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Foreword

Over the past three decades digital signal processing has emerged as a recognized
discipline. Much of the impetus for this advance stems from research in representation,
coding, transmission, storage and reproduction of speech and image information. In
particular, interest in voice communication has stimulated central contributions to
digital filtering and discrete-time spectral transforms.

This dynamic development was built upon the convergence of three then-evolving
technologies: (i) sampled-data theory and representation of information signals (which
led directly to digital telecommunication that provides signal quality independent of
transmission distance); (ii) electronic binary computation (aided in early implementa-
tion by pulse-circuit techniques from radar design); and, (iii) invention of solid-state
devices for exquisite control of electronic current (transistors — which now, through mi-
croelectronic materials, scale to systems of enormous size and complexity). This timely
convergence was soon followed by optical fiber methods for broadband information
transport.

These advances impact an important aspect of human activity — information ex-
change. And, over man’s existence, speech has played a principal role in human
communication. Now, speech is playing an increasing role in human interaction with
complex information systems. Automatic services of great variety exploit the comfort
of voice exchange, and, in the corporate sector, sophisticated audio/video teleconfer-
encing is reducing the necessity of expensive, time-consuming business travel. In each
instance an overarching target is a user environment that captures some of the nat-
uralness and spatial realism of face-to-face communication. Again, speech is a core
element, and new understanding from diverse research sectors can be brought to bear.

Editors-in-Chief Benesty, Sondhi and Huang have organized a timely engineer-
ing handbook to answer this need. They have assembled a remarkable compendium
of current knowledge in speech processing. And, this accumulated understanding can
be focused upon enlarging the human capacity to deal with a world ever increasing in
complexity. Benesty, Sondhi and Huang are renowned researchers in their own right,
and they have attracted an international cadre of over 80 fellow authors and collab-
orators who constitute a veritable Who’s Who of world leaders in speech processing
research. The resulting book provides under one cover authoritative treatments that
commence with the basic physics and psychophysics of speech and hearing, and range
through the related topics of computational tools, coding, synthesis, recognition, and
signal enhancement, concluding with discussions on capture and projection of sound
in enclosures. The book can be expected to become a valuable resource for researchers,
engineers and speech scientists throughout the global community. It should equally
serve teachers and students in human communication, especially delimiting knowledge
frontiers where graduate thesis research may be appropriate.

Warren, New Jersey Jim Flanagan
October 2007

J. L. Flanagan

Professor Emeritus
Electrical and Computer
Engineering

Rutgers University



Preface

The achievement of this Springer Handbook is the result of a wonderful journey that
started in March 2005 at the 30th International Conference on Acoustics, Speech, and
Signal Processing (ICASSP). Two of the editors-in-chief (Benesty and Huang) met in
one of the long corridors of the Pennsylvania Convention Center in Philadelphia with
Dr Dieter Merkle from Springer. Together we had a very nice discussion about the con-
ference and immediately an idea came up for a handbook. After a short discussion we
converged without too much hesitation on a handbook of speech processing. It was
quite surprising to see that, even after 30 years of ICASSP and more than half a century
of research in this fundamental area, there was still no major book summarizing the im-
portant aspects of speech processing. We thought that the time was ripe for such a large
project. Soon after we got home, a third editor-in-chief (Sondhi) joined the efforts.

We had a very clear objective in our minds: to summarize, in a reasonable number
of pages, the most important and useful aspects of speech processing. The content was
then organized accordingly. This task was not easy since we had to find a good balance
between feasible ideas and new trends. As we all know, practical ideas can be viewed
as old stuff while emerging ideas can be criticized for not having passed the test of
time; we hope that we have succeeded in finding a good compromise. For this we relied
on many authors who are well established and are recognized as experts in their field,
from all over the world, and from academia as well as from industry.

From simple consumer products such as cell phones and MP3 players to more-
sophisticated projects such as human-machine interfaces and robots that can obey
orders, speech technologies are now everywhere. We believe that it is just a matter of
time before more applications of the science of speech become impossible to miss in
our daily life. So we believe that this Springer Handbook will play a fundamental role
in the sustainable progress of speech research and development.

