
6

Reinforcement Learning for Autonomous
Robotic Fish

Jindong Liu, Lynne E. Parker, and Raj Madhavan

Department of Computer Science, University of Essex,
Wivenhoe Park, Colchester, United Kingdom,
(jliua, dgu, hhu)@essex.ac.uk

The chapter discusses applications of reinforcement learning in an autonomous
robotic fish, called Aifi. A three-layer architecture is developed to control it.
The bottom layer consists of several primary swim patterns. A sample-based
policy gradient learning algorithm is used in this bottom layer to evolve swim
patterns. The middle layer consists of a group of behaviours which are designed
for specific tasks. The top layer is a Markov Decision Process (MDP), which
is used for the planning purpose. The behaviour coordination is conducted by
building a MDP in the top layer. A state-based reinforcement learning algo-
rithm, Q-learning in particular, is applied in the top layer to find an optimal
planning policy for a specific task. Both simulated and real experiments show
good feasibility and performance of the proposed learning algorithms.

6.1 Introduction

The Human Centered Robotics Research Group at Essex has developed a
number of robotic fishes since April 2003. Different from other robotic fish
projects, we focus on realizing multiform fish-like behaviours and machine
intelligence on our robotic fish. The aim of our research project is to make
the robotic fish, named Aifi, “grow” from “baby”, which is able to learn the
best control parameters for its variant behaviours and learn to adapt itself
to changes in its environment, such as variable water current and moving
obstacles.

To achieve goal-oriented tasks and fast response ability to the dynamics in
environments, Aifi is controlled based on a three-layer hybrid architecture (see
Figure 6.1). From bottom to top, it comprises a swim pattern layer, a behaviour
layer and a cognitive layer. The swim pattern layer classifies the swimming
motion of robotic fish into several basic swimming elements, called Swim Pat-
terns, which interpret the commands from the behaviour layer into the low

J. Liu et al.: Reinforcement Learning for Autonomous Robotic Fish, Studies in Computational

Intelligence (SCI) 50, 121–135 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

122 Jindong Liu, Lynne E. Parker, and Raj Madhavan

level motion control. It consists of cruise-in-straight, sharp-turning, cruise-
in-turning and ascent/descent. The behaviour layer is designed to quickly
response to the sensor data and direct Aifi to apply one of swim patterns. It
includes several individual behaviours: obstacle-avoiding, wall-following, goal-
seeking, keep-level, wandering, etc. The cognitive layer extracts robotic fish
status from the sensor data and conducts task-oriented reasoning and plan-
ning. In the cognitive layer, it changes the coordination parameters which are
used to coordinate all individual behaviours in the behaviour layer.

Within this layered architecture, machine learning can be conducted sepa-
rately at each layer. In the swim pattern layer, each swim pattern actually is
represented by a series of kinematic functions of motors, which are embed-
ded in the tail joints. The learning is designed to adjust the parameters of
kinematic functions to achieve improved performance. In the behaviour layer,
behaviours are optimized according to the encoding method of behaviours.
For example, if behaviours are encoded by fuzzy logic controllers, the learning
algorithm will be applied to fuzzy rules and fuzzy function parameters. In the
cognitive layer, learning algorithms are designed to update the parameters of
reasoning and planning. In this chapter, we consider the learning algorithms
for the swim pattern layer and the cognitive layer.

Due to the immature fish swimming mechanism and the variety of robotic
fish mechanical structures, it is much difficult to build proper models for swim
patterns. As a result, most of the control parameters of robotic fish swim
patterns are tuned manually, which rely on the good human expertise. This
manual tuning process is normally time-consuming if an optimum solution or
sub-optimum solution in practice is concerned. Additionally, the parameters
tuned in such a way can only be adapted to a static environment and could
not perform well if the environment changes.

Alternatively, various model-free machine learning techniques have been
adopted in many bio-mimetic robot projects to find the optimized control
parameters, such as biped robots [11] and Sony Aibo robots [4]. Purely policy
gradient reinforcement learning was originally proposed in REINFORCE [10]
where policy gradient descent was used to update policy parameters. It was
further extended to include value iteration in [2] by defining errors as payoffs.
In [8], authors proposed a reinforcement learning algorithm without estimating
a value function. In these implementations, the policy updating is converted
to the parameter updating by making the policy parameterized by a set of
parameters. As it is convenient to use experiment samples to find the gradient
of the learned policy with respect to parameters, sample based policy gradient
reinforcement learning was successfully applied in achieving fast locomotion
for the Sony dog’s gaits in [5] and an autonomous robot navigation controller
in [3].

