
9

Explaining alignments

Matching systems may produce effective alignments that may not be intuitively ob-
vious to human users. In order for users to trust the alignments, and thus use them,
they need information about them, e.g., they need access to the sources that were used
to determine semantic correspondences between ontology entities. Explanations are
also useful when matching large applications with thousands of entities, e.g., busi-
ness product classifications, such as UNSPSC and eCl@ss. In such cases, automatic
matching solutions will find many plausible correspondences, and hence user input is
required for performing cleaning-up of the alignment. Finally, explanations can also
be viewed and applied as argumentation schemas for negotiating alignments between
agents.

In this chapter we describe how a matching system can explain its answers, thus
making the matching result intelligible. The material of this chapter is mainly based
on the work in [Shvaiko et al., 2005, McGuinness and Pinheiro da Silva, 2004,
Dhamankar et al., 2004, Laera et al., 2006]. We first present the information re-
quired for providing explanations of matching and alignments (§9.1). Then, we dis-
cuss approaches to explanations of matching by examples of existing systems (§9.2).
In turn, details of these approaches are provided in sequel, including default expla-
nations (§9.3), explaining the basic matchers (§9.4), explaining the matching process
(§9.5), and negotiating alignments by argumentation (§9.6).

9.1 Justifications

We have presented the matching process as the use of basic matchers combined by
strategies. In order to provide explanations to users it is necessary to have information
on both matters. In particular, this information involves justifications on the reason
why a correspondence should hold or not.

Each correspondence can be assigned one or several justifications that support or
infirm the correspondence. We call them justified correspondences. For instance, the
justified correspondence:

246 9 Explaining alignments

〈e, e′, n,≤,‘I(e) ⊆ I(e′)’〉

expresses that the correspondence 〈e, e′, n,≤〉 is thought to hold because ‘I(e) ⊆
I(e′)’ is verified. Similarly:

〈e, e′, n,=,‘DPLL entailed’ 〉

expresses that the correspondence 〈e, e′, n,=〉 is thought to hold because it
has been proved by the Davis–Putnam–Longemann–Loveland (DPLL) procedure
[Davis and Putnam, 1960, Davis et al., 1962].

In fact, justifications can be largely more complex than presented above. For
instance, the second justification may involve a full proof of the correspondence
and the axioms involved in that proof. This justification information can be found
directly within the correspondences or provided on-demand by the matchers to the
system requiring explanation.

We explore below what can be found in this justification part.

9.1.1 Information about basic matchers

When matching systems return alignments, users may not know which external
sources of background knowledge were used, when these sources were updated,
or whether the resulting correspondences was looked up or derived. However, ul-
timately, human users or agents have to make decisions about the alignments in a
principled way. So, even when basic matchers simply rely on some external source
of knowledge, users may need to understand where the information comes from, with
different levels of detail.

Following [McGuinness and Pinheiro da Silva, 2004], we call information about
the origins of asserted facts the provenance information. Some examples of this kind
of information include:

– external knowledge source name, e.g., WordNet;
– date and authors of original information;
– authoritativeness of the source, that is whether it is certified as reliable by a third

party;
– name of a basic matcher, version, authors, etc. If the basic matcher relies on a

logical reasoner, such as a SAT solver, some more meta-information about the
reasoner may be made available:
– the reasoning method, e.g., the Davis–Putnam–Longemann–Loveland proce-

dure;
– properties, e.g., soundness and completeness characteristics of the result re-

turned by the reasoner;
– reasoner assumptions, e.g., closed world vs. open world.

Additional types of information may also be provided, such as a degree of belief
for an external source of knowledge from a particular community, computed by using
some social network analysis techniques.

9.2 Explanation approaches 247

9.1.2 Process traces

Matching systems typically combine multiple matchers (see Chap. 5). The final
alignment is usually a result of synthesis, abstraction, deduction, and some other
manipulations of their results. Thus, users may want to see a trace of the performed
manipulations. We refer to them as process traces. Some examples of this kind of
information include:

– a trace of rules or strategies applied;
– support for alternative paths leading to a single conclusion;
– support for accessing the implicit information that can be made explicit from any

particular reasoning path.

Users may also want to understand why a particular correspondence was not discov-
ered, or why a discovered correspondence was ranked in a particular place, thereby
being included in or excluded from the final alignment.

