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524, sala 5022-D

Brazil

E-mail: nadia@eng.uerj.br

Luiza de Macedo Mourelle
Universidade do Estado do Rio de Janeiro

Faculdade de Engenharia

Rua São Francisco Xavier

20550–900, Maracanã
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Preface

Mobile robotic is a recent field that has roots in many engineering and science
disciplines such as mechanical, electrical, mechatronics, cognitive and social
sciences just to name few. A mobile robot needs efficient mechanisms of loco-
motion, kinematics, sensors data, localization, planning and navigation that
enable it to travel throughout its environment. Scientists have been fascinated
by conception of mobile robots for many years. Machines have been designed
with wheels and tracks or other locomotion devices and/or limbs to propel the
unit. When the environment is well ordered these machines can function well.
Mobile robots have demonstrated strongly their ability to carry out useful
work.

Intelligent robots have become the focus of intensive research in the last
decade. The field of intelligent mobile robotics involves simulations and real-
world implementations of robots which adapt themselves to their partially
unknown, unpredictable and sometimes dynamic environments.

The design and control of autonomous intelligent mobile robotic systems
operating in unstructured changing environments includes many objective dif-
ficulties. There are several studies about the ways in which, robots exhibiting
some degree of autonomy, adapt themselves to fit in their environments. The
application and use of bio-inspired techniques such as reinforcement learn-
ing, artificial neural networks, evolutionary computation, swarm intelligence
and fuzzy systems in the design and improvement of robot designs is an emer-
gent research topic. Researchers have obtained robots that display an amazing
slew of behaviours and perform a multitude of tasks. These include, but are
not limited to, perception of environment, localisation, walking, planning and
navigation in rough terrain, pushing boxes, negotiating an obstacle course,
playing ball, plant inspection, transportation systems, control systems for res-
cue operations, foraging strategies and design of automatic guided vehicles in
manufacturing plants.
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In this context, mobile robots designed using evolutionary computation
approaches, usually known as mobile evolutionary robotics, have experienced
significant development in the last decade. The fundamental goal of mobile
evolutionary robotics is to apply evolutionary computation methods such as
genetic algorithms, genetic programming, evolution strategies, evolutionary
programming and differential evolution to automate the production of com-
plex behavioural robotic controllers.

This volume offers a wide spectrum of sample works developed in lead-
ing research throughout the world about evolutionary mobile robotics and
demonstrates the success of the technique in evolving efficient and capable
mobile robots. The book should be useful both for beginners and experienced
researchers in the field of mobile robotics. In the following, we go through the
main content of the chapter included in this volume, which is organised in two
main parts: Evolutionary Mobile Robots and Learning Mobile Robots

Part I. Evolutionary Mobile Robots

In Chapter 1, which is entitled Differential Evolution Approach Using Chaotic
Sequences Applied to Planning of Mobile Robot in a Static Environment with
Obstacles, the authors introduce a new hybrid approach of differential evo-
lution combined with chaos (DEC) to the optimization for path planning of
mobile robots. The new chaotic operators are based on logistic map with
exponential decreasing, and cosinoidal decreasing. They describe and evalu-
ate two case studies of static environment with obstacles. Using simulation
results, the authors show the performance of the DEC in different environ-
ments in the planned trajectories. They also compared the results of DEC
with classical differential evolution approaches. From the simulation results,
The authors observed that the convergence speed of DEC is better than clas-
sical differential evolution. They claim that the simplicity and robustness of
DEC, in particular, suggest their great utility for the problem’s path plan-
ning in mobile robotics, as well as for other optimization-related problems in
engineering.

In Chapter 2, which is entitled Evolving Modular Robots for Rough Ter-
rain Exploration, the authors propose an original method for the evolutionary
design of robotic systems for locomotion on rough terrain. They encompass
the design of wheeled, legged or hybrid robots for their wide range of capabil-
ities for support and propulsion. Their goal is to optimize the mechanical and
the control system to achieve a locomotion task in a complex environment
(irregular, sliding or even with uncertainties). They guarantee that the mod-
ular approach brings the possibility to match the diversity of tasks with the
combination of assembly modes and that this global approach embeds an evo-
lutionary algorithm with a dynamic simulation of the mobile robot operating
in its environment. The authors claim that the hybrid encoding of the geno-
type allows evolving the robot morphology and its behaviour simultaneously.



Preface VII

They also propose specialized genetic operators to manipulate this specific
encoding and to maintain their efficiency through evolution.

In Chapter 3, which is entitled Evolutionary Navigation of Autonomous
Robots Under Varying Terrain Conditions, the authors present a fuzzy-genetic
approach that provides both path and trajectory planning, and has the advan-
tage of considering diverse terrain conditions when determining the optimal
path. They modeled the terrain conditions using fuzzy linguistic variables to
allow for the imprecision and uncertainty of the terrain data. The authors
claim that although a number of methods have been proposed using GAs, few
are appropriate for a dynamic environment or provide response in real-time.
They guarantee that the proposed method is robust, allowing the robot to
adapt to dynamic conditions in the environment.

In Chapter 4, which is entitled Aggregate Selection in Evolutionary Ro-
botics, the authors investigate how aggregate fitness functions have been and
continue to be used in evolutionary robotics, what levels of success they have
generated relative to other fitness measurement methods, and how problems
with them might be overcome.

In Chapter 5, which is entitled Evolving Fuzzy Classifier for Novelty De-
tection and Landmark Recognition by Mobile Robots, the authors present an
approach to real-time landmark recognition and simultaneous classifier de-
sign for mobile robotics. The approach is based on the recently developed
evolving fuzzy systems (EFS) method, which is based on subtractive cluster-
ing method and its on-line evolving extension called eClustering. The authors
propose a novel algorithm that is recursive, non-iterative, incremental and
thus computationally light and suitable for real-time applications. They re-
port experiments carried out in an indoor environment (an office located at
InfoLab21, Lancaster University, Lancaster, UK) using a Pioneer3 DX mobile
robotic platform equipped with sonar and they introduce and analyse mo-
tion sensors as a case study. The authors also suggest several ways to use the
engineered algorithm.

Part II. Learning Mobile Robots

In Chapter 6, which is entitled Reinforcement Learning for Autonomous Ro-
botic Fish, the authors discuss applications of reinforcement learning in an
autonomous robotic fish, called Aifi. They develop a three-layer architecture
to control it. The bottom layer consists of several primary swim patterns.
The authors use a sample-based policy gradient learning algorithm in this
bottom layer to evolve swim patterns. The middle layer consists of a group
of behaviours which are designed for specific tasks. They apply a state-based
reinforcement learning algorithm, Q-learning in particular, in the top layer
to find an optimal planning policy for a specific task. They claim that both
simulated and real experiments show good feasibility and performance of the
proposed learning algorithms.
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In Chapter 7, which is entitled Module-based Autonomous Learning for
Mobile Robots, the author implement a solution that uses qualitative and
quantitative knowledge to make robot tasks able to be treated by Reinforce-
ment Learning (RL) algorithms. The steps of this procedure include a decom-
position of the overall task into smaller ones, using abstractions and macro-
operators, thus achieving a discrete action space; the application of a state
model representation to achieve both time and state space discretisation; the
use of quantitative knowledge to design controllers that are able to solve the
subtasks; learning the coordination of these behaviours using RL, more specif-
ically Q-learning. The authors use and evaluate the proposed method on a set
of robot tasks using a Khepera robot simulator. They test two approaches for
state space discretisation were tested, one based on features, which are obser-
vation functions of the environment and the other on states. They compare
the learned policies over these two models to a predefined hand-crafted policy.
The authors claim that the resulting compact representation allows the learn-
ing method to be applied over the state-based model, although the learned
policy over the feature-based representation has a better performance.

In Chapter 8, which is entitled A Hybrid Adaptive Architecture for Mobile
Robots Based on Reactive Behaviours, the author first describe the high-level
schemas commonly adopted for intelligent agent architectures, focusing on
their constituent structural elements. Then they present the main organisa-
tion of the proposed architecture, where the behaviours used and the coor-
dination layer are respectively explained. They also describe and analyse the
experiments conducted with AAREACT and the obtained results.

In Chapter 9, which is entitled Collaborative Robots for Infrastructure Se-
curity Applications, the author addresses the scenario of a team of mobile ro-
bots working cooperatively by first presenting distributed sensing algorithms
for robot localisation and 3D map building. They also present a multi-robot
motion planning algorithm according to a patrolling and threat response sce-
nario. The authors use neural network based methods for planning a complete
coverage patrolling path.

In Chapter 10, which is entitled Imitation Learning: An Application in a
Micro Robot Soccer Game, the authors present a robot soccer system that
learns by imitation and by experience. They use both learning by imitation
then learning by experience as a strategy to make robots grasp the way they
should play soccer. The authors claim that repeating this process allows that
robots can continuously improve their performance.

We are very much grateful to the authors of this volume and to the review-
ers for their tremendous service by critically reviewing the chapters. The edi-
tors would also like to thank Prof. Janusz Kacprzyk, the editor-in-chief of the
Studies in Computational Intelligence Book Series and Dr. Thomas Ditzinger
from Springer-Verlag, Germany for their editorial assistance and excellent
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collaboration to produce this scientific work. We hope that the reader will
share our excitement on this volume and will find it useful.

March 2006

Nadia Nedjah, State University of Rio de Janeiro, Brazil
Leandro S. Coelho, Pontifical Catholic University of Parana, Brazil

Luiza M. Mourelle, State University of Rio de Janeiro, Brazil
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Evolutionary algorithms have demonstrated excellent results for many engi-
neering optimization problems. In other way, recently, the chaos theory con-
cepts and chaotic times series have gained much attention during this decade
for the design of stochastic search algorithms. Differential evolution is a new
evolutionary algorithm mainly having three advantages: finds the global min-
imum regardless of the initial parameter values, fast convergence and uses
few control parameters. In this work, a new hybrid approach of Differential
Evolution combined with Chaos (DEC) is presented for the optimization for
path planning of mobile robots. The new chaotic operators are based on lo-
gistic map with exponential and cosinoidal decreasing. Two case studies of
static environment with obstacles are described and evaluated. Simulation
results show the performance of the DEC in different environments for the
planned trajectories. Results of DEC were also compared with classical dif-
ferential evolution approaches. From the simulation results, it was observed
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that the convergence speed of DEC is better than classical differential evolu-
tion. The simplicity and robustness of DEC, in particular, suggest their great
utility for the problem’s path planning in mobile robotics, as well as for other
optimization-related problems in engineering.

1.1 Introduction

Autonomous path planning system design for intelligent robots is a long cher-
ished goal to robotic or control engineers. One of the issues of the research on
a mobile robot is to move the robot without a collision from a starting position
to a goal position in the navigation space. The main methods of path plan-
ning are the cell decomposition [21, 24], potential fields [17, 12, 1], roadmaps
[16, 6, 18] using Voronoi diagrams [41, 27, 28], probabilistic roadmaps [5, 13]
and visibility graph [19, 14].

Recently, Evolutionary Algorithms (EAs) emerged as a powerful method
to achieve goals in path planning for mobile robotics. EAs are general-purpose
methods for optimization belonging to a class of meta-heuristics inspired by
the evolution of living beings and genetics [9, 3]. EAs usually do not require
deep mathematical knowledge of the problem and do not guarantee the op-
timal solution in a finite time. However, they are useful for large-scale opti-
mization problems, dealing efficiently with huge and irregular search spaces.
EAs use a population of structures (individuals), where each one is a candi-
date solution for the optimization problem. Since they are population-based
methods, they do a parallel search of the space of possible solutions, and are
less susceptive to local minima. Therefore, EAs are suited for solving a broad
range of complex problems, characterized by discontinuity, non-linearity and
multivariability. The usefulness of a given solution is obtained from the envi-
ronment by means of a fitness function. The population of solutions evolves
throughout generations, based on probabilistic transitions using cooperation
and auto-adaptation of individuals. There are many variants of EAs, but the
main differences rely on: how individuals are represented, the genetic operators
that modify individuals (especially mutation and crossover) and the selection
procedure. Most current approaches of EAs descend from principles of main
methodologies: genetic algorithm (GA), evolutionary programming, evolution
strategy, and differential evolution (DE).

In the literature, several authors have proposed the path planning, coop-
eration among robots, and design of control systems in mobile robotics by
EAs. Xiao et al. developed in [46] an adaptive evolutionary planner/navigator
for mobile robotics. Hocao textasciibreveglu and Sanderson presented in [11]
a new approach to multi-dimensional path planning based on optimization by
GA. Sipper presented in [38] a genetic algorithm to shape an environment for
a simulated Khepera robot. Watanabe and Izumi provided in [44] a discussion
on control and motion planning approaches to robotic manipulators or mobile
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robots with soft computing techniques, such as fuzzy systems, neural networks
and GAs. Santos et al. showed in [33] different aspects of the use of evolution
for successful generation of real robots using neural networks and GAs. Watson
et al. dealt in [45] with a powerful method for evolutionary robotics using a
population of physical robots that autonomously reproduce with one another
while situated in their task environment. Nojima et al. showed in Nojima-2003
a human-friendly trajectory generation using an interactive GA for a partner
robot. Kamei and Ishikawa presented in [15] an approach based on reinforce-
ment learning and genetic algorithms for path planning for autonomous mobile
robots.

The contribution of this paper is to present a new hybrid approach of dif-
ferential evolution combined with chaos theory (DEC) for the optimization of
path planning of mobile robots. The new chaotic operators are based on logis-
tic map: logistic map with exponential decreasing and logistic cosinoidal de-
creasing. Two case studies of static environment with obstacles are described
and evaluated. Simulation results show the performance of the DEC in differ-
ent environments in the planned trajectories. Simulation results of DEC are
also compared with classical differential evolution (DE) and GA approaches.

This Chapter is organized as follows: In Section 1.2, the fundamentals
of differential evolution are presented. The details of the new approach of
DE with chaos theory are discussed in Section 1.3. Two case studies of path
planning for mobile robots are proposed in Section 1.4. The simulation results
and conclusions are presented in Section 1.5 and Section 1.6, respectively.

1.2 Differential Evolution

Differential Evolution (DE) is a population-based and stochastic function min-
imizer (or maximizer), whose simple, yet powerful, and straightforward fea-
tures make it very attractive for numerical optimization. DE uses a rather
greedy and less stochastic approach to problem solving compared to EAs. DE
combines simple arithmetic operators with the classical operators of crossover,
mutation and selection to evolve from a randomly generated starting popula-
tion to a final solution.

In [40], Storn and Price first introduced the DE algorithm a few years ago.
The DE was successfully applied to the optimization of some well-known non-
linear, non-differentiable and non-convex functions in [39]. DE is an approach
for the treatment of real-valued optimization problems. In this case [20], Krink
et al. mentioned also that DE is a very powerful heuristic for non-noisy opti-
mization problems, but that noise is indeed a serious problem for conventional
DE, when the fitness of candidate solutions approaches the fitness variance
caused by the noise.

DE is similar to a (µ, λ) evolution strategies [3], but in DE the mutation
is not done via some separately defined probability density function. DE is
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also characterized by the use of a population-derived noise to adapt the mu-
tation rate of the evolution process, implementation simplicity and speed of
operation.

There are many variants of DE approaches that have been reported [40].
The different variants are classified using the following notation: DE/α/β/δ,
where α indicates the method for selecting the parent chromosome that will
form the base of the mutated vector, β indicates the number of difference
vectors used to perturb the base chromosome, and δ indicates the crossover
mechanism used to create the child population. The bin acronym indicates
that crossover is controlled by a series of independent binomial experiments.

The fundamental idea behind DE is a scheme by which it generates the
trial parameter vectors. At each time step, DE mutates vectors by adding
weighted, random vector differentials to them. If the cost of the trial vector
is better than that of the target, the target vector is replaced by the trial
vector in the next generation. The variant implemented in this chapter is the
DE/rand/1/bin and given by the following steps:

1. Initialize a population of individuals (solution vectors) with random val-
ues generated according to a uniform probability distribution in the n
dimensional problem space.

2. For each individual, evaluate its fitness value.
3. Mutate individuals according to (1.1):

zi+1(t) = xi,r1(t) + fm�xi,r2(t) − xi,r3(t)� (1.1)

4. Following the mutation operation, crossover is applied in the population.
For each mutant vector, zi(t + 1), an index rnbr(i) ∈ {1, 2, . . . , n} is ran-
domly chosen using uniform distribution, and a trial vector, ui(t + 1) =
[ui1(t + 1), ui2(t + 1), . . . , uin

(t + 1)]T , is generated as described in (1.2).
To decide whether or not the vector ui(t + 1) should be a member of the
population comprising the next generation, it is compared to the corre-
sponding vector xi(t). Thus, if Fc denotes the objective function under
minimization, then we have (1.3)

uij
(t + 1) =

⎧
⎨

⎩

zij
(t + 1) if randb(j) ≤ CR)or (j = rndr(i))

xij
(t + 1) if randb(j) > CR)or (j �= rndr(i))

(1.2)

xi(t + 1) =

⎧
⎨

⎩

uij
(t + 1) if Fc(t + 1) < Fc(xi(t))

xi(t) otherwise
(1.3)

5. Loop to step (2) until a stopping criterion is met, usually a maximum
number of iterations (generations), tmax.
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In the above equations, i = 1, 2, . . . , N is the individual’s index of pop-
ulation, j = 1, 2, . . . , n is the position in n dimensional individual; t is the
time (generation); xi(t) = [xi1(t), xi2(t), . . . , xin

(t)]T stands for the position
of the i-th individual of population of N real-valued n-dimensional vectors;
zi(t) = [zi1(t), zi2(t), . . . , zin

(t)]T stands for the position of the i-th individual
of a mutant vector; r1, r2 and r3 are mutually different integers and also dif-
ferent from the running index, i, randomly selected with uniform distribution
from the set {1, 2, . . . , i − 1, i + 1, . . . , N}; fm > 0 is a real parameter, called
mutation factor, which controls the amplification of the difference between
two individuals so as to avoid search stagnation and it is usually taken from
the range [0.1, 1]; randb(j) is the j-th evaluation of a uniform random number
generation with [0, 1]; CR is a crossover rate in the range [0, 1]; and Fc is
the evaluation of cost function. Usually, the performance of a DE algorithm
depends on three variables: the population size N , the mutation factor fm,
and the crossover rate CR.

1.3 New Approach of Differential Evolution Combined
with Chaos Theory

The chaos theory studies the unexpected phenomenon apparently, in the
search of hidden standards and simple laws that conduct the complex be-
haviors. However, this study became effectively reasonable from the decade
of 1960, when the computers had started to possess reasonable graphical and
processing capacities, giving to the physicists and mathematicians the power
to discover answers for basic questions of the science in general way, that were
obscure before.

The behavior of chaotic systems presents great sensitivity in relation to
the initial conditions that are applied. Chaos, apparently disordered behavior
that is nonetheless deterministic, is a universal phenomenon that occurs in
many systems in all areas of science. The randomness of chaotic sequences is
a result of the sensitivity of chaotic systems to the initial conditions. However,
because the systems are deterministic, chaos implies some order. A system can
make the transformation from a regular periodic system to a chaotic system
simply by altering one of the controlling parameters [35].

The nonlinear systems had appeared from the chaos theory that supplies
to an explanation, many times adequate, to many behaviors current in bi-
ological systems [2], such as: natural phenomenon (populations, turbulence,
fluid movement, and cloud formation), complexities in electric circuits [23],
telecommunications [34], control systems, dynamic behavior of the cardiac
beatings [32], among others.

The chaos theory has received growing attention, with few papers study
application of chaos in optimization methods [22, 26, 48, 10, 47, 25].The opti-
mization algorithms based on chaos theory are stochastic search methodolo-
gies that differ from any of the existing EAs. EAs are optimization approaches
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with in concepts bio-inspired of genetics and natural evolution. In other way,
chaotic optimization approaches are based on ergodicity, stochastic properties
and irregularity. It is not like some stochastic optimization algorithms that
escape from local minima by accepting some bad solutions according to a
certain probability [35]. The chaotic optimization approaches can more easily
escape from local minima that can other stochastic optimization algorithms
[22].

In the context of DE, the concepts of chaotic optimization methods can
be useful. Generally, the parameters fm, CR and N of DE are the key factors
to affect the convergence of the algorithm. In fact, however, parameters fm

and CR cannot ensure the optimization’s ergodicity entirely in phase search
because they are constant factors in traditional DE. Therefore, this paper pro-
vides three new approaches that introduces chaotic mapping with ergodicity,
irregularity and the stochastic property into DE to improve the global con-
vergence. The utilization of chaotic sequences in EAs can be useful for escape
more easily from local minima than the traditional EAs.

One of the simplest dynamic systems evidencing chaotic behavior is the
iterator named logistic map [29], whose equation is given in (1.4)

y(t + 1) = µy(t) (1 − y(t)) (1.4)

where t = 1, . . . , tmax, tmax is the number of samples, µ is a control parameter,
0 ≤ µ ≤ 4. The behavior of system of (1.4) is greatly changed with the varia-
tion of µ. Its value determines whether y stabilizes at a constant size, oscillates
between a limited sequence of sizes, or whether y behaves chaotically in an
unpredictable pattern. A very small difference in the initial value of y causes
large difference in its long-time behavior [47]. Equation (1.4) is deterministic,
it exhibits chaotic dynamics when µ = 4 and y(1) � {0, 0.25, 0.50, 0.75, 1}. In
this case, y(t) is distributed in the range (0,1) under the conditions that the
initial y(1) ∈ (0, 1) and that y(1) � {0, 0.25, 0.50, 0.75, 1}.

The new approaches of DE combined with chaos (DEC) based on logistic
maps and new variants based on exponential and cosinoidal functions are
described as follows:

Approach 1 – DEC(1). The parameter fm of (1.1) is modified using (1.4)
through (1.5), (1.6) and (1.7):

zi+1(t) = xi,r1(t) + fm(t)�xi,r2(t) − xi,r3(t)� (1.5)

fm(t + 1) = µfm(t) (1 − fm(t)) (1.6)

fm(t) ∈ (0, 1) (1.7)

Approach 2 – DEC(2). The parameter fm of (1.1) is modified by (1.4)
using (1.8):
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zi+1(t) = xi,r1(t) + fm(t)�xi,r2(t) − xi,r3(t)� (1.8)

fm(t) =
⏐
⏐
⏐e−

t
3tmax

⏐
⏐
⏐ (µfm(t) [1 − fm(t)]) (1.9)

fm(t) ∈ (0, 1) (1.10)
where t is the current generation and tmax is the maximum number of itera-
tions (generations) of optimization procedure.

Approach 3 – DEC(3). The parameter fm of (1.1) is modified by (1.4) as
in (1.11).

zi+1(t) = xi,r1(t) + fm(t)�xi,r2(t) − xi,r3(t)� (1.11)

fm(t + 1) = 0.8 |sin 6t| (µfm(t) [1 − fm(t)]) + 0.4 (1.12)

fm(t) ∈ (0, 1) (1.13)
Approach 4 – DEC(4). The parameter CR of (1.2) is modified by (1.4).

uij
(t + 1) =

⎧
⎨

⎩

zij
(t + 1) if randb(j) ≤ CR(t))or (j = rndr(i))

xij
(t + 1) if randb(j) > CR(t))or (j �= rndr(i))

(1.14)

CR(t + 1) = µCR(t) (1 − CR(t)) (1.15)

CR(t) ∈ (0, 1] (1.16)
Approach 5 – DEC(5). This approach uses simultaneously the DEC(1) and
the DEC(4) in optimization procedure.

Approach 6 – DEC(6). This approach uses simultaneously the DEC(2) and
the DEC(4) in optimization procedure.

Approach 7 – DEC(7). This approach uses simultaneously the DEC(3) and
the DEC(4) in optimization procedure.

The following values for the parameters CR(1) and fm(1) to 0.48 and µ = 4
have been used for simulation with DEC approaches. In this case, the track of
chaotic variable can travel ergodicaly over the whole search space. In Figure
1.1, Figure 1.2 and Figure 1.3 and, Figure 1.4, Figure 1.5 and Figure 1.6,
the distribution of points in DE(2), DE(3) and DE(4) and, DEC(1), DEC(2)
and DEC(3) are presented, respectively. Figure 1.4, Figure 1.5 and Figure 1.6
show that a lot of points of logistic maps and variants distribute near the
edges useful for DEC approaches escape of local optimum.
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(a) function fm(t) (b) Probabilistic density function

Fig. 1.1. Illustration for the case of DE(2)

(a) function fm(t) (b) Probabilistic density function

Fig. 1.2. Illustration for the case of DE(3) using linear decreasing

(a) function fm(t) (b) Probabilistic density function

Fig. 1.3. Illustration for the case of DE(4) with linear increasing
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(a) function fm(t) (b) Probabilistic density function

Fig. 1.4. Illustration for the case of DEC(1)

(a) function fm(t) (b) Probabilistic density function

Fig. 1.5. Illustration for the case of DEC(2)

1.4 Planning of Mobile Robots

The literature is rich in approaches to solve mobile robots trajectory planning
in presence of static and/or dynamic obstacles [43, 4, 30, 36, 37]. One of the
most popular planning methods is the artificial potential field [42]. However,
this method gives only one trajectory solution that may not be the smaller
trajectory in a static environment. The main difficulties in determining the
optimum trajectory are due to the fact that many analytical methods are
complex to be used in real time, and the searching enumerative methods are
excessively affected by the size of the searching space.

Recently, the interest in using EAs, especially genetic algorithms, has in-
creased in last years. Genetic algorithms are used in mobile robots trajectory
planning, generally when the search space is large [7, 46, 8].
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(a) function fm(t) (b) Probabilistic density function

Fig. 1.6. Illustration for the case of DEC(3)

The trajectory planning is the main aspect in the movement of a mobile
robot. The problem of a mobile robot trajectory planning is typically formu-
lated as follows: given a robot and the environment description, a trajectory
is planned between two specific locations which is free of collisions and is
satisfactory in a certain performance criteria [46].

Seeing the trajectory planning as an optimization problem is the approach
adopted in this article. In this case, a sequence of configurations that moves
the robot from an initial position (origin) to a final position (target) is de-
signed. A trajectory optimizer must locate a series of configurations that avoid
collisions among the robot(s) and the obstacle(s) existing in the environment.
The optimizer must also try to minimize the trajectory length found, in order
to be efficient. The search space is the group of all possible configurations.

In the present study, it’s considered a two-dimensional mobile robot tra-
jectory planning problem, in which the position of the mobile robot R is
represented by Cartesian coordinates (x, y) in the xy plan. The initial and
destination points of the robot are (x0, y0) and (xnp

, ynp
), where np is a de-

sign parameter. The initial point is always (0, 0).
Only the problem’s trajectory planning is empathized in this chapter, the

robot control problem is not the focus here. However, details of the robots
movement equations can be found in [7]. Its assumed that the obstacles are
circular in the robot’s moving plan. Besides, the hypothesis that the free two-
dimensional space is connected and the obstacles are finite in size and does
not overlap the destiny point is true.

The optimization problem formulated consists of a discrete optimization
problem, where the objective function f(x, y), which is the connection between
the technique used for optimization and the environment, aims to minimize
the total trajectory roamed by the mobile robot and is ruled as in 1.17
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f(x, y) = αdobj + λn0 (1.17)

dobj =
np∑

i=0

√

(x(i + 1) − x(i))2 + (y(i + 1) − y(i))2 (1.18)

where α and λ are weighted factors, dobj represents the Euclidian distance
between the initial and the destiny points, n0 denotes the number of obstacles
prevented by the robot movement following the planned trajectory, and np is
the number of points where a trajectory change occurs (project parameter in
this chapter). It is described in (1.17) that a λ term exists, it is a weighting or
penalty term for unfeasible solutions, meaning, the trajectory that intercepts
obstacles. In this case, the fitness function to be evaluated by optimization
approaches of this paper aims to maximize

fitness =
Kc

f(x, y) + ε
(1.19)

where Kc and ε are scale constants.

1.5 Simulation Results

The environment used for the trajectory planning is a 100×100 meters field.
The search interval of the parameters is xiin[0, 100] and yi ∈ [0, 100] meters,
where i = 1, . . . , np. About the fitness its adopted α = 1, λ = 200, Kc = 100
and ε = 1 × 10−6. The parameters of population size (N) and maximum
number of generations (tmax) used in implementations of the DE and DEC
are 30 and 100 for the two case studies, respectively. The following traditional
DE were tested:

• DE(1): CR = 0.80 and fm = 0.40;
• DE(2): CR = 0.80 and fm = 0.60× r + 0.40, where r is a random number

with uniform distribution in the range [0,1];
• DE(3): CR = 0.80 and fm with linear decreasing, where fm = (fmf −

fmi)(g/tmax)+fmi; the constants fmf and fmi are 1.0 and 0.4, respectively;
• DE(4): CR = 0.80 and fm with linear increasing, where fm = (f)mf −

fmi)(g/tmax)+fmi; the constants fmf and fmi are 0.4 and 1.0, respectively.

In the next section, we present two simulated cases and the results analysis
of 30 experiments with the DE and DEC algorithms.

1.5.1 Case study 1: Environment with 7 obstacles

In Table 1.1 are presented the positions of the centers (xc, yc) of the circular
obstacles and their respective radius (in meters) of case 1. The results obtained
with the DE and DEC are restricted to np = 2. In Table 1.2, the obtained
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Table 1.1. Definition of 7 obstacles for the case study 1

Obstacle Number Radius Position (xc, yc)

1 15 (50, 60)
2 10 (85, 55)
3 07 (93, 80)
4 10 (15, 30)
5 10 (70, 90)
6 15 (50, 20)
7 10 (20, 90)

Table 1.2. Results for an environment with 7 obstacles for 30 runs (best results for
each experiment after 300 generations)

Optimization Maximum Mean Minimum Standard
Technique Fitness Fitness Fitness Deviation

DE(1) 0.7025 0.5976 0.2929 0.1264
DE(2) 0.7025 0.6117 0.5270 0.0709
DE(3) 0.7025 0.5735 0.5270 0.0714
DE(4) 0.7025 0.5699 0.2929 0.1605

DEC(1) 0.7025 0.6246 0.6044 0.0410
DEC(2) 0.7025 0.6172 0.5259 0.0514
DEC(3) 0.7025 0.6128 0.5270 0.0819
DEC(4) 0.7025 0.6235 0.5264 0.0728
DEC(5) 0.7025 0.6736 0.6045 0.0465
DEC(6) 0.7025 0.5919 0.5270 0.0533
DEC(7) 0.7025 0.6456 0.5300 0.0631

solutions and statistical analysis of results are presented, wherein the best
performing algorithm(s) is highlighted.

In case study 1, all DE and DEC algorithms are able to find optimum
solutions. The best (higher) fitness that the DE(1)–(4) and DEC(1)–(7)
have achieved, for np = 2, has been obtained with the solution: (x1, y1) =
(87.5785; 84.4280) and (x2, y2) = (60.8406; 49.4837). The classical DE(4) ap-
proach presents a minimum fitness of 0.5699. However, the DEC(6) usign chaos
theory performs a minimum fitness of 0.5919. In the case study 1, DEC(5)
obtains a more efficient convergency in terms of mean and minimum fitness
that the others tested DE and DEC approaches.

In Figure 1.7 the best result of the experiments is presented. In case study
1, the best of DE(1)–(4) and DEC(1)–(7) obtain a distance total of path of
142.343. This distance is 99.352% of optimum path without obstacles.



1 Differential Evolution Approach Using Chaotic Sequences 15

Fig. 1.7. Best result achieved for the DE(1)–(4) and DEC(1)–(7) approaches in
case study 1

1.5.2 Case study 2: Environment with 14 obstacles

In Table 1.3 are presented the center positions (xc, yc) of the circular obstacles
and their respective radius (in meters) for case 2. The results obtained for the
DE and DEC are restricted to np=3. In Table 1.4, the results for the case
study 2 are summarized.

Table 1.3. Obstacles for the case study 2

Obstacle Number Radius Position (xc, yc)

1 04 (95, 60)
2 15 (20, 30)
3 15 (20, 85)
4 11 (55, 50)
5 10 (50, 85)
6 08 (80, 60)
7 05 (90, 80)
8 14 (80, 20)
9 05 (65, 70)
10 05 (90, 42)
11 08 (50, 08)
12 04 (90, 95)
13 05 (60, 30)
14 04 (40, 65)

In Figure 1.8(a)–(d) and Figure 1.9(a)–(g), the best results of the exper-
iments with DE and DEC are presented. In this case, the best result of the
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Table 1.4. Results for an environment with 14 obstacles for 30 runs (best results
for each experiment after 300 generations)

Optimization Maximum Mean Minimum Standard
Technique Fitness Fitness Fitness Deviation

DE(1) 0.6869 0.6515 0.6075 0.0229
DE(2) 0.6598 0.5995 0.5240 0.0625
DE(3) 0.6552 0.5942 0.5278 0.0548
DE(4) 0.6716 0.6270 0.5278 0.0528

DEC(1) 0.6561 0.6236 0.5243 0.0510
DEC(2) 0.6730 0.6025 0.5278 0.0664
DEC(3) 0.6724 0.5912 0.5240 0.0687
DEC(4) 0.6869 0.6552 0.6076 0.0227
DEC(5) 0.6731 0.6261 0.5278 0.0589
DEC(6) 0.6884 0.6331 0.5278 0.0567
DEC(7) 0.6624 0.6214 0.5240 0.0516

experiments was: (x1, y1) = (31.1352; 19.2243), (x2, y2) = (63.9030; 42.8367)
and (x3, y3) = (75.9197; 70.7897) using DEC(6).

The mean performance would be useful as an indication of the robustness
of the configuration of DE and DEC. In case study 2, the best result of DEC(6)
obtains a total distance of 145.2639. This distance is 97.355% of optimum path
without obstacles. However, DEC(4) presents the best mean, minimum and
standard deviation of tested approaches. In Table 1.4, it is observed that
the DE and DEC responded well for all the simulations attempts. From 30
repeated simulations, it is shown that the results of DEC were significant, in
terms of mean fitness, for path planning in relation of DE for the case study
2. As seen in the comparative study, the robustness of the DEC is higher than
the one of the DE specially when dealing with more complex environments.

1.6 Summary

A research area with special relevance to mobile robot systems is devising
suitable methods to plan optimum moving trajectories. There exist many
approaches within the area of EAs to solve the problem of optimization of path
planning in mobile robotics. In this paper the application of a new approach
of DE based on chaos theory in form of an optimization algorithm is explored.

DE algorithm is an EA approach mainly having three potential advan-
tages; finding the true global minimum regardless of the initial parameter
values, fast convergence, and using few control parameters. DEC approaches
appear to be a good choice, since it does not require elaborate tuning methods
for the control parameters and their performances is very reliable compared
to traditional DE. In this chapter, the possibilities of exploring the DEC effi-
ciency are successfully presented, as shown in two simulated cases study. The
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(a) DE(1) (b) DE(2)

(c) DE(3) (d) DE(4)

Fig. 1.8. Best result achieved for the DE(1)–(4) in case study 2

results of these simulations are very encouraging and they indicate important
contributions to the areas of setup of differential evolution algorithms and
path planning in mobile robotics. DE with chaos theory is employed in this
paper for enhance the global exploration of traditional DE.

Among the tested algorithms, the DEC(4), DEC(5) and DEC(6) can right-
fully be regarded as a good choice due to its convergence speed and robustness
in global search. However, in future works, more detailed studies and exper-
iments related to population size and design parameters of DE and DEC
are necessary. In this context, a comparative study of DEC with other EAs
methodologies will be done.
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(a) DE(1) (b) DE(2)

(c) DE(3) (d) DE(4)

(e) DE(5) (f) DE(6)

(g) DE(7)

Fig. 1.9. Best result achieved for the DEC(1)–(7) in case study 2
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This chapter proposes an original method for the evolutionary design of
robotic systems for locomotion on rough terrain. We encompass the design
of wheeled, legged or hybrid robots for their wide range of capabilities for
support and propulsion. The goal is to optimize the mechanical and the con-
trol system to achieve a locomotion task in a complex environment (irregular,
sliding or even with uncertainties). The modular approach brings the possibil-
ity to match the diversity of tasks with the combination of assembly modes.
This global approach embeds an evolutionary algorithm with a dynamic simu-
lation of the mobile robot operating in its environment. A hybrid encoding of
the genotype allows evolving the robot morphology and its behavior simulta-
neously. Specialized genetic operators have been designed to manipulate this
specific encoding and to maintain their efficiency through evolution. Perfor-
mances are hierarchically evaluated, making decisions based on mechanical
analysis and simulation results on line as well as off line. The results are illus-
trated through a set of design examples that shows how the artificial evolution
can in some ways, match human analysis. Some suggestions for hybridizing the
method with known techniques and its extension to general complex machine
design are given in conclusion.

2.1 Introduction

The use of walking robots have been proposed for locomotion over natural
terrains in planetary exploration or in military applications since a score of
years [47][31]. What we have learned from the different design experiences of
such complex systems is that a dynamic adaptation of the structure and its
behavior is more than useful. The main reason for this need of adaptation
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is the fact that the mechanical solutions for locomotion on rough terrain are
multiples and none are ideal for all situations. Because of slopes, cracks, rocks
or variations in the properties of soil in term of granularity, hardness, plasticity
or friction, the best strategy to progress will not be constant throughout the
mission. These difficulties make of the adaptation issue a global and complex
design problem that have been solved diversely. Methodologies for robot design
can be split in three classes:

• Pure Engineering
• Knowledge Based Design
• Global or partial Optimization

In the first method, solutions are suggested by accumulated experience of
experts. This is the most classical way used in industry but limited to simple
systems and difficult to apply in problems where the interactions between the
systems and their environment are not a priori known [41]. The second method
tries to iteratively improve known solutions accordingly to design heuristics
and a data base of physical effects. The last approach starts from scratch
and produce incremental improvements by using an objective function and an
optimization method such as artificial evolution [24]. It has been proposed for
particular machines since a decade or so [50][43].

Many research works have focused on robots adaptation using classical
control architectures [30][45], behavior-based [4][1] or evolutionary robotics
[10][35][49][25]. Nevertheless few of them have concerned the robot mechanical
(i.e. morphology) and control system (i.e behavior) simultaneously [46][32][26],
while is it now considered a necessary principle to design embodied intelligence
through adaptation [42].

In this chapter, is presented a solution to obtain both mechanical and
control design of modular robotic systems (MRS). We extend our previous
work on evolutionary robotics for modular manipulators [8][44] and mobile
robots [9][21] proposed in [7]. We evolve modular mobile robots with general
morphology, with either wheels, legs or both as shown in Fig.2.1. The de-
sign principle is a global evolutionary optimization of both their mechanical
and control systems in interaction with its environment, based on a dynamic
simulation combining the robot and its locomotion task.
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Fig. 2.1. Example of hybrid robot kinematics (ADAMS/View)

In the following sections, we will first introduce the means and goals of this
methodology. Then, we describe the different components of the integrated
design process proposed. The simulation results for several simple tasks are
given and analyzed with regard to the overall approach. Some perspectives
for this original method are discussed before drawing a general conclusion.

2.2 Means and Goals

2.2.1 Modular Robotic Systems

To answer the difficult problem of structural adaptation, a promising solution
consists in using Modular Robotic Systems (MRS) which are constituted by
an assembly of identical mechanical modules [50]. This allows, by reconfigura-
tion, to obtain a large diversity of mechanical structures to match the diversity
of robotic tasks as illustrated for locomotion systems in Fig.2.2. Many modu-
lar robots have been proposed [27][36] and successfully experimented [20] [28].
The last generation of such robots are able to perform automatic reconfigura-
tion as the M-TRAN from AIST [11] as well as fairly rough terrain locomotion
as the famous PolyPod and PolyBot from PARC [13]. What is still to obtain
with MRS is the self-transformation initiative and locomotion learning based
on task perception.

The main difficulty with the design of these modular systems is to find
the optimal module combination to use for a given mission in a given envi-
ronment. Some good investigations have been made in this objective which
proposed algorithms for analysis of modular morphologies [6] or their evalu-
ation [14]. Still, it is not obvious today how a modular robot can adopt the
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Fig. 2.2. Modular robot in several configurations

right assembly with regard to the task undertaken. Meanwhile, some recent
works based on artificial evolution have proved there are solutions to design
complex morphologies using generative representations [23] or to match high-
level tasks using realistic 3D virtual agents [26]. Stochastic self-assembly can
even be used for reconfiguration of modular systems [48]

Another complex issue is the control of such generic systems [19]. Some
research works on particular modular robots demonstrated that technological
solutions existed to control, connect and power such distributed and indepen-
dent modules [5][12].

2.2.2 Evolutionary Optimization

Evolutionary Algorithms or Evolutionary Computations are optimization
methods based on natural evolution principles [16][22]. The general process of
artificial evolution shown in fig.2.3 have been developed for general optimiza-
tion [18][34], programming [29], engineering design [40], machine learning [15]
and robotics [10][38].

