
6

Overview of matching systems

This chapter is an overview of matching systems which have emerged during the last
decade. There have already been some comparisons of matching systems, in partic-
ular in [Parent and Spaccapietra, 2000, Rahm and Bernstein, 2001, Do et al., 2002,
Kalfoglou and Schorlemmer, 2003b, Noy, 2004a, Doan and Halevy, 2005,
Shvaiko and Euzenat, 2005]. Our purpose here is not to compare them in full
detail, though we give some comparisons, but rather to show their variety, in order to
demonstrate in how many different ways the methods presented in previous chapters
have been practically exploited.

We have followed two principles in deciding whether a matching solution
should be included in this chapter: it must have an implementation and an archival
publication describing it at the time of writing. We have also excluded from
consideration the systems which assume that alignments have already been es-
tablished, and use this assumption as a prerequisite of running the actual system.
These approaches include such information integration systems as: Tsimmis
[Chawathe et al., 1994], Observer [Mena et al., 1996], SIMS [Arens et al., 1996],
InfoSleuth [Fowler et al., 1999, Nodine et al., 2000], Kraft [Preece et al., 2000],
Picsel [Goasdoué et al., 2000], DWQ [Calvanese et al., 2002a], AutoMed
[Boyd et al., 2004], and InfoMix [Leone et al., 2005]. Even if we have consid-
ered around 50 systems and approaches in this chapter, this overview is not
exhaustive. An interested reader can find an updated and complete information
on the topic at OntologyMatching.org1, in particular, links to the web sites of the
presented systems can be found there. We only mention address of general purpose
resources.

We present the matching systems in light of the classifications discussed in
Chap. 3. We also point to concrete basic matchers and matching strategies used in
the considered systems by referencing to the corresponding subsections of Chap. 4
and Chap. 5. In order to facilitate the presentation we follow two rules. First, the
year of the system appearance is considered. Then, if there are some evolutions of
the system or very similar systems, these are discussed close to each other. We illus-

1 http://www.ontologymatching.org



154 6 Overview of matching systems

trate systems where the matching process is of a particular interest with the help of
figures. We tried to adopt a unified presentation for these systems. However, some of
these are specific enough so that we did not enforce the terminology of Sect. 2.4 but
kept that one as used by system designers.

The structure of this chapter is as follows. We first describe systems which mostly
focus on schema-level information (§6.1). Secondly, we discuss systems which con-
centrate on instance-level information (§6.2). Then, we present systems which ex-
ploit both schema-level and instance-level information (§6.3). Finally, we overview
meta-matching systems (§6.4).

6.1 Schema-based systems

Schema-based systems, according to the classification of Chap. 3, are those which
rely mostly on schema-level input information for performing ontology matching.

6.1.1 DELTA (The MITRE Corporation)

DELTA (Data Element Tool-based Analysis) is a system that semi-automatically dis-
covers attribute correspondences among database schemas [Clifton et al., 1997]. It
handles relational and extended entity–relationship (EER) schemas. The idea of the
approach is to use textual similarities between data element definitions in order to
find matching candidates. The system converts available information about an at-
tribute, e.g., attribute name, datatype, narrative description, into a simple text string,
called document. The documents describing each database attribute constitute a doc-
ument base. Then, DELTA feeds the document base from the first schema into a
full-text information retrieval tool, such as Personal Librarian. Matching is viewed
as a Personal Librarian query based on the information from the second schema. The
query can be a string of disconnected phrases, a full boolean query, a few relevant
words, or an entire document. The tool estimates the similarity (by using natural lan-
guage heuristics, such as considering that rare or repeated words are more important)
between a search pattern and contents of a document base (§4.2.1). It is thus exclu-
sively based on string-based techniques. It returns a ranked list of documents that it
considers to be similar. The selection of the final alignment is to be performed by
users.

6.1.2 Hovy (University of Southern California)

[Hovy, 1998] describes heuristics used to match large-scale ontologies, such as Sen-
sus and Mikrokosmos, in order to combine them in a single reference ontology. In
particular, three types of matchers were used based on (i) concept names, (ii) con-
cept definitions, and (iii) taxonomy structure. For example, the name matcher splits
composite-word names into separate words (§4.2.2) and then compares substrings in
order to produce a similarity score. Specifically, the name matcher score is computed



6.1 Schema-based systems 155

as the sum of the square of the number of letters matched, plus 20 points if words
are exactly equal or 10 points if end of match coincides. For instance, using this
strategy, the comparison between Free World and World results in 35 points, while
the comparison between cuisine and vine results in 19 points. The definition matcher
compares the English definitions of two concepts (§4.2.2). Here, both definitions are
first split into individual words. Then, the number and the ratio of shared words in
two definitions is computed in order determine the similarity between them. Finally,
results of all the matchers are combined based on experimentally obtained formulas.
The combined scores between concepts from two ontologies are sorted in descend-
ing order and are presented to users for establishing a cutoff value as well as for
approving or discarding operations, results of which are saved for later reuse.

6.1.3 TransScm (Tel Aviv University)

TransScm [Milo and Zohar, 1998] provides data translation and conversion mech-
anisms between input schemas based on schema matching. First, by using rules,
the alignment is produced in a semi-automatic way. Then, this alignment is used to
translate data instances of the source schema to instances of the target schema. Input
schemas are internally encoded as labelled graphs, where some of the nodes may
be ordered. Nodes of the graph represent schema elements, while edges stand for
the relations between schema elements or their components. Matching is performed
between nodes of the graphs in a top-down and one-to-one fashion. Matchers are
viewed as rules. For example, according to the identical rule, two nodes match if
their labels are found to be synonyms based on the built-in thesaurus (§4.2.2); see
[Zohar, 1997] for a list of the available rules. The system combines rules sequentially
based on their priorities. It tries to find, for the source node, a unique best matching
target node, or determines a mismatch. In case there are several matching candidates
among which the system cannot choose the best one, or if the system cannot match
or mismatch a source node to a target node with the given set of rules, user involve-
ment is required. In particular, users with the help of a graphic user interface can
add, disable or modify rules to obtain the desired matching result. Then, instances of
the source schema are translated to instances of the target schema according to the
match rules. For the example of the identical rule, translation includes copying the
source node components.

6.1.4 DIKE (Università di Reggio Calabria and Università di Calabria)

DIKE (Database Intensional Knowledge Extractor) is a system supporting the semi-
automatic construction of cooperative information systems (CISs) from heteroge-
neous databases [Palopoli et al., 2003b, Palopoli et al., 2003a, Palopoli et al., 1998,
Palopoli et al., 2000]. It takes as input a set of databases belonging to the CIS. It
builds a kind of mediated schema (called data repository or global structured dic-
tionary) in order to provide a user-friendly integrated access to the available data
sources. DIKE focuses on entity-relationship schemas. The matching step is called
the extraction of inter-schema knowledge. It is performed in a semi-automatic way.



156 6 Overview of matching systems

Some examples of inter-schema properties that DIKE can find are terminological
properties, such as synonyms, homonyms among objects, namely entities and rela-
tionships, or type conflicts, e.g., similarities between different types of objects, such
as entities, attributes, relationships; structural properties, such as object inclusion;
subschema similarities, such as similarities between schema fragments. With each
kind of property is associated a plausibility coefficient in the [0 1] range. The prop-
erties with a lower plausibility coefficient than a dynamically derived threshold are
discarded, whereas others are accepted. DIKE works by computing sequentially the
above mentioned properties. For example, synonyms and homonyms are determined
based on information from external resources, such as WordNet (§4.2.2), and by
analysing the distances of objects in the neighbourhood of the objects under con-
sideration (§4.3.2). Some weights are also used to produce a final coefficient. Then,
type conflicts are analysed and resolved by taking as input the results of synonyms
and hyponyms analysis.

6.1.5 SKAT and ONION (Stanford University)

SKAT (Semantic Knowledge Articulation Tool) is a rule-based system that semi-
automatically discovers mappings between two ontologies [Mitra et al., 1999]. Inter-
nally, input ontologies are encoded as graphs. Rules are provided by domain experts
and are encoded in first order logic. In particular, experts specify initially desired
matches and mismatches. For example, a rule President ≡ Chancellor, indicates that
we want President to be an appropriate match for Chancellor. Apart from declara-
tive rules, experts can specify matching procedures that can be used to generate the
new matches. Experts have to approve or reject the automatically suggested matches,
thereby producing the resulting alignment. Matching procedures are applied sequen-
tially. Some examples of these procedures are: string-based matching, e.g., two terms
match if they are spelled similarly (§4.2.1), and structure matching, e.g., structural
graph slices matching, such as considering nodes near the root of the first ontology
against nodes near the root of the second ontology (§4.3.2).

ONION (ONtology compositION) is a successor system to SKAT that semi-
automatically discovers mappings between multiple ontologies, in order to enable a
unified query answering over those ontologies [Mitra et al., 2000]. Input ontologies,
RDF files, are internally represented as labelled graphs. The alignment is viewed as
a set of articulation rules. The semi-automated algorithm for resolving the termino-
logical heterogeneity of [Mitra and Wiederhold, 2002] forms the basis of the articu-
lation generator, ArtGen, for the ONION system. ArtGen, in turn, can be viewed as
an evolution of the SKAT system with some added matchers. Thus, it executes a set
of matchers and suggests articulation rules to users. Users can either accept, modify
or delete the suggestions. They can also indicate the new matches that the articu-
lation generator may have missed. ArtGen works sequentially, first by performing
linguistic matching (§4.2.2) and then structure-based matching (§4.3). During the
linguistic matching phase, concept names are represented as sets of words. The lin-
guistic matcher compares all possible pairs of words from any two concepts of both
ontologies and assigns a similarity score in [0 1] to each pair. The matcher uses a



6.1 Schema-based systems 157

word similarity table generated by a thesaurus-based or corpus-based matcher called
the word relator to determine the similarity between pairs of words (§4.2.2). The sim-
ilarity score between two concepts is the average of the similarity scores (ignoring
scores of zero) of all possible pairs of words in their names. If this score is higher than
a given threshold, ArtGen generates a match candidate. Structure-based matching is
performed based on the results of the linguistic matching. It looks for structural iso-
morphism between subgraphs of the ontologies, taking into account some linguistic
clues (see Sect. 6.1.11 for a similar technique). The structural matcher tries to match
only the unmatched pairs from the linguistic matching, thereby complementing its
results.

6.1.6 Artemis (Università di Milano and Università di Modena e Reggio
Emilia)

Artemis (Analysis of Requirements: Tool Environment for Multiple Information
Systems) [Castano et al., 2000] was designed as a module of the MOMIS media-
tor system [Bergamaschi et al., 1999, Bergamaschi et al., 1998] for creating global
views. It performs affinity-based analysis and hierarchical clustering of database
schema elements. Affinity-based analysis represents the matching step: in a sequen-
tial manner it calculates the name, structural and global affinity coefficients exploit-
ing a common thesaurus. The common thesaurus is built with the help of ODB-
Tools [Beneventano et al., 1998], WordNet (§4.2.2) or manual input. It represents
a set of intensional and a set of extensional relationships which depict intra- and
inter-schema knowledge about classes and attributes of the input schemas. Based
on global affinity coefficients, a hierarchical clustering technique categorises classes
into groups at different levels of affinity. For each cluster it creates a set of global
attributes and the global class. Logical correspondence between the attributes of a
global class and source schema attributes is determined through a mapping table.

6.1.7 H-Match (Università degli Studi di Milano)

H-Match [Castano et al., 2006] is an automated ontology matching system. It has
been designed to enable knowledge discovery and sharing in the settings of
open networked systems, in particular within the Helios peer-to-peer framework
[Castano et al., 2005]. The system handles ontologies specified in OWL. Internally,
these are encoded as graphs using the H-model representation [Castano et al., 2005].
H-Match inputs two ontologies and outputs (one-to-one or one-to-many) correspon-
dences between concepts of these ontologies with the same or closest intended mean-
ing. The approach is based on a similarity analysis through affinity metrics, e.g., term
to term affinity, datatype compatibility (§4.3.1), and thresholds. H-Match computes
two types of affinities (in the [0 1] range), namely linguistic and contextual affinity.
These are then combined by using weighting schemas, thus yielding a final measure,
called semantic affinity. Linguistic affinity builds on top of a thesaurus-based ap-
proach of the Artemis system (§6.1.6). In particular, it extends the Artemis approach
(i) by building a common thesaurus involving relations among WordNet synsets such



158 6 Overview of matching systems

as meronymy and coordinate terms, and (ii) by providing an automatic handler of
compound terms, i.e., those composed by more than one token, that are not available
from WordNet. Contextual affinity requires consideration of the neighbour concepts,
e.g., linked via taxonomical or mereological relations, of the actual concept (§4.3.2).

