

Ontology Matching

Jérôme Euzenat · Pavel Shvaiko

Ontology
Matching

With 67 Figures and 18 Tables

123

Authors

Jérôme Euzenat

INRIA Rhône-Alpes
655, avenue de l’Europe
Montbonnot St Martin
38334 Saint-Ismier cedex
France
Jerome.Euzenat@inrialpes.fr

Pavel Shvaiko

Department of Information and Communication Technology
University of Trento
via Sommarive 14
38050, Povo, Trento (TN)
Italy
pavel@dit.unitn.it

Library of Congress Control Number: 2007926257

ACM Computing Classification (1998): H.3, H.4, I.2, F.4

ISBN 978-3-540-49611-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the authors
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3180/YL - 5 4 3 2 1 0

À mes parents et grand-parents qui ont poussé derrière,
à Anton et Johanna qui tirent par devant,

et à Jutta qui marche à mes côtés.

Jérôme

Moim roditel�m, Larise i Leonidu,
za ponimanie i podder�ku.

A Marlene, il mio amore, che mi è sempre stata vicino.

Pavel

Contents

Introduction . 1

Part I The matching problem

1 Applications . 9
1.1 Ontology engineering . 9
1.2 Information integration . 11
1.3 Peer-to-peer information sharing . 16
1.4 Web service composition . 19
1.5 Autonomous communication systems . 20
1.6 Navigation and query answering on the web . 22
1.7 Summary . 24

2 The matching problem . 29
2.1 Vocabularies, schemas and ontologies . 29
2.2 Ontology language . 36
2.3 Types of heterogeneity . 40
2.4 Terminology . 42
2.5 The ontology matching problem . 44
2.6 Summary . 56

Part II Ontology matching techniques

3 Classifications of ontology matching techniques . 61
3.1 Matching dimensions . 61
3.2 Classification of matching approaches . 63
3.3 Other classifications . 70
3.4 Summary . 72

VIII Contents

4 Basic techniques . 73
4.1 Similarity, distances and other measures . 73
4.2 Name-based techniques . 74
4.3 Structure-based techniques . 92
4.4 Extensional techniques . 105
4.5 Semantic-based techniques . 110
4.6 Summary . 115

5 Matching strategies . 117
5.1 Matcher composition . 117
5.2 Similarity aggregation . 121
5.3 Global similarity computation . 126
5.4 Learning methods . 133
5.5 Probabilistic methods . 141
5.6 User involvement and dynamic composition . 142
5.7 Alignment extraction . 144
5.8 Summary . 149

Part III Systems and evaluation

6 Overview of matching systems . 153
6.1 Schema-based systems . 154
6.2 Instance-based systems . 169
6.3 Mixed, schema-based and instance-based systems 176
6.4 Meta-matching systems . 184
6.5 Summary . 186

7 Evaluation of matching systems . 193
7.1 Evaluation principles . 193
7.2 Data sets for evaluation . 198
7.3 Evaluation measures . 203
7.4 Application-specific evaluation . 213
7.5 Summary . 216

Part IV Representing, explaining, and processing alignments

8 Frameworks and formats: representing alignments 219
8.1 Alignment formats . 219
8.2 Alignment frameworks . 235
8.3 Ontology editors with alignment manipulation capabilities 241
8.4 Summary . 243

Contents IX

9 Explaining alignments . 245
9.1 Justifications . 245
9.2 Explanation approaches . 247
9.3 A default explanation . 249
9.4 Explaining basic matchers . 251
9.5 Explaining the matching process . 252
9.6 Arguing about correspondences . 255
9.7 Summary . 257

10 Processing alignments . 259
10.1 Ontology merging . 260
10.2 Ontology transformation . 261
10.3 Data translation . 261
10.4 Mediation . 262
10.5 Reasoning . 264
10.6 Towards an alignment service . 264
10.7 Summary . 265

Part V Conclusions

11 Conclusions . 269
11.1 A brief outlook of the trends in the field . 269
11.2 Future challenges . 270
11.3 Final words . 274

Appendix A: Legends of figures . 275

Appendix B: Running example . 277

Appendix C: Exercises . 289

References . 297

Index . 323

Introduction

An ontology typically provides a vocabulary describing a domain of interest and a
specification of the meaning of terms in that vocabulary. Depending on the precision
of this specification, the notion of ontology encompasses several data or conceptual
models, e.g., classifications, database schemas, fully axiomatised theories. Ontolo-
gies tend to be everywhere. They are viewed as the silver bullet for many applica-
tions, such as database integration, peer-to-peer systems, e-commerce, semantic web
services, social networks [Fensel, 2004]. They are, indeed, a practical means to con-
ceptualise what is expressed in a computer format [Brodie et al., 1984]. However,
in open or evolving systems, such as the semantic web, different parties would, in
general, adopt different ontologies. Thus, merely using ontologies, like using XML,
does not reduce heterogeneity: it raises heterogeneity problems to a higher level.

For instance, imagine two organisations dealing with books: one is a cultural
product electronic commerce site (which sells books, music, movies, etc.) and the
other is a university library. The activities of both organisations deal with some re-
lated products, the books, but are concerned with different aspects of these: the seller
is concerned by the margin, the publisher or the type of binding. The library, in turn,
pays more attention to the topic, the size and the year of publication. Both are con-
cerned by the price and the author. Yet they may consider these differently, because
the price can include tax and shipping fees or not and being expressed in different
currencies or because the authors can be denoted by individual objects or by the char-
acter string of their names. Moreover, the seller may organise the books according to
their commercial types and the library according to their literary types. In summary,
these two organisations will obviously have different and heterogeneous ontologies.

These two institutions may have to interact, for example, because the second one
wants to order books to the first one or because the first one wants to digitise the
collections of the second one. In order to do so seamlessly, they need to find the
correspondences between the entities in their respective ontologies. The correspon-
dences may express that what is called a book in the ontology of the seller stands for
what is called a volume in that of the library. Furthermore, the price in the seller on-
tology should be multiplied by a tax rate for obtaining the corresponding price in the

2

library ontology. The process of finding these correspondences is called ‘ontology
matching’.

This book is devoted to ontology matching as a solution to the semantic het-
erogeneity problem faced by computer systems. Ontology matching aims at finding
correspondences between semantically related entities of different ontologies. These
correspondences may stand for equivalence as well as other relations, such as conse-
quence, subsumption, or disjointness, between ontology entities. Ontology entities,
in turn, usually denote the named entities of ontologies, such as classes, properties or
individuals. However, these entities can also be more complex expressions, such as
formulas, concept definitions, queries or term building expressions. Ontology match-
ing results, called alignments, can thus express with various degrees of precision the
relations between the ontologies under consideration.

Alignments can be used for various tasks, such as ontology merging, query an-
swering, data translation or for browsing the semantic web. In the above mentioned
example, the library can take advantage of alignments for automatically ordering a
book and the seller can use them for checking the availability of a reference by the li-
brary. Matching ontologies enables the knowledge and data expressed in the matched
ontologies to interoperate. It is thus of utmost importance for the above mentioned
applications whose interoperability is jeopardised by heterogeneous ontologies.

Many different matching solutions have been proposed so far from various view-
points, e.g., databases, information systems, artificial intelligence. They take advan-
tage of various properties of ontologies, e.g., structures, data instances, semantics,
or labels, and use techniques from different fields, e.g., statistics and data analysis,
machine learning, automated reasoning, and linguistics. These solutions share some
techniques and tackle similar problems, but differ in the way they combine and ex-
ploit their results. As a consequence, they are quite difficult to compare and describe,
lacking a uniform framework.

About Ontology Matching

Ontology Matching aims at being a reference book that presents currently available
work in the topic in a uniform framework. In particular, though we use the word on-
tology, the work and the techniques considered in this book can equally be applied to
database schema matching, catalogue integration, XML schema matching and other
related problems. The objectives of the book include presenting (i) the state of the
art and (ii) the latest research results in ontology matching by providing a detailed
account of matching techniques and matching systems in a systematic way from the-
oretical, practical and application perspectives. The main emphasis of this book is
thus on technical solutions for matching.

We have aimed at a sufficiently comprehensive and documented book so that
readers can find and learn about almost any subject related to ontology matching
and be referred to further reading. Several topics are not covered in full depth but
presented only in some salient details for completeness purpose.

It is not the goal of this book to advocate one approach to ontology matching
against the others, but rather to show the variety of approaches and their adequacy

cIntro tiondu

3

in different contexts. We are convinced that there is not one unique approach to
ontology matching. We concentrate, however, on automatic solutions for matching.
Many applications require submitting matching results to user scrutiny and control
before using them, but the better the automated part of the task, the easier the control.

This book provides a comprehensive coverage of ontology matching for the re-
searcher and the practitioner. In particular, it reconsiders the former frameworks and
classifications, broadening their scope and accounting for more solutions. It goes
as far as describing in detail basic techniques used in matching systems, reviewing
available systems, providing a framework for their evaluation and discussing their
applications. This unified view of ontology matching techniques and solutions aims
at being the starting point to implementing matching solutions dedicated to a partic-
ular application context or developing new techniques. So readers should find in this
book a starting point for implementing and understanding matching, they should not
expect the ultimate matching solution to be unveiled.

Ontology Matching is not meant to be a textbook, though it features exercises for
a selected number of chapters. These exercises can help readers in evaluating their
understanding of some technical concepts. This book is also complemented by a web
site1 which features additional information and resources.

Outline of the book

This book is organised in five parts.
Part I is dedicated to the motivation and the definition of the ontology match-

ing problem. The motivation is given in Chap. 1 through various applications that
can take advantage of matching ontologies and the presentation of how matching
contributes to these applications. In Chap. 2, the ontology matching problem is tech-
nically defined in various instances of ontology matching occurring in different con-
texts, such as folkosomies, classifications, databases, XML and entity–relationship
schemas and finally formal ontologies. It justifies the emphasis of this book on ontol-
ogy matching and provides definitions for the vocabulary used. Finally, it technically
defines the ontology expression languages, the ontology matching process and its
result: the alignment.

Part II provides a comprehensive coverage of the techniques currently used for
ontology matching. It is the main part of the book. Chap. 3 defines a classification of
matching approaches which will be used in the subsequent chapters. Chap. 4 presents
the basic methods that can be used for assessing the similarity or dissimilarity of on-
tology entities. These techniques are the basis of most, if not all, current ontology
matchers. The composition of an ontology matching system from these basic tech-
niques is considered in Chap. 5, which presents the high-level tools for designing
ontology matching systems.

Part III is devoted to packaged matching systems that can be used in applica-
tions. Chap. 6 presents a large panel of state of the art matching systems. The reader
will find that the basic techniques presented before can lead to a large diversity of

1 http://book.ontologymatching.org

cIntro tiondu

4

systems. Chap. 7 is dedicated to the evaluation of matching solutions. It presents
techniques for discriminating empirically among these systems and evaluating their
suitability to a particular application.

Part IV is devoted to the use of the ontology matching results in applications
once they have been obtained. Chap. 8 considers how alignments can be expressed
either for being stored or for being communicated between systems. This chapter also
presents frameworks in which alignments can be both obtained and used in various
ways. Chap. 9 deals with the explanation of matching results to users. This manipu-
lation is important when matching is not expected to be automatic. Finally, Chap. 10
addresses the ultimate use of ontology matching results through their implementa-
tion as an effective procedure, e.g., rules, articulation axioms, mediators that can be
used within applications.

Part V concludes the book, summarising the current state of ontology match-
ing and emphasising remaining problems that will have to be addressed by further
research.

A graphical representation of this organisation is presented below. The arrows
offer different independent reading paths through the book.

1.
Applications

2.
Definitions

3.
Classification

4. Basic
matchers

5. Strategy

6. Systems

7. Evaluation

8. Representation

9. Explanation

10. Processing

11.
Conclusion

Part I Part II Part III

Part IV Part V

Readership and lecture guide

This book is intended for researchers and practitioners of information and ontology
engineering.

The book outline provides a progressive presentation of the ontology matching
field and can be read in its entirety. However, each chapter considers ontology match-
ing under a different perspective and can be read in isolation (though it is advised to
read the first part before any other). Those who are only interested in getting ac-
quainted with ontology matching can start by reading Chaps. 1, 2 and 11.

cIntro tiondu

5

For researchers and students dealing with the problem of semantic heterogeneity,
we provide not only a comprehensive overview of the state of the art in ontology
matching, but also present in detail recent research developments. They show how
ontology matching technologies are going to evolve, indicating which research topics
are in the academic agenda and which of them represent the scientific challenges. A
course on ontology matching should take some motivations from Chap. 1, explain
the concepts introduced in Chap. 2, use the classification of Chap. 3 for exposing
Chaps. 4 and 5 and certainly provide some insights from Chap. 7.

For information technology practitioners, both from industry and academia, who
want to implement an ontology matching component, this book will help take advan-
tage of state of the art solutions. These readers will take more profit in Chaps. 4, 5,
6, 8, 9 and 10.

For professionals in the areas of e-commerce and knowledge management, the
book provides decision support on the use of ontology matching technologies, in-
formation about potential problems, and guidelines for the successful application of
existing approaches. These readers will take more profit in Chaps. 1, 2, 3, 6, 7, 8 and
10.

We only expect from readers a basic knowledge about data and conceptual mod-
elling and graph theory. Knowledge about logics can also be helpful, thought not
strictly necessary.

Acknowledgements

The work presented in this book has been partly supported by the Knowledge Web
network of excellence (IST-2004-507482) of the European Commission 6th Frame-
work Programme for Research and Technological Development. We emphasise the
crucial role played by the European networks of excellence in providing support for
cooperative research on important and emerging topics such as this one. This book
testifies to the rich working atmosphere these networks contributed to create.

We thank all the participants of the Heterogeneity workpackage of Knowledge
Web and, in particular, Than-Le Bach, Jesus Barrasa, Paolo Bouquet, Jan De Bo,
Jos De Bruijn, Rose Dieng-Kuntz, Enrico Franconi, Raúl Garcı́a Castro, Manfred
Hauswirth, Pascal Hitzler, Mustafa Jarrar, Markus Krötzsch, Ruben Lara, Malgo-
rzata Mochol, Amedeo Napoli, Luciano Serafini, François Sharffe, Giorgos Stamou,
Heiner Stuckenschmidt, York Sure, Vojtěch Svátek, Valentina Tamma, Sergio Tes-
saris, Paolo Traverso, Raphaël Troncy, Sven van Acker, Frank van Harmelen, and
Ilya Zaihrayeu.

Some people had a particular impact on the book through many fruitful discus-
sions, detailed technical feedback on various ontology matching themes, joint work
and continuous support during the time we have been elaborating on it. We are very
grateful for this to Marc Ehrig, Fausto Giunchiglia, Loredana Laera, Diana May-
nard, Deborah McGuinness, Petko Valchev, Mikalai Yatskevich, and Antoine Zim-
mermann.

cIntro tiondu

6

We also thank Amedeo Napoli for his careful reading. We are indebted to Fiona
McNeill for the time she kindly spent on a first complete draft of this book and her
insightful suggestions.

Finally, we are grateful to our Springer Verlag editor, Ralph Gerstner, for his
belief that we had material for such a book and for his kind patience during its pro-
duction.

cIntro tiondu

Part I

The matching problem

1

Applications

Matching models is an important operation in traditional applications, such as ontol-
ogy integration, schema integration, or data warehouses. Typically, these applications
are characterised by heterogeneous structural models that are analysed and matched
either manually or semi-automatically at design time. In such applications matching
is a prerequisite of running the actual system.

A line of applications that can be characterised by their dynamics, e.g., agents,
peer-to-peer systems, web services, is emerging. Such applications, contrary to tra-
ditional ones, require (ultimately) a run time matching operation and take advantage
of more explicit conceptual models.

In this chapter we first present some well-known applications where matching
has been recognised as a plausible solution for a long time. These are ontology
engineering (§1.1) and information integration, including schema integration, cat-
alogue integration, data warehouses and data integration (§1.2). Then, we discuss
some recently emerged new applications, such as peer-to-peer information sharing
(§1.3), web service composition (§1.4), autonomous communication systems, includ-
ing agents and mobile devices communication (§1.5), and navigation and query an-
swering on the web (§1.6). Finally, the legends to the figures illustrating scenarios
under consideration can be found in Appendix A.

1.1 Ontology engineering

A context where users are confronted with heterogeneous ontologies is ontology
engineering, and, more generally, the task of designing, implementing and maintain-
ing ontology-based applications. This activity requires support of ontology matching
because ontology engineering has to deal with multiple, distributed and evolving
ontologies.

10 1 Applications

1.1.1 Ontology editing and import

Ontology heterogeneity may be first faced while designing an ontology for a domain
of interest. Ontology-based system designers often have to integrate different ontolo-
gies, either for the sake of enforcing reuse, and thus not multiplying ontologies on the
same topic, or because it is necessary for interconnecting various relevant resources.

It is often the case that application engineering requires an external set of on-
tologies to be put together. For instance, building a library cataloguing ontology may
require assembling ontologies for people, books and topics as well as ontologies for
measurement units, geographic coordinates, book identification numbers, metadata
ontology, etc. These ontologies share related concepts: for instance, the friend-of-
a-friend (FOAF1) ontology (which can be used as a starting point for modelling
people) offers a document concept that has to be related to the classes of the book
identification numbers ontology.

Ontology engineers need support for (i) identifying the relevant ontologies and
(ii) matching and recording the relations between the entities in these ontologies.
Additionally, they may want to import the identified ontologies and merge them (in
which case, they will use some axioms generated from the result of the matching
phase) or to use data expressed under another ontology in the application (in which
case, they will generate a mediator from the matching result).

The scenario under consideration is simple because it is static. In fact, ontologies
are encountered at design time and mediators can be built at that moment. Thus, the
application developer can find the correspondences and design the necessary trans-
formations manually. Some tools provide support for finding the correspondences,
for example, Protégé through the Prompt suite of tools [Noy and Musen, 2000].
Newer ontology development environments will have to take into account, from the
beginning, the existence of multiple ontologies and the need for the mediators be-
tween them.

1.1.2 Ontology evolution and versioning

It is natural that domains of interest, application requirements and the way in which
knowledge engineers conceptualise those by means of ontologies undergo changes
and evolve over time. Moreover, ontology development, similar to software devel-
opment, is often performed in a distributed and collaborative manner. Therefore,
multiple versions of the same ontology, e.g., the Gene ontology2, often exist. Some
applications keep their ontologies up to date, while others may continue to use old
ontology versions and update them on their own. These situations arise because
knowledge engineers and developers usually do not have a global view of how and
where the ontologies have changed. In fact, change logs may not always be available
(which is often the case in distributed ontology development). Therefore, developers
need to manage and maintain the different versions of their ontologies.

1 http://www.foaf-project.org
2 http://www.geneontology.org

1.2 Information integration 11

The matching operation is of help here, see Fig. 1.1. Its main focus is on
discovering the differences, e.g., what ontology entities have been added, deleted
or renamed, between two ontology versions [Roddick, 1995, Noy and Klein, 2004,
Noy and Musen, 2002b, Noy and Musen, 2004].

It

ot

It+n

ot+n

translator

Matcher

A

Generator

Fig. 1.1. Ontology evolution scenario. In this scenario it is useful to: (1) match the old version
ot and the new version ot+n of the ontology, thus resulting in a set of correspondences (A)
between these versions, (2) generate a transformation by using these correspondences and
(3) translate the underlying data instances It to It+n.

1.2 Information integration

Information integration is one of the oldest classes of applications where
matching is viewed as a plausible solution. Under the information in-
tegration heading, we gather here such problems as schema integration
[Batini et al., 1986, Sheth and Larson, 1990, Spaccapietra and Parent, 1991,
Parent and Spaccapietra, 1998], data warehousing [Bernstein and Rahm, 2000],
data integration (also known as enterprise information integration)
[Chawathe et al., 1994, Wache et al., 2001, Draper et al., 2001, Halevy et al., 2005],
and catalogue integration [Agrawal and Srikant, 2001, Ichise et al., 2003,
Bouquet et al., 2003c, Giunchiglia et al., 2005a].

A general information integration scenario is presented in Fig. 1.2: given a set of
local information sources (local ontologies LO1, . . . LOn) potentially storing their
data in different formats, e.g., SQL DDL, XML, or RDF, provide users with a uni-
form query interface via the mediated (or global) ontology CO, to all the local in-
formation sources. This allows users to avoid querying the local information sources
one by one, and to obtain a result from them just by querying a common ontology.

For example, if users pose queries like find a book about Logics to a common
ontology, then, an information integration system communicates with information

12 1 Applications

SQL

wrapper1

LO1

XML

wrapper2

LO2

RDF

wrappern

LOn

CO

Find a book about Logics

A1

Matcher

Genera
tor

m
ed

ia
to

r1

mediator2

An

Matcher

Generatorm
ediator

n

Fig. 1.2. A general (centralised) information integration scenario. The data sources (SQL,
RDF , etc.) are wrapped (wrapperi) to ontologies (LOi) which are matched against a
common ontology (CO). The alignments (Ai) between these help generate mediators
(mediatori) which in turn transform queries against the common ontology into a query to
the information source and translate the answers in the other way.

sources, e.g., Amazon, Barnes & Noble, and returns a reconciled result based on
the input provided by these sources. In general, the information integration system
performs several macro steps. These include:

– interpret (rewrite) the query in terms of the common ontology;
– identify the correspondences between semantically related entities of the local

information sources and the common ontology;
– translate the relevant data instances of the local information sources (involved in

handling the query) into a knowledge representation formalism of the informa-
tion integration system;

– reconcile the results obtained from multiple information sources, namely detect-
ing and eliminating, e.g., redundancies, duplications, before returning the final
answer.

Identifying the correspondences between semantically related entities of the local
information sources and the common ontology is a matching step. Let us limit our
vision of matching to the description above for the moment. We will expand it to
some extent in the next sections.

1.2 Information integration 13

In some concrete information integration scenarios, the common ontology can
be either physically existing or virtual. Below, we discuss these scenarios in some
detail.

1.2.1 Schema integration

Schema integration is the oldest scenario [Batini et al., 1986,
Sheth and Larson, 1990, Parent and Spaccapietra, 1998]. Suppose that two (or
more) enterprises want to perform either a merger or an acquisition among them.
Ultimately, these enterprises have to integrate their databases into a single one.
Usually, a first technical step is to identify correspondences between semantically
related entities of the schemas before merging the databases. This step, known as
matching, is required even if the databases to be integrated are coming from the
same domain of interest, e.g., book selling, car rentals. This is because the schemas
have been designed and developed independently. In fact, people follow diverse
modelling principles and patterns, even if they have to encode the same real-world
object. Finally, the schemas to be integrated might have been developed according
to different business goals. This makes the matching problem even harder.

Under the schema integration heading we can classify some other scenarios. For
example, (tightly-coupled) federated databases [Sheth and Larson, 1990]. These typ-
ically have one global schema providing a unified access to the federation of com-
ponent databases. Component databases, in turn, are autonomous. Thus, in this ap-
plication when, for example, one component schema of the federated database is
changed, the federated (global) schema has consequently to be also reconsidered.
Matching can help in identifying those changes.

Finally, it is worth noting the applications which we are not discussing here,
e.g., distributed databases systems [Özsu and Valduriez, 1999]. These are usually de-
signed in a centralised way, e.g., by a database administrator, and therefore, semantic
heterogeneity does not exist there by construction [Elmagarmid et al., 1999].

1.2.2 Catalogue integration

In Business-to-Business (B2B) applications, trade partners store information about
their products in electronic catalogues. Typical examples of catalogues are prod-
uct directories of electronic sales portals, such as Amazon or eBay. In order for a
merchant to participate in the marketplace, e.g., eBay, it has to determine corre-
spondences between entries of its catalogues and those of the marketplace catalogue
(see Fig. 1.3). This process of finding correspondences among entries of the cat-
alogues is referred to as the catalogue matching problem [Bouquet et al., 2003c].
Notice that if we look at this problem from a merchant viewpoint, matching has to
be performed for each marketplace it would like to participate. Having identified the
correspondences between the entries of the catalogues, they are further analysed in
order to generate query expressions that automatically translate data instances be-
tween the catalogues. Finally, having matched the catalogues, users of a marketplace

14 1 Applications

have a unified access to the products which are on sale. The above described sce-
nario involving interactions between marketplaces and merchants can be viewed as
a typical example of integrating local data sources into a data warehouse, see also
[Bernstein and Rahm, 2000].

marketplace

query answer

s

s1

cat1

sn

catn

Matcher

A1Generator

translator1 data
data

Matcher

AnGenerator

translatorn data
data

Fig. 1.3. Catalogue integration scenario with matching. Each merchant matches its cata-
logue (si) with that of the marketplace (s). From the matching result (Ai) it is generated a
data translation program (translatori) which is used for loading the catalogue (cati) to the
marketplace. Users can ask queries to the marketplace and receive answers based on the
integrated catalogue.

Another catalogue integration scenario deals with (typically large-scale) product
classifications, such as UNSPSC3 (The United Nations Standard Products and Ser-
vices Code) and eCl@ss4 (Standardised Material and Service Classification). In a
sense, we can view this scenario as one which enables interoperability among mul-
tiple B2B marketplaces, thus, facilitating product exchange between the enterprises
subscribing to different product classifications [Schulten et al., 2001]. This is to be
achieved by establishing the correspondences between semantically related entities
of the standardised product classifications, which is a matching operation as well.

1.2.3 Data integration

Data integration is an approach where integration of information coming from mul-
tiple local sources is performed without first loading their data into a central ware-
house [Halevy et al., 2005]. This allows interoperation across multiple local sources
having access to the up-to-date data. Notice that in the above considered catalogue

3 http://www.unspsc.org
4 http://www.eclass.de

1.2 Information integration 15

integration scenario, merchants are those who have to perform updates of the central
warehouse of the marketplace. In this scenario the data integration system provides
this functionality.

The scenario, depicted in Fig. 1.4, is as follows. First, local information sources
participating in the application, e.g., bookstore, library, museum, are identified. Then,
a virtual common ontology is built. Queries are posed over the virtual common on-
tology, and are then reformulated into queries over the local information sources,
e.g., in cultural heritage applications, these might be museums, such as Iconclass5

and Rijksmuseum6. In order to enable semantics-preserving query answering, cor-
respondences between semantically related entities of the local information sources
and the virtual ontology are to be established. Establishing these correspondences is
known as a matching.

gBroker

l1

db1

ln

dbn

Matcher

A1Generator

mediator1

query

answeranswer

Matcher

AnGenerator

mediatorn

query
answer

answer

query

query
query

answer

Fig. 1.4. Data integration scenario with matching. Depending on if the global schema (g) is
considered as matched against existing local schemas (li) or the other way around, this de-
scribes GAV or LAV approach, respectively. Usually, the matching phase, resulting in align-
ments (Ai), is done off-line, generating mediators (mediatori) for each local database. The
query is sent to a broker calling the necessary mediators. They translate the query, evaluate it
against the database and translate the answer before returning it.

Query answering is then performed by using these correspondences (mappings)
within the Local-as-View (LAV), Global-as-View (GAV), or Global-Local-as-View
(GLAV) settings [Lenzerini, 2002]. In the LAV approach, local schemas are defined
in terms of the global schema, i.e., the mapping is specified by defining each local
schema construct as a view over global schema constructs. Queries are processed by
means of an inference mechanism that re-expresses the atoms of the global schema in
terms of atoms of the local schemas. In GAV, a global schema is defined in terms of
5 http://icontest.iconclass.nl/libertas/ic?style=index.xsl
6 http://www.rijksmuseum.nl/aria/aria catalogs/index?lang=en

16 1 Applications

the local schemas, i.e., the mapping is specified by writing a definition of each global
schema construct as a view over local schema constructs. Queries are processed by
means of unfolding, i.e., by expanding the atoms according to their definitions (so
as to come up with local schema relations). GLAV, in turn, is a mixed approach. We
can think of it as a variation of the LAV approach that allows the head of the view
definition to contain any query on the local schemas.

Finally, as noticed in [Lenzerini, 2002], the main task in these applications is to
establish the mappings, i.e., perform the matching operation. Besides using match-
ing results for creating the global (respectively local) views, it can also be used for
maintaining them when schemas evolve.

1.3 Peer-to-peer information sharing

Peer-to-Peer (P2P) is a distributed communication model in which parties (also
called peers) have equivalent functional capabilities in providing each other with
data and services [Zaihrayeu, 2006]. P2P networks became popular through a file,
e.g., pictures, music, videos, books, sharing paradigm. There exists several widely
used P2P file sharing systems, e.g., Kazaa, Edonkey, and BitTorrent. These applica-
tions describe file contents by a simple schema (set of attributes, such as title of a
song, its author, etc.) to which all the peers in the network have to subscribe. These
schemas cannot be modified locally by a single peer. Therefore, in the above men-
tioned systems the semantic heterogeneity problem (at the schema level) does not
exist by construction. The use of a single system schema violates the total auton-
omy of peers. Although robust P2P systems allow peers to connect to and disconnect
from the network at any time, thereby respecting some forms of peers autonomy,
such as participation autonomy, they still restrict the design autonomy of peers, in
matters such as how to describe the data and what constraints apply on the data
[Zaihrayeu, 2006].

If peers are meant to be totally autonomous, they may use different terminologies
and metadata models in order to represent their data, even if they refer to the same
domain of interest. Thus, in order to establish (meaningful) information exchange
between peers, one of the steps is to identify and characterise relationships between
their ontologies. This is a matching operation. Having identified the relationships
between ontologies, these can be used for the purpose of query answering, e.g., using
techniques applied in data integration systems, see Sect. 1.2.

1.3.1 Semantic P2P systems

Semantic P2P systems [Staab and Stuckenschmidt, 2006] use more complex specifi-
cations of their contents, such as database schemas [Bernstein et al., 2002], or formal
ontologies [Rousset et al., 2006], than the classical P2P systems mentioned above.
The main idea behind this is to improve the search accuracy by providing a finer-
grained description of items. For example, users who want to share their book li-
brary with their friends may index them by authors, topics, and years of publication.

1.3 Peer-to-peer information sharing 17

This tagging approach will benefit from using some ontological descriptions, e.g.,
for retrieving books on mathematics written by Cambridge authors before 1920 as
opposed to books by Bertrand Russell in 1908 on logic. For instance, the BibSter
system [Haase et al., 2004] uses a bibliographic ontology expressed in RDF. Such
systems as BibSter still follow a single ontology approach, thereby limiting the de-
sign autonomy of peers, and thus, the semantic heterogeneity problem, at the schema
level, does not exist by construction.

More advanced semantic P2P systems relax the homogeneity requirement of
classical P2P systems: they allow peers to use independent schemas and ontologies,
see Fig. 1.5.

peer1

o

peer2

o′

mediator
query query

answeranswer

Matcher

A

Generator

Fig. 1.5. P2P query answering. In this scenario, it is useful to: (1) match relevant parts of
ontologies o and o′, thus resulting in alignment A, (2) generate a mediator between peer1

and peer2 for translating queries and sometimes for translating answers.

Such applications pose additional requirements on matching solutions. In
P2P settings which respect total autonomy of peers, an assumption that all the
peers rely on one global schema, as in data integration, cannot be made be-
cause the global schema may need to be updated any time the system evolves
[Giunchiglia and Zaihrayeu, 2002]. While in the case of data integration schema
matching can be performed at design time, in P2P applications peers need to co-
ordinate their databases on-the-fly, therefore ultimately requiring run time schema
matching. Finally, incomplete and approximate answers, as long as they are good
enough for the application, are also acceptable in such settings. This is the case be-
cause some mappings involved in query answering may become temporarily unavail-
able or invalid [Shvaiko et al., 2006b].

Some examples of various P2P scenarios which rely on different peer meta-
data models, including relational database schemas, XML schemas, RDF schemas,
or OWL ontologies are described in [Bernstein et al., 2002, Zaihrayeu, 2006,
Ives et al., 2004, Nejdl et al., 2002, Rousset et al., 2006]. For example, applications
like SomeWhere [Rousset et al., 2006] integrate peer databases and connect them

18 1 Applications

through mappings expressed in Horn clauses from one database to another. When a
peer needs to answer a query, the system computes possible expansions of the query
with regard to these mappings, i.e., it follows the LAV approach [Lenzerini, 2002].
Then it sends to each relevant peer the queries that can help answer the initial query
and answers are returned and integrated as soon as they arrive. This approach as-
sumes that peer database schemas have been matched off-line beforehand. Thus,
only the query answering part of the system takes into account the dynamics of the
P2P environment.

1.3.2 Emergent semantics between peers

Emergent semantics [Aberer et al., 2004b, Aberer et al., 2004a] is the process by
which a set of peers gradually converges towards a consensus ontology through con-
stantly interacting and negotiating the meaning of the terms they use. This process
mimics to some extent the one exhibited by a society of humans and may never
reach an end but at least it improves discourse understanding. Since consensus is
built incrementally, emerging from different local point-to-point peer agreements, an
alignment between ontologies of peers is viewed as a practical means for establish-
ing those local agreements. Thus peers will have to constantly update the relations
between their ontologies. These updates can be achieved by a matching operation.
The process of emerging semantics between two peers is illustrated in Fig. 1.6.

peer1

o

peer2

o′Matcher

Ao1 o′1

A1o2 o′2

A2

o3

Fig. 1.6. Peer-to-peer and emergent semantics: after a first matching between ontologies o
and o′, the resulting alignment A causes (dotted line) the peers (peer1 and peer2) to evolve
their ontologies into o1 and o′1, respectively. In turn, these ontologies (o1 and o′1) can again be
matched, thus resulting in alignment A1, and so on and so forth. Ultimately, the peers may
converge to a common ontology (o3).

Constantly matching ontologies can trigger the confrontation and revision of
these ontologies themselves. In fact, users may want to establish more consensual
ontologies from this confrontation [Zhdanova et al., 2005]. There are several ways
in which alignments can help here:

1.4 Web service composition 19

– Alignments provide a basis from which the negotiation between peers can start
(like agent protocols for arguing about correspondences, see Sect. 1.5.1).

– Matching algorithms are very often able to compute a distance between ontolo-
gies. This is useful when, for instance, a peer wants to find the ‘closest’ ontology.

– By building a network of ontologies together with alignments between them and
by exploiting, with the help of social network analysis techniques, the distance
between the ontologies, it is also possible to determine the proximity between
users or agents. This, in turn, facilitates customising the query answering process,
and even the consensus building.

These results will help users and communities in consolidating their ontologies
by achieving agreements gradually with similar domain representations as well as
for determining the most central ontology (in social network analysis terms) for the
domain of interest.

1.4 Web service composition

Web services are processes that expose their interfaces to the web so that users
can invoke them. Semantic web services provide a richer and more precise way
to describe the services through the use of knowledge representation languages
and ontologies [Fensel et al., 2007]. Web service discovery and integration is the
process of finding a web service able to deliver a particular service and com-
posing several services in order to achieve a particular goal [Paolucci et al., 2002,
Medjahed and Bouguettaya, 2005, Oundhakar et al., 2005].

Web services have been designed for being independent and replaceable. So web
service processors are able to incorporate new services in their workflows, and there-
fore customers can dynamically choose new and more promising services. For that
purpose, they must be able to compare the descriptions of these services (in order to
know if they are indeed relevant) and to route the knowledge they process in order
to compose different services by routing the output of some service to the input of
another service.

However, in the case of semantic web services, which can be described with re-
gard to ontologies, imposing a central common ontology (like in single ontology P2P
systems), as real-world experiences demonstrate, is not realistic and would freeze the
evolution of such services. Henceforth, both for finding the adequate service and for
interfacing services, a data mediator comes into play as a bridge between different
vocabularies [Bussler et al., 2002, Roman et al., 2004]. From the correspondences
between the terms of the descriptions, mediators must be able to translate the output
of one service into a suitable input for another service, see Fig. 1.7.

Thus, the core part of a mediator definition is an alignment between two on-
tologies. This, in turn, can be provided through matching the corresponding ontolo-
gies either off-line when someone is designing a preliminary service composition, or
dynamically (on-line) [Giunchiglia et al., 2006b, Robertson et al., 2006], when new
services are sought for completing a request.

20 1 Applications

service1 service2mediatoroutput

o

input

o′Matcher

A

Generator

Fig. 1.7. Web service composition. In this scenario it is useful to: (1) match relevant parts
of ontologies o and o′, thus resulting in alignment A, (2) generate a mediator between
service1 and service2 in order to enable transformation of the actual data.

For instance, suppose some on-line library service provides its output description
in some ontology and a parcel shipping service uses a second ontology for describing
its input. Matching these ontologies is useful for: (i) checking that what is delivered
by the first service, e.g., a Book, matches what is expected by the second one, e.g.,
an Object, (ii) verifying preconditions of the second service, e.g., size in centimetres
against dimensions in inches, and (iii) generating a mediator able to transform the
output of the first service in order to be input to the second one (see Fig. 1.7).

1.5 Autonomous communication systems

Other kinds of applications also involve autonomous entities that can meet on a net-
work and which have been designed independently. When these entities are software
programs, they have been considered as agents for a long time (§1.5.1). However, if
they are a combination of hardware and software they are a matter of ambient com-
puting (§1.5.2). Obviously, as we have already discussed in previous sections, such
entities cannot share a common ontology. Thus, if they want to communicate, it is
useful to match their ontologies.

1.5.1 Multi-agent communication

Agents are software entities characterised by their autonomy and capacity of inter-
action. They are often divided into cognitive agents and reactive agents. Reactive
agents implement a simple behaviour and the strength of these agents is their ca-
pacity to let a global behaviour emerge from the individual behaviour of many such
agents. Cognitive agents have a rather more elaborate behaviour often characterised
as the ability to pursue goals, to plan their actions and to negotiate with other agents
in order to achieve their goals.

1.5 Autonomous communication systems 21

Agents communicate by exchanging messages expressed in an agent com-
munication languages, such as the FIPA Agent Communication Language
[FIPA0061, 2002, FIPA0037, 2002]. These languages determine the ‘envelope’ of
the messages and enable agents to position themselves within a particular interaction
context. However, they do not specify the actual content of the message, which is
often expressed with respect to some ontology accessible to the agent. Current stan-
dards for expressing these messages provide slots for declaring the content language
and the ontology used.

As a consequence, when two autonomous and independently designed agents
meet, they have the opportunity to exchange messages but little chance to under-
stand one another if they do not share the same content language and ontology. It
is thus useful to help these agents to match their ontologies in order to either trans-
late their messages or integrate bridge axioms in their own models. Several pro-
posals have been made to assess the correspondences between the terms of the on-
tologies [van Eijk et al., 2001, Wiesman et al., 2002, Bailin and Truszkowski, 2002,
Wang and Gasser, 2002, Euzenat et al., 2005a].

Agents confronted with heterogeneous ontologies have to find the correspon-
dences between these ontologies in order to start understanding each other’s mes-
sages. They can perform ontology matching by themselves or by taking advantage
of alignment libraries or matching services. Once an alignment is obtained, agents
can start a negotiation phase [Laera et al., 2006] in which they exchange arguments
for or against correspondences. When they find a mutual agreement they can trans-
form the resulting alignment in a program that translates the exchanged messages or
in axioms which, once integrated in the agent knowledge, enable interpretation of
messages, see Fig. 1.8.

o o′

message translator

Matcher

A

Generator

axioms

Fig. 1.8. Agent communication. In this scenario it is useful to: (1) match relevant parts of
ontologies o and o′ used by each of the agents, thus resulting in alignment A, (2) generate
bridge axioms between two ontologies, and (3) incorporate the axioms into o′. Alternatively,
the process can (2′) generate a message translator from ontology o to ontology o′ and (3′)
apply this translator to the message.

22 1 Applications

1.5.2 Matching contexts in ambient computing

In ambient computing, applications running on mobile devices take advantage of the
surrounding environment for providing services to users. Naturally, this environment
undergo changes, e.g., with regard to user locations, and applications must always
keep track of these changes, including newly appearing devices and sensors. Char-
acterising the context in ambient computing goes through finding the information
about the current situation in the environment by using various devices available in
that environment, e.g., sensors. By doing so, applications provide context-aware so-
lutions. If one wants to design flexible and smart ambient computing applications, it
is useful to take advantage of the ontologies of these various devices, those of sensors
available in the environments and their capabilities [Coutaz et al., 2005]. Similar to
web service descriptions, these ontologies will provide descriptions of the devices,
even of abstract devices, such as a temperature service, and the way to interact with
them.

Once again, it is expected that device providers will develop different ontologies
adapted to their products or will extend some standard ontologies. Moreover, since
applications evolve in ever changing environments in which devices can fail and new
ones can appear, there is no way to freeze once and for all the ontologies that are
relevant and available at a particular moment.

Therefore, in order to properly operate in ambient computing environments,
applications have to be expressed in terms of generic features that are matched
against the actual environment. This matching process can take advantage of on-
tology matching, since similar devices are likely to be used by similar applications.
Thus, providing a service for reconciling various ontologies and storing the results
obtained from previous interactions should help these applications in sharing and
reusing the established alignments.

1.6 Navigation and query answering on the web

This section presents several applications some of which extend the web experience
to the semantic web by using resources such as formal ontologies. Operating in an
open environment, these applications most often require matching. In particular, the
applications under consideration include: navigation on the semantic web (§1.6.1),
query answering on the web (§1.6.2), and query answering on the deep web (§1.6.3).

1.6.1 Navigation on the semantics web

Browsers such as Magpie [Dzbor et al., 2003, Dzbor et al., 2004] are designed to
take advantage of semantic annotations associated with web pages. For instance,
Magpie can recognise manifestation of instances of an ontology in a web page, dis-
play these instances specifically (different colours for different classes) and add ser-
vices such as linking to the instance web page.

1.6 Navigation and query answering on the web 23

In open web browsing, the key point is to be able to select, at run time, the
appropriate ontologies for the given browsing context. Indeed, the web pages are
linked to other web pages whose content may notably differ from that of the source
page. In order to improve the user experience, it is necessary to take new ontologies
into account dynamically and to be able to connect them to the current ontologies.
Thus, ontology matching is needed to match between a set of terms that describes
the topic of the current page and the relevant on-line ontologies.

Let us consider an example [Sabou et al., 2006b]. The following short news story
is about both trips to exotic locations and talks.

For April and May 2005, adventurer Lorenzo Gariano was part of a ten-
man collaborative expedition between 7summits.com and the 7summits club
from Russia, led by Alex Abramov and Harry Kikstra, to the North Face of
Everest. This evening he will present a talk on his experiences, together with
some of the fantastic photos he took.

An ontology that covers such concepts as adventurer, expedition, talk and photos
should be selected or discovered from the web. This requires that the above men-
tioned concepts are matched to the corresponding concepts from the available on-line
ontologies. In addition, if some of the search terms cannot be found in an ontology,
correspondences with more or less general concepts in the ontology are acceptable.
Finally, not all the entities of the ontology need to be involved in matching. It is suf-
ficient to consider only those entities that are similar to the terms found on the web
page.

1.6.2 Query answering on the web

Contrary to the information integration scenario (§1.2), information on the web is
not described by a global schema over which queries can be expressed. Moreover,
users are used to query the web using their own terminology. Then a semantic query
answering system on the web has to rewrite the query with respect to available on-
tologies in order to use reasoning for providing answers.

For instance, a query answering system such as AquaLog [Lopez et al., 2005]
is aware of an ontology about academic life which has been populated to describe
knowledge related to some university [Sabou et al., 2006b]. For answering a query
such as: Which projects are related to researchers working with ontologies?, Aqua-
Log interprets it in terms of entities available in the system ontology. For this, it first
translates this query into the following triples: 〈projects, related to, researchers〉 and
〈researchers, working, ontologies〉. Then it attempts to match these triples to the con-
cepts of the underlying ontology. For example, the term projects should be identified
to be equivalent to the ontology concept Project and ontologies is assumed equiva-
lent to the ontologies instance of the Research-Area concept. If Action is a subclass
of Project, the system will be able to take actions into account in its answers.

Currently, the scope of AquaLog is limited by the amount of knowledge en-
coded in the ontology of the system. A new version of AquaLog, called Power-
Aqua [Lopez et al., 2006], extends its predecessor, as well as some other systems

24 1 Applications

with similar goals, such as Observer [Mena et al., 1996], towards open query an-
swering. PowerAqua aims at selecting and aggregating information derived from
multiple heterogeneous ontologies on the web. Matching constitutes the core of this
selection task. Unlike AquaLog, matching is now performed between the triples and
many on-line ontologies (not just the single ontology of the system). It is not nec-
essary to match all query triples within one ontology. When no ontology concept is
found for an element of a triple, the use of more general concepts is also acceptable.
Moreover, it is not necessary to try to match the whole ontology against the query,
but only the relevant fragments.

1.6.3 Query answering on the deep web

The so-called deep web is made of the web sites searchable via query interfaces
(HTML forms) giving access to one or more back-end web databases. It is believed
that it contains much more information [Chang et al., 2004] than the billions of static
HTML pages. At the moment, search engines are not very effective at crawling and
indexing the deep web, since they cannot handle meaningfully the query interfaces.
For example, according to [Chang et al., 2004], Google and Yahoo both manage to
index 32% of the existing deep web objects. Hence, the deep web remains largely
unexplored, in spite of containing a huge number of on-line databases, which may
be of use.

Thus, users have difficulties, first in discovering the relevant deep web resources
and then in querying them. A standard use case includes buying a book with the
lowest price among multiple on-line book stores. Query interfaces can be viewed as
simple schemas (sets of terms). For example, in the book selling domain, the query
interface of an on-line booksore can be considered as a schema represented as a set
of concept attributes, namely Author, Title, Subject, ISBN, Publisher. Thus, in order
to enable query answering from multiple sources on the deep web, it is necessary to
identify semantic correspondences between the attributes of the query interfaces of
the web sites. This correspondence identification is a matching operation. Ultimately,
these correspondences are used for the on-the-fly translation of a query between
interfaces of the web databases.

1.7 Summary

The above panorama shows a widespread need for ontology (in a wide sense) match-
ing. Moreover, the need for matching is not limited to one particular application.
In fact, it exists in any application that communicates through ontologies. Thus, it
is natural that in the future more examples of applications requiring matching will
appear, e.g., ontology repair [McNeill, 2006].

Since semantic heterogeneity is an intrinsic problem of any application involving
more than one party, it is reasonable to consider ontology matching as a unified
object of study. However, there are notable differences in the way these applications

1.7 Summary 25

use matching. The application related differences must be clearly identified in order
to provide the best suited solution in each case.

These applications can be ordered according to their dynamics, namely autonomy
of parties participating in an application and rate of changes in an application.

�
dynamics

Agent communication, Query answering

Semantic peer-to-peer systems

Semantic web services

Data integration, Catalogue matching (merchant)

Ontology import and merging

Schema integration, B2B large applications

Fig. 1.9. Distribution of some applications with regard to their dynamics.

Fig. 1.9 orders the applications based on dynamics. It shows that agent commu-
nication and query answering have a more dynamic profile compared to other appli-
cations. In fact, agents, besides having the ability to enter or leave the network or to
change their ontologies at any moment (as in the peer-to-peer case), are also able to
negotiate the alignments and potential mismatches. Data integration and merchant
catalogue matching, due to multiple new merchants being willing to participate in
marketplaces, have a higher dynamics than ontology import and schema integration,
where typically only a small and limited number of parties participate. Finally, the
three bottom applications represent traditional applications, while the three top ap-
plications can be considered as dynamic applications. The uneven step in the middle
of the dynamics axis in Fig. 1.9 is used to stress the above mentioned distinction.

Another dimension along which these applications differ is the purpose for which
they perform matching:

– ontology engineering requires the ability to transform relevant ontologies or
some parts of these ontologies into an ontology focusing on a domain of interest
being modelled or to generate a set of bridge axioms that will help in identifying
corresponding concepts (the transformations apply at the ontological level);

– schema integration requires the ability to merge the schemas under considera-
tion into a single schema (the transformations apply at the ontological level and
instance translation applies at the data level);

– data integration requires the ability to translate data instances residing in mul-
tiple local schemas according to a global schema definition in order to enable
query answering over the global schema (this involves query translation at the
ontological level and data translation at the data level);

– peer-to-peer systems and more generally query answering systems require bidi-
rectional mediators able to transform queries (ontological level) and translate
back answers (data level);

26 1 Applications

Table 1.1. Summary of application requirements.

Application in
st

an
ce

s
ru

n
tim

e
au

to
m

at
ic

co
rr

ec
t

co
m

pl
et

e
op

er
at

io
n

Ontology evolution (§1.1)
√ √ √

transformation
Schema integration (§1.2)

√ √ √
merging

Catalogue integration (§1.2)
√ √ √

data translation
Data integration (§1.2)

√ √ √
query mediation

P2P information sharing (§1.3)
√

query mediation
Web service composition (§1.4)

√ √ √
data mediation

Multi agent communication (§1.5)
√ √ √ √

data translation
Context matching in ambient computing (§1.5)

√ √ √
data translation

Semantic web browsing (§1.6)
√ √

navigation
Query answering (§1.6)

√ √ √
query reformulation

– agent communication requires translators for messages sent from one agent to
another, which apply at the data level; similarly, semantic web services require
one-way data translations for composing services.

This leads to different requirements for different applications. These require-
ments concern:

– the type of available input a matching system can rely on, such as schema or
instance information. There are cases when data instances are not available, for
instance due to security reasons [Clifton et al., 1997] or when there are no in-
stances given beforehand. Therefore, these applications require only a matching
solution able to work without instances (here schema-based method).

– some specific behaviour of matching, such as requirements of (i) being auto-
matic, i.e., not relying on user feedback; (ii) being correct, i.e., not delivering
incorrect matches; (iii) being complete, i.e., delivering all the matches; and (iv)
being performed at run time.

– the use of the matching result as described above. In particular, how the identi-
fied alignment is going to be processed, e.g., by merging the data or conceptual
models under consideration or by translating data instances among them.

Table 1.1 summarises what we found to be the most important requirements for
matching solutions in the applications considered in this chapter. This is obviously a
general approximation that must be adapted to each particular application.

Some of these hard requirements can be derived into comparative (or non func-
tional) requirements such as speed, resource consumption (in particular memory re-
quirements), degree of correctness or completeness. They are useful for comparing
solutions on a scale instead of an absolute (yes/no) comparison. Moreover, they al-
low trading a requirement, e.g., completeness, for another more important one, e.g.,
speed.

1.7 Summary 27

These general requirements for applications will be used in Chap. 6 for assessing
the capacity of matching systems to be applied to particular applications, in Chap. 7
for designing evaluation procedures related to applications, and in Chap. 10 to clas-
sify the operations performed after matching.

As this brief overview indicates, there are many different applications which re-
quire or can take advantage of matching ontologies. However, in spite of a common
need for matching, the application matching requirements are quite different. In par-
ticular, one can distinguish between traditional and dynamic applications both from
the dynamics standpoint and the requirement standpoint. These two observations
justify both the unified treatment of matching that we take in this book and the posi-
tion of considering matching being a separate operation, as opposed to considering
merging or mediating being the primitive ones.

The next chapter will go deeper in providing a more precise definition to this
unified view of matching.

2

The matching problem

In a distributed and open system, such as the semantic web and many other applica-
tions presented in the previous chapter, heterogeneity cannot be avoided. Different
actors have different interests and habits, use different tools and knowledge, and
most often, at different levels of detail. These various reasons for heterogeneity lead
to diverse forms of heterogeneity, and, therefore, should be carefully taken into con-
sideration.

In this chapter we first present various existing ways of expressing knowledge
that are found in diverse applications (§2.1). We then discuss in more detail on-
tologies and ontology languages as knowledge representation formalisms (§2.2). We
introduce several justifications for heterogeneity (§2.3). These should help in design-
ing a matching strategy with respect to the kind of heterogeneity that has to be faced.
Then, we briefly review some terminology related to matching and alignment as well
as provide the meaning that will be used for these terms in this book (§2.4). Finally,
we give a formal account of the matching problem by defining a semantics for the
matching result, i.e., the alignment (§2.5).

Our goal here is not to close the debate by providing some ultimate semantics
for alignments or by settling the definitive meaning of terms, but rather to give def-
initions that help the reader in understanding better the matching solutions that are
presented in this book, as well as the results they produce.

2.1 Vocabularies, schemas and ontologies

So far we have considered ontologies without being precise about their meaning. An
ontology can be viewed as a set of assertions that are meant to model some particular
domain. Usually, the ontology defines a vocabulary used by a particular application.
In various areas of computer science there are different data and conceptual models
that can be thought of as ontologies. These are, for instance, folksonomies, database
schemas, UML models, directories, thesauri, XML schemas and formal ontologies
(axiomatised theories). These and other examples are given in decreasing order of
formality in Fig. 2.1. Thus, a top level ontology is supposed to have an explicit well

30 2 The matching problem

defined semantics, whereas the interpretation of directories in a file system is mostly
implicit. In fact, it depends only on what its creator had in mind, i.e., the meaning of
labels, the background knowledge, and the context in which those labels occur are
all implicit, and therefore, these are not a part of the directory specification.

Terms

‘Ordinary’
glossaries

Ad hoc
hierarchies

Data
dictionaries

Thesauri

Structured
glossaries

XML DTDs

Principled,
informal

hierarchies

Database
schemas

XML
schemas

Entity-
relationship

models

Formal
taxonomies

Frames

Description
logics

Logics

expressivity

Glossaries and
data dictionaries

Thesauri and
taxonomies

Metadata and
data models

Formal
ontologies

Fig. 2.1. Various forms of ontologies ordered by their expressivity (adapted from
[Uschold and Gruninger, 2004]).

We provide below examples of various forms of ontologies of Fig. 2.1 and illus-
trate some heterogeneity problems encountered in these forms.

2.1.1 Tags and folksonomies

Tags and folksonomies are used as very simple ways to describe a corpus of knowl-
edge by just giving names, called tags, to them. This is used in popular web sites,
such as del.icio.us1 for web site annotation, or Flickr2 for annotating pictures. An
example of tags for books and book collections is given in Fig. 2.2.

Autobiography

Book

Russell

Cambridge

LogicComics

College

Cambridge university press

Philosophy

Mathematical logic

Tarski

Fig. 2.2. Fragments of two folksonomies.

1 http://del.icio.us
2 http://www.flickr.com

2.1 Vocabularies, schemas and ontologies 31

Obviously, different users use different tags. Even if these tags remain internally
coherent for the user who created them, this internal structure is not explicit for
the machine. It is difficult to find relations between the tags of two folksonomies.
Moreover, the fact that these tags do not have direct relations with each other (in
one folksonomy) makes that problem even harder. However, there has been work
aiming at inducing a structure between the tags, e.g., the Flickr clusters. These are
based mostly on the set of objects, e.g., pictures, web sites, that are indexed by the
corresponding tags.

2.1.2 Directories

A taxonomy is a partially ordered set of taxons (classes) in which one taxon is greater
than another one only if what it denotes includes what is denoted by the other. Di-
rectories or classifications are taxonomies that are used by companies for present-
ing goods on sale, by libraries for storing books, or by individuals to classify files
on a personal computer. Some well-known examples of directories include those
of Google3, Yahoo4 and the Open Directory Project5. These directories are hierar-
chies of folders identified by labels and containing items, such as bookmarks, or
goods. The semantics of these folders is given by the items they ultimately contain
[Giunchiglia et al., 2006a]. Of course, each independent entity tends to develop its
own directory based on its own needs and tastes, see Fig. 2.3.

Product

DVD

Book

Science

Textbook

Popular

Pocket

Children

CD

Volume

Essay

Literary critics

Politics

Biography

Autobiography

Literature

Novel

Poetry

Fig. 2.3. Fragments of two directories.

In Fig. 2.3, the directory on the left represents the set of items of a bookstore
or a cultural good seller, while the one on the right is the directory of a person that

3 http://www.google.com/dirhp
4 http://www.yahoo.com
5 http://dmoz.org

32 2 The matching problem

illustrates the content of his or her personal library. As we can see, these directories
encode the domain under consideration at different levels of details, since these di-
rectories have been designed independently and for different purposes, i.e., selling
versus classifying.

Finally, there exist some consensus classifications. In library science, the Dewey
classification has been used for more than a century for classifying books by top-
ics [Chan et al., 1996]. In natural sciences, the principled classification of species
represents another example [Schuh, 1999].

2.1.3 Relational database schemas

Relational databases require the data to be organised in a predefined way as tables or
relations. A relational schema specifies the names of the tables as well as their types:
the names and types of the columns of each table. The relational model also includes
the notion of a key for each table: a subset of the columns that uniquely identifies
each row, see Fig. 2.4. Finally, a column in a table may be specified as a foreign
key pointing to a column in another table. This is used to keep referential constraints
among various entities.

item (key: id):
id -> varchar(30)
type -> varchar(10)
price -> int(11) [NULL]
name -> varchar(100)

creator (key: id, author):
id -> varchar(30)
author -> varchar(100)

id type price name
89 Pocket 9.95 La chute

134 Popular 60 My life
77 Textbook Introduction to logic
58 Science Principia mathematica
id name
89 Albert Camus
58 Alfred N. Whitehead
77 Alfred Tarski

134 Bertrand Russell
58 Bertrand Russell

book (key: isbn):
isbn -> int(11) auto_incr
type -> varchar(10) [Volume]
year -> int(11)
title -> varchar(100)

author (key: firstname, lastname):
firstname -> varchar(30)
middlename -> varchar(30)
lastname -> varchar(30)

writer (key: isbn, firstname, lastname):
isbn -> int(11)
firstname -> varchar(30)
lastname -> varchar(30)

isbn type year title
2070360105 Novel 1956 La chute
0415189853 Autobiogr 1969 My life
048628462X Essay 1941 Introduction to logic

firstname middlename lastname
Albert Camus
Alfred North Whitehead
Alfred Tarski

Bertrand Russell
isbn firstname lastname

2070360105 Albert Camus
2070394387 Albert Camus
0521626064 Bertrand Russell
0521626064 Alfred Whitehead
0415189853 Bertrand Russell
048628462X Alfred Tarski

Fig. 2.4. Fragments of two populated database schemas.

2.1 Vocabularies, schemas and ontologies 33

The schemas of Fig. 2.4 are presented with some data instances in tables. They
display similar collections of information about books and authors, however, these
are presented in different ways.

Relational databases, in a sense, are relatively restricted: table cells can only con-
tain primitive datatypes, such as string or integer and cannot refer to some individual.
For instance, the right-hand side schema of Fig. 2.4, in order to express the relation-
ship between a book and its authors, requires an additional table expressing the au-
thorship relation by joining the keys of both book and writer. Moreover, the relational
model lacks the facility to organise data in a taxonomy. In both schemas of Fig. 2.4,
tables corresponding to books have a type column assigning their class names to
the objects. Several approaches have been proposed for overcoming this expressiv-
ity problem. For example, (i) by using a more expressive model, like the entity–
relationship model (see Sect. 2.1.5), at design time and by generating a database out
of it, or (ii) by using a more elaborate model, such as the object-oriented database
model.

Finally, it is worth mentioning widely used languages for specifying relational
schemas, such as Structured Query Language (SQL) as well as some of its recent
versions, e.g., SQL:1999 and SQL:2003. These support many modelling capabilities,
such as user-defined types, aggregation, generalisation, etc.

2.1.4 XML schemas

Document Type Definitions (DTDs) and XML schemas have been introduced for
specifying the structure of XML documents. The main ingredients of XML schemas
include elements, attributes, and types. In turn, elements can be either complex for
specifying nested subelements, or simple for specifying built-in datatypes, such as
string, for an element or attribute. XML schemas are rather complementary to di-
rectories: instead of describing how things are classified, they describe how things
are made from the inside. For instance, the schema at the top of Fig. 2.5 describes
the Product element that comprises a name element which is a string, an id which
is a URI, a price which is a non negative integer, and topics which are a strings. It
also describes a Book element which is a Product that, in addition, has a sequence
of authors which, in turn, are Person elements, and exactly one publisher. Even if
element definitions can be extended or restricted as subcategories of a classification,
the emphasis is on their structure: the extension of an element is made by provid-
ing the elements which are modified in this structure. The sequential aspect of XML
documents is part of the element specification, though it can be overruled.

In fact, these schemas are a shape according to which future documents are to
be created, as opposed to an ontology, which is a description of existing, external
objects. The specialisation hierarchy in XML schema is a type hierarchy that defines
which kind of elements can occupy the place of another kind, e.g., if a shelf contains
books, then putting a biography on this shelf is authorised. In principle, this clas-
sification structure does not have to correspond to any natural classification of the
objects expressed themselves.

34 2 The matching problem

<schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="Person">
<sequence><element name="name" type="xsd:string"/></sequence>
</complexType>

<simpleType name="creator"><restriction base="Person"/></simpleType>
<simpleType name="author"><restriction base="creator"/></simpleType>

<complexType name="Product">
<sequence>
<element ref="creator" minOccurs="1"/>
<element name="name" type="xsd:string" minOccurs="1"/>
<element name="id" type="xsd:anyURI" minOccurs="1" maxOccurs="1"/>
<element name="price" type="xsd:nonNegativeInteger" minOccurs="1"/>
<element name="topic" type="xsd:string"/>

</sequence>
</complexType>

<complexType name="Book">
<complexContent>
<extension base="Product">
<sequence>
<element ref="author" type="xsd:any"/>
<element name="publisher" type="Publisher" minOccurs="1" maxOccurs="1"/>

</sequence>
</extension>

</complexContent>
</complexType>
</schema>

<schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="Volume">
<sequence>
<element name="author" type="Writer" minOccurs="1"/>
<element name="title" type="xsd:string" minOccurs="1"/>
<element name="year" type="xsd:decimal"/>

</sequence>
<attribute name="isbn" type="xsd:anyURI"/>

</complexType>

<complexType name="Essay">
<complexContent>
<extension base="Volume">
<sequence><element name="subject" type="xsd:any"/></sequence>

</extension>
</complexContent>
</complexType>

<complexType name="Human">
<sequence>
<element name="firstname" type="xsd:string"/>
<element name="middlename" type="xsd:string"/>
<element name="lastname" type="xsd:string"/>

</sequence>
</complexType>

<complexType name="Writer">
<complexContent><extension base="Human"/></complexContent>
</complexType>
</schema>

Fig. 2.5. Fragments of two XML schemas.

2.1 Vocabularies, schemas and ontologies 35

2.1.5 Conceptual models

Often database researchers do not consider directly the relational schema
but are rather concerned with the underlying entity–relationship model
[Madhavan et al., 2002]. Conceptual models cover what was properly described as
such in [Brodie et al., 1984], as well as entity–relationship models [Chen, 1976]
that aim at abstracting databases, and UML [Booch et al., 1998] models that aim at
abstracting object-oriented programs.

Product
price: integer
name: string
id: uri
topic: string

Person

PublisherBookDVD CD

Pocket Science Children

Textbook Popular

creator

1..*

au
th

or 1..
*

publisher

1..1

Volume
year: integer
title: string
isbn: uri

Essay

Critics Politics Biography

Autobiography

Literature

NovelPoetry

Human

Writer
author

1..*

subject

1..*

Fig. 2.6. Fragments of two conceptual models as UML class diagrams. Boxes describe entities
and their internal structure; Specialisation is expressed by vertical triangular arrows; other
relationships are displayed as regular arrows bearing a multiplicity indication.

These models offer a rich way of expressing entities which in this case can be
meant as entities of some modelled domain, like people in a database or specifica-
tion of entities to be created like programs. They offer constructors for organising
classes in a hierarchy as well as constructors for describing the internal structure of
objects. They thus offer the best of both worlds: directories and databases. For in-
stance, Fig. 2.6 describes two UML class diagrams corresponding to the same sort of
models as presented before: a taxonomy of classes from an e-commerce site selling
cultural goods on the left and a book library on the right. They both offer a complete
description of the items through the specification of their properties and a taxonomy
of classes. Moreover, they can express relationships between classes, e.g., that the
author of a Book is a Person in the model on the left. The two models of Fig. 2.6 ex-
press comparable domains, e.g., a Volume will correspond to a Book, and yet largely
different, e.g., there is no Product superclass in the right-hand side model.

36 2 The matching problem

2.1.6 Ontologies

It is nowadays common to see directories or conceptual models promoted as on-
tologies. Ontologies contain most of the features of entity–relationship models, and
thus, most parts of the kinds of schemas considered above. The ontologies of Fig. 2.7
syntactically correspond to the models of Fig. 2.6.

The distinctive feature of ontologies is the existence of a model theoretic seman-
tics: ontologies are logic theories. Ontology interpretation is not left to the users that
read the diagrams or to the knowledge management systems implementing them, it
is specified explicitly. The semantics provides the rules for interpreting the syntax
which do not provide the meaning directly but constrains the possible interpretations
of what is declared.

It is commonplace in theoretical database research to consider relational
databases with a first order semantics. However, this is not part of the official SQL
standard [Melton (ed.), 2003]. Moreover, the relational algebra used in database
schemas is not very expressive: expressiveness resides in the query language.

For these reasons of rich expressiveness and presence of a model theoretic se-
mantics, we will specifically focus on ontologies. Traditionally, ontologies were con-
sidered different from knowledge bases, like a database schema is different from a
database that uses it. We will not enforce this distinction here and only use the term
‘ontology’ as it is common place in logic. We thus discuss ontologies in more detail
with the idea that these discussions are for part relevant to other kinds of conceptual
models.

The semantics of ontologies can be constrained by additional axioms. This could
be, in some languages, the opportunity to add axioms, such as an autobiography is a
biography whose topic is the author:

∀x, Autobiography(x) ⇒ ∃y; Person(y) ∧ author(x, y) ∧ topic(x, y)

For the sake of completeness we give in the next section a syntax and semantics
for a minimal ontology language.

2.2 Ontology language

Ontologies are expressed in an ontology language. There are a large variety of
languages for expressing ontologies [Staab and Studer, 2004]. Fortunately, most of
these languages share the same kinds of entities, often with different names but com-
parable interpretations. We briefly describe what entities are found in ontology lan-
guages. It is not our purpose to commit to one particular language, however this
section aims to facilitate the understanding of some of the forthcoming examples
which are given in OWL [Smith et al., 2004, Dean and Schreiber (eds.), 2004], an
ontology language recommended by the W3C.

2.2 Ontology language 37

Product

price
name
id
creator
topic

DVD

Book

author
publisher

Science

Textbook

Popular

Pocket

Children

CD

integer

string

uri

Person

Publisher

Volume

year
author

title
isbn

Essay

subject

Literary critics

Politics

Biography

subject

Autobiography

Literature

Novel

Poetry

Human

Writer

Bertrand Russell: My life

Albert Camus: La chute

Fig. 2.7. Fragments of two ontologies.

2.2.1 Ontology entities

Ontology languages usually deal with the following kinds of entities:

Classes or concepts are the main entities of an ontology. These are interpreted as a
set of individuals in the domain. They are introduced in OWL by the owl:Class
construct. For example, in Fig. 2.7, Book and Person are classes.

Individuals or objects or instances are interpreted as particular individual of a do-
main. These are introduced in OWL by the owl:Thing construct. For example,
in Fig. 2.7, the objects Albert Camus: La chute and Bertrand Russell: My life are
individuals.

Relations are the ideal notion of a relation independently to what it applies. Re-
lations are interpreted as a subset of the product of the domain. These are in-
troduced in OWL by the owl:ObjectProperty or owl:DatatypeProperty
construct. For example, in Fig. 2.7, creator and topic are relations.

Datatypes are particular parts of the domain which specify values as opposed to
individuals, however, values do not have identities. For example, in Fig. 2.7,
String and Integer are datatypes.

Data values are simple values. For example, in Fig. 2.7, the string ‘My life’ is a data
value that can be the title of an Autobiography.

38 2 The matching problem

These entities do not have to be named. They can be constructed out of other
entities. In OWL, a concept can be created out of the restriction of a relation. For
example, this occurs if one defines the class Writer as the set of individuals that have
written something:
<owl:Restriction>
<owl:onProperty rdf:resource="#hasWritten" />
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

Alternatively, a new class can also be constructed by combining two other
classes. For example, when considering that a low price pocket book for children is a
Pocket book that is also a Children and LowPrice book:
<owl:intersectionOf>
<owl:Class rdf:resource="#Pocket" />
<owl:Class rdf:resource="#Children" />
<owl:Class rdf:resource="#LowPrice" />

</owl:intersectionOf>

Entities can be connected by various kinds of relations, including:

Specialisation between two classes or two properties is interpreted as inclusion
of the interpretations. For instance, in Fig. 2.7, the class Book is a spe-
cialisation of the class Product. Specialisation is introduced in OWL by the
rdfs:subClassOf or rdfs:subPropertyOf constructs.

Exclusion between two classes or two properties is interpreted as the exclusion
of their interpretations, i.e., when their intersection is empty. For instance, in
Fig. 2.7, the class Product could be declared to be exclusive to the class Person.
Exclusion is introduced in OWL by the owl:disjointWith construct.

Instantiation or typing between individuals and classes, property instances and
properties, values and datatypes is interpreted as membership. For instance, in
Fig. 2.7, the item presented as Bertrand Russell: My life is an instance of the class
Popular. Instantiation is expressed in OWL with the rdf:type construct.

Example 2.1. The class Book of Fig. 2.7 can be expressed in OWL as follows:
<owl:Class rdf:ID="Book">
<rdfs:subClassOf rdf:resource="#Product" />
<rdfs:label xml:lang="en">book</rdfs:label>
<rdfs:comment xml:lang="en">A book.</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#author" />
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#publisher" />
<owl:allValuesFrom rdf:resource="#Publisher" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

In particular, it defines two classes by restricting the cardinality of the author relation
and restricting the range of the publisher relation. It also relates the defined Book class
to these classes and the Product class by specialisation (rdfs:subClassOf).

2.2 Ontology language 39

In summary, we can consider an ontology to be characterised as follows.

Definition 2.2 (Ontology). An ontology is a tuple o = 〈C, I, R, T, V,≤,⊥,∈,=〉,
such that:

C is the set of classes;
I is the set of individuals;
R is the set of relations;
T is the set of datatypes;
V is the set of values (C, I , R, T , V being pairwise disjoint);
≤ is a relation on (C × C) ∪ (R×R) ∪ (T × T) called specialisation;
⊥ is a relation on (C × C) ∪ (R×R) ∪ (T × T) called exclusion;
∈ is a relation over (I × C) ∪ (V × T) called instantiation;
= is a relation over I × P × (I ∪ V) called assignment.

Many algorithms transform these ontologies into labelled graphs, where nodes
are typed. We use such a notation in the diagrams of this book, see for details Fig. A.1
of Appendix A.

2.2.2 Ontology language semantics

The semantics of ontology languages is usually given through model theory. In par-
ticular, it defines an interpretation function that maps each ontology entity to a set D
called the domain of interpretation .

Definition 2.3 (Interpretation). Given an ontology o = 〈C, I, R, T, V,≤,⊥,∈,=〉,
an interpretation of o is a pair 〈I, D〉, such that D is called the domain of interpre-
tation and I is a function called the interpretation function, such that:

– ∀c ∈ C, I(C) ⊆ D;
– ∀r ∈ R, I(r) ⊆ D × (D ∪ V);
– ∀i ∈ I, I(i) ∈ D;
– ∀t ∈ T, I(t) ⊆ V ;
– ∀v ∈ V, I(v) ∈ V .

An assertion expressed in an ontology language is said to be satisfied by an in-
terpretation if the interpretation is coherent with this assertion.

Definition 2.4 (Satisfiability). Given an ontology o = 〈C, I, R, T, V,≤,⊥,∈,=〉,
a formula δ, which is satisfied by an interpretation 〈I, D〉 of o (denoted as I |= δ),
is defined as follows:

40 2 The matching problem

I |= c ≤ c′ if and only if I(c) ⊆ I(c′)
I |= r ≤ r′ if and only if I(r) ⊆ I(r′)
I |= t ≤ t′ if and only if I(t) ⊆ I(t′)
I |= c⊥c′ if and only if I(c) ∩ I(c′) = ∅
I |= r⊥r′ if and only if I(r) ∩ I(r′) = ∅
I |= t⊥t′ if and only if I(t) ∩ I(t′) = ∅
I |= i ∈ c if and only if I(i) ∈ I(c)
I |= v ∈ t if and only if I(v) ∈ I(t)
I |= i.r = i′ if and only if 〈I(i), I(i′)〉 ∈ I(r)
I |= i.r = v if and only if 〈I(i), I(v)〉 ∈ I(r)

Ontology formulas may contain more than these assertions, e.g., quantified as-
sertions or assertions related by logical connectors. We will restrict ourselves to the
relations between the entities. An ontology is a set of assertions that selects the set
of interpretations which satisfy them. These interpretations are called models. They
constitute the possible interpretations of an ontology.

Definition 2.5 (Model). Given an ontology o, a model of o is an interpretation m =
〈I, D〉 of o, which satisfies all the assertions in o:

∀δ ∈ o,m |= δ

The set of models of an ontology o is denoted asM(o).

Finally, an important notion is the set of assertions that are consequences of an
ontology. These are the assertions implicitly entailed by an ontology and they deter-
mine the answers to queries.

Definition 2.6 (Consequence). Given an ontology formula δ, δ is a consequence
of an ontology o, if and only if, it is satisfied by all models of o. This is denoted as
o |= δ.

Given a model m, we will denote as m(e) the application of the interpretation
function of the model to some ontology entity e.

This digression introduced more precisely, albeit generally, a simplified syntax
and semantics of ontologies. This will be useful when considering the meaning of
matching ontologies.

2.3 Types of heterogeneity

The goal of matching ontologies is to reduce heterogeneity between
them. Heterogeneity does not lie solely in the differences between goals
of the applications according to which they have been designed or
in the expression formalisms in which ontologies have been encoded.
There have been many different classifications to types of heterogeneity
[Batini et al., 1986, Sheth and Larson, 1990, Breitbart, 1990, Kim and Seo, 1991,

2.3 Types of heterogeneity 41

Goh, 1997, Hull, 1997, Kashyap and Sheth, 1998, Benerecetti et al., 2000,
Wache et al., 2001, Klein, 2001, Euzenat, 2001, Corcho, 2004, Hameed et al., 2004,
Ghidini and Giunchiglia, 2004, Bouquet et al., 2004a]. Some of them focus on mis-
matches [Klein, 2001], others rather mention interoperability levels [Euzenat, 2001].
We consider here the most obvious types of heterogeneity:

Syntactic heterogeneity occurs when two ontologies are not expressed in the same
ontology language. This obviously happens when comparing, for instance,
a directory with a conceptual model. This also happens when two ontolo-
gies are modelled by using different knowledge representation formalisms,
for instance, OWL and F-logic. This kind of mismatch is generally tack-
led at the theoretical level when one establishes equivalences between con-
structs of different languages. Thus, it is sometimes possible to translate ontolo-
gies between different ontology languages whilst still preserving the meaning
[Euzenat and Stuckenschmidt, 2003].

Terminological heterogeneity occurs due to variations in names when referring to
the same entities in different ontologies. This can be caused by the use of differ-
ent natural languages, e.g., Paper vs. Articulo, different technical sublanguages,
e.g., Paper vs. Memo, or the use of synonyms, e.g., Paper vs. Article.

Conceptual heterogeneity, also called semantic heterogeneity in [Euzenat, 2001]
and logical mismatch in [Klein, 2001], stands for the differences in modelling
the same domain of interest. This can happen due to the use of different (and,
sometimes, equivalent) axioms for defining concepts or due to the use of to-
tally different concepts, e.g., geometry axiomatised with points as primitive ob-
jects or geometry axiomatised with spheres as primitive objects. As noted in
[Klein, 2001] and [Visser et al., 1998], there is a difference between the con-
ceptualisation mismatch, which relies on the differences between modelled con-
cepts, and the explicitation mismatch, which relies on the way these concepts
are expressed. [Visser et al., 1998] provides a precise classification of these mis-
matches.
Finally, in the context of conceptual differences, [Benerecetti et al., 2001] iden-
tifies three important reasons for these to hold. We discuss these below and give
examples with the help of notion of a geographic map:
– Difference in coverage occurs when two ontologies describe different, pos-

sibly overlapping, regions of the world at the same level of detail and from a
unique perspective. This is obviously the case for two partially overlapping
geographic maps.

– Difference in granularity occurs when two ontologies describe the same re-
gion of the world from the same perspective but at different levels of de-
tail. This applies to geographic maps with different scales, e.g., one displays
buildings, while another depicts whole cities as points.

– Difference in perspective, also called difference in scope [Chalupsky, 2000],
occurs when two ontologies describe the same region of the world, at the
same level of detail, but from a different perspective. This occurs for maps

42 2 The matching problem

with different purposes: a political map and a geological map do not display
the same objects.

Semiotic heterogeneity, also called pragmatic heterogeneity in
[Bouquet et al., 2004a], is concerned with how entities are interpreted by
people. Indeed, entities which have exactly the same semantic interpretation are
often interpreted by humans with regard to the context, for instance, of how
they are ultimately used. This kind of heterogeneity is difficult for the computer
to detect and even more difficult to solve, because it is out of its reach. The
intended use of entities has a great impact on their interpretation, therefore,
matching entities which are not meant to be used in the same context is often
error-prone. Given the limited grasp that a computer can have on these issues,
we do not deal with semiotic heterogeneity here.

Usually, several types of heterogeneity occur together. This book is only con-
cerned with reducing the terminological and conceptual types of heterogeneity. Tech-
niques for dealing with these types individually are presented in Chap. 4, while tech-
niques for considering them together are provided in Chap. 5.

2.4 Terminology

As can be observed from what we have presented so far, in the area of ontol-
ogy matching, different authors including ourselves use different words to refer to
similar concepts, and, vice versa, sometimes different concepts are referred to by
the same name [Chalupsky, 2000, Klein, 2001, Euzenat, 2001, Noy and Klein, 2004,
Kalfoglou and Schorlemmer, 2003b, Bouquet et al., 2004a]. This is especially con-
fusing since these terms, e.g., mapping, can be used for describing both an action
and its result. In this section, we provide a working glossary with the definitions of
terms as they are going to be used in this book.

Matching is the process of finding relationships or correspondences between enti-
ties of different ontologies.

Alignment is a set of correspondences between two or more (in case of multi-
ple matching) ontologies (by analogy with molecular sequence alignment). The
alignment is the output of the matching process.

Correspondence is the relation holding, or supposed to hold according to a partic-
ular matching algorithm or individual, between entities of different ontologies.
These entities can be as different as classes, individuals, properties or formulas.
Some authors use the term mapping instead, however, it will not be used in this
sense in this book.

Mapping is the oriented, or directed, version of an alignment: it maps the entities
of one ontology to at most one entity of another ontology. This complies with
the mathematical definition of a mapping instead of that of a general relation.
The mathematical definition would in principle require that the mapped object
is equal to its image, i.e., that the relation is an equivalence relation. A mapping

2.4 Terminology 43

can be seen as a collection of mapping rules all oriented in the same direction,
i.e., from one ontology to the other, and such that the elements of the source
ontology appear at most once.

Mapping rule is a correspondence which maps an entity of one ontology into an-
other one from another ontology.

Ontology merging is the creation of a new ontology from two, possibly overlap-
ping, source ontologies. The initial ontologies remain unaltered. The merged
ontology is supposed to contain the knowledge of the initial ontologies, e.g.,
consequences of each ontology are consequences of the merge. This concept is
closely related to that of schema integration in databases.

Ontology integration is the inclusion in one ontology of another ontology and as-
sertions expressing the glue between these ontologies, usually as bridge axioms.
The integrated ontology is supposed to contain the knowledge of both initial on-
tologies. Contrary to merging, the first ontology is unaltered while the second
one is modified.

Bridge axioms or articulation axioms are formulas, in an ontology language, that
express the alignments such that it is possible to integrate the entities of an on-
tology within one another. Bridge axioms are the basis for ontology merging
when the ontologies are expressed in the same language.

Ontology translation is the process of transforming an ontology from one ontology
language to another. By extension, it is a program for translating ontologies.

Ontology transformation is the process of expressing the entities of an ontology
with respect to the entities of another ontology, i.e., relations between entities of
the first ontology and those of the second one are added to the first ontology. So
the initial consequences of the first ontology are still consequences of the trans-
formation result. The two initial ontologies are unaltered and a third ontology,
the transformation result, is created. By extension, it is a program that transforms
ontologies.

Data translation is the process of transforming data or instances from one ontology
into corresponding data or instances expressed in another ontology. By exten-
sion, it is a program that translates data.

Mediation consists of interfacing two software components by dynamically alter-
ing the information stream between these. By extension, a mediator is a program
performing mediation. In web service composition a mediator translates the out-
put of a service in the input of another one: it thus performs data translation. In
query answering applications it is a dual pair of translations that transforms the
query from one ontology to another and that translates the answer back.

Ontology version of an ontology is the ontology resulting from the application of
modifications to this ontology.

Ontology reconciliation is a process that harmonises the content of two or more
ontologies, typically requiring changes on one of the two sides or even on both
sides [Hameed et al., 2004]. In this case, there is no merging of the ontologies
but co-evolution. Ontology reconciliation can be performed for the purpose of
merging two ontologies or for the purpose of making them independent.

44 2 The matching problem

2.5 The ontology matching problem

There have been different formalisations of matching and its result
[Bernstein et al., 2000, Lenzerini, 2002, Kalfoglou and Schorlemmer, 2003b,
Bouquet et al., 2004a, Zimmermann et al., 2006]. We provide here a general defi-
nition. It does not pretend to solve each particular problem nor to strictly cover the
complete field. It aims at serving as a guide for this book.

2.5.1 The matching process

The matching operation determines the alignment A′ for a pair of ontologies o and
o′. There are some other parameters that can extend the definition of the matching
process, namely: (i) the use of an input alignment A, which is to be completed by the
process; (ii) the matching parameters, p, e.g., weights, thresholds; and (iii) external
resources used by the matching process, r, e.g., common knowledge and domain
specific thesauri.

Technically, this process can be defined as follows:

Definition 2.7 (Matching process). The matching process can be seen as a function
f which, from a pair of ontologies to match o and o′, an input alignment A, a set of
parameters p and a set of oracles and resources r, returns an alignment A′ between
these ontologies:

A′ = f(o, o′, A, p, r)

This can be schematically represented as illustrated in Fig. 2.8.

o

o′

A matching A′

parameters

resources

Fig. 2.8. The matching process.

It can be useful to specifically consider the matching of more than two ontologies
within the same process. We call this multiple matching.

Definition 2.8 (Multiple matching process). The multiple matching process can be
seen as a function f which, from a set of ontologies to match {o1, . . . on}, an input
alignment A, a set of parameters p and a set of oracles and resources r, returns an
alignment A′ between these ontologies:

A′ = f(o1, . . . on, A, p, r)

The matching process is the main subject of this book. However, before dis-
cussing its internals, let us first consider what it provides: the alignment.

2.5 The ontology matching problem 45

2.5.2 Structure of an alignment

Alignments express the correspondences between entities belonging to different on-
tologies. All definitions here are given for matching between two ontologies. In case
of multiple matching, the definitions can be straightforwardly extended by using n-
ary correspondences. A correspondence must consider the two corresponding entities
and the relation that is supposed to hold between them. We provide the definition of
the alignment following the work in [Euzenat, 2004, Bouquet et al., 2004a].

Since the related entities are an important part of alignments, they have to be
defined. We separate the matched entities from the ontology language because it can
be desirable to have a different language for identifying the matched entities. Given
an ontology language, we use an entity language for expressing those entities that
will be put in correspondence by matching. The expressions of this language will
depend on the ontology on which expressions are defined.

The entity language can be simply made of all the formulas of the ontology
language based on the ontology vocabulary. It can restrict its scope to particular
kinds of formulas from the language, for instance, atomic formulas, or even to terms
of the language, like class expressions. It can also restrict the entities to be only
named entities. This is convenient in the context of the semantic web to restrict en-
tities to those identifiable by their URIs. The entity language can also be an ex-
tension of the ontology language: this can be a query language, such as SPARQL
[Prud’hommeaux and Seaborne (ed.), 2007], adding operations for manipulating on-
tology entities that are not available in the ontology language itself, like concatenat-
ing strings or joining relations. Finally, this entity language can combine both exten-
sion and restriction, e.g., by authorising any boolean operations over named ontology
entities.

Definition 2.9 (Entity language). Given an ontology language L, an entity lan-
guage QL is a function from any ontology o ⊆ L which defines the matchable entities
of ontology o.

In the following we will assume that each ontology interpretation can be extended
to an interpretation of the entity language associated with the ontology.

The next important component of the alignment is the relation that holds between
the entities. We identify a set of relations Θ that is used for expressing the relations
between the entities. Matching algorithms primarily use the equivalence relation (=)
meaning that the matched objects are the same or are equivalent if these are for-
mulas. It is possible to use relations from the ontology language within Θ. For in-
stance, using OWL, it is possible to take advantage of the owl:equivalentClass,
owl:disjointWith or rdfs:subClassOf relations in order to relate classes of
two ontologies. These relations correspond to set-theoretic relations between classes:
equivalence (=); disjointness (⊥); more general (�). They can be used without ref-
erence to any ontology language. Finally, relations can be of any type and are not
restricted to relations present within the ontology language, such as fuzzy relations
or probability distributions over a complete set of relations, or similarity measures.

46 2 The matching problem

For pragmatic reasons, the relationship between two entities is assigned a degree
of confidence which can be viewed as a measure of trust in the fact that the corre-
spondence holds – ‘I trust 70% the fact that the correspondence is correct or reliable’
– and can be compared with the certainty measures provided with meteorological
forecasts.

Definition 2.10 (Confidence structure). A confidence structure is an ordered set of
degrees 〈Ξ,≤〉 for which there exists a greatest element � and a smallest element
⊥.

The usage of confidence degrees is that the higher the degree with regard to ≤,
the most likely the relation holds. It is convenient to interpret the greatest element as
the boolean true and the smallest element as the boolean false.

The most widely used structure is based on the real number unit interval [0 1],
but some systems simply use the boolean lattice. Some other possible structures are
fuzzy degrees, probabilities or other lattices. [Gal et al., 2005a] has investigated the
structure of fuzzy confidence relations. This structure can be extended, for instance,
if one wants to compose alignments. Thus, in this case, it may be necessary to define
operations for combining these degrees.

With these ingredients, it is possible to define the correspondences that have to
be found by matching algorithms.

Definition 2.11 (Correspondence). Given two ontologies o and o′ with associated
entity languages QL and QL′ , a set of alignment relations Θ and a confidence struc-
ture over Ξ , a correspondence is a 5-uple:

〈id, e, e′, r, n〉,

such that

– id is a unique identifier of the given correspondence;
– e ∈ QL(o) and e′ ∈ Q′

L′(o′);
– r ∈ Θ;
– n ∈ Ξ .

The correspondence 〈id, e, e′, r, n〉 asserts that the relation r holds between the
ontology entities e and e′ with confidence n.

Example 2.12 (Correspondence). For example, a simple kind of correspondence is
as follows:

http://book.ontologymatching.org/example/culture-shop.owl#Book =
http://book.ontologymatching.org/example/library.owl#Volume

It asserts the equivalence relation with full confidence between what is denoted by
two URIs, namely the Book class in one ontology and the Volume class in another
one. Some examples of more complex correspondences are as follows:

2.5 The ontology matching problem 47

author(x, concat(w.firstname, w.lastname)) ⇐.85

Book(x)
∧ writtenBy(x, w)
∧Writer(w)

is a Horn clause expressing that if there exists a Book x written by Writer w, the author
of x in the first ontology is identified by the concatenation of the first and last name
of w. The confidence in this clause is quantified with a .85 degree.