The candidate solutions of a given optimization problem are considered
as individuals in a population of solutions. The whole population is then
evolved with simplified genetic laws and undergoes genetic operators such
as Selection, Mutation and Crossover. The mating pool is selected on
evaluation criteria (which are gathered in an objective function) and used
to produce the next generation of solutions through the genetic mixing and
variations. In that way, a population is bred under the survival of the fittest law
and will evolve toward fitter and fitter individuals and finally, better solutions.

The use of evolutionary computation for modular robot design is eas-
ily defensible. To be appropriate an evolutionary algorithm needs a difficult
optimization problem and a relevant objective function. Finding the right
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Fig. 2.3. Evolutionary process over a population

assembly among the possibilities of combination is known as combinatorial
optimization problem under constraints [39]. This problem belongs to the NP-
complete class and thus, has no known algorithm solving it in a finite time
[17]. Meanwhile, this kind of problem is not rare in system engineering. It is
why many efforts have been made to solve these problems using evolutionary
computation [42]. Finding a relevant fitness function for mobile robotics can
only be addressed today by experimentation, either in real or computer world
[25].

2.2.3 Dynamic Simulation

Evaluating mobile robots on rough terrain is a very difficult task because
of the complexity of these systems and their behavior. Describing walking
machines for instance is not as fastidious as assessing the effect of interactions
between mechanics, control and physical environment. Some mission-based
criteria must be precisely defined to evaluate the robot. Figure 2.4 shows some
instances of these criteria for a rough terrain exploration task. Optimization
criteria that constitute the evaluation process can be split in four:

• Consistency in term of mechanisms or controllability
• Objective to reach in term of mission main goal
• Constraints to be respected during the task
• Performances achieved while doing the task

Some criteria can be determined before experimenting the robot (consis-
tency) while others demand a precise behavioral model to be assessed during
the task (constraints or objectives) or after (performances). It appears that
most of these criteria depends on the precise activity of the robot and thus,
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may not be evaluated without some experiment of the robot doing the as-
signed task. For instance, mobility or controllability of the robot could be
analyzed from the morphology itself while dynamic stability or speed perfor-
mance must be evaluated through at least a dynamic simulation of the task
being achieved.

MODULES

Static or Dynamic Balance

Operational
Speed

Ground Geometry

Obstacle

Clearance

Fig. 2.4. Optimization criteria of walking robots

A mobile robot can be constituted by serial, tree-like or parallel mecha-
nisms and contains kinematic chains that can be closed or opened dynamically
according to the robot motions (lifting or putting down a leg). The relative
movement of the robot on the ground depends deeply on the interactions be-
tween some of its parts (legs, wheels, body) and the ground (free fly, point
or surface contact, sliding) and not only on its internal variables. These in-
teractions involve too many parameters and transient causality links to be
synthesized in a closed-form solution. The alternative in then clear: Simplify
the systems or the evaluation.

The first method is well adapted when we know what kind of solutions we
want and then, narrows considerably the domain of the search, generally down
to the fairly simple problem of parametric optimization. While this engineering
method for morphology is usually preferred, we have chosen the second one
because the objective of this work is to obtain new morphological solutions
to address the issue of adaptation. For such robots, it is not easy to split
up the main locomotion task in subtasks without making a definitive choice
on the locomotion strategy and then, to consider several independent stages
of evaluation. Another problem is that evolutionary optimization of modular
systems can lead us to explore exotic solutions including very variable modes
of locomotion (rolling, walking, jumping, crawling,...). It is obvious that it is
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not feasible to build a mathematical model for each specific kind of assembly
[6].

It is why the experimentation by dynamic simulation is used since it pro-
vides an objective evaluation of the robot with regard to its task (as the robot
whereabouts and states can be directly given by the simulator at any time).
Because of the simulation cost in time and the number of times the evalu-
ation must be done, a graphically simplified and numerically approximated
simulation has been developed [7]. Other works have made use of virtual envi-
ronments [26] or simulator co-evolution [3] to allow for realistic and yet time
efficient simulations. This tool has been associated to other tools to check
consistency, constraints or performances for a hierarchical evaluation of the
robot with regard to its task as it is explained in the evaluation (see section
2.3).

2.3 Evolutionary Task-Based Design

2.3.1 Genotype Encoding : Incidence Matrix

The modular kinematics we use to build the robots requires to define mecha-
tronic modules as well as their assembly modes. In addition to payload called
the Base we use three kinds of modules, the Segments, the Wheels and the
Joints (Fig.2.5).

The joints can link the base with segments or wheels and the segments
to other segments or wheels. All basic modules of the same kind are strictly
identical in dimension, weight and assembly modes. The segments are solids
modeled as cylinders and wheels as solid spheres for simplicity of simulation.
The revolute joints and represented by two short concentric cylinders including
DC-motors and gears.

BASE (B)

JOINTS (J) SEGMENTS (S) WHEELS (W) MODULAR ROBOT

Fig. 2.5. Modular kinematics and assembly example

The resulting modular topology (i.e. morphology) is based on the interac-
tions between the modules. Its matrix representation involves every available
modules whether they belong to the topology or not (fixed representation).
Their interactions are encoded using an Incidence Matrix M in which the



30 Olivier Chocron

solid bodies Si are represented by the rows and the joints Jj by the columns
(see Fig.2.6).
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J0   J1   J2  .... Jj ....   Jnl
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Fig. 2.6. Incidence matrix and interpretation

The integer value Mij at the matrix nodes determines the nature of the
linkage between solid Si and joint Jj . A zero means that there is no linkage
between solid and joint and another integer value defines the mode of assembly.
The integer value gives the axis (on solid frame) the revolute joint is aligned
with (1 for Y , 2 for Z and 3 for X). The base is represented by the first
row and the position of attachment points for the joints are distributed on
the platform sides at constant intervals. The segments are attached by both
extremities (bivalent) and the wheels at their center (univalent). Since the
joints and the segments are bivalent, only two elements in the associated
column or row can be non zero, only one for the wheels and as many as
the number of joints for the base (allowing as many body appendices). This
representation is a straightforward and coherent way to encompass a modular
assembly [33].

In such a way, we can describe any topological configuration for a given
set of modules, whatever their number. The advantage for such a represen-
tation is its compactness and its potentiality. Notice it can deal with closed
kinematic loops (parallel mechanisms) but since it does not always lead to
feasible solutions (and thus, hinders evaluation by simulation because of nu-
merical divergence), we forbid it. Consequently, a consistency algorithm has
been designed to basically interpret the incidence matrix in order to reject
closed loops.

Enabling dynamic simulation of mobile robot involves designing and ap-
plying a control systems, which means control laws. The control laws applied
to the joints have to be task-based and dependent of the modular assembly.

Since the same fundamental problem of modeling a generic modular as-
sembly arises when designing a control system, we propose to include it into
the genotype and to let the genetic process search for an adapted command
in parallel with the topology.
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While it is possible (and interesting) to design a modular control system
based on command modules (such as PID or non linear controllers) and sensor
inputs (position, speed or torques), it is not what is proposed here. The main
reason is that the objective of this work is to show the adaptivity of genetically
and globally designed systems. This results that if the evolution works, it
will search (and eventually find if it exists) a good global solution topology-
command however the problem is stated.

We have defined the control law as an open-loop voltage law applied to
the actuators (DC-motors and gears) associated to the joint.

The voltage law is defined as follow:

Uj = Umax ∗ cos(ωj ∗ t + φj) (2.1)

where

Uj : Voltage applied on joint j
Umax: Maximum voltage applicable
ωj : Pulse of signal j
φj : Phase of signal j
t : Simulated time

The resulting genotype is constituted by the integer incidence matrix and
three float vectors (Fig.2.7). The number N of possible distinct genotype for
the structure is then defined as follow:

N = (
k=2∑

k=0

3k ∗ Ck
Ns)

Nj (2.2)

where
Ns: Number of solid bodies
Nj: Number of actuated joints

We should multiply this number by RNj (R being the number of distinct
real numbers depending on the used machine) to obtain the total number of
possible global genotypes. This number grows exponentially with the number
of bodies and joints (see Fig.2.7). This encoding is not canonical for known
evolutionary algorithms described in [2], so it forces the design of a new one
with its adapted genetic operators.

2.3.2 Topology Operators

For selection, we use the remainder stochastic sampling with replacement [18].
For mutation and crossover, we have designed adapted operators inspired from
canonical ones [2].

Matrix Crossover
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Fig. 2.7. Mixed genotype for a walking robot

The incidence matrix can be considered as a long binary word divided in
several rows. So, a classical binary crossover (one point, multi-point or uni-
form crossover) can be applied (fig2.8).

+

+

ONE POINT CROSSOVER

PARENT 1

PARENT 2

UNIFORM CROSSOVERMATING PARENTS

CHILD 1 CHILD 2

CHILD 1 CHILD 2

Fig. 2.8. General crossover for a matrix
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The consequence is that these operators do not take into account the speci-
ficity of the encoded solution and what it does physically represent, (i.e. the
modular topology). Hence, two specific crossovers which use problem-based
knowledge have been designed to overcome this problem (Fig.2.9). The first
crossover is called Body Crossover. It exchanges some rows between two ma-
trices in such a way that the associated body linkages are exchanged between
two parent robots with the probability Xs. The Joint Crossover operates
the same kind of exchange on columns and so, between joint linkages with the
probability Xj . With these crossovers, the algorithm can exchange structured
informations between two parents by selecting for example the leg distribution
on the base from one robot and a multi-segment leg from another one.

+

+

BODY CROSSOVER

PARENT 1

PARENT 2

JOINT CROSSOVERMATING PARENTS

CHILD 1 CHILD 2

CHILD 2CHILD 1

Fig. 2.9. Problem based crossovers

These operators may involve some anomalies in the genotype. These anom-
alies are of two kinds: structural or geometrical. The first kind includes link-
age violations (more than maximum allowed number of linkage) and are easy
to detect. The geometrical anomalies are much more subtle and difficult to
extract from the incidence matrix. These anomalies include geometrically im-
possible kinematic closed loops (well known problem in parallel robots) but
also separated assemblies from the base and need to be analyzed. Since this
kind of genotypes are not valid solutions, we apply the consistency operator
after crossover which undoes the last invalid modifications (limiting linkages
and eliminating closed loops).

Integer Mutation

For the incidence matrix, we use an integer mutation inspired from binary
mutation [18]. The mutation allows each discrete number to mutate into any
other discrete value (see Fig.2.10). If the number is zero (no linkage), it can
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be mutated into a non-zero value (from 1 to 3) and thus, a linkage is created.
If the linkage exists, it can be disrupted or re-oriented to a different direction.

1 2
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0
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2
3
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3

0

3
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Original Topology Random Draw Mutant Topology

Incidence

Incidence

Matrix

Matrix

Fig. 2.10. Integer mutation for the incidence matrix

Here again, unfortunate mutation can lead to unfeasible solutions. The
consistency operator is then applied after each matrix mutation to undo
invalid mutations.

2.3.3 Command operators

For the command genotype (the three float vectors), classic operators patterns
are used for float numbers evolution as described in [2].

Uniform crossover

The crossover, inspired from binary uniform crossover gives each pair of
float numbers a 50% exchange probability (segregation) and the mutation is
directly borrowed to evolution strategy [2].

Here, a random normal number with mean zero and standard deviation σ
is added to each float number (Gaussian law, Fig.2.11).

SEGREGATION CROSSOVER GAUSSIAN MUTATION Ν ( 0 , σ )

Fig. 2.11. Genetic operators for command vectors

Adaptive mutation
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We have applied some adaptability capacities presented in [8] to the mu-
tation operators by adapting the mutation probability for discrete mutation
(eq.2.3) and continuous mutation (eq.2.4). The adaptation is based on the
relative fitness of the individual.

For highly adapted solutions, the probability is decreased and for un-
adapted solutions, the probability is increased. In such a way, above average
solutions will tend to be kept unmodified from one generation to another while
weak ones will likely to be discarded.

• Integer Mutation

pi =
pmo

fλ
i

, λ =
ln( po

pm
)

ln(f̃)
, pi ≤ 1 (2.3)

• Float Mutation

σi =
σo

fλ
i

, λ =
ln( σo

σm
)

ln(f̃)
, σi ≤ 1 (2.4)

po : Minimum binary mutation probability
σo : Minimum mutation standard deviation
pm : Mean mutation probability
σm: Mean mutation standard deviation
fi : Candidate fitness value

f̃ : Population mean fitness

Our previous works have shown the efficiency of this adaptive mutation
which allow to keep control on the mutation rate applied for the mean fitness
individual (pm and σm) and over the mutation rate applied to to the best
possible individual (po and σo). Notice that the worst case (null fitness) is
purely random search.

2.3.4 Phenotype Evaluation

We have to deal with two distinct genetic entities; topology and command.
Both are evolved simultaneously in the same global evolutionary algorithm
(Fig.2.12). The evaluation process is done by a approximated dynamic sim-
ulation of the robot in its real environment. The simulation uses an efficient
numerical approximation to solve the dynamics of a multi body system with
environmental interactions.

The evolutionary algorithm calls upon the simulation each time it needs
to evaluate a robot for completing the specified task. The simulation being
the most time consuming stage, it has to be used scarcely. Indeed, using the
complete simulation for all the robots can lead to a very long time of evolution.
We use a hierarchical evaluation in three stages :
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Fig. 2.12. Global evolutionary algorithm

• Mathematical elimination
• Quick simulation
• Full simulation

The mathematical elimination consists in applying the consistency algo-
rithm that checks the validity of linkages and eliminates the separated from
base assemblies. The quick simulation is performed for the feasible robots over
a short period of time and a moderate accuracy. A performance index in com-
puted during the quick simulation and if it is satisfying, the full simulation
is started. The full simulation is done for full time allocation and maximum
accuracy. The robot receives a fitness accordingly to its global normalized task
performance (see section 2.4).

2.4 Simulation Results

2.4.1 Experimental setup

The experimental setup consists in a computer simulation and the evolution-
ary algorithm given in sec. 2.3. Evolution and simulation parameters have
been designed to obtain a reasonable time and number of generations. Each
time, the fitness function is computed relatively to a simple reference solution
(engineering design).

The populations have been evolved for four tasks:

• Speeding up
• Joining a goal
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• Getting altitude
• Increasing angular momentum

The ground is modeled flat and viscoelastic. This means that reaction
forces are proportional to penetration distances and viscous forces to veloc-
ities. A model of friction forces has been implemented to take into account
solid/solid interactions near zero speed. The robot is constituted by a payload
(base) and a variable amount of mechatronic modules as described in table
2.1.

Table 2.1. Mechatronic modules

Solids Geometry Mass FrictionNb

Base box 40 0.9 1

Legs cylinder 0.4 0.7 8

Wheels sphere 4 0.5 8

Joint Tmax Wmax Pmax Nb

Pivot 10 NM 1 rps 10 Hz 8

Tmax : Maximum Torque of Joint
Wmax: Maximum Angular Speed of Joint
Pmax : Maximum Pulse of command signal

Nb : Maximum Number of items

Table 2.2. Simulation parameters

Parameters Partial Full

Simulation Time (s) 1 3

Increment Time (s) 0.005 0.001

Error Max (%) 0.1 0.01

The simulation parameters are given in table 2.2. The genetic operators
use parameters of table 2.3. Each evolution run lasts between 6 and 8 hours
on a SUN/ULTRA5 workstation.

Table 2.3. Evolution parameters

Population 20 Generations 50

po 1e-6 pm 0.01

σo 1e-5 σm 0.1

Xs 0.5 Xj 0.5
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2.4.2 Task 1: Speed up

Here, we try to maximize the final distance (objective function) from the
starting position to the end position relatively the x-axis. We evolved hybrid
robots (with legs and wheels). The evolution graphic (Fig.2.13) represents the
performance of the best individual in the population over fifty generations. It
shows that the best robot increases its fitness (globally) and that the whole
population follow its lead.
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Fig. 2.13. Evolution graph for speed task

The best evolved robot (fig2.14, left) is a wheeled robot, which is not
surprising if we consider that wheeled vehicles are the best solution to move
fast on flat ground. We can observe that the wheeled robot uses only two
wheels it drives to full power (Fig. 2.14) The reason is that the joint torques
are large enough to allow the actuators to reach their maximum speed a long
time before the simulation end.

It means that additional acceleration is not very useful here and conse-
quently, more wheels would damage the fitness value instead of increase it.
The best command evolved simultaneously consists in a high valued input
shaped in a flattened parabola (Fig.2.15, right), which maximizes applied
torque and provided work to the correctly oriented wheels (pulling along x-
axis).
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Fig. 2.14. Mixed genotype instance for task 1
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Fig. 2.15. Best robot and best command

2.4.3 Task 2: Reaching a goal

Here, the robot is assigned a goal on the ground to reach at the end of the
simulation. The final distance between robot position and desired position is
the fitness. The evolution is shown in Fig.2.16.

The evolution this time converges toward a three wheeled robot which
rolls toward the desired position by using differential angular wheel speed.
Since the linear speed is not useful here, the evolution has accepted an addi-
tional wheel to adjust the direction (Fig.2.17, left). The command evolved has
favored a highly pulling front wheel and two rear wheels .

2.4.4 Task 3: Getting altitude

Here, we ask the robot to find a way to raise its center of gravity whatever
the method. The final altitude of the robot is the fitness. Since it is a hard
task to accomplish with wheeled robots, we expect an interesting evolution
of legged robots. The evolution graph shows here a rather difficult and long
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Fig. 2.16. Evolution graph for goal task
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Fig. 2.17. Best robot and best command

convergence(Fig.2.18).

The evolution converges toward a six legged robot (Fig.2.19). We observe
than the best ever altitude reached is about 0.5 meters, that is the leg length.
Indeed, the best solution our evolution have found to raise its center of gravity
over a long period is to give rapid kicks on the ground with a maximum number
of legs. This allow the robot to stay on a leg-length altitude for eternity. The
fact that not more than one-segment legs are evolved is that multi-segment
legs have a far more important inertia, which is not compatible with rapid
kicking considering the limited applicable torque.
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2.4.5 Task 4: Increasing angular velocity

Finally, we want to robot to spin quickly along its z axis whatever its position.
The fitness is the final angular speed. This kind of task is designed to allow the
search for other geometrical orientations of the joint axis and its associated
command.

A good solution is found rather quickly but the population have some
difficulties to converge (Fig.2.20). The evolved solution is a two-wheeled robot
with the wheels on the same side and oriented along y axis (Fig.2.21,left).
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Fig. 2.20. Evolution graph for angular velocity task

The command are opposite in direction and very high, which make the base
rotating on the ground (Fig.2.21,right).

At first sight, the solution is not clearly optimal since both wheels are on
the same side of the robot and this allows the platform to drag on the ground
(generating dissipating forces).
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Fig. 2.21. Best robot and best command

But when we consider that the conditions of experiment (torques and mass
distribution) and we look at the simulation, it appears that it is a good choice
since the body is clearly held above ground during most of the time, eliminat-
ing contact forces between body and ground. Two wheels in opposite corners
(as we designed for the reference solution) clearly yields less better results as
the kinematic lever between traction forces in lesser (suboptimal solution).
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From this point of view, the machine has bested the human intuition (if not
intelligence). This shows clearly the potential of this approach in engineering
complex machines.

2.5 Summary and Conclusions

We have implemented an Evolutionary Algorithm in order to evolve modular
robotic systems for various locomotion tasks. The methodology itself is repre-
sentation and problem independent, adaptable to any robotic design as long
as relevant design parameters and a good evaluation process are available.
The representation is generic enough to obtain many kinematic topologies
and so, to cover a large diversity of robot structures and can be easily im-
proved (allowing new modules or new assembly modes). The adaptations of
the encoding, genetic operators and evaluation to the design process has yield
valuable results which show some reliability in the algorithm implemented.

Although these experiments are simple and the results not exceptional (8
hours on an SUN ULTRA5 Workstation), they bring some insight and hope
in the complex field of evolutionary design the robotic community explored
[46].

This work allows to think that robot design can be integrated in an au-
tomatic process despite of the complexity of global task modeling by using
dynamic simulation.

The primary result of this research is undoubtedly the fact that non explicit
fundamentals of the problems can be ‘ “discovered”’ by the genetic operators.

The secondary result is that the adaptation on genetically evolved robots is
such that is can overcome (in some extent) an ill-designed command structure.

To continue this work, we propose to use more efficient behavior adapta-
tions (such as neural networks) while keeping the topology optimization under
evolutionary process.

Since morphology and control system are two related subsystems one can
co-evolve both entities to find some stable evolutionary trade-off between their
adaptation [37]. Our way was to embed both sub-systems in the same global
genotype as it is in natural creatures and as we continued using artificial
neural networks [21].

Moreover, the issue of evolution time has compelled us to find some ways to
use a simulation for evaluation. While our simulation does not match the visual
rendering and the interactions diversity of virtual environments as proposed in
[46][26], it is realistic and explicit enough to grasp the behavior of 3D modular
robots.

In a near future, it seems possible to bring the evaluation in the real world
using automatic design and manufacture of robots as done in [32].
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Evolutionary Navigation of Autonomous
Robots Under Varying Terrain Conditions
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Optimal motion planning is critical for the successful operation of an auto-
nomous mobile robot. Many proposed approaches use either fuzzy logic or
genetic algorithms (GAs), however, most approaches offer only path planning
or only trajectory planning, but not both. In addition, few approaches attempt
to address the impact of varying terrain conditions on the optimal path. This
chapter presents a fuzzy-genetic approach that provides both path and tra-
jectory planning, and has the advantage of considering diverse terrain condi-
tions when determining the optimal path. The terrain conditions are modeled
using fuzzy linguistic variables to allow for the imprecision and uncertainty
of the terrain data. Although a number of methods have been proposed
using GAs, few are appropriate for a dynamic environment or provide response
in real-time. The method proposed in this research is robust, allowing the
robot to adapt to dynamic conditions in the environment.

3.1 Introduction

Optimal motion planning is essential to the successful operation of an au-
tonomous mobile robot. For many applications, it is imperative that an au-
tonomous robot be able to determine and follow an optimal of near optimal
path to a destination. Motion planning is composed of two functions: path
planning, and trajectory planning [1, 2]. Path planning generates a collision-
free path through an environment containing obstacles. The path is optimal
with respect to some selected criterion. Trajectory planning schedules the
movements of the robot along the planned path.

Many approaches to motion planning have been proposed. However, most
approaches address only path planning or only trajectory planning, but not
both [1, 3, 4, 5]. The GA coding scheme used in this research combines path
planning with trajectory planning, thus, eliminating the additional step of
T. P. Fries: Evolutionary Navigation of Autonomous Robots Under Varying Terrain Conditions,
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trajectory planning once an optimal path is found and reducing the compu-
tational time to allow a real-time response.

Implementation issues are a primary consideration when evaluating au-
tonomous robot navigation algorithms. To be of use, a motion planning
method must be sufficiently efficient to execute in real-time with the limited
onboard computational resources common on autonomous mobile robots.

It is common for GA-based approaches to motion planning to function
only in a static environment due to the processing time required to produce
an optimal solution [1, 3, 6, 7, 8]. However, many applications require that
the robot respond to a changing environment and moving obstacles. In many
operational situations, it is impractical to assume that the environment will
not undergo changes and that all objects will be stationary. This research
provides a method that allows the robot to function in a dynamic environment.

In most cases, GAs do not provide real-time solutions to motion plan-
ning problems [1, 3, 6, 7, 8]. Those that do offer real-time response usually
have unacceptable restrictions, such as limiting solutions to x-monotone or
y-monotone paths [9]. An x-monotone path is one in which the projection of
the path on the x-axis is non-decreasing. This places an unacceptable restric-
tion on the solution path because even a simple path between two rooms in a
building is neither x-monotone nor y-monotone as shown in Fig. 3.1.

Fig. 3.1. Non-monotone path between rooms

In an effort to reduce the computation time, some researchers have pro-
posed encoding all chromosomes with a fixed length [9, 10]. However, it has
been shown that for robot path planning fixed length chromosomes are too
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restrictive on the solution path by placing unnecessary constraints on the
representation of the environment and on the path [6, 10].

Research into using genetic algorithms for path planning include the work
of Shibata and Fukuda [11] who proposed a motion planning strategy for a
point robot in a static environment. Davidor [12] proposed GA approach at-
tempts to minimize the accumulated deviation between the actual and desired
path. However, this assumes that a desired path is already known. Nearchou
[13] presented an approach using GAs that compares favorably with other evo-
lutionary techniques, but it requires that the map be converted to a graph.
None of these approaches account for dynamic conditions.

A further restriction among current motion planning approaches is that
few approaches consider varying terrain conditions with most labeling an area
either free of obstacles or totally blocked [8, 10]. In many real world cases, an
area may be composed of terrain that is difficult to traverse. Difficult terrain
may include sandy areas which cause slippage, rocky areas that require minor
course adjustments within them and/or loss of time, or sloped areas that may
cause slippage or increased time to climb. Such terrain may be traversable at
the cost of increased time, but provide a more optimal path than totally clear
terrain.

Iagnemma and Dubowsky [14] are concerned with the roughness of the
terrain as characterized by elevation changes. However, the relatively large
elevation changes which are addressed lead to consideration of wheel diameter
and wheel-terrain contact force and angle. This complicates the computation
to such a degree as to preclude a real-time response.

Other researchers [15, 16, 17, 18, 19, 20, 21, 22, 23, 24] also consider issues
of severe terrain such as rocky areas and large elevation changes. However,
other terrain factors are equally influential on the navigability of a section of
terrain with what may appear to be rather benign elevation changes. Features
such as a sandy or gravel surface or a mild slope may also impact terrain
traversability. Many simple, wheeled robots face these terrain issues even when
not operating in rocky environments with extreme elevation changes.

One must also consider the uncertainty inherent in terrain sensing devices
and mapping methods [17, 18, 25, 26]. In these cases, the exact nature of the
terrain in a particular area is uncertain and, as a result, only an estimate of
its true condition. Terrain measurement uncertainty has been addressed by
research using methods such as a Gaussian [14] and Kalman [27] filters. These
methods are usually computationally intensive and, therefore, inappropriate
for real-time operation. The approach presented here addresses the issue of
terrain uncertainty by assigning to each section of terrain a fuzzy linguistic
variable which indicates the difficulty of traversing that area.

The evolutionary approach to motion planning described in this chapter
provides real-time motion planning in a dynamic environment without the
restrictions of monotone paths or fixed length chromosomes. It also allows
terrain to be labeled with the difficulty of traversal, thus, allowing it to be
considered as part of a solution path.
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Section 3.2 presents the representation of the environment and GA basics.
In Sect. 3.3, the new fuzzy genetic motion planning approach is presented.
Section 3.4 provides a discussion of the implementation and test results of
the new motion planning approach. Section 3.5 provides a summary of the
approach and discusses future directions for research on this method.

3.2 Problem Formulation

Several assumptions have been imposed on the motion planning approach to
reduce the initial complexity of the problem and allow concentration on the
particular issues of motion planning and terrain considerations. First, the mo-
bile robot is assumed to be holonomic which means it is capable of turning
within its own radius. This eliminates the need to consider the complexity
in the movement of nonholonomic robots [2, 16]. The robot is limited to the
move-stop-turn course of action, where after moving, the robot will stop, turn,
and then proceed to move again. This avoids issues related to terrain-induced
lateral forces on the wheels while turning in an arc while moving. For pur-
poses of simplification robot localization uncertainty is ignored. Localization
uses only dead reckoning based on wheel odometry information. Localization
problems are to be addressed in future research.

3.2.1 Environment Grid

The environment in which the robot will maneuver is divided into an environ-
ment grid and a path is described as a movement through a series of adjacent
cells in the grid. This representation is an extension of the occupancy grid
which has been a common method of representing a robot’s operational do-
main [2, 28]. The length of the path d (a, b) between two adjacent cells a and b
is defined as the Euclidean distance between the centers of the two cells. This
representation of distance allows the map data to be stored in any efficient
format, such as a quadtree [29]. Storage by such methods provides more com-
pact representation of an environment by storing large obstacles as a single
grid location, rather than many uniformly sized small squares. It also allows
the path to be represented by fewer grid transitions, thus, reducing the size of
the GA encoding string, or chromosome, and the time required to determine
a solution. Each cell in the grid is assigned a fuzzy value that indicates the
difficulty in traversing the terrain in that cell. The use of fuzzy values allows
cells with moderately hostile terrain, such as rocks or loose sand, to be con-
sidered in a possible solution path while being weighted by their difficulty of
traversal. A cell which contains an obstacle is assigned a fuzzy value indicating
it is impassable and any possible solution path containing it is unacceptable.
For this chapter, the grid will be restricted to 16 by 16 for simplicity, however,
the algorithm has been successfully tested for much larger sized grids. Further
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discussion of this restriction and actual testing is found in the Test Results in
Sect. 3.4.

For purposes of this research, the robot is considered to be a holonomic
point, that is, it is able to turn within its own radius. Because the robot is
holonomic, a path can change direction within a cell and does not require a
large arc for turning. Since it is a point, when traversing between two diag-
onally adjacent cells, it is not necessary to consider the other cells sharing
the common corner as shown in Fig. 3.2. This is not as impractical as it may
appear at first glance. All real obstacles are expanded by half the radius of
the robot when marking which cells are obstructed, thus allowing the robot
to be treated as a point. This permits navigation of the center of the robot
along the side of an obstacle or diagonally between obstacles. In Fig. 3.2, the
actual obstacle is solid and the expansion is shaded.

Fig. 3.2. Diagonal traversal of cells

3.2.2 Genetic Algorithms

A genetic algorithm [30, 31] for optimization commonly represents a possible
solution as a binary string, called a chromosome. Numerous approaches have
been proposed for encoding paths as binary strings.

The GA begins with an initial population of chromosomes, or possible
solutions. The GA then creates new individuals using methods analogous to
biological evolution. The fitness of each chromosome is calculated using a fit-
ness function. The criteria for evaluation is domain specific information about
the relative merit of the chromosome. For example, in the case of path plan-
ning, the fitness function may calculate the time required or distance traveled
to move from the initial location to the goal. The fittest parents are chosen
to reproduce to create offspring. The offspring are generated by subjecting
the parent chromosomes to various genetic operators including crossover and
mutation.
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The crossover operator combines parts of two different chromosomes to
create two new ones. In single point crossover, the left part of a chromosome
is combined with the right part of another, and then the remaining two parts
of the originals are combined, thus, creating two new offspring. This type of
crossover produces two offspring of the same size as the parents as shown in
Fig. 3.3. The two sections can also be combined to form offspring of differing
sizes as shown in Fig. 3.4. The crossover point is usually randomly selected,
although it can be fixed for particular applications. Multiple point crossover
divides the chromosome into multiple strings which are recombined with those
of another chromosome. A fixed number of divisions can be specified for all
multiple point crossovers, or the number of partitions can be randomly set for
each pair of chromosomes being operated on. Additional crossover schemes
which utilize heuristics also exist, but add too much computational complexity
for this application. Not all chromosomes are subjected to crossover. The
crossover rate, γ, specifies the percentage of parent chromosomes involved in
the crossover.

Fig. 3.3. Crossover with same size offspring

Fig. 3.4. Crossover with different size offspring
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3.3 Motion Planning Algorithm

Several components can significantly affect the performance of a genetic algo-
rithm: encoding of the chromosome, initial population, genetic operators and
their control parameters, and fitness function.

3.3.1 Encoding the Chromosome

The first step is to choose a coding scheme which maps the path into a binary
string or chromosome. Emphasis is placed on minimizing the length of the bi-
nary string. Minimizing the length of the chromosome reduces the number of
generations necessary to produce an acceptable solution because less permu-
tations are possible. A variable length string composed of blocks which encode
the direction of movement and the length of the movement was chosen. Con-
sider the robot in the center cell as in Figure 3.5 (a) having just arrived from
cell 4 and facing in the direction of the arrow. There are eight possible direc-
tions for movement. However, cell 4 can be eliminated from consideration for
the next move since the robot came from that cell and returning to it would
create a non-optimal path. Cells 1, 2, 6, and 7 can be eliminated because they
could have been reached from cell 4 using a shorter distance than through the
center cell in which the robot curre.y is positioned. Only three cells remain
in consideration for possible movement. The three cells require only 2 bits to
encode as in Figure 3.5 (b).

Fig. 3.5. Possible movement to next cell

The largest number of cells that can be traversed in a square grid is found
by starting in a corner and moving as far as possible along a side or the
diagonal. Since the grid is constrained to 16 by 16 cells, the maximum number
of cells that can be traversed in a single move is 15 which requires 4 bits to
encode. As a result, each movement can be encoded in a 6-bit block as shown
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in Fig. 3.6. For larger n x n grids, the block size would be 2 + log2 n. A
chromosome composed of these 6-bit blocks contains not only the path, but
also the necessary trajectory information for movement of the robot. Thus,
this unique encoding provides both path planning and trajectory planning.

Fig. 3.6. Block encoding of one movement

3.3.2 Initial Population

The motion planning approach begins by randomly generating an initial pop-
ulation of chromosomes. In an effort to direct the solution to the shortest path,
another chromosome is added to the initial population. It represents a straight
line from the start to destination regardless of obstacles. If a straight line is
not possible due to grid locations, the closest approximation to a straight line
path is used. Through the testing of various combinations of variables, it was
found that a population size, p = 40, was sufficient to seed the chromosome
base while simultaneously minimizing computational complexity.

3.3.3 Genetic operators and parameters

The algorithm used single point crossover. The crossover rate, γ, which is the
percentage of parent chromosomes involved in the crossover, was selected as
0.8. The mutation rate, µ, or probability that a particular bit in the string is
inverted, was 0.02. These parameters were arrived at through experimentation.

3.3.4 Fitness function

Selection of a fitness function is a critical aspect of this research. Chromo-
somes are selected for reproduction through crossover and mutation based on
the fitness function. The value provided by the fitness function is then used to
retain the best members of the population for the next generation. Common
approaches to using GAs for path planning set the fitness to an unacceptable
value for any chromosome whose path traverses a grid cell with an obstacle
in it. Otherwise, the fitness is based upon the distance traveled in the path.
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However, this does not account for terrain conditions. In an effort to con-
sider adverse terrain conditions, each cell is assigned a value corresponding to
the difficulty in traversing its terrain. The difficulty in traversing a particu-
lar terrain is imprecise because it may vary from one instance to another. In
addition, it is problematical to compare different terrain conditions because
of the varied nature of each. Further difficulty in a assigning a precise terrain
difficulty exists because traversal of an cell in different directions can have
significantly different difficulty levels. For example, traversing a sandy hill
moving downhill, uphill, or across the side of the hill have dissimilar difficulty
levels. Because of the imprecision of terrain conditions and the problems in
directly comparing them, this research has chosen to express the terrain dif-
ficulty as fuzzy numbers. The terrain condition for each cell is expressed as a
triangular fuzzy number using the linguistic variables shown in Fig. 3.7. This
uniform distribution of fuzzy linguistic variables is common in fuzzy logic ap-
plications. The allotment of linguistic variables over the domain [0, 1] provides
equal coverage for each possible terrain condition. Experimental trials with
uneven distributions were conducted but they proved to be less effective in
the algorithm. Terrain conditions represent the difficulty in traversing the cell
which can be affected by conditions such as slope, sand, rocks, etc. As a re-
sult, the fitness function must be expanded for this research. For any path not
passing through an obstacle, the fitness function uses the Euclidean distance
between the centers of the cells traversed weighted by the terrain conditions
for each cell.

Very 
Difficult

Difficult Moderate Easy Very Easy

1

1

µ

0

0

Fig. 3.7. Fuzzy representation of terrain conditions
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3.3.5 Dynamic Environment

The fuzzy genetic motion planning method allows the robot to function in
a dynamic environment. If an obstacle is detected by the robot where it not
expected, the planner simply recalculates a new optimal path in real-time and
the robot can continue its movement.

3.4 Test Results

The test software was implemented using C++ and Saphira robot control
software by SRI International. It was tested first in the Saphira simulator
and, then, on a Pioneer 2-DX mobile robot. The Pioneer 2-DX is a holonomic
3-wheeled robot with a 250 mm radius. It is equipped with a suite of eight
sonar sensors arranged as shown in Fig. 3.8 and tactile bumpers. A predefined
map representing the environment as a grid was provided to the robot. For
clarity in presenting the test results, all results are shown for a 16 by 16
grid. This allows the demonstration of the algorithm’s functionality while
maintaining readability of the images. Testing has also been conducted using
much larger grids and quadtree representations of the environment.

-90

-50

-30 -10 10 30

50

90

500 mm

Fig. 3.8. Sonar sensor suite on Pioneer 2-DX robot

Figure 3.9 shows the path generated by the fuzzy GA method for a par-
ticular environment with no cells labeled with terrain difficulty values. The S
and D indicate the start and destination cells, respectively, of the robot, and
the black cells indicate solid obstacles. Manual examination confirms that this
is an optimal path. This solution required seven 6-bit blocks in the optimal
solution chromosome, including one to turn the robot to a starting orientation
before beginning movement.
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Next the labeling of terrain difficulty with fuzzy values was verified. The
shaded cells on the grid in Fig. 3.10 were labeled as having Moderate difficulty
to traverse. This had no effect on the generation of an optimal path, as should
be the case. The path generated was the same as in the first test without
difficulty labeling. However, when the labeling of the same area of difficulty
was changed to Difficult, a different path was produced by the fitness function
as shown in Fig. 3.11. When the Moderate area was enlarged as in Fig. 3.12,
the fitness function again detected an optimal path which avoided the larger
Moderate terrain area.

Fig. 3.9. Path generation with no terrain problems

A quadtree representation of the grid was also investigated for the same
environment. The quadtree representation and resulting path are shown in
Fig. 3.13. Tests demonstrate that an optimal path is also generated when
using a quadtree environment. The only adjustment to the method is inclusion
of a heuristic to decide to which cell to move in the event several exist when
moving from a large aggregate cell to one of several adjacent smaller ones as
shown in Fig. 3.14.

The system was also tested to determine its ability to respond in real-time.
Since it is impractical to test every possible configuration of the environment
grid, starting location, and destination, anecdotal evidence must be used.
When tested with a environment grid size of 1024 by 1024, the robot was able
to respond within 3 seconds for number of obstacle configurations. In a one
square kilometer environment, this corresponds to a cell resolution of less than
1.0 meters – less than twice the diameters of the Pioneer 2-DX robot. This
supports the efficacy of the real-time operation assertion for this approach.



58 Terrence P. Fries

Fig. 3.10. Path with Moderate area of difficulty

Fig. 3.11. Path with Difficult terrain area
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Fig. 3.12. Path with large area of Moderate difficulty

Fig. 3.13. Path using quadtree

?

Fig. 3.14. Movement decision for quadtrees
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Another concern was the ability of the robot to respond to changes in the
environment, such as a closed door, a person walking in the area, or some
other unexpected obstacle. The evolutionary navigation method provides a
mechanism by which if the onboard sensors detect an unexpected obstacle,
that cell or cells will be marked as occupied and a new path to the destination
will be calculated using the current position of the robot as the starting point.
In each test case, the robot was able to recalculate an optimal path from
its current position when one existed and within the aforementioned real-
time operation constraints. However, the approach only allows the robot to
respond to sensed obstacles and to unexpected changes in the terrain changes.
Response to terrain changes will require further research as discussed in Sect.
3.5.

3.5 Conclusions

This research presents a fuzzy genetic algorithm approach to motion plan-
ning for an autonomous mobile robot that performs in real-time without the
limitations of monotone paths. Varying terrain conditions are represented as
fuzzy values and are included in the path planning decision. The encoding of
the chromosome provides full motion planning capabilities and the method is
capable of operation in a dynamic environment. Further research directions
include the ability to observe and learn terrain conditions during movement
along the path.

This research has provided an approach that is preferable to many tra-
ditional path planning algorithms, such as those using search algorithms,
because it incorporates trajectory planning into the solution. Thus, once an
optimal path is discovered, the trajectory information is immediately available
for movement of the robot.

We have assumed perfect movement by the robot without accounting for
drift and slippage. Currently, localization is accomplished through dead reck-
oning. Additional research will incorporate localization to ensure the robot is
on the planned path and provide necessary adjustments to the motion plan.
Localization may include the addition of inertial and visual data. This re-
search has presented the algorithm using a very simplistic 16 x 16 grid for
purposes of demonstrating its functionality and clarity of the images. The ap-
proach has been successfully implemented using much larger grids and with
quadtree representations of the environment. It has also been assumed that
the terrain conditions are known a priori. Since this is not realistic in many
applications, further research directions include the ability to observe and
learn terrain conditions during movement along the path and to then adapt
when more difficult terrain is discovered along the planned path.
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Can the processes of natural evolution be mimicked to create robots or au-
tonomous agents? This question embodies the most fundamental goals of evo-
lutionary robotics (ER). ER is a field of research that explores the use of
artificial evolution and evolutionary computing for learning of control in au-
tonomous robots, and in autonomous agents in general.

