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Wiener and A6. Wiener and Adaptive Filters

J. Benesty, Y. Huang, J. Chen

The Wiener filter, named after its inventor, has
been an extremely useful tool since its inven-
tion in the early 1930s. This optimal filter is not
only popular in different aspects of speech pro-
cessing but also in many other applications. This
chapter presents the most fundamental results
of the Wiener theory with an emphasis on the
Wiener–Hopf equations, which are not convenient
to solve in practice. An alternative approach to
solving these equations directly is the use of an
adaptive filter, which is why this work also de-
scribes the most classical adaptive algorithms that
are able to converge, in a reasonable amount of
time, to the optimal Wiener filter.
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6.1 Overview

In his landmark manuscript on extrapolation, interpo-
lation, and smoothing of stationary time series [6.1],
Norbert Wiener was one of the first researchers to treat
the filtering problem of estimating a process corrupted
by additive noise. The optimum estimate that he derived,
required the solution of an integral equation known as
the Wiener–Hopf equation [6.2]. Soon after he published
his work, Levinson formulated the same problem in dis-
crete time [6.3]. Levinson’s contribution has had a great
impact on the field. Indeed, thanks to him, Wiener’s
ideas have become more accessible to many engineers.
A very nice overview of linear filtering theory and the
history of the different discoveries in this area can be
found in [6.4].

In this chapter, we will show that the Wiener theory
plays a fundamental role in system identification. For ex-
ample, in many speech applications, impulse responses

between loudspeakers (or speech sources) and micro-
phones need to be identified. Thanks to many (adaptive)
algorithms directly derived from the Wiener–Hopf equa-
tions, this task is now rather easy.

This chapter is organized as follows. Section 6.2
presents the four basic signal models used in this
work. In Sect. 6.3, we derive the optimal Wiener filter
for a single-input single-output (SISO) system. Sec-
tion 6.4 explains what happens if the length of the
modeling filter is shorter than the length of the true
impulse response (this case always occurs in prac-
tice). It is extremely useful in many applications to
be able to say how the input signal correlation ma-
trix, which appears in the Wiener–Hopf equations, is
conditioned. So we dedicate Sect. 6.5 to a detailed dis-
cussion on the condition number of this matrix. In
Sect. 6.6, we present a collection of basic adaptive
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104 Part B Signal Processing for Speech

filters. We insist on the classical normalized least-mean-
square (NLMS) algorithm. Section 6.7 generalizes
the Wiener filter to the multiple-input multiple-output
(MIMO) system case. While this generalization is

straightforward, the optimal solution does not always
exist and identification problems may be possible only
in some situations. Finally, we give our conclusions
in Sect. 6.8.

6.2 Signal Models

In many speech applications, a system with a number of
inputs and outputs needs to be identified. In this section,
we explain the four basic signal models. This classi-
fication is now well accepted and is the basis of many
interesting studies in different areas of control and signal
processing.
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Fig. 6.1a–d Illustration of four distinct types of systems. (a) A single-input single-output (SISO) system. (b) A single-input
multiple-output (SIMO) system. (c) A multiple-input single-output (MISO) system. (d) A multiple-input multiple-output
(MIMO) system.

6.2.1 SISO Model

The first model we consider is the single-input single-
output (SISO) system, as shown in Fig. 6.1a. The output
signal is given by

x(k) = h ∗ s(k)+b(k) , (6.1)
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Wiener and Adaptive Filters 6.2 Signal Models 105

where h is the channel impulse response, the symbol
∗ denotes the linear convolution operator, s(k) is the
source signal at time k, and b(k) is the additive noise
at the output. Here we assume that the system is lin-
ear and shift-invariant. The channel impulse response is
delineated usually with a finite impulse response (FIR)
filter rather than an infinite impulse response (IIR) fil-
ter. In vector/matrix form, the SISO signal model (6.1)
is written as:

x(k) = hTs(k)+b(k) , (6.2)

where

h = [h0 h1 · · · hL−1]T ,

s(k) = [s(k) s(k −1) · · · s(k − L +1)]T ,

where [·]T denotes the transpose of a matrix or a vector,
and L is the channel length.

Using the z transform, the SISO signal model (6.2)
is described as follows:

X(z) = H(z)S(z)+ B(z) , (6.3)

where X(z), S(z), and B(z) are the z-transforms of x(k),
s(k), and b(k), respectively, and H(z) = ∑L−1

l=0 hlz−l .
The SISO model is simple and is probably the most

widely used and studied model in communication, signal
processing, and control theories.

6.2.2 SIMO Model

The diagram of a single-input multiple-output (SIMO)
system is illustrated in Fig. 6.1b, in which there are N
outputs from the same source as input and the n-th output
is expressed as:

xn(k) = hT
n s(k)+bn(k) , n = 1, 2, · · · , N , (6.4)

where xn(k), hn , and bn(k) are defined in a similar way
to those in (6.2), and L is the length of the longest
channel impulse response in this SIMO system. A more-
comprehensive expression of the SIMO model is given
by

x(k) = Hs(k)+b(k) , (6.5)

where

x(k) = [x1(k) x2(k) · · · xN (k)]T ,

H =

⎛

⎜
⎜
⎜
⎜
⎝

h1,0 h1,1 · · · h1,L−1

h2,0 h2,1 · · · h2,L−1
...

...
. . .

...

hN,0 hN,1 · · · hN,L−1

⎞

⎟
⎟
⎟
⎟
⎠

N×L

,

b(k) = [b1(k) b2(k) · · · bN (k)]T .

The SIMO model (6.5) is described in the z-transform
domain as:

X(z) = H(z)S(z)+ B(z) , (6.6)

where

X(z) = [X1(z) X2(z) · · · X N (z)]T ,

H(z) = [H1(z) H2(z) · · · HN (z)]T ,

Hn(z) =
L−1∑

l=0

hn,l z
−l, n = 1, 2, · · · , N ,

B(z) = [B1(z) B2(z) · · · BN (z)]T .

6.2.3 MISO Model

In the third type of systems as drawn in Fig. 6.1c, we
suppose that there are M sources but only one output,
whose signal is then expressed as:

x(k) =
M∑

m=1

hT
msm(k)+b(k) ,

= hTs(k)+b(k) , (6.7)

where

h = [
hT

1 hT
2 · · · hT

M

]T
,

hm = [hm,0 hm,1 · · · hm,L−1]T ,

s(k) = [
sT

1 (k) sT
2 (k) · · · sT

M(k)
]T

,

sm(k) = [sm(k) sm(k −1) · · · sm(k − L +1)]T .

In the z-transform domain, the MISO model is given by

X(z) = HT(z)S(z)+ B(z) , (6.8)

where

H(z) = [H1(z) H2(z) · · · HM(z)]T ,

Hm(z) =
L−1∑

l=0

hm,l z
−l, m = 1, 2, · · · , M ,

S(z) = [S1(z) S2(z) · · · SM(z)]T .

Note that H(z) defined here is slightly different from
that in (6.6). We do not deliberately distinguish them
since their dimension can be easily deduced from the
context if slight attention is paid.
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106 Part B Signal Processing for Speech

6.2.4 MIMO Model

Figure 6.1d depicts a multiple-input multiple-output
(MIMO) system. A MIMO system with M inputs and
N outputs is referred to as an M × N system. At time k,
we have

x(k) = Hs(k)+b(k) , (6.9)

where

x(k) = [x1(k) x2(k) · · · xN (k)]T ,

H = (H1 H2 · · · HM) ,

Hm =

⎛

⎜
⎜
⎜
⎜
⎝

h1m,0 h1m,1 · · · h1m,L−1

h2m,0 h2m,1 · · · h2m,L−1
...