There can be several possible correspondences for the same entities depending
on the language in which correspondences are expressed. For instance, one could
have the simple correspondence that speed in one ontology is equivalent to velocity
in another one:

speed ≡ velocity

or record that they are expressed in miles per hour and metre per second respectively:

speed = velocity× 2.237
0.447× speed = velocity

Finally, an alignment is defined as a set of correspondences.

Definition 2.13 (Alignment). Given two ontologies o and o′, an alignment is made
up of a set of correspondences between pairs of entities belonging to QL(o) and
QL′(o′) respectively.

Example 2.14 (Alignment). Fig. 2.9 displays a possible alignment for the pair of on-
tologies of Fig. 2.7. It can be expressed by the following correspondences:

Book =1.0 Volume name ≥1.0 title

id ≥.9 isbn author =1.0 author

Person =.9 Human Science ≤.8 Essay

So far, our alignments are very simple: they are sets of pairs of entities from two
ontologies. However, there are, in the literature, at least three types of n:m, multiple
or complex alignments:

1. alignments involving more than two ontologies produced by multiple matching,
that we may call multialignments,

2. alignments involving correspondences between more than two entities (still be-
longing to two ontologies),

3. alignments with entities involved in more than one correspondence that are de-
noted by the use of * (zero-or-more) or + (more-than-zero) in their cardinalities.

48 2 The matching problem

Product

price
name
id
creator
topic

DVD

Book

author
publisher

Science

Textbook

Popular

Pocket

Children

CD

Person

Publisher

Volume

year
author

title
isbn

Essay

subject

Literary critics

Politics

Biography

subject

Autobiography

Literature

Novel

Poetry

Human

Writer

Bertrand Russell: My life

Albert Camus: La chute

≥

≥, .9

.9

≤, .8

Fig. 2.9. Alignment between the ontologies of Fig. 2.7. Correspondences are expressed by
arrows. By default their relation is = and their confidence value is 1.0; otherwise, these are
mentioned near the arrows.

In case of multiple matching (1), the alignments must contain correspondences
relating more than two entities. The definitions above must then be extended accord-
ingly. This is not covered further here.

The second kind of correspondences (2) can be thought of as using non binary
relations. However, given the nature of the problem: matching two ontologies, we
will consider that these objects can be grouped by operators in the entity language QL

which can include operators such as concatenation, arithmetic operations or logical
connectors for that purpose. In its simplest expression the only construction can be a
set.

Option (3) is related to the multiplicity of the alignment if it is considered as a
relation. By analogy with mathematical functions, it is useful to define some prop-
erties of the alignments. These apply when the only considered relation is equality
(=) and the confidence measures are not taken into account. One can ask for a total
alignment with regard to one ontology, i.e., all the entities of one ontology must be
successfully mapped to the other one. This property is purposeful whenever thor-
oughly transcribing knowledge from one ontology to another is the goal: there is no
entity that cannot be translated.

One can also require the alignment to be injective with regard to one ontology,
i.e., all the entities of the other ontology is part of at most one correspondence. In-
jectivity is useful in ensuring that entities that are distinct in one ontology remain

2.5 The ontology matching problem 49

distinct in the other one. In particular, this contributes to the reversibility of align-
ments.

Definition 2.15 (Total alignment, injective alignment). Given two ontologies o
and o′, an alignment A over o and o′ is called a total alignment from o to o′ if and
only if:

∀e ∈ QL(o),∃e′ ∈ QL′(o′); 〈e, e′, =〉 ∈ A

and, it is called an injective alignment from o to o′ if and only if:

∀e′ ∈ QL′(o′),∃e1, e2 ∈ QL(o); 〈e1, e
′, =〉 ∈ A ∧ 〈e2, e

′, =〉 ∈ A ⇒ e1 = e2

These properties heavily depend on the ontology entity languages which are cho-
sen for these alignments.

Usual mathematical properties apply to these alignments. In particular, a total
alignment from o to o′ is a surjective alignment from o′ to o. A total alignment from
both o and o′, which is injective from one of them, is a bijection. In mathematical
English, an injective function is said to be one-to-one and a surjective function to be
onto. Due to the wide use among matching practitioners of the term one-to-one for
a bijective, i.e., both injective and surjective, alignment, we will only use one-to-one
for bijective.

Finally, we can extend these definitions when correspondence relations are not
equivalence. In such a case, they do not ensure the same properties. For instance,
injectivity does not guarantee reversibility of the alignment used as a transformation.

In conceptual models and databases, the term multiplicity denotes the constraints
on a relation. Usual notations are 1:1 (one-to-one), 1:m (one-to-many), n:1 (many-
to-one) or n:m (many-to-many). If we consider only total and injective properties,
denoted as 1 for injective and total, ? for injective, + for total and * for none, and
the two possible orientations of the alignments, from o to o′ and from o′ to o, the
multiplicities become: ?:?, ?:1, 1:?, 1:1, ?:+, +:?, 1:+, +:1, +:+, ?:*, *:?, 1:*, *:1, +:*,
*:+, *:* [Euzenat, 2003].

Example 2.16 (Alignment multiplicity). The alignment of Example 2.14 is ?:?. If we
add the correspondence Product ≥ Volume, then it is ?:*. If we now consider relating
any entity of the second ontology to another entity of the first one, then it becomes
?:+.

The four pictures below display some of the possible configurations for two on-
tologies composed of three classes each.

a

b

c

d

e

f
1:1

a

b

c

d

e

f
?:?

a

b

c

d

e

f
+:+

a

b

c

d

e

f
:

50 2 The matching problem

2.5.3 A rough understanding of matching

As an introduction to the ideas behind matching, we present here a very simple and
yet powerful description. It relies on the principle that ontologies can approximate
other ontologies and that ontologies to be matched are approximation of a common
ideal ontology. We give the classical interpretation of it in both model theoretic terms
and categorical terms. This is informally presented in Fig. 2.10.

a

α(o, o′) o

o′ µ(o, o′)

m

. . .

a

α(o, o′)

o′ o

µ(o, o′)

m

Fig. 2.10. Relations between ontologies, alignment α(o, o′) and the corresponding model-
theoretic interpretation. Each ontology in the top of the figure is represented by its set of
models in the bottom. These ontologies corresponds to an initial (possibly empty) ontology,
two ontologies (o and o′) approximating some ideal ontology m (itself approximating some
even more complete ontology). α(o, o′) is an alignment of o and o′ with regard to the way it
approximates them and µ(o, o′) is their merge with regard to the way o and o′ approximate it.

Let approximation be a relation between ontologies which expresses that one on-
tology a is a representation of at least the same modelled domains as another α(o, o′).
In logic, this relation corresponds to entailment. In category theory, the ontology is
called an object and the approximation is called a morphism. One can define other
relations between ontologies, such as having at least one common approximated on-
tology. Syntactically, it is possible to provide a set of generators that will complete

2.5 The ontology matching problem 51

an ontology, e.g., adding a constraint on a class, classifying an individual, providing
an approximated ontology.

Model-theoretic semantics assigns to any ontology the set of its models. If the on-
tology is correctly designed, the modelled domain is part of these. Model-theoretic
semantics provides a formal meaning to the intuitions behind such a notion as ap-
proximation: an ontology is approximated by another if its models are also models
of the other: this is the standard interpretation of entailment. Thus, the more approx-
imated an ontology, the fewer models it has.

In these very general terms, matching two ontologies o and o′ consists of finding
a most specific ontology α(o, o′) that approximates both ontologies. If one ontology
is approximated by another, the result of matching should be the latter α(o, o′) = o.
In model-theoretic terms, it amounts to finding an ontology whose set of models
is maximal for inclusion and is included in the intersection of the set of models of
two aligned ontologies. In categorical terms, this means that there exists an object
α(o, o′) and a pair of morphisms from it to the ontologies o and o′, and for every
other object satisfying these conditions there exists a morphism from it to α(o, o′).

This general description of alignment can be compared to three cases explain-
ing reasons for the existence of conceptual heterogeneity that were introduced in
Sect. 2.3. In fact, if we take those cases literally:

Coverage mismatch, corresponding to two ontologies modelling totally different
domains, resorts to α(o, o′) = ∅, ∅ being an empty ontology;

Granularity mismatch, corresponding to two ontologies modelling the same do-
main with different precisions, corresponds to the case where α(o, o′) = o, i.e.,
one ontology is an approximation of the other;

Perspective mismatch, corresponding to the representation of different aspects of
the same domain at the same granularity, is the general case presented here.

However, in real world matching tasks the most frequent cases do not
distinctly belong to one of these cases. In any case, finding the alignment
between two ontologies is a useful exercise. For example, if one wants to
merge two ontologies, i.e., to find µ(o, o′), it is sufficient to stick the un-
matched subparts of one ontology to the matched subpart. This general in-
tuition about matching, similar to that of [Kalfoglou and Schorlemmer, 2003b],
strongly resembles a category-theoretic framework. Indeed, this work has
been further extended from these lines towards more precise categori-
cal definitions in [Hitzler et al., 2005, Zimmermann et al., 2006]. In particu-
lar, in categorical terms the merge corresponds to a push-out construction
[Bench-Capon and Malcolm, 1999, Alagic and Bernstein, 2001] or its generalisation
as a colimit [Hitzler et al., 2005].

2.5.4 Semantics of alignment

We provide a simple foundation for alignments because it is useful to know what is
expected from a matching algorithm. However, as will be demonstrated, the seman-
tics of alignment provides a definition of how alignments must be interpreted and not

52 2 The matching problem

of how alignments must be found by a matching algorithm. In this respect, we pro-
vide only a semantics for interpreting alignment and not for the matching operation.

The usual way of providing a semantics for related conceptual systems is through
modal logic of knowledge and belief [Fagin et al., 1995, Wooldridge, 2000]. In the
line of the work on data integration, we only give a first-order model theoretic se-
mantics. It depends on the semantics of ontologies but does not interfere with it. In
fact, given a set of ontologies and a set of alignments between them, we can evalu-
ate the semantics of the whole system in terms of the semantics of each individual
ontology.

The main problem arising is the non compatibility of the domains of interpre-
tation. Given several ontologies, it is possible to consider different positions with
regard to the domain of interpretation:

– For all these ontologies, the domain of interpretation D is unique. This ap-
proach is useful when ontologies describe a set of well defined entities, like
the set of files shared in a peer-to-peer system. This approach has been taken
in [Calvanese et al., 2002b, Calvanese et al., 2004].

– For each ontology o, the domain Do may be different. Domains are related with
the help of domain relations ro,o′ which map elements of Do to corresponding
elements of domain Do′ . This approach is used in [Ghidini and Serafini, 1998,
Borgida and Serafini, 2003].

– There is no constraint on the domain of interpretation of ontologies. This is the
assumption that will be considered here. For dealing with this assumption, we
use a universal domain U , that may be defined as the union of all the domains
under consideration, and an equalising function γ or rather a set of equalising
functions: γo : Do −→ U .

[Zimmermann and Euzenat, 2006] considers the implications of these three mod-
els. Here, because the models of various ontologies can have different interpretation
domains, we use the notion of an equalising function, which helps make these do-
mains commensurate.

Definition 2.17 (Equilising function). Given a family of interpretations
〈Io, Do〉o∈Ω of a set of ontologies Ω, an equalising function for 〈Io, Do〉o∈Ω

is a family of functions γ = (γo : Do −→ U)o∈Ω from the ontology domains of
interpretation to a global domain of interpretation U . The set of all equalising
functions is called Γ .

When it is unambiguous, we will use γ as a function. The goal of this γ function
is only to be able to (theoretically) compare elements of the domain of interpreta-
tion. It is simpler than the use of domain relations in distributed first-order logics
[Ghidini and Serafini, 1998] in the sense that there is one function per domain in-
stead of relations for each pair of domains.

The equalising functions can be different for each ontology. This means, in par-
ticular, that even if two ontologies are interpreted over the same domain of interpre-
tation, it is not compulsory that the equalising function maps their elements to the

2.5 The ontology matching problem 53

same element of U , though it remains possible. This allows for a loose coupling of
the interpretations.

The relations used in correspondences do not necessarily belong to the ontology
languages. As such, they do not have to be interpreted by the ontology semantics.
Therefore, we have to provide semantics for them.

Definition 2.18 (Interpretation of alignment relations). Given r ∈ Θ an align-
ment relation and U a global domain of interpretation, r is interpreted as a binary
relation over U , i.e., rU ⊆ U × U .

For the sake of simplicity, we consider correspondences that are only triples of
the following form: 〈e, e′, r〉. The definition of correspondence satisfiability relies
on γ and the interpretation of relations. It requires that in the equalised models, the
correspondences are satisfied.

Definition 2.19 (Satisfied correspondence). A correspondence c = 〈e, e′, r〉 is
satisfied for an equalising function γ by two models m, m′ of o, o′ if and only if
γo ·m ∈M(o), γo′ ·m′ ∈M(o′) and

〈γo(m(e)), γo′(m′(e′))〉 ∈ rU

This is denoted as m,m′ |=γ c.

Definition 2.20 (Salisfied alignment). An alignment A is satisfied for an equalising
function γ by two models m, m′ of o, o′ if and only if all its correspondences are
satisfied for γ by m and m′. This is denoted as m,m′ |=γ A.

This is useful for defining the classical notions of validity and satisfiability.

Definition 2.21 (Alignment validity). An alignment A of two ontologies o and o′ is
said to be valid if and only if

∀m ∈M(o),∀m′ ∈M(o′),∀γ ∈ Γ,m, m′ |=γ A

This is denoted as |= A.

From the practical perspective, this is not a very useful definition since unless the
ontologies have no models, it will be very difficult to find valid alignments. A relaxed
definition could consider the validity that, given an equalising function, describes
how domains are related. Valid alignments are direct logical consequences of the
two ontologies. Thus they do not provide additional information than what is already
in these ontologies. Satisfiable alignments offer more information.

Definition 2.22 (Satisfiable alignment). An alignment A of two ontologies o and o′

is said to be satisfiable if and only if

∃m ∈M(o),∃m′ ∈M(o′),∃γ ∈ Γ ; m,m′ |=γ A

54 2 The matching problem

Thus, an alignment is satisfiable if there are models of the ontologies that can
be combined in such a way that this alignment makes sense. The satisfiable set of
alignments is far larger than the set of valid ones. Again, one can define γ-satisfiable
alignments, i.e., alignments satisfiable for a given equalising function. This is what
is computed (in its minimal form) by algorithms like those of T-tree (see Sect. 6.2.1).

Given an alignment between two ontologies, the semantics of the aligned ontolo-
gies can be defined as follows.

Definition 2.23 (Models of aligned ontologies). Given two ontologies o and o′ and
an alignment A between these ontologies, a model m′′ of these ontologies aligned
by A is a triple 〈m,m′, γ〉 ∈ M(o)×M(o′)× Γ , such that m,m′ |=γ A.

In that respect, the alignment acts as a model filter for the ontologies. It selects
the interpretations of ontologies which are coherent with the alignments. This al-
lows transferring information from one ontology to another since reducing the set of
models will entail more consequences in each aligned ontology.

These definitions can be generalised to an arbitrary number of alignments and on-
tologies captured in the concept of a distributed system [Ghidini and Serafini, 1998,
Franconi et al., 2003].

Definition 2.24 (Distributed system of networked ontologies). A distributed sys-
tem of networked ontologies 〈Ω, Λ〉 is made of a set Ω of ontologies and a set Λ of
alignments between these ontologies. We denote as Λ(o, o′) the set of alignments in
Λ between o and o′.

Definition 2.25 (Models of distributed systems). Given a finite set of n ontolo-
gies Ω and a finite set of alignments Λ between pairs of ontologies in Ω, a model
of the distributed system 〈Ω, Λ〉 is a n + 1-uple of models 〈m1 . . . mn, γ〉 ∈
M(o1) × . . .M(on) × Γ , such that for each alignment A ∈ Λ(oi, oj), A is sat-
isfied by 〈mi,mj , γ〉.

This definition coincides with a coherent model of the world in which all
models satisfy all alignments. This is the standpoint of an omniscient observer
and it corresponds to the global knowledge of a distributed system as defined in
[Fagin et al., 1995].

However, if one agent has an inconsistent ontology then the distributed system
has no model. Therefore, even agents not connected to the inconsistent ontology
cannot compute reasonable models. Moreover, an agent knowing an ontology and
the related alignments would like to use the system by gathering information from its
neighbours and considering only the models of this information. Thereby, it would be
able to compute consequence through some complete deduction mechanisms. This is
important when asking agents to answer queries and corresponds to local knowledge
in [Fagin et al., 1995]. This is the knowledge an agent can achieve by communicating
only with the agents it is connected to in a distributed system.

From that standpoint, there can be several ways to select the acceptable models
given the distributed system:

2.5 The ontology matching problem 55

M1
Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ ;∀o′ ∈ Ω,∀A ∈ Λ(o, o′),∃m′ ∈M(o′); m,m′ |=γ A}
M2

Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ ;∀o′ ∈ Ω,∀A ∈ Λ(o, o′),∃m′ ∈M2
Ω,Λ(o′); m,m′ |=γ A}

M3
Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ ;∀o′ ∈ Ω,∃m′ ∈M(o′);∀A ∈ Λ(o, o′), m, m′ |=γ A}
M4

Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ ;∀o′ ∈ Ω,∃m′ ∈M4
Ω,Λ(o′);∀A ∈ Λ(o, o′), m, m′ |=γ A}

M5
Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ ;∀o′ ∈ Ω,∀A ∈ Λ(o, o′),∀m′ ∈M5
Ω,Λ(o′); m,m′ |=γ A}

M6
Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ ;∀o′ ∈ Ω,∀A ∈ Λ(o, o′),∀m′ ∈M(o′); m,m′ |=γ A}

The selection of the γ would ideally be made after the models are chosen because
they determine the domains on which the equalising function is built. In practice, the
satisfiability condition will only select those equalising functions that are compatible
with each of the models.

These approaches have been ordered from the more optimistic to the more cau-
tious. M1

Ω,Λ selects the models that satisfy each alignment in at least one model
of the connected ontology. M3

Ω,Λ is stronger since it requires that the same model
of the connected ontology satisfies all the alignments between the two ontologies.
M6

Ω,Λ is very strong since all alignments must be satisfied by all models of the con-
nected ontologies. M2

Ω,Λ, M4
Ω,Λ and M5

Ω,Λ are fixed point characterisations that,
instead of considering the initial models of the connected agents, consider their se-
lected models by the same function. This contributes propagating the constraints to
the whole connected components of the distributed system. While for M2

Ω,Λ and
M4

Ω,Λ this strengthens the constraints, for M5
Ω,Λ, this relaxes them with regard to

M6
Ω,Λ. Here, an inconsistent model is a problem only to related agents and only for

versions M1
Ω,Λ, M3

Ω,Λ and M4
Ω,Λ which require the existence of a model for each

related ontology.
Each of these options allows the definition of a semantics for distributed

systems that is different from the model of distributed system considered
above. It is also analogous to the distributed knowledge of the system fol-
lowing [Fagin et al., 1995]. M5

Ω,Λ would correspond to the semantics given in
[Franconi et al., 2003, Bouquet et al., 2004a]. A definition of acceptable models for
an ontology corresponding to optionM4

Ω,Λ is given as follows.

Definition 2.26 (Models of an ontology modulo alignments). Given a distributed
system 〈Ω, Λ〉, the models of o ∈ Ω modulo Λ are those models of o, such that for
each ontology o′ there exists a model that satisfies all elements of Λ between o and
o′:

56 2 The matching problem

M4
Ω,Λ(o) =

{m ∈M(o);∃γ ∈ Γ ;∀o′ ∈ Ω,∃m′ ∈M4
Ω,Λ(o′);∀A ∈ Λ(o, o′), m, m′ |=γ A}

One can be even more restrictive, as in local model semantics
[Ghidini and Giunchiglia, 2001], by considering only a subset of the possible
models of each ontology.

When dealing with ontology matching between a pair of ontologies, the matter of
semantics between ontologies is not related to the alignment but to the interpretation
of the full distributed system, for instance, depending if one wants to enforce global
consistency or not. In this book we will not take a position on such a matter and will
only retain the basic interpretation framework provided above.

Finally, such a formalism contributes to the definition of the meaning of align-
ments: it describes what are the consequences of ontologies with alignments, i.e.,
what can be deduced by an agent. However, it does not describe what the correct
alignments are: matching is not a deductive task but an inductive one. The framework
is nevertheless particularly useful for deciding if delivered alignments are consistent,
i.e., if distributed systems have a model or not. Hence, it is useful for specifying what
is expected from matching algorithms and how they should be designed or evaluated.

2.6 Summary

In this chapter, we have first described different kinds of data and conceptual models
and observed an expressivity hierarchy of them. Formal ontologies turn out to be
their most elaborate form. This means that the work that has already been devoted to
matching various data and conceptual models can be reused for ontology matching.
This also means that by developing and reviewing ontology matching this book will
help wider areas as well.

In fact, on the one side, for example, schema matching is usually performed with
the help of techniques trying to guess the meaning encoded in the schemas. On the
other side, ontology matching systems primarily try to exploit knowledge explic-
itly encoded in the ontologies. In real-world applications, schemas and ontologies
usually have both well defined and obscure terms, and contexts in which they occur,
therefore, solutions from both problems would be mutually beneficial. Consequently,
we focus our attention on ontology matching as a task that comprises many charac-
teristics of other forms of matching between data and conceptual models.

Then, we focused on identifying what semantic heterogeneity is and why it re-
quires matching. We have presented various reasons why mismatches may occur be-
tween ontologies. Their variety and the fact that they often occur together constrain
to develop multiple approaches for matching ontologies. These techniques will be
classified in the next chapter and further detailed in latter ones.

Finally, we have defined the action of matching ontologies and its result: the
alignment. The interpretation of alignment has been provided first generally but in-
formally, before introducing a semantics for it in distributed systems. This semantics

2.6 Summary 57

enables the reader to understand how the result of ontology matching have to be
interpreted and what is expected from ontology matchers.

Part II

Ontology matching techniques

3

Classifications of ontology matching techniques

Having defined what the matching problem is, we attempt at classify-
ing the techniques that can be used for solving this problem. The ma-
jor contributions of the previous decades are presented in [Larson et al., 1989,
Batini et al., 1986, Kashyap and Sheth, 1996, Parent and Spaccapietra, 1998], while
the topic through the recent years have been surveyed in [Rahm and Bernstein, 2001,
Wache et al., 2001, Kalfoglou and Schorlemmer, 2003b]. These three works ad-
dress the matching problem from different perspectives (artificial intelli-
gence, information systems, databases) and analyse disjoint sets of systems.
[Shvaiko and Euzenat, 2005] have attempted to consider the above mentioned works
together, focusing on schema-based matching methods, and aiming to provide a com-
mon conceptual basis for their analysis. Here, we follow and extend this work on
classifying matching approaches and use it in the following chapters for organising
the presentation.

In this chapter we first consider various dimensions along which a classification
can be elaborated (§3.1). We then present our classification based on several of these
dimensions (§3.2). Finally, we discuss some alternative classifications of matching
approaches that have been proposed so far (§3.3).

3.1 Matching dimensions

There are many independent dimensions along which algorithms can be classified.
Following the definition of the matching process in Fig. 2.8, we may primarily clas-
sify algorithms according to (i) the input of the algorithms, (ii) the characteristics
of the matching process, and (iii) the output of the algorithms. The other charac-
teristics, such as parameters, resources, and input alignments, are considered less
important. Let us discuss these three main aspects in turn.

62 3 Classifications of ontology matching techniques

3.1.1 Input dimensions

These dimensions concern the kind of input on which algorithms operate. As a first
dimension, algorithms can be classified depending on the data or conceptual models
in which ontologies are expressed. For example, the Artemis system (§6.1.6) supports
the relational, object-oriented, and entity-relationship models; Cupid (§6.1.11) sup-
ports XML and relational models; QOM (§6.3.4) supports RDF and OWL models. A
second possible dimension depends on the kind of data that the algorithms exploit:
different approaches exploit different information in the input ontologies. Some of
them rely only on schema-level information, e.g., Cupid (§6.1.11), COMA (§6.1.12);
others rely only on instance data, e.g., GLUE (§6.2.5); and others exploit both
schema- and instance-level information, e.g., QOM (§6.3.4). Even with the same
data models, matching systems do not always use all available constructs, e.g., S-
Match (§6.1.19) when dealing with attributes discards information about datatypes,
e.g., string or integer, and uses only the attributes names. In general, some algorithms
focus on the labels assigned to the entities, some consider their internal structure and
the types of their attributes, and others consider their relations with other entities (see
next section for details).

3.1.2 Process dimensions

A classification of the matching process could be based on its general properties, as
soon as we restrict ourselves to formal algorithms. In particular, it depends on the ap-
proximate or exact nature of its computation. Exact algorithms compute the precise
solution to a problem; approximate algorithms sacrifice exactness for performance
[Ehrig and Sure, 2004]. All of the techniques discussed in the remainder of the book
can be either approximate or exact. Another dimension for analysing the matching
algorithms is based on the way they interpret the input data. We identify three large
classes based on the intrinsic input, external resources, or some semantic theory of
the considered entities. We call these three classes syntactic, external, and semantic
respectively, and discuss them in detail in the next section.

3.1.3 Output dimensions

Apart from the information that matching systems exploit and how they manipulate
it, the other important class of dimensions concerns the form of the result these sys-
tems produce. The form of the alignment might be of importance: is it a one-to-one
alignment between the ontology entities? Has it to be a final correspondence? Is any
relation suitable?

Some other significant distinctions in the output results have been indicated
in [Giunchiglia and Shvaiko, 2003a]. One dimension concerns whether systems
deliver a graded answer, e.g., that the correspondence holds with 98% confi-
dence or 4/5 probability; or an all-or-nothing answer, e.g., that the correspon-
dence definitely holds or not. In some approaches, correspondences between on-
tology entities are determined using distance measures. This is used for provid-

3.2 Classification of matching approaches 63

ing an alignment expressing equivalence between these entities. Another dimen-
sion concerns the kind of relations between entities a system can provide. Most
of the systems focus on equivalence (=), while a few others are able to provide a
more expressive result, e.g., equivalence, subsumption (�), and incompatibility (⊥)
[Giunchiglia et al., 2004, Bouquet et al., 2003c].

In the next section we present a classification of elementary techniques that draws
simultaneously on these criteria.

3.2 Classification of matching approaches

To ground and ensure a comprehensive coverage for our classification we have anal-
ysed state of the art approaches used for ontology matching. Chap. 6 reports a partial
list of systems and approaches which have been scrutinised pointing to (some of) the
most important contributions. We have used the following guidelines for building
our classification:

Exhaustivity: The extension of categories dividing a particular category must cover
its extension, i.e., their aggregation should give the complete extension of the
category.

Disjointness: In order to have a proper tree, the categories dividing one category
should be pairwise disjoint by construction.

Homogeneity: In addition, the criteria used for further dividing one category should
be of the same nature, i.e., should come from the same dimension introduced in
Sect. 3.1. This usually helps guarantee disjointness.

Saturation: Classes of concrete matching techniques should be as specific and dis-
criminative as possible in order to provide a fine-grained distinction between
possible alternatives. These classes have been identified following a saturation
principle: they have been added and modified until the saturation was reached,
i.e., taking into account new techniques did not require introducing new classes
or modifying them.

Disjointness and exhaustivity of the categories ensure stability of the classifica-
tion, namely that new techniques will not occur in between two categories. Classes
of matching techniques represent the state of the art. Obviously, with appearance of
new techniques, they might be extended and further detailed.

The exact vs. approximate opposition has not been used because each of the
methods described below can be implemented as exact or approximate algorithms,
depending on the goals of the matching system.

We build on the previous work on classifying automated schema matching ap-
proaches of [Rahm and Bernstein, 2001] which distinguishes between elementary
(individual) matchers and composition of matchers. Elementary matchers comprise
instance- and schema-based, element- and structure-level, linguistic and constraint-
based matching techniques. Also cardinality and auxiliary information, e.g., the-
sauri, global schemas, can be taken into account.

64 3 Classifications of ontology matching techniques

For classifying elementary matching techniques, we have introduced two syn-
thetic classifications in [Shvaiko and Euzenat, 2005], based on what we have found
to be the most salient properties of the matching dimensions (see Fig. 3.1). These
two classifications are presented as two trees sharing their leaves. The leaves rep-
resent classes of elementary matching techniques and their concrete examples. Two
synthetic classifications are:

– Granularity/Input Interpretation classification is based (i) on the matcher gran-
ularity, i.e., element- or structure-level, and then (ii) on how the techniques gen-
erally interpret the input information.

– Kind of Input classification is based on the kind of input which is used by ele-
mentary matching techniques.

The overall classification of Fig. 3.1 can be read both in descending (focusing on
how the techniques interpret the input information) and ascending (focusing on the
kinds of manipulated objects) manner in order to reach the Basic Techniques layer.

Elementary matchers are distinguished by the Granularity/Input interpretation
layer according to the following classification criteria:

– Element-level vs. structure-level: Element-level matching techniques compute
correspondences by analysing entities or instances of those entities in isolation,
ignoring their relations with other entities or their instances. Structure-level tech-
niques compute correspondences by analysing how entities or their instances
appear together in a structure. This criterion for schema-based approaches is
the same as first introduced in [Rahm and Bernstein, 2001], while element-level
vs. structure-level separation for instance-based approaches follows the work in
[Kang and Naughton, 2003].

– Syntactic vs. external vs. semantic: The key characteristic of the syntactic tech-
niques is that they interpret the input with regard to its sole structure following
some clearly stated algorithm. External are the techniques exploiting auxiliary
(external) resources of a domain and common knowledge in order to interpret
the input. These resources may be human input or some thesaurus expressing the
relationships between terms. Semantic techniques use some formal semantics,
e.g., model-theoretic semantics, to interpret the input and justify their results. In
case of a semantic-based matching system, exact algorithms are complete with
regard to the semantics, i.e., they guarantee a discovery of all the possible align-
ments, while approximate algorithms tend to be incomplete.

To emphasise the differences with the initial classification of
[Rahm and Bernstein, 2001], the new categories or classes are marked in bold
face. In particular, in the Granularity/Input Interpretation layer we detail further
the element- and structure-level matching by introducing the syntactic vs. semantic
vs. external criteria. The reasons for having these three categories are as follows.
Our initial criterion was to distinguish between internal and external techniques. By
internal we mean techniques exploiting information which comes only with the
input ontologies. External techniques are as defined above. Internal techniques can
be further detailed by distinguishing between syntactic and semantic interpretation

3.2 Classification of matching approaches 65

Fi
g.

3.
1.

T
he

re
ta

in
ed

cl
as

si
fic

at
io

ns
of

el
em

en
ta

ry
m

at
ch

in
g

ap
pr

oa
ch

es
.T

he
up

pe
rc

la
ss

ifi
ca

tio
n

is
ba

se
d

on
gr

an
ul

ar
ity

an
d

in
pu

ti
nt

er
pr

et
at

io
n;

th
e

lo
w

er
cl

as
si

fic
at

io
n

is
ba

se
d

on
th

e
ki

nd
of

in
pu

t.
T

he
m

id
dl

e
la

ye
rf

ea
tu

re
s

cl
as

se
s

of
ba

si
c

te
ch

ni
qu

es
.T

he
no

ve
lty

of
th

is
cl

as
si

fic
at

io
n

in
co

m
pa

ri
so

n
w

ith
ou

r
pr

ev
io

us
w

or
k

in
[S

hv
ai

ko
an

d
E

uz
en

at
,2

00
5]

in
cl

ud
es

ex
te

ns
io

na
l

ca
te

go
ry

of
te

ch
ni

qu
es

as
w

el
l

as
da

ta
an

al
ys

is
an

d
st

at
is

tic
s

cl
as

s
of

m
et

ho
ds

.

M
at

ch
in

g
te

ch
ni

qu
es

E
le

m
en

t-
le

ve
l

Sy
nt

ac
tic

E
xt

er
na

l

St
ru

ct
ur

e-
le

ve
l

Sy
nt

ac
tic

E
xt

er
na

l
Se

m
an

tic
s

St
ri

ng
-

ba
se

d
na

m
e

si
m

ila
ri

ty
,

de
sc

ri
pt

io
n

si
m

ila
ri

ty
,

gl
ob

al
na

m
es

pa
ce

L
an

gu
ag

e-
ba

se
d

to
ke

ni
sa

tio
n,

le
m

m
at

is
at

io
n,

m
or

ph
ol

og
y,

el
im

in
at

io
n

L
in

gu
is

tic
re

so
ur

ce
s

le
xi

co
ns

,
th

es
au

ri

C
on

st
ra

in
t-

ba
se

d
ty

pe
si

m
ila

ri
ty

,
ke

y
pr

op
er

tie
s

A
lig

nm
en

t
re

us
e

en
tir

e
sc

he
m

a
or

on
to

lo
gy

,
fr

ag
m

en
ts

U
pp

er
le

ve
l,

do
m

ai
n

sp
ec

ifi
c

on
to

lo
gi

es
SU

M
O

,
D

O
LC

E
,

FM
A

D
at

a
an

al
ys

is
an

d
st

at
is

tic
s

fr
eq

ue
nc

y
di

st
ri

bu
tio

n

G
ra

ph
-

ba
se

d
gr

ap
h

ho
m

o-
m

or
ph

is
m

,
pa

th
,

ch
ild

re
n,

le
av

es

Ta
xo

no
m

y-
ba

se
d

ta
xo

no
m

y
st

ru
ct

ur
e

R
ep

os
ito

ry
of

st
ru

ct
ur

es
st

ru
ct

ur
e

m
et

ad
at

a

M
od

el
-

ba
se

d
SA

T
so

lv
er

s,
D

L
re

as
on

er
s

M
at

ch
in

g
te

ch
ni

qu
es

Te
rm

in
ol

og
ic

al

L
in

gu
is

tic

St
ru

ct
ur

al

In
te

rn
al

R
el

at
io

na
l

E
xt

en
si

on
al

Se
m

an
tic

G
ra

nu
la

ri
ty

/I
np

ut
in

te
rp

re
ta

tio
n

B
as

ic
te

ch
ni

qu
es

K
in

d
of

in
pu

t

66 3 Classifications of ontology matching techniques

of input, also as defined above. The same distinction can be introduced, to some
extent, for the external techniques. In fact, we can qualify some oracles, e.g., Cyc
[Lenat and Guha, 1990], WordNet [Miller, 1995], SUMO [Niles and Pease, 2001],
DOLCE [Gangemi et al., 2003], as syntactic or semantic, but not user input. Thus,
we do not detail external techniques any further and we omit in Fig. 3.1 the
theoretical category of internal techniques, as opposed to external. We also omit in
further discussions element-level semantic techniques, since semantics is usually
given in a structure, and, hence, there are no element-level semantic techniques.

Distinctions between classes of elementary matching techniques in the Basic
Techniques layer of our classification are motivated by the way a technique inter-
prets the input information in each concrete case. In particular, a label can be inter-
preted as a string (a sequence of letters from an alphabet) or as a word or a phrase
in some natural language, a hierarchy can be considered as a graph (a set of nodes
related by edges) or a taxonomy (a set of concepts having a set-theoretic interpre-
tation organised by a relation which preserves inclusion). Thus, we introduce the
following classes of elementary ontology matching techniques at the element-level:
string-based, language-based, based on linguistic resources, constraint-based, align-
ment reuse, and based on upper level and domain specific formal ontologies. At
the structure-level we distinguish between graph-based, taxonomy-based, based on
repositories of structures, model-based, and data analysis and statistics techniques.

The Kind of Input layer classification is concerned with the type of input consid-
ered by a particular technique:

– The first level is categorised depending on which kind of data the algorithms
work on: strings (terminological), structure (structural), models (semantics) or
data instances (extensional). The two first ones are found in the ontology de-
scriptions. The third one requires some semantic interpretation of the ontology
and usually uses some semantically compliant reasoner to deduce the correspon-
dences. The last one constitutes the actual population of an ontology.

– The second level of this classification decomposes further these categories if nec-
essary: terminological methods can be string-based (considering the terms as se-
quences of characters) or based on the interpretation of these terms as linguistic
objects (linguistic). The structural methods category is split into two types of
methods: those which consider the internal structure of entities, e.g., attributes
and their types (internal), and those which consider the relation of entities with
other entities (relational).

Following the above mentioned guidelines for building a classification, the ter-
minological category should be divided into linguistic and non linguistic techniques.
However, since non linguistic techniques are all string-based, this category has been
discarded. This presentation is the one followed in the presentation of basic tech-
niques (Chap. 4).

We discuss below the main classes of the Basic Techniques layer according to the
above classification in more detail. The order follows that of the Granularity/Input
Interpretation classification and these techniques are divided in two sections con-
cerning element-level techniques (§3.2.1) and structure-level techniques (§3.2.2). Fi-

3.2 Classification of matching approaches 67

nally, techniques which are marked in italic in Fig. 3.1 (techniques based on upper
level ontologies) have not been implemented in any matching system yet. However,
we argue that their appearance seems reasonable in the near future.

3.2.1 Element-level techniques

Element-level techniques consider ontology entities or their instances in isolation
from their relations with other entities or their instances.

String-based techniques

String-based techniques are often used in order to match names and name descrip-
tions of ontology entities. These techniques consider strings as sequences of letters
in an alphabet. They are typically based on the following intuition: the more similar
the strings, the more likely they are to denote the same concepts. Usually, distance
functions map a pair of strings to a real number, where a smaller value of the real
number indicates a greater similarity between the strings. Some examples of string-
based techniques which are extensively used in matching systems are prefix, suffix,
edit, and n-gram distances. Various such string comparison techniques are presented
in Sect. 4.2.1.

Language-based techniques

Language-based techniques consider names as words in some natural language, e.g.,
English. They are based on natural language processing techniques exploiting mor-
phological properties of the input words. Several of these techniques are presented
in Sect. 4.2.2 (intrinsic techniques).

Usually, they are applied to names of entities before running string-based or
lexicon-based techniques in order to improve their results. However, we consider
these language-based techniques as a separate class of matching techniques, since
they can be naturally extended, for example, in a distance computation (by compar-
ing the resulting strings or sets of strings).

Constraint-based techniques

Constraint-based techniques are algorithms which deal with the internal constraints
being applied to the definitions of entities, such as types, cardinality (or multiplicity)
of attributes, and keys. These techniques are presented in Sect. 4.3.1.

Linguistic resources

Linguistic resources such as lexicons or domain specific thesauri are used in order
to match words (in this case names of ontology entities are considered as words
of a natural language) based on linguistic relations between them, e.g., synonyms,
hyponyms. Several such methods are presented in Sect. 4.2.2 (extrinsic techniques).

68 3 Classifications of ontology matching techniques

Alignment reuse

Alignment reuse techniques represent an alternative way of exploiting external re-
sources, which record alignments of previously matched ontologies. For instance,
when we need to match ontology o′ and o′′, given the alignments between o and
o′, and between o and o′′ available from the external resource. Alignment reuse is
motivated by the intuition that many ontologies to be matched are similar to already
matched ontologies, especially if they are describing the same application domain.
These techniques are particularly promising when dealing with large ontologies con-
sisting of hundreds and thousands of entities. In these cases, first, large match prob-
lems are decomposed into smaller subproblems, thus generating a set of ontology
fragments matching problems. Then, reuse of previous match results can be more
effectively applied at the level of ontology fragments rather than at the level of en-
tire ontologies. The approach was first introduced in [Rahm and Bernstein, 2001]
and was later implemented as two matchers, i.e., (i) reuse alignments of en-
tire ontologies, or (ii) their fragments [Do and Rahm, 2002, Aumüller et al., 2005,
Rahm et al., 2004].

Upper level and domain specific formal ontologies

Upper level ontologies can also be used as external sources of common knowledge.
Examples are the upper Cyc ontology [Lenat and Guha, 1990], the Suggested Up-
per Merged Ontology (SUMO) [Niles and Pease, 2001] and Descriptive Ontology
for Linguistic and Cognitive Engineering (DOLCE) [Gangemi et al., 2003]. The key
characteristic of these ontologies is that they are logic-based systems, and therefore,
matching techniques exploiting them are based on semantics. For the moment, we
are not aware of any matching system which uses this kind of techniques. However,
it is quite reasonable to assume that this will happen in the near future. In fact, for
example, the DOLCE ontology aims at providing a formal specification (axiomatic
theory) for the top level part of WordNet. Therefore, systems exploiting WordNet
in their matching process may also consider using DOLCE as a potential semantic
extension.

Domain specific formal ontologies can also be used as external sources of back-
ground knowledge. Such ontologies are focusing on a particular domain and use
terms in a sense that is relevant only to this domain and which is not related to similar
concepts in other domains. For example, in the anatomy domain, an ontology such as
The Foundational Model of Anatomy (FMA) can be used as the context for the other
medical ontologies to be matched (as long as it is known that the reference ontol-
ogy covers the ontologies to be matched). This can be used for providing the miss-
ing structure when matching poorly structured resources [Aleksovski et al., 2006].
These methods are discussed in Sect. 4.5.1.

3.2 Classification of matching approaches 69

3.2.2 Structure-level techniques

Contrary to element-level techniques, structure-level techniques consider the ontol-
ogy entities or their instances to compare their relations with other entities or their
instances.

Graph-based techniques

Graph-based techniques are graph algorithms which consider the input ontologies
as labelled graphs. The ontologies (including database schemas, and taxonomies)
are viewed as labelled graph structures. Usually, the similarity comparison between
a pair of nodes from the two ontologies is based on the analysis of their positions
within the graphs. The intuition behind this is that, if two nodes from two ontologies
are similar, their neighbours must also be somehow similar. Different graph-based
techniques are described in Sect. 4.3.2.

Along with purely graph-based techniques, there are other more specific
structure-based techniques, for instance, involving trees.

Taxonomy-based techniques

Taxonomy-based techniques are also graph algorithms which consider only the spe-
cialisation relation. The intuition behind taxonomic techniques is that is-a links con-
nect terms that are already similar (being interpreted as a subset or superset of each
other), therefore their neighbours may be also somehow similar. This intuition can
be exploited in several different ways presented in Sect. 4.3.2.

Repository of structures

Repositories of structures store ontologies and their fragments together with pair-
wise similarity measures, e.g., coefficients in the [0 1] range between them. Unlike
alignment reuse, repositories of structures store only similarities between ontologies,
not alignments. In the following, to simplify the presentation, we call ontologies, or
their fragments, as structures. When new structures are to be matched, they are first
checked for similarity against the structures which are already available in the repos-
itory. The goal is to identify structures which are sufficiently similar to be worth
matching in more detail, or reusing already existing alignments, thus, avoiding the
match operation over the dissimilar structures. Obviously, the determination of sim-
ilarity between structures should be computationally cheaper than matching them in
full detail. The approach of [Rahm et al., 2004] to matching two structures proposes
to use some metadata describing these structures, such as structure name, root name,
number of nodes, maximal path length, etc. These indicators are then analysed and
aggregated into a single coefficient, which estimates similarity between them. For
example, two structures may be found as an appropriate match if they both have the
same number of nodes.

70 3 Classifications of ontology matching techniques

Model-based techniques

Model-based (or semantically grounded) algorithms handle the input based on its
semantic interpretation, e.g., model-theoretic semantics. The intuition is that if two
entities are the same, then they share the same interpretations. Thus, they are well
grounded deductive methods. Examples are propositional satisfiability and descrip-
tion logics reasoning techniques. They are further reviewed in Sect. 4.5.

Data analysis and statistics techniques

Data analysis and statistical techniques are those which take advantage of a (hope-
fully large) representative sample of a population in order to find regularities and
discrepancies. This helps in grouping together items or computing distances between
them. Among data analysis techniques we discuss distance-based classification, for-
mal concepts analysis (§4.4.1) and correspondence analysis; among statistical anal-
ysis methods we consider frequency distributions.

We exclude from this category learning techniques which require a sample of the
result. These techniques are considered specifically in Sect. 5.4 as strategies.

3.3 Other classifications

Let us now consider some other available classifications of matching techniques.
[Ehrig, 2007] introduced a classification based on two orthogonal dimensions.

These can be viewed as horizontal and vertical dimensions. The horizontal dimension
includes three layers that are built one on top of another:

Data layer: This is the first layer. Matching between entities is performed here by
comparing only data values of simple or complex datatypes.

Ontology layer: This is the second layer which, in turn, is further divided into four
levels, following the ‘layer cake’ of [Berners-Lee et al., 2001]. These are se-
mantic nets, description logics, restrictions and rules. For example, at the level
of semantic nets, ontologies are viewed as graphs with concepts and relations,
and, therefore, matching is performed by comparing only these. The descrip-
tion logics level brings a formal semantics account to ontologies. Matching at
this level includes, for example, determining taxonomic similarity based on the
number of subsumption relations separating two concepts. This level also takes
into account instances of entities, therefore, for example, assessing concepts to
be the same, if their instances are similar. Matching at the levels of restrictions
and rules is typically based on the idea that if similar rules between entities ex-
ist, these entities can be regarded as similar. This typically requires processing
higher order relations.

Context layer: Finally, this layer is concerned with the practical usage of entities
in the context of an application. Matching is performed here by comparing the
usages of entities in ontology-based applications. One of the intuitions behind
such matching methods is that similar entities are often used in similar contexts.

3.3 Other classifications 71

The vertical dimension represents specific domain knowledge which can be situated
at any layer of the horizontal dimension. Here, the advantage of external resources
of domain specific knowledge, e.g., Dublin Core for the bibliographic domain, is
considered for assessing the similarity between entities of ontologies.

[Doan and Halevy, 2005] classifies matching techniques into (i) rule-based and
(ii) learning-based. Typically, rule-based techniques work with schema-level infor-
mation, such as entity names, datatypes and structures. Some examples of rules are
that two entities match if their names are similar or if they have the same number of
neighbour entities. Learning-based approaches often work with instance-level infor-
mation, thereby performing matching, for example, by comparing value formats and
distributions of data instances underlying the entities under consideration. However,
learning can also be done at the schema-level and from the previous matches, e.g., as
proposed in the LSD approach (§6.2.4).

[Zanobini, 2006] classifies matching methods into three categories following the
cognitive theory of meaning and communication between agents:

Syntactic: This category represents methods that use purely syntactic matching
methods. Some examples of such methods include string-based techniques, e.g.,
edit distance between strings (§4.2.1) and graph matching techniques, e.g., tree
edit distance (§4.3.2).

Pragmatic: This category represents methods that rely on comparison of data in-
stances underlying the entities under consideration in order to compute align-
ments. Some examples of such methods include automatic classifiers, e.g.,
Bayesian classifier (§4.4), and formal concepts analysis (§4.4.1).

Conceptual: This category represents methods that work with concepts and com-
pare their meanings in order to compute alignments. Some examples of such
methods include techniques exploiting external thesauri, such as WordNet
(§4.2.2), in order to compare senses among the concepts under consideration.

There were also some classifications mixing the process dimension of matching
together with either input dimension or output dimension. For example, [Do, 2005]
extends the work of [Rahm and Bernstein, 2001] by adding a reuse-oriented cate-
gory of techniques on top of schema-based vs. instance-based separation, meaning
that reuse-oriented techniques can be applied at schema and instance level. How-
ever, these techniques can also include some input information, such as user input or
alignments obtained from previous match operations.

[Giunchiglia and Shvaiko, 2003a] classified matching approaches into syntactic
and semantic. At the matching process dimension these correspond to syntactic and
conceptual categories of [Zanobini, 2006], respectively. However, these have been
also constrained by a second condition dealing with the output dimension: syntac-
tic techniques return coefficients in the [0 1] range, while semantic techniques re-
turn logical relations, such as equivalence, subsumption. Combining methods that
work with concepts as well as return logical relations has been defined as a semantic
matching problem in [Giunchiglia and Shvaiko, 2003a].

Finally, we notice that the more the ontology matching field progresses, the wider
the variety of techniques that come into use at different levels of granularity. For ex-

72 3 Classifications of ontology matching techniques

ample, machine learning methods, which where often applied only to the instance
level information, also started being applied more widely to schema level informa-
tion. We believe that such a cross-fertilisation will gain more evidence in future.
Therefore, ultimately, it could be the case that any mathematical method will find
appropriate uses for ontology matching.

3.4 Summary

Following the complexity of ontology definition, there is a variety of techniques
that can be used. The classifications discussed in this chapter provide a common
conceptual basis for organising them, and, hence, can be used for comparing (ana-
lytically) different existing ontology matching systems as well as for designing new
ones, taking advantages of state of the art solutions. The classifications of matching
methods also provide some guidelines which help in identifying families of matching
approaches.

This chapter has shown the difficulty of having a clear cut classification of al-
gorithms. In Sect. 3.2 we provided two such classifications based on granularity and
input interpretation on the one side and the kind of input on the other side. They will
be used for organising the presentation of basic techniques in the next chapter.

4

Basic techniques

The goal of ontology matching is to find the relations between entities expressed
in different ontologies. Very often, these relations are equivalence relations that are
discovered through the measure of the similarity between the entities of ontologies.

We present here some of the basic methods for assessing the similarity or the
relations between ontology entities. By basic, we mean that these methods base their
judgment on one particular kind of features of these entities. Chap. 5, in turn, shows
how the results of these methods can be combined.

In this chapter, we first introduce basic concepts related to similarity (§4.1). Then,
we consider basic methods following the ‘kind of input’ layer of the classification of
Chap. 3: entity names (§4.2), structure (§4.3), extension (§4.4) and semantics (§4.5).

4.1 Similarity, distances and other measures

There are many ways to assess the similarity between two entities. The most common
way amounts to defining a measure of this similarity. We present some characteristics
of these measures.

Definition 4.1 (Similarity). A similarity σ : o × o → R is a function from a pair of
entities to a real number expressing the similarity between two objects such that:

∀x, y ∈ o, σ(x, y) ≥ 0 (positiveness)

∀x ∈ o,∀y, z ∈ o, σ(x, x) ≥ σ(y, z) (maximality)

∀x, y ∈ o, σ(x, y) = σ(y, x) (symmetry)

The dissimilarity is a dual operation. It is defined as follows.

Definition 4.2 (Dissimilarity). Given a set o of entities, a dissimilarity δ : o×o→ R

is a function from a pair of entities to a real number such that:

74 4 Basic techniques

∀x, y ∈ o, δ(x, y) ≥ 0 (positiveness)

∀x ∈ o, δ(x, x) = 0 (minimality)

∀x, y ∈ o, δ(x, y) = δ(y, x) (symmetry)

Some authors consider a ‘non symmetric (dis)similarity’, [Tverski, 1977]; we
then use the term non symmetric measure or pre-similarity. There are more con-
straining notions of dissimilarity, such as distances and ultrametrics.

Definition 4.3 (Distance). A distance (or metric) δ : o × o → R is a dissimilarity
function satisfying the definiteness and triangular inequality:

∀x, y ∈ o, δ(x, y) = 0 if and only if x = y (definiteness)

∀x, y, z ∈ o, δ(x, y) + δ(y, z) ≥ δ(x, z) (triangular inequality)

Definition 4.4 (Ultrametric). Given a set o of entities, an ultrametric is a metric
such that:

∀x, y, z ∈ o, δ(x, y) ≤ max(δ(x, z), δ(y, z)) (ultrametric inequality)

Very often, the measures are normalised, especially if the similarity of differ-
ent kinds of entities must be compared. Reducing each value to the same scale in
proportion to the size of the considered space is the common way to normalise.

Definition 4.5 (Normalised (dis)similarity). A (dis)similarity is said to be nor-
malised if it ranges over the unit interval of real numbers [0 1]. A normalised version
of a (dis)similarity σ (respectively, δ) is denoted as σ (respectively, δ).

It is easy to see that to any normalised similarity σ corresponds a normalised
dissimilarity δ = 1 − σ and vice versa. In the remainder, we will consider mostly
normalised measures and assume that a dissimilarity function between two entities
returns a real number between 0. and 1.

From the above definitions, the similarity and dissimilarity are complete func-
tions that map pairs of entities to real numbers. An alternative representation for
such a function on a finite set of entities is a matrix (see Example 4.14). The ma-
trix has the advantage of being a finite data structure that can be exchanged between
programs.

4.2 Name-based techniques

Some terminological methods compare strings. They can be applied to the name, the
label or the comments of entities in order to find those which are similar. This can be
used for comparing class names and/or URIs.

Throughout this section, the set S will represent the set of strings, i.e., the se-
quences of letters of any length over an alphabet L: S = L∗. The empty string is

4.2 Name-based techniques 75

denoted as ε, and ∀s, t ∈ S, s + t is the concatenation of the strings s and t. |s|
denotes the length of the string s, i.e., the numbers of characters it contains. s[i] for
i ∈ [1 |s|] stands for the letter in position i of s.

Example 4.6 (Strings). The string ‘article’ is made of the letters a, r, t, i, c, l and e.
Its length is 7 characters. ‘peer-reviewed’ and ‘ ’ are two other strings (so ‘-’ and
‘ ’ are letters in the alphabet) and their concatenation ‘peer-reviewed’+‘ ’+‘article’
provides the string ‘peer-reviewed article’ whose length is 21.

A string s is the substring of another string t, if there exist two strings s′ and s′′,
such that s′ + s + s′′ = t (denoted as s ∈ t). Two strings are equal (s = t) if and
only if s ∈ t and t ∈ s. The number of occurrences of s in t (denoted as s#t) is the
number of distinct pairs s′, s′′, such that s′ + s + s′′ = t.

Example 4.7 (Substrings). The string ‘peer-reviewed article’ has the string ‘review’
as a substring because ‘peer-’+‘review’+‘ed article’=‘peer-reviewed article’. The
string ‘homonymous’ has three occurences of the string ‘o’, two occurences of the
string ‘mo’ and only one occurence of the string ‘nym’.

The main problem in comparing ontology entities on the basis of their labels
occurs due to the existence of synonyms and homonyms:

Synonyms are different words used to name the same entity. For instance, Article
and Paper are synonyms in some contexts;

Homonyms are words used to name different entities. For instance, peer as a noun
has a sense ‘equal’ as well as another sense ‘member of the nobility’. The fact
that a word can have multiple senses is also known as polysemy.

Consequently, it is not possible to deduce with certainty that two entities are
the same if they have the same name or that they are different because they have
different names. There are more reasons than synonymy and homonymy why this
could happen. In particular:

– Words from different languages, such as English, French, Italian, Spanish, Ger-
man, Greek, are used to name the same entities. For instance, the word Book in
English is Livre in French and kniga in Russian.

– Syntactic variations of the same word often occur according to different accept-
able spellings, abbreviations, use of optional prefixes or suffixes, etc. For in-
stance, Compact disc, CD, C.D. and CD-ROM can be considered equivalent in
some contexts. However, in some other contexts, CD may mean Corps diploma-
tique and in some others change directory.

These kinds of variations can occur within one ontology but can be even more
frequent across ontologies. However, the way in which things are named remains
very important in every day communication and names remain a good index of sim-
ilarity or dissimilarity. Moreover, many different techniques have been designed for
assessing the similarity of two terms notwithstanding the similarity or dissimilarity
of the strings which denote them.

76 4 Basic techniques

There are two main categories of methods for comparing terms depending on
their consideration of character strings only (§4.2.1) or using some linguistic knowl-
edge to interpret these strings (§4.2.2).

4.2.1 String-based methods

String-based methods take advantage of the structure of the string (as a sequence
of letters). String-based methods will typically find classes Book and Textbook to be
similar, but not classes Book and Volume.

There are many ways to compare strings depending on the way the string is
viewed: for example, as an exact sequence of letters, an erroneous sequence of let-
ters, a set of letters, a set of words. [Cohen et al., 2003b] compares various string-
matching techniques, from distance like functions to token-based distance functions.
We discuss the most frequently used methods.

We distinguish between (i) normalisation techniques which are used for reducing
strings to be compared to a common format, (ii) substring or subsequence techniques
that base similarity on the common letters between strings, (iii) edit distances that
further evaluate how one string can be an erroneous version of another, (iv) statistical
measures that establish the importance of a word in a string by weighting the relation
between two strings and (v) path comparisons.

Normalisation

Before comparing actual strings which have a meaning in natural language, there are
normalisation procedures that can help improve the results of subsequent compar-
isons. In particular:

Case normalisation consists of converting each alphabetic character in the strings
into their lower case counterpart. For example, CD becomes cd and SciFi be-
comes scifi.

Diacritics suppression consists of replacing characters with diacritic signs with
their most frequent replacements. For example, replacing Montréal with Mon-
treal.

Blank normalisation consists of normalising all blank characters, such as blank,
tabulation, carriage return, or sequences of these, into a single blank character.

Link stripping consists of normalising some links between words, such as replac-
ing apostrophes and blank underline into dashes or blanks. For example, peer-
reviewed becomes peer reviewed.

Digit suppression consists of suppressing digits. For example, book24545-18 be-
comes book.

Punctuation elimination suppresses punctuation signs. For example, C.D. becomes
CD.

These normalisation operations must be used with care for several reasons. In
particular:

4.2 Name-based techniques 77

– they are often language-dependent, e.g., they work for occidental languages;
– they are order dependent: they do not guarantee to bring the same results when

applied in any order;
– they can result in loosing some meaningful information; for example, carbon-14

becomes carbon or sentence separation, which is very useful for parsing, is lost;
– they may reduce variations, but increase synonyms. For example, in French livre

and livré are different words respectively meaning book and shipped.

String equality

String equality returns 0 if the strings under consideration are not identical and 1 if
they are identical. This can be taken as a similarity measure.

Definition 4.8 (String equality). String equality is a similarity σ : S × S → [0 1]
such that ∀x, y ∈ S, σ(x, x) = 1 and if x �= y, σ(x, y) = 0.

It can be performed after some syntactic normalisation of the string, e.g., down-
casing, encoding conversion, accent normalisation.

This measure does not explain how strings are different. A more immediate way
of comparing two strings is the Hamming distance which counts the number of posi-
tions in which the two strings differ [Hamming, 1950]. We present here the version
normalised by the length of the longest string.

Definition 4.9 (Hamming distance). The Hamming distance is a dissimilarity δ :
S× S → [0 1] such that:

δ(s, t) =

(∑min(|s|,|t|)
i=1 s[i] �= t[i]

)
+ ||s| − |t||

max(|s|, |t|)

Substring test

Different variations can be obtained from the string equality, such as considering that
strings are very similar when one is a substring of another:

Definition 4.10 (Substring test). Substring test is a similarity σ : S × S → [0 1]
such that ∀x, y ∈ S, if there exist p, s ∈ S where x = p + y + s or y = p + x + s,
then σ(x, y) = 1, otherwise σ(x, y) = 0.

This is obviously a similarity. This measure can be refined in a substring similar-
ity which measures the ratio of the common subpart between two strings.

Definition 4.11 (Substring similarity). Substring similarity is a similarity σ : S ×
S → [0 1] such that ∀x, y ∈ S, and let t be the longest common substring of x and y:

σ(x, y) =
2|t|

|x|+ |y|

78 4 Basic techniques

It is easy to see that this measure is indeed a similarity. One could also consider
a subsequence similarity as well. This definition can be used for building functions
based on the longest common prefix or longest common suffix.

Thus, for example, the similarity between article and aricle would be 4/7 = .57,
while between article and paper would be 1/7 = .14, and, finally, between article
and particle would be 6/7 = .86.

A prefix or suffix pre-similarity can be defined on this model from the prefix and
suffix tests, which test whether one string is the prefix or suffix of another. These
measures would not be symmetric. Prefix and suffix pre-similarity can be useful as
a test for strings denoting a more general concept than another (in many languages,
adding clauses to a term would restrict its range). For instance, reviewed article is
more specific than article. It can also be used for comparing strings and similar ab-
breviations, e.g., ord and order.

The n-gram similarity is also often used in comparing strings. It computes the
number of common n-grams, i.e., sequences of n characters, between them. For
instance, trigrams for the string article are: art, rti, tic, icl, cle.

Definition 4.12 (n-gram similarity). Let ngram(s, n) be the set of substrings of s
of length n. The n-gram similarity is a similarity σ : S× S → R such that:

σ(s, t) = |ngram(s, n) ∩ ngram(t, n)|

The normalised version of this function is as follows.

σ(s, t) =
|ngram(s, n) ∩ ngram(t, n)|

min(|s|, |t|)− n + 1

This function is quite efficient when only some characters are missing.
Thus, for example, the similarity between article and aricle would be 2/4 = .5,

while between article and paper would be 0, and, finally, between article and particle
would be 5/6 = .83.

It is possible, to add extra characters at the beginning and end of strings for
dealing with too small strings.

Edit distance

Intuitively, an edit distance between two objects is the minimal cost of operations
to be applied to one of the objects in order to obtain the other one. Edit distances
were designed for measuring similarity between strings that may contain spelling
mistakes.

Definition 4.13 (Edit distance). Given a set Op of string operations (op : S → S),
and a cost function w : Op → R, such that for any pair of strings there exists a
sequence of operations which transforms the first one into the second one (and vice
versa), the edit distance is a dissimilarity δ : S× S → [0 1] where δ(s, t), is the cost
of the less costly sequence of operations which transforms s into t.

δ(s, t) = min
(opi)I ;opn(...op1(s))=t

(
∑
i∈I

wopi
)

4.2 Name-based techniques 79

In string edit distance, the operations that are usually considered include inser-
tion of a character ins(c, i), replacement of a character by another sub(c, c′, i) and
deletion of a character del(c, i). It can be easily checked that these operations are
such that ins(c, i) = del(c, i)−1 and sub(c, c′, i) = sub(c′, c, i)−1. Each operation
is assigned a cost and the distance between two strings is the sum of the cost of each
operation on the less costly set of operations.

The Levenshtein distance [Levenshtein, 1965] is the minimum number of inser-
tions, deletions, and substitutions of characters required to transform one string into
the other. It is the edit distance with all costs equal to 1. The Needleman–Wunch
distance [Needleman and Wunsch, 1970], in turn, is the edit distance with a higher
costs for ins and del.

It can be proved that the edit distance is indeed a distance if ∀op ∈ Op,wop =
wop−1 .

Example 4.14. The (rounded) Levenshtein distance table between the class labels of
ontologies in Fig. 2.7 (p. 37):

Sc
ie

nc
e

C
hi

ld
re

n

B
oo

k

Pe
rs

on

D
V

D

Te
xt

bo
ok

Pr
od

uc
t

Po
ck

et

Pu
bl

is
he

r

Po
pu

la
r

C
D

Politics 0.75 1.00 0.88 0.88 1.00 1.00 0.75 0.75 0.67 0.75 1.00
Thing 0.71 0.75 1.00 1.00 1.00 0.88 1.00 1.00 0.89 1.00 1.00

Autobiography 0.92 0.85 0.85 0.92 1.00 0.85 0.92 0.92 0.85 0.85 1.00
Novel 0.86 0.88 0.80 1.00 1.00 1.00 0.86 0.67 0.89 0.71 1.00

Biography 1.00 0.89 0.78 0.89 1.00 1.00 0.89 0.89 1.00 0.89 1.00
Writer 0.86 0.75 1.00 1.00 1.00 0.88 0.86 0.83 0.67 0.86 1.00
Essay 1.00 1.00 1.00 0.83 1.00 1.00 1.00 1.00 0.89 0.86 1.00

Volume 0.86 0.75 0.83 1.00 1.00 1.00 0.71 0.83 0.78 0.71 1.00
LiteraryCritic 0.93 0.93 1.00 0.86 1.00 0.93 0.86 0.93 0.93 0.86 0.93

Poetry 0.86 0.88 0.83 0.83 1.00 0.88 0.71 0.67 0.89 0.71 1.00
Literature 0.80 0.90 1.00 0.80 1.00 0.90 0.80 0.90 0.90 0.80 1.00

Human 0.86 0.88 1.00 0.83 1.00 1.00 1.00 1.00 0.89 0.71 1.00

The closest names are Pocket and Novel, Pocket and Poetry, as well as Writer and
Publisher and Politics and Publisher. These names are relatively far from each others
(.67). So, in this case no correspondence can be found from such measures alone.
However, the same measure on properties will obviously find the correspondence
between author and author, for instance.

Other measures compute the cost of an edition operation as a function of the
characters or substrings on which the operation applies. For that purpose, they use
a cost matrix for each operation. A well known example of such a measure is the
Smith–Waterman measure [Smith and Waterman, 1981] which was adapted to com-
pute the distance between biological sequences based on the molecules that were
manipulated. Other such measures are the Gotoh [Gotoh, 1981] and Monge–Elkan
[Monge and Elkan, 1997] distance functions.

80 4 Basic techniques

The Jaro measure has been defined for matching proper names that may contain
similar spelling mistakes [Jaro, 1976, Jaro, 1989]. It is not based on an edit distance
model, but on the number and proximity of the common characters between two
strings. This measure is not a similarity because it is not symmetric.

Definition 4.15 (Jaro measure). The Jaro measure is a non symmetric measure
σ : S× S → [0 1] such that

σ(s, t) =
1
3
× (
|com(s, t)|

|s| +
|com(t, s)|

|t| +
|com(s, t)| − |transp(s, t)|

|com(s, t)|),

with

s[i] ∈ com(s, t) if and only if ∃j ∈ [i− (min(|s|, |t|)/2 i + (min(|s|, |t|)/2]

and transp(s, t) are the elements of com(s, t) which occur in a different order in s
and t.

For instance, if we again compare article with aricle, aritcle and paper, the number
of common letters will respectively be 6, 7 and 1 (because in the last case, the ‘e’
in paper is too far away from that in article). The number of transposed common
letters will be 0, 1 and 0 respectively. As a consequence, the similarities between
these strings are: .95, .90 and .45.

This measure has been improved by favouring matches between strings with
longer common prefixes [Winkler, 1999].

Definition 4.16 (Jaro–Winkler measure). The Jaro–Winkler measure σ : S× S →
[0 1] is as follows:

σ(s, t) = σJaro(s, t) + P ×Q× (1− σJaro(s, t))
10

,

such that P is the length of the common prefix and Q is a constant.

In this case, the similarity for the three strings compared to article with Q = 4
are: .99, .98 and .45. These measures only improve on the previous ones by explicitly
providing a model of mistakes that penalises less the comparison.

Another similar measure is Smoa [Stoilos et al., 2005] which is adapted to the
way computer users define identifiers. It depends on common substring lengths and
non common substring lengths, the second part being substracted from the first one.
This measure has a value between −1 and 1.

Token-based distances

The following techniques come from information retrieval and consider a string as a
(multi)set of words (also called bag of words), i.e., a set in which a particular item can
appear several times. These approaches usually work well on long texts (comprising
many words). For that reason, it is helpful to take advantage of other strings that are
attached to ontology entities. This can be adapted to ontology entities as follows:

4.2 Name-based techniques 81

– By aggregating different sources of strings: identifiers, labels, comments, doc-
umentation, etc. Some systems go further by aggregating the tokens that corre-
spond to connected entities [Qu et al., 2006].

– By splitting strings into independent tokens. For example, InProceedings be-
comes In and Proceedings, peer-reviewed article becomes peer, reviewed and
article.

Ontology entities are then identified with bags of words (or multisets) suitable for
manipulation by using information retrieval techniques. Many different similarities
or dissimilarities being applied to sets of entities can thus be applied to these bags
of words. For example, the matching coefficient is the complement of the Hamming
distance on sets (§4.4.1) and the Dice coefficient is the complement of the Hamming
distance on multisets, i.e., using the union, intersection and cardinality of multisets
instead of sets.

Original measures are those based on the corpus of such strings, i.e., the set of
all such strings found in one of the ontologies or in both of them. These measures
are no longer intrinsic to the strings to be compared but depend on the corpus.

They usually consider a bag of words s as a vector−→s belonging to a metric space
V in which each dimension is a term (or token) and each position in the vector is the
number of occurrences of the token in the corresponding bag of words. This is one
way to represent multisets. Each document can be considered as a point in this space
identified by its coordinate vector [Salton, 1971, Salton and McGill, 1983].

Once the entities have been transformed into vectors, usual metric space dis-
tances can be used: Euclidean distance, Manhattan distance (also known as city
blocks) and any instance of the Minkowski distance (see also p. 123). We present
here the cosine similarity which measures the cosine of the angles made by two vec-
tors. It is very often used in information retrieval.

Definition 4.17 (Cosine similarity). Given −→s and
−→
t , the vectors corresponding to

two strings s and t in a vector space V , the cosine similarity is the function σV :
V × V → [0 1] such that:

σV (s, t) =

∑
i∈|V |

−→s i ×
−→
t i√∑

i∈|V |
−→s 2

i ×
∑

i∈|V |
−→
t 2

i

Some more elaborate techniques use reduced spaces, like those obtained by cor-
respondence analysis, in order to deal with a smaller dimension as well as to auto-
matically map words of similar meanings to the same dimension. A famous example
of such a technique, which is by using singular value decomposition, is known as
latent semantic indexing [Deerwester et al., 1990].

A very common measure is TFIDF (Term frequency-Inverse document fre-
quency) [Robertson and Jones, 1976] which is used for scoring the relevance of a
document, i.e., a bag of words, to a term by taking into account the frequency of
appearance of the term in the corpus. It is usually not a measure of similarity: it as-
sesses the relevance of a term to a document. It is used here to assess the relevance

82 4 Basic techniques

of a substring to a string by comparing the frequency of appearance of the string in
the document with regard to its frequency in the whole corpus.

Definition 4.18 (Term frequency-Inverse document frequency). Given a corpus
C of multisets, we define the following measures:

∀t ∈ S,∀s ∈ C, tf(t, s) = t#s (term frequency)

∀t ∈ S, idf(t) = log

(
|C|

|{s ∈ C; t ∈ s}|

)
(inverse document frequency)

TFIDF (s, t) = tf(t, s)× idf(t) (TFIDF)

Many systems use measures based on TFIDF. These measures compute, for each
term in the strings, their relevance with regard to the corpus based on TFIDF. Then,
they use vector space techniques for computing a distance between the two strings.
There are several options for doing so depending on the selected space: this can be the
whole corpus, the union of terms covered by the two strings or only the intersection
of the terms involved in both strings. The most often used aggregation measure is the
cosine similarity.

Path comparison

Path difference consists of comparing not only the labels of objects but the sequence
of labels of entities to which those bearing the label are related. For instance, in the
left-hand ontology of Fig. 2.7, the Science class can be identified by the path Prod-
uct:Book:Science. In a first approximation, these can be considered as a particular
way to aggregate tokens in an ordered fashion. A simple (and only) example is the
one which concatenates all the names of the superclasses of classes before compar-
ing them. So the result is dependent on the individual string comparison aggregated
in some way.

Definition 4.19 (Path distance). Given two sequences of strings, 〈si〉ni=1 and
〈s′j〉mj=1, their path distance is defined as follows:

δ(〈si〉ni=1, 〈s′j〉mj=1) = λ× δ′(sn, s′m) + (1− λ)× δ(〈si〉n−1
i=1 , 〈s′j〉m−1

i=1)

such that
δ(〈〉, 〈s′j〉kj=1) = δ(〈si〉ki=1, 〈〉) = k

with δ′ being one of the other string or language-based distance and λ ∈ [0 1].

For instance, we can take the string equality distance as δ′, scoring 0 when the
strings are equal, and .7 as λ. Then if we have to compare Product:Book:Science
with Book:Essay:Science and Product:Cultural:Book:Science, the distances will re-
spectively be: .273 and .09.

This measure is dependent on the similarity between the last element of each
path: this similarity is affected by a λ penalty but every subsequent step is affected

4.2 Name-based techniques 83

by a λ×(1−λ)n penalty. So this measure takes into account the prefix, but the prefix
can only influence the result to an extent which decreases as its distance from the end
of the sequence increases. As can be seen, this measure is dependent on the rank of
the elements to compare in the path. A more accurate, but expensive, measure, would
choose the best match between both paths and penalise the items remote from the end
of the path. Another way to take these paths into account is simply to apply them as
a distance on sequences, such as described in [Valtchev, 1999].

Summary on string-based methods

The results given so far for these string comparisons are useful if people use very
similar strings to denote the same concepts. If synonyms with different structures are
used, this will yield a low similarity. Selecting pairs of strings with low similarity,
in turn, yields many false positives since two strings can be very similar, e.g., Inpro-
ceedings and proceedings, and denote relatively different concepts. These measures
are most often used in order to detect if two very similar strings are used. Otherwise,
matching must use more reliable sources of information.

There are several software packages for computing string distances. Table 4.1
provides a brief comparison of distances available in four Java packages: Simetrics1,
SecondString2, the Alignment API3 and SimPack4. A comparison of the metrics of
the second package has been provided in [Cohen et al., 2003b].

4.2.2 Language-based methods

So far we have considered strings as sequences of characters. When considering
language phenomenon, these strings become texts (theoretical peer-reviewed journal
article). Texts can be segmented into words: easily identified sequence of letters that
are derived from an entry in a dictionary (theoretical, peer, reviewed, journal, article).
These words do not occur in a bag (as used in information retrieval) but in a sequence
which has a grammatical structure. Very often words, like peer, bear a meaning and
correspond to some concepts, but the more useful concepts to be properly handled in
a text are terms, such as peer-review, or peer-reviewed journal.

Terms are phrases that identify concepts; they are thus often used for labelling
concepts in ontologies. As a consequence, ontology matching could take great ad-
vantage of recognising and identifying them in strings. This amounts to recognise
the term Peer-reviewed journal in the labels scientific periodicals reviewed by peers
(and not in journal review paper).

Language-based methods rely on using Natural Language Processing (NLP)
techniques to help extract the meaningful terms from a text. Comparing these terms
and their relations should help assess the similarity of the ontology entities they name

1 http://www.dcs.shef.ac.uk/˜sam/stringmetrics.html
2 http://secondstring.sourceforge.net
3 http://alignapi.gforge.inria.fr
4 http://www.ifi.unizh.ch/ddis/simpack.html

84 4 Basic techniques

Table 4.1. String measures available in Simetrics, SecondString, Alignment API and SimPack
Java packages.

Simetrics SecondString AlignAPI SimPack
n-grams n-grams

Levenshtein Levenshtein Levenshtein Levenshtein
Jaro Jaro Jaro

Jaro–Winkler Jaro–Winkler Jaro–Winkler
Needleman–Wunch Needleman–Wunch Needleman–Wunch

Smoa
Smith–Waterman

Monge–Elkan Monge–Elkan
Gotoh

Matching coefficient
Jaccard Jaccard Jaccard

Dice coefficient Dice coefficient
TFIDF TFIDF

Cityblocks Cityblocks
Euclidean Euclidean

Cosine Cosine
Overlap Overlap
Soundex

and comment. Although these are based on some linguistic knowledge, we distin-
guish methods which rely on algorithms only and those which make use of external
resources such as dictionaries.

Intrinsic methods: Linguistic normalisation

Linguistic normalisation aims at reducing each form of a term to some stan-
dardised form that can be easily recognised. Table 4.2 shows that the same
term (theory paper) can appear under many different forms. The work in
[Maynard and Ananiadou, 2001] distinguishes three main kinds of term variation:
morphological (variation on the form and function of a word based on the same root),
syntactic (variation on the grammatical structure of a term) and semantic (variation
on one aspect of the term, usually using a hypernym or hyponym). Various subtypes
of these broad categories are exemplified in Table 4.2. Multilingual variation, i.e.,
where the term variant is expressed in a different language, can be naturally added to
these. Moreover, these types of variations can be combined in various ways.

Complete linguistic software chains have been developed for quickly obtaining a
normal form of strings denoting terms. This is available through shallow parsers or
part-of-speech taggers [Brill, 1992]. These usually perform the following functions:

Tokenisation: Tokenisation is the operation described in Sect. 4.2.1. It consists of
segmenting strings into sequences of tokens by a tokeniser which recognises

4.2 Name-based techniques 85

Table 4.2. Variants of the term theory paper (adapted from [Maynard, 1999] and
[Euzenat et al., 2004a]).

Type Subtype Example
Morphological Inflection theory papers

Derivation theoretical paper
Inflectional-Derivational theoretical papers

Syntactic Insertion theory review paper
Permutation paper on theory
Coordination philosophy and theory paper

Morphosyntactic Derivation-Coordination philosophical and theoretical paper
Inflection-Permutation papers on theory

Semantic foundational paper
Multilingual French article théorique

punctuation, cases, blank characters, digits, etc. For example, peer-reviewed pe-
riodic publication becomes 〈peer, reviewed, periodic, publication〉.

Lemmatisation: The strings underlying tokens are morphologically analysed in or-
der to reduce them to normalised basic forms. Morphological analysis makes it
possible to find flexion and derivations of a root. This involves suppressing tense,
gender or number marks. Retrieving the root is called lemmatisation. Currently,
systems can use some approximate lemmatisation techniques called stemming
[Lovins, 1968, Porter, 1980] which strip suffixes from terms. For example, re-
viewed becomes review.

Term extraction: More elaborate technologies enable the extraction of terms from
a text [Jacquemin and Tzoukermann, 1999, Bourigault and Jacquemin, 1999,
Maynard and Ananiadou, 2001, Cerbah and Euzenat, 2001]. It is generally re-
lated to what is called corpus linguistics and requires a relatively large amount
of text. Terminology extractors identify terms from the repetition of morpholog-
ically similar phrases in the texts and the use of patterns, e.g., noun1 noun2 →
noun2 on noun1. This would recognise that the term theory paper is the same
term as paper on theory.

Stopword elimination: The tokens that are recognised as articles, prepositions,
conjunctions, etc. (usually words, such as to or a), are marked to be discarded
because they are considered as non meaningful (empty) words for matching. For
example, collection of article becomes collection article.

Once these techniques have been applied, ontology entities are represented as
sets of terms, not words, that can be compared with the same techniques as presented
before.

86 4 Basic techniques

Extrinsic methods

Extrinsic linguistic methods use external resources, such as dictionaries and lexicons.
Several kinds of linguistic resources can be exploited in order to find similarities
between terms.

Lexicons. A lexicon, or dictionary, is a set of words together with a natural language
definition of these words (see for instance those of Example 4.21). Of course, for
a particular word, e.g., Article, there can be several such definitions. Dictionaries
can be used with gloss-based distances (see below).

Multi-lingual lexicons. Multi-lingual lexicons are lexicons in which the definition
is replaced by the equivalent terms in another language, e.g., Paper in English
corresponds to Article in French. Such dictionaries can be very useful if ontology
labels are expressed in different languages. They can be used for matching as
well as for disambiguating terms, i.e., identifying their intended sense, before
matching.

Semantico-syntactic lexicons. Semantico-syntactic lexicons and semantic lexicons
are resources used in natural language analysers. They very often not only record
names but their categories, e.g., non animate, liquid, and record the types of
arguments taken by verbs and adjectives, e.g., to flow takes a liquid as subject
and has no object. These are difficult to create and are not much used in ontology
matching.

Thesauri. A thesaurus is a kind of lexicon to which some relational information
has been added. It usually contains relations, named hypernym, e.g., Biography
is a more general term than Autobiography, which is hyponym, synonym, e.g.,
Paper means the same as Article, antonym, e.g., practice is the opposite of theory.
WordNet [Miller, 1995] is such a thesaurus which distinguishes clearly between
word senses by grouping words into sets of synonyms (synsets).

Terminologies. A terminology is a thesaurus for terms, which very often contains
phrases rather than single words. They are usually domain specific and tend to
be less equivocal than dictionaries.

This is not an exhaustive nor an authorised description of linguistic resources but it
provides a typology of the kinds of properties on which a similarity between terms
can be assessed on a linguistic basis.

These resources can be defined for one language or be specific to some domain.
In the latter case, they tend to be more adapted when texts or ontologies concern
this domain because they retain specialised senses, or senses that do not exist in the
everyday language. They may also contain proper names and common abbreviations
that are used in the domain. For instance, a company could expand CD as Compact
Disc, PO as Purchase Order instead of Post Office or Project Officer.

It is worth noting that linguistic resources are introduced in order to deal with
synonyms (the fact that matching entities are named differently). By increasing the
interpretation (sense) of words, they increase the chances of finding the matching
terms (true positives). On the other side this also increases homonyms (the fact that
more words are available for naming the matching entities) and the chances to match

4.2 Name-based techniques 87

non matching terms (false positives). Dealing with this problem is known as word
sense disambiguation [Lesk, 1986, Ide and Véronis, 1998]. Word sense disambigua-
tion tries to restrict the candidate senses (and the candidate matches) from the con-
text, especially by selecting the senses in relation to the other associated words and
their senses.

We illustrate the use of external resources with the help of WordNet5
[Miller, 1995, Fellbaum, 1998]. WordNet is an electronic lexical database for En-
glish (it has been adapted to other languages, see for instance EuroWordNet6), based
on the notion of synsets or sets of synonyms. A synset denotes a concept or a sense
of a group of terms. WordNet also provides an hypernym (superconcept/subconcept)
structure as well as other relations such as meronym (part of relations). It also pro-
vides textual descriptions of the concepts (gloss) containing definitions and exam-
ples. We will denote WordNet as a partially ordered synonym resource.

Definition 4.20 (Partially ordered synonym resource). A partially ordered syn-
onym resource Σ over a set of words W , is a triple 〈E,≤, λ〉, such that E ⊆ 2W is
a set of synsets, ≤ is the hypernym relation between synsets and λ is a function from
synsets to their definition (a text that is considered here as a bag of words in W). For
a term t, Σ(t) denotes the set of synsets associated with t.

Example 4.21 (WordNet entry). We reproduce here the WordNet (version 2.0) entry
for the word author. Each sense is numbered in superscript:

author1 noun: Someone who originates or causes or initiates something;
Example ‘he was the generator of several complaints’. Synonym generator,
source. Hypernym maker. Hyponym coiner.
author2 noun: Writes (books or stories or articles or the like) professionally
(for pay). Synonym writer2. Hypernym communicator. Hyponym abstractor,
alliterator, authoress, biographer, coauthor, commentator, contributor, cyber-
punk, drafter, dramatist, encyclopedist, essayist, folk writer, framer, gag-
man, ghostwriter, Gothic romancer, hack, journalist, libretist, lyricist, novelist,
pamphleter, paragrapher, poet, polemist, rhymer, scriptwriter, space writer,
speechwriter, tragedian, wordmonger, word-painter, wordsmith, Andersen,
Assimov...
author3 verb.: Be the author of; Example ‘She authored this play’. Hypernym
write. Hyponym co-author, ghost.

This resembles a traditional dictionary entry apart from the Hypernym and Hy-
ponym features and the explicit mention of the considered sense. The hypernym re-
lations for the senses of the words creator, writer, author, illustrator, and person are
presented in Fig. 4.1.

There are at least three families of methods for using WordNet as a resource for
matching terms used in ontology entities:

5 http://wordnet.princeton.edu
6 http://www.illc.uva.nl/EuroWordNet/

88 4 Basic techniques

person God

creator1creator2

artist maker communicator litterate legal document

illustrator author1 writer2=author2 writer1writer3

illustrator author creator Person writer

Fig. 4.1. The fragment of the WordNet hierarchy (limited to nouns) dealing with author,
writer, creator, illustrator and person.

– considering that two terms are similar because they belong to some common
synset;

– taking advantage of the hypernym structure for measuring the distances between
synsets corresponding to two terms;

– taking advantage of the definitions of concepts provided by WordNet in order to
evaluate the distance between the synsets associated with two terms.

A matcher based on WordNet can be designed by translating the (lexical) re-
lations provided by WordNet to logical relations according to the following rules
[Giunchiglia et al., 2004]:

– t � t′, if t is a hyponym or meronym of t′. For example, author is a hyponym of
creator, therefore we can conclude that author � creator.

– t � t′, if t is a hypernym or holonym of t′. For example, Europe is a holonym of
France, therefore we can conclude that Europe � France.

– t = t′, if they are connected by synonymy relation or they belong to one synset.
For example, writer and author are synonyms, therefore we can conclude that
writer = author.

– t ⊥ t′, if they are connected by antonymy relation or they are the siblings in the
part of hierarchy. For example, Italy and France are siblings in the WordNet part
of hierarchy, therefore we can conclude that Italy ⊥ France.

Simple measures can be defined here (we only consider synonyms because they
are the basis of WordNet synsets but other relationships can be used as well). The
simplest use of synonyms is as follows:

Definition 4.22 (Synonymy similarity). Given two terms s and t and a synonym
resource Σ, the synonymy is a similarity σ : S× S → [0 1] such that:

σ(s, t) =

{
1 if Σ(s) ∩Σ(t) �= ∅
0 otherwise

4.2 Name-based techniques 89

This would consider that the similarity between author and writer is maximal (1.)
and that between author and creator is minimal (0.).

Example 4.23 (Synonymy). The synonymy similarity between illustrator, author, cre-
ator, Person, and writer is given by the following table:

illustrator

author
creator

Person
write

r

illustrator 1. 0. 0. 0. 0.
author 0. 1. 0. 0. 1.
creator 0. 0. 1. 0. 0.
Person 0. 0. 0. 1. 0.
writer 0. 1. 0. 0. 1.

This strict exploitation of synonyms does not allow analysis of how far non syn-
onymous objects are nor how close synonymous objects are. Since synonymy is a
relation, all the measures on the graph of relations can be used on WordNet syn-
onyms. Another measure computes the cosynonymy similarity.

Definition 4.24 (Cosynonymy similarity). Given two terms s and t and a synonym
resource Σ, the cosynonymy is a similarity σ : S× S → [0 1] such that:

σ(s, t) =
|Σ(s) ∩Σ(t)|
|Σ(s) ∪Σ(t)|

Example 4.25 (Cosynonymy similarity). The synonymy similarity between illustrator,
author, creator, Person, and writer is given by the following table:

illustrator

author
creator

Person
write

r

illustrator 1. 0. 0. 0. 0.
author 0. 1. 0. 0. .25
creator 0. 0. 1. 0. 0.
Person 0. 0. 0. 1. 0.
writer 0. .25 0. 0. 1.

Some elaborate measures take into account that the terms can be part of several
synsets and use a measure in the hyponym/hypernym hierarchy between synsets.
A simple measure, known as edge-count, counts the number of edges separating
two synsets in Σ (or the structural topological dissimilarity, see Sect. 4.3.2). More
elaborate measures weight edge count with the position of synsets in the hierarchy.
In particular, a measure developed specifically for WordNet is the one proposed by
Wu and Palmer. It is presented in Sect. 4.3.2 because the hierarchy is, in this respect,
similar to a class hierarchy. All measures defined in Sect. 4.3.2 can be used on the
WordNet hypernym graph.

Other measures rely on an information theoretic perspective. They are based on
the assumption that the most probable a concept, the less information it carries. So

90 4 Basic techniques

the information content of a concept is inverse to its probability of occurence. In the
similarity proposed in [Resnik, 1995, Resnik, 1999], each synset (c) is associated
with a probability of occurrence (π(c)) of an instance of the concept in a particular
corpus. Usually, π(c) is the the sum of the synset word occurrences divided by the
total number of concepts. This probability is obtained from a corpus study. It is such
that the more specific the concept, the lower its probability. The Resnik semantic
similarity between two terms is a function of the more general synset common to both
terms. It considers the maximum information content (or entropy), of the possible
such synsets, taken as the negation of the logarithm of the probability of occurence.

Definition 4.26 (Resnik semantic similarity). Given two terms s and t and a par-
tially ordered synonym resource Σ = 〈E,≤, λ〉 provided with a probability measure
π, Resnik semantic similarity is a similarity σ : S× S → [0 1] such that:

σ(s, t) = max
k;∃c,c′∈E;s∈c∧t∈c′∧c≤k∧c′≤k

(−log(π(k)))

We do not provide examples of corpus-based similarity because the results are
dependent on the corpus on which it is based (here for defining π). Examples of such
measures based on the Brown corpus7 are given in [Budanitsky and Hirst, 2006].

This measure uses the maximum, but one could have chosen instead an average
or a sum of all the pairs of synsets associated with the two terms.