In this chapter, we adopt two kinds of Reinforcement Learning(RL) algo-
rithms as the basic self-learning methods for Aifi. One is a sample-based pol-
icy gradient learning, which is used to optimize the control parameters in

6 Reinforcement Learning for Autonomous Robotic Fish 123

the swim pattern layer. Another is a state-based RL, which is used to find a
mapping between discrete states and actions in the cognitive layer.

The rest of this chapter is organized as follows. Section 6.2 gives a brief
description of Aifi. Section 6.3 presents the implementation of the policy rein-
forcement learning of swim pattern control parameters. Section 6.4 addresses
a typical state-based reinforcement learning in the cognitive layer. In Section
6.5, some simulated experiments and real tests are given to show the feasibility
and performance of our method. Summary and future work are given in Sec-
tion 6.6.

Abstracted

states

Reasoning &

Planning

Behaviours

coordination

parameters

Behaviour1

Behaviour2

Behaviour n

Cognitive Layer

Behaviour Layer

Swim pattern1 Swim pattern2

Swim pattern n

Swim Pattern Layer

Servo motors DC motors

Sensor

states

Swim

pa tterns

C
o
o
rd

in
a
to

r

Fig. 6.1. Control structure of Aifi

6.2 Introduction of Robotic Fish-Aifi

Aifi is about 50 cm in length, 20 cm in height and 12 cm in width. It has three
joints in its tail which is controlled by three servo motors. Additionally, one
DC motor controls its center of gravity position and one mini-pump manages
its buoyancy. The center processing unit is a cutting-edge micro-computer,
Gumstix [1] which is responsible for all autonomous control computations. Aifi

124 Jindong Liu, Lynne E. Parker, and Raj Madhavan

is equipped with several kinds of sensors to response to the dynamical changes
in its environment, its position in the tank, the robot attitude and the internal
status (e.g. the battery voltage). A standard configuration of Aifi includes four
infrared sensors, one dual-axis accelerometer/inclinometer, one piezoelectric
vibrating gyroscope, one water pressure sensor, three electric current sensors
and three servo turning angle sensors. It is able to sense obstacles around it
within a range of 40cm and its depth in the tank. It also can perceive the
pitch/roll angle, the one-order derivative of the yaw angle, the turning angle
of the tail joints and the power consumption on them. However, Aifi has no
ability to localize itself in the horizontal plane because it has no sensor to
measure its linear speed, thus it can not localize itself by the way of odometer
used in the common mobile robots. Figure 6.2 presents the profile of Aifi used
in this research.

Fig. 6.2. Robotic fish-Aifi profile

6.3 Policy Gradient Learning in Swim Pattern Layer

For robotic fish applications, the advantage of using policy gradient rein-
forcement learning is that it can integrate the prior knowledge with later
autonomous learned experience. The prior knowledge can eliminate the un-
reasonable parameter selection and limit the learning trace in a narrow feasible
parameter space. For example, the largest turning amplitude of each joint is
limited by their mechanical design. The maximum or minimum turning speed
is both prior decided by the motor type and biological observation on real
fishes. All of these knowledge belongs to prior knowledge. The more kinds of
prior knowledge we have, the closer the initial value is to optimal. In summary,
the prior knowledge is applied to set initial values and the scopes of learn-
ing parameters. This integration can shorten the learning time. For instance,
the control parameters of a robotic fish can be firstly tuned manually based
on any prior experience that is available. After the manual tuning, the fine

6 Reinforcement Learning for Autonomous Robotic Fish 125

tuning can be implemented by using a policy gradient reinforcement learn-
ing algorithm. Assume that the policy is differentiable with respect to each
parameter, the autonomous learning is started from the manual tuning para-
meters. It estimates the policy’s gradients in the parameter space and then
updates the parameters to coverage to a local optimum.

