning process according to the system performance. Another
approach is to revise the knowledge maintained in the population when a con-
cept change occurs. This means it is necessary to be able to recognize when
the concept change occurs.

XCS can recognize a concept change by observing two main factors: the
reward prediction error and the number of covering instances within a window
of training instances.

The reward prediction error of XCS is the absolute difference between
the reward prediction made by the system and the actual reward received
from the environment upon a prediction. In an exploitation phase, XCS at-
tempts to export an action, which maximizes the reward prediction within its
current knowledge. If the difference between the reward prediction and the
actual reward is low, XCS is perfectly adequate for classification. Otherwise,
it indicates that XCS is unstable and is exploring the search space.

7 Evolutionary Online Data Mining 169

If a concept is changed, a large increase in the prediction error is likely.
Turning this around, if the system experiences a massive increase in the predic-
tion error after a period of stability, a concept change is a likely explanation.

There is a second possible explanation for this phenomenon: the covering.
The covering process of XCS is activated when a previously unseen input ar-
rives. Normally, XCS forms a match set [M] for each input and an action is
chosen from the classifiers in the set. If the match set [M] is empty, no existing
classifiers satisfy the input, so the covering technique will generate random
classifiers to match the input. Those classifiers are initialized with some ran-
dom values and inserted into the population. It is then the reinforcement
component’s responsibility to update these parameters appropriately to make
the classifiers more accurate. This takes some time; until there has been a
sufficient number of evaluations they are not accurate. If they are used before
they become accurate, it may cause a decrease in the predictive performance
of the system.

Thus another explanation for an increase in prediction error after a period
of stability is that XCS is exploring a new area in the search space that it has
not experienced before.

To recognize a possible concept change, the user can specify an error
threshold and a window size. If the average prediction error within the window
exceeds the threshold, it indicates that a concept change may have occurred.

To ensure the phenomenon is caused by a concept change, and not by
a covering process, a counter is used in the window. It counts the number
of times covering has been used within the window of training instances. A
covering threshold is specified in advance by the user. The system will not
conclude a concept change when the prediction error increases markedly, if
the covering threshold is reached.

7.6.3 Revising Knowledge

Figure 7.3 reveals that XCS needs a long time to recover from severe changes.
Observing the performance of XCS before and after the change, we notice
that the second cycle requires much longer to reach 100% accuracy than the
first cycle. In the first cycle, the system starts from scratch, and knowledge
accumulates with experience. In the second cycle, many classifiers of XCS
suddenly become inaccurate after the severe change. The system has to fulfill
several tasks to recover, such as re-evaluating inaccurate classifiers, exploring
new classifiers, etc.

We seek to revise the system’s knowledge when a concept change is recog-
nized, to avoid the long time needed to recover from the concept change. We
propose two strategies:

1. Re-initializing the population: This strategy is for the current knowl-
edge from the previous cycle to be entirely deleted after detecting a con-
cept change. The system then starts from scratch without any knowledge

170 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

about the environment. It becomes similar to the learning process in the
first cycle, and therefore it will not take much longer than the first cycle
to achieve a stable performance.

2. Re-initializing classifier parameters: XCS maintains a complete ac-
tion set, which contains all possible combination pairs of rules and actions
in the population that are maximally general and accurate.
The criterion for an accurate classifier in XCS is not only that it has a
correct pair of rule and action, but that it can predict a future reward as
closely as possible to the actual reward. For example, suppose an envi-
ronment gives two reward levels: 0 and 1000 for an incorrect and correct
prediction respectively. A classifier having a correct rule (a correct pair of
condition and action) is considered accurate if it can predict a reward of
1000 for its action. An incorrect classifier (a wrong pair of condition and
action) is also considered accurate if its prediction is close to 0. However,
incorrect but accurate classifiers always have low reward predictions com-
pared to correct and accurate ones. Therefore, they are not usually chosen
from the match set [M].
In essence, the population of XCS always maintains a set of incorrect
but accurate classifiers. These classifiers may become correct after the
environment changes. Hence it is not efficient to delete them completely,
as in the previous strategy, because XCS will need time to discover and
re-introduce them in the population. However, it is also not efficient to
keep the population as it is, because XCS needs to re-evaluate all existing
classifiers in order to reduce the fitness of classifiers that have become
inaccurate after the change.
Therefore, our third strategy is to keep the whole population, but re-
initialize their parameters so that XCS can start the second cycle with
some prior knowledge.

7.6.4 Parameter Setup

To detect the concept change, we set the thresholds as follows:

• Error threshold: E = 0.4
• Covering threshold: C = 1
• Window size: w = 50

In the third strategy, the parameters of classifiers in [P] will be reset after
detecting the change. The parameters are re-initialized as follows:

• Reward prediction P = 10
• Reward prediction error ε = 0
• Fitness F = 0.01
• Numerosity n = 1
• Experience e = 0
• The action set size a = 1

7 Evolutionary Online Data Mining 171

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

The traditional XCS
 MoC=0.1; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Adaptive learning
 MoC=0.1; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Re−initializing parameters
 MoC=0.1; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Re−initializing population
 MoC=0.1; Noise=0.00

Fig. 7.5. Performance of different strategies when magnitude of change is 0.1. The
curve plots the predictive accuracy of the system.

7.7 Comparing the Performance of Different Strategies

7.7.1 Noise-Free Environment

Figure 7.5 and Figure 7.6 show the performance of XCS with our proposed
strategies, at two levels of MoC: small and large or 0.1 and 0.8 respectively.

When MoC is small (Figure 7.5), the performance of XCS is quite similar
under each strategy, after the change at the 100, 000th time step. The re-
initializing population strategy seems to require a little more time than other
strategies to recover from changes. A small MoC results in small change in
the model, which makes only a small portion of classifiers become inaccurate.
By re-initializing the population, XCS needs to learn from scratch. Other
strategies take advantage of reusing previous knowledge and therefore can
recover more quickly. Hence, in the case of small MoC, the traditional XCS,
or the adaptive learning strategy, or the re-initializing classifier parameters
strategy, all seem to be better than the re-initializing population strategy.

When MoC is large (Figure 7.6), the graphs show that XCS with the
adaptive learning strategy improves enormously over the traditional XCS in

172 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

The traditional XCS
 MoC=0.8; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Adaptive learning
 MoC=0.8; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Re−initializing parameters
 MoC=0.8; Noise=0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Re−initializing population
 MoC=0.8; Noise=0.00

Fig. 7.6. Performance of different strategies when magnitude of change is 0.8. The
curve plots the predictive accuracy of the system.

terms of recovery time. XCS with this strategy requires as little as half of the
normal time needed to approach 100% accuracy. Because MoC is large, a large
portion of classifiers in the population becomes inaccurate. The traditional
XCS requires a long time to explore new rules and delete inappropriate rules
from the population. The increased learning rate in the adaptive learning
strategy speeds up the learning process of the system. Therefore, it helps the
system recover more quickly from changes in the underlying concepts.

Even with a faster learning process, XCS needs some time to re-evaluate
a number of inaccurate but high fitness classifiers. When MoC is large, the
number of affected classifiers is high, this re-evaluation time is big enough that
it is more effective to re-learn from scratch. In this case, the re-initializing
population strategy can be seen as the best approach.

The main disadvantage of the re-initializing population strategy is that
the system needs to be capable of detecting the concept change accurately
before the population is re-initialized. For recognizing the concept change,
the system depends on the user’s specified error threshold. An important
question is how to set the error threshold correctly. If the error threshold is

7 Evolutionary Online Data Mining 173

too high, the system may ignore small changes. If the threshold is low and
the data is noisy, it might cause false alarms, so the system may re-initialize
its population unnecessarily when there has not been a true concept change.
So noisy data might cause the population to be re-initialized frequently, and
hence knowledge is not able to accumulate during the learning.

In our experiments, it seems the system was able to detect concept changes
accurately with the proposed thresholds. However, depending on the nature
of the target problem, these thresholds need to be changed accordingly. In the
future, we plan to investigate an adaptive error threshold, which depends on
the performance degradation.

The re-initializing parameters strategy does not appear to work. It per-
forms no better than the other strategies when MoC is low, and performs worse
than the others when MoC is high. Re-initializing the parameters makes all
classifiers equally important in the population. Initially, we hoped that good
and bad classifiers will be identified faster, therefore speeding up the recovery
process. However, it might be harder to XCS to detect inaccurate classifiers
because the evaluation needs to start from scratch.

The next section will look into more details of noise and how these strate-
gies behave with different levels of noise.

7.7.2 The Effect of Noise

Figure 7.7 shows the performance of XCS with different strategies, when noise
is medium and the concept changes significantly. The performance of XCS in
all experiments could not reach 100% accuracy due the noise in the training
data. XCS requires a similar period of time to recover from the change, under
all strategies.

Unlike the previous subsection, when noise is incorporated in the training
data the re-initialized population strategy does not show better performance
than other strategies. This is because the error threshold was set to 0.4. With
noiseless data the error difference between before and after the concept change
is nearly 0.5, which is greater than the threshold. Thus, the system could
recognize the concept change. The noisy environment makes the error differ-
ence drop below 0.4. Therefore, the system cannot recognize the change, and
it behaves like the traditional XCS.

Figure 7.8 shows the performance of XCS with the different strategies,
when the noise level is 0.15 and a severe change occurs.

The adaptive learning strategy performs better than all other strategies.
The predictive curve of this learning strategy is steeper than the curves for the
other strategies. XCS becomes more flexible in adapting to a new environment.
By having an adaptive learning rate, XCS is able to detect useless classifiers
faster so that they can be eliminated as quickly as possible. Also, the useful
classifiers will be re-evaluated and become accurate more quickly, so they can
participate correctly in the decision making process.

174 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

The traditional XCS
 MoC=0.8; Noise=0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Adaptive learning
 MoC=0.8; Noise=0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Re−initializing parameters
 MoC=0.8; Noise=0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Re−initializing population
 MoC=0.8; Noise=0.05

Fig. 7.7. Magnitude of change is 0.8. Noise is 0.05. The curve plots the predictive
accuracy of the system.

In conclusion, the re-initializing population strategy outperforms all other
strategies in a noise free environment. The strategy depends on the error
threshold to recognize the concept change explicitly in order to response to
the change. The adaptive learning strategy seems to be better than other
strategies, when the noise level is high.

7.8 Conclusions

This chapter explored XCS in dynamic environments with different degrees of
concept change. We found that the conventional XCS is capable of recovering
quickly when dealing with small magnitudes of change. However, when the
magnitude of change is high, a long recovery time is required for the system
to achieve a stable performance.

We proposed three strategies, which aim to reduce the recovery time
of XCS after concept changes. We found that the re-initializing population

7 Evolutionary Online Data Mining 175

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

The traditional XCS
 MoC=0.8; Noise=0.15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Adaptive learning
 MoC=0.8; Noise=0.15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Re−initializing parameters
 MoC=0.8; Noise=0.15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

A
cc

ur
ac

y

Re−initializing population
 MoC=0.8; Noise=0.15

Fig. 7.8. Magnitude of change: 0.8, Noise: 0.15. The curve plots the predictive
accuracy of XCS.

strategy dramatically reduces recovery time in a noise free environment. The
adaptive learning approach is the next best.

We also investigated the effect of noise on recovery time after a concept
change. We have found out that adding small noise to the conventional XCS
requires a longer recovery time in comparison to medium noise. Also a very
noisy environment is a big challenge for XCS to perform accurately and re-
cover from a concept change. The adaptive learning strategy achieves a better
predictive performance when compared to other strategies.

In the future, we are interested in testing further our strategies on different
data sets from the UCI repository [13].

Acknowledgments

We would like to thank Stewart Wilson and Martin Butz for their valuable
comments. The research reported in this paper was funded by the Australian
Research Council Linkage grant number LP0453657.

176 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

References

1. H. A. Abbass, J. Bacardit, M. V. Butz, and X. Llora. Online Adaptation in
Learning Classifier Systems: Stream Data Mining. Illinois Genetic Algorithms
Laboratory, University of Illinois at Urbana-Champaign, June 2004. IlliGAL
Report No. 2004031.

2. J. Bacardit and M. V. Butz. Data Mining in Learning Classifier Systems: Com-
paring XCS with GAssist. Illinois Genetic Algorithms Laboratory, University of
Illinois at Urbana-Champaign, June 2004. IlliGAL Report No. 2004030.

3. E. Bernadó, X. Llorà, and J. M. Garrell. XCS and GALE: a comparative study
of two learning classifier systems with six other learning algorithms on classi-
fication tasks. In Proceedings of the 4th International Workshop on Learning
Classifier Systems (IWLCS-2001), pages 337–341, 2001. Short version published
in Genetic and Evolutionary Compution Conference (GECCO2001).

4. J. Branke. Evolutionary Optimization in Dynamic Environments, volume 3 of
Genetic Algorithms and Evolutionary Computation. Kluwer Academic Publish-
ers, 2002.

5. M. V. Butz. Rule-based Evolutionary Online Learning Systems: Learning
Bounds, Classification, and Prediction. PhD thesis, University of Illinois at
Urbana-Champaign, 2004.

6. M. V. Butz, T. Kovacs, P. L. Lanze, and S. W. Wilson. Toward a theory of
generalization and learning in XCS. IEEE Tranactions on Evolutionary Com-
putation, 7(6), 2003.

7. M. V. Butz and S. W. Wilson. An algorithmic description of XCS. In IWLCS
’00: Revised Papers from the Third International Workshop on Advances in
Learning Classifier Systems, pages 253–272. Springer-Verlag, 2001.

8. H. H. Dam, H. A. Abbass, and C. Lokan. DXCS: an XCS system for distrib-
uted data mining. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO-2005, Washington D.C., USA, 2005.

9. H. H. Dam, H. A. Abbass, and C. Lokan. Investigation on DXCS: An XCS
system for distribution data mining, with continuous-valued inputs in static
and dynamic environments. In Proceedings of IEEE Cogress on Evolutionary
Computation, Edinburgh, Scotland, 2005.

10. K. A. De Jong, W. M. Spears, and D. F. Gordon. Using genetic algorithms for
concept learning. Machine Learning, 13(2-3):161–188, 1993.

11. S. Delany, P. Cunningham, A. Tsymbal, and L. Coyle. A case-based technique
for tracking concept drift in spam filtering. Journal of Knowledge Based Systems,
18(4–5):187–195, 2005.

12. P. W. Dixon, D. Corne, and M. J. Oates. A preliminary investigation of mod-
ified XCS as a generic data mining tool. In Advances in Learning Classifier
Systems: 4th International Workshop, IWLCS, pages 133–150. Berlin Heidel-
berg: Springer-Verlag, 2001.

13. C. B. D. J. Newman, S. Hettich and C. Merz. UCI repository of machine learning
databases. University of California, Irvine, Department of Information and Com-
puter Sciences. http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998.

14. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. From data
mining to knowledge discovery: An overview. In Advances in Knowledge Dis-
covery and Data Mining, pages 1–36. The MIT Press, 1996.

15. D. E. Goldberg. Computer-Aided Gas Pipeline Operation using Genetic Algo-
rithms and Rule Learning. PhD thesis, The University of Michigan, 1983.

7 Evolutionary Online Data Mining 177

16. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addision-Wesley Publishing Company, INC., 1989.

17. M. B. Harries, C. Sammut, and K. Horn. Extracting hidden context. Machine
Learning, 32(2):101–126, 1998.

18. J. H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975. Republished by the MIT press, 1992.

19. J. H. Holland. Escaping Brittleness: The Possibilities of General-Purpose Learn-
ing Algorithms Applied to Parallel Rule-Based Systems. In Mitchell, Michalski,
and Carbonell, editors, Machine Learning, an Artificial Intelligence Approach.
Volume II, chapter 20, pages 593–623. Morgan Kaufmann, 1986.

20. J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive algo-
rithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern-directed In-
ference Systems. New York: Academic Press, 1978. Reprinted in: Evolutionary
Computation. The Fossil Record. David B. Fogel (Ed.) IEEE Press, 1998. isbn:
0-7803-3481-7.

21. R. Klinkenberg and T. Joachims. Detecting concept drift with support vector
machines. In ICML ’00: Proceedings of the Seventeenth International Conference
on Machine Learning, pages 487–494, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

22. J. Kolter and M. Maloof. Dynamic weighted majority: A new ensemble method
for tracking concept drift. In Proceedings of the Third IEEE International Con-
ference on Data Mining, pages 123–130, Los Alamitos, CA, 2003. IEEE Press.

23. T. Kovacs. XCS classifier system reliably evolves accurate, complete, and min-
imal representations for boolean functions. In C. Roy and Pant, editors, Soft
Computing in Engineering Design and Manufacturing (WSC2), pages 59–68.
Springer-Verlag, 1997.

24. T. Kovacs. Two views of classifier systems. In Fourth International Workshop
on Learning Classifier Systems - IWLCS-2001, pages 367–371, San Francisco,
California, USA, 7 2001.

25. P. L. Lanzi and M. Colombetti. An extension to the XCS classifier system for
stochastic environments, 1999.

26. S. Saxon and A. Barry. XCS and the Monk’s problems. In Learning Classifier
Systems, From Foundations to Applications, pages 223–242, London, UK, 2000.
Springer-Verlag.

27. J. C. Schlimmer and D.H. Fisher. A case study of incremental concept induction.
In Proceedings of the Fifth National Conference on Artificial Intelligence, pages
496–501, Philadelpha, PA, 1986. Morgan Kaufmann.

28. S. F. Smith. A Learning System Based on Genetic Adaptive Algorithms. PhD
thesis, University of Pittsburgh, 1980.

29. C. Stone and L. Bull. For real! XCS with continuous-valued inputs. Evolutionary
Computation, 11(3):299–336, 2003.

30. W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-
scale classification. In KDD ’01: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 377–
382, New York, NY, USA, 2001. ACM Press.

31. H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams
using ensemble classifiers. In KDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 226–
235, New York, NY, USA, 2003. ACM Press.

178 Hai H. Dam, Chris Lokan, and Hussein A. Abbass

32. G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden
contexts. Machine Learning, 23(1):69–101, 1996.

33. S. W. Wilson. Knowledge Growth in an Artificial Animal. In Proceedings of the
First International Conference on Genetic Algorithms and their Applications,
pages 16–23. Lawrence Erlbaum Associates, 1985.

34. S. W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation,
3(2):149–175, 1995.

35. S. W. Wilson. Generalization in the XCS classifier system. In J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon,
D. E. Goldberg, H. Iba, and R. Riolo, editors, Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages 665–674, University of
Wisconsin, Madison, Wisconsin, USA, 1998. Morgan Kaufmann.

36. S. W. Wilson. Get real! XCS with continuous-valued inputs. In P. Lanzi,
W. Stolzmann, and S. Wilson, editors, Learning Classifier Systems, From Foun-
dations to Applications, LNAI-1813, pages 209–219, Berlin, 2000. Springer-
Verlag.

8

Adaptive Business Intelligence: Three Case
Studies

Zbigniew Michalewicz1, Martin Schmidt2, Matthew Michalewicz2, and
Constantin Chiriac2

1 School of Computer Science, University of Adelaide, Adelaide, SA 5005,
Australia, also with Institute of Computer Science, Polish Academy of Sciences
and Polish-Japanese School of Information Technology, Warsaw, Poland
zbyszek@cs.adelaide.edu.au

2 SolveIT Software, PO Box 3161, Adelaide, SA 5000, Australia
{ms,mm,cc}@solveitsoftware.com

Summary. This chapter contains a general discussion on the prediction and op-
timization issues present in dynamic environments, and explains the ideas behind
Adaptive Business Intelligence. The chapter also presents three diverse case studies.
The first deals with pollution control, the second one with ship navigation, and the
third one with car distribution. All these problems are set in dynamic environments;
all three problems require some level of prediction (prediction of weather for pollu-
tion optimization, prediction of paths for unidentified ships at sea, and prediction
of prices for cars sold at different auction sites). All these problems also require
optimization for recommending the best course of action.

8.1 Introduction

Every problem has an objective. Usually, this is a general statement describ-
ing what we are looking for. The objective defines the goal (or set of goals3)
for a particular problem. These goals are translated into evaluation functions,
which provide mappings from the solution space to a set of numbers. Thus,
evaluation functions assign numeric values for each solution for each specified
goal.

Evaluation functions (for single-objective problems) or a set of evaluation
functions (for multi-objective problems) are key components of any heuristic
method (whether genetic algorithms, tabu search, simulated annealing, ant
system, or even simple hill-climbers), as they define the connection between
the method and the problem. By assigning a numeric quality measure to

3 The objective may consist of several goals, thus making the problem multi-
objective. Note, some confusing terminology: a problem, where the objective con-
sists of a few goals, is called a multi-objective problem.

Z. Michalewicz et al.: Adaptive Business Intelligence: Three Case Studies, Studies in Compu-

tational Intelligence (SCI) 51, 179–196 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

180 Z. Michalewicz, M. Schmidt, M. Michalewicz, and C. Chiriac

each solution, evaluation functions allow comparison between the quality of
various candidate solutions. Note that evaluation functions may return just
the rank of a candidate solution among a set of solutions, a precise number
(when the evaluation function is defined as a closed formula), or they may
include various components (as penalty expressions for cases when a candidate
solution violates some problem-specific constraints).

Many real world problems are set in uncertain (possibly changing) en-
vironments. There is a general agreement [2] that such uncertainties can be
categorized into four classes: (1) noise, (2) robustness, (3) approximation, and
(4) time-varying environments. Consequently, evaluation functions should be
modified accordingly to deal with each particular case. However, it seems that
the above classification misses the most important (and probably most fre-
quent) real world scenario: namely, where the evaluation functions are based
on predictions of the future values of some variables. Using case studies, we
illustrate three such scenarios, expose the similarities between them, and we
suggest a system architecture (called Adaptive Business Intelligence) to deal
with such problems.

This chapter is organized as follows: The next section provides a brief
overview of four categories of uncertainties and introduces a new category,
where the evaluation functions are based on predictions of some variables.
The next three sections present three case studies: optimisation of pollution in
Poland, path planning (ship navigation), and car distribution. We then discuss
the common characteristics of these case studies, and propose an Adaptive
Business Intelligence architecture to deal with such problems. The last section
concludes this chapter.

8.2 Uncertain Environments

As mentioned in the Introduction, uncertain (and possibly changing) envi-
ronments are usually categorized into four classes: (1) noise, (2) robustness,
(3) approximation, and (4) time-varying environments. Before we present and
discuss the fifth category, and argue that this fifth category is the most com-
mon in real word situations, let’s first discuss the main features of these four
categories.

Noise. Sometimes evaluation functions are subject to noise. This happens
when evaluation functions return sensory measurements or results of ran-
domised simulations. In other words, the evaluation procedure for the same
solution (i.e., the solution defined as a vector of some design variables) may
return different values. The common approach in such scenarios is to ap-
proximate a noisy evaluation function eval by an averaged sum of several
evaluations:

eval(x) = 1/n
n∑

i=1

(f(x) + zi), (8.1)

8 Adaptive Business Intelligence: Three Case Studies 181

where x is a vector of design variables (i.e., variables controlled by a method),
f(x) is the evaluation function, zi represents additive noise, and n is the
sample size. Note that the only measurable (returned) values are f(x) + z.

Robustness. Sometimes design variables, other variables, or constraints of
the problem are subject to perturbations after the solution is determined.
The general idea is that such (slightly modified) solutions should have quality
evaluations (thus making the original solution robust). This is important in
scenarios involving manufacturing tolerances, or when it is necessary to mod-
ify the original solution because of employee illness or machine failure. The
common approach to such scenarios is to use evaluation function eval based on
the probability distribution of possible disturbances δ, which is approximated
by Monte Carlo integration:

eval(x) = 1/n

n∑
i=1

f(x + δi). (8.2)

Note that eval(x) depends on the shape of f(x) at point x; in other words,
the neighbourhood of x determines the value of eval(x).

Approximation. Sometimes it is too expensive to evaluate a candidate so-
lution. In such scenarios, evaluation functions are often approximated based
on experimental or simulation data (the approximated evaluation function is
often called the meta-model). In such cases, evaluation function eval becomes:

eval(x) = f(x) + E(x), (8.3)

where E(x) is the approximation error of the meta-model. Note that the
approximation error is quite different than noise, as it is usually deterministic
and systematic.

Time-varying environments. Sometimes evaluation functions depend on
an additional variable: time. In such cases, evaluation function eval becomes:

eval(x) = f(x, t), (8.4)

where t represents the time variable. Clearly, the landscape defined by the
function f changes over time; consequently, the best solution may change its
location over time. There are two main approaches for handling such scenarios:
(1) to restart the method after a change, or (2) require that the method is
capable of chasing the changing optimum.

However, it seems the largest class of real world problems is not included
in the above four categories. From our business/industry experience of the last
decade, it is clear that in many real world problems the evaluation functions

182 Z. Michalewicz, M. Schmidt, M. Michalewicz, and C. Chiriac

are based on the predicted future values of some variables. In other words,
evaluation function eval is expressed as:

eval(x) = f(x, P (x,y, t)), (8.5)

where P (x,y, t) represents an outcome of some prediction for solution vector
x and additional (environmental, beyond our control) variables y at time t.
Let’s compare this category with the four categories defined earlier to see the
differences between them.

First of all, noise may or may not be involved. If the prediction model
is deterministic, then there is no noise in the scenario: every solution vec-
tor x is evaluated to the same value. On the other hand, if the prediction
model involves simulations, noise might be present. Second, the meaning of
robustness is quite different. Unexpected disturbances (e.g., delays) influence
the outcomes of the prediction model, and should be handled accordingly.
Third, the concept of approximation is different. Note, that we can evaluate
a candidate solution precisely (i.e., the evaluation function is not expensive),
however, approximation is connected with uncertainties of the predictions. Fi-
nally, the time-changing environment also has a different meaning. As the real
world changes, the prediction model needs constant updates and/or parameter
adjustments, thus changing the problem landscape in an implicit way.

In the following three sections we illustrate this particular category of
real world problems by providing three case studies. It is important, how-
ever, to keep in mind that many other business problems clearly fall into this
category: from inventory control problems (where it is necessary to forecast
demand), through marketing problems (where it is necessary to predict the
ratings of some programs several weeks ahead of time), to portfolio manage-
ment problems (where it is necessary to predict some economic variables).
All of these examples share the common characteristic: optimization of the
evaluation function is based on some prediction model. This also means that
the quality of the results provided by the optimizer depends on the quality
of the prediction model: there is no point in optimising anything if the pre-
dictions are bad to begin with! These three case studies briefly describe three
diverse problems and illustrate (in general terms) solutions based on Adaptive
Business Intelligence (we will return to these concepts towards the end of this
chapter).

8.3 Case Study #1: Pollution Control

This case study is based on a “pollution control” research project [5] com-
pleted during late 1990s. The main objective of this project was to reduce
the ecological damage caused by 132 power stations in Poland. To solve this
challenging problem, a system was developed to control the production and

8 Adaptive Business Intelligence: Three Case Studies 183

distribution of energy. The system included data on emission sources, at-
mospheric pollution dispersion, deposition models, as well as the ecosystem’s
capacity to sustain high levels of pollution.

To create a precise model of Poland (which has an approximate land area
of 900 km by 750 km), a computational grid with a spatial resolution of 30 km
by 30 km was used. This model considered three groups of emission sources:
1) sources from abroad (mainly from Germany and the Czech Republic);
2) Polish sources from the private sector; and 3) Polish sources from the public
sector. The first two groups of SO2 concentrations were defined as background
concentrations, as the system did not control these sources (it only controlled
the third group). However, the resulting concentration of SO2 in each square
of the computational grid was the sum of both of the background concentra-
tion and the concentration caused by the third group.

To find the optimal production level for each power station, an evolu-
tionary algorithm was used. This optimisation technique was extended with
memory structures, which were particularly useful for “remembering” past
patterns. The system based its recommendations (i.e., the optimal energy
production level for each power station) on weather forecasts for the following
five days. When new weather reports and forecasts became available (every
four hours), the system incorporated this new information thus changing the
problem landscape. However, “chasing” the optimum was not straightforward
because of problem-specific constraints: drastic changes in energy production
levels are cost prohibitive.

Several experiments with real data (meteorological data and weather fore-
casts, and emission data for selected summer and winter periods) were con-
ducted using this new system. Actual pollution levels were calculated for the
preceding year, and then the optimization process was applied to this his-
torical data and the results were compared with the actual, non-optimized
production schedules. From these experiments, the following conclusions were
drawn: The amount of produced energy was equal in both cases, the aggre-
gate operating cost was also equal in both cases, but the ecological damage
in Poland was substantially less (12-15%) when the optimization process was
applied. A “savings” of 12-15% in ecological damage is a tremendous result,
especially when one considers that human lives are at risk in this particu-
lar problem. As indicated at the beginning of this section, similar “savings”
can be realized in other problem areas, even if the problem particulars are
substantially different.

The simplest way to present the results of this system is through a graphi-
cal interfaces that compares the optimised solutions with non-optimized solu-
tions (see Figure 8.1). The left-hand-side map shows the non-optimized results
for ecological damage in Poland, while the right-hand-side map shows the op-
timized results for the same time period. Clearly, there are fewer dark squares
on the right-hand-side (optimized) map. This is reflected in the concentration
and emission numbers shown at the bottom of the screen. It is important to
note that the system achieved these lower pollution levels while maintaining

184 Z. Michalewicz, M. Schmidt, M. Michalewicz, and C. Chiriac

the same power production output of approximately 23,849 megawatts per
hour.

Fig. 8.1. Graphical interface for pollution control system

As the weather forecast provided precise values of temperatures, humidity,
pressures, wind velocity and directions, cloud coverage and levels, etc., the
problem was not noisy. Robustness of the solution has a different flavour
however, as it was connected with uncertainties in the forecasting; thus the
evaluation function was:

eval(x) = 1/n

n∑
i=1

f(x, P (x,y + δi, t)), (8.6)

where δi represents possible disturbances in accuracy of weather forecasts. Ap-
proximation was not the issue, as no meta-model was built. A time-changing

8 Adaptive Business Intelligence: Three Case Studies 185

environment was implied by the forecasting model, which received new in-
formation at regular intervals. However, the algorithm did not follow “the
moving peak” of a dynamic landscape (which is the focus of the majority of
research papers in this area, see [1, 8, 12]), but rather, it tried to find a pro-
duction pattern that satisfied problem-specific constraints, kept production
cost at the same level, and minimized ecological damage over the next few
days.

8.4 Case Study #2: Path Planning

This case study is based on an ongoing project that started in the mid-1990s
for the Gdynia Maritime University in Poland [9]. The problem can be des-
cribed as follows: A ship sails in an environment with natural constraints (e.g.,
lands, canals, shallow waters), and other constraints resulting from formal
regulations (e.g., traffic restricted zones, fairways, etc.). These constraints are
assumed to be stationary and are defined by polygons-in a similar manner to
those used in creating electronic maps.

When sailing in a stationary environment, a ship (called “own ship”) meets
other sailing ships (called “strange ships” or “targets”), some of which con-
stitute a collision threat. The degree of the collision threat with dangerous
targets is not constant and depends on the approach parameters: Distance at
Closest Point of Approach and Time of Closest Point of Approach, as well
as the speed ratio of both ships and the distance and bearing of the target.
It is assumed that the dangerous target has appeared in the area of obser-
vation and can cross the predicted course of the own ship at a dangerous
distance. Actual values of this distance depend on the assumed time horizon.
The ranges of five to eight nautical miles in front of the bow, and two to four
nautical miles behind the stern of the ship are assumed. The threatening tar-
gets are interpreted as having dangerous paths and speeds as determined by
the Automatic Radar Plotting Aids (ARPA) system. The moving constraints
represent the approaching ships, and the shape of each constraint depends
on the safety conditions (on an assumed value of the safe approach distance,
assumed safe distance, speed ratio, and bearing of the moving target).

The operator selected a safe distance on the basis of weather conditions,
sailing area, and speed of the ship. When planning the safe trajectory, the
system should take into account both the fixed constraints, and the areas of
danger represented by the moving targets, which dynamically change their
locations. Figure 8.2 displays model of the environment where:

• fixed navigation constraints are modelled using convex and concave poly-
gons,

• moving targets are modelled as moving hexagons,
• the dimensions of the own ship are neglected due to the small length of the

own ship with respect to the maximum length of the areas representing
the moving targets.

186 Z. Michalewicz, M. Schmidt, M. Michalewicz, and C. Chiriac

Fig. 8.2. A sample environment

According to transport plans, the own ship should cover a given route in
some assumed time. On the other hand, it has to move along a given tra-
jectory safely (i.e., it must avoid navigation obstacles and cannot come too
close to other moving targets). Estimating a ship’s trajectory in a collision
situation represents a difficult trade-off between a necessary deviation from
a given course and the safety of sailing. Hence, this is a multi-criterion plan-
ning problem, which takes into account the safety and economy of the ship’s
motion.

Many simulation experiments were conducted for this problem. For ex-
ample, figure 8.3 represents the navigational situation in which the own ship
passes around three islands and four moving targets coming from different
directions and at different speeds.

The speed of the own ship was defined as equal to 3.6, 8.6, or 13.6 knots.
The progress of trajectory adaptations is shown above after 200, 500, and
1,000 generations, respectively. As with the pollution optimiser, evolutionary
algorithms were used to evolve the optimal trajectory for the own ship. Moving
along the determined trajectory with changing speed, the own ship can sail
in between the islands and pass the targets in front of their bows or behind
their sterns. The ship speed is changed along subsequent trajectory sections.
Initially, the ship reduces the speed to pass the first two targets and then, after
sailing in between the islands, it increases the speed to pass Target 3 and 4, at
the same time making it possible to reach the final destination in the shortest
time. The execution of the proposed solution gives the optimum trajectory

8 Adaptive Business Intelligence: Three Case Studies 187

Fig. 8.3. Evolution of paths for particular environment with four moving targets

with respect to safety and economic criteria. Many additional experiments
were reported in [9] and [10].

In this case study, the prediction model assumed that the target ships
would continue on their courses at their current speeds. Because the model
returned precise values (directions and speeds of target ships), the problem
was not noisy. Robustness of the solution had a different flavour once again,
as it was connected with uncertainties of external events (e.g., small changes
of directions and speeds of target ships). Thus:

eval(x) = 1/n

n∑
i=1

f(x, P (x,y + δi, t)), (8.7)

where δi represented possible disturbances in the accuracy of external vari-
ables. Approximation was not an issue, as no meta-model was built. A time-
changing environment was implied by the changes in speed and direction of
target ships.

188 Z. Michalewicz, M. Schmidt, M. Michalewicz, and C. Chiriac

8.5 Case Study #3: Car Distribution System

This case study is based on a software project completed in 2002 for a major
car leasing company in United States [6]. The problem was to recommend
the best distribution of “off-lease” cars (which are returned to the company
after the lease term is over) to many available auction sites. By “best distri-
bution,” we mean a distribution that maximizes the net total proceeds from
all these cars. Many issues have to be considered in the process of finding the
optimal solution to this problem, including price predictions for the various
types of cars at different auction sites, price depreciation, volume effects, and
transportation costs.

A leased car is owned by a finance company, which gets the car back at
the end of the lease term. Each car is different, and these differences include
make and model, mileage, model year, colour, type of transmission, body style
and options, wear and tear (i.e., the damage level), etc. There are hundreds of
auction sites around the United States, and each off-lease car has to be sold
at one of them. The characteristics listed above (plus some others) influence
the sale price of a car at each particular location. The central question is,
Where should each car be sent to maximize the total proceeds from all these
auctions sales?

Fig. 8.4. Cars to be distributed (darker circles) and 50 auction sites (lighter circles)

Figure 8.4 illustrates the case (for a particular day of operation). The darker
circles illustrate areas where the leased cars were returned on a particular day.

8 Adaptive Business Intelligence: Three Case Studies 189

The larger the circle, the more cars were returned in that area (clearly, most
cars were returned in the eastern side of the United States). Note that the
distribution of cars would look different each day, as people and organizations
will return their cars at different locations. The lighter circles, on the other
hand, illustrate 50 auction sites that are available for sending the off-lease
cars to. The locations of these auction sites are fixed: they are the same every
day for any number of returned cars.4 At the first glance, the problem may
look easy. One might be tempted just take one car at a time, consult some
report5 to find the average sale price for this particular type of car (remember
to adjust the price for mileage, options, etc.) at each particular auction, and
decide to send the car to the auction with the highest average sale price. Of
course, the transportation cost should also be taken into account (usually, the
longer distance, the higher cost), but all these calculations are manageable.
However, there are other issues that must be taken into account:

• Transportation. When a whole truckload of cars is shipped from one lo-
cation to another, the company is charged a cheaper rate. Therefore, it is
important to take into account the number of cars that are transported
on each truck.

• Risk factors. Cars can be damaged, stolen, or the transportation truck
might be involved in an accident. Longer trips also increase the probability
of a delay, and the solution must take this into account.

• Volume sensitivity effect. If many cars of the same type are sent to the
same auction site, then the volume effect applies: oversupply of a partic-
ular type of a car will decrease its price.

• Size of the search space. The distribution of 4,000 cars to 50 auction
sites gives us 504000 possible distributions, which is much larger than the
estimated numbers of atoms in the Universe.

• Price depreciation. Every auction site has a typical sale day (e.g., every
Wednesday at 10 am, or every second Thursday at 11am). If some cars
arrive one day after the sale date, then they will have sit at the auction site
for one or two weeks (until the next sale date) and the price depreciation
is often around $10 per day, per average car.

• Recent history. When making a recommendation, all decisions made dur-
ing the past few weeks must be taken into account. Many of these cars

4 Although the locations of the 50 auction sites are fixed, the company may change
the sites it does business from time to time by dropping some sites and adding
new ones (thereby changing the layout of the 50 yellow circles). This may happen
if the cars are routinely damaged at some sites, auction fees go up, or some other
reason. However, these decisions raise several additional questions, such as: How
do we evaluate the monetary impact of dropping some sites and adding others?
and, Can we increase profits by replacing some auction sites with others? These
are important considerations and we will address them later in the chapter.

5 There are plenty of such reports, including Black Book, Kelly Blue Book, Manheim
Auction Report, etc.

190 Z. Michalewicz, M. Schmidt, M. Michalewicz, and C. Chiriac

may still be in transit, and if they are going to the same auction site, then
they might be sold on the same day.

• Inventory. It is important to monitor the inventory level of cars at all
auction sites, as each site has a particular throughput: If an auction can
handle 250 cars per sale day, and the current inventory is larger than 250,
then additional time should be added to the estimated sale date.

• Dynamic market changes. Market prices for cars change quite frequently;
sometimes slowly and sometimes very quickly. Leasing companies (like
most businesses) operate in a non-stationary environment that is influ-
enced by many external factors, such as: (1) seasonality (e.g., it is not
easy to sell convertibles in New York during the wintertime), (2) the ar-
rival of new models (e.g., new models enter the marketplace in August,
influencing the price of older models), and (3) weather (which influences
the number of dealers present at an auction, which in turn influences the
sale price). Business rules. It is essential to accommodate various business
rules that can be added or dropped at any time (e.g., “do not send any
red cars to South-East auctions”). This feature is important for analysing
what-if scenarios.

• Business rules. It is essential to accommodate various business rules that
can be added or dropped at any time (e.g., “do not send any red cars
to south-east auctions”). This feature is important for analysing what-if
scenarios.

Because the market price for various cars changes quite frequently, it is im-
portant to stay up-to-date with the current auction prices (which may change
from one day to the next). This makes the decision process more difficult.
Furthermore, car prices may change in different regions in different ways. For
example, it is not easy to sell a convertible Corvette in Boston in the fall, but
it might be an excellent idea to sell the car in Florida since the temperature
is becoming just right for a convertible (this is referred to as the seasonality
effect). It is also necessary to deal with new models entering the market each
year (typically in August), and every few years a new body style is introduced
for particular make/models, which can cause an even bigger price drop for the
older body styles. Also note that it takes time to transport a specific car to
a specific auction site. The truck has to get there, pick up the car, pick up
additional cars (possibly somewhere close by), and then, finally, drive the cars
to the assigned auction site. This can take two weeks or more, during which
time the auction prices might have already changed. Hence, the sale price for
all cars should be estimated a couple of weeks ahead of time (for some auction
sites), while taking seasonality and market changes into account. Clearly, the
quality of the solution found by the optimiser (again, evolutionary algorithms
were used for this purpose) depends on quality of the sale price predictions
for the off-lease cars.

Figure 8.5 displays a report showing the distribution of cars grouped by
auction site. It shows all the cars distributed by the software, specifying the

8 Adaptive Business Intelligence: Three Case Studies 191

distribution centre, recommended auction site, predicted sale price, trans-
portation cost, net price lift, and other data. The lift is calculated as the
difference between the predicted net price of the vehicle if sent to the rec-
ommended auction site, and the net price and the net price for the standard
solution (which is based on expert rules that were developed by business man-
agers over the years).

Fig. 8.5. The recommended distribution of cars; report screen

This Adaptive Business Intelligence system helps the remarketing team
with decisions on the daily, near-optimal distribution of cars. As discussed ear-
lier, the problem is extremely complex and the implemented system addresses
the issues of transportation, volume effect, price depreciation, recent history,
current inventory, risk factors, and dynamic market changes. As mentioned
earlier in the chapter, this software was successfully installed as a production
system in 2002. It has been used since then on a daily basis to recommend the
best distribution of cars and generates a significant sales lift (multi-million
dollars per year).

As with the pollution control problem, the prediction model returned pre-
cise values (sale prices of cars for various distributions of these cars over many
auction sites), thus the problem was not noisy. Robustness of the solution
also had a different flavour, as it was connected with uncertainties of external
events (e.g., delay of a truck). Thus:

192 Z. Michalewicz, M. Schmidt, M. Michalewicz, and C. Chiriac

eval(x) = 1/n

n∑
i=1

f(x, P (x,y + δi, t)), (8.8)

where δi represents possible disturbances in accuracy external variables (e.g.,
the constant time to deliver between points A and B can be disturbed by
unexpected weather patterns and/or truck failures). Approximation was not
an issue, as no meta-model was built. A time-chaining environment was im-
plied again by the prediction model, which received new information (new
sale records of cars) at regular intervals.

8.6 Adaptive Business Intelligence

Adaptive Business Intelligence is the discipline of using prediction and op-
timisation techniques to build self-learning “decisioning” systems. Adaptive
Business Intelligence systems include elements of data mining, predictive mod-
elling, forecasting, optimisation, and adaptability, and are used by business
managers to make better decisions. The implementation of Adaptive Business
Intelligence assumes the existence of a few key modules that interact with
each other other. We discuss them in turn.

The prediction module, in general, generates a predicted output based
upon some input (see Figure 8.6).

Fig. 8.6. Prediction module

There are many techniques for constructing a prediction model, from clas-
sic forecasting methods [3]) to modern heuristic methods, such as neural net-
works, evolutionary programming, and genetic programming [4, 13]. A recent
study [11] investigated the development of a new dynamic genetic program-
ming model specifically tailored for prediction in time-changing environments.
The model incorporated methods to automatically adapt to changes in the
environment, as well as retain knowledge learned from previously encountered
environments. A similar approach was proved to be effective in the price pre-
diction module of the car distribution system.

Next, the optimisation module has to be capable of recommending the
best answer. Note, that the optimisation module’s recommendation is based
on the prediction module’s output, so there is a strong relationship between
the prediction and optimization modules. The overall concept is displayed in
Fig. 8.7.

What happens here is that the optimization module generates some pos-
sible solutions to the problem at hand (e.g., creates a possible distribution of

8 Adaptive Business Intelligence: Three Case Studies 193

Fig. 8.7. Prediction and optimization modules

cars to the auction sites), which serves as input data for the prediction module.
The predicted output data is then used evaluate the generated answers. In
other words, the optimisation module tries different input data combinations
in order to find the best predicted output.

Developing effective prediction and optimization modules is a great start,
but by themselves, they are not sufficient in today’s constantly changing envi-
ronment. Because today’s accurate prediction might be inaccurate tomorrow,
the prediction module must be capable of “learning from” and “adapting to”
changes in the environment. Adaptability can be accomplished by slightly
changing the learned relationship between input and output each time it
is needed. This could be every minute, hour, day, week, month, or for any
other time period. The update frequency depends on how fast the environ-
ment changes. Some classic forecasting methods (e.g., exponential smoothing
methods) [3] approach this problem by putting more emphasis on more recent
data. However, a really good adaptive solution can make its own decision on
the frequency of update: it will continuously measure its own prediction errors
and adjust its parameters. Hence, a really good adaptive system would adapt
its own speed of adaptation!

Fig. 8.8. Adaptation and prediction modules

194 Z. Michalewicz, M. Schmidt, M. Michalewicz, and C. Chiriac

Figure 8.8 illustrates the adaptation process. The recent input and recent
output are taken from very recent history, and historic data is used to con-
struct and train the prediction module. The adaptability module would take
the recent input and output and, if necessary, adapt the parameters of the
prediction module to decrease the prediction error-in other words, to adapt
the prediction module to changes in the environment so it can make better
predictions in the future.

The prediction, optimization, and adaptability modules are the core com-
ponents of an Adaptive Business Intelligence system. However, this does not
mean that other components are not important (e.g., an easy-to-use graphical
user interface, a database for storing information). Thus, the overall structure
of an Adaptive Business Intelligence system resembles the diagram of Fig. 8.9.

Fig. 8.9. Architecture of Adaptive Business Intelligence system

In all three case studies, we have seen examples of these modules at work.
The prediction module was responsible for predicting car prices (cars distri-
bution system) and the trajectory of target ships (path planning). The opti-
mization module was responsible for recommending the production levels of
132 power stations (pollution control), the distribution of cars from collection
points to auction sites (car distribution system), and optimal ship trajectories
(path planning). Finally, the adaptability module was present in car distri-
butionsystem, where it was responsible for adapting the various parameters

8 Adaptive Business Intelligence: Three Case Studies 195

of the prediction model to tune its performance. Furthermore, in all three
cases, there were reporting and visualization modules incorporated into the
final software, which interfaced with historical databases.

8.7 Conclusions

Adaptive Business Intelligence addresses the two fundamental questions that
are of the utmost importance for all people, businesses, and government agen-
cies. These are:

• What is likely to happen in the future?
• What is the best course of action?

Whether we realize it or not, these two questions pervade our everyday lives -
both on a personal and professional level. When driving to work, for instance,
we have to make a traffic prediction before we can choose the quickest driving
route. At work, we need to predict the demand for our product before we
can decide how much to produce. And before investing in a foreign market,
we need to predict future exchange rates and economic variables. It seems
that regardless of the decision being made or its complexity, we first need to
make a prediction of what is likely to happen in the future, and then choose
the best course of action based on that prediction. This fundamental process
underpins the basic premise of Adaptive Business Intelligence.

It is clear that effective solutions for complex business problems require
software that is capable of operating in time-changing environments and de-
tecting current trends, and which can recommend near-optimum solution and
Through the concept of adaptability, a software system can also learn and
adapt by evaluating the actual outcome of each decision made. This gives
enterprises the ability to monitor business trends, evolve and adapt quickly as
situations change, and make intelligent decisions on uncertain and incomplete
information [7].

The main research issue is connected with investigating the properties of
an Adaptive Business Intelligence system, where the evaluation function is
based on predictions of the future values of some variables. In other words,
evaluation function eval is expressed as:

eval(x) = f(x, P (x,y, t)), (8.9)

where P (x,y, t) represents an outcome of some prediction for solution vector
x and additional (environmental, beyond our control) variables y at time t.
This was the case to various extents-for pollution control, which was based
on weather prediction, path planning, which was based on the prediction
of target movements, car distribution, which was based on the prediction
of sale prices, as well as various other problems: inventory control problems
(which are based on demand forecasts), media problems (which are based on

196 Z. Michalewicz, M. Schmidt, M. Michalewicz, and C. Chiriac

TV rating predictions), portfolio management problems (which are based on
economic predictions), and so forth. Furthermore, in the formulation of the
problem, we should also take into account dynamic constraints and multiple
objectives.

References

1. J. Branke. Evolutionary Optimization in Dynamic Environments, Kluwer, 2001.
2. Y. Jin, and J. Branke, Evolutionary Optimization in Uncertain Environments

A Survey, IEEE Transactions on Evolutionary Computation, Vol.9, No.3, June
2005, pp. 303-317.

3. S. Makridakis, S.C. Wheelwright, and R.J. Hyndman, Forecasting. Methods and
Applications, Wiley, 1998.

4. Z. Michalewicz and D.B. Fogel, How to Solve It: Modern Heuristics, 2nd edition,
Springer, Berlin, 2004.

5. M. Michalewicz, Juda-Rezler, K., Trojanowski, K., Matuszewski, A.,
Michalewicz, Z., Trojanowski, M., Evolutionary Real-Time Optimization Sys-
tem for Ecological Power Control, Proceedings of the Nineth International
Symposium on Intelligent Information Systems IIS’2000), Bystra, Poland,
June 13 – 17, 2000, in Advances in Soft Computing, Physica-Verlag, pp.
227-242, 2000.

6. Z. Michalewicz, M. Schmidt, M. Michalewicz, C. Chiriac, A Decision-Support
System based on Computational Intelligence: A Case Study, IEEE Intelligent
Systems, Vol.20, No.4, July-August 2005, pp. 4449.

7. Z. Michalewicz, M. Schmidt, M. Michalewicz, C. Chiriac, Adaptive Business
Intelligence, Springer, Berlin, 2006.

8. R.W. Morrison, Designing Evolutionary Algorithm for Dynamic Environments,
Springer-Verlag, Berlin, 2004.

9. R. Smierzchalski and Michalewicz, Z., Modeling of Ship Trajectory in Collision
Situations by an Evolutionary Algorithm, IEEE Transactions on Evolutionary
Computation, Vol.4, No.3, pp. 227-241, 2000.

10. R. Smierzchalski and Z. Michalewicz, Path Planning in Dynamic Environ-
ments, chapter in Innovations in Machine Intelligence and Robot Perception,
S. Patnaik, L.C. Jain, S.G. Tzafestas, and V. Banoore (Eds), Springer, 2005.

11. N. Wagner, Z. Michalewicz, M. Khouja, and R.R. McGregor, Time Series Fore-
casting for Non-static Environments: the DyFor Genetic Program Model, to
appear in IEEE Transactions on Evolutionary Computation, 2006.

12. K. Weicker, Evolutionary Algorithms and Dynamic Optimization Problems, Der
Andrere Verlad, Berlin, 2001.

13. S.M. Weiss and N. Indurkhya. Predictive Data Mining, Morgan Kaufmann, San
Francisco, 1998.

9

Evolutionary Algorithms for Combinatorial
Problems in the Uncertain Environment
of the Wireless Sensor Networks

Frederico Paiva Quintão, Fab́ıola Guerra Nakamura, and Geraldo Robson
Mateus

Computer Science Department, Universidade Federal de Minas Gerais (UFMG)
Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
{fred,fgnaka,mateus}@dcc.ufmg.br

Summary. This chapter presents basic concepts on the recent technology of the
Wireless Sensor Networks (WSNs) and discusses some problems that arise in this
new kind of ad-hoc network. Mathematical formulations and evolutionary algorithms
are provided to support the network manager . Our approaches are concerned in con-
trolling the energy consumption in the network and the Quality of Service aspects,
such as area coverage and nodes connectivity, through the use of fast and efficient
algorithms.

9.1 Introduction

A Wireless Sensor Network (WSN) is a kind of ad-hoc network, with dis-
tributed communication, sensing and processing capacities. A WSN can be
composed by tens or even hundreds of small battery-powered devices, called
sensor nodes. They can be used in a large number of applications, such as:

• indoor environments control, like the maintenance of complex equipments
in factories and assembly lines [1];

• air pollution level and animal life monitoring [2];
• military spies, providing information about enemy movements in a battle

field.

Figure 9.1 shows a common architecture: many sensor nodes, also called
source nodes, monitoring an area and reporting data of a phenomenon to
the sink node, which is a special node that works as a network access point
sending the collected data to an outside observer. These collected data are
processed and can be combined with other data, such as the topography of
the monitoring area, providing more accurate information.

F. P. Quintão et al.: Evolutionary Algorithms for Combinatorial Problems in the Uncertain

Environment of the Wireless Sensor Networks, Studies in Computational Intelligence (SCI) 51,

197–222 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

198 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

Data collected by the source nodes can be transmitted to the sink node by
two kinds of routes, using single or multi-hop communication. In the single-
hop style, each source node transmits its data straightly to the sink node. In
the other hand, the source nodes can use the intermediary nodes to relay their
data: this is the multi-hop route, illustrated by Fig. 9.2. Multi-Hop is consid-
ered more interesting because it is more scalable and energy-efficient, although
the delay may increase with the number of hops. Moreover, in many situations
source nodes cannot reach the sink node directly, so multi-hop should be used.

Observer

Sink

Phenomenon

Sources

Fig. 9.1. A common architecture of a WSN

Fig. 9.2. Multi-Hop communication in Wireless Sensor Networks

Figure 9.3 shows the sensor node MicaZ [3] from Mica Motes Family, which
can perform activities like sensing, communication and processing.

To perform all activities expected for a WSN, the hardware of each sensor
node generally includes:

• a sensor board, containing at least one kind of sensor device;
• a limited quantity of memory;
• a processor, with limited power of processing;
• a radio to perform wireless communication; and
• a battery, which provides energy to all components.

For instance, the Mica Motes Family has the following basic configura-
tion: a memory of 128 KB, an 8 MHz processor, IEEE 802.15 communication
protocol for node MicaZ and two AA batteries as the energy provider.

9 Evolutionary Algorithms and Wireless Sensor Networks 199

Fig. 9.3. Sensor node MicaZ from Mica Motes Family

There are several challenges regarding WSNs once these networks present
several unique features when compared to traditional ad-hoc networks, there-
fore existing ad-hoc solutions must be extended and adapted to be used in
WSNs. Between these features can be stressed application dependency, energy
restrictions, node redundancy, high node density, limited bandwidth, and dy-
namic topology, just to point out a few.

WSNs can be classified according to their composition. Regarding compo-
sition, WSNs are static when the nodes positions are the same during all the
network lifetime or mobile when the position of the sensor nodes changes. In
the mobile case, the sensor nodes can be part of a mobile equipment such as
a robot. WSNs are homogenous when all sensor nodes have the same features
and are heterogenous when the nodes are different.

The topology of a WSN can be dynamic basically because the sensor nodes
are susceptible to failures during the network lifetime, which means that some
nodes can leave the network at any time, and because some natural pheno-
menon can change the nodes position, the wind for instance.

These unique features have allowed a wide variety of research in areas such
as energy-efficient network protocols and low-power hardware design. They
also have encouraged proposals of management architectures for WSNs, which
aim to increase the network resources productivity and maintain the Quality
of Service (QoS) provided. A good and common example of management
functions are node scheduling schemes, whose efforts are to make the networks
more energy-efficient, while trying to maintain application requirements, such
as coverage and connectivity. Furthermore, once WSNs can be deployed into
a hostile area (such as a volcano crater), and the number of nodes can be high,
recharging or replacing nodes’ battery may be inconvenient or even impossible.

The development of energy-efficient protocols for WSNs organization can
help extending their lifetime. However, given their features, these protocols
should work as fast as possible. For example, when the nodes are deployed
in an area susceptible to a lot of changes, the network manager will have to
evaluate and define the best set of nodes to maintain the application require-
ments several times during the network lifetime. Thus a fast algorithm for
these evaluations is ideal and necessary.

200 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

There are a lots of different ways of organizing WSNs. The most common
are:

• Hierarchical WSNs: in these networks, the sensor nodes are grouped into
clusters. Each cluster has a leader (also called cluster header), which is,
in general, the one that sends the collected data to outside the cluster.
In this scenario the algorithms should provide solutions considering the
area coverage, nodes connectivity, and also the clustering process. App-
roaches for this kind of network are provided by Heinzelman et al [11] and
Chiaresserini et al [16].

• Flat WSNs: in these networks, sensor nodes are not organized into clusters,
which means that all nodes have the same hierarchical level. Coverage and
connectivity are the main issues concerning flat networks. The works of
Cerpa and Estrin [17], Ye et al [18] and Zhang and Hou [19] deal with
these problems.

Different kinds of WSNs need different algorithms to address their prob-
lems. In section 9.3 of this chapter are presented two combinatorial prob-
lems in flat WSNs and evolutionary algorithms to solve them. The algorithms
work in a centralized way and were developed after studies of Integer Linear
Programming (ILP) and Mixed Integer Linear Programming (MILP) mathe-
matical formulations of the problems. The mathematical formulations provide
metrics to evaluate the solutions of the algorithms.

Two work approaches are presented: in the first one, given a set of sensor
nodes, it is evaluated the best subset of nodes that should be active to assure
the monitoring area coverage and the nodes connectivity in a certain time
t of the network lifetime. The second approach works in a multi-period way
providing a solution that foresees the subset of active sensor nodes to maintain
the area coverage for each time period and not taking in account connectivity
issues. Each model presents advantages and disadvantages. The first one can
be useful for very dynamic networks, like those ones exposed to a lot of natural
phenomenons and under less controlled environments. The second approach is
useful for steadier networks, and, for some classes of networks, it can achieve
the best node scheduling possible.

The remainder of chapter is organized as follows: Section 9.2 presents
important concepts to the problems addressed. The combinatorial problems
definition, models and evolutionary algorithms appear in Section 9.3.

9.2 Basic Concepts

This section brings some important concepts and assumptions when working
with node scheduling schemes in WSNs.

9 Evolutionary Algorithms and Wireless Sensor Networks 201

9.2.1 Coverage in Wireless Sensor Networks

Megerian et al define coverage as a measure of the ability of the network to
detect and observe a phenomenon in the sensor field [8] and relate the coverage
to the WSN quality of service requirements once it can indicate the network
observability levels [7].

In order to quantify the coverage area of a WSN, one can define the node
sensing area as the region around the node where a phenomenon can be de-
tected and define this region as a circle of range R, where R is the sensing
range as showed on Figure 9.4(a). The coverage area of a WSN consists of sens-
ing areas union of all active nodes in the network, as showed on Fig. 9.4(b). If
there is any kind of obstacle in the monitoring area, the nodes sensing area can
decrease as showed on Figure 9.4(c). In this work, the presence of obstacles is
not addressed. See Menezes [15] for a further discussion on this topic.

R

R

(a) Node sens-
ing area

(b) Coverage area (c) Effect of obsta-
cles on the node
sensing area

Fig. 9.4. Coverage in Wireless Sensor Networks

The coverage area can be modeled through the use of demand points, which
represent the center of a small square area in the sensor field. This concept
allows to evaluate the coverage in a discrete space and it is very useful for
modeling purposes. To guarantee the coverage, each demand point must be
covered by at least one active sensor, otherwise the coverage fails.

An approach to calculate the coverage area is to verify the percentage of
demand points reached by at least a sensor node. Likewise, coverage fail is
defined as the percentage of demand points not covered.

202 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

9.2.2 Connectivity in Wireless Sensor Networks

A WSN is said to be connected when there is a communication infra-structure
(at least one path) that allows all the collected data to reach the observer,
which means that all active nodes can reach the sink node, directly or in a
multi-hop way.

The node connectivity in WSNs is an important issue because based on
the physic characteristics of radio waves and environmental features, such
as the presence or absence of obstacles in the monitoring area, every sensor
node will have a maximum communication range. Obstacles can attenuate the
signal decreasing the communication range. For the Mica Motes Family, this
range can (in theory) reach the value of 100m (300fts) [3] in the maximum
transmission power and given the absence of obstacles in the area.

Vieira et al [6] discuss three possibilities of network modeling concerning
the sensing and communication ranges: sensing range greater than, less than
or equal to communication range. However, it has been accepted that the
communication range (Rc) is many times greater than the sensing range (Rs).

The relationship between the nodes sensing and communication ranges is
discussed by Wang et al [20]. Using geometric analysis, the authors prove the
following theorem:

Theorem 1. For a set of sensors that at least 1-cover a convex region A1,
the communication graph is connected if Rc ≥ 2Rs, where Rc is the node
communication range and Rs is the sensing range.

This theorem means that when the sensing range Rs is less than half of the
radio range Rc, if one assures the area coverage he also assures the network
connectivity. Therefore, when working in scenarios where this assumption is
true, one does not need to consider the connectivity between the sensor nodes
a problem.

9.2.3 Energy Consumption Model

As mentioned before, one of the main features of WSNs is a high energy
restriction, which is due to the limited battery of the sensor node, and in
many cases due to the impossibility of battery recharge/replacement. The
definition of a node energy consumption model can allow WSN researches to
focus the studies on topics that have higher impacts on the network lifetime.

To define this model one should consider the node basic operations: trans-
mission, reception, sensing, and processing. The operations energy consump-
tion depends on the current necessary to perform the task and time period to
execute the task. The energy consumption can be estimated by the following
equation:

1 1-cover means that each demand point is covered by at least one sensor node

9 Evolutionary Algorithms and Wireless Sensor Networks 203

E = α×∆t, (9.1)

where:

• E is the total energy consumed in mAh,
• α is the current consumed in mA,
• ∆t is the period of time in h.

Different battery discharge models can be used to calculated the node
residual energy but, for the sake of simplicity, many works adopt the linear
model of battery discharge where the node residual energy is the difference
between the battery capacity and the total node consumed energy.

The next section explores some of the combinatorial problems that can
appear in the uncertain environment of WSNs.

9.3 Combinatorial Problems in Wireless Sensor
Networks

The WSN application dependency makes really important the definition of
a work scenario. The next subsections define two node scheduling problems
in WSNs, the Coverage and Connectivity Problem in Flat Wireless Sensor
Networks and the Multi-Period Coverage Problem in Flat Wireless Sensor
Networks. Each one of these problems is modeled through a mathematical
formulation based on Integer Linear Programming (ILP) and solved by opti-
mization packages and evolutionary algorithms. The issues addressed in these
problems are really important because according to Vieira et al [6] and the re-
sults of Tilak et al [5] a node scheduling control in WSNs, besides minimizing
the network energy consumption, can reduce problems such as radio interfer-
ence between neighbors nodes, collision of packets and media congestion.

On the development of the mathematical formulations the following as-
sumptions were made: each sensor node knows its position and has an unique
identification and the battery discharge follows a linear model. The traffic
in the network is generated only by source nodes. It is also assumed that
the nodes consume an amount of energy to stay active called maintenance
energy (ME) that represents the consumption with activation, sensing and
processing. The energy consumption with transmission (TE) and energy re-
ception (RE) are treated separately. The monitoring area is obstacles free.
Regarding the composition the network modeled can be either homogenous
or heterogeneous and is organized in an flat way.

9.3.1 The Coverage and Connectivity Problem in Wireless Sensor
Networks

This problem can be stated as: Given a monitoring area A, a set of demand
points D, a set of sensor nodes S and a sink node m, the Coverage and

204 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

Connectivity Problem in Wireless Sensor Networks (CCP-WSN) consists of
assuring that at least one sensor node from S is covering each demand point
j ∈ D in the monitoring area A and there is a path between these nodes and
the sink node m, minimizing the consumption of energy by the sensor nodes.

CCP-WSN Mathematical Model

The CCP-WSN is formulated as a Mixed Integer Linear Programming (MILP)
problem.

The following parameters are used in the formulation.

S: set of sensor nodes.
D: set of demand points.
Ad: set of arcs connecting sensor nodes to demand points.
As: set of arcs connecting sensor nodes.
Am: set of arcs connecting sensor nodes to the sink node.
Id: set of arcs (i, j) incoming on the demand point j ∈ D.
Is: set of arcs (i, j) incoming on the sensor node j ∈ S.
Os: set of arcs (i, j) outgoing the sensor node i ∈ S.
MEi: maintenance energy for node i ∈ S.
TEij : transmission energy between nodes i and j, {i, j} ∈ {As ∪Am}.
REi: reception energy for node i ∈ S.
NCj : coverage penalty, cost of no coverage of a demand point j ∈ D.

The model variables are:

xij : variable that has value 1 if node i covers demand point j, and 0 otherwise.
zlij : decision variable that has value 1 if arc (i, j) is in the path between sensor

node l and the sink node m, and 0 otherwise.
yi: decision variable that has value 1 if node i is active, and 0 otherwise.
hj : has value 1 if demand point j is not covered and 0 otherwise.
ei: variable to indicate the energy consumed by node i.

The formulation proposed is presented below.
The objective function (9.2) minimizes the network energy consumption

and penalize the not covered demand points. Since it minimizes the network
energy consumption, the mathematical formulation reduces the number of
active nodes.

min
∑
i∈S

ei +
∑
j∈D

NCjhj (9.2)

The set of constraints (9.3), (9.4), (9.5), and (9.6) deals with the coverage
problem. Constraints (9.3) specifically assure that, if possible, at least one
sensor node will cover each demand point, otherwise the variables hj will
have the value 1. Constraints (9.4) indicate that a node can only cover a

9 Evolutionary Algorithms and Wireless Sensor Networks 205

point if it is active. Constraints (9.5) and (9.6) set limits for variables x and
h respectively. ∑

ij∈Id

xij + hj ≥ 1,∀j ∈ D (9.3)

xij ≤ yi,∀i ∈ S,∀ij ∈ Ad (9.4)

0 ≤ xij ≤ 1,∀ij ∈ Ad (9.5)

hj ≥ 0,∀j ∈ D (9.6)

The set of constraints (9.7), (9.8), (9.9) and (9.10) are related to the con-
nectivity problem. Constraints (9.7) and (9.8) assure a path between each
active sensor node l ∈ S and the sink node m and constraints (9.9) and (9.10)
only allow active nodes to be part of these paths.∑

ij∈Is

zlij −
∑

jk∈Os

zljk = 0,∀j ∈ (S ∪m− l),∀l ∈ S (9.7)

−
∑

jk∈Os
j

zljk = −yl, j = l,∀l ∈ S (9.8)

zlij ≤ yi,∀i ∈ S,∀l ∈ (S − j),∀ij ∈ (As ∪Am) (9.9)

zlij ≤ yj ,∀j ∈ S,∀l ∈ (S − j),∀ij ∈ (As ∪Am) (9.10)

The energy constraints (9.11) and (9.12) define the energy bound values.
The lower bound is zero and the upper bound is the node battery capacity. The
constraints (9.11) also define that a node spends its energy with maintenance,
packets transmission and reception.

MEi × yi +
∑

l∈(S−i)

∑
ki∈Is

i

REi × zlki +

∑
l∈S

∑
ij∈Os

i

TEij × zlij ≤ ei,∀i ∈ S (9.11)

ei ≥ 0,∀i ∈ S (9.12)

Constraints (9.13) define the decision variables as boolean.

h, y, z ∈ {0, 1} (9.13)

The model solution consists of a subset of active nodes, represented by
the variables yi with value 1, and the demand points not covered, represented
by the variables hj with value 1, that assure the best possible coverage. The
variables xij with value 1 indicate that the active sensor node i covers the

206 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

demand point j. The solution also provides a path between the active nodes
and the sink node assuring the network connectivity and that is given by the
variables zlij with value 1. The solution also estimates the network energy
consumption in the variables ei.

CCP-WSN Evolutionary Algorithm

The CCP-WSN mathematical model requires hard computational effort to
reach optimal solutions. Thus, it is proposed to solve the CCP-WSN problem
with a hybrid heuristic that decomposes it into two simpler sub-problems.
The strategy used to solve the problem consists of:

1. Solving a coverage problem in order to find the minimal number of nodes
needed to cover all the monitoring area or achieve the best possible cov-
erage. For this sub-problem a genetic algorithm is used;

2. Applying, to the best solution found in the previous step, a local search
in order to ensure the connectivity between the nodes. In this step Prim’s
Minimum Spanning Tree and Dijkstra’s Shortest Path algorithms are
used.

A heuristic based on genetic search can solve the coverage problem and it
is a good option because it usually provides more than one good and feasi-
ble solution, and this redundance can be interesting to the network manager.
Otherwise, to solve the CCP-WSN and its many constraints with a genetic
algorithm is not advisable because one would have to use very special oper-
ators to avoid the generation of non-feasible solutions, which could involve
even hard computational tasks.

Given this first look over the strategy, the sub-problems are detailed below,
starting with the coverage problem.

Coverage Problem

The problem can be stated as: Given a monitoring area A, a set of sen-
sor nodes S and a set of demand points D, the Coverage Problem in Wireless
Sensor Networks (CP-WSN) consists of assuring that at least one sensor node
s ∈ S will cover each demand point j ∈ D, and minimizing the energy con-
sumption to active sensor nodes. One formulation for the Coverage Problem
in WSN is found in the CCP-WSN mathematical model [14].

The formulation for the CP-WSN uses the same parameters and the vari-
ables x, h, y of the CCP-WSN model. Thus, the mathematical model for the
CP-WSN can be formulated as follows.

The objective function minimizes the number of active nodes and penalize
the not covered demand points.

min
∑
i∈S

MEi × yi +
∑
j∈D

NCj × hj (9.14)

9 Evolutionary Algorithms and Wireless Sensor Networks 207

The model is subject to a set of coverage constraints and a set of variable
types constraints. Constraints (9.15) assure that each demand point may be
covered by a sensor node or not be covered. Constraints (9.16) impose that
a node only can cover a demand point if it is active. The constraints (9.17)
and (9.18) present the variables’ limits and the constraints (9.19) define the
variables types. ∑

ij

xij + hj ≥ 1,∀j ∈ D and ∀ij ∈ Ad (9.15)

xij ≤ yi,∀i ∈ S and ∀ij ∈ Ad (9.16)

0 ≤ xij ≤ 1,∀ij ∈ Ad (9.17)

hj ≥ 0,∀j ∈ D (9.18)

y ∈ {0, 1} (9.19)

To improve the whole algorithm efficiency, the coverage problem objective
function can be modified as follows:

min
∑
i∈S

(MEi + PCi)× yi +
∑
j∈D

NCj × hj (9.20)

where PCi is a parameter that contains the cost of the shortest path from
each node i ∈ S to the sink node m. This cost is computed by the Dijkstra’s
shortest path algorithm applied to all nodes of the network, during a pre-
processing phase that considers the transmission energy between nodes as
edges costs. The variable PCi is used as a penalty for those nodes whose path
to the sink node is expensive, and the results show that this change is quite
interesting, improving the algorithm. In fact, this is a way to consider the
connectivity problem during the genetic algorithm search.

To solve the Coverage Problem, using the function (9.20) as a fitness func-
tion, a genetic algorithm is proposed, based on binary encoding, described as
follows:

Encoding

Each chromosome uses binary encoding and has size |S| equal to the number
of sensor nodes in the network. Each position of the chromosome represents
a gene: if a chromosome position is set to 1, this implies that the node cor-
responding to this position is turned on in this chromosome. For example,
suppose a network containing 10 nodes and one of the chromosomes has the
following nodes activated: (1, 3, 8, 10); so, its binary representation would be
as follows:

208 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

1 0 1 0 0 0 0 1 0 1

Given a set of active nodes from one chromosome, the coverage is evaluated
through a binary coverage matrix, which reports, for an input (i, j), whether
a sensor node i covers demand point j.

Genetic algorithm general specification

The following operators are implemented:

• Selection uses Cost Weighting Pairing (CWP) [21], a kind of roulette-
wheel algorithm that gives bigger probability of matching for the chromo-
somes with the best values of the fitness function. When two chromosomes
are selected, they are always combined;

• Recombination (crossover) implements the simplest one-point crossover,
in which a random number c (where 1 ≤ c ≤ |S|) is generated and in this
position the crossover takes place. Each couple of recombined chromo-
somes generates two offsprings, which replace the two worst chromosomes
of the population;

• Mutation occurs with a small probability µ. All chromosomes (with the
exception of the best one) are visited, and with a probability µ one of
their genes undergoes mutation.

Ensuring connectivity to CCP-WSN

The solution generated by the genetic algorithm random search may assure a
good monitoring area coverage, but some active nodes can be disconnected,
which means that the data collected by them cannot reach the observer. To
assure connectivity Prim’s minimum spanning tree algorithm is used to con-
nect the nodes at a minimum cost and identify if there are nodes disconnected
from the network. Then Dijkstra’s shortest path algorithm is used to turn the
disconnected network into a connected one.

The solution strategy is detailed as follows:

1. Initially the Prim’s minimum spanning tree (MST) algorithm is applied
over a graph G1 containing the network active nodes (set during the last
step). The condition for an edge to belong to G1 is the following: An
edge (u, v) can belong to G1 only if the distance between nodes u and v
∈ G1 is shorter than the maximum communication range of the nodes
(as discussed in Section 9.2.2). The result of the MST algorithm is a
tree connecting the nodes. This tree can even be used as a routing tree.
However, given the condition above, some of the active nodes may be
disconnected from the tree. When this happens, the next step is applied.

2. A graph G2 is created, containing all the nodes of the network. The same
condition described above is applied: An edge (u, v) can belong to G2 only
if the distance between nodes u and v ∈ G2 is shorter than the maximum

9 Evolutionary Algorithms and Wireless Sensor Networks 209

communication range of the nodes. So, the Dijkstra’s shortest path algo-
rithm is applied from each one of the disconnected active nodes to the sink
node. This path surely goes across non-active nodes, otherwise all active
nodes would be connected during the previous step. Thus, this step turns
on all the sensor nodes that appear on the path and that are not on the
genetic algorithm solution.

Fig. 9.5 summarizes the hybrid approach used to solve the CCP-WSN.

input: set S of sensor nodes, sink node, set D of demand points, sensing range,
communication range

begin
for all i ∈ S do

PCi ← Compute Dijkstra(i, sink);
end for
Compute coverage matrix; /*reports whether a sensor node i covers a demand
point j*/
Compute connectivity matrix; /*reports the Euclidian distance between sensor
nodes i and l*/
/*Genetic algorithm*/
Create random initial population, with size |PopInitial|;
Evaluate initial population using equation (9.20);
ShellSort(Initial population); /*Sort the population in ascending order */
Natural selection(Initial Population); /*removes the worst chromosomes from
the initial population*/
while NOT stop condition then

Select chromosomes for matching using Cost Weighting Pairing ;
Proceed matching/crossover;
Execute Mutation with probability µ;
Evaluate new population using equation (9.20);
Shellsort(new Population);

end while
/*end of Genetic Algorithm*/
/*Local search for connectivity ensuring*/
Compute Prim(active nodes);
while there is a disconnected node i do

Compute Dijkstra(i, sink);
end while
/*end of local search*/
Compute objective function - equation (9.2);
Return the best solution found;
/*end of Hybrid Algorithm*/

end

Fig. 9.5. The hybrid algorithm for CCP

210 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

Computational Results

The computational results compare the values obtained by solving the mathe-
matical model with the commercial optimization package CPLEX 9.0 [22] to
the values obtained by the hybrid algorithm for the CCP-WSN. The tests
consider scenarios with 32 sensor nodes and one sink node and the size of the
monitoring area vary from 30m x 30m, to 40m x 40m, 50m x 50m and 60m x
60m. For each scenario there are four different configurations: cfg1, cfg2, cfg3
and cfg4 where the communication range assumes values 15m, 20m, 30m and
40m, respectively. The sensing range is kept constant and equals to 15m.

The first test considers a scenario with a square area of size 30m x
30m. The evolutionary algorithm runs for 15 generations. Results follow in
Table 9.1. Each result of the evolutionary algorithm represents an average
value of 33 runs. The column Activec reports the number of sensor nodes ac-
tivated by CPLEX, Timec reports the computational time spent by CPLEX
and Objectivec reports for the value of the objective function obtained by
CPLEX. The subscription h represents the results of the hybrid algorithm.

Configuration Activeh Activec Timeh Timec Objectiveh Objectivec

cfg1 4.51 4 2.96 115.78 98.87 80.82

cfg2 4.00 4 2.96 106.81 84.74 80.82

cfg3 4.00 4 2.92 61.41 84.87 80.82

cfg4 4.00 4 2.99 68.16 85.12 80.82

Table 9.1. Comparison of hybrid algorithm and CPLEX - 32 nodes - 30m x 30m

In this scenario, the hybrid algorithm has a great advantage compared to
CPLEX, although its values of objective function are worse than the ones
from CPLEX (23% in the worst case and 5% in the best case). Regarding the
execution time, in CPLEX best case the hybrid algorithm runs 20 times faster
and in CPLEX worst case of comparison, it is almost 40 times faster.

Figure 9.6 reports the ratios between objective function values, number
of active nodes and processing time of the hybrid algorithm and CPLEX for
the results in Table 9.1. It is clear that the hybrid algorithm results are close
to the optimal for the objective function values and for the number of active
nodes. Moreover, the ratios between the processing times of both algorithm are
almost zero, showing that the time spent by the hybrid algorithm is despicable.

The next scenario has 32 nodes in an area of size 40m x 40m. Results are
reported in Table 9.2.

The hybrid algorithm is again faster than CPLEX (about 15 times for
CPLEX best case), but in its best case regarding the value of the objective
function, it is 15% worse.

Figure 9.7 shows the processing time of each solver according to the com-
munication range, for the last set of tests. The hybrid algorithm has few

9 Evolutionary Algorithms and Wireless Sensor Networks 211

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 14 16 18 20 22 24 26 28 30 32

R
at

io
 H

yb
rid

/C
P

LE
X

Communication Range

Hybrid/CPLEX x Communication Range

Objfunction ratio
Active nodes ratio

Time ratio

Fig. 9.6. Ratios between hybrid algorithm and CPLEX

Configuration Activeh Activec Timeh Timec Objectiveh Objectivec

cfg1 7.63 5 6.06 105.74 172.12 110.00

cfg2 5.63 5 5.84 80.38 123.54 101.52

cfg3 5.27 5 5.76 117.11 116.78 101.52

cfg4 5.48 5 6.13 92.06 120.76 101.52

Table 9.2. Comparison of hybrid algorithm and CPLEX - 32 nodes - 40m x 40m

variations in the processing time, but CPLEX presents great variations. Ac-
tually, the complexity of the hybrid algorithm depends of the area size, because
the “hard” computational part of the algorithm deals only with the coverage.
CPLEX is more sensible to the size of the communication range, and the area
as well, so its behavior is less predictable.

Following the process comparison, the tests consider a square area of 50m
x 50m. The results are summarized in Table 9.3. For this scenario, cfg1 is
not considered and the hybrid algorithm runs for 20 generations.

Configuration Activeh Activec Timeh Timec Objectiveh Objectivec

cfg2 11.18 9 8.41 46.63 276.92 200.02

cfg3 9.00 9 8.52 42.73 230.61 191.92

cfg4 9.00 9 8.52 31.62 229.97 187.82

Table 9.3. Comparison of hybrid algorithm and CPLEX - 32 nodes - 50m x 50m

In this test, the hybrid algorithm is 5 times faster than CPLEX and the ob-
jective function values are about 25% worse than the ones reached by CPLEX.

212 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

 0

 20

 40

 60

 80

 100

 120

 14 16 18 20 22 24 26 28 30 32

T
im

e
(s

)

Communication Range

Execution Time

Hybrid algorithm
CPLEX

Fig. 9.7. Processing time of each solver, according to communication range

The results obtained in instances with 32 nodes in a square area of size
60m x 60m are showed on Table 9.4. Configuration cfg1 is not considered
again.

Configuration Activeh Activec Timeh Timec Objectiveh Objectivec

cfg2 14.90 14 12.66 41.33 386.66 331.92

cfg3 13.63 13 12.80 60.82 379.74 300.30

cfg4 13.54 13 12.49 56.28 373.86 278.62

Table 9.4. Comparison of hybrid algorithm and CPLEX - 32 nodes - 60m x 60m

The hybrid algorithm is about 4 times faster than CPLEX, and regarding
the objective function is 34% worse in the worst case. Again, regarding the
number of active nodes, the hybrid algorithm performs well. It should be said
that the original topology presented 3 demand points not covered, and for all
configurations the hybrid algorithm reached the best possible coverage.

Figure 9.8 shows the hybrid algorithm improvement as the communica-
tion range increases. One can conclude that the hybrid algorithm should work
better on scenarios where the communication range is many times larger than
the sensing range. Actually, in these scenarios, one should solve only the Cov-
erage Problem, as proposed by Wang et al [20] and discussed on Section 9.2.2.
The hybrid algorithm proposed solves the Coverage Problem in a very effi-
cient way, so one can conclude that this algorithm will be useful in situations
when this assumption is considered, which probably will be very common in
practice.

9 Evolutionary Algorithms and Wireless Sensor Networks 213

 260

 280

 300

 320

 340

 360

 380

 400

 15 20 25 30 35

O
bj

ec
tiv

e
F

un
ct

io
n

Communication range

Objective x Communication Range

Hybrid algorithm
CPLEX

Fig. 9.8. Hybrid algorithm improves as increasing the communication range

9.3.2 The Multi-Period Coverage Problem in Wireless Sensor
Networks

This problem can be stated as: Given a monitoring area A, a set of sensor
nodes S, a set of demand points D and t periods of time, the Multi-Period
Coverage Problem in Wireless Sensor Networks (MCP-WSN) consists of as-
suring that at least one sensor node from S is covering each demand point
j ∈ D in each period t.

MCP-WSN Mathematical Formulation

MCP-WSN is formulated as an Integer Linear Programming (ILP) problem.
The following parameters are used in the formulation.

S: set of sensor nodes.
D: set of demand points.
T : set of periods of time.
Ad: set of arcs. connecting sensor nodes to demand points.
MEi: maintenance energy for node i ∈ S.
NCj : coverage penalty of no coverage of a demand point j ∈ D.
n: maximal number of periods that a sensor node can be active.

The model variables are:

xt
ij : variable that has value 1 if node i covers demand point j during period

t ∈ T , and 0 otherwise,
yt

i : decision variable that has value 1 if node i is active in period t ∈ T , and
0 otherwise,

214 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

ht
j : variable that has value 1 if demand point j is not covered in period t ∈ T ,

and 0 otherwise.

The formulation proposed is presented below. The objective function (9.21)
minimizes the number of active nodes and penalize the not covered demand
points in each period.

min
∑
i∈S

∑
t∈T

MEi × yt
i +

∑
j∈D

∑
t∈T

NCj × ht
j (9.21)

The objective function is subject to a set of coverage and activation con-
straints.

Constraints (9.22), (9.23), (9.24), and (9.25) deal with the multi-period
coverage problem. They assure that active nodes cover the demand points
and that just active nodes can sense the environment. Constraints (9.22) also
guarantee that a demand point can be uncovered, if none sensor node can
reach it. ∑

ij∈Id

xt
ij + ht

j ≥ m,∀j ∈ D and ∀t ∈ T (9.22)

xt
ij ≤ yt

i ,∀i ∈ S,∀ij ∈ Ad and ∀t ∈ T (9.23)

0 ≤ xt
ij ≤ 1,∀ij ∈ Ad (9.24)

ht
j ≥ 0,∀j ∈ D (9.25)

The activation constraints (9.26) indicate the maximal number of periods
in which a sensor node can be active. In practical situations, n < T , since the
sensor nodes are energy-constrained and probably will not survive during all
the network lifetime. When n > T , it means that the nodes can remain turned
on during all the network lifetime (T), and in this case the solution will be
the same in all time periods and these constraints can even be removed.∑

t∈T

yt
i ≤ n,∀i ∈ S (9.26)

Constraints (9.27) define the decision variables as boolean.

h, y ∈ {0, 1} (9.27)

The model solution indicates, for each period, the set of active nodes (vari-
ables y), which demand points they cover (variables x) and also the set of
demand points(variables h) not covered. Figure 9.9 shows the input parame-
ters of the algorithm: the monitoring area, the demand points and the sensor
nodes. Figures 9(d) and 9(e) show a possible MCP-WSN solution, considering
two periods and n = 1.

9 Evolutionary Algorithms and Wireless Sensor Networks 215

(a) Monitoring
area.

(b) Demand
points.

(c) Sensor nodes
deployed in the
area.

(d) Active nodes
in period 1.

(e) Active nodes
in period 2.

Fig. 9.9. Example of WSN and MCP solution

The previous discussion and the example of Figure 9.9 make clear that
there is a relationship among the number of sensor nodes |S|, the number of
periods that a sensor can remain active n and the network lifetime T . For
instance, if the number of sensor nodes is small and n << T , it is expected
that the solutions for the last periods of time will not contain active sensor
nodes. In this work, the parameters values are chosen to difficult the algorithm
search, avoiding trivial solutions. In general, the algorithms will try to balance
the number of active sensor nodes and demand points not covered in each
period of time t ∈ T .

MCP-WSN Evolutionary Algorithm

The evolutionary solution for the MCP-WSN is based on a genetic search
and a local search. Both search mechanisms are integrated in order to find
good and feasible solutions. The genetic search looks for good solutions for
the MCP-WSN, but many times these solutions can be unfeasible. So, it is
applied a local search that turns unfeasible solutions into feasible ones, using
an incremental greedy algorithm. Both mechanisms are detailed in the next
section.

216 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

Genetic search

The genetic search uses binary encoding of parameters. The concept of multi-
period chromosome is introduced, each one of them carrying information
about all periods t ∈ T .

The representation of the chromosomes in the genetic algorithm for the
MPC-WSN is similar to the one used for the CCP-WSN, presented in
Section 9.3.1. Each chromosome can be represented by a binary matrix, with
dimension θ:

θ = [|T |][|S|] (9.28)

where |T | represents the total number of periods (or the network expected
lifetime). Thus, each chromosome have, in each line t, t ∈ T , the sensor nodes
which should be active in the time period t.

Operations over chromosomes

The multi-period chromosomes features allow a lot of possible interesting bio-
inspired operations over them. Some of them are briefly specified next.

Initial population The generation of the initial population can be implemented
as follows:

• For each member of the initial population, a matrix of size [|T |][|S|] is
generated. Each gene is generated using a random process with uniform
distribution. It is generated a random number z, and whether z is smaller
than a pre-defined parameter κ, than the gene is set to 1, otherwise it is
set to 0.

The initial population generally can have a high number of chromosomes.
However, it can be computationally hard to work with a lot of chromosomes.
So, in a population of size Ξ, just Π chromosomes are selected to be used
during the iterations of the algorithm, where Π ≤ Ξ.

Random mutation (RM): In this operation, each chromosome of the popula-
tion, except the best one, is visited. With a probability µ, a chromosome is
selected for mutation, and a period t and a gene i are randomly chosen. The
position [t][i] get its value inverted.

Greedy Period mutation (GPM): This operation performs like the previous
one. But, when a period is selected, each one of its genes is visited. For each
gene with value 1 a random number r is generated. If r is smaller than a
pre-defined probability β, then the gene is set to 0. This operation intends to
decrease the number of active nodes in the chromosome.

Random Matching (RMa): This operation chooses which chromosomes will
be combined for generating new chromosomes in the population. The random
process chooses two chromosomes using an uniform distribution.

9 Evolutionary Algorithms and Wireless Sensor Networks 217

Cost Weighting Pairing (CWP): The CWP process, defined in Section 9.3.1,
chooses two chromosomes for matching. The chromosomes with better values
of objective function have high probability of matching. So, it is intended to get
a good solution through the combination of good solutions. This algorithm
presents a problem due to the precision of the float point representation.
During the algorithm execution, this problem is monitored, and when it is
about to happen, the mode of matching is changed to RMa.

Crossover When two chromosomes are selected (using RMa or CWP), they
are combined as follows:

• The first child of the couple receives the first T/2 periods of the father,
and the remainder from the mother.

• The second child receives the first T/2 periods from the mother, and the
remainder from the father.

These two new chromosomes go to the place of the two worst chromosomes
in the population. This can be seen as a kind of natural selection.

Local Search Process

During the process of mutation, matching and crossover one can get unfea-
sible solutions as the best ones. This occurs because the genetic search just
considers constraints (9.22), (9.23), (9.24) and (9.25), not worrying about con-
straints (9.26). The goal of the local search proposed is to work just on these
constraints turning unfeasible solutions into feasible ones.

The local search works as follows. Over all chromosomes of the population,
it starts computing an array γ that keeps the number of periods that each
gene is active in the chromosome. So, for each gene i and for each period t, it is
verified if i is active. If during this process it is verified that i is active during
more periods than possible (equation (9.26)) the current gene i in the period
t is changed to 0 (zero) and its status in the array γ is updated. Next, the
algorithm searches the gene j closest to i (the sensor node j closest to i), and,
if j can be activated for one more period, its corresponding gene is turned to
1 in the same period t, and γ is updated. The algorithm performance depends
on the parameter T , and if T is very large, the Local Search process spends a
lot of time, once this algorithm worst case is O(|S|3|T |).

This local search always guarantees that unfeasible solutions will be turned
into feasible ones by its interactive and greedy process. If some sensor node
should be turned off, the values of variables x and h are updated to fit the
remainder constraints (from (9.22) to (9.25)).

Since the local search process changes the solutions found by the genetic
search, they can be worse than the previous ones regarding the fitness function,
but they are feasible. Fig. 9.10 summarizes the main loop of the evolutionary
algorithm developed.

218 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

input: set S of sensor nodes, size of area, number of demand points
begin

while NOT stop condition do
Select chromosomes for matching using RMa or CWP;
Proceed matching/crossover;
Mutation using RM or GPM;
Local Search;
Evaluate new population using equation (9.21);
Shellsort(new Population);

end while
end

Fig. 9.10. The evolutionary algorithm for MCP

Computational Results

For this problem, an instance that contains 16 nodes with sensor ranges of
15m, deployed into a square area of size 50m x 50m is used. Two configurations
are considered; the first one uses RMa + RM and the second uses CWP + RM.
Table 9.5 summarizes the results2. In this network, the original coverage of

CFG Active ∆(Active) Unc. area (%) ∆(Unc. area) Time (s) ∆(Time)

CPLEX 4.00 0.82 24.05 9.44 1052.18 -

CF1 3.96 0.09 28.21 1.34 13.10 0.52

CF2 4.00 0.00 27.57 1.53 15.15 4.09

Table 9.5. Comparisons of evolutionary algorithm and CPLEX - 16 nodes - 50m
x 50m - Sensing range = 15m

the monitoring area is 99.48%. CF2 reaches a very interesting result, reaching
the best number of active nodes during all simulations, and a good coverage
when compared to CPLEX results. Figure 9.11 shows the behavior of both
configurations for each generation. CF2 converges faster, and the population
in the end is almost equals to the best one, showing that the best solution has
spread its genes for the population through the use of CWP. CF1 presents
a light convergence, but the best solution finds a result similar to CF2’s.
Considering only the objective function, the best solution of all tests obtained
by CF2 is about 4% worse than the result obtained by CPLEX, showing that
this configuration reached a very interesting result for this instance.

In the second set of tests, each sensor node has enough battery to remain
active for only two periods. The first instance has 16 nodes in the square area
of size 60m x 60m and sensor range of 15m, and it is used a κ = 40%. The first
2 Again the algorithm runs for 33 times to get average values.

9 Evolutionary Algorithms and Wireless Sensor Networks 219

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 5.5e+07

 0 5 10 15 20 25 30 35 40 45 50

F
itn

e
ss

Generation

Fitness x Generation

CF1 − Best
CF1 − Average

CF2 − Best
CF2 − Average

Fig. 9.11. Algorithm evolutions

configuration uses RMa + RM, and the second uses RMa + GPM. Table 9.6
reports the results.

CFG Active ∆(Active) Unc. area (%) ∆(Unc. area) Time (s) ∆(Time)

CPLEX 7.00 0.82. 32.19 6.21 159.39 -

CF1 7.34 0.25 34.08 0.83 27.84 9.70

CF2 6.75 0.40 35.67 0.74 25.00 7.17

Table 9.6. Comparisons of evolutionary algorithm and CPLEX - 16 nodes - 60m
x 60m - Sensing range = 15m

It is important to say that this network presents 77.78% of original cover-
age. CF1 presents the best result, being close to CPLEX regarding the number
of active nodes and coverage. Figure 9.12 reports the configurations behavior
showing that CF1 is better. Regarding the value of the objective function, the
best solution found by CF1 is just 1% worse than CPLEX optimal solution.

9.4 Conclusions

A wireless sensor network (WSN) is a kind of ad-hoc network, with dis-
tributed communication, sensing and processing capacities. A WSN can be
composed by tens or even hundreds of small battery-powered devices, called
sensor nodes. There are several challenges regarding WSNs once these net-
works present several unique features when compared to traditional ad-hoc

220 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

 4.9e+07

 5e+07

 5.1e+07

 5.2e+07

 5.3e+07

 5.4e+07

 5.5e+07

 5.6e+07

 5.7e+07

 5.8e+07

 5.9e+07

 6e+07

 0 5 10 15 20 25 30 35 40 45 50

F
itn

e
ss

Generation

Fitness x Generation

CF1 − Best
CF1 − Average

CF2 − Best
CF2 − Average

Fig. 9.12. Algorithm evolutions

networks, therefore existing ad-hoc solutions must be extended and adapted
to be used in WSNs. So it is a area with a great variety of combinatorial
problems where the evolutionary approaches can be applied.

This chapter discusses two combinatorial problems in the area of wireless
sensor networks and presents formal definitions of these problems, a mathe-
matical formulation and evolutionary algorithms for each one of them. The
solutions of the mathematical formulations are optimal, but to reach these
solutions it is spent a lot of computational time and demanded hard compu-
tational effort and dedicated and generally not cheap software. The evolution-
ary algorithms are fast, and in many situations can find good solutions in a
feasible time. Moreover, no kind of commercial software is necessary. The op-
timal and evolutionary approaches can run together with a WSN management
architecture, like the one proposed in [4].

References

1. Park, S., Savvides, A., Srivastava, M.B.: Simulating Networks of Wireless Sen-
sors. In: 2001 Winter Simulation Conference, Informs Simulation Society (2001)

2. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless
Sensor Networks for Habitat Monitoring. In: ACM 1st International Workshop
on Sensor Networks and Applications (WSNA’02), ACM Press (2002)

3. Crossbow Technology, I.: MPR - Mote Processor Radio Board MIB - Mote
Interface / Programming Board User Manual. Crossbow Technology, Inc (2003)

4. Ruiz, L.B.: Manna: A Management Architecture for Wireless Sensor Networks.
PhD thesis, Universidade Federal de Minas Gerais (2003)

9 Evolutionary Algorithms and Wireless Sensor Networks 221

5. Tilak, S., Abu-Ghazaleh, N., Heinzelman, W.: Infrastructure Tradeoffs for
Sensor Networks. In: ACM 1st International Workshop on Sensor Networks
and Applications (WSNA’02), ACM (2002) 49–58

6. Vieira, M.A.M., Vieira, L.F.M., Ruiz, L.B., Loureiro, A.A.F., Fernandes, A.O.,
Nogueira, J.M.S.: Scheduling Nodes in Wireless Sensor Networks: A Voronoi
Approach. In: LCN ’03: Proceedings of the 28th Annual IEEE International
Conference on Local Computer Networks, IEEE (2003) 423

7. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Cover-
age Problems in Wireless Ad-Hoc Sensor Networks. In: INFOCOM’ 01, IEEE
(2001) Volume 3, 1380 – 1387

8. Megerian, S., Potkonjak, M.: Low Power 0/1 Coverage and Scheduling Tech-
niques in Sensor Networks. UCLA. Technical report (2003)

9. Slijepcevic, S., Potkonjak, M.: Power Efficient Organization of Wireless Sensor
Networks. In: IEEE International Conference on Communications (ICC) 2001,
IEEE (2001) 1260–1265

10. Siqueira, I., Ruiz, L., Loureiro, A., Nogueira, J.M.: A Management Service for
Density Control in Wireless Sensor Networks. In: 22nd Brazilian Simposium
on Computer Networks (SBRC), Brazilian Computer Society (in portuguese)
(2003) 249 – 262

11. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: An Application-Specific
Protocol Architeture for Wireless Microsensor Networks. IEEE Transactions
on Wireless Communications (2002) 660–670

12. Quintão, F.P., Mateus, G.R., Nakamura, F.G.: An Evolutive Approach for the
Coverage Problem in Wireless Sensor Networks. In: Proceedings of 24th Brazil-
ian Computer Society Congress, Brazilian Computer Society (in portuguese)
(2004)

13. Quintão, F.P., Nakamura, F.G., Mateus, G.R.: A Hybrid Approach to Solve
the Coverage and Connectivity Problem in Wireless Sensor Networks. In: IV
European Workshop on Meta-heuristics, EUME (2004)

14. Nakamura, F.G. Quintão F.P., Menezes, G.C., Mateus, G.R.: An Optimal
Node Scheduling for flat Wireless Sensor Networks In: ICN 2005 - International
Conference on Networking, IEEE (2005)

15. Menezes, G.C.: Model and Algorithms for the definition of Density and Position
of nodes in a Wireless Sensor Network. Master’s thesis, Federal University of
Minas Gerais (in portuguese) (2004)

16. Chiasserini, C.F., Chlamtac, I., Monti, P., Nucci, A.: An Energy-efficient
Method for Nodes Assignment in Cluster-Based Ad-Hoc Networks. Wireless
Networks Vol. 10 (2004)

17. Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configuring sEnsor Networks
Topologies. In: Proceedings of the 21st International Annual Joint Conference
of the IEEE Computer and Communications Society (INFOCOM02) Vol. 3
(2002).

18. Ye, F., Zhong, G., Cheng, J., Zhang, L.: PEAS: A Robust Energy Conserving
Protocol for long-lived Sensor Networks. In: Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems (ICDCS03) pages 28–37
(2003).

19. Zhang, H., Hou, J.: Mantaining Sensing Coverage and Connectivity in Large
Sensor Networks. Wireless ad hoc and Sensor Networks, Vol. 1, pages 89–123
(2005).

222 F. P. Quintão, F. G. Nakamura, and G. R. Mateus

20. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated Coverage
and Connectivity Configuration in Wireless Sensor Networks. In: SenSys ’03:
Proceedings of the 1st International Conference on Embedded Networked Sen-
sor Systems, ACM Press (2003) 28–39

21. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. John Wiley & Sons,
Inc (1998)

22. ILOG, Inc.: High-Performance Software for Mathematical Programming and
Optimization. http://www.ilog.com/products/cplex/ (2005)

23. Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial
and applied mathematics (1983)

24. Tanembaum, A.S.: Computer Networks, 3rd Edition. Prentice Hall PTR (1996)

Part II

Approximation of Fitness Functions

10

Individual-based Management of Meta-models
for Evolutionary Optimization
with Application to Three-Dimensional
Blade Optimization

Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

Honda Research Institute Europe
Carl-Legien-Str. 30, 63073 Offenbach am Main, Germany
{lars.graening,yaochu.jin,bernhard.sendhoff}@honda-ri.de

Summary. To reduce the number of expensive fitness function evaluations in evo-
lutionary optimization, individual-based and generation-based strategies for meta-
model management (evolution control) have been proposed. In this work, four
individual-based frameworks for meta-model management are investigated. A feed-
forward neural network is employed to construct an approximation model of the
fitness function. Structure optimization of the neural network is used to reduce the
approximation error. In an attempt to adapt the number of controlled individuals,
adaptation mechanisms are suggested based on the model error, selection error, rank
correlation, and fitness correlation. Preliminary results indicated that the adaptation
mechanisms do not work well as expected.

Two of the frameworks are implemented in 3D blade design optimization. The
results showed that individual-based meta-model management is promising, though
further efforts are still needed to improve the performance of the evolutionary algo-
rithms with meta-models for fitness estimation.

10.1 Introduction

It has been shown that evolutionary algorithms are very powerful in solving
many real-world optimization tasks such as 3D turbine blade aerodynamic
design optimization of a jet engine [5, 13, 14], of micro heat exchanger [2] or
transonic wing design [17]. The advantage of evolutionary algorithms is that
they stochastically search the fitness landscape for the optimal solution with-
out the need of any gradient information. However, this advantage is at the
cost of a large number of fitness evaluations. In 3D blade optimization, one
evaluation of the fitness will take huge computational time because compu-
tational fluid dynamics (CFD) simulations have to be performed to evaluate
the performance of the blade.

L. Gräning et al.: Individual-based Management of Meta-models for Evolutionary Optimization

with Application to Three-Dimensional Blade Optimization, Studies in Computational

Intelligence (SCI) 51, 225–250 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

226 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

To reduce the number of fitness evaluations, one idea is to estimate the
fitness using computationally efficient meta-models, see [8] for an overview of
existing methods. One problem to deal with in real-world optimization prob-
lems is that it is difficult to acquire enough data so that the meta-model can
sufficiently approximate the original fitness landscape, which could result in
false convergence [11, 15]. Therefore it is not advisable to use meta-models
only as a surrogate for the original fitness function. To avoid false convergence,
the neural network model should be used in conjunction with the original fit-
ness function. This is termed evolution control or model management [11, 15].
If evolution control is used, new data become available during optimization,
which can then be used for on-line update of the meta-model. Meta-models
can also be employed in the local search embedded in evolutionary optimiza-
tion [19].

In this work, four individual-based evolution control methods are com-
pared on three benchmark problems. The two most promising methods are
adopted for 3D blade design optimization. In an attempt to improve the per-
formance of the methods, adaptation mechanisms are suggested to adjust the
impact of the meta-model on the optimization process during optimization.

10.2 Evolutionary Optimization with Neural Network
Based Fitness Estimation

10.2.1 Evolutionary Optimization

The evolution strategy with covariance matrix adaptation (ES-CMA) [4] is
adopted for blade optimization in this work. No recombination has been used
since negative influence has been observed in blade optimization. The muta-
tion operator adds normally distributed random values to the design parame-
ters of the individual in order to search the design space. Adaptation of the
parameters of the normal distribution in each generation plays an essential
role for the performance of the search algorithm. ES-CMA uses a derandom-
ized self-adaptation mechanism where the whole covariance matrix is adapted
to adjust the parameters of the normal mutation distribution. These parame-
ters, called strategy parameters, are also encoded in the chromosome of the
individuals.

One major problem in evolutionary design optimization process is the high
cost of computation resources for evaluating the quality of the designs. For
example, a 3D design optimization run takes upto 3 months for 200 genera-
tions of evolution on high performance computers. In this work, we employ
neural networks as the meta-model to partially substitute the computationally
expensive fitness evaluations.

10 Individual-based Management of Meta-models 227

10.2.2 Artificial Neural Networks

Up to now, polynomials, kriging model, radial-basis-function networks, and
multi-layer perceptrons (MLP) have been used as meta-models in evolution-
ary optimization [8, 16]. We decided to use MLPs in this work because it has
been shown that MLPs are very powerful in function approximation and clas-
sification. The neural network adapts its parameters and structure to learn
the functional mapping between the design parameters and the performance
with the help of a number of training data obtained from previous optimiza-
tion. After the network is trained, it can be used to predict the fitness of new
designs, given the design parameters.

Multi-layer Perceptros (MLPs)

In [1, 6] it is shown that one hidden layer is sufficient to approximate any con-
tinuous functions, provided that a sufficient number of hidden layer neurons is
used. The number of hidden neurons depends strongly on the characteristics
of the target function [20]. Mostly, the characteristics of the function is un-
known. In this case, it is suggested that structure optimization of the MLPs
should be considered [20].

In this work, the algorithm introduced by Hüsken et al [7] is employed.
The architecture of the neural network is encoded in a connection matrix and
a weight matrix. The values in the connection matrix determine which nodes
in the network are connected and the values in the weight matrix determine
the strength of connections. Fig. 10.1 illustrates the mapping between a neural
network and the connection and weight matrices.

Fig. 10.1. Architecture of a neural network and the corresponding matrix repre-
sentation

The output of the MLP can be calculated using the following equations:

yl =
Nh∑
k=1

wlk · g(
Nx∑
i=1

wkixi + th) + ty, (10.1)

where Nx is the number of input neurons and Nh is the number of hidden
neurons. In the neural network the following activation function g(z) is used,
whose characteristic is similar to the sigmoidal function.

228 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

g(z) =
z

1 + |z| . (10.2)

The weights of the neural network are trained online during the optimiza-
tion when new training samples are available. For neural network training,
Rprop [18], an improved version of the back propagation algorithm is used.
The main difference between Rprop and the back propagation algorithm is
that the learning rate adjustments and weight changes do not depend on the
magnitudes of the gradient, rather on the signs of the gradient terms.

Structure Optimization of Neural Networks

To improve the approximation quality of the neural network, one way is to
optimize the architecture of the neural network during optimization. Yao [21]
provided a comprehensive review of the optimization of neural networks us-
ing evolutionary algorithms. In this work, a genetic algorithm has been used
for this purpose. The connections ai and the value of the weights wi of the
neural network are encoded into the genotype of an individual. This means
that each individual encodes a neural network with a different architecture
and different weights. To generate offspring representing different neural net-
works, specific mutation methods are used. The mutation methods allow to
insert or delete a single connection or neuron and the weights are mutated by
adding a normally distributed random number. After mutation, the Lamarck-
ian mechanism is used for lifetime learning of the weights. Finally, the weights
are coded back into the individuals. EP-tournament-selection is used to select
the individuals representing the neural networks with the lowest mean square
error with respect to the training data.

10.3 Individual-Based Evolution Control Methods

It is found that if a meta-model such as a neural network is used to estimate the
fitness of the individuals, the evolutionary algorithm probably will converge
to a false optimum [15], which is not one of the original fitness function. In
these cases, it is essential that the model be used in conjunction with the
original fitness function. How often the model should be used instead of the
original fitness evaluation is the task of evolution control or model management
methods.