In a typical ER experiment, robots, or more precisely their control systems,
are evolved to perform a given task in which they must interact dynamically
with their environment. Controllers compete in the environment and are se-
lected and propagated based on their ability (or fitness) to perform the desired
task. A key component of this process is the manner in which the fitness of
the evolving controllers is measured.

In ER, fitness is measured by a fitness function or objective function.
This function applies some given criteria to determine which robots or agents
are better at performing the task for which they are being evolved. Fitness
functions can introduce varying levels of a priori knowledge into evolving
populations. Some types of fitness functions encode the important features of
a known solution to a given task. Populations of controllers evolved using such
functions then reproduce these features and essentially evolve control systems
that duplicate an a priori known algorithm. In contrast to this, evolution can
also be performed using a fitness function that incorporates no knowledge of
how the particular task at hand is to be achieved. In these cases all selection is
based only on whether robots/agents succeed or fail to complete the task. Such
fitness functions are referred to as aggregate because they combine the benefit
or deficit of all actions a given agent performs into a single success/failure
term.

Fitness functions that select for specific solutions do not allow for funda-
mentally novel control learning. At best, these fitness functions perform some
degree of optimization, and provide a method for transferring known control
heuristics to robots. At some level, selection must be based on a degree of
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overall task completion independent of particular behaviors or task solution
features if true learning rather than simple optimization or transference is to
be achieved.

Aggregate fitness functions measure overall task completion. However, they
can suffer from an inability to produce non-random selection in nascent un-
evolved populations. If the task is too difficult, it is likely that none of the
randomly initialized controllers will be able to make any meaningful progress
toward completing the overall task.

This chapter investigates how aggregate fitness functions have been and
continue to be used in ER, what levels of success they have generated relative
to other fitness measurement methods, and how problems with them might
be overcome.

4.1 Introduction

A distinction can be made between what a robot does and how it does it.
That is, there is a difference between the task that a robot is to perform, and
the manner in which it performs or solves the task. For example, consider a
robot that is to be designed to move toward a light source (phototaxis). The
robots task is phototaxis, but there are many ways in which this task could
be performed. For instance, the robot might detect the light source, turn
toward it, and then move forward until it collides with the source. Another
solution might be for the robot to just wander around in its environment until
it detected a threshold magnitude of light indicating it was near the source,
at which point it would stop.

In general there are many solutions (of varying quality) to any given task.
Determining the relative qualities of different solutions is essential for con-
trol learning. In artificial evolution-based forms of learning, fitness functions
make this determination in an automatic or algorithmic way. The distinction
between task and task solution defines two broad classes of fitness functions,
namely behavioral fitness functions and aggregate fitness functions, and these
will be a central focus of discussion in the following sections of this chapter.

Most autonomous robot systems are currently programmed by hand to
perform their intended tasks. Learning to perform non-trivial tasks remains
a largely unsolved problem in autonomous robotics. Evolutionary robotics
approaches the problem of autonomous control learning through population-
based artificial evolution. ER methods bear a great deal of similarity to other
approaches to controller learning in autonomous robots. In particular, most
learning methods require an objective function, and although the discussion
in this chapter is focused on experimental work that involved population-
based learning, most of the issues related to fitness evaluation are directly
relevant to any autonomous system that is intended to learn basic control
or behavior in a dynamic environment. We should point out here that other
applications of machine learning in robots that are not aimed at learning the
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primary dynamic control of an agent, such as object recognition, mapping, or
trajectory tracking, are generally amenable to heuristic algorithmic methods,
or example-based gradient descent learning methods. These methods are not
directly applicable to systems intended to learn how to perform complex tasks
autonomously in dynamic environments.

To date, ER research has almost exclusively focused its attention on a
handful of benchmark robot behavioral tasks, including phototaxis, locomo-
tion and object avoidance, foraging, and goal homing. A large portion of this
research has used fitness functions that selected for particular task solution
elements that were known a priori to allow the task to be accomplished. Be-
cause of the simplicity of the tasks investigated, many of the fundamental
problems associated with using fitness functions that contain a priori task
solution information have not become apparent. If there are only a few near-
optimal solutions to a particular problem, it is less obvious that a particular
fitness function might have forced the evolution of some of the features of
a resulting solution. The focus on a few simple tasks has also downplayed
problems associated with the application of aggregate selection, to a degree.
If a task is simple enough, an aggregate fitness function is likely to be able
to drive evolution effectively starting from a randomly initialized population
with no special treatment.

An important unanswered question within the field of ER is whether the
methods used up to this point can be generalized to produce more sophisti-
cated truly non-trivial autonomous robot control systems. Successful evolution
of intelligent autonomous robot controllers is ultimately dependent on obtain-
ing suitable fitness functions that are capable of selecting for task competence
without specifying the low-level implementation details of those behaviors.

The remainder of this chapter is organized as follows: the rest of this sec-
tion provides a general summary of ER methodology and related terms, and
lays the foundation for discussion in later sections. In Sects. 4.2 and 4.3 we
very briefly review the field of ER research in general and then provide a
more in-depth review of ER work in which aggregate or nearly aggregate se-
lection mechanisms were used. In Sect. 4.4 we discuss methods for overcoming
difficulties associated with using aggregate fitness functions to evolve popula-
tions of mobile robot controllers for specific tasks. In Sect. 4.5 we provide an
overview of our own work, which investigated methods for overcoming difficul-
ties associated with aggregate selection in evolutionary robotics. In Sect. 4.6
we conclude the article with a discussion of the long-term prospects of using
artificial evolution to generate complex autonomous mobile robot controllers.

4.1.1 Evolutionary Robotics Process Overview

In a typical ER experiment, artificial evolution and genetic algorithms are used
to create robot or agent controllers able to perform some sort of autonomous
task or behavior. The artificial evolution process starts with a randomly ini-
tialized population of robot or agent controllers. Over a series of generations
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or trial evaluation periods robots compete against one another to perform a
given task. Robots that perform the task better are selected and their control
systems are duplicated and altered using operations inspired by natural mu-
tation and recombination. The altered controllers (the offspring) then replace
the controllers of the poorly performing robots in the population. This process
is iterated many times until a suitably fit controller arises.

It is possible to seed initial populations with controllers that are not ran-
domly configured. Such populations might come from a previous evolutionary
process (incremental evolution [1]), from a hand-directed training method
(clicker or breeder training [2]), or could have been initially configured by
some other means. However, such previously configured seed populations con-
tain biases, and these biases can have an effect on the course of later evolution.

4.1.2 Bias

Before entering into a description of types of fitness functions used in ER, it
makes sense to say a word or two about bias and sources of bias in evolving
systems.

In the most general sense, bias refers to a tendency of a given dynamic sys-
tem to develop toward a particular state. Bias in this context can be thought
of as a form of pressure acting to change or evolve a system toward a particular
quality or form. We use the terms primary and secondary bias.

Primary bias (or representation bias) describes any bias introduced due
to a systems fundamental representation. Tendencies or abilities of a system
due to the fundamental rules that describe the system (as in a simulation) are
forms of representation bias.

Secondary biases are those that are imposed on a given system from out-
side the system in a way that is not necessarily consistent with the underlying
representation of the system. Selection mechanisms in the form of fitness func-
tions in artificial evolutionary systems represent secondary biases. As a side
note we point out that selection mechanisms in natural evolution as observed
in life on Earth do in fact stem at some level from primary representation
bias, so in some sense there is no secondary bias in natural evolution. This
is not the case in artificial evolutionary systems that use explicit selection
mechanisms. Fitness functions in ER are imposed at a very high level and
cannot be reduced to be consistent with fundamental physical law.

4.1.3 Fitness Functions

The fitness function is at the heart of an evolutionary computing application.
It is responsible for determining which solutions (controllers in the case of
ER) within a population are better at solving the particular task at hand. For
optimization or classification applications, data sets and error minimization
fitness functions can be applied and have proved to be very powerful. But
these data sets and error minimization functions are not generally applicable
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to ER or intelligent control learning because the information required to for-
mulate them is equivalent to the information the system is intended to learn.
If one had in hand a functional specification of a given intelligent control al-
gorithm at the sensor/actuator level, it would make little sense to use this to
train an agent. A control program could be written directly from the specifi-
cation. For all but the most trivial intelligent autonomous control problems,
an appropriate mapping between sensor inputs and actuator outputs is not
known. Often only a description of the robots final state in its environment
is definable, hence this must be used to train the controllers. Standard meth-
ods of state space reinforcement learning (RL) such as Q-learning are also
not applicable to non-trivial autonomous intelligent control problems because
adequate discrete state spaces cannot be formulated. There has been some
work developing methods of converting continuous state spaces into discrete
state spaces, and to applying RL to continuous high dimensional systems,
but again, the information necessary to formulate these representations is in
general equivalent to the information needed to specify the desired control
algorithm.

In current research aimed at evolving populations of autonomous robot
controllers capable of performing complex tasks, the fitness function is almost
always the limiting factor in achievable controller quality. This limit is usually
manifested by a plateau in fitness in later generations, and indicates that the
fitness selection function is no longer able to detect fitness differences between
individuals in the evolving population.

As mentioned above, for purposes of discussion, will define two fundamen-
tal classes of fitness functions used in ER. These are behavioral and aggregate.
We will also define a class of fitness functions that represents a combination of
these two basic ones, taking elements from each. These will be called tailored
fitness functions and are representative of a general tendency of researchers
in this area to create hand-formulated fitness functions that select for many
features of control that they might believe will result in successful evolution
of controllers capable of performing a desired task.

Behavioral fitness functions are task-specific hand-formulated functions
that measure various aspects of what a robot is doing locally and how it is
doing it. These types of functions generally include several sub-functions or
terms that are combined into a weighted sum or product. Behavioral fitness
functions measure simple action-response behaviors, low-level sensor-actuator
mappings, or low-level actions the robot might perform. For example, if one
wished to evolve robots to move about an environment and avoid obstacles,
one might formulate a behavioral fitness function that includes a term in
the fitness selection function that is maximized if a robot turns when its
forward sensors are stimulated at close range. In this example robot controllers
will evolve to produce particular actuator outputs in response to particular
sensor inputs. Selection occurs for a behavior that the designer believes will
produce the effect of obstacle avoidance, but the robots are not evolving to
avoid objects per se, they are learning to turn when their forward sensors are
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stimulated. This is more specific than just selecting for robots that do not
collide with objects.

It is evident that if one does not have a basic understanding of how to
perform a particular task, a behavioral fitness function cannot be formulated.
But because many, if not all, tasks studied in ER to date are very simple,
researchers have been able to formulate behavioral fitness functions using their
own expertise and intuitions. For this reason behavioral fitness functions have
been used extensively up to this point in ER. Examples of the use of behavioral
fitness functions can be found in [3][4][5].

Some behavioral fitness functions are selective for a desired control feature,
rather than a precise sensor-to-actuator mapping. For example, if one wished
to evolve a robot controller that spent most of its time moving, one might
include a term in the fitness function that is maximized when forward motion
commands result in continued forward motion of the robot over time (if the
front of a robot were in contact with an immobile object, it would not move
forward regardless of its current actuator commands). This example term is
not selective for an exact sensor-to-actuator mapping. There are many other
formulations that could also produce the desired control feature. Hence, this
type of term does not require quite as much a priori knowledge of the exact
details of the control law to be learned.

For the evolution of non-trivial behaviors, selection using behavioral fit-
ness functions results mainly in the optimization of human-designed controller
strategies, as opposed to the evolution or learning of novel intelligent behav-
ior. Because the tasks studied so far in the field have been relatively simple,
and in many ways aimed at general proof of concept research, the reliance on
behavioral fitness functions has not been such an important issue. However,
it is safe to say that the groundwork in ER has been laid. It is possible to
train robot control systems to perform behavioral tasks that require them to
operate autonomously in dynamic environments.

Aggregate fitness functions select only for high-level success or failure to
complete a task. Selection is made without regard to how the task was actually
completed. This type of selection reduces injection of human bias into the
evolving system by aggregating the evaluation of benefit (or deficit) of all of
the robots behaviors into a single success/failure term. Evolution performed
with an aggregate fitness function is sometimes called all-in-one evaluation.
Until recently, aggregate fitness selection was largely dismissed by the ER
community. This is because initial populations of controllers can be expected
to have no detectable level of overall competence to perform non-trivial tasks
(i.e. they are sub-minimally competent). Pure aggregate selection produces no
selective pressure in sub-minimally competent populations at the beginning
of evolution and hence the process cannot get started (the bootstrap problem
[6]).

Even so, aggregate fitness selection in one form or another appears to be
necessary in order to generate complex controllers in the general case if one is
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to avoid injecting restrictive levels of human or designer bias into the resulting
evolved controllers.

Examples of aggregate fitness selection are found in [7][8][9]. Although
there are many examples of the use of pure behavioral fitness functions, and
some further examples of purely aggregating fitness functions, much of the ER
research actually uses some form of hybrid between behavioral and aggregate
selection. We will refer to these hybrid objective functions as tailored fitness
functions.

Tailored fitness functions contain behavior-measuring terms as well as ag-
gregate terms that measure some degree or aspect of task completion that is
divorced from any particular behavior. As an example, suppose a phototaxis
behavior is to be evolved. A possible fitness function might contain one term
that rewards the degree to which a robot turns toward the light source, and
another term that rewards a robot that arrives at the light source by any
means, regardless of the specific sensor-actuator behaviors used to perform
the task.

Unlike true aggregate fitness functions, aggregate terms in tailored fitness
functions may measure a degree of partial task completion in a way that injects
some level of a priori information into the evolving controller. For example,
in the phototaxis task, a tailored fitness function might contain a term that
provides a scaled value depending on how close the robot came to the light
source during testing. This may seem at first glance to be free of a priori
task solution knowledge or bias, but it contains the information that being
closer to the goal is inherently better. In an environment composed of many
walls and corridors, linear distance might not be a good measure of fitness of a
given robot controller. We use the term tailored to emphasize that these types
of fitness functions are task-specific hand-formulated functions that contain
various types of selection metrics, fitted by the designer to the given problem,
and often contain solution information implicitly or explicitly. Examples of
work using tailored fitness functions can be found in [10][11][12].

To conclude our discussion of fitness functions we mention two variant
methods of evolution that appear in ER. These are incremental evolution and
competitive evolution.

Incremental evolution begins the evolutionary process by selecting for a
simple ability upon which a more complex overall behavior can eventually
be built. Once the simple ability is evolved, the fitness function is altered or
augmented to select for a more complex behavior. This sequence of evolution
followed by fitness function augmentation continues until eventually the de-
sired final behavior is achieved. The overall process can be considered one of
explicit training for simple sub-behaviors followed by training for successively
more complex behaviors. In many ways this can be thought of as a serializa-
tion of a complex behavioral or tailored fitness function. The initial fitness
functions in incremental evolution can be tailored or behavioral, but the final
applied fitness function might be purely aggregate.
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Competitive evolution (competitive selection) utilizes direct competition
between members of an evolving population. Controllers in almost all ER
research compete in the sense that their calculated fitness levels are compared
during selection and propagation. However, in competitive evolution robot
controllers compete against one another within the same environment so that
the behavior of one robot directly influences the behavior, and therefore fitness
evaluation, of another.

A variant upon competitive evolution is co-competitive evolution in which
two separate populations (performing distinct tasks) compete against each
other within the same environment. Examples of co-competitive evolution
involving populations of predator and prey robots exist in the literature
[13][14][15]. Two co-evolving populations, if initialized simultaneously, stand a
good chance of promoting the evolution of more complex behaviors in one an-
other. As one population evolves greater skills, the other responds by evolving
reciprocally more competent behaviors. The research presented in [13][14][15]
shows this effect to a degree, but results from other areas of evolutionary
computing suggest that given the correct evolutionary conditions, pure aggre-
gate selection combined with intra-population competition can result in the
evolution of very competent systems [16][17].

4.2 Evolutionary Robotics So Far

The field of ER has been reviewed in several publications [18][19][20]. Much of
the research focuses on evolving controllers for simple tasks such as phototaxis
[21][22], object avoidance [23][24], simple forms of navigation [25][26], or low-
level actuator control for locomotion [5][27].

Although the evolutionary algorithms vary to a degree from work to work,
most of them fall within a general class of stochastic hill-climbing learning
algorithms. Unless otherwise stated, the research discussed below use some
form of evolutionary algorithm roughly equivalent to that which was outlined
in the introduction to this chapter. It is true that some algorithms may show
a two-fold (or even ten-fold) increase in training efficiency over others, but
so long as the search space and controller representation space are not over-
constrained it is the fitness function that finally determines the achievable
performance.

We consider mainly evolutionary robotics work that has been verified in
real robots. Physical verification in real robots forces researchers to use simu-
lations that are analogous to the physical world. Some subtleties of control are
contained within the robot-world interface and are easily overlooked [28][29].
In particular, adequate simulators must maintain a suitable representation of
the sensory-motor-world feedback loop in which robots alter their relation-
ship to the world by moving, and thus alter their own sensory view of the
world. Robotics work involving only simulation, without physical verification,
should not be considered fully validated. Much of the pure-simulation work
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falls into the category of artificial life (AL), and many of these simulation
environments include unrealistic representations or rely on sensors that report
unobtainable data or conceptual data. That said, learning in simulation with
transfer to real robots has been repeatedly demonstrated to be viable over the
last decade [8][30][31][32]. Much of this work has involved new physics- and
sensor-based simulators. The verification of evolved controllers in real robots
allows a clear distinction to be made between the large amount of work done
in the field of artificial life, and the similar, but physically grounded work
pursued in evolutionary robotics.

Early research efforts that might be considered precursors to evolutionary
robotics done in the late 1980s consisted of learning simple navigation abil-
ities in purely simulated agents [28][33]. In the first decade of evolutionary
robotics work (1990–2000), the field moved from an almost non-existent state
to become a field of research in which numerous projects produced real robots
relying entirely on evolved controllers for interaction with their environments.

Locomotion in combination with obstacle avoidance in legged robots has
been reported in several studies [1][5][23][7]. Filliat et al. [1] evolved locomotion
and object avoidance controllers for a hexapod robot using neural networks
composed of threshold neurons. Controllers were evolved in simulation and
transferred to real robots for testing. Jakobi et al. [5] described the use of
minimal simulation to evolve controllers for an eight-legged robot with sixteen
leg actuators. Kodjabachian et al. [23] describe the incremental evolution of
walking, object avoidance and chemotaxis in a simulated six-legged insectoid
robot. Hornby et al. [7] describe the evolution of ball chasing using an 18-DOF
quadruped robot.

Peg pushing behaviors were evolved in [6][34]. This task required robots
to push small cylinders toward a light source. In [35] Lee et al. investigated a
similar box-pushing behavior using Genetic Programming (GP).

Several examples of competition in the form of co-evolution of competing
species have been reported in the literature. Cliff and Miller investigated the
co-evolution of competing populations of predator and prey robots [15][36].
Similar works have been reported in [13][14][19].

Evolution of controllers using competition within a single population
(intra-population competition) is investigated in [32].

The most complex tasks addressed in the literature involve some form of
sequential action. Nolfi [37] reports on the evolution of a garbage collection
behavior in which a robot must pick up pegs in an arena and deposit them
outside the arena. Ziemke [38] studied the evolution of robot controllers for
a task in which a robot must collide with objects (collect them) in one zone
and avoid them in another. In [39] Floreano et al. report on the evolution of a
behavior in which robots move to a light and then back to a home zone.
Another example of evolving controllers for a relatively complex task is
reported in Tuci et al. [40]. Robot controllers evolved to produce lifetime
learning in order to predict the location of a goal object based on the position
of a light source.
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Flocking behaviors have also been investigated. Ashiru describes the evo-
lution of a simple robot flocking behavior in [41]. A robot coordination task
in which two robots evolve to move while maintaining mutual proximity is
reported by Quinn in [42]. Baldassarre et al. [43] evolved homogeneous con-
trollers for a task in which four robots must move together in a small group
toward a light or sound source. In [44] aggregation of small robots into a
larger structure is investigated and makes use of a relatively complex hand-
formulated fitness function.

In the early 2000s evolution of body and mind (morphology and controller)
was achieved using the innovation of elemental modular components that were
both amenable to simulation, and relatively easy to fabricate [8][30]. It must be
noted that these works have not produced significant advances in controller
complexity per se, but rather they have shown that evolution in simulated
environments can indeed be used to produce physically viable robot minds
and bodies.

It may still be the case that certain environments are beyond the ability
of modern methods to simulate for the purpose of evolutionary learning, but
this cannot now be considered to be the stumbling block that it once was. Nu-
merous experiments and systems have shown that the intuitively compelling
arguments supporting embodiment as a requirement for low-level learning en-
tertained by researchers in the late 1980s and early 1990s [29] are in fact not
correct [8][30][31][32]. The universe is by no means its own best simulation[28].

Recent years have also seen a significant methodological change related
to fitness function usage in the field. Aggregate fitness functions have been
used to reproduce many of the results first obtained using more complicated
hand-formulated fitness functions. Some earlier works, especially in the area of
incremental evolution, made the claim that the more complex forms of fitness
evaluation were necessary to achieve successful evolution of the behaviors
studied. This however has been shown not to be the case.

Although developing an experimental research platform capable of
supporting the evolutionary training of autonomous robots remains a non-
trivial task, many of the initial concerns and criticisms regarding embodi-
ment and transference from simulated to real robots have been addressed.
There are sufficient examples of evolutionary robotics research platforms
that have successfully demonstrated the production of working controllers
in real robots [13][21][22][24]. Also, there have been numerous examples of
successful evolution of controllers in simulation with transfer to real robots
[3][7][8][37][45][46][47].

One of the major achievements of the field of ER as a whole is that it
has demonstrated that sophisticated evolvable robot control structures (such
as neural networks) can be trained to produce functional behaviors in real
(embodied) autonomous robots. What has not been shown is that ER methods
can be extended to generate robot controllers capable of complex autonomous
behaviors. In particular, no ER work has yet shown that it is possible to evolve
complex controllers in the general case or for generalized tasks.
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Concerns related to fitness evaluation and fitness selection remain largely
unresolved. The majority of ER research presented in the literature employs
some form of hand-formulated, task-specific fitness selection function that
more or less defines how to achieve the intended task or behavior. The most
complex evolved behaviors to date consist of no more than three or four co-
ordinated fundamental sub-behaviors [37][31][32][39]. In [37], the fitness selec-
tion method used was relatively selective for an a priori known or pre-defined
solution. In [31][32][39] the fitness functions used for selection contained rela-
tively little a priori knowledge, and allowed evolution to proceed in a relatively
unbiased manner. This is an interesting contrast to much of the work aimed
at evolving simple homing or object avoidance behaviors, which in some cases
used complex fitness functions that heavily biased the evolved controllers
toward an a priori known solution.

4.3 Evolutionary Robotics and Aggregate Fitness

In this section we focus on evolutionary robotics research that has used ag-
gregate fitness functions.

Several robot actuator control tasks have been investigated using aggregate
or near-aggregate fitness functions. These include gait evolution in legged
robots [9][48][49][50], and flying lift generation in a flying robot [27]. Simple
actuator coordination tasks do not fall under the heading of environmentally
situated intelligent autonomous robot control and do not usually produce
complex reactions to environmental sensor stimuli. However, they do involve
the application of evolutionary computing methods to evolve novel control,
and are included in this section along with the other evolved autonomous
controller research.

In [7] the evolution of a ball-pushing behavior using an 18-DOF quadruped
robot (Sony AIBO) is described. The fitness function used can be considered
to be aggregate. The function measures the degree of success of moving the
ball simply by measuring the total distance that the ball was moved over the
course of an evaluation trial.

In [48] the authors use embodied evolution to develop gaits for a hexapod
robot. An aggregate fitness function was used that measured the distance
traveled by the robot while walking on a treadmill.

Both [8] and [30] described separate examples of systems in which whole
robots (bodied and controllers) were co-evolved in simulation and then con-
structed in the real world using modular actuators and structural units. In
both cases robots were evolved for locomotion abilities and fitness was calcu-
lated simply as the distance d traveled. This was a purely aggregate fitness
function and contained no other features of potential control solutions or of
possible robot morphologies.

Reference [9] reported on the embodied evolution of a locomotion behavior
in a robot relying on tactile sensors for object detection. The fitness function
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simply measured the arc-length distance traveled by the robot (as reported by
a swivel wheel and odometer attached to the robot) over a given evaluation
period.

In [27] embodied evolution was used to develop lift-generating motions in a
winged flying robot. A near aggregate fitness function was used that measured
height obtained by the robot at each time step.

In [51] an indoor floating robotic blimp equipped with a camera and placed
in a small room with bar-code-like markings on the walls was evolved to
produce motion and wall avoidance. An essentially aggregate fitness function
was used that averaged magnitude of velocity over each trial period.

Reference [52] described the evolution of morphology and control for mod-
ular robots constructed of Lego and servo units. Robots were evolved for
locomotion abilities in simulation and then constructed in the lab with real
hardware. A near-aggregate fitness function (the same as that used in [8] and
[30]) was used that measured total net locomotion distance over the course
of a trial period. Note that an initial settling period occurred before each
fitness-measuring period began. This was done to avoid selecting for robots
that moved merely by falling and this makes the fitness function technically
tailored, to a small degree.

Reference [49] presents another example of embodied evolution of gaits in
a physical robot. The robot was a pneumatic hexapod of minimalist design.
The authors used the same aggregate fitness function as did [48]. Distance
for the aggregate fitness function was determined using images taken from an
overhead camera.

Gait learning using a slightly different aggregate fitness function is given
in [50]. In this paper, a Sony AIBO quadruped robot was used, and again,
the evolutionary process was embodied in the real robot. Here fitness was
measured as average speed achieved by the robot.

4.4 Making Aggregate Selection Work

This section discusses methods for overcoming difficulties associated with
using aggregate fitness functions to evolve populations of mobile robot con-
trollers for specific tasks.

The foremost problem with aggregate selection is that it lacks selective
power early in evolution. One way to address this is to use a behavioral or
tailored fitness function to train robots to the point at which they have at least
the possibility of achieving a given complex task at some poor but detectable
level, and then to apply purely aggregate success/failure selection alone in the
later part of evolution, thus relaxing biases introduced by the initial fitness
function. The term bootstrap mode is used to refer to such an initial training
function.

It is not clear what legacy in the evolving population might be left by biases
introduced by an initial bootstrap mode fitness function. Once started down
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one path, innovation might be inhibited even if the initial biases are removed.
Also, designers still need to have some idea what kinds of fundamental abilities
are needed to allow the evolving controllers to have some chance at completing
the task. Even with these problems, the use of an initial bootstrap mode in
conjunction with later pure aggregate selection is a viable method for some
non-trivial tasks and will likely be studied a great deal in the coming years.

Using intra-population competition in conjunction with aggregate selec-
tion may also improve the quality of evolved controllers, at least for tasks
that are inherently competitive. Competitive fitness selection utilizes di-
rect competition between members of an evolving population. Controllers in
almost all ER research compete in the sense that their calculated fitness lev-
els are compared during selection and propagation. However, in competitive
evolution robot controllers compete against one another within the same en-
vironment so that the behavior of one robot directly influences the behavior,
and therefore fitness evaluation, of another. For example, in a competitive
goal-seeking task, one robot might keep another from performing its task by
pushing it away from the goal. Here, the second robot might have received a
higher fitness rating if it had not been obstructed by the first robot.

Intra-population competition presents a continually increasing task diffi-
culty to an evolving population of controllers and may be able to generate
controllers that have not been envisioned by human designers.

4.5 Aggregate Selection and Competition

In this section we provide an overview of our own ER research [32][46]. The
specific aim of the experiments reviewed here was to extend aggregate selection
using the methods discussed in the previous section.

We used aggregate selection with a minimal bootstrap mode in conjunction
with direct intra-population competition. The bootstrap mode was triggered
only when no controller in the current generation of the evolving population
showed any detectable ability to complete the overall task.

As in the majority of ER research, we used neural networks to control
our robots. Populations of neural network based controllers were evolved to
play a robot version of the competitive team game Capture the Flag. In this
game, there are two teams of mobile robots and two stationary goal objects.
All robots on one team and one of the goals are of one color (red). The other
team members and their goal are another color (green). In the game, robots of
each team must try to approach the other teams goal object while protecting
their own goal. The robot which first comes within a range of its opponents
goal wins the game for its team. Winning the game here is the task the robots
learn to solve. The game is played in maze worlds of varying configurations.

The competitive task, in the form of a game, allows for both simple and
complex strategies to arise. Although the simplest solution to this game task
that might succeed is to wander about the environment until the opponents
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goal is found, more complex strategies are more efficient. Such a simple strat-
egy will usually fail against a more competent opponent. The competitive
element of the evolutionary environment is needed to drive controllers to-
ward better solutions, and this is where our research differs from most other
research in the field. We employ direct competition during evaluation between
robots. This means that the actions of one robot can alter the fitness evalua-
tion of another directly. This also produces a changing fitness landscape over
the course of evolution (the Red Queen Effect [36]).

The neural networks are essentially blank slates at the beginning of evo-
lution. They are made up of randomly interconnected neurons with weighted
connections initialized using values from a random distribution and they con-
tain no information related to the task to be learned. In addition to learning
any game-specific behaviors, the robots must also learn all aspects of loco-
motion and navigation. The robot controllers relied solely on processed video
inputs for sensing their environment, and the best-performing neural net-
work controllers contained on the order of 100 neurons and 5000 connections.
Because of the very large number of sensor inputs, and the number of dif-
ferent types of objects the robots needed to learn to recognize (or at least
respond to), the actual task learned by the controller is in some ways much
more difficult than those studied in other related work.

The genetic representation of the neural controllers was a direct encoding
of the network weights and connection topology. This consisted of a matrix
of real-valued elements in which each element value represented a connection
weight, and the location of each element represented the position of that
connection in the overall network. The matrix also contained several additional
columns of formatted fields that specified neuron types and time delays.

During evolution, only mutation was used. Network weights, connectivity
and network topology were evolved. For the work discussed below, populations
of 40 individual controllers were evolved. The evolutionary conditions and
parameters are summarized in Table 4.1 below.

The physical robots used in this work were the EvBots [1][41]. The robots
were fully autonomous and performed all vision processing and control com-
putation on board. Figure 4.1 shows a photograph of two EvBots. Each robot
has been fitted with a colored shell. The shells were used in the Capture the
Flag game behavior and served to differentiate robots on different teams.

Testing of the robot controllers was performed in the reconfigurable CRIM
robot maze at the Center for Robots and Intelligent Machines at North
Carolina State University (Fig. 4.2). The controllers themselves were evolved
in a simulation environment coupled to the real robots and maze environment
at the sensor and actuator level [46].

Fitness for individual controllers was based on their performance in compe-
tition in tournaments of games. During each generation, a single tournament
of games was played. A bimodal training fitness selection function was used.
The fitness function has an initial bootstrap mode that accommodates sub-
minimally competent seed populations and a second mode that selects for
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Table 4.1. Environmental and experimental parameters used during evolution

Parameter Setting

Population size 40
Sensor inputs 150
Initial network size 60 neurons
Chance of adding or removing a neuron
(during mutation)

70%

Weight initialization range [-1 1], uniform distribution
Weight mutation magnitude [-1 1], uniform distribution
Weight mutation rate 25%
Initial feed forward connectivity 60%
Initial feedback connectivity 20%
Chance of adding or removing a connection
(during mutation)

70%

Elitism level (per generation) Single best from previous generation
Population replacement rate 50%
Generations (per evolution) 650

Fig. 4.1. EvBot robots fitted with colored shells

aggregate fitness based only on overall success or failure (winning or losing
games). The triggering of modes was decoupled from any explicit aspect of
the training environment or specific generation number and was related only
to the current behavior of the population.

The fitness function was applied in a relatively competitive form in which
controllers in the evolving population competed against one another to com-
plete their taskto win the game. In a given generation, if any robot controller
was able to complete the task, then all information from the bootstrap mode
was discarded for all the robots regardless of their individual performances
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Fig. 4.2. Robots in the CRIM testing maze

and selection for the whole population was conducted with purely win/lose
information.

Formally, fitness F (p) of an individual p in the population P at each
generation was calculated by:

F (p) = Fmode1(p) ⊕ Fmode2(p) (4.1)

where Fmode1 is the initial minimal-competence bootstrap mode and Fmode2 is
the purely aggregate success/failure-based mode. Here ⊕ indicates exclusive-
or, dependent on Fmode2 : if the aggregate modes value is non-zero, it is used
and any value from Fmode1 is discarded. Otherwise fitness is based on the
output of Fmode1 . Fmode1 is formulated to return negative values and returns
0 when maximized or if Fmode2 is active. Fmode2 in contrast returns positive
values based on number of game-wins, if any, and this allows for a simple
mechanism to track which mode is active at any generation over the course
of evolution.

The minimal competence bootstrap mode selects for the ability to travel
a distance D through the competition maze environment. The general form
of mode 1 is as follows:

Fmode1(p) = Fdist − s − m (4.2)

where Fdist calculates a penalty proportional to the difference between dis-
tance d traveled by the best robot on a team, and the minimal competence
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distance D, which is defined as half the length of the training environments
greatest dimension. In (4.2), s and m are penalty constants applied when
robots on a team become immobilized or stuck (by any means), or when
controllers produce actuator output commands that exceed the range of the
actuators (the wheel motors) respectively.

The rationale for this particular bootstrap mode is that if a robot can
navigate at least partway through a given environment without becoming
ensnared on walls, other robots, or other obstacles, then it has some chance
of running across its quarry (i.e. the opponent goal).

The second mode of the fitness function Fmode2 is classified as aggregate
because it produces fitness based only on success or failure of the controllers
to complete the overall task (i.e. winning the game by finding and touching
the opponents goal first). The formulation of the success/failure mode of the
fitness function is determined by the competitive nature of the training algo-
rithm. In each generation, a tournament of games involving all the individuals
in the population was conducted. Each individual played two games against
another member of the population (the opponent). Note that the opponent
was selected at random from the previous generation of the population at the
beginning of each tournament and all controllers competed against that one
robot. The reason for this was to reduce the stochastic differences during eval-
uation introduced by the environment and random opponent selection. The
possible outcomes of these games incurred different levels of fitness and are
summarized in Table 4.2 below.

Table 4.2. Fitness points awarded by the aggregate success/failure mode Fmode2 ,
for pairs of reciprocal games during a generational tournament

Game Pair Outcomes Fitness Points Awarded

win-win 3
win-draw 1
win-lose 0.5

Note that in cases where no win occurs during the entire tournament
Fmode1 is used to determine negative fitness values.

Over the course of a typical controller evolution run, the fitness function
started using purely bootstrap mode, progressed to using a mixture of boot-
strap and aggregate, and then in the later parts of evolution relied exclusively
on pure aggregate selection. Figure 4.3 shows fitness values and number of
games won per generation over the course of an evolutionary run. The active
mode of the fitness function used during each generation is indicated at the
top of the figure. No controller in the population was able to win a game
before the 60th generation of training. With a population size of 40 (a typical
size for this research) this would represent about 4000 games and indicates
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that the initial and early forms of the population have virtually no ability to
complete the overall task and that use of the aggregate fitness mode alone
would indeed fail. Between the 60th and 160th generations the fitness function
oscillates between the two modes, relying more heavily on the pure aggregate
mode as evolution continues. After the 160th generation the bootstrap mode
is not invoked again, and selection is based completely on aggregate selection.
Note that the differing fitness values correspond to the fitness values listed in
Table 4.2 when the aggregate mode is active. In addition, note that the incre-
mental climb in fitness in the first 60 generations when fitness is dominated
by the bootstrap mode is typical of ER trainings in which a behavioral fitness
function is used. Further, as the aggregate fitness mode becomes dominant,
absolute fitness becomes less of an indicator of population refinement. Since
the high score is 3 points, any generation that has a controller that can win
two games it plays will have this as the best fitness.

Fig. 4.3. Fitness of best individual and number of wins per generation are shown
over the course of evolution for an evolving population. Modes of fitness function
operation are also indicated

Over the course of evolution the robots learned how to navigate and
locate goals. They could differentiate between the different types of objects in
their environment as judged by their different responses to these. The robot
controller also evolved some temporal behaviors, but relied mainly on reactive
control.
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The results shown in Fig. 4.3 summarize data collected over a particular
evolutionary training session. A series of such evolutions were performed, and
produced generally similar results, but due to very long simulation times (on
the order of three weeks of computation time on a 3.2 GHz X86 class dual
processor machine) no statistically significant data summarizing a putative
general case were generated.

Example games played with evolved controllers are shown in Fig. 4.4. The
first panel shows a screen shot of the simulation environment while the second
panel shows a view of the physical maze environment and the real robots taken
with an overhead video camera. In both of the example games the robots are
shown in their final positions at the end of the games. The paths taken by the
robots are indicated by lines superimposed on the images.

Fig. 4.4. Games played with robots using evolved controllers in simulated and real
environments

The game sequences of Fig. 4.4 demonstrate that controllers have evolved
some degree game-playing behavior. Because a relatively competitive fitness
selection metric was used to drive the evolutionary process, the absolute qual-
ity of the robot controllers is not known. To address this, after the evolutionary
training process was complete, the final evolved controllers were tested against
a hand-coded knowledge-based controller of well-defined abilities.

The hand-coded controller was not used in any way during the training of
the neural network-based controllers. As far as the evolved controllers were
concerned, the rule-based controller was a novel controller not seen during
training. In addition, the post-training games were played in a maze con-
figuration not used during training in order to rule out the possibility that
the controllers memorized a particular maze topology as part of their learned
strategies.
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In order to obtain a reliable result a series of 240 games between the rule-
based controller and the best trained neural network controller was conducted
in an environment similar to the ones shown in Fig. 4.4. Each game during
the tournament was initialized with a new randomly generated set of starting
positions for robots and goals. Figure 4.5 shows the results of this tournament.
The best-evolved neural controller won 108 games, the knowledge-based con-
troller won 103 games, and 29 games were played to a draw.

Fig. 4.5. Bar graphs displaying evolved controller and knowledge-based controller
competition data collected during a tournament of 240 randomly initialized games.
Data are shown with 95% confidence intervals

The data do not show that the evolved controllers were significantly better
than the hand-coded controller. Even with the large number of games played,
the total number of wins for each type of controller overlapped within 95%
confidence intervals. The evolved controllers played competitively with the
hand-written controllers, though, and this result is statistically significant.

In marked contrast to the knowledge-based controllers, the neural network-
based controllers displayed complex trajectories that were extremely difficult
to predict exactly. Although it may be possible to qualitatively analyze the
evolved controller behaviors to a degree, such analysis is not at all necessary
to the evolutionary process. Competition alone during evolution was respon-
sible for driving the complexity of the controllers to a level at which they
could compete the hand-coded controller. Human knowledge was required to
formulate the minimal competence mode of the fitness function, but this only
selected for minimal navigation abilities.

The work discussed above used a bootstrap selection mode early in evo-
lution before transitioning to an aggregate mode. This raises the question of
how these experiments compare to similar work that used only purely ag-
gregate selection from the beginning. For comparison, we attempted to use
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purely aggregate selection without the initial bootstrap mode. For our partic-
ular competitive game, purely aggregate selection was not able to drive the
evolution of fit controllers (data not shown). However, in [53], carefully struc-
tured environmental-incremental evolution, in which the environment used
during training was made progressively more difficult, did produce competent
controllers in a simulated experiment. The task in [53] required robots to find
and pick up objects in an arena, and then deposit them outside the arena.
The majority of the other evolutionary robotics work reported in the litera-
ture that used purely aggregate fitness functions evolved simple locomotion
behaviors and is not directly comparable to more complex tasks.

In [16] networks for playing Checkers were evolved to the near-expert
level (able to beat 95% of human players) using a purely aggregate se-
lection scheme. This was a non-robotic task, and the game of Checkers
lacks the dynamic sensor-motor-environment feedback loops characteristic of
autonomous robotic systems, but the work demonstrated that it is possible
to evolve very competent systems for difficult tasks.

4.6 Conclusion

We conclude the chapter with a discussion of the long-term prospects of
using artificial evolution to generate highly complex autonomous mobile ro-
bot controllers. In spite of recent advances in ER, there remain fundamental
unsolved problems in the field that prevent its application to many non-trivial
real-world problems.

Although the field of evolutionary robotics has expanded and developed
greatly in the past decade, in some sense no substantive improvement in overall
controller sophistication has been achieved during this time. This is in spite of
continued advances in computer speeds, availability of robot platforms, and
efficiency of algorithms.

We hypothesize that the lack of improvement in the field of ER is fun-
damentally a result of an inability to formulate effective fitness functions for
non-trivial tasks. For complex tasks, behavioral fitness functions must contain
more and more features of a known solution. In effect, the fitness function
becomes a recipe for evolving a solution containing mainly a priori known
features and more or less defines all of the major features of the evolved
solutions.

