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Convolutive B52. Convolutive Blind Source Separation Methods

M. S. Pedersen, J. Larsen, U. Kjems, L. C. Parra

In this chapter, we provide an overview of existing
algorithms for blind source separation of convo-
lutive audio mixtures. We provide a taxonomy in
which many of the existing algorithms can be or-
ganized and present published results from those
algorithms that have been applied to real-world
audio separation tasks.
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During the past decades, much attention has been given
to the separation of mixed sources, in particular for the
blind case where both the sources and the mixing process
are unknown and only recordings of the mixtures are
available. In several situations it is desirable to recover
all sources from the recorded mixtures, or at least to
segregate a particular source. Furthermore, it may be
useful to identify the mixing process itself to reveal
information about the physical mixing system.

In some simple mixing models each recording con-
sists of a sum of differently weighted source signals.
However, in many real-world applications, such as in
acoustics, the mixing process is more complex. In such
systems, the mixtures are weighted and delayed, and
each source contributes to the sum with multiple delays
corresponding to the multiple paths by which an acoustic
signal propagates to a microphone. Such filtered sums
of different sources are called convolutive mixtures. De-
pending on the situation, the filters may consist of a few
delay elements, as in radio communications, or up to

several thousand delay elements as in acoustics. In these
situations the sources are the desired signals, yet only
the recordings of the mixed sources are available and the
mixing process is unknown.

There are multiple potential applications of con-
volutive blind source separation. In acoustics different
sound sources are recorded simultaneously with pos-
sibly multiple microphones. These sources may be
speech or music, or underwater signals recorded in pas-
sive sonar [52.1]. In radio communications, antenna
arrays receive mixtures of different communication sig-
nals [52.2,3]. Source separation has also been applied to
astronomical data or satellite images [52.4]. Finally, con-
volutive models have been used to interpret functional
brain imaging data and biopotentials [52.5–8].

This chapter considers the problem of separating
linear convolutive mixtures focusing in particular on
acoustic mixtures. The cocktail-party problem has come
to characterize the task of recovering speech in a room of
simultaneous and independent speakers [52.9,10]. Con-
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Fig. 52.1 Overview of important areas within blind separation of convolutive sources

volutive blind source separation (BSS) has often been
proposed as a possible solution to this problem as it
carries the promise to recover the sources exactly. The
theory on linear noise-free systems establishes that a sys-
tem with multiple inputs (sources) and multiple output
(sensors) can be inverted under some reasonable as-
sumptions with appropriately chosen multidimensional
filters [52.11]. The challenge lies in finding these con-
volution filters.

There are already a number of partial reviews avail-
able on this topic [52.12–22]. The purpose of this chapter

is to provide a complete survey of convolutive BSS
and identify a taxonomy that can organize the large
number of available algorithms. This may help prac-
titioners and researchers new to the area of convolutive
source separation obtain a complete overview of the
field. Hopefully those with more experience in the field
can identify useful tools, or find inspiration for new algo-
rithms. Figure 52.1 provides an overview of the different
topics within convolutive BSS and in which section they
are covered. An overview of published results is given
in Sect. 52.7.

52.1 The Mixing Model

First we introduce the basic model of convolutive mix-
tures. At the discrete time index t, a mixture of N source
signals s(t) = [s1(t), . . . , sN (t)]T are received at an ar-
ray of M sensors. The received signals are denoted
by x(t) = [x1(t), . . . , xM(t)]T. In many real-world ap-
plications the sources are said to be convolutively (or
dynamically) mixed. The convolutive model introduces

the following relation between the m-th mixed signal,
the original source signals, and some additive sensor
noise vm(t):

xm(t) =
N∑

n=1

K−1∑

k=0

amnksn(t − k)+vm(t) (52.1)
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Convolutive Blind Source Separation Methods 52.1 The Mixing Model 1067

The mixed signal is a linear mixture of filtered versions
of each of the source signals, and amnk represent the cor-
responding mixing filter coefficients. In practice, these
coefficients may also change in time, but for simplicity
the mixing model is often assumed stationary. In theory
the filters may be of infinite length, which may be im-
plemented as infinite impulse response (IIR) systems,
however, in practice it is sufficient to assume K < ∞. In
matrix form the convolutive model can be written:

x(t) =
K−1∑

k=0

Aks(t − k)+v(t) , (52.2)

where Ak is an M × N matrix that contains the k-th filter
coefficients. v(t) is the M × 1 noise vector. In the z-
domain the convolutive mixture (52.2) can be written:

X(z) = A(z)S(z)+ V(z) , (52.3)

where A(z) is a matrix with finite impulse response (FIR)
polynomials in each entry [52.23].

52.1.1 Special Cases

There are some special cases of the convolutive mixture
which simplify (52.2).

Instantaneous Mixing Model
Assuming that all the signals arrive at the sensors at
the same time without being filtered, the convolutive
mixture model (52.2) simplifies to

x(t) = As(t)+v(t) . (52.4)

This model is known as the instantaneous or delayless
(linear) mixture model. Here, A = A0, is an M × N ma-
trix containing the mixing coefficients. Many algorithms
have been developed to solve the instantaneous mixture
problem, see e.g., [52.17, 24].

Delayed Sources
Assuming a reverberation-free environment with prop-
agation delays the mixing model can be simplified to

xm(t) =
N∑

n=1

amnsn(t − kmn)+vm(t) , (52.5)

where kmn is the propagation delay between source n
and sensor m.

Noise Free
In the derivation of many algorithms, the convolutive
model (52.2) is assumed to be noise-free, i. e.,

x(t) =
K−1∑

k=0

Aks(t − k) . (52.6)

Over- and Underdetermined Sources
Often it is assumed that the number of sensors equals
(or exceeds) the number of sources in which case
linear methods may suffice to invert the linear mix-
ing. However, if the number of sources exceeds the
number of sensors the problem is underdetermined,
and even under perfect knowledge of the mixing sys-
tem linear methods will not be able to recover the
sources.

52.1.2 Convolutive Model
in the Frequency Domain

The convolutive mixing process (52.2) can be simplified
by transforming the mixtures into the frequency domain.
The linear convolution in the time domain can be written
in the frequency domain as separate multiplications for
each frequency:

X(ω) = A(ω)S(ω)+ V(ω) . (52.7)

At each frequency, ω = 2π f , A(ω) is a complex M × N
matrix, X(ω) and V(ω) are complex M × 1 vectors, and
similarly S(ω) is a complex N × 1 vector. The frequency
transformation is typically computed using a discrete
Fourier transform (DFT) within a time frame of length
T starting at time t:

X(ω, t) = DFT([x(t), · · · , x(t + T −1)]) , (52.8)

and correspondingly for S(ω, t) and V(ω, t). Often
a windowed discrete Fourier transform is used:

X(ω, t) =
T−1∑

τ=0

w(τ)x(t + τ)e−iωτ/T , (52.9)

where the window function w(τ) is chosen to minimize
band overlap due to the limited temporal aperture. By
using the fast Fourier transform (FFT) convolutions can
be implemented efficiently in the discrete Fourier do-
main, which is important in acoustics as it often requires
long time-domain filters.
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1068 Part I Multichannel Speech Processing

52.1.3 Block-Based Model

Instead of modeling individual samples at time t one
can also consider a block consisting of T samples. The
equations for such a block can be written as:

x(t) = A0s(t)+· · ·+ AK−1s(t − K +1) ,

x(t −1) = A0s(t −1)+· · ·+ AK−1s(t − K ) ,

x(t −2) = A0s(t −2)+· · ·+ AK−1s(t − K −1) ,

... .

The M-dimensional output sequence can be written as
an MT × 1 vector:

x̂(t) = [xT(t), xT(t −1), · · · , xT(t − T +1)]T ,

(52.10)

where xT(t) = [x1(t), · · · , xM(t)]. Similarly, the N-di-
mensional input sequence can be written as an N(T +
K −1) × 1 vector:

ŝ(t) = [sT(t), sT(t −1), · · · , sT(t − T − K +2)]T

(52.11)

From this the convolutive mixture can be expressed
formally as:

x̂(t) = Âŝ(t)+ v̂(t), (52.12)

where Â has the following form:

Â =

⎛
⎜⎜⎝

A0 · · · AK−1 0 0

0
. . .

. . .
. . . 0

0 0 A0 · · · AK−1

⎞
⎟⎟⎠ . (52.13)

The block-Toeplitz matrix Â has dimensions MT ×
N(T + K −1). On the surface, (52.12) has the same
structure as an instantaneous mixture given in (52.4), and
the dimensionality has increased by a factor T . However,
the models differ considerably as the elements within Â
and ŝ(t) are now coupled in a rather specific way.