This handbook is targeted at three categories of readers: graduate students of speech
processing, professors and researchers in academia and research labs who are active
in this field, and engineers in industry who need to understand or implement specific
algorithms for their speech-related products. The handbook could also be used as a text
for one or more graduate courses on signal processing for speech and various aspects
of speech processing and applications.

For the completion of such an ambitious project we have many people to thank.
First, we would like to thank the many authors who did a terrific job in delivering very
high-quality chapters. Second, we are very grateful to the members of the editorial
board who helped us so much in organizing the content and structure of this book, tak-
ing part in all phases of this project from conception to completion. Third, we would
like to thank all the reviewers, who helped us to improve the quality of the mater-
ial. Last, but not least, we would like to thank the Springer team for their availability
and very professional work. In particular, we appreciated the help of Dieter Merkle,
Christoph Baumann, Werner Skolaut, Petra Jantzen, and Claudia Rau.

‘We hope this Springer Handbook will inspire many great minds to find new research
ideas or to implement algorithms in products.

Montreal, Basking Ridge, Murray Hill Jacob Benesty
October 2007 M. Mohan Sondhi
Yiteng Huang

Jacob Benesty

M. Mohan Sondhi

Vi
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1. Introduction to Speech Processing

In this brief introduction we outline some major
highlights in the history of speech processing. We
briefly describe some of the important applications
of speech processing. Finally, we introduce the
reader to the various parts of this handbook.

J. Benesty, M. M. Sondhi, Y. Huang
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1.1 A Brief History of Speech Processing

Human beings have long been motivated to create ma-
chines that can talk. Early attempts at understanding
speech production consisted of building mechanical
models to mimic the human vocal apparatus. Two such
examples date back to the 13th century, when the Ger-
man philosopher Albertus Magnus and the English
scientist Roger Bacon are reputed to have constructed
metal talking heads. However, no documentation of
these devices is known to exist. The first documented
attempts at making speaking machines came some five
hundred years later. In 1769 Kratzenstein constructed
resonant cavities which, when he excited them by a vi-
brating reed, produced the sounds of the five vowels a,
e, i, 0, and u. Around the same time, and independently
of this work, Wolfgang von Kempelen constructed
a mechanical speech synthesizer that could generate
recognizable consonants, vowels, and some connected
utterances. His book on his research, published in 1791,
may be regarded as marking the beginnings of speech
processing. Some 40 years later, Charles Wheatstone
constructed a machine based essentially on von Kempe-
len’s specifications [1.1-3].

Interest in mechanical analogs of the human vocal
apparatus continued well into the 20th century. Mimics
of the type of von Kempelen’s machine were con-
structed by several people besides Wheatstone, e.g.,
Joseph Faber, Richard Paget, R. R. Riesz, et al.

It is known that as a young man Alexander Graham
Bell had the opportunity to see Wheatstone’s imple-
mentation. He too made a speaking machine of that
general nature. However, it was his other invention —
the telephone — that provided a major impetus to mod-
ern speech processing. Nobody could have guessed at
that time the impact the telephone would have, not only

on the way people communicate with each other but
also on research in speech processing as a science in
its own right. The availability of the speech waveform
as an electrical signal shifted interest from mechanical
to electrical machines for synthesizing and processing
speech.