As illustrated in Fig. 10.2, evolution control methods can be divided into
two basic approaches, namely individual-based and generation-based [11].

In the generation-based approach, one has to decide generation by genera-
tion for all individuals whether the fitness will be determined using the meta-
model or using the original fitness function. If the individual-based approach
is used, one has to decide for each individual in every generation whether the
meta-model or the time-consuming fitness function should be used. In this

10 Individual-based Management of Meta-models 229

Fig. 10.2. Principle of individual-based and generation-based evolution control
methods

work we concentrate on the individual-based approaches and will introduce
several methods in detail.

As can be seen in Fig. 10.3, the individual-based evolution control method
can be described by a common evolutionary optimization process. In each iter-
ation, λ’ offspring are generated out of the µ parents by mutation. After that,
the individual-based control method decides which λ∗ offspring are evaluated
by the real fitness function. The results are used to train the neural network
before the fitness of the remaining λ’−λ∗ offspring will be estimated by the
neural network. In the end µ parents will be selected out of the λ individuals
according to their fitness.

Fig. 10.3. Evolutionary optimization process including individual-based evolution
control methods

230 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

10.3.1 Best Selection (BS)

In the best selection strategy [15], all λ’ offspring are pre-evaluated by the
neural network at first to find the most promising (best) λ∗ individuals. These
λ∗ individuals are evaluated by the original fitness function and the results
are used for training. After training the neural network, the remaining λ’−λ∗

individuals are again evaluated by the neural network to get a better estima-
tion. At the end of each generation, the µ best individuals out of all λ = λ’
individuals become parents for the next generation.

10.3.2 Pre-Selection (PreS)

A pre-selection has been introduced in [19], in which the Gaussian processes
are used as meta-model instead of neural networks. The idea is as follows.
λ’> λ offspring are generated by mutation, and the neural network is used
to estimate the fitness of these offspring. The λ∗ most promising individuals
are pre-selected out of the λ’ offspring. Like in the best selection strategy,
the λ∗ individuals are evaluated using the original fitness function. The main
difference to the best selection strategy is that the µ parents are selected only
out of the λ∗ individuals, which are all evaluated with the original fitness
function.

10.3.3 Clustering Technique (CT)

In [12] a different approach is described to find out which individuals have to
be evaluated with the original fitness function. Using the k-means clustering
technique, all λ’ individuals of a generation are grouped into λ∗ clusters. Now
the λ∗ individuals closest to the cluster center are evaluated using the original
fitness function. The results of the fitness evaluations, as in all other methods,
are used to train the neural network during the optimization. The fitness of
the remaining λ’−λ∗ individuals is estimated using the neural network. Last
but not least the µ parents are selected out of all λ = λ’ individuals.

10.3.4 Clustering Technique with Best Strategy (CTBS)

The idea of the clustering technique with best strategy is the same as in
clustering technique. The offspring are also grouped into a number of clusters.
Now the neural network is used to predict the fitness of each offspring. Instead
of evaluating the individuals closest to the cluster center, the λ∗ individuals
with the best predicted fitness of each cluster will be evaluated by the original
fitness function.

10 Individual-based Management of Meta-models 231

10.3.5 Simulation Results

The main reason for using individual-based evolution control is to reduce
computational costs. In real-world optimization problems like the blade opti-
mization, the calculation of the fitness needs a large amount computational
time. It is impossible to test all the algorithms on the real-world design opti-
mization problem. So all methods are tested first on three widely used bench-
mark functions. The test functions are the Sphere, Rosenbrock and Ackley
functions. To get an impression of how the functions looks like, the equa-
tion and the two dimensional plotting of the functions are illustrated in
Fig. 10.4, where n is the dimension of the test functions. In the following
simulations, the dimension is set to 10. Part of the following results has been
reported in [3].

(a) (b)

Sphere

−5

0

5

−5

0

5
0

10

20

30

40

50

fsphere(x) =
∑n

i=1
x2

i

Rosenbrock

−5

0

5

−5

0

5
0

2

4

6

8

10

x 10
4

frosen(x) =
∑n−1

i=1

(
100

(
xi+1 − x2

i

)2
+
(
xi − 1

)2)

Ackley

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−2

0

2

4

6

8

10

12

fackley(x) = 20 + e− 20exp
(
− 0.2

·
√

1
n
·
∑n

i=1
x2

i

)
−exp

(
1
n

∑n

i=1
cos

(
2πxi

))

Fig. 10.4. Overview of the used test-functions with an (a) 2D illustration and
(b) the equation of the functions

232 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

Simulation Setup

In all simulations, a (µ, λ) ES-CMA without recombination is adopted. The
strategy parameters of the covariance matrix are randomly initialized between
σmin = 0.05 and σmax = 4.

We compare the model management frameworks in both serial and parallel
computing environments. The parameters for the evolutionary optimization
process are set according to the different requirements of the used computa-
tional environment.

When the optimization is conducted in a serial environment, the perfor-
mance depends only on the number of fitness evaluations needed to reach a
near optimum. So in each generation µ parents are selected out of the same
amount of λ offspring. The remaining parameters are adjusted according to
the values of µ and λ as combined in Table 10.1. For clarity the following no-
tation is used:

(
µ, [λ′]λ[λ∗]

)
. µ parents are always selected out of λ offspring.

λ′ defines the number of pre-selected and λ∗ the number of controlled indi-
viduals. The ratio according to [4] is set to µ ≤ λ

3 . The ratio of λ to λ′ and
λ∗ are based on recommendations or findings in [12] and [19].

PlainES PreS BS CT CTBS(
3, [12]12[12]

) (
3, [24]12[12]

) (
3, [12]12[6]

)
Table 10.1. Settings of the strategy parameters

(
µ, [λ′]λ[λ∗]

)
to compare the per-

formance of the individual-based control methods for optimization in a serial com-
putational environment

If it can be assumed that in a parallel computational environment enough
computers are available to evaluate all individuals in parallel, the number of
fitness evaluations itself is less important. In that case the number of gener-
ations needed to reach a near-optimal solution is the main concern. We also
assume that the number of used machines equals the number of fitness evalu-
ations λ∗, which is held constant for all methods. The remaining parameters
are adjusted with respect to λ∗. The entire setup is listed in Table 10.2.

PlainES PreS BS CT CTBS(
2, [6]6[6]

) (
2, [12]6[6]

) (
2, [12]12[6]

)
Table 10.2. Settings of the parameters µ, λ’ and λ∗ to compare the performance of
the individual-based control methods for optimization in a parallel computational
environment

The neural network used in the simulations consists of 10 input nodes,
one hidden layer with four hidden neurons, and one output node. If struc-
ture optimization is carried out, the number of hidden neurons is not fixed.

10 Individual-based Management of Meta-models 233

To achieve a good local approximation of the original fitness landscape, only
data of the most recent evaluations are used for training.

Serial Optimization

In a serial computational environment, only the number of expensive fitness
evaluations is of importance to reach a near-optimum. 20 independent runs
are performed for each optimization to reduce the randomness. The median
fitness value of the best offspring in each generation is plotted versus the
number of fitness evaluations to compare the performance of the introduced
methods. The results from the Sphere, Rosenbrock and Ackley functions are
presented in Fig. 10.5 and Fig. 10.6. The left column presents the results with
and the right column without structure optimization of the neural network.

To show the statistical significance between the evolution control meth-
ods and the plain evolution strategy, the boxplot of the results are given in
Fig. 10.6. The boxplot illustrates the median and the variance of the fitness
values of the best individual in the final generation over 20 runs. The notches
of the boxes in the plot are the graphical equivalence to the student t-test.
If the notches of two boxes do not overlap, there is a significant difference
between the medians of the two strategies at a significance level of p = 0.05.

From Fig. 10.5 and Fig. 10.6, we can see that all evolution control methods
except the best strategy improve the performance of the plain evolution strat-
egy significantly on the 10D Sphere function. But there are no statistically
significant differences between the model-assisted strategies themselves, no
matter whether structure optimization of the neural networks are performed
or not.

It turns out that the clustering technique with best strategy outperforms
other algorithms on the 10D Rosenbrock function, when no structure opti-
mization of the neural network is carried out. However, all algorithms fail to
improve the performance of the plain evolution strategy significantly. This
result may be attributed to the fact that the number of hidden neurons is not
sufficiently large to approximate the Rosenbrock function. Meanwhile, the re-
sult indicates that with structure optimization, the neural networks perform
locally very well on the Rosenbrock function.

From Fig. 10.5, it can be seen that the individual-based evolution control
methods perform well on the Ackley function. But as we can see in the boxplots
in Fig. 10.6 the variance of the strategies is very high except the pre-selection
strategy. The pre-selection strategy outperforms the plain evolution strategy
in almost all of the 20 runs.

In summary, it turned out that the pre-selection method shows the most
stable and promising results and only fails to improve the evolution strategy
on the Rosenbrock function. The reason for the stability of the pre-selection
methods might be that the parents of the next generation are only selected
from the individuals that evaluated with the original fitness function.

234 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

(a) (b)

Sphere

186 426 666 906 1146

10
−4

10
−2

10
0

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

 186 426 666 906 1146
10

−4

10
−2

10
0

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

Rosenbrock

 186 426 666 906 1146
10

1

10
2

10
3

10
4

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

 186 426 666 906 1146
10

1

10
2

10
3

10
4

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

Ackley

 186 426 666 906 1146

10
−2

10
−1

10
0

10
1

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

 186 426 666 906 1146

10
−2

10
−1

10
0

10
1

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

Fig. 10.5. Performance comparison of the individual-based methods in a serial com-
putational environment: (a) without structure optimization and (b) with structure
optimization of the neural network

In the following, we only show the results with structure optimization
of the neural networks because the above results show that using structure
optimization mostly improves the performance of the neural network and the
optimization process.

Parallel Optimization

As mentioned before, to compare the performance of the individual-based evo-
lution control methods in a parallel computational environment, the number
of exact fitness evaluations is not as important as the number of generations.
Therefore the fitness values are plotted versus the number of generations. To
make sure that the comparison is fair, the number of real fitness evaluations

10 Individual-based Management of Meta-models 235

(a) (b)

Sphere

plainES PreS BS CT CTBS

10
−5

10
−4

10
−3

10
−2

F
itn

es
s

plainES PreS BS CT CTBS

10
−5

10
−4

10
−3

F
itn

es
s

Rosenbrock

plainES PreS BS CT CTBS

10
0

10
1

10
2

10
3

F
itn

es
s

plainES PreS BS CT CTBS

10
1

10
2

10
3

F
itn

es
s

Ackley

PlainES PreS BS CT CTBS

10
−2

10
−1

10
0

F
itn

es
s

plainES PreS BS CT CTBS

10
−2

10
−1

10
0

F
itn

es
s

Fig. 10.6. Boxplot of the best fitness in the final generation over 20 runs after 1200
exact fitness evaluations are done: (a) without structure optimization, and (b) with
structure optimization

each generation in all methods is the same. Fig. 10.7(a) shows the character-
istics of the median best fitness value over the generations and in Fig. 10.7(b)
the boxplot for statistical analysis is illustrated using structure optimization
of the neural network.

As can be seen in Fig. 10.7, the pre-selection strategy improves the plain
evolution strategy on all used test functions. So it might improve the opti-
mization process better if the parents are only selected out of the λ∗ offspring
evaluated with the original fitness function. Using BS, CT or CTBS, the par-
ents are selected out of all λ individuals, whose fitness has either been eva-
luated with the real fitness function or estimated by the neural network. The
possible reason is that if some individuals are selected according to the es-
timated fitness, the optimization algorithm might be misled, which degrades
the performance.

236 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

(a) (b)

Sphere

10 30 50 70 90 110 130 150 170 190

10
−4

10
−2

10
0

Generation

F
itn

es
s

plainES
PreS
BS
CT
CTBS

plainES PreS BS CT CTBS
10

−6

10
−5

10
−4

10
−3

F
itn

es
s

Rosenbrock

10 30 50 70 90 110 130 150 170 190
10

1

10
2

10
3

10
4

Generation

F
itn

es
s

plainES
PreS
BS
CT
CTBS

plainES PreS BS CT CTBS
10

−1

10
0

10
1

10
2

F
itn

es
s

Ackley

10 30 50 70 90 110 130 150 170 190
10

−3

10
−2

10
−1

10
0

10
1

Generation

F
itn

es
s

plainES
PreS
BS
CT
CTBS

plainES PreS BS CT CTBS

10
−2

10
−1

10
0

F
itn

es
s

Fig. 10.7. Results of the individual-based methods in a parallel computational
environment: (a) performance comparison and (b) boxplot over 20 runs after 200
generations

We can see that clustering the design space on bumpy fitness landscapes
like the Ackley function gives a benefit to the algorithm. The clustering tech-
nique with best strategy performs also well on all other test functions, es-
pecially if the fitness function becomes more complex. However, it can not
outperform the pre-selection strategy.

In both serial and parallel computational environments, the pre-selection
and clustering technique with best strategy delivered the most promising
results.

10 Individual-based Management of Meta-models 237

10.4 Adaptation in Individual-based Evolution Control

In the above comparisons, the number of controlled individuals is fixed during
optimization. In this section, we consider adapting the number of controlled
individuals. Three different adaptation frameworks are introduced. The idea
of adaptation is that if the performance of the neural network increases during
optimization, it should be used more often to substitute the original fitness
function. There are two parameters that can be taken into account for adapta-
tion. One is the number of fitness evaluations λ∗, and the other is the number
of pre-selected individuals λ’. Adjustment of λ∗ only makes sense of on-line
scheduling of computational resources is possible.

10.4.1 Normalized Squared Error Driven Adaptation Mechanism
(NERD)

The first quality measure we considered here to adapt the number of indivi-
duals is the approximation quality of the neural network. The approximation
quality of the neural network can often be measured using the squared error
between the individual’s original fitness φ

(Orig.)
i and the estimated fitness of

the neural network φ
(MLP)
i :

E
(SE)
i =

(
φ

(MLP)
i − φ

(Orig.)
i

)2
. (10.3)

The error can be determined for each offspring i which has been evaluated
with the original fitness function. The main idea of this adaptation method is
that if the error of the neural network becomes smaller in the next generation
t + 1, the neural network should be used more often. But the error in the
generation t + 1 is unknown. It is only possible to compare the error in the
current generation t with the error in the last generation t− 1. There are two
problems in comparing these two errors. In general, the fitness values by itself
decline during optimization and so probably the value of the squared error
will also decline. Therefore the squared error should be normalized by the use
of the mean squared error:

E
(NSE)
i =

E
(SE)
i

1
λ∗
∑λ∗

i=1 E
(SE)
i

. (10.4)

Comparing the mean of the normalized squared errors of all offspring will
lead to the second problem. If there is one individual with a large error while
the error of the rest of the individuals is small the comparison might be
misleading. Instead of comparing the mean values, the ranks of the individuals’
normalized errors are compared. An example how the rank of the error in
generation t− 1 and generation t can be calculated is illustrated in Fig. 10.8.
First the values of the two sets of errors are combined and sorted. After
that, each element is given its corresponding rank. If some samples carry the

238 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

same error value, the rank will be averaged. Then, the ranks of the sets from
generation t− 1 and generation t are accumulated.

Fig. 10.8. Example of evaluating the rank with respect to the normalized square
error in generation t− 1 and generation t

Given the two ranks the quality measure ρ(NERD) can be determined by
calculating the difference of the two normalized ranks. The ranks also have to
be normalized by the number of λ∗ individuals because λ∗ might change if it
is adapted during optimization:

ρ(NERD) =
R(t− 1)

λ∗
t−1

− R(t)
λ∗

t

. (10.5)

If Rt is smaller than Rt−1, the quality measure ρ(NERD) is less than 0 and
the neural network should be used more often. On the other hand, if Rt−1 is
smaller than Rt, ρ(NERD) is bigger than 0 and the neural network should be
used less often. λ∗

t+1, or rather λ′
t+1 is adapted as follows:

λ∗
t+1 = λ∗

t − ρ(NERD) ·∆λ, (10.6)

λ′
t+1 = λ′

t + ρ(NERD) ·∆λ. (10.7)

The remaining difficulty is the choice of the correct free parameter ∆λ,
which might be problem-specific.

10.4.2 Selection Based Adaptation Mechanism (Sel)

From the evolutionary computation point of view, only the correct selection is
of importance and not the approximation error of the model. The error of the
neural network does not have direct influence on the evolutionary selection
process. Therefore, as introduced in [15], a selection based quality measure can
be considered to evaluate the quality of the model based selection process. For
each correctly selected individual, based on the estimation of the model, it is

10 Individual-based Management of Meta-models 239

given a rank of (λ∗
t − i), if the individual has the i-th best fitness based on the

true fitness. To calculate the rank, as shown in Fig. 10.9, we first pick out the
µ∗ best individuals based on the estimation of the neural network. Note that
these individuals are chosen only to calculate the error measure.

Fig. 10.9. Illustration of how to evaluate the selection-based quality measure

Afterwards, all λ∗ individuals are evaluated using the original fitness func-
tion and µ individuals will be selected out of the λ∗

t (where t is the generation
index) offspring and the sum of the ranks of all m correctly selected individuals
measures the quality ρ(sel) in the current generation:

ρ(sel) =
m∑

i=1

(λ∗
t − i). (10.8)

If all individuals are selected correctly, the quality measure reaches its
maximum:

ρ(sel)
max =

µ∑
i=1

(λ∗
t − i). (10.9)

The idea is to compare the actual quality measure with the expected qua-
lity of a random selection process 〈ρ(rand)〉:

〈ρ(rand)〉 =
µ2

λ∗
t

· 2λ∗
t − µ− 1

2
. (10.10)

If the quality in the current generation is better than the quality of a
random selection process, then the neural network can be used to replace the
original fitness function more often. Otherwise, the neural network should be
less often used. The adaptation rule differs a little bit whether λ∗ (Equation
10.12, 10.14) or λ’ (Equation 10.11, 10.13) will be adapted.

ρ
(sel)
t > ρ(rand) :

240 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

λ′
t+1 = λ′

t +
ρ
(sel)
t − 〈ρ(rand)〉

ρ(max) − 〈ρ(rand)〉 ·∆λ, (10.11)

λ∗
t+1 = λ∗

t −
ρ
(sel)
t − 〈ρ(rand)〉

ρ(max) − 〈ρ(rand)〉 ·∆λ. (10.12)

ρ
(sel)
t < ρ(rand) :

λ′
t+1 = λ′

t −
〈ρ(rand)〉 − ρ

(sel)
t

〈ρ(rand)〉 ·∆λ, (10.13)

λ∗
t+1 = λ∗

t +
〈ρ(rand)〉 − ρ

(sel)
t

〈ρ(rand)〉 ·∆λ. (10.14)

It has to be considered that λ∗
t+1 is bigger than the number of parents µ

and as in all other adaptation methods λ′
t+1 has to be equal or bigger than

λ∗
t+1. As in the normalized squared error based adaptation framework, the free

parameter ∆λ has also to be specified. One drawback of the selection based
approach is probably the small number of µ individuals taken into account to
measure the quality, which could result in strong oscillations in adaptation.
Note that CMA-ES often uses a small population size.

10.4.3 Correlation Based Adaptation Mechanism (Rank, Corr)

Using the correlation based framework, all λ∗
t offspring are taken into account

to evaluate the quality measure. Two different possibilities are suggested in
[15] to evaluate the correlation between the λ∗

t individuals. The first corre-
lation based quality measure is the rank correlation (Rank). To evaluate the
rank correlation measure, after estimation the λ∗

t individuals are sorted by
their fitness and a given rank. The same is done after evaluating the fitness
with the original fitness function. The rank correlation quality measure can
now be calculated in the following way:

ρ(rank) = 1− 6
∑λ∗

t

l=1(rl − r̂l)2

λ∗
t ((λ∗

t)2 − 1)
, (10.15)

where r̂l is the rank of the l’th individual based on the estimated fitness and
rl is the rank based on the real fitness.

The second correlation based quality measure is the so called continuous
correlation (Corr). This quality measure calculates the correlation between the
fitness values instead of the ranks. So the continuous correlation between the
approximate model output and the original fitness function can be calculated
by using Equation 10.16:

ρ(corr) =
1

λ∗
t

∑λ∗
t

l=1

(
φ

(MLP)
l − φ̄(MLP)

)(
φ

(Orig)
l − φ̄(Orig)

)
σ(MLP)σ(Orig)

. (10.16)

10 Individual-based Management of Meta-models 241

Here ¯φ(m) and σ(m) are the mean value and the standard derivation of the
fitness values evaluated using the neural network and ¯φ(o) and σ(o) are the
mean and the standard derivation of the real fitness values.

The rules to adapt λ∗ and λ′ are similar to the rules in the normalized
squared error driven mechanism:

λ∗
t+1 = λ∗

t − ρ ·∆λ, (10.17)

λ′
t+1 = λ′

t + ρ ·∆λ, (10.18)

where ρ stands for ρ(corr) or ρ(rank).

10.4.4 Simulation Results

The empirical results are presented to investigate whether the adaptation
mechanisms are able to improve the performance of the individual-based evo-
lution control methods. To dynamically control the impact of the neural net-
work on the individual-based evolutionary control strategy, two parameters
can be adjusted during optimization.

Simulations have been conducted using the pre-selection strategy, where
the number of pre-selected individuals is adapted using the introduced adap-
tation mechanisms. As mentioned, ∆λ has to be specified before starting the
simulations. ∆λ was determined during some experiments and varies with the
different adaptation mechanisms as listed in Table 10.3.

Sel NERD Rank, Corr

∆λ 12 24 16

Table 10.3. Configuration of the free parameter ∆λ to adapt the number of pre-
selected individuals

The initial value for λ′ was fixed to 12 and the parameters for the evolution
strategy are set to

(
3, [λ′(t)]12[12]

)
. In all simulations, the structure of the

neural network is optimized.
As one can see in Fig. 10.10, using the normalized error rank based

(NERD) adaptation mechanism performs very poorly on all the test func-
tions. In Fig.10.11, the change of λ′ are shown on the left and the quality
measure on the right. Using the error-based adaptation mechanism (NERD),
it can be seen that λ′ increases continuously on all test-functions. So the net-
work error seems to decrease during optimization. This might indicate that
the error of the neural network by itself is not directly correlated with the
performance of the optimization process. Another reason might be that ∆λ
has not been chosen correctly.

242 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

(a) (b)

Sphere

 15 35 55 75 95
10

−4

10
−2

10
0

Generation

F
itn

es
s

plainES
PreS
Sel
NERD
Rank
Corr

plainES PreS Sel NERD Rank Corr

10
−5

10
−4

10
−3

F
itn

es
s

Rosenbrock

 15 35 55 75 95
10

1

10
2

10
3

10
4

Generation

F
itn

es
s

plainES
PreS
Sel
NERD
Rank
Corr

plainES PreS Sel NERD Rank Corr

10
0

10
1

10
2

F
itn

es
s

Ackley

 15 35 55 75 95

10
−2

10
−1

10
0

10
1

Generation

F
itn

es
s

plainES
PreS
Sel
NERD
Rank
Corr

plainES PreS Sel NERD Rank Corr

10
−2

10
−1

10
0

10
1

F
itn

es
s

Fig. 10.10. Results using adaptation mechanisms to control the number of pre-
selected individuals: (a) performance comparison and (b) boxplot over 20 runs after
100 generations

The selection based adaptation mechanism failed to perform well on all
three test-functions too. The change of λ′ and the quality measure oscillates
dramatically, see Fig. 10.11. It is noticed that in [19], the selection-based
quality measure has successfully been used to control the number of the pre-
selected individuals. Note that the population size used in [19] is larger.

The best results in our simulations are obtained with the correlation-based
adaptation mechanisms, especially the continuous correlation mechanism. But
the correlation based adaptation mechanisms can not significant improve the
pre-selection method without adaptation. Looking at the characteristic of λ′

on Fig. 10.11, both adaptation mechanisms show the same trend. At the
beginning the impact of the neural network to the optimization process steady
increases. After some maximum is reached λ′ decreases. The characteristics of

10 Individual-based Management of Meta-models 243

λ′ appears to agree with the idea that the neural network should be less used
until it is well trained. And if the optimization process comes closer to the
optimum, the neural network should also be less used because the estimation
is accurate enough to reach the real optimum.

From the above results, it seems that the adaptation mechanism is not suc-
cessful in improving the performance of the pre-selection strategy and thus,
the adaptation mechanisms are not tested on other model management frame-
works.

10.5 3D Blade Design Optimization

In this section, we apply the pre-selection and the clustering with best strategy
to 3D stator blade optimization.

10.5.1 Shape Representation

The 3D shape of the blade is approximated using three sections of 2D blades,
as illustrated in Fig. 10.12(a). The hub section is directly connected to the
hub at a radius of R = 98.6mm from the engine axis. The tip section lies at
a radius of R = 130.0mm. The 3D blade is built up by linear interpolation
between these two sections. Another important section for the calculation of
the design constraints is the casing section, which lies between the hub and
the tip section at R = 117.5mm.

For each blade section, the blade length in axial direction is defined by
the axial chordlength, refer to Fig. 10.12(b). The axial chordlength depends
on the distance of the section to the engine axis.

Another parameter is the axial solidity s. For optimization, the solidity is
measured at the casing section and the hub section. The final blade solidity
is defined as the maximum value of these two measurements.

To describe the geometry of the blade, the thickness Θ can not be omitted.
The thickness is also defined on a 2D section as the distance from the medial
axis to a point p on the outline of the section. Depending on where the
thickness is measured, the trailing edge thickness ΘTE , near the trailing edge
of the blade and the leading edge thickness ΘLE near the leading edge are
considered. Also important are the minimal Θmin and maximal Θmax values
of the thickness.

The last parameter introduced here is the throat area (Fig. 10.12a). The
throat area is defined as the area between two adjacent blades.

In this representation, 88 design parameters need to be optimized.

10.5.2 Performance Evaluation

Given the geometry of the 3D blade, the performance can be described by
the pressure loss, which has to be minimized under certain constraints. This

244 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

(a) (b)

NERD

0 20 40 60 80 100
12

14

16

18

20

22

24

26

Generation

Sphere
Rosenbrock
Ackley

λ ’

0 20 40 60 80 100

−0.1

−0.05

0

0.05

0.1

0.15

Generation

Sphere
Rosenbrock
Ackley

ρ NERD

Sel

0 20 40 60 80 100
12

14

16

18

20

22

24

26

28

Generation

Sphere
Rosenbrock
Ackley

λ ’

0 20 40 60 80 100
0

2

4

6

8

10

12

Generation

Sphere
Rosenbrock
Ackley

ρ sel

Rank

0 20 40 60 80 100
10

20

30

40

50

60

Generation

Sphere
Rosenbrock
Ackley

λ ’

0 20 40 60 80 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Generation

Sphere
Rosenbrock
Ackley

ρ rank

Corr

0 20 40 60 80 100
10

20

30

40

50

60

70

80

Generation

Sphere
Rosenbrock
Ackley

λ ’

0 20 40 60 80 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Generation

Sphere
Rosenbrock
Ackley

ρ corr

Fig. 10.11. Development of (a) λ′ and (b) the quality measure during optimization

leads to the following objective or fitness function as a weighted sum of the
pressure loss and the blade constraints. A penalty is applied in term of a big
weight wi so that the fitness becomes worse when a constraint is violated.

10 Individual-based Management of Meta-models 245

(a) (b)

Fig. 10.12. Parameters and terminologies in 3D turbine blade design

f = w0t0 +
4∑

i=1

wit
2
i −→ min, (10.19)

where t0 is the pressure loss of the given blade, and ti are the following con-
straints:

• t1 : max
(
0, |β2,design − β2| − δβ2

)
,

• t2 : max
(
0, Θmin,design −Θmin

)
,

• t3 : max
(
0, ΘTE,min,design −ΘTE,min

)
,

• t4 : max
(
0, smax − smax,design

)
,

where the following design values and tolerances are used:

• β2,design = 72.0deg
• δβ2 = 0.5deg
• Θmin,design = 0.72mm
• ΘTE,min,design = 0.9mm
• smax,design = 0.706.

The geometrical constraints like the minimal thickness Θ, trailing edge
thickness ΘTE , and the solidity s can all be determined directly from the
geometry of the blade. However the outlet angle β2 and the pressure loss can
only be calculated from the results of the computational fluid dynamics (CFD)
simulations. To simulate the fluid dynamics, the parallelized 3D Navier-Stokes
flow solver HSTAR3D is used. The computational time of a CFD simulation
varies between 2.5 and 6 hours on an AMD Opteron 2GHz dual processor.
After flow analysis, each blade can be assigned a corresponding fitness value
using Equation 10.19.

To investigate whether individual-based evolution control methods give a
benefit to real world optimization problems, two methods are implemented

246 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

0 20 40 60 80
9.8

10

10.2

10.4

10.6

10.8

11

Generation

F
itn

es
s

plainES
PreS

0 20 40 60 80
9.8

10

10.2

10.4

10.6

10.8

11

Generation

F
itn

es
s

plainES
CTBS

0 100 200 300 400 500
9.8

10

10.2

10.4

10.6

10.8

11

Exact Evaluations

F
itn

es
s

plainES
PreS

0 100 200 300 400 500
9.8

10

10.2

10.4

10.6

10.8

11

Exact Evaluations

F
itn

es
s

plainES
CTBS

(a) (b)

Fig. 10.13. Comparison of the performance between the plain evolution strategy
and (a) using the pre-selection strategy or (b) using the clustering technique with
best selection

in the 3D blade design optimization problem. The two methods are the
(1, [12]6[6]) pre-selected strategy and the (1, [6]6[4]) clustering technique with
best strategy. The performance of the methods are compared with the (1, 6)
plain evolution strategy. By use of the model assisted methods, the computa-
tionally expensive flow analysis was partially replaced by the neural network.
The neural network consists of 88 input nodes, 4 hidden nodes and 2 output
nodes. Using the clustering technique with best strategy, the performance of
only 4 instead of 6 individuals each generation was determined by evaluating
the CFD. Therefore the methods are compared by the fitness over the number
of generations and also by the fitness over the number of exact fitness function
evaluations, see Fig. 10.13.

As can be seen in 10.13(a), using the pre-selection strategy gives a bene-
fit to the plain evolution strategy. It was possible to save up to about 20
generations to reach the same fitness value. The fitness of all individuals in
each generation was evaluated in parallel. If the evaluation of the fitness takes
about three hours, we saved about 60 hours of computational time. But the
gap between the plain evolution strategy and the pre-selection strategy over
the entire optimization process is nearly constant. There is no dramatic im-
provement in performance compared to the plain evolution strategy.

Using the clustering technique with best strategy, there is no improvement
to the plain optimization process, refer to 10.13(b). Comparing the fitness over

10 Individual-based Management of Meta-models 247

the number of generations, it might be clear that the (1, 6) plain evolution
strategy can not be improved if only 4 individuals each generation are eval-
uated with the exact fitness function. Further it should be analyzed whether
the clustering technique with best strategy might improve the (1, 4) evolu-
tion strategy. But comparing the fitness against the number of exact fitness
function evaluations, there is also no improvement to the plain optimization
process.

0 20 40 60 80
71

71.2

71.4

71.6

71.8

72

72.2

72.4

72.6

Generation

O
ut

flo
w

 A
ng

le

plainES
PreS

0 20 40 60 80
71

71.2

71.4

71.6

71.8

72

72.2

72.4

72.6

Generation

O
ut

flo
w

 A
ng

le

plainES
CTBS

(a) (b)

Fig. 10.14. Comparison of the outflow angle between the plain evolution strategy
and (a) using the pre-selection strategy or (b) using the clustering technique with
best selection

The fitness for each individual was determined by using equation 10.19. If
the geometry of the blade does not violate any constraint, the pressure loss
equals the fitness value because the weight for the pressure loss is set to one.
Otherwise, if the geometry violates some constraints, a penalty of 1022 was
given and the fitness becomes worse. Because the fitness values of invalid blade
geometries are very large, these fitness values are not illustrated in Fig. 10.13.

A comparison of the outflow angle of the plain evolution strategy and the
individual controlled strategies is shown in Fig. 10.14. It can be seen that the
value for the outflow angle is near the lower bound. One exception occurs
when the pre-selection strategy is used, where the outflow angle differs from
the plain evolution strategy in the first generations.

To investigate how good the neural network substitute the time-expensive
CFD-calculations, the estimation error of the two neural network outputs are
illustrated in Fig. 10.15. The upper panel illustrates the estimation error of the
pressure loss and the bottom panel shows the estimation error of the outflow
angle. The squared error of the value evaluated with the CFD-calculation and
the value estimated with the neural network has been plotted. It can be seen
that the most values lie between 10−2 and 10−4. Recall that the pressure
loss is about 10 and the outflow angle is about 71.5, which indicates that the
estimation of the neural network is quite good.

248 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

0 20 40 60 80

10
−6

10
−4

10
−2

10
0

Pressure Loss

Generation

S
qu

ar
ed

 E
rr

or

0 20 40 60 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0 Pressure Loss

Generation

S
qu

ar
ed

 E
rr

or

0 20 40 60 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Outflow Angle

Generation

S
qu

ar
ed

 E
rr

or

0 20 40 60 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Outflow Angle

Generation

S
qu

ar
ed

 E
rr

or

(a) (b)

Fig. 10.15. Illustration of the neural network error for the pressure loss and the out-
flow angle (a) using the pre-selection strategy and (b) using the clustering technique
with best selection

10.6 Conclusions

In this chapter, we have present four individual-based evolution control meth-
ods in order to reduce the number of expensive fitness evaluations. The per-
formance of the methods is tested on three widely used benchmark functions.
The pre-selection strategy shows the best results in both serial and in paral-
lel computational environments, which improves the plain evolution strategy
significant on mostly all test functions. The stability of the individual based
evolution strategy might be improved if the parents for the next generation
are selected out of the individuals evaluated with the original fitness function,
as it is done in the pre-selection strategy.

To adaptively control the impact of the neural network on the evolution-
ary process, different adaptation mechanisms are investigated. The number of
pre-selected individuals was controlled using the pre-selection strategy. Pre-
liminary simulation results are not very promising. Further research should be
done to see whether the free parameter ∆λ was chosen correctly. It should be
analyzed why the results presented in [19] are much better than in our work.

To investigate whether individual-based evolution control methods are
practical in real world optimization problems, the pre-selection strategy and
the clustering technique with best strategy are implemented in the 3D blade

10 Individual-based Management of Meta-models 249

design optimization. It turned out that the pre-selection strategy gives a ben-
efit to the performance of the optimization process. The neural network suf-
ficient substitutes the CFD-calculation.

There are a few possible reasons that lead to the relatively poor perfor-
mance of the clustering methods. First, the population size used in this work
is very small, which makes the clustering less sensible. Second, we only used
a single neural network contrasting the work in [12], where a neural network
ensemble has been used. In the future work, it should be investigated whether
a neural network ensemble instead of a single neural network can improve the
estimation accuracy of the model.

References

1. G. Cybenko. Approximation by superposition of a sigmoidal function. Math.
Control Signals Systems, 2:303–314, 1989.

2. K. Foli, M. Olhofer T. Okabe, Y. Jin, and B. Sendhoff. Optimization of mi-
cro heat exchanger: CFD, analytical approach and multi-objective evolutionary
algorithms. International Journal of Heat and Mass Transfer, 49:1090–1099,
2006.

3. L. Gräning, Y. Jin, and B. Sendhoff. Efficient evolutionary optimization using
individual-based evolution control and neural networks: A comparative study.
In European Symposium on Artificial Neural Networks, pages 273–278, 2005.

4. N. Hansen and S. Kern. Evaluating the cma evolution strategy on multimodal
test functions. In Eight International Conference on Parallel Poblem Solving
from Nature PPSN VIII, pages 282–291. Springer, 2004.

5. M. Hasenjäger, B. Sendhoff, T. Sonoda, and T. Arima. Three dimensional
aerodynamic optimization for an ultra-low aspect ratio transonic turbine stator
blade. In ASME Turbo Expo, 2005.

6. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366, 1989.

7. M. Hüsken, Y. Jin, and B. Sendhoff. Structure optimization of neural networks
for evolutionary design optimization. In GECCO Workshop on Approximation
and Learning in Evolutionary Computation, pages 13–16, 2002.

8. Y. Jin. A comprehensive survey of fitness approximation in evolutionary com-
putation. Soft Computing, 9(1):3–12, 2005.

9. Y. Jin, M. Huesken, and B. Sendhoff. Quality measures for approximate mod-
els in evolutionary computation. In Proceedings of GECCO Workshops: Work-
shop on Adaptation, Learning and Approximation in Evolutionary Computation,
pages 170–174, Chicago, 2003.

10. Y. Jin, M. Olhofer, and B. Sendhoff. On evolutionary optimization with approx-
imate fitness functions. In Genetic and Evolutionary Computation Conference,
pages 786–792. Morgan Kaufmann, 2000.

11. Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimiza-
tion with approximate fitness functions. IEEE Transactions on Evolutionary
Computation, 6(5):481–494, 2002.

12. Y. Jin and B. Sendhoff. Reducing fitness evaluations using clustering techniques
and neural networks ensembles. In Genetic and Evolutionary Computation Con-
ference, volume 3102 of LNCS, pages 688–699. Springer, 2004.

250 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

13. M. Olhofer, T. Arima, Y. Jin, T. Sonoda, and B. Senhoff. Optimisation of
transonic gas turbine blades with evolution strategies. Honda Technical Reviews,
pages 203–216, April 2002. documents/HTR02.pdf.

14. M. Olhofer, T. Arima, T. Sonoda, and B. Sendhoff. Optimisation of a sta-
tor blade used in a transonic compressor cascade with evolution strategies. In
Adaptive Computation in Design and Manufacture, pages 45–54. Springer, 2000.

15. Y.S. Ong, P.B. Nair, and A.J. Keane. Evolutionary optimization of computa-
tionally expensive problems via surrogate modeling. AIAA Journal, 41(4):687–
696, 2003.

16. Y.S. Ong, P.B. Nair, A.J. Keane, and K.W. Wong. Surrogate-assisted evolu-
tionary optimization frameworks for high-fidelity engineering design problems.
In Y. Jin, editor, Knowledge Incorporation in Evolutionary Computation, pages
307–331. Springer, 2005.

17. A. Oyama. Multidisciplinary optimization of transonic wing design based on
evolutionary algorithms coupled with cfd solver. In European Congress on Com-
putational Methods in Applied Science and Engineering, ECCOMAS 2000, 2000.

18. M. Riedmiller and H. Braun. A direct adaptive method for faster backpropaga-
tion learning: The rprop algorithm. IEEE Int. Conference on Neural Networks,
pages 586–591, 1993.

19. H. Ulmer, F. Streichert, and A. Zell. Evolution strategies with controlled model
assistance. In Congress on Evolutionary Computation, pages 1569–1576, 2004.

20. Cheng Xiang. Geometrical interpretation and architecture selection of MLP.
IEEE Transaction on Neural Networks, 16(1):84–96, 2005.

21. X. Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447, 1999.

11

Evolutionary Shape Optimization
Using Gaussian Processes

Wenbin Song

School of Engineering Sciences, University of Southampton
University Road, Southampton SO17 1BJ, U.K.
w.song@soton.ac.uk

Summary. This chapter presents studies on structural shape optimization using
evolutionary computation methods and Gaussian process based meta-modeling tech-
niques. Methods of evolutionary computation have been used to solve design opti-
mization problems in a wide range of areas in a process mimicking the evolution of
biological life in natural world. Among various evolutionary computation methods,
genetic algorithms have been attracting attentions due to its easiness to implement
and its robustness in locating near global optimal solutions. However, the large
number of iterations typically required by evolutionary search methods to converge
has prompted research interests in the use of meta-models in the process. Gaussian
process based meta-modeling technique is one of the popular choices since it not only
can provide a prediction on the function value, but also can provide error estimate
on the prediction. This chapter describes frameworks using genetic algorithms and
Gaussian process based meta-modeling techniques for structural shape optimiza-
tion problems. Application examples of such approaches are given in areas of firtree
shape optimization using finite element method and engine nacelle optimization
using computational fluid dynamics.

11.1 Introduction

The robustness in finding near-global optimal solutions using the evolutionary
search methods, and in particular, genetic algorithms (GAs) [1], has attracted
an increasing amount of research interests in the use of such methods in vari-
ous optimization and design problems in fields such as engineering design, fi-
nance, and job scheduling [2–5]. GAs typically require large number of fitness
evaluations for the results to converge to global optimal solutions. Therefore,
improving the efficiency of GAs has become a key factor in their successful
applications to real-world problems when fitness evaluations become compu-
tationaly expensive. In structural shape optimization problems, high fidelity
analysis codes, such as finite element and computational fluid dynamics, are
often used to compute fitnesses of individuals in the population. This presents

W. Song:Evolutionary ShapeOptimizationUsingGaussianProcesses, Studies in Computational

Intelligence (SCI) 51, 251–267 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

252 Wenbin Song

particular challenge for the application of GAs to real-world structural shape
optimization problems.

Two categories of techniques have been proposed to tackle the issue of ef-
ficiency of evolutionary search methods: the first is focused on devising more
efficient variants of the canonical algorithms either by using a hybrid of local
search and evolutionary methods or by using genetic operators customized
to applications [6–9]. The former is also known as memetic algorithms which
combine gradient based local search with GAs in the sense of Lamarckian or
Baldwinian learning mechanisms [10]. The second type involves using meta-
models, also called approximation models or surrogate models, in lieu of the
exact and often expensive function evaluations [11]. One of the common fea-
tures of these techniques is that both types of methods try to reduce the
number of exact fitness evaluations to improve overall efficiency. As these two
types of techniques can be easily combined to further speed up the process, re-
search effort can be focused on them separately. The focus of the current chap-
ter is on efficient frameworks for combining genetic algorithms with Gaussian
process based approximation technique, which is also known as Kriging [12].
The emphasis is placed on devising effective frameworks which balance the
needs for exploitation and exploration. The purpose of exploitation is to im-
prove the accuracy of approximation models based on available data and the
aim of exploration is to reliably locate optimal solutions on the approximation
models.

Various strategies have been proposed and studied to tackle the use of
meta-models in evolutionary frameworks in addition to researches into dif-
ferent meta-modeling techniques. For example, Ong [19] proposed the use of
radial basis function (RBF) models in a trust region framework to reduce
expensive function evaluations in local searches, which are combined with a
genetic algorithm to assure global convergence. Song [14] illustrated the use of
a 3σ update strategy in combining a global Kriging meta-model with GA on an
industrial design problem. In addition to being used in expensive optimization
studies, surrogate models also prove valuable in problems of multidisciplinary
design where interactions between different disciplines can be studied more
thoroughly using surrogates.

In the next section, different methods for building the meta-models are
described to provide some background knowledge for commonly used ap-
proximation methods. Two frameworks incorporating these Gaussian process
based meta-models in evolutionary search methods is described in section III.
Two application examples are given in section IV. The first example involves
the optimization of turbine blade firtree root using finite element method.
The second example demonstrates the use of computational fluid dynamics
on the shape optimization of civil aero-engine nacelle. A brief discussion is
given at the end of the chapter.

11 Evolutionary Shape OptimizationUsing Gaussian Processes 253

11.2 General Methods for Building Metamodels

The first step in an optimization task is to build a parametric model which,
given a set of values for the parameter, will produce a set of performance
measures of the model. These performance measures can be used as either ob-
jectives or constraints in subsequent optimization studies. Such models could
either be simple analytical ones built based on physical laws, or mathematical
models built from experimental data, in graph or tabular form. However, as
more and more increasingly sophisticated computer codes are used to produce
such performance measures, the total number of simulations that can be done
will be limited by available computing resources, or the time constraint. Typi-
cal examples of these scenarios include car design optimization using crash
analysis code; or aerodynamic design of airplanes using computational fluid
dynamics. Therefore, the use of meta-models becomes a preferred solution.
The meta-models are mathematical models which are easy to evaluate but
capable of capturing the characteristics of the original problems.

There exists a number of methods for building meta-models. The reader is
referred to [9] for a comprehensive survey on various approximation methods
available in the literature. Let (xi,y(xi), i = 1, ...m) denotes the data set
collected by running the simulation codes on a number of data points selected
randomly or using methods of design of experiment such as Latin hypercube
samples, where xi and y(xi) are the input vector and output for the ith point,
respectively. m is the number of points in the data set. Three most commonly
used models are briefly described in the following sections, along with some
comparisons on their strengths and weaknesses.

11.2.1 Polynomial Approximation

The polynomial models were originally developed to analyze data from physi-
cal experiments and to create empirical models of the observed input-output
relations. The commonly used response surface model is low order polynomials
which can be represented as

y = β0 +
k∑

i=1

βixi (11.1)

for linear case, and

y = β0 +
k∑

i=1

βixi +
k∑

ii=1

βiixii
2 +

∑
i<j

∑
βijxixj (11.2)

for quadratic approximations. Higher order polynomials are less commonly
used due to its high fluctuation with the input variables. The coefficients in
the equation can be solved using least square methods. Detailed discussions
on these models can be found in many texts [9]. These models are less favor-
able when dealing with high dimensional optimization problems because of its
inflexibility to capture more complex relationships.

254 Wenbin Song

11.2.2 Neural Network

Radial basis function (RBF) is a type of neural networks employing a hidden
layer of radial units and an output layer of linear units and is characterized
by its reasonably fast training process. Since our primary concern is to build
approximation models on the data generated from deterministic computer
simulations, an interpolation model using RBF is therefore used

y(x) =
m∑

k=1

αkK(||x− xk||) (11.3)

where K(||x−xk||) is a radial basis kernel function and (αk, k = 1, ...,m) ∈ Rm

represents the weight vector for the design points. Given a suitable choice of
the kernel function, the weight vector can be computed by solving the linear
algebraic system of equations

Kα = y (11.4)

where y = {y1, y2, ..., ym} denotes the vector of outputs and Km×m is the
Gram matrix computed using the training data, i.e., the (i, j)th element of K
is computed as K(||xi − xj ||).

Typical choices for the kernel function K(h), for h ∈ R, include linear
splines, thin-plate splines, cubic splines, Gaussian and multiquadrics func-
tions, as listed in Table 11.1. The Gram matrix is positive semi-definite. To
guarantee the non-singularity of the Gram matrix, duplicate points should be
excluded from the dataset (and it also makes sense when dealing with data
from deterministic computer simulations) and positive definite kernels (such
as Gaussian and inverse multiquadric) need to be used. However, it should be
noted that the Gram matrix could become highly ill-conditioned for extreme
values of θ in these kernels.

Table 11.1. Kernel Functions for Radial Basis Function Neural Network

Type of kernel functions Definition

Linear (|h|)
Gaussian (e−h2/θ)

Multiquadratics (
√

(1 + h2/θ))

Inverse multiquadratics (1/
√

(1 + h2/θ))

The model parameter θ can be optimized to minimize the prediction error
when more data becomes available or when leave-n-out schemes are used for
cross-validation of the model. Regulating terms can also be used in some cases
to avoid overfitting of the data.

11 Evolutionary Shape OptimizationUsing Gaussian Processes 255

11.2.3 Gaussian Process Models

Originally developed in geostatistical field for processing spatially correlated
data [17], Gaussian process models, also known as Kriging, is a technique
for building global approximation models which characterize local effects in a
statistically meaningful sense. Typically, data points are interpolated in the
Kriging model, but approximation models can also be developed to filter out
noise in the data [18]. The interpolation Kriging model is here expressed as

y(x) = β + Z(x) (11.5)

where β represents a constant term in the model, and Z(x) is a Gaussian
random process with zero mean and variance of σ2. The covariance matrix of
Z(x) is given by

Cov(Z(xi), Z(xj)) = σ2R(xi,xj) (11.6)

where σ2 is the variance of the stochastic process and R(., .) is a correlation
function between xi and xj . Different types of correlation functions can be
employed as noted in Jones et al. [12]. A commonly used type of correlation
function can be expressed as

R(xi,xj) =
n∏

k=1

exp(−θk|xi
k − xj

k|p) (11.7)

where θk > 0 and 1 ≤ pk ≤ 2 are the hyperparameters, and n denotes the
number of dimensions in the data set. Note that the above equation asserts
that there is a complete correlation of a point with itself and this correla-
tion decreases rapidly as the two points move away from each other in the
parameter space. The choice of pk = 2 would provide enough flexibility for
modeling smooth but highly non-linear functions for most cases. The hyperpa-
rameters θk are estimated by maximizing the log-likelihood function given by

−1
2
[n ln σ2 + ln |R|+ 1

σ2
(y − 1β)T R−1(y − 1β)] (11.8)

where σ2 and β can be derived using the following equations once the θk are
given

β̂ = (1T R−11)−11T R−1y (11.9)

σ̂2 =
1
n

(y − 1β)T R−1(y − 1β) (11.10)

A numerical optimization procedure is required to obtain the Maximum Like-
lihood Estimates (MLE) of the hyperparameters. Once the hyperparameters
are obtained from the training data, the function values at new points can be
predicted by

ŷ(x∗) = β̂ + rT R−1(y − 1β̂) (11.11)

along with the posterior variance s2(x∗) given by

256 Wenbin Song

s2(x∗) = σ2[1− rR−1r +
(1− 1T R−1r)2

(1T R−11)
] (11.12)

where r(x) = R(x,x1), ..., R(x,xn) is the correlation vector between the new
point x and the training dataset. This quantity provides an indication on the
accuracy of the prediction at new points and will be used in our framework
to decide whether and where further exact analyses are required.

Fig. 11.1 compares the approximated response of a kriging model to that
of a radial basis neural network, in which both methods have provided a
good approximation because of the sufficient number of sample points on the
curve and there is just one variable. But, in general, the Krig model is more
time-consuming to build than the RBF model.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
data points
radial basis function
kriging

Fig. 11.1. Comparison of a radial basis neural network model and a kriging model
for the same data

11.3 Evolutionary Frameworks Using Meta-models

In recent years, there has been a growing interest in methods using approxi-
mation models in optimization, in which, the complex simulation codes are

11 Evolutionary Shape OptimizationUsing Gaussian Processes 257

treated as black-box functions [12, 19–21]. Data are first gathered via evalua-
tions of expensive simulation codes at design points chosen by methods of de-
sign of experiments. Then mathematical surrogate models are built using the
data. Various techniques for the construction of approximation models have
been proposed, such as those discussed in section 2. Perhaps the most pop-
ular technique involves a polynomial approximation created by least squares
curve fitting to a set of data. Another line of methods is based on interpola-
tion techniques, which are proved to be more effective for data obtained by
running deterministic computer simulation codes. Methods of this type cover
radial-basis functions (RBF) developed in the field of neural networks [22],
stochastic-based methods, developed in the field of geostatistics, commonly
referred to as Gaussian process based method or Kriging as used by Sacks
et al. [24]. An efficient procedure for global optimization using Kriging mod-
els was proposed by Jones et al. [12], in which a branch-and-bound algorithm
was applied to find the point with potential maximum improvement for re-
sampling. Other techniques using classifier systems and the concept of space
mapping have also been proposed [23].

The primary aim of using approximations or meta-models is to reduce
the cost of finding global optimal designs. This is equivalent to reducing the
number of function calls to the exact simulation codes. Therefore the optimal
points on a meta-model should converge to the optimal points on the exact
model, which is the requirement of global convergence for meta-models. Global
convergence will be naturally achieved if an exact meta-model can be built.
However, due to the modeling errors inherent in the meta-models, balances
need to be made in building an accurate meta-model and locating the global
optimal points on it.

An explorative comparison was made by Guinta et al. [25] between polyno-
mial and interpolation models using test problems. A comparative study bet-
ween neural networks and response surface models was provided by Daberkow
et al. [26] using a preliminary aircraft design problem. Among various meth-
ods, RBF and Kriging were identified by Jin et al. [27] to be able to produce
better results compared to other methods under multiple modeling criteria.
Moreover, the Kriging method is statistically more meaningful and allows the
possibility of computing error estimates for untried data points. One of the
drawbacks of the Kriging method is the relatively high computational cost in
estimating the hyper-parameters in the model, especially when large numbers
of sample points are involved.

Apart from differences in methods of constructing meta-models, a num-
ber of different frameworks for the management of approximation models
have also been proposed. It has been argued that any effective framework
for managing the surrogates in optimization is always associated with par-
ticular optimization algorithms. Therefore, in principle, there are at least as
many possible frameworks as optimization algorithms. In general, these frame-
works can be categorized according to the algorithms with which they are
used. There are two broad classes of optimization algorithms, gradient-based

258 Wenbin Song

methods and non-gradient-based methods in which evolutionary algorithms
and direct search methods are among the most widely used. A rigorous frame-
work was presented by Booker et al. [28] for the use of surrogate models with
direct search methods. Frameworks based on trust regions and gradient-based
search procedures have drawn most attention in the past few years [29–34].
One of features possessed by this type of rigorous framework is that they all
guarantee convergence to a local optimum of the model. However, these work
with non-linear programming techniques or direct search methods.

The number of studies on use of surrogate models with evolutionary algo-
rithms, though relatively small, is growing in the past few years. In these cases,
the high computational cost associated with the successive application of evo-
lutionary algorithms to complex, high-dimensional engineering problems is a
known problem, as evolutionary algorithms typically require far more number
of function evaluations to converge to near optimal solutions compared to di-
rect search. Therefore, the successive use of meta-models models is believed to
be crucial to the practical application of evolutionary optimization methods
to the design and optimization of complex engineering systems.

Several attempts have been made in the last several years to tackle
the problem of using meta-models with evolutionary computation methods,
particularly genetic algorithms (GAs). Robinson and Keane [35] employed
variable-fidelity analysis models and approximation techniques to improve the
efficiency of the Evolutionary Strategy (ES). A procedure of using a number
of successive single-point approximation models with a genetic algorithm was
proposed by Nair et al. [36], in which, some domain knowledge was employed
to construct the meta-models and a simple generation-delay approach was
used to control the use of exact models. Ratle [14] proposed a simple local
convergence criterion to decide when the exact model should be resorted to
in a procedure integrating a genetic algorithm with Kriging models. How-
ever, this does not prevent the search from converging to the false optima. A
revised criterion was proposed by El Beltagy et al. [38] for the similar syn-
thesis between GA and Kriging models, where a gradually reduced tolerance
was used to control the switch between surrogate and exact models for each
individual in the population. However, the specification of criteria values in
the above methods depends largely on users and may not be appropriate for
all problems. Nevertheless, the requirement for some sort of re-sampling was
identified as necessary to overcome the inadequacy of the surrogate models.

A different type of effort was attempted by Liang et al. [39], where a hy-
brid search procedure was formulated with the evolutionary search working
on the quadratic response surface constructed from many local optima ob-
tained from local searches. This method essentially reduced the difficulties in
building a global surrogate model without changing the overall landscape of
the exact functions. However, the quality of the final global surrogate model
depends very strongly on the accuracy of the local search results and the use
of evolutionary search methods in finding global optima in a simplified smooth
landscape with few local optima may not be necessary. Jin [40] also proposed a

11 Evolutionary Shape OptimizationUsing Gaussian Processes 259

framework for coupling Evolutionary Strategy (ES) and neural network-based
surrogate models. Two types of evolution control methods were presented to
dictate the frequency at which the exact model was used. The common weak-
ness in the above methods is that neither the historical search data nor the
convergence properties of the evolutionary search method are fully utilized.

A number of methods can be used when it comes to updating the Kriging
models with added data points evaluated using exact objective functions. The
most straightforward technique is to use the best points found on the Kriging
model. This approach depends on the accuracy of the Kriging model and qua-
lity of the search on it, and the process may miss the global optima as it lacks
the ability to identify promising but unsearched areas due to prediction errors
involved in the Kriging. A more promising method is to update the Kriging
model with points where the expected improvement (EI) is large compared
with available exact solutions, as shown in [12]. The update procedure in these
two approaches is very much separated from the overall process of identify-
ing the global optimum. Therefore, almost any optimization method can be
applied in the search for optimum on the Kriging model or the expected im-
provements model, for example, the Branch-and Bound method was suggested
by Jones et al. [12] in the search for EI.

In the use of the concept of expected improvement, such as in [12], the
point with maximum expected improvement is found by using a branch-and-
bound algorithm followed by re-sampling at that point and the re-construction
of the surrogate. A simple 3σ principle is proposed by Song [14] and this
value is used instead of the maximum expected improvement in determining
whether or not an evaluation using the exact model is necessary. The method
eliminates the need for optimization to find the point at which maximum
expected improvement can be achieved. The principle is described as

Evaluate Y (x∗) when

ŷ(x∗)− 3s(x∗) <
1
q

q∑
j=1

ybest
j (minimization) (11.13)

where ŷ(x∗) and s(x∗) are computed using 11.11 and 11.12, ybest
j s represent

the q best solutions in the dataset. Note that the right hand side reduces to
ymin when q = 1 for minimization problems.

The 3σ principle is based on the fact that if the average fitness of top q
designs lies outside the interval [ŷ(x∗)− 3s(x∗), ŷ(x∗) + 3s(x∗)] computed at
point x∗, the probability of producing a better design at point x∗ is very low.
Two control parameters p and q are used to specify the number of design points
to build the surrogate and number of design points used on the righthand
side of equation 11.13. It is not difficult to understand the effect of these two
parameters: increasing the value of parameter p will cause more points to be
used in building the surrogate model and increasing the value of parameter
q will lead to more new points falling into the p interval and therefore more
exact evaluations.

260 Wenbin Song

It should also be mentioned that the basic Kriging model could further be
extended to include derivative information as reported by [41] when deriva-
tives are available either analytically or computed using automatic differen-
tiation (AD) tools, adjoints, etc. The availability of efficient adjoint methods
for sensitivity computations makes this expansion more attractive for complex
simulation codes.

Some further development in [43] adopted GAs as the optimization al-
gorithm for searching on the Krig model as well as in the basic framework,
leading to a second framework involving a two-level GA optimization stra-
tegy with meta-models. The searches on the Krig are carried out twice: the
first is to locate optimal objective function values, and the second is to locate
points where maximum posterior errors occur. This is the reason why Krig is
chosen as the approximated objective function and its posterior error can be
obtained in one go. Suggested points from these two GA searches are evalu-
ated in parallel before being aggregated for building an updated meta-model.
Duplicate points are removed to assure nonsingularity of the Gram matrix.
Adding these newly available exact points to the meta-model achieves the fol-
lowing two aims simultaneously: reduced approximation errors and improved
search efficiency. The framework is shown in Fig. 11.2.

The process begins by generating an initial set of data points using meth-
ods of design of experiments. The population size is defaulted to ten times
the number of dimensions of the design space. Objective functions for these
data points are then evaluated in parallel. The initial Kriging model is con-
structed and searched twice using GAs to obtain update points, which are
added to the data set for the subsequent update of the meta-model. This step
is repeated until predefined computational budget in terms of number exact
function evaluations is exhausted.

11.4 Application Examples

Two application examples has been used here to demonstrate the effectiveness
of the strategies coupling genetic algorithm and Gaussian process based sur-
rogate models. The focus in these examples has been on how to evolve more
efficiently towards improved solutions by making use of information from the
meta model to suggest update points.

11.4.1 Turbine Blade Firtree Shape Optimization

In this section, a turbine blade firtree root local notch profile optimization
problem [42] using cubic NURBS (Non-Uniform Rational B-Spline) is chosen
to illustrate the effectiveness of the first framework. This notch profile is part
of the geometry at the base of a turbine blade that is used to attach the turbine
blade to the rotating disc in turbine aeroengines. This is a critical region where
high contact stresses occur. Here the firtree geometry has been modeled using

11 Evolutionary Shape OptimizationUsing Gaussian Processes 261

Fig. 11.2. Hybrid update scheme using genetic algorithm and Kriging

the rule-based geometry modeling capability provided by ICAD. The notch
geometry is modeled using NURBS instead of simple circular arcs. The use of
NURBS gives more flexibility in modeling local shape variations. However, it
also introduces more design variables, therefore increases the cost of finding an
optimum design. The definition of the local profile is illustrated in Fig. 11.3.
Finite element analysis is carried out to evaluate the peak stress at the notch
region and is used as the objective function in the optimization. Results are
shown in Fig. 11.4, in which, two convergence curves were shown, one without
using the surrogate model, and the other with. It can be seen that comparable
results can be obtained with only one third of the number of exact function
evaluations that would be required when exact analysis codes are used in
optimization. Comparison between the original and optimized geometry is
shown in Fig. 11.5. The worst principal stress at point B (where the maximum
stress occurs) is reduced from 745.4Mpa to 685.6MPa - a reduction of over
8% without worsening the stresses at point A, using around one third of the
computing effort which would be otherwise required using GA directly on
finite element codes.

262 Wenbin Song

R1

R2

P0

 P1

P2

P3

 P4

P5

P6

P0
P1

P2

P3

P4

P5

P6

d
h

Fig. 11.3. NURBS representation of double-arc fillet using seven control points and
its defining coordinates

Number of function evaluations

Cubic Profile Optimisation without Kriging

Cubic Profile Optimisation

M
ax

im
um

 N
ot

ch
 S

tr
es

s
(M

Pa
)

with Kriging

Fig. 11.4. Genetic algorithms with surrogate modeling on local profile optimization
of firtree root

11 Evolutionary Shape OptimizationUsing Gaussian Processes 263

A

B

A

B

GA with Surrogate GA without Surrogate

Fig. 11.5. Comparison between results of GA search without and with surrogates

11.4.2 Engine Nacelle Shape Optimization

An aero engine nacelle shape optimization problem is used to illustrate the
effectiveness of the second framework [43]. The engine nacelle geometry is
defined in ProEngineer with around 40 parameters, here six parameters that
define the shape of top lip profile plus the scarf angle parameter are used to
formulate a seven parameter problem. The aim is to study the aerodynamic
effect of top lip profile under different scarf angles. The parameters are listed
in Table 11.2, along with parameter ranges and reference values. The meshing
package GAMBIT and flow solver FLUENT [44] are used in the study. First,
an appropriate mesh density is determined based on the accuracy of the so-
lution and computational time it requires. Here it was decided based on the
number of available processors and licenses: the ideal situation using 30 fluent
jobs on 8 processors means that each calculation can be finished within 10
hours, and around 200 jobs should be finished within a week if jobs are run
immediately after placed into the job queue. In practice, it has taken a little
more than three weeks to finish 200 calculations.

The geometries and pressure distributions for the base design and final
design achieved using 200 calculations are presented in Fig. 11.6.

11.5 Conclusions

The high cost of evolutionary computation methods for design optimization
using high-fidelity analysis codes has prompted the study into the use of
efficient meta-models. This can provide efficient and effective solutions to
problems of structural shape design using finite element or computational

264 Wenbin Song

Table 11.2. Design Variables for Engine Nacelle Geometry

Variables xl x0 xu Description

Scarf angle -10 -5 25 Negative scarf angle (deg.)
Teaxis 5 12 20 Axial coordinate of top external profile (mm)
Telater 5 10 20 Radial coordinate of top external profile (mm)
Tiaxis 1.5 2 2.5 Ratio of top inner profile coordinate in axial direction

against radial direction
Tilater 1 1.34 1.6 Coefficient used to determine top inner profile coordinate

in lateral direction
Var d225 22 25.4 28 Radial control length of top lip profile (mm)
Var d226 22 25.4 28 Axial control length of top lip profile (mm)

Fig. 11.6. Geometry and pressure distributions of base and final design

fluid dynamics codes. In this chapter, a brief description of several commonly
used techniques for building meta-models is given, followed by an overview
of different frameworks that couple optimization methods and meta-modeling
methods. Two frameworks using genetic algorithms and Gaussian based meta-
models are given particular attention in the chapter. In the first framework,
a 3σ principle was applied to control when the surrogate model needs to be
updated with additional data points. The second framework carried out a
parallel search on the meta-model and error prediction model to decide where
to place the update points for computationally costly analysis. Both approach
have been applied to real-world shape optimization problems achieving a re-
duction in the number of exact evaluations of analysis codes, while delivering
an improved design at the same time.

References

1. Goldberg D. (1989) Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.

11 Evolutionary Shape OptimizationUsing Gaussian Processes 265

2. Lin L., Cao L., Wang J., and Zhang C. (2004) The Applications of Genetic
Algorithms in Stock Market Data Mining Optimisation, Proceedings of Fifth
International Conference on Data Mining, Text Mining and their Business App-
lications, Malaga, Spain. September 15-17. 2004.

3. Obayashi S., Yamaguchi Y., and Nakamura T. (1997) Multiobjective genetic
algorithm for multidisciplinary design of transonic wing platform. Journal of
Aircraft, 34(5):690-693, 1997.

4. Ong Y. S., Nair P. B., Keane A. J., and Wong K. W. (2004) Surrogate-Assisted
Evolutionary Optimization Frameworks for High-Fidelity Engineering Design
Problems. In Y. Jin, editor, Knowledge Incorporation in Evolutionary Com-
putation, Studies in Fuzziness and Soft Computing, pages 307–332. Springer,
2004.

5. Doǧan A. and Özgüner F. (2004) Genetic Algorithm Based Scheduling of Meta-
Tasks with Stochastic Execution Times in Heterogeneous Computing Systems,
Cluster Computing 7, 177-190, Kluwer Academic Publishers. Manufactured in
The Netherlands, 2004.

6. Hacker H. A., Eddy H. and Lewis K. E. (2002) Efficient Global Optimization
Uisng Hybrid Genetic Algorithms, 9th AIAA/IMMSO Symposium on Multi-
disciplinary Analysis and Optimization, 4-6 September 2002, Altanta, Georgia,
AIAA 2002-5429.

7. Xu Z.-B., Leung, K.-S., Liang Y., and Leung Y. (2003) Efficiency speed-up
strategies for evolutionary computation: fundamentals and fast-GAs, Applied
Mathematics and Computation Vol. 142, 341-388, 2003.

8. Salami M. and Hendtlass T. (2003) A fast evaluation strategy for evolutionary
algorithms. Applied Soft Computing, 2:156–173, 2003.

9. Potter M. A. and De Jong K. A. (1994) A cooperative Coevolutionary Approach
to Function Optimisation, The Third Parallel Problem Solving From Nature,
Jerusalem, Israel, pp. 249-257, 1994.

10. Ong Y. S. and Keane A. J. (2004) Meta-Lamarckian Learning in Memetic
Algorithm, IEEE Transactions On Evolutionary Computation, Vol. 8, No. 2,
pp. 99-110, April 2004.

11. Branke J. and Schmidt C. (2003) Fast convergence by means of fitness estima-
tion. Soft Computing Journal, 2003.

12. Jones, D. R., Schinlau, M., and Welch, W. J. (1998) Efficient Global Opti-
misation of Expensive Black-box Functions, Journal of Global Optimization,
Vol. 13, pp. 455-492, 1998.

13. Ong Y. S., Nair P. B. and Keane A. J. (2003) Evolutionary Optimization of
Computationally Expensive Problems via Surrogate Modeling, AIAA Journal,
Vol. 41, No. 4, pp. 687-696, 2003.

14. Song W. and Keane A. J. (2005) An efficient evolutionary optimisation frame-
work applied to turbine blade firtree root local profiles, Structural and Multi-
disciplinary Optimisation, Vol. 29 No. 5, 2005, pp. 382-390.

15. Jin Y. (2005) A comprehensive survey of fitness approximation in evolutionary
computation. Soft Computing. Vol. 9, No. 1, pp. 3-12, Springer, 2005.

16. Myers R. (2002) Response Surface Methodology: Process and Product Opti-
mization Using Designed Experiments, John Wiley & Sons Inc. 2002.

17. Cressie, N. A. C. (1993) Statistics for Spatial Data, rev., Wiley, New York, 1993.
18. Kleijnen J. P. C. and Van Beers W. (2002) Kriging for interpolation in random

simulation. Journal of the Operational Research Society, 54, No. 3, 255-262,
2003.

266 Wenbin Song

19. Ahn, J. A., Kim, H., Lee, D., Rho, O. (2001) Response Surface Method for
Airfoil Design in Transonic Flow, Journal of Aircraft, Vol. 38, No. 2, 2001.

20. Simpson T.W. (1998) Comparison of Response Surface and Kriging Models in
the Multidisciplinary Design of an Aerospike Nozzle, NASA/CR-1998-206935,
ICASE report No. 98-16, 1998.

21. Venter, G., Haftka, R. T., Starners, J. H. Jr. (1998) Construction of Response
Surface Approximations for Design Optimisation, AIAA Journal, Vol. 36,
No. 12, 1998.

22. Bishop, C. (1995) Neural Networks for Pattern Recognition, Oxford University
Press 1995.

23. Bandler, J. W., Cheng Q. S., Dakroury S. A., Mohamed A. S., Bakr M. H.,
Madsen, K. M. and Sondergaard J. (2004) Space Mapping: The State of the
Art, IEEE Trasactions on Microwave Theory and Techniques. Vol. 52, No. 1,
January 2004.

24. Sacks, J., Welch, W. J., Mitchell, J. J., Wynn, H. P. (1989) Design and Analysis
of Computer Experiments, Statistical Science, Vol. 4, No. 4, 1989, pp. 409-435.

25. Guinta, A. A., Watson, L. T. (2003) A Comparison of Approximation Modelling
Techniques: Polynomial versus Interpolating Models, AIAA-98-4758, 1998.

26. Daberkow, D. D., Marris, D. N. (1998) New Approaches to Conceptual and
Preliminary Aircraft Design: A Comparative Assessment of a Neural Network
Formulation and A Response Surface Methodology, AIAA, 1998 World Aviation
Conference, September 28-30, 1998, Anaheim, CA, 1998.

27. Jin, R., Chen, W., Simpson, T. W. (2000) Comparative Studies of Metamod-
elling Techniques under Multiple Modelling Criteria, AIAA-2000-4801, 2000.

28. Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, V., and
Trosset, M. W. (1999) A Rigorous Framework for Optimization of Expensive
Functions by Surrogates, Structural Optimization, Vol. 17, No. 1, 1999, pp. 1-13.

29. Alexandrov, N. M., Dennis, J. E. Jr., Lewis, R. M. (1997) A Trust Region
Framework for Managing the Use of Approximation Models in Approximation,
NASA/CR-201745, 1997.

30. Alexandrov, N. M. and Lewis, R. M. (2003) First-Order Frameworks for
Managing Models in Engineering Optimisation, 1st International Workshop on
Surrogate Modelling and Space Mapping for Engineering Optimisation, 11/16-
19/2000, TDU, 2003.

31. Guinta, A. A. and Eldred, M. S. (2000) Implementation of a Trust Region Model
Management Strategy in the Dakota Optimisation Toolkit, AIAA-2000-4935,
2000.

32. Sellar, R. S., Batill, S. M., Renaud, J. E. (2003) Response Surface Based, Con-
current Subspace Optimisation for Multidisciplinary System Design, 2003.

33. Wujek, B. A. and Renaud, J. E. (1998) New Adaptive Move-limit Manage-
ment Strategy for Approximate Optimization, Part 1, AIAA Journal, Vol. 36,
No. 10, 1998, pp. 1911-1921.

34. Alexandrov, N. M. (1998) On Managing the Use of Surrogates in General Non-
linear Optimization and MDO, AIAA-98-4798, 1998.

35. Robinson, G. M. and Keane, A. J. (1999) A Case for Multi-level Optimisation
in Aeronautical Design, Aeronautical Journal, Vol. 103, 1999, pp. 481-485.

36. Nair, P. B. and Keane, A. J. (1998) Combining Approximation Concepts with
Genetic Algorithm-based Structure Optimisation Procedure, 1998.

11 Evolutionary Shape OptimizationUsing Gaussian Processes 267

37. Ratle, W. (1998) Accelerating the Convergence of Evolutionary Algorithms by
Fitness Landscape Approximation, Parallel Problem Solving from Nature V,
1998, pp. 87-96.

38. El-Beltagy, M. A. and Keane, A. J. (1999) Evolutionary Optimisation for Com-
putationally Expensive Problems Using Gaussian Processes, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO99), Morgan
Kaufman, 1999, pp. 196-203.

39. Liang, K. H., Yao, X., Newton, C. (2000) Evolutionary Search of Approximated
N-dimensional Landscapes, International Journal of Knowledge-Based Intelli-
gent Engineering Systems, Vol. 4, No. 3, 2000, pp. 172-183.

40. Jin, Y., Olhofer, M. and Sendhoff, B. (2000) A Framework for Evolutionary
Optimisation with Approximate Fitness Functions, IEEE Transactions on Evo-
lutionary Computation, 2000.

41. Morris, M.D., Mitchell, T.J. and Ylvisaker, D. (1993) Baysian Design and Analy-
sis of Computer Experiments: Use of Derivatives in Surface Prediction, Techno-
metrics, Vol. 35, 1993, pp. 243-255.

42. Song W., Keane A.J., Rees J., Bhaskar A. and Bagnall S. (2002) Local Shape
Optimisation of a Firtree root using NURBS, 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Atlanta, Georgia 4-6 Sep 2002.

43. Song W. and Keane A.J. (2005) A New Hybrid Update Scheme for an
Evolutionary Search Strategy Using Genetic Algorithm and Kriging, 46th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Mate-
rials Conference, 13th AIAA/ASME/AHS Adaptive Structures Conference 7t,
Austin, Texas, Apr. 18-21, 2005.

44. Fluent (2006) http://www.fluent.com, 2006.

12

A Study of Techniques to Improve
the Efficiency of a Multi-Objective
Particle Swarm Optimizer

Margarita Reyes-Sierra and Carlos A. Coello Coello

CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Ingenieŕıa Eléctrica, Sección Computación
Av. IPN No. 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
mreyes@computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx

Summary. The use of particle swarm optimization (PSO) in multi-objective opti-
mization has become widespread in the last few years. However, very few researchers
have explored the use of techniques that allow to reduce the number of fitness evalu-
ations of a PSO-based approach for multi-objective optimization. This chapter pre-
cisely explores the advantages and disadvantages of using fitness inheritance and ap-
proximation techniques to reduce the number of fitness evaluations into a PSO-based
multi-objective algorithm previously proposed by the authors. Our study includes
fifteen fitness inheritance techniques and four approximation techniques which are
applied to a set of test functions taken from the specialized literature.

12.1 Introduction

Given the high computational cost of evaluating the fitness functions of many
real-world applications, the total number of fitness function evaluations that
an Evolutionary Algorithm (EA) may perform in such applications may be-
come severely limited. In order to improve the performance of EAs, several
enhancement techniques have been proposed in the past. In this chapter, we
will focus on two of these enhancement techniques: fitness inheritance and ap-
proximation techniques. Fitness Inheritance is an enhancement technique [1]
in which the fitness value of an offspring is obtained from the fitness values
of its parents. On the other hand, approximation techniques [2] let us esti-
mate the fitness of an individual using the previously calculated fitness of its
neighbors (either including its parents or not). In fact, fitness inheritance is a
particular case of fitness approximation. However, in general, the idea of using
enhancement techniques, is that we do not need to evaluate every individual at
each generation, such that the total computational cost can be reduced. In this
chapter, we perform a study of different inheritance and approximation tech-
niques applied to a real-coded PSO-based approach that has been previously

M. Reyes-Sierra and Carlos A. Coello Coello: A Study of Techniques to Improve the Efficiency

of a Multi-Objective Particle Swarm Optimizer, Studies in Computational Intelligence (SCI)

51, 269–296 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

270 Margarita Reyes-Sierra and Carlos A. Coello Coello

proposed by the authors to solve multi-objective problems [3]. Since the main
focus of our research is on fitness inheritance techniques, we are proposing
a higher number of fitness inheritance techniques (fifteen) than approxima-
tion techniques (four). In our study, we use five well-known multi-objective
test functions in an attempt to determine the best from the enhancement
techniques analyzed.

In the final part of our study, once we have identified which were the
best enhancement techniques, we compare these techniques with respect to
other PSO-based multi-objective optimizers which are representative of the
state-of-the-art, adopting different test functions.

The remainder of this chapter is organized as follows. An introduction to
Fitness Inheritance and Fitness Approximation is given in Sections 12.2 and
12.3, respectively. Section 12.4 introduces the multi-objective PSO-based al-
gorithm in which the proposed techniques are incorporated. The enhancement
techniques proposed in this paper are presented in Section 12.5. In Sections
12.6 and 12.7 we present the obtained results and their discussion, respec-
tively. A comparison against other PSO-based algorithms is presented in Sec-
tion 12.8. Finally, our conclusions and some of the possible paths for future
research are described in Section 12.9.

12.2 Fitness Inheritance

The use of fitness inheritance to improve the performance of Genetic Algo-
rithms (GAs) was originally proposed by Smith et al. [1]. The authors pro-
posed two possible ways of inheriting fitness: the first consists of taking the
average fitnesses of the two parents and the other consists of taking a weighted
(proportional) average of the fitnesses of the two parents. The second approach
is related to how similar the offspring is with respect to its parents (this is
done using a similarity measure). They applied inheritance to a very simple
problem (the OneMax problem) [1] and found that the weighted fitness aver-
age resulted in a better performance and indicated that fitness inheritance was
a viable alternative to reduce the computational cost of a genetic algorithm.

Zheng et al. [4] performed the first application of fitness inheritance on a
GA for the problem of codebook design in data compression techniques. They
concluded that the use of fitness inheritance didn’t degrade the performance
of the GA.

Sastry et al. [5] provided some theoretical foundations for fitness inheri-
tance. They investigated convergence times, population sizing and the optimal
proportion of inheritance for the OneMax problem. Chen et al. [6] investigated
fitness inheritance as a way to speed up multi-objective GAs and EAs. They
extended the analytical model proposed by Sastry et al. to multi-objective
problems. Convergence and population-sizing models are derived and com-
pared with respect to experimental results. The authors concluded that the

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 271

number of function evaluations can be reduced with the use of fitness inheri-
tance.

Salami et al. [7] proposed a “Fast Evolutionary Algorithm” in which a
fitness and associated reliability value are assigned to each new individual
that is only evaluated using the true fitness function if the reliability value
is below a certain threshold. Also, they incorporated random evaluation and
error compensation strategies. The authors obtained an average reduction
of 40% in the number of evaluations while obtaining similar solutions. In
the same work, they presented an application of fitness inheritance to image
compression obtaining reductions between 35% and 42% of the number of
evaluations.

Ducheyne et al. [8] tested the performance of average and weighted average
fitness inheritance on a well-known test suite of multi-objective optimization
problems [27], using a binary GA. They concluded that the fitness inheritance
efficiency enhancement techniques can be used in order to reduce the number
of fitness evaluations provided that the Pareto front is convex and continu-
ous. They also concluded that if the Pareto surface is not convex or if it is
discontinuous, the fitness inheritance strategies fail to reach the true Pareto
front.

Pelikan et al. [10] used fitness inheritance to estimate fitness for a pro-
portion of solutions in the Bayesian Optimization Algorithm (BOA). They
concluded that fitness inheritance is a promising concept in BOA, because
population-sizing requirements for building appropriate models of promising
solutions lead to good fitness estimates even if only a small proportion of
candidate solutions is evaluated using the true fitness function.

Bui et al. [11] performed a comparison of the performance of anti-
noise methods, particularly probabilistic and re-sampling methods, using the
NSGA-II [12]. They applied the concept of fitness inheritance to both types
of methods in order to reduce computational time. The authors obtained a
substantial amount of savings in the number of computations, reaching a peak
of 30% of savings without deteriorating the performance.

In a previous work [13], we proposed the first attempt to incorporate the
concept of fitness inheritance to a real-coded Multi-Objective PSO (MOPSO)
previously proposed by us [3]. In [13], we tested the performance of weighted
average fitness inheritance on a well-known test suite of multi-objective
optimization problems [27]. Based on the obtained results, we concluded that
fitness inheritance reduces the computational cost without decreasing the
quality of the results in a significant way. Also, the fitness inheritance tech-
nique used was able to generate non-convex and discontinuous Pareto fronts.
These conclusions were somewhat surprising given the conclusions (pointing
in the exact opposite direction) previously obtained by Ducheyne et al. in [8].

272 Margarita Reyes-Sierra and Carlos A. Coello Coello

12.3 Fitness Approximation

A promising possibility when an evaluation is very time-consuming or expen-
sive is not to evaluate every individual, but just estimate the quality of some
of the individuals based on an approximate model of the fitness landscape.

Approximation techniques estimate individual fitness on the basis of pre-
viously observed objective function values of neighboring individuals. There
are many possible approximation models. In the simplest case, the fitness of
a new individual is derived from its parents’ fitnesses (fitness inheritance).
However, some other more complicated methods have been used. A survey
of approximation methods in evolutionary computation can be found in [2].
Here, we briefly mention a few examples of different approximation techniques
commonly used.

Ratle [14] presented a new approach based on a classical real-encoded
genetic algorithm for accelerating convergence of evolutionary optimization
methods. With this aim, a reduction in the number of fitness function calls
is obtained by means of an approximate model of the fitness landscape us-
ing kriging interpolation. The author builds a statistical model from a small
number of data points obtained during one or more generations of the evolu-
tionary method using the true fitness landscape. The model is updated every
time a convergence criteria is reached.

Jin et al. [15] investigated the convergence property of an evolution stra-
tegy with neural network based fitness evaluations. In this work, the authors
introduce the concept of controlled evolution, in which, the evolution pro-
ceeds using not only the approximate fitness function, but also the true fitness
function. They also introduce two possibilities to combine the true with the
approximate fitness function: the controlled individuals approach and the con-
trolled generation approach. The authors define controlled as true evaluated.
Both approaches are studied and some interesting conclusions/recommenda-
tions about the correct use of such techniques are provided.

Sano et al. [16] proposed a genetic algorithm for optimization of continuous
noisy fitness functions. In this approach, the authors utilize the history of the
search to reduce the number of fitness evaluations. The fitness of a novel
individual is estimated using the fitness values of the other individuals as
well as the sampled fitness values for it. So, as to increase the number of
individuals adopted for evaluation, they use not only the current generation
but also the whole history of the search. To utilize the history of the search,
a stochastic model of the fitness function is introduced, and the maximum
likelihood technique is used for estimation of the fitness function. The authors
concluded that the proposed method outperforms a conventional GA in noisy
environments.

Branke et al. [17] suggest the use of local regression for estimation, taking
the fitness of neighboring individuals into account. Since in local regression is
very important to determine which individuals belong to the neighborhood of
a given individual, the authors studied two different approaches for setting the

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 273

value of the size of the local neighborhood (relative neighborhood and adaptive
neighborhood). The authors concluded that local regression provides better es-
timations than previously proposed approaches. In more recent work, Branke
et al. [18] compared two estimation methods: interpolation and regression.
They concluded that regression seems to be slightly preferable, particularly
if only a very small fraction of the individuals in the population is evaluated.
Their experiments also show that using fitness estimation, it is possible to
either reach a better fitness level in a given time, or to reach a desired fit-
ness level much faster (using roughly a half of the original number of fitness
function evaluations).

Ong et al. [19] proposed a local surrogate modeling algorithm for parallel
evolutionary optimization of computationally expensive problems. The pro-
posed algorithm combines hybrid evolutionary optimization techniques, radial
basis functions, and trust-region frameworks. The main idea of the proposed
approach is using an EA combined with a feasible sequential quadratic pro-
gramming solver. Each individual within an EA generation is used as an initial
solution for local search, based on Lamarckian learning. The authors employ a
trust-region framework to manage the interaction between the original objec-
tive and constraint functions and the computationally cheap surrogate models
(which consist of radial basis networks constructed by using data points in the
neighborhood of the initial solution), during local search. Extensive numerical
studies are presented for some benchmark test functions and an aerodynamic
wing design problem. The authors show that the proposed framework pro-
vides good designs on a limited computational budget. In more recent work,
Ong et al. [19] present a study on the effects of uncertainty in the surrogate
on Surrogate-Assisted Evolutionary Algorithms (SAEA). In particular, the
authors focus on both the “curse of uncertainty” (impairments due to errors
in the approximation) and “blessing of uncertainty” (benefits of approxima-
tion errors). The authors tested several algorithms: the Surrogated-Assisted
Memetic Algorithm (SAMA) proposed in [19], a standard genetic algorithm, a
memetic algorithm (considered as the standard hybridization of a genetic al-
gorithm and the feasible sequential quadratic programming solver used in [19])
and the SAMA-Perfect algorithm (which is the SAMA algorithm but using
the exact fitness function as surrogate model), on three multimodal bench-
mark problems (Ackley, Griewank and Rastrigin). The authors concluded that
approximation errors lead to convergence at false global optima, but prove to
be beneficial in some cases, accelerating the evolutionary search.

Gaspar-Cunha et al. [21] developed an algorithm using artificial neural net-
works to reduce the number of exact function evaluations for multi-objective
optimization problems. The proposed method can save, in some cases, more
than 50% of true function evaluations.

Regis and Shoemakes [22] developed an approach for the optimization of
continuous costly functions that uses a space-filling experimental design and
local function approximation to reduce the number of function evaluations
in an evolutionary algorithm. The proposed approach estimates the objective

274 Margarita Reyes-Sierra and Carlos A. Coello Coello

function value of an offspring by means of a function approximation model
over the k nearest previously evaluated points. The estimated values are
used to identify the most promising offspring per function evaluation. A
Symmetric Latin Hypercube Design (SLHD) is used to determine initial points
for function evaluation, and for the construction of the function approximation
models. The authors compared the performance of an Evolution Strategy (ES)
with local quadratic approximation, an ES with local cubic radial basis func-
tion interpolation, an ES whose initial parent population is obtained from a
SLHD, and a conventional ES (in all cases, the authors use a (µ, λ)-ES with
uncorrelated mutations). The algorithms are tested on a groundwater bioreme-
diation problem and on some benchmark test functions for global optimization
(including Dixon-Szegö, Rastrigin and Ackley). The obtained results (which
include analysis of variance to provide stronger and solid claims regarding the
relative performance of the algorithms) suggest that the approach that uses
SLHDs together with local function approximations has potential for success
in enhancing EAs for computationally expensive real-world problems. Also,
the cubic radial basis function approach appears to be more promising than
the quadratic approximation approach on difficult higher-dimensional prob-
lems.

Lim et al. [23] presented a Trusted Evolutionary Algorithm (TEA) for
solving optimization problems with computationally expensive fitness func-
tions. The TEA is designed to maintain good trustworthiness of the surrogate
models in predicting fitness improvements or controlling approximation er-
rors throughout the evolutionary search. In this case, the authors are more
interested in predicting search improvement as opposed to the quality of the
approximation, which is regarded as a secondary objective. TEA begins its
search using the canonical EA, with only exact function evaluations. Dur-
ing the canonical EA search, the exact fitness values obtained are archived
in a central database together with the design vectors (to be used later for
constructing surrogate models). After some initial search generations (speci-
fied by the user), the trust region approach takes place beginning from the
best solution provided by the canonical EA. The trust region approach uses
a surrogate model (radial basis neural networks) and contracts or expands
the trust radius depending on the ability of the approximation model in pre-
dicting fitness improvements, until the termination conditions are reached.
The authors performed an empirical study on two highly multi-modal bench-
mark functions commonly used in the global optimization literature (Ackley
and Griewank). Numerical comparisons to the canonical EA and the original
trust region line search framework are also reported. From the obtained re-
sults, the authors concluded that TEA converges to near-optimum solutions
more efficiently than the canonical evolutionary algorithm.

Voutchkov and Keane [24] discussed the idea of using surrogate models
for multi-objective optimization. That is, instead of using the expensive com-
putational methods during the optimization, they used a much cheaper but
accurate replica. The authors aim to overview the usage of several methods,

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 275

using the NSGA-II algorithm [12] as their search engine. Several different sur-
rogate models are used, including radial basis functions, regression models
and kriging. The authors tested the surrogate models on four different test
functions taken from the specialized multi-objective optimization literature.
From the obtained results, the authors concluded that the performance of all
methods depends on the features of the objective functions being optimized.
Also, the authors discussed the weaknesses of these models on deceptive prob-
lems. In general, they concluded that the kriging method appears to perform
well in most situations, however, it is much more computationally expensive
than the rest.

Knowles [25] proposed an algorithm called ParEGO, which is a hybrid
approach with on-line landscape approximation for expensive multi-objective
optimization problems. ParEGO is an extension of the Efficient Global Op-
timization (EGO) algorithm, which is a frequently cited algorithm from the
global optimization literature, designed for expensive functions of low dimen-
sion. The EGO algorithm makes use of kriging to model the search landscape
from solutions visited during the search. Specifically, it exploits a version of
the Design and Analysis of Computer Experiments (DACE) model, which is
based on Gaussian processes. ParEGO extends the EGO algorithm for solv-
ing multi-objective problems by converting the k different cost values (objec-
tives) of a solution into a single cost via a parameterized scalarizing weight
vector (using the augmented Tchebycheff function). By choosing a different
weight vector at each iteration of the search, an approximation to the whole
Pareto front is built up gradually. The author tested the ParEGO algorithm
on a test suite of nine difficult, but low-dimensional, multi-objective func-
tions of limited ruggedness, over just 100 and 250 function evaluations. Also,
the obtained results are compared against those obtained by the NSGA-II
algorithm [12] (performing 100 and 260 function evaluations) and a random
search approach (over 10000 function evaluations). From the obtained results,
the author concluded that both ParEGO and NSGA-II outperform the ran-
dom search, even over a very small number of function evaluations, and that
ParEGO generally outperforms NSGA-II on the test functions adopted, at
both 100 and 250 function evaluations (especially when the worst case perfor-
mance is measured). Overall, the author concluded that ParEGO exhibits a
promising performance for multi-objective optimization problems where eval-
uations are expensive or otherwise restricted in number.

In this chapter, we adopt very simple approximation techniques, based
only on the objective values of the closest neighbors. Such techniques will be
explained in Section 12.5.

276 Margarita Reyes-Sierra and Carlos A. Coello Coello

12.4 Multi-Objective Particle Swarm Optimization

In this chapter, we incorporate several fitness inheritance and approximation
techniques into a MOPSO that was previously proposed by us in [3] and
updated in [13].

The PSO algorithm is a population-based search algorithm based on the
simulation of the social behavior of birds within a flock [26]. In PSO, in-
dividuals, referred to as particles, are “flown” through a hyperdimensional
search space. Changes to the position of the particles within the search space
are based on the social-psychological tendency of individuals to emulate the
success of other individuals.

A swarm consists of a set of particles, where each particle represents a
potential solution. The position of each particle is changed according to its
own experience and that of its neighbors. Let xi(t) denote the position of
particle i, at time step t. The position of particle i is then changed by adding
a velocity vi(t) to the current position, i.e.:

xi(t) = xi(t− 1) + vi(t) (12.1)

The velocity vector drives the optimization process and reflects the socially
exchanged information. In the global best version (used here) of PSO, each
particle uses its history of experiences in terms of its own best solution thus far
(pbest) but, in addition, the particle uses the position of the best particle from
the entire swarm (gbest). Thus, the velocity vector changes in the following
way:

vi(t) = Wvi(t−1)+C1r1(xpbesti
−xi(t−1))+C2r2(xgbesti

−xi(t−1)) (12.2)

where W is the inertia weight, C1 and C2 are the learning factors (usually
defined as constants), and r1, r2 ∈ [0, 1] are random values. In this work, we
use W = random(0.1, 0.5) and C1, C2 = random(1.5, 2.0).

The MOPSO proposed in [3, 13] is based on Pareto dominance, since
it considers every nondominated solution as a new leader.1 Additionally, the
approach uses a crowding factor [12] as a second discrimination criterion which
is also adopted to filter out the list of available leaders. For each particle, we
select the leader in the following way: 97% of the time a leader is randomly
selected, if and only if that leader dominates the current particle, and, the
remaining 3% of the time, we select a leader by means of a binary tournament
based on the crowding value of the available set of leaders. If the size of the set
of leaders is greater than the maximum allowable size, only the best leaders are
retained based on their crowding value. We also proposed the use of different
mutation (or turbulence) operators which act on different subdivisions of the
swarm. We proposed a scheme by which the swarm is subdivided in three parts
(of equal size): the first sub-part has no mutation at all, the second sub-part

1 A leader is used as the gbest solution in Equation 12.2.

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 277

uses uniform mutation and the third sub-part uses non-uniform mutation.
The available set of leaders is the same for each of these sub-parts. Finally,
the proposed approach also incorporates the ε-dominance concept [27] to fix
the size of the set of final solutions produced by the algorithm. Figure 12.1
shows the pseudo-code of our proposed approach.

Begin
Initialize swarm. Initialize leaders.
Send leaders to ε-archive
crowding(leaders), g = 0
While g < gmax

For each particle
Select leader. Flight. Mutation.

⇒ If(pi) Inherit Else Evaluation.
Update pbest.

EndFor
Update leaders, Send leaders to ε-archive
crowding(leaders), g++

EndWhile
Report results in ε-archive

End

Fig. 12.1. Pseudocode of our algorithm

In Figure 12.1, the symbol (⇒) indicates the line in which the concept
of fitness inheritance (or approximation) is incorporated. The inheritance or
approximation proportion, pi, is the proportion of individuals in the population
whose fitness is inherited or approximated. It is very important to note that
a particle that has inherited its objective values can not enter into the final
Pareto front, since a final solution must have true objective values.

12.5 Proposed Techniques

12.5.1 Fitness Inheritance

Since PSO has no recombination operator, we adopted as “parents” of a par-
ticle the previous position of the particle, its pbest and its leader.

Linear Combination Based on Distances (LCBD)

We propose to calculate the new position in the objective space of a particle
by means of a linear combination of the positions of the particles that were
considered to calculate the new position in the search space. We consider the

278 Margarita Reyes-Sierra and Carlos A. Coello Coello

position of the leader as the most important. Thus, the leader will be always
considered.

Given a particle xold, its personal best xpbest, its assigned leader xld and
the new particle xnew, we proceed to calculate the distance from xnew to its
“parents” (as defined before): d1 = d(xnew, xold), d2 = d(xnew, xpbest), d3 =
d(xnew, xld), where d is an Euclidean distance. We propose variants of the
same idea, based on the individuals that can be considered:

FI1 Previous position and leader: r = d1
d1+d2

,

fi(xnew) = rfi(xld) + (1− r)fi(xold), i = 1, ..., n.

FI2 pbest and leader. r = d2
d2+d3

,

fi(xnew) = rfi(xld) + (1− r)fi(xpbest), i = 1, ..., n.

FI3 Previous position, pbest and leader.
r1 = d1

d1+d2+d3
, r2 = d2

d1+d2+d3
, r3 = d3

d1+d2+d3
, r1 = 1/r1, r2 = 1/r2, r3 =

1/r3

fi(xnew) = r1fi(xold) + r2fi(xpbest) + r3fi(xld),

i = 1, ..., n. Where fi is the value of the objective function i and n is
the number of objective functions. See Figure 12.2 for an illustration of these
techniques.

leader

particle

pbest

new
particle

particle

pbest

leader

new
particle

particle

pbest

leader

particle
new

FI1 FI2 FI3

Fig. 12.2. Illustration of techniques FI1, FI2 and FI3

The technique FI1 is the one proposed in [13]. As in [13], in all the inheri-
tance techniques, if the leader selected does not dominate the current particle,
we will proceed to calculate the inherited position and to assign the objective
values of the closest leader to that position. This procedure is used to avoid
the generation of invalid particles in the case of non-convex Pareto fronts. See
Figure 12.3.

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 279

particle

leader

invalid

Pareto
front

leader

new
particle

particle

Fig. 12.3. Case in which “invalid” particles can be obtained and the method used
to repair them

Flight Formula on Objective Space (FFOS)

As we mentioned before, in PSO, the position of each particle in the search
space is updated using the formula:

xi(t) = xi(t− 1) + vi(t)

vi(t) = Wvi(t− 1) + C1r1(xpbesti
− xi(t− 1)) + C2r2(xgbesti

− xi(t− 1))

In this case, we propose an analogous formula to update the position of
each particle in objective function space:

f i(t) = f i(t− 1) + vf i(t)

vf i(t) = Wvf i(t− 1) + C1r1(fpbesti − f i(t− 1)) + C2r2(fgbesti − f i(t− 1))

where f i, fpbesti and fgbesti are the values of the objective function i
for the current particle, its pbest and gbest, respectively. We adopt the same
values of W , C1, r1, C2 and r2 previously used for the flight in the decision
variable space. We will consider the following variants based on the vectors
considered:

FI4 Considering the whole formula:

vf i(t) = Wvf i(t−1)+C1r1(fpbesti−f i(t−1))+C2r2(fgbesti−f i(t−1))

FI5 Ignoring the previous direction:

vf i(t) = C1r1(fpbesti − f i(t− 1)) + C2r2(fgbesti − f i(t− 1))

FI6 Ignoring the direction to the pbest:

vf i(t) = Wvf i(t− 1) + C2r2(fgbesti − f i(t− 1))

280 Margarita Reyes-Sierra and Carlos A. Coello Coello

Combination Using Flight Factors

Non-linear Combination (NLC)
In this case, we propose to calculate the new objective position of a particle

using the elements of the flight formula:

f i(t) = Wf i(t− 1) + C1r1fpbesti + C2r2fgbesti

As in the previous cases, the variants considered are:

FI7 Considering the whole formula:

f i(t) = Wf i(t− 1) + C1r1fpbesti + C2r2fgbesti

FI8 Ignoring the previous position:

f i(t) = C1r1fpbesti + C2r2fgbesti

FI9 Ignoring the position of the pbest:

f i(t) = Wf i(t− 1) + C2r2fgbesti

On the other hand, since W ∈ (0.1, 0.5) and C1r1, C2r2 ∈ (0.0, 2.0), we
propose to modify the previous formula in the following way:

f i(t) =
W

0.5
f i(t− 1) +

C1r1

2.0
fpbesti +

C2r2

2.0
fgbesti

As a result, we obtain the following variants:

FI10 Considering the whole formula:

f i(t) =
W

0.5
f i(t− 1) +

C1r1

2.0
fpbesti +

C2r2

2.0
fgbesti

FI11 Ignoring the previous position:

f i(t) =
C1r1

2.0
fpbesti +

C2r2

2.0
fgbesti

FI12 Ignoring the position of the pbest:

f i(t) =
W

0.5
f i(t− 1) +

C2r2

2.0
fgbesti

Linear Combination (LC)
We propose to use the previous formula but in such a way that the result

is a linear combination of the elements considered:

f i(t) =
W

r
f i(t− 1) +

C1r1

r
fpbesti +

C2r2

r
fgbesti

where r = W +C1r1 +C2r2. The corresponding variants are the following
(note the changes in r):

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 281

FI13 Considering the whole formula, r = W + C1r1 + C2r2:

f i(t) =
W

r
f i(t− 1) +

C1r1

r
fpbesti +

C2r2

r
fgbesti

FI14 Ignoring the previous position, r = C1r1 + C2r2:

f i(t) =
C1r1

r
fpbesti +

C2r2

r
fgbesti

FI15 Ignoring the position of the pbest, r = W + C2r2:

f i(t) =
W

r
f i(t− 1) +

C2r2

r
fgbesti

12.5.2 Fitness Approximation (FA)

As we could see in the previous section, fitness inheritance techniques assign
the fitness value (objective values, in our case) of an individual using the fitness
values of its parents. However, in the case of fitness approximation techniques,
it is possible to use any set of neighboring particles to estimate the fitness of a
particle, based on an approximate model of the fitness landscape. We propose
four simple approximation techniques. In each case, the particle will take the
objective values of the particle indicated:

FA1 The closest particle. Since we have the available set of leaders stored
in an external list (archive), in this case we will search for the closest
leader, either member of the swarm itself or member of the available set
of leaders.
FA2 The closest leader. In this case, we will search for the closest particle
member of the available set of leaders.
FA3 The closest particle member of the swarm. In this case, we will not
consider the available set of leaders.
FA4 The average of the 10 closest particles. In this case, we will consider
both the particles members of the swarm and the particles members of
the available set of leaders.

We use the Euclidean distance in the decision variable space. In technique
FA4, there are cases in which an invalid particle may be created. In this way,
if among the 10 closest particles there are two or more leaders, or there is
just one leader but this leader does not dominate the current particle, we will
proceed as it was explained before. See Figure 12.3.

12.6 Comparison of Results

In order to compare the proposed techniques, we performed a study using five
well-known test functions taken from the specialized literature on evolutionary
multi-objective optimization:

282 Margarita Reyes-Sierra and Carlos A. Coello Coello

• Test Function ZDT1 [27]:

Minimize (f1(x), f2(x)) (12.3)
f1(x) = x1

f2(x) = g(x)h(f1, g)

g(x) = 1 + 9
m∑

i=2

xi/(m− 1), h(f1, g) = 1−
√

f1/g

where m = 30, and xi ∈[0,1].

• Test Function ZDT2 [27]:

Minimize (f1(x), f2(x)) (12.4)
f1(x) = x1

f2(x) = g(x)h(f1, g)

g(x) = 1 + 9
m∑

i=2

xi/(m− 1), h(f1, g) = 1− (f1/g)2

where m = 30, and xi ∈[0,1].

• Test Function ZDT3 [27]:

Minimize (f1(x), f2(x)) (12.5)
f1(x) = x1

f2(x) = g(x)h(f1, g)

g(x) = 1 + 9
m∑

i=2

xi/(m− 1) , h(f1, g) = 1−
√

f1/g − (f1/g)sin(10πf1)

where m = 30, and xi ∈[0,1].

• Test Function ZDT4 [27]:

Minimize (f1(x), f2(x)) (12.6)
f1(x) = x1

f2(x) = g(x)h(f1, g)

g(x) = 1 + 10(m− 1) +
m∑

i=2

(x2
i − 10cos(4πxi)), h(f1, g) = 1−

√
f1/g

where m = 10, x1 ∈[0,1] and xi ∈[-5,5], i = 2, ...,m.

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 283

• Test Function DTLZ2 [28]:

Minimize (f1(x), f2(x), f3(x)) (12.7)
f1(x) = (1 + g(x))cos(x1π/2)cos(x2π/2)
f2(x) = (1 + g(x))cos(x1π/2)sin(x2π/2)
f3(x) = (1 + g(x))sin(x1π/2)

g(x) =
m∑

i=3

(xi − 0.5)2

where m = 12 and xi ∈[0,1].

Functions ZDT1 and ZDT4 have convex Pareto fronts, ZDT2 and DTLZ2
have non-convex Pareto fronts and ZDT3 has a non-convex and discontinuous
Pareto front.

We performed experiments with different values of inheritance (approxi-
mation) proportion pi. We experimented with: pi= 0.1, 0.2, 0.3, 0.4. Note that
this proportion of individuals indicates also the percentage by which the num-
ber of evaluations is reduced (e.g., pi = 0.1 means that 10% less evaluations
are performed). We performed 20 runs for each function and each technique.
The parameters adopted for our MOPSO were: 100 particles, 200 generations
and 100 particles in the external archive.

Next, we show the results corresponding to the following measure:

Success Counting (SCC): We define this measure based on the idea of the
measure called Error Ratio proposed by Van Veldhuizen [29] which indicates
the percentage of solutions (from the nondominated vectors found so far) that
are not members of the true Pareto optimal set. In this case, we count the
number of vectors (in the current set of nondominated vectors available) that
are members of the Pareto optimal set:

SCC =
n∑

i=1

si,

where n is the number of vectors in the current set of nondominated vec-
tors available; si = 1 if vector i is a member of the Pareto optimal set, and
si = 0 otherwise. It should then be clear that SCC = n indicates an ideal
behavior, since it would mean that all the vectors generated by our algorithm
belong to the true Pareto optimal set of the problem. Note that SCC avoids
the bias introduced by the Error Ratio measure, which normalizes the num-
ber of solutions found (which belong to the true Pareto front) and, therefore,
provides only a percentage of solutions that reached the true Pareto front.
This percentage does not provide any idea regarding the actual number of
nondominated solutions that each algorithm produced.

284 Margarita Reyes-Sierra and Carlos A. Coello Coello

Tables 12.1, 12.2, 12.3, 12.4, 12.5 and 12.6 present a summary of the results
obtained. In each case, we present the average of the SCC measure over the
20 runs, and the percentage of decrement or increment on the quality of the
results. Also, we present the average of the percentages for each value of
inheritance proportion, for each technique.