...
. . .

...

hNm,0 hNm,1 · · · hNm,L−1

⎞

⎟
⎟
⎟
⎟
⎠

N×L

,

m = 1, 2, · · · , M,

b(k) = [b1(k) b2(k) · · · bN (k)]T ,

where hnm (n = 1, 2, · · · , N , m = 1, 2, · · · , M) is the
impulse response of the channel from input m to output
n, and s(k) is defined similarly to that in (6.7). Again,
we have the model presented in the z-transform domain
as

X(z) = H(z)S(z)+ B(z) , (6.10)

where

H(z) =

⎛

⎜
⎜
⎜
⎜
⎝

H11(z) H12(z) · · · H1M(z)

H21(z) H22(z) · · · H2M(z)
...

...
. . .

...

HN1(z) HN2(z) · · · HNM(z)

⎞

⎟
⎟
⎟
⎟
⎠

,

Hnm(z) =
L−1∑

l=0

hnm,l z
−l , n = 1, 2, · · · , N ,

m = 1, 2, · · · , M .

Clearly the MIMO system is the most general model
and the other three systems can be treated as special
examples of a MIMO system.

6.3 Derivation of the Wiener Filter

In this section, we are interested in the SISO system rep-
resented by (6.2). We assume that x(k) and the random
noise signal b(k) (independent of s(k)) are zero-mean
and stationary.

With the Wiener theory, it is possible to identify the
impulse response h, given s(k) and x(k). Define the error
signal,

e(k) = x(k)− x̂(k)

= x(k)− ĥT
f sf (k) , (6.11)

where

ĥf = [ĥ0 ĥ1 · · · ĥLf−1]T

is an estimate of h of length Lf ≤ L and

sf (k) = [s(k) s(k −1) · · · s(k − Lf +1)]T .

To find the optimal filter, we need to minimize a cost
function which is always built around the error signal
(6.11). The usual choice for this criterion is the mean-
square error (MSE) [6.5],

J(ĥf) = E{e2(k)} , (6.12)

where E{·} denotes mathematical expectation.

The optimal Wiener filter, ĥf,o, is the one that cancels
the gradient of J(ĥf), i. e.,

∂J(ĥf )

∂ĥf
= 0Lf×1 . (6.13)

We have:
∂J(ĥf )

∂ĥf
= 2E

{

e(k)
∂e(k)

∂ĥf

}

= −2E{e(k)sf (k)} . (6.14)

Therefore, at the optimum, we have:

E{eo(k)sf (k)} = 0Lf×1 , (6.15)

where

eo(k) = x(k)− ĥT
f,osf (k) (6.16)

is the error signal for which J(ĥf) is minimized (i. e., the
optimal filter). Expression (6.15) is called the principle
of orthogonality.

The optimal estimate of x(k) is:

x̂o(k) = ĥT
f,osf (k) . (6.17)

It is then easy to check, with the help of the principle of
orthogonality, that we also have:

E
{
eo(k)x̂o(k)

} = 0 . (6.18)
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Wiener and Adaptive Filters 6.4 Impulse Response Tail Effect 107

The previous expression is called the corollary to the
principle of orthogonality.

If we substitute (6.16) into (6.15), we find the
Wiener–Hopf equations,

Rf ĥf,o = pf , (6.19)

where

Rf = E
{
sf (k)sT

f (k)
}

is the correlation matrix of the signal s(k) and

pf = E{sf (k)x(k)}
is the cross-correlation vector between sf (k) and x(k).

The correlation matrix is symmetric and positive
semidefinite. It is also Toeplitz, i. e., a matrix which
has constant values along diagonals,

Rf =

⎛

⎜
⎜
⎜
⎜
⎝

r(0) r(1) · · · r(Lf −1)

r(1) r(0) · · · r(Lf −2)
...

...
. . .

...

r(Lf −1) r(Lf −2) · · · r(0)

⎞

⎟
⎟
⎟
⎟
⎠

,

with r(l) = E{s(k)s(k − l)}, l = 0, 1, · · · , Lf −1. In the
SISO system case, this matrix is usually positive definite
even for quasistationary signals like speech; however, it
can be very ill-conditioned.

Assuming that Rf is nonsingular, the optimal Wiener
filter is:

ĥf,o = R−1
f pf . (6.20)

The MSE can be rewritten as:

J(ĥf) = σ2
x −2pT

f ĥf + ĥT
f Rf ĥf , (6.21)

where σ2
x = E{x2(k)} is the variance of the input signal

x(k). The criterion J(ĥf) is a quadratic function of the
filter coefficient vector ĥf and has a single minimum
point. This point combines the optimal Wiener filter,
as shown above, and a value called the minimum MSE
(MMSE), which is obtained by substituting (6.20) into
(6.21):

Jmin = J(ĥf,o)

= σ2
x − pT

f R−1
f pf

= σ2
x −σ2

x̂o
, (6.22)

where σ2
x̂o

= E{x̂2
o(k)} is the variance of the optimal filter

output signal x̂o(k). This MMSE can be rewritten as:

Jmin = σ2
b +hTRh− ĥT

f,oRf ĥf,o , (6.23)

where σ2
b = E{b2(k)} is the variance of the noise and

R = E{s(k)sT(k)}. The value Jmin is bounded,

σ2
b ≤ Jmin ≤ σ2

b +hTRh , ∀Lf . (6.24)

We can easily check that for Lf = L , Jmin = σ2
b , and

as Lf decreases compared to L , Jmin gets closer to its
maximum value σ2

b +hTRh.
We define the normalized MMSE as:

J̃min = Jmin

σ2
x

= 1− σ2
x̂o

σ2
x

. (6.25)

According to (6.24), the normalized MMSE always
satisfies,

σ2
b

σ2
x

≤ J̃min ≤ 1 . (6.26)

6.4 Impulse Response Tail Effect

In many scenarios, the impulse response that we try to
estimate is either very long or its length is not known
so that the length (Lf ) of any FIR modeling filter ĥf
will usually be shorter than the length (L) of the actual
impulse response. Let us split this impulse response into
two parts:

h =
(

hf

ht

)

where hf is a vector of size Lf and ht is the tail of the
impulse response that is not modeled by ĥf . Equation
(6.2), which represents the SISO system, is now:

x(k) = hT
f sf (k)+hT

t st(k − Lf )+b(k) , (6.27)

where

st(k − Lf ) = [s(k − Lf ) s(k − Lf −1)

· · · s(k − L +1)]T .

Substituting (6.27) into the cross-correlation vector, we
obtain,

pf = E{sf (k)x(k)} = Rfhf +Rt(Lf )ht , (6.28)

with Rt(Lf ) = E{sf (k)sT
t (k − Lf )}. Finally, inserting the

previous expression into the Wiener–Hopf equations
(6.20), we obtain:

ĥf,o = hf +R−1
f Rt(Lf )ht . (6.29)

It is clear from (6.29) that the underestimation of the
length of the impulse response in the Wiener method
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108 Part B Signal Processing for Speech

will introduce a bias [equal to R−1
f Rt(Lf )ht] in the co-

efficients of the optimal filter. This bias depends on two
things: the energy of the tail impulse response and the
correlation of the input signal s(k). If s(k) is white, there
is no bias since in this particular case the matrix Rt(Lf )
is zero. But for highly correlated signals like speech,
Rt(Lf ) may not be negligible and the second term on the
right-hand side of (6.29) may therefore be amplified if
the energy of the tail is significative. As a consequence,
it is important in practice to have a rough idea of the
physics of the system, in order to choose an appropriate

length for the modeling filter for good identification. As
we can see, increasing the length of the filter will im-
prove the accuracy of the solution. On the other hand,
the complexity for solving the linear system will increase
and the conditioning of Rf will be worsened. Therefore,
depending on the application, a reasonable balance has
to be found.

