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Principles of14. Principles of Speech Coding

W. B. Kleijn

Speech coding is the art of reducing the bit rate
required to describe a speech signal. In this chap-
ter, we discuss the attributes of speech coders as
well as the underlying principles that determine
their behavior and their architecture. The ubiq-
uitous class of linear-prediction-based coders is
used as an illustration. Speech is generally mod-
eled as a sequence of stationary signal segments,
each having unique statistics. Segments are en-
coded using a two-step procedure: (1) find a model
describing the speech segment, (2) encode the seg-
ment assuming it is generated by the model. We
show that the bit allocation for the model (the
predictor parameters) is independent of overall
rate and of perception, which is consistent with
existing experimental results. The modeling of per-
ception is an important aspect of efficient coding
and we discuss how various perceptual distortion
measures can be integrated into speech coders.
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14.1 The Objective of Speech Coding
In modern communication systems, speech is repre-
sented by a sequence of bits. The main advantage of
this binary representation is that it can be recovered
exactly (without distortion) from a noisy channel (as-
suming proper system design), and does not suffer from
decreasing quality when transmitted over many trans-
mission legs. In contrast, analog transmission generally
results in an increase of distortion with the number of
legs.

An acoustic speech signal is inherently analog.
Generally, the resulting analog microphone output is
converted to a binary representation in a manner con-

sistent with Shannon’s sampling theorem. That is, the
analog signal is first band-limited using an anti-aliasing
filter, and then simultaneously sampled and quantized.
The output of the analog-to-digital (A/D) converter is
a digital speech signal that consists of a sequence of
numbers of finite precision, each representing a sample
of the band-limited speech signal. Common sampling
rates are 8 and 16 kHz, rendering narrowband speech
and wideband speech, respectively, usually with a pre-
cision of 16 bits per sample. For the 8 kHz sampling
rate a logarithmic 8-bit-per-sample representation is also
common.
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284 Part C Speech Coding

Particularly at the time of the introduction of the
binary speech representation, the bit rate produced by
the A/D converter was too high for practical applica-
tions such as cost-effective mobile communications and
secure telephony. A search ensued for more-efficient
digital representations. Such representations are possi-
ble since the digital speech contains irrelevancy (the
signal is described with a higher precision than is
needed) and redundancy (the rate can be decreased
without affecting precision). The aim was to trade off
computational effort at the transmitter and receiver for
the bit rate required for the speech representation. Effi-
cient representations generally involve a model and a set
of model parameters, and sometimes a set of coeffi-
cients that form the input to the model. The algorithms
used to reduce the required rate are called speech-coding
algorithms, or speech codecs.

The performance of speech codecs can be measured
by a set of properties. The fundamental codec attributes
are bit rate, speech quality, quality degradation due to
channel errors and packet loss, delay, and computational
effort. Good performance for one of the attributes gen-
erally leads to lower performance for the others. The

interplay between the attributes is governed by the fun-
damental laws of information theory, the properties of
the speech signal, limitations in our knowledge, and
limitations of the equipment used.

To design a codec, we must know the desired
values for its attributes. A common approach to develop
a speech codec is to constrain all attributes but one quan-
titatively. The design objective is then to optimize the
remaining attribute (usually quality or rate) subject to
these constraints. A common objective is to maximize
the average quality over a given set of channel condi-
tions, given the rate, the delay, and the computational
effort.

In this chapter, we attempt to discuss speech cod-
ing at a generic level and yet provide information useful
for practical coder design and analysis. Section 14.2
describes the basic attributes of a speech codec. Sec-
tion 14.3 discusses the underlying principles of coding
and Sect. 14.4 applies these principles to a commonly
used family of linear predictive (autoregressive model-
based) coders. Section 14.5 discusses distortion criteria
and how they affect the architecture of codecs. Sec-
tion 14.6 provides a summary of the chapter.

14.2 Speech Coder Attributes

The usefulness of a speech coder is determined by its
attributes. In this section we describe the most important
attributes and the context in which they are relevant in
some more detail. The attributes were earlier discussed
in [14.1, 2].

14.2.1 Rate

The rate of a speech codec is generally measured as the
average number of bits per second. For fixed-rate coders
the bit rate is the same for each coding block, while for
variable-rate coders it varies over time.

In traditional circuit-switched communication sys-
tems, a fixed rate is available for each communication
direction. It is then natural to exploit this rate at all times,
which has resulted in a large number of standardized
fixed-rate speech codecs. In such coders each particular
parameter or variable is encoded with the same num-
ber of bits for each block. This a priori knowledge of
the bit allocation has a significant effect on the structure
of the codec. For example, the mapping of the quanti-
zation indices to the transmitted codewords is trivial. In
more-flexible circuit-switched networks (e.g., modern

mobile-phone networks), codecs may have a variable
number of modes, each mode having a different fixed
rate [14.3,4]. Such codecs with a set of fixed coding rates
should not be confused with true variable-rate coders.

In variable-rate coders, the bit allocation within
a particular block for the parameters or variable de-
pends on the signal. The bit allocation for a parameter
varies with the quantization index and the mapping from
the quantization index to the transmitted codeword is
performed by means of a table lookup or computa-
tion, which can be very complex. The major benefit of
variable-rate coding is that it leads to higher coding effi-
ciency than fixed-rate coders because the rate constraint
is less strict.

In general, network design evolves towards the fa-
cilitation of variable-rate coders. In packet-switched
communication systems, both packet rate and size can
vary, which naturally leads to variable-rate codecs.
While variable-rate codecs are common for audio and
video signals, they are not yet commonplace for speech.
The requirements of low rates and delays lead to a small
packet payload for speech signals. The relatively large
packet header size limits the benefits of the low rate and,
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consequently, the benefit of variable-rate speech coding.
However, with the removal of the fixed-rate constraint,
it is likely that variable-rate speech codecs will become
increasingly common.

14.2.2 Quality

To achieve a significant rate reduction, the parameters
used to represent the speech signal are generally trans-
mitted at a reduced precision and the reconstructed
speech signal is not a perfect copy of the original digital
signal. It is therefore important to ensure that its quality
meets a certain standard.

In speech coding, we distinguish two applications for
quality measures. First, we need to evaluate the overall
quality of a particular codec. Second, we need a distor-
tion measure to decide how to encode each signal block
(typically of duration 5–25 ms). The distortion meas-
ure is also used during the design of the coder (in the
training of its codebooks). Naturally, these quality meas-
ures are not unrelated, but in practice their formulation
has taken separate paths. Whereas overall quality can be
obtained directly from scoring of speech utterances by
humans, distortion measures used in coding algorithms
have been defined (usually in an ad hoc manner) based
on knowledge about the human auditory system.

The only true measure of the overall quality of
a speech signal is its rating by humans. Standardized
conversational and listening tests have been developed
to obtain reliable and repeatable (at least to a certain
accuracy) results. For speech coding, listening tests,
where a panel of listeners evaluates performance for
a given set of utterances, are most common. Commonly
used standardized listening tests use either an absolute
category rating, where listeners are asked to score an ut-
terance on an absolute scale, or a degradation category
rating, where listeners are asked to provide a relative
score. The most common overall measure associated
with the absolute category rating of speech quality is
the mean opinion score (MOS) [14.5]. The MOS is the
mean value of a numerical score given to an utterance
by a panel of listeners, using a standardized procedure.
To reduce the associated cost, subjective measures can
be approximated by objective, repeatable algorithms for
many practical purposes. Such measures can be help-
ful in the development of new speech coders. We refer
to [14.6–8] and to Chap. 5 for more detail on the subject
of overall speech quality.

As a distortion measure for speech segments variants
of the squared-error criterion are most commonly used.
The squared-error criterion facilitates fast evaluation for

coding purposes. Section 14.5 discusses distortion meas-
ures in more detail. It is shown that adaptively weighted
squared error criteria can be used for a large range of
perceptual models.

14.2.3 Robustness to Channel Imperfections

Early terrestrial digital communication networks were
generally designed to have very low error rates, obvi-
ating the need for measures to correct errors for the
transmission of speech. In contrast, bit errors and packet
loss are inherent in modern communication infrastruc-
tures.

Bit errors are common in wireless networks and
are generally addressed by introducing channel codes.
While the integration of source and channel codes can
result in higher performance, this is not commonly used
because it results in reduced modularity. Separate source
and channel coding is particularly advantageous when
a codec is faced with different network environments;
different channel codes can then be used for different
network conditions.

In packet networks, the open systems interconnec-
tion reference (OSI) model [14.9] provides a separation
of various communication functionalities into seven lay-
ers. A speech coder resides in the application layer,
which is the seventh and highest layer. Imperfections
in the transmission are removed in both the physical
layer (the first layer) and the transport layer (the fourth
layer). The physical layer removes soft information,
which consists of a probability for the allowed symbols,
and renders a sequence of bits to the higher layers. Error
control normally resides in the transport layer. However,
the error control of the transport layer, as specified by the
transmission control protocol (TCP) [14.10], and partic-
ularly the automatic repeat requests that TCP uses is
generally not appropriate for real-time communication
of audiovisual data because of delay. TCP is also rarely
used for broadcast and multicast applications to reduce
the load on the transmitter. Instead, the user datagram
protocol (UDP) [14.11] is used, which means that the
coded signal is handed up to the higher network layers
without error correction. It is possible that in future sys-
tems cross-layer interactions will allow the application
layer to receive information about the soft information
available at the physical layer.