Table 12.1. Obtained results for different values of inheritance proportion, for
techniques FI1, FI2 and FI3

FI1 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 77 (+8.5%) 64 (-9.9%) 62 (-12.7%) 61 (-14.1%)
ZDT2 89 83 (-6.7%) 86 (-3.4%) 79 (-11.2%) 77 (-13.5%)
ZDT3 68 73 (+7.4%) 65 (-4.4%) 64 (-5.9%) 59 (-13.2%)
ZDT4 80 81 (+1.3%) 81 (+1.3%) 60 (-25.0%) 68 (-15.0%)
DTLZ2 18 15 (-16.7%) 16 (-11.1%) 12 (-33.3%) 12 (-33.3%)

Average -1.2% -5.5 % -17.6 % -17.8 %

FI2 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 74 (+4.2%) 68 (-4.2%) 68 (-4.2%) 59 (-16.9%)
ZDT2 89 81 (-9.0%) 82 (-7.9%) 78 (-12.4%) 77 (-13.5%)
ZDT3 68 64 (-5.9%) 67 (-1.5%) 58 (-14.7%) 63 (-7.4%)
ZDT4 80 77 (-3.8%) 83 (+3.8%) 67 (-16.3%) 69 (-13.8%)
DTLZ2 18 15 (-16.7%) 18 (0.0%) 15 (-16.7%) 14 (-22.2%)

Average -6.2% -2.0 % -12.9 % -14.8 %

FI3 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 73 (+2.8%) 69 (-2.8%) 69 (-2.8%) 50 (-29.6%)
ZDT2 89 87 (-2.2%) 82 (-7.9%) 71 (-20.2%) 76 (-14.6%)
ZDT3 68 67 (-1.5%) 63 (-7.4%) 64 (-5.9%) 60 (-11.8%)
ZDT4 80 81 (+1.3%) 79 (-1.3%) 59 (-26.3%) 68 (-15.0%)
DTLZ2 18 17 (-5.6%) 18 (0.0%) 14 (-22.2%) 9 (-50.0%)

Average -1.0% -3.9 % -15.5 % -24.2%

12.7 Discussion of Results

Since comparing 19 different techniques is very difficult, we decided to rep-
resent each technique with a vector. The vector used is that containing the
average of the change in the quality of results for each inheritance proportion
value. For example, to represent technique FI1, we construct the following
vector (see Table 12.1):

Inheritance proportion pi 0.1 0.2 0.3 0.4
Average vector -1.2 -5.5 -17.6 -17.8

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 285

Table 12.2. Obtained results for different values of inheritance proportion, for
techniques FI4, FI5 and FI6

FI4 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 62 (-12.7%) 62 (-12.7%) 59 (-16.9%) 49 (-31.0%)
ZDT2 89 85 (-4.5%) 84 (-5.6%) 78 (-12.4%) 79 (-11.2%)
ZDT3 68 73 (+7.4%) 69 (+1.5%) 60 (-11.8%) 58 (-14.7%)
ZDT4 80 88 (+10.0%) 88 (+10.0%) 85 (+6.3%) 82 (+2.5%)
DTLZ2 18 18 (0.0%) 11 (-38.9%) 11 (-38.9%) 12 (-33.3%)

Average 0.0% -9.1 % -14.7 % -17.5%

FI5 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 74 (+4.2%) 69 (-2.8%) 61 (-14.1%) 56 (-21.1%)
ZDT2 89 89 (0.0%) 79 (-11.2%) 84 (-5.6%) 77 (-13.5%)
ZDT3 68 72 (+5.9%) 70 (+2.9%) 55 (-19.1%) 58 (-14.7%)
ZDT4 80 87 (+8.8%) 85 (+6.3%) 85 (+6.3%) 82 (+2.5%)
DTLZ2 18 18 (0.0%) 12 (-33.3%) 13 (-27.8%) 12 (-33.3%)

Average +3.8% -7.6 % -12.1 % -16.1%

FI6 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 70 (-1.4%) 61 (-14.1%) 62 (-12.7%) 47 (-33.8%)
ZDT2 89 83 (-6.7%) 82 (-7.9%) 76 (-14.6%) 70 (-21.3%)
ZDT3 68 72 (+5.9%) 72 (+5.9%) 59 (-13.2%) 61 (-10.3%)
ZDT4 80 83 (+3.8%) 84 (+5.0%) 80 (0.0%) 79 (-1.3%)
DTLZ2 18 16 (-11.1%) 14 (-22.2%) 14 (-22.2%) 11 (-38.9%)

Average -1.9% -6.7 % -12.5 % -21.1%

In this way, in Table 12.7 we present the vectors of all techniques. Since
every entry in each vector is a change in the quality of the obtained results
given a value of inheritance proportion, the bigger the values of the vector, the
better the corresponding technique is. Thus, we are interested on the vector
or vectors that represent the solution to the problem of maximizing all the
entries (i.e., each entry is considered as an objective).

The nondominated vectors among all the 19 techniques are the vectors
corresponding to techniques FI2, FI3, FI5, FI9, FI11, FI14, FA1, FA3 and
FA4. That is, these nine techniques are the best overall performers. For this
reason, all these techniques are marked with a level of 1 in Table 12.7. As we
can see, among the best techniques, 6 are inheritance techniques and 3 are
approximation techniques. In fact, it is very interesting to note that four of the
six best inheritance techniques ignore the previous position of the particle, in
order to update the position in objective function space. On the other hand,
the only approximation technique that doesn’t figure as one of the best is
the one that only considers the set of leaders to assign the objective function
values of a particle.

286 Margarita Reyes-Sierra and Carlos A. Coello Coello

Table 12.3. Obtained results for different values of inheritance proportion, for
techniques FI7, FI8 and FI9

FI7 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 64 (-9.9%) 58 (-18.3%) 57 (-19.7%) 47 (-33.8%)
ZDT2 89 83 (-6.7%) 74 (-16.9%) 68 (-23.6%) 66 (-25.8%)
ZDT3 68 66 (-2.9%) 69 (+1.5%) 64 (-5.9%) 57 (-16.2%)
ZDT4 80 80 (0.0%) 74 (-7.5%) 57 (-28.8%) 44 (-45.0%)
DTLZ2 18 13 (-27.8%) 14 (-22.2%) 13 (-27.8%) 9 (-50.0%)

Average -9.5% -12.7 % -21.2 % -34.2%

FI8 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 69 (-2.8%) 62 (-12.7%) 53 (-25.4%) 47 (-33.8%)
ZDT2 89 85 (-4.5%) 84 (-5.6%) 66 (-25.8%) 65 (-27.0%)
ZDT3 68 71 (+4.4%) 67 (-1.5%) 61 (-10.3%) 52 (-23.5%)
ZDT4 80 80 (0.0%) 72 (-10.0%) 63 (-21.3%) 52 (-35.0%)
DTLZ2 18 16 (-11.1%) 14 (-22.2%) 13 (-27.8%) 12 (-33.3%)

Average -2.8% -10.4 % -22.1 % -30.5%

FI9 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 67 (-5.6%) 58 (-18.3%) 54 (-23.9%) 44 (-38.0%)
ZDT2 89 90 (+1.1%) 85 (-4.5%) 69 (-22.5%) 68 (-23.6%)
ZDT3 68 68 (0.0%) 67 (-1.5%) 61 (-10.3%) 51 (-25.0%)
ZDT4 80 83 (+3.8%) 76 (-5.0%) 72 (-10.0%) 58 (-27.5%)
DTLZ2 18 19 (+5.6%) 18 (0.0%) 19 (+5.6%) 18 (0.0%)

Average +1.0% -5.9 % -12.2 % -22.8%

12.8 Comparison with Other PSO Approaches

In the previous section, we found nine techniques to be the best from the
set proposed. In this section, some of those nine techniques will be compared
against two other PSO-based multi-objective approaches representative of the
state-of-the-art: the Sigma-MOPSO [30] and the Cluster-MOPSO [31].

For our comparison, we chose only five from the nine best techniques to be
compared. With this aim, we calculated the norm (distance to the origin) of
the vector of each technique and we selected the five vectors with the lowest
values. In this way, we selected the techniques from the knee of the Pareto
front, that is, the compromise solutions from the central portion of the front.
In Table 12.7, we show the norm values of the nine best techniques and their
corresponding rank according to this value. As we can see, the five techniques
with the lowest value of the norm are: FI2, FI5, FI11, FA1 and FA3.

For this comparative analysis, we will use the two following test functions:

• Test Function DTLZ4 [28]:

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 287

Table 12.4. Obtained results for different values of inheritance proportion, for
techniques FI10, FI11 and FI12

FI10 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 71 (0.0%) 58 (-18.3%) 59 (-16.9%) 48 (-32.4%)
ZDT2 89 78 (-12.4%) 78 (-12.4%) 69 (-22.5%) 58 (-34.8%)
ZDT3 68 70 (+2.9%) 63 (-7.4%) 61 (-10.3%) 47 (-30.9%)
ZDT4 80 78 (-2.5%) 81 (+1.3%) 58 (-27.5%) 52 (-35.0%)
DTLZ2 18 17 (-5.6%) 13 (-27.8%) 11 (-38.9%) 11 (-38.9%)

Average -3.5% -12.9 % -23.2 % -34.4%

FI11 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 62 (-12.7%) 63 (-11.3%) 55 (-22.5%) 37 (-48.0%)
ZDT2 89 84 (-5.6%) 87 (-2.2%) 81 (-9.0%) 76 (-14.6%)
ZDT3 68 69 (+1.5%) 60 (-11.8%) 57 (-16.2%) 44 (-35.3%)
ZDT4 80 82 (+2.5%) 81 (+1.3%) 73 (-8.8%) 73 (-8.8%)
DTLZ2 18 17 (-5.6%) 21 (+16.7%) 23 (+27.8%) 23 (+27.8%)

Average -4.0% -1.5 % -5.7 % -15.8%

FI12 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 66 (-7.0%) 56 (-21.1%) 55 (-22.5%) 48 (-32.4%)
ZDT2 89 87 (-2.2%) 85 (-4.5%) 74 (-16.9%) 80 (-10.1%)
ZDT3 68 66 (-2.9%) 64 (-5.9%) 55 (-19.1%) 53 (-22.1%)
ZDT4 80 80 (0.0%) 75 (-6.3%) 71 (-11.3%) 61 (-23.8%)
DTLZ2 18 18 (0.0%) 18 (0.0%) 16 (-11.1%) 16 (-11.1%)

Average -2.4% -7.6 % -16.2 % -19.9%

Minimize (f1(x), f2(x), f3(x)) (12.8)
f1(x) = (1 + g(x))cos(xα

1 π/2)cos(xα
2 π/2)

f2(x) = (1 + g(x))cos(xα
1 π/2)sin(xα

2 π/2)
f3(x) = (1 + g(x))sin(xα

1 π/2)

g(x) =
m∑

i=3

(xi − 0.5)2

where α=100, m = 12 and xi ∈[0,1].

• Test Function DTLZ6 [28]:

288 Margarita Reyes-Sierra and Carlos A. Coello Coello

Table 12.5. Obtained results for different values of inheritance proportion, for
techniques FI13, FI14 and FI15

FI13 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 68 (-4.2%) 69 (-2.8%) 63 (-11.3%) 58 (-18.3%)
ZDT2 89 84 (-5.6%) 81 (-9.0%) 79 (-11.2%) 80 (-10.1%)
ZDT3 68 70 (+2.9%) 68 (0.0%) 63 (-7.4%) 54 (-20.6%)
ZDT4 80 79 (-1.3%) 81 (+1.3%) 64 (-20.0%) 59 (-26.3%)
DTLZ2 18 14 (-22.2%) 16 (-11.1%) 14 (-22.2%) 12 (-33.3%)

Average -6.1% -4.3 % -14.4 % -21.7%

FI14 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 75 (+5.6%) 66 (-7.0%) 58 (-18.3%) 59 (-16.9%)
ZDT2 89 88 (-1.1%) 79 (-11.2%) 83 (-6.7%) 72 (-19.1%)
ZDT3 68 74 (+8.8%) 69 (+1.5%) 63 (-7.4%) 60 (-11.8%)
ZDT4 80 81 (+1.3%) 79 (-1.3%) 73 (-8.8%) 67 (-16.3%)
DTLZ2 18 16 (-11.1%) 15 (-16.7%) 13 (-27.8%) 13 (-27.8%)

Average +0.7% -6.9 % -13.8 % -18.4%

FI15 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 69 (-2.8%) 63 (-11.3%) 69 (-2.8%) 56 (-21.1%)
ZDT2 89 86 (-3.4%) 81 (-9.0%) 72 (-19.1%) 73 (-18.0%)
ZDT3 68 72 (+5.9%) 70 (+2.9%) 64 (-5.9%) 58 (-14.7%)
ZDT4 80 81 (+1.3%) 78 (-2.5%) 63 (-21.3%) 70 (-12.5%)
DTLZ2 18 13 (-27.8%) 15 (-16.7%) 16 (-11.1%) 10 (-44.4%)

Average -5.4% -7.3 % -12.0 % -22.1%

Minimize (f1(x), f2(x), f3(x)) (12.9)
f1(x) = x1

f2(x) = x2

f3(x) = (1 + g(x))h(f1, f2, g)

g(x) = 1 + 9/(m− 2)
m∑

i=3

xi , h(f1, f2, g)=3−
2∑

i=1

[
fi

1 + g
(1 + sin(3πfi))]

where m = 22 and xi ∈[0,1].

As in previous experiments, we used different values of pi. We performed
20 runs for each function and each approach. The approaches without fitness
inheritance or approximation performed 20000 objective function evaluations.
The parameters adopted for our MOPSO were the same as before. Cluster-
MOPSO used 40 particles, 4 swarms, 5 iterations per swarm and a total
number of iterations of 100. In the case of Sigma-MOPSO, 200 particles were
used through 100 iterations (these values were suggested by the author of

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 289

Table 12.6. Obtained results for different values of approximation proportion, for
techniques FA1, FA2, FA3 and FA4

FA1 Approximation proportion pa

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 74 (+4.2%) 64 (-9.9%) 63 (-11.3%) 55 (-22.5%)
ZDT2 89 88 (-1.1%) 85 (-4.5%) 81 (-9.0%) 76 (-14.6%)
ZDT3 68 73 (+7.4%) 61 (-10.3%) 60 (-11.8%) 55 (-19.1%)
ZDT4 80 85 (+6.3%) 89 (+11.3%) 79 (-1.3%) 80 (0.0%)
DTLZ2 18 18 (0.0%) 13 (-27.8%) 14 (-22.2%) 12 (-33.3%)

Average +3.4% -8.2 % -11.1 % -17.9%

FA2 Approximation proportion pa

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 75 (+5.6%) 57 (-19.7%) 54 (-23.9%) 46 (-35.2%)
ZDT2 89 83 (-6.7%) 72 (-19.1%) 63 (-29.2%) 76 (-14.6%)
ZDT3 68 63 (-7.4%) 58 (-14.7%) 58 (-14.7%) 56 (-17.6%)
ZDT4 80 86 (+7.5%) 87 (+8.8%) 81 (+1.3%) 83 (+3.8%)
DTLZ2 18 15 (-16.7%) 13 (-27.8%) 11 (-38.9%) 10 (-44.4%)

Average -3.5% -14.5 % -21.1 % -21.6%

FA3 Approximation proportion pa

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 71 (0.0%) 67 (-5.6%) 63 (-11.3%) 50 (-29.6%)
ZDT2 89 88 (-1.1%) 87 (-2.2%) 85 (-4.5%) 76 (-14.6%)
ZDT3 68 65 (-4.4%) 65 (-4.4%) 55 (-19.1%) 57 (-16.2%)
ZDT4 80 89 (+11.3%) 91 (+13.8%) 86 (+7.5%) 87 (+8.8%)
DTLZ2 18 16 (-11.1%) 15 (-16.7%) 16 (-11.1%) 13 (-27.8%)

Average -1.1% -3.0 % -7.7 % -15.9%

FA4 Approximation proportion pa

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

ZDT1 71 69 (-2.8%) 59 (-16.9%) 60 (-15.5%) 52 (-26.8%)
ZDT2 89 87 (-2.2%) 80 (-10.1%) 76 (-14.6%) 71 (-20.2%)
ZDT3 68 67 (-1.5%) 71 (+4.4%) 56 (-17.6%) 56 (-17.6%)
ZDT4 80 86 (+7.5%) 85 (+6.3%) 79 (-1.3%) 80 (0.0%)
DTLZ2 18 20 (+11.1%) 16 (-11.1%) 14 (-22.2%) 12 (-33.3%)

Average +2.4% -5.5 % -14.2 % -19.6%

the method). The PSO approaches will be identified with the following labels:
sMOPSO refers to [30], cMOPSO refers to [31], and oMOPSO is our MOPSO.
All the algorithms were set such that they provided Pareto fronts with 100
points. In this case, we also show the obtained results with respect to the
following measure:

Inverted Generational Distance (IGD): The concept of generational
distance was introduced by Van Veldhuizen & Lamont [32, 33] as a way of
estimating how far are the elements in the Pareto front produced by our
algorithm from those in the true Pareto front of the problem. This measure

290 Margarita Reyes-Sierra and Carlos A. Coello Coello

Table 12.7. Vectors of change in quality for each technique, for each value of
inheritance or approximation proportion

Group 0.1 0.2 0.3 0.4 level norm rank

FI1 -1.2 -5.5 -17.6 -17.8
LCBD FI2 -6.2 -2.0 -12.9 -14.8 1 20.69 3

FI3 -1.0 -3.9 -15.5 -24.2 1 29.62 9

FI4 0.0 -9.1 -14.7 -17.5
FFOS FI5 3.8 -7.6 -12.1 -16.1 1 21.86 4

FI6 -1.9 -6.7 -12.5 -21.1

FI7 -9.5 -12.7 -21.2 -34.2
FI8 -2.8 -10.4 -22.1 -30.5

NLC FI9 1.0 -5.9 -12.2 -22.8 1 26.54 8
FI10 -3.5 -12.9 -23.2 -34.4
FI11 -4.0 -1.5 -5.7 -15.8 1 17.33 1
FI12 -2.4 -7.6 -16.2 -19.9

FI13 -6.1 -4.3 -14.4 -21.7
LC FI14 0.7 -6.9 -13.8 -18.4 1 24.02 6

FI15 -5.4 -7.3 -12.0 -22.1

FA1 3.4 -8.2 -11.1 -17.9 1 22.86 5
FA FA2 -3.5 -14.5 -21.1 -21.6

FA3 -1.1 -3.0 -7.7 -15.9 1 17.95 2
FA4 2.4 -5.5 -14.2 -19.6 1 24.94 7

is defined as:

GD =

√∑n
i=1 d2

i

n

where n is the number of nondominated vectors found by the algorithm being
analyzed and di is the Euclidean distance (measured in objective space) be-
tween each of these and the nearest member of the true Pareto front. It should
be clear that a value of GD = 0 indicates that all the elements generated are
in the true Pareto front of the problem. Therefore, any other value will in-
dicate how “far” we are from the global Pareto front of our problem. In our
case, we implemented an “inverted” generational distance measure (IGD) in
which we use as a reference the true Pareto front, and we compare each of its
elements with respect to the front produced by an algorithm. In this way, we
are calculating how far are the elements of the true Pareto front, from those
in the Pareto front produced by our algorithm. Computing this “inverted”
generational distance value reduces the bias that can arise when an algorithm
didn’t fully cover the true Pareto front.

Tables 12.8 and 12.9 present a summary of the results obtained. In each
case, we present the average and standard deviation of the Success Counting
(SCC) and Inverted Generational Distance (IGD) measures over the 20 runs.

As we can see in Table 12.8, in function DTLZ4 our approach (oMOPSO)
is outperformed by one of the other PSO-based approaches (sMOPSO).

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 291

Table 12.8. Obtained results for the test function DTLZ4, for sMOPSO, cMOPSO,
oMOPSO, and oMOPSO with techniques FI2, FI5, FI11, FA1 and FA3 incorporated
(pi=0.1, 0.2, 0.3, 0.4)

FI2 sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 39 1.4 11 10 9 10 12
std. dev. 14.8 3.3 4.4 4.7 3.0 3.8 8.1

IGD mean 0.0064 0.0223 0.0106 0.0121 0.0129 0.0111 0.0107
std. dev. 0.0007 0.0074 0.0034 0.0052 0.0037 0.0043 0.0050

FI5 sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 39 1.4 11 10 10 9 11
std. dev. 14.8 3.3 4.4 6.8 4.9 4.7 6.9

IGD mean 0.0064 0.0223 0.0106 0.0100 0.0119 0.0109 0.0108
std. dev. 0.0007 0.0074 0.0034 0.0045 0.0050 0.0050 0.0046

FI11 sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 39 1.4 11 11 13 14 12
std. dev. 14.8 3.3 4.4 4.5 11.5 14.8 16.2

IGD mean 0.0064 0.0223 0.0106 0.0107 0.0105 0.0111 0.0119
std. dev. 0.0007 0.0074 0.0034 0.0047 0.0046 0.0059 0.0065

FA1 sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 39 1.4 11 13 10 12 8
std. dev. 14.8 3.3 4.4 6.9 3.4 6.5 4.2

IGD mean 0.0064 0.0223 0.0106 0.0093 0.0112 0.0102 0.0122
std. dev. 0.0007 0.0074 0.0034 0.0045 0.0039 0.0042 0.0044

FA3 sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 39 1.4 11 11 8 9 7
std. dev. 14.8 3.3 4.4 3.2 3.1 3.7 3.8

IGD mean 0.0064 0.0223 0.0106 0.0120 0.0138 0.0113 0.0129
std. dev. 0.0007 0.0074 0.0034 0.0033 0.0040 0.0040 0.0042

On the other hand, in Table 12.9 we can see that in function DTLZ6 our
approach is clearly the best.

Table 12.8 shows that, in function DTLZ4, all the techniques have a very
good performance with respect to the IGD measure, with technique FA1 being
(marginally) the best (considering the standard deviation values). On the
other hand, although with respect to the average values of the SCC measure,
technique FI11 is the best, this technique has the highest standard deviations.
Thus, we conclude that the best technique is FA1 also in this case. In fact,
both approximation techniques have the lowest standard deviations, in both
performance measures.

From Table 12.9 we can conclude that, as in function DTLZ4, in function
DTLZ6 all the techniques have a very good performance with respect to the
IGD measure. However, in this case technique FI11 is the best. Also, with
respect to the SCC measure technique FI5 is the best, considering all cases.

292 Margarita Reyes-Sierra and Carlos A. Coello Coello

Table 12.9. Obtained results for the test function DTLZ6, for sMOPSO, cMOPSO,
oMOPSO, and oMOPSO with techniques FI2, FI5, FI11, FA1 and FA3 incorporated
(pi=0.1, 0.2, 0.3, 0.4)

FI2 sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 1 0 62 60 53 50 47
std. dev. 0.0 0.0 13.0 21.4 20.9 22.0 17.3

IGD mean 0.0673 0.0373 0.0091 0.0082 0.0092 0.0101 0.0111
std. dev. 0.0000 0.0172 0.0058 0.0060 0.0062 0.0065 0.0062

FI5 sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 1 0 62 61 60 61 43
std. dev. 0.0 0.0 13.0 17.3 21.7 17.2 20.7

IGD mean 0.0673 0.0373 0.0091 0.0074 0.0089 0.0087 0.0101
std. dev. 0.0000 0.0172 0.0058 0.0060 0.0060 0.0058 0.0058

FI11 sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 1 0 62 54 62 54 50
std. dev. 0.0 0.0 13.0 23.4 20.9 26.8 20.6

IGD mean 0.0673 0.0373 0.0091 0.0090 0.0064 0.0057 0.0058
std. dev. 0.0000 0.0172 0.0058 0.0058 0.0052 0.0053 0.0052

FA1 sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 1 0 62 54 56 49 53
std. dev. 0.0 0.0 13.0 10.7 20.0 21.6 21.5

IGD mean 0.0673 0.0373 0.0091 0.0123 0.0089 0.0108 0.0082
std. dev. 0.0000 0.0172 0.0058 0.0045 0.0062 0.0060 0.0068

FA3 sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 1 0 62 62 51 54 53
std. dev. 0.0 0.0 13.0 15.0 27.0 20.0 20

IGD mean 0.0673 0.0373 0.0091 0.0109 0.0099 0.0100 0.0116
std. dev. 0.0000 0.0172 0.0058 0.0056 0.0059 0.0061 0.0056

Table 12.10. Obtained results for test functions ZDT4 and DTLZ2, for oMOPSO
with techniques FI2, FI5, FI11, FA1 and FA3 incorporated (pi=0.1, 0.2, 0.3, 0.4)

ZDT4 Inheritance proportion pi

technique 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

FI2 80 77 (-3.8%) 83 (+3.8%) 67 (-16.3%) 69 (-13.8%)
FI5 80 87 (+8.8%) 85 (+6.3%) 85 (+6.3%) 82 (+2.5%)
FI11 80 82 (+2.5%) 81 (+1.3%) 73 (-8.8%) 73 (-8.8%)
FA1 80 85 (+6.3%) 89 (+11.3%) 79 (-1.3%) 80 (0.0%)
FA3 80 89 (+11.3%) 91 (+13.8%) 86 (+7.5%) 87 (+8.8%)

DTLZ2 Inheritance proportion pi

technique 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)

FI2 18 15 (-16.7%) 18 (0.0%) 15 (-16.7%) 14 (-22.2%)
FI5 18 18 (0.0%) 12 (-33.3%) 13 (-27.8%) 12 (-33.3%)
FI11 18 17 (-5.6%) 21 (+16.7%) 23 (+27.8%) 23 (+27.8%)
FA1 18 18 (0.0%) 13 (-27.8%) 14 (-22.2%) 12 (-33.3%)
FA3 18 16 (-11.1%) 15 (-16.7%) 16 (-11.1%) 13 (-27.8%)

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 293

In general, fitness inheritance techniques seem to have a better perfor-
mance in function DTLZ6 and fitness approximation techniques seem to have
a better performance in function DTLZ4. These results agree with the results
obtained before. As we can see in Table 12.10, the results obtained in the
previous study show that technique FA3 was the best in function ZDT4. On
the other hand, in function DTLZ2 technique FA1 is one of the two technique
with the best results (the other is FI11). In fact, functions ZDT4 and DTLZ2
have the lowest number of variables. Function ZDT4 has 10 variables and
function DTLZ2 has 12 variables, while functions ZDT1, ZDT2 and ZDT3
have 30 variables each, and DTLZ6 has 22 variables. In this way, we can con-
clude that, in general, fitness approximation techniques have better results
when the test function has a low dimensional decision space and that fitness
inheritance techniques have better results when the test function has a high
dimensional decision space. This conclusion seems to agree with the results
obtained in some of our previous work [13].

Finally, we should observe the results of technique FI11. In function
DTLZ2, this technique obtained almost the best results. Also, in function
DTLZ4, technique FI11 obtained the best average results. However, in the
case of function DTLZ4, we could see that technique FI11 had the highest
standard deviation values. In this way, technique FI11 is the only inheritance
technique that had a very good performance in the test functions with a low
number of variables, specifically from the test suite DTLZ. This denotes the
importance of considering test functions from different test suites and with
different characteristics. Technique FI11 almost always improved the results
of the approach without inheritance even when a 40% of the number of eva-
luation was saved, in functions DTLZ2 and DTLZ4. Certainly, technique FI11
deserves further study, and this is already one of the priorities of our future
work.

12.9 Conclusions

We proposed several fitness inheritance and approximation techniques and in-
corporated them into a Multi-Objective Particle Swarm Optimizer previously
proposed by the authors. We studied the proposed techniques using several
standard test functions taken from the multi-objective optimization literature.

From the nineteen techniques proposed, nine were found to be the best.
Six of those nine techniques were inheritance techniques and the other three
were approximation techniques. From the six best inheritance techniques, four
techniques don’t consider the previous position of a particle in order to com-
pute the new objective position. On the other hand, the only approximation
technique that didn’t appear as one of the best was the one that only consid-
ers the set of leaders to assign the objective values of a particle. The results
obtained indicate that the members of the swarm must be always considered
in order to estimate the fitness value of a particle. Also, the importance of

294 Margarita Reyes-Sierra and Carlos A. Coello Coello

the pbest particle constitutes a topic that deserves further analysis, since it
doesn’t provide any useful information when the fitness value of a particle is
being inherited.

Five of the nine best techniques found were selected to be tested on other
functions and compared with respect to other PSO-based multi-objective al-
gorithms. The obtained results show that the five enhancement techniques
have a good performance and are very promising. In general, fitness inheri-
tance techniques seem to be more appropriate for high-dimensional decision
space problems and fitness approximation techniques seem more appropri-
ate for low-dimensional decision space problems. Only one of the inheritance
techniques had a very good performance when applied to functions with low
number of variables, from a specified test suite. Such inheritance technique
almost always improved the results of the approach without inheritance and
it certainly deserves further study.

As part of our future work, we plan to improve the enhancement tech-
niques that were found to be the best in this study, in order to minimize the
decrement in quality of results while obtaining major savings in the number
of evaluations performed.

Acknowledgments

The first author acknowledges CONACyT for granting her a scholarship to
pursue graduate studies at the computer science section of CINVESTAV-IPN.
The second author gratefully acknowledges support from CONACyT project
number 45683.

References

1. Robert E. Smith, B. A. Dike, and S. A. Stegmann. Fitness Inheritance in Genetic
Algorithms. In SAC ’95, pages 345–350. ACM Press, 1995.

2. Yaochu Jin and Bernhard Sendhoff. Fitness Approximation in Evolutionary
Computation: A Survey. In GECCO 2002, pages 1105–1112. Morgan Kaufmann,
2002.

3. Margarita Reyes Sierra and Carlos A. Coello Coello. Improving PSO-based
Multi-objective Optimization using Crowding, Mutation and ε-Dominance. In
EMO 2005, pages 505–519. Springer-Verlag, LNCS 3410, 2005.

4. Xiaowei Zheng, Bryant A. Julstrom, and Weidong Cheng. Design of Vector
Quantization Codebooks Using a Genetic Algorithm. In IEEE International
Conference on Evolutionary Computation (ICEC’97), pages 525–529. IEEE
Press, 1997.

5. Kumara Sastry, David E. Goldberg, and Martin Pelikan. Don’t Evaluate, In-
herit. In GECCO 2001, pages 551–558. Morgan Kaufmann, 7-11 2001.

6. Jian-Jung Chen, David E. Goldberg, Shinn-Ying Ho, and Kumara Sastry.
Fitness Inheritance in Multi-Objective Optimization. In GECCO’2002, pages
319–326. Morgan Kaufmann Publishers, 2002.

12 Improving Efficiency of a Multi-Objective Particle Swarm Optimizer 295

7. Mehrdad Salami and Tim Hendtlass. A Fast Evaluation Estrategy for Evolu-
tionary Algorithms. Applied Soft Computing, 2(3):156–173, 2003.

8. Els I. Ducheyne, Bernard De Baets, and Robert De Wulf. Is Fitness Inheritance
Useful for Real-World Applications? In EMO 2003, pages 31–42. Springer.
LNCS 2632, 2003.

9. Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjec-
tive Evolutionary Algorithms: Empirical Results. Evolutionary Computation,
8(2):173–195, 2000.

10. Martin Pelikan and Kumara Sastry. Fitness Inheritance in the Bayesian Op-
timization Algorithm. Technical Report 2004009, Illinois Genetic Algorithms
Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 2004.

11. Lam T. Bui, Hussein A. Abbass, and Daryl Essam. Fitness Inheritance for
Noisy Evolutionary Multi-Objective Optimization. In Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO’2005), pages 25–29.
ACM, 2005.

12. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, April 2002.

13. Margarita Reyes Sierra and Carlos A. Coello Coello. Fitness Inheritance in
Multi-Objective Particle Swarm Optimization. In IEEE Swarm Intelligence
Symposium, pages 116–123, Pasadena, California, USA, 2005. IEEE Service
Center.

14. Alain Ratle. Accelerating the Convergence of Evolutionary Algorithms by Fit-
ness Landscape Approximation. In Proceedings of the International Conference
on Parallel Problem Solving from Nature (PPSN V), LNCS 3242, pages 87–96.
Springer-Verlag, 1998.

15. Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. On Evolutionary Opti-
mization with Approximate Fitness Function. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’2000), pages 786–793. Morgan
Kaufmann Publishers, 2000.

16. Yasuhito Sano and Hajime Kita. Optimization of Noisy Fitness Functions by
Means of Genetic Algorithms Using History of Search. In Proceedings of the
International Conference on Parallel Problem Solving from Nature (PPSN VI),
pages 571–580. Springer-Verlag, 2000.

17. Jürgen Branke anad Christian Schmidth and Hartmut Schmeck. Efficient Fit-
ness Estimation in Noisy Environments. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’2001), pages 243–250. Morgan
Kaufmann Publishers, 2001.

18. J. Branke and C. Schmidt. Faster convergence by means of fitness estimation.
Soft Computing, 9(1):13–20, January 2005.

19. Yew S. Ong, Prasanth B. Nair, and Andrew J. Keane. Evolutionary optimization
of computationally expensive problems via surrogate modeling. AIAA Journal,
41(4):687–696, April 2003.

20. Yew-Soon Ong, Zongzhao Zhu, and Dudy Lim. Curse and blessing of uncer-
tainty in evolutionary algorithm using approximation. In Proceedings of the
2006 Congress on Evolutionary Computation (CEC’2006), Vancouver, Canada,
July 2006. IEEE Service Center.

21. A. Gaspar-Cunha, Armando S. Vieira, and Carlos M. Fonseca. Multi-Objective
Optimization: Hybridization of an Evolutionary Algorithm with Artificial

296 Margarita Reyes-Sierra and Carlos A. Coello Coello

Neural Networks for Fast Convergence. In 4th EU/ME Workshop on Design
and Evaluation of Advanced Hybrid Meta-Heuristics, page http://webhost.ua.
ac.be/eume/welcome.htm?workshops/hybrid/index.php&1, Nottingham, UK,
November 2004. European Association of OR Societies.

22. Rommel G. Regis and Christine A. Shoemaker. Local function approximation
in evolutionary algorithms for the optimization of costly functions. IEEE Trans-
actions on Evolutionary Computation, 8(5):490–505, October 2004.

23. Dudy Lim, Yew-Soon Ong, Yaochu Jin, and Bernhard Sendhoff. Trusted evolu-
tionary algorithm. In Proceedings of the 2006 Congress on Evolutionary Com-
putation (CEC’2006), Vancouver, Canada, July 2006. IEEE Service Center.

24. Ivan Voutchkov and A. J. Keane. Multiobjective Optimization using Surrogates.
In I. C. Parmee, editor, Adaptive Computing in Design and Manufacture. Pro-
ceedings of the Seventh International Conference, pages 167–175, Bristol, UK,
April 2006. The Institute for People-centered Computation (IP-CC).

25. Joshua Knowles. ParEGO: A Hybrid Algorithm With On-Line Landscape Ap-
proximation for Expensive Multiobjective Optimization Problems. IEEE Trans-
actions on Evolutionary Computation, 10(1):50–66, February 2006.

26. James Kennedy and Russell C. Eberhart. Particle Swarm Optimization. In
Proceedings of the 1995 IEEE International Conference on Neural Networks,
pages 1942–1948, Piscataway, New Jersey, 1995. IEEE Service Center.

27. Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. Combin-
ing Convergence and Diversity in Evolutionary Multi-objective Optimization.
Evolutionary Computation, 10(3):263–282, 2002.

28. Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable
Multi-Objective Optimization Test Problems. In CEC 2002, volume 1, pages
825–830, USA, 2002. IEEE Service Center.

29. David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifica-
tions, Analyses, and New Innovations. PhD thesis, Department of Electrical and
Computer Engineering. Graduate School of Engineering. Air Force Institute of
Technology, Wright-Patterson AFB, Ohio, May 1999.

30. Sanaz Mostaghim and Jürgen Teich. Strategies for Finding Good Local Guides
in Multi-objective Particle Swarm Optimization (MOPSO). In IEEE Swarm
Intelligence Symposium Proceedings, pages 26–33, USA, 2003. IEEE Service
Center.

31. Gregorio Toscano Pulido and Carlos A. Coello Coello. Using Clustering Tech-
niques to Improve the Performance of a Particle Swarm Optimizer. In GECCO
2004. Part I, pages 225–237, USA, 2004. Springer-Verlag, LNCS 3102.

32. David A. Van Veldhuizen and Gary B. Lamont. Multiobjective Evolutionary Al-
gorithm Research: A History and Analysis. Technical Report TR-98-03, Depart-
ment of Electrical and Computer Engineering, Graduate School of Engineering,
Air Force Institute of Technology, Wright-Patterson AFB, Ohio, 1998.

33. David A. Van Veldhuizen and Gary B. Lamont. On Measuring Multiobjective
Evolutionary Algorithm Performance. In 2000 Congress on Evolutionary Com-
putation, volume 1, pages 204–211, Piscataway, New Jersey, July 2000. IEEE
Service Center.

13

An Evolutionary Multi-objective Adaptive
Meta-modeling Procedure Using Artificial
Neural Networks

Kalyanmoy Deb and Pawan K.S. Nain

Kanpur Genetic Algorithms Laboratory (KanGAL), Department of Mechanical
Engineering, Indian Institute of Technology Kanpur, Kanpur, PIN 208 016, India
{deb, pksnain}@iitk.ac.in

Summary. This paper explores the possibility of using approximate models in
multi-objective optimization. A multi-objective genetic algorithm based optimizer,
namely the elitist non-dominated sorting genetic algorithm or NSGA-II, is integrated
with an artificial neural network (ANN) for this purpose. The proposed technique
makes use of successive fitness landscape modeling for reducing the exact function
evaluation calls while retaining the basic search capability of NSGA-II. To test the
suggested procedure, several test problems and a couple of practical problems are
considered. The simulation results show a considerable savings in exact function
evaluations in achieving both tasks of converging close to the true Pareto-optimal
frontier and maintaining a good diversity of solutions. Although a neural network is
used in this study, other meta-modeling techniques, such as RSM or Kriging meth-
ods, can also be used with the proposed methodology.

13.1 Introduction

One of the main challenges ahead with applied optimization studies is the
enormous computational time needed in evaluating real-world optimization
problems. In order to reduce the overall computational time, researchers in
the area of search and optimization look for efficient algorithms which demand
only a few function evaluations to arrive at a near-optimal solution. Although
successes in this direction have been achieved by using new and unorthodox
techniques (such as evolutionary algorithms, tabu search, simulated anneal-
ing etc.) involving problem-specific operators, such techniques still demand a
considerable amount of simulation time, particularly in solving computation-
ally expensive problems. In such problems, the main difficulty arises in the
large computational time required in evaluating a solution. This is because
such problems either involve many decision variables or a computationally
involved evaluation procedure, such as the use of finite element procedure or
a network flow computation.

K. Deb and Pawan K.S. Nain: An Evolutionary Multi-objective Adaptive Meta-modeling Proce-

dure Using Artificial Neural Networks, Studies in Computational Intelligence (SCI) 51, 297–322

(2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

298 Kalyanmoy Deb and Pawan K.S. Nain

Although the use of a parallel computer is a remedy to these problems
in reducing the overall computational time, in this paper, we suggest a fun-
damental algorithmic change to the usual optimization procedure which can
be used either serially or parallely. Most search and optimization algorithms
begin their search from one or more random guess solutions. Thus, the main
task of a search algorithm in the initial few iterations is to provide a direction
towards the optimal region in the search space. To achieve such a task, it
may not be necessary to use an exact (or a very fine-grained) model of the
optimization problem early on. An approximate model of the problem may
be adequate to provide a reasonably good search direction. However, as the
iterations progress, finer models can be used successively to converge closer
to the true optimum of the actual problem. Although this idea of using an
approximate model in the beginning of a search algorithm and refining the
model with iterations is not new [10, 25, 31] and has been mainly tried in
single-objective optimization problems, we suggest a generic procedure which
can be tried to solve any arbitrary multi-objective optimization problem.

In the reminder of this paper, we describe the proposed coarse-to-fine
grained meta-modeling procedure. Thereafter, we suggest an artificial neural
network (ANN) based procedure, specifically to model an approximate version
of the actual problem and show simulation results of the proposed technique
applied to a number of test problems and to a couple of practical problems.
Different variations of the ANN design and training procedures are compared.
Simulation results show a large computational advantage of the proposed pro-
cedure, thereby suggesting the applicability of the proposed procedure in more
complex real-world search and optimization problems.

13.2 Past Studies

Various groups have reported their studies on the use of approximation models
in evolutionary algorithms. A complete survey on the use of fitness approxi-
mation in evolutionary algorithms is reported by Jin and Sendhoff [2]. These
authors have broadly classified the approximation methods in three categories,
namely, response surface methodology, Kriging models and the methodology
of artificial neural networks. Other issues of concern are the efficient use of
exact function evaluations (termed as model management) and the quality of
model itself, which should improve with iterations. Jin et al. [19], while work-
ing with approximate models, have also demonstrated the controlled evolution
in an evolution strategy. Here, the word control refers to the original fitness
function evaluations. So if the entire generation is evaluated using the orig-
inal fitness function, it is called as controlled generation. Similarly, if only
few population members are evaluated using original fitness function, it is
referred as controlled individuals. A framework which guarantee the correct
convergence while reducing the computational cost is established. The idea of
using less function evaluations in order to reach the optima using controlled

13 EMO with Successive Meta-models 299

individuals with the help of clustering and neural network is explored by Jin
and Sendhoff [22]. The individuals near the center of the cluster is evaluated
using expensive fitness function evaluation to create neural network ensem-
ble which is used for fitness values of remaining individuals. The structure
and parameters of the neural network ensemble are also optimized using a
standard evolution strategy.

Branke and Schmidt [2] have used two estimation methods, namely, regres-
sion and interpolation, to achieve faster convergence to the optima. In their
technique, at every generation, a fixed percentage of the population is evalu-
ated with exact objective function. The fitness of the rest of the population
is estimated. The individuals which are evaluated accurately are determined
based on their estimated fitness and uncertainty. Savings in accurate function
evaluations up to fifty percent are reported.

Farina [15] has also used radial basis neural network for objective function
approximation. The algorithm has been successfully tested on test problem
ZDT3 [4] which has a typical discrete Pareto-optimal front.

The attempt to reduce the number of function evaluations using fitness
inheritance technique [1, 3] is also reported. Sastry et al. [1] have used inheri-
tance combined with population sizing models and have reported a saving of
20% in function evaluations. In case of fixed population size, the study has
reported a saving of 70% by employing a simple inheritance technique. Chen
et al. [3] have extended the fitness inheritance concept for multi-objective
optimization. The study has reported a 40% saving in terms of function eval-
uations for the case of fitness inheritance without fitness sharing, while in the
case of fitness inheritance with fitness sharing, a saving of 25% is claimed.

Rasheed and Hirsh [26] have used informed-operators for speeding up the
genetic algorithm procedure. They have modified the genetic operators (muta-
tion and crossover) and have made them more knowledge-based (or informed)
using reduced models. Instead of making a random choice of parents, they
generate a number of candidates and rank them using inexpensive reduced
models, and then take the best of the result. Naturally, it provides a speed-
up in the genetic algorithm procedure. They have also successfully tested
their method on a complex engineering design problem. In another study by
Rasheed et al. [27], a comparison between two methods for using reduced
models to speed up the search in genetic algorithm based engineering design
optimization is presented. They have reported that the informed-operators ap-
proach is better than the genetic engineering approach. It is also found that
least square approximation with any of the above two speed-up approach
produces better results than neural network approximations.

Applications using surrogate models (or meta-models) which can be sub-
stituted for exact and costly evaluation tools is also discussed by Giannakoglu
[16]. In this work, radial basis function neural networks are used for gener-
ating a surrogate model. The prediction capability of the surrogate model
is dependent on the shape of the real response surface, availability of suffi-
cient training data, number of hidden units and the activation function used.

300 Kalyanmoy Deb and Pawan K.S. Nain

Studies [16, 17] have also suggested a genetic algorithm which is based on
inexact pre-evaluations (GA-IPE). This method starts with exact evaluations
of all solutions in the first generation. Later, when a surrogate model is con-
structed, the entire population is evaluated approximately using the model.
Only the best individuals identified based on the inexact evaluation are ex-
actly evaluated. This process reduces the computational burden of the overall
procedure. Hence, although the GA-IPE takes more generations, it has a low
overall evaluation cost. It is successfully applied to solve a turbomachinery
problem of airfoil design.

El-Beltagy et al. [11] have suggested a Kriging approach, in which local
meta-models are employed instead of global meta-models. This is because of
the computational cost associated with building a global meta-model. In an-
other study, Nair et al. [24] have combined the function approximation concept
with genetic algorithms for structural optimization applications. Investigators
have tried to reduce the number of exact function evaluations while ensuring
a convergence to the optima of the original problem. They have employed
a dynamic optimization technique, wherein the fitness function changes over
successive generations. They have controlled the generational delay before the
approximation model is updated along with an adaptive selection operator.
This technique is applied to solve a 10-bar truss design problem. They have
also used a strategy by which the fitness function is changed during the run
but the granularity of the optimization model is kept unchanged.

A reconstruction algorithm is proposed by Ratle [28] which uses a Krig-
ing meta-model for fitness landscape approximation. The algorithm shows
an overall reduction in the number of fitness calls. The algorithm is tested
successfully for a two-dimensional problem and for a difficult 20-dimensional
multi-modal optimization problem.

Recently, Emmerich et al. [12] have proposed a meta-model assisted evolu-
tion strategy. A local Kriging meta-model is built in which a fixed number of
nearest neighbors are used. The method is tested on test problems and on an
airfoil shape optimization problem. The results are quite encouraging for sin-
gle objective optimization. In another study by Emmerich and Naujokes [13],
the Kriging meta-models are used in multi-objective optimization. The local
meta-models are used to decide the potential of a new population member, i.e.
to decide whether it should be evaluated precisely or rejected. Three different
rejection principles are also tested and compared with the original algorithm.

Although different approaches are suggested, not many studies are at-
tempted to solve multi-objective optimization problems for finding a set of
Pareto-optimal solutions. If the target is to find multiple solutions in the ob-
jective space, it is important to develop a meta-model which would capture
the entire Pareto-optimal region. This is contrary to the focus to a narrow re-
gion needed in the case of a single-objective metal-modeling technique. This
makes the multi-objective meta-modeling different, because certain portion of
the Pareto-optimal front may be easier to approximate and certain portion of
the trade-off frontier may be difficult to approximate. Before we discuss the

13 EMO with Successive Meta-models 301

issues related to meta-modeling in multi-objective optimization, we briefly
describe different procedures which can be used to reduce the computational
cost of evaluating a solution.

13.3 Procedures for Reducing Computational Cost

It is needless to say that the lion’s share of the overall computational cost of
applying a GA (or for that matter any optimization procedure) comes from
the evaluation of solutions. In order to reduce the computational time required
to execute one function evaluation, the following strategies can be used:

1. Use a partial evaluation of a solution,
2. Use a parallel computer, and
3. Use an approximation of the optimization problem

Certain search and optimization problems may be functionally decomposable
into a number of subproblems. In such problems, the most important sub-
problems can only be evaluated in the initial GA generations. Although this
procedure will introduce some error in evaluating a solution in early gener-
ations (since all subproblems are not evaluated), the computations can be
performed quickly. In the early generations the task of an optimizer is to de-
termine correct search directions towards the optimum, such errors may not
cause a large deviation from the true search direction. However, as genera-
tions progress, less important subproblems can be included and more accurate
function evaluations can be expected. In such a procedure, the computational
advantage would come from the savings in the computational time in the
early generations. However, it is obvious that the partial evaluation of a so-
lution cannot be performed in problems where a functional decomposition is
impossible.

Because of the availability of parallel computers, it may be plausible to
take advantage of parallel computing of different tasks involved in a function
evaluation. For example, to evaluate a solution involving FFT or finite element
computations, the solution can be sent to multiple processors for a faster
computation. Since GAs use a population of solutions in each generation,
most parallel GA applications perform a distributed computing of allocating
one complete solution to each available processor, thereby reducing the overall
computational time to complete one generation. In such applications, although
each solution can be evaluated with the help of multiple processors, usually
this is not followed. Although faster solution procedures are developed using
parallel migration and island models, most such studies have found a lower
bound on the computational complexity achievable in terms of resorting to an
optimum number of processors. Beyond the optimum number of processors,
the computational advantage is overshadowed by the communication time
involved among the processors.

The focus of this study is to use a successive approximation of the opti-
mization problem, which we describe next.

302 Kalyanmoy Deb and Pawan K.S. Nain

Exact function

 X

Model 1

Model N

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 13.1. Proposed successive meta-modeling technique

13.4 Proposed Meta-Modeling Procedure

Starting with a coarsely approximated model of the problem, GAs use suc-
cessively fine-grained models with generations. Figure 13.1 depicts this pro-
cedure. The figure shows a hypothetical one-dimensional objective function
for minimization in a solid line. Since this problem has a number of local
minimum solutions (which is one of the difficulties often exist in a real-world
optimization problem), it would be a difficult problem for any optimization
technique. It is concluded elsewhere [18] that to find the global optimum in
such a problem using a GA, a population of size O(γ2), where γ is the in-
verse of the signal-to-noise of the function, is needed. The signal being the
difference between the global and the next-best local optimal values and the
noise being equal to the variance of the function values. Thus, the objective
function shown in the figure demands a large population size, if the GA has
to start from an initial random population. If each function evaluation is ex-
pensive, the application of a GA in such problems becomes difficult. Although
a remedy in such problems is to not use a random initial population, but to
use problem information to create the initial population in the vicinity of the
global optimum, in many problems such information is simply not available.
However, there exist generic solutions to the problem which we discuss in the
following paragraph.

Figure 13.1 also shows a coarsely approximated function in the entire range
of the function with a dashed line. There could be a variety of ways such an
approximated function can be obtained:

13 EMO with Successive Meta-models 303

1. Linear or quadratic (or a response surface methodology) approximation
of the true function

2. Approximation through a set of basis functions
3. Approximation through a chosen set of solutions

Classical methods often linearize non-linear optimization problems at suit-
able solutions and use a linear programming technique successively, such as
the Frank-Wolfe method or successive linearization methods [29]. Besides, lin-
earization techniques, non-linear problems can be approximated by quadratic
or higher-order polynomial functions. Another way to approximate a func-
tion is to use a set of basis functions and find a weighted sum of such basis
functions (finite or infinite numbers of them) as an approximation. Fourier ap-
proximation and Walsh function approximations are two such examples. Once
such an approximation is known, the individual properties of the optimum of
the basis functions may be analyzed to make a guess of the optimum of the
approximating function. Although such techniques are used to decouple link-
ages among decision variables to convert the problem into a class of separable
programming [29], such techniques are usually not used in optimization stud-
ies. However, such approximations can also be used nicely with the following
approximation procedure.

The optimization problem can be evaluated exactly at a few finite number
of pre-specified solutions in the entire range of the decision variables. There-
after, an approximating function can be fitted through these function values
using regression or some other sophisticated techniques such as an artificial
neural network methodology. It is clear that if a large number of solutions
are chosen, the approximating function will take a shape closer to the original
function. On the other hand, if only a few solutions are chosen, the approx-
imated function will ignore the local details and represent a coarse trend in
variation of the function values. If this approximating function is optimized, it
is likely that a GA will proceed in the right direction. However, as a GA tends
to converge to the optimum of the approximating function, the approximating
function needs to be modified to make a better approximated function from
before. Since the population diversity will be reduced while approximating the
first approximated function, the second approximating function need not be
defined over the whole range of the decision variables, as shown in Figure 13.1.
This process may continue till no further approximation results in an improve-
ment in the function value. Although this successive approximation technique
seems a reasonable plan, care must be taken to ensure that adequate diversity
is retained while switching from one approximating function to a better one.

13.4.1 Specific ANN-Based Procedure

Figure 13.2 outlines a schematic of a plausible plan for the proposed procedure.
The combined procedure begins with a set of randomly created N solutions,
where N is the population size. Since an adequate size of solutions are required

304 Kalyanmoy Deb and Pawan K.S. Nain

0 Q 2Q

n n n

 Generation’s of GA

T*Q(T−1)Q

Intial
Coarse
Model
learnt

Model
refined
and
relearnt

model
learnt

Final
population
Exact
function
evaluation

GA run
using

model

intial

GA run
using

GA run
using
final
model

refined
model

Final

Fig. 13.2. A sketch of the proposed NSGA-II-ANN technique

to arrive at an approximated problem, we execute a GA with exact function
evaluations for n generations, thereby collecting a total of N ′ = nN solutions
for approximation. At the end of n generations, the approximation technique is
invoked with N ′ solutions and the first approximated problem is created. The
GA is then performed for the next (Q−n) generations with this approximated
problem. Thereafter, the GA is performed with the exact function for the next
n generations and a new approximated problem is created. This procedure is
continued till the termination criterion is met. Thus, this procedure requires a
fraction n/Q of total evaluations in evaluating the problem exactly. A better
approach will be to decrease N ′ solutions towards the later generations of GA
run as during this phase approximate model will not change significantly.

If a problem cannot be evaluated exactly, instead some approximations
(such as involving FFT or finite element techniques) are needed to evaluate,
the parameter n is set to zero and GAs are run for Q generations with the
most coarse model (in the case of a finite element method only a few elements
can be chosen to start with). Thereafter, the model is modified and GAs are
run for another Q generations with the modified (and hopefully a better)
model. This procedure will continue till a termination criterion is met. It is
interesting to note that a set of basis functions with varying importance to
local variations can be used as approximating functions here. In such cases, a
GA may be started with an approximating function involving only a few basis
functions, thereby allowing a quicker computation of the optimal solution.
With generations, more and more basis functions can be added to make the
model more similar to the actual optimization problem. In this study we
concentrate on solving problems for which an exact evaluation method exists
but is computationally expensive. However, similar methodology can also be
used to solve problem for which no exact evaluation method exists.

We propose combining a GA with the artificial neural networks (ANN)
as the basic approximating technique for fitness computation. The primary

13 EMO with Successive Meta-models 305

reason for using ANN as the basic approximating tool is its proven capabil-
ities as function approximation tool from a given data set. The multilayer
perceptron trained with the back-propagation algorithm may be viewed as a
practical vehicle for performing a non-linear input output mapping of general
nature [19]. It is important to note that first function evaluation should al-
ways be performed using the exact problem, as we do not have any database to
train the neural network. Secondly, whenever we are performing exact function
evaluations, we have to build or update the training database for training or
retraining of the ANN. The frequency of training is exclusively controlled by
the user. The parameters Q and n would be so chosen that even if a previous
approximation function does not adequately approximate the true problem,
subsequent approximations have a chance to correct the population and push
it in the right direction.

Another advantage of the proposed technique is its adaptability. Initially
the GA population will be randomly spread in the entire search space for
the problem undertaken. Since the same information is available in the ANN
training database the approximated model generated using this database, will
also be very general in nature and hence may miss some finer details about
the search space. However as the generations proceed, the GA population will
start drifting and focusing on the important regions which it identifies based
on the current model. So when the proposed technique updates its model
using exact function evaluation for the current generation, it will have more
information about the local regions of interest as more population members
will now be available in those regions than earlier. The ANN will now retrain
and update its weights making it learn and adapt to the new smaller regions
in the search space. Hence it will give finer refined approximated model to
direct the search of GA in the subsequent generations. Thus the proposed
technique will adaptively refine the approximated model from coarse to fine
approximated model of the optimization problem.

The reasons for choosing ANN for function approximation are (i) its abil-
ity to learn a multi-variable functional relationship on arbitrary functions,
and (ii) its fast evaluation of a solution with the trained ANN. It is worth
mentioning here that the computational time taken to train an ANN must
be added to the overall computational time taken to solve the problem. How-
ever, using an incremental learning ANN, the ANN training phase and n
generations of a GA run with exact evaluations can be continued parallely
by using a dual processor machine. However, it is assumed in this study that
the computational time for each function evaluation is so large that the time
taken for ANN training is comparatively small. It is also worth mentioning
that the proposed technique is equally applicable to single and multi-objective
optimization and to constrained optimization, as an additional objective or
constraint in the optimization problem is equivalent to addition of one more
neuron in the output layer of ANN.

306 Kalyanmoy Deb and Pawan K.S. Nain

13.5 Proof-of-Principle Results

In all case studies performed here, we have used the NSGA-II procedure [5] as
the basic multi-objective optimizer. The standard error back-propagation al-
gorithm with sigmoidal activation function [19] is used for generating approxi-
mate model of the problem successively. For the ANN, input neurons represent
problem variables and output neurons represent different objective functions
and constraint functions. The combined procedure will be referred as NSGA-
II-ANN simulation. The ANN is trained using two different models, namely,
batch training and incremental training. If a simulation is performed with
batch training in which after every Q generation the approximation model is
refined and the training database is collected over n generations, It is called
as the B-Q-n model. If the training method is incremental, then it is called
as the I-Q-n model.

Here, we choose a set of available two and three-objective test problems,
namely TNK, ZDT4, DTLZ2 [4, 6]. These problems are selected as they test
different aspects of the optimizer, which will be highlighted in the subsequent
sections. The learning rate of 0.3, a momentum factor of 0.1, permissible rms
error of 0.001, SBX crossover probability of 0.9 and distribution index of 10
and the polynomial mutation (probability equal to the inverse of number
of variables) with a distribution index of 50 are used for all test problems
presented here.

13.5.1 Test Problem TNK

It is a two variable constrained test problem. The problem variables are real
valued. The Pareto-optimal front is disconnected with three parts and falls on
the constraint boundary. Since it is a difficult problem, 200 population mem-
bers and a maximum of 2,500 generations are chosen for all simulations includ-
ing the meta-modeled NSGA-II-ANN (Figures 13.3 and 13.4). The number of
exact function evaluations taken by simulations of various models in order
to reach the Pareto-optimal front are given in Table 13.1. Figure 13.3 shows
that B-10-2 and B-10-3 NSGA-II-ANN simulations reach the Pareto-optimal
front with a saving of about 50% of exact function evaluations. Figure 13.4
shows that I-10-2 NSGA-II-ANN simulations reach the Pareto-optimal front
without any saving in exact function evaluations.

The spread metric calculation method is as suggested in Deb et al. [4].
In this metric, the Euclidean distance between two extreme ends of Pareto-
optimal front as well as the uniformity of distribution for intermediate so-
lutions is considered. A smaller value of the spread metric means a better
spread. Batch model simulations show better spread results as well as savings
in exact function evaluation. If we concentrate on the spread metric value,
B-10-2 simulation is the best and is closely followed by the B-10-3 simula-
tion. However, incremental mode simulations have difficulty in capturing the

13 EMO with Successive Meta-models 307
2

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
f

f

Exact evaluations
B−10−2
B−10−3

Fig. 13.3. Batch model simulation re-
sults for the TNK test problem

2

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
f

f

Exact evaluations
I−10−2

Fig. 13.4. Incremental model simula-
tion results for the TNK test problem

Table 13.1. Spread metric results of NSGA-II-ANN simulations on the TNK test
problem

Model Hidden Part-I Part-II Part-III Exact Function
Name Neurons Evaluations

NSGA-II NA 0.644 0.872 0.704 5,00,400

B-10-2 9 0.597 0.810 0.613 2,50,183

B-10-3 11 0.588 0.833 0.724 2,50,256

I-10-2 9 0.540 1.047 0.507 4,99,933

middle portion of the Pareto-optimal front which is also evident from the
worse spread metric value obtained for the I-10-2 simulation.

13.5.2 Test Problem ZDT4

It is a ten-variable, real valued problem having a convex global Pareto-optimal
front. This is a difficult test problem as it exhibits 100 distinct local Pareto-
optimal fronts, out of which only one is global. Figures 13.5 and 13.6 show that
the NSGA-II-ANN in batch and incremental mode, respectively, are able to
reach the global Pareto-optimal front in all simulations with a population size
of 100 run for 300 generations. However, due to presence of local sub-optimal
Pareto-optimal fronts, the saving in exact function evaluations is somewhat
smaller. The number of exact function evaluations taken by simulations of
various models in order to reach the Pareto-optimal front are given in Ta-
ble 13.2. The saving in both batch models namely, B-10-2 and B-10-3 models
are approximately 25%.

The best spread metric value is achieved by NSGA-II-ANN simulation in
batch mode of training, namely, for B-10-3 model. The incremental models,
namely, I-10-2 and I-10-3 also show better spread metric values. Only one

308 Kalyanmoy Deb and Pawan K.S. Nain

1

2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f

f

Exact evaluations
B−10−2
B−10−3

Fig. 13.5. Batch model simulation re-
sults for the ZDT4 test problem

1

2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f

f

Exact evaluations
I−10−2
I−10−3

Fig. 13.6. Incremental model simula-
tion results for the ZDT4 test problem

Table 13.2. Spread metric results of NSGA-II-ANN simulations on the ZDT4 test
problem

Model Name Hidden Neurons Spread metric value Exact Function Evaluations

NSGA-II NA 0.386 30,200

B-10-2 17 0.422 22,675

B-10-3 15 0.332 22,730

I-10-2 13 0.344 22,675

I-10-3 17 0.388 21,781

simulation, namely B-10-2 gives a poor spread when compared to the NSGA-
II simulation performed with exact function evaluations.

13.5.3 Test Problem DTLZ2

This 12-variable test problem has three objectives with a concave Pareto-
optimal front. It is a problem where most of the multi-objective optimizers find
difficulty in reaching the Pareto surface and maintaining a uniform distribu-
tion of the solutions on the Pareto-optimal surface. Figures 13.7 and 13.8 show
the Pareto-optimal fronts for batch and incremental NSGA-II-ANN with 100
population members run for 300 generations. The number of exact function
evaluations taken by both simulations are tabulated in Table 13.3. The batch
model B-10-3 shows a saving of 62% in exact function evaluations. The incre-
mental model I-10-3 provides a saving of 44% in exact function evaluations.
The distribution of the solutions on the Pareto-optimal surface is evaluated
by using a sparsity measure [7]. It is a method to quantify the distribution
of solutions similar to an entropy measure or the grid diversity measure. A
higher value of the sparsity measure means a better diversity among the so-
lutions. Table 13.3 shows the sparsity measure for NSGA-II-ANN simulation.

13 EMO with Successive Meta-models 309

1

2

3

0.25
0.5
0.75

1
1.25

0 0.25 0.5 0.75 1 1.25

0.25

0.5

0.75

1

f

f

f

00

Fig. 13.7. Batch model simulation re-
sults for the DTLZ2 test problem

1

2

3

0.25
0.5
0.75

1
1.25

0 0.25 0.5 0.75 1 1.25

0.25

0.5

0.75

1

00

f

f

f

Fig. 13.8. Incremental model simula-
tion results for the DTLZ2 test problem

Table 13.3. Sparsity measure results of NSGA-II-ANN simulations on the DTLZ2
test problem

Model Name Hidden Neurons Sparsity measure value Exact Function Evaluations

NSGA-II NA 0.951 30,200

B-10-3 17 0.964 11,496

I-10-3 7 0.908 17,120

The B-10-3 batch model shows the best diversity among Pareto-optimal so-
lutions followed by NSGA-II run with only exact function evaluations. I-10-3
incremental model depicts the poorest distribution of solutions in this prob-
lem.

13.6 Case Study 1: A Curve Fitting Problem

The proposed technique is now applied to a B-spline curve fitting problem.
A saw-tooth function with two teeth is taken as the basic curve to be fitted
using B-splines (Figure 13.9). The tooth root height of 0.1, tooth peak height
of 0.6, and tooth span of 0.5 are chosen here.

A B-spline with the parameter k = 3 produces a polynomial curve of degree
two, with C1 continuity for all curve segments and guarantees to pass through
the starting and end control points and make tangents at the corresponding
line segments.

The following two conflicting objectives are considered:

1. Minimize the error between the saw-tooth curve and the B-spline fitted
curve, and

310 Kalyanmoy Deb and Pawan K.S. Nain

B−Spline

 Saw Tooth

x

F
u
n
c
t
i
o
n

v
a
l
u
e

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 13.9. The B-spline curve fitting problem

2. Minimize the maximum curvature of the B-spline fitted curve.

In the current problem, the number of control points are taken to be 41,
thus dividing total x range in 40 equal divisions. However, in order to create
meaningful solutions, the first and the last control points for the B-spline is
fixed at tooth root height and tooth peak height, respectively, thereby leaving
only 39 control points to be treated as decision variables. For any given B-
spline curve S, the exact evaluation of the first objective can be achieved in
the following manner:

F1(S) =
∫ x=1

x=0

|fsaw-tooth − S|dx. (13.1)

Since such a computation is difficult to achieve exactly (mainly because of
the non-differential modulus function used in the operand), we compute the
above integral numerically by using the Trapezoidal rule. We have used 400
divisions in the entire range of x for the computation of two objectives. The
second objective can be written as follows:

F2(S) =
x=1
max
x=0

d2S
dx2[

1 +
(

dS
dx

)2]3/2
. (13.2)

Since the B-spline curve S is defined piece-wise, the term for the curvature
can be derived exactly for each segment. The term can then be optimized
exactly using the first and second-order optimization criteria and the following
location of the optimum is found in each B-spline segment:

u∗ = 0, if uc ≤ 0; u∗ = 1, if uc ≥ 1; u∗ = uc, otherwise, (13.3)

where the parameter uc is calculated as follows:

uc =
xuu(x0 − x1) + yuu(y0 − y1)

x2
uu + y2

uu

, xuu = x0−2x1+x2, yuu = y0−2y1+y2.

13 EMO with Successive Meta-models 311

Here, (x0, y0), (x1, y1) and (x2, y2) are three control points of each segment.
Once the optimal u∗ is calculated, the corresponding curvature can be calcu-
lated as follows:

R =
xuyuu − xuuyu

(x2
u + y2

u)3/2
, (13.4)

where the first derivatives xu and yu are calculated as follows:

xu = (u∗ − 1)x0 + (1− 2u∗)x1 + u∗x2,

yu = (u∗ − 1)y0 + (1− 2u∗)y1 + u∗y2.

Such computations can be performed for all segments and the maximum cur-
vature of the entire B-spline curve can be determined. For a large number of
B-spline segments, many such computations are required, thereby involving a
large computation time to evaluate the second objective. If such computations
are extended to 3-D curve or surface fitting, the computations become even
more expensive.

Here, we use a population of size 200, a crossover probability of 0.9 with
a distribution index of 10, and the polynomial mutation with a distribution
index of 50 [4]. The database size reduces linearly to 25% of its initial size in
a span of 50% middle generations of EA. For initial and last 25% generations
of EA, database size is kept constant. The permissible normalized rms error
for ANN model is taken 0.005.

An extensive parametric study is performed by varying four parameters,
(i) ANN learning rate, (ii) number of hidden neurons, (iii) model updating
frequency parameter Q and (iv) the database size parameter n. In all cases,
the number of overall exact function evaluations is kept the same to 750×200
or 1,50,000. All simulations are compared with an NSGA-II simulation per-
formed with exact evaluations (200 population size and 750 generations). The
trade-off frontiers corresponding to the best performing batch and incremental
learning NSGA-II-ANNs are shown against the exact NSGA-II performance
in Figure 13.10. In all simulations with batch and incremental learning models
with different parameter settings, the obtained non-dominated front is found
to be better than that obtained using exactly-evaluated NSGA-II. The best
result for incremental training is found with the I-20-2 model, while in the
case of batch training slightly better results are found with the B-10-3 model.
This demonstrates that although approximate models are used, the combined
NSGA-II-ANN procedure proposed here is able to find a better non-dominated
front than the exact model. In order to investigate how many generations it
would take by the NSGA-II with exact evaluations to obtain a front similar to
that obtained using the proposed approaches, we have continued the NSGA-II
run with exact evaluations for more than 750 generations. Figure 13.11 shows
that the B-10-3 model reaches a similar front in about 1,100 generations,
thereby making a saving of around 32% by the meta-modeled NSGA-II.

In order to visualize the B-spline curves obtained using the NSGA-II-ANN
simulations, the two extreme solutions and a knee solution from the final non-
dominated front of B-10-3 model are drawn in Figure 13.12. The original

312 Kalyanmoy Deb and Pawan K.S. Nain

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 400 500 600 700 800 900 1000 1100
Weight

D
e
f
l
e
c
t
i
o
n

Exact at 100 generation
B−20−2
B−20−3
B−15−4
B−10−5

Fig. 13.10. Best of both incremental
and batch models simulation results for
curve fitting problem

Knee

100

200

300

400

500

600

0.006 0.007 0.008 0.009 0.01 0.011

B−10−3
Exact at 1100 generation
Exact at 750 generation

M
a
x
i
m
u
m

C
u
r
v
a
t
u
r
e

Area Error

Fig. 13.11. Comparison of the overall
best simulation result with exact solu-
tion at 1, 100 generation for curve fit-
ting problem

0.1

0.2

0.3

0.4

0.5

0.6

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Solution Knee

Sawtooth
Solution B

Solution A

F
u
n
c
t
i
o
n

v
a
l
u
e

X

Fig. 13.12. Two extreme solutions and a knee solution for the curve fitting problem

saw-tooth function is also shown in dots. For clearly showing the region near
x = 0.5, we plot them for x ∈ [0.3, 0.7]. The figure shows that one solution
(marked as A) is a better fit with the saw-tooth function, whereas the other
solution (marked as B) not a good fit in the vicinity of x = 0.5, but produces
a smaller curvature. The knee solution is an intermediate solution from which
if we move in either direction for a small improvement in one objective, a large
sacrifice in other objective is to be made [1].

13.6.1 Effect of Permissible RMS Error

The issue of choosing a proper permissible normalized rms error for ANN also
plays an important role in the proposed NSGA-II-ANN procedure. A large
value of permissible normalized rms error may not adequately approximate
the true problem as it will propagate a large error between the exact and

13 EMO with Successive Meta-models 313

the obtained model. Similarly, a very low value of permissible normalized rms
error will lead to over-approximation of the true problem, thereby causing
ANN to lose its generalization capability. This discussion indicates that there
should be a critical value of permissible normalized rms error at which the
proposed NSGA-II-ANN procedure should produce a better performance.

Various values of permissible normalized rms error are also tried with the
B-10-3 model in the range [0.001, 0.010]. It is found that a permissible nor-
malized rms error value less then 0.003 leads to over-approximation of the
true problem. Hence NSGA-II-ANN procedure fails to converge close to the
true Pareto-optimal front. Table 13.4 shows that permissible normalized rms
error values above 0.003 and up to 0.004 are able to find a non-dominated
front which is better converged than that obtained using the exact function
evaluations (for 750 generations), indicating a saving of exact evaluations. At
the permissible normalized rms error value of 0.005, the performance of pro-
posed NSGA-II-ANN procedure is the best. However, a further increase in the
permissible normalized rms error value above 0.006 shows poor convergence,
with no savings in the exact evaluations. The obtained non-dominated front
is inferior to that obtained with exact evaluations for 750 generations. The

Table 13.4. Convergence metric for different modeling error in curve fitting problem

Sl. Model Permissible Normalized Convergence Normalized
No. Name RMS Error Metric Convergence Metric

1 B-10-3 0.003 0.012525 0.3779

2 B-10-3 0.004 0.012525 0.3779

3 B-10-3 0.005 0.000779 0.0235

4 B-10-3 0.006 0.033142 1.0000

5 B-10-3 0.007 0.033142 1.0000

6 B-10-3 0.008 0.033142 1.0000

7 B-10-3 0.009 0.033142 1.0000

8 B-10-3 0.010 0.033142 1.0000

9 I-20-2 0.005 0.003458 0.1043

10 Exact-750 N.A. 0.019351 0.5839

11 Exact-1100 N.A. 0.003795 0.1145

convergence metric computes the average distance of each obtained solution
from a reference set of points. As the current problem is a practical problem,
the true Pareto-optimal front is not known. As suggested in [8], we choose a
reference set P ∗ containing 274 data points obtained from a combined pool of
11 simulations (shown in Table 13.4). For calculating the convergence metric
value, first the non-dominated set F of the final generation of each simula-

tion is identified. Then for each point in F , smallest normalized Euclidean
distance to P ∗ is calculated. Next the convergence metric value is calculated

314 Kalyanmoy Deb and Pawan K.S. Nain

by averaging the normalized distance of all points in the F . Lastly, in order
to keep the convergence metric within [0, 1], we divide the convergence metric
value by the maximum value found among all simulations.

13.6.2 Comparing Both Convergence and Spread

Next, we make a detailed study comparing different batch and incremental
learning NSGA-II-ANNs with exactly evaluated NSGA-II based on two per-
formance measures: (i) convergence and (ii) diversity preservation. Since the
true Pareto-optimal front is not known in this problem, we combined the solu-
tions found in all simulation runs and treat the resulting non-dominated front
as the target frontier.

Figure 13.13 shows the normalized convergence metric values of the differ-
ent simulations. However it should be noted that maximum value of conver-

B
−
1
0
−
2

B
−
2
0
−
2

I
−
1
0
−
2

I
−
2
0
−
2

B
−
1
0
−
3

B
−
2
0
−
3

I
−
1
0
−
3

I
−
2
0
−
3

E
x
a
c
t

1
1
0
0

E
x
a
c
t

7
5
0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

N
o
r
m
a
l
i
z
e
d

C
o
n
v
e
r
g
e
n
c
e

M
e
t
r
i
c

Fig. 13.13. Normalized convergence
metric for different simulations for
curve fitting problem

B
−
2
0
−
2

B
−
1
0
−
3

B
−
2
0
−
3

B
−
1
0
−
4

E
x
a
c
t

3
0
0

B
−
1
5
−
4

B
−
2
0
−
5

E
x
a
c
t

1
0
0

E
x
a
c
t

1
5
0

E
x
a
c
t

1
7
5

E
x
a
c
t

2
0
0

E
x
a
c
t

2
5
0

B
−
1
0
−
2

E
x
a
c
t

4
0
0

B
−
1
0
−
5

 0.8

 0.85

 0.9

 0.95

 1

N
o
r
m
a
l
i
z
e
d

S
p
r
e
a
d

M
e
t
r
i
c

 0.75

Fig. 13.14. Normalized spread metric
for different simulations for curve fitting
problem

gence metric obtained for the curve fitting problem is 0.033142 (as shown in
Table 13.4). Hence the maximum ordinate in the Figure 13.13 is not unity. But
still this figure clearly communicates the comprehensive picture of the conver-
gence obtained in various simulations. It is observed from the figure that for
the batch model running with two generational database size (2N), B-10-2
model performed better than B-20-2 model. In the incremental model with
two generational database, I-20-2 model performed better than I-10-2 model.
In case of three generation (3N) database size with batch model (results not
shown here), B-10-3 model has also performed better than B-20-3 model. In
case of incremental model with three generational database size, I-10-3 model
has also performed better than I-20-3 model. The best incremental model is
found to be I-20-2 and the best batch model is B-10-3. Both of these models

13 EMO with Successive Meta-models 315

performed better than NSGA-II simulation run with exact function evalua-
tions for 1, 100 generations. The overall best performance is obtained in the
B-10-3 batch model. So all simulations working with approximate function
evaluations performed better than the NSGA-II simulation working with ex-
act function evaluations for 750 generations and hence show an encouraging
trend for the use of the technique presented here.

Next, the distributing ability of these simulations is examined. The spread
metric is calculated by identifying two extremes of the reference set P ∗. The
simulation for which the spread metric is to be calculated, is taken and the
best non-dominated front F is identified. Next the two extremes of this best
non-dominated front F are identified. In the spread metric calculation two
aspects are covered:

1. The closeness of two extremes of the reference set P ∗ to the corresponding
extremes of best non-dominated front of simulation F , and

2. The uniformity of distribution of intermediate non-dominated points of
the simulation F .

The smaller is the spread metric value, better is the distribution of the sim-
ulation under investigation. In order to visualize a comprehensive picture of
the spread metric value for all the ten simulations, once again the spread
metric values are normalized in the range of [0, 1] and is plotted in Fig-
ure 13.14. The worst distribution is obtained for the benchmark simulation
labeled Exact-750. All NSGA-II-ANN simulations performed better than this
particular simulation. But the best simulation with respect to spread met-
ric is Exact-1100 simulation with normalized spread metric value of 0.821.
The worst batch model NSGA-II-ANN simulation is B-20-3 with 194 non-
dominated points and normalized convergence metric value of 0.933. The best
batch model NSGA-II-ANN simulation is B-10-3 with 187 non-dominated
points and normalized convergence metric value of 0.864. Even though the
number of non-dominated points in case of B-10-3 simulation are less than
that with B-20-3 simulation, the spread is better for B-10-3 simulation. The
worst incremental simulation is I-10-3 with 193 non-dominated points and
normalized convergence metric value of 0.988. The best incremental simu-
lation is I-20-3 with 193 non-dominated points and normalized convergence
metric value of 0.837. So it can be concluded that in view of the spread mea-
sure, better performance of meta-medeled NSGA-II-ANNs is observed.

13.6.3 Effect of Initial Population and Attainment Curve

Next, in order to study the effect of initial population, we perform 21 different
simulations of the best-performing batch model (B-10-3) with different initial
populations. Independent non-dominated fronts are combined and 0%, 50%
and 100% attainment curves [14] are plotted in Figure 13.15. The 0% and
100% attainment curves divide the objective space into three main regions.
The first region located to the left of the 0% attainment curve (for minimizing

316 Kalyanmoy Deb and Pawan K.S. Nain

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 400 500 600 700 800 900 1000 1100

D
e
f
l
e
c
t
i
o
n

Weight

Fig. 13.15. Attainment curve plot for exact and approximate runs for the curve
fitting problem

both objectives) is composed of the solution vectors which were never attained
in any of the run. This region gives the idea about the best performance of
the algorithm. The second region located to the right of the 100% attainment
curve represents the solution vectors which were attained in all the simulation
runs. This region gives the idea of the worst-case performance of the algo-
rithm. The third region located within the 0% and 100% attainment curves is
composed of solutions which are attained in some of the simulation runs but
not in all simulations. This region can further be subdivided into sub-areas
according to percentage of simulation runs in which the corresponding objec-
tive vectors are attained. A 50% attainment curve indicates the curve which
is attained in half of the simulations.

It can be observed from the figure that the best performance (0% attain-
ment curve) of NSGA-II simulations, working with exact evaluations for 750
generations, is better than the NSGA-II-ANN B-10-3 model. The 50% at-
tainment curve for the NSGA-II working with exact function evaluation and
is almost similar to that for the NSGA-II-ANN simulations working with B-
10-3 model, suggesting that the median performance of the two approaches
are more or less identical. The 100% attainment curves show that worst-case
performance of NSGA-II-ANN approach is better than that of the exactly-
evaluated NSGA-II. It is also observed from the figure that variation in the
performance of NSGA-II with exact evaluations due to a change in initial
population is slightly more than that in the batch learning NSGA-II-ANN.

13.7 Case Study 2: A Cantilever Plate Design
for Optimal Shape

13 EMO with Successive Meta-models 317

Fig. 13.16. A cantilever
plate

The design task is to find optimal shapes for
two conflicting objectives: (i) minimize weight of
the plate and (ii) minimize maximum deflection
anywhere on the plate due to application of the
load. A functional constraint restricts the max-
imum developed stress to be less than the spec-
ified yield strength of the plate material. The
plate, loading, and initial meshes (of size 12×20)
used in the study are shown in Figure 13.16. A
load of 100 kN is applied at the free end of the
cantilever. The plate material is taken to be steel. A binary variable represents
presence or absence of the material at a grid element. Thus, a binary string
of size 240 represents a shape. The continuity of materials from support to
load is enforced and a finite element procedure is employed for exact function
evaluations, thereby requiring a large computational overhead.

Since in the previous examples, the batch learning NSGA-II-ANN per-
formed the best, we apply this method only to this shape optimization prob-
lem. Several batch models are applied and the best performing results are
shown in Figure 13.17. For a comparison, the trade-off frontier correspond-
ing to the exactly-evaluated NSGA-II is also shown. In all simulations, 5,400

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 400 500 600 700 800 900 1000 1100
Weight

D
e
f
l
e
c
t
i
o
n

Exact at 100 generation
B−20−2
B−20−3
B−15−4
B−10−5

Fig. 13.17. Best of different batch
models for the shape optimization prob-
lem

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 400 500 600 700 800 900 1000 1100
Weight

D
e
f
l
e
c
t
i
o
n

Exact at 100 generation
Exact at 200 generation

B−20−3

Fig. 13.18. Comparison of best batch
simulation with exact NSGA-II runs for
the shape optimization problem

exact function evaluations are allowed. It can be seen that the B-20-3 NSGA-
II-ANN frontier fully dominates that obtained using exactly-evaluated NSGA-
II simulation (Figure 13.18). Interestingly, even when the exactly-evaluated
NSGA-II is continued to run for 200 generations (totaling 10,800 exact func-
tion evaluations), the obtained frontier is not as good as that obtained with
the meta-modeled NSGA-II using 50% evaluations. Hence, the B-20-3 model
saves at least 50% function evaluations.

318 Kalyanmoy Deb and Pawan K.S. Nain

13.7.1 Convergence and Spread of Solutions

To quantify the level of convergence achieved in each simulation, we compute
a convergence and spread measures used earlier. Like before, we choose a ref-
erence set P ∗ containing 94 data points obtained from a combined pool of
15 simulations. Figure 13.19 shows the normalized convergence metric value
calculated for various simulations by the NSGA-II-ANN procedure and the
NSGA-II working with exact function evaluations (labeled as exact). This fig-
ure shows that convergence metric value for all the NSGA-II-ANN simulations
is either near or better than NSGA-II run with exact function evaluations for
200 generations. The convergence metric value of the best simulation, namely
B-20-3, is somewhere in between 250 generation and 300 generation. Hence,
a saving larger than 50% is achieved. Next, we compute the spread measure

B
−
1
0
−
3

B
−
2
0
−
3 B
−
1
0
−
4

B
−
1
5
−
4 B
−
1
0
−
5

B
−
2
0
−
5

E
x
a
c
t

1
0
0

E
x
a
c
t

1
5
0

E
x
a
c
t

1
7
5

E
x
a
c
t

2
0
0

E
x
a
c
t

2
5
0

E
x
a
c
t

3
0
0

E
x
a
c
t

4
0
0

B
−
1
0
−
2

B
−
2
0
−
2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

N
o
r
m
a
l
i
z
e
d

C
o
n
v
e
r
g
e
n
c
e

M
e
t
r
i
c

Fig. 13.19. Normalized convergence
metric results for different simulations
for shape optimization problem

B
−
2
0
−
2

B
−
1
0
−
3

B
−
2
0
−
3

B
−
1
0
−
4

E
x
a
c
t

3
0
0

B
−
1
5
−
4

B
−
2
0
−
5

E
x
a
c
t

1
0
0

E
x
a
c
t

1
5
0

E
x
a
c
t

1
7
5

E
x
a
c
t

2
0
0

E
x
a
c
t

2
5
0

B
−
1
0
−
2

E
x
a
c
t

4
0
0

B
−
1
0
−
5

 0.8

 0.85

 0.9

 0.95

 1

N
o
r
m
a
l
i
z
e
d

S
p
r
e
a
d

M
e
t
r
i
c

 0.75

Fig. 13.20. Normalized spread met-
ric results for different simulations for
shape optimization problem

using the same reference set P ∗. Figure 13.20 shows that the B-20-3 model
finds the best spread.

13.7.2 Effect of Initial Population and Attainment Curves

We now study the effect of initial population on the best-performing B-20-3
meta-model. We use 5 hidden neurons and a learning rate of 0.3, which per-
formed the best in the above discussion. Once again, 21 different simulations
are run for this meta-model and for the exactly-evaluated NSGA-II and differ-
ent attainment curves [14] are plotted in Figure 13.21. In both cases, the runs
are terminated when a total of 5,400 exact evaluations are done. The NSGA-II
attainment curves are shown by solid lines and NSGA-II-ANN simulation in

13 EMO with Successive Meta-models 319

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 400 500 600 700 800 900 1000 1100

D
e
f
l
e
c
t
i
o
n

Weight

Fig. 13.21. Attainment curve plot for exact and approximate runs for the shape
optimization problem

dashed lines. It can be observed that the B-20-3 NSGA-II-ANN model pro-
duces a better performance in the small-weight region (high-deflection region)
compared to that obtained using the exactly-evaluated NSGA-II simulations.
For larger-weight or smaller-deflection solutions, both NSGA-II and meta-
modeled NSGA-II-ANN have achieved a similar level of performance. The
median performance of the two algorithms are more or less same in the larger-
weight or smaller-deflection region, while in smaller-weight or larger-deflection
region, the performance of meta-modeled NSGA-II-ANN working with B-20-
3 model is found to be better. Investigating the 100% attainment curve, it
can be concluded that the worst-case performance of meta-modeled NSGA-
II-ANN is better than that of the exactly-evaluated NSGA-II. To show the
variation of performance due to a change in the initial population clearly, we
shade the region between 0% and 100% attainment curves for meta-modeled
NSGA-II-ANN simulations. It is observed from this figure that although vari-
ations in both approaches are substantial in the small-weight region of the
trade-off curve, the performance of meta-modeled NSGA-II is somewhat bet-
ter. Overall, the study also indicates that optimal solutions corresponding to
smaller-weight (or larger-deflection) are difficult to achieve and more sensitive
to GA parameter settings than the smaller-deflection (or larger-weight) solu-
tions. Importantly, the reduced exact evaluations with the proposed scheme
is found to be better or equivalent to the exactly-evaluated NSGA-II.

13.8 Conclusions

Most real-world optimization problems require a computationally expensive
procedure of evaluating objective functions and constraints. This computa-
tional load is no less in multi-objective optimization. Hence there is a need

320 Kalyanmoy Deb and Pawan K.S. Nain

for a generic multi-objective optimization procedure which can work reliably
with approximate models. In this paper, we have suggested a meta-modeled
multi-objective optimizer, namely NSGA-II-ANN in which the well-known
elitist multi-objective optimizer NSGA-II has been combined with ANN. The
NSGA-II-ANN procedure has been tested on a number of test problems and
a couple of practical problems, involving a curve fitting problem and an engi-
neering shape optimization problem. Test problems and case studies involve
typical features of practical optimization problems: (i) a combination of real
and discrete variables, (ii) unconstrained problem and constrained problems,
(iii) discontinuous and continuous Pareto-optimal fronts, and (iv) non-convex
and convex Pareto-optimal fronts. Simulation results have been analyzed for
two aspects, namely, convergence to the trade-off frontier and the spread of
obtained solutions. It can be concluded that NSGA-II-ANN simulations gen-
erally has shown a saving in exact function evaluations of about 25% to 62%
to achieve a similar performance compared to the exactly-evaluated NSGA-II.

An important finding of this study is that a single strategy (the batch
learning NSGA-II-ANN with the B-10-3 model) has been found to perform
consistently better in all problems. The use of three generations of exactly-
evaluated solutions for training and the use of the trained ANN for the
next seven generations is a winning plan (providing adequate exploitation-
to-exploration trade-off) found for all problems considered in this study. The
problem difficulties are taken care of by the choice of an appropriate popula-
tion size. The current study must now be extended and compared with other
meta-modeling techniques, such as RSM and Kriging, and the superiority of
one method over the other can be established.

References

1. Branke, J., Deb, K., Dierolf, H., and Osswald M.: Finding Knees in Multi-
objective Optimization. In Proceedings of Parallel Problem Solving from Nature
(PPSN 2004). Springer, 2004, pp. 722–731.

2. Branke, J., and Schmidt, C.: Faster convergence by means of fitness estimation.
In Soft Computing Journal. (in press).

3. Chen, J., Goldberg, D. E., Ho, S., and Sastry, K.: Fitness inheritance in multi-
objective optimization. In Proceedings, Genetic and Evolutionary computation
Conference, 2002. Morgan Kaufmann, 2002, pp. 319-326.

4. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. First
Edition, Chichester, Uk: Wiley, 2001.

5. Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T.: A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197, 2002.

6. Deb, K., Thiele, L., Laumanns, M., and Zitzler, E.: Scalable test problems
for evolutionary multi-objective optimization. In Abraham, A., Jain, L., and
Goldberg, R., editors, Evolutionary Multiobjective Optimization, 2005, pages
105–145. London: Springer-Verlag.

13 EMO with Successive Meta-models 321

7. Deb, K., Mohan, M., and Mishra, S.: Towards a quick computation of well-
spread Pareto-optimal solutions. In Proceedings, Evolutionary Multi-Criterion
Optimization, 2003. Springer, 2003, pp. 226-236.

8. Deb, K., and Jain, S.: Running performance Metrics for evolutionary multi-
objective optimization. In Proceedings, Fourth Asia-Pacific Conference on Sim-
ulated Evolution and Learning (SEAL’02). (Singapore), 2002, pp. 13-20.

9. Deb, K. and Gupta, H.: Searching for robust Pareto-optimal solutions in multi-
objective optimization. In Proceedings of Evolutionary Multi-Criterion Opti-
mization (EMO 2005), Springer-Verlag, 2005, pp. 150–164.

10. Eby, D., Averill, R. C., Punch III, W. F., and Goodman, E. D.: Evaluation of
injection island GA performance on flywheel design optimization. In Proceed-
ings, Third Conference on Adaptive Computing in Design and Manufacturing.
Springer, 1998.

11. El-Beltagy, M. A., Nair, P. B., and Keane, A. J.: Metamodeling techniques
for evolutionary optimization of computationally expensive problems: promises
and limitations. In Proceedings of the Genetic and Evolutionary Computation
Conference, 1999. Morgan Kaufman, 1999, pp. 196-203.

12. Emmerich, M., Giotis, A., Ozdenir, M., Back, T., and Giannakoglou, K.:
Metamodel-assisted evolution strategies. In Proceedings, Parallel Problem Solv-
ing from Nature, 2002. Springer, 2002, pp. 371-380.

13. Emmerich, M., and Naujoks, B.: Metamodel assisted multi-objective optimiza-
tion strategies and their application in airfoil design. In Proceedings, Adaptive
Computing in Design and Manufacture VI, 2004. Springer, 2004, pp. 249–260.

14. Fonseca, C. M. and Fleming, P. J.: On the performance assessment and compar-
ison of stochastic multiobjective optimizers. In Proceedings of Parallel Problem
Solving from Nature IV (PPSN-IV), Springer, 1996, pp. 584–593.

15. Farina, M.: A neural network based generalized response surface multi-objective
evolutionary algorithms. In Congress on Evolutionary Computation, 2002. IEEE
Press, 2002, pp. 956-961.

16. Giannakoglou, K. C.: Design of optimal aerodynamic shapes using stochastic
optimization methods and computational intelligence. In Progress in Aerospace
Science, Vol. 38, pp. 43-76, 2002.

17. Giotis, A. P., and Giannakoglou, K. C.: Chapter 23: low cost GAs assisted by
ANNs - applications in turbomachinery. edited by Periaux, J. et al., Jhon Wiley
& Sons, (to appear).

18. Goldberg, D. E., Deb, K., and Clark, J. H.: Genetic algorithms, noise, and the
sizing of populations. Complex System, 6, pp. 333-362, 1992.

19. Haykin, S.: Neural networks a comprehensive foundation. second edition, Singa-
pore: Addison Wesley, 2001. pp. 208.

20. Jin, Y., Olhofer, M., and Sendhoff, B.: A framework for evolutionary optimiza-
tion with approximate fitness functions. In IEEE Transactions on Evolutionary
Computation, 6(5), pp. 481-494, 2002.

21. Jin, Y., and Sendhoff, B.: Fitness approximation in evolutionary computation
- A survey. In Proceedings, Genetic and Evolutionary Computation Conference,
2002. Morgan Kaufmann, 2002, pp. 1105-1112.

22. Jin, Y., and Sendhoff, B.: Reducing fitness evaluations using clustering tech-
niques and neural network ensembles. In Proceedings, Genetic and Evolutionary
Computation Conference, 2004. Springer, 2004, pp. 688-699.

322 Kalyanmoy Deb and Pawan K.S. Nain

23. Nain, P. K. S., and Deb, K.: Computationally effective search and optimiza-
tion procedure using coarse to fine approximation. In Proceedings, Congress
on Evolutionary Computation, 2003. IEEE Computer Society Press, 2003, pp.
2081-2088.

24. Nair, P. B., Keane, A. J., and Shimpi, R. P.: Combining approximation concepts
with genetic algorithm based structural optimization procedures. In Proceedings
of the 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics
and Materials Conference, 1998, pp. 1741-1751

25. Poloni, C., Giurgevich, A., Onesti, L., and Prdiroda, V.: Hybridization of a
multi-objective genetic algorithm, a neural network and a classical optimizer for
a complex design problem in fluid dynamics. In Computer Methods in Applied
Mechanics and Engineering, volume 186, 2000, pp. 403-420.

26. Rasheed, K., and Hirsh, H.: Informed operators: speeding up genetic-algorithm-
based design optimization using reduced models. In Proceedings, Genetic and
Evolutionary Computation Conference, 2000. Morgan Kaufmann, 2000, pp. 628-
635.

27. Rasheed, K., Vattam, S., and Ni, X.: Comparison of methods for using reduced
models to speed up design optimization. In Proceedings, Genetic and Evolution-
ary Computation Conference, 2002. Morgan Kaufmann, 2002, pp. 1180-1187.

28. Ratle, A.: Accelerating the convergence of evolutionary algorithms by fitness
landscape approximation. In Proceedings, Parallel Problem Solving from Nature,
1998. volume V, 1998, pp. 87–96.

29. Reklaitis, G. V., Ravindran, A. and Ragsdell, K. M. (1983). Engineering Opti-
mization Methods and Applications. New York : Wiley.

30. Sastry, K., Goldberg, D. E., and Pelikan, M.: Don’t evaluate, inherit. In Proceed-
ings, Genetic and Evolutionary computation Conference, 2001. Morgan Kauf-
mann, 2001, pp. 551-558.

31. Sefrioui, M., and Périaux, J.: A hierarchical genetic algorithm using multiple
models for optimization. In Proceedings, 6th International Conference on Par-
allel Problem Solving from Nature - PPSN VI . Lecture Notes in Computer
Science 1917, Springer 2000.

14

Surrogate Model-Based Optimization
Framework: A Case Study in Aerospace Design

Yolanda Mack1, Tushar Goel1, Wei Shyy2, and Raphael Haftka1

1 Mechanical and Aerospace Engineering Department, 231 MAE-A, P.O. Box
116250, University of Florida, Gainesville, FL 32611-6250, USA
{tiki,tusharg,haftka}@ufl.edu

2 Department of Aerospace Engineering, François-Xavier Bagnoud Building, 1320
Beal Avenue, University of Michigan, Ann Arbor, MI 48109-2140, USA
weishyy@umich.edu

Summary. Surrogate-based optimization has proven very useful for novel or ex-
ploratory design tasks because it offers a global view of the characteristics of the
design space, and it enables one to refine the design of experiments, conduct sensi-
tivity analyses, characterize tradeoffs between multiple objectives, and, if necessary,
help modify the design space. In this article, a framework is presented for design op-
timization on problems that involve two or more objectives which may be conflicting
in nature. The applicability of the framework is demonstrated using a case study in
space propulsion: a response surface-based multi-objective optimization of a radial
turbine for an expander cycle-type liquid rocket engine. The surrogate model is com-
bined with a genetic algorithm-based Pareto front construction and can be effective
in supporting global sensitivity evaluations. In this case study, due to the lack of
established experiences in adopting radial turbines for space propulsion, much of the
original design space, generated based on intuitive ideas from the designer, violated
established design constraints. Response surfaces were successfully used to define
previously unknown feasible design space boundaries. Once a feasible design space
was identified, the optimization framework was followed, which led to the construc-
tion of the Pareto front using genetic algorithms. The optimization framework was
effectively utilized to achieve a substantial performance improvement and to reveal
important physics in the design.

14.1 Introduction

With continuing progress in computational simulations, computational-based
optimization has proven to be a useful tool in reducing the design process
duration and expense. Numerous methods exist for conducting design opti-
mizations. Popular methods include gradient-based methods [4, 14], adjoint
methods [6, 10], and surrogate model-based optimization methods such as the
response surface approximation (RSA) [9]. Gradient-based methods rely on a

Y. Mack et al.: Surrogate Model-Based Optimization Framework: A Case Study in Aerospace

Design, Studies in Computational Intelligence (SCI) 51, 323–342 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

324 Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka

step by step search for an optimum design using the method of steepest de-
scent on the objective function according to a convergence criterion. Adjoint
methods require formulations that must be integrated into the computational
simulation of the physical laws. For a new design or a computationally expen-
sive design, optimization based on an inexpensive surrogate, such as an RSA,
is a good choice. Surrogate-based optimization allows for the determination of
an optimum design, while at the same time providing insight into the work-
ings of the design. A surrogate model not only provides the benefit of low-cost
for function evaluations, but it can also help revise the problem definition of
a design task, which is not unusual for new efforts. Furthermore, it can con-
veniently handle the existence of multiple desirable design points and offer
quantitative assessments of trade-offs as well as facilitate global sensitivity
evaluations of the design variables [7, 13].

In the present article, an effort in surrogate model-based multi-objective
optimization and sensitivity analysis will be described. A case study in space
propulsion will be used: a radial turbine for an expander cycle-type liquid
rocket engine. The surrogate model is combined with a genetic algorithm-
based Pareto front construction and facilitates global sensitivity evaluations.
The framework steps include 1) modeling of the objectives using surrogate
models, 2) refining the design space, 3) reducing the problem dimensionality,
and 4) handling multiple objectives with the aids of a Pareto front and a
global sensitivity evaluation method. Figure 14.1 illustrates the process used
to develop optimal designs for the problems involving multiple and possibly
conflicting objectives. The steps of the framework are detailed in the following
sections.

14.2 Framework Details

The first steps in any optimization problem are to identify the performance
criteria, the design variables and their allowable ranges, and the design con-
straints. These critical steps require expertise about the physical process. A
multi-objective optimization problem is formulated as

MinimizeF(x), where F = fj : ∀j = 1,M ; x = xi : ∀i = 1, N

Subject to
C(x) ≤ 0, where C = cp : ∀p = 1, P
H(x) = 0, where H = hk : ∀k = 1,K

Once the problem is defined, the designs are evaluated through experiments
or numerical simulations. For numerical simulations, the type of numerical
model and design evaluations used varies with the goals of the study. For a
simple preliminary design optimization, the use of an inexpensive 1-D solver
may be sufficient. However, for the final detailed design, more complex solvers
may be needed [11, 12]. The choice of a model has an important bearing

14 Surrogate Model-Based Optimization Framework 325

Fig. 14.1. Flowchart of optimization framework

on the computational expense of evaluating designs. When obtaining many
design points is time-prohibitive, it is often more prudent to use an inexpensive
surrogate model in place of the expensive numerical model.

14.2.1 Model objectives using surrogate models

This step in the framework involves developing alternate models based on a
limited amount of data to analyze and optimize designs. The surrogate-based
optimization (SBO) approach has been shown to be an effective approach
for engineering design in aerospace systems, aerodynamics, structures, and
propulsion, among other disciplines. The surrogates provide fast approxima-
tions of the system response making optimization and sensitivity studies possi-
ble. Response surface approximations, neural network techniques, spline, and
kriging are examples of methods used to generate surrogates for simulations

326 Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka

in the optimization of complex flows involving applications such as engine
diffusers [8], rocket injectors [17], and supersonic turbines [11, 12].

The major benefit of surrogate models is the ability to quickly obtain any
number of additional function evaluations without resorting to more expensive
numerical models. In this aspect, surrogate models can be used for multiple
purposes. Obviously, they are used to model the design objectives, but they
can also be used to model the constraints and help identify the feasible region
in design space. Key stages in the construction of surrogate models are shown
in Figure 14.1.

For the construction of a surrogate model, it is necessary to first begin with
a Design of Experiments (DOE). The DOE is an initial selection of points to be
evaluated by the experiment or numerical model. A relatively small number of
points are selected to effectively represent the entire design space. The results
of the evaluation of these points are used to build the surrogate model.

Design of Experiments

The search space, or design space, is the set of all possible combinations of
the design variables. If all design variables are real, the design space is given
asx ∈ RN , where N is the number of design variables. The feasible domain S
is the region in design space where all constraints are satisfied.

To construct a surrogate model, the sampling of points in design space
is facilitated by different design of experiment techniques. The key issues in
the selection of an appropriate DOE include (i) the dimensionality of the
problem, (ii) whether noise is important source of error, (iii) the number of
simulations or experiments that can be afforded, (iv) the type of surrogate
used to model the problem, and (v) the shape of the design space. If noise
is the dominant source of error, DOEs that reduce the sensitivity to noise
are commonly used. These include central composite designs, face-centered
cubic designs, factorial designs, and Box-Behnken designs for box-shaped do-
mains. D- or A-optimal designs are useful for irregular shaped domains when
minimizing noise is important. When noise is not an issue, Latin-Hypercube
Sampling (LHS), minimum bias designs, and Orthogonal Arrays (OAs) are
preferred.

Surrogate Model Identification and Fitting

There are many types of surrogate models to choose from. There are paramet-
ric models that include polynomial response surfaces and kriging models, and
there are non-parametric models such as projection-pursuit regression and ra-
dial basis functions. The parametric approaches assume the global functional
form of the relationship between the response variable and the design vari-
ables is known, while the non-parametric ones use different types of simple
local models in different regions of the design space to build up an overall
model. In this study, the polynomial RSA will be highlighted.

14 Surrogate Model-Based Optimization Framework 327

The polynomial RSA assumes that the function of interest f , can be rep-
resented as a linear combination of Nc basis functions zj and an error term ε.
For a typical observation i, a response can be given in the form of a linear
equation as

fi(z) =
Nc∑
j=1

βjz
(i)
j + εi, E (εi) = 0, V (εi) = σ2, (14.1)

where the errors εi are considered independent with an expected value E equal
to zero and a variance V equal to σ2. The coefficients βj represent the quan-
titative relation among basis functions zj . Monomials are the preferred basis
functions.

The relationship between the coefficients βj and the basis functions zj is
obtained using Ns sample values of the response fi for a set of basis functions
z
(i)
j such that the error in the prediction is minimized in a least squares sense.

For Ns sample points, the set of equations specified in Equation (14.2) can be
expressed in matrix form as

f = Xβ + ε, E (ε) = 0, V (ε) = σ2I, (14.2)

where X is a Ns×Nc matrix of basis functions, also known as a Gramian design
matrix, with the design variable values as the sampled points. A Gramian
design matrix for a quadratic polynomial in two variables (Ns = 2; Nc = 6)
is shown in Equation (14.3).

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x11 x21 x2
11 x11x21 x2

21

1 x12 x22 x2
12 x12x22 x2

22
...

...
...

...
...

...
1 x1i x2i x2

1i x1ix2i x2
2i

...
...

...
...

...
...

1 x1Ns
x2Ns

x2
1Ns

x1Ns
x2Ns

x2
2Ns

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14.3)

The vector b of the estimated coefficients, which is an unbiased estimate of
the coefficient vector β and has minimum variance, can then be found by

b =
(
XTX

)−1
XTf (14.4)

At a new set of basis function vector z for design point P , the predicted
response and the variance of the estimation are given by

f̂P (z) =
Nc∑
j=1

bjz
(i)
j and V

(
f̂P (z)

)
= σ2

(
zT
(
XTX

)−1
z
)

(14.5)

328 Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka

Surrogate Model Validation

Once the surrogate models are available, it is imperative to establish the
predictive capabilities of the surrogate model away from the available data.
In the context of an RSA, several measures of predictive capability are given
in the following subsections.

Adjusted root mean square error
The error εi at any design point i is given by

εi = fi − f̂i (14.6)

where fi is the actual value and f̂i is the predicted value. Hence, the adjusted
root mean square (rms) error σa is given by

σa =

√√√√√
Ns∑
i=1

ε2
i

(Ns −Nc)
(14.7)

For a good fit, σa should be small compared to the data.
Root mean square error at test points
If Nt additional test data are used to test the quality of the approximation,

the rms error σ is given by

σ =

√√√√√
Nt∑
i=1

ε2
i

Nt
(14.8)

A small rms error indicates a good fit.
Coefficient of multiple determination
The adjusted coefficient of multiple determination R2

adj defines the predic-
tion capability of the polynomial RSA as

R2
adj = 1−

⎛
⎜⎜⎜⎝ σ2

a (Ns − 1)
Ns∑
i=1

(
fi − f̄

)2
⎞
⎟⎟⎟⎠ ; where f̄ =

Ns∑
i=1

fi

Ns
(14.9)

For a good fit, R2
adj should be close to 1.

Prediction Error Sum of Squares
When there are an insufficient number of data points available to test the

RSA, the prediction error sum of squares (PRESS) statistic is used to estimate
the performance of the RSA. A residual is obtained by fitting an RSA over
the design space after dropping one design point from the training set. The
value predicted by the RSA at that point is then compared with the expected
value. PRESS is given by

14 Surrogate Model-Based Optimization Framework 329

PRESS =

√√√√√
Np∑
i=1

(yi − ŷ∗
i)2

Np
(14.10)

where ŷ∗
i is the value predicted by the RSA for the ith point which is excluded

while generating the RSA. If the PRESS value is close to σa, this indicates
that the RSA performs well.

14.2.2 Design Space Refinement

The process of design space refinement is often a necessary step of an opti-
mization process involving surrogate models. It is especially necessary when
the exact relationship between the selected design variables, constraints, and
objectives is unknown. If this is the case, bounds are set on the design vari-
ables, which are usually based on empirical data and experimental results.
This can often lead to a larger than needed design space.

After populating this design space and obtaining computational results,
several issues may arise. Upon closer inspection of the design space, it may be
discovered that many points in the design space are grossly infeasible, meaning
that they violate design constraints severely, or they represent unrealistic or
poorly performing designs. The quality of the surrogate model may also be
affected by the size of design space. If the size of the design space is too large,
the surrogate model may provide a poor fit for the data. All of these issues
can be alleviated by intelligently examining the design space and reducing it
accordingly. Balabanov et al. applied the design space reduction technique to
a high speed civil transport wing [1]. They discovered that 83% of the points
in their original design space violated geometric constraints, while many of the
remaining points were simply unreasonable. Reducing the size of the design
space eliminated their unreasonable designs and improved the accuracy of the
surrogate model. Roux et al. [15] found that the accuracy of polynomial RSA
is sensitive to the size of the design space for structural optimization problems.
They recommended the use of various measures to find a small “reasonable
design space.”