9.2 Explanation approaches

The goal of explanations is to take advantage of the above mentioned types of infor-
mation for rendering the matching process intelligible to the users. A key issue is to
represent explanations in a simple and clear way [Léger et al., 2005].

In fact, while knowledge provenance and process traces may be enough for ex-
perts when they attempt to understand why a correspondence was returned, usually
they are inadequate for ordinary users. Thus, raw justifications have to be trans-
formed into an understandable explanation for each of the correspondences. Tech-
niques are required for transforming raw justifications and rewriting them into ab-
stractions that produce the foundation for what is presented to users. Presentation
support also needs to be provided for users to better understand explanations. Hu-
man users will need help in asking questions and obtaining answers of a manage-
able size. Additionally, agents may even need some control over requests, such as
the ability to break large process traces into appropriate size portions, etc. Based
on [McGuinness and Pinheiro da Silva, 2004], requirements for process presentation
may include:

– methods for breaking up process traces into manageable pieces;
– methods for pruning process traces and explanations to help users find relevant

information;
– methods for explanation navigation, including the ability to ask follow-up ques-

tions;
– methods for obtaining alternative justifications for answers;
– different presentation formats, e.g., natural language, graphs, and associated

translation techniques;
– methods for obtaining justifications for conflicting answers;
– abstraction techniques.

248 9 Explaining alignments

There are several approaches to provide explanations of the answers from match-
ing systems. We describe below three such approaches. There are, however, few
works on the topic in the literature and even fewer implemented systems. So, this
chapter more specifically describes the explanation approaches as implemented in
two systems, namely S-Match (§6.1.19) and iMAP (§6.2.6).

9.2.1 The proof presentation approach

Semantic matchers usually produce formal proofs of their inferences as the basis for
a correspondence. They can thus benefit from work developed for displaying and
explaining proofs.

For instance, S-Match [Shvaiko et al., 2005] has been extended to use
the Inference Web infrastructure as well as the Proof Markup Language
(PML) [McGuinness and Pinheiro da Silva, 2003, Pinheiro da Silva et al., 2006].
Thus, meaningful fragments of S-Match proofs can be loaded on demand. Users
can browse an entire proof or they can restrict their view and refer only to specific,
relevant parts of proofs. The proof elements are also connected to information about
basic matchers that generated the hypotheses.

9.2.2 The strategic flow approach

Many matchers are composed of other matchers and have to decide in favour of some
particular results over others. This composition and decision flow can be recorded in
a dependency graph and used for providing explanation to users.

For instance, iMAP [Dhamankar et al., 2004] records dependencies at a very pre-
cise level (correspondence per correspondence) and can provide users with justifica-
tions for (i) existing correspondences, (ii) absent correspondences, and (iii) corre-
spondence ranking. It provides explanations by extracting in the dependency graph
the part that has an influence on the choice of a correspondence and generates an
explanation in English from this extracted subgraph.

9.2.3 The argumentation approach

The argumentation approach considers the justifications or arguments in favour or
against specific correspondences. Argumentation theories can determine, from a set
of arguments, the correspondences which will be considered to hold and those which
will not.

Argumentation can be applied to justify the matching results to users on the basis
of the arguments and counter-arguments or to negotiate the correspondences that
should be in an alignment. So far, this approach has mainly been applied to agents
negotiating the alignments [Laera et al., 2006] rather than for explaining them. The
argumentative approach is different from the proof presentation approach because
it does not follow the formal proof of the correspondences. It is also more suitable
when no such a proof exists.

9.3 A default explanation 249

9.3 A default explanation

A default explanation of alignments should be a short, natural language, high-level
explanation without any technical details. It is designed to be intuitive and under-
standable by ordinary users.

9.3.1 The S-Match example

We concentrate on class matching and motivate the problem by the simple catalogue
matching example shown in Fig. 9.1. Let us suppose that an agent wants to exchange
or to search for documents with another agent. The documents of both agents are
stored in catalogues according to class hierarchies o and o′, respectively. S-Match
takes as input these hierarchies, decomposes the tree matching problem into a set
of node matching problems, which are, in turn, translated into a propositional valid-
ity problem, which can then be efficiently resolved using sound and complete SAT
solver (§4.5.2).

oImages

Europe

Greece

Italy

Computers and internet

o′ Europe

Pictures

Italy

Cyberspace and virtual reality

Fig. 9.1. Simple catalogue matching problem.