Handing the received coded signal with its defects
directly to the application layer allows the usage of both
the inherent redundancy in the signal and our knowl-
edge of the perception of distortion by the user. This
leads to coding systems that exhibit a graceful degrada-
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tion with increasing error rate. We refer to the chapter
on voice over internet protocol (IP) for more detail on
techniques that lead to robustness against bit errors and
packet loss.

14.2.4 Delay

From coding theory [14.12], we know that optimal cod-
ing performance generally requires a delay in the transfer
of the message. Long delays are impractical because
they are generally associated with methods with high
computational and storage requirements, and because in
real-time environments (common for speech) the user
does not tolerate a long delay.

Significant delay directly affects the quality of a con-
versation. Impairment to conversations is measurable
at one-way delays as low as 100 ms [14.13], although
200 ms is often considered a useful bound.

Echo is perceivable at delays down to 20 ms [14.14].
Imperfections in the network often lead to so-called net-
work echo. Low-delay codecs have been designed to
keep the effect of such echo to a minimum, e.g., [14.15].
However, echo cancelation has become commonplace in
communication networks. Moreover, packet networks
have an inherent delay that requires echo cancelation
even for low-delay speech codecs. Thus, for most appli-
cations codecs can be designed without consideration of
echo.

In certain applications the user may hear both an
acoustic signal and a signal transmitted by a network.
Examples are flight control rooms and wireless systems
for hearing-impaired persons. In this class of applica-
tions, coding delays of less than 10 ms are needed to
attain an acceptable overall delay.

14.2.5 Computational
and Memory Requirements

Economic cost is generally a function of the computa-
tional and memory requirements of the coding system.
A common measure of computational complexity used
in applications is the number of instructions required
on a particular silicon device. This is often translated
into the number of channels that can be implemented on
a single device.

A complicating factor is that speech codecs are com-
monly implemented on fixed-point signal processing
devices. Implementation on a fixed-point device gen-
erally takes significant development effort beyond that
of the development of the floating-point algorithm.

It is well known that vector quantization facilitates
an optimal rate versus quality trade-off. Basic vector
quantization techniques require very high computational
effort and the introduction of vector quantization in
speech coding resulted in promising but impractical
codecs [14.16]. Accordingly, significant effort was spent
to develop vector quantization structures that facilitate
low computational complexity [14.17–19]. The continu-
ous improvement in vector quantization methods and
an improved understanding of the advantages of vec-
tor quantization over scalar quantization [14.20,21] has
meant that the computational effort of speech codecs
has not changed significantly over the past two decades,
despite significant improvement in codec performance.
More effective usage of scalar quantization and the
development of effective lattice vector quantization
techniques make it unlikely that the computational com-
plexity of speech codecs will increase significantly in
the future.

14.3 A Universal Coder for Speech

In this section, we consider the encoding of a speech
signal from a fundamental viewpoint. In information-
theoretic terminology, speech is our source signal. We
start with a discussion of the direct encoding of speech
segments, without imposing any structure on the coder.
This discussion is not meant to lead directly to a practical
coding method (the computational effort would not be
reasonable), but to provide an insight into the structure
of existing coders. We then show how a signal model
can be introduced. The signal model facilitates coding at
a reasonable computational cost and the resulting coding
paradigm is used by most speech codecs.

14.3.1 Speech Segment as Random Vector

Speech coders generally operate on a sequence of subse-
quent signal segments, which we refer to as blocks (also
commonly known as frames). Blocks consist generally,
but not always, of a fixed number of samples. In the
present description of a basic coding system, we divide
the speech signal into subsequent blocks of equal length
and denote the block length in samples by k. We neglect
dependencies across block boundaries, which is not al-
ways justified in a practical implementation, but simpli-
fies the discussion; it is generally straightforward to cor-
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rect this omission on implementation. We assume that
the blocks can be described by k-dimensional random
vectors Xk with a probability density function pXk (xk)
for any xk ∈ �

k , the k-dimensional Euclidian space
(following convention, we denote random variables by
capital letters and realizations by lower case letters).

For the first part of our discussion (Sect. 14.3.2), it
is sufficient to assume the existence of the probability
density function. It is natural, however, to consider some
structure of the probability density pXk (·) based on the
properties of speech. We commonly describe speech
in terms of a particular set of sounds (a distinct set
of phones). A speech vector then corresponds to one
sound from a countable set of speech sounds. We im-
pose the notion that speech consists of a set of sounds
on our probabilistic speech description. We can think
of each sound as having a particular probability dens-
ity. A particular speech vector then has one of a set
of possible probability densities. Each member prob-
ability density of the set has an a prior probability,
denoted as pI (i), where i indexes the set. The prior prob-
ability pI (i) is the probability that a random vector Xk

is drawn from the particular member probability density
i. The overall probability function of the random speech
vector pXk (·) is then a mixture of probability density
functions

pXk (xk) =
∑

i∈A

pI (i)pXk |I (xk|i) , (14.1)

where A is the set of indexes for component densi-
ties and pXk |I (·|·) is the density of component i. These
densities are commonly referred to as mixture compo-
nents. If the set of mixture components is characterized
by continuous parameters, then the summation must be
replaced by an integral.

A common motivation for the mixture formulation
of (14.1) is that a good approximation to the true prob-
ability density function can be achieved with a mixture
of a finite set of probability densities from a particular
family. This eliminates the need for the physical motiva-
tion. The family is usually derived from a single kernel
function, such as a Gaussian. The kernel is selected for
mathematical tractability.

If a mixture component does correspond to a physic-
ally reasonable speech sound, then it can be considered
a statistical model of the signal. As described in
Sect. 14.3.4, it is possible to interpret existing speech
coding paradigms from this viewpoint. For example,
linear prediction identifies a particular autoregressive
model appropriate for a block. Each of the autoregressive
models of speech has a certain prior probability and this

in turn leads to an overall probability for the speech
vector. According to this interpretation, mixture models
have long been standard tools in speech coding, even if
this was not explicitly stated.

The present formalism does not impose stationarity
conditions on the signal within the block. In the mix-
ture density, it is reasonable to include densities that
correspond to signal transitions. In practice, this is not
common, and the probability density functions are usu-
ally defined based on the definition that the signal is
stationary within a block. On the other hand, the as-
sumption that all speech blocks are drawn from the same
distribution is implicit in the commonly used coding
methods. It is consistent with our neglect of interblock
dependencies. Thus, if we consider the speech signal to
be a vector signal, then we assume stationarity for this
vector signal (which is a rather inaccurate approxima-
tion). Strictly speaking, we do not assume ergodicity,
as averaging over a database is best interpreted an av-
eraging over an ensemble of signals, rather than time
averaging over a single signal.

14.3.2 Encoding Random Speech Vectors

To encode observed speech vectors xk that form rea-
lizations of the random vector Xk, we use a speech
codebook CXk that consists of a countable set of k-
dimensional vectors (the code vectors). We can write
CXk = {ck

q}q∈Q, where ck
q ∈ �

k and Q is a countable (but
not necessarily finite) set of indices. A decoded vector
is simply the entry of the codebook that is pointed to by
a transmitted index.

The encoding with codebook vectors results in the
removal of both redundancy and irrelevancy. It removes
irrelevancy by introducing a reduced precision version
of the vector xk, i. e., by quantizing xk. The quantized
vector requires fewer bits to encode than the unquan-
tized vector. The mechanism of the redundancy removal
depends on the coding method and will be discussed in
Sect. 14.3.3.

We consider the speech vector, Xk, to have a continu-
ous probability density function in �

k . Thus, coding
based on the finite-size speech codebook CXk introduces
distortion. To minimize the distortion associated with
the coding, the encoder selects the code vector (code-
book entry) ck

q that is nearest to the observed vector xk

according to a particular distortion measure,

q = argminq′∈Qd
(
xk, ck

q′
)
. (14.2)

Quantization is the operation of finding the nearest
neighbor in the codebook. The set of speech vectors
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that is mapped to a particular code vector ck
q is called

a quantization cell or Voronoi region. We denote the
Voronoi region as Vq ,

Vq = {xk : d
(
xk, ck

q

)
< d
(
xk, ck

m

)∀m �=q
}

, (14.3)

where we have ignored that generally points exist for
which the inequality is not strict. These are boundary
points that can be assigned to any of the cells that share
the boundary.

Naturally, the average [averaged over pXk (·)] distor-
tion of the decoded speech vectors differs for different
codebooks. A method for designing a coder is to find
the codebook, i. e., the set CXk = {ck

q}q∈Q, that mini-
mizes the average distortion over the speech probability
density, given a constraint on the transmission rate. It
is not known how to solve this problem in a general
manner. Iterative methods (the Lloyd algorithm and its
variants, e.g., [14.22–24]) have been developed for the
case where |Q| (the cardinality or number of vectors in
CXk ) is finite. The iterative approach is not appropriate
for our present discussion for two reasons. First, we ulti-
mately are interested in structured quantizers that allow
us to approximate the optimal codebook and structure
is difficult to determine from the iterative method. Sec-
ond, as we will see below for the constrained-entropy
case, practical codebooks do not necessarily have fi-
nite cardinality. Instead of the iterative approach, we use
an approach where we make simplifying assumptions,
which are asymptotically accurate for high coding rates.