We believe that aggregate selection must be used in one form or another to
achieve complex behaviors that are not known by researchers and developers
a priori, and this is crucial for the application of ER to sophisticated robot
learning in dynamic uncharacterized environments. This is not just a problem
for ER, but affects any form of learning in uncharacterized environments that
require some form of feedback to drive the learning process.

The work in [16] and also in [17] use aggregate selection to generate very
competent systems for playing the games of Checkers and Go respectively.
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However, the current robotics work has not reached these levels of profi-
ciency. Evolution conducted with one or more carefully formulated bootstrap
modes, followed by aggregate selection performed in a fidelity training en-
vironment with adequate computing power will very probably be able to
generate controllers an order of magnitude more complex than the current
standard fitness evaluation methods in ER. But this is in no way a general so-
lution to autonomous control learning. Controllers created using most current
ER methods might be capable of performing one or two distinct elemental
tasks, and the most sophisticated controllers evolved perform no more than
five or six coordinated elemental tasks. An order of magnitude improvement
would not represent a significant improvement over current non-learning-based
autonomous robot controllers, although it would allow ER methods to at least
be competitive with other state-of-the-art autonomous robot control design
methods.

Intra-population competition during fitness evaluation, in combination
with aggregate or near-aggregate selection, can produce controllers of sig-
nificant complexity, but many if not most tasks of interest cannot be reduced
to a purely competitive form in which one robots behavior directly impinges
upon the behavior (and thus the fitness) of another co-evolving robot. This
direct intra-population competition within the robots testing environment is
essential in order to drive evolution to produce sophisticated agents, at least
if it is applied as in the experiments discussed in this chapter. So again, we do
not yet have a tool that can provide generalized learning for most non-trivial
problems.

A second and more esoteric problem with aggregate selection, as well as
other selection mechanisms in artificial evolving systems, is that they impose
a particularly high-level of task bias on the evolving agents in a way that
cannot be related to natural evolutionary processes. This is not to say that
every aspect of natural evolution must be duplicated in artificial evolution
systems, but because the natural development of life on Earth appears to be
our only example of truly complex agents arising from lifeless origins, it is
unclear which aspects of natural evolution are essential, and which are merely
artifacts of life as it developed on Earth.

Artificial evolution when applied to autonomous robots attempts to evolve
abilities to perform specific tasks. In natural systems, there is no particular
fundamental bias toward any particular functionality. This is an important
and perhaps subtle difference between natural and artificial evolution. Nat-
ural evolution does not evolve creatures with specific abilities per se. Nature
used (uses) exactly the same fundamental driving selection force to evolve, for
example, trees as it did to evolve birds. The underlying bias toward particular
functionality (i.e. photosynthesizing or flying) in natural systems is very low.
Further, all forms of bias seen in nature are reducible to fundamental phys-
ical law (even if this reduction is beyond our abilities to elucidate). Because
representation (i.e. the physical universe) and selection pressure in nature are
consistent, fundamental bias is very low, yet complexity can be represented.
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It is possible that in order for anything approaching life-like abilities to arise,
all forms of selection bias must be kept at extremely low levels, and must be
consistent with fundamental representation. This places into question whether
it is possible to evolve agents for particular predefined tasks in general.

There are no artificial evolutionary systems in which selection and repre-
sentation are fully consistent. Currently, all artificial life systems, including
all evolutionary robotics systems, that have shown any signs of developing
autonomous capabilities use some form of fitness evolution that is imposed on
the evolving systems. Self-organizing systems such as cellular automata have
been studied, and these perhaps do not suffer from secondary biases, but
no such system has been shown to have the potential to generate intelligent
interactive behaviors that are necessary for autonomous robotic systems that
are intended to operate in dynamic environments.

Acknowledgment: The authors would like to thank Brenae Bailey for
editorial assistance and insightful input related to this work.
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In this chapter, an approach to real-time landmark recognition and simultane-
ous classifier design for mobile robotics is introduced. The approach is based
on the recently developed evolving fuzzy systems (EFS) method [1], which is
based on subtractive clustering method [2] and its on-line evolving extension
called eClustering [1]. When the robot travels in an unknown environment,
the landmarks are automatically deteced and labelled by the EFS-based self-
organizing classifier (eClass) in real-time. It makes fully autonomous and unsu-
pervised joint landmark detection and recognition without using the absolute
coordinates (altitude or longitude), without a communication link or any pre-
training. The proposed algorithm is recursive, non-iterative, incremental and
thus computationally light and suitable for real-time applications. Experi-
ments carried out in an indoor environment (an office located at InfoLab21,
Lancaster University, Lancaster, UK) using a Pioneer3 DX mobile robotic
platform equipped with sonar and motion sensors are introduced as a case
study. Several ways to use the algorithm are suggested. Further investiga-
tions will be directed towards development of a cooperative scheme, tests in
a realistic outdoor environment, and in the presence of moving obstacles.

5.1 Introduction

Classification has been applied to pattern recognition problems including land-
mark detection for quite a few years [6],[22]. Most of the approaches however,
process the data off-line in a batch mode to generate and train the classifier.
Afterwards, the trained model can be applied to new data inputs fed online.
The underlying assumption is that the statistical characteristics of the valida-
tion data set are similar to that of the training data set, so that the validation
can be made on different data set in off-line mode. The disadvantage of such a
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scheme is that changes in the data pattern or unexpected data are not taken
into account by an off-line trained classifier [6].

In the task of landmark recognition, however, it is vitally important to
have the ability to adapt the classifier to new data patterns so the robots can
work in the unpredictable and changing environment.

Some adaptive classifiers have been reported in the literature that are
based on estimation using Bayes’ theory [7] or the heuristic random search
using genetic/evolutionary algorithms [8]. The adaptation in the stochastic
classifiers [7], however, concern only the statistical properties of the data and
not the structure of the classifier. The evolutionary classifiers [8], however, are
computationally expensive, and operate over a population of candidate solu-
tions applying so-called ‘crossover’, ‘mutation’ operations and ‘reproduction’,
thus are prohibitive for real-time applications. In addition, both groups of ap-
proaches include supervision. It is well known that classification, by definition,
assumes supervision/labeling of the classes [6], which is a serious obstacle in
designing autonomous and flexible adaptive systems.

Alternatively one can use the self-organizing maps (SOM), introduced orig-
inally by T. Kohonen in 1987 for unsupervised learning (clustering)[13]. They
are computationally less expensive and have been developed further into evolv-
ing SOM (eSOM) with clusters that ‘evolve’ [14]. However, eSOM, as well as a
number of other evolving and self-organizing neural networks such as growing
cell structures [15], adaptive resonance theory [16], generalized growing and
pruning radial-basis function networks [17], evolving fuzzy neural networks
[11], dynamic evolving neuro-fuzzy inference systems [18], resource allocation
networks [19] do not take data density into account. The result is that they
tend to generate too many clusters, some of which usually have negative effect
on the performance. Thus, pruning is necessary which reduces the quality of
the fuzzy rule-based classifier. All these approaches are not prototype-based
in the data space. Instead of locating on real points, the centre of the clusters
are usually located at the points, such as the mean or the points that result
from an adaption. Additional disadvantage of these approaches is that new
data point is compared to the cluster centers only, as the computing resource
are limited for real-time applications which precludes memorizing the data
history.

A new approach to real-time data clustering was proposed recently [1]
which is developed from the well known subtractive clustering [2] and Moun-
tain clustering approaches [3]. This method is fully unsupervised in the sense
that the number of clusters is also not pre-defined but determined based on
the data spatial distribution in the feature space. This approach [1],which
is called evolving Clustering (eClustering), has been used for real-time data
partitioning and was combined with an extended version of the recursive least
squares estimation for real-time generation of Takagi-Sugeno type fuzzy rules
from data [4].

In this chapter, the concept of data density measured by its “poten-
tial” used in subtractive and eClustering is applied as a basis for landmark
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recognition in mobile robotics. An alternative formula for potential (data spa-
tial proximity) calculation is introduced in the chapter that is using the con-
cept of participatory learning [20]. The data points with low potential are
treated as ‘landmarks’ in exploring a new environment by a mobile robot due
to their specific/outstanding position in the feature space. In the experiment
settings, only on-board sensors and computational device are used, with no
pre-training, pre-installed knowledge, nor external communication or exter-
nally linked device, such as GPS.

Real-time data are classified into automatically labeled classes associated
to the landmarks, or into a default class corresponding to the normal rou-
tine behavior. The number of classes respectively the landmarks is not pre-
specified. Instead it starts evolving ‘from scratch’ with the very first landmark
detected while exploring unknown environment. The EFS-based classifier pro-
posed in this paper, namely eClass, is formed by real-time detection and
labeling of landmarks. eClass is then used to classify the data produced by the
sonar and motion sensors mounted on a mobile robotic platform Pioneer3-DX
in real-time. In the experiment carried out in an indoor office environment
(office B-69, InfoLab21, South Drive, Lancaster, UK) a robot performed ‘wall
following’ behavior [9] exploring the unknown environment. The landmarks
in the empty office are associated with the corners of that office. Each cor-
ner differs by its type (convex or concave) and relative position. The results
illustrate the superiority of the proposed approach in terms of computational
efficiency, precision and flexibility, when comparing with the other approaches
applied to similar settings.

Future investigations will be directed towards development of a co-operative
scheme, tests in a realistic outdoor environment, and with moving obstacles.

5.2 Landmark Recognition in Mobile Robotics

The sensors installed on a robot, such as sonar, laser, motion controller, etc,
generate a stream of data sampled with certain rate. When the robot travels
in a previously unseen environment, it collects information about this new
environment. This data includes both a ‘routine’ stream of data and some
interesting new patterns. ‘Novelty detection’, namely the ability to differenti-
ate between existing (common sensory) data patterns and new data patterns
is a very useful competence for mobile robots exploring real dynamic envi-
ronments. With such ability, the robot is able to identify the characteristics
of the environment which differ from the contextual background. The specific
characteristics of the environment are then used as ‘landmarks’.

In self-localization, adaptive navigation and route planning applications
of autonomous robots, landmarks are used as the key reference points when
performing tasks in the unknown environment. Therefore, the ability to auto-
matically detect, label, identify and use landmarks based on the environment
is vital.
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At the same time, the computational resources available to autonomous
mobile robots are often limited, due to the cost and size of the robots. As
large amount of online sensory data are required to be processed in real-time,
a recursive algorithms are highly desirable that are able to cope with the
challenge of limited memory and time. As there are growing demand for agile
compact autonomous devices, this becomes more critical due to restrictive
requirements on computation and energy.

‘eClass’, the evolving fuzzy system-based classifier that is described in this
chapter, is an efficient solution that is addressing the problem of real-time
novelty detection and landmark recognition, and simultaneous classifier gen-
eration. It requires very low computational resource in terms of both memory
and processing time due to its recursive, one pass, and non-iterative feature.
On the other hand, the algorithm requires no pre-training. No human in-
tervention is required, which enables the learning procedure to starts ‘from
scratch’ fully automatic. These features of eClass make it suitable for real-time
applications.

5.3 Evolving Fuzzy Rule-Based Classifier (eClass)

In the following section, the suggested evolving classifier, eClass is introduced
in detail, from its mechanism of classification and evolution, to the struc-
ture and procedure in application to landmark recognition. The summarized
pseudo code of eClass is also given in later part of the section.

As the name suggests, the formation and number of the classes generated
by eClass are not pre-defined and gradually evolve in real time with data
input in time series. Class labels are automatically assigned with alphabetic
symbols(‘A’,‘B’,‘C’...) when a class is generated. eClass starts with a default
class labelled ‘@’ corresponding to the normal routine behavior and empty
rule-base. The routine behaviors are usually motions of the robot to keep
straight headings and constant distance to the reference objects defined by
the route planning algorithm, such as object-follow, wall-follow, space-follow,
etc. In the algorithm used for landmark recognition, all the data are described
as the routine/normal behavior unless a landmark is detected.

The data is read incrementally sample by sample in real-time. Each data
sample is described by a vector representing a data point in the multi-
dimensional feature space, xk =

[
x1

k, x2
k, ..., xn

k

]T , data in each dimension
represents readings from one sensor device, where k is the current time in-
stant. Normalization is required on each dimension to set data range between
[0, 1], which ensures that the information from different devices will be equally
treated. For the mobile robotic application considered in this chapter, the n-
dimensional data vector includes the sensor readings that are available at
given time instant k. For example, rotation, and the distance to the nearest
obstacle, etc. The time instant k (k=1,2,3,...) is used to represent the current
moment of time. In a real-time application, the time series is open-ended. The
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algorithm processes the inputs and then gets the next inputs and stops only
when an external stop condition is reached.

5.3.1 The Informative Data Density and Proximity Measure

eClass, similarly to eClustering, is based on the concept of ‘potential ’, which
represents a data spatial density measurements [1]. This concept originates
from the mountain function [3] which later has been modified into potential in
the subtractive clustering method [2]. Gaussian exponential is used to describe
the potential in subtractive clustering while a computationally simpler Cauchy
function and the so-called scatter are used in [5]. An alternative formula that
combines the concept of participatory learning, proposed by Yager [3], and
the concept of scatter can be given by:

Pk = P (xk) = 1 −

k−1∑

i=1

‖xi − xk‖2

n(k − 1)
(5.1)

where Pk denotes the potential of the kth data point xk; ‖.‖ denotes the
Euclidean distance; n denotes the number of dimensions.

The potential formulated in this way represents a measurement of the
compatibility of the information brought in by new inputs compared with
the existing information. The measurement is mapped into the data space
as inverse of the normalized accumulated Euclidean distances between new
sensor readings and all previous sensor readings, which included density in-
formation in the data space. Taking spatial density-related information in to
account makes the difference between eClass/eClustering and other classifica-
tion/clustering approaches used for data space partitioning in self-organized
neuro-fuzzy models.

Please note that the original form of potential calculation 5.1 is only suit-
able for off-line (batch) calculation as it requires memorizing all previous
sensor readings for summation to determine the density. In order to be ac-
commodated in a real-time algorithm, a recursive version of 5.1 which avoids
memorizing the data history is demanded. The explicit form of the projections
of the squared distances on axes [0;xj) from 5.1 can be derived as:

Pk = 1 −

k−1∑

i=1

n∑

j=1

{(
xj

k

)2

− 2xj
kxj

i +
(
xj

i

)2
}

n(k − 1)
(5.2)

By reorganizing 5.2 we get:

Pk = 1 −
(k − 1)

n∑

j=1

(
xj

k

)2

− 2
n∑

j=1

xj
k

k−1∑

i=1

xj
i +

k−1∑

i=1

n∑

j=1

(
xj

i

)2

n(k − 1)
(5.3)
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Assume the following notations are used:

ak =
n∑

j=1

(xj
k)2; bk =

k−1∑

i=1

n∑

j=1

(xj
i )

2; ck =
n∑

j=1

xj
kf j

k ; f j
k =

k−1∑

i=1

xj
i (5.4)

The original potential formula is transformed into the recursive formula:

Pk = 1 − ak(k − 1) − 2ck + bk

n(k − 1)
(5.5)

Values ak and ck represent accumulated projections on each dimension of
the cartesian data space [0;xj) and can be calculated only requiring the
current data point xk (current sensor readings) are available. The values
bk and f j

k require accumulation of past information. To recursively update
the accumulation, two auxiliary variables scaler bk−1 and vector column
fk =

[
f1

k , f2
k , ..., fn

k

]T are used:

bk = bk−1 + ak−1; b0 = 0 (5.6)

f j
k = f j

k−1 + xj
k−1; f

j
0 = 0 (5.7)

Then, using 5.4-5.7, the potential (data spatial density) can be calculated
by using only the current data sample with the two recursively updated aux-
iliary variables (bk and f j

k), therefore, it is unnecessary to store the historical
data any more. This recursively calculated potential keeps the information of
spatial data density regarding the whole previous history in the data space
without storing the history of the data in the memory. Mean while, it also
avoids the computation time for processing the big and growing amount of
history data, which means a short response time in real-time. This feature
makes the proposed algorithm efficient (computationally light) in both speed
and storage and enables it to be a strong candidate for real-time applications.

5.3.2 Landmark Classifier Generation and Evolution

When a robot travels into a new environment, the combination of the readings
from selected sensor devices are different to those which are generated from
the known environment or when performing the routine behaviors. Ideally,
when the vector containing these readings is plotted in the data space, the
accumulated distance to all existing data points will be large, which means
the point is far away from the existing points. Therefore, according to formula
5.1, the potential of this newcoming point will be low.

The data points with distinctively low potential can be a candidate repre-
sentative of a landmark. Thus, in the algorithm, low value of potential indi-
cates a possible demand to introduce a new landmark:

Pk < P (5.8)
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where P is a positive threshold. If the value of this threshold is set too high,
the condition to be “distinctively low” become looser, therefore, too many
landmarks will be generated, some of them are actually routine behavior;
contrarily, if the value of the threshold is too low, the condition become more
restrictive, and consequently, some landmarks can be incorrectly classified into
routine behavior. Instead of arbitrarily set the threshold, it is possible to use
the minimum potential of focal points (prototype class centre) of the classes
as the threshold.

In the process cycle of the algorithm, the very first data point that satisfies
equation 5.8 is assumed to be the first landmark and is automatically assigned
with label ‘A’:

x∗1 ← xk when Pk < P (5.9)

A fuzzy rule is generated when the class is formed. The antecedent part of the
fuzzy rule is formed around the prototype class centre, and the consequence
is defined as crisp (non-fuzzy) class:

R1 : IF (x1
k is around x1

∗1, AND x2
k is around x2

∗1,

. . . , AND xn
k is around xn

∗1
THEN (Class is ′A′) (5.10)

Instead of using the points get from calculation, such as mean of supporting
points, we use real point (prototype) as class centre. The reason is that, it
may not be possible for the points from calculation to exist in the real world,
and then, the corresponding rules will lose linguistical interpretability.

The algorithm continues reading the next data point and calculating its
potential. New classes are formed based on verifying the potential.

A situation may occur when several landmark candidates are with low
potential, some of them are very close to the existing class centers in the data
space. Ambiguity should be avoided in the selection of class representing a
landmark. There should be no indistinguishable, ambiguous landmarks, so
called ‘perceptual aliasing’ [12]. Therefore, additional condition that candi-
date landmarks should not be in the vicinity of any existing class centers is
introduced in addition to the threshold formula 5.8:

‖x∗i − xk‖ > r/2; i = 1, 2, . . . , N ; k = 1, 2, . . . (5.11)

where x∗i denotes ith class center (landmark); N is the total number of
classes (landmark). The parameter r is a threshold that determines the zone of
influence of a specific landmark centered at the class focal point.

During the stage of landmark candidate verification to the new data point,
both conditions 5.8 and 5.11 are tested. If both conditions are satisfied, which
means the new data point is with low potential and not close to any existing
landmark, a new landmark is detected and a new class is labeled with the
next symbol(character), this data point becomes the center of the class:

x∗i+1 ← xk when ‖x∗i − xk‖ > r/2 and Pk < P (5.12)
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If condition 5.8 is satisfied while condition 5.11 is violated, which means the
new data point with low potential is close enough to an existing class center,
it replaces the nearest landmark:

x∗i ← xk when ‖x∗i − xk‖ ≤ r/2 and Pk < P (5.13)

In this way, an EFS-based classifier is generated in real-time with a recur-
sive, non-iterative, incremental (one pass) algorithm that is based on the data
spatial density (potential).

5.3.3 Landmark Recognition (real-time classification)

At each time instant, when the inputs sensor readings are processed, classifi-
cation for landmark recognition and the generation and evolution of classifier
are taking place in the same cycle simultaneously.

For the particular application of exploring an unknown environment by a
mobile robot, two general states are usually defined:

1. Normal routine operation,including ‘wall following’, ‘random walk’ or
following certain navigation goal,etc. These behavior corresponds to the
default class ‘@’;

2. Novelty detection and landmark recognition, namely, classifying the data
into one of the existing classes: ClassA, . . . , ClassZ, or create a new
Class: ClassAA. New class may also replace an existing class.

The data fed from the normal routine operation, may drift in a small range,
however, as the characters of the routine behavior, the data pattern is largely
the same. At the very early stage, when the first distinct data point is detected
with low potential, the first landmark is therefore generated. Following this
time instant, further data falls into the case 1 or 2 described above. The task
of the real-time classification is to classify the incoming data into general class
1 or 2. In case of 2, new data point needs to be assigned to particular classes
presenting different landmarks, or a new class needs to be generated as a new
landmark.

The algorithm always tries to classify the sensor readings into one of the
classes in case 2. The data point will be classified into case 1 only when the
conditions set for class 2 have failed. In the algorithm, the default case for
routine behavior is given with an ELSE branch in the program flow:

A landmark can also replace a previously existing landmark if condition
5.13 is satisfied. The default case (normal/routine behavior) is given with an
ELSE construct:

R1 : IF (x1
k is around x1

∗1, AND x2
k is around x2

∗1,

. . . , AND xn
k is around xn

∗1
THEN (Class is ′A′) ELSE (Class is ′@′) (5.14)
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The process starts once the first class, respectively the first fuzzy rule, has
been generated. Before the initial formation of the rule base, all data points
are classified into Class ‘@’.

eClass is a fuzzy rule-base system, the de-fuzzification operation for overall
classification used is based on the ‘winner take all’ principle [3], which cor-
responds to the MAX t-co-norm. The same de-fuzzification operator is also
used in Mamdani type fuzzy models and therefore the fuzzy rule-based clas-
sifier eClass can be considered either as zero order Takagi-Sugeno type or as
simplified Mamdani type (because the consequent part is crisp, consisting of
non-fuzzy singletons) [9]:

y = ywin; win = arg
N

max
j=1

(λj) (5.15)

where ywin represents the winner class (landmark) λj
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
N∑

i=1

τi = 0

τj

N∑

i=1

τi

otherwise

is the normalized firing level of the jth fuzzy rule, j = 1, 2, ...N . The activa-
tion level, can be defined as a Cartesian product or conjunction (t-norm) of
respective fuzzy sets for this rule [3]:

τi = µ1
i (x

1) × µ2
i (x

2) × ... × µn
i (xn) (5.16)

where µj
i is the membership value of the jth input xj(j = 1, 2, . . . , n) to the

respective fuzzy set for the ith fuzzy rule (i = 1, 2, . . . , N)
The return value of the membership function at specific data point indi-

cates the degree that the data point ‘belongs’ to the fuzzy set in respect to
the similarity to the landmark. Triangular membership function is applied in
the experiments introduced in later case study:

µj
i (xk) =

⎧
⎪⎨

⎪⎩

1 − |xj
k
−xj

∗i|
rj

i

xj
k − xj

∗i < rj
i

0 otherwise

(5.17)

where rj
i is the radius of the zone of influence of the ith landmark in its

jth dimension.
One can also use a Gaussian type membership function (bell-shaped, figure

5.1):

µj
i (xk) = e

− |xj
k
−x

j
i∗|

2r
j
i (5.18)

As data from different sensor devices may have different importance in
real application, radius can be different in each dimension in the data space
correspond to different importance or weight of reading from each sensor. Also,
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Fig. 5.1. Gaussian type membership function

for different landmark in the environment, the level of feature distinction are
usually different even in the same data space. The ‘online adaptive radius’ has
been recently introduced into eClustering algorithm [10] and similar idea can
be applied into eClass in certain circumstance.

If analyzing 5.17 or 5.18, one can conclude that all of the membership
functions describing closeness to a landmark will have value zero for the rou-
tine behavior (µj

i (xk) = 0, ⇒
∑N

i=1 τi = 0, ⇒ λ = 1 for ∀j = 1,2, . . . , n
and i = 1, 2, . . . , N) .

It is interesting to note that due to the strong condition of 5.8, which
concerns the density information from previously data in the data space, the
frequency of generating new rules and the number of fuzzy rules representing
distinct landmarks does not grow excessively. In addition, the mechanism to
modification of existing cluster center by replacing centers with qualified data
points also prevents enlarging the rule-base excesively.

5.3.4 Learning of eClass

The learning procedure for eClass can be divided into 3 stages. First ini-
tialization is done at the beginning, outside the online data process cycle.
The classifier starts with an empty fuzzy rule base. The first data point (a
n-dimensional vector of normalized sensor readings at an instant of time) is
read in real-time. Its potential (data spatial density) is assumed to be equal to
1, P (x1) ← 1 and the data point is assigned to Class ‘@’ (routine behavior).

Then the processing loop starts from the second data point. With the
next data point, the potential is calculated recursively using 5.5. Two auxil-
iary variables (the one dimensional scalar b and the n-dimensional vector f)
are accumulated according to 5.4-5.7. Once a data point has been used it is
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discarded and not stored in the memory, which allows computational efficiency
and real-time application.

During the routine behavior, no landmarks were detected and no classes
were formed, before the first corner is met. Thus the winning class is the
default (Class ‘@’). The first data point that satisfies equation 5.8 is used to
form the first class:

x∗1 ← xk; N ← 1 (5.19)

Label ‘A’ is assigned to this class and a fuzzy rule of type 5.14 is generated.
For each new data point:

1. its potential is calculated recursively using 5.4-5.7;
2. conditions 5.8 and 5.11 are checked;
3. based on the verification of the data point, one of the following actions

are taken:
a) IF (5.13 holds) THEN (replace a cluster center that is closer to the

new data point x∗i ← xk );
b) ELSEIF (5.12 holds) THEN (form a new cluster around the new

data point (x∗N+1 ← xk ); assign a new label N ← N + 1 ; form a
new fuzzy rule of type 5.10 - 5.14);

c) ELSEIF (δr < r; δ1 = ‖xi∗ − xk‖ ; γ = arg minN
i=1(‖xi∗ − xk‖))

THEN (assign the new data point to the Class )
d) ELSE (classify the behavior as routine (assign the data point to Class

0 and do not change the classifier structure).

The loop continues with the input data being classified repeatedly, till no
more data is available or an external instruction to stop the process is received.
The formal Procedure can be summarized with the following pseudo-code:

5.4 Case Study: Corner Recognition

In this section, we introduce an experiment which illustrates the application
of the proposed algorithm eClass for a simple landmark recognition task. The
experiment is carried out by a fully independent mobile robot in an empty
office enclosure with corners. The robot comes with no previous knowledge
of the environment, and nor external support such as global coordinates or
communication links are available. Sonar and motion controllers are used for
the robot to perform a “wall-following” operation. Rotation information from
the motion controller and reading from one sonar at the back of the robot
are feeded as inputs in real-time to the classifier, which is set to identify the
corners in the enclosure.

The experiment can be expanded to more complicated real applications
with more informative inputs to eClass model from different number and
different type of sensory devices.
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Algorithm 5.1 Evolving Classification (eClass) for Landmark Recognition
Input: real-time sensory data vector at time k, xk

Output: on-line assigned landmark label, ClassNumber
01. Begin
02. Initialize:
03. Read x1;
04. Set k ← 1; N ← 1; P (x1) ← 1; b1 ← 0; f j

1 ← 0;
05. Do for k ← k + 1
06. Read xk + 1;
07. Calculate Pk recursively using 5.4-5.7;
08. Accumulate values b and f using 5.6-5.7;
09. Compare Pk with P and condition 5.11;
10. IF (5.13 holds)
11. THEN (replace a cluster centre that is closer to the
12. new data point xi ← xk);
13. ELSEIF (5.12 holds)
14. THEN (form a new cluster around the new data point xi ← xk;
15. assign a new label N ← N + 1; form a new fuzzy rule of type 5.10 -
5.14)
16. ELSEIF (δr < r; δ1 = ‖xi∗ − xk‖ ; γ = arg minN

i=1(‖xi∗ − xk‖))
17. THEN (assign xk to the Class γ);
18. ELSE (classify the behavior as routine (Class @) and do not
19. change the classifier structure);
20. END;
21. assign the data sample to the nearest class with winner takes all
strategy;
22. END DO;
23. END (eClass)

5.4.1 The Mobile Robotic Platform

The autonomous mobile robot Pioneer-3DX [21], supplied by ActivMedia,
USA, (figure 5.2) has an on-board controller, an onboard computer (Pentium
III CPU, 256 MB RAM), camera, digital compass, sonar and bumper sensors,
wireless connection for transmission of status data to a desktop or laptop in
real time. (ActivMedia and Pioneer Robots are the registered trademark of
ActivMedia Robotics.) The robot can be controlled from the on-board com-
puter through the embedded controller ARCOS [21] in a client-server mode.
Pre-programmed behaviors, such as ‘random wandering’, ‘obstacle avoidance’,
etc can be loaded to the onboard computer.

The fully autonomous behavior of ‘detection novelties and landmark recog-
nition’ was realized with the eClass for classification and ARIA class library
for robot control. ARIA is a set of C-based foundation classes for control of
the Active Media robots that runs on top of ARCOS [21].

We defined a five-layer architecture for the single robotic system with
ActiveMedia Pioneer-3DX robots. (See figure 5.3.)



5 Evolving Fuzzy Classifier for Mobile Robots 101

Fig. 5.2. Pioneer3 DX mobile robot

The lowest layer is where the devices are situated. Optional devices such
as sonar, laser, compass, motors, etc, can be mounted onto the robots. Com-
munications for the control and sensory data from these devices are made
through the interface to the onboard controller in the “robot server” layer.

The embedded controller in the robot server layer deals with lower level
details of the controls to hardware installed on the robot systems. Based
on a client-server architecture, the embedded controller works as the server
providing transparent control to the clients through the ActivMedia Robot
Control and Operations Software (ARCOS).

At the robot client layer, the onboard computer works as a client of the
robot server. In this layer, control programs are loaded onto this computer, by
which robot behaviors are controlled. In order to simplify the programming to
the robot, ActivMedia provided a set of C++ based object-oriented package,
ARIA, to enable close but easy access to the robot. Basically, ARIA provides
robot users with controls to the atomic behaviors of the robot, such as main-
tain the velocity of the wheels, adjust the robot headings, getting readings
from the sensors, setting robot status, etc. Most of the interaction between
user program and the robot are implemented using ARIA as an interface and
as a tool. Our program for Landmark Recognition experiment is also built
upon ARIA package.

More details about ActivMedia ARCOS and ARIA can be found at
ActivMedia Robotics’ support webpages:

http://www.activrobots.com
http://robots.activmedia.com

On top of the robot client layer, we have “application objects”, which are
the modules that implements specific tasks such as route planning, mapping,
object tracking, object following, etc. Information from different devices of
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Fig. 5.3. Architecture of the robotic system

the robot are gathered and analyzed together to support the performance of
the tasks.

“Intelligent objects” are defined as the mechanism that provides the intel-
ligent solutions to the application models that require reasoning, self-learning,
decision making capabilities. Usually, a rule-base is the core of the “intelli-
gent objects”. The rule-base is different in different solutions. In our case, an
evolvable fuzzy rule base is presented.

Our study will concentrate on the top two layers, especially the Intelligent
objects layer, where eClass belongs to. The interface of the robot client layer
ARIA is also used in our application.
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5.4.2 Experiment Settings

The experiments were conducted in a real indoor environment (an empty
office, B-69 located at InfoLab21, Lancaster, UK). In the first step, the similar
environment as the one used in [22] was re-created to make possible correct
comparison of the results. It comprises of a rectangulary shaped empty office
room with 8 corners (6 concave and 2 convex), as sketched in Figure 5.4.

Fig. 5.4. Experimental enclosure

The objective of the experiment is to use a fully autonomous robot to iden-
tify all the landmarks, namely the corners in the completely unknown office
environment. The task is performed in real-time while the robot is exploring
the office with a ‘wall following’ algorithm as its routine planner. The robot
does not have any prior knowledge about the office shape before starting the
‘wall following’ algorithm. There is not any supervision information, such as
global coordinate information from external source during the whole process
of the task.

As mentioned earlier, the original idea of the experiment is to compare
the performance of eClass in this specific task with the solution presented in
the similar experiment using a pre-trained SOM neural network with a fixed
structure consisting of 50 neurons. [22]

During the ‘wall-following’ operation, two sources of information (features)
are taken from the robot devices and fed back to eClass as inputs in real-
time. One of them is the rotation when the robot adjusts its heading to keep
constant distance to the wall including the operation to steer around the
corners. It is measured in degrees, normalized by 360◦ clockwise from the
backward direction of the robot heading,and denoted by θ, as in figure 5.5.
The other one is the distance to the nearest obstacle detected by the back
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sonar of the robot, normalized by the range of the sonar M (M = 15m is used
in the experiment), denoted by d. In this way, heading straight corresponds
to value θ = 0.5; turning −90◦ (left) in respect to the heading corresponds to
θ = 0.25; turning 90◦ (right) in respect to the heading corresponds to θ = 0.75
and turn back corresponds to θ = 1.

Fig. 5.5. Normalized rotation

Input data are normalized into the range [0, 1]. And then, they are orga-
nized into an inputs vector (figure 5.6):

x = [θ, d] (5.20)

It should be mentioned that the features that are selected for the input vec-
tor have critical effects on the performance of the classifier. Experiments were
conducted with between 2 and 5 features. Generally, including more features
leads to a more refined detection and eventually to a better result, but re-
quires more computing power. A discussion will be given later in this chapter
on choosing features as inputs. Finally, each landmark is labeled to repre-
sent a distinctive class with alphabetical characters (′A′,′ B′,′ C ′, . . .) (figure
5.6).Thus, the generated classes are closely related to the corners. Ideally, if
we have 8 corners in the office, there should be 8 landmarks and, respectively,
8 classes corresponding to each corner, and the default class ‘@’ corresponding
to the routine behavior.

5.4.3 Program Structure

The structure of the experimental program consists of three fundamental com-
ponent modules (figure 5.7):



5 Evolving Fuzzy Classifier for Mobile Robots 105

Fig. 5.6. eClass Neuro-Fuzzy System

• Robot controller – control the robot motions and get the readings from
the sensor devices.

• Classifier – takes and selects features from the sensor readings, robot mo-
tions, and robot status as inputs to the classifier; classifies input data
samples; and labels the “landmarks”.

• Central controller – controls the wall following behavior of the robot, man-
ages the communication link between the robot control module and the
classifier module.

The experimental program is coded in the programming language C++.
The ARIA classes ArRobot and ArSonarDevice are applied to compose the
robot control module, therefore, no additional codes are necessary for the con-
trol of a single (atomic) behavior of the robot and sensors. The ‘wall following’
algorithm is implemented in the central module, class RecognitionApp. The
core algorithm of the landmark recognition is defined in class EvolvingClas-
sifier. Source code of the class EvolvingClassifier in C++ is attached in the
Appendix. Feature selection is also defined in a separate class FeatureSelec-
tor. Please note that, sensory data are simply organized into inputs vector
in this experiment, however, when a number of features are available, fea-
ture selection will be necessary as part of the system in order to choosing the
most informative features for the model. In order to deal with the consider-
able amount of the mathematical calculations using matrices, we also made a
static class as a tool for matrix operations.

5.4.4 Results and Analysis

When the input vector, xk is read by eClass, the algorithm response by label-
ing the classes (′A′,′ B′,′ C ′, . . .). Mean while rule-base is updated by either
adding a new landmark, and a new class respective to a new corner, replacing
an existing landmark (class) or making no change to the fuzzy rule-base struc-
ture. In this way, the EFS-based classifier evolves in real-time for example to
the following fuzzy rule-base:
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Fig. 5.7. Class diagram of the program

R1 : IF (θ is around 0.25) AND (d is around 0.3000) THEN(Corner is A)
R2 : IF (θ is around 0.25) AND (d is around 0.1268) THEN(Corner is B)
R3 : IF (θ is around 0.75) AND (d is around 0.0648) THEN(Corner is C)
R4 : IF (θ is around 0.25) AND (d is around 0.2357) THEN(Corner is D)
R5 : IF (θ is around 0.25) AND (d is around 0.0792) THEN(Corner is E)
R6 : IF (θ is around 0.75) AND (d is around 0.1744) THEN(Corner is F )
R5 : IF (θ is around 0.25) AND (d is around 0.0371) THEN(Corner is H)
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(5.21)

After the robot makes one full run in an anti-clockwise direction it was able
to recognize successfully 7 out of 8 corners [9] with the remaining corner (‘G’)
incorrectly classified as (‘A’) due to the close similarity between description
of corners ‘A’ and ‘G’ (figure 5.8). (Please note that in some rare cases, when
the error in sonar reading is big, or when the routine behavior is making
extremely big adjustment, the result can be different in the first several runs.
This also shows the effects of the sensory precision to the performance.) This
result is better comparing to the result reported earlier in [22] where in the
similar experiment, 5 out of 8 corners were recognized correctly with 5 features
selected as inputs.

Fig. 5.8. Evolving Classification For Landmark Recognition

The fuzzy rule-based classifier generated in real-time classifies the sensor
readings as one of the following 3 cases:

a One of the previously visited landmark (corner) - ClassA- ClassZ;
b New landmark (corner) that has not been visited so far; in this case fuzzy

rule-based classifier upgrades its structure automatically;
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c Routine behavior - default Class ‘@’;

The corners are the only landmarks available in this simplified experi-
ment. Landmarks are labeled automatically as Classes and the corresponding
fuzzy rules practically reflect the corners in the empty office. The landmarks
(respectively classes and fuzzy rules) emerges as a result of the real-time ex-
periment based solely on the data. It should be emphasized that the number
of landmarks in the rule-base are not pre-defined.

The fuzzy rule base is generated in real-time ‘on the fly’ and ‘from scratch’
based on the sensor readings. Seven classes where formed during the first circle
around the empty unexplored previously office. They are corresponding to
the seven real corners exists in the experimental environment which has eight
corners in total. The second time, when the robot goes to a visited corner, the
classifier matches the data from the sensors to an existing class, consequently
recognizes the corner and uses this for self-localization or further navigation
tasks and/or sends the label information of the landmark to the monitoring
desk-top workstation, or an other robot performing the task in collaboration.

Table 5.1. Performance Comparison

This Chapter Referenced Paper [22]

No. of features 2 5

Correctly de-
tected

7/(8) 5/(8)

Over labeled 0 1

Miss labeled 1 2

Feature used θ and d, 1 step θ and D: Distance between
two landmarks, 3 steps

Routine behav-
iors need to be
filtered?

No Yes

The comparative result of the performance of the proposed approach and
the previously published results [22] are presented in Table 5.1. The proposed
approach demonstrates superiority in the aspects of:

• higher recognition rate;
• higher degree of autonomy;
• higher flexibility (the structure of eClass is not fixed but evolves according

to the environment changes)
• higher computational efficiency.

Additional important advantage of the proposed approach is that it has high
linguistical interpretability of the information stored in the rule-base which
is extracted from the raw sensor readings. In the experiment of [22], a neuro
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netowrks with 50 neuron is used to support the landmark recognition, which
has difficulties in giving explicit and human readable information.

5.5 Further Investigations and Conclusion

In this chapter, a new approach to automatic, fully unsupervised landmark
recognition is described. It is based on the evolvable fuzzy rule-based classifier,
eClass. A simplified experiment is presented as a case study to illustrate the
distinct feature and the application of the real-time classifier. There are some
application issues and possible improvements to the algorithm worth further
discussing.

5.5.1 Using Different Devices and Selecting Features

In the case study, the environment we chose, an empty office, is simplified
compared to the common office environment in normal use. To further simplify
the case to give clear demonstration, only two features are chosen as inputs
to the model, while more are available, for example, the images from camera,
16 sonar disks of the robot, and laser devices.

In the real world, as the environment is not monotone, applying and prop-
erly choosing more available features as inputs can be helpful to increase the
precision of the classifier. For example, the color of the the landmarks in the
bright environment usually brings distinguishing information. The range in-
formation from laser device is more precise comparing to the sonar, and can
improve the precision of the result. Using processed images from the camera
are also being considered as a potential extension to the experiment, which
may enable the proposed application to work in more complicated indoor or
outdoor environment. In deep sea environment, the reflection of sonar beam
from different objects may bear unique information to identify the objects,
and therefore become a good candidate for a feature for the classifier [11].

Specific features have their advantages and disadvantages in different cir-
cumstances. Consider in a non-regular shaped enclosure like in figure 5.9,
instead of 90◦, the ‘concave corner’ A and ‘convex corner’ B has very small
angles. Consequently, when the robot turning around at these corners, the
rotation angle can be very small and very similar to the rotation at routine
behaviors. This problem is known in the literature as ‘perceptual aliasing’ [12].
In this case, using the rotation and back sonar readings as the only inputs
(the same as used in the experiment described in the case study,) might not be
adequate. In order not to be confused at these two corners, more range infor-
mation from the sonar, especially readings from the front sonar discs (denoted
by ′ ===′ in the figure) can be used to differentiate between them.