Some attempts were made in the 1920s and 1930s
to synthesize speech electrically. However it is Homer
Dudley’s work in the 1930s that ushered in the modern
era of speech processing. His most important contribu-
tion was the clear understanding of the carrier nature of
speech [1.4]. He developed the analogy between speech
signals and modulated-carrier radio signals that are used,
for instance, for the transmission or broadcast of audio
signals. In the case of the radio broadcast, the message to
be transmitted is the audio signal which has frequencies
in the range of 0—20kHz. Analogously, the message to
be transmitted in the case of speech is carried mainly by
the time-varying shape of the vocal tract, which in turn
is a representation of the thoughts the speaker wishes to
convey to the listener. The movements of the vocal tract
are at syllabic rates, i.e., at frequencies between 0 and
20 Hz. In each case — electromagnetic and acoustic — the
message is in a frequency range unsuitable for transmis-
sion. The solution in each case is to imprint the message
on a carrier. In the electromagnetic case the carrier is
usually a high-frequency sinusoidal wave. In the acous-
tic case the carrier can be one of several signals. It is
the quasi periodic signal provided by the vocal cords for
voiced speech, and a noise-like signal provided by turbu-
lence at a constriction for fricative and aspirated sounds.
Or it can be a combination of these for voiced fricative
sounds. Indeed, the selection of the carrier as well as the
changes in intensity and fundamental frequency of the
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vocal cords may be conveniently regarded as additional
parts of the message.

Being an electrical engineer himself, Dudley pro-
ceeded to exploit this insight to construct an electrical
speech synthesizer which dispensed with all the mech-
anical devices of von Kempelen’s machine. Electrical
circuits were used to generate the carriers. And the mes-
sage (i.e., the characteristics of the vocal tract) was
imprinted on the carrier by passing it through a time-
varying filter whose frequency response was adjusted to
simulate the transfer characteristics of the vocal tract.

With the collaboration of Riesz and Watkins, Dud-
ley implemented two highly acclaimed devices based on
this principle — the Voder and the Vocoder. The Voder
was the first versatile talking machine able to produce
arbitrary sentences. It was a system in which an opera-
tor manipulated a keyboard to control the sound source
and the filter bank. This system was displayed with great
success at the New York World Fair of 1939. It could
produce speech of much better quality than had been
possible with the mechanical devices, but remained es-
sentially a curiosity. The Vocoder, on the other hand
had a much more serious purpose. It was the first at-
tempt at compressing speech. Dudley estimated that
since the message in a speech signal is carried by the
slowly time-varying filters, it should be possible to send
adequate information for the receiver to be able to re-
construct a telephone speech signal using a bandwidth
of only about 150 Hz, which is about 1/20 the bandwidth
required to send the speech signal. Since bandwidth
was very expensive in those days, this possibility was
extremely attractive from a commercial point of view.

We have devoted so much space here to Dudley’s
work because his ideas were the basis of practically all
the work on speech signal processing that followed. The
description of speech in terms of a carrier (or excita-
tion function) and its modulation (or the time-varying
spectral envelope) is still — 70 years later — the basic
representation. The parameters used to quantify these
components, of course, have evolved in various ways.
Besides the channel Vocoder (the modern name for Dud-
ley’s Vocoder) many other types of Vocoders have been
invented, e.g., formant Vocoder, voice-excited Vocoder.

1.2 Applications of Speech Processing

As mentioned above, one of the earliest goals of speech
processing was that of coding speech for efficient
transmission. This was taken to be synonymous with

Besides speech compression, Dudley’s description was
also considered for other applications such as secure
voice systems, and the sound spectrograph and its use
for communication with the deaf.

Unfortunately, the quality achieved by analog imple-
mentations of Vocoders never reached a level acceptable
for commercial telephony. Nevertheless they found use-
ful applications for military purposes where poor speech
quality was tolerated. The Vocoder representation was
also the basis of a speech secrecy system that found
extensive use during World War II.

Another example of an analog implementation of
Dudley’s representation is the sound spectrograph. This
is a device that displays the distribution of energy in
a speech signal as a function of frequency, and the evo-
lution of this distribution in time. This tool has been
extremely useful for investigating properties of speech
signals. A real time version of the spectrograph was in-
tended for use as a device for communication with the
deaf. That, however, was not very successful. A few
people were able to identify about 300 words after
100 hours of training. However, it turned out to be too
difficult a task to be practical.

During more than three decades following Dudley’s
pioneering work, a great amount of research was done
on various aspects and properties of speech — properties
of the speech production mechanisms, the auditory sys-
tem, psychophysics, etc. However, except for the three
applications mentioned above, little progress was made
in speech signal processing and its applications. Ex-
ploitation of this research for practical applications had
to wait for the general availability of digital hardware
starting in the 1970s. Since then much progress has been
made in speech coding for efficient transmission, speech
synthesis, speech and speaker recognition, and hearing
aids [1.5-7]. In the next section we discuss some of these
developments.