From the example in Fig. 9.1, trying to prove that the node with label Europe in
o (denoted as Europe) is equivalent to the node with label Pictures in o′ (denoted as
Pictures’), requires constructing the following formula (see Sect. 4.5.2 for details of
formula construction):

((Images ≡ Pictures’) ∧ (Europe ≡ Europe’))︸ ︷︷ ︸
Axioms

→

((Images ∧ Europe)︸ ︷︷ ︸
Contextc

≡ (Europe’ ∧ Pictures’)︸ ︷︷ ︸
Contextc′

)

In this example, the negated formula is unsatisfiable, thus the equivalence relation
holds between the nodes under consideration.

Let us suppose that agent o′ is interested in knowing why S-Match suggested a set
of documents stored under the node with label Europe in o as the result to the query –
‘find European pictures’. A default explanation is presented in Fig. 9.2. To simplify

250 9 Explaining alignments

Fig. 9.2. S-Match explanation in English.

the presentation, whenever it is clear from the context to which classification a label
under consideration belongs to, we do not tag it with the prime symbol (’).

From the explanation in Fig. 9.2, users may learn that Images in o and Pictures
in o′ can be interchanged, in the context of the query. Users may also learn that
Europe in o denotes the same concept as Europe (European) in o′. Therefore, they
can conclude that Images of Europe means the same thing as European Pictures.

9.3.2 The iMAP example

iMAP differs substantially from S-Match. It is based on a combination of constraint-
and instance-based basic matchers. Once the matchers have produced the candidate
correspondences, a similarity estimator computes, for each candidate, its similarity
score. Finally, by applying the match selector the best matches are returned as the
final alignment.

Let us consider how iMAP explains why pname = last-name is ranked higher
than concat(first-name, last-name). Fig. 9.3 shows the explanation as produced by
iMAP [Dhamankar et al., 2004].

iMAP:
(1) Searcher Level:
text searcher generated last-name
text searcher generated concat(first-name,last-name)
text searcher ranked concat(first-name,last-name) higher by 0.102

(2) Similarity Estimator Level:
Name-based evaluator ranked last-name higher by 0.0419
Naive Bayes evaluator ranked concat(first-name,last-name) higher by 0.01
Final score for last-name: 0.434
Final score for concat(first-name,last-name): 0.420

(3) Match Selector Level:
Match selector did not modify two candidates

(4) Greatest influence on top five candidates for pname: Name-based evaluator

Fig. 9.3. iMAP explanation in English.

At the matcher level, concat(first-name, last-name) was ranked higher than the
element with label last-name. It also clearly shows that things went wrong at the

9.4 Explaining basic matchers 251

similarity estimator level. The naive Bayes evaluator still ranked matches correctly,
but the name-based evaluator flipped the ranking, which was the cause of the ranking
mistake.

The last line of the explanation also confirmed the above conclusion, since it
states that the name-based evaluator has the greatest influence on the top five match
candidates for pname. Thus, the main reason for the incorrect ranking for pname
appears to be that the name-based evaluator has too much influence. This explanation
would allow users to fine tune the system, possibly by reducing the weight of the
name-based evaluator in the score combination step.

Users may not be satisfied with this level of explanations. Let us therefore dis-
cuss how they can investigate the details of the matching process by exploiting more
verbose explanations, which are discussed in the forthcoming sections.

9.4 Explaining basic matchers

Explaining basic matchers requires only to formulate the justification information. It
is illustrated through S-Match.

Let us suppose that an agent wants to see the sources of background knowledge
used in order to determine the correspondence. For example, which applications,
publications, other sources, have been used to determine that Images is equivalent to
Pictures. Fig. 9.4 presents the source metadata for the default explanation of Fig. 9.2.

Fig. 9.4. S-Match source metadata information.

In this case, both (all) the ground sentences used in the S-Match proof came from
WordNet. Using WorldNet, S-Match learnt that the first sense of the word Pictures

252 9 Explaining alignments

is a synonym to the second sense of the word Images. Therefore, S-Match can con-
clude that these two words are equivalent words in the context of the answer (§4.2.2).
The meta-information about WordNet is also presented in Fig. 9.4 as sources of the
ground axioms. Further examples of explanations include providing meta informa-
tion about the S-Match library of element-level matchers, i.e., those which are based
not only on WordNet, or the order in which the matchers are used. This use of meta-
data is not restricted to S-Match and can be applied to any resource used in matching.