The majority of the work in convolutive source sep-
aration assumes a mixing model with a finite impulse
response as in (52.2). A notable exception is the work by
Cichocki, which also considers an autoregressive (AR)
component as part of the mixing model [52.18]. The au-
toregressive moving-average (ARMA) mixing system
proposed there is equivalent to a first-order Kalman filter
with an infinite impulse response.

52.2 The Separation Model

The objective of blind source separation is to find an
estimate y(t) that is a model of the original source signals
s(t). For this, it may not be necessary to identify the
mixing filters Ak explicitly. Instead, it is often sufficient
to estimate separation filters Wl that remove the cross-
talk introduced by the mixing process. These separation
filters may have a feed-back structure with an infinite
impulse response, or may have a finite impulse response
expressed as feedforward structure.

52.2.1 Feedforward Structure

An FIR separation system is given by

yn(t) =
M∑

m=1

L−1∑

l=0

wnml xm(t − l) (52.14)

or in matrix form

y(t) =
L−1∑

l=0

Wlx(t − l) . (52.15)

As with the mixing process, the separation system can
be expressed in the z-domain as

Y(z) = W(z)X(z) , (52.16)

and can also be expressed in block-Toeplitz form with
the corresponding definitions for ŷ(t) and Ŵ [52.25]:

ŷ(t) = Ŵx̂(t) . (52.17)

Table 52.1 summarizes the mixing and separation equa-
tions in the different domains.

52.2.2 Relation Between Source
and Separated Signals

The goal in source separation is not necessarily to re-
cover identical copies of the original sources. Instead,
the aim is to recover model sources without interfer-
ences from other sources, i. e., each separated signal
yn(t) should contain signals originating from a single
source only (Fig. 52.3). Therefore, each model source
signal can be a filtered version of the original source
signals, i. e.,

Y(z) = W(z)A(z)S(z) = G(z)S(z) , (52.18)
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Convolutive Blind Source Separation Methods 52.2 The Separation Model 1069

Table 52.1 The convolutive mixing equation and its corresponding separation equation for different domains in which
blind source separation algorithms have been derived

Mixing process Separation model

Time xm (t) =
N∑

n=1

K−1∑

k=0

amnksn(t − k)+vm (t) yn(t) =
M∑

m=1

L−1∑

l=0

wnml xm (t − l)

x(t) =
K−1∑

k=0

Aks(t − k)+v(t) y(t) =
L−1∑

l=0

Wl x(t − l)

z-domain X(z) = A(z)S(z)+ V(z) Y(z) = W(z)X(z)

Frequency X(ω) = A(ω)S(ω)+ V(ω) Y(ω) = W(ω)X(ω)

domain

Block-Toeplitz x̂(t) = Âŝ(t) ŷ(t) = Ŵx̂(t)

form

� /�0
� /�0 � /�0

� /�0
� /�0 � /�0

� /�0
� /�0

Fig. 52.2 The source signals Y(z) are mixed with the mix-
ing filter A(z). An estimate of the source signals is obtained
through an unmixing process, where the received signals
X(z) are unmixed with the filter W(z). Each estimated
source signal is then a filtered version of the original source,
i. e., G(z) = W(z)A(z). Note that the mixing and the un-
mixing filters do not necessarily have to be of the same
order

1�-�����
����

%����
	����

,�	�������

��
�

2	�����	�
-�

Fig. 52.3 Illustration of a speech source. It is not always
clear what the desired acoustic source should be. It could
be the acoustic wave as emitted from the mouth. This cor-
responds to the signal as it would have been recorded in an
anechoic chamber in the absence of reverberations. It could
be the individual source as it is picked up by a microphone
array, or it could be the speech signal as it is recorded on
microphones close to the two eardrums of a person. Due to
reverberations and diffraction, the recorded speech signal
is most likely a filtered version of the signal at the mouth

as illustrated in Fig. 52.2. The criterion for separation,
i. e., interference-free signals, is satisfied if the recovered
signals are permuted, and possibly scaled and filtered
versions of the original signals, i. e.,

G(z) = P�(z) , (52.19)

where P is a permutation matrix, and �(z) is a diagonal
matrix with scaling filters on its diagonal. If one can
identify A(z) exactly, and choose W(z) to be its (stable)
inverse, then �(z) is an identity matrix, and one recovers
the sources exactly. In source separation, instead, one is
satisfied with convolved versions of the sources, i. e.,
arbitrary diagonal �(z).

52.2.3 Feedback Structure

The mixing system given by (52.2) is called a feed-
forward system. Often such FIR filters are inverted by
a feedback structure using IIR filters. The estimated
sources are then given by the following equation, where
the number of sources equals the number of receivers:

yn(t) = xn(t)+
L−1∑

l=0

M∑

m=1

unml ym(t − l) , (52.20)

� /�0 � /�0

� /�0

3

Fig. 52.4 Recurrent unmixing (feedback) network given by
equation (52.21). The received signals are separated by an
IIR filter to achieve an estimate of the source signals
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Fig. 52.5 The two mixed sources s1 and s2 are mixed by an FIR mixing system. The system can be inverted by an
alternative system if the estimates ā12(z) and ā21(z) of the mixing filters a12(z) and a12(z) are known. Furthermore,
if the filter [1− ā12(z)ā21(z)]−1 is stable, the sources can be perfectly reconstructed as they were recorded at the
microphones

and unml are the IIR filter coefficients. This can also be
written in matrix form

y(t) = x(t)+
L−1∑

l=0

U(l)y(t − l) . (52.21)

The architecture of such a network is shown in Fig. 52.4.
In the z-domain, (52.21) can be written as [52.26]

Y(z) = [I +U(z)]−1 X(z) , (52.22)

provided [I +U(z)]−1 exists and all poles are within the
unit circle. Therefore,

W(z) = [I +U(z)]−1 . (52.23)

The feedforward and the feedback network can be com-
bined to a so-called hybrid network, where a feedforward
structure is followed by a feedback network [52.27,28].

52.2.4 Example: The TITO System

A special case, which is often used in source separa-
tion work is the two-input-two-output (TITO) system
[52.29]. It can be used to illustrate the relationship be-
tween the mixing and unmixing system, feedforward
and feedback structures, and the difference between
recovering sources versus generating separated signals.

Figure 52.5 shows a diagram of a TITO mixing
and unmixing system. The signals recorded at the two
microphones are described by the following equations:

x1(z) = s1(z)+a12(z)s2(z) , (52.24)

x2(z) = s2(z)+a21(z)s1(z) . (52.25)

The mixing system is thus given by

A(z) =
(

1 a12(z)

a21(z) 1

)
, (52.26)

which has the following inverse

[A(z)]−1 = 1

1−a12(z)a21(z)

(
1 −a12(z)

−a21(z) 1

)
.

(52.27)

If the two mixing filters a12(z) and a21(z) can be iden-
tified or estimated as ā12(z) and ā21(z), the separation
system can be implemented as

y1(z) = x1(z)− ā12(z)x2(z) (52.28)

y2(z) = x2(z)− ā21(z)x1(z) . (52.29)

A sufficient FIR separating filter is

W(z) =
(

1 −a12(z)

−a21(z) 1

)
. (52.30)

However, the exact sources are not recovered un-
til the model sources y(t) are filtered with the IIR
filter [1− ā12(z)ā21(z)]−1. Thus, the mixing process
is invertible, provided that the inverse IIR filter is
stable. If a filtered version of the separated sig-
nals is acceptable, we may disregard the potentially
unstable recursive filter in (52.27) and limit sepa-
ration to the FIR inversion of the mixing system
with (52.30).
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52.3 Identification

Blind identification deals with the problem of estimat-
ing the coefficients in the mixing process Ak. In general,
this is an ill-posed problem, and no unique solution ex-
ists. In order to determine the conditions under which
the system is blindly identifiable, assumptions about the
mixing process and the input data are necessary. Even
though the mixing parameters are known, this does not
imply that the sources can be recovered. Blind identi-
fication of the sources refers to the exact recovery of
sources. Therefore one should distinguish between the

conditions required to identify the mixing system and
the conditions necessary to identify the sources. The
limitations for the exact recovery of sources when the
mixing filters are known are discussed in [52.11,30,31].
For a recent review on identification of acoustic sys-
tems see [52.32]. This review considers systems with
single and multiple inputs and outputs for the case of
completely known sources as well as blind identifica-
tion, where both the sources and the mixing channels
are unknown.

52.4 Separation Principle

Blind source separation algorithms are based on differ-
ent assumptions on the sources and the mixing system.
In general, the sources are assumed to be independent
or at least uncorrelated. The separation criteria can be
divided into methods based on higher-order statistics
(HOS), and methods based on second-order statistics
(SOS). In convolutive separation it is also assumed that
sensors receive N linearly independent versions of the
sources. This means that the sources should originate
from different locations in space (or at least emit sig-
nals into different orientations) and that there are at
least as many sources as sensors for separation, i. e.,
M ≥ N .