Today, the area of speech processing is very vast and
rich as can be seen from the contents of this Handbook.
While we have made great progress since the invention
of the telephone, research in the area of speech process-
ing is still very active, and many challenging problems
remain unsolved.

reduction of the bandwidth required for transmitting
speech. Several advances were needed before the mod-
ern success in speech coding was achieved. First, the
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1.2 Applications of Speech Processing

notions of information theory introduced during the
late 1940s and 1950s brought the realization that the
proper goal was the reduction of information rate rather
than bandwidth. Second, hardware became available to
utilize the sampling theorem to convert a continuous
band-limited signal to a sequence of discrete samples.
And quantization of the samples allowed digitization of
a band-limited speech signal, thus making it usable for
digital processing. Finally, the description of a speech
signal in terms of linear prediction coefficients (LPC)
provided a very convenient representation [1.8—11].
(The theory of predictive coding was in fact developed
in 1955. However, its application to speech signals was
not made until the late 1970s.)

A telephone speech signal, limited in frequency from
0 to 3.4 kHz, requires 64 kbps (kilobits per second) to be
transmitted without further loss of quality. With mod-
ern speech compression techniques, the bit rate can be
reduced to 13 kbps with little further degradation. For
commercial telephony a remaining challenge is to re-
duce the required bit rate further but without sacrificing
quality. Today, the rate can be lowered down to 2.4 kbps
while maintaining very high intelligibility, but with a sig-
nificant loss in quality. Some attempts have been made
to reduce the bit rate down to 300 bps, e.g., for radio
communication with a submarine. However the quality
and intelligibility at these low bit rates are very poor.

Another highly successful application of speech pro-
cessing is automatic speech recognition (ASR). Early
attempts at ASR consisted of making deterministic mod-
els of whole words in a small vocabulary (say 100
words) and recognizing a given speech utterance as the
word whose model comes closest to it. The introduc-
tion of hidden Markov models (HMMs) in the early
1980s provided a much more powerful tool for speech
recognition [1.12—14]. Today many products have been
developed that successfully utilize ASR for communica-
tion between humans and machines. And the recognition
can be done for continuous speech using a large vocabu-
lary, and in a speaker-independent manner. Performance
of these devices, however, deteriorates in the presence
of reverberation and even low levels of ambient noise.
Robustness to noise, reverberation, and characteristics
of the transducer, is still an unsolved problem.

The goal of ASR is to recognize speech accurately
regardless of who the speaker is. The complementary
problem is that of recognizing a speaker from his/her
voice, regardless of what words he/she is speaking. At
present this problem appears to be solvable only if the
speaker is one of a small set of N known speakers. A vari-
ant of the problem is speaker verification, in which the

aim is to automatically verify the claimed identity of
a speaker. While speaker recognition requires the se-
lection of one out of N possible outcomes, speaker
verification requires just a yes/no answer. This prob-
lem can be solved with a high degree of accuracy for
much larger populations. Speaker verification has ap-
plication wherever access to data or facilities has to
be controlled. Forensics is another area of application.
The problem of reduced performance in the presence
of noise, as mentioned above for ASR, applies also to
speaker recognition and speaker verification.

A third application of speech processing is that of
synthesizing speech corresponding to a given text. When
used together with ASR, speech synthesis allows a com-
plete two-way spoken interaction between humans and
machines. Speech synthesis is also a way to communi-
cate for persons unable to speak. Its use for this purpose
by the famous physicist Stephen Hawking is well known.

Early attempts at speech synthesis consisted of de-
riving the time-varying spectrum for the sequence of
phonemes of a given text sentence. From this the corre-
sponding time variation of the vocal tract was estimated,
and the speech was synthesized by exciting the time-
varying vocal tract with periodic or noise-like excitation
as appropriate. The quality of the synthesis was signifi-
cantly improved by concatenating pre-stored units (i. e.,
short segments such as diphones, triphones) after mod-
ifying them to fit the context. Today the highest-quality
speech is synthesized by the unit selection method in
which the units are selected from a large amount of
stored speech and concatenated with little or no modifi-
cation.