The design space can be refined by reducing the range of the design vari-
ables or by using functions to define irregular design space boundaries. When
the new design space is set, the surrogate model step of the framework must
be repeated. However, the original surrogate model may be used to screen the
points before they are used in the experiment or numerical simulation. Using
the surrogate model to predict if a point may land outside of the design space
is particularly necessary when irregular design spaces exist. It can prevent the
expensive and unnecessary simulation of undesirable points. The design space
refinement should provide more accurate surrogate models and the reduction
of poor performance points.

330 Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka

14.2.3 Dimensionality Reduction

At the beginning of a design optimization, several variables are chosen as de-
sign variables with the assumption that they are important to the optimiza-
tion. However, having large numbers of design variables can greatly increase
the cost of the optimization. It is of great benefit, therefore, to simplify the
design problem by identifying variables that are unimportant and removing
them from the analysis. The most efficient way of doing this is to perform
a sensitivity analysis. A global sensitivity analysis can provide essential in-
formation on the sensitivity of a design objective to individual variables and
variable interactions. By removing the variables that have negligible influence
on the design objective, the dimensionality of the problem can be reduced.

Another way of reducing the dimensionality of a problem is through a
correlation analysis of the objective functions. If two objectives are highly
correlated, they may be dropped, and a representative objective can be used
for all the correlated objectives, thus reducing the dimensionality of the prob-
lem in function space [3].

Global Sensitivity Analysis

Global sensitivity analyses enable the study of the behavior of different design
variables. This information can be used to identify the variables which are the
least important, thus, the number of variables can be reduced. The theoretical
formulation of the global sensitivity analysis is described below.

A surrogate model f(x) of a square integrable objective as a function of a
vector of independent input variables x (xi ∈ [0, 1] ∀i = 1, N) is assumed and
is modeled as uniformly distributed random variables. The surrogate model
can be decomposed as the sum of functions of increasing dimensionality

f (x) = f0 +
∑

i

fi (xi) +
∑
i<j

fij (xi, xj) + · · ·+ f12...N (x1, x2, . . . , xN)

(14.11)
wheref0 =

∫ 1

x=0
fdx. If the following condition

1∫
0

fi1...is
dxk = 0 (14.12)

is imposed for k = i1, . . . , is, then the decomposition described in Equa-
tion (14.11) is unique.

In the context of a global sensitivity analysis, the total variance denoted
as V (f) can be shown to be equal to

V (f) =
n∑

i=1

Vi +
∑

1≤i≤j≤N

Vij + · · ·+ V1...N (14.13)

14 Surrogate Model-Based Optimization Framework 331

where V (f) = E
(
(f − f0)

2
)

and each of the terms in Equation (14.13) rep-
resent the partial variance of the independent variables (Vi) or set of variables
to the total variance. This provides an indication of their relative importance.
The partial variances can be calculated using the following expressions:

Vi = V (E[f |xi])
Vij = V (E[f |xi, xj])− Vi − Vj

Vijk = V (E[f |xi, xj , xj])− Vij − Vik − Vjk − Vi − Vj − Vk

(14.14)

and so on, where V and E denote variance and the expected value respectively.
Note that E [f |xi] =

∫ 1

0
fidxi and V (E[f |xi]) =

∫ 1

0
f2

i dxi. Now the sensitivity
indices can be computed corresponding to the independent variables and set
of variables. For example, the first and second order sensitivity indices can be
computed as

Si =
Vi

V (f)
, Sij =

Vij

V (f)
(14.15)

Under the independent model inputs assumption, the sum of all the sensitivity
indices is equal to one.

The first order sensitivity index for a given variable represents the main
effect of the variable, but it does not take into account the effect of interaction
of the variables. The total contribution of a variable on the total variance is
given as the sum of all the interactions and the main effect of the variable.
The total sensitivity index of a variable is then defined as

Stotal
i =

Vi +
∑

j,j
=i

Vij +
∑

j,j
=i

∑
k,k
=i

Vijk + ...

V (f)
(14.16)

The above referenced expressions can be easily evaluated using surrogate
models of the objective functions. Sobol [16] proposed a variance-based non-
parametric approach to estimate the global sensitivity for any combination
of design variables using Monte Carlo methods. To calculate the total sen-
sitivity of any design variable xi, the design variable set is divided into two
complementary subsets of xi and Z (Z = xj ,∀j = 1, N ; j �= i). The purpose
of using these subsets is to isolate the influence of xi from the influence of the
remaining design variables included in Z. The total sensitivity index for xi is
then defined as

Stotal
i =

V total
i

V (f)
(14.17)

V total
i = Vi + Vi,Z (14.18)

where Vi is the partial variance of the objective with respect to xi and Vi,Z

is the measure of the objective variance that is dependent on interactions
between xi and Z. Similarly, the partial variance for Z can be defined as VZ .
Therefore, the total objective variability can be written as

332 Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka

V = Vi + VZ + Vi,Z (14.19)

While Sobol used Monte Carlo simulations to conduct the global sensitivity
analysis, the expressions given above can be easily computed analytically once
the RSA is available.

Correlation Analysis

To conduct a correlation analysis, a large number of designs in design vari-
able space must be analyzed with the correlations computed among different
objectives. All the pairs of objectives which have a very high correlation coef-
ficient (close to 1) are highly correlated and are candidates for dimensionality
reduction.

14.2.4 Multiple Objective Optimization

After developing a computationally inexpensive way of evaluating different
designs, the final step is to perform the actual optimization. In the case of
a single objective, this requires a simple search of the design space for the
minimum value of the objective. For two or more objectives, additional treat-
ment is needed. Highly correlated objectives can be combined into a single
objective function. When the objectives are conflicting in nature, there may
be an infinite number of possible solutions that will provide possible good
combinations of objectives. These solutions are known as Pareto optimal so-
lutions (POS). While there are numerous methods of solving multi-objective
optimization problems, the use of evolutionary algorithms (EAs) is a natural
choice to obtain many POS in a single simulation due to its population based
approach and its ability to converge to global optimal solutions.

Pareto Optimal Front

A feasible design x(1) dominates another feasible design x(2) (denoted by
x(1) < x(2)), if both of the following conditions are true:

1. The design x(1) is no worse than x(2) in all objectives, i.e., fj

(
x(1)

)
>fj

(
x(2)

)
for all j = 1,2,. . . , M objectives.

x(1)x(2) ⇒ ∀j ∈ M fj

(
x(1)

)
� >fj

(
x(2)

)
or ∀j ∈ M fj

(
x(1)

)
≤ fj

(
x(2)

)
(14.20)

1. The design x(1) is strictly better than x(2) in at least one objective, or
fj

(
x(1)

)
< fj

(
x(2)

)
for at least one j ∈ {1, 2, ...,M}.

x(1) < x(2) ⇒ ∀j ∈ M fj(x(1)) < fj(x(2)) (14.21)

If two designs are compared, then the designs are said to be non-dominated
with respect to each other if neither design dominates the other. A design

14 Surrogate Model-Based Optimization Framework 333

x ∈ S, where S is the set of all feasible designs, is said to be non-dominated
with respect to a set A ⊆ S, if � ∃a ∈ A : a < x. Such designs in function
space are called non-dominated solutions. All the designs x (x ∈ S) which are
non-dominated with respect to any other design in set S, comprise the Pareto
optimal set. The function space representation of the Pareto optimal set is
the Pareto optimal front. When there are two objectives, the Pareto optimal
front is a curve, and when there are three objectives, the Pareto optimal
front is represented by a surface. If there are more than three objectives, it is
represented by a hyper-surface.

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)
with Archiving

In this study, an elitist non-dominated sorting genetic algorithm NSGA-II [2]
with a parallel archiving strategy to overcome the Pareto drift problem [3] is
used as the multi-objective optimizer to generate Pareto optimal solutions.
The description of the algorithm is given as follows:

1. Randomly initialize a population (designs in the design space) of size npop.
2. Compute objectives and constraints for each design.
3. Rank the population using non-domination criteria. Many individuals can

have the same rank with the best individuals given the designation of
rank-1. Initialize an archive with all the non-dominated solutions.

4. Compute the crowding distance. This distance finds the relative close-
ness of a solution to other solutions in the function space and is used to
differentiate between the solutions on same rank.

5. Employ genetic operators (selection, crossover, and mutation) to create
an intermediate population of size npop.

6. Evaluate objectives and constraints for this intermediate population.
7. Combine the two (parent and intermediate) populations, rank them, and

compute the crowding distance.
8. Update the archive:

a) Compare archive solutions with rank-1 solutions in the combined pop-
ulation.

b) Remove all dominated solutions from the archive.
c) Add to the archive all rank-1 solutions in the current population which

are non-dominated with respect to the archive.
9. Select a new population npop from the best individuals based on the ranks

and the crowding distances.
10. Return to step 3 and repeat until the termination criteria is reached,

which in the current study is chosen to be the number of generations.

334 Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka

14.3 A Case Study: Response Surface-Based
Multi-Objective Optimization of a Compact
Liquid-Rocket Radial Turbine

The purpose of this case study is to increase the work output of a compact
radial turbine in a liquid rocket expander cycle engine. If the turbine inlet
temperature is held constant, an increase in turbine work is directly propor-
tional to the increase in efficiency. The radial turbine design must provide
maximum efficiency while keeping the overall weight of the turbine low. Thus,
the goal of the design optimization is to maximize the turbine efficiency while
minimizing the turbine weight. Using a response surface analysis, an accurate
surrogate model is constructed to predict the radial turbine weight and the
efficiency across the selected design space.

A total of six design variables were identified. The ranges of the design
variables were set based on current design practices. Additionally, five con-
straints were identified. Two of the five constraints are structural constraints,
two are geometric constraints, and one is an aerodynamic constraint. The
aerodynamic constraint is based on general guidelines. The descriptions of all
variables and the results of the baseline case simulation are given in Table 14.1
It was unknown in what way the constraints depended on the design variables.
The possibility existed that certain combinations of design variables would
cause a constraint violation. It was also unknown whether the selected ranges
would result in feasible designs. Thus, RSAs were used to help clarify these
unknown factors.

14.3.1 Phase 1: Problem Definition, Initial Design of Experiments,
and Construction of Constraint Surrogates

The CFD solutions were obtained using a 1-D Meanline [5] code. A total of
77 points were selected using a standard face-centered cubic DOE. Of the
77 solutions, seven cases failed and 60 cases violated one or more of the five
constraints resulting in only 10 feasible cases. The design variable ranges were
reduced, and another 77 CFD cases were submitted. With the reduced ranges,
no cases failed, but 90% of the cases still violated one or more of the output
constraints. Before the optimization could be conducted, a reasonable design
space first had to be identified. Because there was limited information on the
dependency of the output constraints on the input variables, RSAs was used
to determine this dependency. Response surfaces were used to properly scale
the design variable ranges and identify irregular constraint boundaries.

Response surface approximations were fit to the output constraints. For
each response surface, the effects of variables that contributed little to the
RSA were removed. In this way, each RSA was simplified until variable de-
pendencies could be accurately determined. The variable dependencies are
shown in Equation (14.22).

14 Surrogate Model-Based Optimization Framework 335

Table 14.1. Variable names and descriptions

Objective Variable Description Baseline design

Rotor Wt Relative measure of “goodness” for
overall weight

1.147

Etats Total-to-static efficiency 85%

Design Variable MIN Baseline MAX

RPM Rotational Speed 80,000 122,000 150,000

React Percentage of stage pressure drop
across rotor

0.45 0.55 0.70

U/C isen Isentropic velocity ratio 0.50 0.61 0.65

Tip Flw Ratio of flow parameter to a
choked flow parameter

0.30 0.25 0.48

Dhex % Exit hub diameter as a % of inlet
diameter

0.10 0.58 0.40

AnsqrFrac Used to calculate annulus area
(stress indicator)

0.50 0.83 1.0

Constraint Variable Desired Range

Tip Spd Tip speed (ft/sec) (stress indica-
tor)

≤ 2500

AN 2
Annulus area × speedˆ2 (stress in-
dicator)

≤ 850

Beta1 Blade inlet flow angle 0 ≤ Beta1 ≤ 40

Cx2/Utip Recirculation flow coefficient (indi-
cation of pumping upstream)

≥ 0.20

Rsex/Rsin Ratio of the shroud radius at the
exit to the shroud radius at the in-
let

≤ 0.85

AN2 = AN2 (AnsqrFrac)
Tip Spd = Tip Spd (U/C isen)
Cx2/Utip = Cx2/Utip (RPM,U/C isen,AnsqrFrac)
Beta1 = Beta1 (React, U/C isen, T ip F lw)
Rsex/Rsin = Rsex/Rsin (AnsqrFrac, U/C isen,Dhex%)

(14.22)

The information obtained from the RSAs about the output variable depen-
dences was further used to develop input variable constraints. An RSA was
constructed for each input variable as a function of the output variable and
the remaining input variables. The most accurate RSAs (R2

adj ≥ 0.99) were
used to determine the input variable constraints. The output variables were
then set to the constraint limits. For example, a constraint on React can be
applied to coincide with the constraint Beta1 ≥ 0:

Beta1 = Beta1 (React, U/C isen,AnsqrFrac) ≥ 0
⇒ React|Beta1=0 ≤ React (Beta1 = 0, U/C isen,AnsqrFrac) (14.23)

Constraint “surfaces” were developed in this manner for each constraint. It
was discovered that two of the five constraints (AN 2 and Tip Spd) were simple
one-dimensional constraints. For the one-dimensional constraints, the vari-
able ranges could simply be reduced to match the constraint boundaries.

336 Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka

The remaining constraints were more complex. However, one of these con-
straints (Rsex/Rsin) was automatically satisfied by the reduction of the vari-
able ranges for the one-dimensional constraints. The new valid region is shown
in Figure 14.2.

The remaining constraints involved three variables each. It was discovered
that many low values of RPM violated the Cx2/Utip constraint. The region
of violation was a function of RPM, U/C isen, and AnsqrFrac as shown in
Figure 14.3. The Beta1 constraint was found to be the most demanding and
resulted in a very irregular design space as shown in Figure 14.4. Much of the
original design space violated this constraint. It was also discovered that the
constraint surface for Beta1 ≤ 40 lay outside of the original design variable
range for React. In this case, the lower bound for React was sufficient to satisfy
this constraint.

Feasible Region

Infeasible Region

Fig. 14.2. Constraint regions for three constraints. Three of five constraints auto-
matically satisfied by range reduction of two design variables.

The RSA-based constraints were tested on their predictive capability using
the two available data sets. The design variable values were input into the
RSAs for the constraints. The RSAs correctly identified all points that violated
the output constraints. Now that the feasible design space was accurately
identified, data points could be placed within it. The results and summary of
the prediction of constraint violations are as follows:

1. Constructed RSAs to determine the relationship between output con-
straints and design variables

2. Adjusted the variable ranges based on information from constraint sur-
faces

14 Surrogate Model-Based Optimization Framework 337

Fig. 14.3. Constraint surface for Cx2/Utip = 0.2. At higher values of AnsqrFrac
and U/C isen, lower values of RPM are invalid.

Fig. 14.4. Constraint surfaces for Beta1 = 0 and Beta1 = 40. Values of Beta1 > 40
lay outside of design variable ranges.

3. Applied a 3-level full factorial design (729 points) within the new variable
ranges

4. Eliminated points that violated constraints (498/729 points) based on
RSAs of the constraints

Using the constraint RSAs, 97% of the new data points obtained by the
Meanline code lay in the feasible design space region. The points that did
violate the output constraints often violated the Beta1 ≥ 0 constraint, with
the violation being only a slightly negative Beta1 value, so that they were
still useful for fitting.

14.3.2 Phase 2: Design Space Refinement, Intermediate Response
Surface Approximations for Data Screening and New DOEs

Plotting the data points in function space reveals additional information about
the nature of the response. A large area of function space contained data
points with a lower efficiency than was desired. There also existed areas of
high weight without improvement in efficiency. These undesirable areas could

338 Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka

be eliminated thus reducing the design space to a reasonable design region.
The density of points could then be increased within this reasonable region of
interest. The region of interest is shown in Figure 14.5. The design variables
regions would be reduced again to match the new design region. Response
surface approximations were constructed for the turbine weight, Rotor Wt,
and the turbine total-to-static efficiency, Etats. It was discovered that the
fidelity of the Etats RSA was lower than desired (R2

adj = 0.91) indicating
that the RSA construction could also benefit from a reduced design space.
The response surfaces were adequate enough to be used to screen for poorly
performing points. Points predicted to lie outside of the new design space
would be neglected.

For the reasonable design space, a third set of data was required, and the
following steps were taken:

1. Only the portion of the design space with best performance was reserved
to allow for a concentrated effort on the region of interest and to increase
response surface fidelity

2. Latin Hypercube Sampling (LHS) was used over all six variables, and a
5-level factorial design was used over the three variables with the highest
impact on the best performing points

The combination of the DOEs resulted in a total of 323 design points.

Note: Maximum Etats 90%

Approximate region of
interest

~~

Fig. 14.5. Region of interest in function-function space (The quantity 1 – Etats is
used for improved plot readability)

14 Surrogate Model-Based Optimization Framework 339

14.3.3 Phase 3: Global Sensitivity Analysis and Dimensionality
Reduction Check

A global sensitivity analysis was conducted on the RSAs. The results are
shown in Figure 14.6. It was discovered that the turbine rotational speed RPM
had the largest impact on the variability of the resulting turbine weight Rotor
Wt. The effects of the rotational speed RPM along with the isentropic velocity
ratio U/C isen make up 97% of the variability in Rotor Wt. All other variables
and variable interactions have minimal effect on Rotor Wt. For the total-
to-static efficiency Etats, the effect of the design variables are more evenly
distributed. Because of the more even distribution of the sensitivity indices
for Etats, no variable can be completely eliminated from the computation.

Other
< 1%

Dhex %
< 1%

Tip Flw
1%

U/C
isen*RPM

1%

U/C isen
7%

RPM
90%

Dhex %
3%

AnsqrFrac
5%

RPM
15%

React
28%

U/C isen
21%

Tip Flw
23%

React*RPM
2%

Other
3%

a) b)

Fig. 14.6. Global sensitivity analysis. Effect of design variables on (a) Rotor Wt
and (b) Etats.

14.3.4 Phase 4: Pareto Front Construction and Validation

Response surface approximations were constructed for each objective using
the third set of data. Points found to be infeasible after the simulations
were dropped. Function evaluations from the response surfaces were used
with the genetic algorithm NSGA-II to construct the Pareto Front shown in
Figure 14.7. In this study, the real-coded version of NSGA-II was used; that
is, crossover and mutation operations were conducted in the real space rather
than the binary space. For all simulations, a tournament selection operator
with a tournament size of two was used. The parameters set for the Pareto
set selection are shown in Table 14.2.

Within the Pareto front, a region was identified that would provide the
best value in terms of maximizing efficiency and minimizing weight. This
trade-off region was selected for validation of the Pareto front. The results
of the subsequent simulation of the validation data indicated that the RSAs
and corresponding Pareto front were very accurate, as shown in Table 14.3.

340 Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka

Table 14.2. Parameters for Pareto set selection in NSGA-II

Population size (npop) 100

Generations 250

Crossover probability (Pcross) 1.00

Distribution parameter (for crossover) 20

Mutation probability (Pmut) 0.20

Distribution parameter (for mutation) 200

A noticeable improvement was attained compared to the baseline radial tur-
bine design. The selected design had the same weight as the baseline case with
a 5% improvement in efficiency.

Table 14.3. RSA fit statistics before and after final design space reduction

Rotor Wt Etats Rotor Wt Etats

Before design space reduction After design space reduction

R2 0.987 0.917 0.996 0.995

R2
adj 0.985 0.905 0.996 0.994

RMS Error 0.0940 0.0200 0.0235 0.00170

Mean of Response 1.04 0.771 1.04 0.844

Observations 224 224 310 310

14.4 Conclusions

An optimization framework can be used to facilitate the optimization of a wide
variety design problems. The applicability of the framework was demonstrated
using a liquid-rocket compact radial turbine.

1. Surrogate Modeling. The radial turbine optimization process began
without a clear idea of the location of the feasible design region. Response
surface approximations of output constraints were successfully used to
identify the feasible design space.

2. Design Space Refinement. The feasible design space was still too large
to accommodate the construction of an accurate RSA for the prediction
of turbine efficiency. A reasonable design space was defined by eliminating
poorly performing areas, thus improving RSA fidelity.

3. Dimensionality Reduction. A global sensitivity analysis provided a
summary of the effects of design variables on objective variables, and it
was determined that no variable could be eliminated from the analysis.

4. Multi-objective Optimization using Pareto Front. Using the Pareto
front information constructed using genetic algorithms, a best trade-off

14 Surrogate Model-Based Optimization Framework 341

Fig. 14.7. Pareto Front with validation data. Deviations from the predictions are
due to rounded values of the input variables (prediction uses more significant digits).
The quantity 1 – Etats is used for improved plot readability.

region was identified within which the Pareto front and the RSAs used to
create the Pareto front were validated. At the same weight, the response
surface-based optimization resulted in a 5% improvement in efficiency over
the baseline case.

Through this case study, a number of aspects from the framework were demon-
strated, and the benefits of the various steps were made apparent. The frame-
work provides an organized methodology for attacking several issues that arise
in design optimization.

Acknowledgments

This research was performed in coordination with the Institute for Future
Space Transport (IFST) under the Constellation University Institute Project
(CUIP).

References

1. Balabanov VO, Giunta AA, Golovidov O, Grossman B, Mason W, Watson LT,
Haftka RT (1999), Reasonable design space approach to response surface ap-
proximation. J Aircraft 36:1:308–315

2. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast and elitist multi-
objective genetic algorithm for multi-objective optimization: NSGA-II. In: Na-
ture VI Conference, Paris, pp 849–858

342 Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka

3. Goel T, Vaidyanathan R, Haftka RT, Queipo NV, Shyy W, Tucker PK (2004)
Response surface approximation of Pareto optimal front in multi-objective opti-
mization. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, Albany NY, Paper No. 2004-4501

4. He B, Ghattas O, Antaki JF (1997) Computational Strategies for Shape
Optimization of Time-Dependent Navier-Stokes Flows. Technical Report CMU-
CML-97-102, Computational Mechanics Lab, Department of Civil and Envir-
onmental Engineering, Carnegie Mellon University

5. Huber, F (2001) Turbine aerodynamic design tool development. In: Space Trans-
portation Fluids Workshop, Marshall Space Flight Center, AL

6. Kim S, Leoviriyakit K, Jameson A (2003) Aerodynamic Shape and Planform
Optimization of Wings Using a Viscous Reduced Adjoint Gradient Formula. Sec-
ond M.I.T. Conference on Computational Fluid and Solid Mechanics at M.I.T,
Cambridge, MA

7. Kontoravdi C, Asprey SP, Pistikopoulos EN. Mantalaris A (2005). Application
of Global Sensitivity Analysis to Determine Goals for Design of Experiments –
An Example Study on Antibody-producing Cell Cultures, Biotechnol Progr (in
press).

8. Madsen JI, Shyy W, Haftka RT (2000) Response surface techniques for diffuser
shape optimization. AIAA J 38:1512–1518

9. Myers RH and Montgomery DC (2002) Response Surface Methodology. John
Wiley & Sons, Inc., New York

10. Nadarajah S, Jameson A, and Alonso JJ. (2002) Sonic boom reduction us-
ing an adjoint method for wing-body configurations in supersonic flow., 9th.
AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
Conference, Atlanta, GA, AIAA paper 2002-5547

11. Papila N, Shyy W, Griffin L, Huber F, Tran K. (2000) Preliminary des-
ign optimization for a supersonic turbine for rocket propulsion. In: AIAA/
SAE/ASME/ASEE 35th Joint Propulsion Conference, Paper No. 2000–3242

12. Papila N, Shyy W, Griffin L, Dorney DJ (2002) Shape optimization of supersonic
turbines using global approximation methods. J Propulsion and Power 18:509–
518

13. Queipo N, Haftka RT, Shyy W, Goel T, Vaidyanathan R (2005) Surrogate-Based
Analysis and Optimization. Accepted for publication in Prog in Aero Sci

14. Rodriguez DL (2002) A Multidisciplinary Optimization Method for Designing
Boundary Layer Ingesting Inlets. 9th AIAA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, Atlanta, Georgia, AIAA paper 2002-5665

15. Roux WJ, Stander N, Haftka RT (1998) Response surface approximations for
structural optimization. Int J for Numer Methods in Eng 42: 517–534

16. Sobol IM (1993) Sensitivity analysis for nonlinear mathematical models. Mathe-
matical Modeling & Computational Experiment 1:4:407-414

17. Vaidyanathan R, Papila N, Shyy W, Tucker KP, Griffin LW, Haftka RT,
Fitz-Coy N (2000) Neural network and response surface methodology for rocket
engine component optimization. In: 8th AIAA/USAF/NASA/ISSMO Sympo-
sium on Multidisciplinary Analysis and Optimization, Long Beach, CA, Paper
No. 2000-4480

Part III

Handling Noisy Fitness Functions

15

Hierarchical Evolutionary Algorithms
and Noise Compensation via Adaptation

Ferrante Neri1,2 and Raino A. E. Mäkinen1

1 Department of Mathematical Information Technology, P.O. Box 35 (Agora),
FI-40014 University of Jyväskylä, Finland, neferran@cc.jyu.fi,
rainom@it.jyu.fi

2 Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via E.
Orabona 4, 70125, Bari, Italy, neri@deemail.poliba.it

Summary. Hierarchical Evolutionary Algorithms (HEAs) are Nested Algorithms
composed by two or more Evolutionary Algorithms having the same fitness but
different populations. More specifically, the fitness of a Higher Level Evolutionary
Algorithm (HLEA) is the optimal fitness value returned by a Lower Level Evolu-
tionary Algorithm (LLEA). Due to their algorithmic formulation, the HEAs can
be efficiently implemented in Min-Max problems. In this chapter the application of
the HEAs is shown for two different Min-Max problems in the field of Structural
Optimization. These two problems are the optimal design of an electrical grounding
grid and an elastic structure. Since the fitness of a HLEA is given by another evolu-
tionary algorithm (LLEA), it is noisy. This noise, namely Hierarchical Noise (HN)
is distributed according to an asymmetrical and non-Gaussian probability function.
A preliminary analysis of the HN is performed and a set of adaptive rules are then
carried out in order to robustly handle this kind of noise. The Adaptive Higher
Level Evolutionary Algorithm (AHLEA) is thus proposed. The AHLEA works on
the sample size, the population size, and the survivor selection scheme in order to
ensure the reliability of the optimization process in presence of the HN. The analysis
of a benchmark problem proves the effectiveness of the adaptive rules carried out
and the tests for grounding grids and elastic structures show the applicability of the
AHEAs to real world problems.

15.1 Introduction

In applied science and engineering to perform a design means to determine
that set of parameters defining the design (design parameters), such that a
disadvantage is minimum (or an advantage is maximum). Since every design
is supposed to work in various working conditions, there naturally arises the
necessity of finding, for each set of design parameters, the worst conditions,
that is the situation (e.g. the instant or the application point) such that the
disadvantage is maximum. Then, among these possible designs it is necessary

F. Neri and Raino A.E. Mäkinen: Hierarchical Evolutionary Algorithms and Noise Compensa-

tion via Adaptation, Studies in Computational Intelligence (SCI) 51, 345–369 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

346 Ferrante Neri and Raino A.E. Mäkinen

to find that one which ensures that the most critical situation is minimum.
In other words, the class of problems under study can be formalized as the
minimization, in a certain domain, of the maximization, in another domain,
of this disadvantage or, more technically named as Min-Max problems.

In order to solve the Min-Max problems the Authors propose the appli-
cation of an evolutionary algorithm which consists of two hierarchically con-
nected evolutionary algorithms [1], [2], [3], [4], [5]. The proposed Hierarchical
Evolutionary Algorithm (HEA) is composed of a Lower Level Evolutionary
Algorithm (LLEA) which performs the maximization of the disadvantage in
order to find the worst case working conditions and a Higher Level Evolution-
ary Algorithm (HLEA) which performs the minimization of the worst case
disadvantage working on a population made up of design parameters [4]. Since
the HLEA has to minimize a fitness given by another evolutionary algorithm,
the LLEA, it works with a noisy fitness. This kind of noise is asymmetrical and
cannot be modelled by means of a normal distribution N

(
0, σ2

)
. This chapter

analyzes this noise and proposes some adaptive rules in order to defeat it. An
Adaptive Higher Level Evolutionary Algorithm (AHLEA) and thus an Adap-
tive Hierarchical Evolutionary Algorithm (AHEA) are shown. Moreover, the
authors apply the AHEA to two complex and delicate engineering problems,
that is the design of electrical grounding grids and the design of an elastic
structure.

15.2 Algorithmic Aspects

In this section the theoretical aspects concerning the Hierarchical Evolution-
ary Algorithms (HEAs) are analyzed. It is shown how the HEAs can be natu-
rally applied to solve Min-Max and Max-Min problems [6]. Moreover, reasons
of the presence of the algorithmic noise are explained and the behavior of this
noise is shown in some cases. A characterization of the noise based on the
statistics of the phenomenon is also shown.

15.2.1 Definitions and Notation

We consider the following abstract design optimization problem. Let U denote
the set of admissible designs α. To each design α ∈ U we associate a closed
and bounded set Xα ⊂ R

n. Denoting X = ∪α∈UXα, we define a function
Φ : U ×X → R. For fixed α, the function Φ(α, ·) : Xα → R is the observation
on the system. The cost or disadvantage caused by the design is measured
by the maximum value of the observation. Our aim is to find a design that
minimizes this cost. In specific cases α may represent a vector of physical
dimensions of the system, or be just an integer referring to a fixed number
of possible system configurations. The observation, on the other hand, may
represent e.g. the temperature distribution in a structure.

15 HEAs and Noise Compensation via Adaptation 347

Definition 1. By a Min-Max problem we mean finding α∗ ∈ U that solves

min
α∈U

max
x∈Xα

Φ(α, x). (15.1)

In other words, the problem consists in finding design α such that the worst
case situation is minimum.

In what follows we assume that either card(Xα) < ∞, or Φ(α, ·) is contin-
uous on Xα. Thus the maximum in (15.1) is well-defined. Well-posedness
of the minimization problem is clear in the combinatorial optimization case
card(U) < ∞. Rigorous mathematical analysis of a more general case is be-
yond the scope of this chapter. In order to solve this kind of problem it is
necessary to have an instrument which performs the maximization of the
function Φ(α, ·) within each set Xα and an instrument which finds the mini-
mum value of f(α) := maxx Φ(α, x) and the corresponding optimal design α∗.
If the function Φ is not differentiable or the evaluation of its gradient is not
practical, an approach which makes use of gradient-based information cannot
be applied. Moreover, if this function can be multimodal a direct method can
easily fail and an evolutionary approach can be more successful. If an evolu-
tionary approach is applied, a lower level evolutionary algorithm working on
a population of {xj} has to maximize the function Φ(α, ·) and the returned
maximum value Φ(α, x∗) has to be used as the fitness of a higher level evo-
lutionary algorithm which works on a population {αi} of design parameters.
The result of the whole optimization process is therefore a design which en-
sures that the most critical situation is minimized. According to the analysis
performed the following definition is given.

Definition 2. A Hierarchical Evolutionary Algorithm (HEA) is a nested evo-
lutionary algorithm composed by two evolutionary algorithms: the Lower Level
Evolutionary Algorithm (LLEA) and the Higher Level Evolutionary Algorithm
(HLEA). The two algorithms work on different populations and the fitness of
the HLEA is the optimal fitness returned by the LLEA. More specifically, each
fitness evaluation performed by the HLEA requires an optimization process
executed by the LLEA.

The pseudocode of a HEA is shown in Fig. 15.1. It is obvious that a HEA can
be used analogously to solve a max-min problem.

15.2.2 The Noise in Hierarchical Evolutionary Algorithms

As highlighted above, the HLEA is an evolutionary algorithm whose fitness
f(α) at α is given by the optimization result of another evolutionary algo-
rithm, i.e. f(α) = max Φ(α, x), x ∈ Xα. Due to its inner structure, an evo-
lutionary algorithm returns an optimal value that is not deterministic but
takes its own value according to a stochastic process. The robustness of an
evolutionary algorithm obviously depends on both the problem (the fitness

348 Ferrante Neri and Raino A.E. Mäkinen

begin-HLEA
create initial HLEA population;
while (conditions HLEA)

recombination and mutation;
for i=1 to number of fitness evaluations

begin-LLEA
create initial LLEA population;
while (conditions LLEA)

recombination and mutation;
fitness evaluations of Φ(αi, xj);
survivor selection;

end-while
end-LLEA and returns Φ(αi, x

∗)
end-for
survivor selection;

end-while
end-HLEA

Fig. 15.1. Pseudocode of the HEA

landscape) and the setting of parameters such as the mutation probability
and the population size and so on. The HLEA, therefore, works in a noisy
environment since the fitness returned by the LLEA is noisy.

The problem of the evolutionary optimization in noisy environment has
been intensively discussed in recent years. Considering that the noise in fitness
evaluations can come from measurement errors or from randomized simula-
tions, the noisy fitness has been described in literature as follows (see [9]
and [8]):

F (α) =
∫ ∞

−∞
[f(α) + z] p(z) dz = f (α) , z ∼ N

(
0, σ2

)
, (15.2)

where α is the variable to be optimized, f(α) is a time-invariant fitness func-
tion. The additive noise z, as shown in (15.2), is classically assumed to be
normally distributed with zero mean (just in some cases it is assumed to have
a Cauchy distribution [9]). Under these hypotheses, when an evolutionary al-
gorithm is implemented, since f(α) is, as is obvious, not available the following
approximated function is often used:

F̃ (α) =
1
ns

ns∑
k=1

[f(α) + zk], (15.3)

where ns is the sample size. This sample size (of a candidate solution) is de-
fined as the number of fitness evaluations performed for a given candidate so-
lution. In literature, several approaches to approximate the fitness in presence
of noise have been proposed. These approaches were making use of Explicit

15 HEAs and Noise Compensation via Adaptation 349

or Implicit Averaging techniques. The averaging techniques are defined as the
following [9].

Definition 3. Explicit Averaging techniques are those algorithmic strategies
which, in order to assign a more reliable fitness value, calculate the average
value among a certain set of numbers. Those techniques which average over a
number of performed samples are called Explicit Averaging Over Time. Those
techniques which calculate the fitness by averaging over the neighborhood of
the point to be evaluated are called Explicit Averaging Over Space.
Implicit Averaging techniques are those algorithmic strategies which work on
enlargement (static or dynamic) of the population size in order to defeat the
noise.

For the kind of noise analyzed in this chapter, the mathematical description
in (15.2) and the approximation in (15.3) are not valid and a “classical”
approach cannot be thus applied. In fact, in a Min-Max problem, the LLEA
is supposed to find the global maximum of the function Φ(α, ·). The LLEA
could converge to the global maximum f(α) or could converge to a suboptimal
solution. In the latter case, the LLEA would return a value f(α)′ < f(α). It
is obvious that the LLEA cannot return a value higher than f(α) since it is
the global maximum. Moreover, it is important to remark that, in the HEA
noisy environment, the HLEA does not work with overestimated solutions but
only with underestimated ones. It follows that noise due to the hierarchical
algorithms is non-Gaussian, asymmetrical and an explicit averaging [1], [2],
[12] or an implicit averaging [7], [14], [12], [16] technique cannot be applied
since the fitness value nearest to the true value cannot be calculated by means
of the average value among a certain number of samples ns. Three examples
of distribution of the noise in HEAs are given. Three different functions have
been tested performing 500 samples each. Figure 15.2 shows the distribution
of the samples in the case of the maximization of the Rastrigin’s function
[17] multiplied by −1, Fig. 15.3 shows the distribution in the case of the
Ackley function [17] multiplied by −1, and Fig. 15.4 shows the distribution
in the case of the current field problem [18]. As can be observed, in the
latter case the LLEA has a much higher probability of finding a suboptimal
solution than an optimal one. This behavior is due to the fact that there
is a suboptimal solution having a “strong” genotype which tends to attract
the optimization process. Taking into account the three shown examples, it is
possible to conclude that in general the probability distribution related to this
kind of noise can have several different shapes (depending on the problem and
on the parameter setting of the LLEA), and it cannot be easily approximated
by means of a classical distribution function.

Let us define this noise as “Hierarchical Noise” (HN) and let us define
the set of distribution functions {H(f(α), w)} characterizing it. Here w is
the amplitude of the interval where an infinite number of samples would fall
within. For a finite number of samples ns the noise is approximated in the

350 Ferrante Neri and Raino A.E. Mäkinen

−1 −0.8 −0.6 −0.4 −0.2 0
0

100

200

300

400

500

fitness value

fr
eq

u
en

cy

Fig. 15.2. Distribution of 500 samples performed by a LLEA for the Rastrigin’s
function

−3 −2.5 −2 −1.5 −1 −0.5 0
0

100

200

300

400

500

fitness value

fr
eq

u
en

cy

Fig. 15.3. Distribution of 500 samples performed by a LLEA for the Ackley function

750 800 850 900 950
0

20

40

60

80

100

fitness value

fr
eq

u
en

cy

Fig. 15.4. Distribution of 500 samples performed by a LLEA in a current field
problem

15 HEAs and Noise Compensation via Adaptation 351

following way. If S = {F1(α), F2(α), ..., Fns
(α)} is the set of samples obtained

by means of the LLEA, the noise is approximated by

H (γ, w̃) , (15.4)

where γ = max (S) and w̃ = max (S)−min (S).
Under these hypotheses, Eq. (15.2) in the case of HN is thus replaced with
the following

F (α) = f(α) + z, z ∼ H(γ − f(α), w̃), z ≤ 0. (15.5)

15.2.3 Noise Compensation via Adaption

In this section we consider that the LLEA is a “black box” fitness calcula-
tor which returns a noisy value (i.e. the algorithmic parameters of the LLEA
cannot be tuned and are unknown) and our aim is to minimize this noisy
fitness by means of the HLEA. In deterministic optimization problems, if the
fitness landscape contains several minima, a standard evolutionary algorithm
does not ensure convergence to the global optimum and therefore the algo-
rithm could stagnate or prematurely converge. In the presence of uncertainties
this problem is emphasized since noise in the optimization process introduces
some “false” minima and maxima which clearly disturb functioning of the
algorithm. Since the HN does not allow an individual to be overestimated but
only underestimated, only “false” minima can be found in the fitness land-
scape. It is important to remark that an underestimation in the maximization
logic of the LLEA corresponds to an overestimation in the minimization logic
of the HLEA. Therefore, these “false” minima can easily lead to the conver-
gence to a suboptimal solution or introduce wrong search directions and thus
jeopardize the behavior of the algorithm [8].

All the evolutionary algorithms contain fitness-based pairwise comparisons
which lead to a selection of the individuals which are going to generate off-
spring or survive to the subsequent generation [19]. In other words, every evo-
lutionary algorithm executes explicitly or implicitly a fitness-based sorting of
the individuals. When the fitness function is noisy the pairwise comparisons
are disturbed and thus the algorithm could wrongly select the individuals.
Since in the case of HN the HLEA could perform only overestimation, the
optimization process could turn out unreliable.

It is therefore fundamental, in order to successfully optimize a noisy fitness,
to synergically operate on two different aspects of the algorithm:

(a) assigning a proper fitness value at each candidate solution (by means of
re-sampling and population size)

(b) sorting the solutions taking into account the possibility of wrong fitness
estimations (by means of the selection scheme)

352 Ferrante Neri and Raino A.E. Mäkinen

Thus, in order to smooth “false” minima in the fitness landscape and to de-
feat this noise without excessively increasing computational overhead, several
algorithmic aspects are analyzed here and an adaptation is proposed.

Fitness

Since the true fitness is not available due to the presence of the noise, an ap-
proximated estimated fitness must be used. As highlighted above the formula
(15.3) cannot be used for the HN. Considering that one candidate solution
has been evaluated ns times, the following approximated fitness is proposed
here

F̃ (α) = γ +
β

ns
, (15.6)

where γ = max(S) = max {F1(α), F2(α), ..., Fns
(α)} and β is a positive weight

coefficient. The meaning of F̃ is that the estimated fitness value γ has to be
corrected by a term which takes into account the reliability of the estimated
fitness value. The corrective term β

ns
is a penalty term which has a big in-

fluence with unreliable solutions (ns small) and which, progressively, tends
to have a negligible influence for reliable solutions (ns large). Besides, in or-
der to avoid extremely high computational overhead, a maximum number of
samples nmax

s is established taking into account features of the noise under
examination. As can be observed from (15.6), the fitness F̃ is dynamic since
it is composed of two dynamic contributions. First the term β

ns
decreases as

the number of samples increase, secondly, the term γ is updated every time
a higher fitness sample is found, since it is the maximum value among the
performed samples.

Fitness Diversity of the Population

It is also important to observe that the influence of noise on the optimization
process is not the same in all stages of the evolution. More specifically, a
population containing a high fitness diversity is not significantly influenced
by the noise; on the contrary a population made up of individuals having
similar fitness values is heavily influenced by the noise. This statement can
be visualized in the following way. If the distance between two individuals
of the population is such that their two fitness values differ by a quantity
bigger than the amplitude of the “false” minima, the pairwise comparison is
efficiently executed. If this quantity is smaller than the amplitude of the “false”
minima, it is necessary to sample the fitness values of both the individuals
several times and then compare the two γ values. From this consideration
it follows that in high diversity conditions there is no need to perform many
samples Explicitly (i.e. re-sampling several times the same candidate solution)
or Implicitly (i.e. using a large population size) but as the fitness diversity
decreases an increasing sample and population size is required.

15 HEAs and Noise Compensation via Adaptation 353

In order to estimate the fitness diversity of the population at a certain
generation the following coefficient is used

ξ = min

{
1,

∣∣∣∣∣ F̃best − F̃avg

F̃best

∣∣∣∣∣
}

, (15.7)

where F̃best and F̃avg are respectively the best and average fitness among the
fitness values of the individuals of the population in the generation under
study. The coefficient ξ can be seen as a measurement of the current state
of convergence of the algorithm [20]. More specifically, if ξ ≈ 1, it means
that there is a high diversity (in terms of fitness values) among individuals
of the population and that the solutions are not exploited enough, on the
contrary, if ξ ≈ 0, it means that the diversity is low and thus convergence is
going to happen and since this convergence can be premature, a higher search
pressure is needed. Thus, the coefficient ξ can be used to dynamically set
the algorithmic parameters [21] in order to prevent premature convergence
and stagnation and therefore ensure a more robust behavior in presence of
uncertainties.

Sample Size

Although an explicit averaging technique among ns [1], [2], [7], [22], [23], [24],
[25] is not applicable, it is clear from (15.6) that a large sample size allows
the algorithm to have more chances of finding the real global maximum or a
value near to it (i.e. γ ≈ f(α)). It is therefore useful to execute re-samplings
in order to smooth the “false” minima. Obviously, the number of samples
ensuring that γ ≈ f(α) depends on the algorithmic parameters of the LLEA
and on the fitness landscape with whom the LLEA is working. On the other
hand it should be noted that each HLEA function evaluation comes from a
LLEA evolutionary maximization and is then usually computationally expen-
sive [25]. A strategy which simply enlarges the sample size for all individuals
of the population is not acceptable in terms of computational overhead. It
is therefore proposed not to re-sample all the candidate solutions but only
those which “need” to be re-sampled. More specifically,it is proposed that the
population undergoes a reevaluation cycle. For each individual the following
value is calculated:

nadd
s = round

(
nmax

s · (1− ξ)
ns

)
, (15.8)

where nadd
s is the number of additional samples that have to be performed.

Each individual is then associated with its own number of additional samples
to be performed. As shown in (15.8), this number depends on the coefficient
ξ and on the number ns of samples already executed. If ns is low and then
the solution unreliable, some additional samples are performed; if, on the con-
trary, the solution has already been sampled several times, further samples

354 Ferrante Neri and Raino A.E. Mäkinen

will not lead to a significant improvement of the solution in terms of reliability.
If ξ ≈ 0 some additional samples are performed in order to avoid the risk of
wrongly executing the sorting over individuals having similar fitness values; if
ξ ≈ 1 there is no need to recalculate the fitness since the noise does not heavily
bias sorting of the individuals. The main idea behind this reevaluation cycle
is the following. As explained above, a high number of samples gives more
of a chance to the candidate solution to take a value γ ≈ f(α) and there-
fore it can help in handling the noisy landscape but these additional samples
are computationally expensive and it is thus important to avoid unnecessary
samples. The proposed criterion is then oriented to execute additional sam-
ples just when they are necessary, analyzing the history of each individual
and the fitness diversity of the whole population. When the additional sam-
ples have been established for each individual, these samples are executed and
each fitness F̃ is consequently updated.

Population Size

In the case of the Gaussian noise, it has been shown that employment of a
large population size is beneficial since it allows sampling of several solutions
belonging to the same promising area thus executing an Implicit Averaging
of the noise [9], [7], [12], [16]. Also for the HN a large population size can
be beneficial because it samples many solutions in the promising areas of the
decision space and thus gives a better chance that some of them are properly
scored (i.e. γ ≈ f(α)). On the other hand, due to computational cost of the
fitness function, it is important to avoid unnecessary fitness evaluations. A
dynamic population size is therefore proposed which considers the population
as the merge of two contributions adaptively determined at each generation
(see (15.9) and (15.10)). The general idea is that the algorithm enlarges the
population size when ξ decreases and shrinks it when ξ increases. In this way
the algorithm executes a massive Implicit Averaging only when the fitness
diversity is low i.e. ξ ≈ 0, it is thus desirable that a proper fitness based
sorting is performed.

Survivor Selection

The problem with choice of the reinserting strategy in presence of noise is
definitely questionable [8] and a proper choice probably depends on the noise
under consideration as well as the other algorithmic choices. In the case of
the HN, the “prudent-daring” survivor selection mechanism is proposed [20]
based on the following consideration. Due to the fact that only overestima-
tions are allowed it is important that the survivor selection scheme takes into
account the reliability of the solutions in order to avoid overestimated so-
lutions offering wrong search directions. On the other hand, in order to try
speeding up the optimization process, the unreliable performing individuals
should not be excessively penalized. The proposed survivor selection scheme

15 HEAs and Noise Compensation via Adaptation 355

employs a competitive logic which makes use of two reinserting mechanisms.
The main idea is that a “prudent” reinserting mechanism and a “daring”
reinserting mechanism should compete and cooperate [26] following both the
noisy fitness landscape and the state of the population evolution. Operatively
the survivor selection mechanism consists of the following.

(a) The “prudent” mechanism selects, among parents and newly generated
offspring a number, equal to Spru, of the individuals with best performance
according to the approximated fitness F̃ . Spru is given by

Spru = Sf
pru + round

(
Sv

pru (1− ξ)
)

(15.9)

where Sf
pru is the minimum size of the population and Sv

pru is the maxi-
mum size of the variable population.

(b) The “daring” mechanism selects, among parents and newly generated off-
spring, a small number of individuals having the best performance accord-
ing to γ. More specifically, at each generation, the “daring” mechanism
calculates the value

Sdar = round (Smax
dar · ξ) (15.10)

where Sdar is the number of individuals to be selected according to γ and
Smax

dar is the maximum number of allowed “daring” solutions.

Prudent and daring individuals thus constitute the population for the subse-
quent generation. A control filter avoids that the same individual being taken
twice by both the reinserting mechanisms.

As equations (15.9) and (15.10) show, Spru and Sdar depend on ξ. When
ξ decreases Spru is enlarged Sdar is shrunk, when ξ increases Spru is shrunk
Sdar is enlarged. According to the algorithmic philosophy the biggest con-
tribution of the population is given by the prudent survivor selection but a
limited number promising solutions are taken into consideration, although
these solutions could have been overestimated. The quantity of prudent and
daring individuals in the population is thus determined by means of the the
coefficient ξ. In particular, when the fitness diversity is very low (ξ ≈ 0) the
population is made up of only prudent individuals since the introduction of
unreliable solutions could mislead the search of the optimum.

The Adaptive Hierarchical Evolutionary Algorithm

On the basis of the considerations carried out, an Adaptive Hierarchical Evo-
lutionary Algorithm (AHEA) is proposed in order to defeat the algorithmic
noise HN. Considering that the LLEA returns a noisy fitness value, the Adap-
tive Higher Level Evolutionary Algorithm (AHLEA) has to handle the noise by
adaptation. It is important to remark that a proper parent selection scheme,
recombination and mutation strategy depend on the problem under study
(e.g. the real value or discrete representation, the cardinality of the decision

356 Ferrante Neri and Raino A.E. Mäkinen

space etc.). The mutation probability here proposed is dynamic (see [27]) and
depends on the coefficient ξ. The value 0.4 is a weight chosen based on a
semi-empirical consideration that a mutation occurred on over 40% of the
population could be too explorative an action spoiling the genotype of some
good solutions (see [20] and [28]). This dynamic mutation probability has the
role of increasing the explorative pressure in low diversity conditions and to
decrease it in high diversity conditions. According to our study, we concluded
this parameter and its adaptation does not have a big influence on the ro-
bustness of the algorithm in the presence of HN; nevertheless its employment
is highly beneficial in terms of handling very high cardinality of the deci-
sion space and multimodality of the fitness landscapes. The pseudocode of a
AHLEA is shown in Fig. 15.5.

Parameter Setting

The latest issue to be discussed is the parameter setting. As highlighted in [17],
the algorithm performance of an adaptive evolutionary algorithm is not very
sensitive to details of the meta-parameters unlike the case of the traditional
evolutionary algorithms. For example when a classical Genetic Algorithm
(GA) is designed, a proper choice of the population size is determinant for
the success of the algorithm. In our case, although the AHLEA is proven to
be very robust, a proper setting of the meta-parameters is required in order
to efficiently handle the HN.

According to our empirical studies some rules in making a proper para-
meter setting are given. Concerning nmax

s , the choice must take into account
that a HN noise with a wide range of variability w̃ requires a high number of
samples and a HN with a narrow range of variability w̃ does not. This state-
ment can be easily justified by means of an analogy with the Gaussian noise:
a distribution with a big standard deviation value requires more samples to
be characterized than one with a small standard deviation value. Thus, nmax

s

has to be chosen according to the following formula:

nmax
s = K1w̃, (15.11)

where K1 ∈ [2, 20]. The boundaries of this interval have been empirically set
on the basis of several tests.

Regarding β, we suggest that the penalty term β
ns

does not penalize more
than 10% the fitness value when only one sample is performed and does not
penalize at all (less than 1%) when the maximum number of sampling has
been performed. In other words from{

β = K2F̃ (α), K2 ∈ [0.05, 0.3], when ns = 1
β

nmax
s

= K3F̃ (α), K3 ∈]0, 0.01], when ns = nmax
s

(15.12)

considering (15.6) and (15.11) it can be found

15 HEAs and Noise Compensation via Adaptation 357

begin-AHLEA
create initial AHLEA population;
fitness evaluations of F by mean of the LLEA and

calculation of F̃ = γ + β
ns

;

calculation of ξ;
while (conditions AHLEA)

parents selection;
recombination;
calculation of the mutation probability pm = 0.4(1− ξ);
mutation;

fitness evaluations of F by the LLEA and calculation of F̃ = γ + β
ns

;

survivor selection:
1)prudent survivor selection:

calculation of Spru = Sf
pru + round

(
Sv

pru (1− ξ)
)
;

selection according to F̃ of the Spru best performing candidate
solutions among parents and newly generated offspring;

2)daring survivor selection:
calculation of Sdar = round (Smax

dar · ξ);
selection according to γ of the Sdar best performing candidate
solutions among parents and newly generated offspring;

3)filtering in order to avoid that the same candidate
solution is selected by both the mechanisms;

4)merge of the solutions selected by the two mechanism and creation
of the new population made up Spru + Sdar individuals;

re-sampling cycle:
for (each individual of the population)

calculation of nadd
s = round

(
nmax

s · (1−ξ)
ns

)
;

execution of the additional evaluations;
end-for

calculation of ξ;
end-while

end-AHLEA

Fig. 15.5. Pseudocode of the AHLEA

{
β = γ

9

β = 1
99γ nmax

s = 5
99γ w̃.

(15.13)

Obviously it is not always possible to satisfy both equations in (15.13) and a
compromise must be found.

Concerning the value of Smax
dar the following empirical formula is proposed:

Smax
dar = K4S

f
pru, K4 ∈]0, 0.5]. (15.14)

This formula can be justified in the following way. When ξ ≈ 1 the pru-
dent population size is Sf

pru and then the population size is minimum. In

358 Ferrante Neri and Raino A.E. Mäkinen

this condition the “daring” mechanism should work at the maximum but its
contribution should never be dominant with respect to the “prudent” one.

15.2.4 Benchmark Test of the AHLEA

Let us consider the Ackley function:

Ack (x̄) = −20 exp

⎛
⎝−0.2

√√√√ 1
n

n∑
i=1

x2
i

⎞
⎠− exp

(
1
n

n∑
i=1

cos (2πxi)

)
+ 20 + e

(15.15)
with n = 3. Then, let us define Ãck (x̄) = −Ack (x̄) and consider the following
problem:

min
x3

g (x̄) = min
x3

max
x1,x2

Ãck (x̄) in [−5, 5]3 (15.16)

Table 15.1 shows the parameter setting for the LLEA employed for the max-
imization part of the problem.

Table 15.1. LLEA Parameter Setting

representation vectors of real numbers

population size 40 individuals

parent selection proportionate

crossover 20 blend arithmetic crossover per generation

mutation Gaussian mutation with mutation probability 0.1

survivor selection fitness-based plus strategy

stop criterion number of generations > 70 OR |fbest − favg| < 0.0001

The AHLEA has been tested for solving the minimization part of the
problem (15.16) and it has been compared with the following algorithms:

(a) A standard Genetic Algorithm (GA)
(b) A standard Evolution Strategy (ES)
(c) A Re-sampling Evolution Strategy (RES) with a fixed sample size for each

individual of the population [7]
(d) An Adaptive Re-sampling Evolutionary Algorithm (AREA) with the

same ξ-based dynamical control of the population size and mutation prob-
ability implemented for AHLEA and a fixed sample size

Table 15.2 summarizes the algorithmic parameters chosen for the five
methods under consideration.

Each algorithm has been run 50 times. Table 15.3 shows the results of the
optimization x∗

3 in the most successful run, the corresponding fitness values
gmin, the fitness values in the most unsuccessful run gmax, the mean value
gmean over the 50 experiments and the related standard deviation σ.

15 HEAs and Noise Compensation via Adaptation 359

Table 15.2. Methods for comparison

parameter GA and ES RES AREA AHLEA

initial
population size 80 80 80 80

population size dynamic dynamic
for subsequent 60 60 between 40 and 80 between 40 and 80

generations

mutation dynamic dynamic
probability 0.2 0.2 between 0 and 0.4 between 0 and 0.4

sample size 1 10 10 dynamic between 1 and 10

Smax
dar - - - 10

β - - - 0.2

fitness
evaluations 6000 6000 6000 6000

Table 15.3. Comparison of the Min-Max results

Algorithm x∗
3 gmin gmean gmax σ

GA -4.7729 -10.2981 -9.2310 -8.8336 0.4919
ES -4.6712 -10.9946 -9.3347 -9.0911 0.4201

RES -4.5129 -10.7143 -10.5442 -10.2891 0.1191
AREA -4.5302 -10.8312 -10.6626 -10.4813 0.1321
AHLEA -4.5341 -10.9156 -10.7056 -10.5824 0.1254

Fig. 15.6 shows the algorithmic performance of the methods under study.
The average best fitness is the average over the 50 runs of the best fitness
values at the end of each generation. Since the algorithms work with different
population sizes, the performance is expressed in terms of fitness evaluations.

0 1000 2000 3000 4000 5000 6000
−11

−10

−9

−8

−7

−6

fitness evaluation

av
er

ag
e

b
es

t
fi

tn
es

s

GA
ES
RES
AREA
AHLEA

Fig. 15.6. Performance of the five algorithms under study

360 Ferrante Neri and Raino A.E. Mäkinen

The results show that the non-re-sampling algorithms (GA and ES) cannot
efficiently handle this kind of noisy fitness landscape. Both algorithms after
having carried out some improvements, during the initial generations, con-
verge to suboptimal solutions. According to our interpretation, this is due to
the fact that the algorithms accept overestimated solutions which mislead the
search. In addition, the values of σ in Table 15.3 prove that these algorithms
are not robust for this class of problems. The three re-sampling algorithms
converged to similar results and have a similar performance in terms of robust-
ness, as the σ values in Table 15.3 show. On the other hand, the performance
of these three algorithms differ a lot in terms of convergence velocity. In fact,
the AREA outperformed the RES and the AHLEA outperformed both the
RES and the AREA, in terms of convergence velocity. In light of the fact
that the AREA can be seen as a RES with adaptive population size and the
AHLEA can be seen as a RES with adaptive population and sample size,
it follows that the comparison in Fig. 15.6 confirms the effectiveness of the
applied adaptation.

Fig. 15.7 shows the behavior of the coefficient ξ in the most successful run
of the AHLEA.

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

fitness evaluation

ξ

Fig. 15.7. Behavior of ξ during the optimization process

As expected this parameter has an oscillatory behavior at the beginning
of the optimization process and after it settles down to the value 0 in con-
vergence conditions (see [20]). Figure 15.8 shows the behavior of the prudent
and daring population sizes. In presence of high fitness diversity, Spru and
Sdar have an oscillatory behavior and both cooperate in order to explore the
decision space and to let promising solutions generate offspring without using
a very large population size. In presence of very low diversity (see the last
generations in Figure 15.8), just the prudent mechanism works in order to
avoid overestimated solutions spoiling the search directions.

15 HEAs and Noise Compensation via Adaptation 361

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

fitness evaluation

p
o

p
u

la
ti

o
n

 s
iz

e

S
pru

S
dar

Fig. 15.8. Behavior of Spru and Sdar during the optimization process

15.3 Applications

In this section, two applications of the AHLEA are shown for two structural
optimization problems: the optimal design of a grounding grid and of an elastic
structure.

15.3.1 Grounding Grid Optimal Design

Grounding grids are important countermeasures to assure the safety and relia-
bility of the power systems and apparatus. When a fault occurs, the grounding
grid leaks a fault current IF which, flowing in the grounding grid, generates a
current field and then touch voltages UT on the points P of the soil surface.
In order to guarantee the safety level conditions, these touch voltages must
be lower than the values fixed by Standards [29]. This requirement causes a
significant increase in the cost of both conductor material and ditching [30].
It is therefore fundamental, when a grounding grid has to be designed, to
choose a criterion which ensures respect of the safety conditions without an
extremely high installation cost. If the number of horizontal and vertical con-
ductors and thus the installation cost is fixed by the designer, the problem
can be described as the following

min
G

max
P

UT (G,P) , (15.17)

where P is the point of the soil surface (i.e. two variables determining the
position) and G is the the set of parameters characterizing the design of the
grounding grid. In other words, we are aiming to find that grounding grid
design which ensures that the most critical condition on UT is minimized. In
order to perform this design an AHEA is employed. With reference to (15.17),
a LLEA is implemented to find the most dangerous point of the soil surface
and then the maximum touch voltage, and an AHLEA is implemented to find

362 Ferrante Neri and Raino A.E. Mäkinen

the structure which ensures that the most dangerous condition (i.e. the max-
imum value of UT) is minimized. The parameters characterizing the problem
are summarized in Table 15.4. Table 15.5 shows the LLEA parameter setting

Table 15.4. Grounding Grid Problem

parameter symbol value

horizontal length Lx 80 m

vertical length Ly 60m

burying depth d 0.5 m

fault current IF 5 kA

resistivity of the soil ρ 100 Ω/m

horizontal conductors Ncy 5

vertical conductors Ncx 7

conductors section Sc 69 mm2

for the maximization part of (15.17). The noise introduced by this LLEA

Table 15.5. LLEA Parameter Setting

representation vectors of two real numbers

population size 100 individuals

parent selection tournament

crossover 50 blend arithmetic crossover per generation

mutation Gaussian mutation with mutation probability 0.2

survivor selection fitness-based plus strategy

stop criterion number of generations > 100 OR |UTbest − UTavg| < 0.1

is distributed as shown in Fig. 15.4. Moreover, it is important to observe
that in order to determine each fitness value for the LLEA (the touch volt-
age UT in a point P) it is necessary to solve a system of partial differential
equations describing the current field. Since this system cannot be in gen-
eral analytically solved, a numerical method is required [49], [32]. It follows
that the fitness function of the LLEA is computationally rather expensive
and then the fitness function of the AHLEA requires a high computational
effort. It is therefore fundamental to avoid unnecessary fitness evaluations.
The AHLEA with the parameter setting shown in Table 15.2 has been imple-
mented. An individual representation made up of integer nonnegative numbers
has been chosen since, as shown in [4], it turned out more convenient than clas-
sical binary representations in terms of cardinality of the decision space [33].
Briefly, according to this representation, an individual is described by two
chromosomes in whose genes is encoded the distance of each conductor from
the reference axis (see Fig. 15.9). The two point crossover technique and the

15 HEAs and Noise Compensation via Adaptation 363

random mutation explained in [4] have been set. The optimal grounding grid
design is shown in Fig. 15.9. The maximum touch voltage generated by the

0 20 40 60 80
0

10

20

30

40

50

60

[0 8.95 21.73 40.00 58.26 71.05 80.00]

[0

10
.5

3
 3

0.
00

49

.4
6

 6
0.

00
]

0 20 40 60 80
0

10

20

30

40

50

60

[0 8.95 21.73 40.00 58.26 71.05 80.00]

Fig. 15.9. Optimal grounding grid

structure in Fig. 15.9 is equal to 761.9968 V and is in the point having co-
ordinates (30.6718, 40.5562). Obviously, due to the central symmetry of the
structure, there are 3 more points taking the same value of touch voltage
(within the other 3 central meshes). As expected, the result obtained is an
“unequally spaced” grounding grid which as shown in [30], [34], [35] and [36]
offers better performance than the traditional equally spaced one.

15.3.2 Topology Optimization of an Elastic Structure

We consider optimization of the topology of a linear elastic structure under
static loading. Topology optimization differs from the classical shape optimiza-
tion of structures [37] in such a way that the shape of the optimal structure
is not obtained by a continuous transformation of an initial shape. The most
popular deterministic approximate methods to solve this kind of optimiza-
tion problems are the homogenization method and the so-called power-law
approaches [38], [39]. Without a doubt, evolutionary optimization methods
for structural topology optimization problems [40] are very slow compared to
deterministic methods. However, they still deserve attention as they can over-
come some of the weaknesses (e.g. local optimums, “intermediate” materials)
of the homogenization type methods.

Assume that the structure in question is made from linear elastic material
with Poisson’s ratio equal to 0.3 and lies inside the rectangle [0, N1]× [0, N2].
(In what follows nondimensional units are used.) On the lower left corner of
the rectangle both displacements are restricted and in the lower right corner
the vertical displacement is restricted. Let the rectangle be made discrete by
N1 × N2 square finite elements. Each element has either zero or unit thick-
ness, i.e. void or material. The design parameter is thus the N1 ×N2 binary

364 Ferrante Neri and Raino A.E. Mäkinen

array {dk	}. We require that
∑

k,	 dk	 = ϕN1N2, where ϕ is the prescribed
volume fraction. We consider a unit point load applied at (P, 0) into direction
(cos(θ), sin(θ)), θ ∈ [1.25π, 1.75π]. If Kd denotes the stiffness matrix of the
structure and fx the force vector, then the nodal displacements are obtained
as the solution of the linear algebraic system of equations Kdu = fx. For a
structure defined by the binary array {dk	} we look for the “worst” load case,
i.e. the value of the parameter vector x = (P, θ) that maximizes the compli-
ance C(d, x) := uTKdu. Finally, the design optimization problem consists of
finding structural layout that minimizes the worst loading compliance, i.e.,
finding d that solves

min
d

max
x

C(d, x). (15.18)

In order to find the vector x of the “worst” load case, a LLEA has been im-
plemented. This LLEA is a steady-state evolutionary algorithm which works
with a mixed discrete-continuous representation. More specifically the vector
x is composed by two components: the position P of the load and the angle
of application θ of such load. The position P of the load is naturally made
discrete by means of the grid of the Finite Element Method, on the contrary,
the angle θ is continuous. It follows that the gene θ is recombined by means of
the blend crossover alpha (BLX-α) with α = 0.5 [6] and a Gaussian mutation
along with gene P is recombined according to a blend crossover with rounding
of both its terms and the mutation is operated adding a small random value
at the individual. Table 15.6 shows the parameter setting for the LLEA in the
case of optimization of the elastic structure. Concerning the AHLEA a given

Table 15.6. LLEA Parameter Setting

representation vectors of one real number and one integer number

population size 40 individuals

parent selection tournament

crossover 20 blend arithmetic crossover per generation

mutation Gaussian mutation with mutation probability 0.2

survivor selection fitness-based steady state

stop criterion number of generations > 100 OR |Cbest − Cavg| < 0.01

structure is represented by a 5× 15 matrix of binary numbers where the zero
defines the absence of material in a certain element and the one represents
the presence of material. The two point standard crossover [42] and a simple
2-bit flip mutation have been applied. For the problem under study it has been
chosen that the structure should contain 60% of material. The AHLEA with a
dynamic population varying between 40 and 120 individuals has been applied.
The optimal structure found by the algorithms and its deformation under the
“worst” load is shown in Fig. 15.10. The “worst” load case found by the LLEA
is for P = 9 and θ = 1.6564π. Under this load C(d, x) = 21.9940. Finally, the

15 HEAs and Noise Compensation via Adaptation 365

0 5 10 15
−2

0

2

4

6

0 5 10 15
−2

0
2
4
6

Displacement of the Optimal Structure in the worst case

Optimal Structure

Fig. 15.10. Optimal structure and its deformation under the “worst” load case

distribution of the 500 samples by the LLEA for the found structure is shown
in Fig. 15.11.

20 20.5 21 21.5 22
0

100

200

300

400

500

fitness value

fr
eq

u
en

cy

Fig. 15.11. Distribution of 500 samples for the elastic structure problem

15.4 Conclusions

In this chapter the problem of noisy fitness in hierarchial evolutionary al-
gorithms for Min-Max problems is analyzed. The noise under examination,
namely Hierarchical Noise (HN), is non-Gaussian and non-zero-mean and it

366 Ferrante Neri and Raino A.E. Mäkinen

has a distribution which significantly varies with the problem and the parame-
ter setting of the Lower Level Evolutionary Algorithms (LLEA). In addition,
for this kind of noise an Implicit or Explicit Averaging technique is not ap-
plicable since the value nearest to the true value is the largest among a certain
number of samples. In order to propose some algorithmic components that are
able to defeat the HN several aspects of the problem are analyzed. Thus, an
Adaptive Higher Level Evolutionary Algorithm (AHLEA) is designed.

The AHLEA is characterized by an adaptive re-sampling mechanism and
an adaptive population sizing mechanism. The combination of these two al-
gorithmic components aims to execute fitness evaluations only when it is nec-
essary. These two mechanisms decide both sample and population sizing tak-
ing into account fitness diversity of the population of the algorithm and the
fitness evaluations already performed for each individual. In addition, two
cooperating-competing survivor selection schemes (“prudent-daring”) syner-
gically work in order to allow a proper balance of the explorative efforts and
the necessity of not making the population any worse by inserting an overes-
timated individual into the population.

The numerical results on a benchmark problem (Ackley function) show the
efficiency of the adaptive rules. The AHLEA outperformed, for the benchmark
problem under study, other standard methods in terms of convergence velocity
and reliability of the algorithm. In this kind of noisy environment, the AHLEA
can quickly converge to the optimal solution and maintain high performance
in terms of reliability and robustness.

Two Min-Max structural optimization problems are also shown as an ex-
ample: the optimal design of an electrical grounding grid generating minimum
values of maximum touch voltages and and the optimal design of an elastic
structure for the “worst” load case. The numerical results in these two cases
show that the AHLEA can be successfully applied to different real-world prob-
lems.

References

1. Gulsen M, Smith AE (1999) A Hierarchical Genetic Algorithm for System Iden-
tification and Curve Fitting with a Supercomputer Implementation. In: Davis
L.D. et al. (eds) Evolutionary Algorithms, Springer, Berlin Heidelberg New
York

2. De Jong ED, Thierens D, Watson RA (2004) Hierarchical Genetic Algorithms.
In: Yao X et al. (eds) Proceedings of the 8th International Conference on Par-
allel Problem Solving from Nature PPSN-VIII, Lecture Notes in Computer
Science, Vol. 3242, 232–241, Springer-Verlag, Berlin Heidelberg New York

3. Neri F (2004) A New Evolutionary Method for Designing Grounding Grids
by Touch Voltage Control. Proceedings of IEEE International Symposium on
Industrial Electronics, ISIE 2004, Vol. 2, 1501–1505, Ajaccio France

4. Neri F, Kononova AV, Delvecchio G, Sylos Labini M, Uglanov A (2005) A Hier-
archical Evolutionary Algorithm with Noisy Fitness in Structural Optimization

15 HEAs and Noise Compensation via Adaptation 367

Problems. In: Rothlauf F et al. (eds) Applications of Evolutionary Computa-
tion, Lecture Notes in Computer Science, Vol. 3449, 610–616, Springer, Berlin
Heidelberg New York

5. Zhou ZZ, Ong YS, Nair PB (2004) Hierarchical Surrogate-Assisted Evolution-
ary Optimization Framework. Proceedings of the IEEE Congress on Evolution-
ary Computation 2004, 20–23

6. Ong YS, Nair PB, Lum KY (2005) Max-Min Surrogate-Assisted Evolutionary
Algorithm for Robust Aerodynamic Design. IEEE Transactions on Evolution-
ary Computation, Vol. 10, No. 4, August 2006.

7. Jin Y, Branke J (2005) Evolutionary Optimization in Uncertain Enviroments-
A Survey. IEEE Transactions on Evolutionary Computation, Vol. 9, No. 3,
303–317

8. Branke J (2001) Evolutionary Optimization in Dynamic Environments. Kluwer
Academic Publisher, 125–172

9. Arnold DV, Beyer HG (2003) On Effect of Outliers on Evolutionary Optimiza-
tion. In: Intelligent Data Engineering and Automated Learning, Lecture Notes
in Computer Science, Vol. 2690, 151–160, Springer-Verlag, Berlin Heidelberg
New York

10. Aizawa AN, Wah BW (1993) Dynamic Control of Genetic Algorithms in Noisy
Environment. In: Proc. Conf. Genetic Algorithms, 48–55

11. Aizawa AN, Wah BW (1994) Scheduling of Genetic Algorithms in a Noisy
Environment. Evolutionary Computation, Vol. 2, No. 2, 97–122

12. Branke J, Schmidt C, Schmeck H (2001) Efficient Fitness Estimation in Noisy
Environment. In: L. Spector et al. (eds) Genetic and Evolutionary Computa-
tion, 243–250, Morgan Kauffman, San Mateo

13. Fitzpatrick JM, Grefenstette JI (1988) Genetic Algorithms in Noisy Environ-
ments. Machine Learning, Vol. 3, 101–120

14. Goldberg DE, Deb K, Clark J (1992) Genetic Algorithms, Noise, and the Sizing
of the Population. Complex Systems, Vol. 6, 333–362

15. Miller BL, Goldberg DE (1996) Genetic Algorithms, Selection Schemes and the
Varying Effect of the Noise. Evolutionary Computation, Vol. 4, No. 2, 113–131

16. Rattray LM, Shapiro J (1997) Noisy Fitness Evaluations in Genetic Algorithms
and the Dynamics of Learning. In: R.K. Belew and M.D. Vose (eds) Foundations
of Genetic Algorithms, 117–139, Morgan Kauffman, San Mateo

17. Eiben AE, Smith JE (2003) Introduction to Evolutionary Computing. Springer-
Verlag, Berlin Heidelberg New York

18. Sylos Labini M, Delvecchio G, Neri F (2003) A Genetic Algorithm Method for
Determining the Maximum Touch Voltage Generated by a Grounding System.
In: Rudnicki M, Wiak S (eds) Optimization and Inverse Problems in Electro-
magnetism, 85–92, Kluwer Academic Publisher

19. Schmidt C, Branke J, Chick SE (2006) Integrating Techniques from Statistical
Ranking into Evolutionary Algorithms. In: Rothlauf F. et al. (eds.) Applications
of Evolutionary Computing, Lectures Notes in Computer Science, Vol. 3907,
752–763, Springer

20. Neri F, Cascella GL, Salvatore N, Kononova AV, Acciani G (2006) Prudent-
Daring vs Tolerant Survivor Selection Schemes in Control Design of Electric
Drives. In: Rothlauf F. et al. (eds.) Applications of Evolutionary Computing,
Lectures Notes in Computer Science, Vol. 3907, 805–809, Springer

368 Ferrante Neri and Raino A.E. Mäkinen

21. Eiben AE, Hinterding R Michaelwicz Z (2000) Parameter Control. In: Bäck T,
Fogel DB, Z. Michaelwicz Z (eds) Evolutionary Computation 2, Advanced Al-
gorithms and Operators, 170–187, Institute of Physics Publishing

22. Branke J, Schmidt C (2004) Sequential Sampling in Noisy Environments. In:
Parallel Problem Solving in Nature VIII PPSN, Lecture Notes in Computer
Science, Vol. 3242, 202–211, Springer, Berlin Heidelberg New York

23. Cantu-Paz E (2004) Adaptive sampling for noisy problems. In: Genetic and
Evolutionary Computation Conference GECCO2004, 947–958, Springer, Berlin
Heidelberg New York

24. Stagge P (1998) Averaging Efficiently in Presence of Noise. In: Eiben AE
et al.(eds) V Parallel Problem Solving from Nature, Lectures Notes in Computer
Science, Vol. 1498, 188–197, Springer-Verlag, Berlin Heidelberg New York

25. Di Pietro A, While L, Barone L (2004) Applying Evolutionary Algorithms to
Problems with Noisy, Time-Consuming Fitness Functions. Proceeding of the
Conference on Genetic Algorithms,1254–1261

26. Ong YS, Keane AJ (2004) Meta-Lamarkian Learning in Memetic Algorithms.
IEEE Transactions on Evolutionary Computation, Vol. 8, No. 2, 99–110

27. Yang S (2003) Adaptive Mutation using Statistics Mechanism for Genetic Algo-
rithms. In: Coenen F, Preece A, Macintosh A, (eds.) Research and Development
in Intelligent Systems XX, Springer-Verlag, 19–32

28. Caponio A, Cascella G L, Neri F, Salvatore N, Sumner M (2006) A Fast Adap-
tive Memetic Algorithm for Off-line and On-line Control Design of PMSM
Drives, to appear IEEE Transactions on Systems, Man and Cybernetics Part B,
Special Issue on Memetic Algorithms

29. IEEE Standard 80 - 2000 (2000) IEEE Guide for Safety in AC Substation
Grounding

30. Huang L, Chen L, Yan H (1995) Study of Unequally Spaced Grounding Grids.
IEEE Transactions on Power Delivery, Vol. 10, No. 2, 716–722

31. Yuan J, Yang H, Zhang L, Cui X, Ma X (2000) Simulation of Substation
Grounding Grids with Unequal potential. IEEE Transactions of Magnetics,
Vol. 36, No. 4, 1468–1471

32. Delvecchio G, Di Sciascio E, Grassi S, Neri F, Sylos Labini M (2005) Some Geo-
metrical and Evolutionary Procedures for Optimizing the Calculation Times of
3-D Current Fields by the Finite Element Method. COMPEL: International
Journal for Computation and Mathematics in Electrical and Electronic Engi-
neering, MCB University Press, Vol. 24, No. 3, 984–996

33. Otero AF, Cidras J, Garrido C (1998) Genetic Algorithm Based Method for
Grounding Grids Design. Proceedings of the IEEE International Conference
on Evolutionary Computation, World Congress of Computational Intelligence,
120–123

34. Phithakwong B, Kraisnachinda N, Bayjomgjit S, Chompo-Inwai C, Kando M
(2000) New Techniques the Computer-Aided Design for Substation Grounding.
IEEE Power Engineering Society Winter Meeting, Vol. 3, 2011–2015

35. El-Dessouky SS, El Aziz MA, Khamis A (1998) An Accurate Design of Substa-
tion Grounding System Aid Expert System Methodology. Conference Record
of the IEEE International Symposium on Electrical Insulation, Vol. 2, 411–414

36. Sun W, He J, Gao Y, Zeng R, Wu W, Su Q (2000) Optimal Design Analysis
of Grounding Grids for Substations built in non-uniform soil. Proceedings of
Powercon. International Conference on Power System Technology, Vol. 3, 1455–
1460

15 HEAs and Noise Compensation via Adaptation 369

37. Haslinger J, Mäkinen RAE (2003) Introduction to Shape Optimization: Theory,
Approximation, and Computation. SIAM, Philadelphia

38. Bendsøe MP (1995) Optimization of Structural Topology, Shape and Material.
Springer, Berlin Heidelberg New York

39. Bendsøe MP, Sigmund O (1999) Material Interpolations in Topology Optimiza-
tion. Arch. Appl. Mech., Vol. 69, 635–654

40. Kane C, Schoenauer M (1996) Topological Optimum Design Using Genetic
Algorithms. Control and Cybernetics, Vol. 25, 1059–1088

41. Eshelman LJ, Shaffer JD (1993) Real-coded Genetic Algorithms and Interval-
Schemata. In: Fondations of Genetic Algorithms 2, 187–202

42. Schoneauer M (1995) Shape Representation for Evolutionary Optimization and
Identification in Structural Mechanics. Proceedings of EUROGEN 1995, 5–30,
John Wiley and Sons Ltd

16

Evolving Multi Rover Systems in Dynamic
and Noisy Environments

Kagan Tumer1 and Adrian Agogino2

1 NASA Ames Research Center, Mailstop 269-4, Moffett Field, CA 94035, USA
ktumer@mail.arc.nasa.gov

2 UC Santa Cruz, NASA Ames Research Center, Mailstop 269-3, Moffett Field,
CA 94035, USA
adrian@email.arc.nasa.gov

Summary. In this chapter, we address how to evolve control strategies for a col-
lective: a set of entities that collectively strives to maximize a global evaluation
function that rates the performance of the full system. Addressing such problems
by directly applying a global evolutionary algorithm to a population of collectives
is unworkable because the search space is prohibitively large. Instead, we focus on
evolving control policies for each member of the collective, where each member is
trying to maximize the fitness of its own population. The main difficulty with this
approach is creating fitness evaluation functions for the members of the collective
that induce the collective to achieve high performance with respect to the system
level goal. To overcome this difficulty, we derive member evaluation functions that
are both aligned with the global evaluation function (ensuring that members trying
to achieve high fitness results in a collective with high fitness) and sensitive to the
fitness of each member (a member’s fitness depends more on its own actions than
on actions of other members).

In a difficult rover coordination problem in dynamic and noisy environments, we
show how to construct evaluation functions that lead to good collective behavior.
The control policy evolved using aligned and member-sensitive evaluations outper-
forms global evaluation methods by up to a factor of four. In addition we show that
the collective continues to perform well in the presence of high noise levels and when
the environment is highly dynamic. More notably, in the presence of a larger number
of rovers or rovers with noisy sensors, the improvements due to the proposed method
become significantly more pronounced.

16.1 Introduction

In this chapter we show how to extend evolutionary control methods to dy-
namic domains that contain many devices that need to be controlled in the
presence of noise. These methods are applicable to many distributed domains
such as coordinating multiple robots, controlling constellations of satellites,

K. Tumer and A. Agogino: Evolving Multi Rover Systems in Dynamic and Noisy Environments,

Studies in Computational Intelligence (SCI) 51, 371–387 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

372 Kagan Tumer and Adrian Agogino

and routing over a data network promises significant application opportuni-
ties [3, 11, 14]. In this chapter we specifically look at the problem of coor-
dinating multiple rovers in such a way that they maximize their collective
observational capability.

The challenge in this problem is efficiently evolving control policies for
the rovers, such that they collectively maximize a single objective function,
which is in general a non-linear function over the actions of all the rovers.
The straight-forward approach to this problem is to directly evolve the entire
collective by using a population of collectives and having the evolutionary
operators work directly on the collective to produce a solution with high
global fitness. Unfortunately this method is impractical at best and impossible
at worst, since the search space for such an approach is simply too large for all
but the simplest problems. Instead we will approach this problem by having
each rover in the collective have its own population of control policies, using
its own fitness evaluation function to evaluation these control policies. The
key issue in such an approach is to ensure that the rover fitness evaluation
function possesses the following two properties: (i) it is aligned with the global
evaluation function, ensuring that the rovers that maximize their own fitness
do not hinder one another and hurt the fitness of the collective; and (ii) it is
sensitive to the fitness of the rover, ensuring that it provides the right selective
pressure on the rover (i.e., it limits the impact of other rovers in the fitness
evaluation function).

In this chapter we show how to create fitness evaluation functions that
have these properties. We then show how to use them in a multi-rover domain
that is challenging in the following two ways:

1. The environment is dynamic, meaning that the conditions under which the
rovers evolve changes with time. The rovers need to evolve general control
policies, rather than specific policies tuned to their current environment.

2. The rovers’ sensors and actuators are noisy, meaning that the signals
they receive from the environment are not reliable and the control signals
that the robot sends out are not reliably carried out. The rovers need to
demonstrate that the control policies are not sensitive to such fluctuations
in sensor readings and control outputs.

This domain is modeled reflect the important properties evolutionary control
systems need to have to be deployed. Significantly this domain does not have
any “episodes” or “trials.” The environment changes continuously and the
rovers move continuously where neither the environment or rovers’ positions
are ever reset. The rovers must evolve in-situ and be able to use the control
policies in an environment different from what they were evolved in.

In Section 16.2 we discuss the properties needed in a collective, how to
evolve rovers using evaluation functions possessing such properties along with
a discussion of related work. In section 16.3 we present the “Rover Problem”
where a planetary rovers in a collective use neural networks to determine their
movements based on a continuous-valued array of sensor inputs. Section 16.4

16 Evolving Multi Rover Systems in Dynamic and Noisy Environments 373

presents the performance of the rover collective evolved using rover evaluation
functions in dynamic, noisy and communication limited domains. The results
show the effectiveness of the rovers in gathering information is 400% higher
with properly derived rover fitness functions than in rovers using a global
evaluation function. Finally Section 16.5 we discuss the implication of these
results and their applicability to different domains.

16.2 Evolving a Collective

In general, one has three possible approaches based on evolutionary compu-
tation to design control policies for collectives.

1. One can operate directly on the collective, treating it as an instance of
a solution and operate on populations of collectives. In this case, the
standard evolutionary algorithms are used to select for the collective that
best satisfies a predetermined global evaluation function.

2. One can operate on members in the collective, treating each rover as an
instance of a solution and operate of populations of rovers. In this case,
the evolutionary algorithms are used to select the rovers constituting the
collective based on how a given rover satisfies the predetermined global
evaluation function.

3. One can operate on members in the collective, treating each rover as an
instance of a solution and operate of populations of rovers. In this case,
the evolutionary algorithms are used to select the rovers constituting the
collective based on how a given rover satisfies a specialized rover evaluation
function tuned to the fitness of that rover.

The first method presents a computationally daunting task in all but the
simplest problems. Finding good control strategies is difficult enough for single
controllers, but the search space become prohibitively large when they are
concatenated into an “individual” representing the full collectives. Even if
good rovers are present in the collective, there is no mechanism for isolating
and selecting them when the collective to which they belong performs poorly.
As a consequence, this approach is practically unworkable in large continuous
domains.

The second method addresses part of the issue: Because the rovers in the
collective are evolved independently, it avoids the explosion of the state space.
However, this method introduces a new problem: How is a rover’s evolution
guided when the evaluation function depends on the fitness of all the other
rovers? In small collectives, this method provides good solutions, but as the
collectives size increases, this problem becomes more and more acute. As a
consequence, this approach, though preferable to the first approach in some
ways, is unlikely to provide good solutions in large collectives.

The third method provides a specialized rover evaluation function for each
rover. This approach, cleans up the fitness signal a rover receives, but intro-
duces a new twist to the problem: How does one ensure that the specialized

374 Kagan Tumer and Adrian Agogino

rover evaluation functions are aligned with the global evaluation function? In
other words, the fundamental question is how to guarantee that the collective
evolved using rover evaluation functions will have a high fitness with respect
to the global evaluation function. In this chapter we discuss the second and
third approaches, focusing on how to select rover evaluation function in a
formal manner as discussed below.

16.2.1 Rover Evaluation Function Properties

Given a global evaluation function to be maximized, this section presents
the desirable properties that rover-specific evaluation functions must have.
Let the global evaluation function be given by G(z), where z is the state
of the full system (e.g., the position of all the rovers in the system, along
with their relevant internal parameters and the state of the environment).
Let the rover evaluation function for rover i be given by gi(z). The first
desirable property the rover evaluation functions of each agent needs to have
is high factoredness with respect to G, intuitively meaning that an action
taken by an agent that improves its rover evaluation function also improves
the global evaluation function (i.e. G and gη are aligned). Formally, the degree
of factoredness between gi and G is given by:

Fgi
=

∫
z

∫
z′ u[(gi(z)− gi(z′)) (G(z)−G(z′))]dz′dz∫

z

∫
z′ dz′dz

(16.1)

where z′ is a state which only differs from z in the state of rover i, and u[x]
is the unit step function, equal to 1 when x > 0. Intuitively, a high degree
of factoredness between gi and G means that a rover evolved to maximize gi

will also maximize G.
The second property the rover evaluation function needs to have is high

sensitivity to changes in its own fitness and low sensitivity to changes in
the fitness of other rovers in the collective. Formally we quantify the rover-
sensitivity of evaluation function gi, at z as:

λi,gi
(z) = Ez′

[
‖gi(z)− gi(z − zi + z′i)‖
‖gi(z)− gi(z′ − z′i + zi)‖

]
(16.2)

where Ez′ [·] provides the expected value over possible values of z′, and (z −
zi + z′i) notation specifies the state vector where the components of rover i
have been removed from state z and replaced by the components of rover
i from state z′. So at a given state z, the higher the rover-sensitivity, the
more gi(z) depends on changes to the state of rover i, i.e., the better the
associated signal-to-noise ratio for i. Intuitively then, higher rover-sensitivity
means there is “cleaner” (e.g., less noisy) selective pressure on rover i.

As an example, consider the case where the rover evaluation function of
each rover is set to the global evaluation function, meaning that each rover is
evaluated based on the fitness of the full collective (e.g., approach 2 discussed

16 Evolving Multi Rover Systems in Dynamic and Noisy Environments 375

in Section 16.2). Such a system will be fully factored by the definition of Equa-
tion 16.1. However, the rover fitness functions will have low rover-sensitivity
(the fitness of each rover depends on the fitness of all other rovers).

16.2.2 Difference Evaluation Functions

Let us now focus on improving the rover-sensitivity of the evaluation functions.
To that end, consider difference evaluation functions [17], which are of the
form:

Di ≡ G(z)−G(z−i + ci) (16.3)

where z−i contains all the states on which rover i has no effect, and ci is a
fixed vector. In other words, all the components of z that are affected by rover
i are replaced with the fixed vector ci. Such difference evaluation functions are
fully factored no matter what the choice of ci, because the second term does
not depend on i’s states [17] (e.g., D and G will have the same derivative with
respect to zi). Furthermore, they usually have far better rover-sensitivity than
does a global evaluation function, because the second term of D removes some
of the effect of other rovers (i.e., noise) from i’s evaluation function. In many
situations it is possible to use a ci that is equivalent to taking rover i out of
the system. Intuitively this causes the second term of the difference evalua-
tion function to evaluate the fitness of the system without i and therefore D
evaluates the rover’s contribution to the global evaluation.

Though for linear evaluation functions Di simply cancels out the effect of
other rovers in computing rover i’s evaluation function, its applicability is not
restricted to such functions. In fact, it can be applied to any linear or non-
linear global utility function. However, its effectiveness is dependent on the
domain and the interaction among the rover evaluation functions. At best, it
fully cancels the effect of all other rovers. At worst, it reduces to the global
evaluation function, unable to remove any terms (e.g., when z−i is empty,
meaning that rover i effects all states). In most real world applications, it
falls somewhere in between, and has been successfully used in many domains
including rover coordination, satellite control, data routing, job scheduling
and congestion games [3, 15, 17]. Also note that the computation of Di is a
“virtual” operation in that rover i computes the impact of its not being in the
system. There is no need to re-evolve the system for each rover to compute
its Di, and computationally it is often easier to compute than the global
evaluation function [15]. Indeed in the problem presented in this chapter, for
rover i, Di is easier to compute than G is (see details in Section 16.4).

16.2.3 Related Work

Evolutionary computation has a long history of success in single agent and
multi-agent control problems [1, 2, 7, 10, 16]. Advances in evolutionary com-
putation methods in single agent domains tend to result from improvements in

376 Kagan Tumer and Adrian Agogino

search methods. In [10] this is accomplished through fuzzy rules in a helicopter
control problem, while in [16] cellular encoding is used to improve performance
on pole-balancing control. Similarly [7] addresses planetary rover control by
having genetic algorithms search through a space of plans generated from a
planning algorithm.

Many advances in evolutionary computation for multi-agent control have
been accomplished through the use of domain specific fitness functions. Ant
colony algorithms [6] solve the coordination problem by utilizing “ant trails”
that provide implicit fitness functions resulting in good performance in path-
finding domains. In [2], the algorithm takes advantage of a large number of
agents to speed up the evolution process in certain domains, but uses greedy
fitness functions that are not generally factored. Also outside of evolutionary
computation, coordination between a set of mobile robots has been accom-
plished through the use of hand-tailored rewards designed to prevent greedy
behavior [12]. While highly successful in many domains all of these meth-
ods differ from the methods used in this chapter in that they lack a general
framework for efficient evolution in multi-agent systems.

16.3 Continuous Rover Problem

In this section, we show how evolutionary computation with the difference
evaluation function can be used effectively in the Rover Problem3. In this
problem, there is a collective of rovers on a two dimensional plane, which is
trying to observe points of interests (POIs). Each POI has a value associated
with it and each observation of a POI yields an observation value inversely
related to the distance the rover is from the POI. In this chapter the dis-
tance metric will be the squared Euclidean norm, bounded by a minimum
observation distance, δmin:4

δ(x, y) = min{‖x− y‖2, δ2
min} . (16.4)

The global evaluation function is given by:

G =
∑

t

∑
j

Vj

mini δ(Lj , Li,t)
, (16.5)

where Vj is the value of POI j, Lj is the location of POI j and Li,t is the
location of rover i at time t. Intuitively, while any rover can observe any

3 This problem was first presented in [3].
4 The square Euclidean norm is appropriate for many natural phenomenon, such as

light and signal attenuation. However any other type of distance metric could also
be used as required by the problem domain. The minimum distance is included
to prevent singularities when a rover is very close to a POI.

16 Evolving Multi Rover Systems in Dynamic and Noisy Environments 377

POI, as far as the global evaluation function is concerned, only the closest
observation matters5.

Fig. 16.1. Diagram of a Rover’s Sensor Inputs. The world is broken up into
four quadrants relative to rover’s position. In each quadrant one sensor senses points
of interests, while the other sensor senses other rovers.

16.3.1 Rover Capabilities

At every time step, the rovers sense the world through eight continuous sen-
sors. From a rover’s point of view, the world is divided up into four quadrants
relative to the rover’s orientation, with two sensors per quadrant (see Figure
16.1). For each quadrant, the first sensor returns a function of the POIs in the
quadrant at time t. Specifically the first sensor for quadrant q returns the sum
of the values of the POIs in its quadrant divided by their squared distance
to the rover and scaled by the angle between the POI and the center of the
quadrant:

s1,q,j,t =
∑
j∈Jq

Vj

δ(Lj , Li,t)

(
1− |θj,q|

90

)
(16.6)

where Jq is the set of observable POIs in quadrant q and |θj,q| is the magnitude
of the angle between POI j and the center of the quadrant. The second sensor
5 Similar evaluation functions could also be made where there are many different

levels of information gain depending on the position of the rover. For example 3-D
imaging may utilize different images of the same object, taken by two different
rovers.

378 Kagan Tumer and Adrian Agogino

returns the sum of square distances from a rover to all the other rovers in the
quadrant at time t scaled by the angle:

s2,q,i,t =
∑

i′∈Nq

1
δ(Li′ , Li,t)

(
1− |θi′,q|

90

)
(16.7)

where Nq is the set of rovers in quadrant q and |θi′,q| is the magnitude of the
angle between rover i′ and the center of the quadrant.

The sensor space is broken down into four regions to facilitate the input-
output mapping. There is a trade-off between the granularity of the regions
and the dimensionality of the input space. In some domains the tradeoffs may
be such that it is preferable to have more or fewer than four sensor regions.
Also, even though this chapter assumes that there are actually two sensors
present in each region at all times, in real problems there may be only two
sensors on the rover, and they do a sensor sweep at 90 degree increments at
the beginning of every time step.

16.3.2 Rover Control Strategies

With four quadrants and two sensors per quadrant, there are a total of eight
continuous inputs. This eight dimensional sensor vector constitutes the state
space for a rover. At each time step the rover uses its state to compute a
two dimensional output. This output represents the x, y movement relative to
the rover’s location and orientation. Figure 16.2 displays the orientation of a
rover’s output space.

dx

dy

Fig. 16.2. Diagram of a Rover’s Movement. At each time step the rover has two
continuous outputs (dx, dy) giving the magnitude of the motion in a two directional
plane relative to the rover’s orientation.

The mapping from rover state to rover output is done through a Multi
Layer Perceptron (MLP), with eight input units, ten hidden units and two
output units6. The MLP uses a sigmoid activation function, therefore the
6 Note that other forms of continuous reinforcement learners could also be used

instead of evolutionary neural networks. However neural networks are ideal for
this domain given the continuous inputs and bounded continuous outputs.

16 Evolving Multi Rover Systems in Dynamic and Noisy Environments 379

outputs are limited to the range (0, 1). The actual rover motions dx and dy,
are determined by normalizing and scaling the MLP output by the maximum
distance the rover can move in one time step. More precisely, we have:

dx = 2dmax(o1 − 0.5)
dy = 2dmax(o2 − 0.5)

where dmax is the maximum distance the rover can move in one time step, o1

is the value of the first output unit, and o2 is the value of the second output
unit.

16.3.3 Rover Selection

The MLP for a rover is selected using an evolutionary algorithm as highlighted
in approaches two and three in Section 16.2. In this case, each rover has a
population of MLPs. At each N time steps (N set to 15 in these experiments),
the rover uses epsilon-greedy selection (ε = 0.1) to determine which MLP
it will use (e.g., it it selects the best MLP from its population with 90%
probability and a random MLP from its population with 10% probability).
The selected MLP is then mutated by adding a value sampled from the Cauchy
Distribution (with scale parameter equal to 0.3) to each weight, and is used for
those N steps. At the end of those N steps, the MLP’s performance is evaluated
by the rover’s evaluation function and re-inserted into its population of MLPs,
at which time, the poorest performing member of the population is deleted.
Both the global evaluation for system performance and rover evaluation for
MLP selection is computed using an N-step window, meaning that the rovers
only receive an evaluation after N steps.

While this is not a sophisticated evolutionary algorithm, it is ideal in this
work since our purpose is to demonstrate the impact of principled evaluation
functions selection on the performance of a collective. Even so, this algorithm
has shown to be effective if the evaluation function used by the rovers is
factored with G and has high rover-sensitivity. We expect more advanced
evolutionary computation algorithms used in conjunction with these same
evaluation functions to improve the performance of the collective further.

16.3.4 Evolving Control Strategies in a Collective

The key to success in this approach is to determine the correct rover evaluation
functions. In this work we test three different evaluation function for rover
selection. The first evaluation function is the global evaluation function (G),
which when implemented results in approach two discussed in Section 16.2:

G =
∑

t

∑
j

Vj

mini δ(Lj , Li,t)
(16.8)

380 Kagan Tumer and Adrian Agogino

The second evaluation function is the “perfectly rover-sensitive” evaluation
function (P):

Pi =
∑

t

∑
j

Vj

δ(Lj , Li,t)
(16.9)

The P evaluation function is equivalent to the global evaluation function in
the single rover problem. In a collective of rover setting, it has infinite rover-
sensitivity (in the way rover sensitivity is defined in Section 16.2). This is
because the P evaluation function for a rover is not affected by the states of
the other rovers, and thus the denominator of Equation 16.2 is zero. However
the P evaluation function is not factored. Intuitively P and G offer opposite
benefits, since G is by definition factored, but has poor rover-sensitivity. The
final evaluation function is the difference evaluation function. It does not have
as high rover-sensitivity as P, but is still factored like G. For the rover problem,
the difference evaluation function, D, becomes:

Di =
∑

t

⎡
⎣∑

j

Vj

mini′ δ(Lj , Li′,t)
−
∑

j

Vj

mini′
=i δ(Lj , Li,t)

⎤
⎦ .

The second term of the D is equal to the value of all the information collected
if rover i were not in the system. Note that for all time steps where i is not
the closest rover to any POI, the subtraction leaves zero. As mentioned in
Section 16.2.2, the difference evaluation in this case is easier to compute as
long as rover i knows the position and distance of the closest rover to each
POI it can see. In that regard it requires knowledge about the position of
fewer rovers than if it were to use the global evaluation function.

16.4 Results

We performed extensive simulation to test the effectiveness of the different
rover evaluation function under a wide variety of environmental conditions
and rover capabilities. In these experiments, each rover had a population of
MLPs of size 10. The world was 75 units long and 75 units wide. All of the
rovers started the experiment at the center of the world. Unless otherwise
state as in the scaling experiments, there were 30 rovers in the simulations.
The maximum distance the rovers could move in one direction during a time
step, dmax, was set to 3. The rovers could not move beyond the bounds of the
world. The minimum observation distance, δmin, was equal to 5.

In these experiments the environment was dynamic, meaning that the POI
locations and values changed with time. There were as many POIs as rovers,
and the value of each POI was set to between three and five using a uniformly
random distribution. In these experiments, each POI disappeared with prob-
ability 2.5%, and another one appeared with the same probability at 15 time
step intervals. Because the experiments were run for 3000 time steps, the initial

16 Evolving Multi Rover Systems in Dynamic and Noisy Environments 381

Fig. 16.3. Sample POI Placement. Left-Top: Environment at time = 10. Right-
Top: Environment at time = 120. Bottom: Environment at time = 1500. Environ-
ment at time step 10 is similar to environment at time step 120, but significantly
different than environment at time step 1500. Rovers must to able to use their control
policies evolved from earlier time step, in future changed environments.

and final environments had little similarities. All results were averaged over at
least one hundred independent trials (except for the seventy agent runs where
there were thirty trials). For each experiment and trial the weights of the
neural network were set to random using the Cauchy distribution (parameter
of 0.5).

Results for episodic environments where the agents were restored to their
initial state at the end of each trial were reported in [3]. In such a case the
rovers

evolv

e specific control policies tuned to the particular environment
in whic

h they

are trained. Though useful in domains where the simulated
en

vironmen

t closely matches the environment in which the rovers will operate,
this

approac

h has limited applicability in general. A more desirable approach
is for

the ro

vers to evolve efficient policies that are solely based on their
sensor inputs and not on the specific configuration of the POIs. The dynamic
environment experiments reported here explore this premise and provide rover

382 Kagan Tumer and Adrian Agogino

control policies that can be generalized from one set of POIs to another,
regardless of how significantly the environment changes. Figures 16.3 shows
an instance of change in the environment throughout a simulation. The final
POI set is not particularly close to the initial POI set and the rovers are forced
to focus on the sensor input-output mappings rather than focus on regions in
the (x, y) plane.

16.4.1 Evolution in Noise Free Environment

The first set of experiments tested the performance of the three evaluation
functions in a dynamic noise-free environment for 30 rovers. Figure 16.4 shows
the performance of each evaluation function. In all cases, performance is mea-
sured by the same global evaluation function, regardless of the evaluation
function used to evolve the system. All three evaluation functions performed
adequately in this instance, though Di outperformed both P and G.

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 500 1000 1500 2000 2500

G
lo

ba
l R

ew
ar

d
A

ch
ie

ve
d

Number of Steps

D
P
G

(Random)

Fig. 16.4. Performance of a 30-rover collective for all three evaluation functions in
noise-free environment. Difference evaluation function provides the best collective
performance because it is both factored and rover-sensitive.

The evolution of this system also demonstrate the different properties of
the rover evaluation functions. After initial improvements, the system with
the G evaluation function improves slowly. This is because the G evaluation
function has low rover-sensitivity. Because the fitness of each rover depends on
the state of all other rovers, the noise in the system overwhelms the evaluation
function. P on the other hand has a different problem: After an initial im-
provement, the performance of systems with this evaluation function decline.
This is because though P has high rover-selectivity, it is not fully factored
with the global evaluation function. This means that rovers selected to im-
prove P do not necessarily improve G. D on the other hand is both factored

16 Evolving Multi Rover Systems in Dynamic and Noisy Environments 383

and has high rover-sensitivity. As a consequence, it continues to improve well
into the simulation as the fitness signal the rovers receive are not swamped
by the states of other rovers in the system. This simulation highlights the
need for having evaluation function that are both factored with the global
evaluation function and have high rover-sensitivity. Having one or the other
is not sufficient.

16.4.2 Scaling in Noise Free Environments

The second set of experiments focuses on the scaling properties of the three
evaluation functions in a dynamic noise-free environment. Figure 16.5 shows
the performance of each evaluation function at t=3000 for a collective of 10
to 70 rovers (where the number of POIs is equal to the number of rovers). For
each case, the results are qualitatively similar to those reported above, except
where there are only 5 rovers, in which case P performs as well as G. This
is not surprising since with so few rovers, there are almost no interactions
among the rovers, and in as large a space as the one used here, the 5 rovers
act almost independently.

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 10 20 30 40 50 60 70

F
in

al
 G

lo
ba

l R
ew

ar
d

A
ch

ie
ve

d
(N

or
m

al
iz

ed
)

Number of Agents

D
P
G

(Random)

Fig. 16.5. Scaling properties of the three evaluation functions. The D evaluation
function not only outperforms the alternatives, but the margin by which it outper-
forms them increases as the size of the collective goes up.

As the size of the collective increases though, an interesting pattern
emerges: The performance of both P and G drop at a faster rate than that
of D. Again, this is because G has low rover-sensitivity and thus the problem
becomes more pronounced as the number of rovers increases. Similarly, as the
number of rovers increases, P becomes less and less factored. In fact the per-
formance of rovers using P is even worse than random when there are many
rovers because the rovers’ greedy actions make them focus on only a few POIs,

384 Kagan Tumer and Adrian Agogino

while the random rovers at least distribute themselves among the POIs. D
on the other hand handles the increasing number of rovers quite effectively.
Because the second term in Equation 16.3 removes the impact of other rovers
from rover i, increasing the number of rovers does very little to limit the effec-
tiveness of this rover evaluation function. This is a powerful result suggesting
that D is well suited to evolve large collectives in this and similar domains
where the interaction among the rovers prevents both G and P from perform-
ing well. This result also supports the intuition expressed in Section 16.2 that
approach 2 (i.e., evolving rovers based on the fitness of the full collective) is
ill-suited to evolving collectives in all but the smallest examples.

16.4.3 Evolution in Noisy Environment

The third set of experiments tested the performance of the three evalua-
tion functions in a dynamic environment for 30 rovers with noisy sensors.
Figure 16.6 shows the performance of each evaluation function when both the
input sensors and the output values of the rovers have 5% noise added. All
three evaluation functions handle the noise well. This result is encouraging in
that it shows that not only simple evaluation functions such as P can handle
moderate amounts of noise in their sensors and outputs, but so can D. In
other words, considering the impact of other rovers to yield a factored evalu-
ation function does not cause to compound moderate noise in the system and
overwhelm the rover evaluation.

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 500 1000 1500 2000 2500

G
lo

ba
l R

ew
ar

d
A

ch
ie

ve
d

Number of Steps

D
P
G

(Random)

Fig. 16.6. Performance of a 30-rover collective for all three evaluation functions
when the rover sensors and outputs have 5% noise

Figure 16.7 shows the noise sensitivity of the three different evaluation
functions. The performance is reported as a function of additive noise to sen-
sors as the percentage shown on the x-axis (e.g., 0.5 means the magnitude of

16 Evolving Multi Rover Systems in Dynamic and Noisy Environments 385

the added noise is half that of the sensor value.) The results are shown as the
D is the most sensitive to high levels of noise, though even at 80% noise it
still far outperforms both G and P . This is an encouraging result in the power
of the D evaluation function is that it “cleans up” the evaluation function for
a rover (e.g., it has high rover-sensitivity). Adding noise, starts to cancel this
property of D, but even when half the signal being noise does not prevent D
from far outperforming D and P . Interestingly, rovers using P actually per-
form marginally better as noise increases, demonstrating the importance of
factoredness. Adding noise to the system actually hindered these rovers from
learning some counter-productive actions.