14.3.3 A Model of Quantization

To analyze the behavior of the speech codebook, we con-
struct a model of the quantization (encoding–decoding)
operation. (This quantization model is not to be con-
fused with the probabilistic signal model described in
the next subsection.) Thus, we make the quantization
problem mathematically tractable. For simplicity, we
use the squared error criterion (Sect. 14.5 shows that
this criterion can be used over a wide range of coding
scenarios). We also make the standard assumption that
the quantization cells are convex (for any two points
in a cell, all points on the line segment connecting the
two points are in the cell). To construct our encoding–
decoding model, we make three additional assumptions
that cannot always be justified:

1. The density pXk (xk) is constant within each quan-
tization cell. This implies that the probability that
a speech vector is inside a cell with index q is

pQ(q) = Vq pXk (xk), xk ∈ Vq, (14.4)

where Vq is the volume of the k-dimensional cell.
2. The average distortion for speech data falling within

cell q is

Dq = CV
2
k

q , (14.5)

where C is a constant. The assumption made in
(14.5) essentially means that the cell shape is fixed.
Gersho [14.25], conjectured that this assumption is
correct for optimal codebooks.

3. We assume that the countable set of code vectors
CXk can be represented by a code-vector density,
denoted as g(xk). This means that the cell volume
now becomes a function of xk rather than the cell
index q; we replace Vq by V (xk). To be consistent
we must equate the density with the inverse of the
cell volume:

g(xk) = 1

V (xk)
. (14.6)

The third assumption also implies that we can re-
place Dq by D(xk).

The three assumptions listed above lead to solu-
tions that can generally be shown to hold asymptotically
in the limit of infinite rate. The theory has been ob-
served to make reasonable predictions of performance
for practical quantizers at rates down to two bits per
dimension [14.26, 27], but we do not claim accuracy
here. The theory serves as a vehicle to understand
quantizer behavior and not as an accurate predictor of
performance.

The code-vector density g(xk) of our quantization
model replaces the set of code vectors as the description
of the codebook. Our objective of finding the code-
book that minimizes the average distortion subject to
a rate constraint has become the objective of finding the
optimal density g(xk) that minimizes the distortion

D =
∫

D(xk)pXk (xk)dxk

= C
∫

V (xk)
2
k pXk (xk)dxk

= C
∫

g(xk)−
2
k pXk (xk)dxk , (14.7)

subject to a rate constraint.
Armed with our quantization model, we now attempt

to find the optimal density g(xk) (the optimal codebook)
for encoding speech. We consider separately two com-
monly used constraints on the rate: a given fixed rate and
a given average rate. As mentioned in Sect. 14.2.1, the
former rate constraint applies to circuit-switched net-
works and the latter rate constraint represents situations
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where the rate can be varied continuously, such as, for
example, in storage applications and packet networks.

We start with the fixed-rate requirement, where
each codebook vector ck

q is encoded with a codeword
of a fixed number of bits. This is called constrained-
resolution coding. If we use a rate of R bits per speech
vector then we have a codebook cardinality of N = 2R

and the density g(xk) must be consistent with this cardi-
nality:

N =
∫

� k

g(xk)dxk . (14.8)

We have to minimize the average distortion of (14.7)
subject to the constraint (14.8) (i. e., subject to given N).
This constrained optimization problem is readily solved
with the calculus of variations. The solution is

g(xk) = N
pXk (xk)

k
k+2

∫
pXk (xk)

k
k+2 dxk

= 2R pXk (xk)
k

k+2

∫
pXk (xk)

k
k+2 dxk

= 2R pXk (xk)
k

k+2 , (14.9)

where the underlining denotes normalization to unit inte-
gral over � k and where R is the bit rate per speech vector.
Thus, our encoding–decoding model suggests that, for
constrained-resolution coding, the density of the code
vectors varies with the data density. At dimensionalities
k >> 1 the density of the code vectors approximates
a simple scaling of the probability density of the speech
vectors since k/(k +2) → 1 with increasing k.

In the constrained-resolution case, redundancy is re-
moved by placing the codebook vectors such that they
reflect the density of the data vectors. For example, as
shown by (14.9), regions of �

k without data have no
vectors placed in them. This means no codewords are
used for regions that have no data. If we had placed
codebook vectors there, these would have been redun-
dant. Note that scalar quantization of the k-dimensional
random vector Xk would do precisely that. Similarly, re-
gions of low data density get relatively few code vectors,
reducing the number of codewords spent in such regions.

Next, we apply our quantization model to the case
where the average rate is constrained. That is, the code-
word length used to encode the cell indices q varies.
Let us denote the random index associated with the ran-
dom vector Xk as Q. The source coding theorem [14.12]
tells us the lowest possible average rate for uniquely (so
it can be decoded) encoding the indices with separate
codewords is within one bit of the index entropy (in bits)

H(Q) = −
∑

q∈Q

pQ(q) log2[pQ(q)] . (14.10)

The entropy can be interpreted as the average of a bit
allocation, − log2[pQ(q)], for each index q. Neglect-
ing the aforementioned within one bit, the average
rate constraint is H(Q) = R, where R is the selected
rate. For this reason, this coding method is known as
constrained-entropy coding. This neglect is reasonable
as the difference can be made arbitrarily small by encod-
ing sequences of indices, as in arithmetic coding [14.28],
rather than single indices. We minimize the distortion of
(14.7) subject to the constraint (14.10), i. e., subject to
given H(Q) = R. Again, the constrained optimization
problem is readily solved with the calculus of variations.
In this case the solution is

g(xk) = 2H(Q)−h(Xk) = 2R−h(Xk) , (14.11)

where h(Xk) = − ∫ pXk (xk) log2[pXk (xk)]dxk is the dif-
ferential entropy of Xk in bits, and where H(Q) is
specified in bits. It is important to realize that special
care must be taken if pXk (·) is singular, i. e., if the data
lie on a manifold.

Equation (14.11) implies that the the code vector
density is uniform across �

k . The number of code vec-
tors is countably infinite despite the fact that the rate
itself is finite. The codeword length − log2[pQ(q)] in-
creases very slowly with decreasing probability pQ(q)
and, roughly speaking, long codewords make no contri-
bution to the mean rate.

In the constrained-entropy case, redundancy is re-
moved through the lossless encoding of the indices.
Given the probabilities of the code vectors, (ideal) loss-
less coding provides the most efficient bit assignment
that allows unique decoding, and this rate is precisely
the entropy of the indices. Code vectors in regions of
high probability density receive short codewords and
code vectors in regions of low probability density receive
long codewords.

An important result that we have found for both the
constrained-resolution and constrained-entropy cases is
that the structure of the codebook is independent of the
overall rate. The code-vector density simply increases as
2R (cf. (14.9) and (14.11), respectively) anywhere in �

k .
Furthermore, for the constrained-entropy case, the code
vector density depends only through the global variable
h(Xk) on the probability density.

14.3.4 Coding Speech with a Model Family

Although the quantization model of Sect. 14.3.3 pro-
vides interesting results, a general implementation of
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a codebook for the random speech vector Xk leads
to practical problems, except for small k. For the
constrained-resolution case, larger values of k lead to
codebook sizes that do not allow for practical training
procedures for storage on conventional media. For the
constrained-entropy case, the codebook itself need not
be stored, but we need access to the probability density
of the codebook entries to determine the corresponding
codewords (either offline or through computation dur-
ing encoding). We can resolve these practical coding
problems by using a model of the density. Importantly,
to simplify the computational effort, we do not assume
that the model is an accurate representation of the dens-
ity of the speech signal vector, we simply make a best
effort given the tools we have.

The model-based approach towards reducing com-
putational complexity is suggested by the mixture model
that we discussed in Sect. 14.3.1. If we classify each
speech vector first as corresponding to a particular
sound, then we can specify a probability density for that
sound. A signal model specifies the probability dens-
ity, typically by means of a formula for the probability
density. The probability densities of the models are typi-
cally selected to be relatively simple. The signal models
reduce computational complexity, either because they
reduce codebook size or because the structural sim-
plicity of the model simplifies the lossless coder. We
consider models of a similar structure to be member of
a model family. The selection of a particular model from
the family is made by specifying model parameters.

Statistical signal models are commonly used in
speech coding, with autoregressive modeling (gener-
ally referred to as linear prediction coding methods)
perhaps being the most common. In this section, we dis-
cuss the selection of a particular model from the model
family (i.e., the selection of the model parameters) and
the balance in bit allocation between the model and the
specification of the speech vector.

Our starting point is that a family of signal models
is available for the coding operation. The model family
can be any model family that provides a probability as-
signment for the speech vector xk . We discuss relevant
properties for coding with signal models. We do not
make the assumption that the resulting coding method
is close to a theoretical performance bound on the rate
versus distortion trade-off. As seid, we also do not make
an assumption about the appropriateness of the signal
model family for the speech signal. The model probabili-
ties may not be accurate. However it is likely that models
that are based on knowledge of speech production result
in better performance.

The reasoning below is based on the early de-
scriptions of the minimum description length (MDL)
principle for finding signal models [14.29–31]. These
methods separate a code for the model and a code for
the signal realization, making them relevant to practical
speech coding methods whereas later MDL methods use
a single code. Differences from the MDL work include
a stronger focus on distortion, and the consideration of
the constrained-resolution case, which is of no interest
to modeling theory.

Constrained-Entropy Case
First we consider the constrained-entropy case, i. e., we
consider the case of a uniform codebook. Each speech
vector is encoded with a codebook where each cell is of
identical volume, which we denote as V . Let the model
distribution be specified by a set of model parameters,
θ. We consider the models to have a probability density,
which means that a particular parameter set θ corre-
sponds to a particular realization of a random parameter
vector Θ. We write the probability density of Xk assum-
ing the particular parameter set θ as pXk;Θ(xk|θ). The
corresponding overall model density is

p̃Xk (xk) = −
∑

θ

pXk |Θ(xk|θ) · pΘ(θ) , (14.12)

where the summation is over all parameter sets. The ad-
vantage of selecting and then using models pXk |Θ(xk|θ)
from the family over using the composite model density
p̃Xk (xk) is a decrease of the computational effort.