Finally we might mention the application of speech
processing to aids for the handicapped. Hearing aid tech-
nology has made considerable progress in the last two
decades. Part of this progress is due to a slow but steady
improvement in our knowledge of the human hearing
mechanism. A large part is due to the availability of
high-speed digital hardware. At present performance of
hearing aids is still poor under noisy and reverberant
conditions.

A potentially useful application of speech processing
to aid the handicapped is to display the shape of one’s
vocal tract as one speaks. By trying to match one’s vocal
tract shape to a displayed shape, a deaf person can learn
correct pronunciation. Some attempts to implement this
idea have been made, but have still been only in the
realm of research.

Another useful application is a reading aid for the
blind. The idea is to have a device to scan printed
text from a book, and synthesize speech from the

3
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scanned text. Coupled with a device to change speak-
ing rate, this forms a useful aid for the blind. Several
products offering this application are available on the
market.

1.3 Organization of the Handbook

This handbook on speech processing is a comprehen-
sive source of knowledge in speech technology and its
applications. It is organized as follows. This volume
is divided into nine parts. For each part we invited at
least one associate editor (AE) to handle it. All the AEs
are very well-known researchers in their respective area
of research. Part A (AE: M. M. Sondhi) contains four
chapters on production, perception, and modeling of
speech signals. Part B (AEs: Y. Huang and J. Benesty)
concerns signal processing tools for speech, in eight
chapters. Part C (AE: B. Kleijn) covers five chapters on
speech coding. In part D (AE: S. Narayanan), the areas of
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2. Physiological Processes of Speech Production

Speech sound is a wave of air that originates from
complex actions of the human body, supported by
three functional units: generation of air pressure,
regulation of vibration, and control of resonators.
The lung air pressure for speech results from func-
tions of the respiratory system during a prolonged
phase of expiration after a short inhalation. Vi-
brations of air for voiced sounds are introduced by
the vocal folds in the larynx; they are controlled
by a set of laryngeal muscles and airflow from the
lungs. The oscillation of the vocal folds converts
the expiratory air into intermittent airflow pulses
that result in a buzzing sound. The narrow con-
strictions of the airway along the tract above the
larynx also generate transient source sounds; their
pressure gives rise to an airstream with turbu-
lence or burst sounds. The resonators are formed
in the upper respiratory tract by the pharyngeal,
oral, and nasal cavities. These cavities act as res-
onance chambers to transform the laryngeal buzz
or turbulence sounds into the sounds with special
linguistic functions. The main articulators are the
tongue, lower jaw, lips, and velum. They generate
patterned movements to alter the resonance char-
acteristics of the supra-laryngeal airway. In this
chapter, contemporary views on phonatory and

2.1 Overview of Speech Apparatus

The speech production apparatus is a part of the motor
system for respiration and alimentation. The form of the
system can be characterized, when compared with those
of other primates, by several unique features, such as
small red lips, flat face, compact teeth, short oral cav-
ity with a round tongue, and long pharynx with a low
larynx position. The functions of the system are also
uniquely advanced by the developed brain with the lan-
guage areas, direct neural connections from the cortex
to motor nuclei, and dense neural supply to each mus-
cle. Independent control over phonation and articulation
is a human-specific ability. These morphological and
neural changes along human evolution reorganized the
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articulatory mechanisms are summarized to il-
lustrate the physiological processes of speech
production, with brief notes on their observation
techniques.

original functions of each component into an integrated
motor system for speech communication.