 1100

 1120

 1140

 1160

 1180

 1200

 1220

 1240

 1260

 1280

 1300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
in

al
 G

lo
ba

l R
ew

ar
d

A
ch

ie
ve

d

Level of Noise

D
P
G

(Random)

Fig. 16.7. Sensitivity of the three evaluation functions to the degree of noise in
their sensors

16.5 Discussion and Conclusions

Extending the success of evolutionary algorithms in continuous single-controller
domains to large, distributed multi-controller domains has been a challenging
endeavor. Unfortunately the direct approach of having a population of collec-
tives and applying the evolutionary algorithm to that population results in a
prohibitively large search space in most cases. As an alternative, this chapter
presents a method for providing rover specific evaluation functions to directly
evolve individual rovers in collective. The fundamental issue that needs to be
addressed in this approach is determining the rover specific evaluation func-
tions that are both aligned with the global evaluation function and are as
sensitive as possible to changes in the fitness of each member.

In dynamic, noise-free environments rovers using the difference evaluation
function D, derived from the theory of collectives, were able to achieve high

386 Kagan Tumer and Adrian Agogino

levels of performance because the evaluation function was both factored and
highly rover-sensitive. These rovers performed better than rovers using the
non-factored perfectly rover-sensitive evaluation and more than 400% better
(over random rovers) than rovers using the hard to learn global evaluations.

We then extended these results both to rovers with noisy sensors, and to
larger collectives. In each instance the collectives evolved using D performed
better than alternative and in most cases (e.g., larger collectives) the gains
due to D increase as the conditions worsened. These results show the power
of using factored and rover-sensitive fitness evaluation functions, which allow
evolutionary computation methods to be successfully applied to large distrib-
uted systems in real world applications where the rover sensors and actuators
cannot be noise-free. Currently, we are investigating the impact of communi-
cation restriction and partial observability on rover collectives.

References

1. A. Agah and G. A. Bekey. A genetic algorithm-based controller for decentralized
multi-agent robotic systems. In In Proc. of the IEEE International Conference
of Evolutionary Computing, Nagoya, Japan, 1996.

2. A. Agogino, K. Stanley, and R. Miikkulainen. Online interactive neuro-
evolution. Neural Processing Letters, 11: 29–38, 2000.

3. A. Agogino and K. Tumer. Efficient evaluation functions for multi-rover systems.
In The Genetic and Evolutionary Computation Conference, pages 1–12, Seatle,
WA, June 2004.

4. T. Balch. Behavioral diversity as multiagent cooperation. In Proc. of SPIE’99
Workshop on Multiagent Systems, Boston, MA, 1999.

5. G. Baldassarre, S. Nolfi, and D. Parisi. Evolving mobile robots able to display
collective behavior. Artificial Life, 9: 255–267, 2003.

6. M. Dorigo and L. M. Gambardella. Ant colony systems: A cooperative learning
approach to the travelling salesman problem. IEEE Transactions on Evolution-
ary Computation, 1(1):53–66, 1997.

7. S. Farritor and S. Dubowsky. Planning methodology for planetary robotic ex-
ploration. In ASME Journal of Dynamic Systems, Measurement and Control,
volume 124, pages 4: 698–701, 2002.

8. D. Floreano and F. Mondada. Automatic creation of an autonomous agent: Ge-
netic evolution of a neural-network driven robot. In Proc. of Conf. on Simulation
of Adaptive Behavior, 1994.

9. F. Gomez and R. Miikkulainen. Active guidance for a finless rocket through
neuroevolution. In Proceedings of the Genetic and Evolutionary Computation
Conference, Chicago, Illinois, 2003.

10. F. Hoffmann, T.-J. Koo, and O. Shakernia. Evolutionary design of a helicopter
autopilot. In Advances in Soft Computing - Engineering Design and Manufac-
turing, Part 3: Intelligent Control, pages 201–214, 1999.

11. A. Martinoli, A. J. Ijspeert, and F. Mondala. Understanding collective aggrega-
tion mechanisms: From probabilistic modelling to experiments with real robots.
Robotics and Autonomous Systems, 29:51–63, 1999.

16 Evolving Multi Rover Systems in Dynamic and Noisy Environments 387

12. M. J. Mataric. Coordination and learning in multi-robot systems. In IEEE
Intelligent Systems, pages 6–8, March 1998.

13. K. Stanley and R. Miikkulainen. Efficient reinforcement learning through evolv-
ing neural network topologies. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002), San Francisco, CA, 2002.

14. K. Tumer and A. Agogino. Overcoming communication restrictions in collec-
tives. In Proceedings of the International Joint Conference on Neural Networks,
Budapest, Hungary, July 2004.

15. K. Tumer and D. H. Wolpert. Collective intelligence and Braess’ paradox. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence,
pages 104–109, Austin, TX, 2000.

16. D. Whitley, F. Gruau, and L. Pyeatt. Cellular encoding applied to neurocontrol.
In International Conference on Genetic Algorithms, 1995.

17. D. H. Wolpert and K. Tumer. Optimal payoff functions for members of collec-
tives. Advances in Complex Systems, 4(2/3): 265–279, 2001.

17

A Memetic Algorithm Using a Trust-Region
Derivative-Free Optimization with Quadratic
Modelling for Optimization of Expensive
and Noisy Black-box Functions

Yoel Tenne1 and Steven William Armfield2

1 School of Aerospace, Mechanical and Mechatronic Engineering, University of
Sydney, Sydney NSW 2006, Australia
joel.tenne@aeromech.usyd.edu.au

2 School of Aerospace, Mechanical and Mechatronic Engineering, University of
Sydney, Sydney NSW 2006, Australia
armfield@aeromech.usyd.edu.au

Summary. A novel algorithm integrates evolutionary optimization, clustering, and
the trust-region derivative-free optimization framework for global minimization of
black-box functions whose evaluation is computationally resource intensive and
where uncertainty exist in the objective function value, i.e. the latter contains noise.
On the global scale the EA efficiently explores the search space; no global model
of the objective function is generated. On the local scale the objective function is
modeled by a series of quadratic models which are checked for agreement with the
objective function and are updated if necessary. The algorithm incorporates nu-
merous new techniques to enhance both its global and its local search stages. The
performance of the algorithm was evaluated by using functions of dimension 2–20,
with and without noise. The algorithm performed well; its performance in the pres-
ence of noise in the objective function is attributed both to the mild effect of noise
on the evolutionary algorithm and to mechanics of the trust-region algorithm. The
latter uses quadratic models and an interpolation technique which generates spa-
tially spaced points; both of these diminish the effect of noise in derivatives-based
trust-region minimization. Accordingly, the memetic algorithm presented here effi-
ciently minimized black-box functions with up to 20 variables which also contain
noise in the objective function value.

17.1 Introduction

17.1.1 Problem Definition

Applications in engineering and in science often require obtaining the global
minimizer of a function
Y. Tenne and S.W. Armfield: A Memetic Algorithm Using a Trust-Region Derivative-Free

Optimization with Quadratic Modelling for Optimization of Expensive and Noisy Black-box

Functions, Studies in Computational Intelligence (SCI) 51, 389–415 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

390 Yoel Tenne and Steven William Armfield

xG : min{f(x) , x ∈ D ⊆ Rn} (17.1)

where D is the prescribed feasible domain (search space). In many applications
no expression is available for f or its derivatives and each evaluation of f(x) is
computationally resource intensive. In these settings the objective function is
termed an expensive black-box function. It follows that during a minimization
of such a function only the function values are available; for example, the value
of f(x) may be obtained from an experiment or from running a computer code
for a candidate solution x , i.e. a point in D [31, 41]. Furthermore, often an
uncertainty exists regarding the value of the objective function, e.g. due to
discretization errors in the computer code or due to measurement errors in an
experiment. In both cases the obtained function value can be represented as

fnoise(x) = f(x) + ν , (17.2)

where fnoise is the obtained function value, f is the true objective function
value and ν is the added noise (which is assumed to be stochastic hence oth-
erwise it could be eliminated). Minimization of expensive black-box functions
in the presence of noise contains four major difficulties:
• No information is available on f or its derivatives, except for its values

at a set of points where it has been previously evaluated. In particular, f
may have a complicated and/or multimodal landscape.

• Since function evaluations are expensive only a small number of such
evaluations can be used.

• Since the value of f(x) is obtained from a complicated procedure, e.g. by
running a computer code, there may exist infeasible points for which it is
impossible to obtain a function value, i.e. f is undefined for some points
in the search space.

• Noise distorts the landscape of the objective function and it also adversely
affects approximations of derivatives.
Accordingly, this study is concerned with optimization of expensive black-

box functions which contain noise and which are possibly multimodal and/or
undefined at some points.

17.1.2 Modeling

The high evaluation cost and the restricted number of function evaluations has
motivated the use of surrogates or models in optimization, i.e. functions which
approximate the objective function and which can be evaluated by using much
smaller computational resources [2, 14, 30, 35, 50]. The model is generated
based on points where the objective function has been evaluated; the model
is then used to approximate the value of the objective function at a new (i.e.
previously unsampled) point.

Several techniques for generating a model have been studied, e.g. the re-
sponse surface methodology, Kriging, artificial neural networks and radial ba-
sis functions [9, 14, 15, 19, 31, 35, 41]. The ‘goodness’ of the model, i.e. how

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 391

small is the difference between its predicted value and the true value of the
objective function, depends on many factors. In particular, the model can be
a poor approximation of the objective function when the latter has a compli-
cated landscape or is highly multimodal, the problem is high-dimensional or
only a small number of points are available [3, 12, 19]. Models which are a poor
approximation of the objective function can lead the optimization algorithm
to converge to a false minimizer, i.e. a minimizer of the model but which is
not a minimizer of the objective function [21]. These difficulties suggests that:

• It may be computationally too expensive to construct a good global model
(i.e. which models the objective function well over the entire search space).

• Instead, a small number of function evaluations can be allocated for ef-
ficient domain exploration so as to identify regions where minimizers are
likely to exist.

• After such regions have been identified local models can be generated so
as to approximate the objective function in a small neighbourhood. Such
models are likely to be more accurate in this neighbourhood than a global
model would be.

• A mechanism is required to measure the ‘goodness’ of a model and to
improve it, if necessary.

• The ‘goodness’ of the model should be only marginally affected by noise.

Discussions on these issues and pertinent algorithms are available in [1, 4, 11,
12, 14, 19, 21, 24, 30, 31, 50].

17.1.3 The Proposed Algorithm

Based on the above considerations we present a memetic algorithm for efficient
global optimization of expensive black-box functions which contain noise and
which are possibly multimodal and/or undefined at some points. The algo-
rithm implements the clustering approach in optimization [37], [48, p. 95–116].
It integrates an evolutionary algorithm (EA), a cluster analysis algorithm and
a trust-region derivative-free optimization algorithm. The EA explores the
search space and concentrates points in clusters around minima. Next, the
cluster analysis algorithm identifies the formed clusters such that points of
the same cluster are considered to be in the same region of attraction. Lastly,
from these clusters a derivative-free algorithm, which uses the trust-region
approach with local quadratic models of the objective function, is used to
efficiently converge to a minimizer; the models are local, i.e. no attempt is
made to model the objective function accurately over the entire search space.
In evolutionary optimization such an algorithm, which integrates an EA with
one or more additional search techniques, is termed a hybrid or a memetic
algorithm [17, 23, 29, 30, 36, 40] . Our choice of combining the EA with the
trust-region algorithm in the clustering framework is based on the following
considerations:

392 Yoel Tenne and Steven William Armfield

• The EA efficiently explores the search space, i.e. it requires only a small
number of function evaluations, and since it does not rely on derivatives
it remains efficient in the presence of noise.

• The quadratic models approximate the objective function locally and
hence are likely to approximate it better than a global model would, they
are generated using a relatively small number of points (relevant for ex-
pensive functions), they are efficiently minimized by gradient-based algo-
rithms and they retain their goodness in the presence of noise thanks to
the interpolation technique used and since, being quadratic, they smooth
out noise fluctuations [3, 10, 19].

• The trust-region algorithm provides a mechanism to measure the ‘good-
ness’ of the models and to improve them if necessary [1, 8, 11, 30, 42].

• The trust-region algorithm used in this study is globally convergent, i.e. it
is guaranteed to converge to a stationary point of f (under mild conditions
on the boundness of the model gradient and Hessian) [7, 8].

The main novelties in the proposed memetic algorithm are:

• The combination of an EA, a cluster analysis algorithm and a trust-region
derivative-free algorithm: this combination of algorithms, besides being
new, also motivates the use of the trust-region algorithm to complete
the convergence to a minimizer since the former efficiently exploits local
information.

• The use of the density cluster analysis with EAs for global optimization:
other uses of clustering techniques with EAs have been studied such as
diversity safeguarding [16] and fitness approximation [22]. Also, a scaling
technique has been introduced so as to improve the resultant clusters.

• The trust-region algorithm presented in this study uses new techniques
for generating the quadratic models and for management of the models.

• The trust-region information generated during the local searches are used
to bias the exploration of the search space by the EA. Thus, Lamarckian
learning and past information are used.

A pseudo-code of the memetic algorithm presented in this study is given
in Fig. 17.1.

The chapter is structured as follows: Sect.17.2 describes the EA, Sect.17.3
describes the cluster analysis algorithm, Sect.17.4 describes the trust-region
derivative-free optimization algorithm, Sect.17.5 describes the overall opera-
tion of the memetic algorithm and Sect.17.6 provides results and analysis for
the performance of the memetic algorithm without and with noise.

17.2 The Evolutionary Algorithm

The purpose of this section is to describe the EA implemented in the memetic
algorithm.

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 393

begin
generate an initial set of points covering D
repeat

Global stage: employ an EA for a prescribed number of generations
Cluster analysis: employ a cluster analysis algorithm on the resultant popula-
tion to identify clusters
Local stage: generate local quadratic models and use a trust-region algorithm
to converge to minimizers

until the termination condition is met
end

Fig. 17.1. A pseudo-code for the memetic algorithm

The EA is used to efficiently explore the search space and to concentrate
points(candidate solutions) around minima. It is based on well-known variants
[18, p. 49–65], [25, p. 33–44] but it has been modified to handle infeasible
points and to improve the exploration of the search space. The search space
D ∈ Rn is assumed to be box shaped (hyper-box for n > 3), i.e. it is defined
by vectors of lower and of upper bounds l and u , respectively. Also, it is
assumed that an initial population of POPSIZE feasible points is available, i.e.

C = (x1 , x2 , . . . , xPOPSIZE) , xi ∈ D , i = 1 . . . POPSIZE . (17.3)

The EA is comprised of four steps:

• Selection: this operator chooses the best PARSIZE points (i.e. whose func-
tion value is the lowest) and they are designated as parents. Values of the
objective function are used without ranking. Also, Elitism selection is used
where the best ELITESIZE points are copied to the offspring population.

• First recombination: this operator generates offspring using the chosen
parents. For each offspring NP > 1 parents are chosen using roulette wheel
selection and an offspring is generated as a linear combination of the par-
ents. To enhance the domain exploration of the operator a weight matrix

W : Wi , j ∈ [−1 , 1] , W ∈ RNP×NP , (17.4)

is generated whose element Wi , j is a random variable obtained by using
a uniform distribution. Denoting by P n×NP the matrix whose row vectors
are the chosen parents then the new offspring xoff is the vector comprised
of the diagonal elements of PW , i.e.

xoff = diag(PW) . (17.5)

This allows for an offspring to be generated outside the bounds of the
parents and for each parent to have a different weight contribution for
each allele. The procedure is repeated so as to generate POPSIZE offspring.

394 Yoel Tenne and Steven William Armfield

To avoid expensive function evaluations the offspring generated by the
recombination operator are not evaluated since in the next step (mutation)
some will be changed.

• Mutation: this operator produces µ random changes to components (al-
leles) of points in the offspring population. The number of mutations is
proportional to the function dimension, the population size and the pre-
scribed mutation rate, i.e.

µ = n× POPSIZE× MUTERATE , MUTERATE ∈ [0.05 , 0.2] . (17.6)

For each mutation an offspring is chosen at random and a component
of this candidate solution is chosen at random. The ith component of a
candidate solution x is mutated by setting it to

xi = li + U [0 , 1](ui − li) , (17.7)

where U [0 , 1] is a random variable between [0, 1] which is chosen us-
ing a uniform probability distribution. To minimize the number of func-
tion evaluations all µ mutations are applied to the population before the
points(candidate solutions) are evaluated, so a mutated point is evalu-
ated only once. If mutated points are infeasible they are mutated again,
until µ mutations result in feasible points. Since this operator increases
the population diversity it is not used in the generation before the cluster
analysis.

• Second recombination: the offspring which have not been mutated are now
evaluated. If an infeasible point is found then another recombination is
made until a feasible one is found to replace it.

After these four steps the offspring population consists of POPSIZE feasible
candidate solutions. These four steps are applied for a prescribed number of
generations EAGEN or until a function evaluations threshold is reached. To
clarify the operation of the EA a pseudo-code is given in Fig 17.2.

17.3 Cluster Analysis

The purpose of this section is to describe the cluster analysis algorithm
implemented in the memetic algorithm.

The EA concentrates points(candidate solutions) in clusters around min-
ima in the search space and these clusters are identified by the cluster analysis
algorithm (for the reasons mentioned in Sect.17.1). Due to the randomness
in the EA the initial distribution of points is changed and the final cluster
configuration is unknown a-priori. Accordingly, in the memetic algorithm the
cluster analysis algorithm of Törn [46, 47] is used since this algorithm is in-
sensitive to the distribution of points and since it does not require any input
from the user.

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 395

Require: an initial population of candidate solutions: C
begin

initialize generation counter: gc ← 1
repeat

initialize offspring population Coff ← {∅}
selection:

copy the best ELITESIZE candidate solutions to Coff

select the best PARSIZE candidate solutions of C as parents
first recombination:

for i = ELITESIZE + 1 . . . POPSIZE do
generate xoff = diag(PW) and add it to Coff

end for
mutation:

set number of mutations to perform: µ = µ2 ← n× POPSIZE× MUTERATE

Cf ← {∅}
repeat

apply µ2 mutations to candidate solutions in C which are not in Cf

evaluate mutated candidate solutions
retain acceptable candidate solutions; re-mutate infeasible
µ2 ← µ2 − number of mutations in retained candidate solutions

until µ mutations resulted in feasible candidate solution
second recombination:

repeat
evaluate unmutated offspring
replace infeasible candidate solutions by new ones obtained by using an-
other recombination

until offspring population consists of POPSIZE feasible candidate solutions
C ← Coff

gc ← gc + 1
until termination condition is met
return final population of feasible candidate solutions: C

end

Fig. 17.2. A pseudo-code of the EA in the memetic algorithm

The density cluster analysis algorithm operates as follows: clusters are
identified as regions where the points density (points per volume) is higher
than a domain-averaged value κav . Each cluster is initiated from a seed point
which is the point with the smallest function value not yet assigned to a
cluster. A sphere (hyper-sphere for n > 3) is grown around the seed point until
the point density inside the sphere (the number of points inside the sphere
divided by the sphere volume) is equal or below κav ; then all points inside
the sphere are considered a cluster. The process resumes with the remaining
unclustered points until all of them have been clustered. An example is shown
in Fig. 17.3.

396 Yoel Tenne and Steven William Armfield

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 0 1 2 3 4 5 6 7 8
-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 0 1 2 3 4 5 6 7 8
-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 0 1 2 3 4 5 6 7 8
-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 0 1 2 3 4 5 6 7 8
-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 0 1 2 3 4 5 6 7 8
-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 0 1 2 3 4 5 6 7 8
-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 0 1 2 3 4 5 6 7 8
-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 0 1 2 3 4 5 6 7 8
-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 0 1 2 3 4 5 6 7 8

r1r1r1r1r1r1r1

r2r2r2r2r2r2r2

r3r3r3r3r3r3r3

Fig. 17.3. An example of density cluster
analysis. � are the seed points and • are the
remaining points. Initially the points in the
lower-left region are identified as a cluster. It
is expanded, as shown from the radii r1 , r2

and r3 . Its expansion stops after r3 and the
remaining points at the upper-right region are
then clustered.

The point density measure κav is critical since a value too low results in
very large and sparse clusters while a value too high results in many small
clusters. For this reason a reference volume is used Vref = 4

∏d′

i=1 λi , where λi

are the dominant eigenvalues of the points’ covariance matrix . This assists to
identify whether the points reside in a subspace and so the volume enclosing
them can be estimated accurately [46].

If components of the points differ by orders of magnitude then the resultant
clusters may be unsatisfactory, since the large magnitude components domi-
nate the distance calculations and variations in the remaining components are
ignored. Thus, in the proposed memetic algorithm a scaling technique was in-
troduced so as to improve the resultant clusters. Clustering is performed on a
scaled pseudo-population Cscaled = DscaleC , where the scaling matrix Dscale

is such that in Cscaled the order of magnitude of the mean magnitude of each
component in the population is the same. This has been found to yield satis-
factory clusters. An example is shown in Fig. 17.4.

17.4 The Trust-region Derivative-free Optimizer

The purpose of this section is to describe the trust-region derivative-free op-
timization algorithm implemented in the memetic algorithm.

After identifying the clusters the trust-region algorithm is used to converge
to the minimizers of the objective function. Convergence is iterative, where
at each iteration the algorithm generates a quadratic model which locally
approximates the objective function and it computes a restricted step towards
the minimizer of the model. The merits of this algorithm in the framework of
minimizing expensive black-box functions with noise are given in Sect.17.1.

The derivative-free trust-region algorithm is an extension of the classi-
cal (non-derivative-free) trust-region algorithm; for completeness the classical
algorithm is described first followed by the derivative-free extension.

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 397

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6
 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6
 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6
 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6

x1x1x1x1

x
2

x
2

x
2

x
2

(a) Without scaling

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6
 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6
 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6
 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6
 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6
 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6
 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6

x1x1x1x1x1x1x1

x
2

x
2

x
2

x
2

x
2

x
2

x
2

(b) With scaling.

Fig. 17.4. An example of clusters generated by using the scaling technique. Fig-
ure (a) shows the resultant clusters when no scaling is performed hence changes in
x1 are ignored. Figure (b) shows the scaling technique yields better clusters.

17.4.1 The Classical Trust-region Algorithm

Trust-region algorithms iteratively converge along a path composed of re-
stricted Newton steps. A general (non-restricted) Newton step is computed
by assuming f can be locally approximated by a quadratic function around a
point xc , i.e.

f(xc + δx) � f̂(xc + δx) = f(xc) + 〈δx , ∇f(xc)〉+
1
2
〈∇2f(xc)δx , δx〉 ,

(17.8)
where ∇f(xc) and ∇2f(xc) are the gradient and the Hessian of f at xc ,
respectively. Accordingly, a non-restricted Newton step towards a minimizer
(a root of ∇f(x) = 0) is given by

δx = −∇2f(xc)
−1∇f(xc) . (17.9)

Since the approximation (17.8) may be inadequate far from xc , by using
non-restricted Newton steps the iterates may diverge and hence the technique
is not globally convergent. To ensure global convergence a trust-region algo-
rithm restricts the Newton step to a region where the quadratic approximation
of f is trusted to be valid, i.e. it computes a restricted step [26, 28, 49]. This
region is a sphere centered at xc and of radius ∆ , i.e.

T = {x : ‖x− xc‖2 � ∆} , (17.10)

and is termed a ‘trust-region’. The Newton step restricted to T is denoted by
δxm , and the predicted minimizer of f is

xm = xc + δxm , xm ∈ T . (17.11)

398 Yoel Tenne and Steven William Armfield

Based on the value of the objective function at xm the validity of the approxi-
mation (17.8) in the current trust-region is checked. This is done by comparing
the predicted reduction in the value of f to the true reduction, i.e.

ρ =
f(xc)− f(xm)

f̂(xc)− f̂(xm)
, (17.12)

where ρ = 1 represents an exact agreement (the predicted reduction matches
the actual reduction in the objective function). If the agreement is good (ρ is
sufficiently large) then the trust-region is enlarged (since the approximation
may be valid in a larger region) and xm becomes the new trust-region centre.
Otherwise, the trust-region is reduced and another attempt is made. Accord-
ingly, given the prescribed parameters η+ , δ+ > 1 , 0 < δ− < 1 , ∆max > 0 , a
typical update of the trust-region is

x(t+1)
c =

{
x

(t)
m if ρ � η+

x
(t)
c if ρ < η+

, ∆(t+1) =

{
min

{
δ+∆(t) ,∆max

}
if ρ � η+

δ−∆(t) if ρ < η+

.

(17.13)
Convergence is declared when ∆ < ∆min , where ∆min is prescribed. Typ-

ical values are η+ ∈ [0.25 , 0.75] and ∆min ∈ [10−3 , 10−2] . Further details on
trust-region algorithms are available in [6, 26, 28, 49].

17.4.2 Derivative-free Extension

To use the trust-region algorithm when f is a black-box, i.e. ∇f(xc) and
∇2f(xc) are unavailable, the following modification is used: a multivari-
ate polynomial interpolant is generated based on points(candidate solutions)
where f has been evaluated and the interpolant’s gradient and Hessian are
taken as approximations to ∇f(xc) and to ∇2f(xc) , respectively. This ap-
proach is termed a trust-region derivative-free optimization (TR-DFO) al-
gorithm. The quadratic model functions are generated by interpolation [8,
10, 33, 42, 43]. A linear polynomial was found to be inferior to a quadratic
one [32, 34], while polynomials of degree higher than two [10] were rejected
since they may require more interpolation points which is undesirable when
function evaluations are expensive, and since they may contain oscillations [3].
While the gradient and Hessian obtained from the interpolant are likely to
be inaccurate (which differs from the classical trust-region algorithm) the
TR-DFO algorithm is globally convergent (as with the classical trust-region
algorithm) under mild conditions on the boundness of the model gradient and
Hessian [7, 8].

The three steps of the TR-DFO algorithm, constructing a quadratic model
of the objective function, obtaining the minimizer of the model and updating
the model and the trust-region, are now explained.

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 399

Constructing the Quadratic Model

The quadratic model function f̂ is an interpolant generated such that it sat-
isfies the Lagrange interpolation condition

f̂(xi) = f(xi) , i = 1 . . . s , s � kmax , kmax = (n+1)(n+2)
2 , (17.14)

where kmax is the maximal number of interpolation points required to uniquely
define a quadratic polynomial; X will represent the set of interpolation points.
The quadratic f̂ is generated as a weighted sum of polynomial basis functions
in Πn

2 –the space of all n-variate polynomials which are at most quadratic, i.e.

f̂(x) =
s∑

j=1

γjpj(x) , pi(x) ∈ Πn
2 , γi ∈ R , i = 1 . . . s . (17.15)

A difficulty in generating f̂ is that not every set of points uniquely defines
the interpolant. The interpolation points must not all lie on a quadratic curve
inRn since otherwise any multiple of the curve can be added to the interpolant
while (17.14) would remain valid, hence the interpolant would not be unique.
This implies suitable points must satisfy certain geometric conditions [13, 38].
A set of points which uniquely defines the quadratic interpolant is termed
poised with respect to Πn

2 [8].
Given a set of points and their corresponding function values

X = {x1 , . . . , xs} , Y = {f(x1) , . . . , f(xs)} , (17.16)

respectively, then the algorithm of Sauer–Xu is used to extract the set of
poised points (each poised point is from X)

Xp = {xp , 1 , . . . , xp , k} , Xp ⊆ X , k � s , (17.17)

and to generate the quadratic interpolant [8, 39]. The polynomial basis func-
tion generated by the Sauer-Xu algorithm are termed the Newton Fundamen-
tal Polynomials.

The algorithm starts with a set of s monomials, e.g. for n = 2 , s = 5
a possible initial set is {1 , x1 , x2 , x1

2 , x1x2} . The algorithm uses a Gram–
Schmidt process over Πn

2 to identify the set of k points which are poised
and it transforms k monomials to the Newton Fundamental Polynomials [39].
The magnitude of one of the latter at a point is called its pivot (as in the
Gram–Schmidt process). The Sauer–Xu algorithm identifies a poised point
as such where the pivot does not vanish. If such a point is found than the
non-vanishing polynomial is normalized with respect to this point and all
other polynomials are orthogonalized with respect to this point. Thus, each
Newton Fundamental Polynomial is associated with a unique poised point.
The process resumes until all points have been examined. The Newton Funda-
mental Polynomials are used since they can be efficiently computed and since

400 Yoel Tenne and Steven William Armfield

the magnitude of their pivot is a measure of how close the interpolant is to
becoming non-unique(a larger pivot magnitude is better).

In practice, and particularly in the presence of noise in the function, it
is preferable to identify a well-poised set of points such that even with small
changes to the points of this set the interpolant would still remain unique. The
points of such a set are well-spaced and accordingly the resultant interpolant
is likely to model f better than an interpolant based on points which are
nearly non-poised. Furthermore, since well-poised points are well-spaced this
diminishes the effect of noise on the resultant model. Mathematically, a well-
poised set is such that the pivots of its corresponding points are bounded
away from zero. This motivated the pivot threshold strategy where a point is
accepted into the poised set only if it corresponds to a pivot which is larger
than a positive lower-bound θ [8, 39].

After obtaining the poised points and the Newton Fundamental Polyno-
mials the coefficients γi are obtained from the latter’s Vandermonde matrix
based on the poised points. The Sauer–Xu algorithm for generating the New-
ton Fundamental Polynomials is given in Fig. 17.5 and further details are
available in [39].

In the proposed memetic algorithm the following issues are addressed:

• The orthogonalization in the Sauer–Xu algorithm implies that if Xp

changes then a point xp , i with an index i > 1 may be not well-poised
with respect to the new set and hence it would be discarded. Accordingly,
xp , 1 = xc is used so as to retain xc .

• If n + 1 < k < (n+1)(n+2)
2 , i.e. the cardinality of X is submaximal but

higher than linear so some quadratic monomials are processed, then ini-
tially the non-mixed monomials are chosen (e.g. x1

2 , x2
2) so as to obtain

a model with a diagonal Hessian which approximates the curvature of∇2f
along the main axis.

In the following sections the interpolation set is poised and for clarity the
subscript p is dropped; a point xi corresponds to a Newton Fundamental
Polynomial pi , but otherwise the partition to blocks is ignored.

Obtaining the Minimizer

In the next step the minimizer of the model f̂ in the current trust-region
is obtained. This minimizer is denoted xm . Since f̂ is quadratic efficient
gradient-based algorithms exist for this constrained optimization problem.
The algorithm implemented in the proposed memetic algorithm is that of
Moré–Sorensen [28] since it is both efficient and since it handles all the singular
cases arising in this optimization problem. The parameters of this algorithm
(defined in [28]) are set so as to ensure at least a 99% of the maximal reduction
possible which is sufficiently accurate and avoids excessive iterations.

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 401

Require: A set of s feasible points X , Y and a set of s monomials
begin

Arrange monomials in blocks such that each block h = 0 , 1 , 2 contains polyno-

mials of maximal degree h such that p
[h̃]
g̃ is the gth monomial in the hth block

h̃ ← 0
g̃ ← 1
Xp ← {∅}
P ← {∅}
repeat

if there is a point xi ∈ X for which p
[h̃]
g̃ (xi) �= 0 then

Normalize the current polynomial: p̂
[h̃]
g̃ (x) = p

[h̃]
g̃ (x)/p

[h̃]
g̃ (xi)

Normalize polynomials in current block and in higher blocks:

for v �= g̃ : p[h̃]
v (x) = p[h̃]

v (x)− p[h̃]
v (xi)p̂

[h̃]
g̃ (x) (17.18)

for v ≥ 1 , w > h̃ : p[w]
v (x) = p[w]

v (x)− p[w]
v (xi)p̂

[h̃]
g̃ (x) (17.19)

Increment g̃ ; if all polynomials in current blocks have been processed then

increment h̃ and set g̃ = 1
Remove xi from X , i.e. X ← X \ {xi}
Add xi to Xp , i.e. Xp ← Xp ∪ {xi}
Add p

[h̃]
g̃ to P , i.e. P ← P ∪ {p[h̃]

g̃ }
end if

until all polynomials have been processed or no suitable point is found
return The poised set of points Xp = {xp , 1 , . . . , xp , k} and their corresponding
Newton Fundamental Polynomials P

end

Fig. 17.5. A pseudo-code for the Sauer–Xu algorithm for generating the Newton
Fundamental Polynomials

Updating the Trust-Region, the Interpolation Set and the Model

After xm has been found the trust-region, the interpolation set and the model
are updated. The steps are similar to those in the classical trust-region al-
gorithm but with modifications so as to update X and to handle infeasible
points.

Initially f(xm) is evaluated. If xm is infeasible then the trust-region is tem-
porarily reduced and another attempt is made. This is done by the heuristic
that since xc is feasible then it may be possible to find another feasible point
in a smaller neighbourhood around it [9]. The procedure is repeated until a
feasible xm is found or until the temporarily reduced ∆ is smaller than ∆min .

Based on xm the model is updated as follows:

• If xm is feasible and ρ � η+ : then xm is a good minimizer and is added
to X . If the cardinality of X is already maximal (k = kmax) then xm

replaces an existing point of X .

402 Yoel Tenne and Steven William Armfield

• If xm is feasible and ρ < η+ : then xm is not a good minimizer, but it is
added to X if it is poised with respect to the points in X (i.e. it satisfies
the pivot threshold criterion). This is done since function evaluations are
expensive and so are utilized as much as possible. If the cardinality of X
is already maximal (k = kmax) then xm replaces an existing point of X .

• If xm is infeasible or if ρ < η+ and the number of points in T is smaller
than CRMODAD: then a new point is generated and it replaces an existing
point in X . The new point, xN , is taken to be the maximizer of a Newton
Fundamental Polynomial of an existing point from X . This is done since a
point which increases the pivot of its corresponding Newton Fundamental
Polynomial improves the poisedness of the interpolation set X [8].

Next, the trust-region radius ∆ is updated as follows:

• If ρ � η+ : then ∆ is increased as

∆(t+1) = min
{

δ+ ×∆(t) , ∆max

}
. (17.20)

• If ρ < η+ and there are at least CRMODAD (‘cardinality of adequate model’)
points in T : then ∆ is decreased as

∆(t+1) = δ− ×∆(t) . (17.21)

The condition on the cardinality in T ensures that ∆ is decreased only
when f̂ is based on enough points, so as to avoid reducing ∆ based on an
inaccurate model.

The last step checks whether a better minimizer than xc exists in X , i.e.
for i = 2 . . . k the condition

ρ̃ =
f(xi)− f(x1)

f̂(xi)− f̂(x1)
� η− , η− � η+ , (17.22)

is checked, and the point for which the condition is met and ρ̃ is maximal
becomes the new trust-region centre, i.e. it is interchanged with x1 . A merit
of using quadratic models and the Newton Fundamental Polynomials in the
trust-region framework is that this allows not only to generate the models
but also to evaluate their goodness and to identify new points which would
improve the latter. Several issues are noted:

• The technique described for temporarily reducing ∆ is applied also when
finding xN .

• When the cardinality of X is maximal and a candidate point (xm and/or
xN) is to replace an existing point xi ∈ X then the latter is chosen
such that its corresponding Newton Fundamental Polynomial satisfies the
pivot threshold criterion at the candidate point, e.g. ‖pi(xm)‖ � θ . When
seeking a point to replace first xk is checked then xk−1 etc. This is done
so as to prefer replacing a point with a high index as possible since this
reduces the chances of causing existing points in X becoming unpoised
and hence being discarded.

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 403

After updating X and T the model f̂ is regenerated and another itera-
tion is performed. Figure 17.6 shows an example of a TR-DFO algorithm
minimization.

1 0 1 2 3 4 5 6 7 -1
 0

 1
 2

 3
 4

 5
 6

 7

1 0 1 2 3 4 5 6 7 -1
 0

 1
 2

 3
 4

 5
 6

 7

(a)

1 0 1 2 3 4 5 6 7 -1
 0

 1
 2

 3
 4

 5
 6

 7

1 0 1 2 3 4 5 6 7 -1
 0

 1
 2

 3
 4

 5
 6

 7

(b)

Fig. 17.6. An example of the TR-DFO algorithm minimization of the Branin
function. The objective function surface, the quadratic model function and the trust-
region are shown. Figure (a) shows the model at an early stage of the minimization
when the trust-region is large; Figure (b) shows near convergence when the trust-
region has been reduced and encloses xG.

At the beginning of each iteration if the cardinality of X is smaller than
the prescribed limit NPMIN then new points are sought to add to the set.
New points are introduced by maximizing the (k +1)th Newton Fundamental
Polynomial (as is done when obtaining xN). If an acceptable point cannot be
found then the algorithm still proceeds by the heuristic that it may still be
possible to find a minimizer better than xc .

The TR-DFO algorithm terminates when one of the following criteria is
met:

• ∆ < ∆min .
• f(x1) < MINF , MINF � −∞ .
• ‖∇f̂‖2 ≤ GMIN and there are at least n + 1 points in T , i.e. a stationary

point is considered valid only when the model gradient is based on a
sufficient number of points.

For clarification a pseudo-code of the TR-DFO algorithm is given in
Fig. 17.7.

17.5 The Overall Algorithm

The purpose of this section is to describe the overall operation of the proposed
memetic algorithm.

The algorithm begins by generating a set of random points in D by using
a uniform probability distribution. Initially (the global stage) the EA is used

404 Yoel Tenne and Steven William Armfield

Require: A non-empty set of feasible initial points X (0) ,
η+ > 0, δ+ > 1, GMIN > 0, 0 < ∆min < ∆max

η− � η+, 0 < δ− < 1, 0 < CRMODAD � kmax, 1 � NPMIN � kmax

begin
repeat

if k < NPMIN attempt to add points until k = NPMIN or no acceptable point
is found

Generate the quadratic model f̂
Obtain xm ;

if xm is feasible calculate ρ
if xm is feasible and ρ � η+ add xm to X
if xm is feasible and ρ < η+ but xm satisfies the pivot threshold criterion
add xm to X
if xm is infeasible or insufficient points in T replace a point from X with
a new point in T
for each point xi ∈ X , i = 2 . . . k calculate ρ̃ and check if to replace xc

until a termination criterion is met
end

Fig. 17.7. A pseudo-code for the TR-DFO implemented in the memetic algorithm

for EAGEN generation. Next, the cluster analysis algorithm is used so as to
identify clusters. Lastly (the local stage) the TR-DFO algorithm is initiated
from clusters and obtains the minimizers of f . Such a sequence is termed a
cycle. Several issues are addressed in the algorithm:

• The mutation operator is not applied in the generation prior to the cluster
analysis so as to assist cluster formation.

• For very expensive functions the TR-DFO is initiated using points only
from the first cluster since the latter contains the current best point.

• After the TR-DFO is stopped the points of clusters from which the TR-
DFO was initiated are removed from the population. To preserve the pop-
ulation size new points are added to the latter.

• Trust-regions where a good minimizer was found are used to guide how the
EA explores the search space. The heuristic is that in these trust-regions f
was modeled well and hence the global search should be biased away from
them. Accordingly, when the EA generates points(candidate solutions) by
mutation or by introducing new points to the population then these points
are accepted only if they are outside such trust-regions. Thus, information
from previous local searches is used to bias the EA search; by the tax-
onomy in [23] the proposed algorithm incorporates historic information.
Figure 17.8 shows an example of this technique.

The proposed memetic algorithm terminates when one of the following
criteria is satisfied:
• The number of function evaluations exceeds a prescribed threshold.

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 405

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

-2

-1

 0

 1

 2

-2 -1 0 1 2

Fig. 17.8. An example of using the trust-
regions to bias the search of the EA, taken from
minimization of Rosenbrock’s function. The �
are the initial random points. After the first
cycle the trust-regions for which a good min-
imizer was found (dashed line). In the second
cycle the new points (•) are generated outside
these trust-regions so the global search is bi-
ased to regions in the search space where f has
not been modelled well or not at all.

• The number of EA generation exceeds a prescribed threshold.
• A minimizer xL has been found for which the objective function value is

sufficiently small, i.e. f(xL) � MINF , MINF � −∞ .

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

(a)

-10

-5

 0

 5

 10

-10 -5 0 5 10
-10

-5

 0

 5

 10

-10 -5 0 5 10
-10

-5

 0

 5

 10

-10 -5 0 5 10
-10

-5

 0

 5

 10

-10 -5 0 5 10
-10

-5

 0

 5

 10

-10 -5 0 5 10
-10

-5

 0

 5

 10

-10 -5 0 5 10
-10

-5

 0

 5

 10

-10 -5 0 5 10
-10

-5

 0

 5

 10

-10 -5 0 5 10

(b)

Fig. 17.9. An example of the operation of the memetic algorithm taken from min-
imization of Rosenbrock’s function. Figure (a) shows the global stage where initial
random points were generated (◦) and those found by the EA (•). Figure (b) shows
the local stage where clusters were identified followed by convergence of the TR-

DFO algorithm to the minimizer xG = (1 , 1).

17.6 Results and Analysis

The purpose of this section is to provide results and analysis for the perfor-
mance of the proposed memetic algorithm without and with noise.

For its performance evaluation the memetic algorithm was used to mini-
mize a range of well-established benchmark functions of dimension n = 2 . . . 20

406 Yoel Tenne and Steven William Armfield

[5, 27, 34, 45]. They range from quadratic to multimodal and hence are ad-
equate test cases (Appendix A provides a detailed description of these func-
tions). For all functions f(xG) = 0 , except for the BrownDennis function
where f(xG) � 8.582 × 10+4 , and the Bdqrtic10D, Bdqrtic20D functions
where f(xG) �1.187× 10+1 , 3.542× 10+1, respectively.

Since for expensive functions the number of evaluations is likely to be
limited then in all tests the number of function evaluations was limited to
MAXFE = 50n (n is the function dimension) . The performance of the proposed
memetic algorithm was evaluated by the following metrics:

• fbest : the best function value found.
• ‖∆xbest‖2 = ‖xbest−xG‖2 : the Euclidean norm of the difference between

the best minimizer found after MAXFE function evaluations (xbest) and the
global minimizer (xG). This is a measure of the algorithm’s ability to
locate xG .

In all tests the following parameter settings were used:

• For the EA:

POPSIZE = min(10 , max(n , 5)), PARSIZE = POPSIZE/2, NP = 2
ELITESIZE = min(5 , max(n/2)), EAGEN = max(5 , n/2), MUTERATE = 0.1

• For the TR-DFO algorithm:

η+ = 0.75, δ+ = 2, CRMODAD = 3, η− = 0.1, δ− = 0.5
∆min = 10−3, NPMIN = n + 1, GMIN = 10−3,∆max = 10

• Stopping criteria:

MINF = −∞, MAXFE = 50n

For the Rosenbrock function and for the Chained Rosenbrock functions the
settings η+ = 0.25 , η− = 0 were used based on results from [44]. Each test
function was minimized for ten times and the mean of each metric is given
(indicated by the prefix M in Tables 17.1–17.3). The EA was also used by itself
for MAXFE evaluations so as to see whether adding the cluster analysis and the
TR-DFO algorithm improves the performance. The EA used the same initial
population and the same parameters as the memetic algorithm.

Initially the performance of the proposed memetic algorithm was evaluated
without noise. Test results are given in Table 17.1, from which the following
points arise:

• The memetic algorithm obtained a good approximation to xG within the
function evaluations threshold in all tests.

• The use of the EA allowed the memetic algorithm to remain efficient as n
increased since although the search space was enlarged the EA efficiently

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 407

explored it and located points which were closer to a minimizer than the
initial random population.

• The memetic algorithm obtained a final result which was significantly
better than that of the EA. This is attributed to the TR-DFO which
uses accurate local quadratic models and gradient-based minimization.

Table 17.1. Benchmark Results for Test Functions without Noise

Memetic Algorithm EA

Function n M (fbest) M (‖∆xbest‖2) M (fbest) M (‖∆xbest‖2)

Beale 2 7.661× 10−7 9.923× 10−4 3.134× 10−1 5.551× 10−1

Rosenbrock 2 6.049× 10−2 3.076× 10−1 6.074× 10−1 1.159× 10+0

Box3D 3 8.502× 10−3 1.312× 10+1 3.174× 10−3 1.251× 10+1

BrownDennis 4 8.582× 10+4 1.700× 10−3 1.964× 10+5 8.625× 10+0

KowalikOsborne 4 7.283× 10−3 8.170× 10+0 2.838× 10−2 6.152× 10+0

ArrowHead10D 10 9.928× 10−5 2.754× 10−3 1.947× 10+1 2.490× 10+0

Bdqrtic10D 10 1.188× 10+1 7.467× 10−2 1.564× 10+1 8.301× 10−1

CRosenbrock10D 10 1.037× 10+0 1.164× 10+0 8.398× 10+0 2.992× 10+0

ArrowHead20D 20 7.597× 10−4 9.755× 10−3 4.563× 10+1 3.788× 10+0

Bdqrtic20D 20 3.551× 10+1 2.556× 10−1 4.594× 10+1 1.140× 10+0

CRosenbrock20D 20 7.130× 10−1 7.407× 10−1 2.167× 10+1 4.296× 10+0

To test the performance of the memetic algorithm in the presence of noise
a procedure similar to the one just described was used, but the value of the
objective function was modified to

fnoise = f (1 + U [0 , 1]Anoise) , (17.23)

where fnoise is the objective function value with noise, f is the objective
function value without noise, U [0 , 1] is a random number in the range [0, 1]
obtained by using a uniform probability distribution and Anoise is the relative
noise amplitude set to either 1% or 10% . Test results for the two noise levels
are given in Tables 17.2, 17.3, from which the following conclusions arise:

• The proposed memetic algorithm was only marginally affected by the 1%
noise level and it obtained an accurate minimizer even in 10% noise level.

• The TR-DFO (used in the memetic algorithm) typically obtained a good
minimizer despite of using a gradient-based approach. This is attributed
to two factors: the interpolation technique (Sect.17.4.2) which resulted in
points which were spatially spaced and so the effect of noise was dimin-
ished, and the use of quadratic models which smoothed out some of the
multimodality caused by the noise.

• For the 1% noise level the proposed memetic algorithm outperformed the
EA in all tests. In the 10% noise level the relative performance of the EA

408 Yoel Tenne and Steven William Armfield

improved which is attributed to the function becoming more multimodal.
However, when the minimizer found by the memetic algorithm was better
then it was significantly more accurate than that found by the EA alone.

• The proposed memetic algorithm often converged in fewer function evalu-
ations when compared to the noiseless tests. This is since in latter stages
of the optimization the points became concentrated and the noise effec-
tively created a ‘local minimum’ and so the TR-DFO converged to an
approximate minimizer.

Table 17.2. Benchmark Results for Test Functions with 1% Noise

Memetic Algorithm EA

Function n M (fbest) M (‖∆xbest‖2) M (fbest) M (‖∆xbest‖2)

Beale 2 4.822× 10−9 1.041× 10−4 4.255× 10−1 8.868× 10−1

Rosenbrock 2 4.042× 10−1 3.593× 10−1 6.774× 10−1 1.246× 10+0

Box3D 3 1.457× 10−3 7.986× 10+0 1.589× 10−4 2.148× 10+1

BrownDennis 4 8.735× 10+4 6.794× 10−1 1.791× 10+5 9.269× 10+0

KowalikOsborne 4 1.030× 10−2 1.020× 10+1 1.280× 10−2 1.003× 10+1

ArrowHead10D 10 1.247× 10−5 1.274× 10−3 1.912× 10+1 2.443× 10+0

Bdqrtic10D 10 1.187× 10+1 6.461× 10−2 1.504× 10+1 7.530× 10−1

CRosenbrock10D 10 3.630× 10−2 2.561× 10−1 8.377× 10+0 2.988× 10+0

ArrowHead20D 20 5.060× 10−1 1.382× 10−1 4.921× 10+1 4.009× 10+0

Bdqrtic20D 20 4.483× 10+1 1.334× 10+0 4.626× 10+1 1.113× 10+0

CRosenbrock20D 20 1.109× 10+1 2.789× 10+0 1.854× 10+1 4.328× 10+0

Table 17.3. Benchmark Results for Test Functions with 10% Noise

Memetic Algorithm EA

Function n M (fbest) M (‖∆xbest‖2) M (fbest) M (‖∆xbest‖2)

Beale 2 6.694× 10−3 1.317× 10−1 4.910× 10−1 7.529× 10−1

Rosenbrock 2 2.855× 10−1 3.085× 10−1 8.376× 10−1 1.293× 10+0

Box3D 3 2.984× 10−2 1.100× 10+1 9.163× 10−4 1.692× 10+1

BrownDennis 4 5.709× 10+5 1.681× 10+1 2.109× 10+5 9.316× 10+0

KowalikOsborne 4 6.521× 10−3 8.051× 10+0 1.510× 10−2 4.321× 10+0

ArrowHead10D 10 4.730× 10+0 7.373× 10−1 2.235× 10+1 2.472× 10+0

Bdqrtic10D 10 1.975× 10+1 1.031× 10+0 1.650× 10+1 6.242× 10−1

CRosenbrock10D 10 2.025× 10+0 9.607× 10−1 9.521× 10+0 3.062× 10+0

ArrowHead20D 20 4.011× 10+1 3.253× 10+0 5.494× 10+1 3.993× 10+0

Bdqrtic20D 20 8.944× 10+1 1.966× 10+0 5.089× 10+1 1.135× 10+0

CRosenbrock20D 20 2.350× 10+1 3.855× 10+0 2.076× 10+1 4.411× 10+0

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 409

17.7 Conclusions

A memetic algorithm has been proposed for optimization of black-box func-
tions whose evaluation is computationally resource intensive and where un-
certainty exists in the objective function, i.e. the latter contains noise. The
algorithm relies on the global-local search framework with clustering for global
optimization; on the global scale an EA is used for efficient exploration of the
search space. On the local scale a trust-region derivative-free algorithm is used
to efficiently converge to a stationary point by using local quadratic surfaces.
The algorithm has several merits such as global convergence to a station-
ary point and a mechanism to safeguard the accuracy of the local quadratic
surfaces.

Extensive test cases with varied test functions of dimension 2–20 show
the memetic algorithm obtained a good approximation to a minimizer of the
objective function within a small number of function evaluations, with and
without noise. In the presence of 1% noise the algorithm was only marginally
affected when compared to minimization without noise. In the presence of
10% noise the algorithm often converged in fewer function evaluations since
the objective function landscape becomes multimodal and this affected the
gradinet-based trust-region algorithm; however, a good approximation to a
minimizer of the objective function was still found. Overall, the good per-
formance in the presence of noise is attributed both to the use of the EA
and the TR-DFO algorithm: the former does not rely on derivatives and re-
mains efficient in the presence of noise while the latter uses quadratic models
which smooth out some of the multimodality induced by the noise and it
uses an interpolation technique which generates spatially separated points;
both of these diminish the effect of noise. In summary, the approach imple-
mented in the proposed memetic algorithm, i.e. combining an EA for a global
search stage with the trust-region derivative-free algorithm described which
uses quadratic models for the local search stage efficiently minimized black-
box functions with up to 20 variables which also contain noise in the function
value.

A Details of the Test Functions

For each test function used in this study this appendix gives its dimension, the
reference where it was defined, its global minimizer (1 denotes a vector whose
components are all 1) and the function expression. Numbers are rounded to
three significant digits.

410 Yoel Tenne and Steven William Armfield

1. Beale (n = 2) [27]:
A sixth order polynomial whose global
minimizer is inside a curved landscape
and hence is difficult to approach.
xG = (3, 0.5)� , f(xG) = 0 .
f(x) =

∑3
i=1

{
yi − x1(1− x2

i)
}2 ,

y1 = 1.5 , y2 = 2.25 , y3 = 2.625 .

Global Minimum

-10
-5

 0
 5

 10

-10
-5

 0
 5

 10

 0
0000
e+06
e+06
e+06
e+06
e+06

Global Minimum

-10
-5

 0
 5

 10

-10
-5

 0
 5

 10

Global Minimum

-10
-5

 0
 5

 10

-10
-5

 0
 5

 10

 0
0000
e+06
e+06
e+06
e+06
e+06

Global Minimum

-10
-5

 0
 5

 10

-10
-5

 0
 5

 10

 0
0000
e+06
e+06
e+06
e+06
e+06

x1x1x1x1

x2x2x2x2

2. Rosenbrock (n = 2) [27]
A fourth order polynomial function
whose minimizer is located inside a
tight and curved valley making it
difficult to approach. Function values
increases rapidly away from the
minimizer.
xG = 1 , f(xG) = 0 .
f(x) = {10(x2 − x1

2)}2 + (1− x)2 .

Global Minimum

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 0

1000

2000

3000

4000

Global Minimum

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 0

1000

2000

3000

4000

Global Minimum

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 0

1000

2000

3000

4000

Global Minimum

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 0

1000

2000

3000

4000

x1x1x1x1

x2x2x2x2

3. Box 3D (n = 3) [27]:
A sum of squared decreasing exponents and a mixed monomial-exponent
term. The function is multimodal, having the two minima xG =(1, 10, 1),
(10 , 1 ,−1) and an infinite number of minima along the valley x1 = x2 ,
x3 = 0 . f(xG) = 0 .

f(x) =
m∑

i=1

{exp(−tix1)− exp(−tix2)− x3

(
exp(−ti)− exp(−10ti)

)
}2 ,

ti = (0.1)i , m > n (m = 10 was used in this study).

4. Brown-Dennis (n = 4) [27]
A sum of squared exponents, monomials and sinusoidal functions. The
function resembles a convex quadratic and is unimodal.
xG = (−11.594, 13.203,−0.403, 0.236)� , f(xG) = 85822.2 .

f(x) =
m∑

i=1

{(
x1 + tix2 − exp(ti)

)2 +
(
x3 + x4 sin(ti)− cos(ti)

)2}2

,

ti = i/5 .

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 411

5. Kowalik-Osborne (n = 4) [27]:
A sum of squared polynomial ratios.
The function is multimodal and has
an asymptotic global minimizer at
(+∞ , −14.7 , −∞ , −∞) and several
local minimizers.
f(xG) = 1.027× 10−3 .
The plot shows a projection of the
function landscape for x3 = x4 = 0 .

-60 -40 -20 0 20 40 60 -60
-40

-20
 0

 20
 40

 60

 0
e+09
e+09
e+09
e+09
e+09
e+09

x1

x2

f(x) =
∑11

i=1

{
yi −

x1(ui
2 + uix2)

ui
2 + uix3 + x4

}2

,

i yi ui i yi ui

1 0.1957 4.0000 7 0.04560.1250
2 0.1947 2.0000 8 0.03420.1000
3 0.1735 1.0000 9 0.03230.0833
4 0.1600 0.5000 10 0.02350.0714
5 0.0844 0.2500 11 0.02460.0625
6 0.0627 0.1670

6. Arrowhead (n is variable) [5]:
A variable-dimension fourth order
multivariate polynomial. The function
is convex quadratic and unimodal.
xG = (1, 1, . . . 1, 0)� , f(xG) = 0 .
f(x) =

∑n−1
i=1

{
(x2

i + x2
n)2 − 4xi + 3

}
.

Global Minimum

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0

 20

 40

 60

 80

Global Minimum

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0

 20

 40

 60

 80

Global Minimum

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0

 20

 40

 60

 80

Global Minimum

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0

 20

 40

 60

 80

x1x1x1x1

x2x2x2x2

7. Bdqrtic (n > 4 and is variable) [5]:
A variable-dimension multivariate quadratic function whose minimizer
varies with n . For n = 10 f(xG) = 11.865 ; for n = 10 f(xG) = 35.420 .
f(x) =

∑n−4
i=1

{(
xi

2 + 2xi+1
2 + 3xi+2

2 + 4xi+3
2 + xi+4

2
)
− 4xi + 3

}
.

8. Chained Rosenbrock (CRosenbrock) (n is variable) [45]:
The function is a multivariate extension of the bivariate Rosenbrock
function so the global minimizer is located in an n-dimensional tight and
curve valley making it difficult to locate.
xG = 1 , f(xG) = 0 .
f(x) =

∑n
i=2

{
4(xi−1 − x2

i)
2 + (1− xi)2

}
.

412 Yoel Tenne and Steven William Armfield

References

1. N. Alexandrov, J. Dennis, Jr, R. M. Lewis, and V. Torczon. A trust-region frame-
work for managing the use of approximation models in optimization. Structural
Optimization, 15(1):16–23, 1998.

2. J.-F. Barthelemy and R. Haftka. Approximation concepts for optimum struc-
tural design—a review. Structural Optimization, 5:129–144, 1993.

3. R. R. Barton. Metamodels for simulation input-output. In J. Swain,
D. Goldsman, R. Crain, and J. Wilson, editors, Proceedings of the 1992 Winter
Simulation Conference, pages 289–299, New York, NY, USA, 1992. ACM Press.

4. A. J. Booker, J. E. Dennis, Jr, P. D. Frank, D. B. Serafini, V. Torczon, and
M. W. Trosset. A rigorous framework for optimization of expensive functions
by surrogates. Structural Optimization, 17(1):1–13, 1998.

5. A. R. Conn, N. I. Gould, M. Lescrenier, and P. L. Toint. Performance of a multi-
frontal scheme for partially separable optimization. In S. Gomez and J. Hennart,
editors, Advances in Optimization and Numerical Analysis, pages 79–96. Kluwer
Academic Publishers, 1994.

6. A. R. Conn, N. I. Gould, and P. L. Toint. Trust-Region Methods. SIAM,
Philadelphia, PA, 2000.

7. A. R. Conn, K. Scheinberg, and P. L. Toint. On the convergence of derivative-
free methods for unconstrained optimization. In A. Iserles and M. Buhmann,
editors, Approximation Theory and Optimization: Tributes to M.J.D. Powell,
pages 83–108. Cambridge University Press, Cambridge; New York, 1997.

8. A. R. Conn, K. Scheinberg, and P. L. Toint. Recent progress in unconstrained
nonlinear optimization without derivatives. Mathematical Programming, 79:397–
414, 1997.

9. A. R. Conn, K. Scheinberg, and P. L. Toint. A derivative free optimization algo-
rithm in practice. In Proceedings of the Seventh AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, St.Louis, MO.
American Institute of Aeronautics and Astronautics, American Institute of
Aeronautics and Astronautics, 1998.

10. A. R. Conn and P. L. Toint. An algorithm using quadratic interpolation for
unconstrained derivative free optimization. In G. Di Pillo and F. Giannessi,
editors, Nonlinear Optimization and Applications, pages 27–47. Plenum Press,
New York, N.Y., 1996.

11. J. Dennis, Jr and V. Torczon. Managing approximation models in optimization.
In N. M. Alexandrov and M. Y. Hussaini, editors, Multidisciplinary Design
Optimization: State of the Art, pages 330–347. SIAM, Philadelphia, 1997.

12. P. D. Frank. Global modeling for optimization. SIAG/OPT Views-and-News,
(7):9–12, 1995.

13. M. Gasca and T. Sauer. Polynomial interpolation in several variables. Advances
in Computational Mathematics, 12:377–410, 2000.

14. K. Giannakoglou. Design of optimal aerodynamic shapes using stochastic op-
timization methods and computational intelligence. Progress in Aerospace Sci-
ence, 38(1):43–76, 2002.

15. A. A. Giunta and L. T. Watson. A comparison of approximation modeling
techniques: polynomial versus interpolating models. In AIAA/USAF/NASA/
ISSMO Seventh Symposium on Multidisciplinary Analysis and Optimization,
volume 1, St. Louis, MO, Sept. 2–4 1998. AIAA, AIAA. AIAA-1998-4758.

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 413

16. V. Hanagandi and M. Nikolaou. A hybrid approach to global optimization using
a clustering algorithm in a genetic search framework. Computers and Chemical
Engineering, 22(12):1913–1925, 1998.

17. W. E. Hart and R. K. Belew. Optimization with genetic algorithm hybrids that
use local search. In R. K. Belew and M. Mitchell, editors, Adaptive Individuals in
Evolving Populations: Models and Algorithms, Santa Fe Institute Studies in the
Sciences of Complexity, volume 26, chapter 27, pages 483–496. Addison-Wesley
Publishing Company, Reading, MA, 1996.

18. R. L. Haupt and S. E. Haupt. Practical Genetic Algorithms. John Wiley and
Sons, New York, 1998.

19. R. Jin, W. Chen, and T. Simpson. Comparative studies of metamodelling tech-
niques under multiple modelling criteria. Structural and Multidisciplinary Op-
timization, 23:1–13, 2001.

20. Y. Jin. A comprehensive survey of fitness approximation in evolutionary com-
putation. Soft Computing, 9(1):3–12, 2005.

21. Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimiza-
tion with approximate fitness functions. IEEE Transactions on evolutionary
computation, 6(5):481–494, 2002.

22. H.-S. Kim and S.-B. Cho. An efficient genetic algorithm with less fitness eval-
uation by clustering. In Proceedings of 2001 IEEE Congress on Evolutionary
Computation, volume 2, pages 887–894. IEEE, IEEE, 2001.

23. N. Krasnogor and J. Smith. A tutorial for competent memetic algorithms:
Model, taxonomy and design issues. IEEE Transactions on Evolutionary Com-
putation, 9(5):474–488, 2005.

24. K.-H. Liang, X. Yao, and C. Newton. Evolutionary search of approximated
n-dimensional landscapes. Journal of Knowledge-Based Intelligent Engineering
Systems, 4(3):172–183, 2000.

25. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin; New York, third edition, 1996.

26. J. J. Moré. Recent developments in algorithms and software for trust region
methods. In A. Bachem, M. Grötschel, and B. Korte, editors, Mathematical
Programming Bonn 1982 - The State of the Art, pages 258–287. Springer-Verlag,
Berlin, 1983.

27. J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained opti-
mization software. ACM Transactions on Mathematical Software, 7(1):17–41,
1981.

28. J. J. Moré and D. Sorensen. Computing a trust region step. SIAM Journal on
Scientific and Statistical Computing, 4(3):553–572, 1983.

29. Y. S. Ong and A. J. Keane. Meta-lamarckian learning in memetic algorithms.
IEEE Transactions on Evolutionary Computation, 8(2):99–110, 2004.

30. Y. S. Ong, P. B. Nair, and A. J. Keane. Evolutionary optimization of com-
putationally expensive problems via surrogate modeling. American Institute of
Aeronautics and Astronautics Journal, 41(4):687–696, 2003.

31. Y.-S. Ong, P. B. Nair, and K. Y. Lum. Max-min surrogate assisted evolutionary
algorithms for robust aerodynamic design. IEEE Transactions on Evolutionary
Computation, 10(4):392–404, 2006.

32. M. J. Powell. Direct search algorithms for optimization calculations. Acta
Numerica, pages 287–336, 1998.

33. M. J. Powell. UOBYQA: unconstrained optimization by quadratic approxima-
tion. Mathematical Programming, Series B, 92(3):555–582, 2002.

414 Yoel Tenne and Steven William Armfield

34. M. J. Powell. On trust region methods for unconstrained minimization without
derivatives. Mathematical Programming, Series B, 97(3):605–623, 2003.

35. A. Ratle. Accelerating the convergence of evolutionary algorithms by fitness
landscape approximations. In A. Eiben, B. Thomas, M. Schoenauer, and H.-P.
Schwefel, editors, Proceedings of the 5th International Conference on Parallel
Problem Solving from Nature - PPSN V, volume 1498 of Lecture Notes in Com-
puter Science, pages 87–96, Berlin Heidelberg, 1998. Springer-Verlag.

36. J.-M. Renders and S. P. Flasse. Hybrid methods using genetic algorithms for
global optimization. IEEE Transactions on Systems, Man and Cybernetics–Part
B:Cybernetics, 26(2):243–258, 1996.

37. A. Rinnooy Kan and G. Timmer. Stochastic global optimization methods part
I: Clustering methods. Mathematical Programming, 39:27–56, 1987.

38. T. Sauer. Computational aspects of multivariate polynomial interpolation. Ad-
vances in Computational Mathematics, 3(3):219–237, 1995.

39. T. Sauer and Y. Xu. On multivariate Lagrange interpolation. Mathematics of
Computation, 64(211):1147–1170, 1995.

40. G. Seront and H. Bersini. A new GA-local search hybrid for continuous opti-
mization based on multi level single linkage clustering. In H. Beyer, E. Cantu-
Paz, D. Goldberg, I. Parmee, L. Spector, and D. Whitley, editors, Proceedings of
GECCO-Genetic and Evolutionary Computation Conference 2000, pages 90–95.
Morgan Kaufmann, 2000.

41. T. W. Simpson, J. J. Korte, T. M. Mauery, and F. Mistree. Comparison of
response surface and Kriging models for multidisciplinary design optimization.
In Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multi-
disciplinary Analysis and Optimization, St.Louis, MO, volume 1, pages 381–
391. American Institute of Aeronautics and Astronautics, American Institute of
Aeronautics and Astronautics, 1998. AIAA-1998-4755.

42. Y. Tenne and S. Armfield. Efficiently minimizing expensive black-box functions
by a combination of an evolutionary algorithm, density cluster analysis and a
trust-region derivative-free optimizer. Journal of Global Optimization, 2005.
Accepted, To Appear.

43. Y. Tenne and S. Armfield. A novel evolutionary algorithm for efficient minimiza-
tion of expensive black-box functions with assisted-modelling. In Proceedings
of the IEEE World Congress on Computational Intelligence–WCCI 2006, 2006.
Accepted, To Appear.

44. Y. Tenne and S. Armfield. Computational aspects and performance of a trust-
region derivative-free algorithm for minimization of black-box functions. In
Preparation.

45. P. L. Toint. Some numerical results using a sparse matrix updating formula
in unconstrained optimization. Mathematics of Computation, 32(143):839–851,
1978.

46. A. A. Törn. Cluster analysis using seed points and density-determined hyper-
spheres as an aid to global optimization. IEEE Transactions on Systems, Man
and Cybernetics, 7(8):610–616, 1977.

47. A. A. Törn. A search-clustering approach to global optimization. In L. Dixon
and G. Szegö, editors, Towards Global Optimization 2, pages 49–62. North-
Holland Publishing Company, Amsterdam; New York; Oxford, 1978.

48. A. A. Törn and A. Žilinskas. Global Optimization. Number 350 in Lecture Notes
In Computer Science. Springer-Verlag, Berlin; Heidelberg; New York; London,
1989.

17 A Memetic Algorithm for Expensive and Noisy Black-box Functions 415

49. Y.-x. Yuan. A review of trust region algorithms for optimization. In J. Ball
and J. C. Hunt, editors, ICIAM 99 : proceedings of the Fourth International
Congress on Industrial and Applied Mathematics, Edinburgh, pages 271–282,
New York; Oxford, 2000. Oxford University Press.

50. Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum. Combining global
and local surrogate models to accelerate evolutionary optimization. IEEE Trans-
actions on Systems, Man and Cybernetics–Part C(Applications and Reviews),
To Appear.

18

Genetic Algorithm to Optimize Fitness
Function with Sampling Error and its
Application to Financial Optimization Problem

Masaru Tezuka1, Masaharu Munetomo2, and Kiyoshi Akama2

1 Research and Development Section, Hitachi East Japan Solutions, Ltd.
2-16-10, Honcho, Aoba, Senadi, 980-0014, Japan
tezuka@hitachi-to.co.jp

2 Information Initiative Center, Hokkaido University
Kita 11 Nishi 5, Sapporo, 060-0811, Japan
{munetomo, akama}@iic.hokudai.ac.jp

Summary. Fitness function of financial optimization problem is often evaluated
by Monte-Carlo method which is based on stochastic sampling. In this chapter we
deal with the trade-off between the accuracy of the fitness estimation and its com-
putational overheads, and introduce a method to decide the number of samples that
maximizes the efficiency of genetic algorithms for financial problems. We define an
index called selection efficiency which shows how close the population approaches
to takeover in a fixed amount of time. When selection efficiency is maximized, the
population converges to good solution rapidly, and optimization progresses most
efficiently. Selection efficiency is generally difficult to calculate analytically. Thus
bootstrapping approach is employed to calculate selection efficiency. The method
estimates selection efficiency from the empirical distribution. The method is applied
to the optimization of the procurement plan problem, and it optimizes Value at Risk
efficiently.

18.1 Introduction

In many real-world optimization problems, fitness is estimated from a number
of samples and has sampling error. Increasing the number of samples does
contribute reducing percentage of sampling errors, but computational time is
subject for increase. Since the amount of computation time available is limited,
there is a problem of the balance between accuracy of fitness evaluation and
computation time. We would like to challenge this problem by introducing a
new approach of deciding the number of samples that maximizes the efficiency
of genetic algorithms (GAs) for financial problems.

In financial field, optimization criteria such as Value at Risk are unable
to be calculated by analytical methods. Thus, Monte-Carlo method is widely
used to evaluate the criteria.
M. Tezuka et al.: Genetic Algorithm to Optimize Fitness Function with Sampling Error and

its Application to Financial Optimization Problem, Studies in Computational Intelligence (SCI)

51, 417–434 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

418 Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama

In order to estimate the optimization criteria, Monte-Carlo method per-
form stochastic sampling in repetitive manner. The given objective of the
optimization is estimated from the samples. With regard to obtaining precise
evaluation of the criteria, abundant volume of samples and considerably long
computational time are required. Therefore, we have a trade-off between the
accuracy of the estimation and its computational overheads.

Computation time has to be allocated into two conflicting functions such
as calculation of criteria and searching for optimal solution. If longer time
is allocated for the calculation of criteria, then estimation has tendency to
become more precise. However, searching time would have to be reduced ac-
cordingly which means less points are searched, and then it would become
impossible to obtain sufficient and acceptable solution. On the other hand, if
less time is allocated for the calculation, accuracy of the estimates becomes
lower. It may increase the possibility of the search going to wrong direction.

The method we are introducing in this chapter is based on the idea that
high accuracy estimation of the optimization criteria may not always be nec-
essary. Of course, final output of the optimization must be precise enough.
However, during the search progressing, lower accuracy may just be enough
to drive optimization.

We must balance of the allocation of time between the calculation of cri-
teria and the search of optimal solution. We discuss the case that fitness is
estimated with samples, so the decision of the time allocation is equivalent to
the decision of the number of samples.

In order to decide the best number of samples, we investigate the efficiency
of selection operation affected by the sampling error from the perspective of
takeover time, and propose selection efficiency. Selection efficiency depends
on the number of samples. The method we introduce in this chapter is to
decide the number of samples achieving maximum selection efficiency. When
selection efficiency is maximized, optimization progresses most rapidly.

Selection efficiency is difficult to calculate analytically except for the spe-
cial cases such as the case the sampling error follows normal distribution. To
realize the optimization of financial problems, we have to deal with general
cases. Thus we propose a method utilizing bootstrapping approach to calcu-
late selection efficiency.

In Sect. 18.2, we briefly review the works related to the optimization of
noisy fitness function. We define selection efficiency in Sect. 18.3. In Sect. 18.4,
the number of samples which yields the highest selection efficiency is inves-
tigated for expected value and variance optimization on the assumption that
the samples follow normal distribution. In general, it is difficult to calculate
the best number of samples. Therefore we show you the method to estimate
the number based on bootstrap method in Sect. 18.5 and show the results of
numerical experiments. Section 18.6 is the conclusion of this chapter.

18 GA to Optimize Fitness with Sampling Error and its Application 419

18.2 Brief Review of Optimization of the Fitness
Function with Sampling Error

On the optimization problems we deal with, evaluation of the optimization
criteria have sampling error. In other words, these are nothing but the op-
timization of noisy fitness function. We should point out that the error may
follow not only normal distribution but also various kinds of distributions
when financial criteria such as volatility and value at risk are coped First
of all, we would like to review the works which are related to noisy fitness
function briefly.

GA is one of the multipoint search methods and is considered to be robust
to noisy fitness function. Nissen and Propach [14] compared population-based
optimization approaches with point-based approaches on several problems
with noise. GA and Evolutionary Strategy (ES) were used as population-
based approaches and Pattern Search and Threshold Accepting were used
as point-based approaches. In this experiment, population-based approaches
were superior to point-based approaches on the optimization of the fitness
function with noise. Beker and Hadany reported that in some cases the exis-
tence of noise is beneficial to GA [4]. Noise can be considered as a variation
generating force for maintaining population’s diversity.

When GA is used for optimization and fitness is estimated with samples,
total computation time is,

Te = nt (α + sβ) (18.1)

where s is the number of samples used to evaluate one individual, t is the
number of generation alternation, n is population size, α is the computation
time to create one individual, i.e. the time to execute crossover and mutation,
β is the computation time to draw one sample from the individual. Te is
usually limited by some practical constraints.

Fitzpatrick and Grefensette investigated the effect of the noise to the opti-
mization performance in a fixed amount of time Te varying s and n [7]. They
added Gaussian noise to the fitness function. Thus, estimation error of the
fitness function followed normal distribution. It was shown that the perfor-
mance was the highest with one or two samples when α/β was zero. When
α/β was about 3, the highest performance was achieved with 5 to 20 samples.
With larger α/β, more samples were needed to achieve good performance.

With utilization of ANOVA(analysis of variance) [11], Aizawa and Wah
proposed the method to dynamically decide s for the selection to be done
correctly [1, 2]. They took variation of individuals in population as between-
group variance of ANOVA and sampling error as within-group variance. If
within-group variance is larger than between-group variance, it becomes im-
possible to distinguish each individual. Thus the number of samples is decided
such that the ratio of between-group variance to within-group is large enough
to distinguish each individual. However, their assumption was that sampling

420 Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama

error followed normal distribution and the fitness variation of individuals in
a population also followed normal distribution.

Miller et al. analyzed the selection intensity and the convergence of the
population on noisy OneMax problems [12]. However, they did not pay atten-
tion to more general problems.

As a different approach to suppress computational cost for evaluation,
fitness inheritance was proposed [15]. In the approach, some offspring are
not evaluated but their fitness are estimated as the average of their parents’
fitness. The approach enables to reduce computational cost. However, it only
worked when the average or the weighted average of the parents’ fitness is
good estimation of their offspring.

As we pointed out, on the financial optimization problems, the estimation
error may follow various kinds of distribution. For example, when the objective
is to minimize volatility, the estimation error follows chi-squared distribution.
When the objective is the to maximize value at risk, the error is considered to
follow extreme value distribution. Thus, a new method is required to achieve
efficient optimization of financial problems.

18.3 Selection Efficiency and Decision of Sample Number

Here, we consider the case that the computation time is limited. In such case,
Te of (18.1) is fixed.

α depends on the operators such as crossover, mutation, and selection
you chose. β depends of the problem to be optimized. We assume that the
population size n is decided in one way or another. Thus, you can control
only t and s. If you assign large value to s, t becomes small, and vice versa.
Controlling t and s, we want to bring the search close to a good solution in
the fixed amount of time Te.

Figure 18.1 illustrates the progress of search with small and large number
of samples. If s, the number of samples, is small, sampling error becomes large
and the error leads the search to a wrong direction as shown in Fig. 18.1 (a).
However, t can be large and many points can be searched. On the other hand,
If s is large as shown in the Fig. 18.1 (b), search goes toward right direction.
However, the computation time is consumed to draw the samples and only a
few points can be searched. Thus, the search may not progress enough.

As shown in Fig. 18.2, we consider that there is the optimal number of
samples which can obtain the highest search efficiency.

In order to decide the optimal number of samples, we describe selection
efficiency which represents the search progress rate in a limited time [18].
Selection efficiency is based on takeover time which is a performance measure
of the convergence of GA population.

Takeover time is defined as the generation when the population reaches to
contain n− 1 best individuals where n is the size of population. The takeover
time of probabilistic binary tournament selection was calculated by Goldberg

18 GA to Optimize Fitness with Sampling Error and its Application 421

Fig. 18.1. Progress of search

Fig. 18.2. The number of samples and search progress rate

and Deb [9]. In the selection, two individuals are chosen randomly from the
population and the better one is selected with probability p. The takeover
time t∗ is,

t∗ =
2

2p− 1
log2 (n− 1) . (18.2)

In the case of probabilistic tournament selection, p is a parameter you set
to control selection pressure. In optimization problems we deal with, the fitness
of the individual is estimated by s samples and the probability p depends on
sampling error. Thus we substitute p for p(s).

422 Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama

We call p(s) selection precision. The definition of selection precision p(s)
is the probability that the superiority between two individuals is correctly
estimated with s samples. When s is set to 0, p(s)is 0.5, that is, one of two in-
dividuals is randomly selected. Usually, as s increases, accuracy of estimation
increases and p(s) approaches to 1.0.

From (18.1), t, the number of generations which can be altered in a fixed
amount of time Te is,

t =
Te

n (α + sβ)
. (18.3)

t/t∗ shows how close the population approaches to takeover in the limited
time Te

t

t∗
=

(2p (s)− 1) Te

2 (α + sβ) n log2 (n− 1)

=
2p (s)− 1
α + sβ

× Te

2n log2 (n− 1)
(18.4)

Taking the part related to sample number s from (18.4), we define selection
efficiency η as

η =
2p (s)− 1
α + sβ

, (18.5)

and we consider the search progress rate is higher when η is larger.
To avoid confusion, let us make it clear the difference between selection

precision p(s) and selection efficiency η. Selection precision p(s) is the proba-
bility that the superiority between two individuals is correctly estimated with
s samples. Selection efficiency η ∼ t/t∗ is the index that shows how close the
population approaches to takeover in a limited time.

Takeover time is an index of the convergence time to good solution. Thus,
we consider that the closer the population approaches to takeover, the bet-
ter solution we have. When selection efficiency is maximized, optimization
progresses most rapidly.

Since p(s) runs from 0.5 through 1, the numerator of (18.5) takes 0 when
s = 0 and approaches to 1 as s goes close to infinity. At the same time, the
denominator of the equation does not have upper limit and approaches to
infinity as s increases. Thus, η may be a monotonic decrease function or a
function with the shape as shown in Fig. 18.2. That means too many samples
results in low selection efficiency, and we consider search progress rate in a
limited computation time is low in such cases.

18.4 Decision on the Number of Samples Following
Normal Distribution

In this section, we deal with the case that uncertainty is modeled by normal
distribution. Normal distribution, sometimes also called Gaussian distribu-

18 GA to Optimize Fitness with Sampling Error and its Application 423

tion, is defined by two parameters, mean and standard deviation. Its proba-
bility density function (PDF) is,

fµ,σ(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (18.6)

where µ is mean and σ is standard deviation. When µ = 0 and σ = 1, it is
called standard normal distribution.

It is considered that many natural phenomena follow normal distribution
due to central limit theorem. Thus, normal distribution is widely used to
model the dynamics and uncertainty in optimization problems such as the
noise of control system, stock price, demand for home appliances, and so on.

18.4.1 Maximization and Minimization of the Expected Value
of Normal Distribution

In this section, assuming samples retrieved from individual i follow normal
distribution N(µi, σi) where µi is the mean and σi is the standard deviation,
we consider maximization and minimization problem of the expected value.

Here, we also assume α � β and regard α as zero. This assumption is
true in many real-world optimization problems. Then, substituting 0 for α of
(18.5) we have

η =
2p (s)− 1

s
× 1

β
=

ή

β
(18.7)

where

ή =
2p (s)− 1

s
. (18.8)

Since β, the computation time to obtain one sample, depends on the prob-
lem to be solved, it can be considered as a given constant. So we consider ή
as selection efficiency in this section.

Unbiased estimation of the expected value of individual i with s samples is

µ̂i =
1
s

s∑
k=1

hik (18.9)

where hik is k-th sample taken from individual i.
The estimated expected value µ̂i follows normal distribution N(µi, σ/

√
s)

since the samples follow normal distribution. In tournament selection, indi-
vidual i and j are randomly chosen from the population and the better one
is selected. When true mean of individual i is larger than individual j, i.e.
µi > µj , the better individual i is correctly selected if unbiased estimate of
the expected value of individual i is also larger than individual j, i.e. µ̂i > µ̂j .
Therefore p(s, i, j), selection precision between individual i and j, is

p(s, i, j) = P (µ̂i > µ̂j |µi > µj)× P (µi > µj)
+P (µ̂j > µ̂i|µj > µi)× P (µj > µi). (18.10)

424 Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama

Since individual i and j are randomly chosen,

P (µi > µj) = P (µj > µi) =
1
2
. (18.11)

Thus,

p(s, i, j) =
1
2

[P (µ̂i > µ̂j |µi > µj) + P (µ̂j > µ̂i|µj > µi)]

=
1
2

⎡
⎢⎣Φ

⎛
⎝ µi − µj√

σ2
i
+σ2

j

s

⎞
⎠
∣∣∣∣∣∣
µi>µj

+ Φ

⎛
⎝ µj − µi√

σ2
j
+σ2

i

s

⎞
⎠
∣∣∣∣∣∣
µj>µi

⎤
⎥⎦

=
1
2

[
Φ
(
λij

√
s
)∣∣

λij>0
+ Φ

(
λji

√
s
)∣∣

λji>0

]
(18.12)

where Φ(z) is cumulative distribution function (CDF) of standard normal
distribution N(0, 1),

Φ(z) =
1√
2π

∫ z

−∞
e−x2/2dx, (18.13)

and λij = (µi − µj)/
√

σ2
i + σ2

j .
Again, i and j are interchangeable since individual i and j are randomly

chosen. Thus, we name the individual whose true fitness is better as individual
i, and rewrite λij as λ for simplicity, then, p(s, i, j) = Φ (λ

√
s), λ ≥ 0, and

(18.8) is written as

ή =
2Φ(λ

√
s)− 1

s
. (18.14)

s = 1 maximizes ή under the condition that s ≥ 1 and λ ≥ 0.

Proof. From (18.13) and (18.14), we get

∂

∂s
ή =

λe−λ2s/2

√
2πs3

− 2Φ (λ
√

s)− 1
s2

(18.15)

and
∂

∂λ

∂

∂s
ή = −

(
1 + sλ2

)
√

2πs3
e−

sλ2
2 . (18.16)

From (18.16) and s ≥ 1 it follows that

∂

∂λ

∂

∂s
ή < 0. (18.17)

giving
∂

∂s
ή

∣∣∣∣
λ>0

<
∂

∂s
ή

∣∣∣∣
λ=0

= 0. (18.18)

18 GA to Optimize Fitness with Sampling Error and its Application 425

Thus, under the condition,
∂ή/∂s ≤ 0, (18.19)

Since ή always decreases as s increases and s ≥ 1, ή takes the highest value
when s is 1. !

s is a positive integer value, i.e. s = 1, 2, 3, ..., since s is the number of
samples. As described above we name the individual whose true fitness is
better as individual i and the other as j. µi ≥ µj results in λ ≥ 0. Thus the
condition always satisfies.

On expected value maximization and minimization problems on which the
samples following normal distribution and α � β, selection efficiency is the
highest when s, the number of samples, is set to 1.

Fitzpatrick and Grefensette [7] showed by numerical experiments that the
performance of GA was the best with s = 1 or 2 when α/β = 0. Our argument
agrees with the result of them.

18.4.2 Minimization of the Variance of Normal Distribution

In this section, assuming samples retrieved from individual i follow normal
distribution N(µi, σi), we describe minimization of the variance of samples.
We also assume α � β.

The variance reflects the volatility of samples. When stability is the most
important, the variance is minimized.

Unbiased estimate of the variance is obtained by following equation.

σ̂2
i =

1
s− 1

2∑
k=1

(hik − µ̂i) (18.20)

It is known that stochastic variable F shown in (18.21) follows F distribution
with [s− 1, s− 1] degrees of freedom.

F =
σ̂2

i

σ̂2
j

σ2
j

σ2
i

(18.21)

PDF of F distribution with [n,m] degrees of freedom is,

f[n,m](x) =
Γ
(

n+m
2

)
nn/2mm/2

Γ
(

n
2

)
Γ
(

m
2

) xn/2−1

(nx + m)(n+m)/2
(18.22)

where Γ (z) is the gamma function,

Γ (z) =
∫ ∞

0

tz−1e−tdt. (18.23)

When true variance of individual i is smaller than individual j, i.e.
σ2

i /σ2
j < 1, thebetter individual i is correctly selected if unbiasedestimate of the

426 Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama

variance of individual i is also smaller than individual j, i.e. σ̂2
i /σ̂2

j < 1. There-
fore, the probability of correct selection is,

p(s, i, j) = P

(
σ̂2

i

σ̂2
j

< 1

∣∣∣∣∣ σ2
i

σ2
j

< 1

)
× P

(
σ2

i

σ2
j

< 1

)

+P

(
σ̂2

j

σ̂2
i

< 1

∣∣∣∣∣ σ2
j

σ2
i

< 1

)
× P

(
σ2

j

σ2
i

< 1

)
. (18.24)

Since individual i and j are randomly chosen, i and j are interchangeable.
Here we name the individual with smaller true variance as individual i, then,

p(s, i, j) = P

(
F[s−1,s−1] <

σ2
j

σ2
i

∣∣∣∣∣ σ2
i

σ2
j

< 1

)

and is the cumulative probability of F distribution with [s− 1, s− 1] degrees
of freedom from 0 to σ2

j /σ2
i . In the case that the objective is the minimization

of variance and the samples follow normal distribution, selection precision
does not depend of the expected values of the distribution but only on the
variances.

As shown in (18.22), PDF of F distribution is very complex. It is difficult
to obtain analytically the value of s which maximize selection efficiency on
variance minimization problems. Thus we calculated the selection efficiency ή
with various s and the variance ratio of two individuals σ2

j /σ2
i by numerical

computation. Table 18.1 shows the selection efficiency. At least two samples
are required for estimating variance. Thus, s takes an integer larger than 1.
When variance ratio is smaller than 3, s = 3 yields the highest selection
efficiency, otherwise s = 2 yields the highest.

Table 18.1. ή = (2p(s)− 1)/s on minimization of variance

σ2
j /σ2

i

s 1.001 1.01 1.1 2 3 5

2 1.59 1.58 1.52 1.08 1.67 2.32
3 1.67 1.66 1.59 1.11 1.67 2.22
4 1.59 1.58 1.52 1.04 1.52 1.95
6 1.41 1.41 1.35 0.89 1.24 1.50

12 1.08 1.07 1.02 0.61 0.77 0.82
(×10−4) (×10−3) (×10−2) (×10−1) (×10−1) (×10−1)

18 GA to Optimize Fitness with Sampling Error and its Application 427

18.4.3 Numerical Experiments on Samples Following Normal
Distribution

In this experiments, we employ a real-coded GA [6, 8, 21]. The chromosome of
individual is real-valued vector x ∈ "d where d is the dimension of a problem.

We employ binary tournament selection. Two individuals are chosen ran-
domly from the population and the individual with better unbiased estimate
is selected. BLX-α [6] is used as the crossover operator. Parameter α of BLX
is set to 0.366 which is the theoretical optimal value [10]. Crossover rate is
0.6. Mutation rate is 0.1. Each element of chromosomes is mutated by adding
Gaussian noise N(0, σmut) and σmut is set to 1.0×10−2. Population size is 40.

On the experiments, samples drawn from individual i are independent and
identically distributed. On the minimization of expected value, k-th sample
follows

hik
iid∼ N (fsp(xi), 10) = fsp(xi) + 10 N(0, 1) (18.25)

where xi is the chromosome of individual i and fsp is Sphere function,

fsp(x1, ..., xd) =
d∑

c=1

x2
c . (18.26)

The optimal solution is 0 when x = 0.
On the experiment of the minimization of variance, the sample follows

hik
iid∼ N

(
100,

√
fsp(xi) + 100

)
= 100 +

√
fsp(xi) + 100 N(0, 1). (18.27)

σ2
i , true variance of individual i, is fsp(xi) + 100. x = 0 achieves the optimal

solution where variance is 100 (or standard deviation is 10).
50 trial runs are performed for each s on each experiment. We choose the

individual with the best true mean or true variance at each generation as the
best individual while optimization is done according to unbiased estimate. The
average of the best individual of 50 trials are shown in Fig. 18.3 and Fig. 18.4.
x-axis shows total sampling number n× s× t. y-axis shows expected value in
Fig. 18.3, and standard deviation (square root of variance) in Fig. 18.4.

On the experiment of minimization of expected value, as mentioned in
previous section, optimization progresses fastest when the number of samples
drawn from one individual is 1.

On the experiment of minimization of variance, in early stage, s = 2 is the
fastest. After total sampling number reaches to about 1,400 times, s = 3 is the
fastest. We consider that in early stage s = 2 is the fastest because population
is randomly initialized and variance ratio of randomly chosen individuals is
higher. As optimization progresses, population converges and the ratio gets
smaller, then s = 3 is the fastest.

428 Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama

Fig. 18.3. Minimaization of expected value of normal samples with various s

Fig. 18.4. Minimaization of variance of normal samples with various s

18 GA to Optimize Fitness with Sampling Error and its Application 429

18.5 Application of Selection Efficiency
on the Optimization of Financial Criteria

In this section we apply selection efficiency to the optimization of financial
criteria. We take up Value-at-Risk (VaR) as a financial criterion which is
getting popular in business. VaR of financial problems does not follow normal
distribution and it is hard to calculate selection efficiency in such cases. In this
section we employ bootstrap method to calculate selection efficiency. Then we
show an application example on a financial problem.

18.5.1 Value at Risk

Value-at-Risk (VaR) is a well-known measure of the financial risk. 100α%
VaR is the lower 100(1 − α) percentile of the profit distribution as shown in
Fig. 18.5. For example, the probability of the profit falling below the VaR at
99% is 1%. Therefore VaR is able to be considered as the profit in the worst
case.

Fig. 18.5. Value at Risk(VaR)

Traditional mean-variance approach uses expected value as the index of
profitability and variance as risk [13]. Down side risk is important in prac-
tice. Variance can be the index of down side risk if the distribution of profit
is symmetric like normal distribution. However, it is known empirically by
business practitioners that the distribution of the profit is skew and asym-
metric. So VaR is the practically important index of down side risk. Bank for
International Settlements introduced VaR as standard risk measure [3].

Another point of VaR is that it represents both profitability and risk as
one index. Maximizing profit at VaR, profitability is also maximized and the
risk of shortfall is minimized. It is intelligible to and useful for practitioners.

Many financial applications are introducing VaR as risk measure [16, 17]
these days.

430 Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama

VaR is difficult to be calculated by analytical methods. Thus, Monte-Carlo
method is widely used to estimate VaR in real-world problems. The method
generates a lot of random numbers to simulate uncertainty in a profit model.
s samples of the profit is drawn by the method, and VaR is estimated from
the samples.

vk denotes k-th sample of the profit drawn by the method. Sort the samples
in ascending order and name them {v(1), v(2), ..., v(s)}. 100α % VaR of the
profit is estimated as

vκ =
(
vκ�+1 − vκ�

)
(κ− �κ�) + vκ� (18.28)

where κ = 1 + (s− 1)(1− α).

18.5.2 Bootstrapping Approach to Estimate Selection Precision

Selection precision p(s) is difficult to obtain analytically except when the sam-
ples follow specific distribution like Normal distribution. It is also difficult to
know which distribution the samples follow in real-world optimization prob-
lems. Thus, bootstrap method [5] is utilized to estimate selection precision
p(s) in this section.

Y1, ..., Ys denotes the samples randomly selected from parent population
following distribution function F (y).

Fs(y) =
1
s

s∑
k=1

δ (Yk ≤ y) (18.29)

where

δ (Yk ≤ y) =
{

1, Yk ≤ y
0, otherwise (18.30)

is called empirical distribution function. Bootstrap method resampling from
the empirical distribution function estimates the parameters of the distribu-
tion of parent population. We employ bootstrap method to estimate selection
precision p(s) [20].

In the method described here, GA is employed for optimization. All the
individuals in the first generation population are evaluated with sL samples.
sL is set to large enough value to estimate fitness precisely. hik denotes k-th
sample of the profit drawn from individual i. Then the empirical distribution
function of the profit of individual i is,

Fi,sL
(y) =

1
sL

sL∑
k=1

δ (hik ≤ y) . (18.31)

Here, θi(s) denotes the fitness of individual i estimated with s samples
following empirical distribution function Fi,sL

(y). For example, θi(s) is VaR
and so on.

18 GA to Optimize Fitness with Sampling Error and its Application 431

As the estimate of selection precision,

p̂(s , i , j)
= P (θi(s) > θj(s)| θi(sL) > θj(sL))× P (θi(sL) > θj(sL))

+P (θi(s) < θj(s)| θi(sL) < θj(sL))× P (θi(sL) < θj(sL)) , (18.32)

is used. That is the probability that superiority between θi(s) and θj(s) is the
same as the superiority between θi(sL) and θj(sL). Since sL is large enough
to estimate fitness precisely, we used the estimate with sL samples as true
fitness.

In practice, we use the best and the second best individual in the first gen-
eration population to estimate selection precision p(s) because it is essential
to distinguish the best individual from the others to drive optimization. Thus,
the estimate of selection precision is,

p̂(s) = P (θbest(s) > θ2ndbest(s)) (18.33)

on the maximization. On the minimization case, the inequality sign is reversed.
Then,

s∗ = arg max
s

2p̂ (s)− 1
α + sβ

(18.34)

is the number of samples which maximizes the selection efficiency, that is the
most efficient sample number. α and β are fixed by actual measurement.

From the second generation to the last, individuals are evaluated with
s∗ samples. Finally in the last generation, individuals are evaluated with sL

samples in order to output precise results.

18.5.3 Numerical Experiments

We show a result from numerical experiments to solve the procurement plan
optimization problem on an electronic equipment manufacturer [19] in this
section. The manufacturer purchases many kinds of materials, converts them
to the products to sell. Procurement planning is to decide the quantity of
each material to be procured, the date and time the order for each material is
placed, and which material is to be procured. The plan is created according
to the demand forecast for the products. Since the problem has uncertainty
in the demand for the products, the profit of the manufacturer is stochastic.
The objective of the optimization is the maximization of 97.5% VaR of the
profit, and is estimated by Monte-Carlo method.

In this numerical experiments, sL, the number of samples in the first gen-
eration is set to 1,000. VaR as the fitness of each individual is estimated with
sL samples. Then, s∗, the most efficient sample number is calculated by the
bootstrap approach.

s∗ samples is used to estimate the fitness of each individual from the
second generation to the generation before the last. In this experiment, the

432 Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama

computation time is limited to two hours. When two hours elapsed since the
optimization started, the optimization is aborted and each individual in the
last generation population is evaluated with sL samples.

Figure 18.6 shows the estimated selection efficiency in a trial run. In this
case, s∗ is 2.

Fig. 18.6. Selection efficiency estimated by bootstrap approach

Table 18.2 shows the results of the optimization of VaR. 10 trial runs are
performed with the method and the fixed sample number method. The mean
and variance of the best individual of ten trials are shown in the table. The
method which decides the number of samples according to selection efficiency
outperforms the fixed sample number method.

Table 18.2. The result of Value at Risk optimization

Sample number maximizing Sample number
selection efficieny fixed to sL

Mean 498.2× 106 488.8× 106

Variance 2.838× 1013 1.863× 1012

The mean and variance of VaR of 10 trials.

t-test shows that there is a significant difference between the methods. The
significance probability P (|T | ≤ t) is 0.0226.

18 GA to Optimize Fitness with Sampling Error and its Application 433

18.6 Conclusions

Many financial optimization problems are found in the area of evaluating ob-
jective function where huge computation time is consumed. This is due to
the nature of Monte-Carlo method which is based on stochastic sampling. We
have to balance the trade-off between the accuracy of the estimation and its
computational overheads. In this chapter, we have introduced a method of de-
ciding the most efficient number of samples for evaluating objective function.

At first, we have defined an index called selection efficiency. It is to show
how close the population approaches to takeover in a fixed amount of time.
Selection efficiency depends on the number of samples for estimating optimiza-
tion criteria. When selection efficiency is maximized, the population converges
to good solution rapidly, and optimization progresses most efficiently.

With the assumption of the samples follow normal distribution and the
computational cost to reproduce one individual of GA is negligible, it has
been shown that the most efficient sampling number for expected value opti-
mization is one, and two or three for minimizing variance. We have performed
numerical experiments and have found that the optimization with the number
of samples obtained by this method has achieved the best result.

Selection efficiency is difficult to calculate analytically except for the spe-
cial cases such as the case the sampling error follows normal distribution. For
example, when the objective is to minimize volatility, the estimation error
follows chi-squared distribution. When the objective is to maximize value at
risk, the error is considered to follow extreme value distribution. Thus we have
utilized bootstrapping approach to calculate selection efficiency. The method
estimates selection efficiency from the empirical distribution.

The method has been applied to the optimization of the procurement plan
problem, and it has optimized Value at Risk efficiently. Except at the last
generation, only two samples have been used for evaluating one individual.
At the last generation, enough number of samples has been used to calculate
precise solution. The number of samples used in the experiment is surpris-
ingly low. However, it also has been shown that optimization with such small
samples outperforms the conventional fixed sample number method which
traditionally required huge number of samples.

References

1. A. N. Aizawa and B. W. Wah. Dynamic control of genetic algorithms in a noisy
environment. In Proceedings of the Fifth Intl. Conference on Genetic Algorithms,
pages 48–55, 1993.

2. A. N. Aizawa and B. W. Wah. Scheduling of genetic algorithms in a noisy
environment. Evolutionary Computation, 2(2):97–122, 1994.

3. Basle Committee on Banking Supervision. Amendment to the Capital Accord
to Incorporate Market Risk. Bank for International Settlements, 1996.

434 Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama

4. T. Beker and L. Hadany. Noise and elitism in evolutionary computation. In
Soft Computing Systems – Design, Management and Applications, HIS2002,
volume 87, pages 193–201, 2002.

5. A. C. Davison and D. V. Hinkley. Bootstrap Methods and Their Application.
Cambridge University Press, 1997.

6. L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval-
schemata. In L. D. Whitley, editor, Foundations of Genetic Algorithms 2.
Morgan Kaufman, 1993.

7. J. M. Fitzpatrick and J. J. Grefensette. Genetic algorithms in noisy environ-
ments. Machine Learning, 3:101–120, 1988.

8. D. B. Fogel. Real-valued vectors. In T. Bäck, D. B. Fogel, and Z. Michalewicz,
editors, Handbook of Evolutionary Computation, pages C1.3:1–1. Institute of
Physics Publishing and Oxford University Press, 1997.

9. D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used
in genetic algorithms. In G. J. E. Rawlins, editor, Foundations of Genetic
Algorithms. Morgan Kaufman, 1991.

10. T. Higuchi, S. Tsutsui, and M. Yamamura. Simplex crossover for real-coded ge-
netic algolithms. Transactions of the japanese Society for Artificial Intelligence,
16(1):147–155, 2001.

11. B. F. J. Manly. Multivariate Statistical Methods. Chapman and Hall Ltd., 1986.
12. B. L. Miller and D. E. Goldberg. Genetic algorithms, selection schemes and the

varying effects of noise. Evolutionary Computation, 4(2):113–131, 1996.
13. J. M. Mulvey. Introduction to financial optimization: Mathematical program-

ming special issue. Mathematical Programming, 89(B):205–216, 2001.
14. V. Nissen and J. Propach. Optimization with noisy function evaluations. In

Parallel Problem Solving from Nature V, pages 159–168, 1998.
15. K. Sastry, D. E. Goldberg, and M. Pelikan. Don’t evaluate, inherit. In Pro-

ceedings of the Genetic and Evolutionary Computation Conference 2001, pages
551–558, 2001.

16. M. Tezuka, M. Hiji, Y. Ito, and Y. Kuwajima. Decision support for financing
portfolio using genetic algorithm with simulation-based evaluation. In Proceed-
ings of the 4th Asia-Pacific conference on Simulated Evolution and Learning
(SEAL’02), volume 2, pages 750–754, 2002.

17. M. Tezuka, M. Hiji, M. Munetomo, and K. Akama. Risk visualization and
decision support for supply planning under uncertain demand. IPSJ Journal,
47(3):701–710, 2006.

18. M. Tezuka, M. Munetomo, and K. Akama. Selection efficiency and sampling
error on genetic algorithms optimization under uncertainty. In Proceedings of
the 5th international conference on Simulated Evolution and Learning (SEAL
04), 2004.

19. M. Tezuka, M. Munetomo, K. Akama, and M. Hiji. Risk analysis and decision
making on the combination strategy of planned and spot procurement. In Pro-
ceeding of the Annual Conference of Japan Society for Management Information
2005 Autumn, pages 180–183, 2005.

20. M. Tezuka, M. Munetomo, K. Akama, and M. HIJI. Genetic algorithm to
optimize fitness function with sampling error and its application to financial
optimization problem. In 2006 IEEE Congress on Evolutionary Computation,
pages 388–394, 2006.

21. A. H. Wright. Genetic algorithms for real parameter optimization. In G. J. E.
Rawlins, editor, Foundations of Genetic Algorithms. Morgan Kaufman, 1991.

Part IV

Search for Robust Solutions

19

Single/Multi-objective Inverse Robust
Evolutionary Design Methodology
in the Presence of Uncertainty

Dudy Lim1, Yew-Soon Ong1, Meng-Hiot Lim2, and Yaochu Jin3

1 School of Computer Engineering, Nanyang Technological University, Nanyang
Avenue, Singapore 639798
{dlim,asysong}@ntu.edu.sg

2 School of Electrical and Electronics Engineering, Nanyang Technological
University, Nanyang Avenue, Singapore 639798
emhlim@ntu.edu.sg

3 Honda Research Institute Europe, Carl-Legien Strasse 30, 63073 Offenbach am
Main, Germany
yaochu.jin@honda-ri.de

Summary. Many existing works for handling uncertainty in problem-solving rely
on some form of a priori knowledge of the uncertainty structure. However, in real-
ity, one may not always possess the necessary expertise or sufficient knowledge to
identify suitable bounds of the uncertainty involved. Rather, it is more likely that
specifications of the realistic performance desired are derived, which may be based
on the maximum degradation tolerable or worst-case performance permissible in the
final solution. In this chapter we present a Single/Multi-objective Inverse Robust
Evolutionary (SMIRE) optimization methodology. In contrast to conventional for-
ward robust optimization, an inverse approach based on non-probabilistic methods
is introduced to avoid making possible erroneous assumptions about the uncertainty
when insufficient field data exists for accurately estimating its structure. Further,
since uncertainty is practically impossible to avoid, we consider the possible benefits
as the uncertainty prevails by introducing an opportunity criterion in the inverse
search scheme. Four inverse schemes are presented to include the different objec-
tives possibly considered in robust evolutionary optimization. The inverse schemes
are applied on synthetic test functions to illustrate their utility.

19.1 Introduction

Evolutionary Algorithm (EA) [1] is a modern stochastic optimization technique that
has emerged as a prominent contender for global optimization in complex engineer-
ing problem-solving. Its popularity lies in the ease of implementation and the ability
to arrive close to the global optimum solution with reasonable computational bud-
get. Most early studies in the literature on the application of EAs to complex

D. Lim et al.: Single/Multi-objective Inverse Robust Evolutionary Design Methodology in the

Presence of Uncertainty, Studies in Computational Intelligence (SCI) 51, 437–456 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

438 Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim, and Yaochu Jin

engineering design have mainly emphasized on locating the global optimal design
using deterministic computational models. However, in many real-world problems,
uncertainties are often present and practically impossible to avoid. In the case where
a solution is very sensitive to small variations either in the system’s variables or the
operating conditions, it may not be desirable to put it into practice. Hence opti-
mization without taking uncertainty into consideration generally leads to solutions
that should not be labeled as optimal as they are likely to perform differently when
put into practice.

Various classifications of uncertainty have been suggested over the recent years
[2–8]. In [2], four types of uncertainty were described. They are 1) noise at fitness
function, 2) uncertainty at design variables or environmental parameters, 3) approxi-
mation errors, and 4) time varying fitness function. Similar categorization can also
be found in [3]. Others [4, 5] classify uncertainty as either aleatory or epistemic.
Aleatory uncertainty refers to naturally irreducible variability, e.g. quantities that
are inherently variable over time and space. In contrast, epistemic uncertainty is
caused by incomplete knowledge about the designs to be optimized and should
be reducible if greater knowledge can be acquired. In [6–8], uncertainty is defined
as the gap between the known and unknown facts. In this chapter, we follow the
categorization of uncertainty in [2] and [3]. In particular, we focus on uncertainty in
the system’s variables and/or environmental parameters. To date, many approaches
exist for coping with uncertainty in complex engineering design optimization. These
include the One-at-a-Time Experiments, Taguchi Orthogonal Arrays, bounds-based,
fuzzy and probabilistic methods [9]. In the context of EA, a number of prominent new
studies on handling the presence of uncertainty in engineering designs have emerged
recently. In [10], a Genetic Algorithm with Robust Searching Scheme (GA/RS3)
was introduced. In this work, a probabilistic noise vector is added to the genotype
before fitness evaluation. In biological terms, this means that part of the phenotypic
features of an individual is determined by the decoding process of the genotypic code
of genes in the chromosomes. The study of an (1+1)-Evolutionary Strategy (ES) with
isotropic normal mutations using the noisy phenotype scheme has also been reported
in [11]. An evolutionary algorithm based on max-min optimization strategy using a
Baldwinian trust-region framework that employs surrogate models was also recently
proposed in [3] for robust design. Recent applications of these robust EA strategies
to engineering design problems include 2D aerodynamic airfoil [3, 12], lightweight
space structures [13] and multilayer optical coating design [14].