One of the major characteristics of H-Match is that it can be dynamically con-
figured for adaptation to a particular matching task, because in dynamic settings, the
complexity of a matching task is not known in advance. This is achieved by means
of four matching models. These are: surface, shallow, deep, and intensive, each of
which involves different types of constructs of the ontology, see Fig. 6.1. Computa-
tion of a linguistic affinity is a common part of all the matching models. In case of
the surface model, linguistic affinity is also the final affinity, since this model con-
siders only names of ontology concepts. All the other three models take into account
various contextual features and therefore contribute to the contextual affinity. For ex-
ample, the shallow model takes into account concept properties, whereas the deep
and the intensive models extend previous models by including relations and prop-
erty values, respectively. Each concept involved in a matching task can be processed
according to its own model, independently from the models applied to the other con-
cepts within the same task. Finally, by applying thresholds, correspondences with
semantic (final) affinity higher than the cut-off threshold value are returned in the
final alignment.

o

o′

Linguistic
affinity M

Property
affinity

Properties,
semantic
relations

Properties,
semantic
relations,
property
values

M ′ Aggregation

A′

Shallow

Deep

Intensive

Surface

Fig. 6.1. H-Match matching process: H-Match is a conditional system that can use alterna-
tively or in parallel four matching models depending on the resources available.

6.1.8 Tess (University of Massachusetts)

Tess (Type Evolution Software System) is a system to support schema evolution by
matching the old and the new versions [Lerner, 2000]. Schemas are viewed as collec-



6.1 Schema-based systems 159

tions of types. It is assumed (since in the given application scenario changes are typ-
ically evolutionary, rather than revolutionary) that input schemas are highly similar.
Matching is viewed as generation of derivation rules to be applied to data. Tess can
operate in modes ranging from fully automated to completely manual. Each deriva-
tion rule is associated with a similarity metric, which is meant to measure the impact
that applying the derivation rule would have on existing data. By defining a threshold
for the similarity metric, the user involvement is determined. Matching is performed
in three stages. First, the names of the types of old and new versions are compared
(§4.2.1). Second, the structural information is taken into account. In particular, type
constructors used by the old and new types and the types of components are analysed
(§4.3.1). This provides the ability to handle cases in which, for example, component
names have been changed, but their types are unchanged. Third, if everything else
fails, matching relies upon some ordering information heuristics. Thus, in this case,
Tess will try matching components with different names and different types. Finally,
based on the derivation rules a transformer is produced which can update data in a
database according to a newer version of the schema. In the simplest case, such as
the identity derivation rule case, when type names are identical, as in Sect.6.1.3, the
derivation function simply copies existing objects. A more complex transformation
may include a join operation to combine two related objects into one.

6.1.9 Anchor-Prompt (Stanford Medical Informatics)

Anchor-Prompt [Noy and Musen, 2001] is an extension of Prompt, also formerly
known as SMART. It is an ontology merging and alignment tool with a sophisticated
prompt mechanism for possible matching terms [Noy and Musen, 1999]. Prompt
handles ontologies expressed in such knowledge representation formalisms as OWL
and RDF Schema. Anchor-Prompt is a sequential matching algorithm that takes as
input two ontologies, internally represented as graphs and a set of anchors-pairs of
related terms, which are identified with the help of string-based techniques, such as
edit-distance (§4.2.1), , user-defined distance or another matcher computing linguis-
tic similarity. Then the algorithm refines them by analysing the paths of the input
ontologies limited by the anchors in order to determine terms frequently appearing
in similar positions on similar paths (§4.3.2). Finally, based on the frequencies and
user feedback, the algorithm determines matching candidates.

The Prompt and Anchor-Prompt systems have also contributed to the design of
other algorithms, such as PromptDiff, which finds differences between two ontolo-
gies and provides the editing facility for transforming one ontology into another (see
Sect.8.3.2 and [Noy and Musen, 2002b, Noy and Musen, 2003]).

6.1.10 OntoBuilder (Technion Israel Institute of Technology)

OntoBuilder is a system for information seeking on the web [Modica et al., 2001].
A typical situation the system deals with is when users are seeking for a car to be
rented. Obviously, they would like to compare prices from multiple providers in or-
der to make an informed decision. OntoBuilder operates in two phases: (i) ontology



160 6 Overview of matching systems

creation (the training phase) and (ii) ontology adaptation (the adaptation phase).
During the training phase an initial ontology (in which user data needs are encoded)
is created by extracting it from a visited web site of, e.g., some car rental company.
The adaptation phase includes on-the-fly match and interactive merge operations of
the related ontologies with the actual (initial) ontology. We concentrate below only
on the ontology adaptation phase. During the adaptation phase users suggest the web
sites they would like to further explore, e.g., the ones of various car rental compa-
nies. Each such site goes through the ontology extraction process. This results in a
candidate ontology, which is then merged into the actual ontology. To support this,
the best match for each existing term in the actual ontology to terms from the can-
didate ontology is selected. The selection strategy employs thresholds (§5.7.1). The
matching algorithm works in a term to term fashion, sequentially executing various
matchers. Some examples of the matchers used are: removing noisy characters and
stop terms (§4.2.2), substring matching (§4.2.1). If all else fail, thesaurus look-up
is performed (§4.2.2). Finally, mismatched terms are presented to users for manual
matching. Some further matchers, such as those for precedence matching, were in-
troduced in later work in [Gal et al., 2005b]. Top-k mappings have been proposed in
[Gal, 2006] as an alternative for a single best matching, i.e., top-1 category.

6.1.11 Cupid (University of Washington, Microsoft Corporation and
University of Leipzig)

Cupid [Madhavan et al., 2001] implements an algorithm comprising linguistic and
structural schema matching techniques, and computing similarity coefficients with
the assistance of domain specific thesauri. Input schemas are encoded as graphs.
Nodes represent schema elements and are traversed in a combined bottom-up and
top-down manner. The matching algorithm consists of three phases (see Fig. 6.2)
and operates only with tree-structures, to which non tree cases are reduced.

o

o′

M
Linguistic
matching M ′ Structure

matching M ′′ Weighting

M ′′′A′

Thesauri

Fig. 6.2. Cupid architecture: it is a very common architecture which mixes parallel and sequen-
tial composition. Structure matching takes advantage of the results of linguistic matching, but
the results of both of them are taken into consideration for weighting.

The first phase (linguistic matching) computes linguistic similarity coefficients
between schema element names (labels) based on morphological normalisation



6.1 Schema-based systems 161

(§4.2.2), categorisation, string-based techniques, such as common prefix, suffix tests
(§4.2.1), and thesauri look-up (§4.2.2). The second phase (structural matching) com-
putes structural similarity coefficients weighted by leaves which measure the sim-
ilarity between contexts in which elementary schema elements occur (§4.3.2). The
third phase (mapping elements generation) aggregates the results of the linguistic and
structural matching through a weighted sum (§5.2.2) and generates a final alignment
by choosing pairs of schema elements with weighted similarity coefficients, which
are higher than a threshold (§5.7.1).

6.1.12 COMA and COMA++ (University of Leipzig)

COMA (COmbination of MAtching algorithms) [Do and Rahm, 2002] is a schema
matching tool based on parallel composition of matchers. It provides an extensible
library of matching algorithms, a framework for combining obtained results, and a
platform for the evaluation of the effectiveness of the different matchers. As from
[Do and Rahm, 2002], COMA contains 6 elementary matchers, 5 hybrid matchers,
and one reuse-oriented matcher. Most of them implement string-based techniques,
such as affix, n-gram, edit distance (§4.2.1); others share techniques with Cupid,
e.g., thesauri look-up. An original component, called reuse-oriented matcher, tries
to reuse previously obtained results for entire new schemas or for their fragments.
Schemas are internally encoded as directed acyclic graphs, where elements are the
paths. This aims at capturing contexts in which the elements occur. Distinct features
of the COMA tool with respect to Cupid are a more flexible architecture and the
possibility of performing iterations in the matching process. It presumes interaction
with users who approve obtained matches and mismatches to gradually refine and
improve the accuracy of match. COMA++ is built on top of COMA by elaborat-
ing in more detail the alignment reuse operation. Also it provides a more efficient
implementation of the COMA algorithms and a graphical user interface (§8.2.2).

6.1.13 Similarity flooding (Stanford University and University of Leipzig)

The Similarity flooding approach [Melnik et al., 2002] is based on the ideas of sim-
ilarity propagation. Schemas are presented as directed labelled graphs grounded on
the OIM specification [MDC, 1999]. The algorithm manipulates them in an iterative
computation to produce an alignment between the nodes of the input graphs. The
technique starts from string-based comparison, such as common prefix, suffix tests
(§4.2.1), of the vertices labels to obtain an initial alignment which is refined through
iterative computation. The basic concept behind the Similarity flooding algorithm is
the similarity spreading from similar nodes to the adjacent neighbours through prop-
agation coefficients. From iteration to iteration the similarity measure is spread to the
graph until a fixed point is reached or the computation is stopped. The full process is
described in Sect. 5.3.1. The result of this step is a refined alignment which is further
filtered to produce the final alignment.



162 6 Overview of matching systems

6.1.14 XClust (National University of Singapore)

XClust is a tool for integrating multiple DTDs [Lee et al., 2002]. Its integration strat-
egy is based on clustering. Given multiple DTDs, it clusters them according to their
similarity. This aims at facilitating the work of system integrators by allowing them
to focus on already similar DTDs of single clusters. Clustering is applied recursively
until a manageable number of DTDs is obtained. XClust works in two phases: (i)
DTD similarity computation, and (ii) DTD clustering. During the first phase, given
a set of DTDs, pairwise similarities between their underlying labelled trees are com-
puted. This is done by using several matchers which exploit schema names as well
as some structural information. For example, the basic similarity is computed as a
weighted sum of a WordNet-based matcher that looks for synonyms among names of
schema elements (§4.2.2) and a cardinality constraint matcher that performs a look
up in cardinality compatibility table in order to compare cardinalities of schema ele-
ments (§4.3.1). Structural similarities exploit previously computed basic similarities
and are based on (i) similarity of paths, (ii) similarity of immediate descendants
and (iii) similarity of leaves (§4.3.2). For example, similarity of paths is computed
as a normalised sum of basic similarities between the sets of elements these paths
are composed of, namely elements from the root to the node under consideration
(§4.2.1). Structural similarities are aggregated as a weighted sum and then these ag-
gregated similarities are used to choose the best match pairs by applying a threshold.
These constitute the alignment for a pair of DTDs. Finally, for two DTDs, best match
pairs are summed up and normalised, thereby resulting in a final similarity between
these DTDs. The result of the first phase is the similarity matrix of a set of DTDs.
During the second phase, based on the DTD similarity matrix, a hierarchical cluster-
ing [Everitt, 1993] is applied to group DTDs into clusters.

6.1.15 ToMAS (University of Toronto and IBM Almaden)

ToMAS (Toronto Mapping Adaptation System) is a system that automatically de-
tects and adapts mappings that have become invalid or inconsistent when schemas
evolve [Velegrakis et al., 2003, Velegrakis et al., 2004b, Velegrakis et al., 2004a]. It
is assumed that (i) the matching step has already been performed, and (ii) cor-
respondences have already been made operational, e.g., by using the Clio system
(§6.3.2). Since in open environments, such as the web, schemas can evolve with-
out prior notice, some correspondences may become invalid. This system aims at
handling such cases, thereby preserving mapping consistency. In this sense, ToMAS
complements the systems dealing with the problems mentioned in items (i) and (ii)
above. In particular, it detects mappings affected by structural or constraint changes
and it generates automatically the necessary rewritings that are consistent with the
updates that have occurred. ToMAS handles relational and XML schemas. It takes
two schemas and a set of mappings between them as input. The system works in two
phases. First, as a preprocessing step, mappings are analysed and turned into logi-
cally valid mappings (if they are not already). During the second step, the result of
the previous step is maintained through schema changes. In particular, mappings are



6.1 Schema-based systems 163

modified one by one independently, as appropriate for each kind of change that may
occur to the schemas. Three classes of (primitive) schema changes are addressed:
(i) operations that change the schema semantics by adding or removing constraints,
(ii) modifications to the schema structure by adding or removing elements, and (iii)
modifications that reshape schema structure by moving, copying, or renaming ele-
ments. The final result of ToMAS is a set of adapted mappings which are consistent
with the structure and semantics of the evolved schemas.