For simplification, in the rest of this chapter, we will
assume that Lf = L so that we can drop the subscript ‘f’
in all variables. In this scenario: Rf = R, sf (k) = s(k),
ĥf,o = ĥo, etc.

6.5 Condition Number

The correlation matrix that appears in the Wiener–Hopf
equations needs to be inverted to find the optimal filter.
If this matrix is ill-conditioned and the data is perturbed,
the accuracy of the solution will suffer a lot if the linear
system is solved directly. One way to improve the ac-
curacy is to regularize the covariance matrix. However,
this regularization depends on the condition number:
the higher the condition number, the larger the regular-
ization. So it is important to be able to estimate this
condition number in an efficient way, in order to use
this information to improve the quality of the solution.
Many other problems require the knowledge of this con-
dition number for different reasons. For example, the
performance of many adaptive algorithms depends on
this number. Therefore, it is of great interest to have
a detailed discussion of this topic here and to develop
a practical algorithm to determine this condition number.

6.5.1 Decomposition
of the Correlation Matrix

For a vector of length L +1,

sL+1(k) = [s(k) s(k −1) · · · s(k − L)]T ,

the covariance matrix of size (L +1) × (L +1) is:

RL+1 = E
{
sL+1(k)sT

L+1(k)
}

=
(

r(0) rT
L

rL RL

)

=
(

RL rb,L

rT
b,L r(0)

)

, (6.30)

where RL = E{s(k)sT(k)} and

rL = [r(1) r(2) · · · r(L)]T ,

rb,L = [r(L) r(L −1) · · · r(1)]T .

By using the Schur complements, it is easy to invert
RL+1:

R−1
L+1 =

(
R−1

L +�−1
L bL bT

L −�−1
L bL

−�−1
L bT

L �−1
L

)

, (6.31)

where

bL = R−1
L rb,L

= [bL,1 bL,2 · · · bL,L ]T (6.32)

is the backward predictor of length L ,

�L = r(0)−rT
b,LbL

= r(0)−rT
LaL (6.33)

is the prediction error energy, and aL = JL bL is the
forward predictor with JL being the co-identity matrix.
Equation (6.31) is important and will be used later for
a fast computation of the condition number.

6.5.2 Condition Number
with the Frobenius Norm

Usually, the condition number is computed by using
the 2-norm matrix. However, in the context of Toeplitz
matrices, it is more convenient to use the Frobenius norm
as explained below and in [6.6, 7].

To simplify the notation, in this subsection we take
RL+1 = R. This matrix is symmetric, positive, and as-
sumed to be nonsingular. It can be diagonalized as
follows:

QTRQ = Λ , (6.34)

where

QTQ = QQT = I , (6.35)

Λ = diag{λ1, λ2, · · · , λL+1} , (6.36)
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Wiener and Adaptive Filters 6.5 Condition Number 109

and 0 < λ1 ≤ λ2 ≤ · · · ≤ λL+1. By definition, the square
root of R is:

R1/2 = QΛ1/2QT . (6.37)

The condition number of a matrix R is [6.8]:

χ(R) = ‖R‖‖R−1‖ , (6.38)

where ‖ · ‖ can be any matrix norm. Note that χ(R)
depends on the underlying norm and subscripts will be
used to distinguish the different condition numbers.

Consider the Frobenius norm:

‖R‖F = {tr(RTR)}1/2 . (6.39)

We can easily check that, indeed, ‖ ·‖F is a matrix norm
since for any real matrices A and B and a real scalar c,
the following three conditions are satisfied:

• ‖A‖F ≥ 0 and ‖A‖F = 0 if A = 0(L+1)×(L+1),• ‖A+ B‖F ≤ ‖A‖F +‖B‖F,• ‖cA‖F = |c|‖A‖F.

We have:

‖R1/2‖F = {tr(R)}1/2 =
{

L+1∑

l=1

λl

}1/2

(6.40)

and

‖R−1/2‖F = {tr(R−1)}1/2 =
{

L+1∑

l=1

1

λl

}1/2

. (6.41)

Hence, the condition number of R1/2 associated with
‖ · ‖F is:

χF(R1/2) = ‖R1/2‖F‖R−1/2‖F ≥ L +1 . (6.42)

(The inequality in the previous expression is easy to
show by using the Cauchy–Schwartz inequality.) In this
section, we choose to work on χF(R1/2) [rather than
χF(R)], because efficient algorithms can be derived to
estimate its value, as will be shown in the next subsec-
tion. As far as we know, it does not seem obvious how
to estimate χF(R) efficiently.

If χ(R1/2) is large, then R1/2 is said to be an ill-
conditioned matrix. Note that this is a norm-dependent
property. However, according to [6.8], any two condition
numbers χα(R1/2) and χβ(R1/2) are equivalent in that
constants c1 and c2 can be found for which:

c1χα(R1/2) ≤ χβ(R1/2) ≤ c2χα(R1/2) . (6.43)

For example, for the 1- and 2-norm matrices and for R,
we can show [6.8]

1

(L +1)2 χ2(R) ≤ 1

L +1
χ1(R) ≤ χ2(R) . (6.44)

We now show the same principle for the F- and
2-norm matrices and for R1/2. We recall that:

χ2(R1/2) =
√

λL+1

λ1
. (6.45)

Since tr(R−1) ≥ 1/λ1 and tr(R) ≥ λL+1, we have

tr(R)tr(R−1) ≥ tr(R)

λ1
≥ λL+1

λ1
, (6.46)

hence,

χF(R1/2) ≥ χ2(R1/2) . (6.47)

Also, since tr(R) ≤ (L +1)λL+1 and tr(R−1) ≤ (L +
1)/λ1, we obtain:

tr(R)tr(R−1) ≤ (L +1)
tr(R)

λ1
≤ (L +1)2 λL+1

λ1
,

(6.48)

thus,

χF(R1/2) ≤ (L +1)χ2(R1/2) . (6.49)

Therefore, we deduce that

χ2(R1/2) ≤ χF(R1/2) ≤ (L +1)χ2(R1/2) . (6.50)

Moreover, by using the two inequalities,

(
L+1∑

l=1

βl

)2

≥
L+1∑

l=1

β2
l , (6.51)

(
L+1∑

l=1

βl

)2

≤ (L +1)
L+1∑

l=1

β2
l , (6.52)

where βl > 0,∀l, it is easy to show that

1

L +1
χ2

F(R1/2) ≤ χF(R) ≤ χ2
F(R1/2)

≤ (L +1)χF(R) . (6.53)

Note that χ2(R) = χ2
2 (R1/2) but χF(R) �= χ2

F(R1/2).
According to expressions (6.50) and (6.53), χF(R1/2)
and χ2

F(R1/2) are a good measure of the condition
number of matrices R1/2 and R, respectively. Ba-
sically, there is no difference in the trend of the
condition numbers of R and R1/2. In other words,
if R1/2 is ill-conditioned (resp. well-conditioned) so
is R. In the next subsection, we will show how to
compute χ2