Please be aware of that, bringing in more features does not always help
increasing the performance of the classifier. On one hand, if the feature has no
markable impact on differentiate the landmarks, it can be noise information
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Fig. 5.9. Non-regular shaped enclosure

and therefore, more classes are generated incorrectly. On the other hand, if the
feature brought in has large correlation with existing feature, it can weaken
the effects of distinct feature in the data space.

Therefore, selecting features is a very important step before inputs are feed
to the core part of the evolving fuzzy rule-based classifier. Extensive researches
has been carried out in automatical and adaptive selection of features. Further
investigation will be directed towards incorporation of such adaptive feature
selection into eClass algorithm.

5.5.2 Rules Aggregation

In some cases in the experiment, one corner may be assigned with more than
one labels (over-labeling). The reason at the back is that the data space can
become over classified and rules with similar antecedents and different con-
sequences can be generated. (See rule 2 and rule 4 in the example rule-base
5.22.) The ability to solve the ‘over labeling’ (over classification) problem in
landmark recognition is important as it gives better performance and increases
the interpretability of the rule-base.

R1 : IF (θ is around 0.25) AND (d is around 0.3000) THEN(Corner is A)

R2 : IF (θ is around 0.25) AND (d is around 0.1268) THEN(Corner is B)

R3 : IF (θ is around 0.75) AND (d is around 0.0648) THEN(Corner is C)

R4 : IF (θ is around 0.24) AND (d is around 0.1270) THEN(Corner is D)

(5.22)

To reduce and further avoid over classification, the rules with very similar
antecedents in the fuzzy rule-base need to be properly aggregated into one
rule (or at least into a smaller number of rules).
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One solution is to aggregate the antecedent in certain way such as taking
the mean or choosing one of the two and updating the existing rule. When
based on the mean calculation, R2 and R4 are combined in to one rule R2,
the updated rule base will be:

R1 : IF (θ is around 0.25) AND (d is around 0.3000) THEN(Corner is A)

R2 : IF (θ is around 0.245) AND (d is around 0.1269) THEN(Corner is B)

R3 : IF (θ is around 0.75) AND (d is around 0.0648) THEN(Corner is C)

(5.23)

Note that in the case of landmark recognition as the consequent part of
the rule is a discrete value, the aggregation on this part of the rule should be
prototype based, namely we should choose one of the labels from one of the
rules, which comes from a real data point. This is because calculating mean
of labels makes no sense. (For example, one can not take mean of corner A
and corner B.)

There are other solutions to aggregate the linguistically contradicting rules
in the fuzzy rule-base, and intensive research is carried out in this direction.
Rule aggregation is even more important in transferring rules among several
autonomous robots performing tasks in cooperation.

5.5.3 Applying Variable Radius

In formulae 5.11, the parameter r is a threshold that determines the zone
of influence of the class focal point of a class. In reality, it represents the
tolerance of a landmark in the environment. The tolerance varies on different
landmarks and on different features. For a very distinguishing landmark, this
parameter can be bigger, otherwise, it should be small, in order to minimize
or eliminate the overlap between classes representing landmarks.

Instead of arbitrarily setting a fixed radius for all landmarks in all dimen-
sion, it can be calculated variably in real-time in an adaptive mode based on
data from the environment using the local spatial density information. As-
suming S denotes the the ‘support’ (or say ‘population’) of a class, which
means the number of sensory readings that has been classified into this class:

Sl ← Sl + 1 (5.24)

where l denotes the index of the winning class.
The spatial variance V of the class at dimension j can be calculated

recursively by:

V i
jk =

1
Sl

k

Sl
k∑

l=1

‖xi∗ − xl‖2
j ; V i

j1 = 1 (5.25)
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When a new landmark (rule) is added, N ← N+1, its local spatial variance
is initialized based on the average of the local spatial variance of the previously
existing rules:

V N+1
j1 =

1
N

N∑

i=1

V i
jk; j = [1, n] (5.26)

Based on the local spatial variance information, we can update the radius
of each class adaptively and recursively:

rl
jk = ρrl

j(k−1) + (1 − ρ)
√

V l
jk; l = arg

k
min

N

∥
∥xk − xi∗∥∥ ; (5.27)

Note that the learning/compatability rate ρ used here is an leverage set to
balance the adaptiveness of the incoming data, witch is between 0 ∼ 100%.
A higher ρ leads to faster updating of in the radius with less stability; while
a smaller ρ gives more stability but less adaptiveness.

5.6 Summary

The methodology for fully automatic and unsupervised landmark recognition
by an evolving fuzzy rule-based classifier has been described in this chapter.
Extensive experimentation and simulations has been carried out in an office
environment with Pioneer 3DX mobile robot by ActivMedia.

The results illustrate the superiority of the proposed evolving technique
for simultaneous classifier design and landmark recognition comparing to the
previously published results.

A number of further extensions have been discussed and are to be devel-
oped. Therese includes but not limited to:

• Adaptive class radius;
• Rules aggregation;
• Working in outdoor and non-regular environment;
• Properly introducing more inputs from different devises, especially image

devices (camera).
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Appendix: C++ Class EvolvingClassifier

/* Take inputs, perform evolving classification,return the
class ID the data sample belongs to (subscript of focal point) */
int EvolvingClassifier::DoClassification(vector<double>inputSample)
{

int classID = -1;
if(k == 0) //if it is the first inputs, do the initialization
{

//———- Stage 1: Initialize focal point set ———–//
k++; //data sample k=1
R = 0; //update focal point (rule, class centre) number
x = inputSample; //take the input
xPotentialG = 1.0; //Set potential of first sample to 1

//init parameters (bk, fk) for recursive calculation of potential
bk=0;
vector<double>tmpInit;
for (int i=0;i<sampleDim; i++)

tmpInit.push back(0);
fk = tmpInit; //init fk

classID = 0; //Default class for routine behavior
}
else //if not first input, do classification procedure
{

k++; //new cycle
//save old parmeters for recursive calculation
bk 1 = bk;
fk 1 = fk;
x 1 = x;

//——–Stage 2: Take the inputs———//
x = inputSample;

//——– Stage 3:Recursive calculation of potential ——–//
/* ———————————————
* xPotentialG = 1 - ak + (2*c - bk) /(k - 1)
* ———————————————
* b[k] = b[k-1] + SUM j=1 n xj[k-1]*xj[k-1]
* fj[k] = fj[k-1] + xj[k-1]
* c[k] = c[k-1] + fj[k] * xj[k]
* a[k] = SUM j=1 n xj[k]*xj[k]
*———————————————-*/
//b[k] = b[k-1] + SUM j=1 n xj[k-1]*xj[k-1]
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double tmpSum=0;
for (unsigned int j=0;j<x.size();j++)

tmpSum = tmpSum + x 1[j] * x 1[j];
bk = bk 1 + tmpSum;

//fj[k] = fj[k-1] + xj[k-1]
for(unsigned int j=0;j<x 1.size(); j++)
fk[j] = fk 1[j] + x 1[j];

//c[k] = c[k-1] + fj[k] * xj[k]
ck=0;
for(unsigned int j=0;j<x.size(); j++)

ck = ck + fk[j] * x[j];

//a[k] = SUM j=1 n xj[k]*xj[k]
double ak=0;
for(unsigned int j=0;j<x.size(); j++)

ak = ak + x[j] * x[j];

//potential
xPotentialG = 1 - ak + (2*ck - bk) /(k - 1);
cout <<xPotentialG <<endl; //out put potential for test

//——— Stage 4: Rule base updating ———//
/* ———————————————
* condition A: xPotentialG <p
* condition B: min(sqrt((x-xi*)ˆ2)) <0.5r
*
* A&&B: replace existing nearest focal point
* A&&!B: new focal point (new rule)
* !A&&B: included in an existing class
* ———————————————*/
double p = 0.935; // threshold for potential

// condition A: potential lower than threshold
bool A = xPotentialG <p ;

// conditoin B: Close enough to an existing class centre
bool B;
double minDelta = (double) N A;
int nearestRule = -1; //initialy not exists
int disSpaceDim = x.size();

if(R==0)// If no existing rule
{
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minDelta = 9999999;//set as infinitive big value
nearestRule = 88888;//set as infinitive big value

}
else // find nearest focal point (rule) and the distance

for (int i=0; i<R; i++)
{

double distance = 0; //sqrt((x-xFocal)ˆ2))
for(int j=0; j<disSpaceDim; j++)

distance = distance + (x[j]-xFocal.getAt(i,j)) *
(x[j]-xFocal.getAt(i,j));

distance = sqrt(distance);
if (distance <minDelta)
{

minDelta = distance;
nearestRule =i;

}
}

B = (minDelta <r/2); //close enough to the centre of the nearest focal
point

//Rule base updating
if(A && B)
{//replace nearest focal points

if(R>1)
{

xFocal.replaceRow(nearestRule,x);
cout <<“REPLACED:” <<(nearestRule+1) <<“sample No.”

<<k
<<“Total Rule:” <<R <<endl ;

}
classID = nearestRule+1;

}
else if(A)
{//add new rule

xFocal.appendRow(x);
R=R+1;
cout <<“ADD NEW:” <<R <<“sample No.” <<k <<“Total

Rule:”
<<R <<endl;

classID = R;
}
else if(minDelta <r) //within the radius of a class
{//assign to an existing class

cout <<“INCLUDED:” <<(nearestRule+1) <<“sample No.” <<k
<<“Total Rule:” <<R <<endl;
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classID = nearestRule+1;
}

}//else if k == 0
return classID;

}
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The chapter discusses applications of reinforcement learning in an autonomous
robotic fish, called Aifi. A three-layer architecture is developed to control it.
The bottom layer consists of several primary swim patterns. A sample-based
policy gradient learning algorithm is used in this bottom layer to evolve swim
patterns. The middle layer consists of a group of behaviours which are designed
for specific tasks. The top layer is a Markov Decision Process (MDP), which
is used for the planning purpose. The behaviour coordination is conducted by
building a MDP in the top layer. A state-based reinforcement learning algo-
rithm, Q-learning in particular, is applied in the top layer to find an optimal
planning policy for a specific task. Both simulated and real experiments show
good feasibility and performance of the proposed learning algorithms.

6.1 Introduction

The Human Centered Robotics Research Group at Essex has developed a
number of robotic fishes since April 2003. Different from other robotic fish
projects, we focus on realizing multiform fish-like behaviours and machine
intelligence on our robotic fish. The aim of our research project is to make
the robotic fish, named Aifi, “grow” from “baby”, which is able to learn the
best control parameters for its variant behaviours and learn to adapt itself
to changes in its environment, such as variable water current and moving
obstacles.

To achieve goal-oriented tasks and fast response ability to the dynamics in
environments, Aifi is controlled based on a three-layer hybrid architecture (see
Figure 6.1). From bottom to top, it comprises a swim pattern layer, a behaviour
layer and a cognitive layer. The swim pattern layer classifies the swimming
motion of robotic fish into several basic swimming elements, called Swim Pat-
terns, which interpret the commands from the behaviour layer into the low
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level motion control. It consists of cruise-in-straight, sharp-turning, cruise-
in-turning and ascent/descent. The behaviour layer is designed to quickly
response to the sensor data and direct Aifi to apply one of swim patterns. It
includes several individual behaviours: obstacle-avoiding, wall-following, goal-
seeking, keep-level, wandering, etc. The cognitive layer extracts robotic fish
status from the sensor data and conducts task-oriented reasoning and plan-
ning. In the cognitive layer, it changes the coordination parameters which are
used to coordinate all individual behaviours in the behaviour layer.

Within this layered architecture, machine learning can be conducted sepa-
rately at each layer. In the swim pattern layer, each swim pattern actually is
represented by a series of kinematic functions of motors, which are embed-
ded in the tail joints. The learning is designed to adjust the parameters of
kinematic functions to achieve improved performance. In the behaviour layer,
behaviours are optimized according to the encoding method of behaviours.
For example, if behaviours are encoded by fuzzy logic controllers, the learning
algorithm will be applied to fuzzy rules and fuzzy function parameters. In the
cognitive layer, learning algorithms are designed to update the parameters of
reasoning and planning. In this chapter, we consider the learning algorithms
for the swim pattern layer and the cognitive layer.

Due to the immature fish swimming mechanism and the variety of robotic
fish mechanical structures, it is much difficult to build proper models for swim
patterns. As a result, most of the control parameters of robotic fish swim
patterns are tuned manually, which rely on the good human expertise. This
manual tuning process is normally time-consuming if an optimum solution or
sub-optimum solution in practice is concerned. Additionally, the parameters
tuned in such a way can only be adapted to a static environment and could
not perform well if the environment changes.

Alternatively, various model-free machine learning techniques have been
adopted in many bio-mimetic robot projects to find the optimized control
parameters, such as biped robots [11] and Sony Aibo robots [4]. Purely policy
gradient reinforcement learning was originally proposed in REINFORCE [10]
where policy gradient descent was used to update policy parameters. It was
further extended to include value iteration in [2] by defining errors as payoffs.
In [8], authors proposed a reinforcement learning algorithm without estimating
a value function. In these implementations, the policy updating is converted
to the parameter updating by making the policy parameterized by a set of
parameters. As it is convenient to use experiment samples to find the gradient
of the learned policy with respect to parameters, sample based policy gradient
reinforcement learning was successfully applied in achieving fast locomotion
for the Sony dog’s gaits in [5] and an autonomous robot navigation controller
in [3].

In this chapter, we adopt two kinds of Reinforcement Learning(RL) algo-
rithms as the basic self-learning methods for Aifi. One is a sample-based pol-
icy gradient learning, which is used to optimize the control parameters in
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the swim pattern layer. Another is a state-based RL, which is used to find a
mapping between discrete states and actions in the cognitive layer.

The rest of this chapter is organized as follows. Section 6.2 gives a brief
description of Aifi. Section 6.3 presents the implementation of the policy rein-
forcement learning of swim pattern control parameters. Section 6.4 addresses
a typical state-based reinforcement learning in the cognitive layer. In Section
6.5, some simulated experiments and real tests are given to show the feasibility
and performance of our method. Summary and future work are given in Sec-
tion 6.6.
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Fig. 6.1. Control structure of Aifi

6.2 Introduction of Robotic Fish-Aifi

Aifi is about 50 cm in length, 20 cm in height and 12 cm in width. It has three
joints in its tail which is controlled by three servo motors. Additionally, one
DC motor controls its center of gravity position and one mini-pump manages
its buoyancy. The center processing unit is a cutting-edge micro-computer,
Gumstix [1] which is responsible for all autonomous control computations. Aifi
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is equipped with several kinds of sensors to response to the dynamical changes
in its environment, its position in the tank, the robot attitude and the internal
status (e.g. the battery voltage). A standard configuration of Aifi includes four
infrared sensors, one dual-axis accelerometer/inclinometer, one piezoelectric
vibrating gyroscope, one water pressure sensor, three electric current sensors
and three servo turning angle sensors. It is able to sense obstacles around it
within a range of 40cm and its depth in the tank. It also can perceive the
pitch/roll angle, the one-order derivative of the yaw angle, the turning angle
of the tail joints and the power consumption on them. However, Aifi has no
ability to localize itself in the horizontal plane because it has no sensor to
measure its linear speed, thus it can not localize itself by the way of odometer
used in the common mobile robots. Figure 6.2 presents the profile of Aifi used
in this research.

Fig. 6.2. Robotic fish-Aifi profile

6.3 Policy Gradient Learning in Swim Pattern Layer

For robotic fish applications, the advantage of using policy gradient rein-
forcement learning is that it can integrate the prior knowledge with later
autonomous learned experience. The prior knowledge can eliminate the un-
reasonable parameter selection and limit the learning trace in a narrow feasible
parameter space. For example, the largest turning amplitude of each joint is
limited by their mechanical design. The maximum or minimum turning speed
is both prior decided by the motor type and biological observation on real
fishes. All of these knowledge belongs to prior knowledge. The more kinds of
prior knowledge we have, the closer the initial value is to optimal. In summary,
the prior knowledge is applied to set initial values and the scopes of learn-
ing parameters. This integration can shorten the learning time. For instance,
the control parameters of a robotic fish can be firstly tuned manually based
on any prior experience that is available. After the manual tuning, the fine
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tuning can be implemented by using a policy gradient reinforcement learn-
ing algorithm. Assume that the policy is differentiable with respect to each
parameter, the autonomous learning is started from the manual tuning para-
meters. It estimates the policy’s gradients in the parameter space and then
updates the parameters to coverage to a local optimum.

First, we define the learning objective for each of robotic fish swim patterns
according to their functions. In the policy gradient reinforcement learning,
the objective is viewed as the payoff from the environment or the score of the
policy function. For example, the maximum turning angle is defined as the
objective of sharp-turning swim pattern. The payoff indicates how much
benefit an agent, i.e. a robotic fish, can receive from its environment after it
applies one policy. Normally, the payoff can be measured by sensors that are
either on-line or off-line. In our situation, the linear speed is measured by an
overhead camera; the angular speed and the power consumption are measured
by an embedded compass and an electric current sensor respectively.

A policy π is defined as a probability distribution which is parameterized
by the parameters extracted from the control parameters of robotic fish swim
patterns. We denote these parameters as Θ =

{
θ1, . . . , θN

}
. The discounted

infinite payoff for this policy is defined as follows:

V (π) =
∞∑

t=0

γtE[rt] (6.1)

where γ(0 < γ < 1) is a discount factor, rt is a payoff and E[rt] is the
expectation of rt.

Once we obtain an estimate of the discounted infinite payoff gradient with
respect to the policy parameters ∂V (π)

∂θi , then the policy parameters can be
updated by using the following equation:

θi
t+1 = θi

t + αt
∂V (π)

∂θi
(6.2)

where αt is the evolution step.
Due to the lack of the formal expression of the policy π, we can not compute

the gradient ∂V (π)
∂θi directly. Instead we use its estimates ∆Vθi(π), which can

be obtained from samplings on the policy distribution. To avoid large vari-
ance occurs in the learning in practical applications, we use the direction of
the estimated gradient in the parameter update equation (6.2):

θi
t+1 = θi

t + αt
∆Vθi(π)
|∆Vθi(π)| = θi

t + αtη
i
t (6.3)

where ηi
t = ∆Vθi (π)

|∆Vθi (π)| is the direction of the estimated gradient.

Assume that at episode t the policy is πt and the parameter vector of πt

is Θt. To update Θt by Equation (6.3), we introduce terms direction payoffs
D+i

t ,D0i
t and D−i

t to indicate the accumulated payoff in the updating direction
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“positive”, “none” and “negative”. They are updated with a discount rate β
as follows:

Dpi
t = βDpi

t + (1 − β)gpi
t , p ∈ {+, 0,−} (6.4)

where gpi
t is the virtual payoff in the updating direction p of parameter θi. It

is obtained from sampling by the following process.
Starting from Θt, we randomly generate m parameter trials {Θ1

t , . . . , Θm
t }

around Θt by using the perturbation Θj
t = Θt + ∆Θj

t . ∆Θj
t is defined as

follows:
∆Θj

t = {0j,1, . . . , 0j,n−1,∆θj,n
t , 0j,n+1, . . . , 0j,N}

(j = 1...m), n = random(1, N)
(6.5)

where superscript j, i denotes the perturbation for ith parameter in jth trial.
random(1, N) generates a random integral number between 1 and N in the
uniform distribution.

To eliminate the interaction between the perturbations of two parameters,
only one parameter is chosen to have the perturbation in each trial. Now, there
are m policies close to the initial policy πt = f(Θt): {π1

t , . . . , πm
t }. Note that

∆θj,n
t is chosen randomly to be either +εθn

t or −εθi
t. The perturbation step ε

is currently fixed for all parameters. Each trial is repeated k times to get the
average of payoffs as the expectation value, i.e. E[rj

t ]. E[rj
t ] is accumulated

together to get the payoff sum S+i
t and S−i

t according to n and ∆θj,n
t as

follows: {
S+i

t = S+i
t + E[rj

t ], if n = i and ∆θj,n
t = +εθn

t

S−i
t = S−i

t + E[rj
t ], if n = i and ∆θj,n

t = −εθn
t

(6.6)

Then we compute the average payoffs A+i
t and A−i

t for S+i
t and S−i

t res-
pectively. Without any perturbation, we apply the policy πt by k times and
get A0i

t = E[rt]. Now, the gpi
t is calculated by the following rule:

gpi
t =

⎧
⎨

⎩

1 ifApi
t = max{A+i

t , A0i
t , A−i

t }
0 otherwise

−1 ifApi
t = min{A+i

t , A0i
t , A−i

t }
, p = {+, 0,−} (6.7)

And ηi
t is calculated by the following rule:

ηi
t =

⎧
⎨

⎩

1 ifD+i
t = max{D+i

t ,D0i
t ,D−i

t }
0 ifD0i

t = max{D+i
t ,D0i

t ,D−i
t }

−1 ifD−i
t = max{D+i

t ,D0i
t ,D−i

t }
(6.8)

Once we get gpi
t , Dpi

t is updated by Equation (6.4)
Finally, the parameters are updated by (6.3). The updated parameters

construct an updated policy πt+1 which is the base point of the learning
in the next episode t + 1. The learning will be terminated when t is larger
than episode limitation TE or the termination condition of Equation (6.9) is
satisfied in recent l steps (l > 4).
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|E[rt] − E[rt−1]| < τ (6.9)

To speed up the learning process, an adaptive rate αt is adopted here to
replace the fixed αt. It is adjusted according to the changing of E[rt]. Suppose
that the termination condition (6.9) is satisfied in the latest h episodes (h < l),
αt is adjusted as follows:

αt =

⎧
⎨

⎩

λ1αt−1 if h = l − 2
λ2αt−1 if h = l − 3
λ3αt−1 if h = l − 4

(6.10)

where 0 < λ1 < λ2 < λ3 < 1. They are chosen arbitrarily as 0.7, 0.8, 0.9
representatively.

In this way, a larger learning rate can be used at the beginning and the
oscillation at the later stage of the learning could be reduced. Algorithm
6.1 shows the policy gradient reinforcement learning algorithm that we have
designed for the parameter updating of robotic fish swim patterns.

Algorithm 6.1 The policy gradient reinforcement learning algorithm
1. Initialize: Θ = Θ0, Dpi

t = 0
2. while t <= TE do
3. generate m trial policies πj

t by perturbation (6.5) and reset S+i
t , S−i

t to 0;
4. repeat πj

t on Aifi for k times, get E[rj
t ];

5. classify E[rj
t ], get payoff sum S+i

t , S−i
t and average payoff A+j

t , A−j
t by (6.6);

6. get A0i
t by make trial of πt without perturbation;

7. calculate gpi
t and ηi

t by (6.7) and (6.8);
8. θi

t+1 ← θi
t + αtη

i
t

9. get h, where the condition (6.9) is satisfied in latest h episodes;
10. if h < l then update αt by (6.10)
11. else terminate the learning process.
12. endif
13. t = t + 1;
14. endwhile (end of one episode)

6.4 State-based Reinforcement Learning in Cognitive
Layer

In the cognitive layer, behaviours should be coordinated to achieve specific
tasks, i.e. the fish should reason or plan its actions according to its current
states. A typical RL based planner can be described by three parts: Action
Space- a set of possible actions, State Space- the discrete possible situations
of a robot on the way from its initial place to a goal, and a mapping from the
state space to the action space. A Markov Decision Process(MDP) Model can



128 Jindong Liu, Lynne E. Parker, and Raj Madhavan

be used to formally model such a planner. The RL can be used to learn the
mapping function in this model.

6.4.1 Action Space and State Space

The cognitive layer aims at organizing activities to accomplish a task. The task
could be turning on/off a software switch to the execution of a behaviour or
just setting a configuration parameter of a behaviour. Actions in the cognitive
layer are denoted as ca. To simplify the complexity, the action space is divided
into two independent subspaces: level-plane actions and depth-control actions.
The level-plane actions (lai) is related with all the behaviours which affect
the movement in all 2D planes parallelling water surface, for example follow-
wall behaviour, while depth-control actions vai can change the parameters
of the behaviours which control the swimming depth, for example keep-level
behaviour. Note that, avoid-obstacle behaviour is not listed as one of actions
in the cognitive layer because it is a low-level behaviour in the behaviour layer.

The states in the cognitive layer are extracted from the sensor readings.
They also include the information about which swim patterns is previously
executed. The states come from the sensor readings but don’t represent the
quantity of individual sensors. They are the high-level condition or mode of
Aifi. They reflect the significant physical events which are sensed or recognised
by a temporal and spatial combination of several sensors. For example, if the
down-facing infrared sensor outputs a higher value and the pressure sensor
is larger than a threshold value, they indicate that the fish is near to the
bottom of the tank. A set of these kinds of events constitutes the state space.
In addition, an event can also be a previous swim pattern.

Formally, each event is denoted by a binary variant bv. Once an event
occurs, the related bv is set to 1, otherwise it is clear to 0. Grouping n
events (bv1, ..., bvn) in an order generates a state cs for the cognitive layer, i.e.
cs ← bv1, ..., bvn. The state space consists of a 2n combination of n events.
To decrease the size of the state space, these events are divided into two in-
dependent subspaces: level-states csl which only have relationship with the
level actions, and vertical-states csv which are connected to the depth control
actions.

6.4.2 Markov Decision Process Model

The RL based planner in the cognitive layer can be described by two finite
MDPs: a level-MDP Γl and a vertical-MDP Γv. The former is a model for
level-states and level-actions while the latter is for vertical-states and depth-
control actions. Assume that Γl is defined by level-states csl, level-actions
la and the one-step dynamics of the environment. The state transitions are
described by transition probabilities:

Pl = Pr{csl(t+1)|csl(t), la(t)} (6.11)
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The expected value of the next reward given current state and action, csl(t)

and la(t), together with next state, csl(t+1) is expressed as:

Rl = E{rt+1|csl(t), la(t), csl(t+1)} (6.12)

A policy π is a mapping from states to actions. The optimal policy π∗

maximizes the probability of reaching the goal. The value of a state s under
a policy π, denoted V π(s), is the expected return when starting in s and
following π thereafter. Function V π is called state-value function for policy π.
So, for Γl, we define V π

l (csl) as:

V π
l (csl) = Eπ{Rt|csl} = Eπ{

∞∑

k=0

γkrt+k+1 |csl} (6.13)

where Eπ{} represents the expected value given that Aifi follows policy π. At
the same time, the value of taking level action la in level-state csl is defined
under policy π as Qπ

l (csl, la):

Qπ
l (csl, la) = Eπ{Rt|csl, la} = Eπ{

∞∑

k=0

γkrt+k+1 |csl, la} (6.14)

For Γv, there are similar definitions of Pv, Rv, V π
v (csv) and Qπ

v (csv, va).
Given Pl and Rl for all level states csl and level actions la, a full description
of Γl can be obtained. The optimal policy π∗ can be found analytically by
using Dynamic Programming which recursively calculates V π

l and Qπ
l . If Pl

is unknown, modelling techniques can be used to find it by the model-based
RL. Alternatively, π∗ can be found directly based on Rl through the model-
free RL, such as Monte Carlo method or Temporal-Difference Learning (TD
Learning). In this chapter, Q-learning is designed to learn the mapping in the
cognitive layer.

The one-step Q-learning updated function is as follows [9]:

Q(s, a) = Q(s, a) + α
[
r + γ max

a′
Q(s′, a′) − Q(s, a)

]
(6.15)

where Q represents Qπ
l , s denotes csl and a denotes la. α and γ are learning

ratios. r is the observed reward when taking action a. s′ is the succeeded state
after taking action a. ε-greedy method is used to generate a from s using the
policy derived from Q. A brief process is shown in Algorithm 6.2.

6.5 Experimental Results

6.5.1 Policy Gradient Learning for Sharp-Turning Swim Pattern

To prove the feasibility of the policy gradient learning algorithm, Aifi is used to
learn the control parameters of the maximum turning angle of sharp-turning
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Algorithm 6.2 The Q-learning algorithm
1. Initialize: Q(s0, a0) arbitrarily;
2. While t < TE do:
3. choose at from st using the policy derived from Q via ε-greedy;
4. Take action at, observe new state st+1 and reward rt+1;

5. Q(st, at) = Q(st, at) + α
[
rt + 1 + γ max

a
Q(st+1, a) − Q(st, at)

]
;

6. t=t+1;
7. endwhile

swim pattern. The sharp-turning swim pattern was designed in [7] where 8
key parameters (θ1, . . . , θ8) are extracted to mimic the sharp turning of real
fish. Although this pattern has a kinematic function and a proximate dynamic
function, it is quite difficult to obtain the analytical expression of the turning
angle according to θi. So the relationship between the turning angle and θi

is viewed as a blackbox which is described by a policy π with parameters θi.
The objective of the policy gradient learning here is to find a local optimized
policy π∗ with which Aifi could be expected to have a largest turning angle
by executing the sharp-turning swim pattern.

First, we adjusted θi manually by prior knowledge. The manual tuned θi

are set as the initial value Θ0 of the policy gradient learning algorithm, i.e.
Θ0 = {θ1, . . . , θ8}. Then the algorithm is started from Θ0 and follows the step
listed in Algorithm 6.1. The turning angle during sharp turning is measured
by a compass sensor in the fish head. The instant reward is set to equal the
final turning angle once sharp-turning finishes. In each episode, m = 30 trials
are tested and each trial is repeated k = 3 times. Figure 6.3 shows the learning
result for each episode. Initially the average turning angle is about 50 degrees.
After about 90 hours learning, Aifi tried 4500 hard turnings, i.e. at the end of
the 50th episode, the turning angle increases to 110 degree. Figure 6.4 shows
a video sequence of sharp-turning after learning.

6.5.2 Q-learning for Tank Border Exploration Task

To test the feasibility of the proposed state based learning in the cognitive
layer, a tank border exploration task is implemented by Aifi. The objective is
to make Aifi to autonomously explore the tank border. It should follow tank
walls in an appointed distance, be able to avoid the corner and other fishes,
and keep itself in a desired depth level. Additionally it must keep the wall
at its right side. Aifi is supposed to know nothing about its environment. It
will learn to explore the tank border by the state based learning from scratch.
The action space is structured according to the objective of the task. Four
behaviours are chosen and customized from the generic behaviours layer for
the level plane action subspace.
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Fig. 6.3. The turning angle of sharp-turning swim pattern during learning.
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Fig. 6.4. A sharp-turning sequence of Aifi after learning

• Wander (la1 = WD): This behaviour is limited on a 2D plane. Aifi ran-
domly selects one of swim patterns from cruise-straight and cruise-in-
left/right-turning to execute.
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• Follow-wall (la2 = FLW ): This behaviour inherits from the follow-wall
behaviour in the generic behaviour layer. The wall is appointed on the
right of Aifi

• Avoid-obstacle (la3 = AO): It is the same as the definition of avoid-obstacle
behaviour in the generic behaviour layer except that it is limited in a 2D
plane for the task.

Three events are defined to create the level states(csl):

• Is the wall on the right side of Aifi? (bv1): It is decided by the right, front
and left infrared sensors. bv1 = 1 if recent history of these sensors satisfied
some conditions.

• Is Aifi in a reasonable range from wall? (bv2): This event is similar to bv1

but it has more strict conditions.
• Is the wall on the left side of Aifi (bv3): Like bv1, it recognises the situation

that the nearest wall is on the left side of fish. In other words, the swimming
direction is reversed to the desired direction.

Because bv1 = 1 and bv3 = 1 are mutually exclusive, and so are bv1 = 0
and bv2 = 1, the total number of states is decreased from 8(23) to 4 as shown
in Table 6.1

state
csl

bv1 bv2 bv3

0 0 N/A 0

1 0 N/A 1

2 1 0 N/A

3 1 1 N/A

Table 6.1. The states generated by events

There is no vertical action subspace in the cognitive layer for this task
because the keep-level behaviour is capable enough for the task.

In this task, r = 1 when the fish in the follow-wall behaviour keeps fol-
lowing the wall, r = −1 when the fish in the follow-wall behaviour loses the
wall to follow, r = −3 when there is a bumping between the wall and Aifi
and r = 0 for other situations. According to Algorithm 6.2, policy π∗ of the
task is learned in a 3D robotic fish simulator [6] and then applied to Aifi.
Figure 6.5 presents fish swimming trajectories during learning. It is clearly
shown that Aifi is able to keep itself in a proper distance away from the wall
after learning. Figure 6.6 gives the history of root mean square (RMS) errors
between the learning trajectory and the desired path over 300 trips. The RMS
error decreases and converges to a low value as the number of learning trips
increases.

Figure 6.7 shows the trajectory of Aifi operated in the real tank, which is
recorded from an overhead camera. The arrows in the figure show the heading
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directions and the circle points indicate the position of Aifi. The time step
between two record points is 3 seconds. After Aifi is put into water from
the point S with heading direction B0, it selects the find-wall behaviour and
executes it until reaching the left wall. Then the follow-wall behaviour is
triggered. During its swimming, Aifi encounters an obstacle around point B1.
It implements a sharp-left-turning swim pattern to avoid it. Then it finds the
wall again by the cruise-in-turning-right swim pattern. Finally, Aifi spent 105
seconds to swim around the tank one circle and finally reached the point E.
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Fig. 6.5. The fish trajectory during learning. Note that the dashed line is the desired
path, α = 0.5 γ = 0.3, ε = 0.01

6.6 Summary

In this chapter, reinforcement learning is used as learning methods in a layered
control architecture of our robotic fish, Aifi. The swim pattern is learned
by a sample-based policy gradient learning algorithm in the swim pattern
layer. The task planning is learned by a state-based RL learning algorithm
in the cognitive layer. The experimental tests show good performance of both
algorithms. In the next step, we will apply reinforcement learning to learning
of behaviours in the behaviour layer.
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The information available to robots in real tasks is widely distributed both
in time and space, requiring the agent to search for relevant information. In
this work, we implement a solution that uses qualitative and quantitative
knowledge to make robot tasks able to be treated by Reinforcement Learning
(RL) algorithms. The steps of this procedure include: 1) to decompose the
overall task into smaller ones, using abstractions and macro-operators, thus
achieving a discrete action space; 2) to apply a state model representation
to achieve both time and state space discretisation; 3) to use quantitative
knowledge to design controllers that are able to solve the subtasks; 4) to learn
the coordination of these behaviours using RL, more specifically Q-learning.
The proposed method was verified on a set of robot tasks using a Khepera
robot simulator. Two approaches for state space discretisation were tested,
one based on features — that are observation functions of the environment —
and the other on states. The learned policies over these two models were com-
pared to a predefined hand-crafted policy. It was found that the learned policy
over the state-based discretisation leads quickly to good results, although it
can not be applied to complex tasks, where the state space representation
becomes computationally unfeasible and a generalisation method has to be
applied. The generalisation approach chosen implements the CMAC (Cere-
bellar Model Articulation Controller) method over the state-based model.
The results show that the resulting compact representation allows the learn-
ing method to be applied over the state-based model, although the learned
policy over the feature-based representation has a better performance.
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7.1 Introduction

Autonomous robots are machines that are built to operate in changing and
partially unknown environments. Hence, they can not be programmed to exe-
cute predefined action sequences because it is not possible to know in advance
what will be the universe of necessary sensorial and motor transformations
required by the various situations the robot might encounter.

Reinforcement Learning (RL) is a class of learning suitable for robots when
online learning without sufficient prior information about the environment is
required. Most RL techniques uses the theory of Markovian Decision Processes
(MDP) as their mathematical model, which requires finite state and action
spaces. Among the difficulties posed by real robot tasks that have to be over-
come to allow them to be treated by RL are: continuous time, continuous
action and state spaces and partial observability of states.

As the task to be executed by the robot becomes more complex, it is
usually necessary to introduce some form of hierarchy of behaviours which
can simply consist in the decomposition of the task into a set of simpler
ones. In fact, in recent years, an approach to Artificial Intelligence has been
developed which is based on building behaviour-based programs to control
situated and embodied robots in changing environments [1]. The design of
architectures composed of very simple skills is not easy, nor is the learning
of its sequence, as producing an adequate combination of these behaviours is
not straight- forward. Furthermore, the controller decomposition introduces
the need for determining when to trigger control, i.e. when to re-evaluate the
previously selected behaviour and choose a new one.

In this work, qualitative knowledge is used to achieve discretisation over
the action space by using abstraction and macro-operators. To acomplish time
and state space discretisation two approaches for space representation (state-
based and feature-based) are proposed. The first approach is a direct sensorial
representation where the other uses observation functions of the environment.

Quantitative knowledge is used to design the controllers that solve the
subtasks while RL, more specifically Q-learning, is responsible for learning
the coordination of these behaviours. The switching action policies learned
over the two approaches for space discretisation are compared to a predefined
hand-crafted action policy.

For the cases where the most complex defined tasks could not be executed
over the state-based model, a generalisation method called CMAC (Cerebellar
Model Articulation Controller) was implemented to reduce the storage and
computational requirements for the Q-learning algorithm.

7.1.1 Bibliography Review

Reinforcement Learning [2, 3] is learning by doing. In this approach, the agent
learns how to map states to actions by trial and error, without an external
supervisor. Since [2] and [4] proposed Markovian Decision Processes (MDPS)
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to be used as the model for RL analysis a mathematically well-founded theory
has been developed for this class of algorithms and many solutions have been
proposed [5, 6, 7].

The main problem is that this theoretical basis assumes a finite set of
actions and states and a discrete time model where the states should be avail-
able for measurement, whereas real robot tasks have infinite state and action
spaces, continuous time and due to sensorial limitation are not always mea-
surable. For such situations, for these cases, no complete theoretical solution
can be found. In fact, [8] shows that these problems are intractable due to
their partial observability.

The use of abstractions, subgoals and macro-operators [9] to decompose
tasks into smaller ones, hence allowing large but observable problems to be
handled, was applied in planning domains by [10, 11], and turned out to be a
very promising approach. [12] showed that if this decomposition is done in a
hierarchical manner, it can reduce the problem complexity from exponential
to linear.

Macro-operators and learning in planning domains have been approached
and related in many contexts, such as: plan acceleration; control modules
learning [11, 13], also called learning of macro-operators, and learning of the
switching of the particular controllers [14, 15]. [16] studied a more difficult ap-
proach: inventing macro-operators, subgoals and hierarchy. Switching control,
under the name of hybrid control [17, 18], has also received some attention.

Learning a switching function able to trigger an specific controller at cer-
tain time step is the main aspect of this work. In contrast to ours, [13] work
has fixed the switching policy and has left to the learning agent the task of
finding good controllers. [19, 20, 21] research is based on building behaviour-
based programs to robot control where a decision making procedure defines
the execution sequence of the predefined modules.

The module concept [22] (operating conditions together with controllers)
is well fitted to [16] concept of skill, which has to be learned by the algorithm
to help turning the set of tasks complete.

To deal with large or infinite state spaces, the concept of features in RL
[23] became one of the tracks that influenced the work of [22]. Although some
optimisation (state complexity reduction) is achieved, it can not be expected
that working on the features vector will remove partial observability. Issues
in learning in partially observable environments have been discussed by [24].

Because of the state explosion encountered on some space discretisations,
compact representations are applied to deal with storage, computational and
convergence conditions. A natural way to incorporate generalisation into RL
methods is based on the use of function approximators, rather than look-
up tables, to represent the value function. [13, 25] have demonstrated some
control applications were function approximators have succeeded. The great
success of [26, 27] on finding good backgammon solution also contributed to
the popularity of approximators in RL.
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The use of generalisation in Reinforcement Learning is not a new approach.
It goes back to the 50’s when [28] used RL to adjust the parameters of linear
threshold function representing policies. [29] used the theory for learning value
functions.

In the 70’s, Albus [30] proposed the CMAC approach that was lately de-
scribed in terms of tile coding by [31]. Tile coding have been applied to some
control problems such as [32, 33] as well as reinforcement learning systems
[34, 35]. [36] shows a soccer robot application using Q-learning and CMAC.

7.2 Reinforcement Learning

Reinforcement Learning (RL) [2] is a technique that allows an agent to adapt
to its environment through the development of an action policy, which deter-
mines the action that should be taken in each environmental state in order
to maximise (or minimise) a function over a cumulative reinforcement. The
reinforcement is a real value that defines the desirability of a state and can
be expressed both in terms of rewards or punishments. In RL systems, the
a priori domain knowledge incorporated by the designer is minimal and is
mostly encapsulated in the reinforcement function.

In RL, convergence is conditional on an infinite number of visits to every
possible state of the process the agent must adapt to. The need for simultane-
ous exploration and best policy execution creates the exploration/exploitation
tradeoff, also known as the dual control problem [6]. The most common form
of treating it is by properly choosing random actions, according to the so-
called Boltzmann exploration strategy [37]. In this work a simpler approach
where the exploration rate decays linearly over time was applied.

A limitation that arises from real robot tasks is the agent inability to
completely measure or represent its state. This problem is known as percep-
tual aliasing [38]. When it occurs, different environment situations can be
erroneously represented as a single state. There are many methods based on
the use of memory or attention to deal with this problem [39].