6.1.16 MapOnto (University of Toronto and Rutgers University)

MapOnto is a system for constructing complex mappings between ontologies and re-
lational or XML schemas [An et al., 2005a, An et al., 2005b, An et al., 2006]. This
system operates in a similar settings as the Clio tool (§6.3.2). In a sense, this work
can be viewed as an extension of Clio when the target schema is an ontology which is
treated as a relational schema consisting of unary and binary tables. MapOnto takes
as input three arguments: (i) an ontology specified in an ontology representation lan-
guage, e.g., OWL, (ii) relational or XML schema, and (iii) simple correspondences,
e.g., between XML attributes and ontology datatype properties. Input schema and on-
tology are internally encoded as labelled graphs. Then, the approach looks for ‘rea-
sonable’ connections among the graphs. The system produces in a semi-automatic
way a set of complex mapping formulas expressed in a subset of first-order logic
(Horn clauses). The list of logical formulas is also ordered by the tool, thereby sug-
gesting the most reasonable mappings. Finally, users can inspect that list and choose
the best ones.

6.1.17 OntoMerge (Yale University and University of Oregon)

OntoMerge [Dou et al., 2005] is a system for ontology translation on the semantic
web. Ontology translation refers here to such tasks as (i) dataset translation, that is
translating a set of facts expressed in one ontology to another; (ii) generating ontol-
ogy extensions, that is given two ontologies o and o′ and an extension (subontology)
os of the first one, build the corresponding extension o′s, and (iii) query answer-
ing from multiple ontologies. The main idea of the approach is to perform ontology
translation by ontology merging and automated reasoning. Input ontologies are trans-
lated from a source knowledge representation formalism, e.g., OWL, to an internal
representation, which is Web-PDDL [McDermott and Dou, 2002]. Merging two on-
tologies is performed by taking the union of the axioms defining them. Bridge axioms
or bridge rules are then added to relate the terms in one ontology to the terms in the
other. Once the merged ontology is constructed, the ontology translation tasks can
be performed fully automatically by mechanised reasoning. In particular, inferences,
depending on the task, are conducted either in a demand-driven (backward-chaining)
or data-driven (forward chaining) way with the help of a first-order theorem prover,
called OntoEngine. It is assumed that bridge rules are to be provided by domain ex-
perts, or by other matching algorithms, which are able to discover and interpret them
with clear semantics. Finally, it is worth noting that OntoMerge supports bridge rules
which can be expressed using the full power of predicate calculus.



164 6 Overview of matching systems

6.1.18 CtxMatch and CtxMatch2 (University of Trento and ITC-IRST)

CtxMatch [Bouquet et al., 2003c, Bouquet et al., 2003b] uses a semantic matching
approach (§4.5.2). It translates the ontology matching problem into the logical valid-
ity problem and computes logical relations, such as equivalence, subsumption be-
tween concepts and properties. CtxMatch is a sequential system. At the element
level it uses only WordNet to find initial matches for classes (§4.2.2). CtxMatch2
[Bouquet et al., 2006] improves on CtxMatch by handling properties. At the struc-
ture level, it exploits description logic reasoners, such as Pellet [Sirin et al., 2007] or
FaCT [Tsarkov and Horrocks, 2006] to compute the final alignment in a way similar
to what is presented in Sect. 4.5.2.

6.1.19 S-Match (University of Trento)

S-Match implements the idea of semantic matching as initially described in
[Giunchiglia and Shvaiko, 2003a]. The first version of the S-Match system was
a rationalised re-implementation of CtxMatch with a few added functionali-
ties [Giunchiglia et al., 2004]. Later the system has undergone several evolu-
tions, including extensions of libraries of element- and structure-level match-
ers, adding alignment explanations as well as iterative semantic matching
[Giunchiglia and Yatskevich, 2004, Shvaiko et al., 2005, Giunchiglia et al., 2005a,
Giunchiglia et al., 2006c, Giunchiglia et al., 2007]. S-Match is limited to tree-like
structures and does not consider properties or roles.

S-Match takes as input two graph-like structures, e.g., classifications, XML
schemas, ontologies, and returns as output logic relations, e.g., equivalence, sub-
sumption, which are supposed to hold between the nodes of the graphs. The rela-
tions are determined by (i) expressing the entities of the ontologies as logical for-
mulas, and (ii) reducing the matching problem to a propositional validity problem.
In particular, the entities are translated into propositional formulas which explicitly
express the concept descriptions as encoded in the ontology structure and in external
resources, such as WordNet. This allows for a translation of the matching problem
into a propositional validity problem, which can then be efficiently resolved using
(sound and complete) state of the art propositional satisfiability solvers.

S-Match was designed and developed as a platform for semantic matching,
namely a modular system with the core of computing semantic relations where sin-
gle components can be plugged, unplugged or suitably customised. It is a sequen-
tial system with a parallel composition at the element level, see Fig. 6.3. The input
ontologies (tree-like structures) are codified in a standard internal XML format. The
module taking input ontologies performs some preprocessing with the help of oracles
which provide the necessary a priori lexical and domain knowledge. Examples of or-
acles include WordNet (§4.2.2) and UMLS2. The output of the module is an enriched
tree. These enriched trees are stored in an internal database (PTrees) where they can
be browsed, edited and manipulated. The Match manager coordinates the matching

2 http://www.nlm.nih.gov/research/umls/



6.1 Schema-based systems 165

process. S-Match libraries contain around 20 basic element-level matchers repre-
senting three categories, namely string-based, such as n-gram, edit distance (§4.2.1),
WordNet sense-based and WordNet gloss-based matchers (§4.2.2). Structure-level
matchers include SAT solvers, e.g., those of SAT4J3, and ad hoc reasoning methods
[Giunchiglia et al., 2005b].

o

o′

Pre-
processing PTrees

Match
manager A′

Oracles
Basic

matchers
SAT

solvers

Fig. 6.3. S-Match architecture: ontology entities are converted to logic formulas by using the
preprocessor and oracles. The Match manager then uses various basic element-level matchers
and logic provers for finding relations between these formulas which, in turn, correspond to
relations between the entities.

6.1.20 HCONE (University of the Aegean)

HCONE is an approach to domain ontology matching and merging by exploiting
different levels of interaction with users [Kotis et al., 2006, Vouros and Kotis, 2005,
Kotis and Vouros, 2004]. First, an alignment between two input ontologies is com-
puted with the help of WordNet (§4.2.2). Then, the alignment is processed straight-
forwardly by using some merging rules, e.g., renaming, into a new merged ontology.
The HCONE basic matching algorithm works in six steps:

1. Chose a concept from one ontology, denoted as c.
2. Obtain all the WordNet senses of c, denoted as s1, s2, . . . , sm. For example, the

concept Facility has five senses in WordNet.
3. Obtain hypernyms and hyponyms of all the senses of c (§4.2.2). For example,

Police is a hyponym of Facility.
4. Build the n×m association matrix. This relates the n most frequently occurring

terms in the vicinity of the m senses determined in step 2. The vicinity terms
include those from the same synsets of m senses, hypernyms and hyponyms
from step 3. In the case of the Facility example this is a 93 × 5 matrix. For
example, the number of occurrences of such a vicinity term as Police is 3.

3 http://www.sat4j.org/



166 6 Overview of matching systems

5. Build a query q by using terms which are subconcepts of c, e.g., Transporta-
tionSystem, or which are related to c via domain specific relations in the input
ontology. If the terms considered for q also exist among the n terms from step 4,
then q memorises that position with the help of flags. Thus, for the Facility con-
cept, q is a 93 position vector, and, since the position of TransportationSystem is
at the 35th place the value of q[35] is 1.

6. Taking as input the association matrix computed at step 4 and the query com-
puted at step 5, Latent Semantic Indexing (§4.2.2) is used to compute the grades
for what is the correct WordNet sense to be used for the given context (query).

The highest graded sense expresses the most plausible meaning for the concept under
consideration. Finally, the relationship between concepts is computed. For instance,
equivalence between two concepts holds if the same WordNet sense has been cho-
sen for those concepts based on the procedure described above. The subsumption
relation is computed between two concepts if a hypernym relation holds between the
WordNet senses corresponding to these concepts. Based on the level at which users
are involved in the matching process, HCONE provides three algorithms to ontology
matching. These are: fully automated, semi-automated and user-based. Users are in-
volved in order to provide feedback on what is to be the correct WordNet sense on a
one by one basis (user-based), or only in some limited number of cases, by exploiting
some heuristics (semi-automated).

6.1.21 MoA (Electronics and Telecomunication Research Institute, ETRI)

MoA is an ontology merging and alignment tool [Kim et al., 2005]. It consists of:
(i) a library of methods for importing, matching, modifying, merging ontologies,
and (ii) a shell for using those methods. MoA handles ontologies specified in OWL-
DL. It is able to compute equivalence and subsumption relations between entities
(classes, properties) of the input ontologies. The matching approach is based on con-
cept (dis)similarity derived from linguistic clues. The MoA tool is a sequential solu-
tion. The preprocessing step includes three phases: (i) names of classes and proper-
ties are tokenised (§4.2.1); (ii) tokens of entities are associated with their meaning
by using WordNet senses; (iii) meanings of tokens of ancestors of the entity un-
der consideration are also taken into account, thereby extending the local meanings.
This step is essentially the same as some part of the preprocessing done within the S-
Match system (§6.1.19). Matching itself is based on rules. It is performed in a double
loop over all the pairs of entities from two input ontologies. For example, equivalence
between two classes or properties holds when there is equivalence between these en-
tities in either step (ii) or (iii). The equivalence, in turn, is decided via relations
between the WordNet senses for one of the possible solutions (see Sect. 4.2.2). Thus,
for example, author can be found to be equivalent to writer because they belong to
the same synset in WordNet.



6.1 Schema-based systems 167

6.1.22 ASCO (INRIA Sophia-Antipolis)

ASCO is a system that automatically discovers pairs of corresponding elements in
two input ontologies [Bach et al., 2004]. ASCO handles ontologies in RDF Schema
and computes alignments between classes, relations, and classes and relations. A
new version, ASCO2, deals with OWL ontologies [Bach and Dieng-Kuntz, 2005].

The matching is organised sequentially in three phases. During the first phase
(linguistic matching) the system normalises terms and expressions, e.g., by punctua-
tion, upper cases, special symbols. Depending on their use in the ontology or if they
are bags of words, ASCO uses different string comparison metrics for comparing the
terms. Single terms are compared by using Jaro–Winkler, Levenshtein or Monge–
Elkan (§4.2.1) and external resources, such as WordNet. Based on token similarities,
the similarity between sets of tokens is computed using TFIDF. The obtained values
are aggregated through a weighted sum.

The second phase (structure matching), computes similarities between classes
and relations by propagating the input of linguistic similarities. The algorithms is an
iterative fixed point computation algorithm that propagates similarity to the neigh-
bours (subclasses, superclasses and siblings). Similatities between sets of objects are
computed through single linkage. The propagation terminates when the class similar-
ities and the relation similarities do not change after an iteration or a certain number
of iterations is reached.

In the third phase, the linguistic and structural similarity are aggregated through a
weighted sum and, if the similarities between matching candidates exceed a threshold
(§5.7.1), they are selected for the resulting alignment.