F(R1/2) by using the Levinson–Durbin al-
gorithm.
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Table 6.1 Computation of the condition number with the Levinson–Durbin algorithm

Initialization: �0 = r(0)

Levinson-Durbin algorithm: kl = 1

�l−1

[
r(l)−aT

l−1 Jl−1rl−1
]

al =
(

al−1

0

)

− kl Jl

(
−1

al−1

)

�l = �l−1(1− k2
l )

l = 1, 2, · · · , L

Condition number: χ2
F

(
R1/2

L+1

)
= (L +1)r(0)

∑L
l=0 �−1

l

[
1+aT

l al
]

6.5.3 Fast Computation
of the Condition Number

In this subsection, we need to compute the two norms∥
∥
∥R1/2

L+1

∥
∥
∥

2

F
and

∥
∥
∥R−1/2

L+1

∥
∥
∥

2

F
efficiently. The calculation of

the first is straightforward. Indeed:
∥
∥
∥R1/2

L+1

∥
∥
∥

2

F
= tr(RL+1) = (L +1)r(0) . (6.54)

Expression (6.54) requires one multiplication only.
Consider the matrix GL+1 = R−1

L+1 where its diago-
nal elements are gL+1,ii , i = 1, 2, · · · , L +1. It is clear
from (6.31) that the last diagonal component of GL+1
is gL+1,(L+1)(L+1) = �−1

L . The L-th diagonal element
of GL+1 is gL+1,LL = �−1

L−1 +�−1
L b2

L,L . Continuing the
same process, we easily find:

gL+1,ii = �−1
i−1 +

L∑

l=i

�−1
l b2

l,i , (6.55)

with �0 = r(0). Therefore, from (6.55) we deduce that:

∥
∥
∥R−1/2

L+1

∥
∥
∥

2

F
= tr(GL+1)

=
L∑

l=0

�−1
l

(
1+bT

l bl
)

=
L∑

l=0

�−1
l

(
1+aT

l al
)
, (6.56)

with aT
0 a0 = bT

0 b0 = 0.
Finally, the condition number is:

χ2
F

(
R1/2

L+1

) = (L +1)r(0)
L∑

l=0

�−1
l

(
1+aT

l al
)
. (6.57)

By using the Toeplitz structure, the Levinson–
Durbin algorithm solves the linear prediction equation,
aL = R−1

L rL , in O(L2) operations instead of O(L3). This
algorithm computes all predictors al , l = 1, 2, · · · , L ,
and this is exactly what we need to compute (6.57).
Expression (6.57) also shows a very nice link between
the condition number and the predictors of all orders.
This algorithm, which has roughly the same complex-
ity as the Levinson–Durbin algorithm, is summarized
in Table 6.1. Note that a very efficient algorithm was
recently proposed by Dias and Leitão [6.9] to com-
pute tr{TR−1} (where T is a Toeplitz matrix, this form
is a much more-general form than the one used in
this section) with the Trench algorithm. Using these
techniques here, we can further reduce the complexity
[to O(L ln L)] for the estimation of the overall algo-
rithm.

6.6 Adaptive Algorithms

Solving the Wiener–Hopf equations directly is not very
practical, so adaptive algorithms are usually preferred
to find the optimal Wiener filter. The aim of this sec-
tion is to present a couple of basic adaptive algorithms
that converge to the actual impulse response h and
where the inversion of the correlation matrix R is
avoided.

6.6.1 Deterministic Algorithm

The deterministic or steepest-descent algorithm is ac-
tually an iterative algorithm. It is summarized by the
simple recursion,

ĥ(k) = ĥ(k −1)+μ[p−Rĥ(k −1)] ,
k = 0, 1, 2, · · · , (6.58)
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where μ is a positive constant called the step-size par-
ameter. In this algorithm, p and R are supposed to be
known. The deterministic algorithm can be reformulated
with the error signal:

e(k) = x(k)− ĥT(k −1)s(k) , (6.59)

ĥ(k) = ĥ(k −1)+μE{s(k)e(k)} . (6.60)

Now the important question is: what are the condi-
tions on μ to make the algorithm converge to the true
impulse response h? To answer this question, we will
examine the natural modes of the algorithm [6.10].

We define the misalignment vector as,

m(k) = h− ĥ(k) , (6.61)

which is the difference between the true impulse
response and the estimated one at time k. The pos-
itive quantity ‖m(k)‖2

2/‖h‖2
2 is called the normalized

misalignment. If we substitute (6.2) into the cross-
correlation vector, we get,

p = E{s(k)x(k)} = Rh . (6.62)

Inserting (6.62) into (6.58) and subtracting h on both
sides of the equation, we obtain:

m(k) = (I−μR)m(k −1) , (6.63)

where I is the identity matrix. Using the eigendecompo-
sition of R = QΛQT in the previous expression, we get
the equivalent form,

v(k) = (I−μΛ)v(k −1) , (6.64)

where

v(k) = QTm(k) = QT[h− ĥ(k)] . (6.65)

Thus, for the l-th natural mode of the steepest-descent
algorithm, we have [6.5]

vl(k) = (1−μλl)vl(k −1) , l = 1, 2, · · · , L
(6.66)

or, equivalently,

vl(k) = (1−μλl)
kvl(0) , l = 1, 2, · · · , L . (6.67)

The algorithm converges if,

lim
k→∞ vl(k) = 0 , ∀l . (6.68)

In this case,

lim
k→∞ ĥ(k) = h . (6.69)

It is straightforward to see from (6.67) that a neces-
sary and sufficient condition for the stability of the
deterministic algorithm is that,

−1 < 1−μλl < 1 , ∀l , (6.70)

which implies,

0 < μ <
2

λl
, ∀l , (6.71)

or

0 < μ <
2

λmax
, (6.72)

where λmax is the largest eigenvalue of the correlation
matrix R.

Let us evaluate the time needed for each natural
mode to converge to a given value. Expression (6.67)
gives:

ln
|vl(k)|
|vl(0)| = k ln |1−μλl| , (6.73)

hence,

k = 1

ln |1−μλl| ln
|vl(k)|
|vl(0)| . (6.74)

The time constant, τl , for the l-th natural mode is defined
by taking |vl(k)|/|vl(0)| = 1/e (where e is the base of the
natural logarithm) in (6.74). Therefore,

τl = −1

ln |1−μλl| . (6.75)

We can link the time constant with the condition
number of the correlation matrix R. First, let

μ = α

λmax
, (6.76)

where

0 < α < 2 , (6.77)

to guaranty the convergence of the algorithm. α is called
the normalized step-size parameter. Suppose that the
smallest eigenvalue is λ1 = λmin; in this case,

τ1 = −1

ln |1−αλmin/λmax|
= −1

ln |1−α/χ2(R)| , (6.78)

where χ2(R) = λmax/λmin. We see that the convergence
time of the slowest natural mode depends on the condi-
tioning of R.
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From (6.65), we deduce that,

mT(k)m(k) = vT(k)v(k)

=
∥
∥
∥h− ĥ(k)

∥
∥
∥

2

2

=
L∑

l=1

λl(1−μλl)
kvl(0) . (6.79)

This value gives an idea on the global convergence of
the filter to the true impulse response. This convergence
is clearly governed by the smallest eigenvalues of R.

