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Abstract. In addition to functional models, 
stochastic modeling of observations plays an 
important role in GPS data processing. The 
stochastic model has influence over several issues 
of coordinates determination with GPS, such as the 
covariance matrix of the observations (which leads 
to weighting scheme) and the estimated covariance 
matrix of the parameters. In this paper we present 
an empirical stochastic approach to create 
observation covariance matrices for GPS. Our 
approach aims to a more realistic and complete 
information about the stochastic behavior of GPS 
observations and an improvement in quality and 
quality control of estimated coordinates. 
In the empirical approach the correlation functions 
and variances are computed using the observed data, 
instead. Therefore it is not necessary any a-priori 
assumption linking observables variances and 
correlations to elevation angle or time lags, usually 
given by formal models. The first step of this 
approach is a functional reduction of the 
observables, which is made according to the 
functional model used in the late adjustment. The 
objective of this first step is leading the observation 
time series to stationarity. An auto-regressive model 
is then adjusted, with the determination of its 
parameters and order. Parameters are estimated 
using least squares adjustment and the order 
determined by an assessment of residuals. Once all 
parameters of the stochastic model were determined 
empirically, it is used to create the observation 
covariance matrix to be used in the functional 
model. 
In the present case study, GPS baselines were 
processed. Analyses were made in terms of 
obtained coordinates and their estimated covariance 
matrices, aiming at an improvement in GPS quality 
control. Improvements of at least 11% in precision 
and accuracy were found when this empirical 
stochastic approach was used. Future research aims 
to the enhancement of the method until it is general 
enough to be used in any case of GPS data 
processing. 

K e y w o r d s .  Empi r i ca l ,  Stochast ic ,  GPS.  

1 Introduction 

The covariance matrix of observations plays a 
fundamental role in GPS data adjustment. Usually 
the method of least squares is used to compute the 
coordinates of a given receiver. In the adjustment 
the covariance matrix of observations drives how 
each one of the observations will contribute for the 
update of the parameters. This matrix includes not 
just variances, but also a relation between all 
observations, the covariances. A usual approach to 
estimate the covariance matrix of observations is to 
set a weight for all observations and then, in case of 
baseline, propagate it using the double difference 
operator. It is not assumed any correlation between 
observations made in two different epochs, the so 
called autocorrelations. The weights can be set 
based on different types of information, such as 
elevation angle of the satellite or signal-to-noise 
ratio. Sometimes even the identity matrix (equally 
weighted observations) is used. 
In this work, we are presenting an empirical 
approach to build the covariance matrix of 
observations. The main objective of such technique 
is populating the covariance matrix with realistic 
information, estimated by means of a stochastic 
analysis of the raw data. Trying to have as much as 
possible information inside the covariance matrix is 
a way to carry into the adjustment model a realistic 
picture of the quality and behavior of the 
observations. Eventually, the coordinates will be 
adjusted using this matrix. The ultimate goal of this 
work is to improve the quality of GPS data 
processing, as well as quality of the estimated 
precision for coordinates. 
In order to analyze the data assuming a stochastic 
behavior a few requirements need to be satisfied, 
such as stationarity. Because of that, the GPS data 
need to undergo some modifications before it can be 
used. In our Empirical Stochastic model (which will 
be called herein with ESto model) all analysis is 
made based on raw data, without any external 
information, before the adjustment. 
In next section a background explanation about 
stochastic processes and their analysis will be made. 
Next the treatment given to GPS data in order to 
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make its analysis as a stochastic process possible 
will be shown. A case study was carried out and its 
results are shown, as well as conclusions and 
recommendations for future work. 

2 Stochastic Processes 

A time series is a series of observations made 
through time. An important feature of a series is 
that, usually, the observations made at subsequent 
epochs are dependent on each other. The analysis of 
a time series is based on this dependency. 
A stochastic process is a statistical phenomena 
which occurs through time according to probability 
laws, [Box et. al., 1994]. A time series can be 
considered as a realization of a stochastic process. 
There is a particular process, called a stationary 
process, which has a particular statistic equilibrium 
state. A stochastic process is called widely 
stationary when its properties remain unaffected 
when the time origin is changed. This means that 
the joint probability function of a process with n 

observations zq,z& ..... zt,, observed at time instants 

t 1 , t  2 . . . . .  t n is the same as a process with n 

observations Z t l  -+-k ' Z t  2 -I-k . . . . .  Zt n +k ' observed at time 

instants t 1 + k , t  2 + k ..... t n + k for every integer k .  