Instead of spatial diversity a series of algorithms
make strong assumptions on the statistics of the sources.

Table 52.2 Assumptions made for separation

N < M N = M N > M

• Subspace methods • Asymmetric sources by second- and third-order cumulants [52.33] • Nonstationary,

[52.25] column-wise

co-prime sources [52.34]

• Reduction of problem • Separation criteria based on SOS and HOS for 2 × 2 system • Cross-cumulants

to instantaneous mixture [52.35] [52.36, 37]

[52.25, 38–43]

• Uncorrelated sources with distinct power spectra [52.44] • Sparseness in time and

frequency [52.45–47]

• 2 × 2, temporally colored sources [52.48]

• Cumulants of order > 2, ML principle [52.49]

• Known cross filters [52.35]

• 2 × 2, each with different correlation [52.50, 51], extended

to M × M in [52.52]

• Nonlinear odd functions [52.26, 53–58]

• Nonlinearity approximating the cumulative distribution
function (CDF), see [52.59]

For instance, they may require that sources do not over-
lap in the time–frequency domain, utilizing therefore
a form of sparseness in the data. Similarly, some al-
gorithms for acoustic mixtures exploit regularity in the
sources such as common onset, harmonic structure, etc.
These methods are motivated by the present understand-
ing on the grouping principles of auditory perception
commonly referred to as auditory scene analysis. In
radio communications a reasonable assumption on the
sources is cyclo-stationarity or the fact that source sig-
nals take on only discrete values. By using such strong
assumptions on the source statistics it is sometimes pos-
sible to relax the conditions on the number of sensors,
e.g., M < N . The different criteria for separation are
summarized in Table 52.2.
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52.4.1 Higher-Order Statistics

Source separation based on higher-order statistics is
based on the assumption that the sources are statistically
independent. Many algorithms are based on minimiz-
ing second and fourth order dependence between the
model signals. A way to express independence is that all
the cross-moments between the model sources are zero,
i. e.,

E
[
yn(t)α, yn′ (t − τ)β

] = 0 , (52.31)

for all τ , α, β = {1, 2, . . . }, and n �= n′. Here E[·] de-
notes the statistical expectation. Successful separation
using higher-order moments requires that the underly-
ing sources are non-Gaussian (with the exception of
at most one), since Gaussian sources have zero higher
cumulants [52.60] and therefore equations (52.31) are
trivially satisfied without providing useful conditions.

Fourth-Order Statistics
It is not necessary to minimize all cross-moments in or-
der to achieve separation. Many algorithms are based on
minimization of second- and fourth-order dependence
between the model source signals. This minimization
can either be based on second and fourth order cross-
moments or second- and fourth-order cross-cumulants.
Whereas off-diagonal elements of cross-cumulants van-
ish for independent signals the same is not true for
all cross-moments [52.61]. Source separation based on
cumulants has been used by several authors. Separa-
tion of convolutive mixtures by means of fourth-order
cumulants has also been addressed [52.35, 61–71].
In [52.72–74], the joint approximate diagonalization
of eigenmatrices (JADE) algorithm for complex-valued
signals [52.75] was applied in the frequency domain
in order to separate convolved source signals. Other
cumulant-based algorithms in the frequency domain are
given in [52.76, 77]. Second- and third-order cumulants
have been used by Ye et al. [52.33] for separation of
asymmetric signals. Other algorithms based on higher-
order cumulants can be found in [52.78, 79]. For
separation of more sources than sensors, cumulant-based
approaches have been proposed in [52.70, 80]. An-
other popular fourth-order measure of non-Gaussianity
is kurtosis. Separation of convolutive sources based on
kurtosis has been addressed in [52.81–83].

Nonlinear Cross-Moments
Some algorithms apply higher-order statistics for sepa-
ration of convolutive sources indirectly using nonlinear

functions by requiring:

E[ f (yn(t)), g(yn′ (t − τ))] = 0 , (52.32)

where f (·) and g(·) are odd, nonlinear functions. The
Taylor expansion of these functions captures higher-
order moments and this is found to be sufficient
for separation of convolutive mixtures. This approach
was among of the first for separation of convolutive
mixtures [52.53] extending an instantaneous blind sep-
aration algorithm by Herault and Jutten (H–J) [52.84].
In Back and Tsoi [52.85], the H–J algorithm was ap-
plied in the frequency domain, and this approach was
further developed in [52.86]. In the time domain, the
approach of using nonlinear odd functions has been
used by Nguyen Thi and Jutten [52.26]. They present
a group of TITO (2 × 2) algorithms based on fourth-
order cumulants, nonlinear odd functions, and second-
and fourth-order cross-moments. This algorithm has
been further examined by Serviere [52.54], and also
been used by Ypma et al. [52.55]. In Cruces and
Castedo [52.87] a separation algorithm can be found,
which can be regarded as a generalization of previous
results from [52.26,88]. In Li and Sejnowski [52.89], the
H–J algorithm has been used to determine the delays in
a beamformer. The H–J algorithm has been investigated
further by Charkani and Deville [52.57,58,90]. They ex-
tended the algorithm further to colored sources [52.56,
91]. Depending on the distribution of the source sig-
nals, optimal choices of nonlinear functions were also
found. For these algorithms, the mixing process is as-
sumed to be minimum-phase, since the H–J algorithm is
implemented as a feedback network. A natural gradient
algorithm based on the H–J network has been applied in
Choi et al. [52.92]. A discussion of the H–J algorithm
for convolutive mixtures can be found in Berthommier
and Choi [52.93]. For separation of two speech signals
with two microphones, the H–J model fails if the two
speakers are located on the same side, as the appropriate
separating filters can not be implemented without delay-
ing one of the sources and the FIR filters are constrained
to be causal. HOS independence obtained by applying
antisymmetric nonlinear functions has also been used
in [52.94, 95].

Information-Theoretic Methods
Statistical independence between the source signals can
also be expressed in terms of the joint probability func-
tion (PDF). If the model sources y are independent, the
joint PDF can be written as

p(y) =
∏

n

p(yn) . (52.33)
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This is equivalent to stating that model sources yn
do not carry mutual information. Information-theoretic
methods for source separation are based on maximiz-
ing the entropy in each variable. Maximum entropy is
obtained when the sum of the entropy of each vari-
able yn equals the total joint entropy in y. In this limit
variables do not carry any mutual information and are
hence mutually independent [52.96]. A well-known al-
gorithm based on this idea is the Infomax algorithm
by Bell and Sejnowski [52.97], which was significantly
improved in convergence speed by the natural gradient
method of Amari [52.98]. The Infomax algorithm can
also be derived directly from model equation (52.33) us-
ing maximum likelihood [52.99], or equivalently, using
the Kullback–Leibler divergence between the empirical
distribution and the independence model [52.100].

In all instances it is necessary to assume, or
model, the probability density functions ps(sn) of
the underlying sources sn . In doing so, one cap-
tures higher-order statistics of the data. In fact, most
information-theoretic algorithms contain expressions
rather similar to the nonlinear cross-statistics in (52.32)
with f (yn) = ∂ ln ps(yn)/∂yn , and g(yn) = yn . The PDF
is either assumed to have a specific form or it is estimated
directly from the recorded data, leading to paramet-
ric and nonparametric methods, respectively [52.16].
In nonparametric methods the PDF is captured implic-
itly through the available data. Such methods have been
addressed [52.101–103]. However, the vast majority
of convolutive algorithms have been derived based on
explicit parametric representations of the PDF.

Infomax, the most common parametric method,
was extended to the case of convolutive mixtures by
Torkkola [52.59] and later by Xi and Reilly [52.104,105].
Both feedforward and feedback networks were used. In
the frequency domain it is necessary to define the PDF
for complex variables. The resulting analytic nonlinear
functions can be derived as [52.106, 107]

f (Y ) = −∂ ln p(|Y |)
∂|Y | ej arg(Y ) , (52.34)

where p(Y ) is the probability density of the model source
Y ∈ � . Some algorithms assume circular sources in
the complex domain, while other algorithms have been
proposed that specifically assume noncircular sources
[52.108, 109].

The performance of the algorithm depends to a cer-
tain degree on the selected PDF. It is important to
determine if the data has super-Gaussian or sub-
Gaussian distributions. For speech commonly a Laplace
distribution is used. The nonlinearity is also known

as the Bussgang nonlinearity [52.110]. A connection
between the Bussgang blind equalization algorithms
and the Infomax algorithm is given in Lambert and
Bell [52.111]. Multichannel blind deconvolution algo-
rithms derived from the Bussgang approach can be found
in [52.23, 111, 112]. These learning rules are similar to
those derived in Lee et al. [52.113].