In RL tasks the rewards define the objective. A poorly chosen reward
function can cause the learning system not to converge, or to converge to a
policy that does not accomplish the desired task. In [40] it is shown that dense
rewards (non-zero values) facilitate clever exploration, which can reduce the
search complexity in the course of learning.

7.2.1 Markovian Decision Processes

Nowadays, most of the theory involving Reinforcement Learning is restricted
to Markovian Decision Processes (MDPs). To be considered as such, the
process has to satisfy the Markov Condition where any observation o made by
the agent must be a function only of its last observation and action (plus some



7 Module-based Autonomous Learning for Mobile Robots 141

random disturbance), i.e. ot+1 = f(ot, at, wt). If this condition is guaranteed,
the process can be modeled as a 4-tuple 〈S,A, P,R〉, where:

• S is a finite set of states
• A is a finite set of actions
• P is the transition probabilities model that maps action-state pairs

P (st+1|st, at)
• R is the reward function r(s, a)

Hence, we can estimate the probability to reach new state s′ and the
reward associated to this move from:

P a
ss′ = Pr {st+1 = s′|st = s, at = a} (7.1)

Ra
ss′ = E {rt+1|st = s, at = a, st+1 = s′} (7.2)

The objective of learning in this context is to identify an optimal policy.
This policy is some function that tells the agent which set of actions should be
chosen under certain circumstances. Dynamic Programming methods are the
basic algorithms to achieve this optimal policy [7]. They employ a complete
world model where the transitions probabilities are known. In this work it
will be used a RL variation of these methods that do not need a complete
transition probability distribution: the Q-learning algorithm.

7.2.2 Q-learning

Q-learning [31] is the preferred RL algorithm because it provides good experi-
mental results in terms of learning speed and it is a model-free learning for
optimal policies.

The iterative process for calculating the optimal policy is done as follows.
At time t, the agent:

1. Visits state st and selects an action at

2. Receives the reinforcement rt = r(st, at) and observes the next state st+1

3. Updates Qt(st, at) according to:

Qt+1(st, at) = Qt(st, at)
+αt[rt + γV̂ (st+1) − Q(st, at)]

(7.3)

4. Repeats steps above until stop criterion is satisfied.

where V̂ (st+1) = mina[Qt(st+1, a)] is the current estimate of the optimal
expected cost, α is the learning rate and γ(0 < γ < 1) is the discount factor
that reduces the influence of future expected rewards. Q-learning learns the
values of all actions in all states, rather than only representing the policy.
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7.2.3 Features

In real robot tasks, the system can not be modelled as a finite MDP as there
is no complete state information available for measurements. To deal with
this partial observability condition, an extension of MDP is provided which
maps the set of states S into a new finite set X, called the observation set.
An observation function h is then applied to s, making the whole state s only
observable by h(s). Features are the dimensions of h(s), and using observation
functions as many-to-one representations produces a way to deal with the
problem of state space infiniteness. If extended in a sensible way, the use of
features can also deal with partial observability. The feature values depend
upon each observation-action pair, and its value does not change as long as
the observation-action pair remains unchanged.

It is convenient to work with a set of features, where each one represents
an event to be taken into account. The event triggering, i.e. the change of an
observation-action pair value leads to time discretisation.

7.2.4 Module-based RL

The idea of using abstraction, subgoals and macro-operators [9] to decompose
tasks into smaller ones, hence allowing large but observable problems to be
handled. It was applied in planning domains by [10, 11], and turned out to be
a very promising approach.

It consists of using qualitative knowledge about the problem to divide it
into smaller ones again and again, through the definition of subgoals, sub-
subgoals, etc, until reaching a level where these small problems can be rep-
resented by simple routines. The entire problem is then solved by the re-
combination of the small problems until reaching the main task. This main
task, made of smaller ones, exists in planning domains under the name of
macro-actions. [12] showed that if this decomposition is done in a hierarchical
manner, it can reduce the problem complexity from exponential to linear. In
the end, we have a set of macro-actions associated with their specific subgoals.
A subgoal can also be defined in robotics as a desired behaviour.

As it can be noted in Figure 7.1, the design phase is responsible for ma-
nipulating this knowledge by implementing macro-actions as local controllers.
These macro-actions should be applied under well defined and measurable
conditions.

The controllers - macro-action implementation - together with their op-
erating conditions -basic features set - are here called Modules. Although a
well defined set of conditions has been defined for each module, they are not
exclusive, i.e. many controllers can be active under the same circumstances.
To overcome this scenario, a switching function should be applied. The de-
cision should be taken on the basis of the state of operating conditions plus
some possible additional filters that, together, represent the feature vector
for the switching mechanism of Figure 7.2 [22]. The last phase showed in
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Fig. 7.1. Phases of the used approach (adapted from [22])

Figure 7.1, represents the application of RL as the mechanism to learn the
above mentioned switching function.
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Reinforcement Learning Switching
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Fig. 7.2. The control and learning mechanism (adapted from [22])
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7.3 Generalisation

The use of look-up tables to store the evaluation function and policy seems
straightforward when Reinforcement Learning is used for solving problems
with finite state spaces. The pole-balancing task [41], the grid world task [42]
and the race track problem [43] are well-known examples of RL applications.
In these problems the number of states is small enough so that all states can be
visited explicitly, condition required for the convergence for such algorithms.

However, when dealing with continuous state spaces it is not possible for
the agent to actually visit all states. Furthermore, combinatorial explosion of
a table for storing a discrete representation of real variables can turn the tasks
intractable by RL methods.

One way of coping with reinforcement learning applied to complex tasks
is by using generalisation, which is the ability to infer the general from the
particular. More specifically, it is the production of similar output values in
response to similar input values. By using it, a limited subset of the state space
is useful to generate approximated information about a much larger number
of states. This approximated information is generated by a function approxi-
mator, that takes examples from a target function mapping and attempts to
generalise from it to construct an approximator for the entire function.

Two clear benefits of the application of generalisation in the learning
process are that it is speed up and the storage space required is much smaller
then by using look-up tables.

In supervised learning, the function approximator responsible for genera-
lisation learns the mapping from a set of input patterns to target output
values [35], where input-output pairs are given to the learner as its training set.
However, RL methods do not have an a priori set of pairs that could be used in
a tracing and their online nature (where the values are updated continuously)
require more than a method that would need to stop the progress of the system
to update itself.

The generalisation techniques existent are on-line and batch methods. On-
line methods are advantageous for RL because the performance of the method
is improved after every example presented, whereas a batch algorithm would
require a training period.

CMAC is a function approximation model which utilises hidden units with
localised receptive fields in which each input is mapped to a subset of weights
whose values are summed up to produce the outputs. Because CMAC together
with a Q-learning implementation has been treated by many in the literature
[31, 34, 44] and its local generalisation ability has been beneficial in RL, it
was the approach chosen for implementation in this work.

7.3.1 Cerebellar Model Articulation Controller (CMAC)

In the early 70’s, James Albus [30, 45] modelled the human cerebellum func-
tion of information processing by using a neural structure named CMAC
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(Cerebellar Model Articulation Controller). It is a coarse-coding structure
that consists of an associative memory neural network in which each input is
mapped to a subset of weights whose values are summed up to produce the
outputs.

In CMAC, a set of overlapping, multi-dimensional layers, also called recep-
tive fields or tillings, have a finite size and are defined by quantising functions.
Each element of a tilling is called a tile and it represents a receptive field for
one binary feature. The set of excited receptive fields of corresponding quan-
tising functions in all dimensions of the input space are combined to define
a hypercube in the multi-dimensional input space, that corresponds to one
component of the output value. Because of the many quantising functions ex-
istent in the input dimension, many hypercubes are affected. The output is
then computed by summing the contributions from the components activated.

Figure 7.3 shows a general representation of the CMAC approach that will
be detailed in section 7.3.1.

One of the benefits of CMAC is that it has local generalisation, where
similar inputs produce similar outputs and far located inputs produce nearly
independent outputs. Furthermore, it is an alternative to the backpropaga-
tion method used for learning in neural networks because it has faster con-
vergence [35], meaning that the number of iterations required to converge is
much smaller in the CMAC approach, thus allowing it to be used in real-time
settings.

CMAC working

The mode CMAC operates and its generalisation capability is demonstrated in
figure 7.3. In this representation two state variables s1 and s2, that compose
the state space s = [s1, s2], are provided. For each input dimension there
are four quantising functions (k = 4) with six resolution elements each, also
called tiles (Qi,j = 6, i = 1, 2, j = 1, 2, 3, 4). Actually, the number of resolution
elements does not have necessarily to be the same for each quantising function
in each dimension.

Consider then two points A and B whose input state values are sA =
[2.35; 3.36] and sB = [2.55; 3.56]. The first point A has been visited and it had
its weights updated, where B is a nearby point in the state space that has
never been visited.

When the values of the input for point A are quantised by the quantising
functions flN , with l = {1, 2, 3, 4} representing the lth quantising function in
the input space dimension sN and N = 1, 2, the set of resolution elements
achieved is represented by: m∗

A1 = {D,J, P, V } and m∗
A2 = {c, j, o, u}, where

the letters represent the selected resolution element.
Then, the letters for resolution elements from corresponding quantis-

ing functions are concatenated to form the set of active hypercubes A∗
A =

{{Dc} , {Jj} , {Po} , {V u}}, where the output yA is the sum of the weights
indexed by these components yA = w[{Dc}] + w[{Jj}] + w[{Po}] + w[{V u}].
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The weights represent the values that map the selected hypercubes into the
new weight space.

In the same way, A∗
B = {{Dc} , {Kj} , {Po} , {V u}}, and yB = w[{Dc}] +

w[{Kj}] + w[{Po}] + w[{V u}].
It can be noted that only one of the components of A∗

A and A∗
B differ.

Hence, the output value yB is similar to yA, sice three out of four indexed
weights that will be summed up are the same for both points. In fact, the
weights for point B have not been previously updated, but due to the points
similarity, the output for it can mostly be computed from the weights obtained
from A∗

A.
CMAC is a linear mapping function from the input-output point of view,

with a non-linear mapping executed between the input-output vectors. Each
time an input vector is presented to compute an output, two mappings take
place within the CMAC. The first one is responsible for transforming the input
vector s in a binary-valued vector x with a higher dimensionality, through a
non-linear fixed mapping φ(.), with x = φ(s), while the second, which is a
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linear mapping, multiply x for the current weights w in order to calculate y.
The combination of these mappings is g(.), where y = g(φ(s)) = g(x).

The mapping process from the input to the output is

φ(.)
︷ ︸︸ ︷
s → m∗ → A∗ →A∗

P → y
(7.4)

where φ(.) consists of three first stages, with the other two representing
the linear part of the mapping.

The set m∗ is the set of receptive fields or resolution elements, which
combined form the set of hypercubes, represented in A∗. These hypercubes
index the weights that will be summed up to obtain the output. The mapping
from A∗ to A∗

p is done to reduce the memory storage necessity, with the later
representing the actual space. The step s → A∗ is called the generalisation
step.

For the purposes of this paper, and to work properly with RL methods,
the on-line approach of CMAC implementation has to be considered.

The pseudo code for Q-learning associated with CMAC is presented next.

Initialise Q(s, a) arbitrarily
Initialise A∗ with random numbers on
the range [0, Nw]
Initialise A∗

p with zero values
Repeat (for each course)

Initialise s
Repeat for each trial

Choose a ∈ A(s)
Observe st+1 and r
For each tilling do

Apply the quantising functions in each input
Map A∗ to A∗

p

Q(s, a) ← Q(s, a) + α[r + γeQ(st+1) − Q(s, a)]
s ← st+1

until s reaches a terminal state

where Q(s, a) is the y∗ output desired value. For more details refer to [31].

7.4 Experiments

The proposed method of learning a switching policy was verified on a set of
robot tasks and it was tested in a Khepera simulator environment. Two app-
roaches for space discretisation were used, a feature-based and a state-based.
The learned policies over these two models were compared to a predefined
hand-crafted one.

7.4.1 Environment

The approach was tested in a Khepera robot simulator called YAKS [46]. From
the set of sensors modelled by the simulator, the chosen ones were eight Infra-
red sensors and eight light sensors; a vision turret sensor with a 1x64 vector of
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pixels with 256 grayscale levels, and a gripper with an object presence sensor.
The world was defined as a 500mm X 500mm wall closed room, with different
objects placed around it. The possible objects were: walls, dynamic objects
(named sobst), static objects, balls and light sources. All objects had different
grayscale level representation and specific constant radius. The environment
was the same for all tasks and all policies applied.

7.4.2 Tasks

Six different tasks where proposed:
1. To find a sobst in the environment and align the robot to it

2. To find a sobst in the environment, align the robot and get close to it

3. To find a sobst in the environment and catch it

4. To find a sobst in the environment, catch it and displace it on an specific position

5. To find a sobst in the environment, catch it, find a light source, align to it and displace the

object

6. To find a sobst in the environment, catch it, find a light source, go to its center and displace

the object

7.4.3 Behaviours

A set of general and specific controllers were implemented. Each task has a
set of actions (controllers) that can be chosen. The ones to be directly used
by the tasks are:

1.safeWandering, 2.avoidBallCollision, 3.AlignToSobst,
4.goToSobst, 5.catchSobst, 6.dropSobst, 7.alignToLight
8.goToLight and 9.unStuck.

For each task, the action set A is:
Task1: actions 1, 2, 3 and 9
Task2: actions 1, 2, 3, 4 and 9
Task3: actions 1, 2, 3, 4, 5 and 9
Task4: actions 1, 2, 3, 4, 5, 6 and 9
Task5: actions 1, 2, 3, 4, 5, 6, 7 and 9
Task6: actions 1, 2, 3, 4, 5, 6, 7, 8 and 9

7.4.4 Space Discretisation

Two state space discretisations models were considered. The first, the feature-
based, apply features as the basis for representing the state space, whereas the
second, the state-based, uses the information directly provided by the robot
sensors for representing the state space.
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Feature-based

The feature model representation uses the concept presented in section 7.2.3
to define the tasks decomposition, to determine goals and subgoals, to find
out which modules (controllers with associated operating conditions) should
be built and how the features should be modelled. For details about the set
of features and operating conditions encountered and the process of finding
them out, see [47].

State-based

The state-based model for the tasks includes the following items in their state
input vector:

Goal stuck seeBall seeWall seeSobst seeObst Ir[0-7] Gripper Light[0-7]

Each one can be either 0(active) or 1(non-active). Tasks 1 and 2 uses from
Goal to Ir[7], task 3 and 4 uses until the Gripper and the last two tasks need the
whole input vector represented. From this, the number of states for each task
is: Task1/Task2: 22∗24∗28 = 16384 states, Task3/Task4: 22∗24∗28∗21 = 32768
states and Task5/Task6: 22 ∗ 24 ∗ 28 ∗ 21 ∗ 28 = 8388608 states.

7.4.5 Hand-crafted Policy

The hand-crafted policy, differently from the learned one, does not find a
switching function, but instead applies a pre-defined sequence of actions based
on the robot input vector (actual state). For more details see [47].

7.4.6 Learned Policies

The learned policies refer to the application of the Q-learning algorithm as the
method for learning the switching function. All the experiments were carried
out in the same environment (world size and objects displacement). For each
task, over each discretisation model (state or feature) the experiments were
organised on courses and trials. Each course refers to the complete execution
of a set of trials, where a trial ran until the robot reached the goal or failed
to do it in a predefined maximum number of steps. For the first four tasks,
the number of maximum steps was empirically stablished as 150 and for the
last two tasks it was established as 250. The number of courses is 20 and the
number of trials is 500.

The Q-learning parameters are: γ = 0.99, α = 0.9 and the initial explo-
ration rate = 0.9, decaying with time to zero. The cost structure followed the
principle that dense rewards can facilitate exploration. So, the cost of using
each behaviour is one, except when the goal is reached, when a zero is re-
ceived instead. In some situations, it can occur that the robot becomes stuck.
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To prevent this state, a cost of 1
1−γ (equivalent to never reaching the goal) is

communicated to the learning agent.
Performance of the algorithm was evaluated by the number of steps to

reach the goal. Therefore, the objective of Q-learning was to minimise the
number of steps needed to accomplish the task.

7.4.7 Results

After defining the number of steps each trial could last, the Q-learning algo-
rithm was applied for each task over the two state space models. Their results
were compared to the hand-crafted policy executed before.

Task 1. In figure 7.4 it can be noticed that both learned policies achieve
better results than the hand-crafted one in only few trials. Figure 7.5 shows
that, due to the exploration factor present on the algorithm and to its trial
and error nature, the learning policies switch behaviours much more often
than the hand-crafted one, that has a very tight sequence of actions.

It was also noticed that the state-based policy had better performance
than the feature-based.
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Task 2. For a slightly more complex task, Task 2, figures 7.6 and 7.7 lead
us to the same evaluation and conclusions we arrived for the first executed
task.

Task 3. In Task 3, as one can notice in figures 7.8 and 7.9 a slight change
of roles on the quality of the learned policies happened. Now, the feature-
based policy achieved a better result than the state-based one. This change
happened because the system complexity (number of actions, states and task
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Fig. 7.7. Policies comparison for
Task 2 - Behaviour switching

difficulty) has increased. As we saw in section 7.3, for convergence, it is nec-
essary that all state-action pairs are visited infinitely often. In fact, it is much
easier to explicitly visit 32.768 (the number of features-action pairs) state-
action locations than 196.608 (the number of state-action pairs).
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Fig. 7.9. Policies comparison for
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Task 4. For Task 4 (see Figures 7.10 and 7.11), we arrived to the same
conclusions as we did for Task 3, i.e., the feature-based policy presents a faster
convergence and better values than the state-based one. As was also noticed
before for the first three tasks, the performance of any of the learned policies
is far better than the hand-crafted one.

Task 5. Figure 7.12 presents the result for the execution of the feature-
based learned strategy. As encountered before, the results were better than
that for the hand-crafted policy that took, on average, 512 steps to execute
the task. However, the number of successful trials decreased (figure 7.13).
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Fig. 7.11. Policies comparison for
Task 4 - Behaviour switching

Unfortunately, for task 5, the space representation using states increased
too much with the addition of the light sensors representation, thus com-
promising the learning task. While, for the feature representation, the total
number of state-action locations increased by 4.57 the space needed for task
4, for the state representation we found an increasing rate of 292.

Figure 7.14 shows the state-based policy executing for task 5, where it is
clear that the learner could achieve the goal only by chance, not learning its
task of minimising the number of steps to reach the goal.
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Fig. 7.12. Policies comparison for
Task 5 - Number of steps
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Fig. 7.13. Policies comparison for
Task 5 - Percentage of successful trials

Task 6. For Task 6 (Figures 7.15 and 7.16) we found the same results as
for Task 5, with an even worse performance for the state-based representation,
as will be discussed next.

One can argue that the system could not be able to find a solution (not
even by trial-and-error) because the upper-bound for the steps was set low.
Actually, this could be a reasonable point and the number could be increased.
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Fig. 7.14. State-based learned policy - Task 5

However, for the limit established, the total experiment lasted 960 hours
(working on a Pentium4, 2.0GHz, 512MB RAM), what is obviously too much
for an algorithm that should be executed in an autonomous mobile robot.
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Fig. 7.15. Policies comparison for
Task 6 - Number of steps
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Fig. 7.16. Policies comparison for
Task 6 - Percentage of successful trials

Table 7.1 presents a summary of the experiments carried out until this
point. The values represented are average values calculated over the whole
experiment.

Table 7.1. Average Number of Steps to Achieve the Goal per Task

Average Number of Steps
Feature-based State-based Handcrafted

Task 1 83.71 58.38 86.8
Task 2 119.13 110.82 199.2
Task 3 80.01 81.48 202.2
Task 4 76.12 77.24 205.2
Task 5 409.20 - 512
Task 6 509.66 - 537
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7.4.8 CMAC Experiments

So far, it has shown that the state-based representation worked well to tasks
1-4, although the Q-learning algorithm was not able to learn over this model
representation for the last two tasks (5 and 6). Convergence could have not
happened for different reasons, the strongest seeming to be the unfeasibly large
state space achieved for its discrete representation (that contains 223states).
For this reason, a generalisation method based on a compact CMAC repre-
sentation is proposed.

The CMAC generalisation method is used in association with Q-learning,
to learn a switching action policy for the specified task.

CMAC Applied to State-based Representation

At the beginning, we tried to implement the CMAC over the state-based model
with the representation it has been used until now - each sensor represented by
0 or 1 values. However, we did not succeed, even for the simple task of avoiding
obstacles. It was found that the generalisation method applied over the state
model defined as before was trying to generalise over a rough generalisation
that had already been made - the sensors values set to 1 or 0. Because infra-
red and light sensors are crucial to define object presence and alignments, and
these are important measures for the tasks, the double generalisation caused
the system not to converge.

Hence, we decided to implement the IR and Light sensors (that are conti-
nuous variables with values between [0.0, 1.0]) using a CMAC for each indi-
vidual sensor.

Firstly, the quantising functions – specified for each tilling – were defined.
By definition, the offset among each tilling can be chosen randomly. However,
in this work, a constant 0.05 value was applied.

The quantising function that presented the best results is shown in Figure
7.17. It is a non-uniform representation that incorporates the fact that values
that indicate an obstacle close to the robot have to be more precise than those
which represent this obstacle far away from it (High sensor values represent
the obstacle very close to the robot).

0.4 0.6 0.8

Tilling 1

Tilling 2

Tilling 3

Tilling 4

Function offset = 0.05

1

Fig. 7.17. CMAC discretisation for IR sensors
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To apply the CMAC to execute tasks 5 and 6, it was necessary, after using
it to each individual sensor, to define an spatial connection among them. This
contrasts with space coordinates, where, whatever the number of dimensions
is, there is a natural link among the values of each dimension. What means
that, if we are using a spatial representation of states, once CMAC was ap-
plied to each individual dimension, a relation among the values would emerge
naturally on the resultant hypercube.

As for sensors values, this natural link does not exist. Hence, one has to
introduce, after applying CMAC individually to each sensor, another gener-
alisation over specific pair of sensors we expect to have some relationship.

The sensors distribution in Figure 7.18 shows each sensor with CMAC
working individually. After this step (first generalisation), each pair of sensors
([0 and 1], [1 and 2], [2 and 3], [3 and 4], [4 and 5] and [6 and 7]) had another
CMAC working on its outputs. It consists of a different quantising function
with 4 resolution elements to achieve generalisation. The red and green graphic
in Figure 7.18 shows two individual sensors with their first-generalised values
(in red). This values are then put together and generalised to another vector
(in green) whose Q-values related are those that will be processed, updated
and stored after hashing.

Fig. 7.18. CMAC resolution elements

Although the amount of memory required to manipulate the CMAC inter-
mediate vectors is very high (212), the real memory (hash table) that persists
the Q-values referent to state-action pairs, after both generalisations, and that
has to be visited by the learning algorithm is about 100 (considering the 223

states for tasks 5 and 6) times smaller than that required by a tabular repre-
sentation. The size of the hash table was empirically established as 650.000.

For both the individual and pair CMAC application the number of tillings
is 4, as well as the number of resolution elements for each quantising func-
tion for the individual sensors and for the pairs. The γ value is 0.7 and the
experiment last for 500 trials.

The scheme was the same both for IR and Light sensors.
Figure 7.19 shows the result achieved for Task 5. It can be seen that

although the feature-based representation has a better performance and con-
verges to a better final result, the application of CMAC allows the the same
task to be executed over a state representation where the Q-learning was not
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able to work at all. It also seems that CMAC convergence is slower than that
of Q-learning applied to the feature-based model. For verification, one could
require a bigger number of trials to verify the complete convergence of the al-
gorithm. However, this could not be done because the experiment was already
long enough (lasted about 9600 hours) and because the goal we had of show-
ing CMAC working together with a Q-learning algorithm to reduce the state
space complexity was achieved. In Figure 7.20 the result for Task 6 is shown.
The application of CMAC allows the learning algorithm to achieve its goal
under the state-based representation, although it is not capable of reducing
the number of steps as much as the feature-based learned policy does.

Thus, the utilisation of CMAC allowed the use of a state-based model
representation and lead to better results than the hand-crafted policy for
both tasks.
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Fig. 7.19. CMAC applied to Task 5
- Number of Steps
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Fig. 7.20. CMAC applied to Task 6
- Number of Steps

7.5 Conclusions

The goal of the experiments described in this work was to evaluate the be-
haviour of the reinforcement learning algorithm Q-learning when applied to
different state space discretisations in robot tasks.

For this purpose, two different space discretisations were applied. Both
used concepts (abstractions, macro-operators and subgoals) present on the
literature and the a priori knowledge about the environment and tasks to
reduce the complexity of the problem and determine the set of controllers
needed. The first discretisation model uses observation functions of the envi-
ronment whereas the second is an almost direct representation of the sensors
values as state description for the task at hand.

To allow the comparison of the above mentioned policies to a non-learned
algorithm, a hard-wired sequence of actions - the hand-crafted policy - was
implemented.
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We found out that for the less complex tasks (1 to 4), the state-based
representation presented better results than the feature-based learned policy.
Furthermore, this state-based representation is easier to implement, once it
only uses direct measurements of sensors. It was also noticed that both learned
policies reached better results than those achieved by the hand-crafted policy.

However, in the course of the work we realised that the state-based discreti-
sation could not be the used by the learning algorithm, for complex robotic
tasks, as its space representation.

To continue the evaluation we intended at the beginning, we implemented
the CMAC compact representation technique over the state-based space rep-
resentation for the most complex defined tasks (5 and 6).

For these cases, we found out that the CMAC representation is well fitted
for the tasks it were applied, although it only presents better results than the
learned policy that was not able to learn at all. When compared to the feature-
based learned policy results its values were not as good. It was also verified
that this representation is easier to implement over spatially defined values,
i.e., values that have intrinsic spatial relationship among themselves. In these
cases the representation can be easily extended to n-dimensional spaces.

The CMAC takes also less steps to converge than the unfeasible state-based
learned policy, but takes much more computational time to be executed, due
to the mappings that are executed inside CMAC.

When applied additional sensor noise, the results showed that the values
achieved by the learned policy over the more detailed representation (state-
based) are more affected than those of the feature-based, what lead us to think
the last as a more robust definition for a state space.

Finally, we realised that adaptive algorithms can be advantageous over
non-adaptive techniques when applied to complex environments and tasks,
thus extending the results previously presented in [22]. In particular, it seems
that the conservatism of the hand-crafted policy did not allow it to exploit
certain properties of the environment that could not be easily foreseen before
its implementation.
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Informática na Escola, 2004.

37. Singh, S. P. et al. On the convergence of single-step on-policy reinforcement
learning algorithms. In: Machine Learning, 1997.

38. Whitehead, S. D.; Ballard, D. H. Learning to perceive and act by trial and error.
In: Machine Learning, 1992. v. 8, p. 3-4.

39. Mitchell, T. M. Machine Learning. Singapore: McGraw-Hill, 1997.
40. Koenig, S.; Simmons, R. G. Complexity analysis of real-time reinforcement

learning. In: National Conference on Artificial Intelligence, 1993. p. 99-107.
41. Barto, A.; Sutton, R.; Anderson, C. Neuronlike elements that can solve difficult

learning control problems. IEEE Transactions on Systems, Man and Cybernet-
ics, SMC 13, p. 835-846, 1983.

42. Sutton, R. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In: Proceedings of the Seventh Inter-
national Conference on Machine Learning, 1990. p. 216-224.

43. Barto, A.; Bradtke, S.; Singh, S. Learning from Delayed Reinforcement in a
Complex Domain, 1991.

44. Kim, H. Adaptive critic self-learning control. IEEE Transactions on Neural Net-
works, v. 2, n. 5, p. 530-532, 1991.

45. Albus, J. S. Data storage in the cerebellar model articulation controller
(CMAC). Journal of Dynamic Systems Measurement and Control, v. 97,
p. 228-233, 1975.

46. Carlsson, J. Yet Another Khepera Simulator (YAKS) homepage, 2001. Available
at: ¡http://r2d2.ida.his.se¿. Acessed in: February-2005.

47. Colombini, E.L. Module-based Learning in Autonomous Mobile Robotics. Mas-
ter’s thesis, ITA, 2005.



8

A Hybrid Adaptive Architecture for Mobile
Robots Based on Reactive Behaviours

Antonio Henrique Pinto Selvatici and Anna Helena Reali Costa
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It is desirable that mobile robots applied to real world applications perform
their tasks in previously unknown environments. Thus, a mobile robot archi-
tecture capable of adaptation is very suitable. This work presents a hybrid
adaptive architecture for mobile robots called AAREACT that has the ability
of learning how to coordinate primitive behaviors encoded by the Potential
Fields method by using Reinforcement Learning. The proposed architecture is
evaluated in terms of its performance curve when the robot is moved from one
scenario to another. Experiments were performed on a Pioneer robot simula-
tor, from ActivMedia Robotics R©. Results suggest that AAREACT has good
adaptation skills for specific environment and task.

8.1 Introduction

Intelligent Mobile Robots are physical agents that perform their tasks auto-
nomously in the real world. Their actuation is determined from the processing
of sensors input, which is done in cycles of alternate sensing (acquiring sensory
information) and acting. The action to be executed is determined by the
robot control system, which is an instance of a certain robotic architecture.
The architecture can be considered as a framework for determining the robot
actuation.

Architectures for mobile robots are usually designed following one of tree
paradigms: reactive, hierarchical or hybrid deliberative/reactive [12]. The re-
active paradigm consists in designing robots that determines its actions di-
rectly from the current sensory information, in a straightforward way. This
task is usually decomposed in terms of reactive behaviors, which are modules
that respond to the immediate sensory input. The final action results from a
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simple coordination process among these behaviors. Thus, the robot resultant
behavior emerges from its interaction with the world, which makes reactive
architectures appropriate to cope with uncertainties about the environment.
However, it is not guaranteed that the robot will accomplish its task, specially
in complex environments. Reactive architectures are designed to perform well
instantaneously, but are not capable of reasoning about the environment as a
whole, planning actions for two or more further steps.

In the hierarchical paradigm, there is a planning stage between sensing and
acting that decides the robot actions. The planning stage takes into conside-
ration all the history of sensory information by building a world model, and
performing some reasoning on it. Thus, the robot behavior derives from the
world abstraction used to build the model. This allows the robot to plan its
actions aiming at global optimality, but also ties its performance to the quality
of the model used. If the abstraction adopted is not appropriate, or the world
presents too many unexpected events, hierarchical architectures may lead the
robot to fail in its objective.

The third paradigm, hybrid deliberative/reactive, is a way of combining
the advantages of the other two. While reactive architectures are good in res-
ponding to an unpredictable environment, hierarchical ones can have a global
vision of the robot situation, allowing the definition of actions aiming at a good
overall performance. Hybrid architectures try to combine both advantages by
means of a planning module that actuates over a set of reactive behaviors,
sequencing their actuation, coordinating their outputs and/or modifying their
internal mechanism.

Because of its greater complexity, the hybrid paradigm is usually used
when pure reactive paradigm is not good enough for a satisfactory robot
actuation [2]. It happens, for example, when an intelligent robot needs to
adapt its architecture to changes in the environment in order to have a better
performance. To adapt to new conditions, a robot architecture must have
learning skills in order to observe and make criticisms to its own actuation,
judging it based on some optimality measure, which is not possible for reactive
architectures.

This work presents a hybrid architecture for mobile robots called AARE-
ACT [16]. It consists of a coordination layer that learns the best way to
combine the responses of reactive behaviors encoded by the potential fields
method. These behaviors were inspired by the motor schemas architecture
[2]. AAREACT can be seen as an architecture performing a hybrid control
in a cooperative fashion: instead of selecting a single controller (behavior)
each time, it determines the adequate influence of each behavior in the robot
resultant action.

This chapter is organized as follows. Section 8.2 describes the high-
level schemas commonly adopted for intelligent agent architectures, focus-
ing on their constituent structural elements. Section 8.3 presents the main
organization of the proposed architecture, which is detailed in sections 8.4
and 8.5, where the behaviors used and the coordination layer are respectively
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explained. Section 8.6 describes the experiments conducted with AAREACT
and the results obtained. Section 8.7 presents some related work, inserting
the architecture here presented into the context of other hybrid ones. The
conclusions of this work are presented in section 8.8.

8.2 Agent Architectures

Considering mobile robots as autonomous agents, it is natural that the design
of a robotic architecture should be preceded by the definition of which agent
model the architecture will follow. This section discusses the agent classifica-
tion proposed by Russel and Norvig [15]. Basically, the criterion adopted to
classify agents considers the level of abstraction of the information employed
to control their actions.

8.2.1 Simple Reflex Agents

Simple reflex agents are those which strictly follow the reactive paradigm.
Actions are selected only on the basis of the current perception, ignoring all the
past sensing history. The agent control law is implemented by means of simple
rules directly linking the current perception with an action to be executed.
They can be condition-action rules, expressed by if-then statements, or even
mathematical formulae that express the action parameters as a function of
sensory data. There is not any kind of planning or adaptation of the rules to
be used. All the intentionality of the reflex-agents implicitly resides in the rules
that produce the agent actions. There is no explicit intentionality: actions are
the product of the interaction of the agent with its environment.

Although simple reflex agents can interpret sensory information in order
to form a perception of the environment, they do not build any kind of model
for it. All the history of perception is ignored, and then the agent cannot
perceive how the world evolves. Thus, simple reflex agents can only infer
from its sensors information in the abstraction level of events. Without the
integration of the perception history, it is only possible for them to perceive
eventual situations and react to them in a reflexive fashion.

8.2.2 Model-Based Reflex Agents

Simple reflexive agents have great difficulty in dealing with partial observa-
tions of the world. Not rarely, the success of an autonomous agent relies on its
ability to recognize some aspects of the world that are not always visible to
it. A more effective way to deal with world partial observability is controlling
that part that cannot be perceived some times. To do so, the agent has to
keep some kind of internal state that depends on the history of perceptions,
reflecting one or more aspects of the world which is not observable every time.
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The updating process of this internal information relies on two classes
of knowledge, which must be encoded in the agent. The first of them is the
knowledge about how the world evolves independently of the agent actions.
Additionally, the agent needs to know how its own actions affect the world.
All this knowledge about the world’s behavior is known as the model of the
world, which allows current perception to be combined with the agent internal
state to generate the updated description of the world.

The interesting thing about this approach is that the model-based agent
has the ability to retrieve not only eventual information from sensors data, but
also information about more lasting situations. Besides the perception about
the world current conditions, it is possible to make abstractions about how the
world is. For example, if the agent notices the presence of an obstacle for many
times when it passes through some place, the obstacle can be incorporated
into the world model. Thus, persistent events can be abstracted to define a
characteristic for the environment.

One more point to remark is that model-based reflex agents do not per-
fectly fit in the reactive paradigm, once the construction of a world representa-
tion is considered as a kind of deliberation. However, the control is performed
in the same reflexive manner. The main difference is that perceptual informa-
tion is retrieved from the world model internally represented, which is more
complete than the perception that would be possible to extract only from
the current sensory input. The interface that extracts information from the
internal world representation is called virtual sensor [12].

8.2.3 Goal-Based Agents

If the internal representation of the world is a solution to the partial observ-
ability problem, reflexive agents also suffer from lack of flexibility in dealing
with changes in the world. Once their programming is done by means of sim-
ple rules defined for a limited set of environmental situations and a specific
task, a strong change in these elements can lead the agent to failure. Thus,
it is desirable that the knowledge about the world be attached to some infor-
mation describing desired situations, which the agent can combine with the
knowledge about the results of its own actions in order to choose those that
attain the goal.

Many times the goal pursued by the agent cannot be immediately at-
tained from within one action, but different sequences of actions have to be
considered to find a way to accomplish its objective. In these cases, the agent
must have decision-making skills, which involves the implementation of search
and planning techniques in order to provide reasoning about future possible
situations.

The concept of goal represents an abstraction level superior to that of
reactive rules. Goal-based agents have explicit intentionality, and the master
regent of its actions is the goal, rather than the interaction with the environ-
ment. In this case, actions are steps towards the goal.
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8.2.4 Utility-Based Agents

Although the explicit representation of goals provides the agent with a high
level of flexibility to decide its actions, goal-based agents still present lim-
ited autonomy. The objectives need to be defined by the programmer, so that
the decisions made by the goal-based agent do not represent an expression
of “self-will”. A greater level of autonomy would be achieved if the agent
itself determined which goal is convenient at a given moment. To do so, infor-
mation with a higher level of abstraction has to be employed to control the
agent regarding something related to its “self-will”. This can be achieved by
means of a more general performance measure that permits a comparison of
the possible “satisfaction level” among different goal states, if attained. This
measure corresponds to a utility function, which maps a state or a sequence
of states of the environment into a real number that expresses the associated
“satisfaction level”.

A complete specification of the utility function allows autonomous deci-
sions to be made in two cases, for which goal specification only is not enough.
First, when there are two contradictory reachable goals, the utility function
specifies the most adequate one. The other case happens when agent aims at
various goals, but none of them is guaranteed to be attained. In this case, the
utility function provides a mean of pondering the probability of success with
regard to the importance of the goals.

8.2.5 Learning Agents

Despite the high complexity presented by utility-based agents, there is an
important skill of rational beings not addressed by any of the former agent
models: learning. A learning agent can modify its own control laws in order
to adapt to environmental changes and better accomplish its objectives.

However, implementing learning in artificial agents requires the definition
of the information interchange structure, specifying the parameters to be ad-
justed and those variables that will be measured for expressing performance.
To do so, the learning agent architecture can be divided into four concep-
tual components. The most important distinction to be done is between the
learning element, responsible for the learning process, and the performance
element, responsible for determining the actions to be executed by the agent.
The performance element is equivalent to a complete agent architecture, fol-
lowing one of the four models previously discussed. So, the learning element
adjusts the performance element parameters in order to improve the resultant
actions.

The performance measure is a feedback about the agent behavior provided
by the critic, which is compared to a desired pattern. The critic is necessary
because the agent perceptions are not intended to offer clues about its de-
gree of success. So, an independent observer is needed to inform the learning
element about the performance evolution while the parameters are tuned.
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The last component of the learning agent is the problem generator. It
is responsible for suggesting actions that will lead to new and informative
situations. The performance element itself would always behave in the same
way for a given set of parameters defined by the learning element, which
could be the best behavior regarding the acquired experience. In this case,
the agent would be performing an exploitation of the acquired knowledge,
but there would be no explicit action towards to improving the knowledge-
base. However, the execution of some random actions, although not optimal
in a short horizon, could imply the discover of a much better behavior when
considering the long term performance.

One should notice that the learning agent model is formed by an embedded
complete agent architecture equipped with a learning apparatus. This kind of
embedding, although also present in other agent models, is more evident in
this case. Thus, it is convenient to design a learning agent architecture on the
basis of an existent well-studied one.

8.3 AAREACT

AAREACT is a robot architecture projected within the hybrid delibera-
tive/reactive paradigm that combines adaptive skills and reactive behaviors.
It is based on the concept of learning agents presented in section 8.2.5, which
means that the architecture consists of a learning apparatus modifying para-
meters of an embedded sub-architecture based on the robot performance. The
architecture schema is outlined in figure 8.1.

In AAREACT the embedded architecture corresponds to a simple reflex
agent, called reactive layer . Despite the high complexity of the tasks that a
more complete agent could accomplish, the pure reflexive agent can cope with
several situations without the need for planning or other kind of deliberation.
This leads to a simpler and faster implementation, operating in real time.
Besides, reactive control is very appropriate in mobile robotics, once this ap-
proach was developed to overcome difficulties presented by robotic agents in
their real-world operations.

The reactive layer is formed by reactive behaviors coordinated in a coope-
rative fashion. Each behavior is a module that indicates an action to be ex-
ecuted by the robot. Once these behaviors are reactive, they process sensors
input in two main phases. Firstly, in the Sense phase, raw data is interpreted
in a very straightforward way, resulting in perceptual information useful for
the behavior. Then, in the Act phase, this information is transformed in an ac-
tion command by a simple set of production rules or a mathematical formula.
The final action command results from the combination of every behavior
response performed by the Merging module. Thus, in contrast to the com-
petitive coordination, which determines robot actions by just choosing one
of those returned by the various behaviors, AAREACT reactive layer adopts
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Fig. 8.1. AAREACT outline

cooperative coordination. However, the influences of each behavior response
are adjusted by a pondering mechanism in the Merging module.

The learning part of the architecture is called coordination layer. Its role is
that of adapting the value of the influence parameters that define the weight
of each behavioral response in the resultant action. It is done regarding the
situation of the environment, defined by a suitable interpretation of the robot
sensors. Thus, the coordination layer has to learn the best way to coordinate
the behaviors regarding the current sensory data.

The situation of the environment is determined by the supervisor module
present in this layer, while the critic module observes the robot performance.
One should notice that both modules may use raw sensor data and the per-
ception information determined by behaviors perception. However, while the
supervisor module considers only current information, the critic module has
an internal state being updated during the interval of one situation. When
the situation changes, the critic module defines a reinforcement value that
summarizes how well it behaved while that situation was observed.