First, we define the learning objective for each of robotic fish swim patterns
according to their functions. In the policy gradient reinforcement learning,
the objective is viewed as the payoff from the environment or the score of the
policy function. For example, the maximum turning angle is defined as the
objective of sharp-turning swim pattern. The payoff indicates how much
benefit an agent, i.e. a robotic fish, can receive from its environment after it
applies one policy. Normally, the payoff can be measured by sensors that are
either on-line or off-line. In our situation, the linear speed is measured by an
overhead camera; the angular speed and the power consumption are measured
by an embedded compass and an electric current sensor respectively.

A policy π is defined as a probability distribution which is parameterized
by the parameters extracted from the control parameters of robotic fish swim
patterns. We denote these parameters as Θ =

{
θ1, . . . , θN

}
. The discounted

infinite payoff for this policy is defined as follows:

V (π) =
∞∑

t=0

γtE[rt] (6.1)

where γ(0 < γ < 1) is a discount factor, rt is a payoff and E[rt] is the
expectation of rt.

Once we obtain an estimate of the discounted infinite payoff gradient with
respect to the policy parameters ∂V (π)

∂θi , then the policy parameters can be
updated by using the following equation:

θi
t+1 = θi

t + αt
∂V (π)

∂θi
(6.2)

where αt is the evolution step.
Due to the lack of the formal expression of the policy π, we can not compute

the gradient ∂V (π)
∂θi directly. Instead we use its estimates ∆Vθi(π), which can

be obtained from samplings on the policy distribution. To avoid large vari-
ance occurs in the learning in practical applications, we use the direction of
the estimated gradient in the parameter update equation (6.2):

θi
t+1 = θi

t + αt
∆Vθi(π)
|∆Vθi(π)| = θi

t + αtη
i
t (6.3)

where ηi
t = ∆Vθi (π)

|∆Vθi (π)| is the direction of the estimated gradient.

Assume that at episode t the policy is πt and the parameter vector of πt

is Θt. To update Θt by Equation (6.3), we introduce terms direction payoffs
D+i

t ,D0i
t and D−i

t to indicate the accumulated payoff in the updating direction

126 Jindong Liu, Lynne E. Parker, and Raj Madhavan

“positive”, “none” and “negative”. They are updated with a discount rate β
as follows:

Dpi
t = βDpi

t + (1 − β)gpi
t , p ∈ {+, 0,−} (6.4)

where gpi
t is the virtual payoff in the updating direction p of parameter θi. It

is obtained from sampling by the following process.
Starting from Θt, we randomly generate m parameter trials {Θ1

t , . . . , Θm
t }

around Θt by using the perturbation Θj
t = Θt + ∆Θj

t . ∆Θj
t is defined as

follows:
∆Θj

t = {0j,1, . . . , 0j,n−1,∆θj,n
t , 0j,n+1, . . . , 0j,N}

(j = 1...m), n = random(1, N)
(6.5)

where superscript j, i denotes the perturbation for ith parameter in jth trial.
random(1, N) generates a random integral number between 1 and N in the
uniform distribution.

To eliminate the interaction between the perturbations of two parameters,
only one parameter is chosen to have the perturbation in each trial. Now, there
are m policies close to the initial policy πt = f(Θt): {π1

t , . . . , πm
t }. Note that

∆θj,n
t is chosen randomly to be either +εθn

t or −εθi
t. The perturbation step ε

is currently fixed for all parameters. Each trial is repeated k times to get the
average of payoffs as the expectation value, i.e. E[rj

t]. E[rj
t] is accumulated

together to get the payoff sum S+i
t and S−i

t according to n and ∆θj,n
t as

follows: {
S+i

t = S+i
t + E[rj

t], if n = i and ∆θj,n
t = +εθn

t

S−i
t = S−i

t + E[rj
t], if n = i and ∆θj,n

t = −εθn
t

(6.6)

Then we compute the average payoffs A+i
t and A−i

t for S+i
t and S−i

t res-
pectively. Without any perturbation, we apply the policy πt by k times and
get A0i

t = E[rt]. Now, the gpi
t is calculated by the following rule:

gpi
t =

⎧
⎨

⎩

1 ifApi
t = max{A+i

t , A0i
t , A−i

t }
0 otherwise

−1 ifApi
t = min{A+i

t , A0i
t , A−i

t }
, p = {+, 0,−} (6.7)