The speech apparatus is divided into the organs of
phonation (voice production) and articulation (settings
of the speech organs). The phonatory organs (lungs and
larynx) create voice source sounds by setting the driv-
ing air pressure in the lungs and parameters for vocal
fold vibration at the larynx. The two organs together
adjust the pitch, loudness, and quality of the voice,
and further generate prosodic patterns of speech. The
articulatory organs give resonances or modulations to
the voice source and generate additional sounds for
some consonants. They consist of the lower jaw, tongue,
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2.2 Voice Production Mechanisms

Generation of voice source requires adequate con-
figuration of the airflow from the lungs and vocal
fold parameters for oscillation. The sources for voiced
sounds are the airflow pulses generated at the larynx,
while those for some consonants (i. e., stops and frica-
tives) are airflow noises made at a narrow constriction
in the vocal tract. The expiratory and inspiratory mus-
cles together regulate relatively constant pressure during
speech. The laryngeal muscles adjust the onset/offset,
amplitude, and frequency of vocal fold vibration.

2.2.1 Regulation of Respiration

The respiratory system is divided into two segments:
the conduction airways for ventilation between the at-
mosphere and the lungs, and the respiratory tissue of
the lungs for gas exchange. Ventilation (i.e., expira-
tion and inhalation) is carried out by movements of the
thorax, diaphragm, and abdomen. These movements in-
volve actions of respiratory muscles and elastic recoil
forces of the system. During quiet breathing, the lungs
expand to inhale air by the actions of inspiratory mus-
cles (diaphragm, external intercostal, etc.), and expel
air by the elastic recoil force of the lung tissue, di-
aphragm, and cavities of the thorax and abdomen. In
effort expiration, the expiratory muscles (internal in-
tercostals, abdominal muscles, etc.) come into action.

Fig.2.1 Sketch of a speech production system. Physio-
logical processes of speech production are realized by
combined sequential actions of the speech organs for
phonation and articulation. These activities result in sound
propagation phenomena at the three levels: subglottal cav-
ities, cavities of the vocal tract, and nasal and paranasal
cavities

lips, and the velum. The larynx also takes a part in
the articulation of voiced/voiceless distinctions. The
tongue and lower lip attach to the lower jaw, while
the velum is loosely combined with other articulators.
The constrictor muscles of the pharynx and larynx also
participate in articulation as well as in voice quality
control. The phonatory and articulatory systems influ-
ence each other mutually, while changing the vocal tract
shape for producing vowels and consonants. Figure 2.1
shows a schematic drawing of the speech production
system.

The inspiratory and expiratory muscles work alternately,
making the thorax expand and contract during deep
breathing.

During speech production, the respiratory pattern
changes to a longer expiratory phase with a shorter in-
spiratory phase during quiet breathing. Figure 2.2 shows
a conventional view of the respiratory pattern during

Rest Speech

20
Lung volume /\ /\
above FRC 0 /
~J

5 Ss

Lung pressure [ﬁ _—
(cmH,0) 0
Inspiratory m.
Exspiratory m. JE— )

Fig. 2.2 Respiratory pattern during speech. Top two curves
show the changes in the volume and pressure in the lungs.
The bottom two curves show schematic activity patterns
of the inspiratory and expiratory muscles (after [2.1]).
The dashed line for the expiratory muscles indicates their
predicted activity for expiration
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speech [2.1]. The thorax is expanded by inspiration prior
to initiation of speech, and then compressed by elastic
recoil force by the tissues of the respiratory system to
the level of the functional residual capacity (FRC). The
lung pressure during speech is kept nearly constant ex-
cept for the tendency of utterance initial rise and final
lowering. In natural speech, stress and emphasis add lo-
cal pressure increases. The constant lung pressure is due
to the actions of the inspiratory muscles to prevent ex-
cessive airflow and maintain the long expiratory phase.
As speech continues, the lung volume decreases grad-
ually below the level of FRC, and the lung pressure is
then maintained by the actions of the expiratory muscles
that actively expel air from the lung. It has been argued
whether the initiation of speech involves only the elastic
recoil forces of the thorax to generate expiratory air-
flow. Indeed, a few studies have suggested that not only
the thoracic system but also the abdominal system as-
sists the regulation of expiration during speech [2.2, 3],
as shown by the dashed line in Fig.2.2. Thus, the con-
temporary view of speech respiration emphasizes that
expiration of air during speech is not a passive process
but a controlled one with co-activation of the inspiratory
and expiratory muscles.