6.1.23 BayesOWL and BN mapping (University of Maryland)

BayesOWL is a probabilistic framework for modelling uncertainty in the seman-
tic web. It includes the Bayesian Network mapping module (§5.5.1), which is in
charge of automatic ontology matching [Pan et al., 2005]. The approach works in
three steps. First, two input ontologies are translated into two Bayesian networks.
Specifically, classes are translated into nodes in Bayesian network, while edges are
created if the corresponding two classes are related by a predicate in the input on-
tologies. During the second step, matching candidates are generated between two
Bayesian networks by learning joint probabilities from the web data. In particular,
for each concept in an ontology, a group of sample text documents (called exam-
plars) is created by querying a search engine. The query contains all the terms, e.g.,
{product book science} (opposed to a single term, e.g., {science}), in the path from
the root to the concept (term) under consideration in the given ontology, thereby en-
abling some word sense disambiguation (§4.2.2). A text classifier, e.g., Rainbow4,
is trained on the statistical information about examplars from the first ontology.
Then, concepts of the second ontology are classified with respect to the concepts
of the first ontology by feeding their examplars to the trained classifier. A simi-
larity between two concepts is determined with the help of the Jaccard coefficient
4 http://www.cs.umass.edu/˜mccallum/bow/rainbow/



168 6 Overview of matching systems

(§4.4) computed from the joint probabilities. These are used to construct the condi-
tional probability tables. During the third step, the mappings are refined as an up-
date (combination of the Jeffrey rule and Iterative Proportional Fitting Procedure
[Jeffrey, 1983, Cramer, 2000]) on probability distributions of concepts in the sec-
ond Bayesian network, by distributions of concepts in the first Bayesian network, in
accordance with the given similarities. By performing Bayesian inference with the
updated distribution of the second Bayesian network, the final alignment is produced.

6.1.24 OMEN (The Pennsylvania State University and Stanford University)

OMEN (Ontology Mapping ENhancer [Mitra et al., 2005]) is a semi-automatic prob-
abilistic ontology matching system based on a Bayesian network (§5.5.1). It takes
as input two ontologies and an initial probability distribution derived, for instance,
from basic (element level) linguistic matchers. In turn, OMEN provides a structure
level matching algorithm, thereby deriving the new mappings or discarding the ex-
isting false mappings. The approach can be summarised in four logical steps. First,
it creates a Bayesian network, where a node stands for a mapping between pairs
of classes or properties of the input ontologies. Edges represent the influences be-
tween the nodes of the network. This encoding is different from the one described in
Sect. 6.1.23. During the second step, OMEN uses a set of meta-rules that capture the
influence of the structure of input ontologies in the neighbourhood of the input map-
pings in order to generate conditional probability tables for the given network. An
example of a basic meta-rule is as follows. There are two conditions: (i) if the i-th
concept from the first ontology, c1,i ∈ o1, matches the j-th concept from the second
ontology, c2,j ∈ o2; (ii) if there is a relation q between concepts c1,i and c1,k in the
first ontology, which matches a relation q′ between concepts c2,j and c2,m in the sec-
ond ontology. Then we can increase the probability of match between concepts c1,k

and c2,m. Other rules rely more heavily on the semantics of the language in which
the input ontologies are encoded. During the third step, inferences are made (OMEN
uses Bayesian Network tools in Java (BNJ)5) to generate a posteriori probabilities
for each node. Finally, a posteriori probabilities, which are higher than a threshold
(§5.7.1), are selected to generate the resulting alignment.

6.1.25 DCM framework (University of Illinois at Urbana-Champaign)

MetaQuerier [Chang et al., 2005] is a middleware system that assists users in finding
and quering multiple databases on the web. It exploits the Dual Correlation Mining
(DCM) matching framework to facilitate source selection according to user search
keywords [He and Chang, 2006]. Unlike other works, the given approach takes as
input multiple schemas and returns alignments between all of them. This setting is
called holistic schema matching. DCM automatically discovers complex correspon-
dences, e.g., {author} corresponds to {first name, last name}, between attributes of
the web query interfaces in the same domain of interest, e.g., books. As the name

5 http://bnj.sourceforge.net



6.2 Instance-based systems 169

DCM indicates, schema matching is viewed as correlation mining. The idea is that
co-occurrence patterns often suggest complex matches. That is, grouping attributes,
such as first name and last name, tend to co-occur in query interfaces. Technically,
this means that those attributes are positively correlated. Contrary, attribute names
which are synonyms, e.g., quantity and amount, rarely co-occur, thus representing
an example of negative correlation between them. Matching is performed in two
phases. During the first phase (matching discovery), a set of matching candidates is
generated by mining first positive and then negative correlations among attributes
and attribute groups. Some thresholds and a specific correlation measure such as the
H-measure are also used. During the second phase (matching construction), by ap-
plying ranking strategies, e.g., scoring function, rules, and selection, such as iterative
greedy selection (§5.7.3), the final alignment is produced.

6.2 Instance-based systems

Instance-based systems are those taking advantage mostly of instances, i.e., of data
expressed with regard to the ontology or data indexed by the ontology.

6.2.1 T-tree (INRIA Rhône-Alpes)

T-tree [Euzenat, 1994] is an environment for generating taxonomies and classes from
objects (instances). It can, in particular, infer dependencies between classes, called
bridges, of different ontologies sharing the same set of instances based only on the
extension of classes (§4.4.1). The system, given a set of source taxonomies called
viewpoints, and a destination viewpoint, returns all the bridges in a minimal fash-
ion which are satisfied by the available data. That is the set of bridges for which the
objects in every source class are indeed in the destination class. The algorithm com-
pares the extension (set of instances) of the presumed destination to the intersection
of those of the presumed source classes. If there is no inclusion of the latter in the
former, the algorithm is re-iterated on all the sets of source classes which contain
at least one class which is a subclass of the tested source classes. If the intersection
of the extension of the presumed source classes is included in that of the presumed
destination class, a bridge can be established from the latter (and also from any set
of subclasses of the source classes) to the former (and also any superclass of the
destination class). However, other bridges can also exist on the subclasses of the des-
tination. The algorithm is thus re-iterated on them. It stops when the bridge is trivial,
i.e., when the source is empty. Users validate the inferred bridges.

Bridge inference is the search for correlation between two sets of variables. This
correlation is particular to a data analysis point of view since it does not need to be
valid on the whole set of individuals (the algorithm looks for subsets under which the
correlation is valid) and it is based on strict set equality (not similarity). However,
even if the bridge inference algorithm has been described with set inclusion, it can
be helped by other measurements which will narrow or broaden the search. More



170 6 Overview of matching systems

generally, the inclusion and emptiness tests can be replaced by tests based on the
similarity of two sets of objects (as is usual in data analysis).

The bridge inference algorithm is not dependent on the instance-based interpre-
tation: it depends on the meaning of the operators ⊆, ∩ and = ∅-test (which are
interpreted as their set-theoretic counterpart in the case of the instance-based algo-
rithms). A second version of the system (with the same properties) uses structural
comparison: ⊆ is subtyping, ∩ is type intersection and = ∅-test is a subtyping test.

6.2.2 CAIMAN (Technische Universität München and Universität
Kaiserslautern)

CAIMAN [Lacher and Groh, 2001] is a system for document exchange, which fa-
cilitates retrieval and publishing services among the communities of interest. These
services are enabled by using semi-automatic ontology matching. The approach fo-
cuses on light-weight ontologies, such as web classifications. The main idea behind
matching is to calculate a probability measure between the concepts of two ontolo-
gies, by applying machine learning techniques for text classification, e.g., the Roc-
chio classifier. In particular, based on the documents, a representative feature vector
(a word-count, weighted by TFIDF feature vector, §4.2.1) is created for each concept
in an ontology. Then, the cosine measure (§4.2.1) is computed for two of those class
vectors. Finally, with the help of a threshold, the resulting alignment is produced.

6.2.3 FCA-merge (University of Karlsruhe)

FCA-merge uses formal concept analysis techniques to merge two ontologies shar-
ing the same set of instances [Stumme and Mädche, 2001]. The overall process of
merging two ontologies consists of three steps, namely (i) instance extraction, (ii)
concept lattice computation, (iii) interactive generation of the final merged ontology.
The approach provides, as a first step, methods for extracting instances of classes
from documents. The extraction of instances from text documents circumvents the
problem that in most applications there are no individuals which are simultaneously
instances of the source ontologies and which could be used as a basis for identifying
similar concepts. During the second step, the system uses formal concept analysis
techniques (§4.4.1) in order to compute the concept lattice involving both ontolo-
gies. The last step consists of deriving the merged ontology from the concept lattice.
The produced lattice is explored and transformed by users who further simplify it
and generate the taxonomy of an ontology.

The result is a merge rather than an alignment. However, the concepts that are
merged can be considered as exactly matched and those which are not can be con-
sidered in subsumption relation with their ancestors or siblings.

6.2.4 LSD (University of Washington)

Learning Source Descriptions (LSD) is a system for the semi-automatic discovery of
one-to-one alignments between the (leaf) elements of source schemas and a mediated



6.2 Instance-based systems 171

(global) schema in data integration [Doan et al., 2001]. The main idea behind the ap-
proach is to learn from the mappings created manually between the mediated schema
and some of the source schemas, in order to propose in an automatic manner the map-
pings for the subsequent source schemas. LSD handles XML schemas. A schema is
modelled as a tree, where the nodes are XML tag names. The approach works in
two phases. During the first (training) phase, useful objects, such as element names
and data values, are extracted from the input schemas. Then, from these objects and
manually created alignments, the system trains multiple basic matchers (address-
ing different features of objects, such as formats, word frequencies, characteristics
of value distributions) and a meta-matcher. Some examples of basic matchers are the
WHIRL learner (§5.4.2), the naive Bayesian learner (§5.4.1). The meta-matcher com-
bines the predictions of basic matchers. It is trained by using a stacked generalisation
(learning) technique (§5.4.5). During the second (matching) phase LSD extracts the
necessary objects from the remaining (new) source schemas. Then, by applying the
trained basic matchers and the meta-matcher on the new objects (the classification
operation), LSD obtains a prediction list of matching candidates. Finally, by taking
into account integrity constraints and applying some thresholds, the final alignment
is extracted.

6.2.5 GLUE (University of Washington)

GLUE [Doan et al., 2004], a successor of LSD, is a system that employs multiple
machine learning techniques to semi-automatically discover one-to-one semantic
mappings (which are sometimes called ‘glue’ for interoperability) between two tax-
onomies. The idea of the approach is to calculate the joint distributions of the classes,
instead of committing to a particular definition of similarity. Thus, any particular sim-
ilarity measure can be computed as a function over the joint distributions. As does
its predecessor, LSD, GLUE follows a multistrategy learning approach, involving
several basic matchers and a meta-matcher. The system works in three steps. First, it
learns the joint probability distributions of classes of two taxonomies. In particular,
it exploits two basic matchers: the content learner (naive Bayes technique, §5.4.1)
and the name learner (a variation of the previous one). The meta-matcher, in turn,
performs a linear combination of the basic matchers. Weights for these matchers are
assigned manually. During the second step, the system estimates the similarity be-
tween two classes in a user-supplied function of their joint probability distributions.
This results in a similarity matrix between terms of two taxonomies. Finally, some
domain-dependent, e.g., subsumption, and domain-independent, e.g., if all children
of node x match node y, then x also matches y, constraints (heuristics) are applied
by using a relaxation labelling technique. These are used in order to filter some of
the matches out of the similarity matrix and keep only the best ones.