The quantization model of Sect. 14.3.3 and in
particular (14.4) and (14.10), show that the constrained-
entropy encoding of a vector xk assuming the model
with parameters θ requires − log2[VpXk |Θ(xk|θ)] bits.
In addition, the decoder must receive side information
specifying the model.

Let θ̂(xk) be the parameter vector that maximizes
pXk |Θ(xk|θ) and, thus, minimizes the bit allocation
− log2[VpXk |Θ(xk|θ)]. That is, pXk |Θ[xk|θ̂(xk)] is the
maximum-likelihood model (from the family) for en-
coding the speech vector xk. The random speech vectors
Xk do not form a countable set and as a result the ran-
dom parameter vector Θ̂(Xk) generally does not form
a countable set for conventional model families such as
autoregressive models. To encode the model, we must
discretize it.

To facilitate transmission of the random model
index, J , the model parameters must be quantized and
we write the random parameter set corresponding to ran-
dom index J as θ(J). If pJ ( j) is a prior probability of
the model index, the overall bit allocation for the vector
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xk when encoded with model j is

l =− log2[pJ ( j)]− log2
{
V (xk)pxk |Θ[xk|θ( j)]}

=− log2[pJ ( j)]+ log2

(
pXk |Θ[xk|θ̂(xk)]
pXk |Θ[xk|θ( j)]

)

− log2[V (xk)pXk |Θ(xk|θ̂)] , (14.13)

where the term log2

(
pXk |Θ [xk |θ̂(xk)]
pXk |Θ [xk |θ( j)]

)
represents the ad-

ditional (excess) bit allocation required to encode xk

with model j over the bit allocation required to encode
xk with the true maximum-likelihood model from the
model family.

With some abuse of notation, we denote by j(xk)
the function that provides the index for a given speech
vector xk. In the following, we assume that the functions
θ( j) and j(xk) minimize l. That is, we quantize θ so as to
minimize the total number of bits required to encode xk.

We are interested in the bit allocation that results
from averaging over the probability density pXk (·) of
the speech vectors,

E{L} = −E
{

log2[pJ ( j(Xk))]}

−E

{
log2

(
pXk |Θ(Xk|θ( j(Xk)))

pXk |Θ(Xk|θ̂(Xk))

)}

−E
{

log2
[
V (Xk)pXk |Θ(Xk|θ̂(Xk))

]}
,

(14.14)

where E{·} indicates averaging over the speech vector
probability density and where L is the random bit al-
location that has I as realization. In (14.14), the first
term describes the mean bit allocation to specify the
model, the second term specifies the mean excess in bits
required to encode Xk assuming θ( j(xk)) instead of as-
suming the optimal θ̂(xk), and the third term specifies
the mean number of bits required to encode Xk if the
optimal model is available. Importantly, only the third
term contains the cell volume that determines the mean
distortion of the speech vectors through (14.7).

Assuming validity of the encoding model of
Sect. 14.3.3, the optimal trade-off between the bit al-
location for the model index and the bit allocation for
the speech vectors Xk depends only on the mean of

η = − log2{pJ [ j(xk)]}

− log2

(
pXk |Θ[xk|θ( j(xk))]

pXk |Θ[xk|θ̂(xk)]

)
, (14.15)

which is referred to as the [14.32]. The goal is to find
the functions θ(·) and j(·) that minimize the index of

resolvability over the ensemble of speech vectors. An
important consequence of our logic is that these func-
tions, and therefore the rate allocation for the model
index, are dependent only on the excess rate and the
probability of the quantized model. As the third term of
(14.14) is missing, no relation to the speech distortion
exists. That is the rate allocation for the model index J
is independent of distortion and overall bit rate. While
the theory is based on assumptions that are accurate only
for high bit rates, this suggests that the bit allocation for
the parameters becomes proportionally more important
at low rates.

The fixed entropy for the model index indicates, for
example, that for the commonly used linear-prediction-
based speech coders, the rate allocation for the linear
prediction parameters is independent of the overall rate
of the coder. As constrained-entropy coding is not com-
monly used for predictive coding, this result is not
immediately applicable to conventional speech coders.
However, the new result we derive below is applicable
to such coders.

Constrained-Resolution Case
Most current speech coders were designed with
a constrained-resolution (fixed-rate) constraint, making
it useful to study modeling in this context. We need some
preliminary results. For a given model, with parameter
set θ, and optimal code vector density, the average dis-
tortion over a quantization cell centered at location xk

can be written

D(xk) =CV (xk)
2
k

=Cg(xk)−
2
k

=CN− 2
k

[
pXk |Θ(xk|θ)

k
k+2

]− 2
k

, (14.16)

where we have used (14.7) and (14.9). We take the ex-
pectation of (14.16) with respect to the true probability
density function pXk (xk) and obtain the mean distortion
for the constrained-resolution case:

DCR = CN− 2
k E

{[
pXk |Θ(Xk|θ)

k
k+2

]− 2
k
}

. (14.17)

Equation (14.17) can be rewritten as

2

k
log2(N) = log2

(
E

{[
pXk |Θ(Xk|θ)

k
k+2

]− 2
k
})

− log2

(
DCR

C

)
. (14.18)

We assume that k is sufficiently large that, in the region
where pXk (xk) is significant, we can use the expansion
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u ≈ 1+ log(u) for the term [pXk |Θ(xk|θ)k/(k+2)]−2/k and
write

log

(
E

{[
pXk |Θ(Xk|θ)

k
k+2

]− 2
k
})

≈ log

(
1− 2

k
E
{

log
[

pXk |Θ(Xk|θ)
k

k+2

]})

≈ −2

k
E
{

log
[

pXk |Θ(Xk|θ)
k

k+2

]}
. (14.19)

Having completed the preliminaries, we now con-
sider the encoding of a speech vector xk . Let L(m) be the
fixed bit allocation for the model index. The total rate is
then

L = L(m) + L(xk)

= L(m) + log2(N)

= L(m) −E
{

log2

[
pXk |Θ(Xk|θ)

k
k+2

]}

− k

2
log2

(
DCR

C

)
. (14.20)

The form of (14.20) shows that, given the assump-
tions made, we can define an equivalent codeword
length log2[pXk |Θ(Xk|θ)k/(k+2)] for each speech code-
book entry. The equivalent codeword length represents
the spatial variation of the distortion. Note that this
equivalent codeword length does not correspond to the
true codeword length of the speech vector codebook,
which is fixed for the constrained-resolution case. For
a particular codebook vector xk, the equivalent codeword
length is

L = L(m) − log2

[
pXk |Θ(xk|θ)

k
k+2

]

− k

2
log2

(
DCR

C

)
. (14.21)

Similarly to the constrained-entropy case, we can
decompose (14.21) into a rate component that relates
to the encoding of the model parameters, a component
that describes the excess equivalent rate resulting from
limiting the precision of the model parameters, and a rate
component that relates to optimal encoding with optimal

Table 14.1 Bit rates of the AMR-WB coder [14.4]

Rate (bits) 6.6 8.85 12.65 14.25 15.85 18.25 19.85 23.05

AR model 36 46 46 46 46 46 46 46

Pitch parameter 23 26 30 30 30 30 30 30

Excitation 48 80 144 176 208 256 288 352

(uncoded) model parameters:

L = L(m) − log2(pXk |Θ(xk|θ( j))
k

k+2 )− k

2
log2

(
DCR

C

)

= L(m) − log2

⎛
⎜⎝

pXk |Θ(xk|θ( j))
k

k+2

pXk |Θ(xk|θ̂(xk))
k

k+2

⎞
⎟⎠

− log2

[
pXk |Θ(xk|θ̂(xk))

k
k+2
]
− k

2
log2

(
DCR

C

)
,

(14.22)

We can identify the last two terms as the bit allocation
for xk for the optimal constrained-resolution model for
the speech vector xk . The second term is the excess
equivalent bit allocation required to encode the speech
vector with model j over the bit allocation required for
the optimal model from the model family. The first two
terms determine the trade-off between the bits spent on
the model, and the bits spent on the speech vectors.
These two terms form the index of resolvability for the
constrained-resolution case:

η = L(m) − log2

⎛

⎝
pXk |Θ(xk|θ( j))

k
k+2

pXk |Θ(xk|θ̂(xk))
k

k+2

⎞

⎠ . (14.23)

As for the constrained-entropy case, the optimal set of
functions θ( j) and j(xk) (and, therefore, the bit alloca-
tion for the model) are dependent only on the speech
vector density for the constrained-resolution case. The
rate for the model is independent of the distortion se-
lected for the speech vector and of the overall rate. With
increasing k, the second term in (14.23) and (14.15) be-
comes identical. That is the expression for the excess
rate for using the quantized model parameters corres-
ponding to model j instead of the optimal parameters is
identical.

The independence of the model-parameter bit alloca-
tion of the overall codec rate for the constrained-entropy
case is of great significance for practical coding sys-
tems. We emphasize again that this result is valid only
under the assumptions made in Sect. 14.3.3. We ex-
pect the independence to break down at lower rates,
where the codebook CXk describing the speech cannot
be approximated by a density.
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The results described in this section are indeed sup-
ported, at least qualitatively, by the configuration of
practical coders. Table 14.1 shows the most important
bit allocations used in the adaptive-multirate wideband
(AMR-WB) speech coder [14.4]. The AMR-WB coder
is a constrained-resolution coder. It is seen that the de-
sign of the codec satisfies the predicted behavior: the
bit allocation for the model parameters is essentially
independent of the rate of the codec, except at low
rates.