2.2.2 Structure of the Larynx

The larynx is a small cervical organ located at the top of
the trachea making a junction to the pharyngeal cavity:
it primarily functions to prevent foreign material from
entering the lungs. The larynx contains several rigid
structures such as the cricoid, thyroid, arytenoid, epiglot-
tic, and other smaller cartilages. Figure 2.3a shows the
arrangement of the major cartilages and the hyoid bone.
The cricoid cartilage is ring-shaped and supports the
lumen of the laryngeal cavity. It offers two bilateral ar-
ticulations to the thyroid and arytenoid cartilages at the
cricothyroid and cricoarytenoid joints, respectively. The
thyroid cartilage is a shield-like structure that offers at-
tachments to the vocal folds and the vestibular folds.
The arytenoid cartilages are bilateral tetrahedral carti-
lages that change in location and orientation between
phonation and respiration. The whole larynx is mechan-
ically suspended from the hyoid bone by muscles and
ligaments.

The gap between the free edges of the vocal folds is
called the glottis. The space is divided into two portions
by the vocal processes of the arytenoid cartilages: the
membranous portion in front (essential for vibration)
and cartilaginous portion in back (essential for respi-
ration). The glottis changes its form in various ways

during speech: it narrows by adduction and widens by
abduction of the vocal folds. Figure 2.3b shows that this
movement is carried out by the actions of the intrinsic
laryngeal muscles that attach to the arytenoid cartilages.
These muscles are functionally divided into the adductor
and abductor muscles. The adductor muscles include the
thyroarytenoid muscles, lateral cricoarytenoid, and ary-
tenoid muscles, and the abductor muscle is the posterior
cricoarytenoid muscle. The glottis also changes in length
according to the length of the vocal folds, which takes
place mainly at the membranous portion. The length of
the glottis shows a large developmental sexual variation.
The membranous length on average is 10 mm in adult fe-
males and 16 mm in adult males, while the cartilaginous
length is about 3 mm for both [2.4].

a) laryngeal framework

Epiglottic
Hyoid cartilage

bone

Thyroid
cartilage Arytenoid
cartilage

Vocal

ligament

L Cricothyroid
Cricoid joint

cartilage

b) glottal action

Thyroid Cricoid
cartilage cartilage
Thyro-

arytenoid

muscle

Lateral Arytenoid Posterior
cricoarytenoid muscle cricoarytenoid
muscle muscle

Fig.2.3a,b Laryngeal framework and internal structures.
(a) Oblique view of the laryngeal framework, which
includes the hyoid bone and four major cartilages. (b) Ad-
duction (left) and abduction (right) of the glottis and the
effects of the intrinsic laryngeal muscles
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2.2.3 Vocal Fold and its Oscillation

The larynx includes several structures such as the sub-
glottic dome, vocal folds, ventricles, vestibular folds,
epiglottis, and aryepiglottic folds, as shown in Fig. 2.4a.
The vocal folds run anteroposteriorly from the vocal pro-
cesses of the arytenoid cartilages to the internal surface
of the thyroid cartilage. The vocal fold tissue consists
of the thyroarytenoid muscle, vocal ligament, lamina
propria, and mucous membrane. They form a special
layer structure that yields to aerodynamic forces to
oscillate, which is often described as the body-cover
structure [2.5].