6.2.6 iMAP (University of Illinois and University of Washington)

iMAP [Dhamankar et al., 2004] is a system that semi-automatically discovers one-
to-one (e.g., amount ≡ quantity) and, most importantly, complex (e.g., address ≡



172 6 Overview of matching systems

concat(city, street)) mappings between relational database schemas. The schema
matching problem is reformulated as a search in a match space, which is often,
very large or even infinite. To perform the search effectively, iMAP uses multiple
basic matchers, called searches, e.g., text, numeric, category, unit conversion, each
of which addresses a particular subset of the match space. For example, the text
searcher considers the concatenation of text attributes, while the numeric searcher
considers combining attributes with arithmetic expressions. The system works in
three steps (see Fig. 6.4). First, matching candidates are generated by applying ba-
sic matchers (the match generator module). Even if a basic matcher, such as the text
searcher, addresses only the space of concatenations, this space can still be very large.
To this end, the search strategy is controlled by using the beam search technique
[Russell and Norvig, 1995]. During the second step, for each target attribute, match-
ing candidates of the source schema are evaluated by exploiting additional types of
information, e.g., using the naive Bayes evaluator (§5.4.1), which would be compu-
tationally expensive to use during the first step. These yield additional scores. Then,
all the scores are combined into a final one (the similarity estimator module). The re-
sult of this step is a similarity matrix between 〈target attribute,match candidate〉
pairs. Finally, by using a set of domain constraints and mappings from the previous
match operations (if applicable and available), the similarity matrix is cleaned up,
such that only the best matches for target attributes are returned as the result (the
match selector module). The system is also able to explain the results it produces
with the help of the explanation module, see for details Chap. 9.

o

o′

Searcher 1

Searcher n

Match generator A
Similarity
estimator

M A′

Explanation
module

Fig. 6.4. iMAP architecture: several matchers, called searchers, are run in parallel. They pro-
vide candidate matches that can be complex. These candidates are further selected by applying
the similarity estimator, and then, the final alignment is extracted. Additionally, the explana-
tion module allows users to understand the results and control the process.

6.2.7 Automatch (George Mason University)

Automatch [Berlin and Motro, 2002] is a system for automatic discovery of map-
pings between the attributes of database schemas. The approach assumes that several
schemas from the domain under consideration have already been manually matched



6.2 Instance-based systems 173

by domain experts. This assumption is a realistic one for a data integration scenario.
Then, by using Bayesian learning (§5.4.1), Automatch acquires probabilistic knowl-
edge from the manually matched schemas, and creates the attribute dictionary which
accumulates the knowledge about each attribute by means of its possible values
and the probability estimates of these values. In order to avoid a rapid growth of
the dictionary, the system also uses statistical feature selection techniques, such as
mutual information, information gain, and likelihood ratio, to learn efficiently, i.e.,
only from the most informative values, such as 10% of the actually available input
training data. A new pair of schemas is matched automatically via the precompiled
attribute dictionary. The system first matches each attribute of the input schemas
against the attribute dictionary, thereby producing individual match scores (a real
number). Then, these individual scores are further combined by taking their sum to
produce the scores between the attributes of the input schemas. Finally, the scores
between the input schemas, in turn, are combined again, by using a minimum cost
maximum flow graph algorithm and some thresholds in order to find the overall op-
timal matching between the input schemas with respect to the sum of the individual
match scores.

6.2.8 SBI&NB (The Graduate University for Advanced Studies)

SBI (Similarity-Based Integration) is a system for automatic statistical matching
among classifications [Ichise et al., 2003, Ichise et al., 2004]. SBI&NB is the exten-
sion of SBI by plugging into the system a naive Bayes classifier (§5.4.1). The idea of
SBI is to determine correspondences between classes of two classifications by sta-
tistically comparing the membership of the documents to these classes. The pairs of
similar classes are determined in a top-down fashion by using the κ-statistic method
[Fleiss, 1973]. These pairs are considered to be the final alignment. SBI&NB com-
bines sequentially the SBI and the naive Bayes classifier. The naive Bayes enables
hierarchical classification of documents. Thus, the system takes also into account
structural information of the input classifications. The exploited classifier is Pachinko
Machine naive Bayes from the Rainbow system4.

6.2.9 Kang and Naughton (University of Wisconsin-Madison)

Kang and Naughton proposed a structural instance-based approach for discovering
correspondences among attributes of relational schemas with opaque column names
[Kang and Naughton, 2003]. By opaque column names are meant names which are
hard to interpret, such as A and B instead of Model and Color. The approach works
in two phases. During the first phase, two table instances are taken as input and the
corresponding (weighted) dependency graphs are constructed based on mutual infor-
mation and entropy. The conditional entropy used here describes (with a non negative
real number) the uncertainty of values in an attribute given knowledge (probability
distribution) of another attribute. Mutual information, in turn, measures (with a non
negative real number) the reduction in uncertainty of one attribute due to the knowl-
edge of the other attribute, i.e., the amount of information captured in one attribute



174 6 Overview of matching systems

about the other. It is zero when two attributes are independent, and increases as the
dependency between the two attributes grows. Mutual information is computed over
all pairs of attributes in a table. Thus, in dependency graphs, a weight on an edge
stands for mutual information between two adjacent attributes. A weight on a node
stands for entropy of the attribute. During the second phase, matching node pairs
are discovered between the dependency graphs by running a graph matching algo-
rithm. The quality of matching is assessed by using metrics, such as the Euclidean
distance (§4.2.1). The distance is assigned to each potential correspondence between
attributes of two schemas and a one-to-one alignment which is a minimum weighted
graph matching (§5.7.3) is returned.

6.2.10 Dumas (Technische Universität Berlin and Humboldt-Universität zu
Berlin)

Dumas (DUplicate-based MAtching of Schemas) is an approach which identifies
one-to-one alignments between attributes by analysing the duplicates in data in-
stances of the relational schemas [Bilke and Naumann, 2005]. Unlike other instance-
based approaches which look for similar properties of instances, such as distribution
of characters, in columns of schemas under consideration, this approach looks for
similar rows or tuples. The system works in two phases: (i) identify objects within
databases with opaque schemas, and (ii) derive correspondences from a set of simi-
lar duplicates.

For object identification (§4.4.2), in Dumas, tuples are viewed as strings and a
string comparison metric, such as cosine measure (§4.2.1), is used to compare two
tuples. Specifically, tuples are tokenised and each token is assigned a weight based
on TFIDF scheme (§4.2.1). In order to avoid complete pairwise comparison of tuples
from two databases, the WHIRL algorithm (§5.4.2) is used. It performs a focused
search based on those common values that have high TFIDF score. The algorithm
ranks tuple pairs according to their similarity and identifies the k most similar tuple
pairs.

During the second phase, based on the k duplicate pairs with highest confidence,
correspondences between attributes are derived. The intuition is that if two field val-
ues are similar, then their respective attributes match. A field-wise similarity com-
parison is made for each of the k duplicates, thereby resulting in a similarity matrix.
For comparing tuple fields, a variation of a TFIDF-based measure, called soft TFIDF
[Cohen et al., 2003a], is used. It allows the consideration of similar terms as opposed
to equal terms. The resulting alignment is extracted from the similarity matrix by
finding the maximum weight matching. Finally, if based on the maximum matching,
multiple alternative matches are possible, therefore the algorithm iterates back to the
first phase in order to try to improve the result by discovering more duplicates.

6.2.11 Wang and colleagues (Hong Kong University of Science and Technology
and Microsoft Research Asia)

Wang and colleagues propose an instance-based solution for discovering one-to-
one alignments among the web databases [Wang et al., 2004] (see also Sect. 6.1.25).



6.2 Instance-based systems 175

These are query interfaces (HTML forms) and backend databases which dynamically
provide information in response to user queries. Authors distinguish between (i) the
query interface, which exposes attributes that can be queried in the web database and
(ii) the result schema presenting the query results, which exposes attributes that are
shown to users. Matching between different query interfaces (inter-site matching) is
critical for data integration between web databases. Matching between the interface
and result schema of a single web database (intra-site matching), in turn, is useful
for automatic data annotation and database content crawling. The approach is based
on the following observations (among others):

– The keywords of queries (whose semantics match the semantics of the input el-
ement of a query interface) that return results are likely to reappear in attributes
of the returned result. For example, such keywords as Logic submitted to the in-
put element title matches its intended use (while it is not the case with the field
author which will unlikely produce expected results), and therefore, some results
with books about logics will be returned. Moreover, part (Logic) of the value
Introduction to logic of the title attribute should reappear in the result schema.

– Based on the work in [He and Chang, 2003], the authors assume the existence
and availability of a populated global schema, that is a view capturing common
attributes of data, for the web databases of the same domain of interest.

The approach presents a combined schema model that involves five kinds of
schema matching for web databases in the same domain of interest: global-interface,
global-result, interface-result, interface-interface, and result-result. The approach
works in two phases: (i) query probing and (ii) instance-based matching.

The first phase deals with acquiring data instances from web databases by query
probing. It exhaustively sends the attribute values of pre-known instances from a
global schema and collects results from the web databases under consideration in a
query occurrence cube. The cube height stands for the number of attributes in the
given global schema. The cube width stands for the number of attributes in the inter-
face schema. The cube depth is the number of attributes in the result schema. Finally,
each cell in this cube stores an occurrence count associated with the three dimen-
sions. This cube is further projected onto three query occurrence matrices, which
represent relationships between pairs of three schemas, namely global-interface,
global-result, and interface-result.

During the second phase, the re-occurrences of submitted query keywords in
the returned results data are analysed. In order to perform intra-site matching, the
mutual information between pairs of attributes from two schemas is computed (see
also Sect. 6.2.9). In order to perform inter-site matching a vector-based similarity is
used (§4.2.1). In particular, each attribute of an individual interface or result schema
is viewed as a document and each attribute of the global schema is view as a concept.
Each row in the occurrence matrix represents a corresponding document vector. The
similarity between attributes from different schemas is computed by using the cosine
measure (§4.2.1) between two vectors. Finally, for both intra-site matching and inter-
site matching, the matrix element whose value is the largest both in its row and



176 6 Overview of matching systems

column represents a final correspondence (this is the greedy alignment extraction
presented in Sect. 5.7.3).

6.2.12 sPLMap (University of Duisburg-Essen, and ISTI-CNR)

sPLMap (probabilistic, logic-based mapping between schemas) is a framework
which combines logics with probability theory in order to support uncertain schema
mappings [Nottelmann and Straccia, 2005, Nottelmann and Straccia, 2006]. In par-
ticular, it is a GLAV-like framework [Lenzerini, 2002] where the alignment is de-
fined as uncertain rules in probabilistic Datalog. This allows the support for impre-
cise matches, e.g., between author and editor attributes and a more general attribute,
such as creator, which is often the case in schemas with different levels of granu-
larity. sPLMap matches only attributes of the same concept (typically documents).
The system operates in three main steps. First, it evaluates the quality of all possible
individual correspondences on the basis of probability distributions (called interpre-
tation). It selects the set of correspondences that maximises probability on the basis
of instance data.

Then, for each correspondence, matchers are used as quality estimators: they pro-
vide a measure of the plausibility of the correspondence. sPLMap has been tested
with the following matchers: (i) same attribute names (§4.2.1), (ii) exact tuples
(§4.4), (iii) the k-nearest neighbour classifier, and (iv) the naive Bayesian classi-
fier (§5.4.1). The result of these matchers are aggregated by using linear or logistic
functions, or their combinations (§5.2). Coefficients of the normalisation functions
are learnt by regression in a system-training phase. Finally, the computed proba-
bilities are transformed in correspondence weights (used as the probability of the
corresponding Datalog clause) by using the Bayes theorem.

6.3 Mixed, schema-based and instance-based systems

The following systems take advantage of both schema-level and instance-level input
information if they are both available.

6.3.1 SEMINT (Northwestern University, NEC and The MITRE Corporation)

SEMantic INTegrator (SEMINT) is a tool based on neural networks to assist in iden-
tifying attribute correspondences in heterogeneous databases [Li and Clifton, 1994,
Li and Clifton, 2000]. It supports access to a variety of database systems and utilises
both schema- and instance-level information to produce rules for matching corre-
sponding attributes automatically. The approach works as follows. First, it extracts
from two databases all the necessary information (features or discriminators) which
is potentially available and useful for matching. This includes normalised schema in-
formation, e.g., field specifications, such as datatypes, length, constraints, and statis-
tics about data values, e.g., character patterns, such as ratio of numerical characters,



6.3 Mixed, schema-based and instance-based systems 177

ratio of white spaces, and numerical patterns, such as mean, variance, standard de-
viation. Second, by using a neural network as a classifier with the self-organising
map algorithm (§5.4.3), it groups the attributes based on similarity of the features
for a single (the first) database. Then, it uses a back-propagation neural network
for learning and recognition. Based on the previously obtained clusters, the learning
is performed. Finally, using a trained neural network on the first database features
and clusters, the system recognises and computes similarities between the categories
of attributes from the first database and the features of attributes from the second
database, thus, generating a list of match candidates, which are to be inspected and
confirmed or discarded by users.