9.5 Explaining the matching process

S-Match and iMAP follow different matching strategies. iMAP follows a learning-
based solution, while S-Match reduces the matching problem to a propositional va-
lidity problem. Let us discuss how they explain the matching process.

9.5.1 Dependency graphs

Explanations of alignments in the iMAP system are based on the idea of a depen-
dency graph, which traces the matchers, memorising relevant slices of the graph used
to determine a particular correspondence. Finally, exploiting the dependency graph,
explanations are presented to users as shown in Fig. 9.3.

The dependency graph is constructed during the matching process. It records
the flow of matches, data and assumptions into and out of system components. The
nodes of the graph are schema attributes, assumptions made by system components,
candidate correspondences, etc. Two nodes in the graph are connected by a directed
edge if one of them is the successor of the other in the decision process. The label of
the edge is the system component that was responsible for the decision.

Fig. 9.5 shows a dependency graph fragment that records the creation and flow
for the correspondence month-posted = monthly-fee-rate. The preprocessor finds
that both month-posted and monthly-fee-rate have values between 1 and 12 and hence
makes the assumptions that they represent months. The date matcher takes these
assumptions and generates month-posted = monthly-fee-rate as a candidate corre-
spondence. This candidate is then scored by the name-based evaluator and the naive
Bayes evaluator. The scores are merged by a combining module to produce a single
score. The match selector acts upon the several alignment candidates generated to
produce the final list of alignments. Here, for the target attribute list-price, the selec-
tor reduces the rank of the candidate correspondence price ∗ (1 + monthly-fee-rate)
since it discovers that monthly-fee-rate maps to month-posted.

In each case, the system synthesises an explanation in English for the users.
To provide explanations, iMAP selects the relevant slices of dependency graph that
record the creation and processing of a particular correspondence. For example, the
slice for month-posted = monthly-fee-rate is the portion of the graph where the nodes
participated in the process of creating that correspondence.

9.5 Explaining the matching process 253

If data in column is in [1 12], then this is a month
Constraint

month-posted
9
10
. . .

Target column

monthly-fee-rate
3
2
. . .

Source column

month-posted is a month

Assumption

monthly-fee-rate is a month

Assumption

Preprocessor Preprocessor

month-posted = monthly-fee-rate
Candidate

Date searcher

month-posted = monthly-fee-rate
score = .55

Candidate
month-posted = monthly-fee-rate
score = .79

Candidate

Name-based evaluator Naive Bayes evaluator

month-posted
is unrelated
to list-price

Constraint
list-prince = price(1 + monthly-fee-rate)
score = .76

Candidate
list-prince = price
score = .63

Candidate
month-posted = monthly-fee-rate
score = .67

Candidate

Combining module

list-price = price
list-price = price(1 + monthly-fee-rate)

Match list

Match selector

Fig. 9.5. Dependency graph as generated by iMAP [Dhamankar et al., 2004].

9.5.2 Explaining logical reasoning

A complex explanation may be required if users are not familiar with or do not
trust the inference engine(s) embedded in a matching system. As the web starts
to rely more on information manipulations, instead of simply information retrieval,
explanations of embedded manipulation or inference engines become more impor-
tant. In the current version of S-Match, a propositional satisfiability engine is used
(§6.1.19), more precisely, this is the Davis–Putnam–Longemann–Loveland proce-
dure [Davis and Putnam, 1960, Davis et al., 1962] as implemented in JSAT/SAT4J
[Le Berre, 2004].

The task of a SAT solver is to find an assignment µ ∈ {�,⊥} for atoms of a
propositional formula ϕ such that ϕ evaluates to true. ϕ is satisfiable if and only if
µ |= ϕ for some µ. If µ does not exist, ϕ is unsatisfiable. A literal is a propositional
atom or its negation. A clause is a disjunction of one or more literals. ϕ is said to
be in conjunctive normal form if and only if it is a conjunction of disjunctions of
literals. The basic DPLL procedure recursively implements three rules: unit resolu-
tion, pure literal and split. We only consider the unit resolution rule to facilitate the
presentation.

Let l be a literal and ϕ a propositional formula in conjunctive normal form. A
clause is called a unit clause if and only if it has exactly one unassigned literal. Unit
resolution is an application of resolution to a unit clause.