If a process is stationary, we can say that: 

tO(z t )  = tO(Zt+k) 'V' k >_ O,t >_ O ,  (1) 

where p ( z t )  is the probability density function, and 

because of that, we can conclude that the mean of a 
stationary process is constant: 

oo 

Pt  = E ( z t )  = ~ z . , o ( z ) d z  , (2) 
- oo  

and therefore: 

/dr =/~,+k , (3) 

for every integer k. The mean of a process can be 
estimated with the equation: 

_ 1 n 

z = --. 2 z, . (4) 
n t=l 

And the variance of a process can be defined as: 

oo 

2 E [ ( z  t _ ~)2 S -- ]-- ~(z--  ~ - ) 2 p ( z ) d z .  (5) 
- o o  

The variance of a process can be estimated with the 
following equation: 

2 1 
S - - - - "  ~ (Z t -- ~)2 (6) 

n t=l 

The stationarity of a process implies that the joint 
probability function V ( z t l , z t 2  ) is the same for any 

instants tl and t2, and for the same time interval 
between them. This means that we can estimate the 
joint probability function of a process for different 
time intervals k .  The covariance between the values 

z t and Zt+k ,  separated by a time interval k ,  which 

is constant for every t for a stationary process is 
called the auto-covariance function, and can be 
defined by: 

Zk : c o v ( z t , z t + k ) : E [ ( z t -  Z)(Zt+k -Z) ] .  (7) 

It is possible to estimate the auto-correlation 
function of a process for a given lag k with the 
following equation: 

Pk ~/E[(z t _ Z)2]. E[(zt+ k _ Z)2] t:l s 2 " 

Based on this equations and the assumption behind 
them, the variances for GPS observables are 
computed in the ESto model, which will be 
explained in next session. 

3 ESto Model 

In ESto model, the previously described approaches 
are used to estimate the correlations between 
different observations (made at different time and/or 
from different satellite pairs), as well as the 
variances for each one of the observed satellites. 
The input of the model is the raw data, and the 
output is the stochastic parameters. 
As stated in the previous section, a stochastic 
process needs to have certain characteristics in order 
to be used for estimation of variances and 
covariances. Since the objective of this work is to 
analyze GPS data as a stochastic process, it is 
necessary to modify the original time series of 
observations to satisfy the assumptions made in 
stochastic analysis. The main assumption that needs 
to be satisfied is the stationarity of the process. It is 
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clear that GPS observations are not stationary, 
because they are related to the distances between 
satellite and receivers (plus errors and biases) and 
always vary with time. Figure 1 shows an example 
of double differenced pseudoranges through time. 
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Fig. 1 Double differenced pseudoranges time series. 

These observations could not be used directly in a 
stochastic analysis, and therefore need to be 
modified. In order to get a stationary series from the 
measurements, they are reduced by using the 
approximate geometric distances between receiver 
and satellite antennas, according to: 

AVPre d = AVPob s - A V p ,  (9) 
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where AVPobs is the double differenced observed 

pseudorange, AVp is the double differenced 

geometric distance between receiver and satellite 
antennas and AVPred is the double differenced 

reduced pseudorange. This simple reduction can be 
used in this case because, as it is going to be 
mentioned later, we are dealing with short length 
baselines, where the most of errors and biases are 
supposedly eliminated. Figure 2 shows the double 
differenced C/A pseudoranges before and after the 
reduction made in the ESto model, for each one of 
the satellites shown above. 

In Figure 2 below, the light lines represent the 
original series, and the dark lines represent the 
reduced series. After this step the reduced series are 
used in the stochastic analysis. This part of the ESto 
model is based on the approaches mentioned in the 
previous section. 

% ;0 2'o 3o 4'o 5'o 6o 
.time [30 seconds interval] 

Fig. 2 Reduction of DD pseudoranges, in ESto model. 

As an illustration of the stochastic part of the model, 
Figure 3 shows the auto-correlation function 
estimated with ESto model and also computed based 
on the adjustment residuals, for satellites with 
different elevation angles (65, 31 and 17 degrees). 
The observables are C/A pseudoranges, observed for 
a short baseline (5 km) during half hour. The 
sampling interval s 30 seconds, thus one epoch lag 
represents 30 seconds in time. 
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Fig 3 Auto-correlation function for satellites with different 
elevation angles. 

ESto can provide a good approximation of the 
residuals auto-correlation and therefore for the 
observations. It can be also noticed how the 
correlations get smaller as the elevation angle gets 
lower, with the autocorrelation function getting 
closer to zero with smaller lags. 
Another issue is the variance which is assigned to 
each satellite. In ESto model, as said previously, it 
is also computed by analyzing the raw data. Figure 
4 shows the pseudorange standard deviations 
estimated by ESto for different elevation angles. 
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Fig. 4 Estimated standard deviation for different elevation 
angles. 