6.3.2 Clio (IBM Almaden and University of Toronto)

Clio is a system for managing and facilitating data transformation and integration
tasks within heterogeneous environments [Miller et al., 2000, Miller et al., 2001,
Naumann et al., 2002, Haas et al., 2005], see Fig. 6.5. Clio handles relational and
XML schemas. As a first step, the system transforms the input schemas into an inter-
nal representation, which is a nested relational model. The Clio approach is focused
on making the alignment operational. It is assumed that the matching step, namely,
identification of the value correspondences, is performed with the help of a schema
matching component or manually. The built-in schema matching algorithm of Clio
combines in a sequential manner instance-based attribute classification via a varia-
tion of a naive Bayes classifier (§5.4.1) and string matching between elements names,
e.g., by using an edit distance (§4.2.1). Then, taking the n-m value correspondences
(the alignment) together with constraints coming from the input schemas, Clio com-
piles these into an internal query graph representation. In particular, an interpreta-
tion of the input correspondences is given. Thus, a set of logical mappings with
formal semantics is produced. To this end, Clio also supports mappings composition
[Fagin et al., 2004]. Finally, the query graph can be serialised into different query
languages, e.g., SQL, XSLT, XQuery, thus enabling actual data to be moved from a
source to a target, or to answer queries. The system, besides trivial transformations,
aims at discovering complex ones, such as the generation of keys, references and join
conditions.

6.3.3 IF-Map (University of Southampton and University of Edinburgh)

IF-Map (Information-Flow-based Map) [Kalfoglou and Schorlemmer, 2003a] is an
ontology matching system based on the Barwise–Seligman theory of information
flow [Barwise and Seligman, 1997]. The basic principle of IF-Map is to match two
local ontologies by looking at how these are related to a common reference ontology.
It is assumed that such a reference ontology represents an agreed understanding that
facilitates the sharing of knowledge. This means that two local ontologies have sig-
nificant fragments of them that conform to the reference ontology. It is also assumed
that the local ontologies are populated with instances, while the reference ontology
does not need to.



178 6 Overview of matching systems

s

db

s′

db′

Matcher

A

Generator

Data translation

Fig. 6.5. Clio architecture: Clio goes all the way from matching schemas to translating data
from one database to another one. It is made up of a classical matcher but also involves users
at each step: input, matching control and translation execution.

Matching works as follows. If the reference ontology can be expressed in each of
the local ontologies and instances of the local ontologies can be assigned concepts in
the reference ontology (or be mapped to equivalent instances in the reference ontol-
ogy), then IF-Map uses formal concept analysis (§4.4.1) between the three ontologies
in order to find the Galois lattice from which it is possible to extract an alignment.

When the mappings are not available, IF-Map generates candidate pairs of map-
pings (called infomorphism in information flow theory) and artificial instances. They
are generated through the enforcement of constraints that are induced by the defini-
tion of the reference ontology and by heuristics based on string-based (§4.2.1) and
structure-based (§4.3) methods.

IF-Map deals with ontologies expressed in KIF or RDF. The IF-MAP method is
declaratively specified in Horn logic and is executed with a Prolog interpreter, so the
ontologies are translated into Prolog clauses beforehand. IF-Map produces concept-
to-concept and relation-to-relation alignments.

6.3.4 NOM and QOM (University of Karlsruhe)

NOM (Naive Ontology Mapping) [Ehrig and Sure, 2004] and QOM (Quick Ontol-
ogy Mapping) [Ehrig and Staab, 2004] are components of the FOAM framework
(§8.2.5).

NOM adopts the idea of parallel composition of matchers from COMA (§6.1.12).
Some innovations with respect to COMA are in the set of elementary match-
ers based on rules, exploiting explicitly codified knowledge in ontologies, such as
information about super and subconcepts, super and subproperties, etc. As from
[Ehrig and Sure, 2004], the system supports 17 rules related to those of Table 4.6
(p. 100). For example, a rule states that if superconcepts are the same, the actual
concepts are similar to each other. These rules are based on various terminological
and structural techniques.



6.3 Mixed, schema-based and instance-based systems 179

QOM (Quick Ontology Mapping) [Ehrig and Staab, 2004] is a variation of the
NOM system dedicated to improve the efficiency of the system. The approach is
based on the idea that the loss of quality in matching algorithms is marginal (to a
standard baseline); however improvement in efficiency can be significant. This fact
allows QOM to produce correspondences fast, even for large-size ontologies. QOM
is grounded on matching rules of NOM. However, for the purpose of efficiency the
use of some rules, e.g., the rules that traverse the taxonomy, has been restricted.
QOM avoids the complete pairwise comparison of trees in favour of an incomplete
top-down strategy, thereby focusing only on promising matching candidates.

The similarity measures produced by basic matchers (matching rules) are re-
fined by using a sigmoı̈d function (§5.7.2), thereby emphasising high individual sim-
ilarities and de-emphasising low individual similarities. They are then aggregated
through weighted average (§5.2). Finally, with the help of thresholds, the final align-
ment is produced.

6.3.5 oMap (CNR Pisa)

oMap [Straccia and Troncy, 2005] is a system for matching OWL ontologies. It is
built on top of the Alignment API (§8.2.4) and has been used for distributed infor-
mation retrieval in [Straccia and Troncy, 2006]. oMap uses several matchers (called
classifiers) that are used for giving a plausibility of a correspondence as a function
of an input alignment between two ontologies. The matchers include (i) a classifier
based on classic string similarity measure over normalised entity names (§4.2.1); (ii)
a naive Bayes classifier (§5.4.1) used on instance data, and (iii) a ‘semantic’ matcher
which propagates initial weights through the ontology constructors used in the defi-
nitions of ontology entities. This last one starts with an input alignment associating
plausibility to correspondences between primitive entities and computes the plausi-
bility of a new alignment by propagating these measures through the definitions of
the considered entities. The propagation rules depend on the ontology constructions,
e.g., when passing through a conjunction, the plausibility will be minimised. Each
matcher has its own threshold and they are ordered among themselves.

There are two ways in which matchers can work: (i) in parallel, in which case
their results are aggregated through a weighted average, such that the weights corre-
spond to the credit accorded to each of the classifiers, (ii) in sequence, in which case
each matcher only adds new correspondences to the input ontologies. A typical order
starts with string similarity, before naive Bayes, and then the ‘semantic’ matcher is
used.

6.3.6 Xu and Embley (Brigham Young University)

Xu and Embley proposed a parallel composition approach to discover, in ad-
dition to one-to-one alignments, also one-to-many and many-to-many corre-
spondences between graph-like structures, e.g., XML schemas, classifications
[Xu and Embley, 2003, Embley et al., 2004]. Schema matching is performed by a



180 6 Overview of matching systems

combination (an average function) of multiple matchers and with the help of exter-
nal knowledge resources, such as domain ontologies. The basic element level match-
ers used in the approach include name matcher and value-characteristic matcher.
The name matcher, besides string comparisons (§4.2.1), also performs some lin-
guistic normalisation, such as stemming and removing stop words (§4.2.2). It also
detects synonyms among node names with the help of WordNet (§4.2.2). In par-
ticular, matching rules are obtained via a C4.5 decision tree generator (§5.4.4) that
has been trained over WordNet by using several hundreds synonym names found in
the available databases from a domain of interest. The value-characteristic matcher
determines where two values of schema elements share similar value characteris-
tics, such as means or variances for numerical data. Similar to the name matcher,
matching rules are obtained by training the C4.5 decision tree generator over value
characteristics of the available databases from a domain of interest. Structure level
matchers are used to suggest new correspondences as well as to confirm correspon-
dences identified by element level matchers, for example, by considering similarities
between the neighbour elements computed by element level matchers. Another ex-
ample of a structural matcher makes use of a domain ontology. In particular, it tries
to match both schemas A and B to the structure C, which is an external domain
ontology, in order to decide if A corresponds to B.

6.3.7 Wise-Integrator (SUNY at Binghamton, University of Illinois at Chicago
and University of Louisiana at Lafayette)

Wise-Integrator is a tool that performs automatic integration of Web Interfaces of
Search Engines [He et al., 2004, He et al., 2005]. It provides a unified interface to
e-commerce search engines of the same domain of interest, such as books and mu-
sic. Therefore, users can pose queries by using this interface and the search me-
diator sends the translated subqueries to each site involved in handling this query
and then the results of these sites are reconciled and presented to users. Wise-
Integrator consists of two main subsystems: (i) an interface schema extractor, and
(ii) an interface schema integrator. The first component, given a set of HTML pages
with query interfaces, identifies logical attributes and derives some meta-information
about them, e.g., datatype, thereby building an interface schema out of them. For ex-
ample, the system can derive (guess) that the field Publication Date, is likely to be of
date datatype. The second component discovers matching attributes among multiple
query interfaces and then merges them, thereby resulting in global attributes. These
are used, in turn, to produce a unified search interface.

Attribute matching in Wise-Integrator is based on two types of matches: posi-
tive and predictive. Positive matches are based on the following matching methods:
exact name match, look up for synonymy, hypernymy and meronymy in WordNet
(§4.2.2), and value-based matchers. When one of the positive matches occurs, the
corresponding attributes are considered as matched. Predictive matches are based
on the following matching methods: approximate name match, e.g., edit distance
(§4.2.1), datatype compatibility (§4.3.1), value pattern matcher (§4.4.3). Predictive



6.3 Mixed, schema-based and instance-based systems 181

matches have to be strong enough (which is decided based on a threshold) in order
to indicate that the attributes under consideration match.

Positive and predictive matches are carried out in two clustering steps: positive
match based clustering and predictive match based clustering. In the first step all
the interfaces are taken as input and attributes are grouped into clusters based on
the positive matches between attributes. Clustering is done by following some pre-
defined rules which govern the order of execution of underlying matchers and how
to make groupings based on results of those matchers. For example, the first results
of exact name matches are considered and then results of value-based and WordNet-
based matchers. Finally, for each cluster a representative attribute name (RAN) is
determined. For example, for the cluster with attribute names {Format, Binding type,
Format} the RAN is Format. During the second step all local interfaces are recon-
sidered again. Clustering is done following some pre-defined rules which employ
previously determined RANs and a simple weighting scheme over the results of pre-
dictive matching methods, if all else fail. When all potentially matching attributes are
clustered together, the global attribute for each group of such attributes is generated.

6.3.8 OLA (INRIA Rhône-Alpes and Université de Montréal)

OLA (OWL Lite Aligner) [Euzenat and Valtchev, 2004] is an ontology matching sys-
tem which is designed with the idea of balancing the contribution of each of the
components that compose an ontology, e.g., classes, constraints, data instances. OLA
handles ontologies in OWL. It first compiles the input ontologies into graph struc-
tures, unveiling all relationships between entities. These graph structures produce the
constraints for expressing a similarity between the elements of the ontologies. The
similarity between nodes of the graphs follows two principles: (i) it depends on the
category of node considered, e.g., class, property, and (ii) it takes into account all
the features of this category, e.g., superclasses, properties, as presented in Table 4.6.

The distance between nodes in the graph are expressed as a system of equations
based on string-based (§4.2.1), language-based (§4.2.2) and structure-based (§4.3)
similarities (as well as taking instances into account whenever necessary). These
distances are almost linearly aggregated (they are linearly aggregated modulo local
matches of entities). For computing these distances, the algorithm starts with base
distance measures computed from labels and concrete datatypes. Then, it iterates a
fixed point algorithm until no improvement is produced. From that solution, an align-
ment is generated which satisfies some additional criterion on the obtained alignment
and the distance between matched entities. The algorithm is described in more de-
tail in Sect. 5.3.2. The OLA architecture is typically the one displayed in Fig. 5.8
(p. 127).

6.3.9 Falcon-AO (China Southwest University)

Falcon-AO is a system for matching OWL ontologies. It is made of two components,
namely those for performing linguistic and structure matching, see also Fig. 6.6.



182 6 Overview of matching systems

LMO is a linguistic matcher. It associates with each ontology entity a bag of words
which is built from the entity label, the entity annotations as well as the labels
of connected entities. The similarity between entities is based on TFIDF (§4.2.1)
[Qu et al., 2006].