Other information-theoretic similarities depend on the increase of the informa-
tion content measure from the terms to their common hypernyms instead of the
shared information content. This is the case in the Lin information-theoretic simi-
larity [Lin, 1998]. This method specifies the probabilistic degree of overlap between
two synsets:

Definition 4.27 (Information-theoretic similarity). Given two terms s and t and
a partially ordered synonym resource Σ = 〈E,≤, λ〉 provided with a probability π,
Lin information theoretic similarity is a similarity σ : S× S → [0 1] such that:

σ(s, t) = max
k;∃c,c′∈Σ;s∈c∧t∈c′∧c≤k∧c′≤k

2× log(π(k))
log(π(s)) + log(π(t))

These similarities are not normalised.
A final way to compare terms found in strings through a thesaurus, like WordNet,

is to use the definition (gloss) given to these terms in WordNet. In this case, any dic-
tionary entry s ∈ Σ is identified by the set of words corresponding to λ(s). Then any
measure defined in Sect. 4.2.1 can be used for comparing the strings [Lesk, 1986].

Definition 4.28 (Gloss overlap). Given a partially ordered synonym resource Σ =
〈R,≤, λ〉, the gloss overlap between two strings s and t is defined by the Jaccard
similarity between their glosses:

σ(s, t) =
|λ(s) ∩ λ(t)|
|λ(s) ∪ λ(t)|

7 http://nora.hd.uib.no/icame/

4.2 Name-based techniques 91

Example 4.29 (Gloss overlap). For computing the gloss overlap similarity between
illustrator, author, creator, Person, and writer, we used the following treatments: take
gloss for all senses and add the term name; suppress quotations (‘. . . ’); suppress
empty words (or, and, the, a, an, for, of, etc.); suppress technical vocabulary, e.g.,
‘term’; suppress empty phrases, e.g., ‘usually including’; keep categories, e.g., law;
stem words. The gloss of author is given in Example 4.21.

The results have been taken as sets (not bags, so there is no repetition) of words
and syntactically compared, yielding the following table:

illustrator

author
creator

Person
write

r

illustrator 1. 0.05 0.07 0. 0.02
author 0.05 1. 0. 0. 0.19
creator 0.07 0. 1. 0.06 0.02
Person 0. 0. 0.06 1. 0.04
writer 0.02 0.19 0.02 0.04 1.

This result is consistent with the previous measures since the only previously match-
ing pair (author-writer) is still the highest scorer. This measure introduces new rela-
tions such as creator-illustrator, but still does not find the (possible) relation between
creator and author. This is entirely related to the quality of glosses in WordNet.

Another example of building a matcher by using (WordNet) glosses includes
counting the number of occurrences of the label of the source input sense in the
gloss of the target input sense. If this number is equal to a threshold, e.g., 1, the
less general relation can be returned. The reason for returning the less general rela-
tion is due to a common pattern of defining terms in glosses through a more general
term. For example, in WordNet creator is defined as ‘a person who grows or makes
or invents things’. Thus, following this strategy we could find that creator � per-
son. Some other variations of gloss-based matchers include considering glosses of
the parent (children) nodes of the input senses in the WordNet is a (part of) hierar-
chy [Giunchiglia and Yatskevich, 2004]. The relations produced by these matchers
depend heavily on the context of the matching task, and therefore, these matchers
cannot be applied in all the cases [Giunchiglia et al., 2006c].

Summary on linguistic methods

Many methods presented in this section have been implemented in the Perl package8

WordNet::similarity [Pedersen et al., 2004] and the Java package SimPack9 (see Ta-
ble 4.3). They have been thoroughly compared in [Budanitsky and Hirst, 2006].

Linguistic resources, such as stemmers, part-of-speech taggers, lexicons, and the-
sauri are invaluable resources since they allow the interpretation of the terms used in
the expressions of ontologies. They provide a more accurate apprehension of these
labels.
8 http://wn-similarity.sourceforge.net/
9 http://www.ifi.unizh.ch/ddis/simpack.html

92 4 Basic techniques

Table 4.3. List of language measures based on WordNet and available in the wn-similarity
Perl package and the SimPack Java package (some measures have not been presented yet).

WordNet::similarity SimPack
Resnik Resnik

Jiang–Conrath (1997)
Lin Lin

Leacock–Chodorow Leacock–Chodorow
Hirst–St.Onge ([Saint-Onge, 1995])

Edge count Edge count
Wu–Palmer Wu–Palmer

Extended Gloss Overlap
Vector on gloss

However, whenever the adequate resources are available for some language, they
mainly open new possible matches between entities because they recognise that two
terms can denote the same concept. Unfortunately, since they also recognise that
the same term may denote several concepts at once, these techniques provide many
possible matches from which to choose.

One way to choose among these representations is to take into account the struc-
ture of ontology entities in order to select the most coherent matches.

4.3 Structure-based techniques

The structure of entities that can be found in ontologies can be compared, instead of
or in addition to comparing their names or identifiers.

This comparison can be subdivided into a comparison of the internal structure of
an entity, i.e., besides its name and annotations, its properties or, in the case of OWL
ontologies, the properties which take their values in a datatype, or the comparison
of the entity with other entities to which it is related. The former is called internal
(§4.3.1) and the latter is called relational structure (§4.3.2). The internal structure is
the definition of entities without reference to other entities; the relational structure
is the set of relations that an entity has with other entities. As expected, the internal
structure is primarily exploited in database schema matching, while the relational
structure is more important in matching formal ontologies and semantic networks.

4.3.1 Internal structure

Internal structure based methods are sometimes referred to as constraint-based ap-
proaches in the literature [Rahm and Bernstein, 2001]. These methods are based on
the internal structure of entities and use such criteria as the set of their properties,
the range of their properties (attributes and relations), their cardinality or multiplic-
ity, and the transitivity or symmetry of their properties to calculate the similarity
between them.

4.3 Structure-based techniques 93

Entities with comparable internal structures or properties with similar domains
and ranges in two ontologies can be numerous. For that reason, these kinds of meth-
ods are commonly used to create correspondence clusters rather than to discover
accurate correspondences between entities. They are usually combined with other
element-level techniques, such as terminological methods, and are responsible for
reducing the number of candidate correspondences. They can be used with other ap-
proaches as a preprocessing step to eliminate most of the properties that are clearly
incompatible.

For illustrating these methods we consider the properties associated with the
Product and Volume entities in the example of Fig. 4.2 (the expected correspondences
are given in Fig. 2.9, p. 48).

Product

price
name
id
creator
topic

Volume

year
author

title
isbn

integer

string

uri

1..1

1..*

1..1
0..*

1..1

1..1

1..1

Fig. 4.2. Two sets of properties to be compared.

If we start from the elements of Fig. 4.2, there is no chance that pure terminolog-
ical similarity methods find them very similar, though year and creator may appear
the same to some edit distance methods. A linguistic method may be better able to
find a relationship between creator and author.

Comparing the internal structure of ontology entities amounts to comparing their
properties and composing the obtained result: the system can evaluate the similar-
ity between all components considered next (names, keys, datatypes, domains, car-
dinalities) or multiplicities and combine the results. The combination operation is
considered in Sect. 5.2, we focus here on the elementary comparison.

Property comparison and keys

In database schemas, unlike in formal ontologies, tables are provided with keys: a
combination of properties whose values uniquely identify an object. For a Book, it
would typically be the international standard book number (isbn), for a Person it can
be his or her name, birth place and date.

This information is primarily very useful for recognising that two individuals are
the same. Thus, keys are mostly used in extensional methods as a means to identify
individuals and then apply methods on common set of instances (§4.4).

However keys can also be used for identifying classes: two classes identified in
the same way are likely to represent the same set of objects. Moreover, even if two
schemas use different keys for the same class, e.g., identifying Person with a social

94 4 Basic techniques

security number, there can be secondary keys that perform the same functions, e.g.,
that the social security number is also considered a key in the other class. So, when
provided with keys, if they are highly compatible (similar names and types), it is
plausible that the classes are equivalent.

For instance, if Product has id as a key and Volume has isbn as a key, it can be
considered that these properties should correspond in case where the classes are the
same. This can be considered possible because both properties have the same type
(uri).

Datatype comparison

Property comparison involves comparing the property datatype (in OWL, this can be
the range of the relation or a Restriction applied to the property in the class). Contrary
to objects that require interpretations, datatypes can be considered objectively and it
is possible to determine how close a datatype is to another (ideally this can be based
on the interpretation of datatypes as sets of values and the set-theoretic comparison
of these datatypes [Valtchev, 1999, Valtchev and Euzenat, 1997]).

We distinguish here between a datatype, which corresponds to the way the val-
ues are stored in a computer (like integer, float, string or uri), and a domain, which
characterises a subset of a particular datatype (like [10 12] or ‘*book’). Datatypes are
considered here and domains are addressed in the next section.

Datatypes are not fully disjoint, though there are rules by which an object of one
type can be thought of as an object of another type and rules by which a value of
some type can be converted in the memory representation of another type (known as
casting in programming languages).

Ideally, the proximity between datatypes should be maximal when these are the
same types, lower when the types are compatible (for instance, integer and float are
compatible since they can be cast one into the other) and the lowest when they are
non compatible. In addition, domain comparison should ideally be based on datatype
comparison and the comparison of the sets of values covered by these domains. The
compatibility between property datatypes can be assessed by using an underlying
table lookup. An example of a part of such a table is given in Table 4.4.

Table 4.4. Part of a datatype compatibility table.

char fixed enumeration int number string
string 0.7 0.4 0.7 0.4 0.5 1.0
number 0.6 0.9 0.0 0.9 1.0 0.5

Such a table can be extracted, for languages like OWL, from the type hierar-
chy of XML Schema datatypes (see Fig. 4.3). In the example of Fig. 4.2, it can be
considered that since a uri is a subclass of string, the isbn may be related to name.

Example 4.30 (Datatype comparison). In the example of Fig. 4.2, data type compar-
ison would let us match price with year, both name and topics with title, and id with

4.3 Structure-based techniques 95

integer

nonPositiveInteger

negativeInteger

long

int

short

byte

nonNegativeInteger

unsignedLong

unsignedInt

unsignedShort

unsignedByte

positiveInteger

Fig. 4.3. Fragment of the XML Schema datatype hierarchy [Biron and Malhotra (ed.), 2004].

isbn. creator and author are left aside because they are object-valued properties. This
comparison yields interesting results since it finds the expected matches. However, it
also finds incorrect ones (price-year and topics-title) so these methods cannot be used
in isolation.

Domain comparison

Depending on the entities to be considered, what can be reached from a property
can be different: in classes these are domains while in individuals these are values.
Moreover, they can be structured in sets or sequences. It is thus important to consider
this fact in the comparison.

[Valtchev, 1999] proposes a framework in which the types or domains of proper-
ties must be compared on the basis of their interpretations: sets of values. Type com-
parison is based on their respective size, in which the size of a type is the cardinality
or multiplicity of the set of values it defines. The distance between two domains is
then given by the difference between their size and that of their common generalisa-
tion. This measure is usually normalised by the size of the largest possible distance
attached to a particular datatype. We give here an instance of this type of measure.

Definition 4.31 (Relative size distance). Given two domain expressions e and e′

over a datatype τ , the relative size distance δ : 2τ × 2τ → [0 1], is as follows:

δ(e, e′) =
|genτ (e ∨ e′)| − |genτ (e ∧ e′)|

|τ | ,

such that genτ (.) provides the generalisation of a type expression and ∨ and ∧ cor-
respond to the union and intersection of the types.

Example 4.32 (Relative size distance). Consider a property age in one class to be
compared with the property age of three other classes (schoolchild, teenager and
grown-up). The first property has a domain of [6 12], while the others have respective

96 4 Basic techniques

domains expressed by: [7 14], [14 22] and ≥ 10. All these properties have datatype
integer. The generalisation of these four domains are the domains themselves, the
union with [6 12] is respectively [6 14], [6 22], [6 +∞[, and the intersection is re-
spectively [7 12], ∅, and [10 12]. As a consequence, the distance will be respectively
3/|τ |, 17/|τ | and |τ |−3/|τ |. This corresponds to some intuition that the distance be-
tween domains depends on the difference between the values they cover in isolation
and in common.

There are three advantages of this measure. The most obvious one is that it is
normalised. The second one is that it is totally general (it is not expressed in terms
of integers). The third one is that it can easily be mapped to the usual measures that
are often used.

Usually, a common generalisation depends on the type: it is a set for enumerated
types and an interval for ordered types (it can also be a set of intervals). In the case
of dense types, the size of a domain is the usual measure of its size (Euclidean dis-
tance can be used for real or floating point numbers). The case of infinite types has
to be taken adequately (by evaluating the largest possible domain in a computer or
by normalising with regard to the actual corpus) [Valtchev, 1999]. Normalising over
the largest distance in the corpus, if possible, is often a good idea. Indeed, it is not
reasonable, for example, to normalise the age of people with that of planets or their
size even if they use the same unit. Another advantage of this framework is that it en-
compasses value comparisons which can be considered as singletons and compared
with domains if necessary.

Comparing multiplicities and properties

Properties can be constrained by multiplicities (as they are called in UML). Multi-
plicities are the acceptable cardinalities of the set of values of a property (for a given
object). Similar to compatibilities between datatypes, compatibility between cardi-
nalities can be established based on a table look-up. An example of such a table for
DTDs is given in Table 4.5, following the work in [Lee et al., 2002].

Table 4.5. A cardinality compatibility table.

* + ? none
* 1.0 0.9 0.7 0.7
+ 0.9 1.0 0.7 0.7
? 0.7 0.7 1.0 0.8

none 0.7 0.7 0.8 1.0

In OWL, cardinalities or multiplicities are expressed through the minCardinality,
maxCardinality and cardinality restrictions. Multiplicities can be expressed as an in-
terval of the set of positive integers [0 +∞[. As such they are domains of the integer

4.3 Structure-based techniques 97

type. Two multiplicities are compatible if the intersection of the corresponding inter-
vals is non empty. Any measure on the integer datatype can be used for assessing the
similarity between multiplicities (see previous paragraph). However, in this case we
choose a simpler distance inspired from the Jaccard similarity.

Values can be collected by a particular construction (set, list, multiset) on which
cardinality constraints are applied. Again, it is possible to compare these constructed
datatypes by comparing (i) the datatypes on which they are constructed and (ii)
the cardinalities that are applied to them. For instance, sets of 2 and 3 children are
closer to a set of 3 people than to a set of 10–12 flowers (if children are people). This
technique is used in [Euzenat and Valtchev, 2004].

Definition 4.33 (Multiplicity similarity). Given two multiplicity expressions [b e]
and [b′ e′], the multiplicity similarity is a similarity between non negative integer
intervals σ : 2τ × 2τ → [0 1], such that:

σ([b e], [b′ e′]) =

⎧⎨
⎩

0 if b′ > e or b > e′

min(e, e′)−max(b, b′)
max(e, e′)−min(b, b′)

otherwise

For instance, if we have to compare multiplicity [0 6] with [2 8], [8 12] and
[0 +∞], the comparison will respectively yield .5, 0. and 6/MAXINT (the latter is
very low but remains non null because it is compatible with the initial multiplicity).

Example 4.34 (Multiplicity comparison). In the example of Fig. 4.2, multiplicity
comparison can be used to further match id with isbn because they will both have
a cardinality of [1 1] and, unfortunately, will match price with year as well. However,
is can also be used to prefer matching name rather than topic to title because they
have the same multiplicities ([1 +∞] instead of [0 +∞]).

Other features

Other internal structural factors have been considered in database schema match-
ing. Since these are internal features, they can be very dependent on the knowledge
model. For example, the work in [Navathe and Buneman, 1986] discusses such addi-
tional property characteristics as uniqueness, static semantic integrity constraints, dy-
namic semantic integrity constraints, security constraints, allowable operations and
scale.

It is also possible in some languages to consider collection constructors, e.g., Set,
List, Bag or multiset, Array, and their compatibility. It is then necessary to compare
sets or lists of objects, e.g., the sequence of topics or the set of authors of a Book.
In this case, general techniques can be used for assessing the similarity or distance
between these sets depending on the similarity applying to the type of their elements.
Concerning sets, these methods will be presented in Sect. 4.4.1 in the context of
extension comparison. Concerning sequences, they can be adapted from some of the
measures that have been presented in Sect. 4.2.1 which have considered strings as

98 4 Basic techniques

sequences of characters and paths as sequences of strings. In addition, Sect. 5.3.2
explains how to compare sets of objects with similarities.

In [Ehrig and Sure, 2004], it is proposed that the definition of a set of rules can be
used for determining similarity between ontology entities. They point out that some
features from OWL related to internal structure, such as symmetry and restrictions
of values, could be used, but are discarded at the moment, as they do not have any
wide distribution.

Summary on internal structure

Internal structure, including the names of entities, is very important for matching be-
cause it provides a basis on which algorithms can rely. The techniques for comparing
them are efficient and easy to implement.

However, the internal structure does not provide much information on the entities
to compare: many very different types of objects can have properties with the same
datatypes. On the one hand, they can be used for eliminating incompatible corre-
spondences and promoting compatible ones. On the other hand, it is always possible
that different models of a concept use different, and incompatible, types. For these
reasons, internal structure comparisons must always be used jointly with other tech-
niques.

4.3.2 Relational structure

An ontology can be considered to be a graph whose edges are labelled by rela-
tion names (mathematically speaking, this is the graph of the multiple relations of
the ontology: ≤, ∈, ⊥, :, =). Finding the correspondences between elements of
such graphs corresponds to solving a form of the graph homomorphism problem
[Garey and Johnson, 1979]. Namely it can be related to finding a maximum com-
mon directed subgraph.

Definition 4.35 (Maximum common directed subgraph problem). Given two di-
rected graphs G = 〈V,E〉 and G′ = 〈V ′, E′〉, does there exist F ⊆ E and F ′ ⊆ E′

and a pair of functions f : V → V ′ and f−1 : V ′ → V such that:

– ∀〈u, v〉 ∈ E|F , 〈f(u), f(v)〉 ∈ E′|F ′ ;
– ∀〈u′, v′〉 ∈ E′|F ′ , 〈f−1(u′), f−1(v′)〉 ∈ E|F ;
– ∀u ∈ V |F , f−1(f(u)) = u;
– ∀u′ ∈ V ′|F ′ , f(f−1(u′)) = u′;
– there is no other F ⊆ H ⊆ E and F ′ ⊆ H ′ ⊆ E′ satisfying these properties.

Note that graph matching is another type of problem which is presented in
Sect. 5.7.3.

In ontology matching, the problem is encoded as an optimisation problem (find-
ing the isomorphic subgraphs minimising some distance like the dissimilarity be-
tween matched objects or maximising similarity). These subgraphs do not have to

4.3 Structure-based techniques 99

be maximal. Moreover, the problem is very often adapted for multipartite graphs
separating classes from properties.

The similarity comparison between two entities from two ontologies can be based
on the relations of these entities with the other entities in the ontologies: the more two
entities are similar, the more their related entities should be alike. This remark can
be exploited in several ways depending on the kind of relations considered. More-
over, given the transitive nature of some relations, it is natural to extend this remark
through transitivity. Roughly, for each pair of relations, we can come up with 5 dif-
ferent ways of comparing the relations [Euzenat et al., 2004a]:

r comparing the entities in direct relation through r;
r− comparing the entities in the transitive reduction of relation r;
r+ comparing the entities in the transitive closure of relation r;
r−1comparing the entities coming through a relation r;
r ↑ comparing entities which are ultimately in r+ (the maximal elements of the clo-

sure).

These relations are exemplified as follows:

Example 4.36 (Exploiting relations in an ontology). Given the left-hand ontology of
Fig. 2.7, the relations based on subClass from Book are as follows:

subclass(Book) = subclass−(Book) ={Science, Pocket, Children}
subclass+(Book) ={Science, Pocket, Textbook, Popular, Children}

subclass−1(Book) ={Product}
subclass ↑ (Book) ={Textbook, Popular, Pocket, Children}

Table 4.6 displays the different ways of comparing two ontology entities based
on their relations with other entities. Of course, an approach can combine sev-
eral of the above criteria [Mädche and Staab, 2002, Euzenat and Valtchev, 2004,
Bach et al., 2004].

As can be observed from Table 4.6, some features have type String and can be
compared with the techniques proposed in Sect. 4.2.1. However, those with type
Class or Property really induce a graph structure. Moreover, the values which are
labelled by Set(·) are more difficult to deal with because this means that many edges
labelled by the feature will appear in the graph. The last part of the table is, in fact,
relevant to the extensional methods that will be presented in Sect. 4.4.

There are three types of relations that have been considered so far in relational
structure techniques: taxonomic relations, mereologic relations and all the involved
relations. These are considered below.

Taxonomic structure

The taxonomic structure, i.e., the graph made with the subClassOf relation, is the
backbone of ontologies. For this reason, it has been studied in detail by researchers
and is very often used as a comparison source for matching classes.

100 4 Basic techniques

Table 4.6. Features on which comparison of ontology entities can be made. The table reads:
Two Entities are similar if their Features are similar. This table is an adapted version of tables
reported in [Ehrig, 2007], [Euzenat et al., 2004a] and [Euzenat and Valtchev, 2004].

Entity Feature OWL Type
Class name rdf:label String

id rdf:ID String
comments rdf:comment String
same classes owl:sameClassAs Set(Class)
properties property Set(Property)
ultimate properties property↑ Set(Property)
direct superclasses owl:subClassOf− Set(Class)
direct subclasses owl:subClassOf−1− Set(Class)
superclasses owl:subClassOf∗ Set(Class)
subclasses owl:subClassOf−1∗ Set(Class)
ultimate subclasses owl:subClassOf−1 ↑ Set(Class)
direct instances rdf:type−1∗ Set(Individual)
instances rdf:type−1− Set(Individual)

Property name rdf:label String
id rdf:ID String
comments rdf:comment String
same properties owl:samePropertyAs Set(Property)
domain/range rdfs:domain/rdfs:range Class
direct superproperties rdfs:subProperty− Set(Property)
direct subproperties rdfs:subProperty−1− Set(Property)
superproperties rdfs:subProperty∗ Set(Property)
subproperties rdfs:subProperty−1∗ Set(Property)

Individual name rdf:label String
id rdf:ID String
comments rdf:comment String
same individuals owl:sameAs Set(Instance)
direct classes rdf:type− Set(Class)
classes rdf:type∗ Set(Class)
properties property Set(Property)

There have been several measures proposed for comparing classes based on the
taxonomic structure. The most common ones are based on counting the number of
edges in the taxonomy between two classes. The structural topological dissimilar-
ity on a hierarchy [Valtchev and Euzenat, 1997] follows the graph distance, i.e., the
shortest path distance in a graph taken here as the transitive reduction of the hierar-
chy.

Definition 4.37 (Structural topological dissimilarity on hierarchies). The struc-
tural topological dissimilarity δ : o × o → R is a dissimilarity over a hierarchy
H = 〈o,≤〉, such that:

∀e, e′ ∈ o, δ(e, e′) = min
c∈o

[δ(e, c) + δ(e′, c)]

4.3 Structure-based techniques 101

where δ(e, c) is the number of intermediate edges between an element e and another
element c.

This corresponds to the unit tree distance of [Barthélemy and Guénoche, 1992],
i.e., with weight 1 on each edge. This function can be normalised by the maximal
length of a path between two classes in the taxonomy:

δ(e, e′) =
δ(e, e′)

maxc,c′∈o δ(c, c′)

Example 4.38 (Structural topological dissimilarity). We provide the examples of this
section based on the taxonomy in Fig. 4.1. We consider that each term corresponds
to a class (all senses are considered together) and there exists a top of the hierarchy
(on top of Person, litterate, legal document and God).

illustrator

author
creator

Person
write

r

illustrator 0. .8 .4. .6 1.
author .8 0. .4 .6 0.
creator .4 .4 0. .2 .6
Person .6 .6 .2 0. .4
writer 1. 0. .6 .4 0.

Again, this corroborates the WordNet data that the closest classes are writer and au-
thor.

The results given by such a measure are not always semantically relevant since a
long path in a class hierarchy can often be summarised as an alternative short one.

A similar measure is the one of Leacock–Chodorow [Leacock et al., 1998] which
is function of the length of the shortest path. It has been introduced for lexicographic
taxonomies (§4.2.2). A more elaborate distance of this kind is known as the Wu–
Palmer similarity [Wu and Palmer, 1994]. This distance takes into account the fact
that two classes near the root of a hierarchy are close to each other in terms of edges
but can be very different conceptually, while two classes under one of them which
are separated by a larger number of edges should be closer conceptually.

Definition 4.39 (Wu–Palmer similarity). The Wu–Palmer similarity σ : o×o→ R

is a similarity over a hierarchy H = 〈o,≤〉, such that:

σ(c, c′) =
2× δ(c ∧ c′, ρ)

δ(c, c ∧ c′) + δ(c′, c ∧ c′) + 2× δ(c ∧ c′, ρ)

where ρ is the root of the hierarchy, δ(c, c′) is the number of intermediate edges
between a class c and another class c′ and c ∧ c′ = {c′′ ∈ o; c ≤ c′′ ∧ c′ ≤ c′′}.

Example 4.40 (Wu–Palmer similarity). The Wu–Palmer similarity also provides a
figure in coherence with WordNet structure.

102 4 Basic techniques

illustrator

author
creator

Person
write

r

illustrator 1. .5 .67 .4 .29
author .5 1. .67 .4 1.
creator .67 .67 1. .67 .4
Person .4 0.4 .67 1. .5
writer .29 1. .4 .5 1.

The upward cotopic similarity applies the Jaccard similarity to cotopies. It has
been described in [Mädche and Zacharias, 2002] and is as follows:

Definition 4.41 (Upward cotopic similarity). The upward cotopic similarity σ :
o× o→ R is a similarity over a hierarchy H = 〈o,≤〉, such that:

σ(c, c′) =
|UC(c,H) ∩ UC(c′, H)|
|UC(c,H) ∪ UC(c′, H)|

where UC(c,H) = {c′ ∈ H; c ≤ c′} is the set of superclasses of c.

Example 4.42 (Upward cotopic similarity). In this case, because all senses count in
the cotopy (and not the closest one in terms of path), the result is different from other
measures: creator benefits from its position as a superclass of author and illustrator for
scoring better than the usual writer-creator pair because they have too many unrelated
senses.

illustrator

author
creator

Person
write

r

illustrator 1. .37 .43 .4 .18
author .37 1. .43 .29 .36
creator .43 .43 1. .4 .18
Person .4 .29 .4 1. .25
writer .18 .36 .18 .25 1.

These measures cannot be applied as they are in the context of ontology matching
since the ontologies are not supposed to share the same taxonomy H , but this can
be used in conjunction with a resource of common knowledge, such as WordNet.
For that purpose, it is necessary to develop these kinds of measures over a pair of
ontologies. In [Valtchev, 1999, Euzenat and Valtchev, 2004], this amounts to using a
(local) matching between the elements to be compared (for instance, the hierarchies).

Beside these global measures that take into account the whole taxonomy for as-
sessing the similarity between classes, there are non global measures that have been
used in the ontology matching contexts. These measures usually take advantage of
the ‘direct’ part of Table 4.6. Below are some of these measures:

Super or subclass rules: These matchers are based on rules capturing the intuition
that classes are similar if their super or subclasses are similar. For example, if su-
perclasses are the same, the actual classes are similar to each other. If subclasses

4.3 Structure-based techniques 103

are the same, the compared classes are also similar [Dieng and Hug, 1998,
Ehrig and Sure, 2004]. This technique has at least two drawbacks: (i) when there
are several sub or superclasses, then, without care, they would all be mapped into
the same one, so it is necessary to have some other discriminating features, and
(ii) the similarity between the sub or super classes will rely in turn on that of
their super or subclasses. This turns this problem into yet another global similar-
ity problem.

Bounded path matching: Bounded path matchers take two paths with links be-
tween classes defined by the hierarchical relations, compare terms and their po-
sitions along these paths, and identify similar terms. This technique has been
introduced in Anchor-Prompt (§6.1.9). For example, in Fig. 2.9, if Book corre-
sponds to Volume and Popular corresponds to Autobiography, then the elements
along the paths (Science on one side and Biography and Essay on the other side)
must be carefully considered for correspondence. For instance, for deciding that
Essay is more general than Science. This technique is primarily guided by two
anchors of paths and uses alternative techniques for choosing the best match.

Mereologic structure

The second well known structure after the taxonomic structure is the mereologic
structure, i.e., the structure corresponding to a part-of relationship. The difficulty for
dealing with this kind of structure is that it is not easy to find the properties which
carry a mereologic structure. For example, a class Proceedings can have some whole-
part relations with a class InProceedings, but it will be expressed through a property
communications. These InProceedings objects will in turn have a mereologic struc-
ture which is expressed through sections property.

However, if it is possible to detect the relations that support the part-of structure,
this can be then used for computing similarity between classes: they will be more
similar if they share similar parts. This is even more useful when comparing exten-
sions of classes because it can be inferred that objects sharing the same set of parts
will be the same.

Relations

Beside two previous kinds of relations, one can consider the general problem of
matching entities based on all their relations. Classes are also related through the
definitions of their properties (like author and creator in Fig. 4.2). These properties
are also edges of a graph and if they are found similar, they can be used for finding
that classes are similar. However, contrary to taxonomic and mereologic structures,
the relation graph can contain circuits. How to handle these will be considered in
Sect. 5.3. We consider here similarities.

The similarity between nodes can also be based on their relations. For example,
in one of the possible ontology representations of schemas of Fig. 2.7, if the Book
class is related to the Human class by the author relation in one ontology, and if the

104 4 Basic techniques

Volume class is related to the Writer class by the author relation in the other ontology,
then knowing that classes Book and Volumes are similar, and that relations author
and author are similar, we can infer that Human and Writer may be similar too. The
similarity among relations in [Mädche and Staab, 2002] is computed according to
this principle.

This can be applied to a set of classes and a set of relations. It means that if we
have a set of relations r1 . . . rn in the first ontology which are similar to another set
of relations r′1 . . . r′n in the second ontology, it is possible that two classes, which are
the domains of relations in those two sets, are similar too.

This principle can also be extended to the composition of relations, i.e., instead of
considering only the relations asserted at a class, one can consider their composition
with relations starting at the domain of this relation. For instance, instead of consid-
ering the author relation, one will consider the author·firstname, the author·lastname,
or the author·nationality relations.

One of the problems of this approach is that it is based on the use of similar-
ity of relations to infer the similarity of their domain classes or their range classes.
This introduces circularity in the computation of similarity. There are several ways
to overcome this circularity. As a first alternative, the similarity on relations can
be based on their labels using techniques developed in Sect. 4.2.1. As a second al-
ternative, if relations are organised in a taxonomy, then methods considered in the
previous subsection can be used as well.

Finally, two extreme solutions, that use the relations for reaching nodes but not
for actually matching, are considered by the following approaches:

Children. The similarity between nodes of the graph is computed based on similar-
ity of their children nodes, that is, two non leaf entities are structurally similar if
their immediate children sets are highly similar. A more complex version of this
matcher is implemented in [Do and Rahm, 2002].

Leaves. The similarity between nodes of the graphs is computed based on similar-
ity of leaf nodes, that is, two non leaf schema elements are structurally simi-
lar if their leaf sets are highly similar, even if their immediate children are not
[Madhavan et al., 2001, Do and Rahm, 2002]. This is very well adapted to com-
paring document schemas.

Summary on relational structure

Matching ontologies from their relational (or external) structure is very powerful be-
cause it allows all the relations between entities to be taken into account. This must
be grounded on other tangible properties, which is why it is often used in combina-
tion with internal structural methods and terminological methods.

It is worth considering what are the important relations before using such tech-
niques. The most commonly used structure is the taxonomy because it is the back-
bone of ontologies and has usually received a lot of attention from designers. In some
fields, the mereology relations are as important as taxonomic ones. However, they are
difficult to identify because contrary to the subClass relation, they can bear any other
name.

4.4 Extensional techniques 105

The relational structure raises the problem of which part influences what: there
is usually a mutual influence between each of the related parts. This is the reason
why, beside the similarity equations used for comparing the entities, it is necessary
to have an iterative algorithm. This is considered in Sect. 5.3.

4.4 Extensional techniques

When individual representations (or instances) are available, there is a very good
opportunity for matching systems. When two ontologies share the same set of in-
dividuals, matching is highly facilitated. For example, if two classes share exactly
the same set of individuals, then there can be a strong presumption that these classes
represent a correct match.

Even when classes do not share the same set of individuals, these allow the
grounding of the matching process on tangible indices which do not change easily.
For instance, titles of Books do not have any reason to change. So if titles of Books
are different, then these are most certainly not the same books. Then, matching can
be again based on individual comparisons.

We thus divide extensional methods into three categories: those which apply to
ontologies with common instance sets, those which propose individual identification
techniques, before using the previous ones, and those which do not require identifi-
cation, i.e., which work on heterogeneous sets of instances.

4.4.1 Common extension comparison

The easiest way to compare classes when they share instances is to test the intersec-
tion of their instance set A and B and to consider that these classes are very similar
when A∩B = A = B, more general when A∩B = B or A∩B = A. The work in
[Larson et al., 1989, Sheth et al., 1988] discussed how relationships and entity sets
can be integrated primarily based on the set relations: equal (A ∩ B = A = B),
contains (A ∩ B = A), contained-in (A ∩ B = B), disjoint (A ∩ B = ∅) and over-
lap. The problem is the ability to handle faults: small amounts of incorrect data may
lead the system to draw a wrong conclusion on domain relationships. Moreover, the
dissimilarity has to be 1 when none of these cases apply: for instance, if the classes
have some instances in common but not all.

A way to refine this is to use the Hamming distance between two extensions: it
corresponds to the size of the symmetric difference normalised by the size of the
union.

Definition 4.43 (Hamming distance). The Hamming distance between two sets is
a disimilarity function δ : 2E × 2E → R such that ∀x, y ⊆ E:

δ(x, y) =
|x ∪ y − x ∩ y|

|x ∪ y|

106 4 Basic techniques

This version of the symmetric difference is normalised. Using such a distance in
comparing sets is more robust than using equality: it tolerates some individuals being
misclassified and can still produce a short distance.

It is also possible to compute a similarity based on the probabilistic interpretation
of the set of instances. This is the case of the Jaccard similarity [Jaccard, 1901].

Definition 4.44 (Jaccard similarity). Given two sets A and B, let P (X) be the
probability of a random instance to be in the set X . The Jaccard similarity is defined
as follows:

σ(A,B) =
P (A ∩B)
P (A ∪B)

This measure is normalised and reaches 0 when A ∩ B = ∅ and 1 when A = B. It
can be used with two classes of different ontologies sharing the same set of instances.

Formal concept analysis

One of the tools of formal concept analysis (FCA) [Ganter and Wille, 1999] is the
computation of the concept lattice. The idea behind formal concept analysis is the
duality between a set of objects (here the individuals) and their properties: the more
properties are constrained, the fewer objects satisfy the constraints. So a set of ob-
jects with properties can be organised in a lattice of concepts covering these objects.
Each concept can be identified by its properties (the intent) and covers the individual
satisfying these properties (the extent).

In ontology matching, the properties can simply be the classes to which the in-
dividuals are known to belong and the technique is independent from the origin of
the entities, i.e., whether they come from the same ontology or not. From this data
set, formal concept analysis computes the concept lattice (or Galois lattice). This is
performed by computing the closure of the instances×properties Galois connection.
This operation starts with the complete lattice of the power set of extent (respec-
tively, intent) and keeps only the nodes which are closed under the connection, i.e.,
starting with a set of properties, it determines the corresponding set of individuals,
which itself provides a corresponding set of properties; if this set is the initial one,
then it is closed and is preserved, otherwise, the node is discarded. The result is a
concept lattice, like the one computed in Fig. 4.4 from the table.

For instance, let us start with the table of Fig. 4.4. The table displays a small set of
instances and the classes they belong to (from both ontologies). The right-hand side
of Fig. 4.4 displays the corresponding concept lattice. From this lattice the following
correspondences can be extracted:

Science = Essay Science ≥ Biography Essay ≥ Popular

Science ≥ Autobiography Popular = Biography Popular = Autobiography

Literature ≥ Pocket Novel = Pocket

The result is not accurate. However, it is possible to weight these results by first
eliminating the redundant correspondences and by providing a confidence according
to the size of the extent covered by the correspondence.

4.4 Extensional techniques 107

B
oo

k
S

ci
en

ce
Po

pu
la

r
Po

ck
et

E
ss

ay
B

io
gr

ap
hy

A
ut

ob
io

gr
ap

hy
Li

te
ra

tu
re

N
ov

el
Po

et
ry

My life
√ √ √ √ √ √

Logic
√ √ √

La chute
√ √ √ √

Mes propriétés
√ √ √

Book

Science
Essay
Logic

Popular
Biography

Autobiography
My Life

Literature

Novel
Pocket
La chute

Poetry
Mes

propriétés

Fig. 4.4. A ‘formal context’ and the corresponding concept lattice.

4.4.2 Instance identification techniques

If a common set of instances does not exist, it is possible to try to identify which
instance from one set corresponds to which other instance from the other set. This
method is usable when one knows that the instances are the same. This works, for
example, when integrating, two human resource databases of the same company, but
does not apply for those of different companies or for databases of events which have
no relations.

A first natural technique for identifying instances is to take advantage of keys in
databases. Keys can be either internal to the database, i.e., generated unique surro-
gates, in which case they are not very useful for identification, or external identifica-
tion, in which case there is high probability that these identification keys are present
in both data sets (even if they are not present as keys). In such a case, if they are used
as keys, we can be sure that they uniquely identify an individual (like isbn).

When keys are not available, or they are different, other approaches to determine
property correspondences use instance data to compare property values. In databases,
this technique has been known as record linkage [Fellegi and Sunter, 1969,
Elfeky et al., 2002] or object identification [Lim et al., 1993]. They aim at identify-
ing multiple representations of the same object within a set of objects. They are usu-
ally based on string-based and internal structure-based techniques (§4.2 and §4.3.1).

If values are not precisely the same but their distributions can be compared, it is
possible to apply global techniques. This case is covered in the next section.

4.4.3 Disjoint extension comparison

When it is not possible to directly infer a dataset common to both ontologies, it is
easier to use approximate techniques for comparing class extensions. These methods
can be based on statistical measures about the features of class members, on the
similarities computed between instances of classes or based on a matching between
entity sets.

108 4 Basic techniques

Statistical approach

The instance data can be used to compute some statistics about the property values
found in instances, such as maximum, minimum, mean, variance, existence of null
values, existence of decimals, scale, precision, grouping, and number of segments.
This allows the characterising of the domains of class properties (§4.3.1) from the
data. In practice, if dealing with statistically representative samples, these measures
should be the same for two equivalent classes of different ontologies.

Example 4.45 (Statistical matching). Consider two ontologies with instances. The
analysis of numerical properties size and weight in one ontology and hauteur and
poids in the other reveals that they have different average values but the same coef-
ficient of variation, i.e., standard deviation divided by mean, which, in turn, reveals
comparable variability of size and hauteur on the one hand and weight and poids on
the other hand. This is typically what happens when values are expressed in different
units. The ratio of average values of size/hauteur is 2.54 and that of weight/poids is
28.35.

These values have been established based on the whole population. They can be
used for comparing the statistical characteristics of these properties in the classes of
the ontologies. For instance, the average value of the size property for the Pocket
class significantly differs from that of the global population and, once divided by
28.35, is very close to that of the Livredepoche class (also differing from the whole
population in the same manner). Hence, these two classes could be considered as
similar.

Other approaches, like [Li and Clifton, 1994], propose methods that utilise data
patterns and distributions instead of data values and domains. The result is a bet-
ter fault tolerance and a lower time-consumption since only a small portion of data
values are needed due to the employment of data sampling techniques. In general, ap-
plying internal structure methods to instances allows a more precise characterisation
of the actual contents of schema elements, thus, more accurately determining corre-
sponding datatypes based, for example, on the discovered value ranges and character
patterns.

These methods have, however, one prerequisite: they work better if the corre-
spondences between properties are known (otherwise they could match different
properties on the basis of their domain). This is already a matching problem to be
solved.

Similarity-based extension comparison

Similarity-based techniques do not require the classes to share the same set of in-
stances, though they can still be applied in that case. In particular, the methods based
on common extensions always return 0 when the two classes do not share any in-
stances, disregarding the distance between the elements of the sets. In some cases, it
is preferable to compare the sets of instances. This requires a (dis)similarity measure
between the instances that can be obtained with the other basic methods.

4.4 Extensional techniques 109

In data analysis, the linkage aggregation methods allow the assessment of the
distance between two sets whose objects are only similar. They thus allow us to
compare two classes on the basis of their instances.

Definition 4.46 (Single linkage). Given a dissimilarity function δ : E×E → R, the
single linkage measure between two sets is a disimilarity function ∆ : 2E ×2E → R

such that ∀x, y ⊆ E, ∆(x, y) = min(e,e′)∈x×y δ(e, e′).

Definition 4.47 (Full linkage). Given a dissimilarity function δ : E × E → R, the
complete linkage measure between two sets is a disimilarity function ∆ : 2E×2E →
R such that ∀x, y ⊆ E, ∆(x, y) = max(e,e′)∈x×y δ(e, e′).

Definition 4.48 (Average linkage). Given a dissimilarity function δ : E × E → R,
the average linkage measure between two sets is a disimilarity function ∆ : 2E ×
2E → R such that ∀x, y ⊆ E, ∆(x, y) =

P
(e,e′)∈x×y δ(e,e′)

|x|×|y| .

Other linkage measures have been defined. Each of these methods has its own
benefits, e.g., maximising shortest distance, minimising longest distance, minimis-
ing average distance. Another method from the same family is the Hausdorff dis-
tance measuring the maximal distance of a set to the nearest point in the other set
[Hausdorff, 1914]:

Definition 4.49 (Hausdorff distance). Given a dissimilarity function δ : E ×E →
R, the Hausdorff distance between two sets is a disimilarity function ∆ : 2E×2E →
R such that ∀x, y ⊆ E,

∆(x, y) = max(max
e∈x

min
e′∈y

δ(e, e′),max
e′∈y

min
e∈x

δ(e, e′))

Matching-based comparison

The problem with the former distances, but average, is that their value is a function
of the distance between one pair of members of the sets. The average linkage, on the
other hand, has its value function of the distance between all the possible compar-
isons.

Matching-based comparisons [Valtchev, 1999] consider that the elements to be
compared are those which correspond to each other, i.e., the most similar one.

To that extent, the distance between two sets is considered as a value to be min-
imised and its computation is an optimisation problem: that of finding the elements
of both sets which correspond to each others. In particular, it corresponds to solving
a bipartite graph matching problem (§5.7.3).

Definition 4.50 (Match-based similarity). Given a similarity function σ : E ×
E → R, the match-based similarity between two subsets of E is a similarity function
MSim : 2E × 2E → R such that ∀x, y ⊆ E,

MSim(x, y) =
maxp∈Pairings(x,y)

(∑
〈n,n′〉∈p σ(n, n′)

)
max(|x|, |y|) ,

with Pairings(x, y) being the set of mapping of elements of x to elements of y.

110 4 Basic techniques

This match-based similarity already requires an alignment of entities to be com-
puted. It also depends on the kind of alignment that is required. Indeed, the result
will be different depending on whether the alignment is required to be injective
or not. The match-based comparison can also be used when comparing sequences
[Valtchev, 1999].

Summary on extensional techniques

Knowing extension information is invaluable for ontology matching because this
provides information that is independent from the conceptual part of the ontology.
Indeed, ontologies are views of the world and this is the reason why there can be
numerous different ontologies on the same topic (and the reason why they have to be
matched). Extension information is supposed to be less prone to variability and can
be used to accurately match classes.

This extension information is even more useful when a set of individuals char-
acterised in both ontologies is available. This provides an easy way to compare the
overlap between two classes.

There are situations, however, in which data instance information is not available.
This can be caused by the unavailability of data (connection data to a web service is
not available) or for confidentiality reasons. In such a situation, the other techniques
are the only possible ones.

4.5 Semantic-based techniques

The key characteristics of semantic methods is that model-theoretic semantics is used
to justify their results. Hence they are deductive methods. Of course, pure deductive
methods do not perform very well alone for an essentially inductive task like on-
tology matching. They hence need a preprocessing phase which provides ‘anchors’,
i.e., entities which are declared, for example, to be equivalent (based on the identity
of their names or user input for instance). The semantic methods act as amplifiers of
these seeding alignments.

We thus include in semantic techniques particular methods for anchoring the on-
tologies (§4.5.1). They are based on the use of existing formal resources for initiating
an alignment that can be further considered by deductive methods (§4.5.2).

4.5.1 Techniques based on external ontologies

When two ontologies have to be matched, they often lack a common ground on which
comparisons can be based. In this section we focus on using intermediate formal
ontologies for that purpose. These intermediate ontologies can define the common
context or background knowledge [Giunchiglia et al., 2006c] for the two ontologies
to be matched. The intuition is that a background ontology with a comprehensive
coverage of the domain of interest of the ontologies to be matched helps in the dis-
ambiguation of multiple possible meanings of terms.

4.5 Semantic-based techniques 111

This common ground can often be found by relating the ontologies to external
resources. These resources can differ on three specific dimensions:

Breadth: whether they are general purpose resources or domain specific resources.
By using specialised resources, e.g., the Formal Model of Anatomy in medicine,
one can be sure that the concepts in the contextualised resources can be matched
accurately to their corresponding concepts in the ontology. However, by using
more general resources there is more probability that an alignment already exists
and can be exploited right away.

Formality: whether they are pure ontologies with semantic descriptions or infor-
mal resources such as WordNet. By using formal resources, e.g., DOLCE or the
Formal Model of Anatomy, it is possible to reason within or across these formal
models in order to deduce the relation between two terms. By using informal re-
sources, e.g., WordNet, it is possible to extend the set of senses that are covered
by a term and to increase the number of terms which can express these concepts.
There is thus more opportunity to match terms.

Status: whether these resources are considered as references such as ontologies,
thesauri or they are sets of instances or annotated documents that are shared.

Since non pure ontological resources such as WordNet have been considered in
Sect. 4.2.2 and extensional resources have been dealt with in Sect. 4.4.1, we concen-
trate here on using external formal ontologies.

Contextualising ontologies can typically be achieved by matching these ontolo-
gies with a common upper-level ontology that is used as external source of common
knowledge, e.g., Cyc [Lenat and Guha, 1990], Suggested Upper Merged Ontology
(SUMO) [Niles and Pease, 2001] or Descriptive Ontology for Linguistic and Cogni-
tive Engineering (DOLCE) [Gangemi et al., 2003].

Example 4.51 (Using upper-level ontologies as background knowledge). An exper-
iment has been carried out by expressing fishery resources (such as databases and
thesauri) within the DOLCE upper level ontology [Gangemi, 2004]. The goal was to
merge these resources into a common Core Ontology of Fisheries. It has involved
transforming manually the resources into lightweight ontologies expressed with re-
spect to DOLCE and then using reasoning facilities for detecting relations and in-
consistencies between entities of this ontology.

An approach proposed in [Aleksovski et al., 2006] works in two steps:

Anchoring (also known as contextualising) is matching ontologies o′ and o′′ to the
background ontology o. This can be done by using any available methods pre-
sented in this book, usually non sophisticated ones.

Deriving relations is the (indirect) matching of ontologies o′ and o′′ by using the
correspondences discovered during the anchoring step. Since concepts of ontolo-
gies o′ and o′′ become a part of the background ontology o via anchors, checking
if these concepts are related, can be therefore performed by using a reasoning
service (§4.5.2) in the background ontology. Intuitively, combining the anchor
relations with the relations between the concepts of the reference ontology is
used to derive the relations between concepts of o′ and o′′.

112 4 Basic techniques

Example 4.52 (Using domain specific formal ontologies as background knowledge).
Suppose we want to match the anatomy part of the CRISP10 directory to the anatomy
part of the MeSH11 meta-thesaurus. In this case the FMA ontology12 can be used as
background knowledge which gives the context to the matching task. The result of
anchoring is a set of matches with three different kinds of relations:≡,�,� between
concepts from FMA, and CRISP or MeSH.

For example, the concept of brain from CRISP, denoted by BrainCRISP , could
be easily anchored to the concept brain of FMA, denoted by BrainFMA. Similarly,
the concept of head from MeSH, denoted by HeadMeSH , could be anchored to a
background knowledge concept HeadFMA. In the reference ontology FMA there is
a part of relation between BrainFMA and HeadFMA. Therefore, we can derive that
BrainCRISP is a part of HeadMeSH .

Since the domain specific ontology provides the context for the matching task,
the concept of Head was correctly interpreted as meaning the upper part of the human
body, instead of, for example, meaning a chief person. This is not so straightforward
as can be shown by replacing FMA with WordNet: in WordNet the concept of Head
has 33 senses (as a noun). Finally, once the context of the matching task has been es-
tablished, as our example shows, various heuristics, such as string-based techniques,
can improve the anchoring step.

There are some other techniques which attempt at using not one context ontol-
ogy but as many as possible. These ontologies are typically taken from the web,
selected for relevance, i.e., that they contain enough matches with the initial ontolo-
gies, and the result is a consensus between the results provided with these ontologies
[Sabou et al., 2006a].

Once these initial alignments have been obtained, they can be exploited further
by deductive techniques.

4.5.2 Deductive techniques

The basis of the semantic techniques are the merging of two ontologies and the search
for correspondences A such that o, o′ |= A. Of course, this can apply only if A
can be considered as a formula of the language. For instance, this can apply if it
is a subsumption relation between two entities e and e′: e � e′. These semantic
techniques can also be used for testing the satisfiability of alignments (§2.5.4), in
particular, for discarding alignments which lead to an inconsistent merge of both
ontologies.

Examples of semantic techniques are propositional satisfiability, modal satisfia-
bility techniques, or description logic based techniques.

10 http://crisp.cit.nih.gov/
11 http://www.nlm.nih.gov/mesh/
12 http://sig.biostr.washington.edu/projects/fm/

4.5 Semantic-based techniques 113

Propositional techniques

An approach for applying propositional satisfiability (SAT) techniques to on-
tology matching includes the following steps [Giunchiglia and Shvaiko, 2003a,
Bouquet and Serafini, 2003, Giunchiglia et al., 2004, Shvaiko, 2006]:

1. Build a theory or domain knowledge (Axioms) for the given input two ontolo-
gies as a conjunction of the available axioms. The theory is constructed by using
matchers discussed in the previous sections, e.g., those based on WordNet, or
those using external ontologies (§4.5.1).

2. Build a matching formula for each pair of classes c and c′ from two ontologies.
The criterion for determining whether a relation holds between two classes is the
fact that it is entailed by the premises (theory). Therefore, a matching query is
created as a formula of the following form:

Axioms→ r(c, c′)

for each pair of classes c and c′ for which we want to test the relation r (within
=, �, �, ⊥). c and c′ are also sometimes called contexts.

3. Check for validity of the formula, namely that it is true for all the truth assign-
ments of all the propositional variables occurring in it. A propositional formula
is valid if and only if its negation is unsatisfiable, which is checked by using a
SAT solver.

SAT solvers are correct and complete decision procedures for propositional sat-
isfiability, and therefore, they can be used for an exhaustive check of all the possible
correspondences. In some sense, these techniques compute the deductive closure of
some initial alignment [Euzenat, 2007].

Example 4.53 (Propositional logic relation inference).
Step 1. Suppose that classes images and Europe belong to one ontology, while

another ontology has classes pictures and Europe (as well). A matcher which uses
WordNet can determine that images = pictures. Also many other matchers can find
that classes of Europe in both ontologies are identical, i.e., Europe = Europe. Then
translating the relations between classes under consideration into propositional con-
nectives in the obvious way results in the following Axioms:

(images ↔ pictures) ∧ (Europe ↔ Europe)

Step 2. Suppose c is defined as Europe � images which intuitively stands for the
concept of European images, while c′ is defined as pictures � Europe which intu-
itively stands for the concept of pictures of Europe. Let us also suppose that we want
to know if c is equivalent (↔) to c′. Thus, this matching task requires constructing
the following formula:

((images ↔ pictures) ∧ (Europe ↔ Europe)) →
((Europe ∧ images) ↔ (Europe ∧ pictures))

114 4 Basic techniques

Step 3. Negation of this formula turns out to be unsatisfiable, and therefore, the
equivalence relation holds. See also Chap. 9 for a detailed discussion of this example.

Notice that this technique, beside pruning the incorrect correspondences, also
discovers the new ones between complex concepts. In the example above c is defined
by combining (taking intersection of) such atomic concepts as Europe and images.
And, similarly for c′. These are simple examples of complex concepts being bounded
by the expressive power of a propositional language. The relation between such com-
plex concepts as (Europe ∧ images) and (Europe ∧ pictures) was not available after
the first step, and has being discovered as a result of deduction.

This technique can only be used for matching tree-like structures, such as clas-
sifications, taxonomies, without taking properties or roles into account. Modal SAT
can be used, as proposed in [Shvaiko, 2004], for extending the methods related to
propositional SAT to binary predicates.

Description logic techniques

In description logics, the relations, e.g., =, �, �, ⊥, can be expressed with respect
to subsumption. The subsumption test, can be used to establish the relations between
classes in a purely semantic manner. In fact, first merging two ontologies (after re-
naming) and then testing each pair of concepts and roles for subsumption is enough
for matching terms with the same interpretation (or with a subset of the interpreta-
tions of the others) [Bouquet et al., 2006].

Example 4.54 (Description logic relation inference). Consider two minimal descrip-
tion logic ontologies:

Micro-company = Company � ≤5 employee

meaning that a Micro-company is a Company with at most 5 employees and

SME = Firm � ≤10 associate

meaning that a SME is a Firm with at most 10 associates. The following initial align-
ment (expressed in description logic syntax) includes:

Company = Firm

associate � employee

It expresses that Company is equivalent to Firm and associate is a subclass of em-
ployee. This obviously entails:

Micro-company � SME

i.e., Micro-company is a subclass of SME.

4.6 Summary 115

There are other uses of description logic techniques which are relevant to
ontology matching. For example, in a spatio-temporal database integration sce-
nario, as first motivated in [Parent and Spaccapietra, 2000] and later developed in
[Sotnykova et al., 2005], the inter-schema correspondences are initially proposed by
the integrated schema designer and are encoded together with input schemas in the
ALCRP(S2⊕T) language. Then, description logic reasoning services are used to
check the satisfiability of the two source schemas and the set of inter-schema cor-
respondences. If some objects are found unsatisfiable, the inter-schema correspon-
dences should be reconsidered. A similar approach in the context of alignment de-
bugging has also been investigated in [Meilicke et al., 2006].

Summary on semantic techniques

As it was mentioned in the beginning, semantics techniques cannot find the corre-
spondences alone. However, they are invaluable when correspondences are gener-
ated in order to ensure the completeness, i.e., find all the correspondences that must
hold, and the consistency, i.e., find correspondences that lead to inconsistency, of the
alignment.

Only a few of these techniques have been developed so far (usually, databases
had only simple semantic theories so these techniques were not developed in this
field). However, with the improvement of deductive tools for dealing with seman-
tic web languages, we believe that we will see more systems using semantic-based
techniques.

An important challenge of these techniques is their integration with inductive
techniques. Indeed, completing alignments and finding inconsistencies is a crucial
step. However, once deductive techniques have been applied, their results might be
considered as an input to inductive techniques. For example, for finding more corre-
spondences from the completion or for selecting alternative correspondences instead
of inconsistent ones. This theme deserves to be further investigated.

4.6 Summary

We have discussed basic techniques that can be used for building correspondences
based on terminological (§4.2), conceptual (§4.3), extensional (§4.4) and semantic
(§4.5) arguments. This classification of techniques is a natural one since each of
these deals with a partial view of ontologies.

There are many such techniques and our goal was not to present them all. It was
rather to propose a panorama of the most used ones so far and to show the direction
they take. There is still much work going on in finding better methods in each of
these directions.

We have also observed that all these techniques cannot be used in isolation, but
that each of them can take advantage of the results provided by the others. Another
part of the art of ontology matching relies on selecting and combining these methods

116 4 Basic techniques

in the most adequate way. Combinations of basic matchers is the topic of the next
chapter.

5

Matching strategies

The basic techniques presented in Chap. 4 are the building blocks on which a match-
ing solution is built. Once the similarity or (dis)similarity between ontology entities
are available, the alignment remains to be computed. This involves more global treat-
ments. In particular, the following aspects of building a working matching system are
considered in this chapter:

– aggregating the results of the basic methods in order to compute the compound
similarity between entities (§5.2) and organising the combination of various sim-
ilarities or matching algorithms (§5.1);

– developing a strategy for computing these similarities in spite of cycles and non
linearity in the constraints governing similarities (§5.3);

– learning from data the best method and the best parameters for matching (§5.4);
– using probabilistic methods to combine matchers or to derive missing correspon-

dences (§5.5);
– involving users in the loop (§5.6);
– extracting the alignments from the resulting (dis)similarity: indeed, differ-

ent alignments with different characteristics can be extracted from the same
(dis)similarity (§5.7).

5.1 Matcher composition

All the steps mentioned above are considered here under the name of global methods.
The goal of a global method is to combine local methods (or basic matchers) in order
to define a new matching algorithm. We present here, at the strategic level, some
natural ways to combine matchers. For that purpose, we progressively introduce new
graphical elements. These are summarised in Fig. A.3 (Appendix A).

So far, we have only presented the outside of the matching process by producing
an alignment from two ontologies such as in Fig. 2.8. A natural way of composing
the basic matchers consists of improving the matching through the use of sequential
composition (see Fig. 5.1). For instance, one would like to first use a matcher based

118 5 Matching strategies

on labels (§4.2) before running another one based on the structure of entities (§4.3)
or a semantic matcher (§4.5).

o

o′

A matching A′ matching′
A′′

parameters

resources

parameters′

resources′

Fig. 5.1. The sequential composition of matchers.

This sequential process can be used, for instance, in on-line data integration.
Ontology matching and integration consists of merging data (and sometimes data
streams, d and d′) expressed in different ontologies (o and o′). For that purpose,
the ontologies have to be matched beforehand and the data integration can use this
alignment. This is an example of combined off-line and on-line matching.

It can be thought of as:

1. a first matching phase (f), possibly with an instance training set;
2. a data matching phase (f ′) using the first alignment (A′).

This is presented in Fig. 5.2.

o

o′

A f A′

d

d′

f ′
A′′

Fig. 5.2. Data integration as another matching process taking advantage of a prior matching
of ontologies (o and o′) for integrating data flows (d and d′).

In this setting, the second phase benefits from the precompiling of the first align-
ment. Indeed, the second matcher f ′ can be thought of as a compilation of the first
alignment.

However, the sequential combination of matchers is more classically used to im-
prove an alignment. For that purpose, when using similarities or distances, the match-
ers can be sequentially composed through their similarity matrix. We introduce, in
Fig. 5.3, new symbols for matrices as well as a new component for extracting an
initial matrix from either an initial alignment or a pair of ontologies (first triangle)

5.1 Matcher composition 119

and another one for extracting an alignment from a similarity or dissimilarity matrix
(second triangle, detailed in Sect. 5.7).

o

o′

A M
similarity
computa-

tion
M ′ A′

parameters

resources

Fig. 5.3. The introduction of a (virtual) matrix which represents a similarity or distance mea-
sure between entities to be matched. The first operator builds an initial matrix M from the
two ontologies o and o′. The core of the matching algorithm produces a similarity or distance
matrix M ′ from this initial matrix and the description of the ontologies. Finally, alignment A′

is extracted from matrix M ′.

The sequential composition through a distance or similarity matrix is illustrated
in Fig. 5.4.

o

o′

A M
similarity
computa-

tion 1
M ′

similarity
computa-

tion 2
M ′′ A′

parameters

resources

parameters′

resources′

Fig. 5.4. Sequential composition of matchers through similarity.

Another way to combine algorithms consists of running several different algo-
rithms independently and aggregating their results (see Fig. 5.5): this is called paral-
lel composition. Such aggregation techniques can be very different: it can correspond
to choosing one of the results on some criterion or merging their results through
some operator. For instance, it can consist of running several matching algorithms in
parallel and selecting the correspondences which are in all of them (intersection is
then used as an aggregation operator) or selecting all the correspondences with their
highest confidence.

In the latter case, it is very often more convenient to define the aggregation op-
erators on the similarity or distance matrix (see Fig. 5.6) because there are many

120 5 Matching strategies

o

o′

A

matching A′

matching′
A′′

aggregation A′′′

resources′

parameters′
resources

parameters

Fig. 5.5. The parallel composition of matchers.

mathematical techniques available for that purpose. These techniques are presented
hereafter.

o

o′

A M

similarity
computa-

tion 1
M ′

similarity
computa-

tion 2
M ′′

aggregation M ′′′ A′

parameters

resources

parameters′

resources′

Fig. 5.6. Parallel composition of matchers through similarity.

In fact there are two main kinds of parallel composition:

Heterogeneous parallel composition in which the input is fragmented into differ-
ent kinds of data (graphs, strings, sets of documents, etc.) and the aggregation
takes advantage of all of them (by aggregating their results) or the most promis-
ing only. This is the topic of Sect. 5.2.

Homogeneous parallel composition in which the input goes into several compet-
ing systems and the aggregation selects the best of these or some consensus
between them.

Of course, it is possible to combine these two classes even further.

5.2 Similarity aggregation 121

All these composition techniques are usually implemented within particular
matching algorithms (which are presented in Chap. 6). However, there are some sys-
tems that offer the opportunity to combine other systems such as FOAM (§8.2.5),
Rondo (§8.2.1) or the Alignment API (§8.2.4).

5.2 Similarity aggregation

Compound similarity is concerned with the aggregation of heterogeneous similari-
ties. As explained in Sect. 4.3, structured objects (classes, individuals) are very often
involved in many different relations. If it is possible to compute the similarity be-
tween each of the ontology entities two objects are related with, these similarities
have to be aggregated in order to provide a similarity assessment between the enti-
ties themselves. For instance, computing the similarity between two classes requires
the aggregation, in a single similarity measure, of the similarity obtained from their
names, the similarity of their superclasses, the similarity of their instances and that
of their properties.

5.2.1 Triangular norms

Triangular norms are used as conjunction operators in uncertain calculi.

Definition 5.1 (Triangular norm). A triangular norm T is a function from D ×
D → D (where D is a set ordered by ≤ and provided with an upper bound �)
satisfying the following conditions:

T (x,�) = x (boundary condition)
x ≤ y ⇒ T (x, z) ≤ T (y, z) (monotonicity)

T (x, y) = T (y, x) (commutativity)
T (x, T (y, z)) = T (T (x, y), z) (associativity)

Typical examples of triangular norms are min(x, y), x×y and max(x+y−1, 0).
All are normalised if the measures provided to them are normalised; min is the only
idempotent norm (∀x,min(x, x) = x). Triangular norms are the obvious candidates
for a combination that requires the highest score from all aggregated values. Due
to associativity, triangular norms can be extended to n-ary measures. Any triangular
norm over the unit interval can be expressed as a combination of these three functions
[Hájek, 1998].

Another triangular norm for aggregating several dimensions is the weighted
product.

Definition 5.2 (Weighted product). Let o be a set of objects which can be analysed
in n dimensions. The weighted product between two such objects is as follows:

∀x, x′ ∈ o, δ(x, x′) =
n∏

i=1

δ(xi, x
′
i)

wi

122 5 Matching strategies

such that δ(xi, x
′
i) is the dissimilarity of the pair of objects along the ith dimension

and wi is the weight of dimension i.

These operators have the drawback that if one of the dimensions has a measure
of 0, then the result is also 0.

Example 5.3 (Triangular norms). We consider in this section two ontologies com-
prising the concepts Product, Provider, Creator for the first one and Book, Translator,
Publisher and Writer for the second one.

The two tables below display the result of applying an edit distance and a
WordNet-based distance on these labels.

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .86 .8 .89 .86
Provider .88 .8 .56 .5
Creator .86 .5 .89 .57

Normalised Levenshtein distance.

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .82 .88 .88 .85
Provider .83 .89 .76 .71
Creator .82 .53 .88 .85

Alignment API WordNet-based dis-
tance.

The following tables display the aggregations of these distances with triangular
norms, namely, the min operation and a weighted product.

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .82 .8 .88 .85
Provider .83 .8 .56 .5
Creator .82 .5 .88 .57

Minimum of the distances.

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .84 .84 .88 .85
Provider .85 .84 .65 .60
Creator .84 .51 .88 .70

Weighted product with w1 = w2 = 1
2 .

Since the two first similarities where not very dissimilar from each other, the
results of the two operators are very similar as well.

Contrary to the multidimensional aggregators, triangular norms tend to imply
dependencies between the values of the different dimensions, so that the value given
on one dimension can override a value on another dimension.

5.2.2 Multidimentional distances and weighted sums

In case the difference between some properties must be aggregated, one of the most
common family of distances are the Minkowski distances. Contrary to the previous
ones, these measures are well suited to independent dimensions and tend to balance
the values between dimensions.

5.2 Similarity aggregation 123

Definition 5.4 (Minkowski distance). Let o be a set of objects which can be anal-
ysed in n dimensions, the Minkowski distance between two such objects is as follows:

∀x, x′ ∈ o, δ(x, x′) = p

√√√√ n∑
i=1

δ(xi, x′
i)

p

where δ(xi, x
′
i) is the dissimilarity of the pair of objects along the ith dimension.

Instances of the Minkowski distances are the Euclidean distance (when p = 2),
the Manhattan (a.k.a. City-blocks) distance (when p = 1) and the Chebichev dis-
tance (when p = +∞). These should be used when aggregating measures from
independent dimensions.

Example 5.5 (Minkowski distances). We start with the distance computed on labels
with the min aggregation operator in Example 5.3 and a distance obtained from the
Hamming distance on the set of instances of concepts. These distances typically take
into account independent dimensions.

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .82 .8 .88 .85
Provider .83 .8 .56 .5
Creator .82 .5 .88 .57

Minimum of the distances.

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .8 1. 1. 1.
Provider 1. 1. .15 .98
Creator 1. .83 .99 .22

Distances obtained by using the Ham-
ming distance on sets of the concept
instances. The relatively high distance
between Product and Book is due to the
large number of Products which are not
Books.

The aggregation of these two distances using (normalised) Euclidean and Man-
hattan distances are as follows:

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .86 .96 1. .99
Provider .98 .96 .44 .83
Creator .97 .73 1. .46

Normalised Euclidean distance based
on the two above dimentions.

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .86 .96 1. .98
Provider .97 .96 .38 .79
Creator .97 .71 .99 .42

Normalised Manhattan distance based
on the two above dimentions.

124 5 Matching strategies

The values given by the Euclidean distance are lower than those of Manhattan
distance, though they are very close.

These distances can be weighted in order to give more importance to some di-
mensions. They can be normalised by dividing their results by the maximum possible
distance (which is not always possible) but they have the main drawback of not being
linear if p �= 1. This is a source of problems when trying to find these distances if
they are defined as functions of each others (see Sect. 5.3 and [Valtchev, 1999]).

A simple linear aggregation can be further refined by adding weights to this sum.
Weighted linear aggregation considers that some of the values to be aggregated do
not have the same importance. For instance, similarity in properties is more impor-
tant than similarity in comments. The aggregation function will thus use a set of
weights w1, . . . wn corresponding to a category of entities, e.g., classes, properties.
The aggregation function can be defined as follows:

Definition 5.6 (Weighted sum). Let o be a set of objects which can be analysed in
n dimensions, the weighted sum between two such objects is as follows:

∀x, x′ ∈ o, δ(x, x′) =
n∑

i=1

wi × δ(xi, x
′
i)

where δ(xi, x
′
i) is the dissimilarity of the pair of objects along the ith dimension and

wi is the weight of dimension i.

The weighted sum can be thought of as a generalisation of the Manhattan distance
in which each dimension is weighted. It also corresponds to weighted average with
normalised weights. In fact, the weights can be different depending on the categories
of the objects aggregated (§5.3.2). Then, the function can use a set of weights wP

C

depending on the category of object C and the kind of value computed P .
This kind of measures can be normalised, if all values are normalised, by having:∑n

i=1 wi = 1.

Example 5.7 (Weighted sum). From Example 5.5, it appears that the measure on the
instances is more accurate than those on the labels. This can be inferred from the
fact that there are no common names in both sets of labels or that there are lower
distances in the latter case. Thus, weighting these dimensions could be promising.
Let us consider the same input set as in Example 5.5. The computed weighted sums
are as follows:

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .81 .93 .96 .95
Provider .94 .93 .29 .82
Creator .94 .72 .95 .34

Normalised weighted sum with
wlabel = 1/3 and winst = 2/3.

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .81 .95 .97 .96
Provider .96 .95 .25 .86
Creator .96 .75 .96 .31

Normalised weighted sum with
wlabel = 1/4 and winst = 3/4.

5.2 Similarity aggregation 125

The results clearly identify 〈Provider, Publisher〉 and 〈Creator, Writer〉 as candi-
date matches. The low similarity between Product and Book prevents from choosing
them as a match candidate.

5.2.3 Fuzzy aggregation and weighted average

Fuzzy aggregation operators are used for assimilating homogeneous quantities in a
way that preserves the structure of the aggregated domains.

Definition 5.8 (Fuzzy aggregation operator). A fuzzy aggregation operator f is a
function from Dn → D (with D being a set ordered by ≤ and provided with an
upper bound �) satisfying ∀x, x1, . . . xn, y1, . . . yn ∈ D the following conditions:

f(x, . . . x) = x (idempotency)
∀xi, yi, xi ≤ yi ⇒ f(x1, . . . xn) ≤ f(y1, . . . yn) (increasing monotonicity)

f is a continuous function (continuity)

min is also a fuzzy aggregation function. A general result about these measures is
that for any fuzzy aggregation function f , the aggregation is ordered by f(x, y) ≥
min(x, y) ≥ x× y ≥ max(x + y − 1, 0). A typical example of a fuzzy aggregation
operator is the weighted average [Gal et al., 2005a].

Definition 5.9 (Weighted average). Let o be a set of objects which can be analysed
in n dimensions. The weighted average between two such objects is as follows:

∀x, x′ ∈ o, δ(x, x′) =
∑n

i=1 wi × δ(xi, x
′
i)∑n

i=1 wi

such that δ(xi, x
′
i) is the dissimilarity of the pair of objects along the ith dimension

and wi is the weight of dimension i.

A simple average function is a function such that all weights are equal. If the
values are normalised, the weighted average is normalised. In fact, the normalised
weighted sum is also a weighted average (we refer the reader to Example 5.7 for
examples).

Fuzzy aggregation functions have to be used when aggregating the results of
competing algorithms (which are efficient with respect to some aspects and not with
respect to others) and trying to take advantage of all of them. They are very useful
if one wants to use a learning algorithm for learning the weights of the measure
(see Sect. 5.4). [Gal et al., 2005a] argues that these measures are always preferable
to triangular norms for aggregating confidence measures.

126 5 Matching strategies

5.2.4 Ordered weighted average

Another aggregation operator in this context is the ordered weighted average
[Yager, 1988]. It associates weights to the respective positions of the dimension val-
ues instead of the dimensions themselves. This allows, in particular, to give more
importance to the highest (or the lowest) values. This is important when aggregating
matcher results, because this allows retaining only the results of the highest matches
disregarding the dimension they come from.

Definition 5.10 (Ordered weighted average). An ordered weighted average oper-
ator f is a function from Dn → D (with D being a set ordered by ≤ and provided
with an upper bound �) satisfying ∀x, x1, . . . xn ∈ D, such that:

f(x1, . . . xn) =
n∑

i=1

wi × x′
i

where

– w1, . . . wn is a set of weigths in [0 1] such that
∑n

i=1 wi = 1;
– x′

i is the i-th largest element of (x1, . . . xn).

The ordered weighted average has the properties of an average operator (commu-
tative, monotone and idempotent). The max, min and average functions are special
cases of ordered weighted average.

5.3 Global similarity computation

The computation of compound similarity is still local because it only provides simi-
larities by considering the neighbourhood of a node. However, similarity may involve
the ontologies as a whole and the final similarity values may ultimately depend on all
the ontology entities. Moreover, the distance defined by local methods can be defined
in a circular way when the ontology is not reduced to a directed acyclic graph. This is
the most common case. For instance, this occurs if the distance between two classes
depends on the distances between their instances which themselves depend on the
distance between their classes or if there are circuits in the ontology. This is illus-
trated in Fig. 5.7, in which the similarity between Product and Book depends on the
similarity between hasProvider and hasCreator and author, publisher, and translator.
In turn, the similarity between these elements ultimately depends on the similarity
between Product and Book. Note that the two graphs are homomorphic in many dif-
ferent ways.

In case of circular dependencies, similarity computation in a local fashion is no
longer possible. The classical way of dealing with such a problem involves the itera-
tive computation of the distance or similarity refining at each step the last computed
values. This is depicted in Fig. 5.8.

For that purpose, strategies must be defined in order to compute this global sim-
ilarity. We present two such methods here. The first one is defined as a process of

5.3 Global similarity computation 127

Product

hasProvider

hasCreator

Provider

Creator

provides

creates

0..n

0..n

0..n

0..n

Book

author

translator

publisher

Writer

Translator

Publisher

hasWritten

hasTranslated

hasPublished

0..n

0..n

0..n

0..n

0.
.n

0..n

Fig. 5.7. Two typical ontologies containing referential cycles: how do we match them?

o

o′

A M
similarity
computa-

tion
M ′ A′

parameters

resources

Fig. 5.8. The iterative computation of the fixed point of a similarity or distance function.

propagating the similarity within a graph (§5.3.1) while the second one translates
the similarity definitions in a set of equations which is solved by numerical analysis
techniques (§5.3.2).

5.3.1 Similarity flooding

Similarity flooding [Melnik et al., 2002] is a generic graph matching algorithm
which uses fixed point computation to determine corresponding nodes in the graphs.
It is implemented in the Rondo environment (§8.2.1).

The principle of the algorithm is that the similarity between two nodes must
depend on the similarity between their adjacent nodes (whatever are the relations that
must be taken into account). To implement this, the algorithm proceeds as follows:

1. Transform the ontologies in a directed labelled (multi)graph G in which nodes
are pairs of concepts of the ontologies and edges exist between two nodes if
there is a relation in both ontologies between the nodes of the two pairs. For in-
stance, in the ontology of Fig. 5.7 〈Provider, Writer〉 is related to 〈Product, Book〉
through an edge labelled 〈hasProvider, hasWritten〉. In fact, the original Similar-
ity flooding algorithm only connects nodes whose edges have the same label.
The graph is closed by symmetry, i.e., there will also be an edge in the reverse
direction.

128 5 Matching strategies

2. Assign weights w to the edges, which are usually 1/n in which n is the out
degree (the number of outcoming edges) of the source node. The algorithm de-
scription does not describe what to do when several edges with different labels
link the same pair of concepts or when there is already a reverse edge. One can
imagine that the weights are aggregated with a triangular norm (§5.2).

3. Assign initial similarity σ0 to each node (with some basic method on labels of
Sect. 4.2 or with a uniform assignment of 1.0).

4. Compute σi+1 for each node with the chosen formula.
5. Normalise all σi+1 obtained by dividing by the largest value.
6. If no similarity changes more than a particular threshold ε, i.e., ∀e ∈ o, e′ ∈

o′, |σi+1(e, e′) − σi+1(e, e′)| < ε, or after a predetermined number of steps,
stop; otherwise, go to step 4.

The chosen aggregation function is a weighted linear aggregation in which the
weight of an edge is the inverse of the number of other edges with the same label
reaching the same pair of entities.

σi+1(x, x′) = σ0(x, x′) +
∑

〈〈y,y′〉,p,〈x,x′〉〉∈G

σi(y, y′)× w(〈〈y, y′〉, p, 〈x, x′〉〉)

Several variations of this formula have been studied, including suppressing the
σ0 term and replacing σ0 by σi, or using σ0(x, x′)+σi(x, x′) as the recurrence term.
The former accelerates computation, while the latter gives more importance to the
initial values.

The convergence of the algorithm is not obvious. [Melnik et al., 2005] provides
conditions under which the algorithm converges. This algorithm does provide a sim-
ilarity measure from which an alignment remains to be extracted (§5.7).

Example 5.11 (Similarity flooding). We start with the ontologies of Fig. 5.7. Since
the Similarity flooding algorithm works with the same property names and there is
no similar property, we choose to consider that all properties have the same name.
From these ontologies is generated the following labelled directed graph (with its
weights):

Product-Book

Provider-Writer

Provider-Translator

Provider-Publisher Creator-Writer

Creator-Translator

Creator-Publisher
1/6
1

1/6
1

1/
6

1
1/6

1

1/6
1

1/6
1

Creator-Book Provider-Book

Product-Writer Product-Translator Product-Publisher

1/2
1/3

1/2
1/3

1/2
1/3

1/2

1/3
1/2

1/3

1/21/3

5.3 Global similarity computation 129

The initial dissimilarity is the one provided in Example 5.7 for the weighted sum
with weights of 1/4 and 3/4 respectively.

σ0 Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .19 .05 .03 .04
Provider .04 .05 .75 .14
Creator .04 .25 .04 .69

The first iteration of the Similarity flooding algorithm computing σ1 is below (on
the left is the σi values and on the right is the normalised result):

σ1 Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product 2.11 0.08 0.06 0.07
Provider 0.10 0.08 0.78 0.17
Creator 0.10 0.28 0.07 0.72

σ1.

σ̄1 Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product 1.00 0.04 0.03 0.03
Provider 0.05 0.04 0.37 0.08
Creator 0.05 0.13 0.03 0.34

Normalised σ1.

The iterative procedure carries on and, with a value of ε = .1, stops at the 17th
iteration with the following result:

σ17 Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product 1.95 .09 .07 .08
Provider .11 .22 .92 .31
Creator .11 .42 .21 .86

σ17.

σ̄17 Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product 1,00 .05 .04 .04
Provider .06 .11 .47 .16
Creator .06 .21 .11 .44

Normalised σ17.

From these similarity values, it is possible to extract the expected correspon-
dences: Product=Book, Publisher=Provider and Writer=Creator.

5.3.2 Similarity equation fixed point

OLA [Euzenat and Valtchev, 2004] (§6.3.8) provides a method for dealing with cir-
cularities and dependencies between similarity definitions.

In this case, the similarity values can only be expressed as a set of equations
where each variable corresponds to the similarity between a pair of nodes. There are
as many equations as variables. The structure of each equation follows the definition
of the respective similarity function for the underlying node category.

130 5 Matching strategies

Given two classes c and c′, the resulting class similarity function is as follows:

σC(c, c′) = πC
L σL(λ(c), λ(c′))

+ πC
OMSimO(I(c), I ′(c′))

+ πC
S MSimC(S(c),S ′(c′))

+ πC
P MSimP (A(c),A′(c′))

in which λ(·) I(·), S(·), A(·) are the functions returning respectively the label, in-
stances, super and subclasses, and properties of a class. MSim-measures are simi-
larities between sets of ontology entities which we explain below.

The function is normalised since the sum of weights is equal to one, i.e., πC
L +

πC
S + πC

O + πC
P = 1, whereas each factor that ranges over collections of nodes or

feature values is averaged by the size of the largest collection.
If each of the similarity expressions were a linear aggregation of other similarity

variables, this system would be solvable directly, since all variables are of degree
one. However, in the case of OWL, and of many other languages, the system is not
linear since there could be many candidate pairs for the best match. These correspond
to the Set(·) type in Table 4.6 (p. 100). The similarity may depend on matching the
multiple edges with the similar labels outgoing from the nodes under consideration.
In this approach, the similarity is computed by a MSim function that first finds an
alignment between the set of considered entities and then computes the aggregated
similarity with respect to this matching.

In this respect, the OLA algorithm solves a very specific problem, namely a max-
imal weight graph matching problem (§5.7.3) with weights depending on the match-
ing.

Nevertheless, the resolution of the resulting system can still be carried out as an
iterative process that simulates the computation of the greatest fixed point of a vec-
tor function, as shown by Bisson [Bisson, 1992]. The point consists of defining an
approximation of the MSim-measures, solving the system, replacing the approx-
imations by the newly computed solutions and iterating. The first values for these
MSim-measures are the maximum similarity found for a pair, without considering
the dependent part of the equations. The subsequent values are those of the complete
similarity formula filled by the solutions of the system. Note that the local matching
may change from one step to another depending of the current similarity values.

However, the system is converging because the similarities can only increase (the
non dependent part of the equation remains and all dependencies are positive) and,
in the case that similarity values are bounded, e.g., to 1, the similarity is bounded.
The iterations will stop when no gain above a particular ε value is provided by the
last iteration. If the algorithm converges, we cannot guarantee that it does not stop
at a local optimum (that is, finding another matching in the MSim-measures would
not increase the similarity values). This could be improved by randomly changing
these matchings when the algorithm stops.

Some facts are worth mentioning. First, there is no need for a different expres-
sion of the similarity functions in the case where there are no effective circular de-
pendencies between similarity values. In fact, the computation mechanism presented

5.3 Global similarity computation 131

above establishes the correct similarity values even if there is an appropriate order-
ing of the variables (the ordering is implicitly followed by the step-wise mechanism).
Moreover, in case some similarity values (or some similarity or (dis)similarity asser-
tions) are available beforehand, the corresponding equation can be replaced by the
assertion or value.

Example 5.12 (OLA algorithm). The problem to be solved is the same as the one
defined in Example 5.11, so the label similarity between classes is the same. The
label similarity between properties is set to 1. (all similar) for each pair of properties.
Thus, the initial similarities are as follows:

σL B
oo

k
Tr

an
sl

at
or

P
ub

lis
he

r
W

rit
er

Product .19 .05 .03 .04
Provider .04 .05 .75 .14
Creator .04 .25 .04 .69

σL ha
sP

ub
lis

he
d

ha
sT

ra
ns

la
te

d
ha

sW
rit

te
n

au
th

or
tra

ns
la

to
r

pu
bl

is
he

r

creates 1.00 1.00 1.00 1.00 1.00 1.00
provides 1.00 1.00 1.00 1.00 1.00 1.00

hasProvided 1.00 1.00 1.00 1.00 1.00 1.00
hasCreated 1.00 1.00 1.00 1.00 1.00 1.00

The equations are made with equal weights on labels and properties for classes
(πC

L = πC
P = 1/2) and equal weights on label, range and domain for properties

(πP
L = πP

R = πP
D = 1/3). The initial similarities (based only on the labels) provide

the following values:

σ0 B
oo

k
Tr

an
sl

at
or

P
ub

lis
he

r
W

rit
er

Product .10 .03 .02 .02
Provider .02 .03 .38 .07
Creator .02 .13 .02 .35

σ0 ha
sP

ub
lis

he
d

ha
sT

ra
ns

la
te

d
ha

sW
rit

te
n

au
th

or
tra

ns
la

to
r

pu
bl

is
he

r

creates .33 .33 .33 .33 .33 .33
provides .33 .33 .33 .33 .33 .33

hasProvided .33 .33 .33 .33 .33 .33
hasCreated .33 .33 .33 .33 .33 .33

The first iteration really takes into account the relations between entities and
yields the following result:

132 5 Matching strategies

σ1 B
oo

k
Tr

an
sl

at
or

P
ub

lis
he

r
W

rit
er

Product .26 .19 .18 .19
Provider .19 .19 .54 .24
Creator .19 .29 .19 .51

σ1 ha
sP

ub
lis

he
d

ha
sT

ra
ns

la
te

d
ha

sW
rit

te
n

au
th

or
tra

ns
la

to
r

pu
bl

is
he

r

creates .37 .41 .48 .35 .35 .35
provides .49 .37 .39 .35 .35 .35

hasProvided .35 .35 .35 .39 .37 .49
hasCreated .35 .35 .35 .48 .41 .37

After 3 iterations the values do not change more than ε = .1 and after 10 itera-
tions they do not change more than ε = .01 yielding the result as follows:

σ10 B
oo

k
Tr

an
sl

at
or

P
ub

lis
he

r
W

rit
er

Product .46 .29 .27 .28
Provider .28 .32 .74 .37
Creator .28 .44 .31 .70

σ10 ha
sP

ub
lis

he
d

ha
sT

ra
ns

la
te

d
ha

sW
rit

te
n

au
th

or
tra

ns
la

to
r

pu
bl

is
he

r

creates .59 .63 .72 .52 .52 .52
provides .73 .59 .61 .52 .52 .52

hasProvided .52 .52 .52 .61 .59 .73
hasCreated .52 .52 .52 .72 .63 .59

For both values of ε the best match is always the same. It is the same as
in Example 5.11 for classes and, in addition, for properties it is as follows:
creates=hasWritten, provides=hasPublished, hasProvided=publisher and hasCre-
ated=author.

The two presented methods have some similarity: both methods work iteratively
on a set of equations extracted from a graphical form of the ontologies. Both meth-
ods ultimately depend on the computed proximities between non described language
elements, i.e., data type names, values, URIRefs, property type names, etc. These
proximities are propagated throughout the graph structure by the similarity depen-
dencies.

Moreover, Similarity flooding is highly dependent on the identity of edge labels,
while the OLA algorithm takes similarity between properties into account. Nonethe-
less it also considers local mappings between alternative matching edges instead
of averaging over all the potential matches. That is, the OLA algorithm attempts to
identify the subclasses which match and propagate their similarity – which should be
high – while Similarity flooding propagates an average similarity between all pairs
of subclasses which should be lower than the average similarity between all pairs
of matching subclasses. Finally, the convergence of the Similarity flooding is not
proved in general.

5.4 Learning methods 133

Another kind of global computation that may be necessary in ontology matching
is learning which requires the manipulation of the whole matching process in order
to improve its performance.

5.4 Learning methods

In Sect. 4.4, we have discussed techniques used for structurally inducing class rela-
tions from data. This section is concerned with algorithms which learn how to sort
alignments through the presentation of many correct alignments (positive examples)
and incorrect alignments (negative examples). The main difference between both ap-
proaches is that the techniques of this section require some sample data to learn from.
This can be provided by the algorithm itself and judged by users, for instance, by
having only a subset of the correspondences under judgment, or this can be brought
from external resources.

Matchers using machine learning usually operate in two phases: (i) the learning
or training phase and (ii) the classification or matching phase. During the first phase,
training data for the learning process is created, for example, by manually matching
two ontologies, and the system learns a matcher from this data. During the second
phase, the learnt matcher is used for matching new ontologies. There can be a feed-
back on the obtained alignment which can be fed into the step (i) again. Learning
can be processed on-line, such that the system can continously learn, or off-line, so
its speed is not relevant but its accuracy is.

Usually this process is carried out by dividing a data set, i.e., set of positive
and sometime negative examples of alignments into a training set (typically 80%
of data) and a control set (typically 20% of data) which is used for evaluating the
performances of the learning algorithm.

There are many types of information that a learner can exploit. These include:
word frequencies, formats, positions, properties of value distributions. A multistrat-
egy learning approach is useful when several learners are used, each on handling
a particular kind of pattern that it learns best. Finally, results produced by various
learners can be combined with the help of a meta-learner [Doan et al., 2003].

In this section we consider some of the well-known machine learning meth-
ods which have been used for text categorisation, such as Bayes learning (§5.4.1),
WHIRL learning (§5.4.2), neural networks (§5.4.3), decision trees (§5.4.4), and
stacked generalisation (§5.4.5).

5.4.1 Bayes learning

The naive Bayes learner is one of the simplest and most effective text classifiers
[Good, 1965, Domingos and Pazzani, 1996, McCallum and Nigam, 1998]. It repre-
sents a probabilistic induction algorithm.