Choi et al. [52.114] have proposed a nonholo-
nomic constraint for multichannel blind deconvolution.
Nonholonomic means that there are some restrictions
related to the direction of the update. The nonholo-
nomic constraint has been applied for both a feedforward
and a feedback network. The nonholonomic constraint
was applied to allow the natural gradient algorithm by
Amari et al. [52.98] to cope with overdetermined mix-
tures. The nonholonomic constraint has also been used
in [52.115–122]. Some drawbacks in terms of stabil-
ity and convergence in particular when there are large
power fluctuations within each signal (e.g., for speech)
have been addressed in [52.115].

Many algorithms have been derived from (52.33) di-
rectly using maximum likelihood (ML) [52.123]. The
ML approach has been applied in [52.99, 124–132].
Closely related to the ML are the maximum a posteri-
ori (MAP) methods. In MAP methods, prior information
about the parameters of the model are taken into account.
MAP has been used in [52.23, 133–141].

The convolutive blind source separation problem has
also been expressed in a Bayesian formulation [52.142].
The advantage of a Bayesian formulation is that one can
derive an optimal, possibly nonlinear, estimator of the
sources enabling the estimation of more sources than the
number of available sensors. The Bayesian framework
has also been applied [52.135, 137, 143–145].

A strong prior on the signal can also be real-
ized via hidden Markov models (HMMs). HMMs can
incorporate state transition probabilities of different
sounds [52.136]. A disadvantage of HMMs is that
they require prior training and they carry a high com-
putational cost [52.146]. HMMs have also been used
in [52.147, 148].

52.4.2 Second-Order Statistics

In some cases, separation can be based on second-order
statistics (SOS) by requiring only uncorrelated sources
rather then the stronger condition of independence. In-
stead of assumptions on higher-order statistics these
methods make alternate assumptions such as the nonsta-
tionarity of the sources [52.149], or a minimum-phase
mixing system [52.50]. By itself, however, second-order
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conditions are not sufficient for separation. Sufficient
conditions for separation are given in [52.15, 150]. The
main advantage of SOS is that they are less sensitive
to noise and outliers [52.13], and hence require less
data for their estimation [52.34, 50, 150–152]. The re-
sulting algorithms are often also easier to implement
and computationally efficient.

Minimum-Phase Mixing
Early work by Gerven and Compernolle [52.88] had
shown that two source signals can be separated by
decorrelation if the mixing system is minimum-phase.
The FIR coupling filters have to be strictly causal
and their inverses stable. The condition for stability is
given as |a12(z)a21(z)| < 1, where a12(z) and a21(z) are
the two coupling filters (Fig. 52.5). These conditions
are not met if the mixing process is non-minimum-
phase [52.153]. Algorithms based on second-order
statistic assuming minimum-phase mixing can be found
in [52.41, 42, 50–52, 154–158].

Nonstationarity
The fact that many signals are nonstationary has been
successfully used for source separation. Speech sig-
nals in particular can be considered non-stationary on
time scales beyond 10 ms [52.159,160]). The temporally
varying statistics of nonstationarity sources provides
additional information for separation. Changing lo-
cations of the sources, on the other hand, generally
complicate source separation as the mixing channel
changes in time. Separation based on decorrelation
of nonstationary signals was proposed by Weinstein
et al. [52.29], who suggested that minimizing cross-
powers estimated during different stationarity times
should give sufficient conditions for separation. Wu and
Principe proposed a corresponding joint diagonalization
algorithm [52.103,161] extending an earlier method de-
veloped for instantaneous mixtures [52.162]. Kawamoto
et al. extend an earlier method [52.163] for instantaneous
mixtures to the case of convolutive mixtures in the time
domain [52.153, 164] and frequency domain [52.165].
This approach has also been employed in [52.166–169]
and an adaptive algorithm was suggested by Aichner
et al. [52.170]. By combining this approach with a con-
straint based on whiteness, the performance can be
further improved [52.171].

Note that not all of these papers have used si-
multaneous decorrelation, yet, to provide sufficient
second-order constraints it is necessary to minimize
multiple cross-correlations simultaneously. An effective
frequency-domain algorithm for simultaneous diagonal-

ization was proposed by Parra and Spence [52.149].
Second-order statistics in the frequency domain is cap-
tured by the cross-power spectrum,

Ryy(ω, t) = E[Y(ω, t)YH(ω, t)] (52.35)

= W(ω)Rxx(ω, t)WH(ω) , (52.36)

where the expectations are estimated around some time t.
The goal is to minimize the cross-powers represented
by the off-diagonal elements of this matrix, e.g., by
minimizing:

J =
∑

t,ω

‖Ryy(ω, t)−�y(ω, t)‖2 , (52.37)

where Λy(ω, t) is an estimate of the cross-power spec-
trum of the model sources and is assumed to be diagonal.
This cost function simultaneously captures multiple
times and multiple frequencies, and has to be mini-
mized with respect to W(ω) and Λy(ω, t) subject to some
normalization constraint. If the source signals are non-
stationary the cross-powers estimated at different times t
differ and provide independent conditions on the fil-
ters W(ω). This algorithm has been successfully used
on speech signals [52.172, 173] and investigated fur-
ther by Ikram and Morgan [52.174–176] to determine
the trade-offs between filter length, estimation accu-
racy, and stationarity times. Long filters are required
to cope with long reverberation times of typical room
acoustics, and increasing filter length also reduces prob-
lems associated with the circular convolution in (52.36)
(see Sect. 52.5.3). However, long filters increase the
number of parameters to be estimated and extend the
effective window of time required for estimating cross-
powers, thereby potentially losing the benefit of the
nonstationarity of speech signals. A number of varia-
tions of this algorithm have been proposed subsequently,
including time-domain implementations [52.177–179],
and other methods that incorporate additional assump-
tions [52.174, 180–187]. A recursive version of the
algorithm was given in Ding et al. [52.188]. In Robeldo-
Arnuncio and Juang [52.189], a version with noncausal
separation filters was suggested. Based on a different
way to express (52.36), Wang et al. [52.148, 190–192]
proposed a slightly different separation criterion that
leads to a faster convergence than the original algorithm
by Parra and Spence [52.149].

Other methods that exploit nonstationarity have been
derived by extending the algorithm of Molgedey and
Schuster [52.193] to the convolutive case [52.194, 195]
including a common two-step approach of sphering and
rotation [52.159, 196–199]. (Any matrix, for instance
matrix W, can be represented as a concatenation of a ro-
tation with subsequent scaling, which can be used to
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remove second-order moments, i. e., sphering, and an
additional rotation.)

In Yin and Sommen [52.160] a source separation
algorithm was presented based on nonstationarity and
a model of the direct path. The reverberant signal paths
are considered as noise. A time-domain decorrelation
algorithm based on different cross-correlations at dif-
ferent time lags is given in Ahmed et al. [52.200]. In
Yin and Sommen [52.201] the cost function is based
on minimization of the power spectral density between
the source estimates. The model is simplified by as-
suming that the acoustic transfer function between the
source and closely spaced microphones is similar. The
simplified model requires fewer computations. An al-
gorithm based on joint diagonalization is suggested in
Rahbar and Reilly [52.152,152]. This approach exploits
the spectral correlation between the adjacent frequency
bins in addition to nonstationarity. Also in [52.202,203]
a diagonalization criterion based on nonstationarity was
used.

In Olsson and Hansen [52.138, 139] the nonsta-
tionary assumption has been included in a state-space
Kalman filter model.

In Buchner et al. [52.204], an algorithm that uses
a combination of non-stationarity, non-Gaussianity, and
nonwhiteness has been suggested. This has also been
applied in [52.205–207]. In the case of more source sig-
nals than sensors, an algorithm based on nonstationarity
has also been suggested [52.70]. In this approach, it is
possible to separate three signals: a mixture of two non-
stationary source signals with short-time stationarity and
one signal that is long-term stationary. Other algorithms
based on the nonstationary assumptions can be found
in [52.208–214].

Cyclo-Stationarity
If a signal is assumed to be cyclo-stationary, its cumu-
lative distribution is invariant with respect to time shifts
of some period T multiples thereof. Further, a signal
is said to be wide-sense cyclo-stationary if the signals
mean and autocorrelation is invariant to shifts of some
period T [52.215], i. e.,

E[s(t)] = E[s(t +αT )] , (52.38)

E[s(t1), s(t2)] = E[s(t1 +αT ), s(t2 +αT )] . (52.39)

An example of a cyclo-stationary signal is a random-
amplitude sinusoidal signal. Many communication
signals have the property of cyclo-stationarity, and
voiced speech is sometimes considered approximately
cyclo-stationary [52.216]. This property has been used
explicitly to recover mixed sources in, e.g., [52.34,

55, 118, 216–222]. In [52.220] cyclo-stationarity is
used to solve the frequency permutation problem (see
Sect. 52.5.1) and in [52.118] it is used as additional
criteria to improve separation performance.