GMO is a bipartite graph matcher [Hu et al., 2005]. It starts by considering the RDF
representation of the ontologies as a bipartite graph which is represented by its
adjacency matrix (A and A′). The distance between the ontologies is represented
by a distance matrix (X) and the distance (or update) equations between two
entities are simply a linear combination of all entities they are adjacent to, i.e.,
Xt+1 = AXtA′T + AT XtA′. This process can be bootstrapped with an initial
distance matrix. However, the real process is more complex than described here
because it distinguishes between external and internal entities as well as between
classes, relations and instances.

o

o′

M
Linguistic
matching M ′ Structure

matching M ′′ A′

Fig. 6.6. Falcon-AO architecture: it is a sequential composition of two components, but if the
output of the linguistic matcher is considered of sufficient quality, then no structure matching
is performed.

First LMO is used for assessing the similarity between ontology entities on the
basis of their name and text annotations. If the result has a high confidence, then it is
directly returned for extracting an alignment. Otherwise, the result is used as input for
the GMO matcher which tries to find an alignment on the basis of the relationships
between entities [Jian et al., 2005].

6.3.10 RiMOM (Tsinghua University)

The RiMOM (Risk Minimisation based Ontology Mapping) approach, being in-
spired by Bayesian decision theory, formalises ontology matching as a decision mak-
ing problem [Tang et al., 2006]. Given two ontologies, it aims at an optimal and au-
tomatic discovery of alignments which can be complex (such as including concatena-
tion operators). The approach first searches for concept-to-concept correspondences
and then for property-to-property correspondences. The RiMOM matching process
is organised into the following phases [Li et al., 2006]:

1. Select matchers to use. This task can be performed either automatically or manu-
ally. The basic idea of automatic strategy selection is if two ontologies have high



6.3 Mixed, schema-based and instance-based systems 183

label similarity factor, then RiMOM will rely more on linguistic based strate-
gies; while if the two ontologies have a high structure similarity factor, RiMOM
will exploit similarity-propagation based strategies on them.

2. Execute multiple independent matchers, given the input ontologies and, option-
ally, user input. Examples of matchers include linguistic normalisation of labels,
such as tokenisation, expansion of abbreviations and acronyms (§4.2.2) based
on GATE tools6, edit-distance, matchers that look for label similarity based on
WordNet (§4.2.2), k-nearest neighbours statistical learning, naive Bayes matcher
(§5.4.1), as well as some other heuristics for data type similarity and taxonomic
structure similarity. This results in a cube of similarity values in [0 1] for each
pair of entities from the two ontologies (see also Sect. 6.1.12).

3. Combine the results by aggregating the values produced during the previous step
into a single value. This is performed by using a linear-interpolation.

4. Similarity propagation. If the two ontologies have high structure similarity fac-
tor, RiMOM employs an algorithm called similarity propagation to refine the
found alignments and to find new alignments that cannot be discovered using
the other strategies. Similarity propagation makes use of structure information.

5. Extract alignment for a pair of ontologies based on thresholds (§5.7.1) and
some refinement heuristics to eliminate unreasonable correspondences, e.g., use
concept-to-concept correspondences to refine property-to-property correspon-
dences.

6. Iterate the above described process by taking the output of one iteration as input
into the next iteration until no new correspondences are produced. At each iter-
ation, users can select matchers, and approve and discard correspondences from
the returned alignment

RiMOM offers three possible structural propagation strategies: concept-to-
concept propagation strategy (CCP), property-to-property propagation strategy
(PPP), and concept-to-property propagation strategy (CPP). For choosing between
them, RiMOM uses heuristic rules. For example, if the structure similarity factor is
lower than some threshold then RiMOM does not use the CCP and PPP strategies,
only CPP is used.

6.3.11 Corpus-based matching (University of Washington, Microsoft Research
and University of Illinois)

Madhavan and colleagues [Madhavan et al., 2005] proposed an approach to schema
matching which, besides input information available from schemas under consid-
eration, also exploits some domain specific knowledge via an external corpus of
schemas and mappings. The approach is inspired from the use of corpus in infor-
mation retrieval, where similarity between queries and concepts is determined based
on analysing large corpora of text. In schema matching, such a corpus can be ini-
tialised with a small number of schemas obtained, for example, by using available

6 http://gate.ac.uk/



184 6 Overview of matching systems

standard schemas in the domain of interest, and should eventually evolve in time
with new matching tasks.

Since the corpus is intended to have different representations of each concept in
the domain, it should facilitate learning these variations in the elements and their
properties. The corpus is exploited in two ways. First, to obtain an additional ev-
idence about each element being matched by including evidence from similar ele-
ments in the corpus. Second, in the corpus, similar elements are clustered and some
statistics for clusters are computed, such as neighbourhood and ordering of elements.
These statistics are ultimately used to build constraints that facilitate selection of the
correspondences in the resulting alignment.

The approach handles web forms and relational schemas and focuses on one-
to-one alignments. It works in two phases. Firstly, schemas under consideration are
matched against the corpus, thereby augmenting these with possible variations of
their elements based on knowledge available from the corpus. Secondly, augmented
schemas are matched against each other. In both cases the same set of matchers is
applied. In particular, basic matchers, called learners, include (i) a name learner, (ii)
a text learner, (iii) a data instance learner, and (iv) a context learner. These match-
ers mostly follow the ideas of techniques used in LSD (§6.2.4) and Cupid (§6.1.11).
For example, the name learner exploits names of elements. It applies tokenisation
and n-grams (§4.2.1) to the names in order to create training examples. The matcher
itself is a text classifier, such as naive Bayes (§5.4.1). In addition, the name learner,
uses edit distance (§4.2.1), in order to determine similarity between element names
string. The data instance learner determines whether the values of instances share
common patterns, same words, etc. A matcher, called meta-learner, combines the
results produced by basic matchers. It uses logistic regression with the help of the
stacking technique (§5.4.5) in order to learn its parameters. Finally, by using con-
straints based on the statistics obtained from the corpus, candidate correspondences
are filtered in order to produce the final alignment.

6.4 Meta-matching systems

Meta-matching systems are systems whose originality is in the way they use and
combine other matching systems rather than in the matchers themselves.

6.4.1 APFEL (University of Karlsruhe and University of Koblenz-Landau)

APFEL (Alignment Process Feature Estimation and Learning) is a machine learning
approach that explores user validation of initial alignments for optimising automati-
cally the configuration parameters of some of the matching strategies of the system,
e.g., weights, thresholds, for the given matching task [Ehrig et al., 2005]. It is a com-
ponent of the FOAM framework (§8.2.5). The overall architecture of APFEL is given
in Fig. 6.7.

APFEL parameterises the FOAM steps by using declarative representations of
the (i) features engineered, QF ; (ii) similarities assessed, QS ; (iii) weight schemas,



6.4 Meta-matching systems 185

o

o′

Seed match A A′ Evaluate
parameters

p Match A′′

Iterate

Fig. 6.7. APFEL architecture (adapted from [Ehrig, 2007]): it generates alignments and asks
users for feedback. Then it adjusts methods and aggregation parameters in order to minimise
the error and iterate, if necessary.

e.g., for similarity aggregation, QW ; and (iv) thresholds, QT . For that purpose, the
interfaces of matching systems are unified as Parameterisable Alignment Methods
(PAM), which accept these parameters. First, given a matching system, for example
QOM (§6.3.4) or Prompt (§6.1.9), a PAM is initialised with it, e.g., PAM(QOM).
Then, once an initial alignment is obtained, this alignment is validated by users.
Finally, by analysing the validated alignment and the above parameters, with the
help of machine learning techniques (§5.4), e.g., decision tree learner, neural net-
works, support vector machines of the WEKA machine learning environment7, a
tuned weighting scheme and thresholds are produced for the given matching task.
This process can be iterated.

6.4.2 eTuner (University of Illinois and The MITRE Corporation)

eTuner [Sayyadian et al., 2005] is a system which, given a particular matching task,
automatically tunes a schema matching system (computing one-to-one alignments).
For that purpose, it chooses the most effective basic matchers, and the best pa-
rameters to be used, e.g., thresholds. eTuner models a matching system as a triple:
〈L,G, K〉, such that:

– L is a library of matching components, including basic matchers, e.g., edit dis-
tance, n-gram, combiners, e.g., modules taking average, minimum and maximum
of the results produced by basic matchers, constraint enforcers, e.g., pre-defined
domain constraints or heuristics which are computationally expensive to be used
as basic matchers, and match selectors, e.g., modules applying thresholds for
determining the final alignment.

– G is a directed graph which encodes the execution flow among the components
of the given matching system.

– K is a set of knobs to be set (and named knob configuration). Matching compo-
nents are viewed as black boxes which expose a set of adjustable knobs, such as
thresholds, weights, or coefficients.

7 http://www.cs.waikato.ac.nz/ml/weka/



186 6 Overview of matching systems

S

Sample
generator

Transformation rules

Workload
generator

S′

Augmented schema S

Tuning procedures

Staged
tuner

System M :
〈L, G, K〉

Tuned
system MSynthetic

workload

Fig. 6.8. eTuner architecture: eTuner generates a set of schemas to match with an initial
schema. Then, it generates a plan for learning parameters. Finally, it tunes the method pa-
rameters and aggregation parameters.

The system works in two phases (see Fig. 6.8). During the first phase, in which
the workload is synthesised with a known ground truth, given a single schema S, the
system synthetises several schemas (S1, S2,. . . ,Sn) out of S by altering it (for in-
stance by modifying names of attributes, e.g., authors becomes aut). Thus, by taking
a set of pairs {〈S, S1〉, 〈S, S2〉,. . . 〈S, Sn〉} together with the reference correspon-
dences available for free by construction of the synthetic schemas, the F-measure
(§7.3) can be computed over any knob configuration. The second phase consists of
searching the best parameters. Since the space of knob configurations can be large,
the system uses a sequential, greedy approach, called staged tuning. In particular, by
using the synthetic workload, it first tunes each of the basic matchers in isolation.
Then, it tunes the combination of the basic matchers and the combiner, having the
knobs of the basic matchers fixed, and so on and so forth. Once the entire system is
tuned, it can be applied to match schema S with any subsequent schemas.

6.5 Summary

The panorama of systems considered in this chapter has multiplied the diversity of
basic techniques of Chap. 4 by the variety of strategies for combining them intro-
duced in Chap. 5. Moreover, usually each individual system innovates on a particular
aspect. However, there are several constant features that are shared by the majority
of systems. In summary, the following can be observed concerning the presented
systems:

– Based on the number of systems considered in the various sections of this chapter,
we can conclude that schema-based matching solutions have been so far investi-
gated more intensively than the instance-based solutions. We believe that this is
an objective trend, since we have striven to cover state of the art systems without
bias towards any particular kind of solutions.



6.5 Summary 187

– Most of the systems under consideration focus on specific application domains,
such as books and music, as well as on dealing with particular ontology types,
such as DTDs, relational schemas and OWL ontologies. Only few systems aim
at being general, i.e., suit various application domains, and generic, i.e., han-
dle multiple types of ontologies. Some examples of the latter include Cupid
(§6.1.11), COMA and COMA++ (§6.1.12), Similarity flooding (§6.1.13), and
S-Match (§6.1.19).

– Most of the approaches take as input a pair of ontologies, while only few sys-
tems take as input multiple ontologies. Some examples of the latter include DCM
(§6.1.25) and Wise-Integrator (§6.3.7).

– Most of the approaches handle only tree-like structures, while only few systems
handle graphs. Some examples of the latter include Cupid (§6.1.11), COMA and
COMA++ (§6.1.12), and OLA (§6.3.8).

– Most of the systems focus on discovery of one-to-one alignments, while only
few systems have tried to address the problem of discovering more complex cor-
respondences, such as one-to-many and many-to-many, e.g., iMAP (§6.2.6) and
DCM (§6.1.25).

– Most of the systems focus on computing confidence measures in the [0 1] range,
most often standing for the fact that the equivalence relation holds between on-
tology entities. Only few systems compute logical relations between ontology
entities, such as equivalence, subsumption. Some examples of the latter include
CtxMatch (§6.1.18) and S-Match (§6.1.19).