And ηi
t is calculated by the following rule:

ηi
t =

⎧
⎨

⎩

1 ifD+i
t = max{D+i

t ,D0i
t ,D−i

t }
0 ifD0i

t = max{D+i
t ,D0i

t ,D−i
t }

−1 ifD−i
t = max{D+i

t ,D0i
t ,D−i

t }
(6.8)

Once we get gpi
t , Dpi

t is updated by Equation (6.4)
Finally, the parameters are updated by (6.3). The updated parameters

construct an updated policy πt+1 which is the base point of the learning
in the next episode t + 1. The learning will be terminated when t is larger
than episode limitation TE or the termination condition of Equation (6.9) is
satisfied in recent l steps (l > 4).

6 Reinforcement Learning for Autonomous Robotic Fish 127

|E[rt] − E[rt−1]| < τ (6.9)

To speed up the learning process, an adaptive rate αt is adopted here to
replace the fixed αt. It is adjusted according to the changing of E[rt]. Suppose
that the termination condition (6.9) is satisfied in the latest h episodes (h < l),
αt is adjusted as follows:

αt =

⎧
⎨

⎩

λ1αt−1 if h = l − 2
λ2αt−1 if h = l − 3
λ3αt−1 if h = l − 4

(6.10)

where 0 < λ1 < λ2 < λ3 < 1. They are chosen arbitrarily as 0.7, 0.8, 0.9
representatively.

In this way, a larger learning rate can be used at the beginning and the
oscillation at the later stage of the learning could be reduced. Algorithm
6.1 shows the policy gradient reinforcement learning algorithm that we have
designed for the parameter updating of robotic fish swim patterns.

Algorithm 6.1 The policy gradient reinforcement learning algorithm
1. Initialize: Θ = Θ0, Dpi

t = 0
2. while t <= TE do
3. generate m trial policies πj

t by perturbation (6.5) and reset S+i
t , S−i

t to 0;
4. repeat πj

t on Aifi for k times, get E[rj
t];

5. classify E[rj
t], get payoff sum S+i

t , S−i
t and average payoff A+j

t , A−j
t by (6.6);

6. get A0i
t by make trial of πt without perturbation;

7. calculate gpi
t and ηi

t by (6.7) and (6.8);
8. θi

t+1 ← θi
t + αtη

i
t

9. get h, where the condition (6.9) is satisfied in latest h episodes;
10. if h < l then update αt by (6.10)
11. else terminate the learning process.
12. endif
13. t = t + 1;
14. endwhile (end of one episode)

6.4 State-based Reinforcement Learning in Cognitive
Layer

In the cognitive layer, behaviours should be coordinated to achieve specific
tasks, i.e. the fish should reason or plan its actions according to its current
states. A typical RL based planner can be described by three parts: Action
Space- a set of possible actions, State Space- the discrete possible situations
of a robot on the way from its initial place to a goal, and a mapping from the
state space to the action space. A Markov Decision Process(MDP) Model can

128 Jindong Liu, Lynne E. Parker, and Raj Madhavan

be used to formally model such a planner. The RL can be used to learn the
mapping function in this model.

6.4.1 Action Space and State Space

The cognitive layer aims at organizing activities to accomplish a task. The task
could be turning on/off a software switch to the execution of a behaviour or
just setting a configuration parameter of a behaviour. Actions in the cognitive
layer are denoted as ca. To simplify the complexity, the action space is divided
into two independent subspaces: level-plane actions and depth-control actions.
The level-plane actions (lai) is related with all the behaviours which affect
the movement in all 2D planes parallelling water surface, for example follow-
wall behaviour, while depth-control actions vai can change the parameters
of the behaviours which control the swimming depth, for example keep-level
behaviour. Note that, avoid-obstacle behaviour is not listed as one of actions
in the cognitive layer because it is a low-level behaviour in the behaviour layer.

The states in the cognitive layer are extracted from the sensor readings.
They also include the information about which swim patterns is previously
executed. The states come from the sensor readings but don’t represent the
quantity of individual sensors. They are the high-level condition or mode of
Aifi. They reflect the significant physical events which are sensed or recognised
by a temporal and spatial combination of several sensors. For example, if the
down-facing infrared sensor outputs a higher value and the pressure sensor
is larger than a threshold value, they indicate that the fish is near to the
bottom of the tank. A set of these kinds of events constitutes the state space.
In addition, an event can also be a previous swim pattern.