We now examine the transient behavior of the MSE.
Using (6.2), the error signal (6.59) can be rewritten as

e(k) = x(k)− ĥT(k −1)s(k)

= b(k)+mT(k −1)s(k) , (6.80)

so that the MSE is:

J(k) = E{e2(k)}
= σ2

b +mT(k −1)Rm(k −1)

= σ2
b +vT(k −1)Λv(k −1)

= σ2
b +

L∑

l=1

λl(1−μλl)
2k−2v2

l (0) . (6.81)

A plot of J(k) versus k is called the learning curve. Note
that the MSE decays exponentially. When the algorithm
is convergent, we see that,

lim
k→∞ J(k) = σ2

b . (6.82)

This value corresponds to the MMSE, Jmin, obtained
with the optimal Wiener filter when Lf = L , which is
what we assume in this section.

6.6.2 Stochastic Algorithm

The stochastic gradient or least-mean-square (LMS)
algorithm, invented by Widrow and Hoff in the late
1950s [6.11], is certainly the most popular algorithm
that we can find in the literature of adaptive filters. The
popularity of the LMS is probably due to the fact that it
is easy to understand, easy to implement, and robust in
many respects.

One easy way to derive the stochastic gradient algo-
rithm is by approximating the deterministic algorithm.
Indeed, in practice, the two quantities p = E{s(k)x(k)}
and R = E{s(k)sT(k)} are in general not known. If we
take their instantaneous estimates:

p̂(k) = s(k)x(k) , (6.83)

R̂(k) = s(k)sT(k) , (6.84)

and replace them in the steepest-descent algorithm
(6.58), we get:

ĥ(k) = ĥ(k −1)+μ[ p̂(k)− R̂(k)ĥ(k −1)]
= ĥ(k −1)+μs(k)[x(k)− sT(k)ĥ(k −1)] .

(6.85)

This simple recursion is the LMS algorithm. Contrary to
the deterministic algorithm, the LMS weight vector ĥ(k)
is now a random vector. The three following equations
summarize this algorithm [6.5],

x̂(k) = sT(k)ĥ(k −1) , filter output, (6.86)

e(k) = x(k)− x̂(k) , error signal, (6.87)

ĥ(k) = ĥ(k −1)+μs(k)e(k) , adaptation, (6.88)

which requires 2L additions and 2L +1 multiplications
at each iteration.

The stochastic gradient algorithm has been ex-
tensively studied and many theoretical results on its
performance have been obtained [6.5,10,12]. In particu-
lar, we can show the convergence in the mean and mean
square (see for example [6.13]), where under the inde-
pendence assumption, the condition is remarkably the
same as the one obtained for the deterministic algorithm,
i. e.,

0 < μ <
2

λmax
. (6.89)

We can show that the asymptotic MSE for the LMS
is:

lim
k→∞ J(k) = σ2

b

(
1+ μ

2
Lσ2

s

)
, (6.90)

where σ2
s = E{s2(k)} is the variance of the input signal

s(k). If we compare (6.90) with the asymptotic MSE
for the steepest-descent algorithm (6.82), we notice that
a positive term,

Jex(∞) = μ

2
Lσ2

s σ2
b , (6.91)

is added, called the excess mean-square error. This term,
of course, has a negative effect on the final MSE and
its appearance is due to the approximation discussed at
the beginning of this subsection. We can reduce its ef-
fect by taking a very small μ, but this will increase the
convergence time of the LMS. This tradeoff between
fast convergence and increased MSE is a well-known
effect and is something to consider in any practical
implementation.

A simple condition for the stability of LMS is that,

|ε(k)| < |e(k)| , (6.92)
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Table 6.2 The normalized LMS (NLMS) algorithm

Initialization: ĥ(0) = 0L×1

Parameters: 0 < α < 2

δ > 0

Error: e(k) = x(k)− sT(k)ĥ(k −1)

Update: μ(k) = α

sT(k)s(k)+ δ

ĥ(k) = ĥ(k −1)+μ(k)s(k)e(k)

where

ε(k) = x(k)− sT(k)ĥ(k) (6.93)

is the a posteriori error signal, computed after the filter is
updated. This makes sense intuitively since ε(k) contains
more meaningful information than e(k).

This condition is necessary for the LMS to converge
to the true impulse response but not sufficient. However,
it is very useful to use here and in many other algorithms
to find the bounds for the step size μ.

Inserting (6.88) into (6.93) and using the condition
(6.92), we find:

0 < μ <
2

sT(k)s(k)
. (6.94)

For L large, sT(k)s(k) = Lσ2
s = tr(R). On the other hand,

tr(R) = ∑L
l=1 λl and this implies that tr(R) ≥ λmax.

Hence,

0 < μ <
2

sT(k)s(k)
≤ 2

λmax
. (6.95)

If we now introduce the normalized step size α (0 <

α < 2), as we did in the previous subsection, the step
size of the LMS will vary with time as follows,

μ(k) = α

sT(k)s(k)
, (6.96)

and the LMS becomes the normalized LMS (NLMS):

ĥ(k) = ĥ(k −1)+ αs(k)e(k)

sT(k)s(k)
. (6.97)

This algorithm is extremely helpful in practice, espe-
cially with nonstationary signals, since μ(k) can adjust
itself at each new iteration. In order to avoid numerical
difficulties when the energy of the input signal is small,
we regularize the algorithm,

ĥ(k) = ĥ(k −1)+ αs(k)e(k)

sT(k)s(k)+ δ
, (6.98)

where δ > 0 is the regularization factor. Table 6.2 sum-
marizes this very important algorithm. (Note that the

definition of μ(k) in this table is slightly modified in
order to include the regularization parameter δ.)

6.6.3 Variable-Step-Size NLMS Algorithm

The stability of the NLMS algorithm is governed by
a step-size parameter. As already discussed, the choice
of this parameter, within the stability conditions, reflects
a tradeoff between fast convergence and good tracking
ability on the one hand, and low misadjustment on the
other hand. To meet these conflicting requirements, the
step size needs to be controlled. While the formulation
of this problem is straightforward, a good and reliable
solution is not that easy to find. Many different schemes
have been proposed in the last two decades [6.14–21].
In this subsection, we show how to derive in a very
simple and elegant way a nonparametric variable-step-
size NLMS algorithm.

We define the a priori and a posteriori error signals
as, respectively,

e(k) = x(k)− ĥT(k −1)s(k)

= sT(k)[h− ĥ(k −1)]+b(k) , (6.99)

ε(k) = x(k)− ĥT(k)s(k)

= sT(k)[h− ĥ(k)]+b(k) . (6.100)

Consider the linear update equation:

ĥ(k) = ĥ(k −1)+μ(k)s(k)e(k) . (6.101)

One reasonable way to derive a μ(k) that makes (6.101)
stable is to cancel the a posteriori error signal ([6.22]
and references therein). Replacing (6.101) in (6.100)
with the requirement ε(k) = 0 we easily find, assuming
e(k) �= 0, ∀k, that,

μNLMS(k) = 1

sT(k)s(k)
. (6.102)

Therefore, the obtained algorithm is the classical NLMS.
While this procedure makes sense in the absence

of noise, finding the μ(k), in the presence of noise,
that cancels (6.100) will introduce noise in ĥ(k) since
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Table 6.3 The nonparametric VSS-NLMS (NPVSS-NLMS) algorithm

Initialization: ĥ(0) = 0

σ̂2
e (0) = 0

Parameters: λ = 1− 1

KL
, exponential window with K ≥ 2

σ2
b , noise power known or estimated

δ = cst ·σ2
s , regularization

ε > 0, very small number to avoid division by zero

Error: e(k) = x(k)− ĥT(k −1)s(k)