The learning model adopted in AAREACT is Reinforcement Learning
(RL). RL is the problem faced by an agent that learns a policy of actuation
based on interactions with a dynamic environment [8], being very suitable to
model on-line untutored learning. Due to the autonomous nature of mobile
robots, a non supervised technique is more suitable for robotic architectures,
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because it allows the robot adapt automatically to environmental changes,
without the need for a tutor. In fact, RL is one of the mostly employed learning
models in robotic systems [2].

The RL module maintains a data-base of the estimated utility of choosing
a certain set of parameters to be sent to the Merging module in each possible
situation of the environment. At each change of situation, the RL module gets
the new situation information and the reinforcement value from the supervisor
and critic modules, respectively, and updates its data-base by using an RL
algorithm. Then, in most cases, the parameters chosen to be passed to the
reactive layer are those considered to have the greatest utility among all for
the current situation. However, as explained in section 8.5, at the beginning
of the robot actuation, values randomly chosen are often passed in order to
accelerate the learning process. When this happens, the RL module behaves
as the problem generator present in learning agents, as seen in section 8.2.5.

8.4 Reactive Layer

The behaviors integrating AAREACT reactive layer are based on Arkin’s
motor schemas [2]. A motor schema is a behavior encoded by the potential
fields method that translates the sensors readings into a movement vector
directly and in a continuous fashion.

Each motor schema is composed by two modules: the perceptual schema
and the encoding module. The perceptual schema is responsible for the Sense
phase of the sensorial processing: it determines relevant information for con-
trolling the robot from sensors input, thus generating the behavior percep-
tion. Then, the encoding module, which performs the Act phase, calculates a
movement vector based on the potential fields method, using the perceptual
information returned by the perceptual schema.

The potential fields method of behavioral encoding consists in generating
a movement vector analogous to a force derived from some potential function,
usually generated by associating repulsive charges to the obstacles and attrac-
tive charges to the target position. At each instant, each behavior calculates
the forces generated by the interaction of the robot with the virtual potential
field, and returns the resultant force as a movement vector. The final action
command results from the vectorial sum of every vector returned. Depend-
ing on the architecture, this vector may have different meanings. It can be
interpreted as indeed an external force pushing the robot, or just a velocity
or displacement command. Here, the parameters that define the response of
each behavior to the sensory stimulus are the speed and direction of motion.

In AAREACT, behaviors influences are adjusted before the calculation of
the final action. The potential fields method suggests a very simple way to do
it: the multiplication of each behavioral response by a pondering weight. Thus,
in the Merging module, robot actions are determined by means of weighing
the movement vectors returned by behaviors and then performing a vectorial
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sum of them. So, the role of the coordination layer of AAREACT turns to
finding the best set of weights for each situation of the environment.

The behaviors that integrate AAREACT are:

avoidCollision

This behavior aims at avoiding the collision to the obstacles present in the en-
vironment. In its Sense phase, range readings are processed in order to identify
the location of the detectable obstacles. Then the action vector is calculated
analogously to the electrostatic force in Coulomb’s law: repulsive charges are
associated to each identified obstacle, generating move-away vectors with mag-
nitudes that grow with the proximity to the obstacles. The behavior response
is the vectorial sum of the calculated vectors for all detected obstacles. The
equations that determine the movement parameters are:

V (d) =
{

VAC e
S−d

T for d > S
VAC for d ≤ S

φ = π − φrob-obst

, (8.1)

where V is the response magnitude (speed), d is the distance from the mass
center of the robot to the obstacle, VAC is the maximum speed allowed for
the behavior, S is the robot stand off distance, T is the scale constant for the
exponential function, φ is the motion direction and φrob-obst is the direction
defined by the straight line that passes by the obstacle and the robot mass
center.

moveToGoal

This behavior aims at attracting the robot to a pre-determined location in
the environment. The target’s position in the global coordinate system is in-
formed by an external agent. The current robot position is determined by some
localization method. The resultant motion direction is equal to the target’s
direction, given by the straight line that passes by the robot center and the
target’s location (φrob-targ). The magnitude is given by a constant (VMTG).
Thus, the motion parameters’ equations are:

V = VMTG

φ = φrob-targ
. (8.2)

moveAhead

This behavior provides a certain trend for the robot not to change its heading
direction. moveAhead does not use any sensory information, and the motion
parameters are determined in a very simple manner: the magnitude is a con-
stant (VMA), and the direction is equal to the current robot heading (φrobot):

V = VMA

φ = φrobot
. (8.3)
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8.5 Coordination Layer

The coordination layer is responsible for learning the best policy for choosing
the weights that multiply behavioral responses in the reactive layer. The learn-
ing process follows the approach of Module-Based Reinforcement Learning [9],
in which a switching function implementing an RL algorithm chooses the best
controller for the system regarding the current environment situation. Here, a
controller is equivalent to a predefined set of weights that multiply behavioral
responses, while the situation is defined by a vector of environmental features
indicating the placement configuration of the obstacles and the target around
the robot.

Figure 8.2 shows the complete AAREACT blocks diagram schema, de-
tailing the information interchange among modules considering the reactive
layer described in section 8.4. The learning module gets the information of
the environment situation from the supervisor module, which determines it
using the input from range sensors and the perception of moveToGoal behav-
ior. The critic module defines rewards or penalties depending on the robot
performance, measured on the basis of the approximation to the target and
the average speed. Then, the learning module, implemented with SARSA
algorithm[17], determines an adequate policy, that corresponds to choosing a
set of weights for the behaviors according to the given situation. Thus, the ro-
bot coordination is defined by a set of three weights, wAC , wMTG, and wMA,
that respectively multiply the movement vectors returned by avoidCollision,
moveToGoal and moveAhead behaviors.

8.5.1 SARSA Algorithm

Commonly, the role of RL algorithms is to determine, based on interactions
with the environment, a function Q(s, a), where Q is the utility of choosing
action a given the environment situation s. In the case of AAREACT coordi-
nation layer, action a corresponds to the choice of a predefined set of weights.

When the agent observes a situation s and executes an action a, it obtains
a response from the environment in terms of a reinforcement, r, that can be
either a reward or a penalty. Then, a new situation s′ is perceived. Once in this
new situation, the agent has to choose a new action a′. SARSA [17] learning
rule is defined from this 5-tuple <s, a, r, s′, a′>:

Q(s, a) := Q(s, a) + α(r + γQ(s′, a′) − Q(s, a)). (8.4)

where r ∈ R is the reinforcement signal, α ∈ ]0, 1[ is the learning rate, and
γ ∈ ]0, 1[ is the discount rate. Both α and γ are project parameters previously
defined.

However, (8.4) does not provide a tool for determining the following action,
which depends on the chosen strategy of actuation. If one decides to always
trust in the current result of the learning process, the adopted strategy should



8 A Hybrid Adaptive Architecture for Mobile Robots Based on Reactive Behaviours 171

avoidCollision

moveToGoal

moveAhead

MTG

AC

MA

w

w

w

 Sense

 Sense

Act

Act

localization

 critic

supervisor

 calculus

Reactive layer

Actuators

Coordination layer

module

RL

Choosing a
set of weights

 Observe s

r
Reinforcement

situation

Learning

Act

range

speedometer

 Sense

Merging

Σ

Fig. 8.2. AAREACT schema

be the greedy one, that always chooses the action to which is associated the
greatest value of utility Q for the situation. However, a less confident strategy
is more suitable to explore the possibility of actions, which is useful mainly
in the initial phases of learning, when the agent is unlikely to have enough
experience to decide the best action for the current situation. The strategy
adopted in this work is the ε-greedy [17], that has the probability ε of choosing
a random action, and a probability 1− ε of choosing the action with greatest
associated utility.
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8.5.2 Definition of the Situation Space

Once the robot configuration space is continuous, and there can be an infinite
number of possible arrangements for the obstacles in the environment, the
situation space for the real world is, indeed, continuous and infinite. However,
RL algorithms need the specification of a finite and discrete situation space,
modeling just some relevant features. Analogously to Kalmár’s work [9], the
environment situation space is defined by a set of on/off features, abstracted
from the sensors data. The environment situation is then defined by a vector
indicating the activation or not of each feature, called features vector.

The features defined for AAREACT are:

FreeTarget: this feature is on when the robot senses that there is no obstacle
between itself and the target, or when the obstacles in the target direction
are very far. A very far obstacle consists of a range reading greater than
a threshold Lfar, defined a priori.

BackTarget: the activation of this feature happens when the target is lo-
cated behind the robot, meaning that the robot trend is to move away
from the target.

SideObstacle: this feature is activated when one of the robot lateral range
sensors detects the presence of a nearby obstacle, represented by a reading
inferior to a threshold Lnear, defined a priori, with Lnear < Lfar.

DiagonalObstacle: this feature is on when one of the robot frontal-diagonal
sensors detects the presence of a nearby obstacle, with a distance reading
inferior to Lnear.

MiddleObstacle: the activation of this feature is given by the detection of
some obstacle at a middle distance from the robot, characterized by any
range reading falling between the thresholds Lnear and Lfar.

NarrowPath: this feature is on when the lateral sensors of both sides detect
the presence of a nearby obstacle, characterizing the passage through a
narrow path. When this feature is active, those above described (FreeTar-
get, BackTarget, SideObstacle, DiagonalObstacle and MiddleObstacle)
are ignored, once we consider that the navigation in a narrow path is
a special situation, when the robot should not take into consideration the
target position or the presence of obstacles outside the path.

FrontalObstacle: this feature is active when one of the frontal sensors de-
tects the presence of a nearby obstacle, characterizing danger of imminent
collision. When this feature is on, all the others are ignored, once the ro-
bot priority reaction in this case should be avoiding this obstacle and not
consider he target location or further obstacles.

Figure 8.3 illustrates the definition of each feature, showing the respective
spacial distribution of obstacles and the target around the robot. The environ-
ment situation is defined by the features vector, signaling which features are
on and which are off. A change of situation occurs when one or more inactive
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features are activated, or also when one or more activated features are deac-
tivated. Given the number of predefined features, one can wrongly conclude
that there are 27 = 128 possible situations. However, considering the way
features were defined, many of them are mutually excluding, which strongly
reduces the number of possible situations. A further analysis demonstrates
that only 24 situations are allowed.

Fig. 8.3. Illustration of the defined features. In the picture, the robot is repre-
sented by the light gray circle, while the line segment inside it shows the direction
of movement. The cross represents the target position, where the robot should move
to, and the rectangles represent the detected obstacles. The dotted-trace circumfer-
ences represent the distances Lnear and Lfar (Lnear is denoted by the circumference
nearest to the robot).

8.5.3 Definition of the Weights Sets

The sets of weights were defined associating a controller to each defined fea-
ture. When the environment situation is defined by the activation of a unique
feature, the chosen set of weights is that associated to the active feature. In
the other situations, when more than one feature is on, the RL module inside
the coordination layer has to choose a set of weights among those discrimi-
nated in table 8.1. The way the features were defined prevents having all of
them off at the same time.

The weights set number 1 was associated to the feature FreeTarget, and
considers only the moveToGoal behavior. Set number 2, associated to Back-
Target, considers, in addition to moveToGoal, the avoidCollision behavior, in
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Table 8.1. Defined features and the set of weights associated to each one.

Nb. Feature Associated weights set
{wMA; wMTG; wAC}

1 FreeTarget {0.0 ; 1.0 ; 0.0}
2 BackTarget {0.0 ; 1.0 ; 1.0}
3 SideObstacle {1.0 ; 0.0 ; 0.3}
4 DiagonalObstacle {1.0 ; 0.0 ; 1.0}
5 MiddleObstacle {0.6 ; 0.4 ; 1.0}
6 NarrowPath {1.0 ; 0.0 ; 0.3}
7 FrontalObstacle {0.3 ; 0.0 ; 1.0}
8 — {0.5 ; 1.0 ; 0.7}

order to prevent the robot from a situation of an unexpected imminent colli-
sion when turning back towards the target. In the case of the features SideOb-
stacle and NarrowPath, the associated weights sets consider the moveAhead
behavior and, in a smaller ratio, the avoidCollision, in order to obtain a slight
deviation from the obstacle. However, DiagonalObstacle requires a bigger
participation of avoidCollision, because of the greater risk of collision. The
weights set associated to MiddleObstacle considers an equilibrated participa-
tion level for all behaviors because of the comfortable situation represented
by the isolated activation of this feature. In this situation, there is no risk
of imminent collision. Finally, the feature FrontalObstacle, which represents
the danger of imminent collision, requires the maximum participation of the
avoidCollision behavior, and a slight influence of moveAhead in order to avoid
sharp robot movements.

One can notice that set number 8 is not associated to any feature. It was
purposefully elaborated to be different enough from the others: other than set
number 8, only set number 5 conjugates all the three behaviors simultaneously,
but with different weights. Thus, the set of weight number 8 is present as an
additional option to be explored in the case of activation of more than one
feature at the same time.

8.5.4 The Reinforcement Function

In RL, positive reinforcements are used to reward desirable situations, while
negative reinforcements can also be used to penalize undesirable situations.
The robot primary objective is to get to the target’s location. When this
occurs, the critic module defines a great reward, defined by rgoal.

Besides, it is also desirable that the robot present a good performance
during its actuation, which is difficult to express in numbers. While RL al-
gorithms seeks to achieve a good overall long-term performance, short-term
performance may be used to indicate wether the expected long-term one will
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be better or worse. In this work, two parameters of the robot trajectory were
adopted to express its short-term performance: the average speed developed
and the average speed of target approaching. When a situation change is de-
tected, a reward proportional to these performance measures is calculated,
characterizing an intermediate reinforcement, received before reaching the
target. Intermediate reinforcements are useful for accelerating the learning
process [11].

This reward, however, must be small when compared to rgoal. It is defined
as

rint = K1vav + K2va, (8.5)

where:

• K1 and K2 are gains arbitrarily defined;
• vav is the average speed developed by the robot in the time interval of the

duration of a situation, measured by a speedometer;
• va is the average velocity of target approaching performed during the time

interval of the duration of a situation, given by the difference between the
final and the initial distances from the robot to the target, divided by the
time interval of the duration of the situation.

The above formulation allows positive and negative values for rint. The
value of this intermediate reinforcement is saturated in ±r̄, to warrant that
|rint| < |rgoal|.

8.6 Experiments with AAREACT

In order to verify the learning ability of the proposed architecture, AAREACT
was implemented in a realistic robot simulator. Experiments were performed
in two phases. In the first phase, named initial learning, the RL module does
not have a good estimative of the utilities Q(s, a), and a ε-greedy strategy is
adopted. In this phase, the robot is expected to have a bad performance, even
showing erratic trajectories. This kind of global behavior makes the robot
prone to experimenting different situations initially, learning how to deal with
them, rendering an effective learned policy that could be applied to different
environment settings.

In the second phase, the knowledge acquired in the first phase is incorpo-
rated, so a better performance for the robot is expected. In this phase, the
RL module does not explore the space of weight sets anymore, but exploits it
according to the acquired knowledge by adopting a greedy strategy (ε is set
to zero). It is worthy to emphasize that the learning algorithm keeps working
as before.

8.6.1 The Robot Model

In the experiments, the robot model adopted was the Pioneer 2-DX, from
ActivMedia R© Robotics [1]. It has a 44cm long, 38cm wide and 22cm high
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aluminum body, weighing 9kg and capable of transporting another 23kg of
additional load. The robot has a two-wheel drive plus a balancing caster wheel,
with a differential steering. The robot can travel at a maximum speed of
1.6m/s, and its rotation rate can reach 230o/s.

The Pioneer sensors to be considered in this work are only those included
in the basic package. Eight sonars, placed in a frontal semi-ring and working at
a frequency of 25Hz, are the only range sensors used. The six sonars pointing
forward are uniformly distributed within an angle of 90o, with a step angle
of 15obetween adjacent ones. Besides, there are two side sonars, one on each
side, pointing to the left and the right. The robot localization is given by
dead reckoning, using the 500-tick encoders present in each drive wheel. The
speedometer is also implemented based on the encoders.

All the experiments were performed using the robot simulator, distributed
together with the communication API. The sensors reading simulations are
quite realistic, and the simulated errors behave very similarly to real ones.
Therefore, the obtained results are expected to faithfully express those that
would be achieved in a real scenario.

8.6.2 Initial Learning Phase

Once the knowledge acquired by AAREACT extends to diverse environments,
it is interesting to take advantage of the initial learning to train the robot in an
environment that presents a great variety of possible situations to be explored.
The scenario projected for this first phase offers the robot several kinds of ob-
stacles configuration before accomplishing its objective. This scenario consists
of a rectangular room with four target positions near the corners, as shown
in figure 8.4. The robot is then commanded to search one target at a time,
ensuring that it will have circulated the room internally when it reaches the
fourth target.

The AAREACT architecture is implemented with the following parame-
ters:

• Behavior parameters
– Stand off: S = 40cm
– Exponential scaling constant: T = 15cm
– moveAhead speed: VMA = 15.0cm/s
– avoidCollision speed: VAC = 15.0cm/s
– moveToGoal speed: VMTG = 15.0cm/s

• Feature parameters:
– Threshold for nearby obstacles: Lnear = 50cm
– Threshold for far obstacles: Lfar = 200cm

• Learning algorithm parameters:
– Learning rate: α = 0.3
– Discount rate: γ = 0.99
– Probability of exploration: ε = 20%
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Fig. 8.4. Scenario were the simulated robot initiates its learning process. The po-
sitions marked with × are the targets locations, and the numbers next to them
indicate the order they are sought. The elements in gray represent the obstacles,
and the circumference with the internal line segment represent the robot and its
respective direction of motion.

• Reward parameters:
– Goal reward: rgoal = 100
– Maximum intermediate reward: r̄ = 3
– Gain over the average speed: K1 = 0.02s/mm
– Gain over the average velocity of target approaching: K2 = 0.002s/mm

Since SARSA algorithm is always active, a simple stop criterion was de-
fined for the initial learning: the first experiment was executed for the period
of time necessary for the robot to show little variation of its long-term per-
formance, which means that the acquired knowledge was good enough for the
task accomplishment. The robot performance was measured by the time spent
to complete the circuit at each epoch. The obtained Q values were used in the
experiments of the second learning phase, when the probability of exploration
ε is fixed to zero.

8.6.3 Scenario Changing Experiments

AAREACT concept was developed to allow the robot to show an efficient per-
formance in any environment right after the initial learning phase. However, it
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is natural that part of the learned policy is more suitable to the specific envi-
ronment were the initial learning occurred than to other environments. Thus,
when the environment changes, one should expect the robot performance to
improve as it actuates in and adapts to the new environment, tuning the
policy to that environment. In order to verify the robot performance when
it is transported to the new environment, a second scenario was projected.
As shown in figure 8.5, in this scenario there are two alternating target posi-
tions, and the robot has to accomplish a closed circuit, starting in one target
position, going to the other target position, and returning to where it started.

Fig. 8.5. Scenario for the second learning phase. The continuous trace represents a
segment of the robot trajectory in the second learning epoch, and the dotted trace
is a segment retired from the 30th. epoch.

One can observe that in the early learning epochs, AAREACT actuation
in this scenario already showed a satisfactory performance, once the robot
accomplished its objective in an acceptable time (less than 900s). However,
the trajectories shown in figure 8.5 are a typical example of how the initial
performance can be improved. In fact, as long as it actuated in the scenario,
the robot performance tends to improve and stabilizes within a much smaller
range (less then 300s), as shown in figure 8.6. While AAREACT is adapting
to the specific scenario, its performance curve presents notorious variations
due to the uncertainties generated by the interaction with the world.

8.7 Related Work

It is already common sense that practical robot architectures needs to follow
the hybrid paradigm. Many hybrid architectures have already been proposed,
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Fig. 8.6. Performance curve presented by AAREACT while adapting to the second
scenario. It is the average curve obtained by repeating the experiment three times.

either for solving a particular problem or trying to consolidate a more gene-
ral framework for the area. In most of them, the reactive part corresponds
to modules responsible for generating action commands for the robot, while
deliberation is used to define a policy for scheduling and sequencing these
modules. This is the case of the so-called three-layered architectures, taken as
examples to enforce the thought that purely deliberative navigation is not in-
teresting [5]. An example of such architecture is ATLANTIS [4], which consists
of three components. The controller is a reactive control mechanism respon-
sible for primitive activities, performing no decision-making computations.
The deliberator is responsible for time-consuming deliberative computations,
like planning and maintaining world-models. The sequencer is like a special-
purpose operating system, which makes the role of a manager for the archi-
tecture. It controls the initiation and termination of the activities performed
by the controller and the deliberator, based on information provided by both
components.

Another three-layered architecture was proposed by Ranganathan and
Köenig [13]. Their architecture’s components are: the reactive layer, res-
ponsible for the reactive navigation, the deliberative layer, which performs
path planning and goal re-planning, and the sequencing layer, which decides
whether the reactive or the deliberative layer should be active at the moment.
The reactive layer is the one chosen in ordinary navigation, performed by re-
active behaviors modeled by Arkin’s motor schemas. If the robot gets into a
situation of bad performance (mainly caused by local minima in the potential
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field), the deliberator is commanded by the sequencer to calculate an inter-
mediate target position, which is passed to the goal pursuing behavior as its
new objective. However, it may happen that the reactive navigation still fails,
even with the new target. Then, the deliberative layer takes control over the
robot, performing purely planned navigation. In this case, if the world model
built for this purpose is not good enough, navigation may not succeed, or may
require a lot of re-planning.

The three-layered architectures are important examples of how the delibe-
rate sequencing of behaviors can be used to help purely reactive navigation.
All of them have a sequencer component that interprets deliberation results
and applies it by making behavioral scheduling, like in ATLANTIS, and be-
havioral adjusting, like in Ranganathan and Koenig’s work. Similar to the
later architecture, AAREACT has a module that performs the sequencing of
motor schemas based on the result of deliberation computations. However,
no intermediate layer is required: the coordination layer, responsible for de-
liberation in the architecture, produces results that are directly interpreted
by the behavioral merging component of the reactive layer. Besides, no path
planning is performed by AAREACT: the coordination layer uses the robot
experience to learn the best way too coordinate the behavioral responses in
order to obtain the resultant action, which is more aligned with the thought
of avoiding purely planned navigation.

However, the actions of hybrid architectures are not exclusively produced
by reactive controllers. In DAMN [14], an architecture developed for the spe-
cific task of road navigation, some of the behaviors are purely deliberative,
using complex representation of the world. In that architecture, a more com-
plex schema of behavioral coordination is performed. An arbiter decides on
the robot actions based on each action command returned by behaviors, char-
acterizing a cooperative coordination. The arbiter takes into consideration the
weight of each behavior, constantly maintained by a deliberative mechanism.

More recently, the use of adaptive techniques as a form of deliberation
has become a trend. An example is the architecture proposed in the work of
Ishiguro and colleagues [7]. Like in many hybrid architectures, there are some
behavioral modules coordinated in a competitive fashion. Their sequencing is
determined on the basis of the results of deliberative computations, which take
into consideration their scores, constantly updated using a simple adaptive
algorithm. On the success of a certain behavior in accomplishing a task, the
associated score is increased by a constant value. On the failure, this score is
decreased by a proportional value. It is interesting to point out the presence of
the learning agents elements in the architecture, regardless of the simplicity
of the adaptive algorithm. In practice, autonomous adaptive architectures,
despite the great differences among them, needs to follow this approach.

Another way of learning in hybrid architectures is behavior tuning. Al-
though following the same learning agent model, the object of adaptation is
the behavior mechanism rather than behavior coordination in this kind of ar-
chitectures. In [10], a low level controller fuses action commands provided by
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two reactive behaviors: goal pursuing and obstacle avoidance. The controller
function is to guarantee a smooth movement for the robot. The goal pursuing
behavior is implemented by an Extended Kohonen Map which is trained to
produce a sequence of motor velocity commands. The associated training data
is the difference between the movement commanded by this behavior and the
measured robot displacement, acquired after an action execution. Thus, the
goal pursuing behavior is tuned in order to make the robot advance towards
the target position as much as possible.

Despite the existence of other alternatives, the Reinforcement Learning
model fits the autonomous agents learning case very well. Besides, because
of its theoretical background, it provides very well funded techniques and
consolidated tools. In robotics, a very common application of RL is the de-
cision of robot actions based on the environment state. The work of Inoue
and colleagues [6] is an example. The discrete state space corresponds to a
quantization of the robot configuration space: the position space is divided
into a homogeneous grid, and the possible orientation angles are quantized
in 0o, 90o, 180o, and 270o. The possible action commands are only three: go
forward 1 step, turn left, or turn right. The Q-Learning algorithm is used to
determine the best action for each of the possible states. Because of the large
state space size, the learning algorithm is likely to take a long time to con-
verge to the best policy. To solve this problem, [6] proposes the use of a set of
rules, obtained automatically by statistics techniques, in order to generalize
learning results, reducing time of convergence.

However, defining the state and action spaces as simple discretizations
of the continuous robot configuration and action spaces, respectively, brings
serious drawbacks. An alternative is letting the state space be defined as a
set of environmental features values, and action commands to correspond to
predefined primitive behaviors. Then, the objective of the learning algorithm
becomes finding an effective coordination policy. Kalmár and colleagues [9]
studied this approach, naming it Module-Based Reinforcement Learningand
applying it to the problem of learning behavior coordination for task-oriented
mobile robots. In their work, the robot final objective is decomposed into
some simpler subtasks, and then a specific behavior is designed to accomplish
each subtask. The activation of any of them is flagged by the presence in the
environment of the feature corresponding to the behavior operation condition.
However, it occurs that sensory information may not be complete enough for
the robot to accurately determine the adequate behavior to assume. It may
happen that some evidences from the environment suggest the robot to adopt
more than one behavior at a time. The approach used to solve this problem is
the implementation of a central decider, that chooses the best behavior for a
given situation based on the achieved experience. A RL technique is used to
define the best policy for the choice of behaviors in each possible environment
situation. The same architecture was also studied by Colombini and Ribeiro
[3], using a very similar task to extend the results of [9]. Besides enforcing
the conclusion that policies learned automatically are better than handcrafted
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ones, [3] shows that features extracted directly from sensors readings are better
than features consisting of high level perceptual abstractions only.

As in [9] and [3], AAREACT coordination layer uses an RL algorithm for
achieving behavior coordination, but has a distinct conception. While those
architectures select the best behavior to be active, characterizing a compet-
itive behavior coordination, AAREACT selects a set of weights to multiply
the behaviors output, determining the influence of each of them in the final
robot actuation. It allows more flexibility in robot controlling when more than
one objective are concurrently aimed at. For example, in the cases when both
tasks, obstacle avoidance and goal reaching, must be executed, the best co-
ordination schema should consider the responses of both, goal pursuing and
obstacle avoidance behaviors. Another important difference is the application
domain. The problems addressed by [9] and [3] involve a sequence of simple
independent tasks, such as go forward until reaching an object, grasp that ob-
ject, rotate until detecting a light source, etc. Here, the problem addressed is
the improvement of navigation performance as a hole, which makes this work
unique among the architectures adopting the Module-Based RL approach.

However, in Module-Based RL approach, the need for specifying the fea-
ture space and the available behaviors remains. Subtask decomposition can
easily be used to define behaviors that correspond to solutions for each sub-
task. Regarding features, associating each of them with behaviors operation
conditions has shown to be a satisfactory approach [9, 16, 3]. Anyway, some
automatic approaches have been studied. Terada and colleagues [18] proposed
an automatic method for feature definition and discretization. In their work,
the appropriate features are selected based on the correlation of the features
value and the tactile reinforcement achieved during the execution of a cer-
tain task. The optimal features granularity is obtained by using a statistical
method. However, this approach may loose interest in practical applications.
Besides being developed for the specific case of visual-tactile sensory integra-
tion, their method requires a prior training that can be very exhaustive.

8.8 Conclusion

This work presents AAREACT, a hybrid adaptive architecture for mobile
robots based on reactive behaviors coordinated in a cooperative fashion. Re-
sults obtained with AAREACT show that Reinforcement Learning can be
successfully used to learn a policy for behavioral coordination for the task
of navigation in a previously unknown environment with obstacle avoidance.
Although this work concerns this specific task, other abilities can also be in-
cluded in the architecture, mainly due to its modular approach. Besides, the
case studied is a very common application of mobile robots, projected mainly
for navigation purposes.

AAREACT learning methodology presents two important characteristics
that deserve to be stressed. First, the knowledge acquired in one environment
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may be used to let the robot actuate satisfactorily in other ones. The other, as
previously expected, is that the robot performance improves by specializing
the policy for a specific scenario while it remains actuating in that environ-
ment.

However, it is not possible to conclude that the adopted features and
weights sets are the best possible. Given the great importance of the problem
studied to the robotics community, the investigation on new features and on
a less restrictive form of choosing pondering weights may lead to important
contributions.
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We discuss techniques towards using collaborative robots for infrastructure
security applications. A vast number of critical facilities, including power
plants, military bases, water plants, air fields, and so forth, must be protected
against unauthorized intruders. A team of mobile robots working coopera-
tively can alleviate human resources and improve effectiveness from human
fatigue and boredom. This chapter addresses this scenario by first presenting
distributed sensing algorithms for robot localization and 3D map building.
We then describe a multi-robot motion planning algorithm according to a
patrolling and threat response scenario. Neural network based methods are
used for planning a complete coverage patrolling path. A block diagram of the
system integration of sensing and planning is presented towards a successful
proof of principle demonstration. Previous approaches to similar scenarios
have been greatly limited by their reliance on global positioning systems, the
need for the manual construction of facility maps, and the need for humans
to plan and specify the individual robot paths for the mission. The proposed
approaches overcome these limits and enable the systems to be deployed au-
tonomously without modifications to the operating environment.

9.1 Introduction

The events of September 11, 2001 on United States soil have greatly increased
the need to safeguard the country’s infrastructure. A vast number of criti-
cal facilities need to be guarded from unauthorized entry. Unfortunately, the
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number of security officials required to protect these facilities far exceeds their
availability. Due to the enormity of this task, it seems unlikely that sufficient
human resources can be committed to this infrastructure protection. An alter-
native approach is to allow technology to assist in this protection, through the
use of multiple mobile robots capable of collaborating to guard the grounds of
these important facilities from intrusion. Multi-robot systems can thus allevi-
ate the onerous tasks faced by law enforcement officials and army personnel
in surveillance, infrastructure security and monitoring of sensitive national
security sites (e.g. nuclear facilities, power and chemical plants), building and
parking lot security, warehouse guard duty, monitoring restricted access areas
in airports and in a variety of military missions.

The Mobile Detection Assessment and Response System (MDARS) des-
cribed in [7] was developed to provide an automated intrusion detection and
inventory assessment capability for use in Department of Defense (DoD) ware-
houses and storage sites in United States. In this research, the operating area
is previously mapped and the positions of the principal features of naviga-
tional interest are known in advance. The major sensory characteristics of
these features are assumed to be known. By monitoring the variable features
of the environment, an intrusion threat is detected. The system adopts random
patrols in the secured area.

Another significant work in the area is described in [2], which details a
robotic perimeter detection system where a cooperating team of six sentry
vehicles are employed to monitor alarms. Formation of vehicles is achieved by
teleoperation, while navigation of vehicles to a specified location is achieved
by having robots use DGPS (Differential Global Positioning System) to fol-
low specific paths defined by the human. These vehicles have also been used
to remotely surround a specified facility. Mission planning is again achieved
with the aid of an operator. An operator in the base station uses a graphic
interface to determine paths for individual robots and develops a plan out-
lining obstacles and goal perimeters. The robots then execute this plan by
following their designated paths. There are two important disadvantages of
this approach from the perspectives of sensing and planning:

• The success of the mission is entirely dependent on positioning information
provided by DGPS. Multipathing4 errors make it extremely difficult in
many environments to obtain position estimates based on DGPS alone.
Thus it becomes necessary to develop a scheme in which observations from
relative and absolute sensors can be fused to continually deliver reliable
and consistent position information for satisfying dynamic mission and
motion planning requirements.

• Mission and path planning are fully dependent on the human operator
and the system is incapable of dealing with dynamic situation changes that

4 Multipathing refers to the situation where the signals detected by the DGPS
receiver have been reflected off surfaces prior to detection instead of following the
straight line path between the satellite and the receiver.



9 Collaborative Robots for Infrastructure Security Applications 187

require quick responses and mission and/or path replanning. Even if we did
want to use a human operator to specify robot patrol routes, it will be quite
difficult for a human to subdivide the patrol region amongst the robots
to maximize efficiency. In this case, techniques are needed for dynamic
multi-robot motion planning as an aid to the human for determining the
best routes to provide to the robots.

There is little work on general frameworks or techniques developed for
infrastructure security applications using collaborative robot teams. In this
chapter, we formulate the research problems from an infrastructure security
scenario, and report on new developments in distributed sensing and motion
planning towards such important applications.

9.2 Infrastructure Security Scenario and Research
Problems
We envision our new research advances to be used in an infrastructure security
scenario such as the following. In an outdoor environment, robot teams are
first sent out in a training phase to use our distributed sensing and positioning
approach to build 3D digital elevation and obstacle maps of the area to be
secured. Once the terrain is learned, the robots will be put into operation and
each will operate in one of two modes:

1. a nominal patrol mode,
2. a threat response mode.

In general, robots will operate most often in the nominal patrol mode. In this
mode, robots will use our new dynamic multi-robot motion planning algo-
rithms to select efficient multi-robot patrol patterns. Each robot will then
patrol its selected region. For efficient patrolling of each area, patrol paths
need to be planned according to terrain features and local maps to achieve
efficiency. While patrolling, the robots monitor their individual coverage areas
for intrusion and also update their local terrain maps to account for environ-
mental changes (e.g., changes in positions of authorized equipment, vehicles,
etc.). If an intrusion is detected, some of the robots enter the threat response
mode, as pre-defined by the rules of engagement set forth at the beginning
of the team deployment. One example of a threat response would be for the
detecting robot to send an alert to the human monitor (who is at a remote
location), and then for a few robots to surround the threat and return video
from multiple perspectives. To successfully respond to the threat, the robots
need to dynamically plan paths to the threat location so that they reach the
threat area in the shortest possible time. The remaining robots must sub-
sequently replan their patrol paths to compensate for the robots that have
entered the threat response mode.

The development of multi-robot teams for use in real world security appli-
cations in unstructured outdoor environments presents several challenging
issues, which include the following three key research problems:
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1. distributed sensing for robot localization and 3D map building,
2. dynamic multi-robot motion planning,
3. integration of approaches to generate a proof of principle demonstration

in a relevant infrastructure security environment.

Algorithms need to be developed for collaborative robots to operate in a
reliable and robust manner and to be capable of operating in unstructured and
dynamic environments with minimal modifications to the operating domain.
In the following sections, we address each of these three research problems,
presenting approaches and algorithms.

9.3 Multi-Robot Positioning and Mapping
using Distributed Sensing

To accomplish missions in infrastructure security applications, multi-robot
teams should be able to both autonomously position themselves and construct
3D elevation maps for efficient path planning when traversing on rugged un-
even terrain. The objective is to design distributed sensing techniques and to
develop schemes that ensure efficient utilization of sensor data obtained from
sensors situated across the team members for multi-robot positioning and 3D
elevation mapping. The sensors that are considered are: DGPS, wheel en-
coders, scanning laser rangefinders, inclinometers, compass and pan-tilt-zoom
cameras.

9.3.1 Heterogeneous Distributed Multi-Robot Localization

To achieve real-time multi-robot cooperative positioning and mapping com-
petency in a reliable and robust fashion, the sensing and the ensuing data
fusion processes are of utmost importance. Thus, careful attention needs to
be devoted to the manner in which the sensory information is integrated and
interpreted. To satisfy this requirement, we propose a distributed multi-robot
Extended Kalman Filter (EKF) estimation-theoretic scheme that enables ef-
ficient data fusion of sensor measurements from dead-reckoning and absolute
sensors to continually deliver reliable and consistent pose (position and orien-
tation) estimates. The robots collect sensor data regarding their own motion
and share this information with the rest of the team during the EKF update
cycles. The EKF processes the individual positioning information available
from all the members of the team and produces a pose estimate for every one
of them. Once pose estimates are available, a 3D map of the terrain can be
generated by combining vision-based depth estimates with an elevation pro-
file. The elevation profile may be obtained by fusing vertical displacements
from DGPS with those computed from inclinometer pitch angles. The pro-
posed scheme has several advantages. The uncertainty associated with mea-
surements from different sensors is explicitly taken into account by using ap-
propriate sensor models and validation procedures. It also becomes possible
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Fig. 9.1. The robots perform laser-based cooperative localization when DGPS be-
comes unavailable or when there are not enough satellites in view. EKF estimated
robot paths are shown in (a). The solid line denotes the estimated path of robot #2
and the dotted line that of robot #1. (S1,E1) and (S2,E2) denote the start and end
positions for robots #1 and #2, respectively. The standard deviations of the pose of
robot #2 during laser-based cooperative localization are shown in (b). The external
corrections offered by the laser-based localization scheme are marked by arrows.
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to combine measurements from a variety of different sensors as the estimation
process is distributed across the robots.

When the quality of measurements from absolute sensors aboard the indi-
vidual robots deteriorate5 or simply when a particular robot of a team does
not have adequate sensing modalities at its disposal, another robot in the
team with better sensing capability can then assist the deficient member(s)
of the team such that the measurement from a single robot can be beneficial
to the whole team. Thus, the heterogeneity of the team can be exploited to
provide position estimates for all the team members [9].

Let us consider the case when the team is comprised of two robots. When
robots #1 and #2 meet, they exchange relative pose information and the
observation model becomes:

zck
=

⎡

⎣
x1k

− x2k

y1k
− y2k

φ1k
− φ2k

⎤

⎦ + v12k
= H12k

xck
+ v12k

(9.1)

where v12k
refers to the uncertainty present in the relative pose observation

and is modeled as a zero-mean uncorrelated Gaussian sequence with covari-
ance R12k

.
The residual and the residual covariance are:

νck
= zck

− ẑck
= zck

− H12k
xc(k|k−1)

Sck
= H12k

Pc(k|k−1)H
T
12k

+ R12k

The Kalman gain matrix, the state estimate and covariance updates (central-
ized) are as below:
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T
12k

S−1
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[
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(
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Sck
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ck

where xc(k|k−1) and Pc(k|k−1) are the state and covariance predictions, respec-
tively.

Suppose that robot #2 has a scanning laser rangefinder and also that the
number of satellites in view from the current position of this robot indicates
that DGPS is unavailable. (In the field trial, this corresponded to the robot
going under a tree.) Given the pose of robot #1 whose on-board sensors in-
dicate a high level of confidence in their measurements, relative pose between
robots #2 and #1 is determined as follows:
5 The error in the DGPS positions can be obtained as a function of the number of

satellites acquired and this error can then be used as an indicator of the deteri-
oration of the quality of the sensor. As an alternative, the so-called dilution of
precision measure associated with the GPS can be used for the same purpose.



9 Collaborative Robots for Infrastructure Security Applications 191

• Robot #2 identifies robot #1 and acquires a range and bearing laser scan.
• Robot #1 communicates its pose to robot #2.
• After necessary preprocessing to discard readings that are greater than a
predefined threshold, the range and bearing to the minima identified in the
laser profile of robot #1 are determined.
• From the range and bearing pertaining to the minima, the pose of robot #2
is then inferred.
• Since robot #1 makes its pose available to robot #2, relative pose informa-
tion is obtained by comparing the two poses and is now available for use in
Equation (9.1).

Within the EKF framework, state prediction takes place on individual ro-
bots in a decentralized and distributed fashion. By exchanging relative pose
information, the states of the robots are then updated in a centralized fashion.
The results for the laser-based cooperative localization are shown in Figures
9.1(a) and (b). Figure 9.1(a) shows the estimated paths of robots #1 and #2.
The pose standard deviations of robot#2 in Figure 9.1(b) demonstrate the
utility of the relative pose information in accomplishing cooperative localiza-
tion. At time = 21 seconds, DGPS becomes unavailable as indicated by the
rise in the x standard deviation. It can be seen that as a result of the laser-
based relative position information, there is a sharp decrease in the position
standard deviations of robot #2 (marked by arrows). As the motion of the
robot is primarily in the x direction when the corrections are provided, the
resulting decrease in the x standard deviation is noticeable compared to those
in y and φ.

9.3.2 Terrain Mapping

Incremental terrain mapping takes place via four main processes:

• An incremental dense depth-from-camera-motion algorithm is used to ob-
tain the depth to various features in the environment. The relative pose of
the vehicles at these locations as well as depth covariances are associated
with particular depth information. These covariances are used to deter-
mine regions which contain features of interest that should be indicated
on the map.