Formally, each event is denoted by a binary variant bv. Once an event
occurs, the related bv is set to 1, otherwise it is clear to 0. Grouping n
events (bv1, ..., bvn) in an order generates a state cs for the cognitive layer, i.e.
cs ← bv1, ..., bvn. The state space consists of a 2n combination of n events.
To decrease the size of the state space, these events are divided into two in-
dependent subspaces: level-states csl which only have relationship with the
level actions, and vertical-states csv which are connected to the depth control
actions.

6.4.2 Markov Decision Process Model

The RL based planner in the cognitive layer can be described by two finite
MDPs: a level-MDP Γl and a vertical-MDP Γv. The former is a model for
level-states and level-actions while the latter is for vertical-states and depth-
control actions. Assume that Γl is defined by level-states csl, level-actions
la and the one-step dynamics of the environment. The state transitions are
described by transition probabilities:

Pl = Pr{csl(t+1)|csl(t), la(t)} (6.11)

6 Reinforcement Learning for Autonomous Robotic Fish 129

The expected value of the next reward given current state and action, csl(t)

and la(t), together with next state, csl(t+1) is expressed as:

Rl = E{rt+1|csl(t), la(t), csl(t+1)} (6.12)

A policy π is a mapping from states to actions. The optimal policy π∗

maximizes the probability of reaching the goal. The value of a state s under
a policy π, denoted V π(s), is the expected return when starting in s and
following π thereafter. Function V π is called state-value function for policy π.
So, for Γl, we define V π

l (csl) as:

V π
l (csl) = Eπ{Rt|csl} = Eπ{

∞∑

k=0

γkrt+k+1 |csl} (6.13)

where Eπ{} represents the expected value given that Aifi follows policy π. At
the same time, the value of taking level action la in level-state csl is defined
under policy π as Qπ

l (csl, la):

Qπ
l (csl, la) = Eπ{Rt|csl, la} = Eπ{

∞∑

k=0

γkrt+k+1 |csl, la} (6.14)

For Γv, there are similar definitions of Pv, Rv, V π
v (csv) and Qπ

v (csv, va).
Given Pl and Rl for all level states csl and level actions la, a full description
of Γl can be obtained. The optimal policy π∗ can be found analytically by
using Dynamic Programming which recursively calculates V π

l and Qπ
l . If Pl

is unknown, modelling techniques can be used to find it by the model-based
RL. Alternatively, π∗ can be found directly based on Rl through the model-
free RL, such as Monte Carlo method or Temporal-Difference Learning (TD
Learning). In this chapter, Q-learning is designed to learn the mapping in the
cognitive layer.

The one-step Q-learning updated function is as follows [9]:

Q(s, a) = Q(s, a) + α
[
r + γ max

a′
Q(s′, a′) − Q(s, a)

]
(6.15)

where Q represents Qπ
l , s denotes csl and a denotes la. α and γ are learning

ratios. r is the observed reward when taking action a. s′ is the succeeded state
after taking action a. ε-greedy method is used to generate a from s using the
policy derived from Q. A brief process is shown in Algorithm 6.2.

6.5 Experimental Results

6.5.1 Policy Gradient Learning for Sharp-Turning Swim Pattern

To prove the feasibility of the policy gradient learning algorithm, Aifi is used to
learn the control parameters of the maximum turning angle of sharp-turning

130 Jindong Liu, Lynne E. Parker, and Raj Madhavan

Algorithm 6.2 The Q-learning algorithm
1. Initialize: Q(s0, a0) arbitrarily;
2. While t < TE do:
3. choose at from st using the policy derived from Q via ε-greedy;
4. Take action at, observe new state st+1 and reward rt+1;

5. Q(st, at) = Q(st, at) + α
[
rt + 1 + γ max

a
Q(st+1, a) − Q(st, at)

]
;

6. t=t+1;
7. endwhile

swim pattern. The sharp-turning swim pattern was designed in [7] where 8
key parameters (θ1, . . . , θ8) are extracted to mimic the sharp turning of real
fish. Although this pattern has a kinematic function and a proximate dynamic
function, it is quite difficult to obtain the analytical expression of the turning
angle according to θi. So the relationship between the turning angle and θi

is viewed as a blackbox which is described by a policy π with parameters θi.
The objective of the policy gradient learning here is to find a local optimized
policy π∗ with which Aifi could be expected to have a largest turning angle
by executing the sharp-turning swim pattern.