Let us suppose that we want to match attribute x from one ontology to one (yi)
of the attributes (y1, . . . , ym, i = 1, . . . , m) from another ontology. The approach
views values of attributes as sets of tokens. Suppose V denotes a set of underlying

134 5 Matching strategies

values of attribute x: V = {t1, . . . , tn}, where tj is the j-th token, j = 1, . . . , n.
Tokens, in turn, are obtained by applying a normalisation technique, such as lemma-
tisation (§4.2.2), to the words in the data instance. Suppose that P (yi) is the a priori
probability that x matches yi, i.e., without having seen any tokens of x. Then, P (V)
stands for the probability of observing values V in x. Finally, P (V |yi) stands for the
conditional probability of observing values V , given that x matches yi. The Bayes
theorem describes how to optimally predict the attribute for a previously unseen data
instance, given a training example. The chosen attribute is the one that maximises
a posterior probability, i.e., after having seen the values V , that x matches yi. It is
denoted as P (yi|V) and is computed as follows:

P (yi|V) =
P (V |yi)× P (yi)

P (V)

This is called the Bayes rule. The naive Bayes classifier has a naive assumption
that the tokens tj appear in V independently of each other given yi. Based on this
assumption the parameters (tokens) of each attribute can be learnt separately; this
in turn greatly simplifies learning. Thus, if the attributes are independent given the
class, P (V |yi) can be decomposed into the product of P (t1|yi) × . . . P (tn|yi) and
P (V) can be omitted from the Bayes rule for obvious reasons. Henceforth, the Bayes
rule can be rewritten as follows:

P (yi|V) = P (yi)×
∏

1≤j≤n

P (tj |yi)

The independence assumption often does not hold in practice. However, in many
applications, the violation of this assumption does not lead to degradation in effec-
tiveness of the approach [Domingos and Pazzani, 1996].

The probabilities of the latter formula can be computed using the training data:
P (yi) can be estimated by the proportion of examples that have been matched to
yi; P (tj |yi) can be estimated as k(tj , yi)/k(yi), where k(yi) is the total number
of tokens of all training instances with attribute yi, and k(tj , yi) is the number of
occurrences of token tj in all training instances with attribute yi. Based on the above
formula the corresponding confidence scores can be designed in an obvious way.

Example 5.13 (Naive Bayes learning). Suppose that we have established manually
that attributes creator and name of one ontology match respectively attributes author
and title of another one. The process works in two steps.

Training phase. Let us also suppose that {Bertrand Russell} is an instance
of the creator attribute and {My life} is an instance of the name attribute. Thus,
based on this information the following training examples can be fed into the clas-
sifier: 〈{Bertrand, Russell}, author〉 and 〈{My, life}, title〉. The second one declares
that {My, life} is a title and it has two tokens. By inspecting the training instances
the learner builds its internal classification model. For example, by noticing that if a
word such as life occurs frequently in data instances positively related to title and in-
frequently in those related to other fields, their underlying attribute is therefore likely

5.4 Learning methods 135

to match the title attribute on how to classify data instances. If the training set is sta-
tistically representative, these frequencies can be transformed into probabilities and
the Bayes rule can be used. This can also be applied to classify instances in classes,
for instance, using 〈{title:My title:life}, class:biography〉.

Matching phase. Let {Life, of, Pi} be an instance of the attribute h1 from the struc-
ture of a web site which we want to match against attributes of the second ontology
above. The learner uses its internal classification model to predict an attribute for the
given instance as well as its confidence score, e.g., 〈author, 0.2〉, 〈title, 0.8〉. Based
on the confidence scores, it can be concluded that h1 is a match for title.

5.4.2 WHIRL learner

WHIRL is an extension of conventional relational databases to perform soft joins
based on the similarity of textual identifiers (not only based on equivalence of atomic
values) [Cohen, 1998]. It has been also used for inductive classification of text and
turns out to be competitive with other inductive classification systems, such as C4.5
decision trees [Cohen and Hirsh, 1998]. The WHIRL approach to text classification
can be viewed as a kind of nearest neighbour classification algorithm.

WHIRL has been used in matching for learning both schema-level and instance-
level information [Doan et al., 2003]. In the case of schema information, train-
ing examples could be of the following type 〈expanded label′, label〉, where
label′ belongs to ontology o′ and label belongs to ontology o. For example,
〈location′, address〉, states that if an ontology entity has the label location, then it
matches address. Expansion of label′ can be done, for instance by including its syn-
onyms, which, in turn, can be obtained from manually created correspondence tables
for the domain of interest. WHIRL stores all training examples it has seen. Suppose
that we would like to match another ontology o′′ to ontology o. Given a label′′ from
o′′, WHIRL computes the corresponding label in o based on the labels of all exam-
ples in its collection that are within a similarity distance from label′′. The similarity
used here is based on TFIDF (§4.2.1) between the expanded labels of the examples.
For example, given the label phone from o′, WHIRL may generate a prediction as
follows: 〈address, 0.1〉, 〈description, 0.2〉, 〈agent-phone, 0.7〉. Based on the confi-
dence scores, it can be concluded that phone is a match for agent-phone.

In the case of instance-level information, this matcher makes use of data con-
tent instead of expanded labels. A training example of this case is of the form
〈data instances′, label〉, where data instances′ belong to ontology o′ and label
belongs to ontology o. When matching a new ontology o′′ to ontology o, the TFIDF
distance between any two examples is the distance between data instances of o′′ and
the WHIRL collection of data instances.

5.4.3 Neural networks

Artificial neural networks are made up of nodes (or neurons) and weighted connec-
tions between them. Nodes are grouped into layers, having input, output and either

136 5 Matching strategies

none, one or more hidden layers. Usually each node in a hidden layer is connected
to all nodes of the preceding and the following layer. Neural networks have been
widely used in practice due to their ability of adaptation. Several types of neural
networks exist and have been used for various tasks in ontology matching, such as
discovering correspondences among attributes via categorisation and classification
[Li and Clifton, 1994] or learning matching parameters, such as matcher weights, to
tune matching systems with respect to a particular matching task [Ehrig et al., 2005].
We focus here on the first task mentioned above, while learning matching parameters
is addressed in Sect. 5.4.5.

Given schema-level and instance-level information, it is sometimes useful to
cluster this input into m categories in order to lower the computational complex-
ity of further manipulations with data. The self-organising map network and the
corresponding self-organisation learning algorithm can be used for this purpose
[Kohonen, 2001]. It categorises n nodes of the input layer into m categories of the
output layer. Usually m is predefined based on how detailed the categories should
be by setting the radius of clusters. Input patterns or attributes, e.g., field length and
datatype, are viewed as dimensions in n-dimensional feature space. The neurons in
the network are organising themselves according to the characteristics of given in-
put patterns. This results in a clustered neuron structure, where neurons with similar
properties are arranged in related areas on the map. Every node in the output layer
represents a cluster centre.

For neural networks, matching is viewed as a classification problem. The back-
propagation algorithm can be used for this purpose. Back-propagation is a super-
vised learning algorithm which is used to train a network to recognise input patterns
and give corresponding similarity scores. First, the feature weights are loaded into
the input nodes. Then, they are propagated forward in order to generate the output. If
a misclassification occurs, the error is backpropagated in order to change the weights
of connections in the network. Weights are modified until the errors in the output
layer are not minimised anymore.

Example 5.14 (Neural networks – adapted from [Li and Clifton, 1994]). Given an
ontology, some of its attributes, such as Employee.id, Dept.Employee and Pay-
rol.SSN, can be clustered into one category, since their input characteristics as well as
intended meanings are close to each other. The corresponding vector of cluster cen-
tre weights can be as follows: 〈0, 0.1, 0, . . . 〉, where vector components stand for the
features: the first position stands for datatype, the second position stands for length,
and so on and so forth. The key feature for grouping the attributes mentioned above
was the field length, since its value (0.1) is higher than that of others (0.0). In fact,
ID fields typically use the full field all the time, while, e.g., name fields use less and
vary.

Fig. 5.9 shows a three-layer network for recognising m categories of patterns,
given n features. The number of nodes in the hidden layer can be arbitrary. It is
usually chosen based on experiments in order to obtain the shortest training time.

Training phase. The training data for the neural network is composed of vectors
of cluster center weights and their target categories. For example, the vector con-

5.4 Learning methods 137

Average n

n nodes

. . .

Value constraint 3

Length 2

Datatype 1

Input layer

(n + m)/2 nodes

. . .

2

1

Hidden layer

m 0.72 Telephone#

m nodes

. . .

0.92 Category 3

Employee.id#

Payroll.SSN

3

0.12 Name2

0.05 Address1

Output layer

Fig. 5.9. Neural network. Input attribute Health Plan Insured# characteristics

sidered previously, i.e., 〈0, 0.1, 0, 0, . . . 〉, is tagged with its target category, which is
number 3 . The back propagation algorithm will then adjust the weights so that at-
tributes characteristics corresponding to these attributes will result in a output vector
as close as possible to 〈0, 0, 1, 0, . . . 〉 indicating that the most likely category is 3.

Matching phase. The matching phase includes feeding into the network trained
on features of ontology o a new pattern of n characteristics, e.g., of the attribute
health Plan.Insured#, from another ontology o′. Based on the internal classification
model of the network, it determines the similarity of this pattern and each of m cate-
gories. For instance, this attribute matches category 3 (id numbers) with the similarity
score 0.92 and category 1 with the similarity score 0.05.

5.4.4 Decision trees

Decision trees classifiers are made up of a set of rules which are applied in a se-
quential way and ultimately lead to a decision. Unlike probabilistic methods, e.g.,
naive Bayes, which are numeric in nature, and, therefore, not easily interpretable by
humans, non numeric or symbolic algorithms do not have this drawback. Decision
trees are an example of such algorithms. A possible method for learning a decision
tree for a category can follow a divide and conquer strategy. In a training set T of
instances characterised by features and their category, a feature f1 is selected, which
discriminates the population in the best way (with regard to the set of categories).
Then, T is partitioned into two subsets, the subset T yes

1 corresponding to feature f1,
and the subset Tno

1 without this feature. This procedure is recursively applied to T yes
1

and Tno
1 . It stops if all instances in a subset are assigned to the same category. It gen-

erates a tree of rules with an assignment to actual categories in the leaves. Decision
tree learner can be tolerant and accept that some of the instances are misclassified
if this produces a large simplification of the tree. This is useful when there can be
errors in the training sets.

138 5 Matching strategies

Decision trees have been used in ontology matching for various tasks, such
as discovering correspondences among entities [Xu and Embley, 2003] and learn-
ing parameters of matching systems, e.g., thresholds, to adapt automatically to a
given matching task [Ehrig et al., 2005]. We focus here on the former, while learn-
ing matching parameters is addressed in Sect. 5.4.5.

Example 5.15 (Decision tree). Given a large training alignment between instances
from the two ontologies of Fig. 2.7, decision tree learning, e.g., C4.5 decision tree
induction system [Quinlan, 1993], is applied to generate rules for identifying new
instances. Fig. 5.10 shows a fragment of decision tree that can be learnt. The decision
first states that it can only match Books from the first ontology into the second one.
Then it distinguishes Books having one author, which is a Professor, from those
having no Professor as authors. It is then able to consider that if an author is a topic
of the Book, then this one must be classified as an Autobiography, otherwise it should
be an Essay.

The decision tree has been built with some tolerance: the numbers after the tar-
get categories indicate the number of instances in the training set which have been
correctly and incorrectly recognised.

Book

author ≤ Professor

author = topic ⇒ Autobiography (221/2)

author �= topic ⇒ Essay (2873/154)

author �≤ Professor ⇒ Volume (7421/0)

¬ Book ⇒ nothing (10531/0)

Fig. 5.10. Fragment of a binary decision tree. Each node is labelled by a condition that must
be satisfied by the item to classify. When no further classification is possible, the resulting
target category is indicated together with the number (in parenthesis) of correctly/incorrectly
classified items in the training set.

The decision tree fragment displayed in Fig. 5.10 can be rewritten as mapping
from the source ontology to the target ontology. The mapping rule corresponding to
the Autobiograpohy branch can be written as:

Book(e) ∧ ∃e′; author(e, e′) ∧ Professor(e′) ∧ ∃e′′; author(e, e′′) ∧ topic(e, e′′)
⇒Autobiography(e)

It is possible to use the same kind of techniques for learning from the structure
instead of the instances. [Xu and Embley, 2003] shows how to use decision trees in
order to learn rules for matching terms in WordNet.

5.4 Learning methods 139

5.4.5 Stacked generalisation

Stacked generalisation is an approach to combine multiple learning algorithms
[Wolpert, 1992]. From the ontology matching perspective, by using this approach
we can learn to aggregate several basic learners, e.g., naive Bayes and WHIRL, on a
particular label.

The training phase of stacked generalisation works in two steps. The first step
deals with collecting the output of each learner, thereby resulting in a new set of data.
First, let D0 = {〈ci, xi〉}i=1,...m be the training dataset, such that ci is a category
and xi is an instance represented by the vector of its features. In terms of ontology
matching, ci can be an entity from ontology o and xi is an entity of ontology o′, e.g.,
an individual represented by its attributes. The ci is the category to which xi should
be assigned (or, for ontology matching, the entity corresponding to xi). In order to
avoid overfitting, i.e., that the training data does include the query instances, a cross-
validation is performed. In particular, D0 is randomly partitioned into p almost equal
parts, D0

1, . . . D
0
p, such that D0

k represents a test and D̄0
k = D0 − D0

k, represents a
training set for the k-th class of cross-validation. Given q basic learning algorithms
(matchers), which are called level-0 generalisers, using the l-th matching algorithm
on training set D̄k results in a model Mk

l , which has been learnt. Such a model,
given a vector of features characterising an object, returns a prediction which is the
category it should be assigned. These are the level-0 models. Let M i

l be the prediction
of the model Mk

l on xi ∈ Dk. The final result of cross-validation is the set D1 which
consists of exactly one prediction for each of the training examples:

D1 = {〈ci, 〈M i
1, . . . M

i
q〉〉}i=1,...m

The output of the first step is used as the input data for the second step, where
another learning algorithm, called level-1 generaliser, is employed. In turn, it derives
a level-1 model M ′ for ci with respect to M i

1, . . . M
i
q . Thus, while level-0 classifiers

deal with the possible assignment of entities to categories with regard to their at-
tributes, level-1 classifiers deal with the possible assignment of the same entities to
the same categories with regard to the categories predicted by the classifiers.

During the classification phase, given a new instance x, the models which have
been learnt, produce a vector 〈M1, . . . Mq〉, which in turn is taken as input by M ′,
whose output is the final classification for that instance.

[Ting and Witten, 1999] identified that the best results are obtained in stacked
generalisation for classification tasks when (i) the higher-level model combines the
confidence and not the predictions of the lower-level models, and (ii) the multire-
sponse linear regression is used as a level-1 generaliser compared to such learning
algorithms as C4.5 decision tree (§5.4.4), or naive Bayes (§5.4.1).

Besides multiresponse linear regression, there are other algorithms that may work
equally well on this task, such as neural networks (§5.4.3).

Example 5.16 (Stacked generalisation, adapted from [Doan et al., 2003]). Suppose
that two basic learners are used: (i) the WHIRL learner working with labels of enti-
ties (§5.4.2), and (ii) the naive Bayes learner working with data instances of entities

140 5 Matching strategies

(§5.4.1). Names of these matchers are abbreviated in this example as WHIRL and
NB respectively.

Training phase. Consider the label address from ontology o. Examples of corre-
sponding training data from ontology o′ for basic learners are shown in Table 5.1. The
first and the second columns list respectively the labels, e.g., location, and the under-
lying data instances, e.g., 〈Miami, FL〉, of some entities from ontology o′. The fourth
and the fifth columns describe confidence scores S as produced by WHIRL and naive
Bayes based on input from the first three columns via the cross-validation. For exam-
ple, Saddress

WHIRL (location) = 0.5, while Saddress
NB (〈Miami, FL〉) = 0.8. Finally, the last

column indicates whether the correspondence under consideration holds or not. For
example, location from o′ actually matches address from o, and therefore, the cor-
responding value in the last column is 1, while listed-price does not match address,
and therefore, the corresponding value in the last column is 0.

Table 5.1. Training data for basic learners and stacked generalisation.

o′ label o′ instance o label WHIRL NB True predictions
location Miami, FL address 0.5 0.8 1
listed-price 250K address 0.4 0.3 0
phone (305) 729 0831 address 0.3 0.6 0
comments Fantastic house address 0.6 0.1 0
location Boston, MA address 0.5 0.9 1
listed-price 320K address 0.2 0.2 0

The information from three right-most columns is used as input for the linear
regression [Breiman, 1996, Birkes and Dodge, 2001]. Results of the WHIRL and
naive Bayes learners stand for the confidence scores (S), while the last column
represents values of the response variable. As the result of least square error min-
imisation the weight assigned to the pair of WHIRL and label address is 0.2, i.e.,
Waddress

WHIRL = 0.2; while Waddress
NB = 0.9. The interpretation of these weights is

that, based on stacked generalisation training, the naive Bayes learner appears to be
much more reliable compared to WHIRL in their predictions about address.

Matching phase. Let us suppose that we want to match the entity with label area
and instance 〈Seattle, WA〉 from yet another ontology o′′ to entities of ontology o.
Consider the case of the entity with label address from o. WHIRL will analyse the
label area and generate its confidence score, e.g., 〈address, 0.4〉. The naive Bayes
learner, in turn, will analyse the data contents and generate its confidence score, e.g.,
〈address, 0.8〉. By using the weights obtained during the training phase of stacked
generalisation, the weighted average of the confidence scores can be computed as
follows: 0.4× 0.2 + 0.8× 0.9 = 0.8, thus, yielding the combined prediction, which
is 〈address, 0.8〉.

Concluding this overview of the stacked generalisation method, we note that
there are other techniques with similar goals. Examples include boosting and bag-

5.5 Probabilistic methods 141

ging. To combine the decisions of the individual models (matchers), boosting uses a
weighted majority vote and bagging uses unweighted majority vote. However, they
require a considerable number of models because they rely on varying the data dis-
tribution to obtain a diverse set of models from a single learning algorithm, while
stacking can work with only a few level-0 models [Ting and Witten, 1999].

5.5 Probabilistic methods

Similarly to learning methods, probabilistic methods can also be universally used in
ontology matching to enhance some available matching candidates, combine match-
ers, etc. In this section we discuss an example of the methods based on probabilistic
inference, namely Bayesian networks.

5.5.1 Bayesian networks

A Bayesian belief network or simply a Bayesian network is a probabilistic approach
for modelling causes and effects. Bayesian networks are made up of (i) a directed
acyclic graph, containing nodes (also called variables) and arcs, and (ii) a set of con-
ditional probability tables. Arcs between nodes stand for conditional dependencies
and indicate the direction of influence. For example, an arc from node X1 (called
parent) to node X2 (called child) means that X1 has a direct influence on X2. How
a node influences another node (based on past experience) is defined by conditional
probability tables for the nodes. P (X|parents(X)) is a conditional probability of
variable X , where parents(X) is a set of all and only nodes directly influencing X .
Graph and conditional probability tables allow the construction of the joint probabil-
ity distribution of all variables, namely:

P (X1, . . . , Xn) =
∏

i

P (Xi|parents(Xi)), i = 1, . . . , n

Given values for some nodes, it is possible to infer probability distribution for val-
ues of other nodes. In the simplest case, a Bayesian network can be specified by an
expert and after some values of nodes are made observable it can be used to per-
form inference, thus making predictions or diagnosing causes. When not all vari-
ables are observable, it is necessary to identify dependencies between variables,
which, in turn, can be solved by learning a Bayesian network that fits to the data
[Russell and Norvig, 1995].

Bayesian networks have been modelled and used differently in ontology match-
ing. For example, in the work of [Pan et al., 2005], two ontologies are translated into
two Bayesian networks and matching is performed as evidential inference between
these Bayesian networks. Another work [Mitra et al., 2005] uses Bayesian networks
to enhance existing matches, e.g., by deriving missed matches. Let us consider the
latter in more detail.

142 5 Matching strategies

Example 5.17 (Bayesian network, adapted from [Mitra et al., 2005]).
The Bayesian network is built with mappings and uses meta-rules based on the se-
mantics of the ontology language that expresses how each mapping affects other
related mappings. External matchers are adapted to produce initial probability dis-
tributions for mappings, which are in turn used to infer probability distributions for
other mappings.

m(c1, c
′
1)

m(c2, c
′
2)

m(c3, c
′
3)

c1 c′1

c2 c′2

c3 c′3

Fig. 5.11. Bayesian network graph.

Nodes in the Bayesian network graph represent matches between pairs of classes
or properties from two distinct ontologies, see Fig. 5.11. Solid arrows in the Bayesian
network graph represent the influences between its nodes, while dotted arrows stand
for the relations in the ontologies under consideration. For example, the mapping
between concepts c1 ∈ o and c′1 ∈ o′ affects the mapping between concepts c2 ∈
o and c′2 ∈ o′, which in turn affects the mapping between c3 ∈ o and c′3 ∈ o′.
Conditional probability tables are generated by exploiting generic meta-rules. For
example, if two concepts c1 and c′1 match and there is a relationship q between c1 ∈ o
and c2 ∈ o and a matching relationship q′ between c′1 ∈ o′ and c′2 ∈ o′, then we
can increase the probability of match between c2 ∈ o and c′2 ∈ o′. The probability
distribution of the child node is derived from the probability distribution of the parent
node using a set of constants. By running a Bayesian network, posterior probabilities
for each node are generated.

5.6 User involvement and dynamic composition

Another element that must be taken into account when designing the architecture of
a matching system is the availability of users. This was one of the requirements from
some applications mentioned in Chap. 1. There are three areas in which users can be

5.6 User involvement and dynamic composition 143

involved in a matching solution: (i) by providing initial alignments (and parameters)
to the matchers, (ii) by dynamically combining matchers, and (iii) by providing
feedback to the matchers in order for them to adapt their results. These three aspects
are considered next.

5.6.1 Providing input

This is the user task to provide input to the matching systems. This obviously covers
providing the ontologies to be matched.

More difficult is choosing the system parameters, which always depend on the
method. Some algorithms may provide advice based on a priori analysis of the data,
but these techniques are specific to the matchers themselves.

Another important input that users can provide is an initial alignment. An initial
alignment will constrain the matching system to produce an alignment complying
with the initial alignment. This is an opportunity for users to control the algorithm
behaviour.

5.6.2 Manual matcher composition

Most of the individual methods can be composed through a general purposes pro-
gramming language, but this is not user-level composition.

We distinguish three ways to compose matchers:

Built-in composition corresponds to most of the algorithms presented in Chap. 6:
the methods are composed according to the principles presented in Sect. 5.1.
This composition is part of the algorithm and is applied to any data set which is
given to the system.

Opportunistic composition would correspond to a system which chooses the next
method to run in regard of the input data and/or currently achieved results. Sys-
tems like Falcon-AO (§6.3.9) or H-Match (§6.1.7) feature a limited implementa-
tion of this (choosing dynamically to use a particular matcher or not).

User-driven composition is used in environments in which users have many differ-
ent methods that they can apply following their needs. Examples of such envi-
ronments include Rondo (§8.2.1), COMA++ (§8.2.2), and Protégé (§8.3.2).

For example, a system can involve users in the dynamic assembly of matchers as
follows. An interface could provide a library of basic matchers, filters and aggrega-
tors as presented in Sect. 5.1 that users can assemble by some graphic interaction.
Then the output of these methods could be materialised so that users can inspect
them. Inspection can involve actually applying the resulting alignment for existing
data in order to see the effects. Users may also dynamically change the parameters
and quickly see the effects of these changes on the data. Finally it should be possible
to save the designed architecture in order to use it in applications.

144 5 Matching strategies

5.6.3 Relevance feedback

User feedback for each alignment or each specific correspondence found by a match-
ing system can be used for improving the results by changing the local matcher pa-
rameters. Usually, these parameters can be:

– parameters of a matcher;
– thresholds used for filtering the results (§5.7); and
– aggregation parameters (§5.2).

Usually, systems compute a distance between the feedback and the result pro-
vided by the system. This is called the error. The computation of the error depends
greatly on the kind of feedback which is provided: users discarding unwanted cor-
respondences, adding new correspondences or modifying the proposed correspon-
dences.

Once the error is computed, the system has to select the parameter values that
would minimise this error. This can sometimes be done directly: for instance, when
the only parameter to set is a threshold, the system can directly compute a threshold
that will provide the minimal error. However, very often such a method does not
exist and it is necessary to use an indirect method that estimates the error reduction
given some parameter value changes and searches the best combination. Most of the
methods presented in Sect. 5.4 can be used for this task. This kind of algorithms is
used, for instance, in APFEL (§6.4.1).

As users can help the system to work, the system can also help users. This is
especially considered in Sect. 8.3 when addressing ontology editors that offer sup-
port to ontology matching and in Chap. 9 when detailing strategies for explaining
matching results.

Finally, the history of the prior matching actions can be used to bias the ranking
computation toward the ontology regions that are likely to be relevant to the selected
entity. For example, if the neighbours of an entity have all been matched with entities
from the same region of the other ontology, it is likely that this entity will find a
match in this region too. Taking the existing matches and the user action history into
account makes the process of mapping creation more interactive and personalised
[Bernstein et al., 2006].

5.7 Alignment extraction

The matching goal is to identify a satisfactory set of correspondences between on-
tologies. A (dis)similarity measure between the entities of both ontologies provides
a large set of correspondences. Those which will be part of the resulting align-
ment remain to be extracted on the basis of the similarity. This can be achieved
by a specialised extraction method which acts on the similarity matrix or on some
pre-alignment already extracted. We distinguish between the extractor itself, which
converts a (dis)similarity matrix into an alignment, and a filter, which reduces the
candidate correspondences in one of these formats. This is depicted in Fig. 5.12.

5.7 Alignment extraction 145

M M ′ A A′

Fig. 5.12. Similarity filter, alignment extractor and alignment filter.

Similarity filters transform the (dis)similarity matrix by, for instance, by zero-
ing all cells under some threshold or by unit-ing those above a threshold. Alignment
extractors generate an alignment from a similarity matrix. They are the main topic of
this section. Alignment filters can further manipulate with alignments by using the
same types of operations as similarity filters.

The alignment filter can be users: an alignment can be obtained by displaying
the entity pairs with their similarity scores and ranks, leaving the choice of the ap-
propriate pairs up to users. This user input can be taken as the definitive answer in
helper environments, as the definition of an anchor for helping the system (§6.1.9) or
as relevance feedback in learning algorithms (§5.4)

One could go a step further and attempt to define algorithms that automate align-
ment extraction from similarity scores. Various strategies may be applied to the task
depending on the properties of the target alignment.

This problem can be defined as follows:

Definition 5.18 (Alignment extraction problem). Given two sets of entities o and
o′ and a similarity function σ : o× o′ → [0 1], extract an alignment A ⊆ o× o′.

This problem statement is underconstrained since o×o′ is a solution to this prob-
lem. So the goal of this section is to consider how to further constrain the problem
of alignment extraction. One guide for doing so has been introduced in Sect. 2.5.2 as
the totality and injectivity constraints on alignments.

We present two main strategies based on trimming the (dis)similarity after some
threshold (§5.7.1) and on determining an optimal overall (dis)similarity of the ex-
tracted alignment (§5.7.3). In between, we present a kind of filter that has been found
useful in matching algorithms (§5.7.2).

5.7.1 Thresholds

If neither ontology needs to be completely covered by the alignment, a threshold-
based filtering would allow us to retain only the most similar entity pairs. Without
the injectivity constraint, the pairs scoring above the threshold represent a sensible
alignment.

Thus, applying thresholds requires that the extracted alignment is of sufficient
quality. An easier way to proceed consists of selecting correspondences over a partic-
ular threshold. Several methods can be found in the literature [Do and Rahm, 2002,
Ehrig and Sure, 2004]:

Hard threshold retains all the correspondence above threshold n;

146 5 Matching strategies

Delta threshold consists of using as a threshold the highest similarity value out of
which a particular constant value d is subtracted;

Proportional threshold consists of using as a threshold the percentage of the high-
est similarity value;

Percentage retains the n% correspondences above the others.

The Rondo system (§6.1.13) provides an original alignment extraction method
(SelectThreshold) which normalises the similarity of each node by the best similarity
it has with another node (the result is not symmetric anymore). It then selects for the
alignment the pairs of nodes for which the normalised similarity of both nodes is
above some defined threshold.

Example 5.19 (Thresholding methods). We start from the weighted sum distance ob-
tained in Example 5.7 with 1/4 − 3/4 weights. This distance is converted into a
similarity as in the following table:

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .19 .05 .03 .04
Provider .04 .05 .75 .14
Creator .05 .25 .04 .69

– An ideal hard threshold of .23 would select the 〈Provider, Publisher〉,
〈Creator, Writer〉, and 〈Creator, Translator〉 as correspondences.

– A delta threshold with the same .23 value would select only the two first ones as
the corresponding hard threshold would be .75− .23 = .52.

– On the contrary, the use of a proportional threshold of .23 would result in a
.75 × .23 = .17 hard threshold so selecting 〈Product, Book〉 in addition to the
three ones above.

– The percentage threshold of .23 would select the 12× 23% ≈ 3 initially selected
pairs.

– The SelectThreshold method would also yield the set of four correspondences
mentioned above for a threshold of .23.

5.7.2 Strengthening and weakening

Some approaches, such as [Ehrig and Sure, 2004], use a sigmoı̈d function between
0. and 1. (siga(x) = 1/(1 + e−a(x−0.5)) with a being a parameter for the slope).
This allows reinforcing values higher than 0.5 and to weaken those lower than 0.5.
This treatment is meant to clearly separate two zones: the positive and negative cor-
respondences (see Fig. 5.13).

Other functions, such as 1 − sin(arccos(x)), can have an opposite effect: dis-
carding the nonconclusive measures and dispatching the highest ones on the unit

5.7 Alignment extraction 147

interval. This treatment is well justified by considering that very similar entities are
indeed similar but loosely similar entities give non conclusive results. Of course, it
is possible to shift these functions in order to select threshold other than .5.

x

f(x) = 1

1+e−(x−.5)

1

0
0 .6 .9 1

x

f(x) = 1 − sin(arccos(x))

1

0
0 .6 .9 1

Fig. 5.13. Sigmoı̈d and trigonometric smoothing functions.

Example 5.20 (Strengthening and weakening). The two tables below display the sim-
ilarity table of Example 5.19 filtered through the two functions displayed in Fig. 5.13.

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .02 0. 0. 0.
Provider 0. 0. .95 .01
Creator 0. .05 0. .91

Filtered by y = 1
1+e−12(x−.5) .

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .02 0. 0. 0.
Provider 0. 0. .34 .01
Creator 0. .03 0. .28

Filtered by y = 1− sin(arccos(x)).

The sigmoı̈d function provides high values for the best matches and lower ones
for the worse matches while the other proposed function requires higher similarities
than .75 to single them out: it reduces all values.

5.7.3 Optimising the result

If an injective mapping is required then some choices need to be made in order to
maximise the quality of the alignment. This quality is typically measured on the
total similarity of the matched entity pairs. Consequently, the matching algorithm

148 5 Matching strategies

must optimise the global criteria rather than maximising the local similarity at each
entity pair.

To sum up, the alignment computation can be viewed as a less constrained
version of the basic set similarity functions MSim (§4.4.3). Indeed, its target
features are the same: (i) maximal global similarity, (ii) exclusivity, and (iii)
maximal cardinality (in correspondences). However, (ii) and (iii) are not manda-
tory: they depend on injectivity and totality requirements, respectively. Extract-
ing an alignment from a similarity table is typically what is called graph match-
ing [Berge, 1970, Lovász and Plummer, 1986] and more precisely weighted bipartite
graph matching (for injective alignments) or covering (for total alignments).

A greedy alignment extraction algorithm could construct the correspondences
step-wise, at each step selecting the most similar pair and deleting its members from
the table. The algorithm will then stop whenever no pair remains whose similarity is
above the threshold. The greedy strategy is not optimal (see Example 5.23); however
the ground on which a high similarity is forgotten to the advantage of lower simi-
larities can be questioned and thus the greedy algorithm could be preferred in some
situations.

There are two notions of optimal matching of two sets in this context, the first
one is a local optimum called stable marriage which consists of an assignment (of
only one object of the first set to only one object of the second set) such that any
permutation of two assignments provides a worse result. An algorithm for computing
stable marriages is the Gale–Shapley algorithm [Gale and Shapley, 1962].

Definition 5.21 (Stable marriage problem). Given two sets of entities o and o′ and
a similarity function σ : o× o′ → [0 1], extract a one-to-one alignment M ⊆ o× o′,
such that for any 〈p, q〉 ∈M and 〈r, s〉 ∈M , σ(p, q) + σ(r, s) ≥ σ(p, s) + σ(r, q).

The second notion is the global optimum, or maximum weight matching. It is the
assignment for which there does not exist any other assignment with better weight-
ing. It can be computed by the Hungarian method [Munkres, 1957].

Definition 5.22 (Maximum weight graph matching problem). Given two sets of
entities o and o′ and a similarity function σ : o × o′ → [0 1], extract a one-to-one
alignment M ⊆ o× o′, such that for any one-to-one alignment M ′ ⊆ o× o′,∑

〈p,q〉∈M

σ(p, q) ≥
∑

〈p,q〉∈M ′
σ(p, q)

If weights represent dissimilarities instead of similarities, the problem to solve is
the dual minimum weight graph matching.

Example 5.23 (Greedy, stable marriage and maximum weight). Let us consider the
following similarity table for the concepts of Fig. 5.7 from which we want to extract
a one-to-one alignment.

5.8 Summary 149

Boo
k

Tra
ns

lat
or

Pub
lis

he
r

W
rite

r

Product .84 0. .90 .12
Provider .12 0. .84 .60
Creator .60 .05 .12 .84

The greedy algorithm would select first the highest scoring (.90) correspondence
〈Product, Publisher〉 and discard the corresponding line and column. It would then
select the next highest scoring (.84) one, 〈Creator, Writer〉 and then the remaining
best one 〈Provider, Book〉. The alignment made of these three correspondences scores
1.96.

However, there are better alignments. For instance, by replacing the last two el-
ements with 〈Creator, Book〉 and 〈Provider, Writer〉, we obtain an alignment scoring
2.1. This alignment is stable (checking that any single permutation yield a lower
score than this one is left as an exercise).

This stable marriage is, however, not the maximum weight matching which
is made of 〈Product, Book〉, 〈Provider, Publisher〉, and 〈Creator, Writer〉 and scores
2.52.

5.8 Summary

We have presented the strategic issues involved in creating matching solutions be-
sides using basic matchers presented in Chap. 4. In particular, this involves com-
posing the basic matchers, aggregating their results, dealing with circularities and
extracting alignments from the matcher. This also covers the use of learning algo-
rithms and involving users in the matching process.

The craft of ontology matching systems is a delicate art that combines basic
matchers in the most advantageous way. This chapter has presented techniques used
for assembling the components of a matching system. In most of the cases, the ap-
propriate architecture depends on the problem to solve. Are there any independent
basic matchers that can apply to the data? Is the data highly intricated? Are users
available to evaluate the result? Must the expected result be injective? These ques-
tions meet the requirements of Chap. 1 and their answers lead to different assemblies
of components.

With regard to the requirements of Chap. 1, the techniques presented in this chap-
ter are often a matter of trade-off: between completeness and correctness of the align-
ment for threshold application, between quality and computation time for the choice
of global similarity computation.

Fig. 5.14 displays a fictitious example involving several of the methods. It (i)
runs several basic matchers in parallel, (ii) aggregates their results, (iii) selects some
correspondences on the basis of their (dis)similarity, (iv) extracts an alignment, (v)

150 5 Matching strategies

uses a semantic algorithm to amplify the selected alignment, and (vi) reiterate this
process if necessary.

o

o′

M

similarity
computa-

tion 1
M ′

similarity
computa-

tion 2
M ′′

aggregation

M ′′′M ′′′′A′semantic
amplifierA′′

Fig. 5.14. A fictitious matching strategy.

The next part of the book describes how various implemented systems take ad-
vantage of the basic matchers discussed and how they compose them in a coherent
system (Chap. 6). This will illustrate the diversity of approaches. We will then con-
sider how to evaluate the merit of these systems experimentally (Chap. 7), because
the mere theoretical consideration of a system capability and architecture is not a
sufficiently convincing ground on which to judge its performances.

Part III

Systems and evaluation

6

Overview of matching systems

This chapter is an overview of matching systems which have emerged during the last
decade. There have already been some comparisons of matching systems, in partic-
ular in [Parent and Spaccapietra, 2000, Rahm and Bernstein, 2001, Do et al., 2002,
Kalfoglou and Schorlemmer, 2003b, Noy, 2004a, Doan and Halevy, 2005,
Shvaiko and Euzenat, 2005]. Our purpose here is not to compare them in full
detail, though we give some comparisons, but rather to show their variety, in order to
demonstrate in how many different ways the methods presented in previous chapters
have been practically exploited.

We have followed two principles in deciding whether a matching solution
should be included in this chapter: it must have an implementation and an archival
publication describing it at the time of writing. We have also excluded from
consideration the systems which assume that alignments have already been es-
tablished, and use this assumption as a prerequisite of running the actual system.
These approaches include such information integration systems as: Tsimmis
[Chawathe et al., 1994], Observer [Mena et al., 1996], SIMS [Arens et al., 1996],
InfoSleuth [Fowler et al., 1999, Nodine et al., 2000], Kraft [Preece et al., 2000],
Picsel [Goasdoué et al., 2000], DWQ [Calvanese et al., 2002a], AutoMed
[Boyd et al., 2004], and InfoMix [Leone et al., 2005]. Even if we have consid-
ered around 50 systems and approaches in this chapter, this overview is not
exhaustive. An interested reader can find an updated and complete information
on the topic at OntologyMatching.org1, in particular, links to the web sites of the
presented systems can be found there. We only mention address of general purpose
resources.

We present the matching systems in light of the classifications discussed in
Chap. 3. We also point to concrete basic matchers and matching strategies used in
the considered systems by referencing to the corresponding subsections of Chap. 4
and Chap. 5. In order to facilitate the presentation we follow two rules. First, the
year of the system appearance is considered. Then, if there are some evolutions of
the system or very similar systems, these are discussed close to each other. We illus-

1 http://www.ontologymatching.org

154 6 Overview of matching systems

trate systems where the matching process is of a particular interest with the help of
figures. We tried to adopt a unified presentation for these systems. However, some of
these are specific enough so that we did not enforce the terminology of Sect. 2.4 but
kept that one as used by system designers.

The structure of this chapter is as follows. We first describe systems which mostly
focus on schema-level information (§6.1). Secondly, we discuss systems which con-
centrate on instance-level information (§6.2). Then, we present systems which ex-
ploit both schema-level and instance-level information (§6.3). Finally, we overview
meta-matching systems (§6.4).

6.1 Schema-based systems

Schema-based systems, according to the classification of Chap. 3, are those which
rely mostly on schema-level input information for performing ontology matching.

6.1.1 DELTA (The MITRE Corporation)

DELTA (Data Element Tool-based Analysis) is a system that semi-automatically dis-
covers attribute correspondences among database schemas [Clifton et al., 1997]. It
handles relational and extended entity–relationship (EER) schemas. The idea of the
approach is to use textual similarities between data element definitions in order to
find matching candidates. The system converts available information about an at-
tribute, e.g., attribute name, datatype, narrative description, into a simple text string,
called document. The documents describing each database attribute constitute a doc-
ument base. Then, DELTA feeds the document base from the first schema into a
full-text information retrieval tool, such as Personal Librarian. Matching is viewed
as a Personal Librarian query based on the information from the second schema. The
query can be a string of disconnected phrases, a full boolean query, a few relevant
words, or an entire document. The tool estimates the similarity (by using natural lan-
guage heuristics, such as considering that rare or repeated words are more important)
between a search pattern and contents of a document base (§4.2.1). It is thus exclu-
sively based on string-based techniques. It returns a ranked list of documents that it
considers to be similar. The selection of the final alignment is to be performed by
users.

6.1.2 Hovy (University of Southern California)

[Hovy, 1998] describes heuristics used to match large-scale ontologies, such as Sen-
sus and Mikrokosmos, in order to combine them in a single reference ontology. In
particular, three types of matchers were used based on (i) concept names, (ii) con-
cept definitions, and (iii) taxonomy structure. For example, the name matcher splits
composite-word names into separate words (§4.2.2) and then compares substrings in
order to produce a similarity score. Specifically, the name matcher score is computed

6.1 Schema-based systems 155

as the sum of the square of the number of letters matched, plus 20 points if words
are exactly equal or 10 points if end of match coincides. For instance, using this
strategy, the comparison between Free World and World results in 35 points, while
the comparison between cuisine and vine results in 19 points. The definition matcher
compares the English definitions of two concepts (§4.2.2). Here, both definitions are
first split into individual words. Then, the number and the ratio of shared words in
two definitions is computed in order determine the similarity between them. Finally,
results of all the matchers are combined based on experimentally obtained formulas.
The combined scores between concepts from two ontologies are sorted in descend-
ing order and are presented to users for establishing a cutoff value as well as for
approving or discarding operations, results of which are saved for later reuse.

6.1.3 TransScm (Tel Aviv University)

TransScm [Milo and Zohar, 1998] provides data translation and conversion mech-
anisms between input schemas based on schema matching. First, by using rules,
the alignment is produced in a semi-automatic way. Then, this alignment is used to
translate data instances of the source schema to instances of the target schema. Input
schemas are internally encoded as labelled graphs, where some of the nodes may
be ordered. Nodes of the graph represent schema elements, while edges stand for
the relations between schema elements or their components. Matching is performed
between nodes of the graphs in a top-down and one-to-one fashion. Matchers are
viewed as rules. For example, according to the identical rule, two nodes match if
their labels are found to be synonyms based on the built-in thesaurus (§4.2.2); see
[Zohar, 1997] for a list of the available rules. The system combines rules sequentially
based on their priorities. It tries to find, for the source node, a unique best matching
target node, or determines a mismatch. In case there are several matching candidates
among which the system cannot choose the best one, or if the system cannot match
or mismatch a source node to a target node with the given set of rules, user involve-
ment is required. In particular, users with the help of a graphic user interface can
add, disable or modify rules to obtain the desired matching result. Then, instances of
the source schema are translated to instances of the target schema according to the
match rules. For the example of the identical rule, translation includes copying the
source node components.

6.1.4 DIKE (Università di Reggio Calabria and Università di Calabria)

DIKE (Database Intensional Knowledge Extractor) is a system supporting the semi-
automatic construction of cooperative information systems (CISs) from heteroge-
neous databases [Palopoli et al., 2003b, Palopoli et al., 2003a, Palopoli et al., 1998,
Palopoli et al., 2000]. It takes as input a set of databases belonging to the CIS. It
builds a kind of mediated schema (called data repository or global structured dic-
tionary) in order to provide a user-friendly integrated access to the available data
sources. DIKE focuses on entity-relationship schemas. The matching step is called
the extraction of inter-schema knowledge. It is performed in a semi-automatic way.

156 6 Overview of matching systems

Some examples of inter-schema properties that DIKE can find are terminological
properties, such as synonyms, homonyms among objects, namely entities and rela-
tionships, or type conflicts, e.g., similarities between different types of objects, such
as entities, attributes, relationships; structural properties, such as object inclusion;
subschema similarities, such as similarities between schema fragments. With each
kind of property is associated a plausibility coefficient in the [0 1] range. The prop-
erties with a lower plausibility coefficient than a dynamically derived threshold are
discarded, whereas others are accepted. DIKE works by computing sequentially the
above mentioned properties. For example, synonyms and homonyms are determined
based on information from external resources, such as WordNet (§4.2.2), and by
analysing the distances of objects in the neighbourhood of the objects under con-
sideration (§4.3.2). Some weights are also used to produce a final coefficient. Then,
type conflicts are analysed and resolved by taking as input the results of synonyms
and hyponyms analysis.

6.1.5 SKAT and ONION (Stanford University)

SKAT (Semantic Knowledge Articulation Tool) is a rule-based system that semi-
automatically discovers mappings between two ontologies [Mitra et al., 1999]. Inter-
nally, input ontologies are encoded as graphs. Rules are provided by domain experts
and are encoded in first order logic. In particular, experts specify initially desired
matches and mismatches. For example, a rule President ≡ Chancellor, indicates that
we want President to be an appropriate match for Chancellor. Apart from declara-
tive rules, experts can specify matching procedures that can be used to generate the
new matches. Experts have to approve or reject the automatically suggested matches,
thereby producing the resulting alignment. Matching procedures are applied sequen-
tially. Some examples of these procedures are: string-based matching, e.g., two terms
match if they are spelled similarly (§4.2.1), and structure matching, e.g., structural
graph slices matching, such as considering nodes near the root of the first ontology
against nodes near the root of the second ontology (§4.3.2).

ONION (ONtology compositION) is a successor system to SKAT that semi-
automatically discovers mappings between multiple ontologies, in order to enable a
unified query answering over those ontologies [Mitra et al., 2000]. Input ontologies,
RDF files, are internally represented as labelled graphs. The alignment is viewed as
a set of articulation rules. The semi-automated algorithm for resolving the termino-
logical heterogeneity of [Mitra and Wiederhold, 2002] forms the basis of the articu-
lation generator, ArtGen, for the ONION system. ArtGen, in turn, can be viewed as
an evolution of the SKAT system with some added matchers. Thus, it executes a set
of matchers and suggests articulation rules to users. Users can either accept, modify
or delete the suggestions. They can also indicate the new matches that the articu-
lation generator may have missed. ArtGen works sequentially, first by performing
linguistic matching (§4.2.2) and then structure-based matching (§4.3). During the
linguistic matching phase, concept names are represented as sets of words. The lin-
guistic matcher compares all possible pairs of words from any two concepts of both
ontologies and assigns a similarity score in [0 1] to each pair. The matcher uses a

6.1 Schema-based systems 157

word similarity table generated by a thesaurus-based or corpus-based matcher called
the word relator to determine the similarity between pairs of words (§4.2.2). The sim-
ilarity score between two concepts is the average of the similarity scores (ignoring
scores of zero) of all possible pairs of words in their names. If this score is higher than
a given threshold, ArtGen generates a match candidate. Structure-based matching is
performed based on the results of the linguistic matching. It looks for structural iso-
morphism between subgraphs of the ontologies, taking into account some linguistic
clues (see Sect. 6.1.11 for a similar technique). The structural matcher tries to match
only the unmatched pairs from the linguistic matching, thereby complementing its
results.

6.1.6 Artemis (Università di Milano and Università di Modena e Reggio
Emilia)

Artemis (Analysis of Requirements: Tool Environment for Multiple Information
Systems) [Castano et al., 2000] was designed as a module of the MOMIS media-
tor system [Bergamaschi et al., 1999, Bergamaschi et al., 1998] for creating global
views. It performs affinity-based analysis and hierarchical clustering of database
schema elements. Affinity-based analysis represents the matching step: in a sequen-
tial manner it calculates the name, structural and global affinity coefficients exploit-
ing a common thesaurus. The common thesaurus is built with the help of ODB-
Tools [Beneventano et al., 1998], WordNet (§4.2.2) or manual input. It represents
a set of intensional and a set of extensional relationships which depict intra- and
inter-schema knowledge about classes and attributes of the input schemas. Based
on global affinity coefficients, a hierarchical clustering technique categorises classes
into groups at different levels of affinity. For each cluster it creates a set of global
attributes and the global class. Logical correspondence between the attributes of a
global class and source schema attributes is determined through a mapping table.

6.1.7 H-Match (Università degli Studi di Milano)

H-Match [Castano et al., 2006] is an automated ontology matching system. It has
been designed to enable knowledge discovery and sharing in the settings of
open networked systems, in particular within the Helios peer-to-peer framework
[Castano et al., 2005]. The system handles ontologies specified in OWL. Internally,
these are encoded as graphs using the H-model representation [Castano et al., 2005].
H-Match inputs two ontologies and outputs (one-to-one or one-to-many) correspon-
dences between concepts of these ontologies with the same or closest intended mean-
ing. The approach is based on a similarity analysis through affinity metrics, e.g., term
to term affinity, datatype compatibility (§4.3.1), and thresholds. H-Match computes
two types of affinities (in the [0 1] range), namely linguistic and contextual affinity.
These are then combined by using weighting schemas, thus yielding a final measure,
called semantic affinity. Linguistic affinity builds on top of a thesaurus-based ap-
proach of the Artemis system (§6.1.6). In particular, it extends the Artemis approach
(i) by building a common thesaurus involving relations among WordNet synsets such

158 6 Overview of matching systems

as meronymy and coordinate terms, and (ii) by providing an automatic handler of
compound terms, i.e., those composed by more than one token, that are not available
from WordNet. Contextual affinity requires consideration of the neighbour concepts,
e.g., linked via taxonomical or mereological relations, of the actual concept (§4.3.2).

One of the major characteristics of H-Match is that it can be dynamically con-
figured for adaptation to a particular matching task, because in dynamic settings, the
complexity of a matching task is not known in advance. This is achieved by means
of four matching models. These are: surface, shallow, deep, and intensive, each of
which involves different types of constructs of the ontology, see Fig. 6.1. Computa-
tion of a linguistic affinity is a common part of all the matching models. In case of
the surface model, linguistic affinity is also the final affinity, since this model con-
siders only names of ontology concepts. All the other three models take into account
various contextual features and therefore contribute to the contextual affinity. For ex-
ample, the shallow model takes into account concept properties, whereas the deep
and the intensive models extend previous models by including relations and prop-
erty values, respectively. Each concept involved in a matching task can be processed
according to its own model, independently from the models applied to the other con-
cepts within the same task. Finally, by applying thresholds, correspondences with
semantic (final) affinity higher than the cut-off threshold value are returned in the
final alignment.

o

o′

Linguistic
affinity M

Property
affinity

Properties,
semantic
relations

Properties,
semantic
relations,
property
values

M ′ Aggregation

A′

Shallow

Deep

Intensive

Surface

Fig. 6.1. H-Match matching process: H-Match is a conditional system that can use alterna-
tively or in parallel four matching models depending on the resources available.

6.1.8 Tess (University of Massachusetts)

Tess (Type Evolution Software System) is a system to support schema evolution by
matching the old and the new versions [Lerner, 2000]. Schemas are viewed as collec-

6.1 Schema-based systems 159

tions of types. It is assumed (since in the given application scenario changes are typ-
ically evolutionary, rather than revolutionary) that input schemas are highly similar.
Matching is viewed as generation of derivation rules to be applied to data. Tess can
operate in modes ranging from fully automated to completely manual. Each deriva-
tion rule is associated with a similarity metric, which is meant to measure the impact
that applying the derivation rule would have on existing data. By defining a threshold
for the similarity metric, the user involvement is determined. Matching is performed
in three stages. First, the names of the types of old and new versions are compared
(§4.2.1). Second, the structural information is taken into account. In particular, type
constructors used by the old and new types and the types of components are analysed
(§4.3.1). This provides the ability to handle cases in which, for example, component
names have been changed, but their types are unchanged. Third, if everything else
fails, matching relies upon some ordering information heuristics. Thus, in this case,
Tess will try matching components with different names and different types. Finally,
based on the derivation rules a transformer is produced which can update data in a
database according to a newer version of the schema. In the simplest case, such as
the identity derivation rule case, when type names are identical, as in Sect.6.1.3, the
derivation function simply copies existing objects. A more complex transformation
may include a join operation to combine two related objects into one.

6.1.9 Anchor-Prompt (Stanford Medical Informatics)

Anchor-Prompt [Noy and Musen, 2001] is an extension of Prompt, also formerly
known as SMART. It is an ontology merging and alignment tool with a sophisticated
prompt mechanism for possible matching terms [Noy and Musen, 1999]. Prompt
handles ontologies expressed in such knowledge representation formalisms as OWL
and RDF Schema. Anchor-Prompt is a sequential matching algorithm that takes as
input two ontologies, internally represented as graphs and a set of anchors-pairs of
related terms, which are identified with the help of string-based techniques, such as
edit-distance (§4.2.1), , user-defined distance or another matcher computing linguis-
tic similarity. Then the algorithm refines them by analysing the paths of the input
ontologies limited by the anchors in order to determine terms frequently appearing
in similar positions on similar paths (§4.3.2). Finally, based on the frequencies and
user feedback, the algorithm determines matching candidates.

The Prompt and Anchor-Prompt systems have also contributed to the design of
other algorithms, such as PromptDiff, which finds differences between two ontolo-
gies and provides the editing facility for transforming one ontology into another (see
Sect.8.3.2 and [Noy and Musen, 2002b, Noy and Musen, 2003]).

6.1.10 OntoBuilder (Technion Israel Institute of Technology)

OntoBuilder is a system for information seeking on the web [Modica et al., 2001].
A typical situation the system deals with is when users are seeking for a car to be
rented. Obviously, they would like to compare prices from multiple providers in or-
der to make an informed decision. OntoBuilder operates in two phases: (i) ontology

160 6 Overview of matching systems

creation (the training phase) and (ii) ontology adaptation (the adaptation phase).
During the training phase an initial ontology (in which user data needs are encoded)
is created by extracting it from a visited web site of, e.g., some car rental company.
The adaptation phase includes on-the-fly match and interactive merge operations of
the related ontologies with the actual (initial) ontology. We concentrate below only
on the ontology adaptation phase. During the adaptation phase users suggest the web
sites they would like to further explore, e.g., the ones of various car rental compa-
nies. Each such site goes through the ontology extraction process. This results in a
candidate ontology, which is then merged into the actual ontology. To support this,
the best match for each existing term in the actual ontology to terms from the can-
didate ontology is selected. The selection strategy employs thresholds (§5.7.1). The
matching algorithm works in a term to term fashion, sequentially executing various
matchers. Some examples of the matchers used are: removing noisy characters and
stop terms (§4.2.2), substring matching (§4.2.1). If all else fail, thesaurus look-up
is performed (§4.2.2). Finally, mismatched terms are presented to users for manual
matching. Some further matchers, such as those for precedence matching, were in-
troduced in later work in [Gal et al., 2005b]. Top-k mappings have been proposed in
[Gal, 2006] as an alternative for a single best matching, i.e., top-1 category.

6.1.11 Cupid (University of Washington, Microsoft Corporation and
University of Leipzig)

Cupid [Madhavan et al., 2001] implements an algorithm comprising linguistic and
structural schema matching techniques, and computing similarity coefficients with
the assistance of domain specific thesauri. Input schemas are encoded as graphs.
Nodes represent schema elements and are traversed in a combined bottom-up and
top-down manner. The matching algorithm consists of three phases (see Fig. 6.2)
and operates only with tree-structures, to which non tree cases are reduced.

o

o′

M
Linguistic
matching M ′ Structure

matching M ′′ Weighting

M ′′′A′

Thesauri

Fig. 6.2. Cupid architecture: it is a very common architecture which mixes parallel and sequen-
tial composition. Structure matching takes advantage of the results of linguistic matching, but
the results of both of them are taken into consideration for weighting.

The first phase (linguistic matching) computes linguistic similarity coefficients
between schema element names (labels) based on morphological normalisation

6.1 Schema-based systems 161

(§4.2.2), categorisation, string-based techniques, such as common prefix, suffix tests
(§4.2.1), and thesauri look-up (§4.2.2). The second phase (structural matching) com-
putes structural similarity coefficients weighted by leaves which measure the sim-
ilarity between contexts in which elementary schema elements occur (§4.3.2). The
third phase (mapping elements generation) aggregates the results of the linguistic and
structural matching through a weighted sum (§5.2.2) and generates a final alignment
by choosing pairs of schema elements with weighted similarity coefficients, which
are higher than a threshold (§5.7.1).

6.1.12 COMA and COMA++ (University of Leipzig)

COMA (COmbination of MAtching algorithms) [Do and Rahm, 2002] is a schema
matching tool based on parallel composition of matchers. It provides an extensible
library of matching algorithms, a framework for combining obtained results, and a
platform for the evaluation of the effectiveness of the different matchers. As from
[Do and Rahm, 2002], COMA contains 6 elementary matchers, 5 hybrid matchers,
and one reuse-oriented matcher. Most of them implement string-based techniques,
such as affix, n-gram, edit distance (§4.2.1); others share techniques with Cupid,
e.g., thesauri look-up. An original component, called reuse-oriented matcher, tries
to reuse previously obtained results for entire new schemas or for their fragments.
Schemas are internally encoded as directed acyclic graphs, where elements are the
paths. This aims at capturing contexts in which the elements occur. Distinct features
of the COMA tool with respect to Cupid are a more flexible architecture and the
possibility of performing iterations in the matching process. It presumes interaction
with users who approve obtained matches and mismatches to gradually refine and
improve the accuracy of match. COMA++ is built on top of COMA by elaborat-
ing in more detail the alignment reuse operation. Also it provides a more efficient
implementation of the COMA algorithms and a graphical user interface (§8.2.2).

6.1.13 Similarity flooding (Stanford University and University of Leipzig)

The Similarity flooding approach [Melnik et al., 2002] is based on the ideas of sim-
ilarity propagation. Schemas are presented as directed labelled graphs grounded on
the OIM specification [MDC, 1999]. The algorithm manipulates them in an iterative
computation to produce an alignment between the nodes of the input graphs. The
technique starts from string-based comparison, such as common prefix, suffix tests
(§4.2.1), of the vertices labels to obtain an initial alignment which is refined through
iterative computation. The basic concept behind the Similarity flooding algorithm is
the similarity spreading from similar nodes to the adjacent neighbours through prop-
agation coefficients. From iteration to iteration the similarity measure is spread to the
graph until a fixed point is reached or the computation is stopped. The full process is
described in Sect. 5.3.1. The result of this step is a refined alignment which is further
filtered to produce the final alignment.

162 6 Overview of matching systems

6.1.14 XClust (National University of Singapore)

XClust is a tool for integrating multiple DTDs [Lee et al., 2002]. Its integration strat-
egy is based on clustering. Given multiple DTDs, it clusters them according to their
similarity. This aims at facilitating the work of system integrators by allowing them
to focus on already similar DTDs of single clusters. Clustering is applied recursively
until a manageable number of DTDs is obtained. XClust works in two phases: (i)
DTD similarity computation, and (ii) DTD clustering. During the first phase, given
a set of DTDs, pairwise similarities between their underlying labelled trees are com-
puted. This is done by using several matchers which exploit schema names as well
as some structural information. For example, the basic similarity is computed as a
weighted sum of a WordNet-based matcher that looks for synonyms among names of
schema elements (§4.2.2) and a cardinality constraint matcher that performs a look
up in cardinality compatibility table in order to compare cardinalities of schema ele-
ments (§4.3.1). Structural similarities exploit previously computed basic similarities
and are based on (i) similarity of paths, (ii) similarity of immediate descendants
and (iii) similarity of leaves (§4.3.2). For example, similarity of paths is computed
as a normalised sum of basic similarities between the sets of elements these paths
are composed of, namely elements from the root to the node under consideration
(§4.2.1). Structural similarities are aggregated as a weighted sum and then these ag-
gregated similarities are used to choose the best match pairs by applying a threshold.
These constitute the alignment for a pair of DTDs. Finally, for two DTDs, best match
pairs are summed up and normalised, thereby resulting in a final similarity between
these DTDs. The result of the first phase is the similarity matrix of a set of DTDs.
During the second phase, based on the DTD similarity matrix, a hierarchical cluster-
ing [Everitt, 1993] is applied to group DTDs into clusters.

6.1.15 ToMAS (University of Toronto and IBM Almaden)

ToMAS (Toronto Mapping Adaptation System) is a system that automatically de-
tects and adapts mappings that have become invalid or inconsistent when schemas
evolve [Velegrakis et al., 2003, Velegrakis et al., 2004b, Velegrakis et al., 2004a]. It
is assumed that (i) the matching step has already been performed, and (ii) cor-
respondences have already been made operational, e.g., by using the Clio system
(§6.3.2). Since in open environments, such as the web, schemas can evolve with-
out prior notice, some correspondences may become invalid. This system aims at
handling such cases, thereby preserving mapping consistency. In this sense, ToMAS
complements the systems dealing with the problems mentioned in items (i) and (ii)
above. In particular, it detects mappings affected by structural or constraint changes
and it generates automatically the necessary rewritings that are consistent with the
updates that have occurred. ToMAS handles relational and XML schemas. It takes
two schemas and a set of mappings between them as input. The system works in two
phases. First, as a preprocessing step, mappings are analysed and turned into logi-
cally valid mappings (if they are not already). During the second step, the result of
the previous step is maintained through schema changes. In particular, mappings are

6.1 Schema-based systems 163

modified one by one independently, as appropriate for each kind of change that may
occur to the schemas. Three classes of (primitive) schema changes are addressed:
(i) operations that change the schema semantics by adding or removing constraints,
(ii) modifications to the schema structure by adding or removing elements, and (iii)
modifications that reshape schema structure by moving, copying, or renaming ele-
ments. The final result of ToMAS is a set of adapted mappings which are consistent
with the structure and semantics of the evolved schemas.

6.1.16 MapOnto (University of Toronto and Rutgers University)

MapOnto is a system for constructing complex mappings between ontologies and re-
lational or XML schemas [An et al., 2005a, An et al., 2005b, An et al., 2006]. This
system operates in a similar settings as the Clio tool (§6.3.2). In a sense, this work
can be viewed as an extension of Clio when the target schema is an ontology which is
treated as a relational schema consisting of unary and binary tables. MapOnto takes
as input three arguments: (i) an ontology specified in an ontology representation lan-
guage, e.g., OWL, (ii) relational or XML schema, and (iii) simple correspondences,
e.g., between XML attributes and ontology datatype properties. Input schema and on-
tology are internally encoded as labelled graphs. Then, the approach looks for ‘rea-
sonable’ connections among the graphs. The system produces in a semi-automatic
way a set of complex mapping formulas expressed in a subset of first-order logic
(Horn clauses). The list of logical formulas is also ordered by the tool, thereby sug-
gesting the most reasonable mappings. Finally, users can inspect that list and choose
the best ones.

6.1.17 OntoMerge (Yale University and University of Oregon)

OntoMerge [Dou et al., 2005] is a system for ontology translation on the semantic
web. Ontology translation refers here to such tasks as (i) dataset translation, that is
translating a set of facts expressed in one ontology to another; (ii) generating ontol-
ogy extensions, that is given two ontologies o and o′ and an extension (subontology)
os of the first one, build the corresponding extension o′s, and (iii) query answer-
ing from multiple ontologies. The main idea of the approach is to perform ontology
translation by ontology merging and automated reasoning. Input ontologies are trans-
lated from a source knowledge representation formalism, e.g., OWL, to an internal
representation, which is Web-PDDL [McDermott and Dou, 2002]. Merging two on-
tologies is performed by taking the union of the axioms defining them. Bridge axioms
or bridge rules are then added to relate the terms in one ontology to the terms in the
other. Once the merged ontology is constructed, the ontology translation tasks can
be performed fully automatically by mechanised reasoning. In particular, inferences,
depending on the task, are conducted either in a demand-driven (backward-chaining)
or data-driven (forward chaining) way with the help of a first-order theorem prover,
called OntoEngine. It is assumed that bridge rules are to be provided by domain ex-
perts, or by other matching algorithms, which are able to discover and interpret them
with clear semantics. Finally, it is worth noting that OntoMerge supports bridge rules
which can be expressed using the full power of predicate calculus.

164 6 Overview of matching systems

6.1.18 CtxMatch and CtxMatch2 (University of Trento and ITC-IRST)

CtxMatch [Bouquet et al., 2003c, Bouquet et al., 2003b] uses a semantic matching
approach (§4.5.2). It translates the ontology matching problem into the logical valid-
ity problem and computes logical relations, such as equivalence, subsumption be-
tween concepts and properties. CtxMatch is a sequential system. At the element
level it uses only WordNet to find initial matches for classes (§4.2.2). CtxMatch2
[Bouquet et al., 2006] improves on CtxMatch by handling properties. At the struc-
ture level, it exploits description logic reasoners, such as Pellet [Sirin et al., 2007] or
FaCT [Tsarkov and Horrocks, 2006] to compute the final alignment in a way similar
to what is presented in Sect. 4.5.2.

6.1.19 S-Match (University of Trento)

S-Match implements the idea of semantic matching as initially described in
[Giunchiglia and Shvaiko, 2003a]. The first version of the S-Match system was
a rationalised re-implementation of CtxMatch with a few added functionali-
ties [Giunchiglia et al., 2004]. Later the system has undergone several evolu-
tions, including extensions of libraries of element- and structure-level match-
ers, adding alignment explanations as well as iterative semantic matching
[Giunchiglia and Yatskevich, 2004, Shvaiko et al., 2005, Giunchiglia et al., 2005a,
Giunchiglia et al., 2006c, Giunchiglia et al., 2007]. S-Match is limited to tree-like
structures and does not consider properties or roles.

S-Match takes as input two graph-like structures, e.g., classifications, XML
schemas, ontologies, and returns as output logic relations, e.g., equivalence, sub-
sumption, which are supposed to hold between the nodes of the graphs. The rela-
tions are determined by (i) expressing the entities of the ontologies as logical for-
mulas, and (ii) reducing the matching problem to a propositional validity problem.
In particular, the entities are translated into propositional formulas which explicitly
express the concept descriptions as encoded in the ontology structure and in external
resources, such as WordNet. This allows for a translation of the matching problem
into a propositional validity problem, which can then be efficiently resolved using
(sound and complete) state of the art propositional satisfiability solvers.

S-Match was designed and developed as a platform for semantic matching,
namely a modular system with the core of computing semantic relations where sin-
gle components can be plugged, unplugged or suitably customised. It is a sequen-
tial system with a parallel composition at the element level, see Fig. 6.3. The input
ontologies (tree-like structures) are codified in a standard internal XML format. The
module taking input ontologies performs some preprocessing with the help of oracles
which provide the necessary a priori lexical and domain knowledge. Examples of or-
acles include WordNet (§4.2.2) and UMLS2. The output of the module is an enriched
tree. These enriched trees are stored in an internal database (PTrees) where they can
be browsed, edited and manipulated. The Match manager coordinates the matching

2 http://www.nlm.nih.gov/research/umls/

6.1 Schema-based systems 165

process. S-Match libraries contain around 20 basic element-level matchers repre-
senting three categories, namely string-based, such as n-gram, edit distance (§4.2.1),
WordNet sense-based and WordNet gloss-based matchers (§4.2.2). Structure-level
matchers include SAT solvers, e.g., those of SAT4J3, and ad hoc reasoning methods
[Giunchiglia et al., 2005b].

o

o′

Pre-
processing PTrees

Match
manager A′

Oracles
Basic

matchers
SAT

solvers

Fig. 6.3. S-Match architecture: ontology entities are converted to logic formulas by using the
preprocessor and oracles. The Match manager then uses various basic element-level matchers
and logic provers for finding relations between these formulas which, in turn, correspond to
relations between the entities.

6.1.20 HCONE (University of the Aegean)

HCONE is an approach to domain ontology matching and merging by exploiting
different levels of interaction with users [Kotis et al., 2006, Vouros and Kotis, 2005,
Kotis and Vouros, 2004]. First, an alignment between two input ontologies is com-
puted with the help of WordNet (§4.2.2). Then, the alignment is processed straight-
forwardly by using some merging rules, e.g., renaming, into a new merged ontology.
The HCONE basic matching algorithm works in six steps:

1. Chose a concept from one ontology, denoted as c.
2. Obtain all the WordNet senses of c, denoted as s1, s2, . . . , sm. For example, the

concept Facility has five senses in WordNet.
3. Obtain hypernyms and hyponyms of all the senses of c (§4.2.2). For example,

Police is a hyponym of Facility.
4. Build the n×m association matrix. This relates the n most frequently occurring

terms in the vicinity of the m senses determined in step 2. The vicinity terms
include those from the same synsets of m senses, hypernyms and hyponyms
from step 3. In the case of the Facility example this is a 93 × 5 matrix. For
example, the number of occurrences of such a vicinity term as Police is 3.

3 http://www.sat4j.org/

166 6 Overview of matching systems

5. Build a query q by using terms which are subconcepts of c, e.g., Transporta-
tionSystem, or which are related to c via domain specific relations in the input
ontology. If the terms considered for q also exist among the n terms from step 4,
then q memorises that position with the help of flags. Thus, for the Facility con-
cept, q is a 93 position vector, and, since the position of TransportationSystem is
at the 35th place the value of q[35] is 1.

6. Taking as input the association matrix computed at step 4 and the query com-
puted at step 5, Latent Semantic Indexing (§4.2.2) is used to compute the grades
for what is the correct WordNet sense to be used for the given context (query).

The highest graded sense expresses the most plausible meaning for the concept under
consideration. Finally, the relationship between concepts is computed. For instance,
equivalence between two concepts holds if the same WordNet sense has been cho-
sen for those concepts based on the procedure described above. The subsumption
relation is computed between two concepts if a hypernym relation holds between the
WordNet senses corresponding to these concepts. Based on the level at which users
are involved in the matching process, HCONE provides three algorithms to ontology
matching. These are: fully automated, semi-automated and user-based. Users are in-
volved in order to provide feedback on what is to be the correct WordNet sense on a
one by one basis (user-based), or only in some limited number of cases, by exploiting
some heuristics (semi-automated).

6.1.21 MoA (Electronics and Telecomunication Research Institute, ETRI)

MoA is an ontology merging and alignment tool [Kim et al., 2005]. It consists of:
(i) a library of methods for importing, matching, modifying, merging ontologies,
and (ii) a shell for using those methods. MoA handles ontologies specified in OWL-
DL. It is able to compute equivalence and subsumption relations between entities
(classes, properties) of the input ontologies. The matching approach is based on con-
cept (dis)similarity derived from linguistic clues. The MoA tool is a sequential solu-
tion. The preprocessing step includes three phases: (i) names of classes and proper-
ties are tokenised (§4.2.1); (ii) tokens of entities are associated with their meaning
by using WordNet senses; (iii) meanings of tokens of ancestors of the entity un-
der consideration are also taken into account, thereby extending the local meanings.
This step is essentially the same as some part of the preprocessing done within the S-
Match system (§6.1.19). Matching itself is based on rules. It is performed in a double
loop over all the pairs of entities from two input ontologies. For example, equivalence
between two classes or properties holds when there is equivalence between these en-
tities in either step (ii) or (iii). The equivalence, in turn, is decided via relations
between the WordNet senses for one of the possible solutions (see Sect. 4.2.2). Thus,
for example, author can be found to be equivalent to writer because they belong to
the same synset in WordNet.

6.1 Schema-based systems 167

6.1.22 ASCO (INRIA Sophia-Antipolis)

ASCO is a system that automatically discovers pairs of corresponding elements in
two input ontologies [Bach et al., 2004]. ASCO handles ontologies in RDF Schema
and computes alignments between classes, relations, and classes and relations. A
new version, ASCO2, deals with OWL ontologies [Bach and Dieng-Kuntz, 2005].

The matching is organised sequentially in three phases. During the first phase
(linguistic matching) the system normalises terms and expressions, e.g., by punctua-
tion, upper cases, special symbols. Depending on their use in the ontology or if they
are bags of words, ASCO uses different string comparison metrics for comparing the
terms. Single terms are compared by using Jaro–Winkler, Levenshtein or Monge–
Elkan (§4.2.1) and external resources, such as WordNet. Based on token similarities,
the similarity between sets of tokens is computed using TFIDF. The obtained values
are aggregated through a weighted sum.

The second phase (structure matching), computes similarities between classes
and relations by propagating the input of linguistic similarities. The algorithms is an
iterative fixed point computation algorithm that propagates similarity to the neigh-
bours (subclasses, superclasses and siblings). Similatities between sets of objects are
computed through single linkage. The propagation terminates when the class similar-
ities and the relation similarities do not change after an iteration or a certain number
of iterations is reached.

In the third phase, the linguistic and structural similarity are aggregated through a
weighted sum and, if the similarities between matching candidates exceed a threshold
(§5.7.1), they are selected for the resulting alignment.

6.1.23 BayesOWL and BN mapping (University of Maryland)

BayesOWL is a probabilistic framework for modelling uncertainty in the seman-
tic web. It includes the Bayesian Network mapping module (§5.5.1), which is in
charge of automatic ontology matching [Pan et al., 2005]. The approach works in
three steps. First, two input ontologies are translated into two Bayesian networks.
Specifically, classes are translated into nodes in Bayesian network, while edges are
created if the corresponding two classes are related by a predicate in the input on-
tologies. During the second step, matching candidates are generated between two
Bayesian networks by learning joint probabilities from the web data. In particular,
for each concept in an ontology, a group of sample text documents (called exam-
plars) is created by querying a search engine. The query contains all the terms, e.g.,
{product book science} (opposed to a single term, e.g., {science}), in the path from
the root to the concept (term) under consideration in the given ontology, thereby en-
abling some word sense disambiguation (§4.2.2). A text classifier, e.g., Rainbow4,
is trained on the statistical information about examplars from the first ontology.
Then, concepts of the second ontology are classified with respect to the concepts
of the first ontology by feeding their examplars to the trained classifier. A simi-
larity between two concepts is determined with the help of the Jaccard coefficient
4 http://www.cs.umass.edu/˜mccallum/bow/rainbow/

168 6 Overview of matching systems

(§4.4) computed from the joint probabilities. These are used to construct the condi-
tional probability tables. During the third step, the mappings are refined as an up-
date (combination of the Jeffrey rule and Iterative Proportional Fitting Procedure
[Jeffrey, 1983, Cramer, 2000]) on probability distributions of concepts in the sec-
ond Bayesian network, by distributions of concepts in the first Bayesian network, in
accordance with the given similarities. By performing Bayesian inference with the
updated distribution of the second Bayesian network, the final alignment is produced.

6.1.24 OMEN (The Pennsylvania State University and Stanford University)

OMEN (Ontology Mapping ENhancer [Mitra et al., 2005]) is a semi-automatic prob-
abilistic ontology matching system based on a Bayesian network (§5.5.1). It takes
as input two ontologies and an initial probability distribution derived, for instance,
from basic (element level) linguistic matchers. In turn, OMEN provides a structure
level matching algorithm, thereby deriving the new mappings or discarding the ex-
isting false mappings. The approach can be summarised in four logical steps. First,
it creates a Bayesian network, where a node stands for a mapping between pairs
of classes or properties of the input ontologies. Edges represent the influences be-
tween the nodes of the network. This encoding is different from the one described in
Sect. 6.1.23. During the second step, OMEN uses a set of meta-rules that capture the
influence of the structure of input ontologies in the neighbourhood of the input map-
pings in order to generate conditional probability tables for the given network. An
example of a basic meta-rule is as follows. There are two conditions: (i) if the i-th
concept from the first ontology, c1,i ∈ o1, matches the j-th concept from the second
ontology, c2,j ∈ o2; (ii) if there is a relation q between concepts c1,i and c1,k in the
first ontology, which matches a relation q′ between concepts c2,j and c2,m in the sec-
ond ontology. Then we can increase the probability of match between concepts c1,k

and c2,m. Other rules rely more heavily on the semantics of the language in which
the input ontologies are encoded. During the third step, inferences are made (OMEN
uses Bayesian Network tools in Java (BNJ)5) to generate a posteriori probabilities
for each node. Finally, a posteriori probabilities, which are higher than a threshold
(§5.7.1), are selected to generate the resulting alignment.

6.1.25 DCM framework (University of Illinois at Urbana-Champaign)

MetaQuerier [Chang et al., 2005] is a middleware system that assists users in finding
and quering multiple databases on the web. It exploits the Dual Correlation Mining
(DCM) matching framework to facilitate source selection according to user search
keywords [He and Chang, 2006]. Unlike other works, the given approach takes as
input multiple schemas and returns alignments between all of them. This setting is
called holistic schema matching. DCM automatically discovers complex correspon-
dences, e.g., {author} corresponds to {first name, last name}, between attributes of
the web query interfaces in the same domain of interest, e.g., books. As the name

5 http://bnj.sourceforge.net

6.2 Instance-based systems 169

DCM indicates, schema matching is viewed as correlation mining. The idea is that
co-occurrence patterns often suggest complex matches. That is, grouping attributes,
such as first name and last name, tend to co-occur in query interfaces. Technically,
this means that those attributes are positively correlated. Contrary, attribute names
which are synonyms, e.g., quantity and amount, rarely co-occur, thus representing
an example of negative correlation between them. Matching is performed in two
phases. During the first phase (matching discovery), a set of matching candidates is
generated by mining first positive and then negative correlations among attributes
and attribute groups. Some thresholds and a specific correlation measure such as the
H-measure are also used. During the second phase (matching construction), by ap-
plying ranking strategies, e.g., scoring function, rules, and selection, such as iterative
greedy selection (§5.7.3), the final alignment is produced.

6.2 Instance-based systems

Instance-based systems are those taking advantage mostly of instances, i.e., of data
expressed with regard to the ontology or data indexed by the ontology.

6.2.1 T-tree (INRIA Rhône-Alpes)

T-tree [Euzenat, 1994] is an environment for generating taxonomies and classes from
objects (instances). It can, in particular, infer dependencies between classes, called
bridges, of different ontologies sharing the same set of instances based only on the
extension of classes (§4.4.1). The system, given a set of source taxonomies called
viewpoints, and a destination viewpoint, returns all the bridges in a minimal fash-
ion which are satisfied by the available data. That is the set of bridges for which the
objects in every source class are indeed in the destination class. The algorithm com-
pares the extension (set of instances) of the presumed destination to the intersection
of those of the presumed source classes. If there is no inclusion of the latter in the
former, the algorithm is re-iterated on all the sets of source classes which contain
at least one class which is a subclass of the tested source classes. If the intersection
of the extension of the presumed source classes is included in that of the presumed
destination class, a bridge can be established from the latter (and also from any set
of subclasses of the source classes) to the former (and also any superclass of the
destination class). However, other bridges can also exist on the subclasses of the des-
tination. The algorithm is thus re-iterated on them. It stops when the bridge is trivial,
i.e., when the source is empty. Users validate the inferred bridges.

Bridge inference is the search for correlation between two sets of variables. This
correlation is particular to a data analysis point of view since it does not need to be
valid on the whole set of individuals (the algorithm looks for subsets under which the
correlation is valid) and it is based on strict set equality (not similarity). However,
even if the bridge inference algorithm has been described with set inclusion, it can
be helped by other measurements which will narrow or broaden the search. More

170 6 Overview of matching systems

generally, the inclusion and emptiness tests can be replaced by tests based on the
similarity of two sets of objects (as is usual in data analysis).

The bridge inference algorithm is not dependent on the instance-based interpre-
tation: it depends on the meaning of the operators ⊆, ∩ and = ∅-test (which are
interpreted as their set-theoretic counterpart in the case of the instance-based algo-
rithms). A second version of the system (with the same properties) uses structural
comparison: ⊆ is subtyping, ∩ is type intersection and = ∅-test is a subtyping test.

6.2.2 CAIMAN (Technische Universität München and Universität
Kaiserslautern)

CAIMAN [Lacher and Groh, 2001] is a system for document exchange, which fa-
cilitates retrieval and publishing services among the communities of interest. These
services are enabled by using semi-automatic ontology matching. The approach fo-
cuses on light-weight ontologies, such as web classifications. The main idea behind
matching is to calculate a probability measure between the concepts of two ontolo-
gies, by applying machine learning techniques for text classification, e.g., the Roc-
chio classifier. In particular, based on the documents, a representative feature vector
(a word-count, weighted by TFIDF feature vector, §4.2.1) is created for each concept
in an ontology. Then, the cosine measure (§4.2.1) is computed for two of those class
vectors. Finally, with the help of a threshold, the resulting alignment is produced.

6.2.3 FCA-merge (University of Karlsruhe)

FCA-merge uses formal concept analysis techniques to merge two ontologies shar-
ing the same set of instances [Stumme and Mädche, 2001]. The overall process of
merging two ontologies consists of three steps, namely (i) instance extraction, (ii)
concept lattice computation, (iii) interactive generation of the final merged ontology.
The approach provides, as a first step, methods for extracting instances of classes
from documents. The extraction of instances from text documents circumvents the
problem that in most applications there are no individuals which are simultaneously
instances of the source ontologies and which could be used as a basis for identifying
similar concepts. During the second step, the system uses formal concept analysis
techniques (§4.4.1) in order to compute the concept lattice involving both ontolo-
gies. The last step consists of deriving the merged ontology from the concept lattice.
The produced lattice is explored and transformed by users who further simplify it
and generate the taxonomy of an ontology.

The result is a merge rather than an alignment. However, the concepts that are
merged can be considered as exactly matched and those which are not can be con-
sidered in subsumption relation with their ancestors or siblings.

6.2.4 LSD (University of Washington)

Learning Source Descriptions (LSD) is a system for the semi-automatic discovery of
one-to-one alignments between the (leaf) elements of source schemas and a mediated

6.2 Instance-based systems 171

(global) schema in data integration [Doan et al., 2001]. The main idea behind the ap-
proach is to learn from the mappings created manually between the mediated schema
and some of the source schemas, in order to propose in an automatic manner the map-
pings for the subsequent source schemas. LSD handles XML schemas. A schema is
modelled as a tree, where the nodes are XML tag names. The approach works in
two phases. During the first (training) phase, useful objects, such as element names
and data values, are extracted from the input schemas. Then, from these objects and
manually created alignments, the system trains multiple basic matchers (address-
ing different features of objects, such as formats, word frequencies, characteristics
of value distributions) and a meta-matcher. Some examples of basic matchers are the
WHIRL learner (§5.4.2), the naive Bayesian learner (§5.4.1). The meta-matcher com-
bines the predictions of basic matchers. It is trained by using a stacked generalisation
(learning) technique (§5.4.5). During the second (matching) phase LSD extracts the
necessary objects from the remaining (new) source schemas. Then, by applying the
trained basic matchers and the meta-matcher on the new objects (the classification
operation), LSD obtains a prediction list of matching candidates. Finally, by taking
into account integrity constraints and applying some thresholds, the final alignment
is extracted.

6.2.5 GLUE (University of Washington)

GLUE [Doan et al., 2004], a successor of LSD, is a system that employs multiple
machine learning techniques to semi-automatically discover one-to-one semantic
mappings (which are sometimes called ‘glue’ for interoperability) between two tax-
onomies. The idea of the approach is to calculate the joint distributions of the classes,
instead of committing to a particular definition of similarity. Thus, any particular sim-
ilarity measure can be computed as a function over the joint distributions. As does
its predecessor, LSD, GLUE follows a multistrategy learning approach, involving
several basic matchers and a meta-matcher. The system works in three steps. First, it
learns the joint probability distributions of classes of two taxonomies. In particular,
it exploits two basic matchers: the content learner (naive Bayes technique, §5.4.1)
and the name learner (a variation of the previous one). The meta-matcher, in turn,
performs a linear combination of the basic matchers. Weights for these matchers are
assigned manually. During the second step, the system estimates the similarity be-
tween two classes in a user-supplied function of their joint probability distributions.
This results in a similarity matrix between terms of two taxonomies. Finally, some
domain-dependent, e.g., subsumption, and domain-independent, e.g., if all children
of node x match node y, then x also matches y, constraints (heuristics) are applied
by using a relaxation labelling technique. These are used in order to filter some of
the matches out of the similarity matrix and keep only the best ones.

6.2.6 iMAP (University of Illinois and University of Washington)

iMAP [Dhamankar et al., 2004] is a system that semi-automatically discovers one-
to-one (e.g., amount ≡ quantity) and, most importantly, complex (e.g., address ≡

172 6 Overview of matching systems

concat(city, street)) mappings between relational database schemas. The schema
matching problem is reformulated as a search in a match space, which is often,
very large or even infinite. To perform the search effectively, iMAP uses multiple
basic matchers, called searches, e.g., text, numeric, category, unit conversion, each
of which addresses a particular subset of the match space. For example, the text
searcher considers the concatenation of text attributes, while the numeric searcher
considers combining attributes with arithmetic expressions. The system works in
three steps (see Fig. 6.4). First, matching candidates are generated by applying ba-
sic matchers (the match generator module). Even if a basic matcher, such as the text
searcher, addresses only the space of concatenations, this space can still be very large.
To this end, the search strategy is controlled by using the beam search technique
[Russell and Norvig, 1995]. During the second step, for each target attribute, match-
ing candidates of the source schema are evaluated by exploiting additional types of
information, e.g., using the naive Bayes evaluator (§5.4.1), which would be compu-
tationally expensive to use during the first step. These yield additional scores. Then,
all the scores are combined into a final one (the similarity estimator module). The re-
sult of this step is a similarity matrix between 〈target attribute,match candidate〉
pairs. Finally, by using a set of domain constraints and mappings from the previous
match operations (if applicable and available), the similarity matrix is cleaned up,
such that only the best matches for target attributes are returned as the result (the
match selector module). The system is also able to explain the results it produces
with the help of the explanation module, see for details Chap. 9.

o

o′

Searcher 1

Searcher n

Match generator A
Similarity
estimator

M A′

Explanation
module

Fig. 6.4. iMAP architecture: several matchers, called searchers, are run in parallel. They pro-
vide candidate matches that can be complex. These candidates are further selected by applying
the similarity estimator, and then, the final alignment is extracted. Additionally, the explana-
tion module allows users to understand the results and control the process.

6.2.7 Automatch (George Mason University)

Automatch [Berlin and Motro, 2002] is a system for automatic discovery of map-
pings between the attributes of database schemas. The approach assumes that several
schemas from the domain under consideration have already been manually matched

6.2 Instance-based systems 173

by domain experts. This assumption is a realistic one for a data integration scenario.
Then, by using Bayesian learning (§5.4.1), Automatch acquires probabilistic knowl-
edge from the manually matched schemas, and creates the attribute dictionary which
accumulates the knowledge about each attribute by means of its possible values
and the probability estimates of these values. In order to avoid a rapid growth of
the dictionary, the system also uses statistical feature selection techniques, such as
mutual information, information gain, and likelihood ratio, to learn efficiently, i.e.,
only from the most informative values, such as 10% of the actually available input
training data. A new pair of schemas is matched automatically via the precompiled
attribute dictionary. The system first matches each attribute of the input schemas
against the attribute dictionary, thereby producing individual match scores (a real
number). Then, these individual scores are further combined by taking their sum to
produce the scores between the attributes of the input schemas. Finally, the scores
between the input schemas, in turn, are combined again, by using a minimum cost
maximum flow graph algorithm and some thresholds in order to find the overall op-
timal matching between the input schemas with respect to the sum of the individual
match scores.

6.2.8 SBI&NB (The Graduate University for Advanced Studies)

SBI (Similarity-Based Integration) is a system for automatic statistical matching
among classifications [Ichise et al., 2003, Ichise et al., 2004]. SBI&NB is the exten-
sion of SBI by plugging into the system a naive Bayes classifier (§5.4.1). The idea of
SBI is to determine correspondences between classes of two classifications by sta-
tistically comparing the membership of the documents to these classes. The pairs of
similar classes are determined in a top-down fashion by using the κ-statistic method
[Fleiss, 1973]. These pairs are considered to be the final alignment. SBI&NB com-
bines sequentially the SBI and the naive Bayes classifier. The naive Bayes enables
hierarchical classification of documents. Thus, the system takes also into account
structural information of the input classifications. The exploited classifier is Pachinko
Machine naive Bayes from the Rainbow system4.