Table 6.1 summarises how the matching systems cover the solution space in
terms of the classifications of Chap. 3. For example, S-Match (§6.1.19) exploits
string-based element-level matchers, external matchers based on WordNet, propo-
sitional satisfiability techniques, etc. OLA (§6.3.8), in turn, exploits, besides string-
based element-level matchers, also a matcher based on WordNet, iterative fixed point
computation, etc. Table 6.1 also testifies that ontology matching research so far was
mainly focused on syntactic and external techniques. In fact, many systems rely on
the same string-based techniques. Similar observation can be also made concerning
the use of WordNet as an external resource of common knowledge. In turn, semantic
techniques have rarely been exploited, this is only done by CtxMatch (§6.1.18), S-
Match (§6.1.19) and OntoMerge (§6.1.17). Concerning instance-based system, tech-
niques based on naive Bayes classifier and common value patterns are the most
prominent.

Table 6.1. Basic matchers used by the different systems.

Element-level Structure-level
Syntactic External Syntactic Semantic

DELTA String-based - - -
§6.1.1

Hovy String-based, - Taxonomic structure -
§6.1.2 Language-based

TranScm String-based Built-in thesaurus Taxonomic structure, -



188 6 Overview of matching systems

Table 6.1. Basic matchers used by the different systems (continued).

Element-level Structure-level
Syntactic External Syntactic Semantic

§6.1.3 Matching of
neighbourhood

DIKE String-based, WordNet Matching of -
§6.1.4 Domain compatibility neighbourhood

SKAT String-based Auxiliary thesaurus, Taxonomic structure,
§6.1.5 Corpus-based Matching of -

neighbourhood

Artemis Domain compatibility, Common thesaurus Matching of neighbours
§6.1.6 Language-based via thesaurus, -

Clustering

H-Match Domain compatibility, Common thesaurus Matching of neighbours
§6.1.7 Language-based, via thesaurus, -

Domains and ranges Relations

Tess String-based, - Matching of neighbours -
§6.1.8 domain compatibility

Anchor- String-based, Bounded paths matching:
Prompt Domains and ranges - (arbitrary links), -
§6.1.9 Taxonomic structure

OntoBuilder String-based, Thesaurus look up - -
§6.1.10 Language-based

String-based, Auxiliary thesauri Tree matching
Cupid Language-based, weighted by leaves -
§6.1.11 Datatypes,

Key properties

COMA & String-based, Auxiliary thesauri, DAG (tree) matching with
COMA++ Language-based, Alignment reuse, a bias towards various -
§6.1.12 Datatypes Repository of structures structures, e.g., leaves

Similarity String-based, Iterative fixed point
flooding Datatypes, - computation -
§6.1.13 Key properties

XClust Cardinality constraints WordNet Paths, Children, Leaves, -
§6.1.14 Clustering

ToMAS - External alignments Preserving consistency, -
§6.1.15 Structure comparison
MapOnto - External alignments Structure comparison -
§6.1.16

OntoMerge - External alignments - -
§6.1.17

CtxMatch String-based, WordNet - Based on
§6.1.18 Language-based description logics

S-Match String-based, WordNet - Propositional SAT
§6.1.19 Language-based

HCONE Language-based WordNet - -
§6.1.20 (LSI)

MoA Language-based WordNet - -
§6.1.21

ASCO String-based, WordNet Iterative similarity -
§6.1.22 Language-based propagation

BayesOWL Text classifier Google Bayesian inference -
§6.1.23

OMEN - External alignment Bayesian inference, -
§6.1.24 Meta-rules

DCM - - Correlation mining, -
§6.1.25 Statistics



6.5 Summary 189

Table 6.1. Basic matchers used by the different systems (continued).

Element-level Structure-level
Syntactic External Syntactic Semantic

T-tree - - Correlation mining -
§6.2.1

CAIMAN String-based - - -
§6.2.2 (Rocchio classifier)

FCA-merge - - Formal concept -
§6.2.3 analysis

LSD/GLUE/ WHIRL, Domain constraints Hierarchical structure
iMAP Naive Bayes -
§6.2.4-6.2.6

Automatch Naive Bayes - Internal structure, -
§6.2.7 Statistics

SBI&NB Statistics, - Pachinko Machine -
§6.2.8 Naive Bayes naive Bayes

Kang Information entropy Mutual information,
& Naughton - Dependency graph -
§6.2.9 matching

Dumas String-based - Instance -
§6.2.10 WHIRL identification

Wang & al. Language-based - Mutual information -
§6.2.11

sPLMap Naive Bayes,
§6.2.12 kNN classifier, - - -

String-based

SEMINT Neural network,
§6.3.1 Datatypes, - - -

Value patterns

Clio String-based, Structure comparison
§6.3.2 Language-based, - -

Naive Bayes

IF-Map String-based - Formal concept -
§6.3.3 analysis

NOM & QOM String-based, Application-specific Matching of neighbours, -
§6.3.4 Domains and ranges vocabulary Taxonomic structure

oMap Naive Bayes, - Similarity -
§6.3.5 String-based propagation

Xu & al. String-based, WordNet, Decision trees -
§6.3.6 Language-based Domain ontology

String-based,
Wise-Integrator Language-based, WordNet Clustering -
§6.3.7 Datatypes,

Value patterns

String-based, Iterative fixed point
OLA Language-based, WordNet computation, -
§6.3.8 Datatypes Matching of neighbours,

Taxonomic structure

Falcon-AO String-based WordNet Structural affinity -
§6.3.9

RiMOM String-based, WordNet Taxonomic structure, -
§6.3.10 Naive Bayes Similarity propagation

Corpus-based String-based, Corpus schemas,
matching §6.3.11 Language-based, Domain constraints - -

Naive Bayes,
Value patterns



190 6 Overview of matching systems

Table 6.2 summarises the position of these systems with regard to some of the
requirements of Sect. 1.7 (namely those requirements that can be given in the spec-
ification of the system rather than being measured). In Table 6.2, the Input column
stands for the input taken by the systems. In particular, it mentions the languages that
the systems are able to handle (if this information was not available form the arti-
cles describing the corresponding systems we used general terms, such as database
schema and ontology instead). This is, of course, very important for someone who
has a certain type of ontology to match and is looking for a system. The Needs col-
umn stands for the resources that must be available for the system to work. This
covers the automatic aspect of Sect. 1.7, which is here denoted as user when user
feedback is required, semi when the system can take advantage of user feedback but
can operate without it and auto when the system works without user intervention
(of course, users can influence the system by providing the initial input or evalu-
ating the results afterwards, but this is not taken into account here). Similarly, the
instances value specifies that the system requires data instances to work. In addition,
some systems may require training before the actual matching as well as alignment
to be improved. The Output column denotes the form of the results given by the sys-
tem: Alignment means that the system returns a set of correspondences, merge that
it merges the input ontologies or schemas, axioms or rules that it provides rules for
querying or completing the ontologies, etc.

Table 6.2. Position of the presented systems with regard to the requirements of
Chap. 1.

System Input Needs Output Operation

DELTA Relational schema, User Alignment -
§6.1.1 EER

Hovy Ontology Semi Alignment -
§6.1.2

TranScm SGML, Semi Translator Data translation
§6.1.3 OO

DIKE ER Semi Merge Query mediation
§6.1.4

SKAT RDF Semi Bridge Data translation
§6.1.5 rules

Artemis Relational schema, Auto Views Query mediation
§6.1.6 OO, ER

H-Match OWL Auto Alignment P2P
§6.1.7 query mediation

Tess Database schema Auto Rules Version matching
§6.1.8

Anchor-Prompt OWL, RDF User Axioms Ontology merging
§6.1.9 (OWL/RDF)

OntoBuilder Web form, User Mediator Query mediation
§6.1.10 XML schema

Cupid XML schema, Auto Alignment -
§6.1.11 Relational schema

COMA & COMA++ Relational schema, User Alignment Data translation
§6.1.12 XML schema, OWL



6.5 Summary 191

Table 6.2. Position of these systems with regard to the requirements of Chap. 1
(continued).

System Input Needs Output Operation

Similarity flooding XML schema, User Alignment -
§6.1.13 Relational schema

XClust DTD Auto Alignment -
§6.1.14

ToMAS Relational schema, Query, Query, Data transformation
§6.1.15 XML schema Alignment Alignment

MapOnto Relational schema, Alignment Rules Data translation
§6.1.16 XML schema, OWL

OntoMerge OWL Alignment Ontology Ontology merging
§6.1.17

CtxMatch/CtxMatch2 Classification, User Alignment -
§6.1.18 OWL

S-Match Classification, Auto Alignment -
§6.1.19 XML schema, OWL

HCONE OWL Auto, Semi, Ontology Ontology merging
§6.1.20 User

MoA OWL Auto Axioms, -
§6.1.21 OWL

ASCO RDFS, OWL Auto Alignment -
§6.1.22

BayesOWL Classification, Auto Alignment -
§6.1.23 OWL

OMEN OWL Auto, Alignment -
§6.1.24 Alignment

DCM Web form Auto Alignment Data integration
§6.1.25

T-tree Ontology Auto, Alignment -
§6.2.1 Instances

CAIMAN Classification Semi, Instances, Alignment -
§6.2.2 Training

FCA-merge Ontology User, Ontology Ontology merging
§6.2.3 Instances

LSD/GLUE Relational schema, Auto, Alignment -
§6.2.4,§6.2.5 XML schema, Instances,

Taxonomy Training

iMAP Relational schema Auto, Instances, Alignment -
§6.2.6 Training

Automatch Relational schema Auto, Instances, Alignment -
§6.2.7 Training

SBI&NB Classification Auto, Instances, Alignment -
§6.2.8 Training

Kang & Naughton Relational schema Instances Alignment -
§6.2.9

Dumas Relational schema Instances Alignment -
§6.2.10

Wang & al. Web form Instances Alignment Data integration
§6.2.11

sPLMap Database schema Auto, Instances, Rules Data translation
§6.2.12 Training

SEMINT Relational schema Auto, Alignment -
§6.3.1 Instances (opt.),

Training

Clio Relational schema, Semi, Query Data



192 6 Overview of matching systems

Table 6.2. Position of these systems with regard to the requirements of Chap. 1
(continued).

System Input Needs Output Operation

§6.3.2 XML schema Instances (opt.) transformation translation

IF-Map KIF, RDF Auto, Instances, Alignment -
§6.3.3 Common reference
NOM & QOM RDF, OWL Auto, Alignment -
§6.3.4 Instances (opt.)

oMap OWL Auto, Alignment Query answering
§6.3.5 Instances (opt.),

Training

Xu & al. XML schema, Auto, Alignment -
§6.3.6 Taxonomy Instances (opt.),

Training

Wise-Integrator Web form Auto Mediator Data integration
§6.3.7

OLA RDF, OWL Auto, Alignment -
§6.3.8 Instances (opt.)

Falcon-AO RDF, OWL Auto Alignment -
§6.3.9 Instances (opt.)

RiMOM OWL Auto Alignment -
§6.3.10 Instances (opt.)

Corpus-based Relational schema, Text corpora, Alignment -
matching Web form Instances,
§6.3.11 Training

APFEL RDF, OWL User Alignment -
§6.4.1

eTuner Relational schema, Auto Alignment -
§6.4.2 Taxonomy

The Output delivered by a system is very important because it shows the capa-
bility of the system to be used for some applications, e.g., a system delivering views
and data translators cannot be used for merging ontologies as is. It is remarkable
that many systems deliver alignments. As such, they are not fully committed to any
kind of operation to be performed and can be used in a variety of applications. This
could be viewed as a sign of possible interoperability between systems. However,
due to lack of a common alignment format, each system uses its own way to deliver
alignments (as lists of URIs, tables, etc.). Finally, the Operation column describes
the ways in which a system can process alignments.

Not all the requirements are addressed in Table 6.2. Indeed, completeness, cor-
rectness, run time should not be judged from the claims of system developers. No
meaningful system can be proved to be complete, correct or as fast as possible in
a task like ontology matching. Therefore, the degree of fulfillment of these require-
ments must be evaluated and compared across systems. Moreover, different appli-
cations have different priorities regarding these requirements, hence, they may need
different systems. Thus, this evaluation depends on an application in which the sys-
tem is to be used.

It is difficult to evaluate and compare systems without commonly agreed test-
benchs, principles and available implementations. The next chapter presents methods
for empirical evaluation and comparison of matching systems.