First, we adjusted θi manually by prior knowledge. The manual tuned θi

are set as the initial value Θ0 of the policy gradient learning algorithm, i.e.
Θ0 = {θ1, . . . , θ8}. Then the algorithm is started from Θ0 and follows the step
listed in Algorithm 6.1. The turning angle during sharp turning is measured
by a compass sensor in the fish head. The instant reward is set to equal the
final turning angle once sharp-turning finishes. In each episode, m = 30 trials
are tested and each trial is repeated k = 3 times. Figure 6.3 shows the learning
result for each episode. Initially the average turning angle is about 50 degrees.
After about 90 hours learning, Aifi tried 4500 hard turnings, i.e. at the end of
the 50th episode, the turning angle increases to 110 degree. Figure 6.4 shows
a video sequence of sharp-turning after learning.

6.5.2 Q-learning for Tank Border Exploration Task

To test the feasibility of the proposed state based learning in the cognitive
layer, a tank border exploration task is implemented by Aifi. The objective is
to make Aifi to autonomously explore the tank border. It should follow tank
walls in an appointed distance, be able to avoid the corner and other fishes,
and keep itself in a desired depth level. Additionally it must keep the wall
at its right side. Aifi is supposed to know nothing about its environment. It
will learn to explore the tank border by the state based learning from scratch.
The action space is structured according to the objective of the task. Four
behaviours are chosen and customized from the generic behaviours layer for
the level plane action subspace.

6 Reinforcement Learning for Autonomous Robotic Fish 131

0 10 20 30 40 50
40

50

60

70

80

90

100

110

120

130

140

Number of Episodes

T
ur

ni
ng

 a
ng

le
 (

de
gr

ee
)

Fig. 6.3. The turning angle of sharp-turning swim pattern during learning.

(a) (b) (c)

(d) (e) (f)

Fig. 6.4. A sharp-turning sequence of Aifi after learning

• Wander (la1 = WD): This behaviour is limited on a 2D plane. Aifi ran-
domly selects one of swim patterns from cruise-straight and cruise-in-
left/right-turning to execute.

132 Jindong Liu, Lynne E. Parker, and Raj Madhavan

• Follow-wall (la2 = FLW): This behaviour inherits from the follow-wall
behaviour in the generic behaviour layer. The wall is appointed on the
right of Aifi

• Avoid-obstacle (la3 = AO): It is the same as the definition of avoid-obstacle
behaviour in the generic behaviour layer except that it is limited in a 2D
plane for the task.

Three events are defined to create the level states(csl):

• Is the wall on the right side of Aifi? (bv1): It is decided by the right, front
and left infrared sensors. bv1 = 1 if recent history of these sensors satisfied
some conditions.

• Is Aifi in a reasonable range from wall? (bv2): This event is similar to bv1

but it has more strict conditions.
• Is the wall on the left side of Aifi (bv3): Like bv1, it recognises the situation

that the nearest wall is on the left side of fish. In other words, the swimming
direction is reversed to the desired direction.

Because bv1 = 1 and bv3 = 1 are mutually exclusive, and so are bv1 = 0
and bv2 = 1, the total number of states is decreased from 8(23) to 4 as shown
in Table 6.1

state
csl

bv1 bv2 bv3

0 0 N/A 0

1 0 N/A 1

2 1 0 N/A

3 1 1 N/A

Table 6.1. The states generated by events

There is no vertical action subspace in the cognitive layer for this task
because the keep-level behaviour is capable enough for the task.