Model-Based Coding
In signal-model-based coding we assume the family
is known to the encoder and decoder. An index to
the specific model is transmitted. Each model cor-
responds to a unique speech-domain codebook. The
advantage of the model-based approach is that the
structure of the density is simplified (which is advan-

tageous for constrained-entropy coding) and that the
required number of codebook entries for the constrained-
resolution case is smaller. This facilitates searching
through the codebook and/or the definition of the lossless
coder.

The main result of this section is that we can deter-
mine the set of codebooks for the models independently
of the overall rate (and speech-vector distortion). The re-
sult is consistent with existing results. The result of this
section leads to fast codec design as there is no need to
check the best trade-off in bit allocation between model
and signal quantization.

When encoding with a model-based coding it is ad-
vantageous first to identify the best model, encode the
model index j, and then encode the signal using code-
book CXk, j that is associated with that particular model
j. The model selection can be made based on the index
of resolvability.

14.4 Coding with Autoregressive Models

We now apply the methods of Sect. 14.3 to a practical
model family. Autoregressive model families are com-
monly used in speech coding. In speech coding this class
of coders is generally referred to as being based on lin-
ear prediction. We discuss coding based on a family that
consists of a set of autoregressive models of a particu-
lar order (denoted as p). To match current practice, we
consider the constrained-resolution case.

We first formulate the index of resolvability in
terms of a spectral formulation of the autoregressive
model. We show that this corresponds to the defini-
tion of a distortion measure for the model parameters.
The distortion measure is approximated by the com-
monly used Itakura–Saito and log spectral distortion
measures. Thus, starting from a squared error criter-
ion for the speech signal, we obtain the commonly
used (e.g., [14.33–37]) distortion measures for the
linear-prediction parameters. Finally, we show that our
reasoning leads to an estimate for the bit allocation for
the model. We discuss how this result relates to results
on autoregressive model estimation.

14.4.1 Spectral-Domain Index
of Resolvability

Our objective is to encode a particular speech vector xk

using the autoregressive model. To facilitate insight, it is
beneficial to make a spectral formulation of the problem.

To this purpose, we assume that k is sufficiently large
to neglect edge effects. Thus, we neglect the difference
between circular and linear convolution.

The autoregressive model assumption implies that
xk has a multivariate Gaussian probability density

pXk |Θ(xk|θ)

= 1√
2π det(Rθ )

exp

(
−1

2
xkT R−1

θ xk
)

. (14.24)

Rθ is the model autocorrelation matrix

Rθ = A−1A−H , (14.25)

where A a lower-triangular Toeplitz matrix with first col-
umn σ[1, a1, a2, · · · , ap, 0, · · · , 0]T, where the ai are
the autoregressive model parameters (linear-prediction
parameters), and p is the autoregressive model order and
the superscript H is the Hermitian transpose. Thus, the
set of model parameters is θ = {σ, a1, · · · , ap}i=1,··· ,p.
We note that typically p = 10 for 8 kHz sampling rate
and p = 16 for 12 kHz and 16 kHz sampling rate.

When k is sufficiently large, we can perform our
analysis in terms of power spectral densities. The trans-
fer function of the autoregressive model is

A(z)−1 = σ

1+a1z−1 +· · ·+apz−p
, (14.26)
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where σ is a gain. This corresponds to the model power
spectral density

Rθ (z) = |A(z)|−2 . (14.27)

In the following, we make the standard assumption that
A(z) is minimum-phase.

Next we approximate (14.24) in terms of power
spectral densities and the transfer function of the auto-
regressive model. Using Szegö’s theorem [14.38], it is
easy to show that, asymptotically in k,

det(Rθ ) = exp

⎧
⎨

⎩
k

2π

2π∫

0

log
[
Rθ (eiω)

]
dω

⎫
⎬

⎭ .

(14.28)

We also use the asymptotic equality

1

2
xkT R−1

θ xk = 1

4π

2π∫

0

|x(eiω)|2
Rθ (eiω)

dω

= k

4π

2π∫

0

Rx(eiω)

Rθ (eiω)
dω , (14.29)

where x(z) =∑k−1
i=0 xi z−i for xk = (x1, · · · , xk) and

Rx(eiω) = 1
k |x(eiω)|2.

Equations (14.28) and (14.29) can be used to rewrite
the multivariate density of (14.24) in terms of power
spectral densities. It is convenient to write the log dens-
ity:

log[pXk |Θ(xk|θ)]

= −1

2
log(2π)− k

4π

2π∫

0

log(Rθ (eiω))dω

− k

4π

2π∫

0

Rx(eiω)

Rθ (eiω)
dω . (14.30)

We use (14.30) to find the index of resolvability for
the constrained-resolution case. We make the approxi-
mation that k is sufficiently large that it is reasonable to
approximate the exponent k/(k +2) by unity in (14.23).
This implies that we do not have to consider the normal-
ization in this equation. Inserting (14.30) into (14.23)
results in

η = L(m) + k

4π

2π∫

0

[
− log

(
R

θ̂
(eiω)

Rθ (eiω)

)

+ Rx(eiω)

Rθ (eiω)
− Rx(eiω)

R
θ̂
(eiω)

]
dω . (14.31)

The maximum-likelihood estimate of the auto-
regressive model θ̂ given a data vector xk is
a well-understood problem, e.g., [14.39, 40]. The pre-
dictor parameter estimate of the standard Yule–Walker
solution method has the same asymptotic density as the
maximum-likelihood estimate [14.41].

To find the optimal bit allocation for the model we
have to minimize the expectation of (14.31) over the
ensemble of all speech vectors. We study the behavior of
this minimization. For notational convenience we define
a cost function

ψ(θ, θ̂) = k

4π

2π∫

0

[
− log

(
R

θ̂
(eiω)

Rθ (eiω)

)

+ Rx(eiω)

Rθ (eiω)
− Rx(eiω)

R
θ̂
(eiω)

]
dω . (14.32)

Let θ be a particular model from a countable model set
CΘ(L(m)) with a bit allocation L(m) for the model. Find-
ing the optimal model set CΘ(L(m)) is then equivalent
to

min
L(m)∈�

E[η]
= min

L(m)∈�
{

L(m) + min
CΘ (L(m))

E
[

min
θ∈CΘ (L(m))

ψ(θ, θ̂)
]}

.

(14.33)

If we write

D(L(m)) = min
CΘ (L(m))

E
[

min
θ∈CΘ (L(m))

ψ(θ, θ̂)
]

(14.34)

then (14.33) becomes

min
L(m)∈�

E[η] = min
L(m)∈�

[
L(m) + D(L(m))

]
. (14.35)

If we interpret D(L(m)) as a minimum mean distortion,
minimizing (14.35) is equivalent to finding a particular
point on a rate-distortion curve. We can minimize the
cost function of (14.34) for all L(m) and then select the
L(m) that minimizes the overall expression of (14.35).
Thus only one particular distortion level, corresponding
to one particular rate, is relevant to our speech coding
system. This distortion–rate pair for the model is depen-
dent on the distribution of the speech models. Assuming
that D(L(m)) is once differentiable towards L(m), then
(14.35) shows that its derivative should be −1 at the
optimal rate for the model.

14.4.2 A Criterion for Model Selection

We started with the notion of using an autoregressive
model family to quantize the speech signal. We found
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that we could do so by first finding the maximum-
likelihood estimate θ̂ of the autoregressive model
parameters, then selecting from a set of models
CΘ(L(m)) the model nearest to the maximum-likelihood
model based on the cost function ψ(θ, θ̂) and then
quantizing the speech given the selected model. As quan-
tization of the predictor parameters corresponds to our
model selection, it is then relevant to compare the distor-
tion measure of (14.32) with the distortion measures that
are commonly used for the linear-prediction parameters
in existing speech coders.

To provide insight, it is useful to write Rx(eiω) =
R

θ̂
(eiω) Rw(eiω), where Rw(eiω) represents a remainder

power-spectral density that captures the spectral error of
the maximum likelihood model. If the model family is
of low order, then Rw(eiω) includes the spectral fine
structure. We can rewrite (14.32) as

ψ(θ, θ̂) = k

4π

2π∫

0

[
− log

(
R

θ̂
(eiω)

Rθ (eiω)

)

+
(

R
θ̂
(eiω)

Rθ (eiω)
−1

)
Rw(eiω)

]
dω . (14.36)

Interestingly, (14.36) reduces to the well-known
Itakura–Saito criterion [14.42] if Rw(eiω) is set to unity.

It is common (e.g., [14.43]) to relate different cri-
teria through the series expansion u = 1 + log(u) +
1
2 [log(u)]2 +· · · . Assuming small differences between
the optimal model θ̂ and the model from the set θ, (14.36)
can be written

ψ(θ, θ̂) ∼= k

4π

2π∫

0

{[
Rw(eiω)−1

]
log

(
R

θ̂
(eiω)

Rθ (eiω)

)

+1

2
Rw(eiω)

[
log

(
R

θ̂
(eiω)

Rθ (eiω)

)]2
}

dω .

(14.37)

Equation (14.37) needs to be accurate only for nearest
neighbors of θ̂.

We can simplify (14.37) further. With our assump-
tions for the autoregressive models, Rθ (z) is related
to monic minimum-phase polynomials through (14.27)
and the further assumption that their gains σ are identical
(i. e., is not considered here), this implies that

1

2π

2π∫

0

log(Rθ )dω = 1

2π

2π∫

0

log(R
θ̂
)dω = log(σ2) .