Update: σ̂2
e (k) = λσ̂2

e (k −1)+ (1−λ)e2(k)

ς(k) = [
δ+ sT(k)s(k)

]−1
[

1− σb

ε+ σ̂e(k)

]

μNPVSS(k) =
{

ς(k) if σ̂e(k) ≥ σb

0 otherwise

ĥ(k) = ĥ(k −1)+μNPVSS(k)s(k)e(k)

sT(k)(h− ĥ(k)) = −b(k) �= 0, ∀k. What we would like,
in fact, is to have sT(k)(h− ĥ(k)) = 0,∀k, which implies
that ε(k) = b(k). Hence, in this procedure we wish to
find the step-size parameter μ(k) in such a way that

E{ε2(k)} = σ2
b , ∀k . (6.103)

Using the approximation sT(k)s(k) = Lσ2
s for L 
 1,

knowing that μ(k) is deterministic in nature, substituting
(6.101) into (6.100), using (6.99) to eliminate ĥ(k −1),
and equating to (6.103), we find:

E{ε2(k)} = [1−μ(k)Lσ2
s ]2σ2

e (k)

= σ2
b , (6.104)

where σ2
e (k) = E{e2(k)} is the power of the error signal.

Developing (6.104), we obtain a quadratic equation,

μ2(k)− 2

Lσ2
s
μ(k)+ 1

(
Lσ2

s

)2

[

1− σ2
b

σ2
e (k)

]

= 0 ,

(6.105)

for which the obvious solution is,

μNPVSS(k) = 1

sT(k)s(k)

[

1− σb

σe(k)

]

= μNLMS(k)α(k) , (6.106)

where α(k) [0 ≤ α(k) ≤ 1] is the normalized step size.
Therefore, the nonparametric VSS-NLMS (NPVSS-
NLMS) algorithm is [6.23],

ĥ(k) = ĥ(k −1)+μNPVSS(k)s(k)e(k) , (6.107)

where μNPVSS(k) is defined in (6.106).
We see from (6.106) that, before the algorithm

converges, σe(k) is large compared to σb, thus

μNPVSS(k) ≈ μNLMS(k). On the other hand, when the al-
gorithm starts to converge to the true solution, σe(k) ≈ σb
and μNPVSS(k) ≈ 0. This is exactly what we desire in
order to have both good convergence and low misadjust-
ment. As we can notice, this approach was derived with
almost no assumptions compared to all other algorithms
belonging to the same family. Table 6.3 summarizes
a practical version of the NPVSS-NLMS algorithm.

6.6.4 Proportionate NLMS Algorithms

In this subsection, we explain two very useful al-
gorithms: the proportionate NLMS (PNLMS) and
improved PNLMS (IPNLMS) algorithms.

It is well known that the NLMS algorithm converges
and tracks slowly, especially for long impulse responses.
In many situations where an adaptive algorithm is re-
quired, convergence and tracking are critical for a good
performance of the entire system. While in the NLMS,
the adaptation step is the same for all components of
the filter, in the PNLMS [6.24], an adaptive individual
step size is assigned to each filter coefficient. The step
sizes are calculated from the last estimate of the fil-
ter coefficients in such a way that a larger coefficient
receives a larger increment, thus increasing the conver-
gence rate of that coefficient. This has the effect that
active coefficients are adjusted faster than inactive coef-
ficients (i. e., small or zero coefficients). Hence, PNLMS
converges much faster than NLMS for sparse impulse
responses. Unfortunately, PNLMS behaves much worse
than NLMS when the impulse response is not sparse.
This problem is due to the fact that the proportionate
update is not very well refined. In [6.25], an IPNLMS
was proposed where the adaptive individual step size has
a better balance between the fixed step size of NLMS and
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the large amount of proportionality in PNLMS. As a re-
sult, IPNLMS always converges and tracks better than
NLMS and PNLMS, no matter how sparse the impulse
response.

The error signal and the coefficient update equa-
tion of the two previously discussed algorithms can be
written as:

e(k) = x(k)− ĥT(k −1)s(k) , (6.108)

ĥ(k) = ĥ(k −1)+ αG(k −1)s(k)e(k)

sT(k)G(k −1)s(k)+ δ
, (6.109)

where

G(k −1) = diag{g0(k −1) g1(k −1)

· · · gL−1(k −1)} (6.110)

is a diagonal matrix that adjusts the step sizes of the
individual taps of the filter, α (0 < α < 2) is the overall
step-size factor, and δ is the regularization parameter.

The NLMS algorithm is obtained by taking:

G(k) = I , (6.111)

δ = δNLMS = cstσ2
s , (6.112)

where I, σ2
s , and cst are the identity matrix, the power

of the signal s(k), and a small positive constant, respect-
ively.

In the PNLMS, the diagonal elements of G(k) =
Gp(k) are calculated as follows [6.24]:

γp,l(k) = max
{
ρ max

[
δp,

∣
∣
∣ĥ0(k)

∣
∣
∣ , · · · ,

∣
∣
∣ĥL−1(k)

∣
∣
∣
]
,

∣
∣
∣ĥl(k)

∣
∣
∣
}

, (6.113)

gp,l(k) = γp,l(k)

‖γ p(k)‖1
, 0 ≤ l ≤ L −1 , (6.114)

Table 6.4 The improved PNLMS (IPNLMS) algorithm

Initialization: ĥl(0) = 0, l = 0, 1, · · · , L −1

Parameters: −1 ≤ β < 1

0 < α < 2

δIPNLMS = cst ·σ2
s

1−β

2L
ε > 0, very small number to avoid division by zero

Error: e(k) = x(k)− ĥT(k −1)s(k)

Update: gip,l(k −1) = 1−β

2L
+ (1+β)

∣
∣
∣ĥl(k −1)

∣
∣
∣

2
∥
∥
∥ĥ(k −1)

∥
∥
∥

1
+ ε

μ(k) = α
∑L−1

j=0 s2(k − j)gip, j (k −1)+ δIPNLMS

ĥl(k) = ĥl(k −1)+μ(k)gip,l(k −1)s(k − l)e(k)

l = 0, 1, · · · , L −1

where

γ p(k) = [γp,0(k) γp,1(k) · · · γp,L−1(k)]T .

The parameters δp and ρ are positive numbers with
typical values δp = 0.01, ρ = 0.01. The first term in
(6.113), ρ, prevents ĥl(k) from stalling when its magni-
tude is much smaller than the magnitude of the largest
coefficient and δp regularizes the updating when all co-
efficients are zero at initialization. For the regularization
parameter, we usually choose:

δPNLMS = δNLMS/L . (6.115)

For the IPNLMS algorithm, the diagonal ma-
trix, G(k) = Gip(k), is computed in a more-elegant
way [6.25]:

γip,l(k) = (1−β)
‖ĥ(k)‖1

L
+ (1+β)

∣
∣
∣ĥl(k)

∣
∣
∣ ,

(6.116)

gip,l(k) = γip,l(k)

‖γ ip(k)‖1
= 1−β

2L
+ (1+β)

∣
∣ĥl(k)

∣
∣

2‖ĥ(k)‖1
,

0 ≤ l ≤ L −1 , (6.117)

where β (−1 ≤ β < 1) is a parameter that controls the
amount of proportionality in the IPNLMS. For β = −1,
it can easily be checked that the IPNLMS and NLMS
algorithms are identical. For β close to 1, IPNLMS be-
haves like PNLMS. In practice, a good choice for β is
−0.5 or 0. With this choice and in simulations, IPNLMS
always performs better than NLMS and PNLMS. As for
the regularization parameter, it should be taken as:

δIPNLMS = 1−β

2L
δNLMS . (6.118)

The IPNLMS algorithm is summarized in Table 6.4.
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Before finishing this subsection, it is worth mention-
ing another variant of PNLMS, called PNLMS++ [6.26].
In this algorithm, the adaptation of the filter coefficients
alternates between NLMS and PNLMS; as a result,
PNLMS++ seems slightly less sensitive to the assump-
tion of a sparse impulse response than PNLMS.