Nonwhiteness
Many natural signals, in particular acoustic signals, are
temporally correlated. Capturing this property can be
beneficial for separation. For instance, capturing tem-
poral correlations of the signals can be used to reduce
a convolutive problem to an instantaneous mixture prob-
lem, which is then solved using additional properties
of the signal [52.25, 38–43]. In contrast to instanta-
neous separation where decorrelation may suffice for
nonwhite signals, for convolutive separation additional
conditions on the system or the sources are required. For
instance, Mei and Yin [52.223] suggest that decorrelation
is sufficient provided the sources are an ARMA process.

52.4.3 Sparseness
in the Time/Frequency Domain

Numerous source separation applications are limited by
the number of available microphones. It is in not al-
ways guaranteed that the number of sources is less than
or equal to the number of sensors. With linear filters it
is in general not possible to remove more than M −1
interfering sources from the signal. By using nonlin-
ear techniques, in contrast, it may be possible to extract
a larger number of source signals. One technique to sepa-
rate more sources than sensors is based on sparseness. If
the source signals do not overlap in the time–frequency
(T–F) domain it is possible to separate them. A mask can
be applied in the T–F domain to attenuate interfering sig-
nal energy while preserving T–F bins where the signal of
interest is dominant. Often a binary mask is used giving
perceptually satisfactory results even for partially over-
lapping sources [52.224,225]. These methods work well
for anechoic (delay-only) mixtures [52.226]. However,
under reverberant conditions, the T–F representation of
the signals is less sparse. In a mildly reverberant envi-
ronment (T60 ≤ 200 ms) underdetermined sources have
been separated with a combination of independent com-
ponent analysis (ICA) and T–F masking [52.47]. The
first N − M signals are removed from the mixtures by ap-
plying a T–F mask estimated from the direction of arrival
of the signal (Sect. 52.6.1). The remaining M sources are
separated by conventional BSS techniques. When a bi-
nary mask is applied to a signal, artifacts (musical noise)
are often introduced. In order to reduce the musical
noise, smooth masks have been proposed [52.47, 227].

Part
I

5
2
.4



1076 Part I Multichannel Speech Processing

Sparseness has also been used as a postprocessing
step. In [52.77], a binary mask has been applied as
post-processing to a standard BSS algorithm. The mask
is determined by comparison of the magnitude of the
outputs of the BSS algorithm. Hereby a higher signal-to-
interference ratio is obtained. This method was further
developed by Pedersen et al. in order to segregate un-
derdetermined mixtures [52.228,229]. Because the T–F
mask can be applied to a single microphone signal, the
segregated signals can be maintained as, e.g., in stereo
signals.

Most T–F masking methods do not effectively utilize
information from more than two microphones because
the T–F masks are applied to a single microphone
signal. However, some methods have been proposed
that utilize information from more than two micro-
phones [52.225, 230].

Clustering has also been used for sparse source
separation [52.140, 141, 230–236]. If the sources are
projected into a space where each source groups to-
gether, the source separation problem can be solved with
clustering algorithms. In [52.45, 46] the mask is deter-
mined by clustering with respect to amplitude and delay
differences.

In particular when extracting sources from sin-
gle channels sparseness becomes an essential criterion.
Pearlmutter and Zador [52.237] use strong prior infor-
mation on the source statistic in addition to knowledge
of the head-related transfer functions (HRTF). An a pri-
ori dictionary of the source signals as perceived through
a HRTF makes it possible to separate source signals with
only a single microphone. In [52.238], a priori know-
ledge is used to construct basis functions for each source
signals to segregate different musical signals from their
mixture. Similarly, in [52.239,240] sparseness has been
assumed in order to extract different music instruments.

Techniques based on sparseness are further dis-
cussed in the survey by O’Grady et al. [52.21].

52.4.4 Priors from Auditory Scene Analysis
and Psychoacoustics

Some methods rely on insights gained from studies of
the auditory system. The work by Bergman [52.241]

on auditory scene analysis characterized the cues used
by humans to segregate sound sources. This moti-
vated computational algorithms that are referred to
as computational auditory scene analysis (CASA).
For instance, the phenomenon of auditory masking
(the dominant perception of the signal with largest
power) has motivated the use of T–F masking for
many year [52.242]. In addition to the direct T–F
masking methods outlined above, separated sources
have been enhanced by filtering based on percep-
tual masking and auditory hearing thresholds [52.191,
243].

Another important perceptual cue that has been used
in source separation is pitch frequency, which typi-
cally differs for simultaneous speakers [52.135, 137,
138,147,244,245]. In Tordini and Piazza [52.135] pitch
is extracted from the signals and used in a Bayesian
framework. During unvoiced speech, which lacks a well-
defined pitch they use an ordinary blind algorithm. In
order to separate two signals with one microphone,
Gandhi and Hasegawa-Johnson [52.137] proposed
a state-space separation approach with strong a priori
information. Both pitch and mel-frequency cepstral co-
efficients (MFCC) were used in their method. A pitch
codebook as well as an MFCC codebook have to
be known in advance. Olsson and Hansen [52.138]
used an HMM, where the sequence of possible
states is limited by the pitch frequency that is ex-
tracted in the process. As a preprocessing step to
source separation, Furukawa et al. [52.245] use pitch
in order to determine the number of source sig-
nals.

A method for separation of more sources than sen-
sors is given in Barros et al. [52.244]. They combined
ICA with CASA techniques such as pitch tracking and
auditory filtering. Auditory filter banks are used in or-
der to model the cochlea. In [52.244] wavelet filtering
has been used for auditory filtering. Another commonly
used auditory filter bank is the Gammatone filter-bank
(see, e.g., Patterson [52.246] or [52.247,248]). In Roman
et al. [52.248] binaural cues have been used to segregate
sound sources, whereby interaural time and interaural
intensity differences (ITD and IID) have been used to
group the source signals.

52.5 Time Versus Frequency Domain

The blind source separation problem can either be ex-
pressed in the time domain y(t) =

L−1∑

l=0

Wlx(t − l) (52.40)
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or in the frequency domain

Y(ω, t) = W(ω)X(ω, t) . (52.41)

A survey of frequency-domain BSS is provided in
[52.22]. In Nishikawa et al. [52.249] the advantages
and disadvantages of the time and frequency-domain
approaches are compared. This is summarized in Ta-
ble 52.3.

An advantage of blind source separation in the fre-
quency domain is that the separation problem can be
decomposed into smaller problems for each frequency
bin in addition to the significant gains in computa-
tional efficiency. The convolutive mixture problem is
reduced to instantaneous mixtures for each frequency.
Although this simplifies the task of convolutive separa-
tion a set of new problems arise: the frequency-domain
signals obtained from the DFT are complex-valued.
Not all instantaneous separation algorithms are de-
signed for complex-valued signals. Consequently, it is
necessary to modify existing algorithms correspond-
ingly [52.5, 250–252]. Another problem that may arise
in the frequency domain is that there are no longer
enough data points available to evaluate statistical in-
dependence [52.131]. For some algorithms [52.149] the
frame size T of the DFT has to be much longer than the
length of the room impulse response K (Sect. 52.5.3).
Long frames result in fewer data samples per fre-
quency [52.131], which complicates the estimation of
the independence criteria. A method that addresses this
issue has been proposed by Servière [52.253].

Table 52.3 Advantages and disadvantages of separation in the time and frequency domain

Time domain Frequency domain
Advantages Disadvantages Advantages Disadvantages

The independence Degradation of The convolutive mixture For each frequency band,

assumption holds better convergence in a strongly can be transformed into there is a permutation

for full-band signals reverberant environment instantaneous mixture and a scaling ambiguity

problems for each frequency which needs to be solved

bin

Possible high convergence Many parameters need Due to the FFT, computa- Problem with too few

near the optimal point to be adjusted for each tions are saved compared to samples in each frequency

iteration step an implementation in the band may cause the

time domain independence assumption

to fail

Convergence is faster Circular convolution

deteriorates the separation

performance.

Inversion of A is not

guaranteed

52.5.1 Frequency Permutations

Another problem that arises in the frequency domain is
the permutation and scaling ambiguity. If separation is
treated for each frequency bin as a separate problem,
the source signals in each bin may be estimated with an
arbitrary permutation and scaling, i. e.,

Y(ω, t) = P(ω)�(ω)S(ω, t) . (52.42)

If the permutation P(ω) is not consistent across
frequency then converting the signal back to the time do-
main will combine contributions from different sources
into a single channel, and thus annihilate the separa-
tion achieved in the frequency domain. An overview of
the solutions to this permutation problem is given in
Sect. 52.6. The scaling indeterminacy at each frequency
– the arbitrary solution for �(ω) – will result in an
overall filtering of the sources. Hence, even for perfect
separation, the separated sources may have a different
frequency spectrum than the original sources.