(14.38)

This means that we can rewrite (14.37) as

ψ(θ, θ̂) ∼= k

4π

2π∫

0

Rw(eiω)

{
log

(
R

θ̂
(eiω)

Rθ (eiω)

)

+1

2

[
log

(
R

θ̂
(eiω)

Rθ (eiω)

)]2
}

dω . (14.39)

Equation (14.39) forms the basic measure that must be
optimized for the selection of the model from a set of
models, i. e., for the optimal quantization of the model
parameters.

If we can neglect the impact of Rw(z), then (using
the result of (14.38)) minimizing (14.39) is equivalent
to minimizing

ψ(θ, θ̂) ∼= k

8π

2π∫

0

[
log

(
R

θ̂
(eiω)

Rθ (eiω)

)]2

dω , (14.40)

which is the well-known mean squared log spectral
distortion, scaled by the factor k/4. Except for this
scaling factor, (14.39) is precisely the criterion that is
commonly used (e.g., [14.35, 44, 45]) to evaluate per-
formance of quantizers for autoregressive (AR) model
parameters. This is not unreasonable as the neglected
modeling error Rw(eiω) is likely uncorrelated with the
model quantization error.

14.4.3 Bit Allocation for the Model

The AR model is usually described with a small number
of parameters (as mentioned, p = 10 is common for
8 kHz sampling rate). Thus, the spectral data must lie on
a manifold of dimension p or less in the log spectrum
space. At high bit allocations, where measurement noise
dominates (see also the end of Sect. 14.3.3), the manifold
dimension is p and the spectral distortion is expected to
scale as

D(L(m)) = k

4
β2 N

− 2
p

AR = k

4
β2 e− 2

p L(m) , (14.41)

where β is a constant and NAR is the number of spectral
models in the family and L(m) = log(NAR). At higher
spectral distortion levels, it has been observed that the
physics of the vocal tract constrains the dimensionality
of the manifold. This means that (14.41) is replaced by

D(L(m)) = k

4
β2 e− 2

κ
L(m) (14.42)

with κ < p. This behavior was observed for trained code-
books over a large range in [14.44] (similar behavior was
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observed for cepstral parameters in [14.46]) and for spe-
cific vowels in [14.47]. The results of [14.44] correspond
to κ = 7.1 and β = 0.80.

The mean of (14.31) becomes

E[η] = L(m) + k

4
β2 e− 2

κ
L(m) . (14.43)

Differentiating towards L(m) we find that the optimal bit
allocation for the AR model selection to be

L(m) = κ

2
log

(
β2 k

2κ

)
, (14.44)

which is logarithmically dependent on k. Using the ob-
served data of [14.44], we obtain an optimal rate of
about 17 bits for 8 kHz sampled speech at a 20 ms block
size. The corresponding mean spectral distortion is about
1.3 dB. The distortion is similar to the mean estimation
errors found in experiments on linear predictive methods
on speech sounds [14.48].

The 17 bit requirement for the prediction param-
eter quantizer is similar to that obtained by the best
available prediction parameter quantizers that operate
on single blocks and bounds obtained for these meth-
ods [14.35, 49–52]. In these systems the lowest bit
allocation for 20 ms blocks is about 20 bits. However,
the performance of these coders is entirely based on the
often quoted 1 dB threshold for transparency [14.35].
The definition of this empirical threshold is consistent
with the conventional two-step approach: the model par-
ameters are first quantized using a separately defined
criterion, and the speech signal is quantized thereafter
based on a weighted squared error criterion. In con-
trast, we have shown that a single distortion measure
operating on the speech vector suffices for this pur-
pose.

We conclude that the definition of a squared-error
criterion for the speech signal leads to a bit alloca-
tion for the autoregressive model. No need exists to
introduce perception based thresholds on log spectral
distortion.

14.4.4 Remarks on Practical Coding

The two-stage approach is standard practice in linear-
prediction-based (autoregressive-model-based) speech
codecs. In the selection stage, weighted squared error
criteria in the so-called line-spectral frequency (LSF)
representation of the prediction parameters are com-
monly used, e.g., [14.34–37]. If the proper weighting
is used, then the criterion can be made to match the
log spectral distortion measure [14.53] that we derived
above.

The second stage is the selection of a speech code-
book entry from a codebook corresponding to the
selected model. The separation into a set of models
simplifies this selection. In general, this means that
a speech-domain codebook must be available for each
model. It was recently shown that the computational
or storage requirements for optimal speech-domain
codebooks can be made reasonable by using a single
codebook for each set of speech sounds that are similar
except for a unitary transform [14.54]. The method takes
advantage of the fact that different speech sounds may
have similar statistics after a suitable unitary transform
and can, therefore, share a codebook. As the unitary
transform does not affect the Euclidian distance, it also
does not affect the optimality of the codebook.

In the majority of codecs the speech codebooks are
generated in real time, with the help of the model ob-
tained in the first stage. This approach is the so-called
analysis-by-synthesis approach. It can be interpreted as
a method that requires the synthesis of candidate speech
vectors (our speech codebook), hence the name. Partic-
ularly common is the usage of the analysis-by-synthesis
approach for the autoregressive model [14.16,55]. While
the analysis-by-synthesis approach has proven its merit
and is used in hundreds of millions of communication
devices, it is not optimal. It was pointed out in [14.54]
that analysis-by-synthesis coding inherently results in
a speech-domain codebook with quantization cells that
have a suboptimal shape, limiting performance.

14.5 Distortion Measures and Coding Architecture

An objective of coding is the removal of irrelevancy.
This means that precision is lost and that we introduce
a difference between the original and the decoded signal,
the error signal. So far we have considered basic quan-
tization theory and how modeling can be introduced in
this quantization structure. We based our discussion on

a mean squared error distortion measure for the speech
vector. As discussed in Sect. 14.2.2, the proper meas-
ure is the decrease in signal quality as perceived by
human listeners. That is, the goal in speech coding is
to minimize the perceived degradation resulting from
an encoding at a particular rate. This section discusses
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methods for integrating perceptually motivated criteria
into a coding structure.

To base coding on perceived quality degradation,
we must define an appropriate quantitative measure
of the perceived distortion. Reasonable objectives for
a good distortion measure for a speech codec are a good
prediction of experimental data on human perception,
mathematical tractability, low delay, and low computa-
tional requirements.

A major aspect in the definition of the criterion
is the representation of the speech signal the distor-
tion measure operates on. Most straightforward is to
quantize the speech signal itself and use the distor-
tion measure as a selection criterion for code vectors
and as a means to design the quantizers. This coding
structure is commonly used in speech coders based on
linear-predictive coding. An alternative coding structure
is to apply a transform towards a domain that facilitates
a simple distortion criterion. Thus, in this approach, we
first perform a mapping to a perceptual domain (pre-
processing) and then quantize the mapped signal in that
domain. At the decoder we apply the inverse mapping
(postprocessing). This second architecture is common
in transform coders aimed at encoding audio signals at
high fidelity.

We start this section with a subsection discussing
the squared error criterion, which is commonly used be-
cause of its mathematical simplicity. In Subsects. 14.5.2
and 14.5.3 we then discuss models of perception and
how the squared error criterion can be used to repre-
sent these models. We end the section with a subsection
discussing in some more detail the various coding archi-
tectures.

14.5.1 Squared Error

The squared-error criterion is commonly used in coding,
often without proper physical motivation. Such usage
results directly from its mathematical tractability. Given
a data sequence, optimization of the model parameters
for a model family often leads to a set of linear equations
that is easily solved.

For the k-dimensional speech vector xk, the basic
squared-error criterion is

η = (xk − x̂k)H(xk − x̂k) , (14.45)

where the superscript ‘H’ denotes the Hermitian conju-
gate and x̂k is the reconstruction vector upon encoding
and decoding. Equation (14.45) quantifies the variance
of the signal error. Unfortunately, variance cannot be

equated to loudness, which is the psychological corre-
late of variance. At most we can expect that, for a given
original signal, a scaling of the error signal leads to
a positive correlation between perceived distortion and
squared error.

While the squared error in its basic form is not rep-
resentative of human perception, adaptive weighting of
the squared-error criterion can lead to improved corre-
spondence. By means of weighting we can generalize
the squared-error criterion to a form that allows in-
clusion of knowledge of perception (the formulation
of the weighted squared error criterion for a specific
perceptual model is described in Subsects. 14.5.2 and
14.5.3). To allow the introduction of perceptual ef-
fects, we linearly weight the error vector xk − x̂k and
obtain

η = (xk − x̂k)HHHH(xk − x̂k) , (14.46)

where H is an m × k matrix, where m depends on the
weighting invoked. As we will see below, many differ-
ent models of perception can be approximated with the
simple weighted squared-error criterion of (14.46). In
general, the weighting matrix H adapts to xk , that is
H(xk) and

ym = H(xk) xk (14.47)

can be interpreted as a perceptual-domain representation
of the signal vector for a region of xk where H(xk) is
approximately constant.

The inclusion of the matrix H in the formula-
tion of the squared-error criterion generally results in
a significantly higher computational complexity for
the evaluation of the criterion. Perhaps more im-
portantly, when the weighted criterion of (14.46) is
adaptive, then the optimal distribution of the code vec-
tors (Sect. 14.3.3) for constrained-entropy coding is no
longer uniform in the speech domain. This has signifi-
cant implications for the computational effort of a coding
system.