6.2.9 Kang and Naughton (University of Wisconsin-Madison)

Kang and Naughton proposed a structural instance-based approach for discovering
correspondences among attributes of relational schemas with opaque column names
[Kang and Naughton, 2003]. By opaque column names are meant names which are
hard to interpret, such as A and B instead of Model and Color. The approach works
in two phases. During the first phase, two table instances are taken as input and the
corresponding (weighted) dependency graphs are constructed based on mutual infor-
mation and entropy. The conditional entropy used here describes (with a non negative
real number) the uncertainty of values in an attribute given knowledge (probability
distribution) of another attribute. Mutual information, in turn, measures (with a non
negative real number) the reduction in uncertainty of one attribute due to the knowl-
edge of the other attribute, i.e., the amount of information captured in one attribute

174 6 Overview of matching systems

about the other. It is zero when two attributes are independent, and increases as the
dependency between the two attributes grows. Mutual information is computed over
all pairs of attributes in a table. Thus, in dependency graphs, a weight on an edge
stands for mutual information between two adjacent attributes. A weight on a node
stands for entropy of the attribute. During the second phase, matching node pairs
are discovered between the dependency graphs by running a graph matching algo-
rithm. The quality of matching is assessed by using metrics, such as the Euclidean
distance (§4.2.1). The distance is assigned to each potential correspondence between
attributes of two schemas and a one-to-one alignment which is a minimum weighted
graph matching (§5.7.3) is returned.

6.2.10 Dumas (Technische Universität Berlin and Humboldt-Universität zu
Berlin)

Dumas (DUplicate-based MAtching of Schemas) is an approach which identifies
one-to-one alignments between attributes by analysing the duplicates in data in-
stances of the relational schemas [Bilke and Naumann, 2005]. Unlike other instance-
based approaches which look for similar properties of instances, such as distribution
of characters, in columns of schemas under consideration, this approach looks for
similar rows or tuples. The system works in two phases: (i) identify objects within
databases with opaque schemas, and (ii) derive correspondences from a set of simi-
lar duplicates.

For object identification (§4.4.2), in Dumas, tuples are viewed as strings and a
string comparison metric, such as cosine measure (§4.2.1), is used to compare two
tuples. Specifically, tuples are tokenised and each token is assigned a weight based
on TFIDF scheme (§4.2.1). In order to avoid complete pairwise comparison of tuples
from two databases, the WHIRL algorithm (§5.4.2) is used. It performs a focused
search based on those common values that have high TFIDF score. The algorithm
ranks tuple pairs according to their similarity and identifies the k most similar tuple
pairs.

During the second phase, based on the k duplicate pairs with highest confidence,
correspondences between attributes are derived. The intuition is that if two field val-
ues are similar, then their respective attributes match. A field-wise similarity com-
parison is made for each of the k duplicates, thereby resulting in a similarity matrix.
For comparing tuple fields, a variation of a TFIDF-based measure, called soft TFIDF
[Cohen et al., 2003a], is used. It allows the consideration of similar terms as opposed
to equal terms. The resulting alignment is extracted from the similarity matrix by
finding the maximum weight matching. Finally, if based on the maximum matching,
multiple alternative matches are possible, therefore the algorithm iterates back to the
first phase in order to try to improve the result by discovering more duplicates.

6.2.11 Wang and colleagues (Hong Kong University of Science and Technology
and Microsoft Research Asia)

Wang and colleagues propose an instance-based solution for discovering one-to-
one alignments among the web databases [Wang et al., 2004] (see also Sect. 6.1.25).

6.2 Instance-based systems 175

These are query interfaces (HTML forms) and backend databases which dynamically
provide information in response to user queries. Authors distinguish between (i) the
query interface, which exposes attributes that can be queried in the web database and
(ii) the result schema presenting the query results, which exposes attributes that are
shown to users. Matching between different query interfaces (inter-site matching) is
critical for data integration between web databases. Matching between the interface
and result schema of a single web database (intra-site matching), in turn, is useful
for automatic data annotation and database content crawling. The approach is based
on the following observations (among others):

– The keywords of queries (whose semantics match the semantics of the input el-
ement of a query interface) that return results are likely to reappear in attributes
of the returned result. For example, such keywords as Logic submitted to the in-
put element title matches its intended use (while it is not the case with the field
author which will unlikely produce expected results), and therefore, some results
with books about logics will be returned. Moreover, part (Logic) of the value
Introduction to logic of the title attribute should reappear in the result schema.

– Based on the work in [He and Chang, 2003], the authors assume the existence
and availability of a populated global schema, that is a view capturing common
attributes of data, for the web databases of the same domain of interest.

The approach presents a combined schema model that involves five kinds of
schema matching for web databases in the same domain of interest: global-interface,
global-result, interface-result, interface-interface, and result-result. The approach
works in two phases: (i) query probing and (ii) instance-based matching.

The first phase deals with acquiring data instances from web databases by query
probing. It exhaustively sends the attribute values of pre-known instances from a
global schema and collects results from the web databases under consideration in a
query occurrence cube. The cube height stands for the number of attributes in the
given global schema. The cube width stands for the number of attributes in the inter-
face schema. The cube depth is the number of attributes in the result schema. Finally,
each cell in this cube stores an occurrence count associated with the three dimen-
sions. This cube is further projected onto three query occurrence matrices, which
represent relationships between pairs of three schemas, namely global-interface,
global-result, and interface-result.

During the second phase, the re-occurrences of submitted query keywords in
the returned results data are analysed. In order to perform intra-site matching, the
mutual information between pairs of attributes from two schemas is computed (see
also Sect. 6.2.9). In order to perform inter-site matching a vector-based similarity is
used (§4.2.1). In particular, each attribute of an individual interface or result schema
is viewed as a document and each attribute of the global schema is view as a concept.
Each row in the occurrence matrix represents a corresponding document vector. The
similarity between attributes from different schemas is computed by using the cosine
measure (§4.2.1) between two vectors. Finally, for both intra-site matching and inter-
site matching, the matrix element whose value is the largest both in its row and

176 6 Overview of matching systems

column represents a final correspondence (this is the greedy alignment extraction
presented in Sect. 5.7.3).

6.2.12 sPLMap (University of Duisburg-Essen, and ISTI-CNR)

sPLMap (probabilistic, logic-based mapping between schemas) is a framework
which combines logics with probability theory in order to support uncertain schema
mappings [Nottelmann and Straccia, 2005, Nottelmann and Straccia, 2006]. In par-
ticular, it is a GLAV-like framework [Lenzerini, 2002] where the alignment is de-
fined as uncertain rules in probabilistic Datalog. This allows the support for impre-
cise matches, e.g., between author and editor attributes and a more general attribute,
such as creator, which is often the case in schemas with different levels of granu-
larity. sPLMap matches only attributes of the same concept (typically documents).
The system operates in three main steps. First, it evaluates the quality of all possible
individual correspondences on the basis of probability distributions (called interpre-
tation). It selects the set of correspondences that maximises probability on the basis
of instance data.

Then, for each correspondence, matchers are used as quality estimators: they pro-
vide a measure of the plausibility of the correspondence. sPLMap has been tested
with the following matchers: (i) same attribute names (§4.2.1), (ii) exact tuples
(§4.4), (iii) the k-nearest neighbour classifier, and (iv) the naive Bayesian classi-
fier (§5.4.1). The result of these matchers are aggregated by using linear or logistic
functions, or their combinations (§5.2). Coefficients of the normalisation functions
are learnt by regression in a system-training phase. Finally, the computed proba-
bilities are transformed in correspondence weights (used as the probability of the
corresponding Datalog clause) by using the Bayes theorem.

6.3 Mixed, schema-based and instance-based systems

The following systems take advantage of both schema-level and instance-level input
information if they are both available.

6.3.1 SEMINT (Northwestern University, NEC and The MITRE Corporation)

SEMantic INTegrator (SEMINT) is a tool based on neural networks to assist in iden-
tifying attribute correspondences in heterogeneous databases [Li and Clifton, 1994,
Li and Clifton, 2000]. It supports access to a variety of database systems and utilises
both schema- and instance-level information to produce rules for matching corre-
sponding attributes automatically. The approach works as follows. First, it extracts
from two databases all the necessary information (features or discriminators) which
is potentially available and useful for matching. This includes normalised schema in-
formation, e.g., field specifications, such as datatypes, length, constraints, and statis-
tics about data values, e.g., character patterns, such as ratio of numerical characters,

6.3 Mixed, schema-based and instance-based systems 177

ratio of white spaces, and numerical patterns, such as mean, variance, standard de-
viation. Second, by using a neural network as a classifier with the self-organising
map algorithm (§5.4.3), it groups the attributes based on similarity of the features
for a single (the first) database. Then, it uses a back-propagation neural network
for learning and recognition. Based on the previously obtained clusters, the learning
is performed. Finally, using a trained neural network on the first database features
and clusters, the system recognises and computes similarities between the categories
of attributes from the first database and the features of attributes from the second
database, thus, generating a list of match candidates, which are to be inspected and
confirmed or discarded by users.

6.3.2 Clio (IBM Almaden and University of Toronto)

Clio is a system for managing and facilitating data transformation and integration
tasks within heterogeneous environments [Miller et al., 2000, Miller et al., 2001,
Naumann et al., 2002, Haas et al., 2005], see Fig. 6.5. Clio handles relational and
XML schemas. As a first step, the system transforms the input schemas into an inter-
nal representation, which is a nested relational model. The Clio approach is focused
on making the alignment operational. It is assumed that the matching step, namely,
identification of the value correspondences, is performed with the help of a schema
matching component or manually. The built-in schema matching algorithm of Clio
combines in a sequential manner instance-based attribute classification via a varia-
tion of a naive Bayes classifier (§5.4.1) and string matching between elements names,
e.g., by using an edit distance (§4.2.1). Then, taking the n-m value correspondences
(the alignment) together with constraints coming from the input schemas, Clio com-
piles these into an internal query graph representation. In particular, an interpreta-
tion of the input correspondences is given. Thus, a set of logical mappings with
formal semantics is produced. To this end, Clio also supports mappings composition
[Fagin et al., 2004]. Finally, the query graph can be serialised into different query
languages, e.g., SQL, XSLT, XQuery, thus enabling actual data to be moved from a
source to a target, or to answer queries. The system, besides trivial transformations,
aims at discovering complex ones, such as the generation of keys, references and join
conditions.

6.3.3 IF-Map (University of Southampton and University of Edinburgh)

IF-Map (Information-Flow-based Map) [Kalfoglou and Schorlemmer, 2003a] is an
ontology matching system based on the Barwise–Seligman theory of information
flow [Barwise and Seligman, 1997]. The basic principle of IF-Map is to match two
local ontologies by looking at how these are related to a common reference ontology.
It is assumed that such a reference ontology represents an agreed understanding that
facilitates the sharing of knowledge. This means that two local ontologies have sig-
nificant fragments of them that conform to the reference ontology. It is also assumed
that the local ontologies are populated with instances, while the reference ontology
does not need to.

178 6 Overview of matching systems

s

db

s′

db′

Matcher

A

Generator

Data translation

Fig. 6.5. Clio architecture: Clio goes all the way from matching schemas to translating data
from one database to another one. It is made up of a classical matcher but also involves users
at each step: input, matching control and translation execution.

Matching works as follows. If the reference ontology can be expressed in each of
the local ontologies and instances of the local ontologies can be assigned concepts in
the reference ontology (or be mapped to equivalent instances in the reference ontol-
ogy), then IF-Map uses formal concept analysis (§4.4.1) between the three ontologies
in order to find the Galois lattice from which it is possible to extract an alignment.

When the mappings are not available, IF-Map generates candidate pairs of map-
pings (called infomorphism in information flow theory) and artificial instances. They
are generated through the enforcement of constraints that are induced by the defini-
tion of the reference ontology and by heuristics based on string-based (§4.2.1) and
structure-based (§4.3) methods.

IF-Map deals with ontologies expressed in KIF or RDF. The IF-MAP method is
declaratively specified in Horn logic and is executed with a Prolog interpreter, so the
ontologies are translated into Prolog clauses beforehand. IF-Map produces concept-
to-concept and relation-to-relation alignments.

6.3.4 NOM and QOM (University of Karlsruhe)

NOM (Naive Ontology Mapping) [Ehrig and Sure, 2004] and QOM (Quick Ontol-
ogy Mapping) [Ehrig and Staab, 2004] are components of the FOAM framework
(§8.2.5).

NOM adopts the idea of parallel composition of matchers from COMA (§6.1.12).
Some innovations with respect to COMA are in the set of elementary match-
ers based on rules, exploiting explicitly codified knowledge in ontologies, such as
information about super and subconcepts, super and subproperties, etc. As from
[Ehrig and Sure, 2004], the system supports 17 rules related to those of Table 4.6
(p. 100). For example, a rule states that if superconcepts are the same, the actual
concepts are similar to each other. These rules are based on various terminological
and structural techniques.

6.3 Mixed, schema-based and instance-based systems 179

QOM (Quick Ontology Mapping) [Ehrig and Staab, 2004] is a variation of the
NOM system dedicated to improve the efficiency of the system. The approach is
based on the idea that the loss of quality in matching algorithms is marginal (to a
standard baseline); however improvement in efficiency can be significant. This fact
allows QOM to produce correspondences fast, even for large-size ontologies. QOM
is grounded on matching rules of NOM. However, for the purpose of efficiency the
use of some rules, e.g., the rules that traverse the taxonomy, has been restricted.
QOM avoids the complete pairwise comparison of trees in favour of an incomplete
top-down strategy, thereby focusing only on promising matching candidates.

The similarity measures produced by basic matchers (matching rules) are re-
fined by using a sigmoı̈d function (§5.7.2), thereby emphasising high individual sim-
ilarities and de-emphasising low individual similarities. They are then aggregated
through weighted average (§5.2). Finally, with the help of thresholds, the final align-
ment is produced.

6.3.5 oMap (CNR Pisa)

oMap [Straccia and Troncy, 2005] is a system for matching OWL ontologies. It is
built on top of the Alignment API (§8.2.4) and has been used for distributed infor-
mation retrieval in [Straccia and Troncy, 2006]. oMap uses several matchers (called
classifiers) that are used for giving a plausibility of a correspondence as a function
of an input alignment between two ontologies. The matchers include (i) a classifier
based on classic string similarity measure over normalised entity names (§4.2.1); (ii)
a naive Bayes classifier (§5.4.1) used on instance data, and (iii) a ‘semantic’ matcher
which propagates initial weights through the ontology constructors used in the defi-
nitions of ontology entities. This last one starts with an input alignment associating
plausibility to correspondences between primitive entities and computes the plausi-
bility of a new alignment by propagating these measures through the definitions of
the considered entities. The propagation rules depend on the ontology constructions,
e.g., when passing through a conjunction, the plausibility will be minimised. Each
matcher has its own threshold and they are ordered among themselves.

There are two ways in which matchers can work: (i) in parallel, in which case
their results are aggregated through a weighted average, such that the weights corre-
spond to the credit accorded to each of the classifiers, (ii) in sequence, in which case
each matcher only adds new correspondences to the input ontologies. A typical order
starts with string similarity, before naive Bayes, and then the ‘semantic’ matcher is
used.

6.3.6 Xu and Embley (Brigham Young University)

Xu and Embley proposed a parallel composition approach to discover, in ad-
dition to one-to-one alignments, also one-to-many and many-to-many corre-
spondences between graph-like structures, e.g., XML schemas, classifications
[Xu and Embley, 2003, Embley et al., 2004]. Schema matching is performed by a

180 6 Overview of matching systems

combination (an average function) of multiple matchers and with the help of exter-
nal knowledge resources, such as domain ontologies. The basic element level match-
ers used in the approach include name matcher and value-characteristic matcher.
The name matcher, besides string comparisons (§4.2.1), also performs some lin-
guistic normalisation, such as stemming and removing stop words (§4.2.2). It also
detects synonyms among node names with the help of WordNet (§4.2.2). In par-
ticular, matching rules are obtained via a C4.5 decision tree generator (§5.4.4) that
has been trained over WordNet by using several hundreds synonym names found in
the available databases from a domain of interest. The value-characteristic matcher
determines where two values of schema elements share similar value characteris-
tics, such as means or variances for numerical data. Similar to the name matcher,
matching rules are obtained by training the C4.5 decision tree generator over value
characteristics of the available databases from a domain of interest. Structure level
matchers are used to suggest new correspondences as well as to confirm correspon-
dences identified by element level matchers, for example, by considering similarities
between the neighbour elements computed by element level matchers. Another ex-
ample of a structural matcher makes use of a domain ontology. In particular, it tries
to match both schemas A and B to the structure C, which is an external domain
ontology, in order to decide if A corresponds to B.

6.3.7 Wise-Integrator (SUNY at Binghamton, University of Illinois at Chicago
and University of Louisiana at Lafayette)

Wise-Integrator is a tool that performs automatic integration of Web Interfaces of
Search Engines [He et al., 2004, He et al., 2005]. It provides a unified interface to
e-commerce search engines of the same domain of interest, such as books and mu-
sic. Therefore, users can pose queries by using this interface and the search me-
diator sends the translated subqueries to each site involved in handling this query
and then the results of these sites are reconciled and presented to users. Wise-
Integrator consists of two main subsystems: (i) an interface schema extractor, and
(ii) an interface schema integrator. The first component, given a set of HTML pages
with query interfaces, identifies logical attributes and derives some meta-information
about them, e.g., datatype, thereby building an interface schema out of them. For ex-
ample, the system can derive (guess) that the field Publication Date, is likely to be of
date datatype. The second component discovers matching attributes among multiple
query interfaces and then merges them, thereby resulting in global attributes. These
are used, in turn, to produce a unified search interface.

Attribute matching in Wise-Integrator is based on two types of matches: posi-
tive and predictive. Positive matches are based on the following matching methods:
exact name match, look up for synonymy, hypernymy and meronymy in WordNet
(§4.2.2), and value-based matchers. When one of the positive matches occurs, the
corresponding attributes are considered as matched. Predictive matches are based
on the following matching methods: approximate name match, e.g., edit distance
(§4.2.1), datatype compatibility (§4.3.1), value pattern matcher (§4.4.3). Predictive

6.3 Mixed, schema-based and instance-based systems 181

matches have to be strong enough (which is decided based on a threshold) in order
to indicate that the attributes under consideration match.

Positive and predictive matches are carried out in two clustering steps: positive
match based clustering and predictive match based clustering. In the first step all
the interfaces are taken as input and attributes are grouped into clusters based on
the positive matches between attributes. Clustering is done by following some pre-
defined rules which govern the order of execution of underlying matchers and how
to make groupings based on results of those matchers. For example, the first results
of exact name matches are considered and then results of value-based and WordNet-
based matchers. Finally, for each cluster a representative attribute name (RAN) is
determined. For example, for the cluster with attribute names {Format, Binding type,
Format} the RAN is Format. During the second step all local interfaces are recon-
sidered again. Clustering is done following some pre-defined rules which employ
previously determined RANs and a simple weighting scheme over the results of pre-
dictive matching methods, if all else fail. When all potentially matching attributes are
clustered together, the global attribute for each group of such attributes is generated.

6.3.8 OLA (INRIA Rhône-Alpes and Université de Montréal)

OLA (OWL Lite Aligner) [Euzenat and Valtchev, 2004] is an ontology matching sys-
tem which is designed with the idea of balancing the contribution of each of the
components that compose an ontology, e.g., classes, constraints, data instances. OLA
handles ontologies in OWL. It first compiles the input ontologies into graph struc-
tures, unveiling all relationships between entities. These graph structures produce the
constraints for expressing a similarity between the elements of the ontologies. The
similarity between nodes of the graphs follows two principles: (i) it depends on the
category of node considered, e.g., class, property, and (ii) it takes into account all
the features of this category, e.g., superclasses, properties, as presented in Table 4.6.

The distance between nodes in the graph are expressed as a system of equations
based on string-based (§4.2.1), language-based (§4.2.2) and structure-based (§4.3)
similarities (as well as taking instances into account whenever necessary). These
distances are almost linearly aggregated (they are linearly aggregated modulo local
matches of entities). For computing these distances, the algorithm starts with base
distance measures computed from labels and concrete datatypes. Then, it iterates a
fixed point algorithm until no improvement is produced. From that solution, an align-
ment is generated which satisfies some additional criterion on the obtained alignment
and the distance between matched entities. The algorithm is described in more de-
tail in Sect. 5.3.2. The OLA architecture is typically the one displayed in Fig. 5.8
(p. 127).

6.3.9 Falcon-AO (China Southwest University)

Falcon-AO is a system for matching OWL ontologies. It is made of two components,
namely those for performing linguistic and structure matching, see also Fig. 6.6.

182 6 Overview of matching systems

LMO is a linguistic matcher. It associates with each ontology entity a bag of words
which is built from the entity label, the entity annotations as well as the labels
of connected entities. The similarity between entities is based on TFIDF (§4.2.1)
[Qu et al., 2006].

GMO is a bipartite graph matcher [Hu et al., 2005]. It starts by considering the RDF
representation of the ontologies as a bipartite graph which is represented by its
adjacency matrix (A and A′). The distance between the ontologies is represented
by a distance matrix (X) and the distance (or update) equations between two
entities are simply a linear combination of all entities they are adjacent to, i.e.,
Xt+1 = AXtA′T + AT XtA′. This process can be bootstrapped with an initial
distance matrix. However, the real process is more complex than described here
because it distinguishes between external and internal entities as well as between
classes, relations and instances.

o

o′

M
Linguistic
matching M ′ Structure

matching M ′′ A′

Fig. 6.6. Falcon-AO architecture: it is a sequential composition of two components, but if the
output of the linguistic matcher is considered of sufficient quality, then no structure matching
is performed.

First LMO is used for assessing the similarity between ontology entities on the
basis of their name and text annotations. If the result has a high confidence, then it is
directly returned for extracting an alignment. Otherwise, the result is used as input for
the GMO matcher which tries to find an alignment on the basis of the relationships
between entities [Jian et al., 2005].

6.3.10 RiMOM (Tsinghua University)

The RiMOM (Risk Minimisation based Ontology Mapping) approach, being in-
spired by Bayesian decision theory, formalises ontology matching as a decision mak-
ing problem [Tang et al., 2006]. Given two ontologies, it aims at an optimal and au-
tomatic discovery of alignments which can be complex (such as including concatena-
tion operators). The approach first searches for concept-to-concept correspondences
and then for property-to-property correspondences. The RiMOM matching process
is organised into the following phases [Li et al., 2006]:

1. Select matchers to use. This task can be performed either automatically or manu-
ally. The basic idea of automatic strategy selection is if two ontologies have high

6.3 Mixed, schema-based and instance-based systems 183

label similarity factor, then RiMOM will rely more on linguistic based strate-
gies; while if the two ontologies have a high structure similarity factor, RiMOM
will exploit similarity-propagation based strategies on them.

2. Execute multiple independent matchers, given the input ontologies and, option-
ally, user input. Examples of matchers include linguistic normalisation of labels,
such as tokenisation, expansion of abbreviations and acronyms (§4.2.2) based
on GATE tools6, edit-distance, matchers that look for label similarity based on
WordNet (§4.2.2), k-nearest neighbours statistical learning, naive Bayes matcher
(§5.4.1), as well as some other heuristics for data type similarity and taxonomic
structure similarity. This results in a cube of similarity values in [0 1] for each
pair of entities from the two ontologies (see also Sect. 6.1.12).

3. Combine the results by aggregating the values produced during the previous step
into a single value. This is performed by using a linear-interpolation.

4. Similarity propagation. If the two ontologies have high structure similarity fac-
tor, RiMOM employs an algorithm called similarity propagation to refine the
found alignments and to find new alignments that cannot be discovered using
the other strategies. Similarity propagation makes use of structure information.

5. Extract alignment for a pair of ontologies based on thresholds (§5.7.1) and
some refinement heuristics to eliminate unreasonable correspondences, e.g., use
concept-to-concept correspondences to refine property-to-property correspon-
dences.

6. Iterate the above described process by taking the output of one iteration as input
into the next iteration until no new correspondences are produced. At each iter-
ation, users can select matchers, and approve and discard correspondences from
the returned alignment

RiMOM offers three possible structural propagation strategies: concept-to-
concept propagation strategy (CCP), property-to-property propagation strategy
(PPP), and concept-to-property propagation strategy (CPP). For choosing between
them, RiMOM uses heuristic rules. For example, if the structure similarity factor is
lower than some threshold then RiMOM does not use the CCP and PPP strategies,
only CPP is used.

6.3.11 Corpus-based matching (University of Washington, Microsoft Research
and University of Illinois)

Madhavan and colleagues [Madhavan et al., 2005] proposed an approach to schema
matching which, besides input information available from schemas under consid-
eration, also exploits some domain specific knowledge via an external corpus of
schemas and mappings. The approach is inspired from the use of corpus in infor-
mation retrieval, where similarity between queries and concepts is determined based
on analysing large corpora of text. In schema matching, such a corpus can be ini-
tialised with a small number of schemas obtained, for example, by using available

6 http://gate.ac.uk/

184 6 Overview of matching systems

standard schemas in the domain of interest, and should eventually evolve in time
with new matching tasks.

Since the corpus is intended to have different representations of each concept in
the domain, it should facilitate learning these variations in the elements and their
properties. The corpus is exploited in two ways. First, to obtain an additional ev-
idence about each element being matched by including evidence from similar ele-
ments in the corpus. Second, in the corpus, similar elements are clustered and some
statistics for clusters are computed, such as neighbourhood and ordering of elements.
These statistics are ultimately used to build constraints that facilitate selection of the
correspondences in the resulting alignment.

The approach handles web forms and relational schemas and focuses on one-
to-one alignments. It works in two phases. Firstly, schemas under consideration are
matched against the corpus, thereby augmenting these with possible variations of
their elements based on knowledge available from the corpus. Secondly, augmented
schemas are matched against each other. In both cases the same set of matchers is
applied. In particular, basic matchers, called learners, include (i) a name learner, (ii)
a text learner, (iii) a data instance learner, and (iv) a context learner. These match-
ers mostly follow the ideas of techniques used in LSD (§6.2.4) and Cupid (§6.1.11).
For example, the name learner exploits names of elements. It applies tokenisation
and n-grams (§4.2.1) to the names in order to create training examples. The matcher
itself is a text classifier, such as naive Bayes (§5.4.1). In addition, the name learner,
uses edit distance (§4.2.1), in order to determine similarity between element names
string. The data instance learner determines whether the values of instances share
common patterns, same words, etc. A matcher, called meta-learner, combines the
results produced by basic matchers. It uses logistic regression with the help of the
stacking technique (§5.4.5) in order to learn its parameters. Finally, by using con-
straints based on the statistics obtained from the corpus, candidate correspondences
are filtered in order to produce the final alignment.

6.4 Meta-matching systems

Meta-matching systems are systems whose originality is in the way they use and
combine other matching systems rather than in the matchers themselves.

6.4.1 APFEL (University of Karlsruhe and University of Koblenz-Landau)

APFEL (Alignment Process Feature Estimation and Learning) is a machine learning
approach that explores user validation of initial alignments for optimising automati-
cally the configuration parameters of some of the matching strategies of the system,
e.g., weights, thresholds, for the given matching task [Ehrig et al., 2005]. It is a com-
ponent of the FOAM framework (§8.2.5). The overall architecture of APFEL is given
in Fig. 6.7.

APFEL parameterises the FOAM steps by using declarative representations of
the (i) features engineered, QF ; (ii) similarities assessed, QS ; (iii) weight schemas,

6.4 Meta-matching systems 185

o

o′

Seed match A A′ Evaluate
parameters

p Match A′′

Iterate

Fig. 6.7. APFEL architecture (adapted from [Ehrig, 2007]): it generates alignments and asks
users for feedback. Then it adjusts methods and aggregation parameters in order to minimise
the error and iterate, if necessary.

e.g., for similarity aggregation, QW ; and (iv) thresholds, QT . For that purpose, the
interfaces of matching systems are unified as Parameterisable Alignment Methods
(PAM), which accept these parameters. First, given a matching system, for example
QOM (§6.3.4) or Prompt (§6.1.9), a PAM is initialised with it, e.g., PAM(QOM).
Then, once an initial alignment is obtained, this alignment is validated by users.
Finally, by analysing the validated alignment and the above parameters, with the
help of machine learning techniques (§5.4), e.g., decision tree learner, neural net-
works, support vector machines of the WEKA machine learning environment7, a
tuned weighting scheme and thresholds are produced for the given matching task.
This process can be iterated.

6.4.2 eTuner (University of Illinois and The MITRE Corporation)

eTuner [Sayyadian et al., 2005] is a system which, given a particular matching task,
automatically tunes a schema matching system (computing one-to-one alignments).
For that purpose, it chooses the most effective basic matchers, and the best pa-
rameters to be used, e.g., thresholds. eTuner models a matching system as a triple:
〈L,G, K〉, such that:

– L is a library of matching components, including basic matchers, e.g., edit dis-
tance, n-gram, combiners, e.g., modules taking average, minimum and maximum
of the results produced by basic matchers, constraint enforcers, e.g., pre-defined
domain constraints or heuristics which are computationally expensive to be used
as basic matchers, and match selectors, e.g., modules applying thresholds for
determining the final alignment.

– G is a directed graph which encodes the execution flow among the components
of the given matching system.

– K is a set of knobs to be set (and named knob configuration). Matching compo-
nents are viewed as black boxes which expose a set of adjustable knobs, such as
thresholds, weights, or coefficients.

7 http://www.cs.waikato.ac.nz/ml/weka/

186 6 Overview of matching systems

S

Sample
generator

Transformation rules

Workload
generator

S′

Augmented schema S

Tuning procedures

Staged
tuner

System M :
〈L, G, K〉

Tuned
system MSynthetic

workload

Fig. 6.8. eTuner architecture: eTuner generates a set of schemas to match with an initial
schema. Then, it generates a plan for learning parameters. Finally, it tunes the method pa-
rameters and aggregation parameters.

The system works in two phases (see Fig. 6.8). During the first phase, in which
the workload is synthesised with a known ground truth, given a single schema S, the
system synthetises several schemas (S1, S2,. . . ,Sn) out of S by altering it (for in-
stance by modifying names of attributes, e.g., authors becomes aut). Thus, by taking
a set of pairs {〈S, S1〉, 〈S, S2〉,. . . 〈S, Sn〉} together with the reference correspon-
dences available for free by construction of the synthetic schemas, the F-measure
(§7.3) can be computed over any knob configuration. The second phase consists of
searching the best parameters. Since the space of knob configurations can be large,
the system uses a sequential, greedy approach, called staged tuning. In particular, by
using the synthetic workload, it first tunes each of the basic matchers in isolation.
Then, it tunes the combination of the basic matchers and the combiner, having the
knobs of the basic matchers fixed, and so on and so forth. Once the entire system is
tuned, it can be applied to match schema S with any subsequent schemas.

6.5 Summary

The panorama of systems considered in this chapter has multiplied the diversity of
basic techniques of Chap. 4 by the variety of strategies for combining them intro-
duced in Chap. 5. Moreover, usually each individual system innovates on a particular
aspect. However, there are several constant features that are shared by the majority
of systems. In summary, the following can be observed concerning the presented
systems:

– Based on the number of systems considered in the various sections of this chapter,
we can conclude that schema-based matching solutions have been so far investi-
gated more intensively than the instance-based solutions. We believe that this is
an objective trend, since we have striven to cover state of the art systems without
bias towards any particular kind of solutions.

6.5 Summary 187

– Most of the systems under consideration focus on specific application domains,
such as books and music, as well as on dealing with particular ontology types,
such as DTDs, relational schemas and OWL ontologies. Only few systems aim
at being general, i.e., suit various application domains, and generic, i.e., han-
dle multiple types of ontologies. Some examples of the latter include Cupid
(§6.1.11), COMA and COMA++ (§6.1.12), Similarity flooding (§6.1.13), and
S-Match (§6.1.19).

– Most of the approaches take as input a pair of ontologies, while only few sys-
tems take as input multiple ontologies. Some examples of the latter include DCM
(§6.1.25) and Wise-Integrator (§6.3.7).

– Most of the approaches handle only tree-like structures, while only few systems
handle graphs. Some examples of the latter include Cupid (§6.1.11), COMA and
COMA++ (§6.1.12), and OLA (§6.3.8).

– Most of the systems focus on discovery of one-to-one alignments, while only
few systems have tried to address the problem of discovering more complex cor-
respondences, such as one-to-many and many-to-many, e.g., iMAP (§6.2.6) and
DCM (§6.1.25).

– Most of the systems focus on computing confidence measures in the [0 1] range,
most often standing for the fact that the equivalence relation holds between on-
tology entities. Only few systems compute logical relations between ontology
entities, such as equivalence, subsumption. Some examples of the latter include
CtxMatch (§6.1.18) and S-Match (§6.1.19).

Table 6.1 summarises how the matching systems cover the solution space in
terms of the classifications of Chap. 3. For example, S-Match (§6.1.19) exploits
string-based element-level matchers, external matchers based on WordNet, propo-
sitional satisfiability techniques, etc. OLA (§6.3.8), in turn, exploits, besides string-
based element-level matchers, also a matcher based on WordNet, iterative fixed point
computation, etc. Table 6.1 also testifies that ontology matching research so far was
mainly focused on syntactic and external techniques. In fact, many systems rely on
the same string-based techniques. Similar observation can be also made concerning
the use of WordNet as an external resource of common knowledge. In turn, semantic
techniques have rarely been exploited, this is only done by CtxMatch (§6.1.18), S-
Match (§6.1.19) and OntoMerge (§6.1.17). Concerning instance-based system, tech-
niques based on naive Bayes classifier and common value patterns are the most
prominent.

Table 6.1. Basic matchers used by the different systems.

Element-level Structure-level
Syntactic External Syntactic Semantic

DELTA String-based - - -
§6.1.1

Hovy String-based, - Taxonomic structure -
§6.1.2 Language-based

TranScm String-based Built-in thesaurus Taxonomic structure, -

188 6 Overview of matching systems

Table 6.1. Basic matchers used by the different systems (continued).

Element-level Structure-level
Syntactic External Syntactic Semantic

§6.1.3 Matching of
neighbourhood

DIKE String-based, WordNet Matching of -
§6.1.4 Domain compatibility neighbourhood

SKAT String-based Auxiliary thesaurus, Taxonomic structure,
§6.1.5 Corpus-based Matching of -

neighbourhood

Artemis Domain compatibility, Common thesaurus Matching of neighbours
§6.1.6 Language-based via thesaurus, -

Clustering

H-Match Domain compatibility, Common thesaurus Matching of neighbours
§6.1.7 Language-based, via thesaurus, -

Domains and ranges Relations

Tess String-based, - Matching of neighbours -
§6.1.8 domain compatibility

Anchor- String-based, Bounded paths matching:
Prompt Domains and ranges - (arbitrary links), -
§6.1.9 Taxonomic structure

OntoBuilder String-based, Thesaurus look up - -
§6.1.10 Language-based

String-based, Auxiliary thesauri Tree matching
Cupid Language-based, weighted by leaves -
§6.1.11 Datatypes,

Key properties

COMA & String-based, Auxiliary thesauri, DAG (tree) matching with
COMA++ Language-based, Alignment reuse, a bias towards various -
§6.1.12 Datatypes Repository of structures structures, e.g., leaves

Similarity String-based, Iterative fixed point
flooding Datatypes, - computation -
§6.1.13 Key properties

XClust Cardinality constraints WordNet Paths, Children, Leaves, -
§6.1.14 Clustering

ToMAS - External alignments Preserving consistency, -
§6.1.15 Structure comparison
MapOnto - External alignments Structure comparison -
§6.1.16

OntoMerge - External alignments - -
§6.1.17

CtxMatch String-based, WordNet - Based on
§6.1.18 Language-based description logics

S-Match String-based, WordNet - Propositional SAT
§6.1.19 Language-based

HCONE Language-based WordNet - -
§6.1.20 (LSI)

MoA Language-based WordNet - -
§6.1.21

ASCO String-based, WordNet Iterative similarity -
§6.1.22 Language-based propagation

BayesOWL Text classifier Google Bayesian inference -
§6.1.23

OMEN - External alignment Bayesian inference, -
§6.1.24 Meta-rules

DCM - - Correlation mining, -
§6.1.25 Statistics

6.5 Summary 189

Table 6.1. Basic matchers used by the different systems (continued).

Element-level Structure-level
Syntactic External Syntactic Semantic

T-tree - - Correlation mining -
§6.2.1

CAIMAN String-based - - -
§6.2.2 (Rocchio classifier)

FCA-merge - - Formal concept -
§6.2.3 analysis

LSD/GLUE/ WHIRL, Domain constraints Hierarchical structure
iMAP Naive Bayes -
§6.2.4-6.2.6

Automatch Naive Bayes - Internal structure, -
§6.2.7 Statistics

SBI&NB Statistics, - Pachinko Machine -
§6.2.8 Naive Bayes naive Bayes

Kang Information entropy Mutual information,
& Naughton - Dependency graph -
§6.2.9 matching

Dumas String-based - Instance -
§6.2.10 WHIRL identification

Wang & al. Language-based - Mutual information -
§6.2.11

sPLMap Naive Bayes,
§6.2.12 kNN classifier, - - -

String-based

SEMINT Neural network,
§6.3.1 Datatypes, - - -

Value patterns

Clio String-based, Structure comparison
§6.3.2 Language-based, - -

Naive Bayes

IF-Map String-based - Formal concept -
§6.3.3 analysis

NOM & QOM String-based, Application-specific Matching of neighbours, -
§6.3.4 Domains and ranges vocabulary Taxonomic structure

oMap Naive Bayes, - Similarity -
§6.3.5 String-based propagation

Xu & al. String-based, WordNet, Decision trees -
§6.3.6 Language-based Domain ontology

String-based,
Wise-Integrator Language-based, WordNet Clustering -
§6.3.7 Datatypes,

Value patterns

String-based, Iterative fixed point
OLA Language-based, WordNet computation, -
§6.3.8 Datatypes Matching of neighbours,

Taxonomic structure

Falcon-AO String-based WordNet Structural affinity -
§6.3.9

RiMOM String-based, WordNet Taxonomic structure, -
§6.3.10 Naive Bayes Similarity propagation

Corpus-based String-based, Corpus schemas,
matching §6.3.11 Language-based, Domain constraints - -

Naive Bayes,
Value patterns

190 6 Overview of matching systems

Table 6.2 summarises the position of these systems with regard to some of the
requirements of Sect. 1.7 (namely those requirements that can be given in the spec-
ification of the system rather than being measured). In Table 6.2, the Input column
stands for the input taken by the systems. In particular, it mentions the languages that
the systems are able to handle (if this information was not available form the arti-
cles describing the corresponding systems we used general terms, such as database
schema and ontology instead). This is, of course, very important for someone who
has a certain type of ontology to match and is looking for a system. The Needs col-
umn stands for the resources that must be available for the system to work. This
covers the automatic aspect of Sect. 1.7, which is here denoted as user when user
feedback is required, semi when the system can take advantage of user feedback but
can operate without it and auto when the system works without user intervention
(of course, users can influence the system by providing the initial input or evalu-
ating the results afterwards, but this is not taken into account here). Similarly, the
instances value specifies that the system requires data instances to work. In addition,
some systems may require training before the actual matching as well as alignment
to be improved. The Output column denotes the form of the results given by the sys-
tem: Alignment means that the system returns a set of correspondences, merge that
it merges the input ontologies or schemas, axioms or rules that it provides rules for
querying or completing the ontologies, etc.

Table 6.2. Position of the presented systems with regard to the requirements of
Chap. 1.

System Input Needs Output Operation

DELTA Relational schema, User Alignment -
§6.1.1 EER

Hovy Ontology Semi Alignment -
§6.1.2

TranScm SGML, Semi Translator Data translation
§6.1.3 OO

DIKE ER Semi Merge Query mediation
§6.1.4

SKAT RDF Semi Bridge Data translation
§6.1.5 rules

Artemis Relational schema, Auto Views Query mediation
§6.1.6 OO, ER

H-Match OWL Auto Alignment P2P
§6.1.7 query mediation

Tess Database schema Auto Rules Version matching
§6.1.8

Anchor-Prompt OWL, RDF User Axioms Ontology merging
§6.1.9 (OWL/RDF)

OntoBuilder Web form, User Mediator Query mediation
§6.1.10 XML schema

Cupid XML schema, Auto Alignment -
§6.1.11 Relational schema

COMA & COMA++ Relational schema, User Alignment Data translation
§6.1.12 XML schema, OWL

6.5 Summary 191

Table 6.2. Position of these systems with regard to the requirements of Chap. 1
(continued).

System Input Needs Output Operation

Similarity flooding XML schema, User Alignment -
§6.1.13 Relational schema

XClust DTD Auto Alignment -
§6.1.14

ToMAS Relational schema, Query, Query, Data transformation
§6.1.15 XML schema Alignment Alignment

MapOnto Relational schema, Alignment Rules Data translation
§6.1.16 XML schema, OWL

OntoMerge OWL Alignment Ontology Ontology merging
§6.1.17

CtxMatch/CtxMatch2 Classification, User Alignment -
§6.1.18 OWL

S-Match Classification, Auto Alignment -
§6.1.19 XML schema, OWL

HCONE OWL Auto, Semi, Ontology Ontology merging
§6.1.20 User

MoA OWL Auto Axioms, -
§6.1.21 OWL

ASCO RDFS, OWL Auto Alignment -
§6.1.22

BayesOWL Classification, Auto Alignment -
§6.1.23 OWL

OMEN OWL Auto, Alignment -
§6.1.24 Alignment

DCM Web form Auto Alignment Data integration
§6.1.25

T-tree Ontology Auto, Alignment -
§6.2.1 Instances

CAIMAN Classification Semi, Instances, Alignment -
§6.2.2 Training

FCA-merge Ontology User, Ontology Ontology merging
§6.2.3 Instances

LSD/GLUE Relational schema, Auto, Alignment -
§6.2.4,§6.2.5 XML schema, Instances,

Taxonomy Training

iMAP Relational schema Auto, Instances, Alignment -
§6.2.6 Training

Automatch Relational schema Auto, Instances, Alignment -
§6.2.7 Training

SBI&NB Classification Auto, Instances, Alignment -
§6.2.8 Training

Kang & Naughton Relational schema Instances Alignment -
§6.2.9

Dumas Relational schema Instances Alignment -
§6.2.10

Wang & al. Web form Instances Alignment Data integration
§6.2.11

sPLMap Database schema Auto, Instances, Rules Data translation
§6.2.12 Training

SEMINT Relational schema Auto, Alignment -
§6.3.1 Instances (opt.),

Training

Clio Relational schema, Semi, Query Data

192 6 Overview of matching systems

Table 6.2. Position of these systems with regard to the requirements of Chap. 1
(continued).

System Input Needs Output Operation

§6.3.2 XML schema Instances (opt.) transformation translation

IF-Map KIF, RDF Auto, Instances, Alignment -
§6.3.3 Common reference
NOM & QOM RDF, OWL Auto, Alignment -
§6.3.4 Instances (opt.)

oMap OWL Auto, Alignment Query answering
§6.3.5 Instances (opt.),

Training

Xu & al. XML schema, Auto, Alignment -
§6.3.6 Taxonomy Instances (opt.),

Training

Wise-Integrator Web form Auto Mediator Data integration
§6.3.7

OLA RDF, OWL Auto, Alignment -
§6.3.8 Instances (opt.)

Falcon-AO RDF, OWL Auto Alignment -
§6.3.9 Instances (opt.)

RiMOM OWL Auto Alignment -
§6.3.10 Instances (opt.)

Corpus-based Relational schema, Text corpora, Alignment -
matching Web form Instances,
§6.3.11 Training

APFEL RDF, OWL User Alignment -
§6.4.1

eTuner Relational schema, Auto Alignment -
§6.4.2 Taxonomy

The Output delivered by a system is very important because it shows the capa-
bility of the system to be used for some applications, e.g., a system delivering views
and data translators cannot be used for merging ontologies as is. It is remarkable
that many systems deliver alignments. As such, they are not fully committed to any
kind of operation to be performed and can be used in a variety of applications. This
could be viewed as a sign of possible interoperability between systems. However,
due to lack of a common alignment format, each system uses its own way to deliver
alignments (as lists of URIs, tables, etc.). Finally, the Operation column describes
the ways in which a system can process alignments.

Not all the requirements are addressed in Table 6.2. Indeed, completeness, cor-
rectness, run time should not be judged from the claims of system developers. No
meaningful system can be proved to be complete, correct or as fast as possible in
a task like ontology matching. Therefore, the degree of fulfillment of these require-
ments must be evaluated and compared across systems. Moreover, different appli-
cations have different priorities regarding these requirements, hence, they may need
different systems. Thus, this evaluation depends on an application in which the sys-
tem is to be used.

It is difficult to evaluate and compare systems without commonly agreed test-
benchs, principles and available implementations. The next chapter presents methods
for empirical evaluation and comparison of matching systems.

7

Evaluation of matching systems

The increasing number of methods available for ontology matching suggests the need
for evaluating these methods. However, very few extensive experimental compar-
isons of algorithms are available. Matching systems are difficult to compare, but we
believe that the ontology matching field can only evolve if evaluation criteria are pro-
vided. These should help system designers to assess the strengths and weaknesses of
their systems as well as help application developers to choose the most appropriate
algorithm.

In this chapter we first consider the main motivations for evaluating matching
systems and the principles that could guide such an evaluation (§7.1). We also dis-
cuss existing evaluation resources, different available data sets and the structure of
some of these data sets (§7.2). Then, we overview the measures used for the eval-
uation of matching systems (§7.3). Finally, we consider in more detail the settings
of an evaluation protocol for a particular application, as opposed to evaluation for
comparing matching systems in general (§7.4).

7.1 Evaluation principles

All evaluation activities must be carried out with a clear procedure. So we first re-
call here the goal of evaluating ontology matching systems (§7.1.1), the principles
on which evaluation should be based (§7.1.2) and some examples of evaluation ini-
tiatives (§7.1.3).

7.1.1 Goals

A major and long term purpose of the evaluation of ontology matching methods is
to help designers and developers of such methods to improve them and to help users
to evaluate the suitability of the proposed methods to their needs. The evaluation
should thus be run over several years in order to allow for adequate measurement of
the evolution of the field.

194 7 Evaluation of matching systems

Evaluation should also help assess absolute results produced by the matching
systems, i.e., what are the properties achieved by a system, and relative results, i.e.,
how these compare to the results of other systems.

One particular kind of evaluation is benchmarking. A benchmark is a well-
defined set of tests on which the results of a system or subsystem can be measured
[Castro et al., 2004]. It should enable the measure of the degree of achievement of
proposed tasks on a well-defined scale (that can be achieved or not). It should be
reproducible and stable, so that it can be used repeatedly for (i) testing the improve-
ment or degradation of a system with certainty, (ii) situating a system among others.

A medium term goal for evaluation efforts is to set up a collection of reference
sets of tests, or benchmark suites of the available tools and to compare their evolution
with regard to this reference. Building benchmark suites is highly valuable not just
for groups of people that participate in planned evaluations but for all the research
community, since system designers can make use of these at any time and compare
themselves to others.

7.1.2 Principles

We describe below several principles that must guide the evaluation process:

Systematic procedure. Evaluation results have to be non ambiguous and their pro-
cedure should be reproducible. Thus, the application of the procedure to different
systems or to the same system at different moments of time should be compara-
ble.

Continuity. Evaluation, and most particularly benchmarking, must not be a one-
shot exercise but a continuous effort in order to identify the progress made by
the field and eventually stop when no more progress is made anymore.

Quality and equity. The evaluation rules must be precise and defined beforehand.
In order to be worthwhile, the evaluation material must be of the best possible
quality. This also means that the evaluation material must not be biased towards
a particular kind of algorithm but driven only by the tasks to be solved.

Dissemination. In order to have a high impact, the evaluation activity must be dis-
seminated without excessive barriers. To that extent the data sets and results
produced must be published and made as freely available as possible. The eval-
uation campaigns must be open to participants worldwide.

Intelligibility. It is of high importance that the evaluation results could be analysed
by the stakeholders and understood by everyone. For that purpose, it is useful
not only that the final results are published but also the alignments themselves.
Finally, of high importance is the archival explanation of the results to the stake-
holders.

Each evaluation must be carried out according to some methodology. It is usually
based on three successive steps [Castro et al., 2004]:

Planning involves defining the task to be performed as well as its constraints, e.g.,
resources allowed, computer environment, required output, finding data sets on
which to perform the tasks and setting the measures to be used.

7.1 Evaluation principles 195

Processing consists of executing the plan.
Analysing evaluates the results achieved according to planned measurements.

These three steps can be complemented by a recalibration loop that helps in re-
defining the plan for the next evaluation from lesson learnt in the current one.

7.1.3 Examples of evaluations

In order to illustrate what can be done as evaluation, we briefly discuss a model eval-
uation initiative, called TREC, and the Ontology Alignment Evaluation Initiative.

Text REtrieval Conference

TREC1 is the Text REtrieval Conference organised by the National Institute of Stan-
dards and Technology (NIST) in the USA. It has been run yearly since 1992. It is a
very good model for evaluation in a focussed computer science research field, espe-
cially because it has been very successful in helping the field to progress.

The goals of TREC are to:

– increase research in information retrieval based on large-scale collections;
– provide a forum for stakeholders;
– facilitate technology transfer;
– improve evaluation methodology;
– create a series of test collections on various aspects of information retrieval.

It is now organised in several tracks, each of which corresponding to one kind
of evaluation, which, in turn, is organised over several years. Five years is now the
accepted standard in order to be able to compare the results. Tracks organised so far
include:

– static text retrieval;
– interactive retrieval;
– information retrieval in a narrow domain, e.g., genomics, using ad hoc resources;
– media retrieval (other than text);
– answer finding.

Typically each track has between 8 and 20 participants. While each track is pre-
cisely defined, TREC has now a track record on investigating the evaluation of many
different features of the retrieval tasks.

Ontology Alignment Evaluation Initiative

Since 2004, a group of researchers on ontology matching have run several evalu-
ation campaigns which are identified as Ontology Alignment Evaluation Initiative
(OAEI)2. OAEI campaigns which have been organised so far include:
1 http://trec.nist.gov
2 http://oaei.ontologymatching.org

196 7 Evaluation of matching systems

– The Information Interpretation and Integration Conference (I3CON), held at the
NIST Performance Metrics for Intelligent Systems (PerMIS) workshop, is an
ontology matching demonstration competition on the model of TREC. This eval-
uation focused on comparison of various matching algorithms on real-life test
cases.

– The Ontology Alignment Contest [Euzenat et al., 2004b] at the third Evaluation
of Ontology-based Tools (EON) workshop [Sure et al., 2004], held at the annual
International Semantic Web Conference (ISWC), is targeted at the characterisa-
tion of matching methods with regard to particular ontology features. This contest
defined a proper set of benchmark tests for assessing feature-related behaviour.

– The Ontology Alignment Evaluation Initiative 2005 [Euzenat et al., 2005b] held
at the Integrating Ontologies workshop of the International Conference on
Knowledge Capture (K-Cap) [Ashpole et al., 2005]. It has improved on the pre-
vious ones by multiplying the number of tests considered as a benchmark and by
introducing two real-world test cases.

– The Ontology Alignment Evaluation Initiative 2006 held during the Ontol-
ogy Matching workshop of the annual International Semantic Web Conference
[Shvaiko et al., 2006a]. It introduced several tracks distinguishing between par-
ticular data sets from various domains, e.g., medicine and food, and a matching
consensus workshop aimed at studying the process by which people can find a
consensus on what is a reference alignment. New tracks were devoted to large
expressive ontologies and matching thesauri and directories.

In each of these campaigns, the participants are required to provide their resulting
alignments in the Alignment format (§8.1.5). They are equipped with the Alignment
API (§8.2.4) for helping them to produce and to assess the results before the meeting.
Results to all tests are compulsory as well as a fixed-format paper describing expe-
riences with tests processing. Participants are also expected to present their results
at the meeting. The results of these tests are evaluated by clearly announced mea-
sures, typically precision and recall (§7.3). Finally, the results of these evaluation
campaigns as well as the full data sets are available for download from the OAEI
web site2.

The OAEI campaigns tend to set a solid basis for evaluating the progress in
matching algorithms by providing a stable benchmark suite, thus allowing progress
to be monitored year after year and facilitating the calibration of the participating
matching algorithms.

7.1.4 Types of evaluations

In Chap. 2, we characterised an alignment as a set of pairs of entities e and e′, coming
from each ontology o and o′, related by a particular relation r. Also many algorithms
add some confidence measure n for the fact that a particular relation holds. From this
characterisation it is possible to require any matching method to output an alignment
[Noy and Musen, 2002a, Euzenat, 2003], given

– two ontologies to be matched;

7.1 Evaluation principles 197

– an input partial alignment, which can be possibly empty;
– a characterisation of the desired alignment, e.g., 1:+, ?:?.

From this output, the quality of the matching process could be assessed with
the help of measurements of the difference between the output and the reference
alignment.

From this basic setting there are several ways of planning the evaluation depend-
ing, in part, of its purpose. There can be several classifications depending on the
criteria used. Let us consider a classification of evaluations with regard to what they
are supposed to evaluate:

Competence benchmarks allow the characterisation of the level of competence
and performance of a particular system with regard to a set of well defined
tasks. Usually, tasks are designed to isolate particular characteristics. This kind
of benchmarking is reminiscent to kernel benchmarks or unit tests, such as the
Standard Performance Evaluation Corporation (SPEC) benchmarks3.
Competence benchmarks aim at characterising the kind of task each method
is good for or the kind of input it can handle well. There are many different
areas in which methods can be evaluated. One approach is to look at the kind of
features they use for finding matching entities, for example, following one of the
classifications mentioned in Chap. 3.
Benchmark suites must be stable so that they enable the monitoring of the evo-
lution of the field over time. Moreover, they do not need to be run blindly since
they are run several times. Thus, they can be freely distributed and designers of
new systems can take advantage of them at any time.

Comparative evaluation allows the comparison of the results of various systems
on a common task. A comparative evaluation constitutes a competition targeted
at finding the best system, and thus, the best practices, among several ones. Since
the goal is to compare the systems, it is of utmost importance that the rules and
the evaluation criteria are clearly specified.
Because it is difficult to guarantee that the systems are not tuned for the evalua-
tion, it is preferable to run blind tests or nearly blind tests. This means that the
participants become aware of the data set very shortly before the evaluation and
that the data set must be changed at each evaluation.
Finally, it is worth noting that such an evaluation, because it is run in a limited
time span with relatively similar resources, requires a well defined processing
mode. In counterpart, this allows acquiring more accurate non functional mea-
surements, such as run time and memory.

Application-specific evaluation allows the comparison of the results of various
systems on the output of a particular application instead of considering the align-
ments in general. They are useful for a company that has a real application and
wants to find the best system to use in this application. It can also be useful for a
competitive evaluation.

3 http://www.spec.org

198 7 Evaluation of matching systems

The goals of these three kinds of evaluations are different. Competence bench-
marks aim at helping system designers to evaluate their systems and to situate them
with regard to a common stable framework. It is also helpful for improving indi-
vidual systems. The comparative evaluation enables the comparison of systems on
general purpose tasks. Its goal is mainly to help the improvement of the field as a
whole, rather than individual systems. It can also help users in selecting an appropri-
ate system. Application-specific evaluations aim at identifying an adequate system
for one particular application at one particular moment (see also Sect. 7.4).

7.2 Data sets for evaluation

One very important aspect of evaluation is the data set used for performing it. Finding
a suitable data set is a critical issue because of the differences in form and quality of
the possible data sets. We present first different factors that can influence evaluation
(§7.2.1) and then discuss various data set categories (§7.2.2).

7.2.1 Dimensions and variability of alignment evaluation

Each of the elements featured in the matching process definition (Chap. 2) can have
specific characteristics that influence the difficulty of the matching task. It is thus
necessary to identify and control these characteristics. We called them dimensions
because they define a space of possible tests.

Characterising the variability of matching tasks helps in assessing the limita-
tions of benchmark suites and designing benchmarks spanning the whole spectrum
of matching. Indeed, for each point in this variability space a specific test could be
designed. However, there could be too many of them and it is thus necessary, for each
data set, to choose among the most representative values for most of these possible
parameters.

These dimensions and the questions they raise are a refinement of the require-
ments that have been studied in Sect. 1.7. These requirements only considered gen-
eral categories called input and process. Such categories need to be refined for pre-
cisely defining what a particular application can expect from a matching system,
while the initial requirements concern application classes. Knowing the relations be-
tween a data set and the dimensions can be used by the application designer for
finding a suitable data set with which to evaluate the systems.

We review below the dimensions and justify some choices in designing
benchmarks. This extends the typology introduced in [Noy and Musen, 2002a,
Do et al., 2002] with regard to our definition of the matching process in Sect. 2.5.1.

Input ontologies

Input ontologies o and o′ can be characterised by at least three different dimensions:

Heterogeneity: of the input languages: are they described in the same knowledge
representation languages?

7.2 Data sets for evaluation 199

Languages: what are the languages of the ontologies? Some examples of languages
include KIF, OWL, RDFS, F-Logic, UML, SQL DDL, and XML Schema.

Number: is this an alignment between two ontologies or should it match more on-
tologies?

As mentioned in Chap. 2, we consider here matching between homogeneous lan-
guages. The language used should be adapted to the kinds of features to be assessed
by the evaluation. Thus, for example, a data set about directory matching should
not be expressed in UML. However, the choice of language will also determine the
systems that can be evaluated. It is perfectly admissible that not all the evaluation
campaigns use the same languages.

Tasks involving multiple matching are very specific at the moment and
only a small number of algorithms are considering them [He and Chang, 2006,
Su et al., 2006]. Therefore, we consider here only evaluation of the matching results
between two ontologies.

Input alignment

The input alignment A can have the following characteristics:

Complete or update: Is the matching process required to complete an existing in-
put alignment or is it authorised to change it?

Multiplicity: How many entities of one ontology can correspond to one entity of
the other ontology?

It is reasonable to start with tests without input alignment, especially since this
helps focus on the intrinsic capabilities of matchers instead of capabilities of match-
ers helped by input.

Parameters and resources

Parameters p and resources r of the matching process are identified as:

Oracles and resources: Are oracles permitted? If so, which ones (the answer can
be ‘any resource’)? Is user input permitted?

Training: Can training be performed on a sample?
Proper parameters: Are some parameters necessary? If so, what are they? This

point is quite important when a method is very sensitive to the variation of pa-
rameters. A good tuning of these must be available.

Many systems take advantage of some external resources, such as WordNet, sets
of morphological rules or a previous alignment of general purpose catalogues, e.g.,
Yahoo and Google. It is perfectly possible to use these resources as long as they
have not been specifically tuned for the evaluation, for instance, using a sublexicon
which is dedicated to the domain considered by the tests. In addition, it is perfectly
acceptable that the algorithms prune or adapt these resources to the actual ontologies,

200 7 Evaluation of matching systems

as long as it is the normal process of the algorithm. However, this processing time
must be considered within the running time.

Some algorithms can take advantage of the web for selecting resources that are
adapted to the considered ontology. This is acceptable. However, this may compro-
mise the replicability of the evaluation results.

In the current state, there is no consensus or valuable methods for handling and
evaluating the contribution of user input to the matching process, so allowing it is
hard to account for.

Training on some sample is very often used by methods for matching ontolo-
gies. Thus, providing a training set can be useful for comparing algorithms based
on machine learning. The training set can also be considered as some partial input
alignment.

Of course, some parameters can be provided to the methods participating in the
evaluation. However, these parameters must be the same for all tests. Only automatic
tuning, as part of the matching process, is acceptable.

Output alignment

We identify the following possible constraints on the output alignment A′ of the
algorithm:

Multiplicity: How many entities of one ontology can correspond to one entity of
the others, e.g., injective, total, one-to-one?

Justification: Should a justification of the results be provided?
Relations: Should the relations involved in the correspondences be only the equiv-

alence relations or could they be of other types, such as subsumption (≤) or
incompatibility (⊥).

Strictness: Can the result be expressed with trust-degrees different from � and ⊥
or should they be hardened before?

In real life, there is no reason why two independently developed ontologies
should have a particular alignment multiplicity other than *:*. This should be the
default (non) constraint on the output alignment. However, if all tests provide some
particular type of alignment, e.g., ?:? in the EON ontology tests, this introduces a
bias. This bias can be suppressed by having each type of alignment equally repre-
sented. This is neither easy to find nor realistic. What would be realistic is to have a
statistical evaluation of the proportion of each type of alignment.

Another worthwhile feature for users is the availability of meaningful explana-
tions or justifications of the correspondences. However, in the absence of a standard
for explanations (see Chap. 9) it is not possible to evaluate them at the moment.

As mentioned in Chap. 6, some systems associate a relation between the enti-
ties that is different from equivalence, e.g., specificity, and some of them associate
a degree of confidence to the correspondence. Concerning the relation, not all algo-
rithms deliver the same structure, however, they can deliver equivalence. Thus, this is
a common ground for the evaluation. When the set of relations becomes a standard,

7.2 Data sets for evaluation 201

it will be useful to introduce new relations. As far as the degree of confidence is con-
cerned, reference alignments should express correspondences that hold or not. It is
natural that reference alignments contain only � confidence measure. For the result-
ing alignment, it is appropriate that an algorithm delivers a weighted alignment. In
particular, some useful measures take these weights into account (§7.3.1). However,
the lack of consensus on the interpretation of these weights renders such alignments
difficult to evaluate.

Matching process

The matching process f itself can be constrained by:

Resource constraints: Is there a maximal amount of time or space available for
computing the alignment?

Language restrictions: Is the matching scope limited to some kind of entities, e.g.,
only classes?

Property: Must some property be true of the alignment? For instance, one might
want that the alignment is satisfiable (as defined in Chap. 2) or that it preserves
consequences or that the initial alignment is preserved, i.e., o, o′, A′ |= A.

Resource constraints can be considered either as constraining the amount of a
resource or a measure of the amount consumed (§7.3.3). It is an important factor,
at least for comparative evaluation, and must be measured. It can also be measured
for competence benchmarks, even if it is difficult due to the heterogeneity of the
environments in which benchmarking is performed.

Constraints on the kind of language construct to be found in alignments can be
designed. However, currently very few matching algorithms can align complex ex-
pressions. Most of them align the identified (named) entities and some of them are
only restricted to concepts. With regard to its importance and its coverage by current
matching systems, it makes sense to ask for matching of named entities and consider
complex expressions later.

The properties of the alignments provided by the matching algorithms are not
very often mentioned and they are very heterogeneous depending of the implemented
techniques. It is thus difficult to ask for particular properties.

7.2.2 Examples of data sets

Datasets for matching ontologies are not easy to find. The first problem is that they re-
quire pairs of public and well-designed ontologies with a meaningful overlap. There
are not that many such ontologies around. Moreover, for evaluating the matching
algorithms they should also provide reference alignments, making this number even
lower.

In addition, it is necessary to take into account the quality of the ontologies and
alignments: the ontologies are more interesting if their matching reflects realistic
matching problems and the alignments must be correct or, at least, be the expected

202 7 Evaluation of matching systems

ones. To these conditions, [Avesani et al., 2005] added that the data sets have to dis-
criminate among various approaches and have to help in identifying weaknesses of
matching systems.

Most of the reference alignments used for evaluation involve human judgements.
However, humans are not usually very good at matching ontologies manually. Thus,
it would be useful to evaluate the task in which alignments are embedded, e.g., in-
formation retrieval, web service invocation, instead of matching itself.

Let us consider some examples of data sets that have been used so far.

OAEI systematic benchmark suite

The data set made for the first OAEI campaign is an artificial data set built from one
OWL ontology on the bibliography topic. It contains 33 named classes, 24 object
properties, 40 data properties, 56 named individuals and 20 anonymous individuals.

This initial ontology is systematically and automatically altered by distorting
the features of ontology languages, e.g., names, properties, subclass relations. The
alteration results in a set of more than 50 pairs of ontologies. The kind of proposed
alignments is still limited: they only match named classes and properties and they
mostly use the equivalence relation with confidence of 1.

This data set can be considered as correct by construction. It is not realistic nor
very hard: it is based on small tests and offers some easy ways to reach the correct
result. It is especially made for evaluating the strengths and weaknesses of the match-
ing systems. This data set is used for every OAEI campaign in order to measure the
evolution of the field.

Large scale ontology sets

There is a need for large scale ontologies to be matched. One early attempt to do this
has been reported in [Zhang et al., 2004]. It consists in matching two large ontologies
from the domain of anatomy. The two considered ontologies are the Foundational
Model of Anatomy (FMA) developed at the University of Washington and Galen
developed at the University of Manchester.

These are huge real world ontologies which contain classes, relations, text docu-
mentation and labelling. These ontologies contain thousands of classes and barely no
instance data. They have been made available in OWL [Euzenat et al., 2005b]. Un-
fortunately, FMA is not freely available and the permission to use it must be obtained
from the University of Washington.

This test case is obviously realistic. The experiments reported in
[Zhang et al., 2004] show that it is difficult, and help in finding the weaknesses. The
main problem with the task is that it does not have a widely acknowledged reference
alignment.

Another candidate test set has been used in [Lambrix and Edberg, 2003]. It con-
sists of matching the Gene Ontology and the Signal ontology. One important point
about these two ontologies is that they do not concern exactly the same domain: they
only overlap to a certain extent.

7.3 Evaluation measures 203

These tests have been used for evaluating interactive tools for merging ontologies
but they could also be used for evaluating ontology matching systems independently.
However, so far, the reference alignments for these tests have not been made avail-
able.

Directory sets

[Avesani et al., 2005] proposed a practical way to build test sets for matching web
directories or classifications. This has the advantage of generating automatically a
test set that changes with time. The idea is to consider two web directories, i.e., a
hierarchy of topical web pages that indexes web pages, and to take advantage of
the corresponding indexed pages for deciding if two topics are equivalent. This can
already be considered as a matching technique in itself (§6.2.8).

This technique has been used in the OAEI-2005 and 2006 campaigns. The col-
lection reported in [Avesani et al., 2005] contained from 300 000 to 800 000 topics.
It has been characterised by the authors as a difficult test.

Thesauri

There is currently a wealth of resources available from the fields of libraries, muse-
ums and more generally cultural heritage. These are thesauri covering hierarchies of
concepts considered as terms and large amounts of textual knowledge, usually about
pieces of art. A huge interest in using different thesauri together has created the need
for matching them.

For the OAEI-2006, a pair of thesauri on the topic of food has been provided:
AGROVOC is a thesaurus for the Food and Agriculture Organisation and NAL is
a thesaurus from the US Agricultural department. They respectively contain 16 000
and 41 000 terms. The two test sets have been made available in SKOS (§8.1.7).

This task can be considered as a representative of real world matching problems.
These thesauri are certainly challenging with respect to their size. However, at the
moment, there is no reference alignment for these tests.

Other test collections

The Illinois Semantic Integration Archivehad offered until recently some of the data
sets that have been used for evaluating various systems presented in Chap. 6. In
addition, the ontology matching web page refers to test cases that have been built
and published by matching tools designers4.

7.3 Evaluation measures

In order to evaluate the results of matching algorithms, it is necessary to confront
them with ontologies to be matched and to compare the alignments produced with a
reference alignment based on some criteria.
4 http://www.ontologymatching.org/evaluation.html

204 7 Evaluation of matching systems

This section is concerned with the question of how to measure the results returned
by ontology matchers. It considers different possible measures for evaluating match-
ing algorithms and systems. They include both qualitative and quantitative measures.
We divide them into compliance measures and performance measures. Compliance
measures evaluate the degree of conformance of returned alignments to what is ex-
pected. We will present some classical evaluation measures (§7.3.1) and measures
especially designed for ontology matching evaluation (§7.3.2). Performance mea-
sures account for such features of algorithms as speed and memory consumption
(§7.3.3). User-related measures focus on evaluation of user interaction with a match-
ing system (§7.3.4).

7.3.1 Compliance measures

Compliance measures evaluate the degree of compliance of a system with regard to
some standard. They can be used for computing the quality of the output provided
by a system compared to a reference output. As noted before (§7.2), such a reference
output is not always available, not always useful and not always consensual. How-
ever, for the purpose of benchmarking, we can assume that it is desirable to provide
such a reference.

There are many ways to qualitatively evaluate returned results. One common
possibility consists of proposing a reference alignment R to which the result from
the evaluated matching algorithm A is compared. In what follows, the alignments A
and R are considered to be sets of correspondences, being pairs of entities.

Let us consider the case of the evaluation of two alignments on classes with
equivalence relations that must be compared to the alignment of Fig. 2.9 (p. 48).
This alignment is considered to be the reference alignment (R) and is made up of
three correspondences:

Book = Volume Person = Human Science = Essay (R)

The alignments to be compared are nearmiss (A1) and farone (A2). These are pre-
sented in Fig. 7.1. They are made up of the following correspondences:

Product = Volume Person = Writer Science = Essay (A1)
Book = Volume Children = Literature Pocket = Essay (A2)

A first simple distance between two sets is the Hamming distance. It measures
the dissimilarity between two alignments by counting the joint correspondences with
regard to the correspondences of both sets.

Definition 7.1 (Hamming distance). Given a reference alignment R, the Hamming
distance between R and some alignment A is a dissimilarity H : Λ × Λ → [0 1]
defined as follows:

H(A,R) = 1− |A ∩R|
|A ∪R| .

7.3 Evaluation measures 205

Product

price
name
id
creator
topic

DVD

Book

author
publisher

Science

Textbook

Popular

Pocket

Children

CD

Person

Publisher

Volume

year
author

title
isbn

Essay

subject

Literary critics

Politics

Biography

subject

Autobiography

Literature

Novel

Poetry

Human

Writer

nearmiss
A1

farone
A2

Fig. 7.1. Two class alignments between the ontologies of Fig. 2.7. These are to be compared
with the alignment of Fig. 2.9 restricted to class correspondences.

Example 7.2 (Hamming distance between alignments). Taking the class part of the
alignment of Fig. 2.9, as the reference alignment, we can compare it with the result
given by the alignments of Fig. 7.1. In both cases, the Hamming distance between
these alignments is very high: .8. The shorter the distance, the better. Indeed, both
alignments only found one correct correspondence out of three. Thus, this results in
two inaccurate correspondences and two missed correspondences.

The most prominent criteria are precision and recall originating from information
retrieval [van Rijsbergen, 1975] and adapted to ontology matching [Do et al., 2002].
Precision and recall are based on the comparison of the resulting alignment A with a
reference alignment R, effectively comparing which correspondences are discovered
and which are not. These criteria are well understood and widely accepted.

Precision measures the ratio of correctly found correspondences (true positives)
over the total number of returned correspondences (true positives and false positives),
see Fig. 7.2. In logical terms, precision is meant to measure the degree of correctness
of the method.

Definition 7.3 (Precision). Given a reference alignment R, the precision of some
alignment A is a function P : Λ× Λ → [0 1] such that:

206 7 Evaluation of matching systems

Fig. 7.2. Two alignments as sets of correspondences and relations between them.

P (A,R) =
|R ∩A|
|A| .

Precision can also be determined without explicitly having a complete reference
alignment. In this case only the correct alignments among the retrieved alignments
have to be determined, namely R ∩A.

Recall measures the ratio of correctly found correspondences (true positives) over
the total number of expected correspondences (true positives and false negatives). In
logical terms, recall is meant to measure the degree of completeness of the align-
ment.

Definition 7.4 (Recall). Given a reference alignment R, the recall of some alignment
A is a function R : Λ× Λ → [0 1] such that:

R(A,R) =
|R ∩A|
|R| .

Notice that in the definition above, the letter R stands for both the recall function
and the reference alignment. Since one is a function and the other is a set, these are
easy to be distinguished by their use even if referred by the same letter.

Table 7.1. The results of the evaluation measures for the two alignments of Fig. 7.1 as well as
for the reference alignment itself.

Alignment Precision Recall F-measure Fallout Overall SBS
refalign 1.00 1.00 1.00 0.00 1.00 1.00
nearmiss (A1) 0.33 0.33 0.33 0.67 -0.33 0.27
farone (A2) 0.33 0.33 0.33 0.67 -0.33 0.27

The fallout measures the percentage of retrieved pairs which are false positives.

7.3 Evaluation measures 207

Definition 7.5 (Fallout). Given a reference alignment R, the fallout of some align-
ment A is a function F : Λ× Λ → [0 1] such that:

F (A,R) =
|A| − |A ∩R|

|A| =
|A \R|
|A| .

Noise and silence are the complement measures of precision and recall. These are
defined as follows: Noise(A,R) = 1−P (A,R) and Silence(A,R) = 1−R(A,R).

Although precision and recall are the most widely and commonly used measures,
when comparing systems one may prefer to have only a unique measure. Moreover,
systems are often not comparable based solely on precision and recall. The one which
has higher recall may have a lower precision and vice versa. So, it is not a good idea
to compare systems on precision and recall alone. For this purpose, two measures
are introduced which aggregate precision and recall: F-measure and overall.

Definition 7.6 (F-measure). Given a reference alignment R and a number α be-
tween 0 and 1, the F-measure of some alignment A is a function Mα : Λ×Λ → [0 1]
such that:

Mα(A,R) =
P (A,R)×R(A,R)

(1− α)× P (A,R) + α×R(A,R)
.

If α = 1, then the F-measure is equal to precision and if α = 0, the F-measure is
equal to recall. In between, the higher the value of α, the more importance is given
to precision with regard to recall. Very often, the value α = 0.5 is used, i.e.,

M0.5(A,R) =
2× P (A,R)×R(A,R)

P (A,R) + R(A,R)
.

This is the harmonic mean of precision and recall. Such a measure can be used for
selecting the parameters, in particular, a threshold to put on the results, such that the
F-measure is optimal. Moreover, it allows comparing systems by their precision and
recall at the point where their F-measure is maximal.

The overall measure, also defined in [Melnik et al., 2002] as matching accuracy,
is the ratio of the number of errors on the size of the expected alignment. It is con-
sidered as an edit distance between an alignment and a reference alignment in which
the only operation is ‘error correction’. In this respect, it is considered as a measure
of the effort required to fix the alignment. The overall is always lower than the F-
measure and it ranges between [−1 1]. In fact, if precision is under .5 overall has a
negative value denoting that repairing the alignment is not worth the effort.

Definition 7.7 (Overall). Given a reference alignment R, the overall measure of
some alignment A is a function O : Λ× Λ → [−1 1] such that:

O(A,R) = R(A,R)×
(
2− 1

P (A,R)

)
.

208 7 Evaluation of matching systems

Alternatively, it can also be defined as follows:

O(A,R) = 1− |(A ∪R)− (A ∩R)|
|R| = 1− |R−A|+ |A−R|

|R| .

When comparing systems in which precision and recall can be continuously de-
termined, it is convenient to draw the precision/recall curve and compare these curves
(see Fig. 7.3). There are two advantages of these curves: (i) they allow the compar-
ison of alignments with confidence measures, (ii) they are independent of the inter-
pretation of the confidence, only their induced order is relevant. This kind of measure
is widespread when presenting results (in the TREC competitions for instance).

Non equal correspondences

Currently, the proposed compliance measures are purely related to the identity of
the correspondences, including or ignoring the degree of confidence (strength) and
relation.

This is not satisfactory because this does not account for the semantics of the
relations and strengths. In order to provide more accurate comparisons, it is necessary
to be able to measure some distance between strengths and relations. The distance
between the strengths of two correspondences can be considered to be the absolute
value between the two strength values. This can be used for comparing two sets of
correspondences on the basis of the strengths attributed to each correspondence.

Definition 7.8 (Strength-based similarity). Given a reference alignment R, the
strength-based similarity between R and some alignment A is defined as follows:

SBS(A,R) =
2×

∑
c∈A∩̇R |strengthA(c)− strengthR(c)|

|A|+ |B| ,

where A∩̇R = {〈e, e′, r, nA, nR〉; 〈e, e′, r, nA〉 ∈ A ∧ 〈e, e′, r, nR〉 ∈ R}, such that
∀e, e′, r, 〈e, e′, r, 0〉 ∈ A ∪R.

The denominator of strength-based similarity can be used instead of the intersec-
tion in each of the definitions of Sect. 7.3.1. [Ehrig, 2007] also pointed out that these
measures must be handled carefully since their results are to be judged with regard
to statistical significance.

Some examples of measures introduced so far are given in Table 7.1.

7.3.2 Generalising precision and recall

Although precision and recall are well understood and widely accepted, they have
a drawback: whatever correspondences have not been discovered are definitely not
considered (all-or-nothing). As a result, they do not discriminate between an align-
ment that may be very close to the expected result and another quite remote from it
and they do not measure the effort required from users to correct alignments. In fact,

7.3 Evaluation measures 209

recall0. 1.
0.

p
re

ci
si

on

1.

omap edna falcon

ola foamdublin

Fig. 7.3. Six precision/recall curves of the OAEI-2005 participants who scored above the sim-
ple Edit distance measure (edna) on class names. The curves are obtained from the provided
alignments in which correspondences are ordered by decreasing confidence. For each decimal
value v between 0 and 100, the algorithm selects the first correspondences in order to have
v% recall, i.e., the corresponding percentage of correspondences from the reference align-
ment, and it reports the precision at that point, i.e., with only these correspondences. More
details can be found in [Euzenat et al., 2005b].

the alignment A1 of Fig. 7.1 is arguably better than the alignment A2. However, as
testified in Table 7.1, they score exactly the same for all presented measures.

Often, it makes sense to not only have a decision whether a particular corre-
spondence has been found or not, but also a measure of the proximity of the found
alignments. This implies that near misses are also taken into consideration instead of
only the exact matches.

210 7 Evaluation of matching systems

Moreover, the alignments have to go through users scrutiny and correction be-
fore being used. Therefore, it is worth measuring the effort required from users for
correcting the provided alignment instead of only if some correction is needed. This
also calls for a relaxation of precision and recall.

Similar remarks have been made in computational linguistics and some solutions
have been proposed in [Langlais et al., 1998, Sun and Lin, 2001]. In the context of
alignment evaluation, [Ehrig and Euzenat, 2005] investigated generalising precision
and recall in order to overcome these problems. As precision and recall are easily ex-
plained measures, it is good to extend them. This also ensures that measures derived
from precision and recall, e.g., F-measure, still can be computed easily. Relaxing
precision and recall amounts to measuring the proximity of alignments rather than
the strict size of their overlap. Instead of taking the cardinality of the intersection of
the two sets |R ∩ A|, natural relaxations of precision and recall measure their prox-
imity ω(A,R). Moreover, the relaxed measure is required to preserve positiveness,
maximality and boundedness satisfied by |R ∩A|.

Definition 7.9 (Relaxed precision and recall). Given a reference alignment R and
an overlap function ω between alignments, the precision of an alignment A is defined
as follows:

Pω(A,R) =
ω(A,R)
|A| ,

and recall is defined as follows:

Rω(A,R) =
ω(A,R)
|R| ,

with ω satisfying the following conditions:

∀A,B, ω(A,B) ≥ 0 (positiveness)

∀A,B, ω(A,B) ≤ min(|A|, |B|) (maximality)

∀A,B, ω(A,B) ≥ |A ∩B| (boundedness)

We do not require symmetry, especially since R and A are not in symmetrical po-
sitions: the former is the reference and the latter is judged against it. There are many
different ways to design a proximity between two sets satisfying these properties.
The most obvious one, which we have retained, consists of finding correspondences
that match each other and computing the sum of their proximity. This can be defined
as an overlap proximity:

Definition 7.10 (Overlap proximity). The overlap proximity between two align-
ments A and R is defined as follows:

ω(A,R) =
∑

〈a,r〉∈M(A,R)

σ(a, r),

such that

7.3 Evaluation measures 211

– M(A,R) is the best match between the correspondences of A and R with regard
to σ;

– σ(a, r) is a similarity measure between two correspondences.

The standard measure |A ∩ R| used in precision and recall is such an overlap
proximity with σ which provides the value 1 if the two correspondences are equal
and 0 otherwise.

From this simple set of constraints, there have been designed several concrete
measures detailed in [Ehrig and Euzenat, 2005]:

Symmetric measure calculates the distance in the ontologies between the found en-
tities and the reference ones. The closer they are, the higher the similarity.

Effort-based computes the effort necessary to modify the errors found in the align-
ments: it is based on a model of what is involved in modifying an alignment
through an alignment editor for retrieving the reference alignment. This mea-
sure is arguably better than the overall [Melnik et al., 2002] presented before
because it can weight differently different errors depending on the difficulty to
correct it which itself depends on the editing environment used.

Oriented is a specific measure which uses a different ω for precision and recall
depending on the impact an error has on these measures. For example, when
one wants to retrieve instances of some class, a subclass of the expected one is
correct but not complete and thus affects recall but not precision. This measure
is targeted at application-specific evaluation.

If these proposed precision and recall measures are applied to the alignments of
Fig. 7.1, they yield the results of Table 7.2. They mainly illustrate entity pair simi-
larities, as relations and confidences are always identical. For the oriented measure
we assume that the query is given in ontology o and the answer has to be retrieved
from ontology o′. Since the oriented measure is non symmetric, one has to define the
direction beforehand. The results are the same between the three proposed general-
isations due to the simple nature of the example. They show a better discrimination
between the nearmiss and the farone alignments.

Table 7.2. Precision and recall results on the alignments of Fig. 7.1.

ω (R, R) (R, A1) (R, A2)
P R P R P R

standard 1.00 1.00 0.33 0.33 0.33 0.33
symmetric 1.00 1.00 0.50 0.50 0.33 0.33
effort-based 1.00 1.00 0.50 0.50 0.33 0.33
oriented 1.00 1.00 0.50 0.50 0.33 0.33

The measures which have been introduced address the problems raised in the
introduction and fulfil the requirements:

– They keep precision and recall untouched for the best alignment R;

212 7 Evaluation of matching systems

– They help discriminate between irrelevant alignments, such as A2, and those,
which are not far from target ones, like A1;

Another development currently under investigation consists of developing sim-
ilar measures to account for the semantics of the language used for ontologies
[Euzenat, 2007].

7.3.3 Performance measures

Performance measures assess the resource consumption for matching two ontolo-
gies. They can be used when the algorithms are 100% compliant or balanced against
compliance [Ehrig and Staab, 2004]. We mention some of these criteria below.

Unlike the compliance measures, performance measures depend on the process-
ing environment and the underlying ontology management system. Thus, it is diffi-
cult to obtain objective evaluations, because they are based on the usual measures,
namely processing time in seconds and memory in bytes. The important point here
is that algorithms that are being compared should be run under the same conditions.

Speed

Speed is measured by the amount of time taken by the algorithms for performing their
matching tasks. It should be measured in the same conditions, i.e., same processor,
same memory consumption, for all the systems. If user interaction is required, one
has to ensure that only the processing time of the matching algorithm is measured.

Memory

The amount of memory used for performing the matching task marks another perfor-
mance measure. Due to the dependency with underlying systems, it could also make
sense to measure only the extra memory required in addition to that of the ontology
management system, but it still remains highly dependent.

Scalability

There are two possibilities for measuring scalability, at least in terms of speed and
memory requirements. Firstly, it can be assessed by a theoretical study. Secondly,
it can be assessed by evaluation campaigns with quantified tests of increasing com-
plexity. From the results, the relationship between the complexity of the test and the
required amount of resources can be represented graphically and the mathematical
relationship can be approximated.

7.4 Application-specific evaluation 213

7.3.4 User-related measures

So far the measures have been machine focused. In some cases, algorithms or appli-
cations require some kind of user interaction. This can range from users using the
alignment results to concrete user input during the matching process. In this case, it
is even more difficult to obtain an objective evaluation. Below we discuss measures
which involve users in the evaluation loop.

Level of user input effort

In cases where algorithms require user intervention, this intervention could be mea-
sured in terms of some elementary information the users provide to the system, e.g.,
the number of correspondences. When comparing systems which require different
input or no input from users, it is necessary to consider a standard for elementary
information to be measured. This is not an easy task.

General subjective satisfaction

From a use case point of view it makes sense to directly measure user satisfaction.
As this is a subjective measure it cannot be assessed easily. Extensive preparations
have to be made to ensure a valid evaluation. Almost all of the objective measures
mentioned so far have a subjective counterpart. Possible measurements include:

– input effort,
– speed,
– resource consumption, e.g., memory,
– output exactness, related to precision,
– output completeness, related to recall, and
– understandability of results, e.g., explanations.

Due to its subjective nature numerical ranges as evaluation results are less appropri-
ate than qualitative values, such as very good, good, satisfactory.

7.4 Application-specific evaluation

So far evaluation has been considered in general. However, the evaluation could also
be considered in the context of a particular application or a particular kind of appli-
cations. Application-specific evaluation is dedicated to find a suitable system for a
particular task. This is especially useful for application designers who need to inte-
grate a matching system and this complements the requirement satisfaction analysis
as presented in Sect. 6.5.

There are two main complementary ways to design application-specific evalua-
tions: (i) using a specific test set and experiment design; (ii) interpreting the results
with an application-oriented bias. As a matter of fact, there are tasks which require
high recall (for instance, matching as a first step of an interactive merge process)

214 7 Evaluation of matching systems

and others which require high precision, e.g., automatic matching for autonomously
connecting two web services.

[Ehrig, 2007] provided an analysis of the different needs for evaluation depend-
ing of the considered applications. We have applied this technique to the require-
ments of Table 1.1 (see Chap. 1). As a matter of fact, it can be rewritten with respect
to the measurements developed in this chapter. We used this technique to design
Table 7.3. This table is slightly more detailed than Table 1.1 because it uses three
values instead of two. Here ‘low’ corresponds to not relevant, ‘high’ corresponds to
relevant and ‘medium’ corresponds to an in-between position. Therefore, different
application profiles could be established to explicitly compare matching algorithms
with respect to certain tasks.

Table 7.3. Application requirements of Table 1.1 reinterpreted as measurement weights.

Application sp
ee

d

au
to

m
at

ic

pr
ec

is
io

n

re
ca

ll

Ontology evolution (§1.1) medium low high high
Schema integration (§1.2) low low high high
Catalogue integration (§1.2) low low high high
Data integration (§1.2) low low high high
P2P information sharing (§1.3) high low medium medium
Web service composition (§1.4) high high high low
Multi agent communication (§1.5) high high high medium
Context matching in ambient computing (§1.5) high high high medium
Semantic web browsing (§1.6) high medium medium low
Query answering (§1.6) high medium high medium

Such a table can be useful for aggregating the measures corresponding to each of
these aspects with different weights or to have an ordered way to interpret evaluation
results.

7.4.1 Aggregating measures

Different measures suit different evaluation goals. If we want to improve systems,
it is best to have as many indicators as possible. However, in order to single out the
best system, it is generally better to focus on the very relevant factors. This can be
achieved by only selecting the few very relevant factors, e.g., speed and precision for
query answering, or by aggregating measures in relation with their relevance.

For aggregating measures depending on a particular application, its is possible
to use weights corresponding to the values of Table 7.3, and thus respecting the
importance of each factor. Weighted aggregation measures, such as those presented
in Sect. 5.2 (weighted sum, product or average), can be used.

7.4 Application-specific evaluation 215

F-measure is already an aggregation of precision and recall. It can be generalised
as a harmonic mean, for any number of measures. This requires us to assign every
measurement a weight, such that these weights sum to 1. Obviously the weights have
to be chosen carefully, again depending on the goal.

Definition 7.11 (Weighted harmonic mean). Given a reference alignment R, a set
of measures (Mi)i∈I provided with a set of weights (wi)i∈I between 0 and 1 such
that their sum is 1, the weighted harmonic mean of some alignment A is as follows:

W (A,R) =
∏

i∈I Mi(A,R)∑
i∈I wi ×Mi(A,R)

.

Example 7.12 (Weighted aggregation of evaluation measures). Consider that we
need to choose among two available systems S1 and S2, for an application, such
as schema integration, peer-to-peer system or query answering. We apply weights
corresponding to the criteria of Table 7.3. The weights are high = 5, medium = 3
and low = 1. They are normalised (so as to sum to 1.) for each kind of application.
The performance of the systems with regard to the criteria are given in the following
table as well as the resulting harmonic means for each pair system×application:

S1 S2

Speed .8 .5
Automatic 1. 1.
Precision .7 .9

Speed Automatic Precision Recall .8 .8
Schema integration .08 .08 .42 .42 .77 .81
Peer-to-peer system .42 .08 .25 .25 .79 .66

Query answering .31 .19 .31 .19 .80 .72

Those who need a matching system for a peer-to-peer or query answering appli-
cation should choose system S1 (.79 and .80 are better than .66 and .72) and those
who want to use it for schema integration should use system S2 (.81 is better than
.77). The importance of speed in the two first systems outweights the relatively lower
precision.