6.6.5 Sign Algorithms

Up to now, the only cost function that we have used has
been the MSE. What makes this criterion so interest-
ing is that an optimal solution (Wiener) can easily be
derived as well as very powerful adaptive algorithms.
An alternative to the MSE is the mean absolute error
(MAE) [6.27],

Ja(ĥ) = E{|e(k)|}
= E{|x(k)− ĥTs(k)|} . (6.119)

The gradient of this cost function is:

∂Ja(ĥ)

∂ĥ
= −E{s(k)sgn[e(k)]} , (6.120)

where

sgn[e(k)] = e(k)

|e(k)| . (6.121)

From the instantaneous value of the gradient of Ja(ĥ),
we can derive the sign-error adaptive filter:

ĥ(k) = ĥ(k −1)+μas(k)sgn[e(k)] , (6.122)

where μa is the adaptation step of the algorithm. This
algorithm is simplified compared to the LMS since the
L multiplications in the update equation are replaced by
a sign change of the components of the signal vector
s(k). Using the stability condition, |ε(k)| < |e(k)|, we
deduce that:

0 < μa <
2|e(k)|

sT(k)s(k)
. (6.123)

Another way to simplify the LMS filter is to replace
s(k) with its sign. We get the sign–data algorithm:

ĥ(k) = ĥ(k −1)+μ′
asgn[s(k)]e(k) , (6.124)

where μ′
a is the adaptation step of the algorithm and the

stability condition is:

0 < μ′
a <

2

sT(k)sgn[s(k)] . (6.125)

Combining the two previous approaches, we derive
the sign–sign algorithm:

ĥ(k) = ĥ(k −1)+μ′′
a sgn[s(k)]sgn[e(k)] , (6.126)

for which the stability condition is:

0 < μ′′
a <

2|e(k)|
sT(k)sgn[s(k)] . (6.127)

The algorithms derived in this subsection are very
simple to implement and can be very useful in some
applications. However, their convergence rate is usu-
ally slower than the LMS and their excess MSE is
higher [6.28–30].

6.7 MIMO Wiener Filter

In this section, we consider a MIMO system with M
inputs and N outputs (see Sect. 6.2 for more details):

x(k) = Hs(k)+b(k) , (6.128)

where

xn(k) =
M∑

m=1

hT
nmsm(k)+bn(k)

= hT
n:s(k)+bn(k), n = 1, 2, · · · , N ,

(6.129)

and

H =

⎛

⎜
⎜
⎜
⎜
⎝

hT
11 hT

12 · · · hT
1M

hT
21 hT

22 · · · hT
2M

...
...

. . .
...

hT
N1 hT

N2 · · · hT
NM

⎞

⎟
⎟
⎟
⎟
⎠

N×ML

=

⎛

⎜
⎜
⎜
⎜
⎝

hT
1:

hT
2:
...

hT
N :

⎞

⎟
⎟
⎟
⎟
⎠

.

(6.130)

We define the error signal at time k at the n-th output
as:

en(k) = xn(k)− x̂n(k)

= xn(k)− ĥT
n:s(k) , n = 1, 2, · · · , N ,

(6.131)
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Table 6.5 The MISO NLMS algorithm

Initialization: ĥn:(0) = 0ML×1

Parameters: 0 < α < 2

δ > 0

Error: en(k) = xn(k)− sT(k)ĥn:(k −1)

Update: μ(k) = α

sT(k)s(k)+ δ

ĥn:(k) = ĥn:(k −1)+μ(k)s(k)en (k)

where ĥn: is an estimate of hn:. It is more convenient to
define an error signal vector for all outputs:

e(k) = x(k)− x̂(k)

= x(k)− Ĥs(k) , (6.132)

where Ĥ is an estimate of H and

e(k) = [e1(k) e2(k) · · · eN (k)]T .

Having written the error signal, we now define the
MIMO MSE with respect to the modeling filters as:

J(Ĥ) = E{eT(k)e(k)}

=
N∑

n=1

E
{
e2

n(k)
} =

N∑

n=1

Jn(ĥn:) . (6.133)

The minimization of (6.133) leads to the MIMO Wiener–
Hopf equations:

RssĤT
o = Psx , (6.134)

where

Rss = E{s(k)sT(k)}

=

⎛

⎜
⎜
⎜
⎜
⎝

Rs1s1 Rs1s2 · · · Rs1sM

Rs2s1 Rs2s2 · · · Rs2sM
...

...
. . .

...

RsM s1 RsMs2 · · · RsMsM

⎞

⎟
⎟
⎟
⎟
⎠

(6.135)

is the input signal covariance matrix (which has a block-
Toeplitz structure) with Rsmsi = E{sm(k)sT

i (k)}, and

Psx = E{s(k)xT(k)}
= (psx1 psx2 · · · psxN

) (6.136)

is the cross-correlation matrix between the input and
output signals, with psxn = E{s(k)xn(k)}.

It can easily be seen that the MIMO Wiener–Hopf
equations (6.134) can be decomposed into N indepen-
dent MISO Wiener–Hopf equations,

Rssĥn:,o = psxn , n = 1, 2, · · · , N , (6.137)

each one corresponding to an output signal of the system.
In other words, minimizing J(Ĥ) or minimizing each
Jn(ĥn:) independently gives exactly the same results
from an identification point of view. This observation
is very important from a practical point of view when
adaptive algorithms need to be designed. Indeed, any
MIMO adaptive filter is simplified to N MISO adaptive
filters. As an example, we give the MISO NLMS algo-
rithm in Table 6.5. We deduce from this discussion that,
obviously, the identification of a SIMO system is equiva-
lent to the identification of N independent SISO systems.
As a result, with a reference signal, the identification of
any acoustic system simplifies to the identification of
SISO or MISO systems.

6.7.1 Conditioning of the Covariance Matrix

The best possible case for the identification of
a MISO system is when the input signals sm(k),
m = 1, 2, · · · , M, are uncorrelated. In this scenario, we
have:

Rsmsi = 0L×L , ∀m, i = 1, 2, · · · , M, m �= i ,

(6.138)

and the input signal covariance matrix Rss is block-
diagonal. Therefore, if Rsm sm , m = 1, 2, · · · , M, are
nonsingular and well conditioned, the impulse responses
of the MISO system are easy to estimate. This case,
however, does not often occur in practice so it is of little
interest.