The formulation of (14.46) is commonly used in
coders that are based on an autoregressive model family,
i. e., linear-prediction-based analysis-by-synthesis cod-
ing [14.16]. (The matrix H then usually includes the
autoregressive model, as the speech codebook is de-
fined as a filtering of an excitation codebook.) Also
in the context of this class of coders, the vector
Hxk can be interpreted as a perceptual-domain vec-
tor. However, because H is a function of xk it is
not straightforward to define a codebook in this do-
main.
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The perceptual weighting matrix H often represents
a filter operation. For a filter with impulse response
[h0, h1, h2, · · · ], the matrix H has a Toeplitz structure:

H =

⎛
⎜⎜⎜⎜⎝

h0 0 · · ·
h1 h0 · · ·
h2 h1 · · ·
...

...
. . .

⎞
⎟⎟⎟⎟⎠

. (14.48)

For computational reasons, it may be convenient to make
the matrix HHH Toeplitz. If the impulse response has
time support p then HHH is Toeplitz if H is selected to
have dimension (m + p) × m [14.19].

Let us consider how the impulse response
[h0, h1, h2, · · · ] of (14.48) is typically constructed for
the case of linear-predictive coding. The impulse re-
sponse is constructed from the signal model. Let the
transfer function of the corresponding autoregressive
model be, as in (14.26)

A(z)−1 = σ

1+a1z−1 · · ·+apz−p
, (14.49)

where the ai are the prediction parameters and σ is the
gain. A weighting that is relatively flexible and has low
computational complexity is then [14.56]

H(z) = A(z/γ1)

A(z/γ2)
, (14.50)

where γ1 and γ2 are parameters that are selected to accu-
rately describe the impact of the distortion on perception.
The sequence [h0, h1, h2, · · · ] of (14.48) is now sim-
ply the impulse response of H(z). The parameters γ1
and γ2 are selected to approximate perception where
1 ≥ γ1 > γ2 > 0. The filter A(z/γ1) deemphasizes the
envelope of the power spectral density, which corre-
sponds to decreasing the importance of spectral peaks.
The filter 1/A(z/γ2) undoes some of this emphasis for
a smoothed version of the spectral envelope. The effect
is roughly that 1/A(z/γ2) limits the spectral reach of the
deemphasis A(z/γ1). In other words, the deemphasis of
the spectrum is made into a local effect.

To understand coders of the transform model family,
it is useful to interpret (14.46) in the frequency domain.
We write the discrete Fourier transform (DFT) as the
unitary matrix F and the define a frequency-domain
weighting matrix W such that

Hxk = FHWFxk , (14.51)

The matrix W provides a weighting of the frequency-
domain vector Fxk. If, for the purpose of our discussion,
we neglect the difference between circular and linear
convolution and if H represents a filtering operation
(convolution) as in (14.48), then W is diagonal. To
account for perception, we must adapt W to the in-
put vector xk (or equivalently, to the frequency-domain
vector Fxk) and it becomes a function W(xk): Equa-
tion (14.50) could be used as a particular mechanism
for such weighting. However, in the transform cod-
ing context, so-called masking methods, which are
described in Sect. 14.5.2, are typically used to find
W(xk).

As mentioned before, the random vector Ym = HXk

(or, equivalently, the vector WFXk) can be considered
as a perceptual-domain description. Assuming smooth
behavior of H(xk) as a function of xk , this domain can
then be used as the domain for coding. A codebook must
be defined for the perceptual-domain vector Ym and we
select entries from this codebook with the unweighted
squared error criterion. This approach is common in
transform coding. When this coding in the perceptual
domain is used, the distortion measure does not vary
with the vector ym , and a uniform quantizer is op-
timal for Ym for the constrained-entropy case. If the
mapping to the perceptual domain is unique and invert-
ible (which is not guaranteed by the formulation), then
ym = H(xk)xk ensures that xk is specified when ym is
known and only indices to the codebook for Ym need to
be encoded. In practice, the inverse mapping may not be
unique, resulting in problems at block boundaries and
the inverse may be difficult to compute. As a result it is
common practice to quantize and transmit the weighting
W, e.g., [14.57, 58].

14.5.2 Masking Models and Squared Error

Extensive quantitative knowledge of auditory percep-
tion exists and much of the literature on quantitative
descriptions of auditory perception relates to the con-
cept of masking, e.g., [14.59–63]. The masking-based
description of the operation of the auditory periphery
can be used to include the effect of auditory perception
in speech and audio coding. Let us define an arbitrary
signal that we call the masker. The masker implies a set
of second signals, called maskees, which are defined
as signals that are not audible when presented in the
presence of the masker. That is, the maskee is below
the masking threshold. Masking explains, for example,
why a radio must be made louder in a noisy environ-
ment such as a car. We can think of masking as being
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a manifestation of the internal precision of the auditory
periphery.

In general, laws for the masking threshold are based
on psychoacoustic measurements for the masker and
maskee signals that are constructed independently and
then added. However, it is clear that the coding er-
ror is correlated to the original signal. In the context
of masking it is a commonly overlooked fact that, for
ideal coding, the coding error signal is, under certain
common conditions, independent of the reconstructed
signal [14.12]. Thus, a reasonable objective of audio
and speech coding is to ensure that the coding error sig-
nal is below the masking threshold of the reconstructed
signal.

Masking is quantified in terms of a so-called mask-
ing curve. We provide a generalized definition of such
a curve. Let us consider a signal vector xk with k samples
that is defined in �

k . We define a perceived-error mea-
surement domain by any invertible mapping �

k → �
m .

Let {em
i }i∈{0,··· ,m−1} be the unit-length basis vectors

that span �
m . We then define the m-dimensional mask-

ing curve as [14.64] JNDi , i ∈ 0, · · · , m −1, where the
scalar JNDi is the just-noticeable difference (JND) for
the basis vector em

i . That is, the vector JNDi em
i is pre-

cisely at the threshold of being audible for the given
signal vector.

Examples of the masking curve can be observed
in the time and the frequency domain. The frequency-
domain representation of xk is Fxk . Simultaneous
masking is defined as the masking curve for Fxk , i. e.,
the just-noticeable amplitudes for the frequency unit
vectors e1, e2, etc. In the time domain we refer to
nonsimultaneous (or forward and backward) masking
depending on whether the time index i of the unit
vectors ei is prior to or after the main event in the
masker (e.g., an onset). Both the time-domain (temporal)
and frequency-domain masking curves are asymmetric
and dependent on the loudness of the masker. A loud
sound leads to a rapid decrease in auditory acuity, fol-
lowed by a slow recovery to the default level. The
recovery may take several hundreds of ms and causes
forward masking. The decrease in auditory acuity be-
fore a loud sound, backward masking, extends only
over very short durations (at most a few ms). Simi-
lar asymmetry occurs in the frequency domain, i. e., in
simultaneous masking. Let us consider a tone. The au-
ditory acuity is decreased mostly at frequencies higher
than the tone. The acuity increases more rapidly from
the masker when moving towards lower frequencies
than when moving towards higher frequencies, which
is related to the decrease in frequency resolution with

increasing frequency. A significant difference exists in
the masking between tonal and noise-like signals. We
refer to [14.63, 65, 66] for further information on mask-
ing.

The usage of masking is particularly useful for
coding in the perceptual domain with a constraint
that the quality is to be transparent (at least ac-
cording to the perceptual knowledge provided). For
example, consider a transform coder (based on ei-
ther the discrete cosine transform or the DFT). In
this case, the quantization step size can be set to be
the JND as provided by the simultaneous masking
curve [14.57].

Coders are commonly subject to a bit-rate constraint,
which means knowledge of the masking curve is not
sufficient. A distortion criterion must be defined based
on the perceptual knowledge given. A common strategy
in audio coding to account for simultaneous masking is
to use a weighted squared error criterion, with a diagonal
weighting matrix H that is reciprocal of the masking
threshold [14.27, 58, 67–70]. In fact, this is a general
approach that is useful to convert a masking curve in
any measurement domain:

H =

⎛
⎜⎜⎝

1
JND1

0 · · ·
0 1

JND2
· · ·

...
...

. . .

⎞
⎟⎟⎠ , (14.52)

where it is understood that the weighting matrix H is
defined in the measurement domain. To see this consider
the effect of the error vector JNDi em

i on the squared
error:

η = JND2
i emH

i HHHem
i

= JND2
i JND−2

i = 1 . (14.53)

Thus, the points on the masking curve are defined as
the amplitudes of basis vectors that lead to a unit distor-
tion. This is a reasonable motivation for the commonly
used reciprocal-weighting approach for the squared-
error criterion defined by the weighting described in
(14.52). However, it should be noted that for this formu-
lation the distortion measure does not vanish below the
masking threshold. A more-complex approach where the
distortion measure does vanish below the JND is given
in [14.71].

14.5.3 Auditory Models and Squared Error

The weighting procedure of (14.52) (possibly in combi-
nation with the transform to the measurement domain)
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is an operation that transforms the signal to a per-
ceptually relevant domain. Thus, the operation can be
interpreted as a simple auditory model. Sophisticated
models of the auditory periphery that directly predict
the input to the auditory nerve have also been developed,
e.g., [14.72–77]. Despite the existence of such quanti-
tative models of perception, their application in speech
coding has been limited. Only a few examples [14.78,79]
of the explicit usage of existing quantitative knowl-
edge of auditory perception in speech coding speech
exist. In contrast, in the field of audio coding the usage
of quantitative auditory knowledge is common. Trans-
form coders can be interpreted as methods that perform
coding in the perceptual domain, using a simple percep-
tual model, usually based on (simultaneous) masking
results.