7.4.2 Evaluation setting

Application-specific evaluation can also be carried out by having a specific evalua-
tion setting. This has the advantage of being more realistic than artificial test beds and
of providing very specific information, but the drawback is that it has to be changed
for each different application.

An application-specific evaluation has to start with a selection of the task as de-
scribed in Sect. 7.2.1 corresponding to the application. It is moreover useful to set
up experiments which do not stop at the delivery of alignments but carry on with
the particular task. This is especially true when there is a clear measure of success
of the overall task. Such a setting assists in focusing on the most useful issues for

216 7 Evaluation of matching systems

the task. For instance, it may be the case that the gain in accuracy in one algorithm
over another is not useful for the task while the gain in speed of the latter really mat-
ters. If no clear measure is available, then using a weighted aggregation measure as
suggested above would help.

Nevertheless, it is extremely difficult to determine the evaluation value of the
matching process independently. The effects of other components of the overall ap-
plication have to be carefully filtered out.

There are several problems associated with this approach:

– It will be difficult to account for the performances of matching algorithms if the
systems which carry the task are different. If these systems provide an end-to-end
integration, then the evaluation would be simpler in comparing the alignments
and applying a specific metric.

– Very often the matching systems are considered as semi-automatic, i.e., users
must control the result. The task cannot be accomplished in isolation (and this
brings back the issue of involving users in the evaluation loop).

– This would require a specific setting for each task.

7.5 Summary

As noted before, it is very difficult to know a priori the quality to expect from a
matching system. For that purpose, evaluation of matching systems must be per-
formed. The evaluation must apply to all aspects of these systems: their availability,
their capacity to provide accurate alignments in a desirable time, etc.

At least two difficulties arise when evaluating matching systems. Matching tasks
are so different that a system can perform very well on some data and not that well
on some other. It is thus necessary that evaluation data sets are as different as pos-
sible and that results are kept separate so that someone with a particular task can
choose a system that performs adequately on this task. The second difficulty is the
choice of evaluation criteria. As mentioned in Sect. 7.3.2, precision and recall are not
always appropriate for ontology matching and must be improved to account for the
semantics of ontologies.

Over several years we have implemented an ongoing effort for evaluating ontol-
ogy matching algorithms under the Ontology Alignment Evaluation Initiative5. The
main purpose of OAEI is to improve the quality of ontology matching algorithms by
continuous comparison with other new methods. It aims at providing quality bench-
mark suites that system designers can use for training their systems as well as for
organising evaluation campaigns for comparing systems.

5 http://oaei.ontologymatching.org

Part IV

Representing, explaining, and processing alignments

8

Frameworks and formats: representing alignments

Once matching is performed, the resulting alignments are usually used in a wider
context than a matching system itself. To that extent, several proposals have been
made for representing the alignments and exchanging them among tools. This chap-
ter is concerned with these topics.

Alignments can be stored, exchanged and manipulated in a variety of ways. We
present some frameworks and formats that help do so. In particular, we address the
following aspects:

– Formats that enable the syntactic expression and the manipulation of alignments
and that can be used for exchanging the alignments across applications (§8.1).

– Frameworks that provide a wider set of operations for manipulating alignments.
These frameworks and languages are usually not concerned with the way align-
ments are found. They, at best, define a match operation which generates align-
ments, however, they allow plugging in matching methods whose alignments can
be manipulated (§8.2).

– Finally, ontology editors provide environments for either manually or automat-
ically creating alignments and then using them, for instance, for importing data
and merging ontologies (§8.3).

The first category follows an open philosophy in which alignments can be used in
any context, while the latter categories impose a closed interpretation of alignments,
however, they can be open to the integration of new tools.

8.1 Alignment formats

As can be noted from Chap. 6, many matching systems deliver alignments. Appli-
cations could use this property for replacing a matcher by another one or combining
several of them. Unfortunately, the alignment is very often output as a mere list of
pairs, HTML table or similarity matrix. We consider here what could be a proper
format in order for these systems to interoperate.

220 8 Frameworks and formats: representing alignments

We briefly present various formats that have been proposed so far for expressing
relations between ontologies. We mostly compare these formats on the basis of their
syntax. A deeper analysis of some of these in terms of semantics and expressiveness
is provided in [Serafini et al., 2005].

For the purpose of a uniform comparison of these formats, we use an example
that extends the one of Fig. 2.9. It consists of expressing that:

– a Science book in the left-hand side ontology corresponds to an Essay whose
subject is an instance of Science in the right-hand side ontology,

– a Pocket book in the left-hand side ontology corresponds to a Volume whose size
is less than 14 in the right-hand side ontology,

– a Book which has politics as a topic in the left-hand side ontology corresponds to
a Politics essay in the right-hand side ontology, and

– a Writer in the left-hand side ontology is someone who have authored a volume
in the right-hand side ontology.

We will consider that the first ontology is identified by the XML &onto1;
entity or the http://book.ontologymatching.org/example/culture-shop.owl URL and
the second ontology is identified by the XML &onto2; entity standing for the
http://book.ontologymatching.org/example/library.owl URL.

Three of these extra correspondences are displayed in Fig. 8.1. When translated
into first-order logic, these can be represented as follows:

∀x, Pocket(x) ≡ V olume(x) ∧ size(x, y) ∧ y ≤ 14
∀x, Science(x) ≡ Essay(x) ∧ (∀y, subject(x, y) ⇒ Science(y))

∀x, Book(x) ∧ topic(x, politics) ≡ Politics(x)
∀x, Writer(x) ⇐ ∃y, author(y, x)

Product

DVD

Book

topic

Science

Pocket

politics
∃

Volume

size

Literature

Essay

subject

Politics

Biography

Science

14

∀

≥

Fig. 8.1. Three correspondences that can be set in an elaborate alignment format.

Let us discuss the main formats available for expressing such alignments.

8.1 Alignment formats 221

8.1.1 MAFRA Semantic bridge ontology (SBO)

MAFRA [da Silva, 2004, Mädche et al., 2002] stands for MApping FRAmework1

(see also Sect. 8.2.3). It is a system for extracting mappings from ontologies and
executing them as data transformation from one ontology to another one. The system
was first designed to work with the DAML+OIL language, an ancestor of OWL.

MAFRA does not define a real exchange format for ontology alignment. Rather,
it provides an ontology, called the Semantic Bridge Ontology. The instantiation of
this ontology constitutes an ontology mapping document. The serialisation of this
format has not been described in detail in documents so we freely use our own tran-
scription2.

The main concepts in this ontology are SemanticBridges and Services. A Se-
manticBridge is tied to the Services that are able to implement the bridge as a data
transformation. A Service can be thought of as a function: f : Argn −→ Argm that
maps tuples of arguments into tuples of arguments. It can be identified by a URI,
for instance. The arguments are typed and can be ontology concepts, property paths,
literals or arrays of these.

SemanticBridges, which in turn can be ConceptBridges or PropertyBridges, ex-
press a relation between two sets of entities by composing elementary services that
are applied to them. For instance, a SemanticBridge between two ontologies can map
those Volumes with size larger than 14 to Pocket books in the following way:

ConceptBridge: Volume2Pocket
x: <o2#Volume>; o2:size >= 14 -> <o1#Pocket>

ConceptBridge: Book2Politics
x: <o1#Book>; o1:topic == ’politics’ -> <o2#Politics>

Entities to be mapped are identified within the ontology (instances) through
a path. Paths serve the dual purposes (i) of navigating within the ontology
structure and (ii) of providing the context for further characterising the con-
cerned entities. In this context paths play exactly the same role as in Xpath
[Clark and DeRose (ed.), 2001]. They are further enriched with conditions. In the
example above, <o2#Volume>; o2:size >= 14 is a path with condition that the
final step size has a value inferior to 14.

An ontology mapping document satisfying the semantic bridge ontology is a
collection of such bridges plus information on the concerned ontologies, as well as
constraints: for example, the exclusivity conditions that can be used for expressing
that an entity cannot be mapped by more than one bridge rule.

The semantic bridge ontology provides a framework and a format for expressing
alignments. This format is used as output from ontology matchers and input for data
transformations.

The format provided by the Semantic Bridge Ontology is not very clear since
the language is described in UML. This is a minor problem that could be solved by

1 This is also the name of a city in Portugal featuring a rich palace.
2 [Mädche et al., 2002] presents the Semantic Bridge Ontology as a DAML+OIL ontology,

but it turns out to have evolved a lot since then and we have not been able to find a seriali-
sation that could stand as a proper format.

222 8 Frameworks and formats: representing alignments

exposing some RDF/XML format (a previous version of the framework had been
described as a DAML ontology [Mädche et al., 2002]). Moreover, this format is a
relatively complex language that is tied to the MAFRA architecture (§8.2.3). It does
not separate the declarative aspect of relations from the more operational aspects of
services: the relations are described with regard to the services able to implement
them. The services can be arbitrary small, such as string concatenation, or large,
such as implementing a complete alignment by a program. On the one hand, this
guarantees that these alignments can be used: SBO-documents can readily be used
as data translation. On the other hand, this does not favour the use of these alignments
in other ways, for instance, for merging ontologies or mediating queries.

8.1.2 OWL

OWL can be considered as a language for expressing correspondences between on-
tologies. As a matter of fact, the equivalentClass and equivalentProperty primitives
have been introduced for relating elements in ontologies describing the same do-
main. This use has been documented by the W3C best practices working group
[Uschold, 2005]. Moreover, these primitives are only shorthands for other primitives,
e.g., subClassOf, subPropertyOf, that already allow the relation of entities. For ex-
ample, the following OWL ontology fragment

<owl:Property rdf:about="&onto1;#author">
<owl:equivalentProperty rdf:resource="&onto2;#author"/>

</owl:Property>

<owl:Class rdf:about="&onto1;#Book">
<owl:equivalentClass rdf:resource="&onto2;#Volume"/>

</owl:Class>

<owl:Class rdf:about="&onto2;#title">
<owl:subClass ="&onto1;#name"/>

</owl:Class>

can be seen as an alignment expressing the equivalence of properties author and
author, the equivalence of classes Book and Volume and the coverage of property title
in the second ontology by name in the first one. Moreover, any ontology, as soon as
it involves entities from different ontologies, expresses alignments. For instance, the
following OWL ontology fragment

<owl:Class rdf:ID="&onto1;#Science">
<owl:equivalentClass>
<owl:Class>
<owl:subClassOf rdf:resource="&onto2;#Essay"/>
<owl:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&onto2;#subject"/>
<owl:allValuesFrom rdf:resource="&onto2;#Science"/>

</owl:Restriction>
</owl:subClassOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>
<owl:Class rdf:ID="&onto2;#Writer">
<owl:subClassOf>

8.1 Alignment formats 223

<owl:Restriction>
<owl:onProperty rdf:resource="&onto1;#hasWritten"/>
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>
</owl:subClassOf>

</owl:Class>

expresses that a Science book in the first ontology is equivalent to an Essay whose
subject is an instance of the Science class in the second one and that those who have
written at least one thing in the first ontology are Writer in the second one.

Not surprisingly, the OWL language can be used as an alignment expression
language. However, using it this way has some drawbacks:

1. It forces the use of a particular ontology language: OWL. It is still possible
to relate in this way ontologies that are expressed in other languages without
benefiting from the construction of complex terms. However, the alignment will
not benefit from the content of the ontologies themselves.

2. It mixes correspondences and definitions. This is a problem for the clarity of
alignments as well as for lightweight applications which do not want to interpret
the OWL language.

3. It is interpreted only in the framework of a global interpretation of one OWL
theory. It is difficult to use this expression for only importing data expressed
under one ontology into another one because this application requires sorting
out definitions from correspondences.

Other languages have been designed for overcoming these problems. For exam-
ple, SKOS solves the first problem, but introduces its own language, SWRL solves
the second problem and C-OWL attempts to solve the third problem. These lan-
guages are presented hereafter.

8.1.3 Contextualized OWL (C-OWL)

C-OWL is an extension of OWL to express mappings between heterogeneous ontolo-
gies [Bouquet et al., 2003a, Bouquet et al., 2004b]. The new constructs in C-OWL,
with respect to OWL, are called bridge rules, and they allow the expression of re-
lations between classes, relations and individuals interpreted in heterogeneous do-
mains.

Bridge rules are oriented correspondences, from a source ontology o to a target
ontology o′. They use a set of five relations: more general (�), more specific (�),
equivalent (≡), disjoint (⊥) and overlap (∗). These relations are always applied to
named entities. Bridge rules are always interpreted from the standpoint of the target
ontology. They express how the target ontology translates the source ontology in
itself.

Bridge rules are expressed separately from the ontologies they refer to. The ex-
amples considered here are given below in C-OWL XML syntax:

224 8 Frameworks and formats: representing alignments

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY cowl "http://www.itc.it/cowl#" >
<!ENTITY onto1 "http://book.ontologymatching.org/example/culture-shop.owl" >
<!ENTITY onto2 "http://book.ontologymatching.org/example/library.owl" >

]>
<rdf:RDF
xmlns ="&cowl;"
xmlns:cowl ="&cowl;"
xmlns:owl ="&owl;"
xmlns:rdf ="&rdf;"
>

<cowl:Mapping>
<cowl:sourceOntology>
<owl:Ontology rdf:about="&onto1;"/>

</cowl:sourceOntology>
<cowl:targetOntology>
<owl:Ontology rdf:about="&onto2;"/>

</cowl:targetOntology>
<cowl:bridgeRule>
<cowl:Into>
<cowl:source>
<owl:Class rdf:about="&onto1;#Book"/>

</cowl:source>
<cowl:target>
<owl:Class rdf:about="&onto2;#Volume"/>

</cowl:target>
</cowl:Into>

</cowl:bridgeRule>
<cowl:bridgeRule>
<cowl:Onto>
<cowl:source>
<owl:Class rdf:about="&onto1;#name"/>

</cowl:source>
<cowl:target>
<owl:Class rdf:about="&onto2;#title"/>

</cowl:target>
</cowl:Onto>

</cowl:bridgeRule>
<cowl:bridgeRule>
<cowl:Equivalent>
<cowl:source>
<owl:Class rdf:about="&onto1;#author"/>

</cowl:source>
<cowl:target>
<owl:Class rdf:about="&onto2;#author"/>

</cowl:target>
</cowl:Equivalent>

</cowl:bridgeRule>
<cowl:bridgeRule>

</cowl:Mapping>
</rdf:RDF>

The C-OWL proposal can express relatively simple alignments: no constructed
classes are expressed, only named classes are used. The more expressive part resides
in the relations used by the mapping. These alignments have a clear semantics, how-
ever it is given from a particular standpoint: that of the target ontology. C-OWL is
based on the OWL language but relatively independent from this language which is
confined at expressing the entities (the alignment part being specific).

8.1 Alignment formats 225

8.1.4 SWRL

It is sometimes not enough to be able to express entity definitions; sometimes ex-
pressing rules is a more convenient expression mean. Moreover, rules can bring more
expressiveness. SWRL (Semantic Web Rule Language) [Horrocks et al., 2004] is a
rule language for the semantic web. It extends OWL with an explicit notion of rule
(from RuleML) that is interpreted as first order Horn clauses. These rules can be un-
derstood as correspondences between ontologies, especially when elements from the
head and the body are from different ontologies, oriented as in C-OWL.

SWRL mixes the vocabulary from RuleML for exchanging rules with the OWL
vocabulary for expressing knowledge. It defines a rule (ruleml:imp) with a body
(ruleml:body) and head (ruleml:head) parts.

<ruleml:imp>
<ruleml:_body>
<swrlx:classAtom>
<owlx:Class owlx:name="&onto1;#Book" />
<ruleml:var>p</ruleml:var>

</swrlx:classAtom>
<swrlx:datavaluedPropertyAtom swrlx:property="&onto1;#topic">
<ruleml:var>p</ruleml:var>
<owlx:DataValue owlx:datatype="&xsd;#string">politics</owlx:DataValue>

</swrlx:datavaluedPropertyAtom>
</ruleml:_body>
<ruleml:_head>
<swrlx:classAtom swrlx:property="&onto2;#Politics">
<ruleml:var>p</ruleml:var>

</swrlx:classAtom>
</ruleml:_head>

</ruleml:imp>

<ruleml:imp>
<ruleml:_body>
<swrlx:classAtom>
<owlx:Class owlx:name="&onto2;#Volume" />
<ruleml:var>p</ruleml:var>

</swrlx:classAtom>
<swrlx:datavaluedPropertyAtom swrlx:property="&onto2;#size">
<ruleml:var>p</ruleml:var>
<ruleml:var>q</ruleml:var>

</swrlx:datavaluedPropertyAtom>
<swrlx:builtinAtom swrlx:builtin="&swrlb;#greaterThanOrEqual">
<owlx:DataValue owlx:datatype="&xsd;#int">14</owlx:DataValue>
<ruleml:var>q</ruleml:var>

</swrlx:builtinAtom>
</ruleml:_body>
<ruleml:_head>
<swrlx:classAtom swrlx:property="&onto1;#Pocket">
<ruleml:var>p</ruleml:var>

</swrlx:classAtom>
</ruleml:_head>

</ruleml:imp>

The first rule expresses that a Book in the first ontology with politics as a value of
its topic attribute is a Politics book in the second ontology. The second rule expresses
that Volumes in the second ontology whose size is less than 14 are Pocket books in
the first ontology.

The introduction of variables within constructs of the OWL language provides
more expressiveness to the language. In particular, it allows the expression of what

226 8 Frameworks and formats: representing alignments

was called role-value maps in description logics or feature path equations in feature
algebras [Smolka, 1992]. Of course, all the constructions available in OWL are us-
able in SWRL as well. SWRL also provides a set of built-in predicates on various
datatypes provided by XML Schema as well as operators on collections, such as
count.

SWRL rules can be used for expressing the correspondences between ontolo-
gies. These correspondences are expressed between formulas and interpreted as Horn
clauses. They have the advantage over genuine OWL of being well identified as rules
and are easier to manipulate as an alignment format than OWL, which is also used
to express ontologies.

As in the OWL case, these rules have the drawback of forcing the use of OWL
and are interpreted as merging ontologies. Again, the expression of a rule, such as
the one above, freezes the use that can be made: the rule will help in considering
some Books of the first ontology as Politics books in the second ontology. However,
the rules work as a set of logical rules, not rewrite rules, so they can be used for
merging, but not transforming ontologies.

8.1.5 Alignment format

Following [Euzenat, 2003], [Euzenat, 2004] provides an Alignment format on sev-
eral levels, which can handle complex alignment definitions. This format is simpler
than most of the alignment representations presented here. It also aims to be pro-
ducible by most matching tools.

The alignment description is an envelope in which the correspondences are
grouped. It expresses metadata about the alignment and features. These are:

References to matched ontologies;
A set of correspondences which expresses the relation holding between entities of

the first ontology and entities of the second ontology;
Level used for characterising the type of correspondence (see next);
Arity (default 1:1) (denoted as 1 for injective and total, ? for injective, + for total

and * for none, with each sign concerning one mapping and its converse): ?:?,
?:1, 1:?, 1:1, ?:+, +:?, 1:+, +:1, +:+, ?:*, *:?, 1:*, *:1, +:*, *:+, *:* (see also
Sect. 2.5.2). These assertions could be provided as input (or constraint) for the
alignment algorithm or as a result by the same algorithm.

More metadata can be added, in particular when the format is expressed in RDF,
such as:

– the generating algorithm;
– the date of creation;
– whether the alignment is homogeneous (in language or entity).

Support for correspondences follows the Definition 2.11. They are expressed by:

entity1: the first matched entity;
entity2: the second matched entity;

8.1 Alignment formats 227

relation: the relation holding between the two entities. It is not restricted to the
equivalence relation, but can be more sophisticated, e.g., subsumption, incom-
patibility [Giunchiglia and Shvaiko, 2003b], or even some fuzzy relation. The
default relation is equivalence.

strength: the confidence that the correspondence under consideration holds. The
measure should belong to an ordered set Ξ including a maximum element �
and a minimum element ⊥; for instance, a float value between 0 and 1. The
default strength is �.

id: an identifier for the correspondence.
A full example of the level 0 Alignment format in RDF is as follows:

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY onto1 "http://book.ontologymatching.org/example/culture-shop.owl" >
<!ENTITY onto2 "http://book.ontologymatching.org/example/library.owl" >

]>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmlns:rdf=’&rdf;’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<onto1>&onto1;</onto1>
<onto2>&onto2;</onto2>
<map>
<Cell>
<entity1 rdf:resource=’&onto1;#Book’/>
<entity2 rdf:resource=’&onto2;#Volume’/>
<measure rdf:datatype=’&xsd;float’>0.6363636363636364</measure>
<relation><</relation>

</Cell>
</map>
<map>
<Cell>
<entity1 rdf:resource=’&onto1;#name’/>
<entity2 rdf:resource=’&onto2;#title’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>></relation>

</Cell>
</map>

</Alignment>
</rdf:RDF>

It describes a many-to-many level 0 alignment between two bibliographic on-
tologies. It contains two correspondences in which Book in the first ontology is less
general than Volume in the second one and name in the first ontology is more gen-
eral than title in the second one. These correspondences use the less and more general
relations and a confidence measure .64 in the former case and 1. in the latter.

The Alignment format has been designed for offering a common format to differ-
ent needs. Depending on the expressiveness of the matched entities, it offers several
alignment levels which correspond to different options for expressing entities:

Level 0: These alignments relate entities identified by URIs. Any algorithm can deal
with such alignments. This first level of alignment has the advantage to not de-
pend on a particular language for expressing these entities. On this level, the

228 8 Frameworks and formats: representing alignments

matched entities may be classes, properties or individuals. However, they also
can be any kind of a complex term that is used by the target language as soon as
it is identified by a URI.

Level 1: These alignments replace pairs of entities by pairs of sets (or lists) of en-
tities. A level 1 correspondence is thus a slight refinement of level 0. It can be
easily parsed and is still language independent.

Level 2 (L): More general correspondence expressions can be useful. For instance,
[Masolo et al., 2003] provides bridges from an ontology of services to the cur-
rently existing semantic web service description languages in first order logic.
These kinds of correspondences can be expressed with level 2 alignments. These
are no longer language independent and require the knowledge of the language
used for parsing the format. In this case correspondences can be expressed be-
tween formulas, queries, etc.

The following two correspondences use OWL and a pseudo-query language in
level 2 alignments:

<Cell>
<entity1 rdf:resource=’&onto2;#Writer’/>
<entity2>
<owl:Restriction>
<owl:onProperty rdf:resource="&onto1;#hasWritten"/>
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>
</entity2>
<measure rdf:datatype=’&xsd;float’>0.6363636363636364</measure>
<relation><</relation>

</Cell>

The example above describes the fact that a Writer in the second ontology is
someone that hasWritten something in the first one.

<Cell>
<entity1 rdf:resource=’&onto1;#name’/>
<entity2>
<Apply rdf:resource=’string-concatenate’>
<args rdf:parseType="collection">
<Path>
<relation rdf:resource="&onto2;#firstname" />

</Path>
<Path>
<relation rdf:resource="&onto2;#lastname" />

</Path>
</args>

</Apply>
<entity2>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>

The example above describes the fact that the name in the first ontology is equiv-
alent to the concatenation of firstname and lastname in the second one.

These kinds of correspondences are commonly used in logic-based languages
or in the database world for defining the views in global-as-view or local-as-view
approaches [Calvanese et al., 2002b]. It also resembles the SWRL rule language

8.1 Alignment formats 229

[Horrocks et al., 2004] when used with OWL (see also Sect. 8.1.4 for a simple ex-
ample of such rules).

The Alignment format has been given an OWL ontology and a DTD for vali-
dating it in RDF/XML. It can be manipulated through the Alignment API which is
presented next in Sect. 8.2.4. It has been used as the format for the OAEI evaluation
campaigns (§7.1.3) and many different tools are able to output it, e.g., oMap (§6.3.5),
FOAM (§8.2.5), OLA (§6.3.8), Falcon-AO (§6.3.9), and HCONE (§6.1.20).

Finally, the Alignment format allows the expression of alignments without com-
mitment to a particular language. It is not targeted towards a particular use of the
alignments and offers generators for a number of other formats. However, in contrast
to the languages presented so far, this format does not offer much expressiveness.
One of the good features of this format is its openness which allows the introduc-
tion of new relations and if necessary new types of expressions while keeping the
compatibility with poorly expressive languages.

8.1.6 SEKT mapping language

The SEKT European project has developed an ontology mapping language
[de Bruijn et al., 2004] to specify mediators in semantic web services as defined in
the Web Services Modeling Ontology, WSMO3 [Roman et al., 2004]. This language
is both expressive and language independent. It needs to be grounded in another rep-
resentation language in order to be interpreted. The alignments can be expressed in a
human-readable language (used here) as well as with the help of an RDF vocabulary
defined in [Scharffe, 2005].

The relationships between entities of this language are shown in Table 8.1. They
allow the specific identification of which kind of entity is mapped into which other.

Table 8.1. SEKT-ML mapping types.

Language Construct Description
ClassMapping Mapping between two classes
PropertyMapping Mapping between two properties
RelationMapping Mapping between two relations
ClassPropertyMapping Mapping between a class and a property
ClassRelationMapping Mapping between a class and a relation
ClassInstanceMapping Mapping between a class and an instance
IndividualMapping Mapping between two instances

The entities to be mapped can be classes, properties, corresponding to data valued
relations, relations, corresponding to object valued relations, instances of an ontology
identified by their URIs or terms constructed from such entities through a set of
operators, as described in Table 8.2.

3 http://www.wsmo.org

230 8 Frameworks and formats: representing alignments

Table 8.2. SEKT-ML logical constructors.

Entity Operator
Class and, or, not, join
Property and, or, not, join
Relation and, or, not, inverse, symetric,

reflexive, transitive, join

The interpretation of class and property and, or and not operators follows the clas-
sical set-theoretic interpretation. The join operator allows the composition of classes
or relations with conditions on which entities can be composed. The inverse operator
provides the converse relation while the symetric, reflexive and transitive operations
provide the respective closures of the relation.

It is, of course, possible to express the correspondences between named classes
and relations. As presented in the following example, Book in the first ontology is
less general than Volume in the second one and the authors relations are the same in
both ontologies.

classMapping(
annotation(<"rdfs:label"> ’Book to Volume’)
annotation(<"http://purl.org/dc/elements/1.1/description">
’Map the Book concept to the Volume concept’)

unidirectional
<"&onto1;#Book">
<"&onto2;#Volume">)

relationMapping(
annotation(<"rdfs:label"> ’authors to authors’)
bidirectional
<"&onto1;#authors">
<"&onto2;#authors">)

Conditions can be introduced in order to constrain the objects to which the map-
ping can be applied. These conditions are applied to classes or attributes (being ap-
plied to both properties and relations). In both cases, they can constrain the type,
value or multiplicity of attribute values.

The language allows the expression of more complex correspondences compris-
ing conditions. For instance, the Books whose topic is politics in the first ontology are
Politics books in the second one or the Volumes in the second ontology whose size is
inferior to 14 are Pocket books in the first ontology:

classMapping(
annotation(<"rdfs:label"> ’conditional Book to Politics’)
unidirectional
<"&onto1;#Book">
<"&onto2;#Politics">
attributeValuecondition(<"&onto1;#topic"> ’= "politics"))

classMapping(
annotation(<"rdfs:label"> ’conditional Volume to Pocket’)
unidirectional
<"&onto2;#Volume">
<"&onto1;#Pocket">
attributeValuecondition(<"&onto2;#size"> ’< 14))

8.1 Alignment formats 231

The SEKT mapping language is an expressive alignment format offering many
kinds of relations and entity constructors to users. One of its main advantages is its
ontology language independence, giving a common format for expressing mappings.
Thus, this proposal has a middle man position: it is independent from any particular
language but expressive enough for covering a large part of the other languages.

8.1.7 SKOS

SKOS [Miles and Brickley, 2005b, Miles and Brickley, 2005a] stands for Simple
Knowledge Organisation System. The SKOS core vocabulary is an RDF Schema
aiming at expressing relationships between lightweight ontologies, e.g., folk-
sonomies or thesauri. It is currently under development.

The goal of SKOS is to be a layer on top of other formalisms able to express the
links between entities in these formalisms.

Concept and relation descriptions

SKOS allows the identification of the concepts that are present in other ontologies.
The concept description part of SKOS is redundant with respect to other languages of
that family; it has been designed for taking advantage of these concepts, for instance,
in a graphical user interface, rather than only expressing the alignments.

Below are such concept descriptions dedicated to the description of the Book
concept. SKOS defines various ways of presenting the concept with labels in several
languages and alternate labels and symbols. It also provides the opportunity to add
various notes and informal definitions to the concept:

<skos:Concept rdf:about="&onto1;#Book">
<skos:prefLabel>Book</skos:prefLabel>
<skos:altLabel xml:lang="fr">Livre</skos:altLabel>
<skos:definition>A book is a set of sheets of papers bound together so that
a the content printed on them can be consulted in sequence.</skos:definition>
<skos:editorialNote>This is not an official definition</skos:editorialNote>

</skos:Concept>

In the above example Book is a concept with some information about it, such
as the way it is named in different languages and its definition (similar to glosses
in WordNet). SKOS also allows the description of collections of concepts given by
their enumeration:

<skos:Collection rdf:about="&onto2;#Topics">
<rdfs:label>Topics</rdfs:label>
<skos:member rdf:resource="&onto2;#Critics"/>
<skos:member rdf:resource="&onto2;#Literature"/>
<skos:member rdf:resource="&onto2;#Science"/>
<skos:member rdf:resource="&onto2;#Politics"/>

</skos:Collection>

This describes the collection of Topics featuring Critics, Literature, Science and Poli-
tics.

232 8 Frameworks and formats: representing alignments

Concept relations

SKOS defines the so-called semantic relationships that express relations between the
SKOS concepts. For instance, a term used in a thesaurus can be broader than another.
There are three such relations as defined in Table 8.3.

Table 8.3. SKOS relation properties.

property domain range inverse property
broader concept concept narrower transitive
related concept concept related symmetric

The relations between concepts enable the assertion of the relative inclusion of
concepts as broader or narrower terms as well as other informal relations. The fol-
lowing example displays the Book concept that is narrower than Volume but broader
than Critics. It is also related to Work.

<skos:Concept rdf:about="&onto1;#Book">
<skos:broader rdf:resource="&onto2;#Volume"/>
<skos:narrower rdf:resource="&onto2;#Critics"/>
<skos:related rdf:resource="&onto2;#Work"/>

<skos:Concept/>

Broader and narrower are transitive properties while related is symmetric.

Annotations

In addition, but of least interest here, SKOS defines annotation properties that enable
users to use SKOS concepts for describing resources, i.e., to annotate them directly
with SKOS. It defines the vocabulary displayed in Table 8.4.

Table 8.4. SKOS annotation properties.

property domain range inverse
subject resources concept isSubjectOf
primarySubject resource concept isPrimarySubjectOf

This is used below to express that Justice is the primarySubjectOf Camus’ La
Chute and a subjectOf Russell’s My Life.

<skos:Concept rdf:about="&onto2;#Justice">
<skos:isPrimarySubjectOf rdf:resource="&onto2;#LaChute" />
<skos:isSubjectOf rdf:resource="&onto2;#MyLife" />

</skod:Concept>

8.1 Alignment formats 233

SKOS has the advantage of being a lightweight vocabulary defining from the
ground a rich collection of relations between entities. Since it uses URIs for referring
to objects it is fully integrated in the semantic web architecture and is not committed
to a particular language. In fact, one of the main advantage of SKOS is that it lifts
any kind of organised description into an easily usable set of classes. The relation
part has the advantage of being very general but the drawback is that it lacks formal
semantics. However, more semantics on these terms can be introduced by using the
OWL vocabulary.

Like other formats which do not separate the ontologies from the correspon-
dences, SKOS, in its most convenient form, mixes the highest power of RDF Schema
and the expression of the alignments. This form of extensibility, through RDF
Schema, prevents any non RDF Schema understanding application from fully grasp-
ing the SKOS content.

8.1.8 Comparison of existing formats

The formats we have considered so far can be globally compared (see Table 8.5). For
that purpose, a set of criteria is applied to these different formats:

Web compatibility is the capacity of the format to be manipulated on the web. This
involves its possible expression in XML, RDF and/or RDF/XML, as well as
the possibility to identify entities by URIs. This should, in principle, enable the
extensibility of the format by introducing new properties as well as the refer-
encing of particular correspondences individually. This aspect is covered by the
RDF/XML and URI criteria of Table 8.5.

Language independence is the ability to express alignments between entities de-
scribed in different languages. This is often related to the use of URIs. In fact,
language independence is mostly related to simplicity. This aspect is covered by
the Language and Model criteria of Table 8.5.

Simplicity is the capacity to be dealt with in a simple form by simple tools. In partic-
ular, for example, requiring inference for correctly manipulating the alignment
or requiring that the format covers an important part of some ontology represen-
tation language is not a sign of simplicity. A well structured format should help
achieve this goal. This aspect is inverse to expressiveness.

Expressiveness is the capacity of the format to express complex alignments. This
means that alignments are not restricted to matching entities identified by URIs
but can create new ones. The constructions for expressing alignments can be
arbitrary complex. In fact, it can be more complex than the knowledge expressed
in the ontologies. This aspect is covered by the Relations, Terms, Type rest,
Cardinality, Variables and Built-in criteria of Table 8.5.

Extendibility is the capacity to extend the format with specific purpose information
in such a way that the tools which use this format are not disturbed by the exten-
sions. Most of the systems presented here exhibit one kind of extendibility tied
to the use of RDF which allows any new relation and object to be added. This
aspect is covered by the ‘+’ signs in Table 8.5.

234 8 Frameworks and formats: representing alignments

Purpose independence is a consequence of various factors expressed. We mention
the intended use of each of the formats. It is clear, for instance, that a format
designed for data integration, with very precise selection constraints, will rather
be difficult to re-use in transforming ontologies. This aspect is covered by the
Target application criterion of Table 8.5.

Executability is the capacity to be directly usable in mediators. This means that
there are tools available for directly interpreting the format as a program pro-
cessing knowledge. Executability is rather opposed to language independence.
This aspect is covered by the Execution criterion of Table 8.5.

Table 8.5 provides the values of all the formats presented so far for each of the
criteria.

Table 8.5. Summary of characteristics of the presented formats. + means that the system can
be extended; Transf stands for transformation. The possible relations for the formats are sub-
class (sc), subproperty (sp), implication between formulas (imp). The terms concerned by the
alignments can be classes (C), properties (P) or individuals (I).

Format OWL SBO C-OWL SWRL Alignment SEKT-ML SKOS
Target app. Merging Data transf. Data int. Data int. Generic Data transf. Merging
Language OWL UML OWL OWL + RDFS
Model OWL OWL+ OWL
Execution Logical Transf Logical Logical Logical Alg.
RDF/XML

√ √ √ √ √ √
URI

√ √ √ √ √ √
Measures

√ √
Relations sc/sp sc/sp imp sc/sp+ sc/sp/. . . sc/sp
Terms C/P/I C/P/I C/P/I C/P/I URI C/P/I C/P
Type rest

√ √ √ √ √
Cardinality

√ √ √
Variables

√
Built-in

√
+

√
+ +

The difference between these formats lies in the continuum between: (i) very
general languages that are easy to understand but which are unable to express com-
plex alignments, e.g., SKOS, level 0 Alignment format, and (ii) very expressive lan-
guages whose semantics dictates their use and which requires deep understanding of
the language, e.g., OWL, SWRL, C-OWL, MAFRA. The SEKT Mapping language
stands in the middle of this continuum.

While most of the matching algorithms are only able to express the first kind of
alignments, both kinds of languages are useful. Most of the expressive formats have
a surface heterogeneity due to the languages on which they are based, e.g., UML,
OWL, WSML. However, they have very similar features for: referring to ontology
constructs, such as classes, properties; using logical formula constructors, such as
conjunctions, implications, quantifiers; using datatypes and collections of built-in

8.2 Alignment frameworks 235

operators. Finally, it is surprising that there is no more heterogeneity in these expres-
sive languages given that complexity is a factor of: the language used for expressing
the ontologies, the language used for expressing the related entities, the semantics
given to alignments and the language used for expressing relations.

As a summary, there is no universal format for expressing alignments. The choice
of a format depends on the characteristics of the application. We think that there
are two factors which can influence this choice: (i) the expressiveness required for
the alignments, and (ii) the need to exchange with other applications, especially
if they involve different ontology languages, or the ontology language used by the
application.

We now consider frameworks that allow taking advantage of such alignment for-
mats by offering openness to alignment manipulation, including matchers.

8.2 Alignment frameworks

The matching operation is typically only one of the steps towards the ultimate goal
of ontology integration or web services composition, for instance. There exist in-
frastructures which use alignments as one of their components. The goal of such
infrastructures is to enable users to perform high-level tasks which involve generat-
ing, manipulating, composing and applying alignments within the same environment.
Similar to Chap. 6 in this section we did not enforce the terminology of Sect. 2.4 but
kept that one as used by system designers.

8.2.1 Model management

Model management [Bernstein et al., 2000, Madhavan et al., 2002, Melnik, 2004]
aims at providing a metadata manipulation infrastructure in order to reduce the
amount of programming required to build metadata driven applications. It deals with
models which can be related by mappings. A model is an information structure, such
as XML schema, relational database schema, UML model. Similarly, mappings are
oriented alignments from one model into another. Technically, a key idea of generic
model management is to solve metadata intensive tasks at a high level of abstraction
using a concise script. It is generic in the sense that a single implementation should
be applicable to the majority of data models and scenarios, e.g., data translation, data
integration. However, it is primarily targeted at databases. It provides an algebra to
manipulate models and mappings. In [Melnik et al., 2005], the following operators
are defined:

– Match(m,m′) which returns the mapping a between models m and m′;
– Compose(a, a′) which composes mappings a and a′ into a new one a′′, given

that the range of a′ is the domain of a;
– Confluence(a, a′) which merges alignments by union of non conflicting corre-

spondences, provided as a and a′ that have the same domain and range;
– Merge(a,m,m′) which merges two models m and m′ according to mapping a;

236 8 Frameworks and formats: representing alignments

– Extract(a, m) which extracts the portion of model m which is involved in map-
ping a;

– Diff(a, m) which extracts the portion of model m which is not involved in map-
ping a.

A mapping in this context is a function from m to m′. [Melnik et al., 2005]
also provides axioms governing these operations. For instance, the merge opera-
tion between two models m′ and m′′ through a mapping a, returns a new model
m = Domain(a′)∪Domain(a′′) and a pair of surjective mappings a′ and a′′ from m
to m′ and m′′ respectively, such that: a = Compose(Invert(a′), a′′).

A typical example of the model management script is as follows:
A1 := Match(O1, O2);
A2 := Match(O2, O3);
O4 := Diff(O1, A1);
A3 := Compose(A1, A2)
O5 := Merge(Extract(O1, A1), O3, A3);
O6 := Merge(O4, O5, ∅);

The above example operates with three ontologies. It merges the first one and the
last one on the basis of the composition of their alignment with the intermediate one.
Finally, it adds the part of the first one that was not brought in the first merge.

There are some model management systems available. In particular,
Rondo is a programming platform implementing generic model management
[Melnik et al., 2003b, Melnik et al., 2003a]. It is based on conceptual structures
which constitute the main Rondo abstractions:

Models such as relational schemas, XML schemas, are internally represented as
directed labelled graphs, where nodes denote model elements, e.g., relations and
attributes. Each such element is identified by an object identifier (OID).

Morphisms are binary relations over two, possibly overlapping, sets of OIDs. The
morphism is typically used to represent a mapping between different kinds of
models. Morphisms can always be inverted and composed.

Selectors are sets of node identifiers from a single or multiple models. These are
denoted as S. A selector can be viewed as a relation with a single attribute,
S(V : OID), where V is a unique key.

The operators presented above, e.g., match, merge, are implemented upon these
conceptual structures. Match is implemented in Rondo by using the Similarity flood-
ing algorithm (§5.3.1).

Another system, called Moda, is described in [Melnik et al., 2005] in which cor-
respondences are expressed as logical formulas. This system is more expressive
than Rondo. Examples of some other model management systems include: GeRoMe
[Kensche et al., 2005] and ModelGen [Atzeni et al., 2005, Atzeni et al., 2006].

8.2.2 COMA++ (University of Leipzig)

COMA++ [Do and Rahm, 2002, Do, 2005] is a schema matching infrastructure built
on top of COMA (§6.1.12). It provides an extensible library of matching algorithms,

8.2 Alignment frameworks 237

a framework for combining obtained results, and a platform for the evaluation of
the effectiveness of the different matchers. COMA++ enables importing, storing and
editing schemas (or models). It also allows various operations on the alignments
among which compose, merge and compare. Finally, alignments can be applied to
schemas for transforming or merging them.

Contrary to Rondo, the matching operation is not described as atomic but rather
described as workflow that can be graphically edited and processed. Users can con-
trol the execution of the workflow in a stepwise manner and dynamically change
execution parameters. The possibility of performing iterations in the matching pro-
cess assumes interaction with users who approve obtained matches and mismatches
to gradually refine and improve the accuracy of match (see Fig. 8.2). The matching
operation is performed by the Execution engine based on the settings provided by
the Match customiser, including matchers to be used and match strategies.

The data structures are defined in a homogeneous proprietary format. The
Schema pool provides various functions to import and export schemas and ontologies
and save them to and from the internal Repository. Similarly, the Mapping pool pro-
vides functions to manipulate mappings. COMA++ can also export and import the
matching workflows as executable scripts (similar to those manipulated in Rondo).

o

o′

Execution engine

Component

identification

Matcher

execution

Similarity

combination

Matcher iteration

Schema pool

Schema

manipulation

Match customiser

Matcher

definitions

Match

strategies

Mapping pool

Mapping

manipulation

Repository

A

Fig. 8.2. COMA++ architecture (adapted from [Do, 2005]).

238 8 Frameworks and formats: representing alignments

Finally, according to [Do, 2005], there are some other tools built on top of
COMA++. For example, the CMC system provides a new weighting strategy to
automatically combine multiple matchers [Tu and Yu, 2005], while the work of
[Dragut and Lawrence, 2004] has adapted COMA to compute correspondences be-
tween schemas by performing a composition of the correspondences between indi-
vidual schemas and a reference ontology.

8.2.3 MAFRA (Instituto Politecnico do Porto and University of Karlsruhe)

MAFRA (MApping FRAmework, already mentionned for its format in Sect. 8.1.1)
is an interactive, incremental and dynamic framework for mapping distributed on-
tologies [da Silva, 2004, Mädche et al., 2002]. The framework consists of horizontal
and vertical dimensions. The horizontal dimension covers the mapping process. It is
organised according to the following components:

– Lift and Normalisation. This module handles syntactic, structural, and language
heterogeneity. In particular, the lifting process includes translation of input on-
tologies into an internal knowledge representation formalism, which is RDF
Schema. Normalisation (§4.2), in turn, includes (i) tokenisation of entities, (ii)
elimination of stop words, (iii) expansion of acronyms.

– Similarity. This module calculates similarities between ontology entities by ex-
ploiting a combination of multiple matchers. First, lexical similarity between
each entity from the source ontology and all entities from the target ontology
is determined based on WordNet and altered Resnik measure (§4.2.2). Second,
the property similarity is computed. This measures similarity between concepts
based on how similar the properties they are involved in are. Finally, bottom-up
and top-down similarities are computed. For example, bottom-up matchers take
as input the property (dis)similarity and propagate it from lower parts of the on-
tology to the upper concepts, thus yielding an overall view of similarity between
ontologies.

– Semantic Bridging. Based on the similarities determined previously, the corre-
spondences (bridges) between the entities of the source and target ontologies are
established. Bridges, in turn, can be executed for the data translation task. The
internals of bridges are discussed in detail in Sect. 8.1.1.

– Execution. The actual processing of bridges is performed in the execution mod-
ule. This module translates instances from the source ontology to the target on-
tology. This translation can either be performed off-line, i.e., one time transfor-
mation, or on-line, i.e., dynamically, thus taking into account the ‘fresh’ data, if
any.

– Post-processing. This module is in charge of the analysis and improvement of the
transformation results, for instance, by recognising that two instances represent
the same real-world object.

Components of the vertical dimension interact with horizontal modules during
the whole mapping process. There are four vertical components. The Evolution mod-
ule, in a user-assisted way, synchronises bridges obtained with the Semantic Bridg-

8.2 Alignment frameworks 239

ing module according to the changes in the source and target ontologies. The Co-
operative Consensus Building module helps users to select the correct mappings,
when multiple mapping alternatives exist. The Domain Constraints and Background
Knowledge module stores common and domain specific knowledge, e.g., WordNet,
precompiled domain thesauri, which are used to facilitate the similarity computation.
Finally, a graphical user interface assists users in accomplishing the mapping process
with a desired quality.

8.2.4 Alignment API (INRIA Rhône-Alpes)

A Java API [Euzenat, 2004] is available for manipulating alignments in the Align-
ment format. It defines a set of interfaces and a set of functions that they can perform.

Classes

The OWL API is extended with the org.semanticweb.owl.align package which de-
scribes the Alignment API. This package name is used for historical reasons. In fact,
the API itself is fully independent from OWL or the OWL API.

The Alignment API is essentially made of three interfaces:

Alignment describes a particular alignment. It contains a specification of the align-
ment and a list of cells.

Cell describes a particular correspondence between entities.
Relation does not mandate any particular feature.

To these interfaces implementing the Alignment format, are added a couple of
other interfaces:

AlignmentProcess extends the Alignment interface by providing an align method.
So this interface is used for implementing matching algorithms (Alignment can
be used for representing and manipulating alignments independently of algo-
rithms).

Evaluator describes the comparison of two alignments (the first one could serve as
a reference). Each implementation measure must implement the eval method.

An additional AlignmentException class specifies the kind of exceptions that are
raised by alignment algorithms and can be used by alignment implementations.

Functions

The Alignment API provides support for manipulating alignments. As in
[Bechhofer et al., 2003], these functions are separated in their implementation. It of-
fers the following functions:

Parsing and serialising an alignment from a file in RDF/XML
(AlignmentParser.read(), Alignment.write());

240 8 Frameworks and formats: representing alignments

Computing the alignment, with input alignment (Alignment.align(Alignment, Pa-
rameters));

Thresholding an alignment with threshold as argument (Alignment.cut(double));
Hardening an alignment by considering that all correspondences whose strength

is strictly greater than the argument are converted to �, while the others are
converted to ⊥ (Alignment.harden(double));

Comparing one alignment with another (Evaluator.eval(Parameters)) and serialis-
ing the result (Evaluator.write());

Outputting alignments in a particular format, e.g., SWRL, OWL, XSLT, RDF.
(Alignment.render(visitor));

Matching and evaluation algorithms accept parameters. These are put in a struc-
ture that allows storing and retrieving them. The parameters can be various weights
used by some algorithms, some intermediate thresholds or the tolerance of some
iterative algorithms. There is no restriction on the kind of parameters to be used.

The Alignment API has been implemented in Java. This implementation has
been used for various purposes: on-line alignment [Zhdanova and Shvaiko, 2006]
and Evaluation tool in the Ontology Alignment Evaluation Initiative (§7.1.3).
Also many extensions use it for implementing matching algorithms, such
as oMap [Straccia and Troncy, 2005], FOAM [Ehrig et al., 2005], and OLA
[Euzenat and Valtchev, 2004].

8.2.5 FOAM (University of Karlsruhe)

FOAM [Ehrig, 2007] is a general tool for processing similarity-based ontology
matching (see also Sect. 6.3.4 and Sect. 6.4.1). It follows a general process which
is presented in Fig. 8.3. It is made of the following steps:

Feature engineering selects the features of the ontologies that will be used for com-
paring the entities.

Search step selection selects the pairs of elements from both ontologies that will be
compared.

Similarity computation computes the similarity between the selected pairs using
the selected features.

Similarity aggregation combines the similarities obtained as the result of the pre-
vious step for each pair of entities.

Interpretation extracts an alignment from the computed similarity.
Iteration iterates this process, if necessary, taking advantage of the current compu-

tation.

The FOAM framework bundles several algorithms and strategies developed by
its authors. Within this framework have been cast matching systems such as NOM,
QOM (§6.3.4), and APFEL (§6.4.1). More systems can be integrated simply by
changing any of the modules above. The global behaviour of the system can be
parameterised through different scenarios, e.g., data integration, ontology merging,

8.3 Ontology editors with alignment manipulation capabilities 241

o

o′

Feature
engineering

Search step
selection

M

Similarity
computation

M ′

Similarity
aggregation

M ′′InterpretationA

resources

Iterate

Fig. 8.3. FOAM architecture (adapted from [Ehrig, 2007]).

ontology evolution, query rewriting and reasoning, which offer default parameters
adapted to these tasks.

FOAM itself is based on the KAON2 [Oberle et al., 2004] suite of tools and ac-
cepts ontologies in the OWL-DLP fragment. It offers a web-based interface. Finally,
it also offers translation tools from and to the Alignment format (§8.1.5) and other
formats.

Platforms for integrating matchers and alignment manipulation operations are
relatively new, however, they constitute a promising perspective to knowledge en-
gineers and application developers. Another, type of useful alignment manipulation
systems are alignment editors which offer human users the opportunity to be involved
in the matching process.

8.3 Ontology editors with alignment manipulation capabilities

Other tools for dealing with ontology matching are ontology edition environments
provided with support for matching and importing ontologies. These tools are pri-
marily made for creating ontologies, but they also provide tools for comparing on-
tologies and relating them.

8.3.1 Chimaera (Stanford University)

Chimaera is a browser-based environment for editing, merging and testing (diag-
nosing) large ontologies [McGuinness et al., 2000]. It aims to be a standard-based
and generic tool. Users are provided with a graphical user interface (the Ontolingua

242 8 Frameworks and formats: representing alignments

ontology editor) for editing taxonomy and properties. They also can use various diag-
nosis commands, which provide a systematic support for pervasive tests and changes,
e.g., tests for redundant super classes, slot value or type mismatch. Matching in the
system is performed as one of the subtasks of a merge operation. Chimaera searches
for merging candidates as pairs of matching terms, with terminological resources
such as term names, term definitions, possible acronym and expanded forms, names
that appear as suffixes of other names. It generates name resolution lists that help
users in the merging task by suggesting terms which are candidates to be merged
or to have taxonomic relationships not yet included in the merged ontology. The
suggested candidates can be names of classes or slots. The result is output in OWL
descriptions similar to those presented in the OWL format (§8.1). Chimaera also
suggests taxonomy areas that are candidates for reorganisation. These edit points are
identified by using heuristics, e.g., looking for classes that have direct subclasses
from more than one ontology.

8.3.2 The Protégé Prompt Suite (Stanford University)

The Prompt Suite4 is an interactive framework for comparing, matching, merging,
maintaining versions, and translating between different knowledge representation
formalisms [Noy and Musen, 2003, Noy, 2004b]. The main tools of the suite in-
clude: an interactive ontology merging tool, called iPrompt [Noy and Musen, 2000]
(formerly known as Prompt), an ontology matching tool, called Anchor-Prompt (see
Sect. 6.1.9 and [Noy and Musen, 2001]), an ontology-versioning tool, called Prompt-
Diff [Noy and Musen, 2002b], and a tool for factoring out semantically complete
subontologies, called PromptFactor.

Prompt is implemented as an extension to the Protégé5 ontology editing environ-
ment. Thus, the Protégé browser provides overall capabilities for managing multiple
ontologies. Prompt and Protégé are based on a frame-based knowledge model. Three
types of frames are distinguished, namely classes, slots (properties) and instances.
Below, we discuss the main Prompt Suite tools. We omit Anchor-Prompt, since it is
presented in Sect. 6.1.9.

iPrompt takes as input two ontologies and leads users towards one merged on-
tology as output. First, iPrompt creates an initial set of matches based on lexical
similarity between class names. Here can be used any name-based technique (§4.2).
Then, it proceeds through the following cycle:

– Users choose an operation to perform, for instance, by selecting one from the
iPrompt suggestion list. Some examples of operations are: merge classes, slots,
instances, perform a shallow (deep) copy of a class.

– iPrompt performs the operation chosen at the previous step. It also identifies
inconsistencies, e.g., name conflicts, redundancy in the class hierarchy, that the
operation introduced, as well as possible strategies to resolve them. Finally, it
generates a list of suggestions (concerning the next actions) for users.

4 http://protege.stanford.edu/plugins/prompt/prompt.html
5 http://protege.stanford.edu/

8.4 Summary 243

Some techniques, such as rearranging lists of suggestions, are used in order to keep
users focused on the most important aspects of the given state of the process, thus
converging on a desired merged ontology efficiently.

PromptDiff compares ontology versions and identifies the changes. This opera-
tion can be viewed as computing a Diff in model management (§8.2.1). PromptDiff
produces a structural diff between two versions based on heuristics. It borrows many
of them from iPrompt in order to identify what has changed from one version of an
ontology to another. These heuristics include various techniques such as analysis and
comparison of concept names, slots attached to concepts. The PromptDiff approach
has two parts: (i) an extensible set of heuristic matchers; and (ii) a fixed point algo-
rithm which combines the results of the matchers until they produce no more changes
in the diff.

PromptFactor is a tool that uses the infrastructure of the framework thereby en-
abling users to factor out part of their ontology into a new subontology. Users specify
concepts they are interested in the new ontology, then the tool performs the transitive
closure of the superclass relation and all the relations defined by attributes. The tool
does not employ any sophisticated algorithms as such, it just serves to simplify some
of the tasks that ontology engineers usually perform.

Similarly to Protégé, Prompt can be extended through plug-ins. For example,
there is a Prompt plug-in for FOAM.

Other examples of environments that allow the expression of alignments in on-
tology editing tools include KAON2 [Oberle et al., 2004] which is the basis for a
tool called OntoStudio and the WSMX editor [Mocan et al., 2006].

8.4 Summary

When considering ontology matching, one must decide how the matching result will
be used and delivered as well as how it will be produced. We have presented several
contexts in which matching algorithms can be embedded. In particular, alignment
formats allow the exchange of alignments among tools in well documented formats.
They guarantee the openness of the result and everyone can take advantage of this
result. Some frameworks offer more than just a format, such as the ability to ma-
nipulate the alignment and sometimes to apply it to data. The drawback of these
environments, with the exception of the Alignment API, is that they cannot be eas-
ily embedded within other applications. Finally, some environments permit editing
alignments as well as ontologies and can integrate matching algorithms.

The choice to be made is dependent on the matching purpose of the matching
tool. If its goal is to establish alignments that will be used in unknown and multiple
contexts, then choosing a format as neutral as possible is certainly the solution. If
the matching result is used for processing some already known data, following a
precise process, then a framework allowing this manipulation can be used. Finally,
if the matching algorithm is to be integrated in a user driven environment, then an
ontology and alignment editing tool is a good choice.

244 8 Frameworks and formats: representing alignments

The two latter categories of tools have not been designed as open systems. In
consequence, exporting alignments to other forms, e.g., one of the formats presented
in Sect. 8.1 or an executable form, is required for integrating ontology matching to
larger applications. The two next chapters develop these themes by considering first
the explanation of matching results to users (Chap. 9) and then by discussing how
alignments can be processed in applications (Chap. 10).

9

Explaining alignments

Matching systems may produce effective alignments that may not be intuitively ob-
vious to human users. In order for users to trust the alignments, and thus use them,
they need information about them, e.g., they need access to the sources that were used
to determine semantic correspondences between ontology entities. Explanations are
also useful when matching large applications with thousands of entities, e.g., busi-
ness product classifications, such as UNSPSC and eCl@ss. In such cases, automatic
matching solutions will find many plausible correspondences, and hence user input is
required for performing cleaning-up of the alignment. Finally, explanations can also
be viewed and applied as argumentation schemas for negotiating alignments between
agents.

In this chapter we describe how a matching system can explain its answers, thus
making the matching result intelligible. The material of this chapter is mainly based
on the work in [Shvaiko et al., 2005, McGuinness and Pinheiro da Silva, 2004,
Dhamankar et al., 2004, Laera et al., 2006]. We first present the information re-
quired for providing explanations of matching and alignments (§9.1). Then, we dis-
cuss approaches to explanations of matching by examples of existing systems (§9.2).
In turn, details of these approaches are provided in sequel, including default expla-
nations (§9.3), explaining the basic matchers (§9.4), explaining the matching process
(§9.5), and negotiating alignments by argumentation (§9.6).

9.1 Justifications

We have presented the matching process as the use of basic matchers combined by
strategies. In order to provide explanations to users it is necessary to have information
on both matters. In particular, this information involves justifications on the reason
why a correspondence should hold or not.

Each correspondence can be assigned one or several justifications that support or
infirm the correspondence. We call them justified correspondences. For instance, the
justified correspondence:

246 9 Explaining alignments

〈e, e′, n,≤,‘I(e) ⊆ I(e′)’〉

expresses that the correspondence 〈e, e′, n,≤〉 is thought to hold because ‘I(e) ⊆
I(e′)’ is verified. Similarly:

〈e, e′, n,=,‘DPLL entailed’ 〉

expresses that the correspondence 〈e, e′, n,=〉 is thought to hold because it
has been proved by the Davis–Putnam–Longemann–Loveland (DPLL) procedure
[Davis and Putnam, 1960, Davis et al., 1962].

In fact, justifications can be largely more complex than presented above. For
instance, the second justification may involve a full proof of the correspondence
and the axioms involved in that proof. This justification information can be found
directly within the correspondences or provided on-demand by the matchers to the
system requiring explanation.

We explore below what can be found in this justification part.

9.1.1 Information about basic matchers

When matching systems return alignments, users may not know which external
sources of background knowledge were used, when these sources were updated,
or whether the resulting correspondences was looked up or derived. However, ul-
timately, human users or agents have to make decisions about the alignments in a
principled way. So, even when basic matchers simply rely on some external source
of knowledge, users may need to understand where the information comes from, with
different levels of detail.

Following [McGuinness and Pinheiro da Silva, 2004], we call information about
the origins of asserted facts the provenance information. Some examples of this kind
of information include:

– external knowledge source name, e.g., WordNet;
– date and authors of original information;
– authoritativeness of the source, that is whether it is certified as reliable by a third

party;
– name of a basic matcher, version, authors, etc. If the basic matcher relies on a

logical reasoner, such as a SAT solver, some more meta-information about the
reasoner may be made available:
– the reasoning method, e.g., the Davis–Putnam–Longemann–Loveland proce-

dure;
– properties, e.g., soundness and completeness characteristics of the result re-

turned by the reasoner;
– reasoner assumptions, e.g., closed world vs. open world.

Additional types of information may also be provided, such as a degree of belief
for an external source of knowledge from a particular community, computed by using
some social network analysis techniques.

9.2 Explanation approaches 247

9.1.2 Process traces

Matching systems typically combine multiple matchers (see Chap. 5). The final
alignment is usually a result of synthesis, abstraction, deduction, and some other
manipulations of their results. Thus, users may want to see a trace of the performed
manipulations. We refer to them as process traces. Some examples of this kind of
information include:

– a trace of rules or strategies applied;
– support for alternative paths leading to a single conclusion;
– support for accessing the implicit information that can be made explicit from any

particular reasoning path.

Users may also want to understand why a particular correspondence was not discov-
ered, or why a discovered correspondence was ranked in a particular place, thereby
being included in or excluded from the final alignment.

9.2 Explanation approaches

The goal of explanations is to take advantage of the above mentioned types of infor-
mation for rendering the matching process intelligible to the users. A key issue is to
represent explanations in a simple and clear way [Léger et al., 2005].

In fact, while knowledge provenance and process traces may be enough for ex-
perts when they attempt to understand why a correspondence was returned, usually
they are inadequate for ordinary users. Thus, raw justifications have to be trans-
formed into an understandable explanation for each of the correspondences. Tech-
niques are required for transforming raw justifications and rewriting them into ab-
stractions that produce the foundation for what is presented to users. Presentation
support also needs to be provided for users to better understand explanations. Hu-
man users will need help in asking questions and obtaining answers of a manage-
able size. Additionally, agents may even need some control over requests, such as
the ability to break large process traces into appropriate size portions, etc. Based
on [McGuinness and Pinheiro da Silva, 2004], requirements for process presentation
may include:

– methods for breaking up process traces into manageable pieces;
– methods for pruning process traces and explanations to help users find relevant

information;
– methods for explanation navigation, including the ability to ask follow-up ques-

tions;
– methods for obtaining alternative justifications for answers;
– different presentation formats, e.g., natural language, graphs, and associated

translation techniques;
– methods for obtaining justifications for conflicting answers;
– abstraction techniques.

248 9 Explaining alignments

There are several approaches to provide explanations of the answers from match-
ing systems. We describe below three such approaches. There are, however, few
works on the topic in the literature and even fewer implemented systems. So, this
chapter more specifically describes the explanation approaches as implemented in
two systems, namely S-Match (§6.1.19) and iMAP (§6.2.6).

9.2.1 The proof presentation approach

Semantic matchers usually produce formal proofs of their inferences as the basis for
a correspondence. They can thus benefit from work developed for displaying and
explaining proofs.

For instance, S-Match [Shvaiko et al., 2005] has been extended to use
the Inference Web infrastructure as well as the Proof Markup Language
(PML) [McGuinness and Pinheiro da Silva, 2003, Pinheiro da Silva et al., 2006].
Thus, meaningful fragments of S-Match proofs can be loaded on demand. Users
can browse an entire proof or they can restrict their view and refer only to specific,
relevant parts of proofs. The proof elements are also connected to information about
basic matchers that generated the hypotheses.

9.2.2 The strategic flow approach

Many matchers are composed of other matchers and have to decide in favour of some
particular results over others. This composition and decision flow can be recorded in
a dependency graph and used for providing explanation to users.

For instance, iMAP [Dhamankar et al., 2004] records dependencies at a very pre-
cise level (correspondence per correspondence) and can provide users with justifica-
tions for (i) existing correspondences, (ii) absent correspondences, and (iii) corre-
spondence ranking. It provides explanations by extracting in the dependency graph
the part that has an influence on the choice of a correspondence and generates an
explanation in English from this extracted subgraph.

9.2.3 The argumentation approach

The argumentation approach considers the justifications or arguments in favour or
against specific correspondences. Argumentation theories can determine, from a set
of arguments, the correspondences which will be considered to hold and those which
will not.

Argumentation can be applied to justify the matching results to users on the basis
of the arguments and counter-arguments or to negotiate the correspondences that
should be in an alignment. So far, this approach has mainly been applied to agents
negotiating the alignments [Laera et al., 2006] rather than for explaining them. The
argumentative approach is different from the proof presentation approach because
it does not follow the formal proof of the correspondences. It is also more suitable
when no such a proof exists.

9.3 A default explanation 249

9.3 A default explanation

A default explanation of alignments should be a short, natural language, high-level
explanation without any technical details. It is designed to be intuitive and under-
standable by ordinary users.

9.3.1 The S-Match example

We concentrate on class matching and motivate the problem by the simple catalogue
matching example shown in Fig. 9.1. Let us suppose that an agent wants to exchange
or to search for documents with another agent. The documents of both agents are
stored in catalogues according to class hierarchies o and o′, respectively. S-Match
takes as input these hierarchies, decomposes the tree matching problem into a set
of node matching problems, which are, in turn, translated into a propositional valid-
ity problem, which can then be efficiently resolved using sound and complete SAT
solver (§4.5.2).

oImages

Europe

Greece

Italy

Computers and internet

o′ Europe

Pictures

Italy

Cyberspace and virtual reality

Fig. 9.1. Simple catalogue matching problem.

From the example in Fig. 9.1, trying to prove that the node with label Europe in
o (denoted as Europe) is equivalent to the node with label Pictures in o′ (denoted as
Pictures’), requires constructing the following formula (see Sect. 4.5.2 for details of
formula construction):

((Images ≡ Pictures’) ∧ (Europe ≡ Europe’))︸ ︷︷ ︸
Axioms

→

((Images ∧ Europe)︸ ︷︷ ︸
Contextc

≡ (Europe’ ∧ Pictures’)︸ ︷︷ ︸
Contextc′

)

In this example, the negated formula is unsatisfiable, thus the equivalence relation
holds between the nodes under consideration.

Let us suppose that agent o′ is interested in knowing why S-Match suggested a set
of documents stored under the node with label Europe in o as the result to the query –
‘find European pictures’. A default explanation is presented in Fig. 9.2. To simplify

250 9 Explaining alignments

Fig. 9.2. S-Match explanation in English.

the presentation, whenever it is clear from the context to which classification a label
under consideration belongs to, we do not tag it with the prime symbol (’).

From the explanation in Fig. 9.2, users may learn that Images in o and Pictures
in o′ can be interchanged, in the context of the query. Users may also learn that
Europe in o denotes the same concept as Europe (European) in o′. Therefore, they
can conclude that Images of Europe means the same thing as European Pictures.

9.3.2 The iMAP example

iMAP differs substantially from S-Match. It is based on a combination of constraint-
and instance-based basic matchers. Once the matchers have produced the candidate
correspondences, a similarity estimator computes, for each candidate, its similarity
score. Finally, by applying the match selector the best matches are returned as the
final alignment.

Let us consider how iMAP explains why pname = last-name is ranked higher
than concat(first-name, last-name). Fig. 9.3 shows the explanation as produced by
iMAP [Dhamankar et al., 2004].

iMAP:
(1) Searcher Level:
text searcher generated last-name
text searcher generated concat(first-name,last-name)
text searcher ranked concat(first-name,last-name) higher by 0.102

(2) Similarity Estimator Level:
Name-based evaluator ranked last-name higher by 0.0419
Naive Bayes evaluator ranked concat(first-name,last-name) higher by 0.01
Final score for last-name: 0.434
Final score for concat(first-name,last-name): 0.420

(3) Match Selector Level:
Match selector did not modify two candidates

(4) Greatest influence on top five candidates for pname: Name-based evaluator

Fig. 9.3. iMAP explanation in English.

At the matcher level, concat(first-name, last-name) was ranked higher than the
element with label last-name. It also clearly shows that things went wrong at the

9.4 Explaining basic matchers 251

similarity estimator level. The naive Bayes evaluator still ranked matches correctly,
but the name-based evaluator flipped the ranking, which was the cause of the ranking
mistake.

The last line of the explanation also confirmed the above conclusion, since it
states that the name-based evaluator has the greatest influence on the top five match
candidates for pname. Thus, the main reason for the incorrect ranking for pname
appears to be that the name-based evaluator has too much influence. This explanation
would allow users to fine tune the system, possibly by reducing the weight of the
name-based evaluator in the score combination step.

Users may not be satisfied with this level of explanations. Let us therefore dis-
cuss how they can investigate the details of the matching process by exploiting more
verbose explanations, which are discussed in the forthcoming sections.

9.4 Explaining basic matchers

Explaining basic matchers requires only to formulate the justification information. It
is illustrated through S-Match.

Let us suppose that an agent wants to see the sources of background knowledge
used in order to determine the correspondence. For example, which applications,
publications, other sources, have been used to determine that Images is equivalent to
Pictures. Fig. 9.4 presents the source metadata for the default explanation of Fig. 9.2.

Fig. 9.4. S-Match source metadata information.

In this case, both (all) the ground sentences used in the S-Match proof came from
WordNet. Using WorldNet, S-Match learnt that the first sense of the word Pictures

252 9 Explaining alignments

is a synonym to the second sense of the word Images. Therefore, S-Match can con-
clude that these two words are equivalent words in the context of the answer (§4.2.2).
The meta-information about WordNet is also presented in Fig. 9.4 as sources of the
ground axioms. Further examples of explanations include providing meta informa-
tion about the S-Match library of element-level matchers, i.e., those which are based
not only on WordNet, or the order in which the matchers are used. This use of meta-
data is not restricted to S-Match and can be applied to any resource used in matching.

9.5 Explaining the matching process

S-Match and iMAP follow different matching strategies. iMAP follows a learning-
based solution, while S-Match reduces the matching problem to a propositional va-
lidity problem. Let us discuss how they explain the matching process.

9.5.1 Dependency graphs

Explanations of alignments in the iMAP system are based on the idea of a depen-
dency graph, which traces the matchers, memorising relevant slices of the graph used
to determine a particular correspondence. Finally, exploiting the dependency graph,
explanations are presented to users as shown in Fig. 9.3.

The dependency graph is constructed during the matching process. It records
the flow of matches, data and assumptions into and out of system components. The
nodes of the graph are schema attributes, assumptions made by system components,
candidate correspondences, etc. Two nodes in the graph are connected by a directed
edge if one of them is the successor of the other in the decision process. The label of
the edge is the system component that was responsible for the decision.

Fig. 9.5 shows a dependency graph fragment that records the creation and flow
for the correspondence month-posted = monthly-fee-rate. The preprocessor finds
that both month-posted and monthly-fee-rate have values between 1 and 12 and hence
makes the assumptions that they represent months. The date matcher takes these
assumptions and generates month-posted = monthly-fee-rate as a candidate corre-
spondence. This candidate is then scored by the name-based evaluator and the naive
Bayes evaluator. The scores are merged by a combining module to produce a single
score. The match selector acts upon the several alignment candidates generated to
produce the final list of alignments. Here, for the target attribute list-price, the selec-
tor reduces the rank of the candidate correspondence price ∗ (1 + monthly-fee-rate)
since it discovers that monthly-fee-rate maps to month-posted.

In each case, the system synthesises an explanation in English for the users.
To provide explanations, iMAP selects the relevant slices of dependency graph that
record the creation and processing of a particular correspondence. For example, the
slice for month-posted = monthly-fee-rate is the portion of the graph where the nodes
participated in the process of creating that correspondence.

9.5 Explaining the matching process 253

If data in column is in [1 12], then this is a month
Constraint

month-posted
9
10
. . .

Target column

monthly-fee-rate
3
2
. . .

Source column

month-posted is a month

Assumption

monthly-fee-rate is a month

Assumption

Preprocessor Preprocessor

month-posted = monthly-fee-rate
Candidate

Date searcher

month-posted = monthly-fee-rate
score = .55

Candidate
month-posted = monthly-fee-rate
score = .79

Candidate

Name-based evaluator Naive Bayes evaluator

month-posted
is unrelated
to list-price

Constraint
list-prince = price(1 + monthly-fee-rate)
score = .76

Candidate
list-prince = price
score = .63

Candidate
month-posted = monthly-fee-rate
score = .67

Candidate

Combining module

list-price = price
list-price = price(1 + monthly-fee-rate)

Match list

Match selector

Fig. 9.5. Dependency graph as generated by iMAP [Dhamankar et al., 2004].

9.5.2 Explaining logical reasoning

A complex explanation may be required if users are not familiar with or do not
trust the inference engine(s) embedded in a matching system. As the web starts
to rely more on information manipulations, instead of simply information retrieval,
explanations of embedded manipulation or inference engines become more impor-
tant. In the current version of S-Match, a propositional satisfiability engine is used
(§6.1.19), more precisely, this is the Davis–Putnam–Longemann–Loveland proce-
dure [Davis and Putnam, 1960, Davis et al., 1962] as implemented in JSAT/SAT4J
[Le Berre, 2004].

The task of a SAT solver is to find an assignment µ ∈ {�,⊥} for atoms of a
propositional formula ϕ such that ϕ evaluates to true. ϕ is satisfiable if and only if
µ |= ϕ for some µ. If µ does not exist, ϕ is unsatisfiable. A literal is a propositional
atom or its negation. A clause is a disjunction of one or more literals. ϕ is said to
be in conjunctive normal form if and only if it is a conjunction of disjunctions of
literals. The basic DPLL procedure recursively implements three rules: unit resolu-
tion, pure literal and split. We only consider the unit resolution rule to facilitate the
presentation.

Let l be a literal and ϕ a propositional formula in conjunctive normal form. A
clause is called a unit clause if and only if it has exactly one unassigned literal. Unit
resolution is an application of resolution to a unit clause.

254 9 Explaining alignments

Fig. 9.6. A graphical explanation of the unit clause rule.

unit resolution :
ϕ ∧ {l}
ϕ[l | �]

Let us consider the propositional formula standing for the problem of testing if
the concept at node with label Europe in o is less general than the concept at node
with label Pictures in o′ in Fig. 9.1. The propositional formula encoding the above
stated matching problem is as follows:

((Images ≡ Pictures) ∧ (Europe ≡ Europe)) →
((Images ∧ Europe) → (Europe ∧ Pictures))

Its intuitive reading is ‘Assuming that Images and Pictures denote the same concept,
is there any situation such that the concept Images of Europe is less general than the
concept European Pictures?’. The proof of the fact that this is not the case is shown
in Fig. 9.6. Since the DPLL procedure of JSAT/SAT4J only handles conjunctive
normal form formulas, in Fig. 9.6, we show the conjunctive normal form of the above
formula.

From the explanation in Fig. 9.6, users may learn that the proof of the fact that
the concept at node with label Europe in o is less general than the concept at node
with label Pictures in o′ requires 4 steps and at each proof step (excepting the first
one, which is a problem statement) the unit resolution rule is applied. Moreover,
users may learn the assumptions that are made by JSAT/SAT4J. For example, at the
second step, the DPLL procedure assigns the truth value to all instances of the atom
Europe, therefore making an assumption that there is a model where what an agent
says about Europe is always true. According to the unit resolution rule, the atom

9.6 Arguing about correspondences 255

Europe should then be deleted from the input sentence, and, hence it does not appear
in the sentence of the step 2.

The explanation of Fig. 9.6 represents some technical details (only the less gen-
erality test) of the default explanation in Fig. 9.2. This type of explanations is the
most verbose. It assumes that, even if the graphical representation of a decision tree
is quite intuitive, the matching system users have some background knowledge in
logics and SAT. However, if they do not, they have a possibility to learn it by fol-
lowing the publications mentioned in the source metadata information of the DPLL
unit resolution rule and JSAT, by clicking the DPLL unit clause elimination and the
JSAT-The Java SATisfiability Library buttons, respectively.

9.6 Arguing about correspondences

The goal of argumentation is not strictly to explain the alignments, but to give argu-
ments in favour or against the correspondences. It can have two roles:

– negotiating an alignment between two agents, if they accept each others argu-
ments,

– achieving an alignment through matching. In particular, the multiagent negotia-
tion of alignments can be seen as another aggregation technique (§5.2) between
two alignments. [Silva et al., 2005] presents such a system based on quantitative
negotiation rather than arguments.

Argumentation allows agents to provide counter-arguments and to choose the argu-
ments depending on their preferences. Contrary to the usual explanation work pre-
sented above, each agent can generate its own explanation by assembling arguments.

Let us consider two agents C and P using respectively ontology o and o′, ex-
pressed in description logic as follows:

o = {Micro-company = Company � ≤5 employee}
o′ = {SME = Firm � ≤10 associate}

Let us suppose that they have discovered alignment A:

A = {〈Company, Firm, =, .89〉, (γ1)
〈employee, associate,�, 1.0〉, (γ2)
〈Micro-company, SME,�, .97〉} (γ3)

The three correspondences are denoted, respectively, as γ1, γ2 and γ3. The set of
arguments in favour of γ1 include:

a1 all the known Company on the one side are Firm on the other side and vice versa;
a2 the two names Company and Firm are synonyms in WordNet;

The set of arguments in favour of γ3 include:

256 9 Explaining alignments

a3 the alignment (without γ3) plus the two ontologies entail the correspondence;
a4 all the known micro-companies on the one side are SME on the other side (and

not vice versa);

and the counter-arguments include:

a5 the two names Micro-company and SME are not alike by any string distance, and
they are not synonyms in WordNet;

a6 the only features they share are associate and employee and they have different
domains and cardinalities.

In [Laera et al., 2006], the arguments are expressed following the value-based
argumentation framework [Bench-Capon, 2003]. They are made of a flag denoting
if they are in favour (+) or against (−) the correspondence and the type of method
that supports this correspondence (basic methods). A simple way to express these
arguments is as follows:

a1 : 〈Company, Firm, =, .89, 〈+, extensional〉〉
a2 : 〈Company, Firm, =, .89, 〈+, terminological〉〉
a3 : 〈Micro-company, SME, �, .97, 〈+, semantic〉〉
a4 : 〈Micro-company, SME, �, .97, 〈+, extensional〉〉
a5 : 〈Micro-company, SME, �, .97, 〈−, terminological〉〉
a6 : 〈Micro-company, SME, �, .97, 〈−, structural〉〉

Such kind of arguments could be delivered by existing basic matchers. Another, more
elaborate way to define arguments is to allow correspondences themselves to be
justifications. This permits, for instance, to express that the structural similarity of
Micro-company and SME depends on the terminological similarity of employee and
associate.

The rationale behind these kinds of arguments is that some agents may prefer, or
trust, better some techniques than others. For instance, one can imagine that agent C
prefers terminological arguments over extensional arguments, extensional arguments
over semantic arguments and semantic arguments over structural arguments. This
order induces a partial order on the arguments themselves: a5 C a2, a1 C a2,
a5 C a4, a1 C a4, a2 C a3, a4 C a3, a3 C a6. Similarly, P could have a
different preference ordering favouring structural, semantic, terminological and then
extensional arguments.

There are logical theories [Dung, 1995, Amgoud et al., 2000,
Bench-Capon, 2003] that, given a set of arguments and the preferences of
agents, define what is the consensus alignment between both parties. They usually
define an admissible argument a with regard to a set of arguments S as an argument
to which every counter-argument is attacked by an argument of S. A set S is said
conflict-free if no argument of S attacks another argument of S. A maximal conflict
free set of arguments acceptable with regard to S is called admissible. Finally, a
preferred extension is an admissible set of arguments where there is no other such
set that contains arguments preferred to some in the set that are admissible for their

9.7 Summary 257

preferred arguments in the set. For instance, C will have for preferred extension
{a5, a1, a2, a6} and P , in turn, will have {a6, a5, a2, a1}. However together, the
maximal common subset of arguments between C and P is {a1, a2, a5, a6} which
selects the preferred alignment made up of γ1 and γ2.

A consensus alignment can also be achieved by a dialogue between the agents
during which they exchange arguments. Such a dialogue is presented below. The
agent C starts the dialogue by asserting alignment A between the two ontologies o
and o′ (the agent C is committed to support the alignment A and each correspon-
dence it contains). A possible dialogue between C and P is as follows:

//The agent C is committed to support the alignment
C−assert(:content A :reply-with 1)→ P
//The agent P asks to justify the correspondence γ1 (P does not have counter-argument)
C ← question(:content γ1 :reply-with 2) - P
// The agent C justifies the correspondence γ1 with the arguments a1 and a2

C−support(:content a1, a2 "+ γ1 :in-reply-to 2)→ P
//The agent P asks to justify the correspondence γ3 (P is ready to justify the opposite)
C ← challenge(:content γ3 :reply-with 3) - P
// The agent C justifies the correspondence γ3 with the arguments a3 and a4

C−support(:content a3, a4 "+ γ3 :in-reply-to 3)→ P
// The agent P contests the correspondence γ3 with the counter-arguments a5 and a6

C ←contest(:content a5, a6 "− γ3 :in-reply-to 3) - P
// The agent C retracts the correspondence γ3

C−retract(:content γ3 :in-reply-to 3)→ P

This results in the selection of the alignment A′ = {γ1, γ2}.
These argumentation techniques have not been used in alignment explanation so

far. However, they could be used in interactively explaining to users the arguments
in favour or against correspondences. In the argumentation dialogue above, one of
the agents can be a human user. The system knowing the preferences of users can
provide them with a more adapted arguments.

9.7 Summary

Delivering alignments to users for inspection and revision is an important topic not
deeply developed so far. Providing the justifications for correspondences can also be
used for helping computer systems like agents to better understand alignments and
control matching results.

We have presented the type of raw justifications matchers should supply and the
manipulations that explanation systems can perform on these justifications in order
to provide an intelligible picture of alignments to users. Some of these manipulations
are based on proof presentation techniques, some others are based on a kind of de-
pendency graphs. We have also presented techniques used by agents for exchanging
justifications of correspondences and reaching a common agreement.

258 9 Explaining alignments

By using explanations, a matching system can provide users with meaningful
prompts and suggestions on further steps towards the production of a desired result.
Having understood the alignments returned by a matching system, users can delib-
erately edit them manually, thereby providing the feedback to the system. Beside
explanations, matching systems should provide facilities for users to explore the al-
ternative paths not followed by the system. These systems should enable the users to
re-launch the matching process with different parameters in an intermediate state.

10

Processing alignments

In this book we have taken a two steps view on reducing semantic heterogeneity:
(i) matching of entities to determine alignment and (ii) processing the alignment
according to application needs. In the previous chapters we have discussed various
themes related to the first step. In this chapter, in turn, we present how the align-
ments can be specifically used by the applications, thus focusing on the alignment
processing step.

Since this book is devoted to ontology matching, our goal is not to present a com-
plete panorama of the different uses of alignments. This would require another book.
Rather we present the broad classes of alignment use and the tools for implementing
these usages. Meanwhile, most of the commercially available ontology integration
tools focus on automation of the alignment processing, by opposition to matching.
They are very often specialised in a particular segment of the matching space. Altova
MapForce and Stylus Studio XSLT Mapper are specialised in XML integration. They
integrate data from XML sources as well as databases or other structured sources.
Microsoft BizTalk Schema Mapper is targeted at the business process and informa-
tion integration, using the proprietary BizTalk language. Ontoprise SemanticIntegra-
tor offers ontology-based integration of data coming from databases or ontologies.
There are unfortunately no scholar references describing these systems in depth and
URLs change so often that we refer the reader to ontologymatching.org for accurate
and up to date information.

The matching operation itself is not automated within those tools, though they
facilitate manual matching by visualising input ontologies (XML, database, flat files
formats, etc.) and the correspondences between them. Once the correspondences
have been established it is possible to specify, for instance, some data translation
operations over the correspondences such as adding, multiplying, and dividing the
values of fields in the source document and storing the result in a field in the target
document.

We discuss below a minimal set of operations that can be performed from align-
ments, including ontology merging (§10.1), ontology transformation (§10.2), data
translation (§10.3), mediation (§10.4), and reasoning (§10.5). They are presented as
operators in the style of [Melnik et al., 2005] (see also Sect. 8.2.1). We provide some

260 10 Processing alignments

constraints on these operators, but the reader is referred to [Melnik et al., 2005] for
a more complete and justified set of constraints. We conclude this chapter by a tenta-
tive proposition of an architecture for taking advantage of alignments and of any of
these operations based on an alignment service (§10.6).

10.1 Ontology merging

Ontology merging is a first natural use of ontology matching. As depicted in
Fig. 10.1, it consists of obtaining a new ontology o′′ from two matched ontologies
o and o′ so that the matched entities in o and o′ are related as prescribed by the
alignment. Merging can be presented as the following operator:

Merge(o, o′, A) = o′′

The ideal property of a merge would be that

Merge(o, o′, A) |= o

Merge(o, o′, A) |= o′

Merge(o, o′, A) |= α(A)

if α(A) is the alignment expressed in the logical language of Merge(o, o′, A), and

o, o′, A |= Merge(o, o′, A)

The former set of assertions means that the merge preserves the consequences of both
ontologies and of the relations expressed by the alignment. The latter assertion means
that the merge does not entail more consequences than specified by the semantics of
alignments (§2.5.4. Of course, this is not restricted to the union of the consequences
of o, o′ and A.

When the ontologies are expressed in the same language, merging often involves
putting the ontologies together and generating bridge or articulation axioms. Merg-
ing does not usually require a total alignment: those entities which have no corre-
sponding entity in the other ontology will remain unchanged in the merged ontology.
Ontology merging is especially used when it is necessary to carry out reasoning

involving several ontologies. It is also used when editing ontologies in order to cre-
ate ontologies tailored for a particular application. In such a case, it is most of the
time followed by a phase of ontology reengineering, e.g., suppressing unwanted parts
from the obtained ontology.

Protégé (§8.3.2) and Rondo (§8.2.1) offer independent operators for ontology
merging. OntoMerge (§6.1.17) takes bridge rules expressed in predicate calculus and
can merge ontologies in OWL. The Alignment API (§8.2.4) can generate axioms in
OWL or SWRL for merging ontologies. Other systems are able to match ontologies
and merge them directly: FCA-merge (§6.2.3), SKAT (§6.1.5), DIKE (§6.1.4). Onto-
Builder (§6.1.10) uses ontology merging as an internal operation: the system creates
an ontology that is mapped to query forms. This ontology is merged with the global
ontology so that queries can be directly answered from the global ontology.

10.3 Data translation 261

o o′Matcher

A

Generator

axioms

Merge(o, o′, A)

Fig. 10.1. Ontology merging. From two matched ontologies o and o′, resulting in alignment
A, articulation axioms are generated. This allows the creation of a new ontology covering the
matched ontologies.

10.2 Ontology transformation

Ontology transformation, from an alignment A between two ontologies o and o′,
consists of generating an ontology o′′ expressing the entities of o with respect to
those of o′ according to the correspondences in A. It can be denoted as the following
operator:

Transform(o,A) = o′′

Contrary to merging, ontology transformation, and the operators to follow, are ori-
ented. This means that the operation has an identified source and target and from an
alignment it is possible to generate two different operations depending on source and
target.

Ontology transformation is not well supported by tools. It is useful when one
wants to express one ontology with regard to another one. This can be particularly
useful for connecting an ontology to a common upper level ontology, for instance, or
local schemas to a global schema in data integration.

10.3 Data translation

Data translation, presented in Fig. 10.2, consists of translating instances from entities
of ontology o into instances of connected entities of matched ontology o′. This can
be expressed by the following operator:

Translate(d, A) = d′

262 10 Processing alignments

d

o o′Matcher

A

Generator

translator

XSLT, C-OWL, DB views

d′

Fig. 10.2. Data translation. From two matched ontologies o and o′, resulting in alignment
A, a translator is generated. This allows the translation of the instance data (d) of the first
ontology into instance data (d′) for the second one.

Data translation usually involves generating some transformation program from the
alignment.

This requires a total alignment if one wants to translate all the extensional infor-
mation. Non total alignments risk loosing instance information in the translation (this
can also be acceptable if one does not want to import all the instance information).

Data translation is used for importing data under another ontology without im-
porting the ontology itself. This is typically what is performed by database views
in data integration (§1.2), in multiagent communication for translating messages
(§1.5.1), and in semantic web services for translating the flow of information in me-
diators (§1.4).

Rondo (§8.2.1) provides tools for data translation. The Alignment API (§8.2.4)
can generate translations in XSLT or C-OWL. Many tools developed for data
integration can generate translators under the form of SQL queries. Drago
[Serafini and Tamilin, 2005] is an implementation of C-OWL, which can process
alignments expressed in C-OWL for transferring data from one ontology to another
one.

Some of the tools reviewed in Chap. 6, provide their output as data translation or
process themselves the translation. These include: Clio (§6.3.2), ToMAS (§6.1.15),
TransScm (§6.1.3), MapOnto (§6.1.16) and sPLMap (§6.2.12).

10.4 Mediation

In this section, we consider a mediator as an independent software component that is
introduced between two other components in order to help them interoperate. There

10.4 Mediation 263

are many different forms of mediators, including some acting as brokers or dispatch-
ers. We concentrate here on a query mediator which can perform two operations:

TransformQuery(q, A) = q′

and
Translate(a′, Invert(A)) = a

TransformQuery is a kind of ontology transformation which transforms a query ex-
pressed using ontology o into a query expressed with the corresponding entities of
a matched ontology o′. The Translate operation performs data translation on the an-
swer of the query if necessary. This process is presented in Fig. 10.3.