In this task, r = 1 when the fish in the follow-wall behaviour keeps fol-
lowing the wall, r = −1 when the fish in the follow-wall behaviour loses the
wall to follow, r = −3 when there is a bumping between the wall and Aifi
and r = 0 for other situations. According to Algorithm 6.2, policy π∗ of the
task is learned in a 3D robotic fish simulator [6] and then applied to Aifi.
Figure 6.5 presents fish swimming trajectories during learning. It is clearly
shown that Aifi is able to keep itself in a proper distance away from the wall
after learning. Figure 6.6 gives the history of root mean square (RMS) errors
between the learning trajectory and the desired path over 300 trips. The RMS
error decreases and converges to a low value as the number of learning trips
increases.

Figure 6.7 shows the trajectory of Aifi operated in the real tank, which is
recorded from an overhead camera. The arrows in the figure show the heading

6 Reinforcement Learning for Autonomous Robotic Fish 133

directions and the circle points indicate the position of Aifi. The time step
between two record points is 3 seconds. After Aifi is put into water from
the point S with heading direction B0, it selects the find-wall behaviour and
executes it until reaching the left wall. Then the follow-wall behaviour is
triggered. During its swimming, Aifi encounters an obstacle around point B1.
It implements a sharp-left-turning swim pattern to avoid it. Then it finds the
wall again by the cruise-in-turning-right swim pattern. Finally, Aifi spent 105
seconds to swim around the tank one circle and finally reached the point E.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x−length (m)

y−
w

id
th

 (
m

)

Fig. 6.5. The fish trajectory during learning. Note that the dashed line is the desired
path, α = 0.5 γ = 0.3, ε = 0.01

6.6 Summary

In this chapter, reinforcement learning is used as learning methods in a layered
control architecture of our robotic fish, Aifi. The swim pattern is learned
by a sample-based policy gradient learning algorithm in the swim pattern
layer. The task planning is learned by a state-based RL learning algorithm
in the cognitive layer. The experimental tests show good performance of both
algorithms. In the next step, we will apply reinforcement learning to learning
of behaviours in the behaviour layer.

References

1. http://www.gumstix.org.

134 Jindong Liu, Lynne E. Parker, and Raj Madhavan

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

Number of close trip

R
oo

t M
ea

s
S

qu
ar

e
E

rr
or

Fig. 6.6. The root mean square errors between the learning trajectory and the
desired path against the number of learning trips. The errors are the sum of two
parts: position error and heading error. Each trip has 50 steps.

0 1 2 3 4 5
0

0.5

1

1.5

x–length (m)

y–
w

id
th

 (
m

)

S(0s)
B

0

B
1

B
2

(60s)
E(111s)

Fig. 6.7. A circular trajectory in the level plane

2. L. C. Barid and A. W. Moore. Gradient descent for general reinforcement
learning. In Proceedings of the International Conference on Advances in neural
information processing systems II, pages 968–974. MIT Press, 1999.

3. G. Z. Grudic, V. Kumar, and L. Ungar. Using policy gradient reinfrocement
learning on autonmous robot controllers. In Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 406–411, Las Vagas,
Navada, USA, Oct 2003.

4. G. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto, and M. Fujita.
Evolving robust gaits with AIBO. In Proceedings of IEEE International Con-
ference on Robotics and Automation, pages 3040–3045, 2000.

5. N. Kohl and P. Stone. Policy gradient reinforcement learning for fast
quadrupedal locomotion. In Proceedings of IEEE International Conference on
Robotics and Automation, volume 3, pages 2619–2624, May 2004.

6 Reinforcement Learning for Autonomous Robotic Fish 135

6. J. Liu and H. Hu. Building a 3d simulator for autonomous navigation of robotic
fishes. In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 613–618, Sendai, Japan, Oct 2004.

7. J. Liu and H. Hu. Mimicry of sharp turning behaviours in a robotic fish. In Pro-
ceedings of IEEE International Conference on Robotics and Automation, pages
3329–3334, Barcelona, Spain, April 2005.

8. L. Peshkin, K. Kim, N. Meuleau, and L. Kaelbling. Learning to cooperate via
policy search. In Proceedings of the 6th International Conference on Uncertainty
in Artificial Intelligence, pages 307–314, 2000.

9. C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge
University, 1989.

10. R. J. William. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8:229–256, 1992.

11. R. Zhang and P. Vadakkepat. An evolutionary algorithm for trajectory based
gait generation of biped robot. In Proceedings of the International Conference
on Computational Intelligence, Robotics and Autonomous Systems, Singapore,
2003.