In this chapter, we present a Single/Multi-objective Inverse Robust Evolutionary
(SMIRE) design search methodology. In contrast to conventional forward robust op-
timization, the inverse approach avoids making assumptions about the uncertainty
structure in the formulation of the optimization search process. Making assumptions
about the uncertainty that are not backed up by strong evidence in evolutionary de-
sign optimization can possibly lead to erroneous designs that could have catastrophic
consequences. Further, most existing schemes for handling uncertainty in evolution-
ary design optimization have focused on probabilistic methods [10–14]. Since proba-
bility theory may be inappropriate when insufficient field data exists for accurately
estimating the structure of the uncertainty, we consider non-probabilistic methods,
particularly, convex modeling, in the SMIRE. We begin with a single objective IRE
approach in search for robust designs that are resilient to maximum uncertainty,
given the worst-case performance permissible by the designers. Further, since un-
certainty is practically impossible to avoid, we consider the possible benefits as the

19 SMIRE Design Methodology in the Presence of Uncertainty 439

uncertainty prevails by introducing an opportunity criterion in the design search.
To provide a trade-off between nominal, robustness, and/or opportunity in the final
design solution, various multi-objective IRE schemes are introduced.

A motivating application for the proposed methodology perhaps is in the area
of finance where portfolio design relies on the estimation of the expected returns
on securities invested. The estimation is usually based on historical valuations of
the securities and the deviation from the expected return on investment is crudely
quantified as the risk level. One underlying assumption is that for longer investment
horizon, the estimated return based on historical valuations is a good approximation
of future returns. Such an investment planning scenario originated from Markovitz’s
pioneering work on portfolio optimization [15] and is usually hard to put into prac-
tice. One reason is that the uncertainty in estimation of the expected returns as
mentioned. Although it appears that taking a very long term perspective on a port-
folio may circumvent this source of uncertainty, it is seldom adhered to for practical
reasons. Furthermore, with the current advance information technology and the dy-
namically changing macro-economics landscape, a ‘sit-and-wait’ attitude towards a
portfolio is no longer viable. To the best of our knowledge, there has not been any
work the attempts to apply evolutionary algorithms based on an inverse optimiza-
tion approach to portfolio structuring based on an inverse optimization approach.

The rest of this chapter is organized as follows. In Section 26.2, we provide a
brief overview of robust evolutionary design optimization. Four inverse schemes for
evolutionary design search in the presence of uncertainty are presented in Section
26.3. To illustrate their applications, Section 26.4 provides an empirical study on a
series of test functions with different complexities. Finally, Section 26.5 concludes
this chapter.

19.2 Evolutionary Optimization in the Presence
of Uncertainty

This section presents a brief overview on the fundamental aspects of evolutionary
design in the presence of uncertainties. Forward optimization refers to those schemes
where an optimal solution is sought based on some prior knowledge about the struc-
ture of the uncertainty. Inverse optimization, on the other hand, locates the target
solution that satisfies some criteria specified by the designers. Here, we consider the
general bound constrained nonlinear programming problem of the forms:

Forward Optimization:

Optimize : f (x)
Subject to : xl ≤ x ≤ xu

(19.1)

or

Inverse Optimization:

Optimize : f (x)− T
Subject to : xl ≤ x ≤ xu

(19.2)

where f(x) is a scalar-valued objective function, T is the targeted output perfor-
mance, x ∈ �d is the vector of design variables or environmental parameters, while
xl and xu are vectors of lower and upper bounds for x.

440 Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim, and Yaochu Jin

Here, our focus is on EAs for robust engineering design optimization under un-
certainties that arise in:

1. design vector, x
F (x) = f (x + δ) (19.3)

2. operating/environmental conditions, c

F (x) = f (x, c + ξ) (19.4)

where c = (c1, c2, . . . , cn) is the nominal value of the environmental parameters
and ξ is a random vector used to model variability in the operating conditions.
Since both forms of uncertainty may be treated equivalently, we do not differentiate
uncertainty in design variables and the operating conditions. In the rest of this
chapter we refer both the uncertain design variables and environmental parameters
as uncertain parameters for the sake of brevity.

19.2.1 Probabilistic and Non-Probabilistic Schemes

Evolutionary techniques for handling uncertainty based on probabilistic schemes
usually assume prior knowledge about the structure of the uncertainty. For example,
the uncertainties, δ and/or ξ , are often assumed to be Gaussian (normal), Cauchy,
or uniformly distributed. Very often, a Gaussian distribution with zero mean and
variance σ2, N

(
0, σ2

)
is considered for the uncertainty, by virtue of the central limit

theorem. Consequently, the effective fitness function F (x) for forward and inverse
optimization can then be described as:

Forward probabilistic optimization:

F (x) =

∫ ∞

−∞
f (x + δ) Φ (δ) dδ (19.5)

or

Inverse probabilisic optimization:

F (x) =

∫ ∞

−∞
(f (x + δ)− T) Φ (δ) dδ (19.6)

where Φ (δ) is the probability distribution of δ.
On the other hand, it is often the case in many real world engineering design

problems that very little knowledge about the structure of the uncertainty involved
is available. Making assumptions about the uncertainty that are not backed up
by strong evidence in evolutionary design optimization can possibly lead to erro-
neous designs that could have catastrophic consequences. Instead of focusing on
making any probably unjustifiable mathematical model out of the uncertainty, non-
probabilistic methods may be used. Non-probabilistic approaches have attracted
increasing attention in the engineering design community in recent years. They in-
clude evidence theory, possibility theory, interval analysis, and convex modeling.
For example, interval analysis and convex modeling studies the uncertain parame-
ters x for some intervals [xl, xu], where xl and xu are the lower and upper bound
and how this range affects the design solutions. Nevertheless, while non-probabilistic
approaches generally require minimum assumption about the uncertainty involved,
they can incur a high computational cost [3, 16]. For the details of non-probabilistic
approaches in design optimization, the reader is referred to [3, 6, 16].

19 SMIRE Design Methodology in the Presence of Uncertainty 441

19.2.2 Benefits of Uncertainty

In most design optimization schemes, uncertainty has always been viewed upon as
harmful to the final design solution. More specifically, the performance of the final
design is believed to deteriorate in practice as the result of uncertainty. Since uncer-
tainties are practically impossible to avoid, it is worth asking whether possible bene-
fits can be derived from the presence of uncertainty. In [6–8], such an observation is
termed as possible opportunity or windfall brought about by uncertainty. In Figure
19.1, it is shown that at x = 5.0, it is possible to obtain a better performance when x
deviates to 4.0 on account of the uncertainty. The same can be explained for x = 7.3,
which can even reach the global optimum at x = 7.0. In this chapter we will consider
the benefits of uncertainty in our SMIRE algorithm in Section 19.3.2.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

x

f(
x)

XX

O

XX

 X

 O

Fig. 19.1. Benefits of uncertainty

19.3 Single/Multi-objective Inverse Robust Evolutionary
(SMIRE) Design Optimization

In this section, we present the Single/Multi-objective Inverse Robust Evolutionary
algorithm for design optimization. In particular, four inverse optimization schemes
are introduced.

442 Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim, and Yaochu Jin

19.3.1 Single and Bi-objective SMIRE Design Optimization

Here, we present a scheme for single and bi-objective inverse robust evolutionary
design in the presence of uncertainty. The basic steps of the proposed algorithm are
outlined in Figure 19.2. In the first step, the worst-case performance permissible
for the final design ft, and step size � used to conduct nested searches are defined
and initialised by the designers. The robustness fitness Rf (x) is then defined as the
maximum uncertainty a design variable x can handle before violation of ft. Hence,
a design with a larger Rf (x) represents one that is more robust to uncertainty.

Subsequently, a population of designs is created randomly or using Design of
Experiments (DOE) techniques such as Latin hypercube sampling or minimum dis-
crepancy sequences [21]. Each individual in the population is evaluated to determine
its nominal fitness f (x) and undergoes a sequence of nested searches across a family
of nested search regions parameterized by the uncertainty. The aim of the nested
searches is to determine the maximum amount of uncertainty that a design solution
guarantees to handle before violating the worst-case fitness permissible as defined
by ft.

BEGIN SMIRE
Initialization Phase:
• Initialize worst-case permissible performance, ft

• Initialize step size ∆ for the inner search
• Generate a population of design vectors
Search Phase:
While (termination condition is not satisfied)

For (each individual i in the population)
• Objective-1: Obj-1 = f(xi) , applicable for bi-objective SMIRE
• Objective-2:
◦ Assign k = 0
◦ Repeat
� k = k + 1

� Minimize: fk (x)

subject to : xk
l ≤ x ≤ xk

u, where xk
l = xi − k∆, xk

u = xi + k∆

� Obtain xk
opt and f

(
xk

opt

)
� Store f

(
xk

opt

)
and associate it with k∆ in database Db

until f
(
xk

opt

)
≤ ft

◦ Estimate maximum uncertainty δi
max by interpolating from f

(
xk

opt

)
and k∆ in Db

◦ Obj-2 = Rf (xi) = δi
max

End for
• Apply MOEA (if multi-objective), or EA (if single objective)

evolutionary operators to create a new population.
End while

END SMIRE

Fig. 19.2. Single and bi-objective SMIRE design algorithm

19 SMIRE Design Methodology in the Presence of Uncertainty 443

More specifically, for each chromosome, we solve a sequence of bound constrained
optimization sub-problems of the form:

Minimize : fk (x)

Subject to : xk
l ≤ x ≤ xk

u
(19.7)

where xk
l and xk

u are the appropriate bounds on the uncertain parameters. Each kth

optimization sub-problem locates the worst-case fitness in the direct neighborhood
of individual x within the bounds, xk

l and xk
u which are updated with step size:

xk
l = xi − k∆

xk
u = xi + k∆

(19.8)

In single objective inverse robust evolutionary design optimization, only the ro-
bustness function Rf (xi) is considered. The bi-objective IRE on the hand considers
both Rf (xi) and f (x) is in the design search to locate the pareto-optimum set.

Note that by conducting a sequence of nested searches across a family of ascend-
ing nested bounds parameterized by the uncertainty vector, we arrive at a monotonic
increasing function of worst-case fitness versus uncertainty such that:

xk+1
l ≤ xk

l , xk
u ≤ xk+1

u → f
(
xk+1

opt

)
≤ f

(
xk

opt

)
(19.9)

where xk
opt denotes the optimum at the kth iteration and f

(
xk

opt

)
is the correspond-

ing worst-case fitness obtained for xk
l ≤ x ≤ xk

u. In addition, the f
(
xk

opt

)
found and

associated k∆ for each search iteration is then stored to create a database of uncer-
tainties and corresponding worst-case fitness. The sequences of iterative searches are
terminated when the optimal solution of the kth sub-problem violates the inequality
constraint in eq. (19.10), i.e.

f
(
xk

opt

)
> ft (19.10)

At the end of the sequences of searches for a chromosome, the maximum un-
certainty δmax that a design may handle given a defined ft can be determined by
interpolating from the database of uncertainties and worst-case fitness values previ-
ously archived, i.e., k∆ and f

(
xk

opt

)
. The search then proceeds with the standard

evolutionary operators to create a new population and stops when the termination
conditions are reached. Here, we further illustrate the procedure to locate the ro-
bustness fitness using an example in Figure 19.3. Consider the design point at x = 4
in the figure. Here, ft and ∆ are configured as 1.0 and 1.0, respectively. A sequence of
bound-constrained optimization sub-problems are then conducted for x = 4, which
is terminated upon violations of the constraint in eq. (19.10). The labels A, B and
C correspond to f

(
xk

opt

)
for k = 1, 2 and 3. At k = 3, the worst-case fitness, indi-

cated by C, has satisfied the termination condition. Then, the estimated maximum
amount of uncertainty, δmax the design point x = 4 can handle is determined by
interpolating from A, B, and C.

The computational complexity for establishing the robustness fitness, Rf (x) in
SMIRE is of O(gnkl). Here, g is the number of generations for the EA search, n is
the number of chromosomes evolved, k is the average number of iterations to reach
for each chromosome and l represents the average number of function evaluations

444 Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim, and Yaochu Jin

incurred in each bound constrained optimization sub-problems. It is worth noting
that k ∝ 1

∆
.

Fig. 19.3. Robustness fitness in SMIRE for xi = 4.0 and ∆ = 1.0

19.3.2 Tri-objective SMIRE Design Optimization

In this subsection, we proceed from single and bi-objective SMIRE design optimiza-
tion to consider higher number of objectives. In particular, we search for pareto-

19 SMIRE Design Methodology in the Presence of Uncertainty 445

optimal solutions when considering nominal, robustness, and opportunity fitness
simultaneously. Here we present two tri-objective schemes for exploiting the bene-
fits of uncertainty, i.e. opportunity in the design search.

Tri-objective SMIRE Scheme I.

A straightforward approach as in [18–20] is to formulate the search problem as a
tri-objective scheme which treats all three objectives equally. The procedures to
obtain the first two objectives, i.e., nominal f (x) and robustness fitness Rf (x)
for each design vector remain the same as described in Section 19.3.1 for the bi-
objective IRE. The third objective, i.e. the opportunity fitness, is determined using
an approach similar to establishing Rf (x) involving a series of nested optimization
search as illustrated in Figure 19.4.

BEGIN SMIRE
Initialization Phase:
• Initialize worst-case permissible performance, ft and minimum

performance improvement, fv.
• Initialize step size ∆ for the inner search.
• Generate a population of design vectors.
Search Phase:
While (termination condition is not satisfied)

For (each individual i in the population)
• Objective-1: Obj-1 = f(xi).
• Objective-2: Obj-2 = Rf (xi) = δi

max, as outlined in Objective-2 of
Fig. 19.3.

• Objective-3:
◦ Assign k = 0
◦ Repeat
� k = k + 1

� Maximize: d (x) = fk (x)− f (xi)

subject to : xk
l ≤ x ≤ xk

u, where xk
l = xi − k∆, xk

u = xi + k∆

� Obtain xk
opt and d

(
xk

opt

)
� Store d

(
xk

opt

)
and associate it with k∆ in database Db

until {dk (x) = f
(
xk

opt

)
− f (xi)} ≥ fv

◦ Estimate minimum uncertainty βi
max by interpolating from d

(
xk

opt

)
and k∆ in Db

◦ Obj-3 = Of (xi) = βi
min

End for
• Apply MOEA evolutionary operators to create a new population.

End while
END SMIRE

Fig. 19.4. Tri-objective SMIRE design algorithm, scheme I

The fitness of opportunity function Of (x) is defined as the minimum uncertainty
the design variable x would require in order to acquire a performance improvement

446 Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim, and Yaochu Jin

defined by fv. In particular, for each chromosome, we solve a sequence of bound
constrained optimization sub-problems in the form:

Maximize : d (x) = fk (x)− f (xi)

Subject to : xk
l ≤ x ≤ xk

u
(19.11)

where xk
l and xk

u are the appropriate bounds on the uncertain parameters.
Each kth optimization sub-problem locates the best-case fitness in the direct

neighborhood of individual x within the bounds, xk
l and xk

u which are updated
using eq. (19.8). The search for minimum uncertainty possible at x terminates when
the best performance improvement possibly achieved has reached fv, i.e. {dk (x) =
f
(
xk

opt

)
− f (xi)} ≥ fv. The minimum uncertainty βi

min is then interpolated from
the database of uncertainties and best fitness improvement recorded previously, i.e.,
k∆ and d

(
xk

opt

)
.

The expected computational costs for obtaining Rf (x) and Of (x) are equiva-
lent. In effect, for the same number of search generations made, the tri-objective
IRE scheme is approximately two times more computational expensive than the
bi-objective IRE scheme described in Section 19.3.1.

Tri-objective SMIRE Scheme II.

Alternatively, one may consider an opportunity fitness which is bound-constrained
by the maximum uncertainty obtained from objective-2, i.e. the robustness. As a
result, the opportunity fitness is defined as the maximum performance improvement
permissive in the presence of uncertainty and given by:

Maximize : Of (xi) = f (x)− f (xi)
Subject to : xi − δi

max ≤ x ≤ xi + δi
max

(19.12)

where δi
max is the maximum uncertainty defined by Rf (x). The pseudo-code for

scheme II is also outlined in Figure 19.5.
The computational complexity of Tri-objective SMIRE scheme II may be deter-

mined as O (gnl (k + 1)). In comparison to other SMIRE schemes introduced earlier,
scheme II incurs a higher computational cost than both the single and bi-objective
IREs, i.e., O (gnkl). But it is less computational expensive than the tri-objective
IRE scheme I counterpart which has a complexity of O (2gnkl).

19.4 Empirical Study

In this section, we present an empirical study on the proposed SMIRE schemes us-
ing five synthetic test functions plotted in Figure 19.6. These include a three 1D
functions (f1, f2 and f3) and two 2D functions (f4 and f5) having the characteris-
tics described in Table 19.1. It is worth noting that the choice of low dimensional
functions is only for academic purposes as the methodology introduced here applies
also to high dimensional problems.

19 SMIRE Design Methodology in the Presence of Uncertainty 447

BEGIN SMIRE
Initialization Phase:
• Initialize worst-case permissible performance, ft

• Initialize step size ∆ for the inner search.
• Generate a population of design vectors.
Search Phase:
While (termination condition is not satisfied)

For (each individual i in the population)
• Objective-1: Obj-1 = f(xi).
• Objective-2: Obj-2 = Rf (xi) = δi

max, as outlined in Objective-2 of
Fig. 19.3.

• Objective-3:
◦ Maximize : Of (xi) = f (x)− f (xi)

Subject to : xi − δi
max ≤ x ≤ xi + δi

max

◦ Obj-3 = Of (xi)
End for
• Apply MOEA evolutionary operators to create a new population.

End while
END SMIRE

Fig. 19.5. Tri-objective SMIRE design algorithm, scheme II

In the numerical studies, we employ a 16-bit binary coded standard GA for single
objective SMIRE and NSGA [17] for multi-objective SMIRE. The population size
is kept at 100, and maximum generation count is set to 100 generations. Uniform
crossover and mutation are applied at probabilities of 0.9 and 0.01, respectively.
The step size is chosen empirically to be 3% of the search bounds to minimize large
interpolation errors. In the nested optimizations, a local search based on Sequential
Quadratic Programming (SQP) is considered.

19.4.1 Discussions on Different SMIRE Schemes

Figures 19.7 and 19.8 show the obtained pareto-optimum solution sets in the parame-
ter space, when using the four different SMIRE schemes to search on test functions
f1 and f2, respectively. Using the single objective IRE scheme, the search is ex-
pected to converge to the most robust peak having nominal fitness greater than ft.
For instance, the most robust point of f1 and f2 are around x = 4.0 and x = 8.0,
respectively. On the other hand, the solution set obtained based on bi-objective IRE
are a compromise or trade-off between the two objectives considered in the scheme.
On f1, the solution set has only two members with extremely good nominal or ro-
bustness and are located at different peaks of the search space. However, due to the
higher modality of f2 fitness space, greater trade-off solutions between nominal and
robustness would exist, leading to a larger pareto-optimum solution set than that
of f1. Employing the tri-objective schemes, the solution set is even more varied as
more trade-offs between nominal, robustness, and opportunity fitness are expected.

448 Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim, and Yaochu Jin

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

X

f(
X

)

(a) f1

2 0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

X

f(X
)

(b) f2

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

X

f(
X

)

(c) f3 (d) f4

(e) f5

Fig. 19.6. 2D and 3D plots of the test functions considered

19 SMIRE Design Methodology in the Presence of Uncertainty 449

Test Characteristics of the functions
Function

f1 f (x) = e−(x−1)2/0.05 + 0.8e−(x−2)2/0.05 + 0.6e−(x−4)2/0.5

+0.8e−(x−6.5)2/0.08 + 0.6e−(x−8)2/0.02,
0 ≤ x ≤ 9, ft = 0.4 and fv = 0.2

f2 f (x) = e−(x−1)2/0.5 + 2e−(x−1.25)2/0.045 + 0.5e−(x−1.5)2/0.0128

+2e−(x−1.6)2/0.005 + 2.5e−(x−1.8)2/0.02 + 2.5e−(x−2.2)2/0.02

+2e−(x−2.4)2/0.005 + 2e−(x−2.75)2/0.045 + e−(x−3)2/0.5

+2e−(x−6)2/0.32 + 2.2e−(x−7)2/0.18 + 2.4e−(x−8)2/0.5

+2.3e−(x−9.5)2/0.5 + 3.2e−(x−11)2/0.18 + 1.2e−(x−12)2/0.18

−1 ≤ x ≤ 13, ft = 1.5 and fv = 1

f3 f (x) = e−(x−1)2/0.045 + 0.5e−(x−3)2/0.32 + 0.5e−(x−3.5)2/0.045

+0.33e−(x−3.75)2/0.045 + 0.5e−(x−6)2/0.5,
0 ≤ x ≤ 7, ft = 0.3 and fv = 0.2

f4 f (x, y) = e−[(x−1)2+(y−5)2]/0.05 + 0.8e−[(x−2)2+(y−2)2]/0.05

+0.6e−[(x−4)2+(y−3)2]/0.5 + 0.8e−[(x−6.5)2+(y−4)2]/0.08

+0.6e−[(x−8)2+(y−5)2]/0.02,
0 ≤ x, y ≤ 9, ft = 0.4 and fv = 0.2

f5 f (x, y) = e−[(x−1)2+(y−5)2]/0.5 + 2e−[(x−1.25)2+(y−5)2]/0.045

+0.5e−[(x−1.5)2+(y−5)2]/0.0128 + 2e−[(x−1.6)2+(y−5)2]/0.005

+2.5e−[(x−1.8)2+(y−5)2]/0.02 + 2.5e−[(x−2.2)2+(y−5)2]/0.02

+2e−[(x−2.4)2+(y−5)2]/0.005 + 2e−[(x−2.75)2+(y−5)2]/0.045

+e−[(x−3)2+(y−5)2]/0.5 + 2e−[(x−6)2+(y−7)2]/0.32

+2.2e−[(x−7)2+(y−7)2]/0.18 + 2.4e−[(x−8)2+(y−7)2]/0.5

+2.3e−[(x−9.5)2+(y−7)2]/0.5 + 3.2e−[(x−11)2+(y−7)2]/0.18

+1.2e−[(x−12)2+(y−7)2]/0.18

−1 ≤ x, y ≤ 13, ft = 1.5 and fv = 1

Table 19.1. Five synthetic test functions considered in the empirical study

The difference between the solutions from tri-objective scheme I and II will be
discussed further in next subsection.

19.4.2 Comparison on Tri-objective IRE Scheme I and II

To better illustrate the differences of tri-objective IRE scheme I to II, we study
the pareto-optimum solutions obtained in f3, f4, and f5 at their parameter space.
For f3, the pareto-optimum solutions obtained for both schemes are presented in
Figures 19.9 and 19.10.

450 Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim, and Yaochu Jin

0 1 2 3 4 5 6 7 8 9

Single objective

Bi−objective

Tri−objective scheme I

Tri−objective scheme II

X

Single objective

Bi−objective

Tri−objective scheme I

Tri−objective scheme II

Fig. 19.7. Pareto-optimum solutions of SMIRE on f1

0 2 4 6 8 10 12

Single objective

Bi−objective

Tri−objective scheme I

Tri−objective scheme II

X

Single objective

Bi−objective

Tri−objective scheme I

Tri−objective schme II

Fig. 19.8. Pareto-optimum solutions of SMIRE on f2

19 SMIRE Design Methodology in the Presence of Uncertainty 451

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

X

f(
X

)

f(x)
Tri−objective scheme I

A

Fig. 19.9. Pareto-optimum solutions of tri-objective IRE scheme I on f3

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

X

f(
X

)

f(x)
Tri−objective scheme II

Fig. 19.10. Pareto-optimum solutions of tri-objective IRE scheme II on f3

In tri-objective scheme I, the opportunity fitness is treated as equals to both
robustness and nominal, hence some solutions may display good opportunity pro-
perties but fares significantly poor on the other objectives, see Figure 19.9. Such
solutions usually exist on steep peaks which is labelled as A in the figure. Figures
19.11 and 19.13 show that in tri-objective scheme I, many of the pareto-optimum so-
lutions are those near the steep peaks, since the robustness property of the solutions
are ignored.

452 Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim, and Yaochu Jin

In contrast, scheme II (see Figure 19.10) defines an opportunity fitness which is
bound-constrained by the maximum uncertainty obtained from objective-2, i.e. the
robustness. By considering robustness as a constraint in the opportunity objective,
there is a greater chance for more robust solutions to have higher opportunity fitness.
Hence, the tri-objective search in this scheme mostly converges to a set of solution
that still lies on the robust peaks, as depicted in Figures 19.12 and 19.14.

X

Y

0 1 2 3 4 5 6 7 8 9
1.5

2

2.5

3

3.5

4

4.5

5

5.5

f(x,y)

Tri−objective scheme I

A

Fig. 19.11. Pareto-optimum solutions of tri-objective IRE scheme I on f4

X

Y

0 1 2 3 4 5 6 7 8 9
1.5

2

2.5

3

3.5

4

4.5

5

5.5

f(x,y)

Tri−objective scheme II

Fig. 19.12. Pareto-optimum solutions of tri-objective IRE scheme II on f4

19 SMIRE Design Methodology in the Presence of Uncertainty 453

X

Y

0 2 4 6 8 10 12 14
4

4.5

5

5.5

6

6.5

7

7.5

8

f(x,y)

Tri−objective scheme I

A

Fig. 19.13. Pareto-optimum solutions of tri-objective IRE scheme I on f5

X

Y

0 2 4 6 8 10 12 14
4

4.5

5

5.5

6

6.5

7

7.5

8

f(x,y)

Tri−objective scheme II

Fig. 19.14. Pareto-optimum solutions of tri-objective IRE scheme II on f5

Next we consider the computational complexity of the two tri-objective IRE
schemes. Table 19.2 tabulates the computational costs incurred by the schemes, in
terms of the total objective function calls, when used to search on each of the five
test functions considered. From the results, it is shown that scheme I requires a
higher computational effort than II.

454 Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim, and Yaochu Jin

Test Function Ratio of Computational Cost
between Tri-objective Scheme I and II

f1 1:0.78

f2 1:0.66

f3 1:0.75

f4 1:0.81

f5 1:0.62

Table 19.2. Ratio of computational cost incurred in IRE scheme I and II

19.5 Conclusions

In this chapter, we have presented the single and multi-objective inverse robust
evolutionary design optimization in the presence of uncertainty. It proposes the
use of inverse optimization technique in the field of robust optimization. Another
important feature of the proposed methodology is that the solutions obtained were
discovered without any requirement to make possible untrue assumptions about
the structure of the uncertainties involved as what usually available in probabilistic
methods. In addition, we have also presented the incorporation of the opportunity
fitness to possibly explore the benefit of having uncertainty in design. Hence, the
final solutions obtained provide the decision-makers or designers with more design
options considering the trade-offs up to three objectives: robustness, nominal fitness,
and opportunity fitness.

In evolutionary algorithms, many thousands of calls to the objective function are
often required to locate a near optimal solution. While the algorithm proposed offers
an effective approach to modeling of uncertainty in engineering design, a compelling
limitation of the theory is the massive computational efforts incurred in the nested
evolutionary design search. A simple solution to this issue would be to replace the
nested global optimization with local search which is much cheaper as has been
done in [16]. The computational efforts incurred would be even more devastating
if the objective function is computationally expensive which is very common in
complex engineering design problems. Nevertheless, it is worth noting here that
a promising and intuitive way to reduce the search time incurred in solving the
sequences of bound constrained sub-problems is to replace as much as possible the
computationally expensive high-fidelity analysis solvers with lower-fidelity models
that are computationally less expensive. The readers are referred to [22–24] for
greater details on the available to achieve this cost savings.

References

1. Goldberg D.E. (1989) Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, Massachusetts

2. Jin Y., Branke J. (2005) Evolutionary Optimization in Uncertain Environment-
A Survey. In: IEEE Transactions on Evolutionary Computation, Vol. 9, No. 3

19 SMIRE Design Methodology in the Presence of Uncertainty 455

3. Ong Y.S., Nair P.B., Lum K.Y. (2006) Min-Max Surrogate Assisted Evolu-
tionary Algorithm for Robust Aerodynamic Design. In: Special Issue on Evo-
lutionary Optimization in the Presence of Uncertainties, IEEE Transactions on
Evolutionary Computation, Vol. 10, No. 4

4. Oberkampf, W.L., et al. (2000) Estimation of Total Uncertainty in Modeling
and Simulation. In: Sandia Report SAND2000-0824

5. Oberkampf, W., Helton, J., Sentz, K. (2001) Mathematical Representation of
Uncertainty. In: AIAA Proceedings of Non-Deterministic Approaches Forum,
Reston, VA

6. Ben-Haim Y. (2001) Information Gap Decision Theory. Academic Press,
California

7. Ben-Haim Y. (2004) Uncertainty, Probability, and Information-Gaps. In: Reli-
ability Engineering and System Safety 85, pp. 249-266

8. Ben-Haim Y. (1996) Robust Reliability in Mechanical Sciences. Springer-Verlag,
Berlin

9. Huyse L. (2001) Solving Problems of Optimization Under Uncertainty as Sta-
tistical Decision Problems. In: AIAA-2001-1519

10. Tsutsui S. and Ghosh A. (1997) Genetic Algorithms with a Robust Solution
Searching Scheme. In: IEEE Transaction on Evolutionary Computation, Vol. 1,
No. 3, pp. 201-208

11. Arnold D.V. and Beyer H.G. (2002) Local Performance of the (1+1)-ES in a
Noisy Environ-ment. In: IEEE Trans. Evolutionary Computation, Vol. 6, No.
1., pp 30-41

12. Huyse L. and Lewis R.M. (2001) Aerodynamic Shape Optimization of Two-
dimensional Air-foils Under Uncertain Operating Conditions. ICASE NASA
Langley Research Centre, Hampton, Virginia

13. Anthony D.K. and Keane A.J. (2003) Robust Optimal Design of a Lightweight
Space Structure Using a Genetic Algorithm. In: AIAA Journal 41(8), pp. 1601-
1604

14. Wiesmann D., Hammel U. and Back T. (1998) Robust design of multilayer opti-
cal coatings by means of evolutionary algorithms. In: IEEE Trans Evolutionary
Computation, Vol 2, No 4, pp 162-167

15. Markovitz, H.M. (1952) Portfolio Selection. In: Journal of Finance, Vol. 7,
pp. 77-91

16. Lim D., Ong Y.S., Lee B.S. (2005) Inverse Multi-Objective Robust Evolutionary
Design Optimization in The Presence of Uncertainty. In: Workshop on Evolu-
tionary Algorithm for Dynamic Optimization Problems, Genetic and Evolution-
ary Computation Conference (GECCO), Washington

17. Srinivas N. and Deb K. (1994) Multiobjective Optimization Using Nondomi-
nated Sorting in Genetic Algorithm. In: Evolutionary Computation, 2(3):221-
248

18. Ray T. (2002) Constrained Robust Optimal Design Using a Multiobjective Evo-
lutionary Algorithm. In: Proceedings of Congress on Evolutionary Computation

19. Jin Y. and Sendhoff B. (2003) Trade-Off between Performance and Robustness:
An Evolution-ary Multiobjective Approach. In: Proceedings of Second Inter-
national Conference on Evolu-tionary Multi-criteria Optimization. LNCS 2632,
Springer, pp.237-251, Faro

20. Li M., Azarm S., Aute V. (2005) A Multi-Objective Genetic Algorithm for
Robust Design Optimization. In: Genetic and Evolutionary Computation Con-
ference (GECCO), Washington

456 Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim, and Yaochu Jin

21. Fang K.T., Ma C.X., and Winker P. (2000) Centered L2-Discrepancy of Random
Sampling and Latin Hypercube Design, and Construction of Uniform Designs.
In: Mathematics of Computation, Vol. 71, No. 237, pp. 275-296

22. Jin Y. and Sendhoff B. (2002) Fitness approximation in evolutionary computa-
tion: A survey. In: Proceedings of the 2002 Genetic and Evolutionary Compu-
tation Conference, pp. 1105-1112

23. Ong Y.S., Nair P.B. and Keane A.J. (2003) Evolutionary Optimization of Com-
putationally Expensive Problems via Surrogate Modeling. In: AIAA Journal,
Vol. 41, No. 4, pp 687-696

24. Zhou Z.Z., Ong Y.S., Nair P.B., Keane A.J. and Lum K.Y. (2006) Combining
Global and Local Surrogate Models to Accelerate Evolutionary Optimization.
In: IEEE Transactions On Systems, Man and Cybernetics - Part C

20

Evolving the Tradeoffs between
Pareto-Optimality and Robustness
in Multi-Objective Evolutionary Algorithms

Chi Keong Goh and Kay Chen Tan

Department of Electrical and Computer Engineering
National University of Singapore
4 Engineering Drive 3, Singapore 117576
{ckgoh, eletankc}@nus.edu.sg

Summary. Many real-world applications involve the simultaneous optimization of
several competing objectives and are susceptible to decision or environmental para-
meter variation which results in large or unacceptable performance variation. While
several studies on robust optimization have been presented in the domain of single-
objective (SO) problems, the evolution of robust solutions is rarely studied in the
context of evolutionary multi-objective optimization (EMOO). This chapter presents
a robust multi-objective evolutionary algorithm for constrained multi-objective op-
timization. The proposed algorithm, incorporating the features of micro-GA which
performs a local search for the worst case scenario of each candidate solution, the
memory-based feature of tabu restriction to guide the evolutionary process and pe-
riodic re-evaluation of archived solutions to reduce uncertainty of evolved solutions,
is capable of evolving the tradeoffs between Pareto optimality and robustness. The
effectiveness of the algorithm is validated upon two benchmark with different pro-
perties and the I-beam design problem.

20.1 Introduction

Multi-objective evolutionary algorithms (MOEAs) are a class of stochastic optimiza-
tion techniques that simulates biological evolution to solve problems with multiple
objectives. Multi-objective (MO) optimization is a challenging research topic be-
cause it involves the simultaneous optimization of several complex objectives in the
Pareto optimal sense and requires researchers to address many issues that are unique
to MO problems. The advances made in MOEAs design is the result of two decades of
intense research examining topics such as fitness assignment [9, 18], diversity preser-
vation [4, 16], balance between exploration and exploitation [1], and elitism [17] in
the context of MO optimization. Although the application of evolutionary multi-
objective optimization (EMOO) to real-world problems [8, 24] has been gaining
significant attention from researchers in different fields, there is a distinct lack in
studies investigating the issues of uncertainties in the literature [11].

C.K. Goh and K.C. Tan: Evolving the Tradeoffs between Pareto-Optimality and Robustness

in Multi-Objective Evolutionary Algorithms, Studies in Computational Intelligence (SCI) 51,

457–478 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

458 Chi Keong Goh and Kay Chen Tan

Uncertainties in real-world optimization problems are due to factors such as
data incompleteness and uncertainties, mathematical model inaccuracies, environ-
mental conditions uncertainties, and solutions that cannot be implemented exactly.
According to [14, 19], the various forms of uncertainty can be classified as 1) noisy
fitness functions [11], 2) uncertainty of design variables or environmental parame-
ters [5, 22], 3) approximation errors, and 4) time varying fitness functions. This
chapter considers the optimization of a set of Pareto optimal solutions that remain
satisfactory in the face of parametric variations, i.e. type 2 uncertainty. The opti-
mization of robust solutions is of particular importance in real-world problems, such
as scheduling, vehicle routing and engineering design optimization, where certain
characteristics of the environment may not be known with absolute certainty and
the decision spaces can be sensitive to parametric variations. Furthermore, varia-
tion in variable or environment may affect the quality and performance adversely
and robust optimization considers the effects explicitly and seeks to minimize the
consequences without eliminating efficiency.

A number of studies concerning evolutionary single-objective (SO) optimization
of robust solutions have been reported in the literature. Tsutsui and Ghosh [12] pro-
posed a genetic algorithm with robust solution searching scheme GAs/RS3 where
individual genotype is perturbed before evaluation and presented a mathematical
model expressing the relationship between noise and fitness reduction. This scheme
is later extended to consider the mean fitness of a number of perturbed individuals
in [26]. On the other hand, Branke [2] explored different techniques to improve al-
gorithmic performance and computational efficiency. More recently, an evolutionary
algorithm based on max-min optimization strategy using a Baldwinian trust-region
framework that employs surrogate models is proposed for robust aerodynamic de-
sign [19]. Robust SO (rSO) has also been successfully applied to engineering design
problems, scheduling and multi-layer optical coating design. Nonetheless, the issue
of robust optimization for MO problems is rarely considered in the literature until
recently [5, 13].

In addition, the fact that there is an inherent tradeoff between robustness and
optimality has some interesting implications for robust evolutionary optimization.
This chapter is concerned with the development of an evolutionary technique for
constrained robust MO (rMO) optimization and presents a robust multi-objective
evolutionary algorithm (RMOEA) which is capable of evolving the tradeoffs bet-
ween Pareto optimality and robustness. In particular, it incorporates the proposed
worst performance measure and a local search process that performs the search for
the worst case scenario for each candidate solution. In addition, it implements the
memory-based feature of tabu search (TS) to improve the computational efficiency
and constraints under uncertainty as well as periodic re-evaluation of archived solu-
tions to reduce uncertainty of evolved solutions.

The organization of the chapter is as follows: Section 20.2 provides a brief de-
scription of MO optimization, rMO optimization and the basic MOEA framework.
Based on the MOEA framework, Section 20.3 presents the proposed RMOEA for
rMO optimization. After which, the performance of the proposed RMOEA is vali-
dated through empirical studies upon three different problems in Section 20.4. Fi-
nally, conclusions are drawn in Section 20.5.

20 Evolving Tradeoffs between Pareto-Optimality and Robustness 459

20.2 Background Information

This section introduces relevant rMO optimization concepts and definitions. MO
optimization and Pareto definitions are first described followed by the formulation
of the rMO optimization problem. Finally, a short overview of the MOEA paradigm
is presented.

20.2.1 Multi-objective Optimization and Pareto Optimality

Many real-world applications involve complex optimization tasks with various com-
peting specifications and constraints. These optimization tasks are typically rep-
resented by its mathematical model and the specification of MO criteria captures
more information about the modeled problem as several problem characteristics
are taken into consideration. Without any loss of generality, this paper considers a
minimization problem and the MO problem can be formally defined as

min
x∈Xnx

f(x) = {f1(x), f2(x), ..., fM (x)} (20.1)

s.t. g(x) ≥ 0, h(x) = 0

where X represents the nx-dimensional continuous or discrete feasible solution space
defined by g and h, x is the decision vector and f ∈ F M .

In contrast to SO optimization where an unique solution exist, a set of solutions
representing the tradeoffs between the different objectives is sought in MO optimiza-
tion. This set of solutions is also known as the Pareto optimal set. The concepts of
Pareto dominance and Pareto optimality are fundamental in MO optimization, with
Pareto dominance forming the basis of solution quality. In the total absence of in-
formation regarding the preferences of objectives, it is commonly regarded that a
ranking scheme based upon the Pareto optimality is the most appropriate approach
to represent the fitness of each individual in an evolutionary algorithm for MO
optimization [10, 21].

Definition 1. Pareto Dominance: f1 ∈ F M dominates f2 ∈ F M , denoted by f1 ≺
f1 iffx1,i ≤ x2,i ∀i ∈ {1, 2, ..., M} and x1,j < x2,j ∃j ∈ {1, 2, ..., M}

Definition 2. Pareto Optimal Front: The Pareto optimal front, denoted as P F ∗,
is the set of nondominated solutions with respect to the objective space such that
P F ∗ = {f∗

i |f∗
i ≺ fj , ∀ fj ∈ F M }

Definition 3. Pareto Optimal Set: The Pareto optimal set, denoted as P S∗, is the
set of nondominated solutions with respect to the decision space such that P S∗ =
{x∗

i |F (x∗
i) ≺ F (xj), ∀ F (xj) ∈ F M }

A solution is said to be a nondominated solution if no other solution dominates
it. Each objective component of any non-dominated solution in the Pareto optimal
set can only be improved by degrading at least one of its other objective compo-
nents [21].

460 Chi Keong Goh and Kay Chen Tan

20.2.2 Robust Multi-objective Optimization

In order to avoid any confusion in the subsequent discussions, it will be instructive
to make a distinction between the solution sets based on rMO and MO optimiza-
tion. The set of tradeoffs and solutions discovered under a deterministic setting will
be referred as the efficient or deterministic Pareto front (P Fdet) and Pareto solu-
tion set (P Sdet) respectively. Likewise, P F ∗ and P S∗ will be denoted as P F ∗

det

and P S∗
det . On the other hand, the robust Pareto front (P Frob) and solution set

(P Srob) will refer to the set of tradeoffs and solutions discovered with explicit robust
considerations respectively. Given a particular set of desirable robust properties, the
optimal robust Pareto front and solution set will be denoted as P F ∗

rob and P S∗
rob

respectively.
The MO problem formulated in the previous section reflects the conventional

methodology adopted in the vast majority of the optimization literature which as-
sumes that the MO problem is deterministic and the core optimization concern
is the maximization of solution set quality. However, Pareto optimality does not
necessarily mean that any of the solutions along the tradeoff is desirable or even
implementable in practice. This is primarily because such a deterministic approach
neglects the fact that real-world problems are characterized by uncertainty. Further-
more, with the increasing complexity of modern applications, it is not possible to
model any problem with absolute certainty even with the state-of-the-arts modeling
techniques.

In order to reduce the consequences of uncertainty on optimality and practi-
cality of the solution set, factors such as decision variable variation, environmental
variation and modeling uncertainty have to be considered explicitly. Therefore, the
minimization MO problem is redefined as the following.

min
x∈Xnx

f(x, σx, σe) = {f1(x, σx , σe), f2(x, σx , σe), ..., fM (x, σx , σe)} (20.2)

s.t. g(x, σx , σe) ≥ 0, h(x, σx , σe) = 0

where σx and σe represent the uncertainty associated with x and environmental
conditions. Both forms of uncertainty may be treated equivalently and this chapter
will be focused on uncertainties in the decision variables. Different noise models such
as normal, Cauchy, and uniform distribution have been considered in the literature.
Nonetheless, only uniformly distributed noise in the form of [lb, up] will be considered
in this chapter.

20.2.3 MOEA framework

In contrast to SO optimization where convergence is the main concern, there are
three optimization goals for MOEA: 1) proximity to P Fdet (P Frob), 2) a diverse
Pareto front, and 3) uniform distribution of solutions along the discovered Pareto
front. The motivation of the second goal is to provide the decision maker with many
choices while the third goal is to provide the decision maker with information about
the tradeoffs between the different solutions.

In extending the conventional MOEA framework for rMO optimization, it is
essential to understand the key components of MOEA and consider the role that
each component plays in this context. Many different MOEAs have been proposed

20 Evolving Tradeoffs between Pareto-Optimality and Robustness 461

over the years with the aim of fulfilling the three optimization goals. Based on
the different cost assignments and selection strategies, EAs for MO optimization
can be broadly classified into two classes: non-Pareto approaches and Pareto-based
approaches. Although Pareto-based MOEA is the dominant approach, recent stud-
ies have revealed the deficiencies of such techniques in handling high-dimensional
problems. Nevertheless, most of the evolutionary techniques for MO optimization
exhibit common characteristics and can be represented in the pseudocode shown in
Fig. 20.1.

Based on the state-of-the-arts, MOEAs are characterized by some form of di-
versity preservation mechanisms and elitism. Diversity preservation operators are
conducted to ensure diversity and a uniform distribution of solutions. Instances of
diversity mechanisms include niche sharing, crowding, grid mapping, clustering, and
etc. In the case of elitism, it involves 1) the storage of the best solutions found along
the evolutionary process and/or 2) the reinsertion of elitist solutions into the evolv-
ing population to improve convergence. A variety of evolutionary operators such as
mutation and crossover have been used in the literature. Note that variation can
also be performed by some form of local search operators or heuristics.

Population Initialization
Fitness Evaluation
Update Archive
While (Stopping criteria not satisfied)

Selection based on fitness and diversity
Elitist Selection
Evolutionary variation
Fitness Evaluation
Update Archive

End While
Output Archive

Fig. 20.1. Framework of MOEA

20.3 A Robust Multi-Objective Evolutionary Algorithm

From the discussion of the MOEA framework in the previous section, it is ap-
parent that it is necessary to deal with the issues of fitness assignment, selection
and elitism for robust optimization. This section describes the the proposed robust
multi-objective evolutionary algorithm (RMOEA) which addresses these issues and
is capable of evolving the tradeoffs between Pareto optimality and robustness.

462 Chi Keong Goh and Kay Chen Tan

20.3.1 Algorithmic Flow of RMOEA

In order to explore the tradeoffs between robustness and Pareto optimality for con-
strained MO problems, the RMOEA considers robustness as an independent opti-
mization criteria and implements the features of micro-genetic algorithm (µGA),
Tabu restriction, and archival re-evaluation. The flowchart of RMOEA is shown
in Fig. 20.2. The evolutionary process starts with the initialization of the initial
population of candidate solutions. The initialization process can either be random
or created by means of Design of Experiment (DOE) techniques. After which, all
individuals are evaluated based on the respective objective functions, the robust
measure as well as the constraint violation. In particular, this chapter utilizes a
measure that calculated based on the worst case situation and will be described in
the next section.

The evaluation process involves the selection of neighboring points for the as-
sessment of each candidate solutions. In order to minimize the effects of stochasticity
associated with the random and DOE creation of neighboring points, RMOEA ap-
plies a µGA to search for the worst solution within a specified bound defined by the
noise model considered. In addition, Tabu restriction is applied to guide the search
and reduce computational load. After the evaluation process, archiving is performed
to store the nondominated solutions found along the evolutionary process. Since
robust optimization is inherently uncertain, archived solutions are re-evaluated at
periodic intervals. The archiving process will be described in greater detail in a later
section.

After which, the selection of individuals into the mating pool is conducted. The
selection process is elitist in nature and is conducted in a two stage process: 1) the
archive and evolving population are combined and 2) binary tournament selection
of this combined population is conducted to fill up the mating pool. In order to
promote the exploration and exploitation of robustness and optimality, the selection
criterion adopted in each tournament is randomly based on either a constrained
Pareto ranking scheme or the robust measure. In the event of a tie, i.e. same rank
or same robust measure, the individual with the lower niche count [12] will be
selected. Note that the mechanism of niche sharing is used in the tournament
selection and diversity maintenance in the archive. After the selection process, the
individuals will undergo the process of uniform crossover and adaptive mutation
operator (AMO) [23].

20.3.2 MO Robust Measure

The RMOEA implements a MO approach, which allows the algorithm to explore
the tradeoffs between robustness and Pareto-optimality. The issues considered in
the design of the MO approach includes 1) the selection of an appropriate robust
measure and 2) an appropriate means of incorporating the selected robust measure.

Many different robust measures such as the expected fitness, the fitness variance
and the worst case fitness have been applied in the literature and each of them
reflect a different aspect of robustness. In this chapter, the worst case scenario is
considered and the robust measure for the i− th objective can be written as,

f ′
i(x) =

maxx∈Xnx

(
fi(x

′)
)
− fi(x)

fi(x)
(20.3)

20 Evolving Tradeoffs between Pareto-Optimality and Robustness 463

GA evaluation

Update Tabu List

All individuals evaluated?

Initialize Population

Stopping criteria met?Update Archive

Output Archive

Uniform Crossover

AMO

Add offspring to
population

Pareto Ranking Updare Archive

Elitist Selection

Yes

Yes

No

No

Evaluation process

Fig. 20.2. Algorithmic flow of RMOEA

where x′ ∈ [x′ − lb, x′ + up]. From (20.3), it can be noted that the measure reflects
the degree of variation resulting from the worst objective value.

With respect to the latter issue of incorporating the robust measure, the pres-
ence of multiple competing objectives in MO optimization leads to the issue of how
the robust measure can be implemented without a substantial increase in problem
dimensionality. In particular, the objective space will be doubled if the worst case
situation for objective variation is considered independently, i.e. a 20-objective prob-
lem will become a 40-objective problem! Therefore, it will be more appropriate to
consider the minimization of the worst possible case al all objectives and the MO
problem to be solved can be now written as

min
x∈Xnx

f(x, σx, σe) = {f1(x), f2(x), ..., fM (x), fM+1(x)} (20.4)

where fM+1(x) = max
i=1,2,..,M

(
f ′

i(x)
)

20.3.3 Constrained Pareto Ranking

In order to evolve solutions that remains valid under perturbations, the feasibility of
each individual for each constraint will be represented by the worst case violation in

464 Chi Keong Goh and Kay Chen Tan

its neighborhood. The constrained Pareto ranking presented in this chapter is based
on a constrain-dominance scheme that is similar to the scheme proposed in [3]. In
particular, an individual f1 constrain-dominates the individual f2 if,

1. f1 is feasible and f2 is infeasible.
2. Both solutions are infeasible and f1 dominates f2 in terms of the different

constraint violations.
3. Both solutions are infeasible, incomparable in terms of the different constraint

violations and f1 dominates f2 in terms of the objective values.
4. Both solutions are feasible and f1 dominates f2 in terms of the objective values.

Actual ranking is based on the scheme presented by Fonseca and Fleming [10]
which assigns the same smallest cost for all non-dominated individuals, while the
dominated individuals are ranked according to how many individuals in the popu-
lation dominating them. Therefore, the rank of an individual in the population will
be given by 1 + DC where DC is the number of individuals constrain-dominating
the particular individual in the objective domain.

20.3.4 Tabu Restriction

Tabu search is a single-point local search procedure which exploits memory of past
movements in the form of tabu restriction to explore new regions of the search space.
While Tabu search may not be applied effectively for the simultaneous discovery of
Pareto-optimal solutions, the concept of Tabu restriction can be easily extended to
guide the evolutionary optimization process to reduce computational effort. This fea-
ture is particularly useful in the context of robust optimization where the assessment
of any individual requires the evaluation of neighboring points as well.

In this chapter, Tabu restriction is used in conjunction with the evaluation
process to reduce the number of evaluations required for solutions that are similar to
those that have been assessed to be infeasible. In addition, it avoids the classification
of a previously known infeasible solution as feasible solution due to the uncertainties
involved in the evaluation process. During the evaluation process of each individual,
each of the neighboring point will be examined against the Tabu list. Similar points
will not be evaluated and will inherit the attributes of the matching Tabu solution
in the Tabu list. At the same time, the Tabu list will be updated with new solutions
that violate the constraints. Similar to the archive, the most crowded member will
be removed when the maximum size is reached.

20.3.5 µGA Evaluation of Worst Case Performance

The evaluation of each individual for robust optimization problems requires the
sampling of multiple neighboring points for the computation of the various robust
measures. The convention approach involves the creation of such points, either
randomly or by means of DOE methods. However, the stochastic nature of such
approaches results in an inefficient evaluation process and may provide a bad
estimation of the robust measure. Therefore, this chapter incorporates a µGA
to perform a directed search for each individual’s worst case performance and
constrain violation within the neighborhood of the particular individual.

20 Evolving Tradeoffs between Pareto-Optimality and Robustness 465

The pseudocode of the µGA is shown in Fig. 20.3. The µGA begins with the
creation of POP SIZEGA neighboring points about the individual under evalua-
tion. The Tabu restriction assisted assessment presented in the previous section is
implemented for the evaluation of these individuals. Since the µGA sought to dis-
cover the worst case performance, the µGA is actually optimizing a MO problem
that maximizes 1) the worst case objective in (20.3) and 2) the worst constrain vio-
lation. At every generation, the worst performance found will be updated and the
best individual will be stored. Elitism is applied by reinserting the best individual
into the mating pool. Binary tournament selection is then conducted on the evolv-
ing population to fill up the mating pool. After which, the mating pool will undergo
uniform crossover and AMO.

INITIALIZE : Create neighbors

EVALUATE

STORE best individual

REPEAT UNTIL gen_req reached DO
SELECTION : Insert best individual into mating pool. Binary

tournament selection of - 1 individuals from

CROSSOVER: Perform uniform crossover
MUTATION: Perform AMO
EVALUATE: Assess each individual assisted by Tabu restriction
STORE best individual

END

POP_SIZE GA

POP_SIZE GA

POP GA

POP GA

POP GA

STORE worst case performance

STORE worst case performance

RETURN worst case performance

Fig. 20.3. Pseudocode of µGA performing local search for worst case performance

20.3.6 Archival Re-evaluation

This section describes the technique of archival re-evaluation to reduce the degree
of uncertainty present in the archive. The idea of re-evaluating archived solution is
to avoid the long term presence of solutions that have been wrongly perceived to be
robust. An implication of such solutions on elitist MOEAs is that it will mislead the
evolutionary optimization process as well as keeping the true robust solutions out
of the archive.

A simple re-evaluation scheme is implemented in this section whereby all indi-
viduals that have been residing in the archive beyond a certain threshold, TH will be
re-evaluated. In this paper, TH is set as two generations. Thereafter, all dominated
solutions will be removed from the archive. During normal optimization process,
the archive is updated at each cycle, i.e., a candidate solution will be added to the

466 Chi Keong Goh and Kay Chen Tan

archive if it is not dominated by any members in the archive. Likewise, any archive
members dominated by this solution will be removed from the archive. In order to
preserve a diverse solution set, a recurrent truncation process based on the niche
count is used to remove the most crowded archive member when the predetermined
archive size is reached.

20.4 Empirical Studies

This section starts with Section 20.4.1 that describes the three test problems, in-
cluding two new benchmarks and one practical engineering problem, used for the
empirical studies. Section 20.4.2 presents the performance of RMOEA in finding
the tradeoffs between Pareto optimality and robustness, the effects of the various
features as well as the algorithm’s ability to handle the constrained engineering
problem.

20.4.1 Benchmark Problem

In order to investigate the tradeoffs between Pareto optimality and robustness, this
section presents two new test problems with the following functional form.

min f1(xI) = x1 + 15 (20.5)

min f2(xI , xII) = g(xI) + r(xII) + 2 (20.6)

where xI and xII represents the subset of decision variables associated with solution
optimality and solution robustness respectively. The functions g() and r() controls
the difficulty and landscape sensitivities of the problem respectively. To minimize
any complications arising from problem characteristics, a simple g() is used

g(xI) = 1− 1

|xI | − 1
·
√

f1 − 15∑|xI |
i=2

xi + 1
(20.7)

Test problem 1

Test problem 1 is an instantiation of a Type III problem described by Deb and
Gupta [5]. The r() function is defined as

r(xII) = 1− max
i=1,...,D

(
di · exp

(
−

|xII |∑
j

(
xj − νi,j

wi
)2
))

(20.8)

where D = 2. The various parameter settings are shown in Table 20.1. Therefore
(20.8) for test problem 1 defines two minima, P F ∗

det at xi = 0.75 ∀xi ∈ xII and
the local Pareto front at xi = 0.25 ∀xi ∈ xII as shown in Fig. 20.4. Being less
sensitive to parametric variations, the local Pareto set corresponds to the global
effective Pareto set and the different Pareto fronts are illustrated in Fig. 20.5.

20 Evolving Tradeoffs between Pareto-Optimality and Robustness 467

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 20.4. Landscape sensitivities of test problem 1

15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16
2

2.5

3

3.5

Local and Robust Pareto Front

Global Efficient Front

Feasible Region

Infeasible Region

Fig. 20.5. Efficient and Robust Pareto front of test problem 1

Test problem 2

Test problem 2 is similar to test problem 1 except that five troughs are defined in
this problem. The parameter settings are given in Table 20.1. The P F ∗

det is located
at x1 ∈ xII = 0.3 and x2 ∈ xII = 0.5. While the most robust front is located at
x1 ∈ xII = 0.6 and x2 ∈ xII = 0.8, the most desirable front will depend on the
noise level. The different troughs and Pareto fronts are illustrated in Fig. 20.6 and
Fig. 20.7 respectively. The only unfavorable peak, regardless of noise intensity, is

468 Chi Keong Goh and Kay Chen Tan

located at x1 ∈ xII = 0.8 and x2 ∈ xII = 0.2. The main difficulty is the discovery
of the different robustness tradeoffs. In this chapter, |xII | = 2 for both problems.

0 0.2 0.4 0.6 0.8 1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 20.6. Landscape sensitivities of test problem 2

15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Feasible Region

Infeasible Region

Global Efficient Front

Most Robust Front

Fig. 20.7. Efficient and Robust Pareto front of test problem 2

20 Evolving Tradeoffs between Pareto-Optimality and Robustness 469

Table 20.1. Parameter settings for Test Problems 1 and 2

Problem No. of Troughs Trough Depth Trough Location Trough Width
(D) (di) (νi,j) (wi)

Test Problem 1 2 d1 = 0.8 ν1,1 = ν1,2 = 0.25 w1 = 0.1
d2 = 1.0 ν2,1 = ν2,2 = 0.75 w2 = 0.006

Test Problem 2 5 d1 = 0.75 ν1,1 = ν1,2 = 0.25 w1 = 0.1
d2 = 0.8 ν2,1 = 0.7, ν2,2 = 0.4 w2 = 0.05
d3 = 0.4 ν3,1 = 0.6, ν3,2 = 0.8 w3 = 0.2
d4 = 1.0 ν4,1 = 0.3, ν4,2 = 0.5 w4 = 0.01
d5 = 0.9 ν5,1 = 0.8, ν5,2 = 0.2 w5 = 0.01

I-Beam Design

The design of the I-beam involves four decision variables, two objectives as well as
geometric and strength constraints. The two minimization objectives are given by,

1. f1, the cross section area of the beam,

f1(x) = 2x1x4 + x3 · (x1 − 2x4) (20.9)

2. f2, the static deflection of the beam,

f2(x) =
60, 000

x3 · (x1 − 2x4)3 + 2x2x4 ·
(
4x2

4 + 3x1 · (x1 − 2x4)
) (20.10)

where x1, x2, x3 and x4 are the decision variables. The geometric constraints are
given as,

10 ≤ x1 ≤ 80 (20.11)

10 ≤ x2 ≤ 50 (20.12)

0.9 ≤ x3 ≤ 5 (20.13)

0.9 ≤ x1 ≤ 5 (20.14)

while the strength constraint is,

16− 180, 000x1

x3 · (x1 − 2x4)3 + 2x2x4 ·
(
4x2

4 + 3x1 · (x1 − 2x4)
) (20.15)

− 15, 000x2

x3
3 · (x1 − 2x4) + 2x3

2x4
≥ 0

For more information about this problem, interested readers are referred to [7].

20.4.2 Simulation Results

The simulations are implemented in C++ on an Intel Pentium 4 2.8 GHz computer
and thirty independent runs are performed for each of the test functions in order to
obtain the statistical information, such as consistency and robustness. For compar-
ison, an instance of RMOEA without the incorporation of µGA that optimizes the
effective objective values is included in the study. This particular algorithm will be
denoted as mRMOEA. Both algorithms adopt a binary chromosome representation
and the various parameter settings are tabulated in Table 20.2. The noise model is
selected to be [-0.025, 0.025].

470 Chi Keong Goh and Kay Chen Tan

Table 20.2. Parameter settings for RMOEA and mRMOEA

Parameter Settings

Population Size Evolving population and archive size: 100, µGA size: 4
Tabu list 100

Chromosome length 15 bits for each variable
Selection Binary tournament selection

Crossover rate 0.8
AMO a = 0.8, b = 0.01, α = 0.5 · gen req

Niche radius Dynamic
Generations RMOEA gen req=500, µGA gen req=5

Test Problem 1 and 2

The evolved tradeoffs and the associated decision variables of an arbitrary run for
mRMOEA and RMOEA on test problem 1 are plotted in Fig. 20.8 and Fig. 20.9.
Likewise, the results for test problem 2 are plotted in Fig. 20.10 and Fig. 20.11.

As expected, it can be observed from Fig. 20.8 and Fig. 20.10 that the final
tradeoff evolved by mRMOEA is located at the most robust deep for both test
problems 1 and 2. Nonetheless, it should be noted that the “most robust”front is
actually dependent on the intensity of noise implemented. For instance, the most
robust front for test problem 2 will lie at x1 ∈ xII = 0.7 and x2 ∈ xII = 0.4 if
the noise model is selected to be [-0.01, 0.01]. Therefore, as mentioned before, it is
necessary to discover the different tradeoffs by means of RMOEA.

For test problem 1, we expect RMOEA to discover two Pareto fronts, correspond-
ing to the global efficient front and the robust front when robustness is considered.
Interestingly, from Fig. 20.9(b), a third Pareto front that is considerably further
away is discovered and maintained by the RMOEA. This Pareto front actually cor-
responds to the set of solutions that are located at the flat regions of the fitness
landscape as observed in Fig. 20.9(a).

The number of tradeoffs for test problem 2 is considerably more as compared
to the previous problem. The RMOEA is capable of finding the four different
Pareto front located at the various troughs. Notice that the front associated at
x1 ∈ xII = 0.8 and x2 ∈ xII = 0.2 is not favorable in terms of robustness or
optimality and hence not considered by RMOEA. Similar to the situation for test
problem 1, RMOEA discovered a fifth Pareto front that correspond to the solutions
located at the flat regions of the fitness landscape.

Effects of Re-evaluation, Elitist Selection and µGA evaluation

It can be observed from the previous section that RMOEA is capable of evolving
the different tradeoffs for the two benchmark problems. In this section, the effects
of archive re-evaluation, elitist selection and µGA evaluation are examined. Test
problem 2 is used in this section since it pose a greater challenge to the algorithm.
The indices of RMOEA without the various features used in this section is shown
in Table 20.3. In the case where the feature of µGA is removed, a sample size
of POP SIZEGA · gen req neighbors are generated by means of Latin hypercube
sampling while selection based on pure Pareto-ranking is applied in the fifth case.

20 Evolving Tradeoffs between Pareto-Optimality and Robustness 471

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16
2

2.5

3

3.5

(b)

Fig. 20.8. (a) Variables x1 ∈ xII and x2 ∈ xII of the evolved solution set and
(b) Final tradeoffs evolved by mRMOEA for test problem 1

Table 20.3. Index of the various instances of RMOEA

Index 1 2 3 4 5

Algorithm RMOEA w/o AMO w/o µGA w/o re-eval. w/o elit. sel

472 Chi Keong Goh and Kay Chen Tan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

(b)

Fig. 20.9. (a) Variables x1 ∈ xII and x2 ∈ xII of the evolved solution set and
(b) Final tradeoffs evolved by RMOEA for test problem 1

The performance of the various settings, in terms of the number of Pareto fronts
failed to be evolved by the various settings and the distance to the ideal solution
set in the decision space, are shown in Fig. 20.12(a) and Fig. 20.12(b) respectively.
From the results, it is clear about the role that AMO plays in allowing RMOEA
locate the various Fronts. Furthermore, the absence of archival re-evaluation or µGA
also prevent the algorithm from evolving the various tradeoffs. Note that the one
peak that RMOEA failed to detect is mostly associated with the unfavorable front
mentioned before. The importance of re-evaluation is also clear from Fig. 20.12(b)
where uncertainty prevents the algorithm from finding a near optimal front.

20 Evolving Tradeoffs between Pareto-Optimality and Robustness 473

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

(b)

Fig. 20.10. (a) Variables x1 ∈ xII and x2 ∈ xII of the evolved solution set and
(b) Final tradeoffs evolved by mRMOEA for test problem 2

I-Beam Design

This section examines the performance of RMOEA on the practical problem of
I-Beam design. One of the key issues is to maintain the feasibility of the solu-
tion under uncertainties. For comparison, an instance of RMOEA that optimizes
the efficient objective values is applied and denoted as MOEA. The evolved trade-
offs of MOEA and RMOEA for the I-Beam problem is plotted in Fig. 20.13 and
Fig. 20.14 respectively. The crosses represent the feasible solutions while the open
circles represent the infeasible solutions.

474 Chi Keong Goh and Kay Chen Tan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

(b)

Fig. 20.11. (a) Variables x1 ∈ xII and x2 ∈ xII of the evolved solution set and
(b) Final tradeoffs evolved by RMOEA for test problem 2

From the two figures, it can be noted that the I-Beam problem represents an
instance of a Type 1 problem [5], with P Frob coinciding with P Fdet . Nonetheless,
part of the P Fdet is now infeasible. Apart from demonstrating that RMOEA is
capable of discovering solutions that remain feasible under the noise level applied,
the importance of considering robustness explicitly during the optimization process
is clear by comparing the two figures.

20 Evolving Tradeoffs between Pareto-Optimality and Robustness 475

1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Fronts Undetected

1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Covergence Measure

Fig. 20.12. (a) Number of fronts undiscovered and (b) Euclidean distance from the
ideal solution for test problem 2

100 200 300 400 500 600 700 800 900
0

0.01

0.02

0.03

0.04

0.05

0.06

Fig. 20.13. Evolved Tradeoff of MOEA for I-BEAM problem

20.5 Conclusions

This chapter presents a robust multi-objective evolutionary algorithm for con-
strained multi-objective optimization. Since the effective Pareto front is sensitive
to the noise intensity applied, the proposed RMOEA considers explicitly the trade-
offs between Pareto optimality and worst case performance. In particular, RMOEA
incorporates the features of µGA, Tabu restriction and periodic re-evaluation. It
has been demonstrated that RMOEA, augmented with the additional objective of
the proposed worst case measure, is capable of evolving the tradeoffs between opti-
mality and robustness. In addition, the contributions of the various features to the

476 Chi Keong Goh and Kay Chen Tan

100 200 300 400 500 600 700 800 900
0.005

0.01

0.015

0.02

0.025

0.03

0.035

Fig. 20.14. Evolved Tradeoff of RMOEA for I-BEAM problem

robust optimization process are validated upon a benchmark problem. Furthermore,
RMOEA’s ability to evolve feasible solutions under uncertainty is validated on the
practical problem of I-Beam design.

Acknowledgments

The authors would like to thank Yew-Soon Ong for discussions on robustness in
evolutionary computation.

References

1. P. Bosman and D. Thierens, “ The balance between proximity and diversity in
multiobjective evolutionary algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 174-188, 2003.

2. J. Branke, “Creating robust solutions by means of evolutionary algorithms,” in
Proceedings of the 5th International Conference on Parallel Problem Solving
from Nature, pp. 119-128, 1998.

3. K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, John
Wiley & Sons, New York, 2001.

4. K. Deb and D. E. Goldberg, “An investigation on niche and species forma-
tion in genetic function optimization,” in Proceedings of Third International
Conference on Genetic Algorithms, pp. 42-50, 1989.

5. K. Deb and H. Gupta, “Introducing robustness in multiobjective optimization,”
Kanpur Genetic Algorithms Lab. (KanGAL), Indian Institue of Technology,
Kanpur, India, Technical Report 2004016, 2004.

20 Evolving Tradeoffs between Pareto-Optimality and Robustness 477

6. D. Buche, P. Stoll, R. Dornberger and P. Koumoutsakos, “Multiobjective Evolu-
tionary Algorithm for the Optimization of Noisy Combustion Processes,” IEEE
Transactions on Systems, Man, and CyberneticsPart C: Applications and Re-
views, vol. 32, no. 4, pp. 460-473, 2002.

7. C. A. Coello Coello, “An empirical study of evolutionary techniques for multi-
objective optimization in engineering design,” Ph.D. dissertation, Department
of Computer Science, Tulane University, New Orleans, LA, 1996.

8. C. A. Coello Coello and A. H. Aguirre, “Design of combinational logic circuits
through an evolutionary multiobjective optimization approach,” Artificial In-
telligence for Engineering, Design, Analysis and Manufacture, Cambridge Uni-
versity Press, vol. 16, no. 1, pp. 39-53, 2002.

9. M. Farina and P. Amato, “A fuzzy definition of “optimality” for many-criteria
optimization problems,” IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, vol. 34, no. 3, pp. 315-326, 2004.

10. C. M. Fonseca and P. J. Fleming, “Genetic algorithm for multiobjective op-
timization, formulation, discussion and generalization,” in Proceedings of the
Fifth International Conference on Genetic Algorithms, pp. 416-423, 1993

11. C. K. Goh and K. C. Tan, “An investigation on noisy environments in evolution-
ary multiobjective optimization,” IEEE Transactions on Evolutionary Compu-
tation, in press.

12. D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for multi-
modal function optimization,” in Proceedings of the Second International Con-
ference on Genetic Algorithms, pp. 41-49, 1987.

13. H. Gupta and K. Deb, “Handling constraints in robust multi-objective opti-
mization” in Proceedings of the 2005 IEEE Congress on Evolutionary Compu-
tation, pp. 25-32, 2005.

14. Y. Jin and J. Branke, “Evolutionary Optimization in Uncertain Environments
A Survey,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 3,
pp. 303-317, 2005.

15. Y. Jin and B. Sendhoff, “Tradeoff between performance and robustness: An evo-
lutionary multiobjective approach,” in Proceedings of the Second Conference
on Evolutionary Multi-Criterion Optimization, pp. 237251, 2003.

16. E. F. Khor, K. C. Tan, T. H. Lee and C. K. Goh, “A study on distribution
preservation mechanism in evolutionary multi-objective optimization,” Artifi-
cial Intelligence Review, vol. 23, no. 1, pp. 31-56, 2005.

17. M. Laumanns, E. Zitzler and L. Thiele, “A unified model for multi-objective
evolutionary algorithms with elitism,” in Proceedings of the 2000 Congress on
Evolutionary Computation, vol. 1, pp. 46-53, 2000.

18. H. Lu and G. G. Yen, “Rank-based multiobjective genetic algorithm and bench-
mark test function study,” IEEE Transactions on Evolutionary Computation,
vol. 7, no. 4, pp. 325-343, 2003.

19. Y. S. Ong, P. B. Nair and K. Y. Lum, “Min-Max Surrogate Assisted Evo-
lutionary Algorithm for Robust Aerodynamic Design,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 4, pp.392-404, 2006.

20. T. Ray, “Constrained robust optimal design using a multiobjective evolutionary
algorithm,” in Proceedings of the 2002 Congress on Evolutionary Computation,
pp. 419424, 2002.

21. N. Srinivas and K. Deb, “Multiobjective optimization using non-dominated
sorting in genetic algorithms,” Evolutionary Computation, vol. 2, no. 3,
pp. 221-248, 1994.

478 Chi Keong Goh and Kay Chen Tan

22. K. C. Tan, C. Y. Cheong and C. K. Goh, “Solving multiobjective vehicle rout-
ing problem with stochastic demand via evolutionary computation,” European
Journal of Operational Research, in press.

23. K. C. Tan, C. K. Goh, Y. J. Yang and T. H. Lee, “Evolving better population
distribution and exploration in evolutionary multi-objective optimization,” Eu-
ropean Journal of Operational Research, vol. 171, no. 2, pp. 463-495, 2006.

24. K. C. Tan, T. H. Lee, E. F. Khor and D. C. Ang, “Design and real-time imple-
mentation of a multivariable gyro-mirror line-of-sight stabilization platform,”
Fuzzy Sets and Systems, vol. 128, no. 1, pp. 81-93, 2002.

25. S. Tsutsui and A. Ghosh, “Genetic algorithms with a robust solution searching
scheme,” IEEE Transactions on Evolutionary Computation vol. 1, no. 3, pp.
201-208, 1997.

26. S. Tsutsui and A. Ghosh, “A comparative study on the effects of adding pertur-
bations to phenotypic parameters in genetic algorithms with a robust solution
searching scheme,” in Proceedings of the 1999 IEEE International Conference
on Systems, Man, and Cybernetics, pp. 585-591, 1999.

27. E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary
algorithms: empirical results,” Evolutionary Computation, vol. 8, no. 2, pp.
173-195, 2000.

28. E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca and V. G. Fonseca, “Perfor-
mance assessment of multiobjective optimizers: An analysis and review,” IEEE
Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 117-132, 2003.

21

Evolutionary Robust Design of Analog Filters
Using Genetic Programming

Jianjun Hu1, Shaobo Li2, and Erik Goodman3

1 MCB 403D, University of Southern California, Los Angeles, CA 90089, USA
jianjunh@usc.edu

2 CAD/CIMS Institute, Guizhou University, Guiyang, Guizhou 550003, China
lishaobo@gzu.edu.cn

3 2120 Engineering Building, Michigan State University, East Lansing, MI 48824,
USA
goodman@egr.msu.edu

Summary. This chapter proposes a robust design approach that exploits the open-
ended topological synthesis capability of genetic programming (GP) to evolve robust
lowpass and highpass analog filters. Compared with a traditional robust design ap-
proach based on genetic algorithms (GAs), the open-ended topology search based
on genetic programming and bond graph modeling (GPBG) is shown to be able to
evolve more robust filters with respect to parameter perturbations than what was
achieved through parameter tuning alone, for the test problems.

21.1 Introduction

Topologically open-ended computational synthesis by genetic programming (GP)
has been used as an attracting approach for engineering design innovation in a variety
of domains, including design of analog circuits, digital circuits, chemical molecules,
mechatronic systems, etc. [15] [18]. These works employ GP as a topologically open-
ended search technique for functional design innovation – achieving given behaviors
without pre-specifying the design topology – and has achieved considerable success.
However, in practical engineering system design, there is another criterion in addi-
tion to functional specifications that should be considered during the design process.
Robustness, as the ability of a system to maintain its function even with changes
in internal structure (including variations of parameters from nominal values) or
external environment [5], [10], is also critical to engineering design decisions. Engi-
neering design systems, in reality, do not normally take into account all the types
of uncertainties or variations to which the engineered artifacts are subject, such
as manufacturing variation, degradation or non-uniformity of material properties,
environmental changes, and changing operating conditions. There are two types of
robustness of dynamic systems in robust engineering design. One is the robustness of
systems with respect to perturbation of their parameters. This is the most commonly
investigated type of robustness in the traditional robust design community and also

J. Hu et al.: Evolutionary Robust Design of Analog Filters Using Genetic Programming, Studies

in Computational Intelligence (SCI) 51, 479–496 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

480 Jianjun Hu, Shaobo Li, and Erik Goodman

in evolutionary robust design. Another type of system robustness is with respect to
topological perturbation – for example, accidental removal or failure of components.
Reliable systems, having the least sensitivity of performance to variations in the
system components or environmental conditions, are very desirable. However, there
are relatively few studies that explore how GP-based open-ended topology search
may contribute to design of robust systems such that they can withstand internal or
external perturbations. In traditional robust design, optimizing robustness is usually
regarded as a step in the detailed design stage, in which the parameters of a system
with a given functional structure are tuned to achieve better robustness.

In this chapter, genetic programming is applied to automatically synthesize ro-
bust analog filter which shows that topologically open-ended innovation capability of
GP can allow us to design more robust dynamic systems with respect to parameter
variations or uncertainty of the design variables. A set of experiments is conducted to
show: that dynamic systems with high performance evolved by GP without consid-
ering a robustness criterion during the evolutionary process may have unacceptably
low robustness with respect to parameter perturbation, 2) that the robustness of a
system may be constrained by its topological/functional structure, and the amount
of robustness improvement available through parameter tuning is limited as well,
and 3) that topologically open-ended synthesis by GP may allow evolution of more
robust solutions than the traditional robust design approaches with parameter tun-
ing.

To examine the role of topology search in designing robust systems, two analog
filter design problems, including low-pass and high-pass filters, are to be synthesized
using genetic programming. For each synthesis problem, three types of experiments
are conducted: a) evolutionary synthesis using GP without considering a robustness
criterion, b) improving robustness of these evolved filters by tuning their parameters
using a genetic algorithm (GA), and c) evolving robust filters (topological structure
and parameters) using GP with a robustness criterion in the fitness function. These
filter design problems are selected as they are perhaps the most popular problems
in evolutionary synthesis research by either GA or GP [14] [16].

The rest of the chapter is organized as follows. Section 2 presents a survey of
applications of evolutionary algorithms in robust design. Section 3 introduces the
GPBG methodology, which exploits Genetic Programming and Bond Graphs for
automated synthesis of dynamic systems. This section introduces some new fea-
tures that improve standard developmental GP for bond graph synthesis. Section
4 discusses two approaches to evolving robust dynamic systems – the parameter
search approach (by genetic algorithm) and the simultaneous topology and para-
meter search approach by genetic programming. Section 5 compares experimental
results of these approaches. Finally, the conclusions and future research are high-
lighted in Section 6.

21.2 Related Work

Robust design as originally proposed by Taguchi [19] has been intensively investi-
gated in the engineering design community since the 1980s and remains an important
topic. In traditional robust design, a designer seeks to determine the control parame-
ter settings that produce desirable values of the mean (nominal) performance, while
at the same time minimizing the variance of the performance [19]. However, most of

21 Evolutionary Design of Robust Filters 481

these robust design studies assume that there already exists a design solution for a
system and the task of robust design is to determine its robust operating parameters
with respect to various kinds of variations. The relationship between the topological
or functional structure of a system and its robustness is often not treated. Espe-
cially, how robustness criteria should be incorporated into conceptual functional
design stage is not addressed. This is partially because of the prevailing approach
for engineering system designs is a top-down procedure starting from function design
to detailed design and the robustness criterion is hard to evaluate without detailed
design parameters which are only available after the detailed design stage.

Application of evolutionary algorithms to traditional parametric robust design
has been attracting increasing attention in the past decade [20] Wiesmann:1998 [8]
[11]. Tsutsui et al. [20] proposed a GA-based Robust Solution Searching Scheme
(RS3) to evolve robust solutions. This approach works by adding perturbation noise
to the design variables before fitness evaluation. In Wiesmann et al.’s approach [21],
however, each individual is simulated t times to estimate its expected loss func-
tion (fitness). Their experiments showed that the evolved designs were substantially
more robust to parameter variations than the reference design, but usually at the
cost of reduced performance in undisturbed situations. This observation motivated
the later work of using an evolutionary multi-objective approach to figure out the
trade-off map between robustness and optimal functional performance [8] [17] [11].
Forouraghi [8] introduced an interval computation method to avoid artificial inser-
tion of Gaussian noise to parameter variables in order to build tolerance against
internal or external perturbations. Ray [17] expressed the robust design problems as
a three-criterion multi-objective problem, simultaneously optimizing an individual’s
performance without perturbation, the mean performance of its neighbors resulting
from perturbations, and the standard deviation of its neighbors’ performances. Jin
et al. [11] proposed two methods for estimating the robustness measures of an indi-
vidual – by exploiting its neighbor individuals in the current population or by using
all evaluated individuals. Jin’s robustness estimation approach can greatly reduce
the number of function evaluations, when it is applicable. However, it is difficult to
apply this method for evolving robust designs with variable structures as in topolog-
ically open-ended automated synthesis using GP because of the difficulty to define
a neighborhood for a given individual in the structural space.

We chose analog filter synthesis problems as our benchmarks since they are
the most widely used test problems in electric circuit optimization using GA or
GP [14] [16] [7]. The pioneering work of Koza in automated analog circuit synthesis,
including low-pass, high-pass, and asymmetric band-pass filters, is described in [14]
[13]. Lohn and Colombano [16] proposed a linear representation approach to evolve
analog circuits in which several low-pass filters were used as test problems. However,
they did not specifically work on evolving robust circuits. In our previous work [7],
we applied GP to the lowpass analog filter design problem using bond graphs as the
modeling and simulation tool.

A lot of work has been done in both evolutionary robust design and analog cir-
cuit synthesis. However, there are few studies that specifically address how GP-based
topologically open-ended synthesis may provide a new way for open-ended robust de-
sign. This may enable us to move robust design forward to the conceptual/functional
design stage and thus achieve design for robustness at the very beginning, which will
augment the current practice of design for robustness in parametric design.

482 Jianjun Hu, Shaobo Li, and Erik Goodman

21.3 Analog Filter Synthesis using Bond Graphs and GP

In this section, we present an improved methodology for open-ended computational
synthesis of multi-domain dynamic systems based on bond graphs [12] and genetic
programming–the GPBG approach = Genetic Programming+Bond Graphs.

21.3.1 Bond Graphs

The bond graph is a multi-domain modeling tool for analysis and design of dynamic
systems, especially hybrid multi-domain systems, including mechanical, electrical,
pneumatic, hydraulic, etc., components. Details of notation and methods of system
analysis related to the bond graph representation can be found in [12]. Fig. 21.1
illustrates a small bond graph that represents the accompanying electrical system.
Fig. 21.2 shows the complex bond graph model of a low-pass filter. A typical simple
bond graph model is composed of inductors (I), resistors (R), capacitors (C), trans-
formers (TF), gyrators (GY), 0-Junctions (J0), 1-junctions (J1), sources of effort
(SE), and sources of flow (SF). In this chapter, we are only concerned with linear
dynamic systems and did not include transformers and gyrators as components.

1

RS RL

(1)

Se 0
AC

GND

RS

RLevolved

circuit

Fig. 21.1. A bond graph and its equivalent circuit. The dotted boxes in the left
bond graph indicate modifiable sites at which further topological manipulations can
be applied (to be explained in next section).

21.3.2 Evolving Analog Filters using Bond Graphs and GP: the
GPBG framework

Automated synthesis of bond graphs involves two basic searches: the search for a
good topology and the search for good parameters for each topology, in order to
be able to evaluate its performance. Based on the pioneering work of Koza [13] on
automated synthesis of electronic circuits, we created a developmental GP system
for synthesizing mechatronic systems represented as bond graph [18]. This GPBG
framework enables us to do simultaneous topology and parameter search.

21 Evolutionary Design of Robust Filters 483

Input Signal

OutputSignal

Se1
R R

I
1

C

I

1

C I

R I

R
0

1

Sf

C

R
I
C

R
I

C

0

1

0

I
R

1

I

C

I

C
R

1

0

I

C 1

C

I
I
R

I

C

1

0

1

0

1

CRCR

I

I

C

I

1001

0

1

0

1C

Fig. 21.2. Bond graph structure of low-pass filter evolved in 500,000 function eval-
uations. Filter has 39 components beyond embryo (Component sizes omitted for
simplicity.).

The GPBG framework includes the following major components: 1) an embryo
bond graph with modifiable sites at which further topological operations can be
applied to grow the embryo into a functional system, 2) a GP function set, composed
of a set of topology manipulation and other primitive instructions which will be
assembled into a GP tree by the evolutionary process (execution of this GP program
leads to topological and parametric manipulation of the developing embryo bond
graph), and 3) a fitness function to evaluate the performance of candidate solutions.

In this chapter, we have improved the basic function set in [7] and developed a
hybrid function set to reduce redundancy while retaining flexible topological explo-
ration:

F={Insert J0E, Insert J1E, Add C/I/R, EndNode, EndBond, ERC}

where the Insert J0E, Insert J1E (Fig. 21.3) functions insert a new 0/1-junction
into a bond while attaching at least one and at most three elements (from among
C/I/R). EndNode and EndBond terminate the development (further topology ma-
nipulation) at junction modifiable sites and bond modifiable sites, respectively; ERC
represents a real number that can be changed by Gaussian mutation. In addition,
the number and type of elements attached to such junctions are controlled by three
bits. A flag mutation operator is used to evolve these flag bits, each representing
the presence or absence of corresponding C/I/R components. This hybrid approach
does not create the many bare (and unnecessary) junctions generated by the ba-
sic approach. At the same time, Add C/I/R still provide the flexibility needed for
broad topology search. For any of the three C/I/R components attached to each
junction, there is a corresponding parameter to represent the component’s value,
which is evolved by a Gaussian mutation operator in the modified GP system used
here. Fig. 21.4 shows a GP tree that develops an embryo bond graph into a complete
bond graph solution. The comparison experiments of [9] showed that this function

484 Jianjun Hu, Shaobo Li, and Erik Goodman

set was more effective on both an eigenvalue and an analog filter test problem, so
the new set was used in this chapter.

Insert_J0E

OB: Old bond modifiable site

NJ1
NB

OB

NJ: New Junction modifiable site
NB:New bond modifiable site

OB

V1 V2 V3

Vi: ERC values for I/R/C

1 0

OB

1 0 0
OB NJ1 NB

I R C
V1 V2 V3

Fig. 21.3. The Insert J0E function inserts a new junction into a bond along with
a certain number of attached components

1

I

R

Tree_Root

EndNode Insert_J1E

Add_C

EndBond

EndNode

Add_I EndBond

(1)

(1)

010

Insert_J0E

001

0 RL

(1)

1Se

Rs

0 RL

(1)

1Se

Rs

CI

0

Fig. 21.4. Sample GP tree evolved by applying topology operators to embryo,
generating a bond graph after depth-first execution (numeric ERC nodes omitted).
Flag bits 010 and 001 show presence or absence of attached C/I/R components.

As a case study, we are interested in evolving two types of analog filters including
low-pass and high-pass filters (Fig. 21.5). In these GPBG based filter design prob-
lems [7], a bond-graph-represented analog filter composed of capacitors, resistors,

21 Evolutionary Design of Robust Filters 485

and inductors is to be evolved such that the magnitude of its frequency response
approximates a specified filter frequency response specifications. An embryo bond
graph and its equivalent circuit are illustrated in Fig. 21.1. This embryo bond graph
is used in all three filter design problems. Note that the 0-junction is the modifi-
able site, where further topological developments can proceed as instructed by a GP
program tree. The voltage of this 0-junction is the output signal.

Rather than using a sophisticated SPICE simulator as is often done in analog
filter synthesis [14] [1], calculation of frequency response from a bond graph was done
by automatically formulating the state equations (yielding A, B, C, and D matrices),
then using MATLAB 3.0-derived C++ code to simulate the circuit behavior.

Detailed specifications of the filter synthesis problems are:

• The low-pass filter synthesis problem is extracted from [14], in which the fre-
quency response performance of a candidate filter is defined as the weighted
sum of deviations from ideal frequency response magnitude over 101 points:

Fkoza(t) =

100∑
i=0

[W (d(fi), fi) ∗ d(fi)] (21.1)

Where fi is the sampling frequency. d(x) is the absolute deviation of candidate
frequency response from target response at frequency x. W(x,y) is the weight
function. The sampling points range from 1Hz to 100K Hz, logarithmically dis-
tributed. If the deviation from ideal magnitude is less than 0.03V, the weight is
1. If the deviation is more than 0.03V, the weight is 10. The pass band is [1,1K]
Hz; the stop band is [2K,10K] Hz. A “don’t” care band between 1K Hz and 2K
Hz neglects any deviation from the target response.

• The high-pass problem is similar, except for the complementary definitions of
the pass and stop bands. The passband is now defined as [2K,10K]Hz, while the
stopband is [1,1K]Hz. A “don’t care” band from 1KHz to 2KHz neglects any
deviation from the target response.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

frequency (Hz)

Frequency response of target filters

lowpass
highpass

Fig. 21.5. Specification of analog low-pass and high-pass analog filter synthesis
problem

486 Jianjun Hu, Shaobo Li, and Erik Goodman

To evolve an analog filter without considering robustness, the final fitness of a
candidate solution is defined as follows:

First, calculate the raw fitness of a candidate solution defined as the average ab-
solute deviation between the frequency response magnitude of the candidate solution
and the target frequency response over all 101 sampling frequencies:

fraw =
1

100
· Fkoza(t) =

1

100
·

100∑
i=0

[W (d(fi), fi) ∗ d(fi)] (21.2)

Note that this fraw definition differs from Koza’s raw fitness definition in
Equ.21.1 by a multiplier equal to the number of sampling frequencies. We use the av-
erage deviation rather than sum of deviations to remove the influence of the number
of sampling points.

Then calculate the final fitness as:

fnorm =
NORM

NORM + fraw
(21.3)

where NORM adjusts fnorm into the range [0,1]. This transforms the problem of
minimizing deviation from target frequency response into a maximization problem
appropriate for our GP system. Since tournament selection is used, NORM can be
an arbitrary positive number (here set to 10, yielding fitness ranges around [0, 1]).

21.4 Evolving Robust Analog Filters Using Bond Graphs
and Evolutionary Algorithms

We used three methods to evolve robust or non-robust lowpass and highpass filters.
The first is a standard GP approach without considering robustness requirements.
The second is a hybrid GP/GA robust design method (GP-GARMS). This approach
first uses a standard GP to evolve a high-performance filter without incorporating
any robustness criterion in the fitness function. And then the state-of-art G3PCX-
GA is used to improve the robustness of the GP solution using the multi-simulation
method to evaluate the robustness performance. The third is a standard GP with
multi-simulation (GPRMS), which uses multiple simulations to estimate the robust-
ness fitness of a candidate solution.

21.4.1 Evolving Robust Filters Against Parameter Variation: the
Unified Approach

The typical approach for evolving robust designs [3] is to use multiple Monte Carlo
samplings with different environmental or system configurations (e.g., perturbation
of parameter values of the system) to calculate a worst-case or an average fitness for a
given candidate solution as shown in Equ. (21.3). This robust-by-multiple-simulation
(RMS) method is used in [21]. Another method is to simply add a perturbation to the
design variable before evaluation. This perturbation, however, is not incorporated

21 Evolutionary Design of Robust Filters 487

into the genome, making it different from normal parameter mutation operator or
Larmarckian style evolution algorithms. This robust-by-perturbed-evaluation (RPE)
method is used in [20] and is suggested to be more efficient by Jin et al. [11]. Both
methods are tested in this work. For RPE method, no special fitness definition is
needed. For the RMS multi-simulation method, our raw fitness for a design solution
with robustness criterion is defined as follows:

frobustraw =

SPI∑
k=1

fk
raw (21.4)

where SPI is the number of Monte Carlo sampling evaluations for each individual,
fk

raw is the raw fitness of the kth sampled evaluation with a different Monte Carlo
perturbation of the parameters as defined in 21.2. With this raw robustness fitness,
we then calculate the final fitness according to Equ. 21.3.

The perturbation of the component values during evolution in the experiments
reported below is implemented by adding to each component parameter Gaussian
noise N(µ, σ) with mean µ of 0 and standard deviation σ set at 10% of the parameter
value. This perturbation model is widely used by previous researchers [20] [21] and
may not be appropriate for all manufacturing processes. However, it is good enough
for our purpose as an approximation to the real component value degradation model
in some situations. If the parameter value is ever 0, σ is set to 1.

In the evolution stage of RMS method, the number of Monte Carlo samplings
for fitness evaluation of each individual with respect to parameter perturbation is
set as SPI =10. After the robust solutions are evolved, their robustness with respect
to parameter perturbation is evaluated against a series of perturbation magnitudes:
Gaussian noise N(µ, σ) with mean µ set at 0 and standard deviation σ set at 10%
to 50% of parameter values in steps of 10%, each tested with 10000 samplings with
different configurations of the component parameter perturbations.

21.4.2 Evolving Robust Analog Filters Using GA: the Traditional
Robust Design

Evolutionary algorithms have been increasingly applied to evolve robust designs [2],
[21] or for optimization in noisy environments [3], [4]. Most such research follows
the practice of traditional robust design: given a system with a specific functional
structure, tune its parameters using evolutionary algorithms to improve robustness.

We shall contrast the traditional approach described in this section with the new
approach. We shall first evolve a high-performance analog filter with the improved
GPBG approach as described in Section 21.3.2. No requirement for robustness is
enforced during this evolution. Then we shall apply to the result a state-of-art real
parameter genetic algorithm –the G3PCX-GA proposed by Deb [6]–to tune the para-
meters of this filter to improve its robustness with respect to parameter perturbation
while keeping its functional structure unchanged.

In the minimization G3PCX-GA, we used the robust raw fitness defined in Equ.
21.4 as the final fitness of an individual. We believe this fitness measure is better
than the average of normalized final fitness of each sampling evaluation for its lower
distortion of the optimization objective values.

488 Jianjun Hu, Shaobo Li, and Erik Goodman

21.4.3 Evolving Robust Analog Filters Using GP: A New Robust
Design Paradigm

This new approach aims at exploiting the topology search capability of GP to evolve
more robust designs. The configuration of this approach is the same with standard
GP-based synthesis except that the robustness criteria is incorporated in the fitness
function. The final fitness of an individual, calculated from the sampling fitnesses,
is the same as defined in (21.2), where fk

i is defined as Fitnessnorm in (21.3).

21.5 Experiments and Results

For all experiments below, a fixed number of function evaluations is allocated to
ensure fairness of comparison. For the lowpass and highpass filter design problem,
the computation budget is 1,000,000 function evaluations. Note that for methods
that use multiple simulations to estimate the robustness fitness, each simulation is
counted as one function evaluation. In addition, for the hybrid GP-GARMS method,
we allocate 500,000 for GP evolution and the remaining 500,000 for GA evolution
for robustness.

All experiments described below used the same embryo bond graph shown in
Fig. 21.1. The component values of source resistor Rs and load resistor Rload are
both 1 Ω for lowpass and highpass filter synthesis. Our GPBG based system is
implemented with C++. The GP code is based on modified Open Beagle. The bond
graph simulator was developed in our lab. All experiments were run on a single Linux
machine with a 3.0GHz CPU and 1GB memory. On average, for an experiment
run with 1,000,000 fitness evaluations, it took about 10-20 hours depending on the
complexity of the GP trees. To make our results to be practical, we intentionally
used a single set of parameters as much as possible to run all experiments with little
tuning effort.

To assess the statistical significance of the performance differences, for each
target filter type and each synthesis method, 10 runs were conducted. This size of
experiments is determined by the computing resources available. However, since the
results are quite stable across runs, it is sufficient for the purposes of this chapter.

21.5.1 Evolving Analog Filters using GP Without Considering
Robustness

In this experiment, ten analog lowpass and highpass filters were evolved using stan-
dard GP without incorporating a robustness criterion in the fitness function (21.3).
The following common running parameters were used throughout all GP experi-
ments in this chapter, as shown in Table 21.1.

Note that the maximum tree size is 8 rather than the commonly used value
of 17. This parameter is selected by considering the reduced tree sizes due to our
simplified parameter representation method and available computational resources.
The maximum tree depth of 8 allows synthesis of analog filters with up to at least
100 components, which is sufficient for our purpose.

We select the evolved filter with the highest performance to test its noise toler-
ance over the degradation or variation of the component parameters with different

21 Evolutionary Design of Robust Filters 489

Table 21.1. Experimental parameters for analog filter synthesis without robustness
criterion

Total population size: 2000(400*5) Number of subpopulations: 5

migration interval: 5 generation Migration size: 30 individuals

Max tree depth: 8 Crossover probability: 0.7

InitTreeDepth: 3-5 Standard mutation probability: 0.1

flag bit mutation rate: 0.1 swapping-tree mutation rate: 0.1

Tournament size: 7 Parametric mutation probability: 0.5

Max evaluations: 1,000,000 Flag mutation probability: 0.3

Pool size of elite individuals: 20 Elite pool update frequency: 5 generations

perturbation magnitudes. As described above, the evaluation of robustness with re-
spect to parameter perturbation is conducted by running 10000 simulations of the
configurations of the Gaussian parameter perturbations.

Fig. 21.2 and Fig. 21.6 show the topologies of the evolved lowpass and highpass
filters with highest performance out of ten runs. The evolved best lowpass and
highpass filters have 39 and 27 components, respectively. The lowpass and highpass
filters approximate the ideal frequency response closely, with the sum of deviation
over 101 points being only 6.43 and 0.32, respectively.

OutputSignal

Input Signal

0

C I

Se 1 0

R R I

1

C

0

IR

1

I

1 C

0

I10

CI 0
R

Sf

0

I

1C

0

I

C 1

I

0

I

1 0

R

1

R

0

I0

C

I

0

IR

1

R

0 I

Fig. 21.6. Topology of best highpass analog filters evolved with standard GP with
500,000 function evaluations without considering robustness requirement.This filter
has 27 C/I/R components beyond original embryo. The best evolved lowpass filter is
shown in Fig. 21.2. This topology is generated by a simplification procedure which
removes redundancy in the original evolved bond graphs while maintaining their
functional behaviors.

21.5.2 Evolving Robust Analog Filters Using GA: the Classical
Robust Design

In this experiment, the state-of-the-art genetic algorithm G3PCX is used to improve
the robustness of the best analog filter evolved in the previous section through

490 Jianjun Hu, Shaobo Li, and Erik Goodman

parameter tuning while keeping functional structure unchanged. As we can see from
Fig. 21.2 and Fig. 21.6, these two filter models are very complex, with 39 and
27 parameters to search. As the objective function of this optimization is highly
multi-modal, this is a hard optimization even for G3PCX-GA, as the experiment
demonstrates. The running parameters for this experiment are summarized in Table
21.2.

Table 21.2. Experimental parameters for robust design by G3PCX-GA

Total population size: 200 Max evaluations: 500,000

Number of parents in crossover: 3 family size: 2

sigmazeta: 0.1 sigmaeta: 0.1

SPI: 10 Perturbation noise percentage: 20%

Fig. 21.11 and Fig. 21.12 show the twenty frequency response curves of these
robust lowpass and highpass filters with parameter perturbations of 30% of nominal
values. Compared with the result in Fig. 21.7 and Fig. 21.8 without considering
robustness, the G3PCX GA indeed improves the robustness. However, one needs
to be cautious when interpreting these frequency response figures. As specified in
our synthesis problems, we have a shallow “don’t care” region for both lowpass
and highpass target frequency responses. The robust filters evolved by G3PCX have
better performance in the two-end regions, while they have large variation in the
“don’t care” region.

10
0

10
2

10
4

0

0.5

1

1.5

2

A
m

pl
itu

de

frequency (Hz)

Frequency Response of filter

Fig. 21.7. Frequency responses of the lowpass filter in face of 30% Gaussian per-
turbation of their nominal parameters, evolved using normal GP without robustness
requirements

21 Evolutionary Design of Robust Filters 491

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

f (H)

Frequency Response of filter

Fig. 21.8. Frequency responses of the highpass filter in face of 30% Gaussian per-
turbation of their nominal parameters, evolved using normal GP without robustness
requirements

21.5.3 Evolving Robust Filters Using GP: Open-Ended Topology
Search for Robust Design

In this section, we try to evolve robust analog filters that have higher tolerance of
the variation of component values and have graceful performance degradation. The
configuration of this experiment is the same as those used in Section 21.5.1.

The topology of the evolved robust lowpass and highpass filters are shown in
Fig. 21.9 and Fig. 21.10. It is very interesting to compare the complexity of these two
filters to those evolved with standard GP without considering robustness (Fig. 21.2
and Fig. 21.6). The robustness requirement drives the GP to evolve much simpler
structures since large structures expose more components to perturbation noise.
Of course, this depends on the perturbation model. In our model, we applied the
perturbation to ALL components, so large filters with more components tend to
suffer from more perturbation.

We can also compare the frequency responses of the robust filters with that of
filters evolved by standard GP and GA with robustness. It appears that GP with
robustness outperforms the other two approaches by allowing more variation in the
“don’t care” region while keeping tight control in the two boundary regions where
stringent functional requirements are imposed.

21.5.4 Statistical Comparison of Three Methods

For the highpass filter problem, a t-test is conducted to compare the robustness of
the evolved solutions by GPGARMS and standard GP in terms of fitness variation
at 0.2 perturbation level. A significance level of P = < 0.001 is achieved which
strongly indicates that GPGARMS improved the robustness of the evolved filters by
standard GP. However, we found that this improvement is at the cost of degraded
functional performance at the normal condition (without perturbation). A t-test
was also applied to compare GPGARMS and GPRMS. The 95 percent confidence

492 Jianjun Hu, Shaobo Li, and Erik Goodman

Input Signal
OutputSignal

1I

C R

Se 0

R R

1

R R

1

I
C
R

R C

I
R

R
C RC RC

RI
R

Sf0

C

1

1

0 1 0

0

1

1

0

Fig. 21.9. Robust lowpass filter evolved using GP with robustness

Input Signal

OutputSignal1I

C R

Se 1 0

R R I

1

C

0

Sf

R

1

C

0

I R

1

I C

R

Fig. 21.10. Robust highpass filter evolved using GP with robustness

10
0

10
2

10
4

0

0.5

1

1.5

2

A
m

pl
itu

de

frequency (Hz)

Frequency Response of filter

Fig. 21.11. Frequency responses of the lowpass filter in face of 30% Gaussian per-
turbation of their nominal parameters, evolved first using normal GP without ro-
bustness requirements and then fine-tuned using GA with robustness requirements

21 Evolutionary Design of Robust Filters 493

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

f (H)

Frequency Response of filter

Fig. 21.12. Frequency responses of the highpass filter in face of 30% Gaussian
perturbation of their nominal parameters, evolved first using normal GP without
robustness requirements and then fine-tuned using GA with robustness requirements

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

f (H)

Frequency Response of filter

Fig. 21.13. Frequency responses of the highpass filter in face of 30% Gaussian
perturbation of their nominal parameters, evolved using normal GP with robustness
requirements

interval for difference of means of robustness fitness is -51.617 to -39.841, showing
that GPGARMS degraded robustness. The difference in the mean values of the two
groups is greater than would be expected by chance (P =< 0.001).

21.6 Conclusions and Future Work

This chapter applies genetic programming and bond-graph system modeling – the
GPBG approach – to topologically open-ended synthesis of robust analog filters.
It is shown that the traditional approach of robust design, in which the func-
tional/conceptual design is conducted without considering a robustness requirement,

494 Jianjun Hu, Shaobo Li, and Erik Goodman

10
0

10
2

10
4

0

0.5

1

1.5

2

A
m

pl
itu

de

frequency (Hz)

Frequency Response of filter

Fig. 21.14. Frequency responses of the lowpass filter in face of 30% Gaussian per-
turbation of their nominal parameters, evolved using normal GP with robustness
requirements

may put severe limits on the possible robustness achievable through parameter-
tuning-based robust design during the detailed design stage. It thus proposes that
robust design in engineering should start from the conceptual stage, and that the
open-ended topology search capability of GP can be exploited for this purpose. We
find that our GP system enables us to find more robust analog filters with respect
to the variations in their parameters compared to existing parameter-tuning-type
evolutionary algorithms for robust design of fixed functional structures.

Evolving robustness is a rich research theme and there are several interesting
topics to be further investigated such as the robustness with respect to topology per-
turbation or component failures, which may be important in many environments,
especially on space missions. Our ongoing work shows that selection pressures for
robustness with respect to parameter perturbation versus with respect to component
faults lead to different topological patterns. It would be interesting to investigate
how simultaneous requirements for both types of robustness would affect topologi-
cal structures. In this chapter, only simple robustness estimation method based on
multiple samplings is used. However, in the simultaneous topology and parameter
search process, more effective approach can be devised to reduce the computational
effort for estimating robustness of individuals.

Acknowledgments

This research is partially supported by the National Natural Science Foundation of
China under Grant 50575047.

21 Evolutionary Design of Robust Filters 495

References

1. S. Ando and H. Iba. Linear genome methodology for analog circuit design.
Technical report, Information and Communication Department, School of En-
gineering, University of Tokyo, 2000.

2. J. Branke. Creating robust solutions by means of an evolutionary algorithms.
In A. Eiben, T.Back, M. Schoenauer, and H.-P. Schwefel, editors, Proc. Parallel
Problem Solving from Nature. number 1498 in LNCS. Springer, 1998.

3. J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer, 2001.
4. J. Branke and H. Schmeck. Designing evolutionary algorithms for dynamic opti-

mization problems. In S.Tsutsui and A. Ghosh, editors, Theory and Application
of Evolutionary Computation: Recent Trends. Springer, 2002.

5. J. M. Carlson and J. Doyle. Complexity and robustness. Proceedings of National
Academy of Science (PNAS), 99(1):2538–2545, 2002.

6. K. Deb, A. Anand, and D. Joshi. A computationally efficient evolutionary algo-
rithm for real-parameter optimization. Evolutionary Computation, 10(4):345–
369, 2002.

7. Z. Fan, J. Hu, K. Seo, E. D. Goodman, R. C. Rosenberg, and B. Zhang. Bond
graph representation and GP for automated analog filter design. In E. D.
Goodman, editor, 2001 Genetic and Evolutionary Computation Conference Late
Breaking Papers, pages 81–86, San Francisco, California, USA, 9-11 July 2001.

8. B. Forouraghi. A genetic algorithm for multiobjective robust design. Applied
Intelligence, 12:151–161, 2000.

9. J. Hu, E. Goodman, K. Seo, Z. Fan, and R. Rosenberg. The hierarchical fair
competition (hfc) framework for sustainable evolutionary algorithms. Evolu-
tionary Computation, 13(2), 2005.

10. E. Jen. Definitions of robustness. santa fe institute robustness site, rs-2001-009.
2001.

11. Y. Jin and B. Sendhoff. Trade-off between optimality and robustness: An evo-
lutionary multi-objective approach. In C. F. et al., editor, Proceeding of the
Second Int. Conf. on Evolutionary Multi-criterion Optimization, pages 237–251.
Springer, 2003.

12. D. Karnopp, D. L. Margolis, and R. C. Rosenberg. System Dynamics: Modeling
and Simulation of Mechatronic Systems.Third Edition. John Wiley & Sons, Inc.,
New York, 2000.

13. J. R. Koza, D. Andre, F. H. Bennett III, and M. Keane. Genetic Programming
3: Darwinian Invention and Problem Solving. Morgan Kaufman, Apr. 1999.