Query

o

Query′

o′Matcher

A

Generator

mediator

WSML, QueryMediator
Answer

Answer′

Fig. 10.3. Query mediation. From two matched ontologies o and o′, resulting in alignment A,
a mediator is generated. This allows the transformation of queries expressed with the entities
of the first ontology into a query using the corresponding entities of a matched ontology and
the translation back of the results from the second ontology to the first one.

Translating the answers requires the possibility of inverting the alignments (Invert
operator). The generated functions should be compatible, otherwise the translated
answer may not be a valid answer to the initial query. Compatibility can be expressed
as follows:

∀e ∈ o, TransformQuery(TransformQuery(e, A), Invert(A)) � e

Here we use a subsumption relation (�), but it can be replaced by any suitable
relation ensuring that the answer is compatible.

However, it is not always necessary to translate the answers, since they can be
objects independent from the ontologies, e.g., picture files, strings. Query mediation
is mainly used in data integration (§1.2) and peer-to-peer systems (§1.3). When the
mediator content is expressed as SQL view definitions, many database systems can

264 10 Processing alignments

process them. The Alignment API (§8.2.4) can behave as a SPARQL query mediator
from simple alignments. Some systems directly generate mediators after matching,
such as Wise-Integrator (§6.3.7).

10.5 Reasoning

Reasoning consists of using the result of the matching as rules for reasoning with the
two matched ontologies. Bridge axioms used for merging can also be viewed as such
rules.

TransformAsRules(A) = o

Here the set of rules is represented as an ontology o which must be written in an
ontology language supporting rules or the expression of bridge axioms.

Typically, any transformation of the alignments under a form suitable for rea-
soning, such as SWRL (§8.1.4), OWL (§8.1.2) or C-OWL (§8.1.3) can be used by
inference engines for these languages, such as Drago [Serafini and Tamilin, 2005] or
Pellet [Sirin et al., 2007].

10.6 Towards an alignment service

Throughout this book, ontology matching has been considered as a one-shot pri-
vate operation. However, there are several reasons why applications using ontology
matching could benefit from sharing ontology matching techniques and results:

– Each application can benefit from more algorithms: Many different applications
have comparable needs. It is thus appropriate to share the solutions to these prob-
lems. This is especially true as alignments are quite difficult to provide.

– Each algorithm can be used in more applications: Alignments can be used for
different purposes and must be expressed as such instead of as bridge axioms,
mediators or translation functions.

– Each individual alignment can be reused by different applications: There is no
magic algorithm for quickly providing a useful alignment. Once high quality
alignments have been established – either automatically or manually – it is very
important to be able to store, share and reuse them.

For that purpose, it is useful to provide an alignment service able to store, retrieve
and manipulate existing alignments as well as to generate new alignments on-the-fly.
This kind of service should be shared by the applications using ontologies on the
semantic web. They should be seen as a directory or a service by web services, as an
agent by agents, as a library in ambient computing applications, etc.

Operations that are necessary in such a service include:

– the ability to store alignments and retrieve them, whether they are provided by
automatic means or manually;

10.7 Summary 265

– the proper annotation of alignments in order for the clients to evaluate the oppor-
tunity to use one of them or to start from it (this starts with the information about
the matching algorithms and the justifications for correspondences that can be
used in agent argumentation);

– the ability to produce alignments on-the-fly through various algorithms that can
be extended and tuned;

– the ability to generate knowledge processors, such as mediators, transformations,
translators and rules as well as to run these processors if necessary;

– the possibility to discover similar ontologies and to interact with other such ser-
vices in order to ask them for operations that the current service cannot provide
by itself.

Such a service would require a standardisation support, such as the choice of an
alignment format or at least of metadata format (§8.1.5). There have been propos-
als for providing matching systems and alignment stores that can be considered as
servers [Euzenat, 2005, Zhdanova and Shvaiko, 2006], but they need a wider avail-
ability (to agents, services, etc.) and achieving a critical mass of users to really be
helpful.

10.7 Summary

This chapter only considers in general the issue of alignment processing. Alignments
can be used in different ways (merging, transformation, translation, mediation) and
there are different languages adapted to each of these ways (SWRL, OWL, C-OWL,
XSLT, SQL, etc.). So far there are only a few systems able to generate output in sev-
eral of these languages. Fortunately, they are independent from matching algorithms.
Several matching systems process directly their results in one of these operation,
while others deliver alignments. Unfortunately, most often the delivered alignments
are in a format that cannot be exploited by other systems and operator generators,
thus requiring additional efforts to embed them into the new environments.

Useful alignments are such a scarce resource that storing them in an indepen-
dent format such as those presented in Chap. 8 is very important. It would allow
sharing and processing them in different ways independently form the applications.
This would give more freedom to application developers to choose the best suited
algorithm and to process alignments adequately.

Finally, the operations to be performed raise constraints against the alignment to
be used. As a consequence, matching systems should be able to provide information
about the properties the alignments satisfy.

Part V

Conclusions

11

Conclusions

In this book we have attempted at covering ontology matching in its diversity. In
particular, we have shown that there are many applications that may need ontology
matching (Chap. 1) and that there are different forms of ontologies that may need
to be matched (Chap. 2). Ontology matching can take advantage of innumerable
basic techniques (Chap. 4) composed and supervised in diverse ways (Chap. 5). The
output of matching can be provided according to different representations (Chap. 8)
or executable forms (Chap. 10) which may need to be justified (Chap. 9). This, in
turn, has led to a profusion of available systems (Chap. 6).

We have provided a systematic view over the resources for helping users, re-
searchers and developers in selecting the system or technique most adapted to their
needs. This has been substantiated by identifying application needs (Chap. 1), by
classifying matching techniques (Chap. 3) and by proposing an adapted methodol-
ogy for evaluating matching solutions (Chap. 7). This does not mean that, for any
application need, the ideal ontology matching solution is directly provided to read-
ers. Techniques presented in this book can be composed in so many ways that the
solution space is open-ended and is far from having thoroughly been explored. There
remains a lot of work to be done by researchers to investigate better solutions and by
system developers to find the appropriate settings for their applications.

In the remainder of this chapter we overview some general trends in the ontology
matching field (§11.1). We present some promising research directions which we
believe worth and need further investigations (§11.2). These stem from all parts of
the book. We conclude with general remarks (§11.3).

11.1 A brief outlook of the trends in the field

In the past, the ontology matching problem has been addressed in several areas. How-
ever, most often this happened in an isolated manner among: (i) database schemas
in the world of information integration, (ii) XML schemas and catalogues on the
web, (iii) ontologies (axiomatised theories) in artificial intelligence, semantic web,

270 11 Conclusions

knowledge representation, and (iv) objects and entities in data mining. Technical is-
sues these areas had encountered were rarely addressed from multidisciplinary and
cross-community viewpoints.

During the last decade the areas mentioned above have made substantial progress
in matching. However, they require other technologies and cross-fertilisation to con-
tinue their growth. This was one of the motivations behind this book and such an
initiative as Ontology Matching1, which aims at increasing awareness of the exist-
ing matching efforts across the relevant communities and at facilitating the cross-
fertilisation between them.

The number and variety of solutions to the ontology matching problem keep
growing at a fast pace. Fig. 11.1 shows (approximately) how many works devoted to
diverse aspects of matching have been published at various conferences all over the
world in recent years2.

0

10

20

30

40

50

60

publications

year
≤2000

16

2001

15

2002

11

2003

15

2004

27

2005

53

2006*

60

Fig. 11.1. Dynamics of publications devoted to ontology matching. * Value for 2006 is an
estimation, since a complete information concerning the previous year usually becomes stable
when the current year finishes. The actual value for 2006 on the access date is 48.

In the future, we expect a continuing growth of works on matching due to the
constantly increasing interest in solutions for the semantic heterogeneity problem
from both academia and industry.

11.2 Future challenges

We provide some directions in which, in our opinion, research on ontology match-
ing should or is likely to evolve. In particular, in this section, we point out current
needs that are not addressed by the technology and that will have to be addressed
for the field to be considered mature. We also present our opinion on the directions
technology is leading to.

1 http://www.OntologyMatching.org
2 Source: www.OntologyMatching.org, Publications section. Accessed: 02.04.2007.

11.2 Future challenges 271

This section is organised following the structure of the book in terms of chapters.
Its description remains at the technical level, while some details at the market level
can be found in [Cuel et al., 2006].

11.2.1 Applications

The pressure of applications on ontology matching is tangible. Application devel-
opers test the available technology and either adopt it or bypass the heterogeneity
problems. In real world, applications are more mixed than what was presented in
Chap. 1: they are not pure peer-to-peer or data integration applications. They have a
purpose and can provide a more specific background than that which was mentioned.

We can expect that there will be definitely applications which use ontology
matching. They will start in niche places with a specific setting rather than present-
ing a general solution to a global problem. Then, gradually, the proven solutions will
start spreading to other applications.

11.2.2 Foundations

Foundations of ontology matching, and particularly the semantics of alignments,
deserve additional investigations. Available model-theoretic semantics are suffi-
ciently similar, so they could eventually converge. Recent work on categori-
cal characterisation of ontology matching raised some questions about the state-
ment in categorical terms of expressive alignments which go beyond equivalence
[Zimmermann et al., 2006]. Therefore, interesting and useful work could be pursued
in this direction.

One can also think of relating matching methods and properties to the resulting
alignment. Indeed, it would be useful to know in advance that using a particular
method will provide a one-to-one alignment or that the transformation extracted form
it preserves some order property.

11.2.3 Basic techniques

As testified by Chap. 4, there is a wealth of basic matching techniques and certainly
their number will continue growing. We can expect new types of basic automatic
matchers addressing a larger variety and more sophisticated situations than is cur-
rently the case. In particular, we can expect:

– methods for matching processes, as opposed to concepts,
– new methods for alignment reuse,
– new techniques for automatic discovery and exploitation of background domain

specific knowledge [Giunchiglia et al., 2006c],
– new matchers relying on social networks and web communities

[Zhdanova and Shvaiko, 2006],
– techniques able to deal with multilinguality,
– new libraries of matchers or extensions of existing libraries.

272 11 Conclusions

The development of new basic matchers may also lead the classifications of
Chap. 3 to evolve.

11.2.4 Matching strategies

There is already a lot of creativity deployed in designing matchers, but more will be
needed to face ontology matching in its entirety. We briefly outline some of the most
important directions:

– One of the important issues to deal with is the proper combination and integration
of various categories of matchers. In particular, the integration of semantic (de-
ductive) and inductive techniques is of high interest: is the semantic part used as
an alignment amplifier or as a consistency checker? When semantic techniques
have given their results, is it worthwhile to use inductive methods from the pro-
vided alignment again or not? These questions have yet to find an answer.

– We will also see new approaches to automate the combination of individual
matchers and libraries of matchers. Some existing solutions can be found in
[Doan et al., 2001, Ehrig et al., 2005], but certainly more results are to come.

– The place of users in semi-automatic matching tools requires attention. In partic-
ular, alignments are already complex enough objects that are difficult to display
on a computer screen. Enabling natural edition and manipulation of alignments,
keeping user involvement lightweight, is still a research issue.

– The work on automatically tuning matcher parameters is also very im-
portant because users cannot be expected to find correct parameters by
themselves and sometimes the parameters have to be adjusted dynamically
[Sayyadian et al., 2005].

– Another important issue consists of delivering partial alignments. In real world
cases, it is rare that two ontologies can be exactly matched. In general, ontologies
most often only partially overlap. However, matching algorithms tend to max-
imise this overlap. Developing techniques for deciding when to stop matching
entities is an important problem.

11.2.5 Matching systems

More systems will be developed. This should not come as a surprise. With the im-
provements of tool support for semantic web languages, we expect matching systems
to become more mature as well. Beside this, systems will also have to improve on
performance issues such as time and memory consumption. We expect the following
trends in system improvement:

– Most of the approaches will tend to be increasingly generic, i.e., able to handle
multiple input forms of ontologies.

– In contrast to the previous point, we also expect some very good solutions to
narrower problems. For example, ontology versions matching is a problem for
which current matching technology turns out to work well.

11.2 Future challenges 273

– New types of input, such as plain text and query interfaces from the deep web
should enter intensively into practice.

– Approaches will try to suitably handle an increasing number of constructs avail-
able from the input, e.g., constraints.

– Different (new) internal representations of the input data, e.g., descriptors of the
entries for the learning algorithms, should appear as well.

11.2.6 Evaluation of matching systems

It is necessary to pursue current efforts on extensive evaluation of ontology match-
ing systems. It would be good, however, to have improvements on that topic. In
particular, there is an important need for high quality data sets that satisfy all the re-
quirements mentioned in Chap. 7. According to our experience, the number of such
data sets is increasing fast.

There is also a need for application specific settings in evaluations, i.e., the pos-
sibility to evaluate the quality of alignments within the context of a particular task
with evaluation measurements related to the task accomplishment. As mentioned in
Chap. 7, we need measures that take the semantics of ontology languages into ac-
count, i.e., measures that really match recall with completeness and precision with
correctness [Euzenat, 2007]. Finally, when it is required to involve users, an open
and important topic is to take this into account in the evaluation.

Beside evaluating systems, it is necessary to be able to help users in choosing
the appropriate matcher or to combine the most appropriate matchers for their tasks
[Mochol et al., 2006, Huza et al., 2006]. This can be achieved by exploiting the eval-
uation campaign results and by a better understanding of the problem space of ontol-
ogy matching. We have tried in this book to provide first steps towards this goal, but
a lot remains to be investigated.

11.2.7 Representing alignments

Current alignment formats have advantages and disadvantages. It would be worth-
while to establish one (or two) standard alignment formats for exchanging the align-
ments. In particular, such formats should have the power to record expressive align-
ments (not just name mappings) and also to provide more metadata about the align-
ment, its production process as well as its properties.

In the long term, we also expect substantial progress on the frameworks for in-
tegrating different matching systems. In fact, infrastructures, which are able to store
and provide alignments to those who need it, are still missing. Such an infrastructure
should also match ontologies and process the alignments on specified data. In this
context, alignment formats and metadata become crucial. The infrastructure, in or-
der to maximise its usefulness, should be easy to re-configure and be usable through
many protocols (adapted to peer-to-peer systems, agents, web services, etc.).

Graphical alignment editors are needed. They should be easy to use for ordinary
users. Scalable alignment visualisation techniques should also be developed. Finally,
an alignment editor working on a standard format would be very helpful for anyone
who plans to use and experiment with ontology matchers.

274 11 Conclusions

11.2.8 Explaining alignments

There are only a few matching systems able to provide a justification of their results.
In order for matching systems to gain a wider acceptance, it will be necessary that
they can provide arguments for their results to users or to other programs that use
them. Explanation is thus an important challenge for ontology matching as well as
user interfaces in general. For example, a user interface able to help users to effi-
ciently review alignments and to modify them in an interactive manner is needed.

Concerning the interaction of matching systems with other programs, it will be
necessary to provide justifications and arguments in a standardised way. This will
only happen when more programs take advantage of these justifications. An exten-
sion of this paradigm would be for the matching algorithms to assert the properties
satisfied by the produced alignments as well as the proofs of these properties in a ma-
chine readable form. [Euzenat, 2002, Pinheiro da Silva et al., 2004] have discussed
how to take advantage of such proofs.

11.2.9 Processing alignments

Processing alignments according to application needs is the ultimate goal of match-
ing. It has been considered at the end of this book as the last step but would certainly
deserve a book on its own.

Currently, many systems are rather monolithic and perform matching and align-
ment processing at once. We hope to see more modularisation in future. We also
expect to see more alignment processors to be developed. Only under these condi-
tions ontology matching can start being used by applications more intensively. Ide-
ally, such processors should be integrated into some infrastructure as mentioned in
Sect. 11.2.7.

11.3 Final words

We admit that even if a good progress has been made in the matching field, as such,
ontology matching may appear to be virtually impossible. Indeed, for finding the cor-
respondences between concepts, it is necessary to understand their meaning. Besides
the general meaning ascribed by model-theoretic semantics, the ultimate meaning of
concepts is in the head of the people who developed those concepts and we cannot
program a computer to learn it.

However, the same remark leads to the conclusion that communication, even
between people, is impossible. We know that human beings achieve communication;
they at least, succeed quite often in communicating and sometimes fail. Achieving
this communication can be viewed as a continuous task of negotiating the relations
between concepts, i.e., arguing about alignments, building new ones, questioning
them, etc. Therefore, matching ontologies is an on-going work and further substantial
progress in the field can be made by considering it in its dynamics.

A

Legends of figures

We present below the three sets of notations that are used in the pictures of this book.

Producta class

price

author

Book

a subclass relation (≤)
integer a datatype

Human

a disjointness relation (⊥)

Bertrand Russell: My life

a instantiation relation (∈)

an instance

17 a value
price

a valuation relation (=)

Bertrand Russell
author

a correspondence

Fig. A.1. Graphic representation of ontologies.

276 Appendix A: Legends of figures

o

an ontology

A

an alignment

M

a matrix

o

Peer

using

a peer, agent, database or web service

o

o′

Matching

a process

A Generator

another process

Translator

Mediator

Transformation

generated programs

Fig. A.2. Graphic representation of matching application building blocks.

o

A

o′

M

(dis)similarity extraction

M M ′

(dis)similarity filtering

M A

alignment extraction

A A′

alignment filtering

A A′

user alignment filtering

Fig. A.3. Graphic representation of matching system building blocks.

B

Running example

The following two ontologies correspond to those displayed in Fig. 2.7: culture-
shop.owl is the left-hand side ontology and library.owl is the right-hand side
one.

B.1 culture-shop.owl
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY dc "http://purl.org/dc/elements/1.1/" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY foaf "http://xmlns.com/foaf/0.1/">
<!ENTITY ical "http://www.w3.org/2002/12/cal/ical#">]>

<rdf:RDF
xmlns="http://book.ontologymatching.org/example/culture-shop.owl#"
xml:base="http://book.ontologymatching.org/example/culture-shop.owl#"
xmlns:foaf ="&foaf;"
xmlns:ical ="&ical;"
xmlns:rdf ="&rdf;"
xmlns:xsd ="&xsd;"
xmlns:rdfs ="&rdfs;"
xmlns:owl ="&owl;"
xmlns:dc ="&dc;">

<!-- ################### ONTOLOGY ################### -->

<owl:Ontology rdf:about="">
<dc:creator>Jérôme Euzenat</dc:creator>
<dc:contributor>Pavel Shvaiko</dc:contributor>
<dc:description>Fragments of a cultural product shop ontology</dc:description>
<dc:date>2006/04/12</dc:date>
<rdfs:label>Culture shop ontology</rdfs:label>
<rdfs:comment>An example for the Ontology matching book.
This ontology fragments organises some cultural product
the way it could be organised for a cultural product
e-commerce site.</rdfs:comment>
<owl:versionInfo>
$Id: culture-shop.owl,v 1.2 2007/03/15 21:05:21 cvs Exp $

</owl:versionInfo>

278 Appendix B: Running example

</owl:Ontology>

<!-- In OWL-DL all items must be declared -->
<owl:DatatypeProperty rdf:about="&dc;creator" />
<owl:DatatypeProperty rdf:about="&dc;contributor" />
<owl:DatatypeProperty rdf:about="&dc;description" />
<owl:DatatypeProperty rdf:about="&dc;date" />

<!-- ################### CLASSES ################### -->

<owl:Class rdf:ID="Product">
<rdfs:label xml:lang="en">item</rdfs:label>
<rdfs:label xml:lang="fr">Marchandise</rdfs:label>
<rdfs:comment xml:lang="en">The goods which are for sale at our site.
</rdfs:comment>

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#price" />
<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#name" />
<owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#creator" />
<owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#id" />
<owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#topic" />
<owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="DVD">
<rdfs:subClassOf rdf:resource="#Product" />
<rdfs:label xml:lang="en">DVD</rdfs:label>
<rdfs:comment xml:lang="en"></rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="CD">
<rdfs:subClassOf rdf:resource="#Product" />
<rdfs:label xml:lang="en">CD</rdfs:label>
<rdfs:comment xml:lang="en"></rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Book">
<rdfs:subClassOf rdf:resource="#Product" />
<rdfs:label xml:lang="en">book</rdfs:label>

B.1 culture-shop.owl 279

<rdfs:comment xml:lang="en">A book.</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#author" />
<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#publisher" />
<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Science">
<rdfs:subClassOf rdf:resource="#Book" />
<rdfs:label xml:lang="en">science book</rdfs:label>
<rdfs:comment xml:lang="en"></rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Textbook">
<rdfs:subClassOf rdf:resource="#Science" />
<rdfs:label xml:lang="en">science textbook</rdfs:label>
<rdfs:comment xml:lang="en">Science book for students.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Popular">
<rdfs:subClassOf rdf:resource="#Science" />
<rdfs:label xml:lang="en">popular science book</rdfs:label>
<rdfs:comment xml:lang="en">
Science book for a wide audience.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Pocket">
<rdfs:subClassOf rdf:resource="#Book" />
<rdfs:label xml:lang="en">pocket book</rdfs:label>
<rdfs:comment xml:lang="en">
Paperback bound books of small size.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Children">
<rdfs:subClassOf rdf:resource="#Book" />
<rdfs:label xml:lang="en">children book</rdfs:label>
<rdfs:comment xml:lang="en">Books for children.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Person">
<rdfs:label xml:lang="en">person</rdfs:label>
<rdfs:comment xml:lang="en">
@@Developer: should link with FOAF some day</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Publisher">
<rdfs:label xml:lang="en">publisher</rdfs:label>
<rdfs:comment xml:lang="en">A book or music publisher.</rdfs:comment>

</owl:Class>

<!-- ################### PROPERTIES ################### -->

<owl:DatatypeProperty rdf:ID="price">
<rdfs:domain rdf:resource="#Product" />
<rdfs:range rdf:resource="&xsd;integer" />
<rdfs:label xml:lang="en">price</rdfs:label>
<rdfs:comment xml:lang="en">The list price of a particular item on

280 Appendix B: Running example

our site. Does not include taxes, shipping or rebates.</rdfs:comment>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="firstname">
<rdfs:domain rdf:resource="#Person" />
<rdfs:range rdf:resource="&xsd;string" />
<rdfs:label xml:lang="en">firstname</rdfs:label>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="lastname">
<rdfs:domain rdf:resource="#Person" />
<rdfs:range rdf:resource="&xsd;string" />
<rdfs:label xml:lang="en">lastname</rdfs:label>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#Product" />
<rdfs:range rdf:resource="&xsd;string" />
<rdfs:label xml:lang="en">name</rdfs:label>
<rdfs:comment xml:lang="en">The name identifying an item for the common
shoppers.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="topic">
<rdfs:domain rdf:resource="#Product" />
<rdfs:range rdf:resource="&xsd;string" />
<rdfs:label xml:lang="en">topic</rdfs:label>
<rdfs:comment xml:lang="en">Some (artistic or cultural) topic under which
the item could be classified from a customer standpoint.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="id">
<rdfs:domain rdf:resource="#Product" />
<rdfs:range rdf:resource="&xsd;anyURI" />
<rdfs:label xml:lang="en">id</rdfs:label>
<rdfs:comment xml:lang="en">The unique identifier of the item in our infor-
mation system. This is typically the isbn number for books, the
doi for electronic documents, etc.</rdfs:comment>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="creator">
<rdfs:domain rdf:resource="#Product"/>
<rdfs:range rdf:resource="#Person" />
<rdfs:label xml:lang="en">creator</rdfs:label>
<rdfs:comment xml:lang="en">The human creator of a product.</rdfs:comment>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="author">
<rdfs:domain rdf:resource="#Book"/>
<rdfs:range rdf:resource="#Person" />
<rdfs:label xml:lang="en">author</rdfs:label>
<rdfs:comment xml:lang="en">The author of a book.</rdfs:comment>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="publisher">
<rdfs:domain rdf:resource="#Book"/>
<rdfs:range rdf:resource="#Publisher" />
<rdfs:label xml:lang="en">publisher</rdfs:label>
<rdfs:comment xml:lang="en">The publisher of a book.</rdfs:comment>

</owl:ObjectProperty>

<!-- ################### INSTANCES ################### -->

<Popular rdf:about="#a674639524">
<rdfs:label>Bertrand Russell: My life</rdfs:label>
<author>
<Person rdf:about="br">

B.2 library.owl 281

<firstname>Bertrand</firstname>
<lastname>Russell</lastname>

</Person>
</author>
<publisher>
<Publisher rdf:about="http://www.routledge.co.uk"/>

</publisher>
<name>My life</name>
<id></id>
<price rdf:datatype="&xsd;integer">60</price>

</Popular>

<Book rdf:about="#a6746390923">
<rdf:type rdf:resource="#Pocket"/>
<rdfs:label>Albert Camus: La chute</rdfs:label>
<author>
<Person rdf:about="ac">
<firstname>Albert</firstname>
<lastname>Camus</lastname>

</Person>
</author>
<publisher>
<Publisher rdf:about="http://www.gallimard.fr"/>

</publisher>
<name>La chute</name>
<id>http://dx.doi.org/10.1002/prot.999</id>
<price rdf:datatype="&xsd;integer">9.95</price>

</Book>

</rdf:RDF>

B.2 library.owl

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY dc "http://purl.org/dc/elements/1.1/" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY foaf "http://xmlns.com/foaf/0.1/">
<!ENTITY ical "http://www.w3.org/2002/12/cal/ical#">]>

<rdf:RDF
xmlns="http://book.ontologymatching.org/example/library.owl#"
xml:base="http://book.ontologymatching.org/example/library.owl#"
xmlns:foaf ="&foaf;"
xmlns:ical ="&ical;"
xmlns:rdf ="&rdf;"
xmlns:xsd ="&xsd;"
xmlns:rdfs ="&rdfs;"
xmlns:owl ="&owl;"
xmlns:dc ="&dc;">

<!-- ################### ONTOLOGY ################### -->

<owl:Ontology rdf:about="">
<dc:creator>Jérôme Euzenat</dc:creator>
<dc:contributor>Pavel Shvaiko</dc:contributor>
<dc:description>Fragments of a library ontology</dc:description>
<dc:date>2006/04/13</dc:date>
<rdfs:label>Library ontology</rdfs:label>
<rdfs:comment>An example for the Ontology matching book. This ontology
fragment provide a first classification for books.</rdfs:comment>

282 Appendix B: Running example

<owl:versionInfo>
$Id: library.owl,v 1.3 2007/03/15 21:05:21 cvs Exp $

</owl:versionInfo>
</owl:Ontology>

<!-- In OWL-DL all items must be declared -->
<owl:DatatypeProperty rdf:about="&dc;creator" />
<owl:DatatypeProperty rdf:about="&dc;contributor" />
<owl:DatatypeProperty rdf:about="&dc;description" />
<owl:DatatypeProperty rdf:about="&dc;date" />

<!-- ################### CLASSES ################### -->

<owl:Class rdf:ID="Volume">
<rdfs:label xml:lang="en">volume</rdfs:label>
<rdfs:label xml:lang="fr">Volume</rdfs:label>
<rdfs:comment xml:lang="en">Books referenced in the library.</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#year" />
<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#author" />
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#title" />
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#isbn" />
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Essay">
<rdfs:subClassOf rdf:resource="#Volume" />
<rdfs:label xml:lang="en">essay</rdfs:label>
<rdfs:comment xml:lang="en">A book whose main interest reside in the topic
considered.</rdfs:comment>

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#subject" />
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="LiteraryCritic">
<rdfs:subClassOf rdf:resource="#Essay" />
<rdfs:label xml:lang="en">litterary critic</rdfs:label>
<rdfs:comment xml:lang="en">An essay about Literature.</rdfs:comment>

</owl:Class>

B.2 library.owl 283

<owl:Class rdf:ID="Politics">
<rdfs:subClassOf rdf:resource="#Essay" />
<rdfs:label xml:lang="en">political writings</rdfs:label>
<rdfs:comment xml:lang="en">An essay about politics.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Biography">
<rdfs:subClassOf rdf:resource="#Essay" />
<rdfs:label xml:lang="en">biography</rdfs:label>
<rdfs:comment xml:lang="en">An essay about a person.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Autobiography">
<rdfs:subClassOf rdf:resource="#Essay" />
<rdfs:label xml:lang="en">autobiography</rdfs:label>
<rdfs:comment xml:lang="en">
A biography whose author is the subject.</rdfs:comment>

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#subject" />
<owl:allValuesFrom rdf:resource="#Human" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Literature">
<rdfs:subClassOf rdf:resource="#Volume" />
<rdfs:label xml:lang="en">literature</rdfs:label>
<rdfs:comment xml:lang="en">A volume whose main interest reside in
the threatment of the topic.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Novel">
<rdfs:subClassOf rdf:resource="#Literature" />
<rdfs:label xml:lang="en">novel</rdfs:label>
<rdfs:comment xml:lang="en">A narative text.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Poetry">
<rdfs:subClassOf rdf:resource="#Literature" />
<rdfs:label xml:lang="en">poetry</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="Human">
<rdfs:label xml:lang="en">human</rdfs:label>
<rdfs:comment xml:lang="en">A Human being.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Writer">
<rdfs:subClassOf rdf:resource="#Human" />
<rdfs:label xml:lang="en">writer</rdfs:label>
<rdfs:comment xml:lang="en">Someone who authors books.</rdfs:comment>

</owl:Class>

<!-- ################### PROPERTIES ################### -->

<owl:DatatypeProperty rdf:ID="year">
<rdfs:domain rdf:resource="#Volume" />
<rdfs:range rdf:resource="&xsd;integer" />
<rdfs:label xml:lang="en">year</rdfs:label>
<rdfs:comment xml:lang="en">The year of first publication of this edition
of the volume.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="title">
<rdfs:domain rdf:resource="#Volume" />
<rdfs:range rdf:resource="&xsd;string" />

284 Appendix B: Running example

<rdfs:label xml:lang="en">title</rdfs:label>
<rdfs:comment xml:lang="en">The title of a volume.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="isbn">
<rdfs:domain rdf:resource="#Volume" />
<rdfs:range rdf:resource="&xsd;integer" />
<rdfs:label xml:lang="en">year</rdfs:label>
<rdfs:comment xml:lang="en">
The International Standard Book Number of a volume.</rdfs:comment>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="author">
<rdfs:domain rdf:resource="#Volume"/>
<rdfs:range rdf:resource="#Writer" />
<rdfs:label xml:lang="en">author</rdfs:label>
<rdfs:comment xml:lang="en">The author of a volume.</rdfs:comment>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="subject">
<rdfs:domain rdf:resource="#Essay"/>
<rdfs:range rdf:resource="&owl;Thing" />
<rdfs:label xml:lang="en">subject</rdfs:label>
<rdfs:comment xml:lang="en">The subject of an essay.</rdfs:comment>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="&xsd;string" />
<rdfs:label xml:lang="en">name</rdfs:label>

</owl:DatatypeProperty>

<!-- ################### INSTANCES ################### -->

<owl:Thing rdf:about="#a674639524">
<rdf:type rdf:resource="#Autobiography"/>
<rdfs:label>"My life" by Bertrand Russell</rdfs:label>
<author>
<Writer rdf:about="#br">
<name>Bertrand Russell</name>

</Writer>
</author>
<isbn>0415189853</isbn>
<subject rdf:resource="#br"/>
<year rdf:datatype="&xsd;integer">1969</year>
<title>My life</title>

</owl:Thing>

<Novel rdf:about="#a6746390923">
<rdfs:label>"La chute" by Albert Camus</rdfs:label>
<author>
<Writer rdf:about="#ac">
<name>Albert Camus</name>

</Writer>
</author>
<isbn>2070360105</isbn>
<year rdf:datatype="&xsd;integer">1956</year>
<title>La chute</title>

</Novel>

</rdf:RDF>

B.3 srcalign.rdf 285

B.3 srcalign.rdf

The following alignment in the Alignment format (see §8.1.5) is that of Fig. 2.9. It is
considered as a reference alignment.

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY ont1 "http://book.ontologymatching.org/example/culture-shop.owl#" >
<!ENTITY ont2 "http://book.ontologymatching.org/example/library.owl#" >]>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xml:base=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:xsd=’&xsd;’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<method>Manually generated (Jérôme Euzenat, 2005/04/13)</method>
<onto1>http://book.ontologymatching.org/examples/culture-shop.owl</onto1>
<onto2>http://book.ontologymatching.org/examples/library.owl</onto2>
<uri1>http://book.ontologymatching.org/example/culture-shop.owl</uri1>
<uri2>http://book.ontologymatching.org/example/library.owl</uri2>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;name’/>
<entity2 rdf:resource=’&ont2;title’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;id’/>
<entity2 rdf:resource=’&ont2;isbn’/>
<measure rdf:datatype=’&xsd;float’>.9</measure>
<relation>></relation>

</Cell>
</map>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;author’/>
<entity2 rdf:resource=’&ont2;author’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;Person’/>
<entity2 rdf:resource=’&ont2;Human’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;Science’/>
<entity2 rdf:resource=’&ont2;Essay’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation><</relation>

</Cell>
</map>
<map>
<Cell>

286 Appendix B: Running example

<entity1 rdf:resource=’&ont1;Book’/>
<entity2 rdf:resource=’&ont2;Volume’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation><</relation>

</Cell>
</map>

</Alignment>
</rdf:RDF>

B.4 Alternative alignments for evaluation

Here are the alignments considered in Chap. 7.

B.4.1 refalign.rdf

This is the previous alignment involving only correspondences between classes.
<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY ont1 "http://book.ontologymatching.org/example/culture-shop.owl#" >
<!ENTITY ont2 "http://book.ontologymatching.org/example/library.owl#" >]>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xml:base=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:xsd=’&xsd;’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<method>Manually generated (Jérôme Euzenat, 2005/04/13)</method>
<onto1>http://book.ontologymatching.org/examples/culture-shop.owl</onto1>
<onto2>http://book.ontologymatching.org/examples/library.owl</onto2>
<uri1>http://book.ontologymatching.org/example/culture-shop.owl</uri1>
<uri2>http://book.ontologymatching.org/example/library.owl</uri2>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;Person’/>
<entity2 rdf:resource=’&ont2;Human’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;Science’/>
<entity2 rdf:resource=’&ont2;Essay’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation><</relation>

</Cell>
</map>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;Book’/>
<entity2 rdf:resource=’&ont2;Volume’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation><</relation>

</Cell>
</map>

</Alignment>
</rdf:RDF>

B.4 Alternative alignments for evaluation 287

B.4.2 nearmiss.rdf

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY ont1 "http://book.ontologymatching.org/example/culture-shop.owl#" >
<!ENTITY ont2 "http://book.ontologymatching.org/example/library.owl#" >]>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xml:base=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:xsd=’&xsd;’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<method>Manually generated (Jérôme Euzenat, 2005/04/13)</method>
<onto1>http://book.ontologymatching.org/examples/culture-shop.owl</onto1>
<onto2>http://book.ontologymatching.org/examples/library.owl</onto2>
<uri1>http://book.ontologymatching.org/example/culture-shop.owl</uri1>
<uri2>http://book.ontologymatching.org/example/library.owl</uri2>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;Product’/>
<entity2 rdf:resource=’&ont2;Volume’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;Science’/>
<entity2 rdf:resource=’&ont2;Essay’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation><</relation>

</Cell>
</map>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;Person’/>
<entity2 rdf:resource=’&ont2;Writer’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation><</relation>

</Cell>
</map>

</Alignment>
</rdf:RDF>

B.4.3 farone.rdf

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY ont1 "http://book.ontologymatching.org/example/culture-shop.owl#" >
<!ENTITY ont2 "http://book.ontologymatching.org/example/library.owl#" >]>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xml:base=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:xsd=’&xsd;’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<method>Manually generated (Jérôme Euzenat, 2005/04/13)</method>

288 Appendix B: Running example

<onto1>http://book.ontologymatching.org/examples/culture-shop.owl</onto1>
<onto2>http://book.ontologymatching.org/examples/library.owl</onto2>
<uri1>http://book.ontologymatching.org/example/culture-shop.owl</uri1>
<uri2>http://book.ontologymatching.org/example/library.owl</uri2>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;Book’/>
<entity2 rdf:resource=’&ont2;Volume’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;Pocket’/>
<entity2 rdf:resource=’&ont2;Essay’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation><</relation>

</Cell>
</map>
<map>
<Cell>
<entity1 rdf:resource=’&ont1;Children’/>
<entity2 rdf:resource=’&ont2;Literature’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation><</relation>

</Cell>
</map>

</Alignment>
</rdf:RDF>

C

Exercises

The following exercises cover only the technical sections of this book. They are
provided to help readers check their understanding of the presented concepts rather
than to make assignments to students. They consist of application of the presented
concepts to a pair of ontologies; they are expected not to be difficult. Due to lack
of space, these exercises are applied to small size ontologies. However, interested
readers may use their own (larger) ontologies instead. It is certainly worthwhile to
use available tools for completing these exercises. The solutions to these exercises
are provided on the book web site1.

C.1 Applications

C.1 (Application definition). Consider two university data sources dealing with
people. The first one is a database developed from the whole university management
standpoint, while the second one represents the standpoint of a particular research
laboratory. These data sources are managed by different departments and will con-
tinue to evolve independently, however, users would like to access them through a
unified interface. Obviously, this could be useful, e.g., for checking both lecture and
room availability from a single interface.

1. Provide an architecture for this application. For instance, by drawing diagrams
similar to those of Chap. 1.

2. What are the requirements to ontology matching in this application with regard
to Table 1.1?

C.2 The matching problem

C.2 (Ontology representation). Let o be a first data source to be integrated. o is
described in English as follows:
1 http://book.ontologymatching.org

290 Appendix C: Exercises

– People are divided among Students, Faculty and Staff. Faculty is further divided
depending on its departments and sub-departments, e.g., Philosophy, Science.

– People are characterised by their firstname and lastname which are strings, id
which is a uri and birthdate which is a date.

– Students will attend Courses which are taught by Faculty and Faculty people have
an Office as a room.

– Pr. Carla Cipolla is a visiting professor in Computer science and Stefano Zucchini
is a PhD Student.

1. Provide a description for o as a folksonomy.
2. Provide a description for o as a directory.
3. Provide a description for o as an XML schema.
4. Provide a description for o as a relational database schema.
5. Provide a description for o as an entity–relationship schema (or UML diagram).
6. Provide a description for o as an ontology.

C.3 (Ontology semantics). Assume that the left hand side ontology of Fig. C.1 is
denoted as o.

1. Express o in OWL.
2. Express o as a set of assertions, e.g., Staff ≤ People.
3. Provide its semantics.
4. Does o |= Philosophy ≤ People and why?
5. Does o |= teaches ≤ attends and why?

C.3 Classification

C.4 (Kinds of techniques). Consider the structure of ontologies o and o′ of Prob-
lem C.2, as illustrated in Fig. C.1. Describe which techniques can be used for match-
ing them (see Fig. 3.1) and explain the choices made.

C.4 Basic techniques

C.5 (Name-based distance computation). Given the ontologies o and o′ of Prob-
lem C.1 as illustrated in Fig. C.1. Provide the tables (similar to those of Example 4.14
or Example 4.25) for class matching with the following techniques:

1. String distances between all the labels occuring in Fig. C.1:
– substring similarity;
– 3-gram similarity;
– edit distance;
– Jaro–Winckler measure.

2. Linguistic distances between all the labels by using the last version of WordNet:
– cosynonymy similarity;

C.4 Basic techniques 291

People

firstname
lastname
id
birthdate

Student

attends
Faculty

teaches
room

Science

Computer science

Biology

Philosophy

Boxology

Staff

string

uri

date

Course

Office

Staff

name
hiringdate

publications
office

Professor

teaches

Full professor

Assistant professor

Associate professor

Visiting professor

Assistant

Teaching assistant

Research assistant

PhDStudent

Room

Reference

Lecture

Pr. Carla Cipolla

Stefano Zucchini

Fig. C.1. Two ontologies to be matched.

– gloss overlap;
– Wu–Palmer similarity.

C.6 (Extensional distance computation). Consider the two ontologies o and o′ of
Problem C.1 as illustrated in Fig. C.1. Assume that the two following tables specify
data instances for o and o′, respectively.

Class firstname lastname id birthdate
Computer Science G. Cetriolo 445 04/07/1978
Biology P. Pomodoro 1678 01/08/1972
Computer Science C. Cipolla 1998 13/06/1977
Philosophy P. Carciofo 128 03/09/1982
Student C. Fragola 1664 12/12/1985
Biology A. Verdura 88 07/09/1981
Student S. Zucchini 1178 16/04/1987
Computer Science F. di Guava 23/02/1966
Staff C. Melocoton 178 14/01/1962

292 Appendix C: Exercises

Class name hiring date office
Assistant professor Giancarlo Cetriolo 2/9/2004 B45
Associate professor Paola Pomodoro 23/2/2002 B45
Visiting professor Carla Cipolla 4/12/2007 C17
Assistant professor Paolo Carciofo C18
Full professor Federico diGuava 7/7/1999 B12
Visiting professor Pierluiggi Pomodoro 4/12/2007 C18
PhDStudent Mario Staggioni 2/9/2006 B47
PhDStudent Stefano Zucchini 17/10/2005 B47
PhDStudent Domenica Melanzana 15/9/2006

1. Identify which extensional techniques can be used and why.
2. Design a distance for strings which can compare names with and without abbre-

viated first name.
3. Use the previous string distance for computing a similarity between instances.
4. Use the substring similarity between lastname and name for identifying in-

stances.
5. Starting with each of the previously computed measures, use the single linkage

measure on instances for comparing classes of the two ontologies.

C.5 Strategies

C.7 (Measure aggregation). Consider the distances between ontology entities in o
and o′ given by (i) edit distance computed on their names (see Problem C.5), and
(ii) the distance computed with the single linkage measure applied to the substring
distance (see Problem C.6).

1. Compute their aggregation with the max(x + y − 1, 0) triangular norm.
2. Compute their aggregation with the weighted product, where 2/3 is the weight

for the former distance and 1/3 is the weight for the latter one.
3. Compute their aggregation with the weighted sum where 2/3 is the weight for

the former distance and 1/3 is the weight for the latter one.
4. Compute their aggregation with the ordered weighted average where 2/3 is the

weight for the former distance and 1/3 is the weight for the latter one.

C.8 (Thresholds). Assume that the similarity between entities of ontologies o and o′

of Problem C.2 is expressed by the following similarity table:

C.6 Evaluation of matching systems 293

Pe
op

le

St
ud

en
t

Fa
cu

lty

Sc
ie

nc
e

Ph
ilo

so
ph

y

B
ox

ol
og

y

St
af

f

C
ou

rs
e

O
ffi

ce

Staff .56 .65 .33 .64 .12 .11 .63 .22 .13
Professor .62 .36 .60 .40 .44 .32 .55 .21 .36
Assistant .40 .44 .58 .62 .46 .33 .43 .32 .22

PhDStudent .64 .92 .45 .60 .65 .52 .55 .33 .34
Room .12 .20 .20 .18 .10 .12 .09 .11 .62

Reference .23 .06 .18 .25 .26 .28 .22 .17 .23
Lecture .15 .16 .26 .23 .34 .12 .14 .20 .16

Provide the set of correspondences resulting from the application of a .6 thresh-
old, specifically:

1. with a hard threshold of .6;
2. with a delta threshold of .6;
3. with a proportional threshold of .6;
4. with a percentage threshold of .6.

C.9 (Alignment extraction). Consider the two ontologies o and o′ of Problem C.1 as
illustrated in Fig. C.1. Assume that the similarity between their entities is expressed
by the similarity table of Problem C.8.

1. Extract an alignment based on the similarity with the help of the greedy algo-
rithm;

2. Extract an alignment based on the similarity as a stable marriage;
3. Extract an alignment based on the similarity as the maximum weight graph

matching.

C.10 (Composing matchers). Consider the application described in Problem C.1.

1. Provide an architecture of a matching system suitable to match these ontologies
(use the answer identified to Problem C.4 for guiding your choice).

2. Compute the alignment with this architecture.

C.6 Evaluation of matching systems

C.11 (Precision and recall computation). Let R as described in Fig. C.2 be the
reference alignment between the two ontologies o and o′ of Problem C.1 as illustrated
in Fig. C.1. Consider the three alignments (A1, A2, A3) as follows.

294 Appendix C: Exercises

People

firstname
lastname
id
birthdate

Student

attends
Faculty

teaches
room

Science

Computer science

Biology

Philosophy

Boxology

Staff

string

uri

date

Course

Office

Staff

name
hiringdate

publications
office

Professor

teaches

Full professor

Assistant professor

Associate professor

Visiting professor

Assistant

Teaching assistant

Research assistant

PhDStudent

Room

Reference

Lecture

≥

.9

.7

Fig. C.2. Reference alignment R between the ontologies of Fig. C.1. Correspondences are
expressed by arrows. By default their relation is = and their confidence value is 1.0; otherwise,
these are mentioned near the arrows.

room = Room Office = office Staff = Staff

firstname ≤ name Student ≥ PhDStudent teaches = teaches (A1)

Professor ≥ Faculty Office = Room room = office

People = Staff Course = Lecture teaches = teaches (A2)

Faculty = Full professor Student = PhDStudent Staff = Assistant

hiringdate = birthdate firstname = name teaching = teaching (A3)

1. Compute the precision of alignments A1, A2 and A3;
2. Compute the recall of alignments A1, A2 and A3;
3. Compute the F-measure of alignments A1, A2 and A3;
4. Compute the fallout of alignments A1, A2 and A3;
5. Compute the overall of alignments A1, A2 and A3;
6. Compute the Hamming distance between alignments A1, A2 and A3 and R.

C.12 (Application oriented evaluation). Let R as described in Fig. C.2 be the ref-
erence alignment between the two ontologies o and o′ of Problem C.1 as illustrated

C.9 Processing alignments 295

in Fig. C.1. Apply the aggregation technique based on weighted harmonic mean of
Sect. 7.4.1 with the criterion identified for Problem C.1 on alignments A1, A2 and
A3 from Problem C.11.

C.7 Representing alignments

C.13 (Representation generation). Consider R as described in Fig. C.2.

1. Express it in OWL;
2. Express it in C-OWL;
3. Express it in SWRL;
4. Express it in the SEKT mapping language;
5. Express it in SKOS;
6. Discuss the advantages and limitations of these formalisms.

C.8 Explaining alignments

C.14 (Alignment explanation). Given the architecture and the solution devised for
Problem C.10, provide a process trace (see for example Fig. 9.5) for:

1. Several correctly identified correspondence (true positives);
2. Several incorrectly identified correspondence (false positives).
3. For both cases provide a natural language intuitive explanation (similar to what

can be achieved by reading Fig. 9.2 or Fig. 9.3) of why the correspondences have
been correctly and incorrectly identified.

C.9 Processing alignments

C.15 (Merging ontologies). Let R be the alignment described in Fig. C.2.

1. Describe the merge between o and o′ according to R using the OWL import
capability;

2. Describe it as one integrated OWL ontology.

C.16 (Data translation). Assume that we want to transform the data instances from
ontology o into instances of o′. Consider the data instances in the first table of Prob-
lem C.6.

1. Provide their translation with regard to the reference alignment R described in
Fig. C.2.

2. Develop a program able to perform this translation.

C.17 (Mediation). Assume that we want that each of the sources of Problem C.1
can query the other one. It is thus necessary to transform the queries and the returned
answers.

296 Appendix C: Exercises

1. Given the query ‘SELECT ?x.room WHERE Faculty(?x)’ expressed with respect
to ontology o, transform it, in a query expressed with regard to ontology o′,
according to the reference alignment R described in Fig. C.2.

2. Apply the transformed query to the data instances of the second table of Prob-
lem C.6.

3. Develop a mediator able to perform the query transformations and answer trans-
lation depending on the reference alignment R described in Fig. C.2.

References

Pages in which a reference is cited are mentioned within square brackets.

[Aberer et al., 2004a] Karl Aberer, Tiziana Catarci, Philippe Cudré-Mauroux, Tharam Dillon,
Stephan Grimm, Mohand-Saı̈d Hacid, Arantza Illarramendi, Mustafa Jarrar, Vipul Kashyap,
Massimo Mecella, Eduardo Mena, Erich Neuhold, Aris Ouksel, Thomas Risse, Monica
Scannapieco, Félix Saltor, Luca De Santis, Stefano Spaccapietra, Steffen Staab, Rudi Studer,
and Olga De Troyer. Emergent semantics systems. In Proc. 1st International Conference
on Semantics of a Networked World (ICSNW), volume 3226 of Lecture notes in computer
science, pages 14–43, Paris (FR), 2004. [18]

[Aberer et al., 2004b] Karl Aberer, Philippe Cudré-Mauroux, Aris Ouksel, Tiziana Catarci,
Mohand-Saı̈d Hacid, Arantza Illarramendi, Vipul Kashyap, Massimo Mecella, Eduardo
Mena, Erich Neuhold, Olga De Troyer, Thomas Risse, Monica Scannapieco, Félix Saltor,
Luca de Santis, Stefano Spaccapietra, Steffen Staab, and Rudi Studer. Emergent semantics
principles and issues. In Proc. 9th International Conference on Database Systems for Ad-
vanced Applications (DASFAA), volume 2973 of Lecture notes in computer science, pages
25–38, Jeju Island (KR), 2004. [18]

[Agrawal and Srikant, 2001] Rakesh Agrawal and Ramakrishnan Srikant. On integrating cat-
alogs. In Proc. 10th International World Wide Web Conference (WWW), pages 603–612,
Hong Kong (CN), 2001. [11]

[Alagic and Bernstein, 2001] Suad Alagic and Philip Bernstein. A model theory for generic
schema management. In Proc. 8th International Workshop on Database Programming Lan-
guages (DBPL), volume 2397 of Lecture notes in computer science, pages 228–246, Frascati
(IT), 2001. Springer. [51]

[Aleksovski et al., 2006] Zharko Aleksovski, Michel Klein, Warner ten Kate, and Frank van
Harmelen. Matching unstructured vocabularies using a background ontology. In Proc.
15th International Conference on Knowledge Engineering and Knowledge Management
(EKAW), volume 4248 of Lecture notes in computer science, pages 182–197, Praha (CZ),
2006. [68, 111]

[Amgoud et al., 2000] Leı̈la Amgoud, Simon Parsons, and Nicolas Maudet. Arguments, dia-
logue and negotiation. In Proc. 14th European Conference on Artificial Intelligence (ECAI),
pages 338–342, Berlin (DE), 2000. [256]

[An et al., 2005a] Yuan An, Alexander Borgida, and John Mylopoulos. Constructing com-
plex semantic mappings between XML data and ontologies. In Proc. 4th International Se-

298 References

mantic Web Conference (ISWC), volume 3729 of Lecture notes in computer science, pages
6–20, Galway (IE), 2005. [163]

[An et al., 2005b] Yuan An, Alexander Borgida, and John Mylopoulos. Inferring complex
semantic mappings between relational tables and ontologies from simple correspondences.
In Proc. 4th International Conference on Ontologies, Databases and Applications of Se-
mantics (ODBASE), volume 3761 of Lecture notes in computer science, pages 1152–1169,
Agia Napa (CY), 2005. [163]

[An et al., 2006] Yuan An, Alexander Borgida, and John Mylopoulos. Discovering the se-
mantics of relational tables through mappings. Journal on Data Semantics, VII:1–32, 2006.
[163]

[Arens et al., 1996] Yigal Arens, Chun-Nan Hsu, and Craig Knoblock. Query processing in
the SIMS information mediator. In Austin Tate, editor, Readings in agents, pages 82–90.
AAAI press, Menlo Park (CA US), 1996. [153]

[Ashpole et al., 2005] Benjamin Ashpole, Marc Ehrig, Jérôme Euzenat, and Heiner Stucken-
schmidt, editors. Proc. K-CAP Workshop on Integrating Ontologies, Banff (CA), October
2005. [196]

[Atzeni et al., 2005] Paolo Atzeni, Paolo Cappellari, and Philip Bernstein. Modelgen: Model
independent schema translation. In Proc. 21st International Conference on Data Engineer-
ing (ICDE), pages 1111–1112, Tokyo (JP), 2005. [236]

[Atzeni et al., 2006] Paolo Atzeni, Paolo Cappellari, and Philip Bernstein. Model-
independent schema and data translation. In Proc. 10th Conference on Extending Database
Technology (EDBT), volume 3896 of Lecture notes in computer science, pages 368–385,
München (DE), 2006. [236]

[Aumüller et al., 2005] David Aumüller, Hong-Hai Do, Sabine Maßmann, and Erhard Rahm.
Schema and ontology matching with COMA++. In Proc. 24th International Conference on
Management of Data (SIGMOD), Software Demonstration, pages 906–908, Baltimore (MD
US), 2005. [68]

[Avesani et al., 2005] Paolo Avesani, Fausto Giunchiglia, and Mikalai Yatskevich. A large
scale taxonomy mapping evaluation. In Proc. 4th International Semantic Web Conference
(ISWC), volume 3729 of Lecture notes in computer science, pages 67–81, Galway (IE),
2005. [202, 203]

[Bach and Dieng-Kuntz, 2005] Thanh-Le Bach and Rose Dieng-Kuntz. Measuring similarity
of elements in OWL ontologies. In Proc. AAAI Workshop on Contexts and Ontologies
(C&O), pages 96–99, Pittsburgh (PA US), 2005. [167]

[Bach et al., 2004] Than-Le Bach, Rose Dieng-Kuntz, and Fabien Gandon. On ontology
matching problems (for building a corporate semantic web in a multi-communities organi-
zation). In Proc. 6th International Conference on Enterprise Information Systems (ICEIS),
pages 236–243, Porto (PT), 2004. [99, 167]

[Bailin and Truszkowski, 2002] Sidney Bailin and Walt Truszkowski. Ontology negotiation:
How agents can really get to know each other. In Proc. 1st International Workshop on
Radical Agent Concepts (WRAC), volume 2564 of Lecture notes in computer science, pages
320–334, McLean (VA US), 2002. [21]

[Barthélemy and Guénoche, 1992] Jean-Pierre Barthélemy and Alain Guénoche. Trees and
proximity representations. John Wiley & Sons, Chichester (UK), 1992. [101]

[Barwise and Seligman, 1997] Jon Barwise and Jerry Seligman. Information flow: the logic
of distributed systems, volume 44 of Cambridge tracts in theoretical computer science.
Cambridge University Press, Cambridge (UK), 1997. [177]

[Batini et al., 1986] Carlo Batini, Maurizio Lenzerini, and Shamkant Navathe. A compara-
tive analysis of methodologies for database schema integration. ACM Computing Surveys,
18(4):323–364, 1986. [11, 13, 40, 61]

References 299

[Bechhofer et al., 2003] Sean Bechhofer, Raphael Volz, and Phillip Lord. Cooking the se-
mantic web with the OWL API. In Proc. 2nd International Semantic Web Conference
(ISWC), volume 2870 of Lecture notes in computer science, pages 659–675, Sanibel Island
(FL US), 2003. [239]

[Bench-Capon and Malcolm, 1999] Trevor Bench-Capon and Grant Malcolm. Formalising
ontologies and their relations. In Proc. 16th International Conference on Database and
Expert Systems Applications (DEXA), volume 1677 of Lecture notes in computer science,
pages 250–259, 1999. [51]

[Bench-Capon, 2003] Trevor Bench-Capon. Persuasion in practical argument using value-
based argumentation frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.
[256]

[Benerecetti et al., 2000] Massimo Benerecetti, Paolo Bouquet, and Chiara Ghidini. Con-
textual reasoning distilled. Journal of Experimental and Theoretical Artificial Intelligence,
12(3):279–305, July 2000. [41]

[Benerecetti et al., 2001] Massimo Benerecetti, Paolo Bouquet, and Chiara Ghidini. On the
dimensions of context dependence: partiality, approximation, and perspective. In Proc.
3rd International and Interdisciplinary Conference on Modeling and Using Context (CON-
TEXT), volume 2116 of Lecture notes in computer science, pages 59–72, Dundee (UK),
2001. [41]

[Beneventano et al., 1998] Domenico Beneventano, Sonia Bergamaschi, Stefano Lodi, and
Claudio Sartori. Consistency checking in complex object database schemata with integrity
constraints. IEEE Transactions on Knowledge and Data Engineering, 10(4):576–598, 1998.
[157]

[Bergamaschi et al., 1998] Sonia Bergamaschi, Domenico Beneventano, Silvana Castano,
and Maurizio Vincini. MOMIS: An intelligent system for the integration of semistruc-
tured and structured data. Technical Report T3-R07, Università di Modena e Reggio Emilia,
Modena (IT), 1998. [157]

[Bergamaschi et al., 1999] Sonia Bergamaschi, Silvana Castano, and Maurizio Vincini. Se-
mantic integration of semistructured and structured data sources. ACM SIGMOD Record,
28(1):54–59, 1999. [157]

[Berge, 1970] Claude Berge. Graphes et hypergraphes. Dunod, Paris (FR), 1970. [148]
[Berlin and Motro, 2002] Jacob Berlin and Amihai Motro. Database schema matching using

machine learning with feature selection. In Proc. 14th International Conference on Ad-
vanced Information Systems Engineering (CAiSE), volume 2348 of Lecture notes in com-
puter science, pages 452–466, Toronto (CA), 2002. [172]

[Berners-Lee et al., 2001] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic
web. Scientific American, 284(5):34–43, May 2001. [70]

[Bernstein and Rahm, 2000] Philip Bernstein and Erhard Rahm. Data warehouse scenarios
for model management. In Proc. 19 International Conference on Conceptual Modeling
(ER), volume 1920 of Lecture notes in computer science, pages 1–15, Salt Lake City (UT
US), 2000. [11, 14]

[Bernstein et al., 2000] Philip Bernstein, Alon Halevy, and Rachel Pottinger. A vision of
management of complex models. ACM SIGMOD Record, 29(4):55–63, 2000. [44, 235]

[Bernstein et al., 2002] Philip Bernstein, Fausto Giunchiglia, A. Kementsietsidis, John My-
lopoulos, Luciano Serafini, and Ilya Zaihrayeu. Data management for peer-to-peer comput-
ing: A vision. In Proc. 5th International Workshop on the Web and Databases (WebDB),
Madison (WI US), 2002. [16, 17]

[Bernstein et al., 2006] Philip Bernstein, Sergey Melnik, and John Churchill. Incremental
schema matching. In Proc. 32nd International Conference on Very Large Data Bases
(VLDB), pages 1167–1170, Seoul (KR), 2006. [144]

300 References

[Bilke and Naumann, 2005] Alexander Bilke and Felix Naumann. Schema matching using
duplicates. In Proc. 21st International Conference on Data Engineering (ICDE), pages
69–80, Tokyo (JP), 2005. [174]

[Birkes and Dodge, 2001] David Birkes and Yadolah Dodge. Alternative Methods of Regres-
sion. John Wiley & Sons, Inc., 2001. [140]

[Biron and Malhotra (ed.), 2004] Paul Biron and Ashok Malhotra (ed.). XML schema part 2:
Datatypes. Recommendation, W3C, 2004. [95]

[Bisson, 1992] Gilles Bisson. Learning in FOL with similarity measure. In Proc. 10th Na-
tional Conference on Artificial Intelligence (AAAI), pages 82–87, San-Jose (CA US), 1992.
[130]

[Booch et al., 1998] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Mod-
eling Language user guide. Addison-Wesley, Reading (MA US), 1998. [35]

[Borgida and Serafini, 2003] Alexander Borgida and Luciano Serafini. Distributed descrip-
tion logics: Assimilating information from peer sources. Journal on Data Semantics, I:153–
184, 2003. [52]

[Bouquet and Serafini, 2003] Paolo Bouquet and Luciano Serafini. On the difference between
bridge rules and lifting axioms. In Proc. 4th International and Interdisciplinary Conference
on Modeling and Using Context (CONTEXT), volume 2680 of Lecture notes in computer
science, pages 80–93, Stanford (CA US), 2003. [113]

[Bouquet et al., 2003a] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano
Serafini, and Heiner Stuckenschmidt. C-OWL – contextualizing ontologies. In Proc. 2nd
International Semantic Web Conference (ISWC), volume 2870 of Lecture notes in computer
science, pages 164–179, Sanibel Island (FL US), 2003. [223]

[Bouquet et al., 2003b] Paolo Bouquet, Bernardo Magnini, Luciano Serafini, and Stefano
Zanobini. A SAT-based algorithm for context matching. In Proc. 4th International and
Interdisciplinary Conference on Modeling and Using Context (CONTEXT), volume 2680 of
Lecture notes in computer science, pages 66–79, Stanford (CA US), 2003. [164]

[Bouquet et al., 2003c] Paolo Bouquet, Luciano Serafini, and Stefano Zanobini. Semantic
coordination: A new approach and an application. In Proc. 2nd International Semantic Web
Conference (ISWC), volume 2870 of Lecture notes in computer science, pages 130–145,
Sanibel Island (FL US), 2003. [11, 13, 63, 164]

[Bouquet et al., 2004a] Paolo Bouquet, Marc Ehrig, Jérôme Euzenat, Enrico Franconi, Pas-
cal Hitzler, Markus Krötzsch, Luciano Serafini, Giorgos Stamou, York Sure, and Sergio
Tessaris. Specification of a common framework for characterizing alignment. Deliverable
D2.2.1, Knowledge web NoE, 2004. [41, 42, 44, 45, 55]

[Bouquet et al., 2004b] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano
Serafini, and Heiner Stuckenschmidt. Contextualizing ontologies. Journal of Web Seman-
tics, 1(1):325–343, 2004. [223]

[Bouquet et al., 2006] Paolo Bouquet, Luciano Serafini, Stefano Zanobini, and Simone Scef-
fer. Bootstrapping semantics on the web: meaning elicitation from schemas. In Proc. 15th
International World Wide Web Conference (WWW), pages 505–512, Edinburgh (UK), 2006.
[114, 164]

[Bourigault and Jacquemin, 1999] Didier Bourigault and Christian Jacquemin. Term extrac-
tion + term clustering: an integrated platform for computer-aided terminology. In Proc.
European Chapter of the Association for Computational Linguistics (EACL), pages 15–22,
Bergen (NO), 1999. [85]

[Boyd et al., 2004] Michael Boyd, Sasivimol Kittivoravitkul, Charalambos Lazanitis, Peter
McBrien, and Nikos Rizopoulos. AutoMed: A BAV data integration system for hetero-
geneous data sources. In Proc. 16th International Conference on Advanced Information

References 301

Systems Engineering (CAiSE), volume 3084 of Lecture notes in computer science, pages
82–97, Riga (LV), 2004. [153]

[Breiman, 1996] Leo Breiman. Stacked regressions. Machine Learning, 24(1):49–64, 1996.
[140]

[Breitbart, 1990] Yuri Breitbart. Multidatabase interoperability. ACM SIGMOD Record,
19(3):53–60, 1990. [40]

[Brill, 1992] Eric Brill. A simple rule-based part of speech tagger. In Proc. 3rd Conference
on Applied Natural Language Processing (ANLC), pages 152–155, Trento (IT), 1992. [84]

[Brodie et al., 1984] Michael Brodie, John Mylopoulos, and Joachim Schmidt. On concep-
tual modeling. Springer, New York (NY US), 1984. [1, 35]

[Budanitsky and Hirst, 2006] Alexander Budanitsky and Graeme Hirst. Evaluating WordNet-
based measures of lexical semantic relatedness. Computational Linguistics, 32(1):13–47,
2006. [90, 91]

[Bussler et al., 2002] Christoph Bussler, Dieter Fensel, and Alexander Mädche. A conceptual
architecture for semantic web enabled web services. ACM SIGMOD Record, 31(4):24–29,
2002. [19]

[Calvanese et al., 2002a] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Description logics for information integration. In Anthonis Kakas and Fariba Sadri, editors,
Computational logic: logic programming and beyond, essays in honour of Robert A. Kowal-
ski, volume 2408 of Lecture notes in computer science, pages 41–60. Springer, Heidelberg
(DE), 2002. [153]

[Calvanese et al., 2002b] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
A framework for ontology integration. In Isabel Cruz, Stefan Decker, Jérôme Euzenat,
and Deborah McGuinness, editors, The emerging semantic web, pages 201–214. IOS Press,
Amsterdam (NL), 2002. [52, 228]

[Calvanese et al., 2004] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Riccardo Rosati. Logical foundations of peer-to-peer data integration. In Proc. 23rd Sym-
posium on Principles of Database Systems (PODS), pages 241–251, Paris (FR), 2004. [52]

[Castano et al., 2000] Silvana Castano, Valeria De Antonellis, and Sabrina De Capitani di
Vimercati. Global viewing of heterogeneous data sources. IEEE Transactions on Knowledge
and Data Engineering, 13(2):277–297, 2000. [157]

[Castano et al., 2005] Silvana Castano, Alfio Ferrara, and Stefano Montanelli. Dynamic
knowledge discovery in open, distributed and multi-ontology systems: Techniques and ap-
plications. In David Taniar and Johanna Rahayu, editors, Web semantics and ontology,
chapter 8, pages 226–258. Idea Group Publishing, Hershey (PA US), 2005. [157]

[Castano et al., 2006] Silvana Castano, Alfio Ferrara, and Stefano Montanelli. Matching on-
tologies in open networked systems: Techniques and applications. Journal on Data Seman-
tics, V:25–63, 2006. [157]

[Castro et al., 2004] Raúl Garcı́a Castro, Diana Maynard, Doug Foxvog, Holger Wache, and
Rafael González-Cabero. Specification of a methodology, general criteria, and benchmark
suites for benchmarking ontology tools. Deliverable D2.1.4, Knowledge web NoE, 2004.
[194]

[Cerbah and Euzenat, 2001] Farid Cerbah and Jérôme Euzenat. Traceability between models
and texts through terminology. Data and Knowledge Engineering, 38(1):31–43, 2001. [85]

[Chalupsky, 2000] Hans Chalupsky. OntoMorph: a translation system for symbolic knowl-
edge. In Proc. 7th International Conference on the Principles of Knowledge Representation
and Reasoning (KR), pages 471–482, Breckenridge (CO US), 2000. [41, 42]

[Chan et al., 1996] Lois Mai Chan, John Comaromi, Joan Mitchell, and Mohinder Satija.
Dewey decimal classifcation: a practical guide. OCLC Forest Press, Dublin (OH US),
1996. [32]

302 References

[Chang et al., 2004] Kevin Chang, Bin He, Chengkai Li, Mitesh Patel, and Zhen Zhang.
Structured databases on the web: observations and implications. SIGMOD Record,
33(3):61–70, 2004. [24]

[Chang et al., 2005] Kevin Chang, Bin He, and Zhen Zhang. Toward large scale integration:
Building a metaquerier over databases on the web. In Proc. 2nd Biennial Conference on
Innovative Data Systems Research (CIDR), pages 44–55, Asilomar (CA US), 2005. [168]

[Chawathe et al., 1994] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer,
Kelly Ireland, Yannis Papakonstantinou, Jeffrey Ullman, and Jennifer Widom. The TSIM-
MIS project: Integration of heterogeneous information sources. In Proc. 16th Meeting of the
Information Processing Society of Japan (IPSJ), pages 7–18, Tokyo (JP), 1994. [11, 153]

[Chen, 1976] Peter Chen. The entity-relationship model–toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, 1976. [35]

[Clark and DeRose (ed.), 2001] James Clark and Steve DeRose (ed.). XML path language
(XPath) version 1.0. Recommendation, W3C, 2001. [221]

[Clifton et al., 1997] Chris Clifton, Ed Hausman, and Arnon Rosenthal. Experience with a
combined approach to attribute matching across heterogeneous databases. In Proc. 7th IFIP
Conference on Database Semantics, pages 428–453, Leysin (CH), 1997. [26, 154]

[Cohen and Hirsh, 1998] William Cohen and Haym Hirsh. Joins that generalize: text classi-
fication using WHIRL. In Proc. 4th International Conference on Knowledge Discovery and
Data Mining (KDD), pages 169–173, New York (NY US), 1998. [135]

[Cohen et al., 2003a] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A com-
parison of string distance metrics for name-matching tasks. In Proc. IJCAI Workshop on
Information Integration on the Web (IIWeb), pages 73–78, Acapulco (MX), 2003. [174]

[Cohen et al., 2003b] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A compar-
ison of string metrics for matching names and records. In Proc. KDD Workshop on Data
Cleaning and Object Consolidation, pages 73–78, Washington (DC US), 2003. [76, 83]

[Cohen, 1998] William Cohen. Integration of heterogeneous databases without common do-
mains using queries based on textual similarity. In Proc. 17th International Conference on
Management of Data (SIGMOD), pages 201–212, Seattle (WA US), 1998. [135]

[Corcho, 2004] Oscar Corcho. A declarative approach to ontology translation with knowl-
edge preservation. PhD thesis, Universidad Politécnica de Madrid, Madrid (ES), 2004. [41]

[Coutaz et al., 2005] Joelle Coutaz, James Crowley, Simon Dobson, and David Garlan. Con-
text is key. Communications of the ACM, 48(3):49–53, 2005. [22]

[Cramer, 2000] Erhard Cramer. Probability measures with given marginals and condition-
als: i-projections and conditional iterative proportional fitting. Statistics and Decisions,
18(3):311–329, 2000. [168]

[Cuel et al., 2006] Roberta Cuel, Alain Léger, Fausto Giunchiglia, Pavel Shvaiko, Anna Zh-
danova, Diana Maynard, Jérôme Euzenat, Ying Ding, Luigi Lucchese, York Sure, Arthur
Stutt, Martin Dzbor, Enrico Motta, Michele Pasin, Ina O’Murchu, and John Breslin. Tech-
nology roadmap. Deliverable D1.4.1, Knowledge web NoE, 2006. [271]

[da Silva, 2004] Nuno Alexandre Pinto da Silva. Multi-dimensional service-oriented ontol-
ogy mapping. PhD thesis, Universidade de Trás-os-Montes e Alto Douro, Villa Real (PT),
2004. [221, 238]

[Davis and Putnam, 1960] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the ACM, 7(3):201–215, 1960. [246, 253]

[Davis et al., 1962] Martin Davis, George Longemann, and Donald Loveland. A machine
program for theorem proving. Communications of the ACM, 5(7):394–397, 1962. [246,
253]

[de Bruijn et al., 2004] Jos de Bruijn, Douglas Foxvog, and Kerstin Zimmerman. Ontology
mediation patterns library. Deliverable D4.3.1, SEKT, 2004. [229]

References 303

[Dean and Schreiber (eds.), 2004] Mike Dean and Guus Schreiber (eds.). OWL web ontology
language reference. Recommendation, W3C, February 2004. [36]

[Deerwester et al., 1990] Scott Deerwester, Susan Dumais, George Furnas, Thomas Lan-
dauer, and Richard Harshman. Indexing by latent semantic analysis. Journal of the American
Society for Information Science, 41(6):391–407, 1990. [81]

[Dhamankar et al., 2004] Robin Dhamankar, Yoonkyong Lee, An-Hai Doan, Alon Halevy,
and Pedro Domingos. iMAP: Discovering complex semantic matches between database
schemas. In Proc. 23rd International Conference on Management of Data (SIGMOD), pages
383–394, Paris (FR), 2004. [171, 245, 248, 250, 253]

[Dieng and Hug, 1998] Rose Dieng and Stefan Hug. Comparison of “personal ontologies”
represented through conceptual graphs. In Proc. 13th European Conference on Artificial
Intelligence (ECAI), pages 341–345, Brighton (UK), 1998. [103]

[Do and Rahm, 2002] Hong-Hai Do and Erhard Rahm. COMA – a system for flexible com-
bination of schema matching approaches. In Proc. 28th International Conference on Very
Large Data Bases (VLDB), pages 610–621, Hong Kong (CN), 2002. [68, 104, 145, 161,
236]

[Do et al., 2002] Hong-Hai Do, Sergei Melnik, and Erhard Rahm. Comparison of schema
matching evaluations. In Proc. Workshop on Web, Web-Services, and Database Systems,
volume 2593 of Lecture notes in computer science, pages 221–237, Erfurt (DE), 2002. [153,
198, 205]

[Do, 2005] Hong-Hai Do. Schema matching and mapping-based data integration. PhD the-
sis, University of Leipzig, Leipzig (DE), 2005. [71, 236, 237, 238]

[Doan and Halevy, 2005] An-Hai Doan and Alon Halevy. Semantic integration research in
the database community: A brief survey. AI Magazine, 26(1):83–94, 2005. Special issue on
Semantic integration. [71, 153]

[Doan et al., 2001] An-Hai Doan, Pedro Domingos, and Alon Halevy. Reconciling schemas
of disparate data sources: A machine-learning approach. In Proc. 20th International Con-
ference on Management of Data (SIGMOD), pages 509–520, Santa Barbara (CA US), 2001.
[171, 272]

[Doan et al., 2003] An-Hai Doan, Pedro Domingos, and Alon Halevy. Learning to match
the schemas of data sources: A multistrategy approach. Machine Learning, 50(3):279–301,
2003. [133, 135, 139]

[Doan et al., 2004] An-Hai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. On-
tollogy matching: a machine learning approach. In Steffen Staab and Rudi Studer, editors,
Handbook on ontologies, chapter 18, pages 385–404. Springer Verlag, Berlin (DE), 2004.
[171]

[Domingos and Pazzani, 1996] Pedro Domingos and Michael Pazzani. Beyond indepen-
dence: Conditions for the optimality of the simple Bayesian classifier. In Proc. 13th Inter-
national Conference on Machine Learning (ICML), pages 105–112, Bari (IT), 1996. [133,
134]

[Dou et al., 2005] Dejing Dou, Drew McDermott, and Peishen Qi. Ontology translation on
the semantic web. Journal on Data Semantics, II:35–57, 2005. [163]

[Dragut and Lawrence, 2004] Eduard Dragut and Ramon Lawrence. Composing mappings
between schemas using a reference ontology. In Proc. 3rd International Conference on
Ontologies, DataBases, and Applications of Semantics (ODBASE), volume 3290 of Lecture
notes in computer science, pages 783–800, Larnaca (CY), 2004. [238]

[Draper et al., 2001] Denise Draper, Alon Halevy, and Daniel Weld. The nimble integration
engine. In Proc. 20th International Conference on Management of Data SIGMOD, pages
567–568, Santa Barbara (CA US), 2001. [11]

304 References

[Dung, 1995] Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2):321–358, 1995. [256]

[Dzbor et al., 2003] Martin Dzbor, John Domingue, and Enrico Motta. Magpie – towards
a semantic web browser. In Proc. 2nd International Semantic Web Conference (ISWC),
volume 2870 of Lecture notes in computer science, pages 690–705, Sanibel Island (FL US),
2003. [22]

[Dzbor et al., 2004] Martin Dzbor, Enrico Motta, and John Domingue. Opening up Magpie
via semantic services. In Proc. 3rd International Semantic Web Conference (ISWC), volume
3298 of Lecture notes in computer science, pages 635–649, Hiroshima (JP), 2004. [22]

[Ehrig and Euzenat, 2005] Marc Ehrig and Jérôme Euzenat. Relaxed precision and recall for
ontology matching. In Proc. K-CAP Workshop on Integrating Ontologies, pages 25–32,
Banff (CA), 2005. [210, 211]

[Ehrig and Staab, 2004] Marc Ehrig and Steffen Staab. QOM – quick ontology mapping. In
Proc. 3rd International Semantic Web Conference (ISWC), volume 3298 of Lecture notes in
computer science, pages 683–697, Hiroshima (JP), 2004. [178, 179, 212]

[Ehrig and Sure, 2004] Marc Ehrig and York Sure. Ontology mapping – an integrated ap-
proach. In Proc. 1st European Semantic Web Symposium (ESWS), volume 3053 of Lecture
notes in computer science, pages 76–91, Hersounisous (GR), May 2004. [62, 98, 103, 145,
146, 178]

[Ehrig et al., 2005] Marc Ehrig, Steffen Staab, and York Sure. Bootstrapping ontology align-
ment methods with APFEL. In Proc. 4th International Semantic Web Conference (ISWC),
volume 3729 of Lecture notes in computer science, pages 186–200, Galway (IE), 2005.
[136, 138, 184, 240, 272]

[Ehrig, 2007] Marc Ehrig. Ontology alignment: bridging the semantic gap. Semantic web
and beyond: computing for human experience. Springer, New-York (NY US), 2007. [70,
100, 185, 208, 214, 240, 241]

[Elfeky et al., 2002] Mohamed Elfeky, Ahmed Elmagarmid, and Vassilios Verykios. Tailor:
A record linkage tool box. In Proc. 18th International Conference on Data Engineering
(ICDE), pages 17–28, San Jose (CA US), 2002. [107]

[Elmagarmid et al., 1999] Ahmed Elmagarmid, Marek Rusinkiewicz, and Amith Sheth, edi-
tors. Management of heterogeneous and autonomous database systems. Morgan Kaufmann,
San Francisco (CA US), 1999. [13]

[Embley et al., 2004] David Embley, Li Xu, and Yihong Ding. Automatic direct and indirect
schema mapping: Experiences and lessons learned. ACM SIGMOD Record, 33(4):14–19,
2004. [179]

[Euzenat and Stuckenschmidt, 2003] Jérôme Euzenat and Heiner Stuckenschmidt. The ‘fam-
ily of languages’ approach to semantic interoperability. In Borys Omelayenko and Michel
Klein, editors, Knowledge transformation for the semantic web, pages 49–63. IOS press,
Amsterdam (NL), 2003. [41]

[Euzenat and Valtchev, 2004] Jérôme Euzenat and Petko Valtchev. Similarity-based ontol-
ogy alignment in OWL-lite. In Proc. 15th European Conference on Artificial Intelligence
(ECAI), pages 333–337, Valencia (ES), 2004. [97, 99, 100, 102, 129, 181, 240]

[Euzenat et al., 2004a] Jérôme Euzenat, Thanh Le Bach, Jesús Barrasa, Paolo Bouquet,
Jan De Bo, Rose Dieng-Kuntz, Marc Ehrig, Manfred Hauswirth, Mustafa Jarrar, Rubén
Lara, Diana Maynard, Amedeo Napoli, Giorgos Stamou, Heiner Stuckenschmidt, Pavel
Shvaiko, Sergio Tessaris, Sven Van Acker, and Ilya Zaihrayeu. State of the art on ontol-
ogy alignment. Deliverable D2.2.3, Knowledge web NoE, 2004. [85, 99, 100]

References 305

[Euzenat et al., 2004b] Jérôme Euzenat, Marc Ehrig, and Raúl Garcı́a Castro. Specification
of a benchmarking methodology for alignment techniques. Deliverable D2.2.2, Knowledge
web NoE, 2004. [196]

[Euzenat et al., 2005a] Jérôme Euzenat, Loredana Laera, Valentina Tamma, and Alexandre
Viollet. Negotiation/argumentation techniques among agents complying to different ontolo-
gies. Deliverable 2.3.7, Knowledge web NoE, 2005. [21]

[Euzenat et al., 2005b] Jérôme Euzenat, Heiner Stuckenschmidt, and Mikalai Yatskevich. In-
troduction to the ontology alignment evaluation 2005. In Proc. K-CAP Workshop on Inte-
grating Ontologies, pages 61–71, Banff (CA), 2005. [196, 202, 209]

[Euzenat, 1994] Jérôme Euzenat. Brief overview of T-tree: the Tropes taxonomy building
tool. In Proc. 4th ASIS SIG/CR Workshop on Classification Research, pages 69–87, Colum-
bus (OH US), 1994. [169]

[Euzenat, 2001] Jérôme Euzenat. Towards a principled approach to semantic interoperability.
In Proc. IJCAI Workshop on Ontologies and Information Sharing, pages 19–25, Seattle (WA
US), 2001. [41, 42]

[Euzenat, 2002] Jérôme Euzenat. An infrastructure for formally ensuring interoperability in a
heterogeneous semantic web. In Isabel Cruz, Stefan Decker, Jérôme Euzenat, and Deborah
McGuinness, editors, The emerging semantic web, pages 245–260. IOS press, Amsterdam
(NL), 2002. [274]

[Euzenat, 2003] Jérôme Euzenat. Towards composing and benchmarking ontology align-
ments. In Proc. ISWC Workshop on Semantic Integration, pages 165–166, Sanibel Island
(FL US), 2003. [49, 196, 226]

[Euzenat, 2004] Jérôme Euzenat. An API for ontology alignment. In Proc. 3rd International
Semantic Web Conference (ISWC), volume 3298 of Lecture notes in computer science, pages
698–712, Hiroshima (JP), 2004. [45, 226, 239]

[Euzenat, 2005] Jérôme Euzenat. Alignment infrastructure for ontology mediation and other
applications. In Proc. International Workshop on Mediation in Semantic Web Services (ME-
DIATE), pages 81–95, Amsterdam (NL), 2005. [265]

[Euzenat, 2007] Jérôme Euzenat. Semantic precision and recall for ontology alignment eval-
uation. In Proc. 20th International Joint Conference on Artificial Intelligence (IJCAI), pages
248–253, Hyderabad (IN), 2007. [113, 212, 273]

[Everitt, 1993] Brian Everitt. Cluster analysis. New York Press, 1993. [162]
[Fagin et al., 1995] Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reason-

ing about knowledge. The MIT press, Cambridge (MA US), 1995. [52, 54, 55]
[Fagin et al., 2004] Ronald Fagin, Phokion Kolaitis, Lucian Popa, and Wang Chiew Tan.