52.5.2 Time–Frequency Algorithms

Algorithms that define a separation criteria in the time
domain do typically not exhibit frequency permuta-
tion problems, even when computations are executed
in the frequency domain. A number of authors have
therefore used time-domain (TD) criteria combined
with frequency-domain implementations that speed
up computations [52.101, 113, 121, 171, 179, 254–257].
However, note that second-order criteria may be sus-
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ceptible to the permutation problem even if they are
formulated in the time domain [52.184].

52.5.3 Circularity Problem

When the convolutive mixture in the time domain is
expressed in the frequency domain by the DFT, the
convolution becomes separate multiplications, i. e.,

x(t) = A∗ s(t) ↔ X(ω, t) ≈ A(ω)S(ω, t) . (52.43)

However, this is only an approximation which is exact
only for periodic s(t) with period T , or equivalently, if
the time convolution is circular:

x(t) = A� s(t) ←→ X(ω) = A(ω)S(ω) . (52.44)

For a linear convolution errors occur at the frame
boundary, which are conventionally corrected with the
overlap-save method. However, a correct overlap-save
algorithm is difficult to implement when computing
cross-powers such as in (52.36) and typically the ap-
proximate expression (52.43) is assumed.

The problem of linear/circular convolution has been
addressed by several authors [52.62,121,149,171,258].
Parra and Spence [52.149] note that the frequency-
domain approximation is satisfactory provided that the
DFT length T is significantly larger than the length of the
un-mixing channels. In order to reduce the errors due to
the circular convolution, the filters should be at least two
times the length of the un-mixing filters [52.131, 176].

To handle long impulse responses in the frequency
domain, a frequency model which is equivalent to

the time-domain linear convolution has been proposed
in [52.253]. When the time-domain filter extends beyond
the analysis window the frequency response is under-
sampled [52.22, 258]. These errors can be mitigated by
spectral smoothing or equivalently by windowing in the
time domain. According to [52.259] the circularity prob-
lem becomes more severe when the number of sources
increases.

Time-domain algorithms are often derived using
Toeplitz matrices. In order to decrease the complex-
ity and improve computational speed, some calculations
involving Toeplitz matrices are performed using the
fast Fourier transform. For that purpose, it is necessary
to express the Toeplitz matrices in circulant Toeplitz
form [52.23, 121, 171, 195, 260, 261]. A method that
avoids the circularity effects but maintains the com-
putational efficiency of the FFT has been presented
in [52.262]. Further discussion on the circularity prob-
lem can be found in [52.189].

52.5.4 Subband Filtering

Instead of the conventional linear Fourier domain some
authors have used subband processing. In [52.142] a long
time-domain filter is replaced by a set of short indepen-
dent subband filters, which results in faster convergence
as compared to the full-band methods [52.214]. Differ-
ent filter lengths for each subband filter have also been
proposed, motivated by the varying reverberation time
of different frequencies (typically low frequencies have
a longer reverberation time) [52.263].

52.6 The Permutation Ambiguity

The majority of algorithms operate in the frequency
domain due to the gains in computational efficiency,
which are important in particular for acoustic mixtures
that require long filters. However, in frequency-domain
algorithms the challenge is to solve the permutation
ambiguity, i. e., to make the permutation matrix P(ω) in-
dependent of frequency. Especially when the number of
sources and sensors is large, recovering consistent per-
mutations is a severe problem. With N model sources
there are N ! possible permutations in each frequency
bin. Many frequency-domain algorithms provide ad hoc
solutions, which solve the permutation ambiguity only
partially, thus requiring a combination of different meth-
ods. Table 52.4 summarizes different approaches. They
can be grouped into two categories:

1. Consistency of the filter coefficients
2. Consistency of the spectrum of the recovered signals

The first exploits prior knowledge about the mix-
ing filters, and the second uses prior knowledge about
the sources. Within each group the methods differ
in the way consistency across frequency is estab-
lished, varying sometimes in the metric they use to
measure distance between solutions at different frequen-
cies.

52.6.1 Consistency of the Filter Coefficients

Different methods have been used to establish consis-
tency of filter coefficients across frequency, such as

Part
I

5
2
.6



Convolutive Blind Source Separation Methods 52.6 The Permutation Ambiguity 1079

Table 52.4 Categorization of approaches to solve the permutation problem in the frequency domain

Class Metric Reference

Consistency of Smooth spectrum [52.149, 264]

the filter Source locations [52.265]

coefficients Directivity pattern [52.73, 175, 266]

Location vectors [52.267]

DOA [52.72, 184, 268]

Adjacent matrix distance [52.269]

Invariances [52.48]

Split spectrum [52.270]

Frequency link in update process [52.127]

Initialization [52.250, 271]

Moving sources [52.167]

Vision [52.148]

Consistency of Amplitude modulation [52.126, 159, 197, 203, 272]

the spectrum Pitch [52.135, 147]

of the recovered Psychoacoustics [52.243, 243]

signals Fundamental frequency [52.244]

Cyclo-stationarity [52.273]

Periodic signals [52.221]

Cross-correlation [52.62, 209, 274]

Cross-cumulants [52.275]

Kurtosis [52.86]

Source distribution [52.134, 276]

Multidimensional prior [52.277, 278]

Clustering [52.230, 279]

Time-frequency FIR polynomial [52.23, 113, 254, 255]

information TD cost function [52.178]

Apply ICA to whole spectrogram [52.280]

Combined [52.106, 258, 281, 282]

approaches

constraints on the length of the filters, geometric infor-
mation, or consistent initialization of the filter weights.

Consistency across frequency can be achieved by
requiring continuity of filter values in the frequency
domain. One may do this directly by comparing the
filter values of neighboring frequencies after adaptation,
and pick the permutation that minimize the Euclidean
distance between neighboring frequencies [52.74, 269].
Continuity (in a discrete frequency domain) is also
expressed as smoothness, which is equivalent with
a limited temporal support of the filters in the time
domain. The simplest way to implement such a smooth-
ness constraint is by zero-padding the time-domain
filters prior to performing the frequency transfor-
mation [52.264]. Equivalently, one can restrict the
frequency-domain updates to have a limited support in
the time domain. This method is explained in Parra

et al. [52.149] and has been used extensively [52.119,
122, 161, 174, 188, 190, 192, 201, 269, 283]. Ikram and
Morgan [52.174, 176] evaluated this constraint and
point out that there is a trade-off between the per-
mutation alignment and the spectral resolution of the
filters. Moreover, restricting the filter length may be
problematic in reverberant environments where long
separation filters are required. As a solution they
have suggest to relax the constraint on filter length
after the algorithm converges to satisfactory solu-
tions [52.176].

Another suggestion is to assess continuity after ac-
counting for the arbitrary scaling ambiguity. To do so,
the separation matrix can be normalized as proposed in
[52.265]:

W(ω) = W̃(ω)Λ(ω) , (52.45)
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where Λ(ω) is a diagonal matrix and W̃(ω) is a matrix
with unit diagonal. The elements of W̃(ω), W̃mn(ω) are
the ratios between the filters and these are used to assess
continuity across frequencies [52.48, 220].

Instead of restricting the unmixing filters, Pham
et al. [52.202] have suggested to require continuity
in the mixing filters, which is reasonable as the mix-
ing process will typically have a shorter time constant.
A specific distance measure has been proposed by Asano
et al. [52.267, 284]. They suggest to use the cosine be-
tween the filter coefficients of different frequencies ω1
and ω2:

cos αn = aH
n (ω1)an(ω2)∥∥aH

n (ω1)
∥∥∥∥an(ω2)

∥∥ , (52.46)

where an(ω) is the n-th column vector of A(ω), which
is estimated as the pseudo-inverse of W(ω). Measuring
distance in the space of separation filters rather than mix-
ing filters was also suggested because these may better
reflect the spacial configuration of the sources [52.285].

In fact, continuity across frequencies may also be
assessed in terms of the estimated spatial locations
of sources. Recall that the mixing filters are impulse
responses between the source locations and the mi-
crophone locations. Therefore, the parameters of the
separation filters should account for the position of the
source in space. Hence, if information about the sen-
sor location is available it can be used to address the
permutation problem.