14. J. R. Koza, F. H. Bennett III, D. Andre, M. A. Keane, and F. Dunlap. Auto-
mated synthesis of analog electrical circuits by means of genetic programming.
IEEE Transactions on Evolutionary Computation, 1(2):109–128, July 1997.

15. J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza.
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers, 2003.

16. J. Lohn and S. Colombano. A circuit representation technique for automated
circuit design. IEEE Transactions on Evolutionary Computation, 3(3):205–219,
1999.

17. T. Ray. Constrained robust optimal design using a multi-objective evolutionary
algorithm. In Proceeding of Congress on Evolutionary Computation, pages 419–
424. IEEE press, 2002.

496 Jianjun Hu, Shaobo Li, and Erik Goodman

18. K. Seo, Z. Fan, J. Hu, E. D. Goodman, and R. C. Rosenberg. Toward an
automated design method for multi-domain dynamic systems using bond graph
and genetic programming. Mechatronics, 13(8-9):851–885, 2003.

19. G. Taguchi. Taguchi on Robust Technology Development: Bringing. ASME,
ASME, 1993.

20. S. Tsutsui and A. Ghosh. Genetic algorithms with a robust solution searching
scheme. IEEE Trans. Evolutionary Computation, 1(3):201–208, 1997.

21. D. Wiesmann, U. Hammel, and T. Back. Robust design of multilayer optical
coatings by means of evolutionary algorithms. IEEE Transactions on Evolu-
tionary Computation, 2(4):162–167, 1998.

22

Robust Salting Route Optimization Using
Evolutionary Algorithms

Hisashi Handa1, Lee Chapman2, and Xin Yao3

1 Graduate School of Natural Science and Technology, Okayama University,
Tsushima-Naka 3-1-1, Okayama, 700-8530, JAPAN
handa@sdc.it.okayama-u.ac.jp

2 School of Geography, Earth, and Environmental Science
The University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
l.chapman@bham.ac.uk

3 CERCIA, School of Computer Science, The University of Birmingham,
Edgbaston, Birmingham B15 2TT, U.K.
x.yao@cs.bham.ac.uk, www.cs.bham.ac.uk/∼xin

Summary. In winter, roads need to be salted and gritted when temperature drops
to around the freezing point, in order to ensure the safety of road users (especially
motor vehicles). In the UK, there are approximately 3000 salting routes covering
about 120,000km (approximately 30% of the road network). Given limited resources
and severe time constraints, it is imperative that salting routes are planned in ad-
vance for efficient and effective treatment. Unfortunately, there is no automatic route
optimization system for salting trucks that can deal with different road conditions
and constraints. Almost all published systems make unrealistic assumptions that
do not hold in practice. This chapter describes a novel route optimization system
based on newly proposed memetic algorithms. The system is designed with dynamic
problems in mind. That is, given different road temperatures and different temper-
ature distributions in a road network, the system can produce optimised routes for
a fleet of salting trucks. The system has been evaluated using real world data from
the South Gloucestershire council in England and obtained 10% improvement over
their existing solution in terms of distances travelled by the salting trucks.

22.1 Introduction

In countries with a marginal winter climate, highway authorities are responsible for
the precautionary salting of the road network. In the UK, there are approximately
3000 salting routes covering about 120,000km (approximately 30% of the road net-
work). With limited resources and time constraints, it is imperative that salting
routes are planned in advance for efficient and effective treatment. To aid this pro-
cess, a Salting Route Optimization system (SRO) [1–3] which combines evolutionary
algorithms with the neXt generation Road Weather Information System (XRWIS)
has been developed [1]. The SRO system can cope with large-scale instances in the

H. Handa et al.: Robust Salting Route Optimization Using Evolutionary Algorithms, Studies

in Computational Intelligence (SCI) 51, 497–517 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

498 Hisashi Handa, Lee Chapman, and Xin Yao

real world within reasonable computation times, to the extent that daily dynamic
salting route optimization can be realised. However, a dynamic system [3] which
responds to daily changes in temperature forecasts, will result in salting routes that
also change each day. There is a danger that such a complicated system may con-
fuse maintenance engineers and ultimately result in errors in the treatment regime.
Therefore, before the dynamic approach can be used in the real world, there is a
need to phase in the technology using an operationally simpler system.

In this chapter, a new evolutionary SRO which generates robust solutions to
the problem is presented. Instead of treating each night on its own merits, the
emphasis is instead placed on ‘thermally ranking’ static optimised routes. The aim
is to amalgamate roads with similar thermal characteristics onto the same route so
that the ‘warmer’ routes could be left untreated on marginal nights. Although the
financial savings using a robust solution are potentially less than a dynamic solution,
this is still a considerable advance on existing techniques.

22.2 Salting Route Optimization with XRWIS

The SRO system outlined in this chapter represents a synergy of evolutionary al-
gorithms with XRWIS. XRWIS essentially provides an archive of past and forecast
temperature distributions to the evolutionary algorithms module for evolution and
operation. The system is fronted by an intuitive GUI which displays the resultant
robust routes (Fig. 22.1). Although most of the road network data is inputted into
the SRO as simple vector routing data, additional ‘local’ information can also be
entered using the GUI, such as mandatory turns, one way streets, new roads and
driver preferences. This section introduces XRWIS and explains how the tempera-
ture data is combined with the vector routing data to translate the salting route
optimization problem into a Capacitated Arc Routing Problem (CARP).

22.2.1 XRWIS

Throughout the winter season, the decision of whether to salt the road network is
taken by consulting a Road Weather Information System (RWIS) which produces a
road condition forecast by combining weather forecast data with thermally mapped
road temperature data. The first generation of RWIS, which is still largely in use,
relies on methods and tools developed in the 1980s. However, as technology has
moved on, it is now being superseded by the neXt generation RWIS (XRWIS) [4,
5]. XRWIS is a new route-based forecast system which accurately predicts road
temperatures to a high spatial and temporal resolution. Instead of modelling road
condition at a single site and interpolating temperatures by thermal maps, XRWIS
models road surface temperatures at thousands of sites around the road network
by considering the influence of the local geography on the road surface [4, 5]. Data
is collected along each salting route by conducting a survey of the sky-view factor.
This is a measure of the degree of sky obstruction by buildings and trees and is the
dominant control on road surface temperatures. [6, 7]. The sky-view factor is then
combined with other geographical parameters (latitude, longitude, altitude, slope,
aspect, road construction, landuse and traffic volume) to produce a high resolution
geographical parameter database.

22 Robust Salting Route Optimization Using EAs 499

Fig. 22.1. The graphical user interface of the developed Salting Route Optimization
System

The geographical data is combined with mesoscale meteorological data in an
energy balance model to predict road conditions at typical spatial and temporal
resolutions of 20 metres and 20 minutes respectively. The output is displayed as
a colour-coded map of road temperature and condition that is disseminated over
the Internet to the highway engineer (Fig. 22.2). Fig. 22.3 shows an example of the
changes of temperature, predicated by the XRWIS, at a single site (point) during
a day. From this forecast, actions are suggested as to whether or not an individual
salting route needs treating.

22.2.2 Capacitated Arc Routing Problems (CARP)

SRO can be regarded as an instance of the Capacitated Arc Routing Problem
(CARP) [8, 10]. Suppose that a graph G = (V, E) is given, where V and E are
sets of vertices and edges, respectively. Each edge e in E has a cost Ce. A set R
(⊂ E) of required edges is defined in the CARP and a demand De is defined to each
edge e in R. There are several vehicles to fill the demands, where each vehicle has
a predefined service capacity. A depot is also defined in V from which all vehicles
must depart from and return to at the end of their service tour. The problem is to
find a set of tours which have a minimum total cost for all vehicles, ensuring the
demands of all required edges are filled by at least one vehicle, whilst ensuring the
total services capabilities of each vehicle are not exceeded.

The road network is divided into vertices and edges. Vertices are set on intersec-
tions or branch points of roads, whereas edges are defined as roads between vertices.
For example, using Fig. 22.2 as an example, there are 419 vertices and 597 edges.
The cost of an edge is defined as the length of the feature where as the demand is

500 Hisashi Handa, Lee Chapman, and Xin Yao

Fig. 22.2. Temperature distributions for two nights in South Gloucestershire: on a
cold night (UPPER) and on a marginal night (LOWER)

22 Robust Salting Route Optimization Using EAs 501

-5

 0

 5

 10

 15

 20

13:00 18:00 24:00 6:00

te
m

pe
ra

tu
re

time

temperature

Fig. 22.3. The changes of predicted temperature at a single site over a 24 hour
period

the amount of salt required to treat it. The set of required edges and their demands,
is then defined by referring to the predicted temperature distribution provided by
XRWIS. If a road section (edge) is predicted to go below freezing, then a minimum
10g/m2 salt is required to be spread on that section before ice forms (although more
salt will be required on wider, multi-laned roads). Thus, the amount of salt S(e) on
an edge e is defined as follows:

S(e) =
∑
o∈e

d(o, succ(o, e))× w(e)× f(t(o)− θ),

where succ(o, e) and w(e) denote the succeeding prediction point of the prediction
point o on the edge e, and width of the edge e, respectively. f(x) is the threshold
function such that f(x) returns 1 if x < 0, otherwise 0. t(o) and θ are the predicted
temperature at o and threshold value fixed in advance. If S(e) is greater than 0, the
edge e is regarded as a member of the set of required edges. Fig. 22.5 shows the
acquired CARP instances from temperature distributions in Fig. 22.2.

22.2.3 Representation and Evaluation of Tours

Each salting operation will see a number of trucks N in operational use. Each edge
is assigned a unique ID and the tours Ti for trucks i (i = 1, . . . N) can be denoted
as a sequence of the edge IDs. For instance, assume N = 3 and a set of ten edge IDs
{1, 2, 3, 4, . . . , 10}. A set of tours could be represented as follows:

T1 2 3 5 6

T2 1 8 4

T3 10 9 7

502 Hisashi Handa, Lee Chapman, and Xin Yao

Observation Point

Road

o
succ(o, e)

dist(o, succ(o, e))w(e)

Fig. 22.4. Translation of SRO to a CARP instance

Now, by introducing a temperature distribution a, a set of edges requiring treat-
ment R(a) can be defined. Hence, the set of tours is then rewritten by neglecting
non-members of the set of required edges R(a). Let R(A) = {2, 3, 4, 6, 8}. The set of
tours is rewritten for the temperature distribution a as follows:

T1(a) 2 3 6

T2(a) 8 4

T3(a)

In this example, T3(a) is not required and hence, only two trucks are required to
complete the operation.

The evaluation of a set of tours X is represented as follows:

E(X, a) =
∑

Ti(a)∈X

C(Ti(a)) + Cp × P (Ti(a), a), (22.1)

where C()̇ denotes the cost (distance) function of a tour as described in the appendix

and Cp is a predefined coefficient for the penalty term. P ()̇ indicates the quantity
of constraint violation in each truck and is defined as follows:

P (T, a) =

{
D(T, a)− L(T) if D(T, a)− L(T) > 0
0 Otherwise,

where D(T, a) denotes the total services in tour T at a temperature distribution a,
and L(T) is a limitation subject to a truck for tour T .

22.3 Robust Solution of Salting Route Optimization

22.3.1 Robust Solution

Searching for robust solutions is one of the most significant topics of evolutionary
optimization in uncertain environments [13]. Robust solutions are often used for
problems where the decision variables or environmental parameters4 are subject to

4 The environmental parameters indicate parameters which characterise the fitness
function

22 Robust Salting Route Optimization Using EAs 503

required edges

required edges

Fig. 22.5. Required edges for Fig. 22.2: on a cold night (UPPER) and on a marginal
night (LOWER)

504 Hisashi Handa, Lee Chapman, and Xin Yao

perturbation. The notion of effective fitness function is often used in this research
area [11, 12].

F (X) =

∫ ∞

−∞
f(X + δ)p(δ)dδ, (22.2)

where p(δ) indicates the probability distribution of perturbation δ. In the case of
where a perturbation is added to the environmental parameters a,

F (X) =

∫ ∞

−∞
f(X, a + δ)p(δ)dδ. (22.3)

In practise, an approximation of the effective fitness function is used. The approxi-
mation of the effective fitness function in the former is written by

F̂ (X) =

N∑
i=0

1

N
f(X + δi), (22.4)

where N denotes the number of samplings to estimate f(X). That is, evolutionary
algorithms tackle to solve for F̂ (X) instead of f(X). Similar approximation is applied
for the latter case.

22.3.2 Robust Solution of Salting Route Optimization

In the case of salting route optimization, a robust solution can be represented by an
optimal design value X for the following function:

F (X) =

∫
E(X, a)p(a)da, (22.5)

where a indicates a possible temperature distribution. Essentially, the optimization
of F (X) does not make sense if a, such that p(a) �= 0, is uncorrelated with X in
E(X, a). In the case of salting route optimization, ‘warmer’ and ‘colder’ roads exist
due to microclimatological effects caused by the local geography. However, although
the distribution in temperature will vary daily across the road network, warmer
sections are nearly always relatively warm and colder sections are nearly always
relatively cold. As a result, even on cold nights, some warmer sections of road will
still not require salt where as the coldest sections of road may need treating on even
the least marginal of nights.

It is difficult to compute equation (22.5) exactly since the number of possible
values in a is large and the probability distribution p(a) is yet unknown. Hence, as in
inductive learning, the number of typical temperature distributions is prepared for
evolution. Let Ae is a set of temperature distributions for evolution. The following
function is useful to evaluate the robustness of salting routes:

F̂ (X) =
∑

ai∈Ae

1

|Ae|
E(X, ai). (22.6)

22 Robust Salting Route Optimization Using EAs 505

Procedure Robust Solutions of SRO by using EAs
begin
translate SRO for temperature distributions ai to CARP instance Iai

initialise population
evaluate population
until Stopping criterion is reached
select a CARP instance Iai

pick up two parents
generate 30 offspring from the parents by EAX for Iai

select the best offspring
apply local search to the copy of the best offspring for Iai

evaluate the best offspring and the improved offspring by F̂ (X)
replacement of new individuals

end
end

Fig. 22.6. Pseudo-code of the proposed method

22.4 Evolutionary Algorithms for Robust Salting Route
Optimization

22.4.1 Overview

A new memetic algorithm for generating robust solutions is proposed (Fig. 22.6). The
basic procedure of the algorithm is ordinal: selecting parents, reproducing offspring,
applying local search methods to the offspring and finally replacing the resultant
offspring if the new offspring is better than the worst individual in the population.
A particular feature of the proposed method is that crossover operations and lo-
cal search methods are applied to only one CARP instance at every generation,
whilst the fitness function is composed of an ensemble of the evaluations of several
CARP instances. Hence, at the beginning of each generation, a single CARP in-
stance is selected for use by referring to the weights. The weights are then updated
for predefined intervals of generations as described in 22.4.3 and are used for fitness
evaluation.

22.4.2 Coding Method and Fitness Evaluation

A naive permutation encoding method for solving SRO is employed. The chromo-
some of an individual is composed of several special symbols and edge IDs. Special
symbols s1 are used to indicate the beginning of tours for each truck. Using the
following chromosome as an example, tours are yielded for two trucks (A permu-
tation representation is employed in this coding method).: T1 = { 5 4 7 1}, and
T2 = { 8 3 2 6}.

2 6 s1 5 4 7 1 s2 8 3

As evolutionary algorithms have a tendency to find optimal solutions E(X, ai)
in the case of equation (22.6), the normalised function EN (X, ai) is employed as a
fitness function of our evolutionary algorithms:

506 Hisashi Handa, Lee Chapman, and Xin Yao

population
offspring

XRWIS

a1

a2

ak

a0

akI

CARP
instances

typical
temp. dist.

a2I

a1I

a0I

local search

crossover

inidividual

parents selection

Fig. 22.7. The graphical user interface of the developed Salting Route Optimization
System

F̂ (X) =
∑

ai∈Ae

wiEN (X, ai), (22.7)

where wi (0 < wi < 1,
∑

ai∈Ae
wi = 1) denotes a weight for each temperature

distribution ai. The normalised function EN (X, ai) is defined as follows:

EN (X, ai) =
E(X, ai)− E∗(ai)

E∗(ai)
, (22.8)

where E∗(ai) is a real number indicating the difficulty of solving a CARP instance
Iai , (e.g. lower bounds which is the distance searched by other algorithms). In this
algorithm, E∗(ai) is defined as the best distance for a CARP instance Iai searched
by using the Memetic Algorithm [1].

22.4.3 Weights and their Update

In this section, two types of weights wi are examined: fixed weights and weights
updated for every predefined interval. The values of the fixed weights and the initial
value of changed weights are set to 1/|Ae|.

Weight updates correspond to changes in the directions of evolution. For every
predefined interval of generations L, the weight wj is updated by using the best tour
evaluation Eb

N (X, ai) which is searched by evolutionary algorithms:

wj =
exp Eb

N (X, aj)∑m

k=1
exp Eb

N (X, ak)
(22.9)

Genetic operators including crossover and local search methods are applied to
only one CARP instance in every generation. A CARP instance is selected by re-
ferring to the weights in the beginning of every generation and applying genetic op-
erators. For example, the following proportion si is used to randomly decide which
CARP instance is applied to genetic operators, as in roulette wheel selection:

22 Robust Salting Route Optimization Using EAs 507

5

4

7

1

8

3

2 6

tour a: 5 4 7 1 tour b: 8 3 2 6

5

4

7

1

8

3

2 6

tour a: 4 7 1 tour b: 8 3 2 6 5

Fig. 22.8. A depiction of the repair procedure

si =
wi∑
wj

. (22.10)

This application method is employed because the genetic operators adopted use
information in problem instances, for example, distance and amount of services on
edges, to improve the fitness of individuals. Conflicts between the improvement for
problem instances by genetic operators might occur if genetic operators are applied
to several problem instances simultaneously and therefore a conflict resolution mech-
anism may be required. Furthermore, evolutionary algorithms tend to converge the
easier instances at first which can cause Evolutionary Algorithms to become trapped
into the local minimum of the total problem as represented by equation (22.6) This is
because it is difficult to find out an improved solution for the more difficult problem
instances whilst the solution quality of easier problems is kept constant.

22.4.4 Genetic Operators

In order to cope with large scale problems, the edge assembly crossover (EAX)
operator proposed by Nagata et al. is used due to its search ability [15, 16]. However,
since this operator is specifically designed for Travelling Salesman Problems, it can
often yield an infeasible solution in our case. Hence, a repair operator for offspring
individuals is incorporated in our memetic algorithm:

1. A counter variable count is set to 0.
2. Find a tour a which has maximum violation with respect to the constraint of

the service capacity.
3. Randomly choose a required edge r in the tour a.
4. Find a tour b, which has an opening for the required edge t, such that the

required edge must be traversed as a deadheading path (Figure 22.8). If no tour
is found, increment count and go to 7. Otherwise go to the next step.

5. Move the required edge r from the tour a to the tour b.
6. Increment count and recalculate the total amount of services for the tours a and

b.
7. Loop back to 2. until there is no violation in all tours or count exceeds 30.

508 Hisashi Handa, Lee Chapman, and Xin Yao

22.4.5 Local Search Method

Local search methods are carried out with a probability. Because the EAX operator
has similar characteristics to the k-opt operator, three naive local search methods
are used in the Memetic Algorithms:

Move an edge
Before: 4 s1 1 3 5 8 s2 2 6 7

After: 4 s1 1 3 5 s2 2 6 8 7
Move sequential two edges

Before: 4 s1 1 3 5 8 s2 2 6 7

After: 4 s1 1 3 s2 2 6 5 8 7
Swap two edges

Before: 4 s1 1 3 5 8 s2 2 6 7

After: 4 s1 1 3 5 6 s2 2 8 7

Upper and lower lines in each local search operation indicate an individual before and
after applying the operation respectively. For all possible pairs of variables, above
local search operations are applied. A pair of variables with the best improvement
is then selected.

22.4.6 Initialisation of Population

Almost all the individuals in the population are generated as a random permuta-
tion. However, two types of additional sophisticated individuals are also inserted:
Firstly, individuals generated by path scanning heuristics [9, 10] are applied to prob-
lem instances with large numbers of required edges. Secondly, individuals indicating
the best solution E∗(ai) for the corresponding CARP instance Iai is solved solely
by memetic algorithms in [1]. These individuals are represented by the IDs of re-
quired edges for the corresponding CARP instance Iai . Therefore, individuals in
the proposed method require the IDs of all edges. In order to insert missed IDs to
the best individuals, simple heuristics based on distance is employed: (1) insert the
missed edge into the nearest tour providing the service capacity of the truck is not
exceeded. (2) if no edge is found in (1), another tour is built by using the path
scanning heuristics.

22.5 Experiments

22.5.1 Evolutionary Process

A series of experiments using the real data in South Gloucestershire, England, were
conducted. Ten different temperature distributions were used for evolution (shown
in Table 22.1) along with an ‘ideal’ temperature distribution aideal, where all tem-
perature points are below 0 degree. In each case, the number of trucks refers to the
minimum number of trucks which can cover all the demands of required edges in
corresponding CARP instance Iti . The best distance is searched by the Memetic
algorithm in [1] and is used for the normalised evaluation EN (X, ai) shown in equa-
tion (22.8) The number of edges in the area and trucks needed to serve in the CARP

22 Robust Salting Route Optimization Using EAs 509

Table 22.1. Ten different temperature distributions were used in our experiments

a0 a1 a2 a3 a4

No. required Edges 97 257 297 323 354
No. trucks 2 4 4 5 6

Best distance E∗(ai) 268029 366410 436006 463263 509717

a5 a6 a7 a8 a9

No. required Edges 437 428 519 568 578
No. trucks 7 8 9 11 11

Best distance E∗(ai) 576513 640502 665371 727262 747710

Table 22.2. The average and best distances over 20 runs using our proposed method

Initialisation unincorporated incorporated

Change ivl. n/a 100 500 1000 n/a 100 500 1000

Ave. 0.3225 0.3233 0.3183 0.3342 0.3002 0.2860 0.2769 0.2916
Best 0.2894 0.2696 0.2883 0.2985 0.2730 0.2652 0.2525 0.2668

instance Iaideal for the ‘ideal’ temperature distribution are 595 and 11 respectively.
As a result, the string length is set to 696. The probability of applying local search
method, the population size, and the number of generations in each run are 0.1, 300,
and 100,000, respectively.

Table 22.2 shows the average and the best distances over 20 runs by using the
proposed method. Three kinds of changing intervals for weights are examined: 100,
500, and 1000. Bold font denote results that show a statistical significance against
uncharged weight method. Initialisation by incorporation of the best individuals for
each CARP instance (which are searched by former memetic algorithms), gives good
results. For all weight change intervals and unchanged weights, the averages and the
bests are improved.

Fig. 22.9 depicts the changes of weights during evolutionary process for the
changing interval of 500 generations. The horizontal axis denotes the temperature
distribution ai where as the depth axis and the vertical axis indicate the number
of generations and corresponding weight values. Fig. 22.9 shows that the proposed
method appears to find better solutions in CARP instances with less required edges.

22.5.2 Test of the Resultant Robust Solutions

A further 11 temperature distributions ti were used to investigate the generalisa-
tion property of the acquired robust solutions. The best solutions for the algorithms
in Table 22.2 are evaluated on the CARP instances ti in Table 22.3. Table 22.4
summarises the results for the test. Results shown in bold indicate the best perfor-
mance among variable changing interval of weights (including uncharged weights).
‘Average’ refers to the average value of EN (X, ti) over 11 CARP instances Iti . For
the average values, the proposed method with changing interval L = 500 and best
individual incorporation outperform the other algorithms. In particular, for CARP
instances with less total demands, e.g., It0 , It1 , It2 , It3 , the algorithm shows increased
performance as just 10 trucks are now required.

510 Hisashi Handa, Lee Chapman, and Xin Yao

0

50000
75000

100000

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

25000

Ia0 Ia2 Ia4 Ia6 Ia8 Ia10

Fig. 22.9. Change of weights during evolution process

Table 22.3. Eleven CARP instances used to evaluate our algorithm

t0 t1 t2 t3 t4 t5
No. required Edges 129 246 262 259 291 339

No. trucks 3 4 4 4 4 5
Best distance E∗(ti) 299189 349094 376647 377277 422974 481216

t6 t7 t8 t9 t10
No. required Edges 344 385 448 468 537

No. trucks 5 6 8 8 10
Best distance E∗(ti) 482925 532018 578740 668918 671725

22.5.3 Comparison with Conventional Routes

The acquired robust solutions were compared with conventional routes which are
presently used by the South Gloucestershire council (England). Fig. 22.10 and
Fig. 22.11 are plotted routes of the CARP instances It1 and It8 , respectively.

The conventional routes were generated manually by roughly allocating a region
to each truck. Hence, the robust solution looks untidy in comparison but does offer
an improvement of total distance travelled by more than 10%.

22.6 Conclusions

In this chapter, a robust solution of salting route optimization system, which com-
bines evolutionary algorithms with the neXt generation Road Weather Information

22 Robust Salting Route Optimization Using EAs 511

Table 22.4. Results of our algorithm for the eleven CARP instances given in Ta-
ble 22.3. Results shown in bold indicate the best performance among variable chang-
ing interval of weights (including uncharged weights). ‘Average’ refers to the average
value of EN (X, ti) over 11 CARP instances Iti .

Initialisation unincorporated incorporated

Change ivl. n/a 100 500 1000 n/a 100 500 1000

Average 0.3225 0.3233 0.3183 0.3342 0.3002 0.2860 0.2769 0.2916

EN (X, t0) 0.8702 0.8383 0.8607 0.9086 0.8936 0.8191 0.7997 0.8302
t0 Distance 559550 549999 556708 571026 566551 544241 538455 547583

No. Trucks 11 10 11 11 11 10 10 10

EN (X, t1) 0.5290 0.5610 0.5281 0.6207 0.6395 0.5677 0.5416 0.5822
t1 Distance 533775 544953 533453 565787 572348 547276 538166 552332

No. Trucks 10 10 10 10 11 10 10 11

EN (X, t2) 0.6039 0.5393 0.6030 0.6887 0.6063 0.5660 0.5041 0.5802
t2 Distance 604089 579757 603767 636040 605015 589845 566504 595163

No. Trucks 11 10 11 11 11 10 10 11

EN (X, t3) 0.6012 0.5367 0.6003 0.6859 0.6033 0.5632 0.5013 0.5762
t3 Distance 604089 579757 603767 636040 604891 589749 566408 594680

No. Trucks 11 10 11 11 11 10 10 11

EN (X, t4) 0.5089 0.4543 0.5138 0.5917 0.5079 0.5268 0.4949 0.5199
t4 Distance 638232 615144 640314 673239 637787 645780 632284 642882

No. Trucks 11 10 11 11 11 11 11 11

EN (X, t5) 0.3826 0.3916 0.3802 0.4652 0.3737 0.3714 0.3692 0.3648
t5 Distance 665324 669677 664168 705057 661054 659956 658886 656745

No. Trucks 11 10 11 11 11 11 11 11

EN (X, t6) 0.3801 0.3906 0.3753 0.4624 0.3700 0.3677 0.3655 0.3611
t6 Distance 666486 671561 664168 706219 661615 660517 659447 657306

No. Trucks 11 10 11 11 11 11 11 11

EN (X, t7) 0.3206 0.3418 0.3055 0.4186 0.2936 0.3086 0.2904 0.2874
t7 Distance 702595 713887 694553 754733 688219 696179 686511 684918

No. Trucks 11 11 11 11 11 11 11 11

EN (X, t8) 0.2498 0.2592 0.2439 0.3451 0.2261 0.2249 0.2141 0.2174
t8 Distance 723293 728747 719915 778443 709600 708890 702662 704530

No. Trucks 11 11 11 11 11 11 11 11

EN (X, t9) 0.1043 0.1260 0.0971 0.1868 0.0890 0.0882 0.0850 0.0880
t9 Distance 738676 753212 733860 793891 728464 727936 725755 727766

No. Trucks 11 11 11 11 11 11 11 11

EN (X, t10) 0.1081 0.1355 0.1065 0.1975 0.0882 0.0903 0.0858 0.1069
t10 Distance 744370 762735 743280 804358 730994 732408 729375 743514

No. Trucks 11 11 11 11 11 11 11 11

512 Hisashi Handa, Lee Chapman, and Xin Yao

Fig. 22.10. Acquired routes (UPPER) and conventional routes (LOWER) for a
CARP instance It1 . Gray line, coloured thick line and coloured thin line denote
edges with no trucks, edges with service by corresponding truck, and deadheading
edges, respectively.

22 Robust Salting Route Optimization Using EAs 513

Fig. 22.11. Acquired routes (UPPER) and conventional routes (LOWER) for a
CARP instance It8 . Gray line, coloured thick line and coloured thin line denote
edges with no trucks, edges with service by corresponding truck, and deadheading
edges, respectively.

514 Hisashi Handa, Lee Chapman, and Xin Yao

System, was described. A new framework of robust solutions, not for perturbation,
but for various values of environmental parameters was introduced. The weighting
approach was examined in our proposed system in order to prevent the algorithm
from converging to easier CARP instances. In addition, the insertion of the best in-
dividual for each temperature distribution was also incorporated into the proposed
systems. Our proposed system has been tested on a real world case using the South
Gloucestershire council data, more than 10% improvement was achieved in terms
of the total distances travelled by trucks, in comparison with the routing that is
currently being used.

The work presented here represents only the first step towards a practical so-
lution to the salting route optimization problem. There are a number of difficult
constraints that we need to incorporate into the system, such as different capaci-
ties of different trucks, multiple trips for a single truck, multiple depots, one-way
streets, invalid turns, etc. Such new constraints have made CARP even more difficult
to tackle. No existing algorithms can deal with all these constraints satisfactorily.
New memetic algorithms are currently being developed by us. We hope to report
our new results soon.

References

1. Handa, H, Chapman, L, Yao, X (2005) Dynamic Salting Route Optimisation
using Evolutionary Computation, Proceedings of the 2005 Congress on Evolu-
tionary Computation 1:158–165

2. Handa, H, Chapman, L, Yao, X (2006) Robust route optimisation for grit-
ting/salting trucks: A CERCIA experience, IEEE Computational Intelligence
Magazine, 1(1):6-9.

3. Handa, H, Lin, D, Chapman, L, Yao, X (2006) Robust Solution of Salting Route
Optimisation Using Evolutionary Algorithms, Proc. of the 2006 IEEE Congress
on Evolutionary Computation (CEC’06), Vancouver, Canada, 16-21 July 2006.
pp.10455-10462, IEEE Press, USA.

4. Chapman, L, Thornes, JE, and Bradley, AV (2001) Modelling of road surface
temperature from a geographical parameter database. Part 1: Statistical, Me-
teorological Applications 8:409–419

5. Chapman, L, Thornes, JE, and Bradley, AV (2001) Modelling of road surface
temperature from a geographical parameter database. Part 2: Numerical, Me-
teorological Applications 8:421–436

6. Chapman, L, Thornes, JE, Bradley, AV (2002) Sky-view factor approximation
using GPS receivers, International Journal Climatology 22(5):615–621

7. Chapman, L, Thornes, JE (2004) Real-Time Sky-View Factor Calculation and
Approximation Journal of Atmospheric and Oceanic Technology 21:730–741

8. Golden, B, and Wong, RT (1981) Capacitated arc routing problem, Networks
11:305–315

9. Golden, B, and DeArmon, JS, and Baker, EK (1983) Computational Experi-
ments with Algorithms for a Class of Routing Problems, Computers and Op-
erational Research 10(1):47–59

10. Lacomme, P, Prins, C, and Ramdane-cherif, W (2004) Competitive Memetic
Algorithms for Arc Routing Problems, Annals of Operations Research 131:159–
185

22 Robust Salting Route Optimization Using EAs 515

11. Tsutsui S, Ghosh A (1996) A Robust Solution Searching Scheme in Genetic
Search, Parallel Problem Solving from Nature IV, 201–208

12. Tsutsui S, Ghosh A (1997) Genetic Algorithms with a Robust Solution Search-
ing Scheme, IEEE Trans on Evolutionary Computation 1(3):201–208

13. Jin Y, Branke J (2005) Evolutionary Optimization in Uncertain Environments,
IEEE Trans on Evolutionary Computation 9(3):303–317

14. Moscato, P (1989) On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms, Caltech Concurrent Compu-
tation Program, C3P Report 826

15. Nagata, Y, Kobayashi, S (1997) Edge Assembly Crossover: A High-power Ge-
netic Algorithm for the Traveling Salesman Problem, Proceedings of the 7th
International Conference on Genetic Algorithms 450–457

16. Nagata, Y (2004) The EAX Algorithms Considering Diversity Loss Proceedings
of the 8th International Conference on Parallel Problem Solving from Nature
– PPSN VII 332–341

Appendix: Calculation of the Distance of Tours

It is difficult to predefine the deadheading costs between required edges. A tour
for a vehicle is defined as a sequence of required edges, whereas the actual path of
the tour is defined as a sequence of all edges which the vehicles must traverse. For
example, assuming that there are four required edges A, B, C, and D (Fig. 22.12a).
The minimum actual paths of tour “BC”, “ABC”, and “ABCD”, which are the
minimum length of all possible actual paths, are those as shown in Fig. 22.12 (b),
(c), and (d), respectively. Note that deadheading edges between required edges B
and C in these figure are depicted in dashed lines. The deadheading costs between
adjacent required edges varies in accordance with a sequence of required edges in a
tour. Therefore, all the required edges in a tour need to be taken into account in
order to calculate the total cost.

A distance matrix is employed between vertices which is unchanged during evo-
lutionary search. The distance matrix is calculated by using Dijkstra’s Algorithm
before evolutionary computation is run. The cost of tours is calculated as follows:
by considering the graph in Fig. 22.13, which consists of a depot node and a se-
quence of required edges whose order is the same as a sequence in tours (Note that
although there are two depot nodes in this figure, these nodes are the same). The
minimum cost dmin(t0e1), dmin(t1e1) to arriving at the terminal nodes t0e1 , t1e1 of the
first required edge e1 in the tour is set to D(depot, t0e1)) and D(depot, t1e1)), respec-
tively, where D(·, ·) denotes the element of the distance matrix, and depot stands for
the depot node. The minimum cost dmin(t0ei

), dmin(t1ei
) to arriving at the terminal

nodes t0ei
, t1ei

of required edge ei is recursively calculated by using the minimum cost
dmin(t0ei−1), dmin(t1ei−1) of previous required edge ei−1. That is,

dmin(t0ei
) = min(dmin(t0ei−1) + Cei−1 + D(t1ei−1 , t0ei

),

dmin(t1ei−1) + Cei−1 + D(t0ei−1 , t0ei
))

dmin(t1ei
) = min(dmin(t0ei−1) + Cei−1 + D(t1ei−1 , t1ei

),

dmin(t1ei−1) + Cei−1 + D(t0ei−1 , t1ei
)),

516 Hisashi Handa, Lee Chapman, and Xin Yao

A B C D

Depot

(a) (b) tour BC

(c) tour ABC (d) tour ABCD

deadheading Edges
Required Edges

deadheading Edges between B and C

Fig. 22.12. (a) An alignment of required edges A, B, C, D, actual paths of tour
(b) “BC”, (C) “ABC”, and (d) “ABCD”

where Cei is the cost of ith required edge. Finally, the cost CTi of tours Ti is defined
as

CTi = min(dmin(t0elast
) + Cei−1 + D(t1elast

, depot)

dmin(t1elast
) + Cei−1 + D(t0elast

, depot)),

where elast indicates the last required edge in the tour Ti.

22 Robust Salting Route Optimization Using EAs 517

Depot Depot

e1 e2 e3 elast-1 elast

e1
t
0

e1
t
1

e2
t
1

e3
t
1

elast-1
t
1

elast
t
1

e2
t
0

e3
t
0

elast-1
t
0

elast
t
0

Fig. 22.13. A graph for calculating the cost of tours. Note the identical depot
nodes.

23

An Evolutionary Approach For Robust Layout
Synthesis of MEMS

Zhun Fan1, Jiachuan Wang2, Min Wen3, Erik Goodman4, and Ronald Rosenberg5

1 Technical University of Denmark, Department of Mechanical Engineering
Lynby, 2800, Denmark
zf@mek.dtu.dk

2 Systems Department, United Technologies Research Center
East Hartford, 06128, USA
WangJ2@utrc.utc.com

3 Technical University of Denmark, Department of Informatics and Mathematical
Modelling, Lynby, 2800, Denmark
mw@imm.dtu.dk

4 Michigan State University, Department of Electrical and Computer Engineering
East Lansing, 48823, USA
goodman@egr.msu.edu

5 Michigan State University, Department of Mechanical Engineering
East Lansing, 48823, USA
rosenben@egr.msu.edu

Summary. The chapter introduces a robust design method for layout synthesis of
micro-electro-mechanical (MEM) resonators subject to inherent geometric uncer-
tainties such as the fabrication error on the sidewall of the structure. The robust
design problem is formulated as a multi-objective constrained optimisation problem
with certain assumptions and treated by a special constrained genetic algorithm.
Case studies based on layout synthesis of a crableg resonator and a comb-driven
micro-resonator show that the approach proposed in this chapter can lead to de-
sign results that meet the target performance and are less sensitive to geometric
uncertainties than typical designs.

23.1 Introduction

Micro-electro-mechanical systems (MEMS) are tiny mechanical devices that are built
onto semiconductor chips and are measured in micrometers. They usually integrate
across different physical domains, including fluidics, optics, mechanics and electron-
ics, and are used to make devices such as pressure sensors, gyroscopes, engines,
and accelerometers etc. The sucess of MEMS designs are usually highly dependent
on the designers’ knowledge and experience. One reason for this is the complexity
involved in the modeling, design and fabrication of MEMS - there are many con-
straints in designing and fabricating MEM devices due to the limitations of current

Z. Fan et al.: An Evolutionary Approach For Robust Layout Synthesis of MEMS, Studies in

Computational Intelligence (SCI) 51, 519–542 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

520 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

fabrication techniques. As a result, many design issues are still not modeled and
cannot be detected by the simulation software. However, as process technologies
become more stable, research emphasis has been shifted from developing specific
process technologies towards the design of systems with a large number of reusable
components, such as resonators, accelerometers, gyroscopes, and micro-mirrors. It is
obvious that performance of individual components will influence the quality of the
whole system [14]. For example, frequency stability of a MEM resonator can directly
affect the quality of the MEM RF system in which it serves as a component of a
filter or an oscillator. It greatly benefits the MEMS designers if the routine design of
frequently used components can be optimized automatically by computer programs,
while the designers can take more time in contemplating the more creative concep-
tual designs. The research of layout synthesis of microresonators has been carried
out by many researchers. Some notable research include both deterministic numeric
approaches [6, 17, 23] and meta-heuristic approaches such as evolutionary computa-
tion [13, 15] and simulated annealing [18]. However, little has been done to account
for the uncertainties and most of previous work has not considered another major
dimension of MEMS design - robustness [12, 20]. Actually, with current microma-
chining techniques, the fabrication process variation in MEMS is inevitable and will
continue when devices are miniaturized to the point of process limitations [14]. For
example, it is reported in [9] that the width of a typical suspension beam has a
fabrication tolerance of about 10%. Applications of robust design research include
robust optical coating design [8, 22]. Hwang [10] used axiomatic design to do robust
design of a vibratory micro gyroscope. In this chapter, we present a robust design
approach for MEMS subject to process-induced geometrical uncertainties. In this
approach, we first formulate the robust design problem as a multi-objective con-
strained optimization problem [19], and then solve it using a special constrained
genetic algorithm. Case studies based on layout synthesis of a crableg resonator and
a comb-driven MEM resonator show that the robust designs nominally meet the
target performance and are less sensitive to geometric uncertainties.

23.2 Formulation of the Robust Design Problem

Let−→x = {x1, x2, ..., xn} be an array of design variables of a given design problem. We

assume that the uncertainty,
−→
δ = {δ1, δ2, ..., δn}, can be characterized as a random

vector with the following statistics

E(
−→
δ) = 0n×1 (23.1)

E(
−→
δ
−→
δ T) = Ω ∈ �n×n (23.2)

where Ω is the covariance matrix and is positive semi-definite. If the uncertainties
are uncorrelated then Ω is diagonal, otherwise the off-diagonal entries are non-zero
when correlation exists.

Given a function f(x) describing the performance of a design merit, the robust
design problem that we aim to solve is to minimize the expected value of the squared
error between the actual and target performance. We can write this as:

min
x

E(
−→
f (x, δ)−−→f)2 subject to gi(

−→x) ≤ 0 (23.3)

23 An Evolutionary Approach For Robust Layout Synthesis of MEMS 521

where is the target performance, and the expectation is taken over the random vector−→
δ .

The problem posed in (24.3) is a difficult robust optimization problem to solve

in general. To simplify the problem, we choose to approximate f(−→x ,
−→
δ) with a first

order Taylor series expansion in
−→
δ as

f(−→x ,
−→
δ) ∼= f(−→x , 0) +∇δf(−→x , 0)

−→
δ (23.4)

where ∇δf(−→x , 0) is the gradient of f(−→x ,
−→
δ) with respect to

−→
δ . Using this approx-

imation, we can expand the expression of f(−→x ,
−→
δ)−−→f)2 into

(f(−→x ,
−→
δ)−−→f)2 ∼= f(−→x , 0)−−→f)2 + 2(f(−→x , 0)−−→f)2∇δf(−→x , 0)

−→
δ

+ ∇δf(−→x , 0)
−→
δ
−→
δ T∇T

δ f(−→x , 0) (23.5)

Taking the expectation of the above equation, we can get

E(f(−→x ,
−→
δ)−−→f)2 ∼= f(−→x , 0)−−→f)2 + 2(f(−→x , 0)−−→f)2∇δf(−→x , 0)E(

−→
δ)

+ ∇δf(−→x , 0)E(
−→
δ
−→
δ T)∇T

δ f(−→x , 0) (23.6)

By reducing equation (24.6), based on our assumptions about the mean and

covariance of
−→
δ according to (24.1) and (24.2), we obtain

E(f(−→x ,
−→
δ)−−→f)2 ∼= f(−→x , 0)−−→f)2

+ ∇δf(−→x , 0)Ω∇T
δ f(−→x , 0) (23.7)

Substituting the approximation in (24.7) back into the original design problem
posed in (24.3) yields

min
x

f(−→x , 0)−−→f)2 +∇δf(−→x , 0)Ω∇T
δ f(−→x , 0)

subject to gi(
−→x) ≤ 0 (23.8)

To non-dimensionalize the cost function, we decide to divide through by f̄2. We
then refer to the following expression as our robust design problem

min
x

((
f(−→x , 0)−−→f

−→
f

)2 +
1
−→
f 2

(∇δf(−→x , 0)Ω∇T
δ f(−→x , 0)))

subject to gi(
−→x) ≤ 0 (23.9)

It is now easy to see that the expression we want to minimize has two distinct
terms. For notational convenience, we will label the two terms as

N(−→x) ≡ (
f(−→x , 0)−−→f

−→
f

)2 (23.10)

522 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

D(−→x , Ω) ≡ 1
−→
f 2

(∇δf(−→x , 0)Ω∇T
δ f(−→x , 0)) (23.11)

With the above definitions the robust design problem posed in (23.9) becomes

min
x

(N(−→x) + D(−→x , Ω))subject togi(
−→x) ≤ 0 (23.12)

The first term, N(−→x) , penalizes deviation of the nominal solution, f(−→x , 0),
from the target, f̄ , while the second term, D(−→x , Ω), penalizes the sensitivity of the

design with respect to
−→
δ . The first term is a performance index, while the second

term is a robustness index. Since there are two objectives in the formation of the cost
function to be minimized, a trade-off is usually needed to be made by the designer
to either focus on minimizing the squared error of the nominal design or on reducing
the sensitivity.

23.3 Modeling Uncertainty in MEMS Layout Design

In this research, we assume that the uncertainty in the fabrication process is intro-
duced by etch-induced variations in line-width, and the structure is etched uniformly.

Figure 23.1 illustrate the two uniform etch scenarios on a structure - overetch
and underetch. Take the under-etch situation for example, after process variation is
introduced, some design variables may increase (such as L1 and L2), other design
variables (such as L3) may decrease, while some others may stay unchanged (such
as L4).

Fig. 23.1. Under- and over-etch of a MEM structure

We can model the geometric process variations using a simple additive uncertain
model

x̃ = −→x +
−→
δ (23.13)

where x̃ is the uncertain (actual) design vector and for the above simple example
−→
δ = [δL1 , δL2 , δL3 , δL4].

23 An Evolutionary Approach For Robust Layout Synthesis of MEMS 523

Since the structure is etched uniformly, we can assume that the standard devia-

tion of each term of
−→
δ is equal. If we define ρ to be a normal random variable with

standard deviation of σ, then we can write

−→
δ = ρζ (23.14)

where ζ = [1, 1,−1, 0]T , and is called a variation vector. Note that in the condition
of underetch, L1 and L2 increase, L3 decreases, and L4 is not changed. Also note
that in this case, ρ is positive, the above facts can easily be verified by (23.14).

Because ρ is a normal random variable, it can also be used to model the overetch
situation, in which ρ will take a negative value. According to (24.2), we can obtain

Ω = E(
−→
δ
−→
δ T) = σ2ζζT (23.15)

23.4 Robust Design Optimization Using Evolutionary
Approaches

Genetic algorithms with a robust solution searching scheme was first presented by
Tsutsui [21]. Jin and Branke [11] made a thorough survey of applying evolutionary
computation in uncertain environments. One advantage of using genetic algorithms
is its convenience to solve the optimisation problem with both discrete and con-
tinuous design variables. While it is very difficult for many numerical optimization
approaches (for example, gradient-based approaches) to include considerations of
feature size constraints [6], it is quite convenient for genetic algorithms to do so. We
need to modify the objective function only slightly, mapping real values of design
variables to integer multiples of the feature size λ before using them in formulations
of constraints and objectives. No modifications to the genetic algorithm are needed.
In this research, we always set the feature size, λ, as 0.1µm.

In this research, we use a special constrained GA that exploits pair-wise com-
parisons in a tournament selection operator to devise a penalty function approach
that does not require any penalty parameter [1]. Careful comparisons among feasi-
ble and infeasible solutions are made so as to provide a search direction towards the
feasible region. Once sufficient feasible solutions are found, a niching method (along
with a controlled mutation operator) is used to maintain diversity among feasible
solutions. This allows a real-parameter GA’s crossover operator to continuously find
better feasible solutions, gradually leading the search nearer to the true optimum
solution.

As shown in equation (23.10) and (23.11), there are two design objectives to
minimize in the robust design problem. The first objective relates to the design per-
formance, while the second objective reflects robustness of the design. To verify that
taking into account of the robustness objective in the optimization process can help
to reduce the sensitivity of the resulting designs to variations of the design variables,
we carry out a comparative study. In the first set of runs of genetic algorithm, we
only consider the first design objective, i.e. the performance objective. In the sec-
ond set of runs of genetic algorithm, we consider both design objectives, including
performance objective and robustness objective.

In the second set of runs, we also need to use a special constraint handling
strategy for the robust design [2]. Besides the original constraints in the design

524 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

problem, the strategy considers additional constraints to make sure that the resulting
designs are feasible even after variations of the design variables. The additional
constraints can be handled using the constrained-domination principle [3], in which
two other paramters, extent of neighbourhood (δ), and the number of neighboring
points (H), are used to compute the mean effective objectives and the feasibility of a
solution. In our research, we set the extend of neighbourhood, δ, to 0.1µm, and the
number of neighboring points, H, to 5. Because we assume a uniform etch process
in the research, variations of the design variables are not independent. Instead,
the variations of the design variables are interrelated with each other according to
equation (23.14), which means we only need to know the variation of one design
variable to predict the variations of all other design variables. As a result, we can
have a much simpler implementation of the constrained-domination principle, i.e.,
for each individual design solution (represented by −→x i) we only need to have a one
dimensional partition of the δ-neighbourhood of ρ into H equal segments. Then for
each segment, we sample a point to represent ρ. For each of the samplings of ρ,
we get a deviation of the design solution according to equation (23.13). We can
then calculate the mean effective objective values of the H neighbourhood of the
individual and use it to represent the individual’s fitness.

For design results obtained from both sets of runs, Monto-Carlo simulations are
carried out with the design variables deviated by predefined variations. It is expected
that significant differences in design performances be observed between the two sets
of results. The set of results with considerations of robustness should be less sensitive
to uncertainties and have narrower distributions of performances due to parameter
uncertainties.

23.5 Case Studies

Two case studies in the area of MEMS design were carried out to verify the effective-
ness of the above robust design method using the constrained genetic algorithm. The
first design problem is a six design variables crab-leg resonator. The second design
problem is a comb-drive microresonator, with fifteen mixed-type design variables.

23.5.1 Crab-Leg Resonator Design

The Crab-Leg problem was originally taken from [19]. The goal of the design is to
robustly match the resonant frequency to the predefined target frequency in the
presence of geometric process variations. We are going to show that results obtained
with robustness consideration are much more insensitive to geometric process vari-
ations through a comparative study.

Crab-Leg Resonator Design Variables and Constraints

The crab-leg resonator is shown in Figure 23.2. The structure exhibits four-fold
symmetry and therefore there are six design variables of interest. We assume that
the resonator is fabricated with surface micro-machining technique and the entire
structure has a fixed thickness of t. The variables X and Y represent the maximum
dimensions of the overall structure.

23 An Evolutionary Approach For Robust Layout Synthesis of MEMS 525

Fig. 23.2. Diagram of a crab-leg resonator

If we neglect the mass of the four legs, the expression for M is

M = ρhmbmt (23.16)

The expressions for kx and ky are given by

kx = 16Et(
h1

L1
)3(

h3
1L2 + h3

2L1

4h3
1L2 + h3

2L1
) (23.17)

ky = 16Et(
h2

L2
)3(

h3
1L2 + h3

2L1

h3
1L2 + 4h3

2L1
) (23.18)

We assume that
Ωn =

√
kn/M (23.19)

then

Ω2
n =

16Eh3
1(h

3
1L2 + h3

2L1)

ρhmbmL3
1(4h3

1L2 + h3
2L1)

(23.20)

We define the design vector to be −→x = [L1, L2, h1, h2, hm, bm]. Now we need to
define the constraints for the problem. They can be categorized into five groups:

1. h1 ≥ hmin, h2 ≥ hmin, bm ≥ hmin, hm ≥ 2h2 + hmin

2. L1 ≥ h1, L2 ≥ 10h2

3. X ≥ 2L2 + 2h1 + bm, Y ≥ 2L1 + hm

4. ky ≥ αkx

5. βmax ≥ β

526 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

The first group of constrains was imposed to comply with the design rules of
minimum line and space requirements used by MEMS processes such as MUMPs.
The second group ensures that we can model the legs as thin-beams. The third
group specifies the requirements on the overall size of the structure, which is usually
imposed by the designer. The fourth group is to seperate the two resonant frequen-
cies, thus reducing motion in the y-direction. Therefore we expect that the parasital
y-direction resonant frequency to be much greater than that in the x-direction. The
last constraint is to put a maximum limitation on the stress of the joint, β so that
the leg will not break at a point where the two beams join to form a leg. The stress
can be calculated using the following equation

β =
12Eh3

1h
3
2L1D

h2
2L

2
1(4h3

1L2 + h3
2L1)

(23.21)

where D is the maximum allowable deflection of the structure in the x-direction.
All constraints can be written as polynomials in the form gi(

−→x) ≤ 0. Table 23.1
lists design parameters for this case study. All of them are chosen to be realistic.

Table 23.1. Design parameter for crab-leg resonator

Design pa-
rameter

Description Value

t thickness of proof mass and beams 2.0µm
ρ density of silicon 2.3×10−12gm/µm3

E Elastic Modulus of silicon (1600Gpa) 1.6× 108gm/µms2

hmin minimum dimension 2.0µm
D maximum deflection in the x-direction 2.0µm
βmax maximum allowable stress 1.6× 106gm/µms2

X maximum size of structure in the x-direction 600µm
Y maximum size of structure in the y-direction 600µm
α minimum stiffness ratio ky/kx 16

Crab-Leg Resonator Design Objectives

The first design objective is to match the natural frequency of the crab-leg resonator
with a predefined natural frequency, which we call a performance objective. Given
the design variables and constraints discussed in the preceding section, it is im-
portant to find an allowable range of natural frequencies. If the predefined natural
frequency is outside of the allowable range, then there may exist no feasible solution
to the design objective.

It is conveninet to use the constrained genetic algorithm to find the lower and
upper bound of the achievable resonant frequencies given the above design con-
straints, if we define the objective to be minimized as natural frequency ωn and
its reciprocal 1/ωn respectively. In this case study, the allowable range we found is
Θcrab = [ωmin, ωmax] = [13K, 21.6M]Hz. We therefore selected a target frequency:

23 An Evolutionary Approach For Robust Layout Synthesis of MEMS 527

ωtarget = 200KHz ∈ Θcrab (23.22)

Our design objective is not only matching the natural frequency of the crab-leg
resonator with the target frequency. In addition, we hope that the natural frequen-
cies of our design will not deviate too much from the target frequency even under
the condition of variations of the design variables. This will be our second design
objective, and is called a robustness objective.

A Comparative Study of Robust and Non-Robust Design

Robust design takes into consideration of both the performance and the robustness
objectives. Non-robust design only considers the performance objective.

According to equation (23.9), we know that the first term, N(−→x), penalizes
deviation of the nominal solution, f(−→x , 0), from the target, f̄ ; while the second

term, D(−→x , Ω), penalizes the sensitivity of the design with respect to
−→
δ . The first

term relates to the performance objective, and the second term relates to the ro-
bustness objective. A comparative study was carried out to verify that involving the
second term in the design objectives increases the robustness of the design solutions.

Results of Non-Robust Design

In the first set of runs, we only considered the performance objective, and define

fobj = N(−→x)0.5. In the case study of crab-leg resonator, N(x) ≡ (
ωn(x,0)−ωtarget

ωtarget
)2.

The performance objective can be easily derived from Equation (23.20) and Equation
(23.22). The parameters used for genetic algorithm are listed in Table 23.2.

Table 23.2. Parameters for the constrained genetic algorithm for non-robust design

Parameter Value

Population size 200
Total no. of generations 200
Cross over probability 0.9000
Mutation probability (real) 0.1500
Niching to be done 1(Yes)
Niching parameter value 0.9000
Exponent (n for SBX) 2.00
Exponent (n for Mutation) 50.00

Ten runs were repeated and the experimental data was obtained in Table 23.3. It
can be seen from the table that all 10 resulting design candidates have obtained very
good performances. The resonant frequecies of them are 199.9KHz. The performance
objectives were minized to the level of 3E-7 for all candidates.

However, it can be easily noticed that the design results are non-robust. For
instance, design variable h1 is found to be 2.0µm for all design candidates, which
lies exactly in the lower limit of the constraint for h1: h1 ≥ hmin = 2µm. Obviously,
if there is any decreasing variation of the design variable, which corresponds to an

528 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

Table 23.3. Parameters for the constrained genetic algorithm for non-robust design

Run No. 1 2 3 4 5 6 7 8 9 10

L1(µm) 188.3 165.2 157.0 177.3 178.7 166.1 148.4 178.4 195.7 168.6
L2(µm) 47.5 37.2 32.1 43.9 42.6 34.0 47.4 27.5 51.3 39.9
h1(µm) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
h2(µm) 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.4 2.3 2.0
hm(µm) 20.3 30.0 40.1 24.7 21.4 31.5 29.0 28.1 19.5 21.5
bm(µm) 27.1 26.9 24.1 25.7 29.3 25.9 34.5 28.4 26.8 34.8
N(−→x) 3E-7 3E-7 3E-7 3E-7 3E-7 3E-7 3E-7 3E-7 3E-7 3E-7
fobj 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4

overetch situation in the fabrication process, the design will no longer be feasible.
The robust design solution reported in [19] has the same feasibility problem (Table
23.4), in which design variable h2 is optimized to be 2.0µm and lies exactly in the
lower limit of the constraint for h2: h2 ≥ hmin = 2µm .

A reason for this problem is that although robust design method in [19] treated
the robustness of designs in terms of maintaining good performance, it did not,
however, attempt to consider the robustness of the designs in terms of satisfying
constraints. In the next section, we are going to see that using a special constrained
genetic algorithm can help the design results to avoid infringing design constraints,
and that the design results obtained with the robust design method using the con-
strained genetic algorithm is less sensitive to parameter variations.

Table 23.4. The robust design for crab-leg resonator in [17]

Parameter L1(µm) L2(µm) h1(µm) h2(µm) hm(µm) bm(µm)

value 265.64 22.84 14.09 2.00 68.71 392.60

Results of Robust Design

In the second set of runs, we considered both the performance objective N(−→x)
and the robustness objective D(−→x , 0). Because both objectives are normalized, we
can simply sum them together to form a new objective

fobj = N(−→x)0.5 + D(−→x , 0)0.5 (23.23)

where

N(x) ≡ (
ωn(x, 0)− ωtarget

ωtarget
)2 (23.24)

and

D(−→x , Ω) ≡ 1

ω2
target

∇δωn(−→x , 0)Ω∇T
δ ωn(−→x , 0) (23.25)

As discussed above, N(−→x) can be easily obtained. But to calculate D(−→x , Ω) is
not an easy task. First, we need to decide the varation vector

23 An Evolutionary Approach For Robust Layout Synthesis of MEMS 529

ζ = [−1,−1, 1, 1, 1, 1]T (23.26)

Then according to Equation (23.15), we get

Ω = E(
−→
δ
−→
δ T) = σ2ζζT = σ

⎛
⎜⎜⎜⎜⎜⎝

1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1
−1 −1 1 1 1 1
−1 −1 1 1 1 1
−1 −1 1 1 1 1
−1 −1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠ (23.27)

Here we need to make an assumption about σ. In this chapter, we assume σ =
0.1µm. We can also use a further normalized term

D(−→x , Ω)norm = D(−→x , Ω)/σ2 (23.28)

so that D(−→x , Ω)norm will not be influenced by our assumptions. The parameters of
the constrained genetic algorithm are listed in Table 23.5.

Table 23.5. Parameters for the constrained genetic algorithm for robust design

Parameter Value

Population size 200
Total no. of generations 200
Cross over probability 0.9000
Mutation probability (real) 0.1500
Niching to be done 1(Yes)
Niching parameter value 0.9000
Exponent (n for SBX) 2.00
Exponent (n for Mutation) 50.00
extent of neighborhood (∆) 0.1µm
number of neighborhood points (H) 5

Ten simulation runs were repeated and the experimental data was recorded in
Table 23.6. It can be seen from the table that all resulting design candidates have
satisfactory performances. The average resonant frequecy of them is 198.2KHz. The
performance objectives were minized to the range of 8E-7 to 1E-4 for all candidates.

Comparison of Robust Design and Non-Robust Design

In the robust design process, we tried very hard to minimize the robustness
objective, D(−→x , Ω) which ranges from 2E-4 to 9E-4 in this set of runs. But will
doing this help the resulting designs to increase their insensitivity to geometric
uncertainties? To answer this question, we designed a comparative study as the
following: we put two designs in one group for comparison, by selecting one design
from the robust design group, and the other from the non-robust design group. We
then ran Monte Carlo simulations to model uncertain MEMS fabrication processes.

530 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

Table 23.6. Experimental results for robust design of crab-leg resonator

Run No. 1 2 3 4 5 6 7 8 9 10

L1(µm) 277.0 255.5 274.0 274.0 268.8 272.7 268.0 270.6 254.2 269.0
L2(µm) 38.1 21.1 62.7 25.5 44.2 58.0 50.7 64.4 35.4 47.1
h1(µm) 11.6 15.3 11.1 13.9 12.1 11.5 12.3 11.2 12.5 13.0
h2(µm) 2.9 2.1 6.2 2.2 3.7 5.7 4.7 6.4 3.3 4.7
hm(µm) 35.3 74.8 44.8 49.1 41.1 42.8 53.4 47.2 51.1 56.8
bm(µm) 397.7 519.2 397.3 495.7 457.9 432.0 395.5 403.5 459.1 414.4
N(−→x) 8E-7 2E-6 2E-4 2E-4 4E-4 7E-5 2E-4 1E-4 1E-4 8E-6
D(−→x , Ω) 7E-4 2E-4 8E-4 3E-4 6E-4 9E-4 7E-4 9E-4 6E-4 7E-4
fobj 0.029 0.017 0.042 0.029 0.044 0.038 0.039 0.040 0.035 0.029

We introduced the same variations to the design variables of both designs to emulate
uniform overetch and/or underetch situations. To represent the variations in the
process we generated 10,000 gaussian random vectors with a standard deviation,
σ, of 0.1µm. The natural frequencies of both the robust design and the non-robust
design were calculated, and histograms of them plotted as shown in Figure 23.3 and
23.4.

Fig. 23.3. Histogram of natural frequencies of the non-robust design of crab-leg
resonator subject to uncertainties

23 An Evolutionary Approach For Robust Layout Synthesis of MEMS 531

Fig. 23.4. Histogram of natural frequencies of the robust design of crab-leg res-
onator subject to uncertainties

According to Figure 23.3 and 23.4, we can see that robust design has a much
tighter distribution of natural frequencies, and therefor is much less sensitive to
geometric variations. If we assume that the natural frequencies have a normal dis-
tribution with a normal probability density functin (pdf) as the following:

y = f(x | µ, σ) =
1

σ
√

2π
e

−(x−µ)2

2σ2 (23.29)

In this equation, µ stands for the mean value and σ is the standard deviation.
Through parameter estimation using a MATLAB funtion ’normfit’, we got the fol-
lowing results: For the robust design, µrobust = 199.7KHz, σrobust = 1.95KHz. For
the non-robust design, µnon robust = 199.9KHz, σnon robust = 11.3KHz.

From these results we can see that the mean value of the robust design and the
non-robust design are both very close to the target frequency. However, the standard
deviation of robust design is much lower than that of the non-robust design, which
means that the robust design is much less sensitive to uncertainties. Statistically,
under the condition of variations, its performances degrade much less compared
with those of the non-robust design. The probability density function curves of both
robust design and non-robust design are also shown in Figure 23.5 and 23.6. Tests
of other design candidates from both robust design group and non-robust design
group revealed similar results.

532 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

Fig. 23.5. Probability density function of natural frequencies of the non-robust
design of crab-leg resonator subject to uncertainties

Fig. 23.6. Probability density function of natural frequencies of the robust design
of crab-leg resonator subject to uncertainties

23 An Evolutionary Approach For Robust Layout Synthesis of MEMS 533

23.5.2 Comb-Driven Micro-Resonator Design

The comb-driven micro-resonator problem was originally taken from [6]. The goal
of the design is also to robustly match the resonant frequency to the predefined
target frequency in the presence of geometric process variations. The case study is
more complex and difficult than the first case study in the following senses: 1) it
has fifteen design variables, while the crableg problem only has six design variables.
2) its design variables are of mixed type, including thirteen discrete variables, one
continuous variable, and one integer variable.

Comb-Driven Micro-Resonator Design Variables and Constraints

Fig. 23.7. A folded-flexure comb-drive microresonator fabricated in a polysilicon
surface microstructural process a) Layout b) Cross-section A-A’

We decided to use 15 design variables for the folded-flexure comb-drive microres-
onator fabricated in a polysilicon surface microstructural process (Figure 23.7) [7]:
in this research. The vector of design variables is defined as follows (Figure 23.8)

−→x = [Lb, wb, Lt, wt, Lsy, wsy, wsa, wcy, Lcy, Lc, wc, Lsa, xo, V, N]
Lb and wb are length and width of flexture beam respectively. Lt and wt are

length and width of truss beam respectively. Lsy and wsy are length and width of
shuttle yoke respectively. Lcy and wcy are length and width of comb yoke respec-
tively. Lc and wc are length and width of comb fingers respectively. wsa represents
the width of shuttle axle. g is the gap between comb fingers. so represents the comb
finger overlap. N is number of rotor comb fingers. V is voltage amplitude.

534 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

It is noted that the first 13 design variables have units of µm. They are discrete
variables because they can only be integer multiples of the feature size λ, which is
set to be 0.1µm in this research. The fourteenth design variable has units of volts,
and is a continuous variable. The fifteenth variable has no unit and is an integer
variable.

The constraints for the design variables are also listed:
2 ≤ Lb ≤ 400, 2 ≤ wb ≤ 20, 2 ≤ Lt ≤ 400, 2 ≤ wt ≤ 20, 2 ≤ Lsy ≤ 400,
10 ≤ wsy ≤ 400, 10 ≤ wsa ≤ 400, 10 ≤ wcy ≤ 400, 2 ≤ Lcy ≤ 700, 8 ≤ Lc ≤ 400,

2 ≤ wc ≤ 20,
2 ≤ Lsa ≤ 400, 4 ≤ xo ≤ 400, 0 ≤ V ≤ 50, 3 ≤ N ≤ 50.
In addition, we assume t = wc = g = d in our design, for the special case

of equal comb finger width, gap, thickness and spacing above the substrate. Some
design variables are predefined: they are wba = 11, wca = 14, γ = 4, in which wba

is the width of beam anchors, and wca is the width of stator comb anchors, γ is the
penetration depth of airflow above the structure.

Fig. 23.8. Major design variables for microresonators

There are a number of design constraints for the microresonator cell component,
including both geometric constraints and functional constraints. In this chapter,
without loss of generality, we consider the following constraints:

g1(x) : −(Lcy + 2g + 2wc) ≤ 0

g2(x) : Lcy + 2g + 2wc − 700 ≤ 0

23 An Evolutionary Approach For Robust Layout Synthesis of MEMS 535

g3(x) : −(Lsy + 2Lb + 2wt) ≤ 0

g4(x) : Lsy + 2Lb + 2wt)− 700 ≤ 0

g5(x) : −(3Lt + wsy + 4Lc − 2x0 + 2wcy + 2wca) ≤ 0

g6(x) : 3Lt + wsy + 4Lc − 2x0 + 2wcy + 2wca − 700 ≤ 0

g7(x) : Lc − (x0 + xdisp)− 200 ≤ 0

g8(x) : 4− Lc + (x0 + xdisp) ≤ 0

Among them, the first six are linear constraints, but the last two are nonlinear
constraints because the term xdisp is highly nonlinear:

xdisp = QFe,x/Kx (23.30)

where is quality factor and can be represented as

Q =
√

mxKx/B2
x (23.31)

Fe.x is the force generated by the comb drive. The force is proportional to the square
of the voltage, V , applied across the comb fingers

Fe,x = 1.12ε0N
t

g
V 2 (23.32)

where ε0 is the permittivity of air. We also have

Kx =
2EtW 3

b

L3
b

L2
t + 14αLtLb + 36α2L2

b

4L2
t + 41αLtLb + 36α2L2

b

(23.33)

where
α = (Wt/Wb)

3 (23.34)

and

Bx = µ(As + 0.5At + 0.5Ab)(
1

d
+

1

r
) +

Ac

g
(23.35)

where µ is the viscosity of air, and As, At, Ab, and Ac are bloated layout area of
the shuttle, truss beams, flexure beams, and comb finger sidewalls, respectively.

Also we know

mx = ms +
1

4
mt +

12

35
mb (23.36)

where ms = ρAs, mt = ρAt, mb = ρAb

As = wsaLsa + 2wsyLsy (23.37)

At = 2wcaLcy (23.38)

Ab = 8Lbwb + 2wt(2Lt + wa + 2wb) (23.39)

536 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

Ac = 2NwcLc (23.40)

The natural frequency ωn is defined as

ωn =

√
Kx

mx
(23.41)

Comb-Driven Micro-Resonator Design Objective

The design objective of comb-driven micro-resonator is to robustly match the natural
frequency of the comb-driven micro-resonator with a predefined natural frequency.

Through a similar procedure as in the first case study of crab-leg design, we
found the allowable range of natural frequency of the comb-driven micro-resonator
to be Θ = [ωmin, ωmax] = [2.5K, 6.8G]Hz. We therefore selected a target frequency
:

ωtarget = 200KHz ∈ Θcomb (23.42)

A Comparative Study of Robust and Non-Robust Design

A comparative study was carried out to verify that involving the robustness objec-
tive in the design objectives can increase the robustness of the design results in this
more complex case study.

Results of Non-Robust Design

In the first set of runs, we only considered the performance objective fobj =
N(−→x)0.5. Again, The parameters for the constrained genetic algorithm are the same
as those used in crableg resonator design problem, and listed in Table 23.2. Ten runs
were repeated and the experimental data was obtained in Table 23.7.

The table shows that all resulting design candidates have very good perfor-
mances. The resonant frequecies of them are 199.2KHz. The performance objectives
were minized to the level of 2E-5 for all candidates. However, the design results of
run no.1 and no.10 can be easily observed to be non-robust. The design variable
wc is found to be 2.0µm for both design candidates, which lies exactly in the lower
limit of the constraint for wc : 2 ≤ wc ≤ 20. Obviously, if there is any decreasing
variation of the design variable, which corresponds to an overetch situation in the
fabrication process, the design will become infeasible.

Results of Robust Design

We used the same robust design procedure as used in crableg resonator design.
For the example of comb-driven micro-resonator, the variation vector is set to ξ =
[0 1 0 1 1 1 1 1 1 0 1 -1 1 0 0]. Ten runs were repeated and the experimental data
was obtained in Table 23.8.

Comparison of Robust Design and Non-Robust Design

23 An Evolutionary Approach For Robust Layout Synthesis of MEMS 537

Table 23.7. Experimental results for non-robust design of comb-driven micro-
resonator

Run No. 1 2 3 4 5 6 7 8 9 10

Lb(µm) 63.3 108.8 73.1 95.7 103.7 47.9 57.1 117.4 83.4 104.1
wb(µm) 3.0 2.7 4.2 5.5 3.9 2.1 3.1 5.2 3.7 4.7
Lt(µm) 35.9 70.3 41.2 33.7 79.4 13.4 86.3 33.2 51.9 33.5
wt(µm) 4.1 8.1 7.1 3.4 7.6 17.7 10.3 4.5 6.0 2.3
Lsy(µm) 224.1 11.1 146.8 96.5 5.3 39.9 146.9 68.4 142.1 47.0
wsy(µm) 14.9 59.3 128.8 94.1 26.7 109.7 209.6 41.5 81.0 49.8
wsa(µm) 110.5 23.0 269.5 67.9 51.6 42.0 185.2 201.4 113.4 135.1
wcy(µm) 78.4 337.6 66.1 23.4 91.8 210.1 293.6 138.2 52.9 136.6
Lcy(µm) 333.7 58.0 372.7 124.4 401.4 440.9 355.7 254.1 155.7 95.8
Lc(µm) 74.7 191.5 116.9 57.5 95.4 175.2 194.2 230.5 130.3 39.1
wc(µm) 2.0 3.7 3.7 2.2 2.9 2.5 6.3 3.8 4.1 2.0
Lsa(µm) 59.8 63.4 60.6 3.1 141.0 147.9 118.0 67.0 25.5 5.1
xo(µm) 52.2 13.2 73.1 20.9 45.0 45.1 81.9 76.6 29.3 30.7
V (volt) 15.1 12.8 15.0 6.5 18.1 28.2 13.3 23.8 12.1 4.0
N 10 19 7 5 6 10 6 9 6 6
N(−→x) 2E-5 2E-5 2E-5 2E-5 2E-5 2E-5 2E-5 2E-5 2E-5 2E-5
fobj 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3

Table 23.8. Experimental results for non-robust design of comb-driven micro-
resonator

Run No. 1 2 3 4 5 6 7 8 9 10

Lb(µm) 170.4 241.2 183.7 206.9 267.6 206.0 222.4 214.4 209.5 211.8
wb(µm) 14.1 15.3 15.7 17.6 18.7 19.2 19.8 19.7 17.2 16.7
Lt(µm) 127.2 213.3 85.4 118.3 153.0 110.7 110.9 124.6 194.1 121.1
wt(µm) 16.6 18.6 15.1 19.6 18.9 17.3 17.8 18.5 19.9 18.9
Lsy(µm) 311.4 141.4 217.9 172.8 102.3 234.3 211.4 123.8 218.1 194.3
wsy(µm) 142.4 118.2 286.5 265.3 123.0 228.5 174.8 141.7 221.0 325.8
wsa(µm) 370.4 321.2 294.6 387.8 51.2 345.2 218.9 264.4 376.5 314.9
wcy(µm) 308.8 331.7 273.7 381.6 311.6 379.0 348.0 362.3 391.9 351.8
Lcy(µm) 595.8 335.7 577.9 630.0 536.3 655.1 592.1 595.1 629.1 635.3
Lc(µm) 244.7 192.4 185.8 236.8 247.3 226.7 215.3 242.5 221.6 189.6
wc(µm) 5.6 8.4 5.0 6.2 2.3 4.7 3.4 2.4 7.5 5.9
Lsa(µm) 313.0 284.6 210.6 399.0 79.0 305.1 248.1 227.5 396.1 188.4
xo(µm) 161.0 180.9 61.8 143.9 184.4 159.5 122.7 70.1 167.3 84.1
V (volt) 32.8 17.7 25.0 39.2 27.6 39.1 21.4 45.5 42.8 40.1
N 14 23 14 23 9 13 12 29 12 11
N(−→x) 2E-5 2E-5 2E-5 2E-5 2.1E-5 2E-5 2E-5 2E-5 2E-5 2.1E-5
D(−→x , Ω) 4E-3 3E-3 3E-3 2E-3 1.6E-3 2E-3 2E-3 2E-3 2E-3 2.6E-3
fobj 0.065 0.060 0.063 0.054 0.045 0.052 0.049 0.049 0.054 0.056

538 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

Fig. 23.9. Histogram of natural frequencies of the non-robust design of comb-driven
resonator subject to uncertainties

Fig. 23.10. Histogram of natural frequencies of the robust design of comb-driven
resonator subject to uncertainties

23 An Evolutionary Approach For Robust Layout Synthesis of MEMS 539

Monte carlo simulations were run to make a comparison and results shown in
Figure 23.9 and 23.10.

The natural frequencies of both the robust design and the non-robust design were
calculated, and histograms of them plotted in Figure 23.9 and 23.10. Figure 23.9
and shows histograms of the first design candidate of the ten non-robust designs,
and Figure 23.10 the first design candidate of the robust design group. According to
the figures, we can see that robust design has a much tighter distribution of natural
frequencies, and therefor is much less sensitive to geometric variations. If we assume
that the natural frequencies have a normal distribution, we can get the following
parameters for the probability density function:

For the robust design, µrobust = 199.1KHz, θrobust = 2.96KHz. For the non-
robust design, µnon robust = 199.2KHz, θnon robust = 11.4KHz.

From this we can see that the mean value of both the robust design and the non-
robust design are very close to the target frequency. However, the standard deviation
robust design is much lower than that of the non-robust design, which again verifies
that the robust design is much less sensitive to uncertainties. Statistically speaking,
under the condition of variations, the performances of robust design degrade much
less compared with those of the non-robust design. The probability density function
curves of both robust design and non-robust design are also shown in Figure 23.11
and 23.12. Tests of other design candidates from both robust design group and
non-robust design group revealed similar results.

Fig. 23.11. Probability density function of natural frequencies of the non-robust
design of comb-driven resonator subject to uncertainties

540 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

Fig. 23.12. Probability density function of natural frequencies of the robust design
of comb-driven resonator subject to uncertainties

23.6 Conclusions

Layout synthesis is an important stage for structured design of MEMS [5, 16], after
the stage of the system-level design [4]. The chapter reports a method of robust
layout synthesis of MEMS that transforms the robust design problem into a multi-
objective constrained optimisation problem, and then solve it using a constrained
genetic algorithm. Simulation results based on case studies of layout synthesis of a
crableg resonator and a comb-driven micro-resonator show that the robust design
solutions obtained using the robust design method presented in this chapter are
much less sensitive to process induced uncertainties. Using the constrained genetic
algorithm to solve the robust design problem, we can address the issue of design
robustness in terms of not only maintaining good design performance, but also
satisfying design constraints and therefore keeping designs feasible. Although we
have had effective ways of modelling robustness related to design performances, it
is still a challenge to find an effecient way to model robustness related to design
constraints.

While it is important to study more efficient robust design method and more
effective approaches to model uncertainties, it is also an interesting research topic to
investigate the relationship between the robustness subject to parametric variations
(such as the layout synthesis) and the topology-related robustness in the system
level design.

23 An Evolutionary Approach For Robust Layout Synthesis of MEMS 541

References

1. K. Deb, “An efficient constraint handling method for genetic algorithms,” Com-
put. Methods Appl. Mech. Engrg., Vol. 186, pp. 311-338, 2000.

2. K. Deb, and H. Gupta, “A constraint handling strategy for robust multi-
criterion optimization,” KanGAL Report No. 2005001, 2005.

3. K. Deb, and H. Gupta, “Introducing Robustness in Multi-Objective Optimiza-
tion,” KanGAL Report No. 2004016, 2004.

4. Z. Fan, K. Seo, R. Rosenberg, J. Hu, E. Goodman, “System-Level Synthesis
of MEMS via Genetic Programming and Bond Graphs,” in Proc. 2003 Genetic
and Evolutionary Computing Conference, Chicago, Springer, Lecture Notes in
Computer Science, July, 2003, pp. 2058-2071.

5. G. Fedder, “A Vision of Structured CAD for MEMS,” in Proceedings of the
Fifth ACM/SIGDA Physical Design Workshop, April, 1996, pp. 76-80.

6. G. Fedder, S. V. Iyer and T. Mukherjee, “Automated Optimal Synthesis Of
Microresonators,” in Proceedings of 9th International Conference on Solid State
Sensors and Actuators (TRANSDUCERS ’97), June 16-19, 1997, Chicago, IL,
USA pp, 1109-1112.

7. G. Fedder and T. Mukherjee, “Physical Design for Surface-Micromachined
MEMS,” in Proceedings of the Fifth ACM/SIGDA Physical Design Workshop,
April 1996, pp. 53-60.

8. H. Greiner, “Robust Optical Coating Design With Evolutionary Strategies,”
Applied Optics, Vol. 35, No. 28, pp. 5477 - 5483, 1996.

9. Y. S. Hong, J. H. Lee, and S. H. Kim, “A laterally driven symmetric micro-
resonator for gyroscopic applications,” Journal of Micromechanics and Micro-
engineering, vol. 10, pp 452-458, 2000.

10. K. Hwang, K. Lee, G. Park, B. Lee, Y. Cho, and S. Lee, “Robust Design
of a Vibratory Gyroscope With an Unbalanced Inner Torsion Gimbal Using
Axiomatic Design,” Journal of Micromechanics and Microengineering, No. 13,
pp 8-17, 2003.

11. Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments
- A survey. IEEE Transactions on Evolutionary Computation,” Vol. 9, No. 3,
pp. 303-317, 2005

12. Y. Jin and B. Sendhoff, “Trade-off between Optimality and Robustness: An
Evolutionary Multiobjective Approach,” Proceedings of the Second Interna-
tional Conference on Evolutionary Multi-criterion Optimization, C. M. Fonseca
et al (Eds.) LNCS 2632, Springer, 2003, pp 237-251.

13. R. Kamalian, H. Takagi, and A. M. Agogino, “Optimized Design of MEMS
by Evolutionary Multi-objective Optimization with Interactive Evolutionary
Computation,” in K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, Springer-
Verlag Berlin Heidelberg, 2004, pp. 1030-1041.

14. R. Liu, B. Paden, and K. Turner, “MEMS Resonators That are Robust to
Process-Induced Feature Width Variations,” Journal of Microelectromechanical
Systems, vol. 11, No. 5, pp. 505-511,October 2002.

15. L. Ma and E. K. Antonsson, “Automated Mask-Layout and Process Synthesis
for MEMS,” in Technical Proceedings of the 2000 International Conference on
Modeling and Simulation of Microsystems , 2000, pp. 20-23.

16. T. Mukherjee and G. Fedder, “Structured Design Of Microelectromechanical
Systems,” in Proceedings of 34th Design Automation Conference (DAC ’97),
Anaheim, CA, USA, June 9-13, 1997, pp. 680-685.

542 Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg

17. T. Mukherjee, S. Iyer and G. K. Feeder, “Optimization-based synthesis of
micro-resonators,” Sensors Actuators, A 70, pp. 118-127, 1998.

18. A. Ongkodjojo, F. E. H. Tay, “Global Optimization and Design for Micro-
electromechanical Systems devices based on Simulated Annealing,” Journal of
Micromechanics and Microengineering, vol. 12, pp. 878-897, 2002.

19. P. J. Sedivec, “Robust Optimization: Design in MEMS,” Master Thesis, Uni-
versity of California, Berkeley, 2002

20. G. Taguchi, “Taguchi on Robust Technology Development: Bringing Quality
Engineering Upstream,” ASME Press, New York, 1993.

21. S. Tsutsui, and A. Ghosh, “Genetic Algorithms with a Robust Solution Search-
ing Scheme,” IEEE Transactions on Evolutionary Computation, Vol. 1, No. 3,
pp 201-208, September 1997.

22. D. Wiesmann, U. Hammel, and T. Back, “Robust Design of Multilayer Op-
tical Coatings by Means of Evolutionary Algorithms,” IEEE Transactions on
Evolutionary Computation, Vol. 2, No. 4, pp. 162-16, November 1998.

23. W. Yeh, S. Mukherjee, and N. C. MacDonald, “Optimal Shape Design of
An Electrostatic Comb Drive in MEMS,” J. Microelectromech. Syst. vol. 7,
pp. 16-26, 1998.

24

A Hybrid Approach Based on Evolutionary
Strategies and Interval Arithmetic to Perform
Robust Designs

Claudio M. Rocco S.1 and Daniel E. Salazar A.2

1 Facultad de Ingenieŕıa, Universidad Central de Venezuela
Apartado Postal 47937, Los Chaguaramos, Caracas 1041A, Venezuela
crocco@reacciun.ve

2 División de Computación Evolutiva (CEANI), Instituto de Sistemas Inteligentes
y Aplicaciones Numéricas en Ingenieŕıa (IUSIANI), Universidad de Las Palmas
de Gran Canaria, Edif. Central del Parque Cient́ıfico y Tecnológico, 2 planta,
Campus de Tafira Baja, Las Palmas 35017, Spain
danielsalazaraponte@gmail.com

Summary. This chapter proposes an approach based on the use of Evolutionary
Algorithms (EA) and Interval Arithmetic (IA) as an alternative technique to obtain
a robust system design. EA are heuristics to optimise a given function, while IA is
used as a checking technique to guarantee the feasibility of the design. IA is able
to consider simultaneously the effects of uncertainty of all of the parameters on a
performance function providing strict bounds (minimum and maximum values) with
only one evaluation. EA and IA are used to obtain, by an iterative process, a robust
design, that is, the maximum size of each variable deviation that allows complying
with a set of specifications. The proposed approach is an indirect method based on
optimization instead of a direct method based on mapping from the output into the
input space. Numerical examples from the reliability field illustrate the application
of the approach using single and multiple objective formulations.

24.1 Introduction

Sensitivity analysis, uncertainty propagation and uncertainty analysis are techniques
that have been used for examining the effects of uncertain inputs within a model
[19]. These techniques are usually carried out by determining which parameter or
parameters have significant effects on the results of a study. An attempt is then
made to increase the precision of these parameters in order to reduce the danger
of serious error. In system design, mathematical models are used to describe the
properties of the system to be designed. As an example, consider the Life-Support
System in a Space Capsule [51] shown in figure 1. The following equation (Eq. 24.1)
is the symbolic reliability expression of the system, where Ri is the reliability of
component i.

Claudio M. Rocco S. and Daniel E. Salazar A.: A Hybrid Approach Based on Evolutionary

Strategies and Interval Arithmetic to Perform Robust Designs, Studies in Computational

Intelligence (SCI) 51, 543–564 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

544 Claudio M. Rocco S. and Daniel E. Salazar A.

RS = 1−R3(R̄1R̄4)
2 − R̄3[1− R̄2(1− R̄1R̄4)]

2 (24.1)

We can evaluate, for example, what are the effects on RS if the value of one (local
analysis) or more (global analysis) reliability components is changed. For example,
we can conclude that a variation of ±10% in R1 causes a variation of ±z% on RS .
These effects can provide information on how to modify component values. This
type of analysis, from input to output, helps Decision-Makers (DM) figure out what
to do in the presence of uncertainty in input values. Indeed, if the DM identifies the
group of variables whose uncertainties have more influence on the system, they can
formulate strategies to overcome the undesired behaviours. When such uncertainty
analyses, as the abovementioned ones are incorporated during the design stage, we
talk about “robust solutions” or simply “robust design”. The way robust design
is formulated depends on the information that can be retrieved from the DM and
from the problem itself. Therefore, there are many concepts of robustness as well as
ways of measuring it. Some references in robustness are the works of Kouvelis and
Yu [34], Roy [56] [57], Vincke [72] [73], Davenport [12], Averbakh et al [2] [3] and
Rosenhead [55] among others. In evolutionary computation a common assumption
is that the uncertainty is already elicitated or represented somehow by means of
an uncertainty function, thus the main concerns are the identification of robust
solutions and the efficiency of the evolutionary search. An overview of the efficiency
issue can be seen in [26]. The first issue is usually tackled by means of a Monte Carlo
evaluation. For that matter the value of the design function F(X) is replaced by an
average over n disturbed values of the design vector X, namely X + δi, where δi is
the ith sample of the uncertainty function, yielding Feff = 1

n

∑n

i=1
F (X + δi).

The above expression is called Effective Function and assesses the expected value
of the design function in the presence of uncertainty. This approach was introduced
first by Tsutsui et al [69] [70] and was followed by other researchers like Sevaux
and Sörensen [66] [65] in single objective optimization and recently by Deb in mul-
tiple objective problems [13]. Notice that aim of this approach is to optimise the
expected or robust value of F(X), i.e. Feff (X), but in practice this goal should not
be achieved disregarding the variance of Feff (X) since it can mislead the search.
In consequence some researchers treat the variance as an additional objective, min-
imising it, whereas others set some variance threshold for accepting or rejecting the
solutions. However, the search for robust alternatives can be formulated in different
way if the input’s uncertainty is unknown or cannot be represented appropriately
to perform the aforementioned approach. In this case the robustness of a design is
defined as the maximum size of the deviation from this design that can be tolerated
whereby the product still meets all requirements [23]. For example, what are the
maximum possible deviations for each component in the Fig. 24.1 consistent with
0.990 ≤ RS ≤ 0.999?

Notice that the problem we address is different from variability or sensitivity
analysis [9] [61], where, knowing the component parameters deviation, the method
evaluates the variation on the properties due to variation on the inputs, that is mov-
ing from the input to the output. In this chapter we reverse the process, assessing
the input parameters uncertainty for one (local) or all (global) components, which
maintains the output performance function within specified bounds. This chapter
presents an approach to obtain a robust design based on the use of Evolution-
ary Algorithms (EA) and Interval Arithmetic (IA). The remainder of the chapter
is organized as follows: Section 2 gives an over-view of Interval Arithmetic. The

24 ESs and Interval Arithmetic to Perform Robust Designs 545

Fig. 24.1. Example of Complex System [51]

Evolutionary approach for solving the single-objective formulations is presented in
Section 3. Section 4 describes the general approach used to solve the robust design
problem. A single-objective example is considered in Section 5, whereas Section 6
introduces the multiple-objective formulation for robust design as well as a short
description of the heuristic tool employed. An analysis of results for the different
types of robust design formulations is also addressed in this section. Finally, Section
7 presents the conclusions.

24.2 Interval Arithmetic

Interval arithmetic originates from the recognition that frequently there is uncer-
tainty associated with the parameters used in a computation [42] [46]. This form
of mathematics uses interval “numbers”, which are actually an ordered pair of real
numbers representing the lower and upper bound of the parameter range. For exam-
ple, if we know that the reliability value R1 is between 0.8 and 0.9, the corresponding
interval number would be written as follows: R1 = [0.8, 0.9]. Interval arithmetic is
built upon a basic set of axioms. If we have two interval numbers T = [a, b] and
W = [c, d] with a ≤ b and c ≤ d then [22] [42] [46]:

T + W = [a, b] + [c, d] = [a + c, b + d] (24.2)

T + W = [a, b] + (−[c, d]) = [a− d, b− c] (24.3)

T ∗W = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}] (24.4)

1/T = [1/b, 1/a], 0 � [a, b] (24.5)

T/W = [a, b]/[c, d] = [a, b] ∗ [1/d, 1/c], 0 � [c, d] (24.6)

kT = k[a, b] = [ka, kb], k = ctte ≥ 0 (24.7)

Only some of the algebraic laws valid for real numbers remain valid for intervals.
It is easy to show that interval addition and multiplication are associative as well
as commutative. However, the distributive law does not always hold for interval
arithmetic [42]. As an example: [0, 1] · (1− 1) = 0, while [0, 1]− [0, 1] = [−1, 1].

546 Claudio M. Rocco S. and Daniel E. Salazar A.

An important property referred to as sub-distributivity does hold. It is given
mathematically by the set inclusion relationship: T (W +Z) ⊆ TW +TZ. The failure
of the distributive law often causes overestimation. It is interesting to notice that
T − T �= 0 and T/T �= 1. In general, when a given variable occurs more than once
in an interval computation, it is treated as a different variable in each occurrence;
thus, T-T is the same as T-W with W equal to but independent of T, causing
the widening of computed interval. This effect is called the “dependency problem”.
However, there are expressions where dependence does not lead to overestimation,
e.g., T+T [46].

An interval function is an interval-valued function of one or more interval ar-
guments. Consider a real valued function f of real variables t − 1, t2, . . . , tn and an
interval function F of interval variables T1, T2, . . . , Tn. The interval function F is
said to be an interval extension of f, if: F (t1, t2, . . . , tn) = f(t1, t2, . . . , tn).

The range of a function f of real variables over an interval can be calculated
from the interval extension F, changing ti by Ti. Moore [42] states that (Inclusion
Property): f(t1, t2, . . . , tn) ⊆ F (T1, T2, . . . , Tn), ∀ti ∈ Ti(i = 1, . . . , n).

This means that the range of the function f(t1, t2, . . . , tn) can be calculated us-
ing interval arithmetic. In many practical problems, it could be difficult to obtain
an expression in which each variable occurs not more than once. In these cases, a
single computation of the interval extension of f(t1, t2, . . . , tn) only yields an inter-
val F (T1, T2, . . . , Tn), that could be wider than the exact range for f(t1, t2, . . . , tn).
Several techniques that have been developed to avoid the dependence problems:
Quadratic approximation and Gauss Transformation [21], Deconvolution [17], Gen-
eralized Interval Arithmetic [22], Modal Interval [1] [71] and Central Forms [50].

Consider the system shown in Fig. 24.1 Initial reliability intervals for the com-
ponents are Ri = [0.80, 0.90]. Evaluating RS at the midpoint interval, we obtain
that the reliability of the system is RS = 0.995279.

Table 1 shows the interval associated to output RS calculated with interval
arithmetic, considering the interval variation for a single parameters (nominal range
sensitivity) while fixing the other parameters at its midpoint. For example, if
R1 = [0.80, 0.90]; R2 = R3 = R4 = 0.85, then RS = [0.9946150, 0.9958356]. Last
row of Table 24.1 shows the RS interval when all variables are permitted to vary
simultaneously in Ri = [0.80, 0.90]. Note that this interval is obtained, in interval
arithmetic, with only one calculation.

Table 24.1. Sensitivity Analysis using Interval Arithmetic

VARIABLE INTERVAL RS

R1 [0.80, 0.90] [0.9946150, 0.9958356]
R2 [0.80, 0.90] [0.9924411, 0.9974007]
R3 [0.80, 0.90] [0.9938743, 0.9966840]
R4 [0.80, 0.90] [0.9946150, 0.9958356]
All [0.80, 0.90] [0.9879552, 0.9987219]

24 ESs and Interval Arithmetic to Perform Robust Designs 547

24.3 Evolutionary Approach

Evolutionary Algorithms (EA) have been applied to a wide range of problems es-
pecially in those cases where traditional optimization techniques have shown poor
performances or simply have failed [32].

A population of individuals each of which representing one point of the solution
space collectively evolves towards better solutions by means of a parent’s selection
process, usually by means of a randomised recombination and/or mutation operators
and a substitution strategy. Parent selection determines which individuals partic-
ipate in the reproduction strategy. Recombination allows the exchange of already
existing genes and mutation introduces new genetic material. The substitution strat-
egy defines the individuals for the next generation population.

Evolution Strategies (ES) were developed as a powerful tool for parameter opti-
mization tasks [32] [33]. Two basic types of ES have been developed.

In a two-member or (1+1) evolution strategy (ES(1+1)), one ‘parent’ produces
one offspring per generation by applying a normally distributed perturbation, until
a ‘child’ performs better than its ancestor and take its place.

Schwefel and Bäck [63] generalised these strategies to the multimember evolution
strategy now denoted by ES(µ+λ) and ES(µ, λ). In a (µ+λ) strategy, the µ best of
all (µ + λ) individuals survive to become parents of the next generation. Using the
(µ, λ) strategy, selection takes place only among offspring. The second scheme is more
realistic and therefore more successful, because no individual may survive forever,
which could at least theoretically occur using the plus variant [39]. Furthermore the
(µ+λ) tends to emphasise local rather than global search properties. For this reason,
modern ES use the (µ, λ) substitution strategy. A ratio of µ/λ ≈ 7 is recommended
as a good setting for the relation between parent and offspring population size [63].

Cellular Evolution Strategies (CES) [38] are an approach that combines the
ES(µ, λ) techniques with concepts from Cellular Automata [74] for the parent’s
selection step, using the concepts of neighbourhood. In the CES approach each
individual is located randomly in a cell of a two-dimension array. To update a spe-
cific individual, the parents’ selection is performed looking only at determined cells
(its neighbourhood) in contrast with the general ES, which search parents in the
whole population. As an example, Figure 24.2 shows the array for 20 n-components
individuals (a1 . . . a20) and the Von Neumann neighbourhood for individual a13 (ra-
dius=1). The Von Neumann neighbourhood is formed by the individuals a8, a12,
a14 and a18. To update a13, the parents’ selection is determined at random, with
the same mating probabilities and, only taking into account a8, a12, a13, a14 and
a18. Seven new individuals are then generated by means of the mutation scheme
previously described and using an arithmetic crossover. The best of them replaces
a13 (The number seven follows a suggestion made in [63]: µ/λ ≈ 7). The rest of
the individuals are update in the same way. In CES the neighbourhood type and
the radius are parameters to be selected. In [38] it was found that for optimiza-
tion problems, the best results were obtained with a Von Neumann neighbourhood
with radius equal to one. Using those parameters, the diversity among individuals
is maintained during several evolutionary iterations. A bigger radius tends to sim-
ulate a conventional ES while a different neighbourhood (for example the Moore
neighbourhood) tends to homogenise the population. While the ES were originally
designed with the parameter optimization problem in mind, the CES were designed
to find the global optimum or “near” optimum for complex multi-modal functions.

548 Claudio M. Rocco S. and Daniel E. Salazar A.

Its use is then suggested in the case of high dimensional problems [38]. Due to the
stochastic nature of Cellular Evolutionary Strategies, it is important that problems
solved using this techniques show their consistency, i.e. how many times a run is
close to the global solution. Results from several runs are required to assess CES
consistency.

Fig. 24.2. Two-dimension cell array

24.4 Robust Design Methodology

24.4.1 Problem Description [23]

The robustness of a system design is defined as the maximum size of component
deviations from their design values that can be tolerated such that the system still
meets all defined specifications. The designer formulates target values on the quality
of the product by setting lower and upper bounds on the property yi(x). The problem
is to find a product x in the experimental region X which fulfils the requirements
on the properties.

We define the following slack function gi(x):
gi(x) = UBi − yi(x) when there is an upper bound (UB) requirement or
gi(x) = yi(x)−LBi when there is an lower bound (LB) requirement. This results in
a product design problem mathematically formulated as: find an element of F

⋂
X,

with: F := {x ∈ �n|gi(x) ≥ 0, i = 1, . . . , m}.

24.4.2 Problem Definition

Suppose the area shown in Fig. 24.3a is the feasible zone for a generic design with
variables R and Ra. Within the feasible zone any pair (R, Ra) satisfies the specifi-
cations. An exact description of the Feasible Solution Set (FSS) (Fig. 24.3a) is in
general not simple, since it may be a very complex set. Moreover, the FSS could
be limited by non-linear functions. For this reason, approximate descriptions are
often looked for, using simply shaped sets like boxes or ellipsoids containing -outer

24 ESs and Interval Arithmetic to Perform Robust Designs 549

bounding (Fig. 24.3b)- or contained in -inner bounding (Fig. 24.3c and 24.3d)- the
set of interest [40]. In particular Minimum Volume Outer box (MOB) (Fig. 24.3b)
and Maximum Volume Inner Box (MIB) (Fig. 24.3c and 24.3d) are of interest. In
this study only the MIB determination is considered.

Fig. 24.3. Feasible Solution Set and approximate descriptions [54]

The maximum ranges of possible variations of the feasible values are the sizes
(along co-ordinate axis) of the axis-aligned box of minimum volume containing FSS.
To obtain the MIB it is required that all the points inside the generated box satisfy
the constraints. Then, the mathematical formulation is [54]:
Let B the box defined by:

B := {x, C ∈ �n|xi ∈ [xi,lower, xi,upper], Ci = (xi,upper + xi,lower)/2}

1. Centre Specified:

max
x

n∏
i=1

|xi − Ci|

s.t. x∈F
⋂

B

2. Centre Unspecified:

max
x,C

n∏
i=1

|xi − Ci|

s.t. x,C∈F
⋂

B

The objective functions represent a quantity that is proportional to the MIB hyper-
volume. Note that x represents a vertex of the optimal MIB. From here, the range
of each variable is easily determined, as described in the next section.

24.4.3 General Approach [52]

Given r constraint functions gi(x1, x2, . . . , xn), lower and upper bounds (LBi, UBi),
generate an initial random point x = x10 , x20 , . . . , xn0 (initial vertex). Afterwards,

550 Claudio M. Rocco S. and Daniel E. Salazar A.

check if this point is a feasible point, evaluating all the constraint. If the point is
infeasible, then generate a new point and check it again for feasibility. Otherwise x
is feasible and there are two possible actions depending on the desired goal:

1) Inner box, centre specified

Given a feasible vertex, produce a symmetrical “box” (hyper-rectangle) using the
point C as symmetry centre and check for the feasibility of the generated box. If the
box is feasible, calculate the associated volume. If the box is not feasible, discard
the generated box, and repeat the process with a new feasible initial vertex.

2) Inner box, centre unspecified

In this case, the centre of co-ordinates is considered as additional variables. So the
initial random centre of co-ordinate C = C10 , C20 , . . . , Cn0 must be generated along
with the initial random vertex,. As in the previous case, produce a symmetrical “box”
using C as symmetry centre, and then check the feasibility of the generated box; next
if the box is feasible, calculate the associated volume. In both cases, the goal is to
maximise the inner volume using CES as the optimization technique. While checking
the box feasibility, two problems may occur: 1) The function should be evaluated
in the 2n vertices of the box, and 2) The extreme values are not necessarily at the
vertices of the generated box. To overcome these two drawbacks, constraint functions
are evaluated as interval functions. This means that only one “interval” evaluation
is required for each constraint and the exact range of the constraint functions inside
the generated box is obtained. Note that if the FSS is non-convex, feasibility check
using IA will consider this.

24.5 Example: Life-Support System in a Space
Capsule [51]

The proposed approach is applied to define a robust design for the system [51] shown
in Fig. 24.1. The problem is to obtain the ranges for each Ri such as 0.99 ≤ RS ≤ 1,
subject to: 0.80 ≤ Ri ≤ 1, with centre of each interval as: Ci = 0.90, i=1,2,3,4.
Because of the stochastic nature of CES, 20 trials were performed and the best
solution from among the 20 trials was used as the final solution. All CES runs
were performed using 30 generations, 49 individuals in a 7 × 7 grid, Von Neumann
neighbourhood with radius=1 and asynchronous substitution.

Table 24.2 shows the result obtained using the hybrid approach CES and IA,
with a MIB volume of 7.21851 ·10−5. These ranges produce an output RS belonging
to: [0.9900, 0.9999].

The MIB volume obtained using a non-linear optimization program, was 9.31811·
10−5, i.e. only 0.163% greater than the obtained with the CES-IA approach. The
average relative error obtained in 20 runs was only 0.272%. Normally the design
problem seeks to constraint a cost function, such as: CS = 2

∑
KiR

αi
i . For example

in [51]: K1=100, K2=100, K3=100, K4=150; αi = 0.6 ∀i. Using the above values and
the ranges shown in Table 24.2 for Ri, the range for CS is [791.369485, 896.123195].

As previously mentioned, our approach can consider several constraints simul-
taneously. For example, we can solve the problem to obtain the ranges for each Ri

24 ESs and Interval Arithmetic to Perform Robust Designs 551

Table 24.2. Robust design using CES and IA approach: A single constraint for Rs

VARIABLE Starting Interval Final Interval

R1 [0.80, 1.00] [0.8001, 0.9998]
R2 [0.80, 1.00] [0.8220, 0.9779]
R3 [0.80, 1.00] [0.8032, 0.9967]
R4 [0.80, 1.00] [0.8652, 0.9347]

such as 0.99 ≤ RS ≤ 1 and Cmin ≤ CS ≤ Cmax. In this case, if we define: Cmin =
800 and Cmax = 870, then the new solution is shown in Table 24.3.

Table 24.3. Robust design using CES and IA approach: Constraints on RS and CS

VARIABLE Starting Interval Final Interval

R1 [0.80, 1.00] [0.854327, 0.945673]
R2 [0.80, 1.00] [0.853171, 0.946829]
R3 [0.80, 1.00] [0.846696, 0.953304]
R4 [0.80, 1.00] [0.870334, 0.929666]

Using the new ranges for Ri, intervals for RS and CS are: RS = [0.995628,
0.999835] and CS = [820.8062, 868.4570].

24.6 Multiple Objective Formulation

In the example previously presented, DM could be interested on how to balance
reliability and cost. For example, a design with higher reliability and higher cost
or a design with lower cost sacrificing reliability could be chosen [18]. Using the
a single-objective (SO) formulation, DM must solve several problems by varying a
group of constraints to obtain a group of alternatives from which to choose the final
solution; nevertheless, with a multiple-objective (MO) formulation, it is possible to
determine the Pareto frontier which provides more information to DM.

For example, in the reliability field, many authors have analysed SO problems
[7, 15, 16, 24, 27, 29–31, 35, 41, 43–45, 49, 51, 53, 68] while others have recognised
the advantages of a MO formulation [8, 15, 16, 36, 43, 47, 49, 58, 59, 64, 75, 76].

In general there are two approaches to solve MO problems. The first approach
formulates the problem as a multiple-objective optimization problem (MOP) based
on the specified criteria (e.g. maximise reliability and minimise cost) to be solved
directly. The second approach transforms the original MOP into several single-
objective optimization problems (SOP) to be solved sequentially [37, 49].

In this section we consider the robust design using a MOP formulation, solved
by Evolutionary Algorithms (EA). This approach belongs to the Multiple Objective
Evolutionary Algorithms (MOEAs) family and is able to effectively handle con-
straints. The approach does not guarantee the determination of the exact Pareto

552 Claudio M. Rocco S. and Daniel E. Salazar A.

frontier nor does any heuristic approach for that matter. However an important
number of comparisons [14, 77, 78] performed in Evolutionary Multicriteria Opti-
mization (EMO) on benchmark problems have shown that results obtained using
different instances of MOEAs are very close to the exact solution. The MO formu-
lation is analysed in the context of the ability of MOEAs to find a set of solutions
and the quality of the information provided to the DM. Some important issues like
MOEA comparisons and parameter tuning will not be examined in this chapter.

24.6.1 Multiple Objective Problem Description

A MO optimization problem consists of optimising a vector of functions:

Opt (F (x) = (f1(x), f2(x), . . . , fk(x)))

s.t.: gj(x) ≤ 0, j = 1, 2, . . . , q; hj(x) = 0, j = 1, 2, . . . , r; (q + r = m) where x =
(x1, x2, . . . , xn)t ∈ X is the solution vector, or vector of decision variables, and X is
the feasible domain.

The concept of optimality in single objective cannot be directly extrapolated
to multiple-objective problems. For this reason a classification of the solutions is
introduced in terms of Pareto optimality, according to the following definitions [79].
In terms of minimisation:

Definition 1: Pareto Optimal: A solution vector x∗ ∈ X is Pareto Optimal solution
iff ¬∃x ∈ X : fi(x) ≤ fj(x

∗); i = {1, 2, . . . , k}. These solutions are also called true
Pareto solutions.

Definition 2: Pareto Dominance: x1 dominates x2, denoted x1 x2 , iff fi(x
1) ≤

fj(x
2) ∧ ∃j : fj(x

1) < fj(x
2); i, j ∈ {1, 2, . . . , k}. If there are no solutions which

dominates x1, then x1 is non-dominated.

Definition 3: Pareto Set: A set of non-dominated solutions {x∗|¬∃x : x x∗} is
said to be a Pareto set.

Definition 4: Pareto Front: the set of vectors in the objective space that are image
of a Pareto Set, i.e. {F (x∗)|¬∃x : x x∗}.