We can identify a number of likely causes for the
lack of usage of auditory knowledge in speech coding.
First, the structure of speech coders and the constraint
on computational complexity naturally leads to speech-
coding-specific models of auditory perception, such as
(14.50). The parameters of these simple speech-coding-
based models are optimized directly based on coding
performance. Second, the perception of the periodicity
nature of voiced speech, often referred to as the percep-
tion of pitch, is not well understood in a quantitative
manner. It is precisely the distortion associated with the
near-periodic nature of voiced speech that is often criti-
cal for the perceived quality of the reconstructed signal.
An argument against using a quantitative model based
on just-noticeable differences (JNDs) is that JNDs are
often exceeded significantly in speech coding. While
the weighting of (14.52) is reasonable near the JND
threshold value, it may not be accurate in the actual op-
erating region of the speech coder. Major drawbacks
of using sophisticated models based on knowledge of
the auditory periphery are that they tend to be compu-
tationally expensive, have significant latency, and often
lead to a representation that has many more dimensions
than the input signal. Moreover the complexity of the
model structure makes inversion difficult, although not
impossible [14.80].

The complex structure of auditory models that de-
scribe the functionality of the auditory periphery is time
invariant. We can replace it by a much simpler struc-
ture at the cost of making it time variant. That is,
the mapping from the speech domain to the percep-
tual domain can be simplified by approximating this
mapping as locally linear [14.79]. Such an approxima-
tion leads to the sensitivity matrix approach, which was
first introduced in a different context by [14.53] and

described in a rigorous general manner in [14.81]. If
a mapping from the speech domain vector xk to an au-
ditory domain vector ym (as associated with a particular
model of the auditory periphery) can be approximated
as locally linear, then for a small coding error xk − x̂k,
we can write ym − ŷm as a matrix multiplication of
xk − x̂k:

ym − ŷm ≈ H (xk − x̂k) , (14.54)

where H is an m × k matrix. This means that, for
the set of codebook vectors from CXk that is suffi-
ciently close to xk , the squared-error criterion of (14.46)
forms an approximation to the psychoacoustic meas-
ure. Moreover, selecting the nearest codebook entry
from CXk using (14.46) results in the globally optimal
codebook vector for the input vector xk . In the sensi-
tivity matrix approach, the first step for each speech
vector xk is to find the k × k sensitivity matrix HTH.
This operation is based on an analysis of the distor-
tion criterion [14.79]. Once this has been done, the
selection of the codebook entries is similar to that
for a signal-invariant weighted squared-error distortion
measure.

In the sensitivity matrix approach, the matrix H is
a function of the past and future signal:

H = H(· · · , xk
i−1, xk

i , xk
i+1, · · · ) , (14.55)

where xk
i is the current speech vector, xk

i−1 is the previous
speech vector, etc. To avoid the introduction of latency,
the future speech vectors can be replaced by a prediction
of these vectors from the present and past speech vectors.

The sensitivity matrix approach requires that the
mapping from speech domain to perceptual domain is
continuous and differentiable, which is not the case for
psychoacoustic models. The approximation of such dis-
continuities by continuous functions generally leads to
satisfactory results.

The sensitivity matrix approach is well motivated
in the context of a speech-domain codebook CXk and
a criterion that consists of a perceptual transform fol-
lowed by the squared error criterion. The search through
the speech-domain codebook with a perceptual criterion
then reduces to searching with a weighted squared-error
criterion.

The benefit of the sensitivity matrix approach is not
so obvious if the signal vector codebook, CXk , is defined
in the perceptual domain. However, it can be useful if the
perceptual transform is known to the decoder (by, for ex-
ample, transmission of an index). The perceptual domain
often has higher dimensionality than the corresponding
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speech block. The singular-value decomposition of H
can then be used to reduce the dimensionality of the
perceptual domain error vector to k. Let H = VDU be
a singular value decomposition, where V is an m × m
unitary matrix, D is a m × k diagonal matrix and U is
a unitary k × k matrix

14.5.4 Distortion Measure
and Coding Architecture

As we have seen, the distortion measure has a significant
impact on the architecture of a speech coder. In this
subsection, we summarize the above discussion from
a codec-architecture viewpoint.

Speech-Domain Codebook
The most straightforward architecture for a speech coder
is to define the codebook in the speech domain and use
an appropriate distortion measure during encoding and
during training of the codebook. In general, the measure
is adaptive. This approach, which is shown in Fig. 14.1,
is most common in speech coding. An advantage is that
the decoder does not require knowledge of the time-
varying distortion measure.

We saw in Sect. 14.3.4 that it can be advantageous to
use speech codebooks that are associated with models.
This simplifies the codebook structure and, in the case of
constrained-resolution coding, its size. The codebooks
can be generated in real time as, for example, in the
case of linear-prediction (autoregressive model)-based
analysis-by-synthesis coding [14.16, 55].

The underlying aim of the speech-domain codebook
architecture is generally to approximate auditory percep-
tion by an adaptively weighted squared-error criterion.
Usually, this criterion is heuristic and based on tuning
within the context of the coder (as is typically done
for (14.50)). However, as shown in Sect. 14.5.3, the
sensitivity analysis method facilitates the usage of com-
plex auditory models. This approach requires, at least in
principle, no further tuning.
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Fig. 14.2 Ideal architecture for coding
in the perceptual domain, with invert-
ible mapping. A perceptual-domain
quantization index and a signal model
index are transmitted. The signal
model can be omitted
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Fig. 14.1 Common architecture for coding with a distortion
measure. A signal quantization index and a signal model
index are transmitted

Disadvantages of the weighted squared-error criter-
ion are its computational complexity and that, in contrast
to the unweighted squared-error measure, it does not
lead to uniform codebooks for the constrained-entropy
case. In the context of autoregressive-model-based
analysis-by-synthesis coding, many procedures have
been developed to reduce the computational complex-
ity of the weighted squared-error criterion [14.18, 19,
82].

Perceptual-Domain Codebook
As an alternative to defining the codebook in the speech
domain, we can define the codebook in a perceptual do-
main, as is shown in Fig. 14.2. We define a perceptual
domain as a domain where the unweighted squared er-
ror criterion can be applied. The most elegant paradigm
requires no information about the speech vector other
than its index in the perceptual domain codebook. This
elegance applies if the mapping to the perceptual do-
main is injective (one to one). Then if ym is known,
xk is also known. An example is an auditory model
that is a weighted DFT or DCT with a one-to-one
function �

k → �
k that maps xk into yk. An inverse func-
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Fig. 14.3 Architecture for coding in
the perceptual domain with encoded
mapping. This architecture is com-
mon in transform coding. A mapping
index, a perceptual-domain quantiza-
tion index, and a signal model index
are transmitted. The signal model is
commonly omitted

tion can be derived by the decoder from the quantized
vector ŷk.

The non-uniqueness of the auditory mapping from
the speech domain to the auditory domain results
in practical problems. Particularly if the models are
not accurate, the nonuniqueness can result in mis-
matches between coding blocks and severe audible
distortion.

The uniqueness issue for the mapping can be solved,
at the cost of increased rate, by transmitting information

about the mapping as is shown in Fig. 14.3. For example,
for transform coders used for audio signals, the masking
curve is commonly transmitted, e.g., [14.52,58,67–69].
To reduce the rate required, this is commonly done on
a per-frequency-band basis. The bands generally are uni-
formly spaced on an equivalent rectangular bandwidth
(ERB) or mel scale. In practice the masking curve is not
always transmitted directly, but a maximum amplitude,
and the number of quantization levels for each band are
transmitted, e.g., [14.27, 68, 70].

14.6 Summary

This chapter discussed the principles underlying the
transmission of speech (and audio) signals. The main
attributes of coding, rate, quality, robustness to channel
errors, delay, and computational complexity were dis-
cussed first. We then provided a generic perspective of
speech coding.

Each block of speech samples was described as
a random vector. Information about the vector was
transmitted in the form of a codebook index. The re-
lation between the reconstruction vector density and the
data density was given. We then modeled the prob-
ability density of the speech vector as a weighted
sum of component probability density functions, each
describing the speech vector probability density for
a particular speech sound. Each such component dens-
ity function corresponds to a model. In the case of
linear-prediction-based (equivalent to autoregressive-
model-based) coding, each component function (and
thus model) is characterized by a set of predictor par-
ameters. The approach results in the standard two-step
speech coding approach, in which we first extract the
model and then code the speech vector given the model.

We showed that this approach leads to standard distor-
tion measures used for the quantization of the predictor
parameters.

We showed that the number of models (component
probability density functions) is independent of the over-
all coding rate. Thus, the rate spent on linear-prediction
parameters in linear-predictive coding should not vary
with rate (at least when the rate is high). It was shown
that practical coders indeed have this behavior. We em-
phasized also that the rate allocated to the model (the
predictor parameters) is not a direct function of a per-
ceptual threshold, but the result of an optimal trade-off
between the rate allocated for the speech given the model
and the rate allocated for the model. We showed that it is
possible to calculate the rate allocation for the model (the
bit allocation for the predictor parameters) and that the
result provided is close to practical codec configurations.
We discussed analysis-by-synthesis coding as a partic-
ular application of the two-stage coding method. We
noted that analysis-by-synthesis coding is not optimal
because the speech-domain codebook has suboptimal
quantization cell shapes.
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Finally we discussed how perception can be in-
tegrated into the coding structure. We distinguished
coding in a perceptually relevant domain, which is
commonly used in audio coding, from coding in the
speech-signal domain, which is commonly used in
speech coding. The advantage of coding in the per-

ceptual domain is that a simple squared-error criterion
can be used. However, in practice the method gener-
ally requires some form of encoding of the mapping,
so that the decoder can perform an inverse mapping.
Improved mapping procedures may change this require-
ment.
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