254 9 Explaining alignments

Fig. 9.6. A graphical explanation of the unit clause rule.

unit resolution :
ϕ ∧ {l}
ϕ[l | �]

Let us consider the propositional formula standing for the problem of testing if
the concept at node with label Europe in o is less general than the concept at node
with label Pictures in o′ in Fig. 9.1. The propositional formula encoding the above
stated matching problem is as follows:

((Images ≡ Pictures) ∧ (Europe ≡ Europe)) →
((Images ∧ Europe) → (Europe ∧ Pictures))

Its intuitive reading is ‘Assuming that Images and Pictures denote the same concept,
is there any situation such that the concept Images of Europe is less general than the
concept European Pictures?’. The proof of the fact that this is not the case is shown
in Fig. 9.6. Since the DPLL procedure of JSAT/SAT4J only handles conjunctive
normal form formulas, in Fig. 9.6, we show the conjunctive normal form of the above
formula.

From the explanation in Fig. 9.6, users may learn that the proof of the fact that
the concept at node with label Europe in o is less general than the concept at node
with label Pictures in o′ requires 4 steps and at each proof step (excepting the first
one, which is a problem statement) the unit resolution rule is applied. Moreover,
users may learn the assumptions that are made by JSAT/SAT4J. For example, at the
second step, the DPLL procedure assigns the truth value to all instances of the atom
Europe, therefore making an assumption that there is a model where what an agent
says about Europe is always true. According to the unit resolution rule, the atom

9.6 Arguing about correspondences 255

Europe should then be deleted from the input sentence, and, hence it does not appear
in the sentence of the step 2.

The explanation of Fig. 9.6 represents some technical details (only the less gen-
erality test) of the default explanation in Fig. 9.2. This type of explanations is the
most verbose. It assumes that, even if the graphical representation of a decision tree
is quite intuitive, the matching system users have some background knowledge in
logics and SAT. However, if they do not, they have a possibility to learn it by fol-
lowing the publications mentioned in the source metadata information of the DPLL
unit resolution rule and JSAT, by clicking the DPLL unit clause elimination and the
JSAT-The Java SATisfiability Library buttons, respectively.

9.6 Arguing about correspondences

The goal of argumentation is not strictly to explain the alignments, but to give argu-
ments in favour or against the correspondences. It can have two roles:

– negotiating an alignment between two agents, if they accept each others argu-
ments,

– achieving an alignment through matching. In particular, the multiagent negotia-
tion of alignments can be seen as another aggregation technique (§5.2) between
two alignments. [Silva et al., 2005] presents such a system based on quantitative
negotiation rather than arguments.

Argumentation allows agents to provide counter-arguments and to choose the argu-
ments depending on their preferences. Contrary to the usual explanation work pre-
sented above, each agent can generate its own explanation by assembling arguments.

Let us consider two agents C and P using respectively ontology o and o′, ex-
pressed in description logic as follows:

o = {Micro-company = Company � ≤5 employee}
o′ = {SME = Firm � ≤10 associate}

Let us suppose that they have discovered alignment A:

A = {〈Company, Firm, =, .89〉, (γ1)
〈employee, associate,�, 1.0〉, (γ2)
〈Micro-company, SME,�, .97〉} (γ3)

The three correspondences are denoted, respectively, as γ1, γ2 and γ3. The set of
arguments in favour of γ1 include:

a1 all the known Company on the one side are Firm on the other side and vice versa;
a2 the two names Company and Firm are synonyms in WordNet;

The set of arguments in favour of γ3 include:

256 9 Explaining alignments

a3 the alignment (without γ3) plus the two ontologies entail the correspondence;
a4 all the known micro-companies on the one side are SME on the other side (and

not vice versa);

and the counter-arguments include:

a5 the two names Micro-company and SME are not alike by any string distance, and
they are not synonyms in WordNet;

a6 the only features they share are associate and employee and they have different
domains and cardinalities.

In [Laera et al., 2006], the arguments are expressed following the value-based
argumentation framework [Bench-Capon, 2003]. They are made of a flag denoting
if they are in favour (+) or against (−) the correspondence and the type of method
that supports this correspondence (basic methods). A simple way to express these
arguments is as follows:

a1 : 〈Company, Firm, =, .89, 〈+, extensional〉〉
a2 : 〈Company, Firm, =, .89, 〈+, terminological〉〉
a3 : 〈Micro-company, SME, �, .97, 〈+, semantic〉〉
a4 : 〈Micro-company, SME, �, .97, 〈+, extensional〉〉
a5 : 〈Micro-company, SME, �, .97, 〈−, terminological〉〉
a6 : 〈Micro-company, SME, �, .97, 〈−, structural〉〉

Such kind of arguments could be delivered by existing basic matchers. Another, more
elaborate way to define arguments is to allow correspondences themselves to be
justifications. This permits, for instance, to express that the structural similarity of
Micro-company and SME depends on the terminological similarity of employee and
associate.