• An elevation gradient of the terrain is determined by fusing GPS altitude
information with vertical displacements obtained from inclinometer pitch
angles. • The depth and elevation information are then registered with
their associated covariances.

• The terrain map is updated to incorporate the registered values at their
proper coordinates. The covariances associated with each measurement
provide the confidence the algorithm has in that measurement. In the case
of overlapping areas, this confidence determines whether or not the map
is updated.
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An overall schematic diagram of the algorithm is given in [3]. Both the
elevation profile for the motion segments and the feature locations are mapped,
as shown in the partially updated terrain map (Figure 9.2). This Figure shows
the elevation profile across the area traversed by each robot (in the locally fixed
coordinate frame centered at the DGPS base station location) and prominent
features within the robot’s field of view during the motion segment are marked
on the map.

Explored by Augustus

Unexplored area

Markers 

Marker (tree)

Explored by Theodosius

Fig. 9.2. Partially updated terrain map.

9.4 Dynamic Multi-Robot Motion Planning

According to the scenario presented in Section 9.2, the overall patrolling and
threat response behavior can be divided into the following design modules:

1. Partition the patrolling region according to the number of robots;
2. Distribute robots from their initial positions to their sub-regions for pa-

trolling;
3. Each robot patrols its sub-region continuously;
4. If a threat is detected by at least one robot during the patrol, a threat

alert signal and the threat location are broadcast among robots. A subset
of robots move from their current position to the threat position, and the
rest of the team repeats steps 1 to 3 to provide continuous patrolling.

In the following, we describe autonomous region partitioning and motion
planning in each of the above design modules.
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9.4.1 Area Partition

To achieve effective patrolling by a multi-robot team, the first task is to parti-
tion an area into sub-areas so that a utility function of the group is minimized.
Mathematically, we formulate the problem as follows:

Consider a metric space Q, and n robots with their positions at
{p1, p2, . . . , pn}. For any point q ∈ Q, assume there is a cost function
f(q, pi), i ∈ [1, 2, . . . , n] associated with it. If

f(q, pi) < f(q, pj), i, j ∈ [1, 2, . . . , n], i �= j (9.2)

we define the decentralized cost function:

fi(q, pi) = f(q, pi).

A group utility function is defined by

U(p1, p2, . . . , pn) =
n∑

i=1

∫

Q

fi(q, pi)dq (9.3)

The objective is to find solution (p1, p2, . . . , pn) so that the group utility func-
tion U is minimized.

We know that the set (p1, p2, . . . , pn) satisfying

∂U(p1, p2, . . . , pn)
∂pi

= 0 (9.4)

is the solution for min U(·).
In a special case when Q is a finite dimensional Euclidean space, and

the cost function f(q, pi) is chosen to be the distance between q and pi, i.e.,
f(q, pi) = dist(q, pi), the set of points satisfying (9.2) compose Voronoi region
Vi = Vi(pi). The set of regions {V1, V2, . . . , Vn} is called the Voronoi diagram
for the generators {p1, p2, . . . , pn}. In this case, the solution to (9.4) is the mass
centroid of Vi. Centroidal Voronoi tessellations [1] provides solution methods
to find the mass centroids.

Applying the above theoretic results to the area partition, we generate the
Voronoi diagram and the mass centroids pi, i ∈ [1, 2, . . . , n], which are the
closest point to every point in the Voronoi region Vi.

9.4.2 Initial Distribution

After the set of points {p1, p2, . . . , pn} are generated, we need to move the ith
robot from its initial position to pi, so that the robot can patrol the Voronoi
region Vi. The motion planning problem for this sub-task is defined as follows:

Find feasible trajectories for the robot, enrouting from its initial position
to its goal position pi, without collisions with static and dynamic obstacles in
the environment while satisfying nonholonomic kinematics constraints.

Solution methods can be found in [6, 12].
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9.4.3 Complete Coverage Patrolling

In this sub-task, each robot needs to plan its patrolling path in its own Voronoi
region Vi. Multiple paths can be planned based on different criterion, for ex-
ample, complete coverage of the area as high a frequency as possible, maximize
area covered in unit time, minimize repeat coverage, etc. For complete cover-
age, the robot patrols the region so that every point in the region is covered
within the robot sensor range at least once over a time period.

We propose a path planning algorithm for complete region coverage. It
first packs the bounded region with disks of radius Rc. It was shown in [5]
that the disk placement pattern in Figure 9.3 has a minimum number of disks
to cover a rectangle. Since the radius of the disk is the same as the coverage
range of robot’s sensors, complete coverage with minimum repeated coverage
can be achieved by visiting every center of the disks. Complete coverage path
planning is then to find the sequence to visit the centers. A path planning
algorithm was proposed to find a complete coverage path in [5]. However,
the algorithm works only in environments without obstacles. Neural network
models were used for robot motion planning in dynamic environments in [10]
since the dynamically varying environment can be represented by the dynamic
neural activity generated by the model. In [13], a neural network approach
was developed for complete coverage path planning in a nonstationary envi-
ronment. We modify the algorithm corresponding to our data structure and
generate collision-free complete coverage paths.
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Fig. 9.3. Covering a rectangle using a minimum number of disks

The basic idea of the neural network approach is to generate a dynamic
landscape for the neural activities, such that through neural activity propaga-
tion, the uncleaned areas6 globally attract the robot in the entire state space,
and the obstacles locally repel the robot to avoid collisions. The dynamics of
each neuron in the topologically organized neural network is characterized by
a shunting equation derived from Hodgkin and Huxley’s membrane equation
6 The uncleaned areas are defined as the uncovered disks, and the obstacle areas

are defined as the disks that are occupied by obstacles.
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[8]. The robot path is autonomously generated from the activity landscape of
the neural network and the previous location. The neural network model is
expressed topologically in a discretized workspace. The location of the neuron
in the state space of the neural network uniquely represents an area. In the
proposed model, the excitatory input results from the unclean areas and the
lateral neural connections, whereas the inhibitory input results from the ob-
stacles only. The dynamics of the neuron in the neural network is characterized
by (9.5):

ẋi = −Axi + (B − xi)
(
[Ii]+ +

∑k
j=1 wij [xj ]+

)

−(D + xi)[Ii]−
(9.5)

where k is the number of neural connections of the ith neuron to its neigh-
boring neurons within the receptive field. Six neighbors of a point (neuron)
are shown in Figure 9.4.

Fig. 9.4. Six neighbors of a neuron

The external input Ii to the ith neuron is defined as in (9.6).

Ii =

⎧
⎨

⎩

E if it is an unclean area
−E if it is an obstacle area
0 otherwise

(9.6)

where E >> B is a very large positive constant. The terms [Ii]++
∑k

j=1wij [xj ]+

and [Ii]− are the excitatory and inhibitory inputs respectively. Function [a]+

is a linear threshold function defined as [a]+ = max{a, 0}, and [a]− =
max{−a, 0}. The connection weight wij between the ith and the jth neurons
is 1 if they are neighbors or 0 if they are not neighbors.

To make the path having less navigation turns, for a current robot location
pc, we select the next point pn within the uncleaned neighbors according to
(9.7):

xn = max{xj + (1 − ∆θj

π
), j = 1, 2, . . . , k} (9.7)

where k is the number of neighboring neurons, xj is the neuron activity
of the jth neuron, ∆θj is the absolute angle change between the current and
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next moving directions, i.e., ∆θj = 0 if going straight, and ∆θj = π if going
backward. After the robot reaches its next position, the next position becomes
a new current position. Because of the excitatory neural connections in (9.5),
the neural activity propagates to the entire state space so that the complete
coverage is achieved.

A complete coverage path in an environment with stationary obstacles is
shown in Figure 9.5. It is shown that the path completely covers the bounded
region without covering a point twice. Note that in a trap situation, that
is, there are no uncleaned neighbors, the neighbor’s neighbors become the
neighbors of the neuron, so that uncleaned area can be continuously searched.
This can be seen from the right bottom and top middle parts of the figure. The
algorithm works for moving obstacles if the speed of the obstacles are known,
since the landscape activities of the environment are updated dynamically in
the algorithm.

Cooperative patrolling paths of four robots are shown in Figure 9.6.
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Fig. 9.5. Complete coverage paths, the dark rectangles are stationary obstacles

9.4.4 Point Convergence

In this module, a subset of robots move to the threat location from their
current positions. The motion planning problem for each robot becomes: given
a start and a goal, generate a feasible trajectory without collisions. The same
solution methods as described in subsection 9.4.2 can be applied.
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Fig. 9.6. Cooperative coverage trajectories: each continuous curve represents one
robot’s trajectory, and the solid circles denote areas occupied by stationary obstacles.

9.5 System Integration Towards Proof of Principle
Demonstration

For a successful proof of principle demonstration in a relevant infrastructure
security environment, functionalities of distributed sensing developed in Sec-
tion 9.3 should be integrated with the dynamic motion planning capabilities
in Section 9.4 to realize the cooperative team objectives. Figure 9.7 illustrates
the block diagram of system integration. Note that in the figure, techniques
regarding threat detection (in the gray box) are not discussed in this chapter.

We have partially implemented the algorithms proposed on a group of
ATRV-mini robots. The experimental setup is shown in Figure 9.8. It consists
of a wireless mini-LAN, a Local Area DGPS (LADGPS), a software platform
(Mobility from RWI) and codes developed in-house under Linux to read and
log the data for the sensors on each robot. The wireless LAN is set up outdoors
between an Operator Console Unit (OCU) and the robots. The OCU consists
of a rugged notebook equipped with a BreezeCOM access point and antenna.
Each robot has a BreezeCOM station adaptor and an antenna. The LADGPS
is formed by the base station/antenna hardware connected to the OCU and
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Fig. 9.7. Block diagram of system integration.

Fig. 9.8. Experimental setup in an outdoor environment

remote stations/antennas directly mounted on each robot. Each robot’s sta-
tion receives differential corrections from the base station such that LADGPS
accuracy of up to 10 centimeters is obtainable. Some experimental results can
be found in our previous publications [3, 4, 9, 11].

9.6 Conclusions

Recent terrorist events on United States soil have dramatically increased the
need for protection of our nation’s infrastructure. Rather than stretch already-
thin human resources to guard facilities against low-probability intrusions,
technological solutions are preferred. We propose to address this problem by
using teams of intelligent robots for infrastructure security applications.

We first formulate the research problems from an infrastructure scenario,
and then propose new algorithms in distributed sensing and multi-robot
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motion planning to achieve the autonomous patrolling and threat response
tasks. Finally, the system integration of sensing and planning are presented
towards a successful proof of principle demonstration. The developed collab-
orative sensing and motion control strategies enable a robot team to position
themselves and move appropriately in a previously unknown environment to
enable intrusion detection. To briefly summarize the advances of our approach
over existing approaches for infrastructure security in outdoor environments,
we compare different approaches in Table 9.1. Future work includes extensive
real robot experiments using the experimental setup in Section 9.5.

Table 9.1. Comparison of approaches

Proposed Approach Approach
Approach in [2] in [7]

Autonomous detection of threats X X X

Mobility for rapid response X X X

No infrastructure modifications required X X

No dependency on absolute positioning (DGPS) X

Autonomous path planning X

No a priori map needed X
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Imitation Learning: An Application in a Micro
Robot Soccer Game
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In this chapter, we present a robot soccer system that learns by imitation and
by experience. At first the robots do not know anything but after observing
saved games of other teams, they start improving their knowledge learning
new states and actions. This is called learning by imitation. They validate
learned actions by testing them several times, which called learning by ex-
perience. Repeating this process allows that robots can continuously improve
their performance. This strategy emulates the way humans learn.

10.1 Introduction

In robotics several tasks require complex behaviors. Behaviors become more
complex when they include interactions between two or more robots. It is the
case of a robot soccer game.

Definition 1. A multi-robot system is a robotic system including two or
more robots interacting between each other and with the environment in a
collaborative way.

An important issue in a multi-robot system is its work strategy, which
generally involves individual and collaborative behaviors. There are two ways
to implement a work strategy: Statically and dynamically.

A static strategy is defined during the multi-robot system design and
doesn’t change automatically. A dynamic strategy is improved according to
the experience of each component in the system. While a static strategy
depends on the designers knowledge and experience about the problem;
a dynamic strategy only depends on the way selected to improve it as algo-
rithms, examples of situations, adversary, etc.

D. Barrios-Aranibar and P. J. Alsina: Imitation Learning: An Application in a Micro Robot

Soccer Game, Studies in Computational Intelligence (SCI) 50, 201–219 (2007)
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In general, dynamic strategies can be divided in two stages, the learning
and the operation stage. During the learning stage the system is trained by
interacting with a real environment or an environment close to the real one
(e.g. a simulated environment) in order to tune all the parameters that define
the strategy. In the case of robot soccer teams, a team is trained by playing
several times with another team (e.g. a team that plays “well enough”). In
robot soccer, previous works that implement dynamic strategies [3, 4, 7, 8,
14, 17, 18, 22] use intelligent systems to accomplish this objective.

A dynamic strategy can be implemented using search algorithms for find-
ing optimal parameters for the strategy or learning algorithms used to learn
optimal parameters for the strategy or a optimal strategy. Both implementa-
tions can be seen as experience learning because the way they are implemented
(e.g. playing several times to tune strategy). The problem in these implemen-
tations is that actions and behaviors in robot strategy are restricted to those
defined by the system designers. A way to solve this problem is by learning
new actions and behaviors from other systems developing the same task. This
learning is called imitation learning.

Definition 2. Imitation Learning is a technique based on the interaction of
an agent with others that know something about what the agent is trying to
learn. In human agents this interaction is known as social interaction.

Learning by imitation is considered a method to acquire complex behaviors
and as a way to provide seeds for further learning [9, 11, 15]. This type of
learning was applied to several problems like humanoid robot learning [10,
16] and air hockey and marble maze games [2]. In robot soccer, learning by
imitation was implemented using a Hidden Markov Model [12, 13] and by
teaching the robots with a Q-Learning algorithm [6], but not by observing
other teams playing soccer for recognizing complex behaviors.

In this chapter, a robot soccer system that learns by imitation and by
experience is presented (figure 10.1). Initially, robots do not know anything,
then robots improve their knowledge learning new states and actions observing
saved games of other teams (learning by imitation). After this, they validate
learned actions by testing them several times (learning by experience). This
process is repeated exhaustively, thus robots can continuously improve their
performance. This combination tries to emulate the way humans learn.

To understand this approach of learning by imitation, the next concepts
were defined:

Definition 3. A role is defined as the function a robot implements during it’s
useful life in a problem or in part of it. This can be part of the functions in a
robotic team or part of the applications of a particular robot. A role is inde-
pendent of the robot and the form it is executed depends on the characteristic
of the robot implementing it. Each role is composed of a set of behaviors.
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Fig. 10.1. Learning by Imitation and Experience Applied to the Robot Soccer
Problem

Definition 4. A situation is an observer description of a basic interaction
between a robot and an element in the environment, including other robots in
the team.

Definition 5. An action is a basic interaction between a robot (actor) and
an element in the environment, including other robots in the team. This inter-
action is intentionally caused by the actor. While for the actor this interaction
is an action, for observers it is only a situation because they are not sure if
the actor really wants to do that.

Definition 6. A behavior is a sequence of consecutive actions. In this
approach, a behavior can be composed of one, two, three or four actions.

The case study presented in this chapter is the robot soccer standard prob-
lem. According to the proposed approach, in the present case study, learning
is implemented separately for each role (section 10.2). Situations of a robot are
recognized, in a recorded game (section 10.3). Behaviors patterns are founded
from groups of consecutive situations executed several times (section 10.4).
Finally these behaviors are introduced in the knowledge base. Knowledge base
has the form of the environment model in a reinforcement learning problem
because learning by experience was implemented using reinforcement learning.
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Then, knowledge base includes states, behaviors and values of behaviors at
each state.

10.2 Case Study and Control Architecture

The proposed learning approach was applied to the robot soccer team of
the Department of Computing Engineering and Automation of the Federal
University of Rio Grande do Norte - Brazil (DCA-UFRN) [19], which satisfies
restrictions of the FIRA MIROSOFT (Micro Robot World Cup Soccer Tour-
nament) category in the small league [5] and it is formed by three robots, a
perception and a communication subsystems.

The control architecture of the robot team is shown in figure 10.2 [1]. It
has six modules: Perception, role attribution, environment analysis, behavior
attribution, action attribution and command execution.

The perception module implements algorithms to obtain the game state
(robots and ball positions) from an image returned by the perception subsys-
tem. Role attribution module attributes a role for each robot depending on
the state of the game and based on the learned strategy. Environment analy-
sis module analyzes the game (actions and their results) in order to learn a
better strategy. Behavior attribution module attributes a behavior to a ro-
bot based on the game state, attributed role, result of executed actions and
learned strategy. Action attribution module executes an action based on the
game state, attributed role, result of executed actions, learned strategy and
attributed behavior. Finally, the command execution module translates a spe-
cific action into a sequence of commands (e.g. reference motor voltage) and
executes them sending these signals by the communication subsystem.

In this architecture, modules are grouped according to the element (central
agent, role or robot) they belong to. Role attribution, environment analysis
and Perception modules are part of a central processing. This occurs because
in this application environment is perceived using a single central camera
connected to a computer (in other applications, perception module can be part
of the robot processing). A central agent decides which robot will execute each
role, based on robots positions. Finally, this central agent analyzes actions and
their results for implement learning by experience. Also it analyzes opponent
movements in order to implement imitation learning.

Behavior and action attribution are part of a role processing. Thus, each
role has its own states, behaviors and actions and its own strategy to attribute
behaviors to the robot executing the role at each state. It occurs because each
role implements its own reinforcement learning process. Finally, command
execution is part of the robot processing because each robot translate actions
into commands depending on its physic characteristics.

In the environment analysis module, both an analysis of the team per-
formance and other team behaviors in recorded games are made. Analysis of
team behavior is used to improve the strategy parameters, and, analysis of
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Fig. 10.2. Control Architecture of a Multi-Robot System Applied to the Robot
Soccer Problem
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other team behaviors is used to increase the knowledge base of the team (set
of states, actions and known behavior).

The analysis of other teams behavior is made over a recorded game of an
expert team, or over a recorded game of a team that plays “well enough”
in comparison with the learner team. The recorded game must include posi-
tions and orientations of both teams players, ball position and score at every
sampling time. Ball direction and velocity are obtained from ball position
measurements. In order to minimize noise, position, orientation, direction and
velocity measurements are filtered through a second order Butterworth filter.

10.3 Situations Recognition

Filtered recorded games are passed through a fuzzy inference engine in order
to recognize situations involving each of the three robots in the analyzed
team. This fuzzy inference engine use five fuzzy variables: Distance between
two objects, orientation of an object with respect to the orientation of another
object, orientation of an object with respect to another object, playing time
and velocity of an object with respect to the velocity of another object.

Distance between two objects fuzzy variable is based in Euclidian distance
between the objects positions. Figure 10.3 shows linguistic values for this
variable. The possible linguistic values are: on, very close, close, far and very
far. Distances in this figure are in meters.
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Fig. 10.3. Distance Between two Objects Fuzzy Variable
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Orientation of an object with respect to orientation of another object fuzzy
variable is based on the absolute value of the difference between the orientation
angles of two objects. Figure 10.4 shows linguistic values for this variable.
This fuzzy variable has three possible linguistic values: same, almost same
and different.
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Fig. 10.4. Orientation of an Object with Respect to Orientation of Another Object
Fuzzy Variable

Orientation of an object with respect to another object fuzzy variable is
based on the angular distance between two objects. It is defined as the dif-
ference between the current orientation of the first object and the orientation
needed to point to the second object, as shown in figure 10.5. Figure 10.6
shows linguistic values for this variable. This fuzzy variable has three possible
linguistic values: oriented, almost oriented and not oriented.

Playing time fuzzy variable is based on the sampled times of a game or a
part of it. It was defined using a sample rate of 33 milliseconds. Figure 10.7
shows linguistic values for this variable. This fuzzy variable has five possible
linguistic values: very small, small, medium, great and very great. Generally
this variable maps situation elapsed time.

Velocity of an object with respect to the velocity of another object fuzzy
variable is based on the value of the difference between the velocity of two ob-
jects. Figure 10.8 shows linguistic values for this variable. This fuzzy variable
has five possible linguistic values: very slow, slow, equal, fast, very fast.
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Fig. 10.5. Angular Distance between a Robot and a Ball
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Fig. 10.6. Orientation of an Object with Respect to Another Object Fuzzy Variable

Thirty situations with fuzzy rules were defined. An additional situation
called “Robot moving randomly” was defined to be used when there is a time
interval that does not fulfill restrictions of any situation. Situations are listed
in table 10.1.

Three roles were defined for the robots: Goalkeeper, midfield and striker,
all of them depend on the robot position at each sampling time. Almost all
situations are independent of the robot’s role. Situations with codes 162, 163,
173 and 174 depend on the robot role when a situation starts. For that pur-
pose, roles are arranged in a circular list (e.g. Goalkeeper, midfield, striker).
Role of analyzed robot, role +1 and role +2 can be goalkeeper, midfield and
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Fig. 10.7. Playing Time Fuzzy Variable
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Table 10.1. Situations Defined in the Fuzzy Inference Engine

Code Situation Name Priority

001 Robot with the ball 1
011 Robot guides the ball 2
021 Robot kicks the ball 3
022 Robot loses the ball 4
023 Robot yields the ball 4
033 Robot leaves the ball 5
034 Robot moves away from the ball 10
044 Robot reaches the ball 6
045 Robot receives the ball 7
046 Robot approaches the ball 9
047 Ball hits the robot 8
057 Robot orients to the ball 11
067 Robot goes ball’s X direction 12
068 Robot goes ball’s Y direction 13
078 Robot orients to it’s own goal 14
088 Robot approaches it’s own goal 15
098 Robot moves away from it’s own goal 16
108 Robot orients to adversary’s goal 17
118 Robot approaches the adversary’s goal 18
128 Robot moves away from adversary’s goal 19
138 Robot approaches goalkeeper adversary 21
139 Robot approaches midfield adversary 21
140 Robot approaches striker adversary 21
150 Robot moves away from goalkeeper adversary 24
151 Robot moves away from midfield adversary 24
152 Robot moves away from striker adversary 24
162 Robot approaches role +1 teammate 23
163 Robot approaches role +2 teammate 23
173 Robot moves away from role +1 teammate 22
174 Robot moves away from role +2 teammate 22
184 Robot does not move 20
194 Robot moves randomly

striker or striker, goalkeeper and midfield or midfield, striker and goalkeeper
respectively. For example, if the role of analyzed robot is midfield, then, situ-
ation 162 is “Robot approaches striker teammate” and situation 163 is “Robot
approaches goalkeeper teammate”, the same occurs with situations 173 and
situations 174.

To figure out how fuzzy rules are defined, a sample of “Robot kicks the ball”
situation is shown in table 10.2. In this fuzzy rule, four fuzzy variables are
used: distance between two objects, orientation of an object in relation to the
orientation of another object, orientation of an object in relation to another
object and velocity of an object in relation to velocity of another object.
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Table 10.2. Fuzzy Rule of Situation Robot Kicks the Ball

021: Robot kicks the ball

Initial condition : If robot is [(on or very close) and oriented] to the ball,
then, situation is set as <possible to happen> and the current state is saved
as the state in the beginning of the situation.
Final condition : If situation is set as <possible to happen> and ([robot
is not (on or very close) to the ball, and (the ball is going (fast or very
fast) and with the same orientation in comparison with the beginning of the
situation)] or [the ball is not following the same orientation]) and the ball is
not on the last position and all other robots are not ((on or very close) and
oriented) to the ball in any moment from the beginning of the situation to
the current time, then robot kicks the ball.

Recognizing situations involve two steps: Verification of possibility and
confirmation of occurrence. Verification of possibility involves a fuzzy rule
that verifies if initial conditions for a situation to happen are accomplished.
For example in order to say that a robot kicks the ball it is important that
initially it is near the ball (on or very close) and oriented to it. If this initial
condition is fulfilled then the situation is possible to happen.

Confirmation of occurrence is the effective recognition of a situation, which
is the accomplishment of final restrictions, expressed as another fuzzy rule,
for situations that were first recognized as possible to happen.

For example, final conditions of situation 021 involves two options:

• The robot is not on or very close to the ball and the ball is going faster than
when the situation begins, but the ball must have the same orientation it
had at the beginning of the situation.

• The robot is not near the ball and it changes its direction.

Two restrictions complement this final condition: The ball is moving, which
means that its position is changing at every time step. And, the fact that no
robot is near and oriented towards the ball during the situation.

When the fuzzy engine finishes recognizing situations, it verifies if there are
sampled states that are not found as part of any situation. In the affirmative
case, all these subsequent samples are grouped and evaluated with the fuzzy
variable playing time. If the time is not very small then this group of states
are recognized as the situation “Robot moves randomly”, else the beginning
of the situation after this group of states is moved a half of the total amount
of sampled states in that group, and the end of the former situation is moved
to the other half in order to have both situations in sequence.

After recognizing all situations for each robot of the analyzed team, the
codes are passed trough a SOM neural network in order to find patterns of
groups of subsequent situations. This analysis is off-line because it is necessary
to have a complete game or group of games to find behavior patterns. A game
can be analyzed on line if necessary, but only for recognition of situations,
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because the neural network SOM requires a lot of time to converge in com-
parison with the sampling time in a robot soccer game. In this case, situation
“Robot moves randomly” is not utilized.

Each situation has a priority in the inference engine. Situations involving
interaction with the ball have greater priority than those involving interaction
with other elements of the game, like robots or goals. This is because the
objective of this approach is to implement an imitation learning and it is
better to learn interaction with the ball than interaction with another element
of the game.

10.4 Behaviors Patterns Recognition

The output of the fuzzy inference engine is a list of subsequent situations for
each robot in the team. In this stage, the code of each situation will be used.
For this purpose a SOM neural network is used. Groups of one, two, three
and four situations are used to train this neural network. Codes of situations
are used as entries. It means that when it is used to recognize patterns in
behaviors composed by n situations the neural network will have n entries.

As shown in table 10.1, codes of similar situations are separated by one
unit. For example situation 021 “Robot kicks the ball” is similar to the situation
022 “Robot loses the ball” because both situations will be translated into
action “kick the ball”. In both cases the robot wants to kick, but, in the second
one it can’t complete this action because the presence of an adversary robot.
Codes of different situations are separated by ten units. This codification will
bring a good performance in the situation groups pattern recognition.

Recognizing patterns in groups of situations is guided by a priority. First
are recognized patterns in groups of four situations, next in groups of three,
two and one situations respectively.

Groups of four subsequent situations are formed. All possible combinations
of subsequent situations are used, that means, each situation can be part of
a maximum of 4 groups (e.g. being the first, second, third or fourth in the
group).

Formed groups are used to train the SOM neural network. After training
process, neurons that were activated by at least ten percent of the groups are
selected. Next, groups that activate these selected neurons are selected to be
part of the knowledge base. To be part of the knowledge base, these groups
must have a value greater than a threshold.

The value of a group of situations is calculated based on its final result:
Own goal, adversary goal or game finished without a goal. Each situation
preceding an own goal receive a discounted positive value αt, where α is a
value greater or equal than zero and less or equal than one, and t is the number
of samples between the beginning of the situation and the final result. Each
situation preceding an adversary goal receives a discounted negative value
−αt, and each situation preceding the finish of the game without goals receives
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zero as a value. Value of a group of situations is calculated as the arithmetic
mean of the values of each situation in the group.

After recognizing behaviors formed by four situations, groups of three
situations are formed with situations not considered as part of behaviors added
to the knowledge base. The process explained before is then repeated, but this
time neurons that were activated by at least eight percent of the groups are
selected. Next, remainder situations are grouped in groups of two and the
process is repeated considering neurons that were activated by at least six
percent of the groups. Finally the same is made for individual remainder
situations with four percent.

Because reinforcement learning will be used to improve strategy (imple-
ment learning by experience), each new behavior in the knowledge base re-
ceives a value for each state. These behaviors will receive an optimistic value
(e.g. the maximum value of the known behaviors in the state). This initial
value will assure that each new behavior in each state will be explored and
its right value will be found.

10.5 Experimental Results

This approach was implemented and tested in the robot soccer simulator
developed by Yamamoto [20], which has the same characteristics of the soccer
team of the DCA-UFRN[19].

The Proposed approach was tested by analyzing recorded games of two
teams using the static strategy implemented by Yamamoto[21]. It was obser-
ved that recognized situations are similar to those recognized by a human
observer.

An analysis of the efficiency of the proposed fuzzy inference engine was
also performed. In 30 minutes of simulated game, each situation was translated
into actions and executed by a robot a random number of times. The other five
robots were stopped in random positions. Results of this analysis are shown
in table 10.3. Situation 045 was not executed in these 30 minutes because;
it involves a complex initial state that was not held. Situations 184 and 194
were not considered to be executed.

As shown in this table, 68.56% of all executed situations were recognized
as the effectively executed or as a similar one (efficiency rate). 31.45% of them
were recognized as a situation or group of situations without relation to the
executed one (error rate).

To be executed, each situation is translated into an action. For example
situation “Robot looses the ball” is translated into action “kick the ball”.
This situation will be recognized as “Robot kicks the ball”. If there are some
adversary or teammate robot near and oriented to the ball during its execution
then it can be recognized as “Robot looses the ball” or “Robot yields the ball”
respectively.



214 Dennis Barrios-Aranibar and Pablo Javier Alsina

Table 10.3. Situations Recognition Efficiency Analysis

Code same(%) related(%) different(%)

001 75,00 25,00 0,00
011 24,00 72,00 4,00
021 32,76 36,21 31,03
022 48,53 42,65 8,82
023 7,41 64,81 27,78
033 34,33 44,78 20,90
034 32,26 41,94 25,81
044 21,41 53,43 25,16
046 25,93 69,14 4,94
047 18,31 73,24 8,45
057 45,74 29,79 24,47
067 31,75 52,38 15,87
068 32,31 33,85 33,85
078 10,00 64,44 25,56
088 3,73 74,63 21,64
098 1,49 71,64 26,87
108 17,86 54,76 27,38
118 8,33 76,39 15,28
128 1,54 80,00 18,46
138 2,54 48,31 49,15
139 2,34 39,84 57,81
140 3,57 46,43 50,00
150 3,77 45,28 50,94
151 0,00 53,97 46,03
152 1,89 39,62 58,49
162 0,00 49,60 50,40
163 2,99 47,76 49,25
173 0,00 54,72 45,28
174 2,99 50,75 46,27

ALL 14,37 54,19 31,45

It was observed that each situation can be executed in a different number
of ways, depending on the exact position of the robot at the beginning of the
situation. It was also observed that the lesser the priority of the situation in
the inference engine the greater the error in the results.

This approach was used to narrate a soccer game. Narrating a game in-
cludes to say the time each situation starts and ends (minutes: seconds: mil-
liseconds of game). Table 10.4 shows part of an output of this approach used
to narrate a soccer game.

An analysis of the number of actions executed in each game using this
approach was made. Remember that the learner team start with no knowledge
and after each game it learns new actions from its adversary. Table 10.5 shows
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Table 10.4. Output of this approach used to narrate a soccer game

...
Blue robot of blue team does not move from (6:35:10) to (6:36:0)
Green robot of blue team does not move from (6:35:175) to (6:37:551)
Cyan robot of blue team does not move from (6:35:208) to (6:37:89)
Blue robot of yellow team goes ball’s Y direction from (6:35:307) to (6:37:386)
Green robot of yellow team orients to the ball from (6:35:802) to (6:36:825)
Blue robot of blue team goes ball’s Y direction from (6:36:0) to (6:36:660)
Blue robot of blue team approaches to the ball from (6:36:660) to (6:36:858)
Green robot of yellow team does not move from (6:36:825) to (6:50:520)
Blue robot of blue team approaches the adversary’s goal from (6:36:858) to
(6:37:188)
Cyan robot of blue team reaches the ball from (6:37:89) to (6:37:419)
Blue robot of blue team moves away from the ball from (6:37:188) to (6:37:584)
Cyan robot of yellow team does not move from (6:37:188) to (6:43:821)
Blue robot of yellow team does not move from (6:37:386) to (6:42:666)
Cyan robot of blue team orients to the ball from (6:37:419) to (6:37:518)
Cyan robot of blue team kicks the ball from(6:37:518) to (6:37:584)
Blue team goal!!!! (6:37:584)
Cyan robot of blue team orients to the ball from (6:37:584) to (6:43:425)
Blue robot of blue team does not move from (6:37:584) to (6:43:62)
Blue robot of yellow team goes ball X’s direction from(6:42:666) to (6:43:755)
Green robot of blue team does not move from (6:42:930) to (6:43:425)
Blue robot of blue team reaches the ball from (6:43:62) to (6:44:118)
Green robot of blue team goes ball’s Y direction from (6:43:425) to (6:43:953)
Cyan robot of blue team does not move from (6:43:425) to (6:43:590)
Cyan robot of blue team goes ball’s Y direction from (6:43:590) to (6:44:349)
Blue robot of yellow team moves away from the ball from (6:43:755) to
(6:44:679)
Cyan robot of yellow team moves away from the ball from (6:43:821) to
(6:44:613)
Green robot of blue team moves away from the ball from (6:43:953) to
(6:44:646)
Blue robot of blue team kicks the ball from(6:44:118) to (6:44:184)
Blue robot of blue team moves away from the ball from (6:44:184) to (6:44:976)
Cyan robot of blue team moves away from the ball from (6:44:349) to (6:44:613)
Cyan robot of blue team goes ball’s Y direction from (6:44:613) to (6:44:811)
Blue team goal!!!! (6:45:42)
...
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results for the first thirty five games of playing against a robot soccer team
controlled by human operators using joysticks.

Table 10.5. Number of New Actions Executed in Each Game by a Team Playing
Against a Human Controlled Team

Game Total Random Other %

1 3017 3017 0 0,00
3 4212 4168 44 1,04
5 2997 2973 24 0,80
7 3234 3162 72 2,23
9 3058 2886 172 5,62
11 3035 2812 223 7,35
13 3619 3464 155 4,28
15 3157 3071 86 2,72
17 3835 3701 134 3,49
19 4624 4497 127 2,75
21 4587 4422 165 3,60
23 4369 4369 0 0,00
25 3601 3447 154 4,28
27 4517 4347 170 3,76
29 3437 3346 91 2,65
31 4779 4779 0 0,00
33 3439 3285 154 4,48
35 3537 3454 83 2,35

It was observed that the team using the proposed approach had a positive
and continued evolution in the number of new actions executed (e.g. non-
random actions) during the first ten games; after that, evolution was slower
but with increasing trend. It was observed that the trained team had a low
rate of using new actions. It occurs because all states have the action “moves
randomly” and the possibility of learning randomly actions. This happens
because when the inference machine does not recognize a group of movements
as an action in the observed team, then it forces to recognize them as a “moves
randomly” action.

Another fact influencing the number of executed random actions is the
action selection method when using reinforcement learning. Finally, it is im-
portant to note that, due to the exploration process in reinforcement learning,
each action (including de random action), needs to be used many times.

In the proposed approach, knowledge base of each role starts without any
state and only with the action “moves randomly”. It is important to note
that the number of known states increases during the game and during the
training, on the other hand, the number of known actions increases only during
the training.
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Goals can be the result of a direct action or an indirect action of one’s
own team or a mistake of the adversary team. Since the main goal of a soccer
team is to make goals, in order to evaluate learning capacity of the proposed
method, an analysis of the number of effectively achieved goals (e.g. result
of a direct action) was made. By using the computer program developed to
narrate soccer games and analyzing its output, it was possible to determine if
a goal was produced by a direct action of one’s own robot, or by an indirect
action or a mistake of the adversary team. The obtained results are shown in
figure 10.9. Results shown that this approach allows the continuous evolution
of the robotic team. This evolution is reflected in the increasing number of
effective goals achieved by the learning team.

0 5 10 15 20 25 30 35

0

1

2

3

4

5

Games Number

G
oa

ls
 N

um
be

r

Fig. 10.9. Number of Goals Produced by a Direct Action

10.6 Conclusions and Future Works

This work shows that it is possible to recognize behaviors patterns in a micro
robot soccer game using fuzzy logic and self organizing maps neural networks.
This work is a base for an imitation learning by observing robot soccer games.
Also was shown that an accurate robot soccer narrator can be developed using
fuzzy logic.

This work was implemented using an architecture to control a robot soccer
player with a dynamic strategy by mixing reinforcement learning and imita-
tion learning. This approach was tested by playing with a static strategy and
with robots controlled by humans and it reveals as a good way to implement
robots that evolute with time and experience.
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ambiente de futebol de robôs. Master’s thesis, Electric Engineering - Federal
University of Rio Grande do Norte, 2005. Available in http://www.
ppgee.ufrn.br/teses.php

22. Yu Zhang and Alan K. Mackworth. A constraint-based robotic soccer team.
Constraints, 7(1):7–28, 1 2002.



Index

AAREACT, 162, 166–168, 173, 180,
182

avoidCollision behavior, 169
avoidCollision behavior, 170
behaviors, 168–169
blocks diagram, 166, 170
coordination layer, 167, 169–175
critic module, 167, 170
features, 172, 183
moveAhead behavior, 169
moveAhead behavior, 170
moveToGoal behavior, 169, 170
reactive layer, 166, 168–169
reinforcement function, 174
supervisor module, 167, 170
weights, 170, 173, 183

AAREACT experiments, 175–178
implementation, 175
initial learning, 175–177
results, 178
second phase, 175, 177–178

abstraction, 142
Action, 203

Attribution, 204
agents, 163

autonomy, 165
goal-based, 164
intentionality, 163
learning, see learning agents
model-based, 163
simple reflex, 163, 166
utility-based, 165

ATLANTIS, 179
autonomous robotic fish, 121

Behavior, 203, 212
Attribution, 204

behavior coordination
competitive, 166
cooperative, 166

behaviour layer, 121

Cerebellar Model Articulation Con-
troller, 144

cognitive layer, 121
Command Execution, 204
complete coverage, 194
Control Architecture, 204
cooperative patrolling, 196

DAMN, 180
distributed sensing, 188

ε-greedy strategy, 171, 175
Environment Analysis, 204
environment situation, 167, 170, 172
evolutionary, 49, 60

Features, 142
fitness function, 51, 53–55, 57
Fuzzy

Inference Engine, 206
Linguistic Value, 206
Rule, 210
Variables, 206

fuzzy, 47, 49, 50, 55, 56, 60

Generalisation, 144
genetic algorithm, 47, 49, 51, 53,

60
goal-oriented, 121
greedy strategy, 171

Imitation Learning, 202
infrastructure security, 187

learning agents, 165
components, 165
critic, 165
learning element, 165
problem generator, 166, 168

linguistic variable, 47, 49, 55



222 INDEX

machine learning, 122
macro-operators, 142
Markovian Decision Processes, 138
mobile robot, 47–50, 56, 186
mobile robots, 161, 182
model-free, 122, 129
Module-Based RL, 170, 181, 182
Module-based RL, 142
motion planning, 47–50, 54, 56, 60,

192
Motor Schemas, 162, 168
multi-robot localization, 188
multi-robot systems, 186

Narrate Soccer Games, 214
navigation, 48, 51, 60
neural network, 194

path planning, 47, 48, 51,
54, 60

Pattern Recognition, 212
Perception, 204
policy gradient learning, 122
Potential Fields, 162, 168

Q-learning, 129, 141

Reinforcement Learning, 138, 167,
182, 213

intermediate reinforcement, 175
long-term performance, 174
short-term performance, 174

reinforcement Learning, 122

Robot
Soccer, 204
Team, 201, 204

robot behaviors, 161, 166
robotic architecture, 161, 163, 167,

178
examples, 178–182
paradigms, 161
three-layered, 179

robotic fish, 123
Role, 202

Attribution, 204

sample-based, 122
SARSA algorithm, 170
sharp-turning, 129
Situation, 203, 208
state-based, 123
Strategy, 201

Dynamic, 201
Static, 201

subgoals, 142
swim pattern, 130
swim pattern layer, 121
System

Multi-Robot, 201
system integration, 197

tank border exploration, 130
terrain mapping, 191

virtual sensor, 164

world model, 164



Author Index

Andrew L. Nelson, 63
Anna Helena Reali Costa, 160
Antonio Henrique Pinto Selvatici,

160

Carlos H. C. Ribeiro, 136

Dennis Barrios-Aranibar, 201
Dongbing Gu, 121

Edward Grant, 63
Esther L. Colombini, 136

Huosheng Hu, 121

Javier Alsina, 201
Jindong Liu, 121

Leandro dos Santos Coelho, 3
Luiza de Macedo Mourelle, 3
Lynne E. Parker, 185

Nadia Nedjah, 3

Olivier Chocron, 23

Plamen Angelov, 89

Raj Madhavan, 185

Terrence P. Fries, 47

Xiaowei Zhou, 89

Yi Guo, 185