To understand this, consider the signal that arrives
at an array of sensors. Assuming a distant source in an
reverberation-free environment the signal approximates
a plane wave. If the plane wave arrives at an angle to the
microphone array it will impinge on each microphone
with a certain delay (Fig. 52.6). This delay τ is given by
the microphone distance d, the velocity of the wave c,
and the direction-of-arrival (DOA) angle θ:

τ = d

c
sin θ , (52.47)

Filters that compensate for this delay can add the mi-
crophone signals constructively (or destructively) to
produce a maximum (or minimum) response in the
DOA. Hence, the precise delay in filters (which in
the frequency domain correspond to precise phase re-
lationships) establishes a relationship between different
frequencies that can be used to identify correct permuta-
tions. This was first considered by Soon et al. [52.286].

To be specific, each row in the separation matrix
W(ω) defines a directivity pattern, and therefore each
row can be thought of as a separate beamformer. This

(

�

) � �

�

Fig. 52.6 Linear array with M sensors separated by dis-
tance d. The sensors are placed in a free field. A source
signal is considered coming from a point source a distance
r away from the sensor array. The source signal is placed
in the far field, i. e., r � d. Therefore the incident wave is
planar and the arrival angle θ is the same for all the sensors

directivity pattern is determined by the transfer function
between the source and the filter output. The magnitude
response of the n-th output is given by

rn(ω, θ) = ∣∣wH
n (ω)a(ω, θ)

∣∣2
, (52.48)

where a(ω) is an M × 1 vector representing the prop-
agation of a distant source with DOA θ to the sensor
array. When M sensors are available, it is possible to
place M −1 nulls in each of the M directivity pat-
terns, i. e., directions from which the arriving signal is
canceled out. In an ideal, reverberation-free environ-
ment separation is achieved if these nulls point to the
directions of the interfering sources. The locations of
these nulls, as they may be identified by the separation
algorithm, can be used to resolve the permutation am-
biguity [52.77,81,131,266,287–290]. These techniques
draw strong parallels between source separation solu-
tions and beamforming. The DOAs do not have to be
known in advance and can instead be extracted from the
resulting separation filters. Note, however, that the abil-
ity to identify source locations is limited by the physics
of wave propagation and sampling: distant microphones
will lead to grading lobes which will confuse the source
locations, while small aperture limits spatial resolution
at low frequencies. Ikram and Morgan [52.175] extend
the idea of Kurita et al. [52.266] to the case where the
sensor space is wider than one half of the wavelength.
Source locations are estimated at lower frequencies,
which do not exhibit grating lobes. These estimates are
then used to determine the correct nulls for the higher fre-
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quencies and hereby the correct permutations. In order to
resolve permutations when sources arrive from the same
direction, Mukai et al. [52.291] use a near-field model.
Mitianoudis and Davies [52.268] suggested frequency
alignment based on DOA estimated with the multiple
signal classification (MuSIC) algorithm [52.292]. A sub-
space method has been used in order to avoid constraints
on the number of sensors. Knaak et al. [52.222] include
DOA information as a part of the BSS algorithm in order
to avoid permutation errors. Although all these methods
assume a reverberation-free environment they give rea-
sonable results in reverberant environments as long as
the source has a strong direct path to the sensors.

Two other methods also utilize geometry. In the case
of moving sources, where only one source is mov-
ing, the permutation can be resolved by noting that
only one of the parameters in the separation matrix
changes [52.167]. If visual cues are available, they
may also be used to solve the permutation ambigu-
ity [52.148].

Instead of using geometric information as a sepa-
rate step to solve the permutation problem Parra and
Alvino include geometric information directly into the
cost function [52.184, 185]. This approach has been
applied to microphone arrays under reverberant con-
ditions [52.187]. Baumann et al. [52.72] have also
suggested a cost function, which includes the DOA es-
timation. The arrival angles of the signals are found
iteratively and are included in the separation criterion.
Baumann et al. [52.73] also suggest a maximum-
likelihood approach to solve the permutation problem.
Given the probability of a permuted or unpermuted so-
lution as function of the estimated zero directions, the
most likely permutation is found.

Gotanda et al. [52.270] proposed a method to reduce
the permutation problem based on the split spectral dif-
ference, and the assumption that each source is closer
to one microphone. The split spectrum is obtained when
each of the separated signals are filtered by the estimated
mixing channels.

Finally, for iterative update algorithms a proper ini-
tialization of the separation filters can result in consistent
permutations across frequencies. Smaragdis [52.250]
proposed to estimate filter values sequentially starting
with low frequencies and initializing filter values with
the results of the previous lower frequency. This will
tend to select solutions with filters that are smooth in
the frequency domain, or equivalently, filters that are
short in the time domain. Filter values may also be
initialized to simple beamforming filters that point to es-
timated source locations. The separation algorithm will

then tend to converge to solutions with the same target
source across all frequencies [52.184, 271].

52.6.2 Consistency of the Spectrum
of the Recovered Signals

Some solutions to the permutation ambiguity are based
on the properties of speech. Speech signals have strong
correlations across frequency due to a common ampli-
tude modulation.

At the coarsest level the power envelope of the
speech signal changes depending on whether there is
speech or silence, and within speech segments the power
of the carrier signal induces correlations among the am-
plitude of different frequencies. A similar argument can
be made for other natural sounds. Thus, it is fair to
assume that natural acoustic signals originating from
the same source have a correlated amplitude enve-
lope for neighboring frequencies. A method based on
this comodulation property was proposed by Murata
et al. [52.159,196]. The permutations are sorted to max-
imize the correlation between different envelopes. This
is illustrated in Fig. 52.7. This method has also been
used in [52.198, 199, 203, 263, 287, 293]. Rahbar and
Reilly [52.152, 209] suggest efficient methods for find-
ing the correct permutations based on cross-frequency
correlations.

Asano and Ikeda [52.294] report that the method
sometimes fails if the envelopes of the different source
signals are similar. They propose the following function
to be maximized in order to estimate the permutation

	

�

	

�

	

�

	

�

Fig. 52.7 For speech signals, it is possible to estimate the permu-
tation matrix by using information on the envelope of the speech
signal (amplitude modulation). Each speech signal has a particu-
lar envelope. Therefore, by comparison with the envelopes of the
nearby frequencies, it is possible to order the permuted signals
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matrix:

P̂(ω) = arg max
P(ω)

T∑

t=1

ω−1∑

j=1

[P(ω)ȳ(ω, t)]H ȳ( j, t) ,

(52.49)

where ȳ is the power envelope of y and P(ω) is the per-
mutation matrix. This approach has also been adopted by
Peterson and Kadambe [52.232]. Kamata et al. [52.282]
report that the correlation between envelopes of different
frequency channels may be small, if the frequencies are
too far from each other. Anemüller and Gramms [52.127]
avoid the permutations since the different frequencies
are linked in the update process. This is done by seri-
ally switching from low to high-frequency components
while updating.

Another solution based on amplitude correlation
is the so-called amplitude modulation decorrela-
tion (AMDecor) algorithm presented by Anemüller
and Kollmeier [52.126, 272]. They propose to solve
the source separation problem and the permutation
problems simultaneously. An amplitude modulation cor-
relation is defined, where the correlation between the
frequency channels ωk and ωl of the two spectrograms
Ya(ω, t) and Yb(ω, t) is calculated as

c(Ya(ω, t), Yb(ω, t)) = E[|Ya(ω, t)||Yb(ω, t)|]
− E[|Ya(ω, t)|]E[|Yb(ω, t)|] .

(52.50)

This correlation can be computed for all combinations
of frequencies. This results in a square matrix C(Ya, Yb)
with sizes equal to the number of frequencies in the
spectrogram, whose k, l-th element is given by (52.50).
Since the unmixed signals y(t) have to be independent,
the following decorrelation property must be fulfilled

Ckl(Ya, Yb) = 0 ∀a �= b,∀k, l. (52.51)

This principle also solves the permutation ambiguity.
The source separation algorithm is then based on the
minimization of a cost function given by the Frobenius
norm of the amplitude-modulation correlation matrix.

A priori knowledge about the source distributions
has also been used to determine the correct permuta-
tions. Based on assumptions of Laplacian distributed
sources, Mitianopudis and Davies [52.134, 251, 276]
propose a likelihood ratio test to test which permu-
tation is most likely. A time-dependent function that
imposes frequency coupling between frequency bins
is also introduced. Based on the same principle, the
method has been extended to more than two sources

by Rahbar and Reilly [52.152]. A hierarchical sorting is
used in order to avoid errors introduced at a single fre-
quency. This approach has been adopted in Mertins and
Russel [52.212].

Finally, one of the most effective convolutive BSS
methods to date (Table 52.5) uses the statistical relation-
ship of signal powers across frequencies. Rather than
solving separate instantaneous source separation prob-
lems in each frequency band Lee et al. [52.277,278,280]
propose a multidimensional version of the density esti-
mation algorithms. The density function captures the
power of the entire model source rather than the power
at individual frequencies. As a result, the joint statistics
across frequencies are effectively captured and the al-
gorithm converges to satisfactory permutations in each
frequency bin.