The rationale behind these kinds of arguments is that some agents may prefer, or
trust, better some techniques than others. For instance, one can imagine that agent C
prefers terminological arguments over extensional arguments, extensional arguments
over semantic arguments and semantic arguments over structural arguments. This
order induces a partial order on the arguments themselves: a5 C a2, a1 C a2,
a5 C a4, a1 C a4, a2 C a3, a4 C a3, a3 C a6. Similarly, P could have a
different preference ordering favouring structural, semantic, terminological and then
extensional arguments.

There are logical theories [Dung, 1995, Amgoud et al., 2000,
Bench-Capon, 2003] that, given a set of arguments and the preferences of
agents, define what is the consensus alignment between both parties. They usually
define an admissible argument a with regard to a set of arguments S as an argument
to which every counter-argument is attacked by an argument of S. A set S is said
conflict-free if no argument of S attacks another argument of S. A maximal conflict
free set of arguments acceptable with regard to S is called admissible. Finally, a
preferred extension is an admissible set of arguments where there is no other such
set that contains arguments preferred to some in the set that are admissible for their

9.7 Summary 257

preferred arguments in the set. For instance, C will have for preferred extension
{a5, a1, a2, a6} and P , in turn, will have {a6, a5, a2, a1}. However together, the
maximal common subset of arguments between C and P is {a1, a2, a5, a6} which
selects the preferred alignment made up of γ1 and γ2.

A consensus alignment can also be achieved by a dialogue between the agents
during which they exchange arguments. Such a dialogue is presented below. The
agent C starts the dialogue by asserting alignment A between the two ontologies o
and o′ (the agent C is committed to support the alignment A and each correspon-
dence it contains). A possible dialogue between C and P is as follows:

//The agent C is committed to support the alignment
C−assert(:content A :reply-with 1)→ P
//The agent P asks to justify the correspondence γ1 (P does not have counter-argument)
C ← question(:content γ1 :reply-with 2) - P
// The agent C justifies the correspondence γ1 with the arguments a1 and a2

C−support(:content a1, a2 "+ γ1 :in-reply-to 2)→ P
//The agent P asks to justify the correspondence γ3 (P is ready to justify the opposite)
C ← challenge(:content γ3 :reply-with 3) - P
// The agent C justifies the correspondence γ3 with the arguments a3 and a4

C−support(:content a3, a4 "+ γ3 :in-reply-to 3)→ P
// The agent P contests the correspondence γ3 with the counter-arguments a5 and a6

C ←contest(:content a5, a6 "− γ3 :in-reply-to 3) - P
// The agent C retracts the correspondence γ3

C−retract(:content γ3 :in-reply-to 3)→ P

This results in the selection of the alignment A′ = {γ1, γ2}.
These argumentation techniques have not been used in alignment explanation so

far. However, they could be used in interactively explaining to users the arguments
in favour or against correspondences. In the argumentation dialogue above, one of
the agents can be a human user. The system knowing the preferences of users can
provide them with a more adapted arguments.

9.7 Summary

Delivering alignments to users for inspection and revision is an important topic not
deeply developed so far. Providing the justifications for correspondences can also be
used for helping computer systems like agents to better understand alignments and
control matching results.

We have presented the type of raw justifications matchers should supply and the
manipulations that explanation systems can perform on these justifications in order
to provide an intelligible picture of alignments to users. Some of these manipulations
are based on proof presentation techniques, some others are based on a kind of de-
pendency graphs. We have also presented techniques used by agents for exchanging
justifications of correspondences and reaching a common agreement.

258 9 Explaining alignments

By using explanations, a matching system can provide users with meaningful
prompts and suggestions on further steps towards the production of a desired result.
Having understood the alignments returned by a matching system, users can delib-
erately edit them manually, thereby providing the feedback to the system. Beside
explanations, matching systems should provide facilities for users to explore the al-
ternative paths not followed by the system. These systems should enable the users to
re-launch the matching process with different parameters in an intermediate state.