The standard deviation varies with the elevation 
angle with values between around 0.2 m and 1 m. 
In Figure 5, it is shown the agreement between the 
estimated standard deviations and the residuals 
standard deviation after the adjustment. 
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Fig. 5 Standard deviations estimated with ESto and 
adjustment residuals. 

In Figure 5, the dots represent the residuals of each 
of the observations, during a half hour observation 
session with 30 seconds of sampling interval (7 
satellites observed). The dashed lines represent the 
one sigma standard deviations estimated with ESto. 
For each satellite, the color of the lines and dots is 
the same. Table 1 shows the estimated values for the 
standard deviations. 

Table 1. Comparison of residuals tandard deviation with 
ESto estimated standard deviations. 

Satell i te- elev. angle Standard dev. [m] 
1 (blue) - 65 ° 0.15 
2 (green) - 17 ° 0.84 
3 (red) - 52 ° 0.19 
4 (cyan) - 44 ° 0.30 
5 (magenta) - 45 ° 0.25 
6 (black)-  31 o 0.48 

ESto model has been developed in order to allow a 
estimation of a fully populated observation 
covariance matrices for GPS. It also potentially 
allows a more complete analysis of the raw data 
before the adjustment, such as outliers detection. 
This type of pre-analysis is not explored in this work, 
however it is another potential contribution brought 
by the use of our empirical approach. In terms of 
validation, ESto has been compared with other 
techniques to build covariance matrices. The first 
one, called here Formal DD, the simplest of the ones 
explored in this work, is a matrix generated by 
propagating a identity matrix with the double 
difference operator, thus all satellites have the same 
weight. The second approach uses the elevation 
angle as a parameter to estimate the standard 
deviation of the observations (here this approach is 
being called Elevation based). After the standard 
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deviations are estimated, they are propagated using 
the double difference operator as well. Figure 6 
shows a representation of covariance matrices 
estimated using these three schemes. 
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Fig 6 Representation of covariance matrices 
estimated using different schemes. 

In the figure above, different colors represent 
different values within the matrices. Each one of 
them has its own scale, and they were generated 
from the same data set. In the case of Formal DD, it 
can be noticed that the elements on the diagonal 
have always the same color, what means the same 
variance. The green squares around the diagonal are 
the correlation between different satellite pairs 
within the same epoch. This correlation exists with 
this pattern due to the use of a common reference 
satellite. In the second case (Elev. based), the main 
difference from the previous in the different 
weights for different satellites (this can be noticed 
by the different colors in the diagonal). The blue 
squares are due to the same as the green ones in the 
previous. The dark blue means zero in both of them. 
When the ESto model is used, it can be noticed that 
a large amount of information is placed into the 
covariance matrix. These values were derived from 
raw data, and represent the correlation of each 
observation with respect to each other. The next 
step to validate the ESto model should be an 
analysis with real data processing, explored in next 
session. 

4 Data Processing 

In order to investigate the efficiency of this 
empirical stochastic approach with respect to the 
conventional techniques, it was used to process a 

short baseline using C/A pseudoranges. The choice 
of such data set is justified by the elimination of 
several errors in the measurements, such as clock 
errors and atmospheric refraction, which would need 
a special treatment in the stochastic analysis. It was 
used 24 hours of data, which were processed in half 
hour batch adjustments along the day. It was done 
for the baseline, UNB 1-FRDN with approximately 5 
km. It were used the C/A pseudoranges as 
observables. Figure 7 shows the results of the 
adjustment. In the plots below, zero is the published 
coordinate of FRDN station. 

do.  
£o. 
1~ 0. 

~o. 
.J 

E E 0.4  

0.3 

0.2 

~ 0.1 g 
" 0 

0 

1 

E 
0.5 

.c 
o~ 

- r  

0 
0 

5 10 15 20 25 30 35 40 45 50 

20 25 30 35 

~ m e [ 0 . 5  h o u r s e s s i o n s ]  

40 45 50 

I~ Formal  DD 

• E l e v .  b a s e d  

>F E S t o  

Fig. 7. Results for the adjustment of the baseline UNB1- 
FRDN. 

Although all results are fairly good, when ESto was 
used, the mean bias was quite lower than other 
solutions. However the standard deviation didn't 
show a good improvement. The use of ESto shows 
some errors quite larger than their mean values, 
which can be affecting standard deviation values. 
Table 2 shows the results summary for this data 
processing. 

Table 2. Comparison of results. 