Other properties of speech have also been sug-
gested in order to solve the permutation indeterminacy.
A pitch-based method has been suggested by Tordini
and Piazza [52.135]. Also Sanei et al. [52.147] use the
property of different pitch frequency for each speaker.
The pitch and formants are modeled by a coupled HMM.
The model is trained based on previous time frames.

Motivated by psychoacoustics, Guddeti and Mul-
grew [52.243] suggest to disregard frequency bands that
are perceptually masked by other frequency bands. This
simplifies the permutation problem as the number of
frequency bins that have to be considered is reduced.
In Barros et al. [52.244], the permutation ambiguity is
avoided due to a priori information of the phase asso-
ciated with the fundamental frequency of the desired
speech signal.

Nonspeech signals typically also have properties
which can be exploited. Two proposals for solving the

Table 52.5 An overview of algorithms applied in real
rooms, where the SIR improvement has been reported

Room size T60 N M SIR Reference

(approx.) [ms] [dB]

[m]

6 × 3 × 3 300 2 2 13 [52.169,170]1

6 × 3 × 3 300 2 2 8–10 [52.271]1

6 × 3 × 3 300 2 2 12 [52.249]

6 × 3 × 3 300 2 2 5.7 [52.290]

6 × 3 × 3 300 2 2 18–20 [52.132,295]1

50 2 2 10 [52.207]

250 2 2 16 [52.262]

6 × 6 × 3 200 2 2 < 16 [52.205]2

6 × 6 × 3 150 2 2 < 15 [52.206]

6 × 6 × 3 150 2 2 < 20 [52.171]
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Table 52.5 (continued)

Room size T60 N M SIR Reference

(approx.) [ms] [dB]

[m]

500 2 2 6 [52.262]

4 × 4 × 3 130 3 2 4–12 [52.296]

4 × 4 × 3 130 3 2 14.3 [52.227]

4 × 4 × 3 130 3 2 < 12 [52.47]

4 × 4 × 3 130 2 2 7–15 [52.130]

4 × 4 × 3 130 2 2 4–15 [52.22, 297]2

4 × 4 × 3 130 2 2 12 [52.291]

4 × 4 × 3 130 6 8 18 [52.298]

4 × 4 × 3 130 4 4 12 [52.259]

130 3 2 10 [52.140, 141]

Office 2 2 5.5–7.6 [52.142]

6 × 5 130 2 8 1.6–7.0 [52.269]

8 × 7 300 2 2 4.2–6.0 [52.73]

15 × 10 300 2 2 5–8.0 [52.72]

2 2 < 10 [52.57, 91]

Office 2 2 6 [52.122]

Many rooms 2 2 3.1–27.4 [52.115]

Small room 2 2 4.7–9.5 [52.252]

4 × 3 × 2 2 2 < 10 [52.181]

4 × 3 × 2 2 2 14.4 [52.183]

4 × 3 × 2 2 2 4.6 [52.182]

2 2 < 15 [52.245]

6 × 7 580 2 3 < 73 [52.31]3

810 2 2 < 10 [52.167]2

Conf. room 4 4 14 [52.278]

150 3 3 10 [52.222]

15 × 10 × 4 300 2 2 10 [52.77]

360 2 2 5 [52.266]

5 × 5 200 2 2 6–21 [52.299]

300 2 2–12 8–12 [52.300]

3 × 6 3 8 10 [52.184]

4 × 3 × 2 2 2 15 [52.149]

5 × 5 × 3 2 2 5 [52.187]

8 × 4 700 2 4 16 [52.152]

7 × 4 × 3 250 2 2 9.3 [52.253]1

4 × 4 200 2 2 15 [52.301]

Office 500 3 2 4.3–10.6 [52.45]

300 2 6 < 15 [52.213]

1 Sources convolved with real impulse responses

2 Moving sources

3 This method is not really blind as it requires that sources
are on one at a time

permutation in the case of cyclo-stationary signals can
be found in Antoni et al. [52.273]. For machine acous-
tics, the permutations can be solved easily since machine
signals are (quasi)periodic. This can be employed to find
the right component in the output vector [52.221].

Continuity of the frequency spectra has been used by
Capdevielle et al. [52.62] to solve the permutation am-
biguity. The idea is to consider the sliding Fourier trans-
form with a delay of one point. The cross-correlation
between different sources are zero due to the indepen-
dence assumption. Hence, when the cross-correlation is
maximized, the output belongs to the same source. This
method has also been used by Servière [52.253]. A dis-
advantage of this method is that it is computationally
very expensive since the frequency spectrum has to be
calculated with a window shift of one. A computation-
ally less expensive method based on this principle has
been suggested by Dapena and Servière [52.274]. The
permutation is determined from the solution that maxi-
mizes the correlation between only two frequencies. If
the sources have been whitened as part of separation, the
approach by Capdevielle et al. [52.62] does not work.
Instead, Kopriva et al. [52.86] suggest that the permu-
tation can be solved by independence tests based on
kurtosis. For the same reason, Mejuto et al. [52.275]
consider fourth-order cross-cumulants of the outputs at
all frequencies. If the extracted sources belong to the
same sources, the cross-cumulants will be nonzero. Oth-
erwise, if the sources belong to different sources, the
cross-cumulants will be zero.

Finally, Hoya et al. [52.302] use pattern recogni-
tion to identify speech pauses that are common across
frequencies, and in the case of overcomplete source sep-
aration, k-means clustering has been suggested. The
clusters with the smallest variance are assumed to
correspond to the desired sources [52.230]. Dubnov
et al. [52.279] also address the case of more sources
than sensors. Clustering is used at each frequency and
Kalman tracking is performed in order to link the fre-
quencies together.

52.6.3 Global Permutations

In many applications only one of the source signals is
desired and the other sources are only considered as
interfering noise. Even though the local (frequency) per-
mutations are solved, the global (external) permutation
problem still exists. Few algorithms address the problem
of selecting the desired source signal from the available
outputs. In some situations, it can be assumed that the
desired signal arrives from a certain direction (e.g., the
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speaker of interest is in front of the array). Geomet-
ric information can determine which of the signals is
the target [52.171, 184]. In other situations, the desired
speaker is selected as the most dominant speaker. In
Low et al. [52.289], the most dominant speaker is de-
termined on a criterion based on kurtosis. The speaker
with the highest kurtosis is assumed to be the domi-
nant. In separation techniques based on clustering, the

desired source is assumed to be the cluster with the
smallest variance [52.230]. If the sources are mov-
ing it is necessary to maintain the global permutation
by tracking each source. For block-based algorithm
the global permutation might change at block bound-
aries. This problem can often be solved by initializing
the filter with the estimated filter from the previous
block [52.186].

52.7 Results

The overwhelming majority of convolutive source sepa-
ration algorithms have been evaluated on simulated data.
In the process, a variety of simulated room responses
have been used. Unfortunately, it is not clear whether
any of these results transfer to real data. The main con-
cerns are the sensitivity to microphone noise (often not
better than −25 dB), nonlinearity in the sensors, and
strong reverberations with a possibly weak direct path.
It is suggestive that only a small subset of research teams
evaluate their algorithms on actual recordings. We have
considered more than 400 references and found results
on real room recordings in only 10% of the papers. Ta-
ble 52.5 shows a complete list of those papers. The

results are reported as signal-to-interference ratio (SIR),
which is typically averaged over multiple output chan-
nels. The resulting SIR are not directly comparable as
the results for a given algorithm are very likely to depend
on the recording equipment, the room that was used, and
the SIR in the recorded mixtures. A state-of-the art algo-
rithm can be expected to improve the SIR by 10–20 dB
for two stationary sources. Typically a few seconds of
data (2–10 s) will be sufficient to generate these results.
However, from this survey nothing can be said about
moving sources. Note that only eight (of over 400)
papers reported separation of more than two sources,
indicating that this remains a challenging problem.

52.8 Conclusion

We have presented a taxonomy for blind separation
of convolutive mixtures with the purpose of providing
a survey and discussion of existing methods. Further,
we hope that this might stimulate the development of
new models and algorithms which more efficiently in-
corporate specific domain knowledge and useful prior
information.

In the title of the BSS review by Torkkola [52.13],
it was asked: Are we there yet? Since then numer-
ous algorithms have been proposed for blind separation
of convolutive mixtures. Many convolutive algorithms

have shown good performance when the mixing process
is stationary, but still few methods work in real-world,
time-varying environments. In these challenging envi-
ronments, there are too many parameters to update in
the separation filters, and too little data available in or-
der to estimate the parameters reliably, while the less
complicated methods such as null beamformers may
perform just as well. This may indicate that the long
demixing filters are not the solution for real-world,
time-varying environments such as the cocktail-party
situation.
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