Composing schema mappings: Second-order dependencies to the rescue. In Proc. 23rd
Symposium on Principles of Database systems (PODS), pages 83–94, Paris (FR), 2004.
[177]

[Fellbaum, 1998] Christiane Fellbaum. WordNet: an electronic lexical database. The MIT
Press, Cambridge (MA US), 1998. [87]

[Fellegi and Sunter, 1969] Ivan Fellegi and Alan Sunter. A theory for record linkage. Journal
of the American Statistical Association, 64(328):1183–1210, 1969. [107]

[Fensel et al., 2007] Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn, Michael
Stollberg, Dumitru Roman, and John Domingue. Enabling semantic web services: the web
service modeling ontology. Springer, Heidelberg (DE), 2007. [19]

[Fensel, 2004] Dieter Fensel. Ontologies: a silver bullet for knowledge management and
electronic commerce. Springer, Heidelberg (DE), 2nd edition, 2004. [1]

[FIPA0037, 2002] FIPA0037. FIPA ACL communicative act library specification. Technical
report, FIPA, 2002. http://www.fipa.org/specs/fipa00037. [21]

306 References

[FIPA0061, 2002] FIPA0061. FIPA ACL message structure specification, 2002.
http://www.fipa.org/specs/fipa00061. [21]

[Fleiss, 1973] Joseph Fleiss. Statistical methods for rates and proportions. John Wiley &
Sons, Chichester (UK), 1973. [173]

[Fowler et al., 1999] Jerry Fowler, Brad Perry, Marian Nodine, and Bruce Bargmeyer. Agent-
based semantic interoperability in InfoSleuth. ACM SIGMOD Record, 28(1):60–67, 1999.
[153]

[Franconi et al., 2003] Enrico Franconi, Gabriel Kuper, Andrei Lopatenko, and Luciano Ser-
afini. A robust logical and computational characterisation of peer-to-peer database systems.
In Proc. VLDB International Workshop on Databases, Information Systems and Peer-to-
Peer Computing (DBISP2P), pages 64–76, Berlin (DE), 2003. [54, 55]

[Gal et al., 2005a] Avigdor Gal, Ateret Anaby-Tavor, Alberto Trombetta, and Danilo Mon-
tesi. A framework for modeling and evaluating automatic semantic reconciliation. The
VLDB Journal, 14(1):50–67, 2005. [46, 125]

[Gal et al., 2005b] Avigdor Gal, Giovanni Modica, Hassan Jamil, and Ami Eyal. Automatic
ontology matching using application semantics. AI Magazine, 26(1):21–32, 2005. [160]

[Gal, 2006] Avigdor Gal. Managing uncertainty in schema matching with top-k schema map-
pings. Journal on Data Semantics, VI:90–114, 2006. [160]

[Gale and Shapley, 1962] David Gale and Lloyd Stowell Shapley. College admissions and
the stability of marriage. American Mathematical Monthly, 69(1):5–15, 1962. [148]

[Gangemi et al., 2003] Aldo Gangemi, Nicola Guarino, Claudio Masolo, and Alessandro
Oltramari. Sweetening WordNet with DOLCE. AI Magazine, 24(3):13–24, 2003. [66,
68, 111]

[Gangemi, 2004] Aldo Gangemi. Restructuring semi-structured terminologies for ontology
building: a realistic case study in fishery information systems. Deliverable D16, Wonder-
Web, 2004. [111]

[Ganter and Wille, 1999] Bernhard Ganter and Rudolf Wille. Formal concept analysis: math-
ematical foundations. Springer Verlag, Berlin (DE), 1999. [106]

[Garey and Johnson, 1979] Michael Garey and David Johnson. Computers and intractability:
a guide to the theory of NP-completeness. W. H. Freeman & Co., New York (NY US), 1979.
[98]

[Ghidini and Giunchiglia, 2001] Chiara Ghidini and Fausto Giunchiglia. Local models
semantics, or contextual reasoning = locality + compatibility. Artificial Intelligence,
127(2):221–259, 2001. [56]

[Ghidini and Giunchiglia, 2004] Chiara Ghidini and Fausto Giunchiglia. A semantics for ab-
straction. In Proc. 15th European Conference on Artificial Intelligence (ECAI), pages 343–
347, Valencia (ES), 2004. [41]

[Ghidini and Serafini, 1998] Chiara Ghidini and Luciano Serafini. Distributed first order log-
ics. In Proc. 2nd Conference on Frontiers of Combining Systems (FroCoS), pages 121–139,
Amsterdam (NL), 1998. [52, 54]

[Giunchiglia and Shvaiko, 2003a] Fausto Giunchiglia and Pavel Shvaiko. Semantic match-
ing. The Knowledge Engineering Review, 18(3):265–280, 2003. [62, 71, 113, 164]

[Giunchiglia and Shvaiko, 2003b] Fausto Giunchiglia and Pavel Shvaiko. Semantic match-
ing. In Proc. IJCAI Workshop on Ontologies and Distributed Systems, pages 139–146,
Acapulco (MX), 2003. [227]

[Giunchiglia and Yatskevich, 2004] Fausto Giunchiglia and Mikalai Yatskevich. Element
level semantic matching. In Proc. ISWC Meaning Coordination and Negotiation Workshop,
pages 37–48, Hiroshima (JP), 2004. [91, 164]

References 307

[Giunchiglia and Zaihrayeu, 2002] Fausto Giunchiglia and Ilya Zaihrayeu. Making peer
databases interact – a vision for an architecture supporting data coordination. In Proc. 6th
International Workshop on Cooperative Information Agents (CIA), pages 18–35, Madrid
(ES), 2002. [17]

[Giunchiglia et al., 2004] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-
Match: an algorithm and an implementation of semantic matching. In Proc. 1st European
Semantic Web Symposium (ESWS), volume 3053 of Lecture notes in computer science, pages
61–75, Hersounisous (GR), 10-12 May 2004. [63, 88, 113, 164]

[Giunchiglia et al., 2005a] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Se-
mantic schema matching. In Proc. 13rd International Conference on Cooperative Informa-
tion Systems (CoopIS), volume 3761 of Lecture notes in computer science, pages 347–365,
Agia Napa (CY), 2005. [11, 164]

[Giunchiglia et al., 2005b] Fausto Giunchiglia, Mikalai Yatskevich, and Enrico Giunchiglia.
Efficient semantic matching. In Proc. 2nd European Semantic Web Conference (ESWC),
volume 3532 of Lecture notes in computer science, pages 272–289, Hersounisous (GR),
2005. [165]

[Giunchiglia et al., 2006a] Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. En-
coding classifications into lightweight ontologies. In Proc. 3rd European Semantic Web
Conference (ESWC), volume 4011 of Lecture notes in computer science, pages 80–94,
Budva (ME), 2006. [31]

[Giunchiglia et al., 2006b] Fausto Giunchiglia, Fiona McNeill, and Mikalai Yatskevich. Web
service composition via semantic matching of interaction specifications. Technical Report
DIT-06-080, University of Trento, 2006. [19]

[Giunchiglia et al., 2006c] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Dis-
covering missing background knowledge in ontology matching. In Proc. 16th European
Conference on Artificial Intelligence (ECAI), pages 382–386, Riva del Garda (IT), 2006.
[91, 110, 164, 271]

[Giunchiglia et al., 2007] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Se-
mantic matching: Algorithms and implementation. Journal on Data Semantics, IX, 2007.
[164]

[Goasdoué et al., 2000] François Goasdoué, Véronique Lattes, and Marie-Christine Rousset.
The use of CARIN language and algorithms for information integration: The PICSEL sys-
tem. International Journal of Cooperative Information Systems, 9(4):383–401, 2000. [153]

[Goh, 1997] Cheng-Hian Goh. Representing and reasoning about semantic conflicts in het-
erogeneous information sources. PhD thesis, MIT, Cambridge (MA US), 1997. [41]

[Good, 1965] Irving John Good. The estimation of probabilities: an essay on modern
Bayesian methods. Classics series. The MIT press, Cambridge (MA US), 1965. [133]

[Gotoh, 1981] Osamu Gotoh. An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162(3):705–708, 1981. [79]

[Haas et al., 2005] Laura Haas, Mauricio Hernández, Howard Ho, Lucian Popa, and Mary
Roth. Clio grows up: from research prototype to industrial tool. In Proc. 24th International
Conference on Management of Data (SIGMOD), pages 805–810, Baltimore (MD US), 2005.
[177]

[Haase et al., 2004] Peter Haase, Björn Schnizler, Jeen Broekstra, Marc Ehrig, Frank van
Harmelen, Maarteen Menken, Peter Mika, Michal Plechawski, Pawel Pyszlak, Ronny
Siebes, Steffen Staab, and Christoph Tempich. Bibster – a semantics-based bibliographic
peer-to-peer system. Journal of Web Semantics, 2(1):99–103, 2004. [17]

[Hájek, 1998] Petr Hájek. The metamathematics of fuzzy logic. Kluwer, Dordrecht (NL),
1998. [121]

308 References

[Halevy et al., 2005] Alon Halevy, Naveen Ashish, Dina Bitton, Michael Carey, Denise
Draper, Jeff Pollock, Arnon Rosenthal, and Vishal Sikka. Enterprise information integra-
tion: successes, challenges and controversies. In Proc. 24th International Conference on
Management of Data (SIGMOD), pages 778–787, Baltimore (MD US), 2005. [11, 14]

[Hameed et al., 2004] Adil Hameed, Alun Preece, and Derek Sleeman. Ontology reconcilia-
tion. In Steffen Staab and Rudi Studer, editors, Handbook on ontologies, chapter 12, pages
231–250. Springer Verlag, Berlin (DE), 2004. [41, 43]

[Hamming, 1950] Richard Hamming. Error detecting and error correcting codes. Technical
Report 2, Bell System Technical Journal, 1950. [77]

[Hausdorff, 1914] Felix Hausdorff. Grundzüge der Mengenlehre. Verlag Veit, Leipzig (DE),
1914. [109]

[He and Chang, 2003] Bin He and Kevin Chang. Statistical schema matching across web
query interfaces. In Proc. 22nd International Conference on Management of Data (SIG-
MOD), pages 217–228, San Diego (CA US), 2003. [175]

[He and Chang, 2006] Bin He and Kevin Chang. Automatic complex schema matching
across web query interfaces: A correlation mining approach. ACM Transactions on
Database Systems, 31(1):1–45, 2006. [168, 199]

[He et al., 2004] Hai He, Weiyi Meng, Clement Yu, and Zonghuan Wu. Automatic integration
of web search interfaces with WISE-Integrator. The VLDB Journal, 13(3):256–273, 2004.
[180]

[He et al., 2005] Hai He, Weiyi Meng, Clement Yu, and Zonghuan Wu. WISE-Integrator: A
system for extracting and integrating complex web search interfaces of the deep web. In
Proc. 31st International Conference on Very Large Data Bases (VLDB), pages 1314–1317,
Trondheim (NO), 2005. [180]

[Hitzler et al., 2005] Pascal Hitzler, Jérôme Euzenat, Markus Krötzsch, Luciano Serafini,
Heiner Stuckenschmidt, Holger Wache, and Antoine Zimmermann. Integrated view and
comparison of alignment semantics. Deliverable 2.2.5, Knowledge web NoE, 2005. [51]

[Horrocks et al., 2004] Ian Horrocks, Peter Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, and Mike Dean. SWRL: a semantic web rule language combining OWL and
RuleML, 2004. http://www.w3.org/Submission/SWRL/. [225, 229]

[Hovy, 1998] Eduard Hovy. Combining and standardizing large-scale, practical ontologies
for machine translation and other uses. In Proc. 1st International Conference on Language
Resources and Evaluation (LREC), pages 535–542, Granada (ES), 1998. [154]

[Hu et al., 2005] Wei Hu, Ningsheng Jian, Yuzhong Qu, and Qanbing Wang. GMO: A graph
matching for ontologies. In Proc. K-CAP Workshop on Integrating Ontologies, pages 43–50,
Banff (CA), 2005. [182]

[Hull, 1997] Richard Hull. Managing semantic heterogeneity in databases: a theoretical
prospective. In Proc. 16th Symposium on Principles of Database Systems (PODS), pages
51–61, Tucson (AZ US), 1997. [41]

[Huza et al., 2006] Mirella Huza, Mounira Harzallah, and Francky Trichet. OntoMas: a tu-
toring system dedicated to ontology matching. In Proc. 1st ISWC International Workshop
on Ontology Matching (OM), pages 228–323, Athens (GA US), 2006. [273]

[Ichise et al., 2003] Ryutaro Ichise, Hideaki Takeda, and Shinichi Honiden. Integrating mul-
tiple internet directories by instance-based learning. In Proc. 18th International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 22–30, Acapulco (MX), 2003. [11, 173]

[Ichise et al., 2004] Ryutaro Ichise, Masahiro Hamasaki, and Hideaki Takeda. Discovering
relationships among catalogs. In Proc. 7th International Conference on Discovery Science,
volume 3245 of Lecture notes in computer science, pages 371–379, Padova (IT), 2004. [173]

[Ide and Véronis, 1998] Nancy Ide and Jean Véronis. Word Sense Disambiguation: the state
of the art. Computational Linguistics, 24(1):1–40, 1998. [87]

References 309

[Ives et al., 2004] Zachary Ives, Alon Halevy, Peter Mork, and Igor Tatarinov. Piazza: me-
diation and integration infrastructure for semantic web data. Journal of Web Semantics,
1(2):155–175, 2004. [17]

[Jaccard, 1901] Paul Jaccard. Distribution de la flore alpine dans le bassin des dranses et dans
quelques régions voisines. Bulletin de la société vaudoise des sciences naturelles, 37:241–
272, 1901. [106]

[Jacquemin and Tzoukermann, 1999] Christian Jacquemin and Évelyne Tzoukermann. NLP
for term variant extraction: synergy between morphology, lexicon and syntax. In Tomek
Strzalkowski, editor, Language information retrieval, pages 25–74. Kluwer, Boston (MA,
US), 1999. [85]

[Jaro, 1976] Matthew Jaro. UNIMATCH: A record linkage system: User’s manual. Technical
report, U.S. Bureau of the Census, Washington (DC US), 1976. [80]

[Jaro, 1989] Matthew Jaro. Advances in record-linkage methodology as applied to match-
ing the 1985 census of Tampa, Florida. Journal of the American Statistical Association,
84(406):414–420, 1989. [80]

[Jeffrey, 1983] Richard Jeffrey. The logic of decisions. University of Chicago Press, Chicago
(IL US), 1983. [168]

[Jian et al., 2005] Ningsheng Jian, Wei Hu, Gong Cheng, and Yuzhong Qu. Falcon-AO:
Aligning ontologies with Falcon. In Proc. K-CAP Workshop on Integrating Ontologies,
pages 87–93, Banff (CA), 2005. [182]

[Kalfoglou and Schorlemmer, 2003a] Yannis Kalfoglou and Marco Schorlemmer. IF-Map:
an ontology mapping method based on information flow theory. Journal on Data Semantics,
I:98–127, 2003. [177]

[Kalfoglou and Schorlemmer, 2003b] Yannis Kalfoglou and Marco Schorlemmer. Ontology
mapping: the state of the art. The Knowledge Engineering Review, 18(1):1–31, 2003. [42,
44, 51, 61, 153]

[Kang and Naughton, 2003] Jaewoo Kang and Jeffrey Naughton. On schema matching with
opaque column names and data values. In Proc. 22nd International Conference on Manage-
ment of Data (SIGMOD), pages 205–216, San Diego (CA US), 2003. [64, 173]

[Kashyap and Sheth, 1996] Vipul Kashyap and Amit Sheth. Semantic and schematic similar-
ities between database objects: a context-based approach. The VLDB Journal, 5(4):276–304,
1996. [61]

[Kashyap and Sheth, 1998] Vipul Kashyap and Amit Sheth. Semantic heterogeneity in global
information systems: The role of metadata, context and ontologies. In Michael Papazoglou
and Gunter Schlageter, editors, Cooperative information systems, pages 139–178. Academic
Press, New York (NY US), 1998. [41]

[Kensche et al., 2005] David Kensche, Christoph Quix, Mohamed Amine Chatti, and
Matthias Jarke. GeRoMe: A generic role based metamodel for model management. In
Proc. 4th International Conference on Ontologies, DataBases, and Applications of Seman-
tics (ODBASE), volume 3761 of Lecture notes in computer science, pages 1206–1224, Agia
Napa (CY), 2005. [236]

[Kim and Seo, 1991] Won Kim and Jungyun Seo. Classifying schematic and data hetero-
geneity in multidatabase systems. IEEE Computer, 24(12):12–18, 1991. [40]

[Kim et al., 2005] Jaehong Kim, Minsu Jang, Young-Guk Ha, Joo-Chan Sohn, and Sang-Jo
Lee. MoA: OWL ontology merging and alignment tool for the semantic web. In Proc. 18th
International Conference on Industrial and Engineering Applications of Artificial Intelli-
gence and Expert Systems (IEA/AIE), volume 3533 of Lecture notes in computer science,
pages 722–731, Bari (IT), 2005. [166]

310 References

[Klein, 2001] Michel Klein. Combining and relating ontologies: an analysis of problems and
solutions. In Proc. IJCAI Workshop on Ontologies and Information Sharing, Seattle (WA
US), 2001. [41, 42]

[Kohonen, 2001] Teuvo Kohonen. Self-organizing maps. Springer, Berlin (DE), 2001. [136]
[Kotis and Vouros, 2004] Konstantinos Kotis and George Vouros. HCONE approach to on-

tology merging. In Proc. 1st European Semantic Web Symposium (ESWS), volume 3053 of
Lecture notes in computer science, pages 137–151, Hersounisous (GR), 2004. [165]

[Kotis et al., 2006] Konstantinos Kotis, George Vouros, and Konstantinos Stergiou. Towards
automatic merging of domain ontologies: The HCONE-merge approach. Journal of Web
Semantics, 4(1):60–79, 2006. [165]

[Lacher and Groh, 2001] Martin Lacher and Georg Groh. Facilitating the exchange of ex-
plicit knowledge through ontology mappings. In Proc. 14th International Florida Artificial
Intelligence Research Society Conference (FLAIRS), pages 305–309, Key West (FL US),
2001. [170]

[Laera et al., 2006] Loredana Laera, Valentina Tamma, Jérôme Euzenat, Trevor Bench-
Capon, and Terry Payne. Reaching agreement over ontology alignments. In Proc. 5th
International semantic web Conference (ISWC), volume 4273 of Lecture notes in computer
science, pages 371–384, Athens (GA US), 2006. [21, 245, 248, 256]

[Lambrix and Edberg, 2003] Patrick Lambrix and Anna Edberg. Evaluation of ontology
merging tools in bioinformatics. In Proc. Pacific Symposium on Biocomputing, pages 589–
600, Kauai (HA US), 2003. [202]

[Langlais et al., 1998] Philippe Langlais, Jean Véronis, and Michel Simard. Methods and
practical issues in evaluating alignment techniques. In Proc. 17th International Conference
on Computational Linguistics (CoLing), pages 711–717, Montréal (CA), 1998. [210]

[Larson et al., 1989] James Larson, Shamkant Navathe, and Ramez Elmasri. A theory of at-
tributed equivalence in databases with application to schema integration. IEEE Transactions
on Software Engineering, 15(4):449–463, 1989. [61, 105]

[Le Berre, 2004] Daniel Le Berre. SAT4J: A satisfiability library for Java.
http://www.sat4j.org/, 2004. [253]

[Leacock et al., 1998] Claudia Leacock, Martin Chodorow, and George Miller. Using cor-
pus statistics and WordNet relations for sense identification. Computational Linguistics,
24(1):1–40, 1998. [101]

[Lee et al., 2002] Mong Li Lee, Liang Huai Yang, Wynne Hsu, and Xia Yang. XClust: clus-
tering XML schemas for effective integration. In Proc. 11th International Conference on
Information and Knowledge Management (CIKM), pages 292–299, McLean (VA US), 2002.
[96, 162]

[Léger et al., 2005] Alain Léger, Lyndon Nixon, and Pavel Shvaiko. On identifying knowl-
edge processing requirements. In Proc. 4th International Semantic Web Conference (ISWC),
volume 3729 of Lecture notes in computer science, pages 928–943, Galway (IE), 2005.
[247]

[Lenat and Guha, 1990] Douglas Lenat and Ramanathan Guha. Building large knowledge-
based systems. Addison Wesley, Reading (MA US), 1990. [66, 68, 111]

[Lenzerini, 2002] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc.
21st Symposium on Principles of Database Systems (PODS), pages 233–246, Madison (WI
US), 2002. [15, 16, 18, 44, 176]

[Leone et al., 2005] Nicola Leone, Gianluigi Greco, Giovambattista Ianni, Vincenzino Lio,
Giorgio Terracina, Thomas Eiter, Wolfgang Faber, Michael Fink, Georg Gottlob, Riccardo
Rosati, Domenico Lembo, Maurizio Lenzerini, Marco Ruzzi, Edyta Kalka, Bartosz Now-
icki, and Witold Staniszkis. The INFOMIX system for advanced integration of incomplete

References 311

and inconsistent data. In Proc. 24th International Conference on Management of Data (SIG-
MOD), pages 915–917, Baltimore (MD US), 2005. [153]

[Lerner, 2000] Barbara Staudt Lerner. A model for compound type changes encountered in
schema evolution. ACM Transactions on Database Systems, 25(1):83–127, 2000. [158]

[Lesk, 1986] Michael Lesk. Automatic sense disambiguation using machine readable dictio-
naries: how to tell a pine cone from an ice cream cone. In Proc. 5th Annual International
Conference on Systems Documentation (SIGDOC), pages 24–26, Toronto (CA), 1986. [87,
90]

[Levenshtein, 1965] Vladimir Levenshtein. Binary codes capable of correcting deletions, in-
sertions, and reversals. Doklady akademii nauk SSSR, 163(4):845–848, 1965. In Russian.
English Translation in Soviet Physics Doklady, 10(8) p. 707–710, 1966. [79]

[Li and Clifton, 1994] Wen-Syan Li and Chris Clifton. Semantic integration in heterogeneous
databases using neural networks. In Proc. 10th International Conference on Very Large Data
Bases (VLDB), pages 1–12, Santiago (CL), 1994. [108, 136, 176]

[Li and Clifton, 2000] Wen-Syan Li and Chris Clifton. SEMINT: a tool for identifying
attribute correspondences in heterogeneous databases using neural networks. Data and
Knowledge Engineering, 33(1):49–84, 2000. [176]

[Li et al., 2006] Yi Li, Juanzi Li, Duo Zhang, and Jie Tang. Result of ontology alignment with
RiMOM at OAEI-06. In Proc. 1st ISWC International Workshop on Ontology Matching
(OM), pages 181–190, Athens (GA US), 2006. [182]

[Lim et al., 1993] Ee-Peng Lim, Jaideep Srivastava, Satya Prabhakar, and James Richardson.
Entity identification in database integration. In Proc. 9th International Conference on Data
Engineering (ICDE), pages 294–301, Wien (AT), 1993. [107]

[Lin, 1998] Dekang Lin. An information-theoretic definition of similarity. In Proc. 15th
International Conference of Machine Learning (ICML), pages 296–304, Madison (WI US),
1998. [90]

[Lopez et al., 2005] Vanessa Lopez, Michele Pasin, and Enrico Motta. AquaLog: An
ontology-portable question answering system for the semantic web. In Proc. 2nd Euro-
pean Semantic Web Conference (ESWC), volume 3532 of Lecture notes in computer science,
pages 546–562, Hersounisous (GR), 2005. [23]

[Lopez et al., 2006] Vanessa Lopez, Enrico Motta, and Victoria Uren. PowerAqua: Fishing
the semantic web. In York Sure and John Domingue, editors, Proc. 3rd European Semantic
Web Conference (ESWC), volume 4011 of Lecture notes in computer science, pages 393–
410, Budva (ME), 2006. [23]

[Lovász and Plummer, 1986] László Lovász and Michael Plummer. Matching theory. North-
Holland, Amsterdam (NL), 1986. [148]

[Lovins, 1968] Julie Beth Lovins. Development of a stemming algorithm. Mechanical Trans-
lation and Computational Linguistics, 11(1):22–31, 1968. [85]

[Mädche and Staab, 2002] Alexander Mädche and Steffen Staab. Measuring similarity be-
tween ontologies. In Proc. 13th International Conference on Knowledge Engineering and
Knowledge Management (EKAW), volume 2473 of Lecture notes in computer science, pages
251–263, Siguenza (ES), 2002. [99, 104]

[Mädche and Zacharias, 2002] Alexander Mädche and Valentin Zacharias. Clustering
ontology-based metadata in the semantic web. In Proc. 6th European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases (PKDD), pages 348–360, Helsinki
(FI), 2002. [102]

[Mädche et al., 2002] Alexander Mädche, Boris Motik, Nuno Silva, and Raphael Volz.
MAFRA – a mapping framework for distributed ontologies. In Proc. 13th International
Conference on Knowledge Engineering and Knowledge Management (EKAW), volume 2473
of Lecture notes in computer science, pages 235–250, Siguenza (ES), 2002. [221, 222, 238]

312 References

[Madhavan et al., 2001] Jayant Madhavan, Philip Bernstein, and Erhard Rahm. Generic
schema matching with Cupid. In Proc. 27th International Conference on Very Large Data
Bases (VLDB), pages 48–58, Roma (IT), 2001. [104, 160]

[Madhavan et al., 2002] Jayant Madhavan, Philip Bernstein, Pedro Domingos, and Alon
Halevy. Representing and reasoning about mappings between domain models. In Proc. 18th
National Conference on Artificial Intelligence (AAAI), pages 122–133, Edmonton (CA),
2002. [35, 235]

[Madhavan et al., 2005] Jayant Madhavan, Philip Bernstein, An-Hai Doan, and Alon Halevy.
Corpus-based schema matching. In Proc. 21st International Conference on Data Engineer-
ing (ICDE), pages 57–68, Tokyo (JP), 2005. [183]

[Masolo et al., 2003] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, and
Alessandro Oltramari. Ontology library. Deliverable D18, Wonderweb, 2003. [228]

[Maynard and Ananiadou, 2001] Diana Maynard and Sophia Ananiadou. Term extraction
using a similarity-based approach. In Didier Bourigault, Christian Jacquemin, and Marie-
Claude Lhomme, editors, Recent advances in computational terminology, pages 261–278.
John Benjamins, Amsterdam (NL), 2001. [84, 85]

[Maynard, 1999] Diana Maynard. Term Recognition Using Combined Knowledge Sources.
PhD thesis, Department of Computing and Mathematics, Manchester Metropolitan Univer-
sity, Manchester (UK), 1999. [85]

[McCallum and Nigam, 1998] Andrew McCallum and Kamal Nigam. A comparison of event
models for naive Bayes text classification. In Proc. AAAI Workshop on Learning for Text
Categorization, pages 41–48, Madison (WI US), 1998. [133]

[McDermott and Dou, 2002] Drew McDermott and Dejing Dou. Representing disjunction
and quantifiers in RDF. In Proc 1st International Semantic Web Conference (ISWC), volume
2342 of Lecture notes in computer science, pages 250–263, Chia Laguna (IT), 2002. [163]

[McGuinness and Pinheiro da Silva, 2003] Deborah McGuinness and Paulo Pinheiro da
Silva. Infrastructure for web explanations. In Proc. 2nd International Semantic Web Con-
ference (ISWC), volume 2870 of Lecture notes in computer science, pages 113–129, Sanibel
Island (FL US), 2003. [248]

[McGuinness and Pinheiro da Silva, 2004] Deborah McGuinness and Paulo Pin-
heiro da Silva. Explaining answers from the semantic web: The Inference Web approach.
Journal of Web Semantics, 1(4):397–413, 2004. [245, 246, 247]

[McGuinness et al., 2000] Deborah McGuinness, Richard Fikes, James Rice, and Steve
Wilder. An environment for merging and testing large ontologies. In Proc. 7th International
Conference on the Principles of Knowledge Representation and Reasoning (KR), pages 483–
493, Breckenridge (CO US), 2000. [241]

[McNeill, 2006] Fiona McNeill. Dynamic ontology refinement. PhD thesis, University of
Edinburgh, Edinburgh (UK), 2006. [24]

[MDC, 1999] Open information model, version 1.0. http://mdcinfo/oim/oim10.html, 1999.
[161]

[Medjahed and Bouguettaya, 2005] Brahim Medjahed and Athman Bouguettaya. A multi-
level composability model for semantic web services. IEEE Transactions on Knowledge
and Data Engineering, 17(7):954–968, 2005. [19]

[Meilicke et al., 2006] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin. Im-
proving automatically created mappings using logical reasoning. In Proc. 1st ISWC In-
ternational Workshop on Ontology Matching (OM), pages 61–72, Athens (GA US), 2006.
[115]

[Melnik et al., 2002] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity
flooding: a versatile graph matching algorithm. In Proc. 18th International Conference on
Data Engineering (ICDE), pages 117–128, San Jose (CA US), 2002. [127, 161, 207, 211]

References 313

[Melnik et al., 2003a] Sergey Melnik, Erhard Rahm, and Philip Bernstein. Developing
metadata-intensive applications with Rondo. Journal of Web Semantics, 1(1):47–74, 2003.
[236]

[Melnik et al., 2003b] Sergey Melnik, Erhard Rahm, and Philip Bernstein. Rondo: A pro-
gramming platform for model management. In Proc. 22nd International Conference on
Management of Data (SIGMOD), pages 193–204, San Diego (CA US), 2003. [236]

[Melnik et al., 2005] Sergey Melnik, Philip Bernstein, Alon Halevy, and Erhard Rahm. Sup-
porting executable mappings in model management. In Proc. 24th International Conference
on Management of Data (SIGMOD), pages 167–178, Baltimore (MD US), 2005. [128, 235,
236, 259, 260]

[Melnik, 2004] Sergey Melnik. Generic Model Management Concepts and Algorithms.
Springer, Heidelberg (DE), 2004. [235]

[Melton (ed.), 2003] Jim Melton (ed.). Information technology — database languages —
SQL. ISO standard ISO/CEI 9075:2003, ISO, 2003. [36]

[Mena et al., 1996] Eduardo Mena, Vipul Kashyap, Amit Sheth, and Arantza Illarramendi.
Observer: An approach for query processing in global information systems based on in-
teroperability between pre-existing ontologies. In Proc. 4th International Conference on
Cooperative Information Systems (CoopIS), pages 14–25, Brussels (BE), 1996. [24, 153]

[Miles and Brickley, 2005a] Alistair Miles and Dan Brickley. SKOS core guide. Note, W3C,
2005. [231]

[Miles and Brickley, 2005b] Alistair Miles and Dan Brickley. SKOS core vocabulary. Note,
W3C, 2005. [231]

[Miller et al., 2000] Renée Miller, Laura Haas, and Mauricio Hernández. Schema mapping as
query discovery. In Proc. 26th International Conference on Very Large Data Bases (VLDB),
pages 77–88, Cairo (EG), 2000. [177]

[Miller et al., 2001] Renée Miller, Mauricio Hernández, Laura Haas, Lingling Yan, Howard
Ho, Ronald Fagin, and Lucian Popa. The Clio project: managing heterogeneity. ACM
SIGMOD Record, 30(1):78–83, 2001. [177]

[Miller, 1995] George Miller. WordNet: A lexical database for english. Communications of
the ACM, 38(11):39–41, 1995. [66, 86, 87]

[Milo and Zohar, 1998] Tova Milo and Sagit Zohar. Using schema matching to simplify het-
erogeneous data translation. In Proc. 24th International Conference on Very Large Data
Bases (VLDB), pages 122–133, New York (NY US), 1998. [155]

[Mitra and Wiederhold, 2002] Prasenjit Mitra and Gio Wiederhold. Resolving terminological
heterogeneity in ontologies. In Proc. ECAI Workshop on Ontologies and Semantic Interop-
erability, pages 45–50, Lyon (FR), 2002. [156]

[Mitra et al., 1999] Prasenjit Mitra, Gio Wiederhold, and Jan Jannink. Semi-automatic in-
tegration of knowledge sources. In Proc. 2nd International Conference on Information
Fusion, pages 572–581, Sunnyvale (CA US), 1999. [156]

[Mitra et al., 2000] Prasenjit Mitra, Gio Wiederhold, and Martin Kersten. A graph-oriented
model for articulation of ontology interdependencies. In Proc. 8th Conference on Extending
Database Technology (EDBT), volume 1777 of Lecture notes in computer science, pages
86–100, Praha (CZ), 2000. [156]

[Mitra et al., 2005] Prasenjit Mitra, Natalya Noy, and Anuj Jaiswal. Ontology mapping dis-
covery with uncertainty. In Proc. 4th International Semantic Web Conference (ISWC), vol-
ume 3729 of Lecture notes in computer science, pages 537–547, Galway (IE), 2005. [141,
142, 168]

[Mocan et al., 2006] Adrian Mocan, Emilia Cimpian, and Mick Kerrigan. Formal model for
ontology mapping creation. In Proc. 5th International Semantic Web Conference (ISWC),

314 References

volume 4273 of Lecture notes in computer science, pages 459–472, Athens (GA US), 2006.
[243]

[Mochol et al., 2006] Malgorzata Mochol, Anja Jentzsch, and Jérôme Euzenat. Applying an
analytic method for matching approach selection. In Proc. 1st ISWC International Workshop
on Ontology Matching (OM), pages 37–48, Athens (GA US), 2006. [273]

[Modica et al., 2001] Giovanni Modica, Avigdor Gal, and Hasan Jamil. The use of machine-
generated ontologies in dynamic information seeking. In Proc. 9th International Conference
on Cooperative Information Systems (CoopIS), volume 2172 of Lecture notes in computer
science, pages 433–448, Trento (IT), 2001. [159]

[Monge and Elkan, 1997] Alvaro Monge and Charles Elkan. An efficient domain-
independent algorithm for detecting approximately duplicate database records. In Proc.
SIGMOD Workshop on Data Mining and Knowledge Discovery, Tucson (AZ US), 1997.
[79]

[Munkres, 1957] James Munkres. Algorithms for the assignment and transportation prob-
lems. SIAM Journal on Applied Mathematics, 5(1):32–38, 1957. [148]

[Naumann et al., 2002] Felix Naumann, Ching-Tien Ho, Xuqing Tian, Laura Haas, and Nim-
rod Megiddo. Attribute classification using feature analysis. In Proc. 18th International
Conference on Data Engineering (ICDE), page 271, San Jose (CA US), 2002. [177]

[Navathe and Buneman, 1986] Shamkant Navathe and Peter Buneman. Integrating user
views in database design. IEEE Computer, 19(1):50–62, 1986. [97]

[Needleman and Wunsch, 1970] Saul Needleman and Christian Wunsch. A general method
applicable to the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48(3):443–453, 1970. [79]

[Nejdl et al., 2002] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sin-
tek, Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch. Edutella: A P2P
networking infrastructure based on RDF. In Proc. 11th International World Wide Web Con-
ference (WWW), pages 604–615, Honolulu (HA US), 2002. [17]

[Niles and Pease, 2001] Ian Niles and Adam Pease. Towards a standard upper ontology. In
Proc. 2nd International Conference on Formal Ontology in Information Systems (FOIS),
pages 2–9, Ogunquit (ME US), 2001. [66, 68, 111]

[Nodine et al., 2000] Marian Nodine, Jerry Fowler, Tomasz Ksiezyk, Brad Perry, Malcolm
Taylor, and Amy Unruh. Active information gathering in infosleuth. International Journal
of Cooperative Information Systems, 9(1-2):3–28, 2000. [153]

[Nottelmann and Straccia, 2005] Henrik Nottelmann and Umberto Straccia. sPLMap: A
probabilistic approach to schema matching. In Proc. 27th European Conference on In-
formation Retrieval Research (ECIR), pages 81–95, Santiago de Compostela (ES), 2005.
[176]

[Nottelmann and Straccia, 2006] Henrik Nottelmann and Umberto Straccia. A probabilistic,
logic-based framework for automated web directory alignment. In Zongmin Ma, editor, Soft
computing in ontologies and the semantic web, volume 204 of Studies in fuzziness and soft
computing, pages 47–77. Springer Verlag, 2006. [176]

[Noy and Klein, 2004] Natalya Noy and Michel Klein. Ontology evolution: Not the same as
schema evolution. Knowledge and Information Systems, 6(4):428–440, 2004. [11, 42]

[Noy and Musen, 1999] Natalya Noy and Marc Musen. SMART: Automated support for
ontology merging and alignment. In Proc. 12th Workshop on Knowledge Acquisition, Mod-
eling and Management (KAW), Banff (CA), 1999. [159]

[Noy and Musen, 2000] Natalya Noy and Mark Musen. PROMPT: Algorithm and tool for
automated ontology merging and alignment. In Proc. 17th National Conference of Artificial
Intelligence (AAAI), pages 450–455, Austin (TX US), 2000. [10, 242]

References 315

[Noy and Musen, 2001] Natalya Noy and Mark Musen. Anchor-PROMPT: Using non-local
context for semantic matching. In Proc. IJCAI Workshop on Ontologies and Information
Sharing, pages 63–70, Seattle (WA US), 2001. [159, 242]

[Noy and Musen, 2002a] Natalya Noy and Mark Musen. Evaluating ontology-mapping tools:
requirements and experience. In Proc. 1st EKAW Workshop on Evaluation of Ontology Tools
(EON), pages 1–14, Siguenza (ES), 2002. [196, 198]

[Noy and Musen, 2002b] Natalya Noy and Mark Musen. PromptDiff: A fixed-point algo-
rithm for comparing ontology versions. In Proc. 18th National Conference on Artificial
Intelligence (AAAI), pages 744–750, Edmonton (CA), 2002. [11, 159, 242]

[Noy and Musen, 2003] Natalya Noy and Marc Musen. The PROMPT suite: interactive tools
for ontology merging and mapping. International Journal of Human-Computer Studies,
59(6):983–1024, 2003. [159, 242]

[Noy and Musen, 2004] Natalya Noy and Mark Musen. Ontology versioning in an ontology
management framework. IEEE Intelligent Systems, 19(4):6–13, 2004. [11]

[Noy, 2004a] Natalya Noy. Semantic integration: A survey of ontology-based approaches.
ACM SIGMOD Record, 33(4):65–70, 2004. [153]

[Noy, 2004b] Natalya Noy. Tools for mapping and merging ontologies. In Steffen Staab and
Rudi Studer, editors, Handbook on ontologies, chapter 18, pages 365–384. Springer Verlag,
Berlin (DE), 2004. [242]

[Oberle et al., 2004] Daniel Oberle, Raphael Volz, Steffen Staab, and Boris Motik. An exten-
sible ontology software environment. In Steffen Staab and Rudi Studer, editors, Handbook
on ontologies, chapter 15, pages 299–319. Springer Verlag, Berlin (DE), 2004. [241, 243]

[Oundhakar et al., 2005] Swapna Oundhakar, Kunal Verma, Kaarthik Sivashanugam, Amit
Sheth, and John Miller. Discovery of web services in a multi-ontology and federated registry
environment. International Journal of Web Services Research, 2(3):1–32, 2005. [19]

[Özsu and Valduriez, 1999] Tamer Özsu and Patrick Valduriez. Principles of distributed
database systems. Prentice Hall, Englewood Cliffs (NJ US), 2nd edition, 1999. [13]

[Palopoli et al., 1998] Luigi Palopoli, Domenico Saccà, and Domenico Ursino. An automatic
techniques for detecting type conflicts in database schemes. In Proc. 7th International Con-
ference on Information and Knowledge Management (CIKM), pages 306–313, Bethesda
(ML US), 1998. [155]

[Palopoli et al., 2000] Luigi Palopoli, Luigi Pontieri, Giorgio Terracina, and Domenico
Ursino. Intensional and extensional integration and abstraction of heterogeneous databases.
Data and Knowledge Engineering, 35(3):201–237, 2000. [155]

[Palopoli et al., 2003a] Luigi Palopoli, Domenico Saccá, Giorgio Terracina, and Domenico
Ursino. Uniform techniques for deriving similarities of objects and subschemes in heteroge-
neous databases. IEEE Transactions on Knowledge and Data Engineering, 15(2):271–294,
2003. [155]

[Palopoli et al., 2003b] Luigi Palopoli, Giorgio Terracina, and Domenico Ursino. DIKE: a
system supporting the semi-automatic construction of cooperative information systems from
heterogeneous databases. Software–Practice and Experience, 33(9):847–884, 2003. [155]

[Pan et al., 2005] Rong Pan, Zhongli Ding, Yang Yu, and Yun Peng. A Bayesian network ap-
proach to ontology mapping. In Proc. 3rd International Semantic Web Conference (ISWC),
volume 3298 of Lecture notes in computer science, pages 563–577, Hiroshima (JP), 2005.
[141, 167]

[Paolucci et al., 2002] Massimo Paolucci, Takahiro Kawamura, Terry Payne, and Katia
Sycara. Semantic matching of web services capabilities. In Proc. 1st International Se-
mantic Web Conference (ISWC), volume 2342 of Lecture notes in computer science, pages
333–347, Chia Laguna (IT), 2002. [19]

316 References

[Parent and Spaccapietra, 1998] Christine Parent and Stefano Spaccapietra. Issues and ap-
proaches of database integration. Communications of the ACM, 41(5):166–178, 1998. [11,
13, 61]

[Parent and Spaccapietra, 2000] Christine Parent and Stefano Spaccapietra. Database integra-
tion: the key to data interoperability. In Mike Papazoglou, Stefano Spaccapietra, and Zahir
Tari, editors, Object-oriented data modeling, chapter 9, pages 221–253. The MIT Press,
Cambridge (MA US), 2000. [115, 153]

[Pedersen et al., 2004] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Word-
Net::Similarity – measuring the relatedness of concepts. In Proc. 19th National Conference
on Artificial Intelligence (AAAI), pages 1024–1025, San Jose (CA US), 2004. [91]

[Pinheiro da Silva et al., 2004] Paulo Pinheiro da Silva, Deborah McGuinness, and Richard
Fikes. A proof markup language for semantic web services. Technical Report TR KSL-04-
01, Stanford University, 2004. [274]

[Pinheiro da Silva et al., 2006] Paulo Pinheiro da Silva, Deborah McGuinness, and Richard
Fikes. A proof markup language for semantic web services. Information Systems,
31(4):381–395, 2006. [248]

[Porter, 1980] Martin Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980. [85]

[Preece et al., 2000] Alun Preece, Kit-Ying Hui, Alex Gray, Philippe Marti, Trevor Bench-
Capon, Dean Jones, and Zhan Cui. The KRAFT architecture for knowledge fusion and
transformation. Knowledge-Based Systems, 13(2-3):113–120, 2000. [153]

[Prud’hommeaux and Seaborne (ed.), 2007] Eric Prud’hommeaux and Andrew Seaborne
(ed.). SPARQL query language for RDF. Working draft, W3C, 2007. [45]

[Qu et al., 2006] Yuzhong Qu, Wei Hu, and Gong Chen. Constructing virtual documents for
ontology matching. In Proc. 15th International World Wide Web Conference (WWW), pages
23–31, Edinburgh (UK), 2006. [81, 182]

[Quinlan, 1993] John Ross Quinlan. C4.5: Programs for machine learning. Morgan Kauf-
mann Publishers, Menlo Park (CA US), 1993. [138]

[Rahm and Bernstein, 2001] Erhard Rahm and Philip Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal, 10(4):334–350, 2001. [61, 63, 64, 68, 71,
92, 153]

[Rahm et al., 2004] Erhard Rahm, Hong-Hai Do, and Sabine Maßmann. Matching large
XML schemas. ACM SIGMOD Record, 33(4):26–31, 2004. [68, 69]

[Resnik, 1995] Philipp Resnik. Using information content to evaluate semantic similarity in
a taxonomy. In Proc. 14th International Joint Conference on Artificial Intelligence (IJCAI),
pages 448–453, Montréal (CA), 1995. [90]

[Resnik, 1999] Phillip Resnik. Semantic similarity in a taxonomy: an information-based mea-
sure and its application to problems of ambiguity in natural language. Journal of Artificial
Intelligence Research, 11:95–130, 1999. [90]

[Robertson and Jones, 1976] Stephen Robertson and Karen Spärck Jones. Relevance weight-
ing of search terms. Journal of the American Society for Information Science, 27(3):129–
146, 1976. [81]

[Robertson et al., 2006] Dave Robertson, Fausto Giunchiglia, Frank van Harmelen, Maur-
izio Marchese, Marta Sabou, Marco Schorlemmer, Nigel Shadbolt, Ronnie Siebes, Carles
Sierra, Chris Walton, Srinandan Dasmahapatra, Dave Dupplaw, Paul Lewis, Mikalai Yatske-
vich, Spyros Kotoulas, Adrian Perreau de Pinninck, and Antonis Loizou. Open knowledge
semantic webs through peer-to-peer interaction. Technical Report DIT-06-034, University
of Trento, 2006. [19]

[Roddick, 1995] John Roddick. A survey of schema versioning issues for database systems.
Information and Software Technology, 37(7):383–393, 1995. [11]

References 317

[Roman et al., 2004] Dumitru Roman, Holger Lausen, and Uwe Keller. Web service mod-
eling ontology standard (WSMO-standard). Working Draft D2v0.2, WSMO, 2004. [19,
229]

[Rousset et al., 2006] Marie-Christine Rousset, Philippe Adjiman, Philippe Chatalic,
François Goasdoué, and Laurent Simon. Somewhere in the semantic web. In Proc. 32nd
International Conference on Current Trends in Theory and Practice of Computer Science
(SofSem), volume 3831 of Lecture notes in computer science, pages 84–99, Merin (CZ),
2006. [16, 17]

[Russell and Norvig, 1995] Stuart Russell and Peter Norvig. Artificial intelligence: a modern
approach. Prentice Hall, Englewood Cliffs (NJ US), 1995. [141, 172]

[Sabou et al., 2006a] Marta Sabou, Mathieu d’Aquin, and Enrico Motta. Using the semantic
web as background knowledge for ontology mapping. In Proc. 1st ISWC International
Workshop on Ontology Matching (OM), pages 1–12, Athens (GA US), 2006. [112]

[Sabou et al., 2006b] Marta Sabou, Vanessa Lopez, and Enrico Motta. Ontology selection for
the real semantic web: How to cover the Queen birthday dinner? In Proc. 15th International
Conference on Knowledge Engineering and Knowledge Management (EKAW), volume 4248
of Lecture notes in computer science, pages 96–111, Praha (CZ), 2006. [23]

[Saint-Onge, 1995] David Saint-Onge. Detecting and correcting malapropisms with lexical
chains. Master’s thesis, University of Toronto, Toronto (CA), 1995. [92]

[Salton and McGill, 1983] Gerard Salton and Michael McGill. Introduction to modern infor-
mation retrieval. McGraw-Hill, New York (NY US), 1983. [81]

[Salton, 1971] Gerard Salton. The SMART retrieval system: experiments in automatic infor-
mation processing. Prentice Hall, Englewood Cliffs (NJ US), 1971. [81]

[Sayyadian et al., 2005] Mayssam Sayyadian, Yoonkyong Lee, An-Hai Doan, and Arnon
Rosenthal. Tuning schema matching software using synthetic scenarios. In Proc. 31st Inter-
national Conference on Very Large Data Bases (VLDB), pages 994–1005, Trondheim (NO),
2005. [185, 272]

[Scharffe, 2005] François Scharffe. Mapping and merging tool design. Deliverable D7.2,
Ontology Management Working Group, 2005. [229]

[Schuh, 1999] Randall Schuh. Biological systematics: principles and applications. Cornell
University Press, Ithaca (NY US), 1999. [32]

[Schulten et al., 2001] Ellen Schulten, Hans Akkermans, Guy Botquin, Martin Dorr, Nicola
Guarino, Nelson Lopes, and Norman Sadeh. Call for participants: The e-commerce product
classification challenge. IEEE Intelligent Systems, 16(4):86–c3, 2001. [14]

[Serafini and Tamilin, 2005] Luciano Serafini and Andrei Tamilin. DRAGO: Distributed rea-
soning architecture for the semantic web. In Proc. 2nd European Semantic Web Conference
(ESWC), volume 3532 of Lecture notes in computer science, pages 361–376, Hersounisous
(GR), May 2005. [262, 264]

[Serafini et al., 2005] Luciano Serafini, Heiner Stuckenschmidt, and Holger Wache. A formal
investigation of mapping language for terminological knowledge. In Proc. 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 576–581, Edinburgh (UK),
2005. [220]

[Sheth and Larson, 1990] Amit Sheth and James Larson. Federated database systems for
managing distributed, heterogeneous, and autonomous databases. ACM Computing Surveys,
22(3):183–236, 1990. [11, 13, 40]

[Sheth et al., 1988] Amit Sheth, James Larson, Aloysius Cornelio, and Shamkant Navathe. A
tool for integrating conceptual schemas and user views. In Proc. 4th International Confer-
ence on Data Engineering (ICDE), pages 176–183, Los Angeles (CA US), 1988. [105]

[Shvaiko and Euzenat, 2005] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based
matching approaches. Journal on Data Semantics, IV:146–171, 2005. [61, 64, 65, 153]

318 References

[Shvaiko et al., 2005] Pavel Shvaiko, Fausto Giunchiglia, Paulo Pinheiro da Silva, and Deb-
orah McGuinness. Web explanations for semantic heterogeneity discovery. In Proc. 2nd
European Semantic Web Conference (ESWC), volume 3532 of Lecture notes in computer
science, pages 303–317, Hersounisous (GR), May 2005. [164, 245, 248]

[Shvaiko et al., 2006a] Pavel Shvaiko, Jérôme Euzenat, Natalya Noy, Heiner Stucken-
schmidt, Richard Benjamins, and Michael Uschold, editors. Proc. 1st ISWC International
Workshop on Ontology Matching (OM), Athens (GA US), 2006. [196]

[Shvaiko et al., 2006b] Pavel Shvaiko, Fausto Giunchiglia, Marco Schorlemmer, Fiona Mc-
Neill, Alan Bundy, Maurizio Marchese, Mikalai Yatskevich, Ilya Zaihrayeu, Bo Ho, Vanessa
Lopez, Marta Sabou, Joaqı́n Abian, Ronny Siebes, and Spyros Kotoulas. Dynamic ontology
matching: a survey. Deliverable 3.1, OpenKnowledge STREP, 2006. [17]

[Shvaiko, 2004] Pavel Shvaiko. Iterative schema-based semantic matching. Technical Report
DIT-04-020, University of Trento (IT), 2004. [114]

[Shvaiko, 2006] Pavel Shvaiko. Iterative Schema-based Semantic Matching. PhD thesis,
International Doctorate School in Information and Communication Technology, University
of Trento, Trento (IT), November 2006. [113]

[Silva et al., 2005] Nuno Silva, Paulo Maio, and João Rocha. An approach to ontology map-
ping negotiation. In Proc. K-CAP Workshop on Integrating Ontologies, pages 54–60, Banff
(CA), 2005. [255]

[Sirin et al., 2007] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: a practical OWL-DL reasoner. Journal of Web Semantics, 5, 2007. To
appear. [164, 264]

[Smith and Waterman, 1981] Temple Smith and Michael Waterman. Identification of com-
mon molecular subsequences. Journal of Molecular Biology, 147(1):195–197, 1981. [79]

[Smith et al., 2004] Mike Smith, Christopher Welty, and Deborah McGuinness (eds.). OWL
web ontology language guide. Recommendation, W3C, February 10 2004. [36]

[Smolka, 1992] Gerd Smolka. Feature constraints logics for unification grammars. Journal
of Logic Programming, 12(1):324–343, 1992. [226]

[Sotnykova et al., 2005] Anastasiya Sotnykova, Christèle Vangenot, Nadine Cullot, Nacéra
Bennacer, and Marie-Aude Aufaure. Semantic mappings in description logics for spatio-
temporal database schema integration. Journal on Data Semantics, III:143–167, 2005. [115]

[Spaccapietra and Parent, 1991] Stefano Spaccapietra and Christine Parent. Conflicts and
correspondence assertions in interoperable databases. SIGMOD Record, 20(4):49–54, 1991.
[11]

[Staab and Stuckenschmidt, 2006] Steffen Staab and Heiner Stuckenschmidt, editors. Seman-
tic web and peer-to-peer. Springer, Heidelberg (DE), 2006. [16]

[Staab and Studer, 2004] Steffen Staab and Rudi Studer. Handbook on ontologies. Interna-
tional handbooks on information systems. Springer Verlag, Berlin (DE), 2004. [36]

[Stoilos et al., 2005] Georgos Stoilos, Giorgos Stamou, and Stefanos Kollias. A string met-
ric for ontology alignment. In Proc. 4th International Semantic Web Conference (ISWC),
volume 3729 of Lecture notes in computer science, pages 624–637, Galway (IE), 2005. [80]

[Straccia and Troncy, 2005] Umberto Straccia and Raphaël Troncy. oMAP: Combining clas-
sifiers for aligning automatically OWL ontologies. In Proc. 6th International Conference on
Web Information Systems Engineering (WISE), pages 133–147, New York (NY US), 2005.
[179, 240]

[Straccia and Troncy, 2006] Umberto Straccia and Raphaël Troncy. Towards distributed in-
formation retrieval in the semantic web: Query reformulation using the oMAP framework.
In Proc. 3rd European Semantic Web Conference (ESWC), volume 4011 of Lecture notes in
computer science, pages 378–392, Budva (ME), 2006. [179]

References 319

[Stumme and Mädche, 2001] Gerd Stumme and Alexander Mädche. FCA-Merge: Bottom-
up merging of ontologies. In Proc. 17th International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 225–234, Seattle (WA US), 2001. [170]

[Su et al., 2006] Weifeng Su, Jiying Wang, and Frederick Lochovsky. Holistic schema match-
ing for web query interfaces. In Proc. 10th Conference on Extending Database Technology
(EDBT), volume 3896 of Lecture notes in computer science, pages 77–94, München (DE),
2006. [199]

[Sun and Lin, 2001] Aixin Sun and Ee-Peng Lin. Hierarchical text classification and evalu-
ation. In Proc. 1st International Conference on Data Mining (ICDM), pages 521–528, San
Jose (CA), 2001. [210]

[Sure et al., 2004] York Sure, Oscar Corcho, Jérôme Euzenat, and Todd Hughes, editors.
Proc. 3rd ISWC Workshop on Evaluation of Ontology-based tools (EON), Hiroshima (JP),
2004. [196]

[Tang et al., 2006] Jie Tang, Juanzi Li, Bangyong Liang, Xiaotong Huang, Yi Li, and Kehong
Wang. Using Bayesian decision for ontology mapping. Journal of Web Semantics, 4(1):243–
262, 2006. [182]

[Ting and Witten, 1999] Kai Ming Ting and Ian Witten. Issues in stacked generalization.
Journal of Artificial Intelligence Research, 10:271–289, 1999. [139, 141]

[Tsarkov and Horrocks, 2006] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic
reasoner: system description. In Proc. 3rd International Joint Conference on Automated
Reasoning (IJCAR), volume 4130 of Lecture notes in computer science, pages 292–297,
Seattle (WA US), 2006. Springer. [164]

[Tu and Yu, 2005] Kewei Tu and Yong Yu. CMC: Combining multiple schema-matching
strategies based on credibility prediction. In Proc. 10th International Conference on
Database Systems for Advanced Applications (DASFAA), volume 3453 of Lecture notes in
computer science, pages 888–893, Beijing (CN), 2005. [238]

[Tverski, 1977] Amos Tverski. Features of similarity. Psychological Review, 84(2):327–352,
1977. [74]

[Uschold and Gruninger, 2004] Mike Uschold and Michael Gruninger. Ontologies and se-
mantics for seamless connectivity. ACM SIGMOD Record, 33(4):58–64, 2004. [30]

[Uschold, 2005] Mike Uschold. Achieving semantic interoperability using RDF and
OWL - v4, 2005. http://lists.w3.org/Archives/Public/public-swbp-wg/2005Sep/att-
0027/SemanticII-v4.htm. [222]

[Valtchev and Euzenat, 1997] Petko Valtchev and Jérôme Euzenat. Dissimilarity measure for
collections of objects and values. In Proc. 2nd Symposium on Intelligent Data Analysis
(IDA), volume 1280 of Lecture notes in computer science, pages 259–272, London (UK),
1997. [94, 100]

[Valtchev, 1999] Petko Valtchev. Construction automatique de taxonomies pour l’aide à la
représentation de connaissances par objets. Thèse d’informatique, Université Grenoble 1,
Grenoble (FR), 1999. [83, 94, 95, 96, 102, 109, 110, 124]

[van Eijk et al., 2001] Rogier van Eijk, Frank de Boer, Wiebe van de Hoek, and John-Jules
Meyer. On dynamically generated ontology translators in agent communication. Interna-
tional Journal of Intelligent Systems, 16(5):587–607, 2001. [21]

[van Rijsbergen, 1975] Cornelis Joost (Keith) van Rijsbergen. Information retrieval. Butter-
worths, London (UK), 1975. http://www.dcs.gla.ac.uk/Keith/Preface.html. [205]

[Velegrakis et al., 2003] Yannis Velegrakis, Renée Miller, and Lucian Popa. Mapping adap-
tation under evolving schemas. In Proc. 29th International Conference on Very Large Data
Bases (VLDB), pages 584–595, Berlin (DE), 2003. [162]

320 References

[Velegrakis et al., 2004a] Yannis Velegrakis, Renée Miller, and Lucian Popa. Preserving
mapping consistency under schema changes. The VLDB Journal, 13(3):274–293, 2004.
[162]

[Velegrakis et al., 2004b] Yannis Velegrakis, Renée Miller, Lucian Popa, and John Mylopou-
los. ToMAS: A system for adapting mappings while schemas evolve. In Proc. 20th In-
ternational Conference on Data Engineering (ICDE), page 862, Boston (MA US), 2004.
[162]

[Visser et al., 1998] Pepijn Visser, Dean Jones, Trevor Bench-Capon, and Michael Shave. As-
sessing heterogeneity by classifying ontology mismatches. In Proc. 1st International Con-
ference on Formal Ontology in Information Systems (FOIS), pages 148–162, Trento (IT),
1998. [41]

[Vouros and Kotis, 2005] George Vouros and Konstantinos Kotis. Extending HCONE-merge
by approximating the intended interpretations of concepts iteratively. In Proc. 2nd European
Semantic Web Conference (ESWC), volume 3532 of Lecture notes in computer science,
pages 198–210, Hersounisous (GR), May 2005. [165]

[Wache et al., 2001] Holger Wache, Thomas Voegele, Ubbo Visser, Heiner Stuckenschmidt,
Gerhard Schuster, Holger Neumann, and Sebastian Hübner. Ontology-based integration of
information – a survey of existing approaches. In Proc. IJCAI Workshop on Ontologies and
Information Sharing, pages 108–117, Seattle (WA US), 2001. [11, 41, 61]

[Wang and Gasser, 2002] Jun Wang and Les Gasser. Mutual online ontology alignment. In
Proc. AAMAS Workshop on Ontologies in Agent Systems (OAS), Bologna (IT), 2002. [21]

[Wang et al., 2004] Jiying Wang, Ji-Rong Wen, Frederick Lochovsky, and Wei-Ying Ma.
Instance-based schema matching for web databases by domain-specific query probing. In
Proc. 30th International Conference on Very Large Data Bases (VLDB), pages 408–419,
Toronto (CA), 2004. [174]

[Wiesman et al., 2002] Floris Wiesman, Nico Roos, and Paul Vogt. Automatic ontology map-
ping for agent communication. In Proc. 1st International joint Conference on Autonomous
agents and multiagent systems (AAMAS), pages 563–564, Bologna (IT), 2002. [21]

[Winkler, 1999] William Winkler. The state of record linkage and current research problems.
Technical Report 99/04, Statistics of Income Division, Internal Revenue Service Publication,
1999. [80]

[Wolpert, 1992] David Wolpert. Stacked generalization. Neural Networks, 5(2):241–259,
1992. [139]

[Wooldridge, 2000] Mike Wooldridge. Reasoning about rational agents. The MIT press,
Cambridge (MA US), 2000. [52]

[Wu and Palmer, 1994] Zhibiao Wu and Martha Palmer. Verb semantics and lexical selec-
tion. In Proc. 32nd Annual Meeting of the Association for Computational Linguistics (ACL),
pages 133–138, Las Cruces (NM US), 1994. [101]

[Xu and Embley, 2003] Li Xu and David Embley. Discovering direct and indirect matches for
schema elements. In Proc. 8th International Conference on Database Systems for Advanced
Applications (DASFAA), pages 39–46, Kyoto (JP), 2003. [138, 179]

[Yager, 1988] Ronald Yager. On ordered weighted averaging aggregation operators in multi-
criteria decision making. IEEE Transactions on System, Man and Cybernetics, 18(1):183–
190, 1988. [126]

[Zaihrayeu, 2006] Ilya Zaihrayeu. Towards Peer-to-Peer Information Management Systems.
PhD thesis, International Doctorate School in Information and Communication Technology,
University of Trento, Trento (IT), March 2006. [16, 17]

[Zanobini, 2006] Stefano Zanobini. Semantic coordination: the model and an application to
schema matching. PhD thesis, International Doctorate School in Information and Commu-
nication Technology, University of Trento, Trento (IT), March 2006. [71]

References 321

[Zhang et al., 2004] Songmao Zhang, Peter Mork, and Olivier Bodenreider. Lessons learned
from aligning two representations of anatomy. In Proc. 13th Internation Conference on the
Principles of Knowledge Representation and Reasoning Conference (KR), pages 555–560,
Whistler (CA), 2004. [202]

[Zhdanova and Shvaiko, 2006] Anna Zhdanova and Pavel Shvaiko. Community-driven on-
tology matching. In Proc. 3rd European Semantic Web Conference (ESWC), volume 4011
of Lecture notes in computer science, pages 34–49, Budva (ME), 2006. [240, 265, 271]

[Zhdanova et al., 2005] Anna Zhdanova, Reto Krummenacher, Jan Henke, and Dieter Fensel.
Community-driven ontology management: DERI case study. In Proc. 4th International
Conference on Web Intelligence (WI), pages 73–79, Compiegne (FR), 2005. [18]

[Zimmermann and Euzenat, 2006] Antoine Zimmermann and Jérôme Euzenat. Three seman-
tics for distributed systems and their relations with alignment composition. In Proc. 5th
International Semantic Web Conference (ISWC), volume 4273 of Lecture notes in computer
science, pages 16–29, Athens (GA US), 2006. [52]

[Zimmermann et al., 2006] Antoine Zimmermann, Markus Krötzsch, Jérôme Euzenat, and
Pascal Hitzler. Formalizing ontology alignment and its operations with category theory.
In Proc. 4th International Conference on Formal Ontology in Information Systems (FOIS),
pages 277–288, Baltimore (MD US), 2006. [44, 51, 271]

[Zohar, 1997] Sagit Zohar. Schema-based data translation. Master’s thesis, Tel-Aviv Univer-
sity, Tel-Aviv (IL), 1997. [155]

Index

A searchable index can be found online at http://book.ontologymatching.org.

= (property assignment), 39
C (ontology classes), 39
D (domain of interpreta-

tion), 39
F (·, ·) (fallout), 207
H(·, ·) (Hamming distance),

204
I (ontology individuals), 39
I(·) (interpretation

function), 39
Mα(·, ·) (F-measure), 207
O(·, ·) (overall), 208
P (·, ·) (precision), 206
QL(·) (ontology entities),

46
R (ontology relations), 39
R (reference alignment),

204
R(·, ·) (recall), 206
T (ontology types), 39
V (ontology values), 39
W (·, ·) (weighted harmonic

mean), 215
∆(·, ·) (linkage measures),

109
Γ (equalising functions), 52
Λ (set of alignments), 54
M (set of models), 40
Ω (set of ontologies), 54
Σ (synonym resource), 87

Θ (correspondence
relations), 46

Ξ (confidence structure), 46
α (alignment), 50
⊥ (ontology exclusion), 39
δ (dissimilarity or distance),

74
ε

empty string, 75
iteration threshold, 130

γ(·) (equalising function),
52

∈ (ontology instantiation),
39

≤ (ontology specialisation),
39

|=
alignment satisfaction, 53
alignment validity, 53
correspondence satisfac-

tion, 53
ontology entailment, 40
satisfiability of a formula,

39
µ (merge), 51
ω(·, ·) (alignment proxim-

ity), 210
π (probability), 90
σ (similarity), 73

accuracy (matching -), 207
agent, 9, 19–22, 25, 264,

273
cognitive, 20
communication, 26

language, 21
reactive, 20

aggregation
fuzzy, 125, 125
similarity -, 121, 240

AGROVOC, 203
algebra, 235
Alignment

API, 83, 122, 179, 196,
229, 239–240, 243,
260, 262, 264

format, 196, 226–229,
234, 239, 241

alignment, 2, 42, 47, 45–56,
219

bijective -, 49
completeness, 206
completion, 199
correctness, 205
edition, 272, 273
evaluation, 240
evolution, 16, 163
extraction, 119, 144–149,

240
greedy -, 148

324 Index

extractor, 145
filter, 145
format, 273
infrastructure, 273
initial -, 143
injectivity, 49, 110, 145,

148, 200
maximal cardinality -,

148
metadata, 265
multiplicity, 49, 199, 200
one-to-one -, 49, 62, 148,

157, 170, 171, 174,
179, 184, 185, 187,
200, 271

reference -, 204–208, 210
relation, 45

interpretation, 53
reuse, 66, 68, 271
reversible -, 49
satisfaction, 53
satisfiability, 53, 112
semantics, 51–56
service, 264–265
sharing, 264
structure, 45–49
surjective -, 49
total -, 49, 145, 148, 200,

260, 262
update, 199
validity, 53

ambient computing, 22, 264
Anchor-Prompt, 103, 159
anchoring, 111, 112
antonym, 86
APFEL, 144, 184–185, 192,

240
application-specific evalu-

ation, 197, 211, 213,
273

approximate algorithm, 62
approximation (ontology -),

50
argumentation, 19, 248, 274
array, 97
Artemis, 62, 157, 188, 190
ArtGen, 156, 157
articulation axiom, see

bridge axiom

ASCO, 167, 188, 191
associativity, 121
authoritativeness, 246
Automatch, 172–173, 189,

191
AutoMed, 153
autonomy

design -, 16, 17
participation -, 16
total -, 16, 17

average, 126, 185
linkage, 109
ordered weighted -, 126,

126
weighted -, 125, 124–125,

140, 179, 214
axiom (bridge -), 10, 43,

163, 260, 264, 265

background
knowledge, 110
ontology, 110, 111

bag, 97
of words, 80, 81, 83, 167,

182
Bayesian

classification, 71, 252
learning, 133–135, 139,

171–173, 176, 177,
179, 183, 184, 187

network, 141–142, 167,
168

Bayesian classification, 251
BayesOWL, 188, 191
benchmark, 194

competence -, 197
suite, 194

best match, 147–149
BibSter, 17
bijective alignment, 49
BizTalk schema mapper,

259
blank normalisation, 76
BN mapping, 167–168
boundary condition, 121
bounded path matcher, 103
boundedness (evaluation

measure -), 210
bridge

axiom, 10, 25, 43, 163,
260, 264, 265

concept - (in MAFRA),
221

property - (in MAFRA),
221

rule, 163, 221, 223
semantic - (in MAFRA),

221
Brown corpus, 90
browsing (semantic web -),

22–24
built-in composition, 143

C-OWL, 223–225, 234, 262,
264, 265

CAIMAN, 170, 189, 191
cardinality, 67

compatibility, 96, 162
maximal -, 148
property -, 92, 93, 95–97

case normalisation, 76, 167
catalogue integration, 2, 9,

11, 13–14
categorical characterisation,

271
Chebichev distance, 123
Chimaera, 241–242
City-blocks distance, see

Manhattan distance
class, 37

exclusion, 38
specialisation, 38

classification, 31, 31–32,
164, 170, 173, 179,
191

of matching approaches,
63–72, 153, 154, 187

Clio, 162, 163, 177, 189,
191, 262

COMA, 62, 161, 178, 188,
190, 236–238

COMA++, 143, 161, 188,
190, 236–238

combination (matcher -), see
composition

communication (agent -),
20–22

commutativity, 121

Index 325

comparison evaluation, 197
compatibility

cardinality -, 96
datatype, 96
datatype -, 94
transformation -, 263

competence benchmark, 197
completeness (alignment -),

206
completion (alignment -),

199
composition, 63

built-in -, 143
opportunistic -, 143
parallel -, 119, 179

heterogeneous -, 120
homogeneous -, 120

sequential -, 117, 156,
160, 167, 173, 179

user-driven -, 143
web service -, 19–20, 43,

235
compound similarity, 121
computing

ambient -, 22
pervasive -, see ambient

computing
concatenation of strings, 74
concept

bridge (in MAFRA), 221
lattice, 106

conceptual model, 35
conceptualisation mismatch,

41
conditional probability

table, 141, 168
confidence, 62

degree, 46
structure, 46

consequence (ontology -),
40

constraint-based technique,
63, 66, 67, 92

context, 110
contextualising, 111
continuity

evaluation -, 194
property, 125

convergence (fixed point
algorithm -), 128, 130,
132

corpus, 90
-based similarity, 90
Brown, 90

Corpus-based matching,
183–184

correctness (alignment -),
205

correspondence, 42, 46
analysis, 81
graded -, 62
justified -, 245
satisfaction, 53

cosine similarity, 81, 84
cosynonymy similarity, 89
count, 226
cover (graph -), 148
coverage, 41, 51
CtxMatch, 164, 187, 188,

191
Cupid, 62, 160–161, 184,

188, 190
Cyc, 66, 68, 111

DAML+OIL, 221
data

analysis technique, 66, 70
integration, 9, 11, 14–17,

25, 52, 118, 175, 234,
235, 240, 262, 263,
271

set (evaluation -), 194,
198–203

transformation, 262
translation, 2, 25, 26, 43,

43, 222, 235, 261,
261–265

translator, see data
translation

value, 37
warehouse, 9, 11

database
federated -, 13
schema, 29, 32–33,

93, 154, 162, 163,
172–174, 176, 177,
184, 187, 235

matching, 2
datatype, 33, 37, 62, 93, 97,

170
compatibility, 94, 96

DCM, 168–169, 188, 191
decision tree, 135, 137–139,

180
learning, 138, 185

deep web matching, 24, 273
definiteness (property), 74
degree

confidence -, 46
of completeness, 206
of correctness, 205

DELTA, 154, 187, 190
delta threshold, 146
dependency graph, 252, 252
description logic, 112, 226

technique, 70, 114–115,
164

design autonomy, 16, 17
diacritic suppression, 76
Dice coefficient, 81, 84
dictionary, 84, 86
digit suppression, 76
DIKE, 155–156, 188, 190,

260
directory, 31, 31–32
disambiguation (word sense

-), 87, 92
disjointness, 63
dissemination (evaluation -),

194
dissimilarity, 73, 148

Leacock–Chodorow -, 92,
101

distance, 74
aggregation, see similarity

aggregation
Chebichev -, 123
City-block -, see

Manhattan
edit -, 78, 159, 161, 165,

180, 184, 185, 207,
209

Euclidean -, 81, 96, 123,
123, 174

Hamming -
on alignments, 204

326 Index

on multisets, 81
on sets, 81, 105, 123
on strings, 77

Hausdorff -, 109
Levenshtein -, 79, 122
Manhattan -, 81, 123,

123, 124
Minkowski -, 81, 123,

123
multidimentional -,

122–125
n-gram -, 161, 165, 184,

185
Needleman–Wunch -, 79
on sequences, 83
path -, 82
relative-size -, 95
tree -, 101

distributed
database, 13
knowledge, 55
system, 54

model, 54
document frequency

(inverse -), 82
DOLCE, 66, 68, 111
domain

of interpretation, 39, 52
property -, 93, 94, 104
specific ontology (tech-

nique based on -), 66,
68

DPLL procedure, 246,
253–255

Drago, 262, 264
DTD, 33, 96, 162, 229
Dublin core, 71
Dumas, 174, 189, 191
DWQ, 153

e-commerce, 13–16
edge count similarity, see

structural topological
dissimilarity

edit
distance, 78, 159, 161,

165, 180, 184, 185,
207, 209

edition

alignment -, 272, 273
ontology -, 10

effort-based
precision and recall, 211

effort-based precision and
recall, 211

element-based technique,
63, 64, 64, 93

elementary matchers, 63
emergent semantics, 18–19
empty

phrase, 91
word, 91

engineering (ontology -),
9–11

entailment, 50
enterprise information

integration, see data
integration

entity
–relationship model, 35
-relationship model, 62,

154, 155
interpretation, 45
language, 45, 46–48
ontology -, 37–39

EON, 196, 200
equalising function, 52
error minimisation, 144
eTuner, 185–186, 192
Euclidean distance, 81, 84,

96, 123, 123, 174
evaluation, 193–216

application-specific -,
197, 211, 213

comparison, 197
type, 196–198

evolution
alignment -, 16, 163
ontology -, 10–11, 241

exact algorithm, 62, 64
exclusion, 38
exclusivity, 148
executability, 234
exhaustivity, 63
explanation, 274
explicitation mismatch, 41
expressiveness, 233
extendibility, 233

extensional technique, 66,
105–110, 169, 170

external
resource, 199
structure-based technique,

92, 98–105
technique, 62, 64, 64

extraction (alignment -),
144–149, 240

extractor (alignment -), 145
extrinsic linguistic

technique, 67, 86–91

F-logic, 199
F-measure, 186, 207, 207,

210, 215
FaCT, 164
Falcon-AO, 143, 181–182,

189, 192, 229
fallout, 207
false

negative, 205, 206
positive, 87, 205, 205

FCA, see formal concepts
analysis

FCA-merge, 170, 189, 191,
260

feature path equations, 226
federated database, 13
feedback (relevance -), 144
filter

alignment -, 145
similarity -, 145

FIPA, 21
fixed point, 55, 127

computation, 126–133,
161, 181, 187

FMA, 68, 202
FOAF, 10
FOAM, 178–179, 184, 229,

240–241, 243
folksonomy, 29–31, 231
formal concept analysis,

106, 170
full linkage, 109
fuzzy aggregation, 125, 125

Galen, 202
Galois

Index 327

connection, 106
lattice, see concept lattice

GAV, see global-as-view
Gene ontology, 202
GeRoMe, 236
GLAV, see global-local-as-

view
global

-as-view, 15, 157, 228
-local-as-view, 15, 16,

176
knowledge, 54
maximal - similarity, 148

gloss, 87, 90, 91, 231
overlap, 90, 92

GLUE, 62, 171, 189, 191
gold standard, see reference

alignment
Gotoh distance, 79, 84
graded correspondence, 62
granularity, 41, 51

matcher -, 64
graph

-based technique, 66
cover, 148
dependency -, 252
matching, 127, 148

maximum weight -, 148,
174

minimum weight -, 148,
174

greedy alignment extraction,
148

H-Match, 143, 157–158,
188, 190

Hamming distance
on alignments, 204
on multisets, 81
on sets, 81, 105, 123
on strings, 77

hard threshold, 145
harmonic mean, 207, 215

weighted -, 215
Hausdorff distance, 109
HCONE, 165–166, 188,

191, 229
heterogeneity, 1, 9, 271

conceptual -, 41

language -, 198
pragmatic -, 42
semantic -, 41
semiotic -, 42
syntactic -, 41
terminological -, 41

heterogeneous parallel
composition, 120

homogeneity, 63
homogeneous parallel

composition, 120
homonym, 75, 86, 156
Horn clause, 225, 226
Hungarian method, 148
hypernym, 84, 86, 87–89,

165
hyponym, 67, 84, 86, 89,

156, 165

I3CON, 196
idempotency, 125
IF-Map, 177–178, 189, 192
Illinois Semantic Integration

Archive, 203
iMAP, 171–172, 189, 191,

248, 250–252
import (ontology -), 10
individual, 37
Inference Web, 248
InfoMix, 153
information

-theoretic similarity, 90,
92

integration, 9, 11–16, 23
retrieval, 179

InfoSleuth, 153
infrastructure (alignment -),

273
initial alignment, 143
injectivity (alignment -), 49,

110, 145, 148, 200
input, 64

dimensions, 62
kind of -, 66

instance, see individual
-based technique, 62, 63

instantiation, 38
instrinsic linguistic

technique, 84–85

integration
catalogue -, 9, 11, 13–14
data -, 9, 11, 14–17, 25,

234, 235, 240, 262,
263, 271

information -, 9, 11–16,
23

ontology -, 9, 43, 235
schema -, 9, 11, 13, 25

integrity constraint, 97
intelligibility (evaluation -),

194
internal structure-based

technique, 64, 66,
92–98, 107, 159

interoperability, see
heterogeneity

interpretation
domain of -, 39
entity -, 45
of alignment relations, 53
ontology -, 39, 45

intrinsic linguistic
technique, 67

inverse document frequency,
82

iPrompt, 242
ISWC, 196

Jaccard similarity, 84, 90,
97, 102, 106, 167

Jaro measure, 80, 84
Jaro–Winkler measure, 80,

84, 167
justification, 245
justified correspondence,

245

K-Cap, 196
k-nearest neighbours, see

nearest neighbours
KAON2, 241, 243
key, 93, 93, 107
KIF, 178, 199
kind of input, 66
knob, 185
knowledge base, 36
Knowledge web, 5
Kraft, 153

328 Index

language
-based technique, 66, 67,

83–92, 181
independence, 233
ontology -, 36–40
query -, 45

largest common directed
subgraph, see
maximum common
directed subgraph
problem

latent semantic indexing, 81,
166

LAV, see local-as-view
Leacock–Chodorow

dissimilarity, 92, 101
learning, 133–141, 273
lemmatisation, 85, 180
Levenshtein distance, 79,

84, 122, 167
lexicon, 86, 91

multilingual -, 86
semantico-syntactic -, 86

library of matchers, 272
linguistic

technique, 63, 66, 93,
157–160, 167, 180,
182

based on - resource,
66, 67, 156, 157,
160–162, 164, 165,
188

link stripping, 76
linkage dissimilarity

average -, 109
full -, 109
single -, 109, 167

list, 97
local

-as-view, 15, 16, 228
knowledge, 54

logical mismatch, 41
LSD, 71, 170–171, 184,

189, 191

MAFRA, 221–222, 234,
238–239

Magpie, 22

Manhattan distance, 81, 84,
123, 123, 124

MapForce, 259
MapOnto, 163, 188, 191,

262
mapping, 42, 138

in model management,
235

rule, 43, 138
marriage (stable -), 147–149
match-based similarity, 109
matcher composition,

117–121
matching, 42

accuracy, 207
coefficient, 81, 84
graph, 127
memory consumption,

212
multiple -, 44, 47, 48
process, 44, 44, 271
scalability, 212
schema -, 92
speed, 212, 216
usability, 213

matrix, 74, 119
maximality

evaluation measure -, 210
of similarity measures, 73

maximum
common directed

subgraph problem, 98
weight matching, 148,

174
mean (harmonic -), 207
measure

Jaro -, 80
Jaro–Winkler -, 80
Smoa -, 80

mediation, 27, 43
query -, 222, 263,

262–265
mediator, 10, 43, 234, see

mediation
web service -, 229

memory consumption, 212,
272

mereologic structure, 99,
103

merging (ontology -), 2, 10,
25–27, 43, 43, 51,
112, 159, 160, 163,
165, 166, 170, 180,
222, 226, 240, 242,
260, 260–261

meronym, 87
meronymy, 158
message translation, 26
metadata (alignment -), 265
method

composition, 117–121
dynamic -, 142–144

learning, 133–141
metric, 74
minimality, 74
minimisation (error -), 144
minimum

cost maximum flow, 173
weight matching, 148,

174
Minkowski distance, 81,

123, 123
mismatch, see heterogeneity

conceptualisation -, 41
explicitation -, 41
logical -, 41

mixed technique, 62
MoA, 166, 188, 191
Moda, 236
modal logic satisfiability,

114
model

-based technique, see
semantic technique

-theoretic semantics, 64,
271

conceptual -, 35
entity–relationship -, 35,

154
entity-relationship -, 155
in model management,

235
in Rondo, 236
management, 235–238
of a distributed system, 54
of aligned ontologies, 54
ontology -, 40

Index 329

in a distributed system,
55

ModelGen, 236
Monge–Elkan distance, 79,

84, 167
monotonicity, 121

increasing, 125
morphism, 50

in Rondo, 236
morphological

analysis, 85
normalisation, 160, 199

multi
-linguality, 271
-response linear

regression, 139
-set, 80, 81, 97
dimentional distance,

122–125
multialignment, 47
multiple matching, 47, 48,

199
multiplicity, 67

alignment -, 49, 199, 200
property -, 92, 93, 95, 96
similarity, 97

n-gram, 84
distance, 161, 165, 184,

185
similarity, 78

NAL, 203
name-based technique, 66,

74–93, 178, 252
natural language processing,

67
nearest neighbours, 135,

176, 183, 189
Needleman–Wunch

distance, 79, 84
negative

false -, 205, 206
true -, 205

neighbours (nearest -), 135,
176, 183, 189

neural network, 135–137,
139, 177, 185

NIST, 195, 196
noise, 207

NOM, 178–179, 189, 192,
240

norm (triangular -), 121,
121–122, 125, 128

normalisation, 160, 179, 180
measure, 74
morphological -, 160, 199
string -, 76–77

blank -, 76
case -, 76
diacritic -, 76
digit -, 76
link stripping -, 76
punctuation -, 76

OAEI, 195–196, 202, 203,
209, 216, 229, 240

object, see individual
-oriented model, 62
categorical -, 50
identifier, 236

Observer, 153
occurence

of a character in a string,
74

of a substring in a string,
75

OID, 236
OLA, 129, 181, 187, 189,

192, 229, 240
algorithm, 129–133

oMap, 179, 189, 192, 229,
240

OMEN, 168, 188, 191
one-to-one alignment, 49,

62, 148, 157, 170,
171, 174, 179, 184,
185, 187, 200, 271

ONION, 156–157
onto function, 49
OntoBuilder, 159–160, 188,

190, 260
ontology, 29, 36

approximation, 50
background -, 110, 111
consequence, 40
edition, 10, 260
engineering, 9–11, 25
entity, 37–39

language, 45, 46–48
evolution, 10–11, 241
import, 10
integration, 9, 43, 235
interpretation, 39, 45
language, 36–40, 199
merging, 2, 10, 25–27,

43, 43, 51, 159, 160,
163, 165, 166, 170,
180, 222, 226, 240,
242, 260, 260–261

model, 40
in a distributed system,

55
peer-to-peer -, 17–18
reconciliation, 43
satisfiability of a formula,

39
semantics, 39–40
syntax, 39
transformation, 25, 43,

226, 234, 261, 261,
263, 265

translation, 43, 163, 242
upper level -, 261
version, 10–11, 43

Ontology Alignment
Evaluation Initiative,
see OEAI

ontologymatching.org, 203
OntoMerge, 163, 187, 188,

191, 260
opportunistic composition,

143
ordered

weighted
average, 126

ordered weighted average,
126

oriented precision and
recall, 211

output dimension, 62
overall, 207, 207, 211
overlap, 84

proximity, 210
OWL, 17, 36–40, 45, 62,

92, 94, 96, 98, 100,
130, 157, 159, 163,
166, 179, 181, 187,

330 Index

190, 191, 199, 202,
221–223, 225, 226,
229, 234, 240, 242,
260, 264, 265

-DLP, 241
C-OWL, 223–224, 262,

264
SWRL, 225–226, 264

P2P, see peer-to-peer
parallel composition, 179
parameter, 143, 144, 184,

185, 199
tuning, 272

part-of-speech tagger, 84, 91
partially ordered synonym

resource, 87, 87, 90
participation autonomy, 16
path, 221

bounded - matcher, 103
distance, 82

peer-to-peer, 16–19, 25,
157, 263

ontology, 17–18
system, 9, 271, 273

semantic -, 16
Pellet, 164, 264
percentage threshold, 146
PerMIS, 196
perspective, 41, 51
pervasive computing, see

ambient computing
Picsel, 153
PML, 248
polysemy, 75
positive

false -, 87, 205, 205
true -, 86, 205, 205, 206

positiveness, 73
evaluation measure -, 210

pre-similarity, 74, 78
precision, 205, 205,

208–212, 215
/recall curve, 208
effort-based -, 211
generalised -, 208–212
oriented -, 211
relaxed -, 210
semantic -, 212

symmetric -, 211
process

dimension, 62
matching, 271
trace, 247

processors, 274
product

classification, 14
weighted -, 121, 214

Prolog, 178
Prompt, 10, 185, 242–243

Anchor-Prompt, 159, 188,
242

iPrompt, 242
PromptDiff, 159, 242,

243
PromptFactor, 242, 243

proof markup language, 248
property, 92

bridge (in MAFRA), 221
proportional threshold, 146
propositional

satisfiability, 113
technique, 113–114

Protégé, 10, 143, 242, 260
proximity (overlap -), 210
punctuation

normalisation, 167
suppression, 76

purpose independence, 234

QOM, 62, 178–179, 185,
189, 192, 240

quality (evaluation -), 194
query

answering, 2, 25, 43, 241
language, 45
mediation, 222, 263,

262–265
transformation, 25, 262

range (property -), 92, 94,
104

RDF, 17, 62, 178, 182, 226,
229, 233, 240

/XML, 229, 239
schema, 17, 159, 167,

191, 199, 231, 233,
238

RDFS, see RDF Schema
reasoning, 260, 264, 264
recall, 205, 206, 208–212,

215
effort-based -, 211
generalised -, 208–212
oriented -, 211
relaxed -, 210
semantic -, 212
symmeric -, 211

reconciliation (ontology -),
43

reference alignment,
204–208, 210

relation, 37
alignment, 45

relational
database model, 62
structure-based technique,

66, 92, 98–105,
156–158, 161, 167,
180–182, 188

relative size distance, 95
relaxed

precision, 210
recall, 210

relevance feedback, 144,
185

repository of structure, 66,
69

Resnik similarity, 90, 92
resource, 199

consumption, 212
reuse (alignment -), 66, 68
reuse-oriented matcher, 71
reversible alignment, 49
RiMOM, 182–183, 189, 192
role-value map, 226
Rondo, 127, 143, 146, 236,

235–237, 260, 262
rule

bridge -, 163, 221, 223
mapping -, 43, 138

RuleML, 225

S-Match, 62, 164–166, 187,
188, 248–255

SAT, 70, see propositional
satisfiability

Index 331

modal, see modal logic
satisfiability

solver, 113, 164, 246,
249, 253

SAT4J, 253, 254
satisfaction

of alignment, 53
of correspondence, 53

satisfiability
alignment -, 53, 112
by an ontology, 39
modal logic -, 112, 114
propositional logic -, 112,

113, 255
saturation, 63
SBI&NB, 173, 189, 191
scalability, 212
schema

-based technique, 62, 63
database -, 29, 32–33,

154, 162, 163,
172–174, 176, 177,
184, 187, 235

integration, 9, 11, 13, 25,
43

matching, 92
RDF -, 17, 159, 167, 191,

231, 233, 238
UML, 29
XML -, 17, 33, 94,

162–164, 171, 177,
179, 190–192, 199,
226, 235

SchemaIntegrator, 259
scope, see perspective
SecondString, 83
SEKT, 229

mapping language,
229–231, 234

selector (in Rondo), 236
semantic

bridge (in MAFRA), 221
method, 272
peer-to-peer system, 16
precision and recall, 212
technique, 62, 64, 64,

66, 70, 110–115, 163,
164, 248

web

browsing, 22–24
service, 19–20, 229

Semantic Bridge Ontology,
221–222, 234

Semantic Web Rule
Language, see SWRL

semantics
alignment -, 51–56
emergent -, 18–19
ontology -, 39–40

SEMINT, 176–177, 189,
191

sequential composition, 156,
160, 167, 173, 179

service
(in MAFRA), 221
web -, 9, 273

composition, 43
semantic -, 19, 26

set, 97
sharing (alignment -), 264
sigmoı̈d, 146, 179
Signal ontology, 202
silence, 207
similarity, 73, 148, 211

aggregation, 121–125,
240

compound -, 121
corpus-based -, 90
cosine -, 81
cosynonymy -, 89
filter, 145
global computation,

126–133
gloss-overlap -, 90
information theoretic -,

90, 92
Jaccard -, 90, 97, 106, 167
match-based -, 109
multiplicity, 97
n-gram -, 78
non symmetric -, 74
pre-, 74, 78
Resnik -, 90, 92
strength-based -, 208
structural topological -,

89, 92, 100
substring -, 77
synonymy -, 88

upward cotopic -, 102
vector-based -, 81, 175
Wu–Palmer -, 89, 92, 101

Similarity flooding, 127–
129, 132, 161, 188,
191, 236

SimPack, 83, 92
simplicity, 233
SIMS, 153
single linkage, 109, 167
singular value decomposi-

tion, 81
SKAT, 156–157, 188, 190,

260
SKOS, 203, 223, 231–234
SMART, see Prompt
Smith–Waterman measure,

79, 84
Smoa measure, 80, 84
SomeWhere, 17
soundex, 84
SPARQL, 264
SPEC, 197
specialisation, 38
speed, 212, 216
sPLMap, 176, 189, 191, 262
SQL, 33, 36, 177, 262, 263,

265
DLL, 199

stable marriage, 147–149
stacked generalisation,

139–141
statistical technique, 66, 70
stemmer, 91
stemming, see lemmatisa-

tion
stopword elimination, 85
strength-based similarity,

208
strengthening, 146–147
string, 74

-based technique, 66,
67, 76–83, 107,
154, 156, 159–161,
165, 167, 174, 176,
177, 179–181, 184,
187–189

concatenation, 74
equality, 77, 82

332 Index

normalisation, 76–77
occurence

of a string, 74
of a substring, 75

substring, 75
stringmetrics, 83
structural

technique, 66
topological dissimilarity,

89, 92, 100
structure

-based technique, 63, 64,
64, 66, 92–105, 178

internal - technique, 64,
66, 107

relational - technique, 66,
92, 98–105, 156–158,
161, 167, 180–182,
188

Stylus, 259
substring, 75

similarity, 77
test, 77

subsumption, 114
test, 114

sum (weighted -), 124,
122–125, 161, 162,
167, 171, 214

SUMO, 66, 68, 111
support vector machines,

185
surjective alignment, 49
SWRL, 223, 225–226, 228,

234, 240, 260, 264,
265

symmetric precision and
recall, 211

symmetry, 73
evaluation measure -, 210
property -, 92, 98

synonym, 67, 75, 86, 86, 88,
156, 162, 169

synonymy similarity, 88, 89
synset, 86, 87, 88–90
syntactic technique, 62, 64,

64
syntax (ontology -), 39
systematicity (evaluation -),

194

T-tree, 169–170, 189, 191
taxonomy, 31, 31–32,

99–103, 171
-based technique, 66, 69

term, 83, 86
extraction, 85
frequency, 82

-inverse document
frequency, 82, 84, 135,
167, 170, 174, 182

terminological
technique, see name-

based technique
terminology, 86
Tess, 158–159, 188, 190
TFIDF, see term frequency-

inverse document
frequency

thesaurus, 86, 91, 231, 232,
239

threshold, 144–146, 148,
156, 157, 159–161,
167–171, 173, 179,
183–185, 207, 240

delta -, 146
hard -, 145, 158
percentage -, 146
proportional -, 146

time
consumption, 272
processing -, 200

tokenisation, 84, 166, 238
ToMAS, 162–163, 188, 191,

262
total

alignment, 49, 145, 148,
200, 260, 262

autonomy, 16, 17
trace (process -), 247
TranScm, 187, 190
transformation

compatibility, 263
data -, 262
ontology -, 25, 43, 226,

234, 261, 261, 263,
265

query -, 25, 262
transitivity (property -), 92
translation

data -, 2, 25, 26, 43,
43, 222, 235, 261,
261–265

message -, 26
ontology -, 43, 163, 242

TransScm, 155, 262
TREC, 195–196, 208
tree distance, 101
triangular

inequality, 74
norm, 121, 121–122, 125,

128
true

negative, 205
positive, 86, 205, 205,

206
Tsimmis, 153
tuning (parameter -), 200,

272

ultrametric, 74
inequality, 74

UML, 29, 35, 96, 199, 221,
234

models, 235
update (alignment -), 199
upper level ontology, 68,

261
technique based on -, 66

upward cotopic similarity,
102

URI, 227, 229, 233
usability, 213
user

-driven composition, 143
input, 110, 199, 200, 210,

245
interaction, 142–144, 161,

166, 169, 185, 237
interface, 274

validity (alignement -), 53
value, 37
variable, 225
vector-based similarity, 81,

175
version, 242

ontology -, 10–11, 43

W3C, 222

Index 333

weakening, 146–147
web

compatibility, 233
deep -, 24
service, 9, 19–20, 273

composition, 43, 235
semantic -, 26, 229

weighted
average, 125, 124–125,

140, 179, 214
ordered, 126, 126

harmonic mean, 215
product, 121, 214
sum, 124, 122–125, 161,

162, 167, 171, 214
WHIRL, 139

learner, 135, 171
Wise-Integrator, 180–181,

264
Wise-integrator, 189, 192
word, 83

sense disambiguation, 87,
92, 167

WordNet, 66, 68, 87,
101, 102, 111–113,
122, 138, 156, 157,
162, 164–167, 180,
187–189, 199, 231,
239, 246, 251, 252

WSML, 234
WSMO, 229
WSMX, 243

Wu–Palmer similarity, 89,
92, 101

XClust, 162, 188, 191
XML, 33, 62, 164, 223, 233,

259
/RDF, 233
schema, 17, 29, 33, 94,

162–164, 171, 177,
179, 190–192, 199,
226, 235

matching, 2
Xpath, 221
XQuery, 177
XSLT, 177, 240, 262, 265

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