The worst possible case, from an identification point
of view, is when the signals sm(k) are generated from
a unique source ss(k), i. e.,

sm(k) = gT
mss(k) , m = 1, 2, · · · , M , (6.139)

where

gm = [gm,0 gm,1 · · · gm,L−1]T

is the impulse response between the source ss(k) and
the signal sm(k). In this scenario, it can be shown that
matrix Rss is rank-deficient by, at least, (M −2)L +1.
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As a matter of fact, from (6.139), the input signal vector
ss(k) can be written as

s(k) = [
sT

1 (k) sT
2 (k) · · · sT

M(k)
]T

= Gss(k)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g1,0 g1,1 · · · g1,L−1 0 0 · · · 0
0 g1,0 g1,1 · · · g1,L−1 0 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 · · · 0 g1,0 g1,1 · · · g1,L−1

g2,0 g2,1 · · · g2,L−1 0 0 · · · 0
0 g2,0 g2,1 · · · g2,L−1 0 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 · · · 0 g2,0 g2,1 · · · g2,L−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

gM,0 gM,1 · · · gM,L−1 0 0 · · · 0
0 gM,0 gM,1 · · · gM,L−1 0 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 · · · 0 gM,0 gM,1 · · · gM,L−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ss(k)

ss(k −1)

ss(k −2)

...

ss(k −2L +3)

ss(k −2L +2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where G is an ML × (2L −1) matrix, containing the im-
pulse responses gm and is assumed to be of full column
rank, and ss(k) is a (2L −1) × 1 vector. We then have:

Rss = E{s(k)sT(k)}
= GE

{
ss(k)sT

s (k)
}
GT

= GRssss G
T , (6.140)

where Rssss is the source signal covariance matrix of
size (2L −1) × (2L −1), assumed to be full rank. We
immediately see from (6.140), that:

Rank[Rss] = min{Rank[G], Rank[Rssss ]}
= 2L −1 , (6.141)

and

Null[Rss] = ML −Rank[Rss]
= (M −2)L +1 , (6.142)

where Null[] and Rank[] denote the dimension of the
null space and the rank of a matrix, respectively.

From this analysis, one can see that a MISO system is
rank deficient if its inputs are the filtered version of the
same source signal. Thus, the Wiener–Hopf equations
do not have a unique solution.

In most practical situations, the signals sm(k),
m = 1, 2, · · · , M, are somehow related. If they are
highly coherent, adaptive algorithms will be very slow to
converge to the true solution and in some situations, they
will converge to a solution that is far from the desired
one.

We are now going to show in the particular case of
a MISO system with two inputs how a high coherence
between these signals affects the condition number of
the covariance matrix:

Rss =
(

Rs1s1 Rs1s2

Rs2s1 Rs2s2

)

.

For L → ∞, a Toeplitz matrix is asymptotically
equivalent to a circulant matrix if its elements are ab-
solutely summable [6.31], which is the case for speech
signals. In this situation, we can decompose

Rsmsi = F−1R⇒sm si F , m, i = 1, 2 , (6.143)

where F is the Fourier matrix and the diagonal matrix

R⇒smsi = diag
{

R⇒sm si (0), R⇒sm si (1),

· · · , R⇒sm si (L −1)
}

(6.144)

contains elements corresponding to the L frequency
bins that are formed from the discrete Fourier trans-
form (DFT) of the first column of Rsm si . Letting rsm si (l)
be the auto- and cross-correlation for m = i and m �= i,
respectively, we see that the spectral content between
two signals is related to the correlation function by

R⇒smsi ( f ) =
∞∑

l=−∞
rsm si (l)e

−i2π fl ,

f = 0, 1, · · · , L −1 . (6.145)
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Using (6.143), Rss can be expressed in terms of its
spectra as:

Rss = F−1
d R⇒ssFd

=
(

F−1 0L×L

0L×L F−1

) ⎛

⎝
R⇒s1s1 R⇒s1s2

R⇒s2s1 R⇒s2s2

⎞

⎠

·
(

F 0L×L

0L×L F

)

. (6.146)

To compute the condition number χ2
F(R1/2

ss ) (Sect. 6.5),
we need to compute tr(Rss) and tr(R−1

ss ). The first trace
is easy to compute. Indeed, using (6.146), we easily find:

tr(Rss) = tr
(

F−1
d R⇒ssFd

)
= tr

(
R⇒ss

)

=
L−1∑

l=0

(
R⇒s1s1 (l)+ R⇒s2s2 (l)

)
. (6.147)

For the second trace, we have:

tr
(
R−1

ss

) = tr
(

F−1
d R⇒

−1
ss Fd

)
= tr

(
R⇒

−1
ss

)
. (6.148)

Furthermore, it is easy to show that:

R⇒
−1
ss =

⎛

⎝
R⇒

−1
1 0L×L

0L×L R⇒
−1
2

⎞

⎠

·
⎛

⎝
IL×L −R⇒s1s2 R⇒

−1
s2s2

−R⇒s2s1 R⇒
−1
s1s1

IL×L

⎞

⎠ , (6.149)

where

R⇒1 =
[
IL×L − R⇒

2
s1s2

(
R⇒

−1
s1s1

R⇒
−1
s2s2

)]
R⇒s1s1 , (6.150)

R⇒2 =
[
IL×L − R⇒

2
s1s2

(
R⇒

−1
s1s1

R⇒
−1
s2s2

)]
R⇒s2s2 . (6.151)

Hence,

tr
(
R−1

ss

) = tr
(

R⇒
−1
1 + R⇒

−1
2

)

=
L−1∑

l=0

(1−|γ (l)|2)−1

×
[

R⇒
−1
s1s1

(l)+ R⇒
−1
s2s2

(l)
]

, (6.152)

where

|γ ( f )|2 =
∣
∣
∣R⇒s1s2 ( f )

∣
∣
∣
2

R⇒s1s1 ( f )R⇒s2s2 ( f )
,

f = 0, 1, · · · , L −1 , (6.153)

is the squared interchannel coherence function of the
f -th frequency bin.

We finally obtain the relationship between the inter-
channel coherence and the condition number based on
the Frobenius norm:

χ2
F

(
R1/2

ss
) =

{
L−1∑

l=0

[
R⇒s1s1 (l)+ R⇒s2s2 (l)

]
}

×

{
L−1∑

l=0

[1−|γ (l)|2]−1
[

R⇒
−1
s1s1

(l)

+ R⇒
−1
s2s2

(l)
]}

. (6.154)

It is now evident from the previous expression that
χ2

F(R1/2
ss ) increases with the squared interchannel co-

herence function, hence degrading the condition of
Rss; as γ → 1, χ2

F(R1/2
ss ) → ∞ and the identification

of the system is increasingly difficult, if not impossi-
ble.

6.8 Conclusions

In this chapter, we have explained the most important
results of the Wiener theory in the context of system
identification.

After discussing the four basic signal models, we
derived the optimal Wiener filter for a SISO system and
showed that this filter can be a very good approximation
of the desired impulse response.

We discussed in details the condition number of the
input signal correlation matrix. This matrix appears ex-
plicitly in the Wiener–Hopf equations and implicitly
in all adaptive filters. A high condition number will

perturb the accuracy of the solution of the Wiener–
Hopf equations and will slow the rate of convergence
of most adaptive algorithms. A fast, efficient algorithm
to compute the conditional number was also developed.

We also discussed several important adaptive filters.
In particular, the NLMS algorithm, which is extremely
popular and useful in practice, was derived. Other
emerging algorithms, such as the IPNLMS, were pre-
sented.

We generalized the Wiener principle to the MIMO
system case. We showed that the MIMO Wiener–Hopf
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equations can be decomposed into N independent MISO
Wiener–Hopf equations. As a result, adaptive filters for
SISO and MISO systems, with a reference signal, cover
all possible cases. A deep analysis of the condition-

ing of the input signal covariance matrix was given,
showing that identification is not always obvious and de-
pends on the interchannel coherence between the input
signals.
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