The robust design problem previously presented can be formulated as MOP,
transforming one or more constraints into objectives. For example:

1. Centre Specified:

max
x

n∏
i=1

|xi − Ci| ∧min
x

CS

s.t. x∈F
⋂

B

2. Centre Unspecified:

max
x,C

n∏
i=1

|xi − Ci| ∧min
x

CS

s.t. x,C∈F
⋂

B

Notice that even if the two objectives considered in these MOP types are MIB
and cost, the MOP approach is general and can be used for any type and number
of objectives (for example MIB and weight). The selection of such objectives clearly
depends on the problem under study and the DM criteria.

Both robust design formulations can be solved using the MOEA approach dis-
cussed in the next section. The characteristics of each formulation as well as the
methodology to solve them will be studied in further sections.

24 ESs and Interval Arithmetic to Perform Robust Designs 553

24.6.2 Multiple Objective Evolutionary Algorithms

Multiple-Objective Evolutionary Algorithms (MOEAs) is the term employed in the
Evolutionary Multicriteria Optimization (EMO) field to refer to a group of evolu-
tionary algorithms especially formulated to deal with MOP. This group of algorithms
conjugates the basic concepts of dominance described in the later section with the
general characteristics of evolutionary algorithms. MOEAs are able to deal with
non-continuous, non-convex and/or non-linear spaces, as well as problems whose
objective functions are not explicitly known (e.g. the output of Monte Carlo simu-
lation runs).

Since the first recognized MOEA (Schaffer’s VEGA (1984) [62]), the develop-
ment of MOEAs has successfully evolved, producing better and more efficient algo-
rithms. The existing MOEAs may be classified into two groups [6], according to its
characteristics and efficiency. On the one hand there is a first group known as “first-
generation” which includes all the early MOEAs (Weighted Sum [4], VEGA [62],
MOGA [4], NPGA [25], NSGA [67]). On the other hand there is a second group
named “second-generation MOEAs”, which comprises very efficient optimizers like
SPEA [77] / SPEA2 [78], M-PAES [28], PESA [10] / PESA-II [11] and NSGA-II [14],
among others.

Basically, the main features that distinguish second-generation MOEAs from the
first-generation group are:

Mechanism of adaptation assignment in terms of dominance: between one
non-dominated solution and another dominated, the algorithm will favour the non-
dominated one. Moreover, when both solutions are equivalent in dominance, the
one located in a less crowded area will be favoured. Finally, the extreme points,
(i.e. the solutions that have the best value in one particular objective) of the non-
dominated population are preserved and their adaptation is better than any other
non-dominated point, to promote maximum front expansion.

Incorporation of elitism: the elitism is commonly implemented using a secondary
population of non-dominated solutions previously stored. When performing recom-
bination (selection-crossover-mutation), parents are taken from this archive in order
to produce the offspring.

In general terms, current MOEAs based on genetic algorithms follow a sequence
similar to the flow chart depicted in Fig. 24.4. Notice that there are two populations:
P t, which represents the current population during generation t, and P t

A, which
consists of non-dominated solutions. Many state-of-the-art MOEAs keep a constant
size M for the population and N for the file. Initially, M individuals are generated
randomly and the archive is set to empty. In each generation all non-dominated
individuals from both the archive and the population are selected and assigned to
the archive P t+1

A . Afterwards a reproductive selection of individuals is accomplished
(typically by binary tournament) and a mating pool is filled up. At this stage a new
population is generated following some (µ + λ) recombination strategy (µ parents
are combined to produce λ offspring). Finally, the new population replaces the old
one and the process continues until the maximum number of generations is reached.
At the end, the non-dominated solutions from the archive are reported as output.

It is important to mention that in most of the cases, the number of non-
dominated solutions found during each generation could be less than or greater
than the archive size (N). Thus some criteria or methods for classifying and select-
ing are needed in order to set the archive size to N solutions. This can be achieved

554 Claudio M. Rocco S. and Daniel E. Salazar A.

Fig. 24.4. Flowchart of a 2nd generation MOEA based on genetics algorithms [59]

assigning to individuals fitness values based on the Pareto dominance combined with
some other criteria usually referred to as density and distribution of the population.
That is called environmental selection [79].

It is convenient to realize that in practice, both reproductive and environmen-
tal selection (the mechanism of adaptation assignment in terms of dominance and
density) constitute the main difference between one MOEA and another. The rest
of the algorithm remains the same with a traditional EA.

Nondominated Sorting Genetic Algorithm II

The Nondominated Sorting Genetic Algorithm (NSGA-II) is a well known and
extensively used algorithm based on its predecessor NSGA. It was formulated by
Deb et al [14] as a fast and very efficient MOEA, which incorporates the features
mentioned earlier, i.e., elitism and adaptation assignment in terms of dominance
and density. Elitism is possible in NSGA-II due to the use of one steady population
and a temporary one. On the other side, adaptation is assessed first by means of
a non-dominated sorting procedure followed by a crowding distance measure. The
former step correspond to Goldberg’s non dominated ranking procedure [20], while
the latter consist of the assignment of a density index based on the Manhattan
distance between the two closest neighbours of a given solutions into the same rank.

Constraint handling techniques

One of the main issues in evolutionary computation is how to guide the search
towards the feasible region in the presence of constraints. The existing approaches
can be classified in the following groups: 1) Penalization techniques, 2) Repairing
techniques, 3) Separation techniques, and 4) Hybrid techniques. For a review see [5].

The experiments reported in this chapter are based on the approach proposed
by Deb et al [14], which could be implemented in the NSGA-II as follows:

24 ESs and Interval Arithmetic to Perform Robust Designs 555

• Calculate the normalized sum of constraint violations for all the individuals
belonging to P t

⋃
P t

A.
• Classify the individuals according to the overall constraints violation: when com-

paring two individuals; if the overall violation of both of them is zero, apply the
ordinary ranking assignment, otherwise the individual with the lower (or null)
overall violation dominates the other one.

• The rest of the algorithm remains equal.

The integration of this technique to any MOEA promotes feasibility over op-
timality. Thus the search is guided toward the feasible region. Once it is reached,
feasible individuals are sorted according to the particular fashion established by im-
plemented MOEA. Moreover, as the reader may notice, the absence of penalization
parameters saves the effort of tuning.

24.6.3 Implementation

NSGA-II is implemented following the pseudo-code presented in the algorithm de-
scribed in Table 24.4. 1. Notice that we moved from the original formulation allowing
different sizes for the two populations involved. Additionally, our implementation is
suitable both for integer chromosomes, real chromosomes and for mixed chromo-
somes (for more details see [59]). For the particular problem studied here, only real
variables were needed.

Likewise, the recombination mechanism is one-point crossover, adapted for a
mixed chromosome. For real variables, the crossover is performed as a linear com-
bination while the mutation operation is performed like Gaussian mutation of type
Rnew = Rold + N(0, σ2).

24.6.4 Computational Example

The example presented in Section 5 is analysed, by comparing both SOP and MOP
optimization results. The MO formulation is obtained converting the cost constraint
into an objective function. Thus, the following problem is a bi-objective problem
with centre specified (Ci = 0.90). In those cases where the original SOP considers
several constraints, higher dimensional MO formulations are possible. Nevertheless,
the bi-objective formulation is the only case suitable for an easy visual inspection;
therefore it is appropriate as an introductory example.

Fig. 24.5 shows the Pareto front determined by NSGA-II for two experiments
us-ing 12550 evaluations of the objective function. Note that the approximation
Pareto fronts obtained are practically equals; for this reason, in the subsequent
figures only one experiment is presented. From this figure, it is also clearly visible
that the solution achieved during the SO optimization, as expected, shows the same
approximation quality.

Fig. 24.6 shows a complete picture of the situation. The minimum and maximum
cost as a function of the MIB volume is presented for the solutions obtained earlier.
As expected, as long as the range of variation on reliability components is wider,
and therefore the MIB is bigger, the range for cost becomes more uncertain. In
consequence, DM should define how much uncertainty can be allowed for the system.
In other words, the robustness of the system has a worth, which is directly related
with the maximal cost of the chosen MIB.

556 Claudio M. Rocco S. and Daniel E. Salazar A.

Table 24.4. Pseudo-code for NSGA-II

Input:
• M (Population size)
• N (Archive size)
•tmax (Max. number of generations)

Begin:
• Randomly initiate P 0

A, set P 0 = ∅, t = 0.
• While t < tmax:
◦P t = P t + P t

A

◦ Assign adaptation to P t according to non-dominated
sorting and crowding distance.
◦P t+1

A = {N best individuals from P t}
◦ MP (mating pool) = {M individuals randomly
selected from P t+1

A using a binary tournament}
◦P t+1 = {M new individuals generated by
applying recombination operators on MP}
◦ t = t+1
• End loop

Output:
• Non dominated solutions from P t

A

Fig. 24.5. Two sets of trade-off approximations between MIB and Cmax
S

24 ESs and Interval Arithmetic to Perform Robust Designs 557

Fig. 24.6. Minimum and Maximum Cost vs MIB

In that sense, Fig. 24.7 shows the average component tolerance as a function
of the MIB. For instance, if the DM defines a maximum allowed cost of 870 units,
then the maximum average component tolerance would be in the range from 0 to
almost 10%.

Fig. 24.7. Average component tolerance

558 Claudio M. Rocco S. and Daniel E. Salazar A.

The above results show the advantages of the MO formulation for the centre
specified formulation.

The MOEAs approach can be also used to analyse the centre-unspecified case.
Given the dependency between the vertex and the centroid of each solution, the non-
dominated front cannot be directly assessed, instead of that, the determination of
the approximation Pareto front requires an iterative procedure like the double-loop
strategy used in [36]. First a centroid is selected and then the set of non-dominated
solutions for that centroid is investigated. After that, a new centroid is selected and
the process continues iteratively. To illustrate the proposed approach, five sets of
solutions generated with predefined centroids are shown in Fig. 24.8. It is interesting
to note that the two upper curves (centroids Ci = 0.91 and Ci = 0.92) are completely
dominated by the curve obtained with Ci = 0.90. This fact shows that a high value
for centroid is not necessarily the best option, since the nearer distance regarding
the constraint Ri ≤ 1 limits the range of variation of the components reliability
values and consequently reduces the MIB. Likewise, a similar mechanism reduces
the extension of the lower curves (centroids Ci = 0.86, Ci = 0.88 and Ci = 0.89),
since lower centroids are nearer the system constraint (Rs ≥ 0.99).

Fig. 24.8. Trade-off between MIB and Cmax
S for selected centroids

Fig. 24.9 shows the non-dominated front for the set of obtained solutions earlier.
The dotted lines correspond to the dominated sectors of the curves, whereas the
solid lines are the non-dominated sections. The non-dominated front in this case is
formed for efficient solutions with different centroids.

This formulation is evidently better than the one used for the specified-centre
case since it allows finding even better solutions. However, this formulation requires
more computational work to handle the problem of dependency between vertexes
and centroids. Note that this formulation consists on a time-consuming search.

24 ESs and Interval Arithmetic to Perform Robust Designs 559

Fig. 24.9. Non-dominated front for selected centroids

A tentative solution to overcome this problem is the use of the “percentage
representation” introduced in [60], where centre co-ordinates could be conveniently
evolved. However its implementation must be investigated in further researches.

24.7 Conclusions

This chapter proposes an approach based on the use of Evolutionary Algorithms and
Interval Arithmetic as an alternative technique to obtain two robust system designs.
First, Cellular Evolutionary Strategies are used as the optimization technique while
Interval Arithmetic is used as a checking technique that guarantees the feasibility
of the design.

The excellent results obtained suggest that the CES-IA approach has a great
potential in dealing with difficult system design problems. It is interesting to note
that even if Interval Arithmetic can overestimate the size of the hyper box, due to
the dependency problem, the box obtained is a valid robust solution, which satisfies
all the defined constraints. As mentioned, the overestimation can be treated using
special techniques. The added burden to the procedure CES-IA for determining
the feasibility verification of the generated box is far outweighed by the flexibility
provided by such technique (only one “interval” evaluation and guaranteed ranges)
in contrast to multiple vertices evaluation.

The approach initially formulated to consider simultaneously several constraints
has been successfully extended to cope with multiple objectives. This new formula-
tion extends the possibilities of the robust design approach providing the DM with
a wider horizon of non-dominated alternatives.

560 Claudio M. Rocco S. and Daniel E. Salazar A.

The Multiple Objective Evolutionary Algorithms (MOEAs) employed to solve
the MOP formulations provide an excellent ways to approximate the Pareto frontier,
for both the centre-specified and the centre-unspecified cases. Even so, additional re-
searches are required to improve the efficiency of the MO centre-unspecified solution
technique.

References

1. Armengol J, Veh̀ı J, de la Rosa JL, Travé-Massuyés L (1998) On Modal Inter-
val Analysis for Envelope Determination within Ca-En Qualitative Simulator.
http://ima.udg.es/SIGLA/X

2. Averbakh I (2000) Minmax regret solutions for minimax optimization problems
with uncertainty. Operations Research Letters, 27:57–65

3. Averbakh I, Lebedev V (2002) Interval data minmax regret network optimiza-
tion problems. Discrete Applied Mathematics 138:289–301

4. Coello C (1999) A Comprehensive Survey of Evolutionary-Based Multiobjective
Optimization Techniques. Knowl Inf. Syst 1(3):129–156

5. Coello C (2002) Theoretical and Numerical Constraint-Handling Techniques
used with Evolutionary Algorithms: A Survey of the State of the Art. Computer
Methods in Applied Mech and Engnng 8(2):1245–1287

6. Coello C. http://www.cs.cinvestav.mx/ẼVOCINV/download/tutorial-moea.pdf
7. Coit DW, Smith AE (1996) Reliability Optimization of Series-Parallel systems

using a Genetic Algorithm. IEEE Trans Reliab 45(2):254–260
8. Coit DW, Tongdan J; Wattanapongsakorn N (2004) System optimization with

component reliability estimation uncertainty: a multicriteria approach. IEEE
Trans on Reliab 53(3):369–380

9. Constantinides (1994) Basic Reliability. In: Annual Reliability and Maintain-
ability Symposium, Anaheim, California, USA

10. Corne DW, Knowles JD (2000) The Pareto-Envelope based Selection Algorithm
for Multiobjective Optimization. In: Proceedings of the Sixth International
Conference on Parallel Problem Solving from Nature (PPSN VI). Springer,
Berlin:839–848

11. Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: Region-based
Selection in Evo-lutionary Multiobjective Optimization. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2001), Morgan
Kaufmann Publishers:283–290.

12. DavenportAJ, Beck JC (Unpublished manuscript) A Survey of Techniques for
Scheduling with Uncertainty. In: http://www.mie.utoronto.ca/staff/profiles/
beck/publications.html

13. Deb K, Gupta H (2005) Searching for Robust Pareto-Optimal Solutions
in Multi-objective Optimization. Evolutionary Multi-Criterion Optimization,
LNCS 3410. Berlin, Germany: Springer-Verlag:150–164

14. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A Fast and Elitist MultiOb-
jective Genetic Algorithm: NSGA-II. IEEE Trans Evol. Comput. 6(2):182–197

15. Dhingra A (1992) Optimal Apportionment of Reliability & Redundancy in Series
Systems Under Multiple Objectives. IEEE Trans Reliab 41(4):576–582

24 ESs and Interval Arithmetic to Perform Robust Designs 561

16. Elegbede C, Adjallah K (2003) Availability allocation to repairable systems with
genetic algorithms: a multi-objective formulation. Reliab Engnng Sys Safety
82(3):319–330

17. Ferson S, Long T. Deconvolution can reduce Uncertainty in Risk Analysis.
http://ramas.com

18. Giuggioli P, Marseguerra M, Zio E (2001) Multiobjective optimization by genetic
algorithms: application to safety systems. Reliab Engnng Sys Safety 72:59–74

19. Granger M, Henrion M (1993) Uncertainty: A Guide to Dealing with Uncer-
tainty in Quantitative Risk and Policy Analysis. Cambridge University Press,
UK

20. Golberg D (1989) Genetics algorithms in search, optimization & machine learn-
ing. Addison-Wesley Publishing Company, Inc. USA

21. Hadjihassan S, Walter E, Pronzato L (1996) Quality Improvement via Optimisa-
tion of Tolerance Intervals During the Design Stage. In: Kearfott RB, Kreinovich
V (Eds.) Applications of Interval Computations. Kluwer Academic Publishers,
Dordrecht, The Netherlands

22. Hansen E (1992) Global Optimization Using Interval Analysis. Marcel Dekker,
Inc., New York

23. Hendrix EMT, Mecking CJ, Hendriks ThHB (1996) Finding Robust Solutions
for Product Design Problems. EJOR 92:28–36

24. Hikita M, Nakagawa Y, Nakashima K, Narihisa H (1992) Reliability Opti-
mization of Systems by a Surrogate-Constraints Algorithm. IEEE Trans Reliab
41:473–480

25. Horn J, Nafpliotis N, (1993) Multiobjective optimization using the Niched
Pareto Genetic Algorithm. IlliGAL Report 93005, Illinois Genetic Algorithms
Laboratory, University of Illinois, USA

26. Jin Y, Branke J (2005) Evolutionary Optimization in Uncertain Environments
- A survey. IEEE trans Evol Comput. 9(3):303–317

27. Kim JH, Yum BJ (1993) A Heuristic Method for Solving Redundancy Opti-
mization Problems in Complex Systems IEEE Trans Reliab 42:572–578

28. Knowles JD Corne DW (2000) M-PAES: A Memetic Algorithm for Multiob-
jective Optimization. In: Proc. of the Congress on Evolutionary Computation
(CEC00). IEEE Press, Piscataway, NJ:325–332

29. Kulturel-Konak, S, Smith AE, Coit DW (2003) Efficiently solving the redun-
dancy allocation problem using tabu search. IIE Trans 35(6):515-26

30. Kuo W, Hwang CL, Tillman FA (1978) A note on Heuristic Methods in Optimal
System Reliability. IEEE Trans Reliab 27:320–324

31. Kuo W, Lin H, Xu Z, Zhang W (1987). Reliability Optimization with the La-
grange multiplier and branch-and-bound technique. IEEE Trans Reliab 36:1090–
1095

32. Kursawe F (1992) Towards Self-Adapting Evolution Strategies. In: Tzeng G,
Yu P (Eds.) Proc. of the Tenth International Conference on Multiple Criteria
Decision Making, Taipei

33. Kursawe F (1993) Evolution Strategies- Simple “Models” of Natural Process?.
Revue Internationale de Systemique 7(5)

34. Kouvelis P, Yu G, (1997) Robust Discrete Optimization and Its Applications.
Non Convex Optimization and Its Applications. Kluwer Academis Publishers.

35. Lin HH, Kuo W (1987) A Comparison of Heuristic Reliability Optimization
Methods. In: Proc. of the World Productivity Forum & 1987 Int’l Industrial
Engineering Conf. Institute of Industrial Engineering:583–589

562 Claudio M. Rocco S. and Daniel E. Salazar A.

36. Martorell S, Carlos S, Villanueva JF, Snchez AI, Galvn B, Salazar D, Cepin
M (2006) Use of Multiple Objective Evolutionary Algorithms in Optimizing
Surveillance Requirements. Reliab Engnng Sys Safety 91:1027–1038

37. Martorell S, Snchez A, Carlos S, Serradell V (2004) Alternatives and challenges
in optimizing industrial safety using genetic algorithms. Reliab Engnng Sys
Safety 86(1):25–38

38. Medina M, Carrasquero N, Moreno J (1998) Estrategias Evolutivas Celulares
para la Optimización de Funciones. In: IBERAMIA’98, 6 Congreso Iberoamer-
icano de Inteligencia Artificial. Lisboa, Portugal

39. Michalewicz Z (1992) Genetic Algorithms + Data Structure = Evolution Pro-
grams, Springer-Verlag

40. Milanese M, Norton J, J. Piet-Lahanier J (Eds.) (1998) Bounding Approaches
to System Identification. Plenum Press, New York, USA

41. Misra KB, Ljubojevic MD (1973) Optimal Reliability Design of a System: A
new look. IEEE Trans Reliab 22:255–258

42. Moore R (1979) Methods and Applications of Interval Analysis. SIAM Studies
in Applied Mathematics. Philadelphia, USA

43. Nahas N, Nourelfath M (2005) Ant system for reliability optimization of a series
system with multiple-choice and budget constraints. Reliab Engnng Sys Safety
87(1):1–12

44. Nakagawa Y, Nakashima K (1997) A heuristic method for determining optimal
reliability allocation. IEEE Trans Reliab 26:156–161

45. Nakashima K, Yamato K (1997) Optimal Design of a Series-Parallel System
with time-dependent reliability. IEEE Trans Reliab 26:119–120

46. Neumaier A (1990) Interval Methods for Systems of Equations. Cambridge Uni-
versity Press, UK.

47. Peng-Sheng Y, Ta-Cheng Ch (2005) An efficient heuristic for series-parallel re-
dundant reliability problems. Computers & Operations Research 32(8):2117–
2127

48. Ramirez-Marquez JE, Coit DW, Konak A (2004) A Redundancy allocation for
series-parallel systems using a max-min approach. IIE Transactions 36(9):891–
898

49. Ramı́rez-Rosado IJ, Bernal-Agust́ın JL (2001) Reliability and Costs Optimiza-
tion for Distribution Networks Expansion Using an Evolutionary Algorithm.
IEEE Trans on Power Systems 16:111–118

50. Ratschek H, Rokne J. (1984) Computer Methods for the range of functions. Ellis
Horwood Limited, UK

51. Ravi V, Murty BSN, Reddy PJ, (1997) Nonequilibrium Simulated Annealing Al-
gorithm Applied to Reliability Optimization of Complex Systems. IEEE Trans.
Reliab 46:233–239.

52. Rocco C (2005) A Hybrid Approach based on Evolutionary Strategies and In-
terval Arithmetic to perform Robust Designs. In: Applications of Evolutionary
Computing, Lecture Notes in Computer Science LNCS 3449:623–628, Springer-
Verlag

53. Rocco CM, Miller AJ, Moreno JA, Carrasquero N (2000) Reliability Optimi-
sation of Complex Systems. In: The Annual Reliability and Maintainability
Symposium. Los Angeles, USA

54. Rocco C, Moreno JA, Carrasquero N (2003) Robust Design using a
Hybrid-Cellular-Evolutionary and Interval-Arithmetic Approach: A Reliability

24 ESs and Interval Arithmetic to Perform Robust Designs 563

Application. In: Tarantola S, Saltelli A (Eds.) Special Issue: SAMO 2001:
Methodological advances and useful applications of sensitivity analysis. Reliab
Engnng Sys Safety 79(2):149–159

55. Rosenhead (1989) Rational analysis for a problematic world. Wiley, New York
56. Roy, B. (1998) A missing link in operational research decision aiding: robustness

analysis. Foundations of Computing and Decision Sciences 23(3):141–160
57. Roy B. (2002) Robustesse de quoi, vis-à-vis de quoi, mais aussi robustesse

pourquoi en aide à la décision? In Newsletters of the European Working Group
“Multicriteria Aid for Decisions” 6(3):1–6

58. Sakawa M (1978) Multiobjective reliability and redundancy optimization of a
series-parallel system by the Surrogate Worth Trade-off method. Microelectron-
ics and Reliability 17(4):465–467

59. Salazar D, Rocco C, Galvàn B (2006) Optimization of Constrained Multiple-
Objective Reliability Problems using Evolutionary Algorithms. Reliab Engnng
Sys Safety 91:1057–1070

60. Salazar DE, Martorell SS, Galvn BJ (2005) Analysis of Representation Alterna-
tives for a Multi-ple-Objective Floating Bound Scheduling Problem of a Nuclear
Power Plant Safety System. In: Evolutionary and Deterministic Methods for
Design, Optimisation and Control with Applications to Industrial and Societal
Problems (Eurogen 2005). September 12-14. Munich, Germany

61. Saltelli a, Scott M (1997) Guest editorial: The role of sensitivity analysis in
the corroboration of models and its link to model structural and parametric
uncertainty. Reliab Enginng Syst Safety 57:1–4

62. Schaffer JD (1984) Multiple Optimization with Vector Evaluated Genetic Algo-
rithms. Ph. D. Thesis. Vanderbilt University. (Unpublished)

63. Schwefel HP, Back Th (1995) Evolution Strategies I: Variants and their compu-
tational implementation. In: Periaux J, Winter G (Eds.) Genetic Algorithm in
Engineering and Computer Science. John Wiley & Sons

64. Shelokar PS, Jayaraman VK, Kulkarni BD (2002) Ant algorithm for single and
multiobjective reliability optimization problems. Quality and Reliability Engi-
neering International 18(6):497–514

65. Srense K (2003) A famework for robust and flexible optimisation using meta-
heuristics with applications in supply chain design. PhD Thesis. University of
Antwerp, Belgium

66. Sevaux M, Srensen K (2004) Robustness Analysis: Optimisation. In Newsletter
of the European Working Group “Multiple Criteria Decision Aiding” 3(10):3–5

67. Srinivas N, Deb K (1994) Multiobjective optimization Using Nondominated
Sorting in Genetic Algorithms. Evol Comput 2(3):221–248

68. Tillman FA, Hwang CL, Kuo W (1985) Optimization of System Reliability.
Marcel Dekker

69. Tsutsui S, Gosh A, Fujimoto Y (1996) A robust solution searching scheme
in genetic search. In Parallel Problem Solving from Nature. Berlin, Germany:
Springer-Verlag:543–552

70. Tsutsui S, Gosh A (1997) Genetic algorithms with a robust solutions searching
scheme. IEEE Trans. Evol. Comput. 1(3):201–208

71. Veh́ı J (1998) Análisi i disseny de controladors robustos. Ph.D. Thesis, Univer-
sitat de Girona

72. Vincke P (2003) About Robustness Analysis. In: Newsletter of the European
Working Group “Multicriteria Aid for Decisions” 3(8):7–9

564 Claudio M. Rocco S. and Daniel E. Salazar A.

73. Vincke, P (1999) Robust solutions and methods in decision aid. Journal of Mul-
ticriteria Decision Analysis 8:181–187

74. Wolfram (1984) Cellular automata as models of complexity. Nature 3H
75. Wong YY, Jong WK (2004) Multi-level redundancy optimization in series sys-

tems. Computers & Industrial Engineering 46(2):337–346
76. Yun-Chia Liang, Smith, AE (2004) An ant colony optimization algorithm for

the redundancy allocation problem (RAP). IEEE Trans Reliab 53(3):417–423
77. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a compara-

tive case study and the strength Pareto approach. IEEE Trans Evol Comput
3(4):257–271

78. Zitzler E, Laummans M, Thiele L (2001) SPEA2: Improving the Stregth Pareto
Evolutionary Algorithm. TIK Report No. 103. Swiss Federal Institute of Tech-
nology (ETH). Computer Engineering and Networks Laboratory (TIK)

79. Zitzler E, Laumanns M, Bleuler S (2004) A Tutorial on Evolutionary Multiobjec-
tive Optimization. In: Workshop on Multiple Objective Metaheuristics (MOMH
2002). Springer-Verlag. Berlin, Germany

25

An Evolutionary Approach for Assessing
the Degree of Robustness of Solutions
to Multi-Objective Models

Carlos Barrico1 and Carlos Henggeler Antunes2

1 Department of Informatics, University of Beira Interior
6201-001 Covilhã, Portugal and
INESC Coimbra, Rua Antero de Quental 199, 3000-033 Coimbra, Portugal
cbarrico@inescc.pt

2 Department of Electrical Engineering and Computers
University of Coimbra, Portugal and
INESC Coimbra, Rua Antero de Quental 199, 3000-033 Coimbra, Portugal
ch@deec.uc.pt

Summary. This chapter presents an approach to robustness analysis in multi-
objective optimization problems, in which the decision variable space is subject
to small perturbations . The concept of degree of robustness is incorporated into
the evolutionary algorithm, being operationalized in the computation of the fitness
value assigned to solutions, in the selection of the elite, and in the application of the
sharing mechanism. Non-dominated solutions are classified according to their degree
of robustness. The information on the degree of robustness of solutions is provided
to support the decision maker in the selection of a robust compromise solution.

25.1 Introduction

Most complex problems arising in modern technologically developed societies inher-
ently involve multiple, conflicting, and incommensurate evaluation aspects to assess
the merits of alternative courses of action. Therefore, mathematical models for deci-
sion support become more representative of the actual decision context if those
distinct axes of evaluation are explicitly taken into account rather than aggregated
into a single indicator, generally of economic nature such as cost or benefit. In multi-
objective programming models those axes of evaluation are operationalized by means
of objective functions to be optimized subject to a set of constraints. Multi-objective
models enable to grasp the conflicting nature of the objectives and the tradeoffs to
be made in order to identify satisfactory compromise solutions by providing a basis
to rationalize the comparison between non-dominated solutions. A non-dominated
(efficient, Pareto optimal) solution is a feasible solution for which no improvement
in all objective functions is simultaneously possible; that is, an improvement in an
objective function can only be achieved by degrading, at least, another objective

C. Barrico and C.H. Antunes:An Evolutionary Approach for Assessing the Degree of Robust-

ness of Solutions to Multi-Objective Models, Studies in Computational Intelligence (SCI) 51,

565–582 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

566 Carlos Barrico and Carlos Henggeler Antunes

function value. Besides contributing to make the model more realistic vis-a-vis ac-
tual problems, a multi-objective approach intrinsically possesses a value-added role
in the modeling process and in model analysis, supporting reflection and creativity
of decision makers in face of a larger universe of potential solutions, having in mind
their practical implementation, since a prominent solution no longer exists.

Uncertainty is an intrinsic characteristic of real-world problems arising from
multiple sources of distinct nature. Uncertainty emerges from the ever-increasing
complexity of interactions within social, economic and technical systems, charac-
terized by a fast pace of technological evolution, changes in market structures, and
new societal concerns. It is generally impracticable that decision aid models could
capture all the relevant inter-related phenomena at stake, get through all the nec-
essary information, and also account for the changes and/or hesitations associated
with the expression of the stakeholders’ preferences. Besides structural uncertainty
associated with the global knowledge about the system being modeled, input data
may also suffer from imprecision, incompleteness or be subject to changes. In this
context, it is important to provide decision makers with robust conclusions. The
concept of robust solution is generally linked to a certain degree of “immunity” to
data uncertainty, to an adaptive capability (or flexibility) regarding an uncertain fu-
ture or ill-specified preferences, guaranteeing an acceptable performance even under
changing conditions (such as model coefficients drifting from “nominal data”).

The ability to work in each generation with a population of potential solutions
makes evolutionary approaches well suited for multi-objective optimization prob-
lems, particularly complex problems of combinatorial nature, in which a set of non-
dominated solutions must be identified rather than a single optimal solution (see
Coello et al. [7], Deb [8] and Fonseca and Fleming [12]).

The study of a multi-objective optimization problem generally involves the
characterization of the set of non-dominated solutions, by performing either an
exhaustive computation of these solutions or by computing a representative sample.
However, some of these solutions, which could be of interest for a decision maker
(DM) as acceptable compromise solutions, in the sense they present a satisfactory
balance between the axes of evaluation operationalized through objective functions,
can be very sensitive to perturbations. That is, when a given non-dominated solu-
tion, selected by using any approach, is implemented in practice, small variations
in the values of the decision variables may lead to an important degrading of the
objective function performances. Therefore, algorithms must strive for robust solu-
tions, that is, solutions that are relatively insensitive to perturbations in the decision
variable space.

Some studies have been devoted to compute robust solutions both in single-
objective as well as in multi-objective evolutionary optimization.

The works dealing with robust single-objective evolutionary optimization in-
clude the following approaches. Branke [4] suggested some heuristics for computing
robust solutions. Branke [5] pointed out key differences between searching for opti-
mal solutions in a noisy environment and searching for robust solutions. Branke and
Schmidh [6] suggested a number of methods for alternate fitness estimation. Jin and
Sendhoff [16] considered an approach for finding robust solutions in single-objective
optimization as a bi-objective optimization problem, in which the objectives to be
maximized are the robustness and the performance related with the original function.
Tsutsui and Ghosh [22] presented a mathematical model for obtaining robust solu-
tions using the schema theorem for single-objective genetic algorithms. Parmee [20]

25 Robustness of Solutions to Multi-Objective Models 567

suggested a hierarchical strategy for searching in several regions with high perfor-
mance and in the fitness landscape simultaneously. Lim et al. [18] presented an
evolutionary design optimization approach that handles uncertainty with respect
to the desired robust performance (the so-called inverse robust design, from which
they search for solutions that guarantee a certain degree of maximum uncertainty
and, at the same time, satisfy the desired nominal performance of the final design
solution. Ong et al. [19] presented an evolutionary algorithm based on the combina-
tion of a max-min optimization strategy with a Baldwinian trust-region framework,
employing local surrogate models for reducing the computational cost associated
with robust design problems (focusing on combining evolutionary algorithms with
function approximation techniques for robust design).

As far as robust multi-objective optimization is concerned few studies are re-
ported in the literature. Hughes [14] computed the expected error to be used in the
deterministic Pareto dominance that depends on the noise in the objective func-
tions. Teich [21] extended existing techniques for space exploration design based
on the Pareto-dominance criterion to the case where one or more of the objective
functions are subject to uncertainties given by property intervals. Li et al. [17] pre-
sented a Robust Multi-Objective Genetic Algorithm (RMOGA) to investigate the
trade-off between the performance and the robustness of solutions, considering two
objective functions, a fitness value and a robustness index. Deb and Gupta [9, 10]
extended an existing approach for finding robust solutions in single-objective opti-
mization problems to a multi-objective setting, by considering the mean effective
objective functions computed by averaging a representative set of neighboring solu-
tions instead of the original objective functions. Barrico and Antunes [1–3] presented
approaches that use the concept of degree of robustness, which are based on the so-
lution behavior in its neighborhood in the decision variable space. The concept of
degree of robustness is also used to assess the solution behavior in the neighborhood
of the reference scenario in the space of the objective function coefficients [1].

For more details about both robust single-objective and robust multi-objective
evolutionary optimization see Jin and Branke [15].

In this chapter, a multi-objective evolutionary approach to robustness analysis is
presented, for assessing the degree of robustness of non-dominated solutions, which
is based on the solution behavior in its neighborhood. This concept of degree of
robustness (see also the concept of robust solution of type II in Deb and Gupta [9])
permits the user to exert a control on the desired/acceptable level of robustness
of the solutions obtained. Users can specify the size of the solution neighborhood,
both in the decision variable space and in the objective function space (generally
the space the DM is more familiar with).

The concept of degree of robustness is imbedded in the evolutionary process,
particularly in the fitness assessment of each individual. The underlying rationale
is to bias the evolutionary process towards more robust solutions , that is solutions
for which the objective function performances are more immune to perturbations in
the decision variable values.

In section 2 the concept of degree of robustness is presented. The main features
of the evolutionary algorithm are described in section 3. Illustrative results are
presented in section 4, which have been obtained with the evolutionary approach
applied to a bi-objective test problem. Finally, some conclusions are drawn in
section 5.

568 Carlos Barrico and Carlos Henggeler Antunes

25.2 The Degree of Robustness

The definition of robustness (either robust solution or robust method) is not uniform
in the literature. However, a common view is shared: a robust solution shall behave
well in (slightly) different conditions, meaning that it is as much as possible immune
to small changes in the conditions it was designed for.

It is assumed that perturbations of solution x may occur in any dimension
(x1, x2, ..., xn). The assessment of the degree of robustness of a solution is based
on its behavior within a neighborhood around its “nominal” point. The underly-
ing idea is to determine a set of neighborhoods kδ around solution x, such that
the images of solutions within these neighborhoods are all better than f(x) or be-
long to a pre-specified neighborhood η around f(x) in the objective function space.
The process begins by analyzing randomly generated solutions inside a hyperbox
of radius δ around x. This neighborhood (hyperbox) is then progressively enlarged,
in multiples of δ (δ, 2δ, ...), until the percentage of solutions whose images in the
objective space are all better than f(x) or belong to the neighborhood of f(x) is
not greater than a pre-defined threshold. This enables to assign a degree of robust-
ness to solutions according to the number of hyperbox enlargements for which that
condition is fulfilled (see Fig. 25.1).

The degree of robustness depends on the size of a δ-neighborhood of solution x
and the percentage of the h neighboring points whose objective function values are
all better than f(x) or belong to the η-neighborhood of f(x). Those h neighboring
points are randomly generated around solution x (see also Deb and Gupta [9]).

Fig. 25.1. Definition of neighborhoods in the decision variable space and objective
function space (for 2-dimension spaces and all functions to be minimized)

The degree of robustness of solution x is a value k, such that (see Fig. 25.1):
a) the percentage of solutions in the kδ-neighborhood of x, whose objective function

values are all better than f(x) or belong to the η-neighborhood of f(x), is greater
than or equal to a pre-specified threshold p;

b) the percentage of solutions in the (k + 1)δ-neighborhood of x, whose objective
function values are all better than f(x) or belong to the η-neighborhood of f(x),
is lower than p.

25 Robustness of Solutions to Multi-Objective Models 569

The threshold p may be understood as a measure of exigency of the degree of
robustness.

The degree of robustness k of a solution x is gradually computed as k increases
(neighborhoods δ, 2δ, ..., kδ), as well as the number of neighboring points of x (h, h+
qh, ..., h + (k − 1)qh), such that h + (t− 1)qh neighboring points (t ∈ {1, ..., k}) are
analyzed in the tδ-neighborhood of x.

However, the p, η and q parameter values can be different depending on the
solution type (if solutions are non-dominated, or solutions are dominated or non-
feasible). Due to the considerable run time of this algorithm, we recommend that the
p parameter value should be higher for the dominated and infeasible solutions, and
η and q parameters values should be higher for the non-dominated solutions. The
underlying rationale is that non-dominated solutions are more important than domi-
nated and infeasible solutions, and therefore a more exhaustive analysis is necessary
for the non-dominated solutions.

To analyze whether, for a solution y belonging to δ-neighborhood of solution x,
f(y) belongs to the η-neighborhood of f(x), it is necessary to calculate the distance
between the images of solutions x and y in the objective space, f(x) and f(y).
The normalized distance between f(x) and f(y) is computed by the expressions
||f(y) − f(x)|| / ||f(x)|| (relative) or ||f(y) − f(x)|| (absolute), where the operator
||.|| can be any suitable metric, such as the city block, Euclidean or Chebycheff
metrics. The choice of the metric can also have a role to play: in the city block
metric all differences have the same importance, whereas in the Chebycheff metric
only the greatest difference in all dimensions matters. The non-normalized distance
between f(x) and f(y) can be used too (in this case, η = (η1, ..., ηR), where R is the
number of objective functions of the problem).

The degree of robustness contributes for the evaluation of a solution (individual)
of a population and enables to classify the solutions according to their level of
robustness with respect to changes in the decision variable values.

25.3 The Evolutionary Algorithm

An evolutionary algorithm encompassing the assessment of the degree of robustness
associated with each solution has been implemented, which uses an elitist strategy
with a secondary population (with feasible non-dominated solutions only) of con-
stant maximum size. The elitist strategy is aimed at increasing the performance,
both accelerating the convergence speed towards the non-dominated frontier and
ensuring the solutions attained are indeed non-dominated ones and well spread over
the frontier. This is an important issue in real-world problems (see Gomes et al. [13])
since it is necessary to provide the DM with well-distributed and diverse solutions
for a well-informed final decision to be made upon.

In order to bias the evolutionary process towards more robust solutions, this
concept of degree of robustness is imbedded into the fitness assessment of each
individual jointly with the non-dominance test. In each non-dominance level, more
robust solutions are more likely to contribute for the next generation.

The main steps of this algorithm are the following:

- The fitness of the individuals composing the main population is computed;

570 Carlos Barrico and Carlos Henggeler Antunes

- From the main population (consisting of POP individuals) POP −E individuals
are selected by using a tournament technique (E is the size of the elite set);

- A new population is formed by the POP − E offspring generated by crossover
and mutation, and E individuals (elite) that are the more robust in the secondary
population;

- The evaluation of individuals is carried out by using a dominance test and their
degree of robustness, defining an approximation to the non-dominated frontier;

- The non-dominated solutions are computed and they are processed to update the
secondary population using a sharing technique, if necessary.

The population used in the algorithm implementation consists of individuals
represented by an array of M = M1+...+Mn binary values, where n is the number of
decision variables and Mi is the binary size of the ith decision variable representation.

25.3.1 Fitness Assessment

The fitness value of a solution depends on its degree of robustness and the dominance
test. For each solution, the fitness computation uses a “non-dominated sorting”
technique as in “NSGA-II” ([8], [11]), and involves determining various solution
fronts in the following way:

- The first front consists of all non-dominated solutions, a minimum fitness value
equal to POP × (MaxDegree + 1) being assigned to them;

- This fitness value of each one of these solutions is incremented by its degree of
robustness;

- The solutions in the first front are temporarily ignored, and the remaining feasi-
ble solutions (the dominated solutions) are processed by applying them a dom-
inance test (the non-dominated solutions will belong to the second front);

- The minimum fitness value of the current front is obtained by subtracting
MaxDegree + 1 to the minimum fitness value of the previous front, which is
assigned to the solutions of the current front;

- For each solution in the current front, the fitness value is incremented by its
degree of robustness;

- This process continues until all feasible solutions are assigned a fitness value;
- The same process is repeated for the non-feasible solutions until all non-feasible

solutions are assigned a fitness value.

If two solutions have the same fitness value, then the best solution is the one
with fewer solutions in its neighborhood, according to a defined radius. A niche is
defined by a radius df around a solution, where df is the maximum distance between
solutions necessary to obtain a well-spread front and is equal to MaxDist/POP .
MaxDist is the distance between the pseudo-solutions obtained by considering the
best and the worst values for each objective function in the main population.

This procedure is aimed at ensuring that the solutions of the k dominance level
have a fitness value greater than the solutions of the k + 1 level, and in the same
level the solutions with the higher degree of robustness have a higher fitness value.
Finally, in the group of solutions with the same dominance level and equal degree
of robustness, the best solutions in the group are the ones with fewer neighbors in
the population.

25 Robustness of Solutions to Multi-Objective Models 571

25.3.2 The Sharing Mechanism

The sharing mechanism for updating the secondary population uses a niche scheme
with a radius of dynamic value. This mechanism is applied after computing all
non-dominated solutions candidate for the secondary population. These are all the
non-dominated solutions in the set formed by the secondary population and the
main population. This mechanism is only applied when the number of solutions
candidate for the secondary population (NCPS) is greater than the size of this
population (NPS).

The sharing mechanism consists in the following steps (adapted for bi-objective
problems):

1) Insert the extreme solutions (those with the best values for each objective func-
tion);

2) Compute the first niche radius (ds) as the ratio: normalized distance between
extreme solutions / NPS (that is,

√
2/NPS);

3) Insert solutions located at a distance greater than ds from the ones already
belonging to the secondary population, using the degree of robustness as the
priority criterion;

4) Update the value of the niche radius, ds, by reducing it by 10%;

25.3.3 The Initial Population and Genetic Operators

The strategy used to determine the initial population consists in randomly gener-
ating feasible non-dominated solutions only. This process consists in the following
steps:

1) Randomly generate a feasible solution;
2) If this solution is non-dominated with respect to the initial population then

insert this solution into the initial population and apply the dominance test to
update this population;

3) If the initial population is not complete then return to step 1.

Uniform crossover and binary mutation have been used, with probability pc
and pm.

25.3.4 The Algorithm

The evolutionary algorithm consists in the following steps:

1) Initialization: randomly generate the initial population with POP non-dominated
solutions;

2) Determine the degree of robustness of each individual in the initial population;
3) Evaluation: compute the fitness value of each individual in the initial population;
4) Determine the (initial) secondary population of size NPS from the initial pop-

ulation: if NPS ≥ POP then copy all solutions from the initial population
to the secondary population; else apply the sharing mechanism to the initial
population to select NPS solutions;

5) Current population ← initial population;
Repeat

572 Carlos Barrico and Carlos Henggeler Antunes

6) Build up the (main) population associated with the next generation of size
POP :

a) Introduce E individuals from the secondary population (elite) into the main
population;

b) Select 2 individuals of the current population by tournament (in each tour-
nament, 10% of the individuals in this population are used to generate the
selected one);

c) Apply genetic crossover and mutation operators to the 2 individuals
selected;

d) Insert the new individuals into the main population;
e) If the main population does not yet contain POP individuals then return

to step b);

7) Determine the degree of robustness of each individual in the main population;
8) Evaluation: apply the dominance test and compute the fitness value of each

individual in the main population;
9) Determine the NCPS solutions candidate to becoming part of the secondary

population;
10) Update the secondary population: if NPS ≥ NCPS then copy all candidate

non-dominated solutions to the secondary population; else apply the sharing
mechanism to all solutions found in step 9 to select NPS solutions;

11) Current population ← main population;
Until the pre-specified number of iterations is attained.

25.4 Illustrative Results

This approach incorporating robustness analysis to characterize the non-dominated
front has been applied to a bi-objective test problem. The aim is to study the
influence of parameters p and η in the determination of the Pareto front of robust
non-dominated solutions. These parameters are associated with the exigency level
of robustness and the indifference threshold between the objective function values
specified by the DM/analyst.

The parameter p may be perceived as a indicator of the robustness exigency.
If p = 100% then the objective function values of all neighboring solutions of x
belong to the predefined η-neighborhood of f(x). If p = 90% then the number of
neighboring solutions of x, for which the objective function values belong to the
η-neighborhood of f(x) is at least 90%. So, it is more probable that a solution x
with degree of robustness k in the first case (p = 100%) has actually this degree of
robustness than in the second case (p = 90%) when p is relaxed.

The parameter η is used as a upper bound of the distance between two solutions
(of any type) in the objective space. This parameter reflects the indifference thresh-
olds regarding the values of each objective function. As the value of η increases,
meaning that the DM is more tolerant with respect to differences in objective func-
tion values, the trend is that the number of more robust solutions also increases.
The location of the more robust solutions in the non-dominated front is a relevant
insight to aid the DM in the selection of a compromise solution.

25 Robustness of Solutions to Multi-Objective Models 573

25.4.1 Test Problem

The test problem is commonly used in the engineering design optimization literature,
also studied in Deb [8] and Li et al. [17]. This problem is formulated as follows:

Minimize f1(x) = x1

√
16 + x2

3 + x2

√
1 + x2

3

Minimize f2(x) = 20
√

16 + x2
3/(x1x3)

Subject to

20
√

16 + x2
3 − 100x3x1 ≤ 0,

80
√

1 + x2
3 − 100x3x2 ≤ 0,

x1 > 0,

x2 ≥ 0,

1 ≤ x3 ≤ 3

In the binary representation of the decision variables M1 = M2 = 17 and M3 =
6, and ∆x = (0.0001, 0.0001, 0.05) where ∆x is the variation in the design decision
variables. Thus, by construction Mi zeros correspond to the lower bound of x1 (∆x1),
x2 (0) and x3 (1), and Mi ones correspond to the maximum value for x1 (13.1071),
x2 (13.1071) and x3 (4.15) in the evolutionary algorithm. These are the satisfactory
maximum values for an accurate analysis.

The evolutionary algorithm for determining the non-dominated front uses the
following parameter values: POP = 120; NPS = 60; E = 0.1NPS; pc = 0.95;
pm = 0.1; and number of iterations = 20.

25.4.2 Non-Dominated Front

Fig. 25.2 displays the non-dominated front obtained without considering robustness
analysis.

Fig. 25.3 displays the non-dominated front obtained with the following parameter
values associated with the robustness analysis: p = 100%; h = 100; δ = (δ1, δ2, δ3) =
(0.1, 0.02, 0.05); η = 0.75, which is used as a upper bound of the absolute normalized
distance between two solutions (of any type) in the objective space; and q = h.

In this front (Fig. 25.3), non-dominated solutions are categorized into 2 degrees
of robustness (0 and 1). This information is relevant from a decision support point
of view, since a DM would prefer a non-dominated compromise solution displaying
a higher degree of robustness. In this case, with the maximum level of exigency
(p = 100%) the most robust solutions are located in the “central” region of the
non-dominated front (well-balanced within the range of non-dominated solutions),
slightly extending along the non-dominated frontier towards a slight improvement
of f2 at an expense of degrading the value of f1.

25.4.3 Analysis of Parameter p

In this section the robustness parameter p will be the object of the analysis. All the
other robustness parameter values are the same used to obtain the front displayed
in Fig. 25.3 (in which p = 100%).

574 Carlos Barrico and Carlos Henggeler Antunes

Fig. 25.2. Non-dominated frontier (without robustness analysis)

Fig. 25.3. Non-dominated frontier (with robustness analysis, p = 100%, and η =
0.75)

25 Robustness of Solutions to Multi-Objective Models 575

Fig. 25.4. Non-dominated frontier (p = 90%)

Fig. 25.5. Non-dominated frontier (p = 70%)

576 Carlos Barrico and Carlos Henggeler Antunes

Fig. 25.6. Non-dominated frontier (p = 50%)

Fig. 25.4 - Fig. 25.6 display the non-dominated solutions obtained with different
p values for non-dominated solutions: 90% (Fig. 25.4), 70% (Fig. 25.5) and 50%
(Fig. 25.6).

In these examples, non-dominated solutions are categorized into 2 degrees of
robustness with p = 90% (such as with p = 100%), 3 different degrees of robustness
with p = 70%, and 4 different degrees of robustness with p = 50% (Fig. 25.4 -
Fig. 25.6).

As p decreases, from 100% to 90%, some solutions with a degree of robustness 0
become of degree of robustness 1, reinforcing the trend of extending along the non-
dominated frontier towards a slight improvement of f2 (in a region where f2 values
are not far from its optimum) in exchange of degrading the value of f1 (Fig. 25.4).

With p = 70% (Fig. 25.5), non-dominated solutions with the higher degree of
robustness are located closer to the optimum of f2. In this case there are non-
dominated solutions possessing a degree of robustness 2, which did not appear in
the transition of p from 100% to 90%.

Finally, in the transition of p from 70% to 50% (Fig. 25.6), there is an increase
of the number of solutions with degree of robustness 2 also closer to the optimum
of f2. In this front some solutions with degree of robustness 3 appear, which did
not happen in the previous examples with higher values for the p parameter. These
solutions are broadly located in the same regions where the solutions with degree
of robustness 2 are located in the front obtained in the previous example (with
p = 70%), that is closer to the optimum of f2.

This study provides the DM thorough information regarding the selection of a
compromise solution (between the objective function values) which also presents a
high level of robustness. Non-dominated solutions which privilege f1 possess a low

25 Robustness of Solutions to Multi-Objective Models 577

degree of robustness. A higher degree of robustness is achieved in a region of well-
balanced solutions, but closer to the optimum of f2. This information is relevant
for a DM when assessing the merits of competing non-dominated solutions, not just
examining the trade-off between the objective function values but also their degree
of robustness.

25.4.4 Analysis of Parameter η

In this section the influence of parameter η on the degree of robustness assigned to
solutions is analyzed. η contains the upper limits of the absolute normalized distance
between two solutions (of any type) in the objective space. All the other robustness
parameter values are the same used to obtain the front displayed in Fig. 25.3 (in
which η = 0.75).

Fig. 25.7 - Fig. 25.9 display the non-dominated fronts obtained with different η
values: 1.0 (Fig. 25.7), 1.5 (Fig. 25.8) and 0.5 (Fig. 25.9).

Fig. 25.7. Non-dominated frontier (η = 1.0)

In the transition of η from 0.75 to 1.0, the non-dominated front obtained is com-
posed by solutions with 2 degrees of robustness (0 and 1) (Fig. 25.7), such as in the
front obtained with η = 0.75 (Fig. 25.3). However, there is an increase of the number
of solutions with a higher degree of robustness (1). This happens because the increase
of the η value implies relaxing the importance assigned to differences between the
objective function values (up to a threshold) and thus enlarging the neighborhood
in which the DM is indifferent between non-dominated solutions located therein.

In the transition of η from 1.0 to 1.5, some solutions of degree of robustness 1
become of degree of robustness 2 (Fig. 25.8).

578 Carlos Barrico and Carlos Henggeler Antunes

Fig. 25.8. Non-dominated frontier (η = 1.5)

Fig. 25.9. Non-dominated frontier (η = 0.5)

25 Robustness of Solutions to Multi-Objective Models 579

In the opposite sense, with the decrease of η from 0.75 to 0.5, all non-dominated
solutions of the front obtained have the same degree of robustness (0) (Fig. 25.9). In
this case, differences in the objective function values become more important for the
DM (that is, his/her indifference threshold for considering irrelevant for discriminat-
ing purposes the difference between the objective functions values decreases). This
means that the amplitude of the neighboring solutions in the objective space, with
respect to the solution under analysis, also decreases.

Therefore, solutions with a higher degree of robustness are mostly located in a
region of the non-dominated front presenting values for f2 not far from its optimal
value and values for f1 in the mid of the range of the values f1 attains within the
non-dominated front. This type of insights provided by the assignment of a degree
of robustness to the non-dominated solutions is a relevant information for a DM to
assess their merits in the selection of a satisfactory compromise solution.

25.4.5 Using Other Metrics

Also, other type of metrics can be used in the robustness analysis, such as a rela-
tive normalized and absolute non-normalized distance between two solutions in the
objective space.

In Fig. 25.10, a relative normalized distance has been used with the same pa-
rameter values used to obtain the front displayed in the Fig. 25.3, except the η
parameter value (η = 0.05, this mean 5% of the reference value). In this case, the
most robust solutions are still located towards the best values for f2, but without
sacrificing f1 too much.

Fig. 25.10. Non-dominated frontier obtained by using the relative normalized dis-
tance

580 Carlos Barrico and Carlos Henggeler Antunes

Fig. 25.11. Non-dominated frontier obtained by using the absolute non-normalized
distance

In Fig. 25.11, an absolute non-normalized distance has been used with the same
parameter values used to obtain the front displayed in the Fig. 25.3, except the η
parameter value: η = (η1, η2) = (1.5, 1.5). The most robust solutions possess the
same characteristics mentioned before: they present very good values for f2, and
values for f1 in the mid of its range within the non-dominated front.

The specification of parameter η does not impose an excessive burden on the
DM since he/she is familiar with the objective function space. Therefore, he/she is
able to provide information on the thresholds below which the difference between
solutions is not relevant for decision purposes.

25.5 Conclusions

This chapter presented an approach to robustness analysis in evolutionary multi-
objective optimization, in which the values of the decision variable are subject to
small perturbations. The concept of degree of robustness is incorporated into the
evolutionary algorithm, particularly in the computation of the fitness value of the
solutions. This approach also enables to classify the solutions of the Pareto-front
according to the degree of robustness (solutions with different degrees of robustness
can belong to the same Pareto-front), not just classifying solutions as robust or not
robust.

Information on the robustness of solutions, and not just on the objective func-
tion values, is relevant for assisting a decision maker in assessing the merit of non-
dominated solutions and selecting a satisfactory compromise solution that exhibits
a higher degree of stability in face of perturbations.

25 Robustness of Solutions to Multi-Objective Models 581

References

1. Barrico C, Antunes CH (2006) “Robustness Analysis in Multi-Objective Opti-
mization”. Research Report N3/2006, INESC Coimbra, Portugal.

2. Barrico C, Antunes CH (2006) “A New Approach to Robustness Analysis in
Multi-Objective Optimization”. Proceedings of the 7th International Confer-
ence on Multi-Objective Programming and Goal Programming (MOPGP 2006).
Loire Valley (Tours), France.

3. Barrico C, Antunes CH (2006) “Robustness Analysis in Multi-Objective Op-
timization Using a Degree of Robustness Concept”. Proceedings of the 2006
IEEE World Congress on Computational Intelligence (WCCI 2006): 6778-6783.

4. Branke J. (1998) “Creating Robust Solutions by means of an Evolutionary
Algorithm”. Parallel Problem Solving from Nature, Lecture Notes in Computer
Science 1498, Springer: 119-128.

5. Branke J. (2000) “Efficient Evolutionary Algorithms for Searching Robust
Solutions”. Adaptive Computing in Design and Manufacture (ACDM 2000),
Springer: 275-286.

6. Branke J, Schmidh C (2005) “Faster Convergence by means of Fitness Estima-
tion”. Soft Computing 9(1): 13-20.

7. Coello C, Veldhuizen D, Lamont G (2002) “Evolutionary Algorithms for Solving
Multi-Objective Problems”. Kluwer Academic Publishers.

8. Deb K (2001) “Multi-Objective Optimization Using Evolutionary Algorithms”.
John Wiley and Sons, New York.

9. Deb K, Gupta H (2004) “Introducing Robustness in Multiple-Objective Op-
timization”. KanGAL Report Number 2004016, Kanpur Genetic Algorithms
Laboratory, Indian Institute of Technology Kanpur, India.

10. Deb K, Gupta H (2005) “Searching for Robust Pareto-Optimal Solutions in
Multi-Objective Optimization”. Proceedings of the Third International Con-
ference of Evolutionary Multi-Criteria Optimization (EMO-2005): 150-164.

11. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) “A fast and elitist multi-
objective genetic algorithm: NSGA-II”. IEEE Transactions on Evolutionary
Computation 6(2): 181-197.

12. Fonseca CM, Fleming PJ (1995) “An Overview of Evolutionary Algorithms in
Multiobjective Optimization”. Evolutionary Computation 3(1): 1-16.

13. Gomes A, Antunes CH, Martins A (2004) “A multiple objective evolutionary
approach for the design and selection of load control strategies”. IEEE Trans-
actions on Power Systems 19(2): 1173-1180.

14. Hughes EJ (2001) “Evolutionary Multi-Objective Ranking with Uncertainty
and Noise”. Proceedings of the First International Conference on Evolutionary
Multi-Criterion Optimization (EMO-2001): 329-343.

15. Jin Y, Branke J (2005) “Evolutionary Optimization in Uncertain Environments
- A Survey”. IEEE Transactions on Evolutionary Computation 9(3): 1-15.

16. Jin Y, Sendhoff B (2003) “Trade-Off between Performance and Robustness: An
Evolutionary Multiobjective Approach”. Proceedings of the Second Interna-
tional Conference on Evolutionary Multi-Criterion Optimization (EMO-2003):
237-251.

17. Li M, Azarm S, Aute V (2005) “A Multi-Objective Genetic Algorithm for
Robust Design Optimization”. Proceedings of Genetic and Evolutionary Com-
putation Conference (GECCO’05): 771-778.

582 Carlos Barrico and Carlos Henggeler Antunes

18. Lim D, Ong YS, Lee BS (2005) “Inverse Multi-Objective Robust Evolutionary
Design Optimization in the Presence of Uncertainty”. Proceedings of Genetic
and Evolutionary Computation Conference (GECCO’05): 55-62.

19. Ong YS, Nair PB, Lum KY (2005) “Max-Min Surrogate-Assisted Evolutionary
Algorithm for Robust Aerodynamic Design”. IEEE Transactions on Evolution-
ary Computation 10(4): 392-404.

20. Parmee IC (1996) “The Maintenance of Search Diversity for Effective Design
Space Decomposition using Cluster-Oriented Genetic Algorithms (Cogas) and
Multi-Agent Strategies (Gaant)”. Proceedings of the Second International Con-
ference of Adaptive Computing in Engineering and Control: 128-138.

21. Teich J (2001) “Pareto-Front Exploration with Uncertain Objectives”. Pro-
ceedings of the First International Conference on Evolutionary Multi-Criterion
Optimization (EMO-2001): 314-328.

22. Tsutsui S, Ghosh A (1997) “Genetic Algorithm with a Robust Solution Search-
ing Scheme”. IEEE Transactions on Evolutionary Computation 1(3): 201-219.

26

Deterministic Robust Optimal Design Based
on Standard Crowding Genetic Algorithm

Qing Ling1, Gang Wu2, Qiuping Wang3

1 Department of Automation, University of Science and Technology of China,
Hefei 230026, P. R. China
qingling@mail.ustc.edu.cn

2 Department of Automation, University of Science and Technology of China,
Hefei 230026, P. R. China
wug@ustc.edu.cn

3 National Synchrotron Radiation Laboratory, University of Science and
Technology of China, Hefei 230026, P. R. China
qiuping@ustc.edu.cn

Summary. In practical optimization problems, it is often desired that a solution
is not only of high performance, but also of high robustness, for example, robust to
fabrication tolerances. General forms of robust optimal design models are formulated
in this chapter, including deterministic robustness and probabilistic robustness, ob-
jective robustness and feasibility robustness. We mainly focus on the deterministic
objective robustness model for the single-objective robust optimal design problem.
A framework of standard crowding genetic algorithm (SCGA) is used to solve the
problem, with a Monte-Carlo simulation (MCS) method to calculate the approxi-
mate robust objective function (ROF). Effect of the sampling number of MCS is
discussed in the numerical experiments. Design example of the recording optics of
varied-line-spacing holographic grating (VLSHG) is provided. This typical determin-
istic robust optimal design problem is solved by the proposed algorithm successfully.

26.1 Introduction

In practical engineering optimization problems, tolerances of design variables are
inevitable. Therefore, it has to be considered whether the system performance will
meet the design requirement under the perturbation of optimal solutions. Though
designers used to deal with tolerances after the optimization process conventionally,
it is better to consider it in the optimization process, i.e. to search for robust so-
lutions. This kind of optimization problems is categorized as robust optimal design
in [9].

Q. Ling et al.: Deterministic Robust Optimal Design Based on Standard Crowding Genetic

Algorithm, Studies in Computational Intelligence (SCI) 51, 583–598 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

584 Qing Ling, Gang Wu and Qiuping Wang

26.1.1 Overview of Robust Optimal Design Model

The robustness of a solution is embodied in the two aspects of optimal design prob-
lem: effect of perturbation to objective function and effect of perturbation to con-
straints. Therefore, there are two main research interests in robust optimal design:
1) selecting proper design variables such that the objective function is not sensitive
to the fabrication tolerances, i.e. objective robustness; 2) assuring that the design
variables are able to satisfy the constraints under the existence of fabrication toler-
ances, i.e. feasibility robustness.

The most important problem in robust optimal design is how to define the ro-
bustness of solutions, i.e. to build the mathematical model of robust optimal design.
Basically, according to the emphasis of the model, it can be classified as objective
robustness and feasibility robustness. In objective robustness model, original objec-
tive function (OOF) is converted into robust objective function (ROF), under certain
definition of robustness. In feasibility robust model, original constraints (OCs) are
converted into robust constraints (RCs), too. According to the stochastic properties
of the model, it can be classified as deterministic and probabilistic. Furthermore,
according to the structure of the model, it can be classified as single-objective and
multi-objective.

Probabilistic robustness model introduces the probabilistic properties of toler-
ances and considers their influence on objective function and constraints. Determin-
istic robustness model directly considers the worst case of objective function and
constraints after the realization of design variables. Probabilistic robustness model
is fit for the design problem where the main concern is the average quality of pro-
duction, while the deterministic robustness model is fit for the design problem where
the main concern is the specific case of realization. Various kinds of probabilistic ob-
jective robustness models have been discussed in [8]. Generally, they are constructed
as multi-objective optimization problem where each objective represents a proba-
bilistic property of OOF. Gunawan [6] studied a kind of deterministic objective
robustness model, named as sensitivity region method. Sensitivity region method
can be transformed into a multi-objective optimization problem too [13].

Du [5] analyzed the modeling of feasibility robustness problem. Das [3] classified
the constraints as hard constraints and soft constraints, equality constraints and
inequality constraints, and studied the constraint-handling techniques respectively.
Mattson [16] discussed how to handle equality constraints in robust optimal design.

Chen [2] combined objective robustness and feasibility robustness with the
quality utility function, and constructed the multi-objective optimization problem.
Lee [12] designed the quality utility function to objective robustness and feasibility
robustness respectively. Another class of combination method is termed as reliabil-
ity based design optimization (RBDO), which has been applied to the hyper-elastic
structure design [19], air-bearing surface [26], and so on.

Up to now, we mainly focus on the single-objective robust optimal design prob-
lem. But the models discussed above can be easily migrated to the multi-objective
robust optimal design problem. Deb [4] studied their probabilistic model and deter-
ministic model, and illustrated the relationship between original Pareto front and ro-
bust Pareto front. Messac [17] considered the probabilistic model, while Gunawan [7]
extended the sensitivity region method to the deterministic model of multi-objective
robust optimal design.

26 Deterministic Robust Optimal Design Based on SCGA 585

26.1.2 Overview of Robust Optimal Design Method

The optimization methods in robust optimal design include local search methods
and global search methods. Sorensen [20] discussed how to find robust solutions
using local search. Su [21] proposed an automatic differentiation algorithm to solve
the robust optimal design problem. For multi-objective robust optimal design, a
physical programming algorithm has been developed by Messac [17].

Typical global search methods in robust optimal design are evolutionary al-
gorithms (EAs). Evolutionary algorithms are powerful tools for global search and
have been widely applied to the optimization of objective robustness models. For
probabilistic objective robustness, Tsutsui [23] introduced genetic algorithms to the
robust solution searching scheme. Branke [1] considered improving the efficiency of
robust solution searching. Jin [8] proposed a multi-objective evolutionary algorithm
to balance performance and robustness. As a natural expansion, Deb [4] applied
multi-objective evolutionary algorithms to the multi-objective robust optimal de-
sign problem. For the optimization of probabilistic objective robustness model, evo-
lutionary algorithms have achieved successful application in practical engineering
problems, including design of multilayer optical coatings [25], design of automobile
valve train [10], and stochastic finite element problem [11].

But in deterministic robust optimization problem, researches in optimization
methods are still limited. In the sensitivity region method, deterministic robust
optimal design is expressed as a max-min problem [6], where the key is how to op-
timize the embedded minimization problem, i.e. to calculate the sensitivity region.
Gunawan used a genetic algorithm (GA) to realize the global search of the sensi-
tivity region. The general form of deterministic robust optimal design discussed in
this chapter is expressed as a min-max problem, where the key is how to optimize
the embedded maximization problem, i.e. to calculate the robust objective function.
Traditional method in approximately calculating ROF is the Monte-Carlo simulation
(MCS) method [24]. The most important issue of MCS method in practical applica-
tion is how to achieve the trade-off between accuracy of solution and consumption
of computation. Small sampling number of MCS results in significant evaluation
error which will mislead the optimization process, while large sampling number will
increase the computation consumption, especially in the high-dimensional problems.

In this chapter, we mainly study the deterministic objective robustness model for
the single-objective robust optimal design problem. A general form of deterministic
objective robustness model is established and a standard crowding genetic algorithm
(SCGA) is used to solve the problem. The effect of the sampling number of MCS
method is discussed under the framework of SCGA.

26.1.3 Arrangement of the Chapter

This chapter is organized as follows. Section 26.2 formulates the mathematical mod-
els of robust optimal design, including objective robustness and feasibility robust-
ness, probabilistic robustness and deterministic robustness. Section 26.3 provides
the robust optimal design framework of SCGA for the general form of deterministic
objective robustness model. The MCS method is introduced to calculate approx-
imate ROF. Optimization results in test functions are shown in Section 26.4. In
Section 26.5, the design of recording optics of varied-line-spacing holographic grat-
ing (VLSHG) is described. This typical deterministic robust optimal design problem

586 Qing Ling, Gang Wu and Qiuping Wang

is solved by the proposed algorithm successfully. Discussion of future work and con-
clusion are provided in Section 26.6.

26.2 Models of Robust Optimal Design

In this section, several robust optimal design models are introduced to the single-
objective robust optimal design problem.

26.2.1 Formulation of Robust Optimal Design Problem

Considering the following constrained single-objective optimal design problem:

min
X

f(X)

s.t. H(X) ≤ 0

Where f(X) is the objective function and H(X) = {H i(X), i = 1, 2, ..., Ncon} are
the constraints. X = {X i, i = 1, 2, ..., Nvar} are the Nvar-dimensional design vari-
ables. In general optimal design problems, a set of design variables XD = {XDi, i =
1, 2, ..., Nvar} is solved through minimizing objective function f(X) under the con-
straints H(X). But in the practical fabrication process, XD will be affected by the
random tolerances. Therefore its realization is a random vector XR:

XR = XD + T R (26.1)

Where T R = T Ri, i = 1, 2, ..., Nvar is the random tolerance vector. Generally speak-
ing, the random noise will result in the degradation of objective function, or even
the infeasibility of optimized solutions.

26.2.2 Objective Robustness

Objective robustness describes the sensitivities of objective function to the pertur-
bation of design variables. According to the stochastic properties, it can be classified
as deterministic model and probabilistic model. Probabilistic objective robustness
is usually formulated as the multi-objective structure.

Probabilistic Objective Robustness

Probabilistic objective robustness model focuses the probabilistic properties of ran-
dom tolerance vector T R ∈ BR. Define tolerance space BR = {LBi ≤ T Ri ≤ UBi},
with i = 1, 2, ..., Nvar, where LBi and UBi are the lower bound and upper bound of
random tolerance element T Ri. In general, probabilistic objective robustness model
assumes that random tolerance vector T R are under a known joint distribution
PR(T R). Therefore, the robustness of a solution can be described by some specific
statistical values of OOF, for example, expectation or variance. The ROFs are ex-
pressed as fE and fV :

min
XD

fE(XD) =

∫
T R∈BR

f(XD + T R)PR(T R)dT R (26.2)

26 Deterministic Robust Optimal Design Based on SCGA 587

min
XD

fV (XD) =

∫
T R∈BR

(f(XD + T R)− f(XD))2PR(T R)dT R (26.3)

In robust optimization problem, design variables must achieve the trade-off be-
tween optimality and robustness. ROF fE reflects this trade-off partially, while OOF
f and ROF fV reflect the optimality and robustness respectively. Therefore, we gen-
erally transform the probabilistic objective robustness model to a multi-objective
optimization problem, for example, minimizing f and fE , f and fV , fE and fV , or
f , fE and fV simultaneously.

Deterministic Objective Robustness

Deterministic objective robustness model focuses the worst case of design variables
caused by the random tolerance vector T R. In this meaning, deterministic objective
robustness is also termed as worst case optimization. The general form of determin-
istic robust objective function can be expressed as fW :

min
XD

fW (XD) = max
T R∈BR

f(XD + T R) (26.4)

Deterministic objective robustness model does not need the probabilistic infor-
mation of random tolerance vector. Furthermore, ROF fW reflects the trade-off
between optimality and robustness directly.

The sensitivity region method proposed by Gunawan [6] is another form of de-
terministic objective robustness model. In (5), robustness is related to the maxi-
mal objective function value in the tolerance space. While in the sensitivity region
method, robustness is described by the minimal radius of perturbation which breaks
a given threshold of objective function value, named as sensitivity region. Thus it is
the dual form of (5).

26.2.3 Feasibility Robustness

Feasibility robustness describes the sensitivities of constraints to the perturbation of
design variables. It can be divided into probabilistic and deterministic model, too.

Probabilistic Feasibility Robustness

For the constraints in (1), the probabilistic feasibility model is generally expressed
as:

s.t. Pcon{H(XR) ≤ 0} = Pcon{H(XD + T R) ≤ 0} ≥ PE (26.5)

Where Pcon represents the probability of that all constraints are satisfied. PE is
the expected probability to satisfy the constraints. When the joint distribution of
tolerance vector is known as PR(T R), (6) is transformed into:

s.t. Pcon{H(XD + T R) ≤ 0} =

∫
T R∈BR, H (XD+T R)≤0

PR(T R)dT R ≥ PE (26.6)

588 Qing Ling, Gang Wu and Qiuping Wang

Deterministic Feasibility Robustness

Similarly to the deterministic objective robustness model, deterministic feasibility
robustness is also named as worst case analysis. It means that for design variable
XD, and for each tolerance vector T R in the tolerance space BR, the following
constraints should be satisfied simultaneously:

s.t. H(XD + T R) ≤ 0. (26.7)

Apparently, it is the special case of probabilistic feasibility robustness model of
(6), with PE equal to 1. Deterministic feasibility robustness model does not need
the probabilistic information of random tolerance vector too.

26.3 Robust Optimal Design Framework

This section provides the standard crowding genetic algorithm (SCGA) framework to
optimize the general form of deterministic objective robustness model. The Monte-
Carlo simulation (MCS) method is introduced to calculate the approximate deter-
ministic ROF fW in (5).

26.3.1 Standard Crowding Genetic Algorithm (SCGA) Framework

In this chapter, we extend genetic algorithm with standard crowding operator to
attain the diversity of population. Standard crowding model proposed by De Jong
updates population through replacing similar parents [22]. For each child C, select
CF (crowding factor) individuals in parents, choose the nearest parent P under
some distance metric. For a minimization problem, if the objective function value
of P is larger than that of C, use C to replace P , else preserve P . Here we set
CF = PopNum (population number of generation) to eliminate the selection error.
The procedures of the SCGA for robust optimal design are:

1) Initialization: initialize PopNum uniformly distributed random population in
feasible solution space.
2) Crossover: divide population into PopNum/2 groups randomly, with two individ-
uals P1 and P2 in each group. Generate children C1 and C2: C1 = A×P1+(1−A)×P2,
C2 = (1−A)×P1 + A×P2 for each group, where A is a random number uniformly
distributed in [−0.25, 1.25].
3) Mutation: add a random variation to each child, with the mutation operator in
the breeder’s genetic algorithm (BGA) [18].
4) Competition: evaluate ROF of parents and children with MCS method, and select
the best PopNum individuals into next generation using standard crowding opera-
tor with CF = PopNum.
5) Stopping criterion: repeat step 2–4, until the maximum generation number
MGGA reaches.

To reduce the random error in the previous calculation of approximate ROF of
parents, both parents and children must be evaluated in step 4.

26 Deterministic Robust Optimal Design Based on SCGA 589

26.3.2 Monte-Carlo Simulation (MCS) Method

Computation of ROF is the most important part of robust optimal design for both
probabilistic and deterministic objective robustness model. Firstly, the approxima-
tion error of ROF will mislead the optimization process. Secondly, the computa-
tion of ROF is time-consuming. A popular method to evaluate ROF is the MCS
method [24]:

fW (XD) ≈ max
1≤i≤k

f(XD + (T R)i). (26.8)

Here k is the sampling number and (T R)i represents the i-th realization. Generally
speaking, the k sampling points are selected with uniform distribution, because
each point in tolerance space is considered as identical in deterministic model. This
is different from MCS method used in the probabilistic model.

In most practical optimization problems, main computational consumption
comes from evaluation of OOFs. Therefore we use the evaluation time EvaT im
as the measurement of computational complexity. In the SCGA framework with
MCS method, EvaT im = 2× PopNum×MGGA× k.

26.4 Numerical Experiments

In this section, two test functions are introduced to the robust optimal design frame-
work of SCGA, as shown in Section 26.3.

26.4.1 Test Functions

The first numerical test function comes from [8]:

min
x

f1(x) = 2× sin(10× x× e−0.008x)× e−0.25x

s.t. 0 ≤ x ≤ 10

Tolerance space of x is [−Tole, Tole], Tole = 0.2. Set k = 1, 10, 20, 50, 100 in
MCS, the OOF, and approximate ROF from MCS with different k, are shown in
Fig. 26.1. By increasing the simulation time k, the shape of approximate ROF be-
comes smoother.

The second test function is the two-dimensional expansion of f1. Tolerance space
of x1 and x2 are both [−Tole, Tole], T ole = 0.2, too.

min
xi, i=1,2

f2(x) =
2∑

i=1

f1(xi)

s.t. 0 ≤ xi ≤ 10, i = 1, 2

For the optimization of test functions, algorithm parameters are constant
through the optimization process: MGGA = 100, PopNum = 20, CF = 20.

Typical records of the optimization of original objective function f1 are shown
in Fig. 26.2 (a), noted as non-robust optimal design. SCGA converges to the global
non-robust minimum quickly.

Typical records of best solutions and corresponding approximate ROF of f1 are
shown in Fig. 26.2 (b)–(f), in the robust optimal design framework of SCGA, with

590 Qing Ling, Gang Wu and Qiuping Wang

(a) (b)

(c) (d)

(e) (f)

Fig. 26.1. Here (a) is the original objective function (OOF) of f1, (b)–(f) are the
approximate robust objective function (ROF) from MCS, with k = 1, 10, 20, 50,
100, respectively

26 Deterministic Robust Optimal Design Based on SCGA 591

k = 1, 10, 20, 50, 100 in MCS respectively. When k = 1, 10, 20, algorithm fails to
convergence to the global robust minimum. Convergence is achieved when k = 50,
but with more fluctuation than that of k = 100. It is apparent that SCGA achieves
better convergence rate and better stability of solutions when increasing sampling
number k in MCS.

To show the accuracy of robust solutions under the different setting of k, run
the optimization program 100 times for f1, select the best one as the solution for
each run, and calculate the number of solutions located within [3.5, 4.5], denoted
as N . Compute mean value (MV) and standard deviation (STD) of these solutions
and their corresponding approximate ROFs, listed in Table 26.1. The exact robust
minimum is 4.1611 and the accurate ROF equals to −0.4064.

When k = 10 and k = 20, algorithm fails in finding the global robust minimum
in nearly half of the experiments. When k = 50 and k = 100, algorithm finds the
global robust minimum in almost all experiments. It is the randomness in calcu-
lating approximate ROF that leads to the oscillation and inaccuracy of solutions.
By increasing k, robust search performance is improved, with the cost of larger
computation consumption.

26.4.2 Robust Optimal Design of Test Functions

In test function f2, optimization program is executed for 100 times and select the
best one as the solution for each run. N is denoted as the number of solutions
located within [3.5, 4.5] for each variable. MV and STD of these solutions and their
corresponding approximate ROFs are listed in Table 26.2. With the expansion of
dimension, the robust optimal design results are degraded, due to the degradation of
global search ability of SCGA. Therefore, larger population number PopNum and
crowding factor CF should be used in high-dimensional practical robust optimal
design problems.

Table 26.1. Optimization program is executed for 100 times for f1. N is denoted
as the number of solutions located within [3.5, 4.5]. Mean value (MV) and standard
deviation (STD) of these solutions and their corresponding approximate ROFs are
also shown for different k in MCS.

sampling solution MV of STD of MV of STD of
number number optimized optimized approximate approximate
k N solutions solutions ROF ROF

1 0 NaN NaN NaN NaN
10 47 4.1554 0.0313 −0.4772 0.0554
20 57 4.1611 0.0153 −0.4368 0.0263
50 94 4.1608 0.0079 −0.4152 0.0141
100 98 4.1615 0.0048 −0.4085 0.0093

592 Qing Ling, Gang Wu and Qiuping Wang

(a) (b)

(c) (d)

(e) (f)

Fig. 26.2. Here (a) is the typical non-robust optimal design of f1 under the SCGA
framework. Typical robust optimal design of f1 under SCGA framework is demon-
strated in (b)–(f), with k = 1, 10, 20, 50, 100 in MCS respectively.

26 Deterministic Robust Optimal Design Based on SCGA 593

Table 26.2. Optimization program is executed for 100 times for f2. N is denoted
as the number of solutions located within [3.5, 4.5] for each variable. Mean value
(MV) and standard deviation (STD) of these solutions and their corresponding
approximate ROFs are also shown for different k in MCS.

sampling solution MV of STD of MV of STD of
number number optimized optimized approximate approximate
k N solutions solutions ROF ROF

1 0 NaN NaN NaN NaN
10 15 4.1596 0.0396 −1.0400 0.0772

4.1795 0.0293
20 18 4.1624 0.0311 −0.9863 0.0940

4.1662 0.0180
50 28 4.1594 0.0255 −0.8973 0.0492

4.1566 0.0236
100 32 4.1627 0.0253 −0.8592 0.0472

4.1601 0.0177

26.5 Practical Engineering Optimization

In this section, the standard crowding genetic algorithm (SCGA) with Monte-Carlo
simulation (MCS) method is applied to the practical deterministic robust optimal
design of recording optics of varied-line-spacing holographic grating (VLSHG) in
National Synchrotron Radiation Laboratory (NSRL).

26.5.1 Recording Optics of Holographic Grating

Holographic gratings are fabricated by recording the interference fringes of two co-
herent sources in the photoresist coated on grating blanks. Given the shape of blanks,
their focal properties can be adjusted by altering the properties of the two recording
light sources. Ling [15] introduced auxiliary uniform-line-spacing gratings to gener-
ate aspherical wave-fronts to fabricate the varied-line-spacing holographic gratings
(VLSHGs). VLSHGs are able to correct high order aberrations in diffractive optical
systems and are widely used in high resolution spectrometers and monochromators.

Recording optical system is shown in Fig. 26.3. It consists of two coherent point
light sources, C and D, and two uniform-line-spacing gratings, G1 and G2. Aim of
optimal design is to format the distribution of the groove density as desired. The
groove density is the function of four distance parameters and four angle parameters:
pC , qC , pD, qD, γ, ηC , δ, ηD, known as recording parameters [15]. Objective function
for minimization is constructed in [14].

26.5.2 Robust Optimal Design of Holographic Grating

One of the main challenges in VLSHG design is to find recording parameters which
are insensitive to the fabrication tolerances. Conventional method deals with tol-
erances after the optimization process. Since the landscape of objective function

594 Qing Ling, Gang Wu and Qiuping Wang

Fig. 26.3. Schematic diagram of recording system consists of two coherent point
sources, C and D, two auxiliary uniform-line-spacing gratings, G1 and G2, and a
plane grating blank G. Recording parameters are four distance parameters and four
angle parameters.

Table 26.3. SCGA is applied to the robust optimal design of VLSHG. The best
three sets of recording parameters are listed.

Group γ(rad) ηC(rad) δ(rad) ηD(rad) pC(mm) qC(mm) pD(mm) qD(mm)
1 0.254 −0.254 0.978 1.130 515 1076 443 937
2 0.190 −0.190 0.875 1.108 434 1105 485 878
3 0.343 −0.343 1.155 1.213 264 1427 425 924

Table 26.4. Corresponding groove parameters are calculated for the optimized
groove parameters. Sensitivities caused by fabrication tolerances are considered for
groove parameters.

Group n0(groove/mm) b2(mm−1) b3(mm−2) b4(mm−3)
1 1.4001× 103 8.2455× 10−4 3.0017× 10−7 −0.0002× 10−10

±0.0037× 103 ±0.0254× 10−4 ±0.0312× 10−7 ±0.0260× 10−10

2 1.4002× 103 8.2449× 10−4 3.0007× 10−7 −0.0005× 10−10

±0.0038× 103 ±0.0304× 10−4 ±0.0368× 10−7 ±0.0314× 10−10

3 1.4004× 103 8.2463× 10−4 3.0017× 10−7 −0.2830× 10−10

±0.0033× 103 ±0.0189× 10−4 ±0.0221× 10−7 ±0.0143× 10−10

26 Deterministic Robust Optimal Design Based on SCGA 595

is highly rugged, conventional method is difficult to generate satisfactory robust
solutions.

Optimization of VLSHG is a typical deterministic robust optimal design problem
where the main concern is only the special realization of recording parameters. Here
we use the proposed SCGA framework with MCS method to design a VLSHG in
National Synchrotron Radiation Laboratory (NSRL) with groove density:

n = n0(1 + b2w + b3w
2 + b4w

3), −w0 ≤ w ≤ w0 (26.9)

Groove parameters are: n0 = 1400groove/mm, b2 = 8.2453 × 10−4mm−1, b3 =
3.0015 × 10−7mm−2, b4 = 0.0000 × 10−10mm−3. Half width of grating is w0 =
90mm. Auxiliary grating G2 is with groove density n2 = 1000groove/mm, and
auxiliary grating G1 is with groove density n1 = 0groove/mm, i.e. a plane mirror.
Upper bounds, lower bounds and the tolerances of recording parameters are from the
physical constraints of recording table. For distance parameters, upper bounds are
2000mm, lower bounds are 100mm, and tolerances are 1mm. For angle parameters,
upper bounds are π/2, lower bounds are −π/2, and tolerances are 0.001rad.

In SCGA and MCS, parameters are: MGGA = 1000, PopNum = 100, CF =
100, k = 100. The optimization program is executed and the best three sets of
recording parameters are shown in Table 26.3. Corresponding groove parameters
and the sensitivity of solutions are shown in Table 26.4. The sensitivities of solutions
are defined as the error bounds under the fabrication tolerances.

Design results indicate that the SCGA algorithm with MCS method is able
to obtain solutions insensitive to fabrication tolerances successfully. Compared to
the conventional non-robust optimization methods which ignore the tolerances of
design variables [14], the sensitivities of solutions decrease 2–10 times when using
the proposed algorithm.

We finally select the recording parameters in group 1 of Table 26.3 as the actual
recording parameters. The recording optics is shown in Fig. 26.4.

26.6 Conclusions

In this chapter, we study the robust optimal design problem, and establish the math-
ematical models, including objective robustness and feasibility robustness, prob-
abilistic robustness and deterministic robustness. The focus is the modeling and
optimization of the general form of deterministic objective robustness. The robust
optimal design problem is solved in the SCGA framework. MCS method is applied to
the calculation of approximated ROF. Numerical experiments indicate that SCGA
will achieve better convergence rate and better stability of solutions when increasing
simulation time k in MCS. The trade-off between the optimization results and the
computation consumption is discussed. The proposed method is applied to the prac-
tical optimal design of VLSHG in NSRL, and obtains satisfactory robust solutions.

There are two future directions of the current work in deterministic robust opti-
mal design. The first one is how to decrease the computation consumption effectively.
The sampling strategies in [1] are the useful guidance, which are originally applied
in the probabilistic robust optimization problems. Other choices include various
sampling methods, such as Latin Hypercube Sampling (LHS) [11], and so on. The
second direction is how to introduce local search to improve the fine optimization

596 Qing Ling, Gang Wu and Qiuping Wang

Fig. 26.4. Final recording optics adopts the optimized recording parameters in
group 1 of Table 26.3. Sensitivities to the fabrication tolerances are acceptable.

of robust optimal design [20]. The development of hybrid robust optimization al-
gorithm is of great importance in the practical design problems, especially when
objective function landscapes are very complicated.

References

1. Branke J (2000): Efficient evolutionary algorithms for searching robust solu-
tions. In: Proceedings of International Conference on Adaptive Computing in
Design and Manufacture. 275–286

2. Chen W, Wiecek M, Zhang J (1999): Quality utility: a compromise program-
ming approach to robust design. ASME Journal of Mechanical Design. 121:179–
187

3. Das I (2000): Robustness optimization for constrained nonlinear programming
problems. Engineering Optimization. 32:585–618

4. Deb K, Gupta H (2004): Introducing robustness in multi-objective optimiza-
tion. KanGAL Report Number 2004016

5. Du X, Chen W (2000): Towards a better understanding of modeling feasi-
bility robustness in engineering design. ASME Journal of Mechanical Design.
122:357–383

6. Gunawan S, Azarm S (2004): Non-gradient based parameter sensitivity estima-
tion for single objective robust design optimization. ASME Journal of Mechani-
cal Design. 395–402

26 Deterministic Robust Optimal Design Based on SCGA 597

7. Gunawan S, Azarm S (2005): Multi-objective robust optimization using a sensi-
tivity region concept. Structural and Multidisciplinary Optimization. 29:50–60

8. Jin Y, Sendhoff B (2003): Trade-off between performance and robustness: an
evolutionary multiobjective approach. In: Proceedings of International Confer-
ence on Evolutionary Multi-criterion Optimization. 237–251

9. Jin Y, Branke J (2005): Evolutionary optimization in uncertain environments:
a survey. IEEE Transactions on Evolutionary Computation. 9:303–317

10. Kazancioglu E, Wu G, Ko J, Bohac S, Filipi Z, Hu S, Assanis D, Saitou K
(2003): Robust optimization of an automobile valvetrain using a multiobjec-
tive genetic algorithm. In: Proceedings of the Design Engineering Technical
Conference. 1–12

11. Lagaros N, Plevris V, Papadrakakis M (2005): Multi-objective design optimiza-
tion using cascade evolutionary computations. Computer Methods in Applied
Mechanics and Engineering. 194:3496–3515

12. Lee K, Park G (2001): Robust Optimization considering tolerances of design
variables. Computers and Structures. 79:77–86

13. Li M, Azarm S, Aute V (2005): A multi-objective genetic algorithm for robust
design optimization. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference. 771–778

14. Ling Q, Wu G, Wang Q (2005): Restricted evolution based multimodal function
optimization in holographic grating design. In: Proceedings of IEEE Congress
on Evolutionary Computation. 789–794

15. Ling Q, Wu G, Liu B, Wang Q (2006): Varied line spacing plane holographic
grating recorded by using uniform line spacing plane gratings. Applied Optics.
45:5059–5065

16. Mattson C, Messac A (2003): Handling equality constraints in robust design
optimization. In: Proceedings of the Structures, Structural Dynamics, and Ma-
terials Conference. 1–10

17. Messac A, Yahaya A (2000): Multiobjective robust design using physical pro-
gramming. Structural and Multidisciplinary Optimization. 23:357–371

18. Muhlenbein H, Schomisch M, Born J (1991): The parallel genetic algorithm as
a function optimizer. Parallel Computing. 17:619–632

19. Park Y, Kim N, Yim H (2000): Reliability-based design sensitivity analysis
and optimization for the hyper-elastic structure using the meshfree method.
In: Proceedings of the Pressure Vessels and Piping Conference. 1–11

20. Sorensen K (2004): Finding robust solutions using local search. Journal of Math-
ematical Modelling and Algorithms. 3:89–103

21. Su J, Renaud J (1997): Automatic differentiation in robust optimization. AAIA
Journal. 35:1072–1079

22. Thomsen R (2004): Multimodal optimization using crowding-based differential
evolution. In: Proceedings of IEEE Congress on Evolutionary Computation.
1382–1389

23. Tsutsui S, Ghosh A (1997): Genetic algorithms with a robust solution searching
scheme. IEEE Transactions on Evolutionary Computation. 1:201–208

24. Tsutsui S (1999): A comparative study on the effects of adding perturbations to
phenotypic parameters in genetic algorithms with a robust solution searching
scheme. In: Proceedings of IEEE International Conference on Systems, Man
and Cybernetics. 585–591

598 Qing Ling, Gang Wu and Qiuping Wang

25. Wiesmann D, Hammel U, Back T (1998): Robust design of multilayer optical
coatings by means of evolutionary algorithms. IEEE Transactions on Evolu-
tionary Computation. 2:162–167

26. Yoon S, Choi D (2005): Probabilistic designs of air-bearing surface on manu-
facturing tolerances. ASME Journal of Tribology. 127:149–154

Index

α-quantile, 61
3D blade design, 243

ABFV (average best function value), 61
Ackley function, 66, 358
ad-hoc network, 197, 219
Adaptive business intelligence, 192

adaptation module, 193
architecture, 195
optimization module, 193
prediction module, 192

Adaptive learning, 167
Algorithm

cluster analysis, 391, 394
density, 395, 404
scaling, 396

Dijkstra, 206
Gram–Schmidt, 399
hybrid, 210, 211
mininum spanning tree, 208
roulette-wheel, 208
Sauer–Xu, 399
shortest path, 207–209
shortest path algorithm, 206
trust-region, 397

derivative-free, 391, 396, 409
Allele distribution vector, 9
Analog filter, 480
Analog filter synthesis, 482, 489
Anti-convergence, 37, 40
Anticipation, 129
Application dependency, 199
Approximate model, 298

basis function, 302

response function, 302
Approximation, 181
Artificial neural network, 117, 298
Atom analogy, 30, 36, 38
Attainment surface, 315
Attractors, 31
Automated synthesis, 482
Average best function value (ABFV),

61
Averaging

explicit averaging, 349
implicit averaging, 349

B-spline curve, 309
curvature, 310

Bandwidth, 199
Batch learning, 315
Battery, 197
Bayesian optimization algorithm, 271
Benefits of uncertainty, 441
Black–box optimization, 136
BOA, see Bayesian optimization

algorithm
Bond graph, 482
Bootstrap, 430

Candidate solution, see Point
Capacitated arc routing problem, 498,

499
Car distribution system, 188
Chromosome, 207, 505
Classification, 157
Classification of uncertainty, 438
Classifier, 157

600 Index

action, 157
condition, 157

Cluster, 200, 391
analysis algorithm, see Algorithm,

cluster analysis
Coefficient of multiple determination,

328
Collective, 371
Combinatorial problem, 200
Communication range, 202
Compliance, 364
Computational cost, 301
Computational effort, 206
Computational synthesis, 479
Concept change, 155

recognization, 168
Connectivity, 199, 200, 202, 206
Constraint handling, 554
Constraints, 502
Constriction, 31
Control influence, 133
Convergence metric, 313
Coverage, 199–201

area, 201, 210
best possible, 206
problem, 206, 207

Crossover, 208, 217, 362, 364
simulated binary crossover, 306

Curve fitting problem, 309
Cycle, 404
Cyclic dynamic environment, 14

base state, 14
XORing mask, 14

Cyclic dynamic environment with noise,
14

base state, 14

Database, 140
Demand point, 201, 204
Design of experiments, 326
Design parameter, 345, 363
Design space refinement, 329
Dijkstra, 209
Diversity

multi-swarm, 38, 40
swarm, 33, 40

Diversity loss, 30, 33
Diversity maintenance

dynamic networks, 36

multi-populations, 37
random immigrants, 4
repulsion, 35

Domain, see Search space
DOP, see Dynamic optimization

problem
Dualism, 4
Dynamic environment, 3, 51, 155

cyclic, 5, 14
cyclic with noise, 14
periodical, 5
random, 13
the XOR DOP generator, 14

Dynamic optimization, 51, 497
Dynamic optimization problem, 3, 79,

105
offline, 132
online, 132

Dynamic problem generator
moving peaks benchmark, 30, 82
the XOR DOP generator, 14

EDA, see Estimation of distribution
algorithm

Effective function, 544
Empirical distribution function, 430
Energy consumption, 197, 202, 204
Energy efficient, 198
Enhancement technique, 269
Environment

dynamic, 3, 51
non-stationary, 51
static, 51

Environmental information, 4
Epsilon-greedy, 379
Estimation of distribution algorithm,

10, 142
Evaluation function

difference, 375
global, 374
linear, 375

Evolution control, 228
generation-based, 228
individual-based, 228

Evolution strategies (ES), 51, 53, 547
(1 + 1)-ES, 54
(1 + λ)-ES, 54
(1, λ)-ES, 54
(1 +, λ)-ES, 54

Index 601

(µ, κ, λ, ρ)-ES, 55
(µ +, λ)-ES, 54
cellular, 547

Evolution strategy
adaptive re-sampling strategy, 358
re-sampling evolution strategy, 358
standard evolution strategy, 358

Evolutionary algorithm (EA), 3, 51,
197, 200, 379, 391, 392, 498, 544,
547, 567, 569

adaptive hierarchical EA, 355
hierarchical EA, 347
higher level EA, 347
lower level EA, 347
surrogate-assisted EA, 273, 454

Evolutionary computation, 520
Evolutionary programming (EP), 53
Exclusion, 30, 37, 40
Exclusion principle, 40
Expensive fitness evaluations, 226
Experience, 158

F distribution, 425
Factoredness, 374
Feasibility robustness, 583, 584, 587

deterministic feasibility robustness,
588

probabilistic feasibility robustness,
587

Finite element, 363
Fitness, 347

approximated estimated fitness, 352
approximation, 269, 272
fitness diversity, 352
fitness landscape, 348, 351, 355, 356,

360
inheritance, 269, 270

Forward optimization, 439
Forward probabilistic optimization, 440
Function

expensive black-box, 390
model, 390

goodness, 390
quadratic, 391, 392, 396, 399

objective, 390
surrogate, see Function, model

Gaussian distribution, 423
Gaussian process, 252, 255

Gene, 207
Generalization, 165
Generational loop, 55
Genetic algorithm (GA), 4, 53, 79, 105,

154, 206, 251, 356, 487, 523
associative memory based GA, 9
constrained genetic algorithm, 519
hybrid memory based GA, 10
NSGA, 447
NSGA-II, 306, 333, 554
random immigrants GA, 106
standard GA, 7
thermodynamical GA, 106

Genetics-based learning classifier
system, 154

Geographical database, 498
Global sensitivity analysis, 330
Granularity, 378
Grounding grid, 361

High fidelity analysis solver, 454
Highpass filters, 488
History

function, 133
length, 138

Hypermutation, 79, 106

IDEA, 142
Incremental learning, 314
Initialization, 56
Integer linear programming (ILP), 200,

203
Interval arithmetics, 545
Inverse optimization, 439
Inverse probabilistic optimization, 440
Inverse robust evolutionary optimiza-

tion, 437
Iterated density–estimation evolution-

ary algorithm, 142

Kriging, 252
Kriging model, 255, 298

Lamarckian learning, 273
Layout synthesis, 519
Learning, 129, 137

adaptive strategy, 167
batch learning, 315
incremental learning, 314

602 Index

Lamarckian, 273
learning rate, 167
reinforcement, 154

Linear collapse, 33
Local regression, 273
Local search, 206, 215, 217, 505, 508
Low fidelity model, 454

Macro-classifier, 158
Magnitude of change, 162
Many-swarm, 38
Markovitz, 439
Matrix

covariance, see Algorithm, cluster
analysis

weight, 393
Memetic algorithm (MA), 391, 497, 505

surrogated-assisted MA, 273
Memory, 4

explicit memory, 4
associative memory scheme, 5
direct memory scheme, 5

global mechanism, 6
hybrid memory, 10
implicit memory, 4
local mechanism, 6
updating strategy

fixed time pattern, 9
most similar mechanism, 6
stochastic time pattern, 9

Meta-model, 226, 299, 302
Meta-parameters, 356
Mica Motes, 198, 202
Min-max problem, 347, 358, 361, 364
Minimizer

false, 391
global, 389, 406
trust-region, 400, 401

Mixed integer linear programming
(MILP), 200

Model management, 228
Monitoring area, 197, 203, 206, 213
Monte Carlo evaluation, 544
Monte Carlo sampling, 486
Monte-Carlo simulation (MCS), 583,

585, 588, 589, 593
Movement

pseudo-continuous, 67
Moving peaks benchmark, 30, 32

offline error, 41
standard settings, 41

Moving peaks function, 82
Multi-hop communication, 198
Multi-layer perceptron (MLP), 227,

305, 378
structure optimization, 228

Multi-objective, 565
multi-objective programming, 565

Multi-objective optimization, 269, 297,
552

convergence metric, 313
meta-modeling, 297
NSGA-II, 306, 333
sparsity metric, 308
spread metric, 306

Multi-objective particle swarm
optimization, 271

Multi-population approach, 4
Multi-swarm, 30, 37

algorithm, 39
self-adapting, 42

Multiple objective formulation, 551
Multiploidy, 4
Mutation, 55, 216, 355, 363, 364, 394

dynamic mutation probability, 356
polynomial mutation, 306
step size, 52

Natural selection, 217
Network, 197

ad-hoc network, 197
connected network, 202
network lifetime, 199, 200
network manager, 197

Network topology, 31
Neural network, 298
Newton step, 397

restricted, 397
Niche, 79, 85, 90
Node scheduling, 199
Noise, 164, 180, 346, 348, 384, 390, 407

algorithmic noise, 346
hierarchical noise, 345
noise compensation, 351

Noisy environment, 384
Non-dominated

non-dominated front, 569, 573
non-dominated solution, 565

Index 603

Non-probabilistic scheme, 440
Non-stationary environment, 51
Normal distribution, 422
NSGA, 447
NSGA-II, 306, 554
Numerosity, 158

Objective function, 204, 206, 214
Objective robustness, 583–586

deterministic objective robustness,
583–585

probabilistic objective robustness,
584–586

ODHC, see Orthogonal dynamic hill
climbing algorithm

Offline error, 83, 100
One-at-a-time experiment, 438
Online dynamic optimization, 129
Optimization, 51

continuous parameter, 52
dynamic, 3, 51, 105, 131
static, 3, 51, 131

Orthogonal design method, 85
orthogonal matrix, 88

Orthogonal dynamic hill climbing
algorithm, 91

Outdated memory, 30, 33

Parameter
endogenous, 52, 55
exogenous, 52, 55
strategy, 55

Pareto optimum, 443
Pareto-optimal front, 313, 333
Particle

acceleration, 31
charged, 36, 38
classical, 36
neutral, 38
quantum, 36, 38
update equations, 31

Particle swarm optimization, 29, 269
canonical PSO, 30, 32
multi-objective, 271

Path planning, 185
Performance measure, 60
Perturbation, 565, 566, 568
Pivot, 399

threshold strategy, 400

Point, 390
infeasible, 390, 394
seed, 395

Pollution control, 183
Polynomial

Newton fundamental, 399
Polynomial mutation, 306
Population, 157, 393

offspring, 393
population size, 354
scaled, 396

Population-based incremental learning
(PBIL) algorithm, 5

Portfolio optimization, 439
Pre-selection, 230
Predict, 129, 135
Prediction

base, 138
length, 138

Prediction error sum of squares, 328
Predictor, 139
Premature convergence, 106
Probabilistic scheme, 440
Pseudo-continuous movement, 67
PSO, see Particle swarm optimization

Quality of service, 197, 199

Radial basis function, 252, 254
Random dynamic environment, 13
Random immigrants, 4, 79, 106
Rank correlation, 240
Rastrigin function, 67, 349
Re-diversification, 34
Recombination, 55, 393, 394
Reinforcement learning, 154, 157
Representation, 56
Reproduction, 57
Response surface methodology, 303
RMOEA, see Robust multi-objective

evolutionary algorithm
RMS error, 312
Road weather information system

(RWIS), 498
Robust

robust design, 567
robust multi-objective optimization,

567
robust solution, 566, 568

604 Index

Robust design, 519, 548
Robust multi-objective evolutionary

algorithm, 458
µGA, 464
algorithmic flow, 462
archival re-evaluation, 465
benchmark problem, 466
constrained Pareto ranking, 463
I-beam design, 469
Pareto dominance, 459
Pareto optimality, 459
robust measure, 462
tabu restriction, 464

Robust optimal design, 583–586, 588,
593, 595

Robust solution, 502, 505, 510
Robustness, 51, 181, 504, 520, 566, 568

degree of robustness, 567, 568
robustness analysis, 567, 572
robustness parameter, 573, 577

Root mean square error, 328
Route optimization, 497
Rule, 157

Salting route optimization, 498
Sample

re-sampling, 353
sample size, 352, 353

SBX, see Simulated binary crossover
Scaling, 383, see Population, scaled
Search space, 157, 393

feasible, 390
partition, 14

Searching phase, 51
Selection, 58, 393

elitist, 58
pressure, 58
probabilistic binary tournament

selection, 420
selection precision, 422

Selection based quality measure, 238
Selection efficiency, 420
Self-adaptation, 51, 52
Self-organized behaviour, 107
Self-organized criticality, 107
Self-organizing random immigrants GA,

110
Self-organizing scouts (SOS) algorithm,

97

Sensing range, 201, 202, 209, 210
Sensitivity, 374
Sensitivity analysis, 543, 544
Sensor, 377
Sensor node, 197, 209
Sequential quadratic programming, 447
Set

interpolation, 399, 401
poised, 399
update, 401
well-poised, 400

Shortest path, 206, 207
Simulated binary crossover, 306
SMIRE, 437

bi-objective, 441
single objective, 441
tri-objective SMIRE, 444

scheme I, 445
scheme II, 446

Solver, 139
Sparsity metric, 308
Sphere model, 66
Spread metric, 306
Standard crowding genetic algorithm

(SCGA), 583, 585, 588, 593
Star topology, 31
Static environment, 51
Stationary optimization problem, 3, 106
Statistical test, 64
Structured encoding, 4
Surrogate model, 299, 325, 326

polynomial RSA, 327
Surrogate-assisted evolutionary

algorithm, 273, 454
Surrogated-assisted memetic algorithm,

273
Survivor selection, 354
Swarm

birth and death, 42
charged, 30
diameter, 33
free, 42

Symmetric latin hypercube design, 274
System influence, 133

Taguchi orthogonal array, 438
Takeover time, 420
Test function

Ackley, 66

Index 605

Rastrigin, 67
sphere model, 66

The Bak-Sneppen model, 108
The XOR DOP generator, 14
Time–deception, 135
Time–linkage, 129, 134
Time-varying environment, 181
Timer, 140
Tolerance, 583, 584, 586, 587, 595
Topology, 199, 212
Topology optimization, 363
Touch voltage, 361
Tracking phase, 51
Tree

Minimum spanning tree, 208
minimum spanning tree, 206
routing tree, 208

Trust-region
algorithm, see Algorithm, trust-region
minimizer, 398, 400, 401
radius, 397, 398
update, 397, 401

UMDA, see Univariate marginal
distribution algorithm

Uncertain environment, 180
Uncertainty, 566

analysis, 543
propagation, 543

Univariate marginal distribution
algorithm, 4, 10

associative memory based UMDA, 13
direct memory based UMDA, 11
standard UMDA, 10

Value-at-risk, 429
Variation, 57
Variation operators, 55
Varied-line-spacing holographic grating

(VLSHG), 583, 585, 593

Wireless sensor network (WSN), 197
architecture, 197
coverage and connectivity problem

(CCP-WSN), 204
flat, 200
hierarchical, 200

XCS, 157