Mean error 
(m) 

RMS (m) 

Latitude 

Formal 
DD 
0.14 

Longitude -0.08 
Height 

Latitude 
0.52 
0.24 

Longitude 0.14 
Height 0.60 

Elev. 
ESto 

based 
0.13 0.07 
-0.08 -0.04 
0.50 0.15 
0.23 0.16 
0.15 0.16 
0.57 0.39 

Tables 3 and 4 show the absolute and relative 
improvements achieved by the use of ESto with 
respect to the other models. 
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Table 3. Absolute improvements when using ESto. 

w.r.t, w.r.t. 
Formal DD Elev. based 

Latitude 0.07 0.06 
Mean 

error (m) Longitude 0.04 0.04 
Height 0.37 0.35 

Latitude 0.08 0.07 
RMS (m) Longitude -0.02 -0.01 

Height 0.21 0.18 

Table 4. Relative improvements when using ESto. 

w.r.t, w.r.t. 
Formal DD Elev. based 

Latitude 50% 46% 
Mean 

Longitude 50% 50% 
error 

Height 71% 70% 
Latitude 33% 30% 

RMS Longitude 14% 7% 
Height 35% 46% 

ESto model provided improvements ranging from 
4cm to 37cm in bias and -2cm to 21cm in RMS. 
The greatest improvements were achieved for 
height determination. In terms of relative results, 
the improvements are very good, ranging from 46% 
to 71% for mean bias and -7% to 46% for RMS. 
These results show that the use of the empirical 
approach can definitively bring advantages in terms 
of quality of the estimated coordinates. Figure 8 
shows the solutions in the horizontal position for 
the three models. 
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Fig. 8. Estimated horizontal coordinates for FRDN station. 

It can be noticed that in the plot above the 
coordinates estimated with ESto are generally 
grouped closer to (0,0), than the solutions provided 
with the other techniques. 
Further analysis in terms of estimated coordinate 
variances was also carried out. Figures 9, 10 and 11 

show the error bars for the three models (latitude, 
longitude and height, respectively) at 1 sigma level. 
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Fig. 11. Estimated standard deviations for height at 1 sigma 
level. 

Clearly when ESto model is used, the estimated 
standard deviations are more realistic. Table 5 
shows the percentage of the times when the real 
error was less than the estimated standard deviation 
(1 sigma) with the three weighting schemes: 

Table 5. Comparison of estimated standard deviations (1 
sigma) and real errors. 

Formal DD Elev. based ESto 
Latitude 30 % 28 % 85 % 

Longitude 46 % 39 % 78 % 
Height 11% 11% 65 % 
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According to Table 5, the use of the empirical 
approach provides a better agreement between the 
estimated variances and the real errors, what means 
that in this case, the covariance matrix of the 
parameters computed in the adjustment is more 
trustful. The agreement for the two other models 
was quite lower than the supposed probability at 1 
sigma level (68 %), while with ESto the agreement 
was higher than this value, except for height, when 
the agreement was of 65 %, which is still several 
times closer than for the other models (both 11%). 

5 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

It was shown that the empirical model is capable of 
providing a good stochastic modeling of 
observables without any external source of 
information, before any adjustment. 
The implementation of the model is 
computationally efficient, and can be easily 
implemented for GPS data processing. Although its 
use makes the process slower, it is not a great 
computational cost when compared with the gain in 
terms of the adjustment results. The greater time is 
due the computation of auto-correlation and cross- 
correlation functions that involve several 
combinations in order to have almost fully 
populated covariance matrices. 
A baseline was processed using three different 
weighting schemes for observations. In general, 
when ESto was used a good improvement in the 
bias was obtained. The mean biases were at least 46 
% smaller. The RMS values did not improve as 
well as the biases, with one case of degradation (-8 
% for longitude), but still had relatively god 
improvements with values up to 46 %. 
The greater improvements were achieved for height 
determination, with improvements in the order of 
70% in mean bias for both comparisons. 
In terms of standard deviation, the solutions 
obtained with ESto showed small or no 
improvements. There are still some outliers in the 
solution when ESto is used, what means that there 

is room for improvement in this sense. An 
attenuation of those outliers would help to make the 
standard deviations lower. 
In terms of estimated standard deviation, ESto 
provided much more realistic estimates, with 
agreements (compared against the real errors) 
ranging between 65 % and 85 %. For the other two 
stochastic models the estimates had a lower 
agreement with the real errors, with values ranging 
from 11% to 46 %. 
The model certainly brings improvement to the 
solution, and future investigation is needed to 
investigate the source of solution outliers and 
improvements in the stochastic analysis for longer 
baselines. 
Further research to apply ESto to point positioning 
and carrier phase measurements is also a desirable 
future step in the development and validation of the 
model. 
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