During voiced speech sounds, the vocal folds are
set into vibration by pressurized air passing through
the membranous portion of the narrowed glottis. The
glottal airflow thus generated induces wave-like motion

a) coronal section
Vestibular
folds

Thyroarytenoid

Thyroid ——

cartilage

Ventricle Lateral
\ cricoarytenoid
o Voeal muscle
Cricoid folds Cricothyroid
cartilage muscle

Trachea

b) phases of vibration

—
K Closed ﬁ

Closing Opening

7T o P8

Fig.2.4a,b Vocal folds and their vibration pattern.
(a) Coronal section of the larynx, showing the tissues of the
vocal and vestibular (false) folds. The cavity of the larynx
includes supraglottic and subglottic regions. (b) Vocal-fold
vibration pattern and glottal shapes in open phases. As
the vocal-fold edge deforms in a glottal cycle, the glottis
follows four phases: closed, opening, open and closing

of the vocal fold membrane, which appears to prop-
agate from the bottom to the top of the vocal fold
edges. When this oscillatory motion builds up, the vo-
cal fold membranes on either side come into contact
with each other, resulting in repetitive closing and open-
ing of the glottis. Figure 2.4b shows that vocal fold
vibration repeats four phases within a cycle: the closed
phase, opening phase, open phase, and closing phase.
The conditions that determine vocal fold vibration are
the stiffness and mass of the vocal folds, the width
of the glottis, and the pressure difference across the
glottis.

The aerodynamic parameters that regulate vocal
fold vibration are the transglottal pressure difference
and glottal airflow. The former coincides with the
measure of subglottal pressure during mid and low
vowels, which is about 5—10cm H;O in comfortable
loudness and pitch (1cmHyO = 0.98hPa). The lat-
ter also coincides with the average measure of oral

a) modal phonation

Area and
airflow

2
Area and S
airflow

Output (RS R W .

sounds

Fig.2.5a,b Changes in glottal area and airflow in rela-
tion to output sounds during 1.5 glottal cycles from glottal
opening, with glottal shapes at peak opening (in the cir-
cles). (a) In modal phonation with complete glottal closure
in the closed phase, glottal closure causes abrupt shut-off
of glottal airflow and strong excitation of the air in the vo-
cal tract during the closed phase. (b) In breathy phonation,
the glottal closure is incomplete, and the airflow wave in-
cludes a DC component, which results in weak excitation
of the tract
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airflow during vowel production, which is roughly
0.1-0.21/s. These values show a large individual vari-
ation: the pressure range is 4.2—-9.6cm H>O in males
and 4.4-7.6 cm H,O in females, while the airflow rate
ranges between 0.1-0.31/s in males and 0.09-0.211/s
in females [2.6].

Figure 2.5 shows schematically the relationship be-
tween the glottal cycle and volumic airflow change
in normal and breathy phonation. The airflow varies
within each glottal cycle, reflecting the cyclic varia-
tion of the glottal area and subglottal pressure. The
glottal area curve roughly shows a triangular pattern,
while the airflow curve shows a skew of the peak to
the right due to the inertia of the air mass within the
glottis [2.7]. The closure of the glottis causes a discon-
tinuous decrease of the glottal airflow to zero, which
contributes the main source of vocal tract excitation,
as shown in Fig.2.5a. When the glottal closure is
more abrupt, the output sounds are more intense with
richer harmonic components [2.8]. When the glottal clo-
sure is incomplete in soft and breathy voices or the
cartilaginous portion of the glottis is open to show
the glottal chink, the airflow includes a direct-current
(DC) component and exhibits a gradual decrease of
airflow, which results in a more sinusoidal waveform
and a lower intensity of the output sounds, as shown
in Fig. 2.5b.

Laryngeal control of the oscillatory patterns of the
vocal folds is one of the major factors in voice quality

a) cricothyroid joint and muscles

Thyroarytenoid m.

Thyroid
cartilage

Arytenoid
cartilage

Cricothyroid

muscle . .
u. ) Cricothyroid

Cricoid joint

cartilage

b) rotation

control. In sharp voice, the open phase of the glottal cycle
becomes shorter, while in soft voice, the open phase be-
comes longer. The ratio of the open phase within a glottal
cycle is called the open quotient (OQ), and the ratio of
the closing slope to the opening slope in the glottal cycle
is called the speed quotient (SQ). These two parameters
determine the slope of the spectral envelope. When the
open phase is longer (high OQ) with a longer closing
phase (low SQ), the glottal airflow becomes more si-
nusoidal, with weak harmonic components. Contrarily,
when the open phase is shorter (low OQ), glottal air-
flow builds up to pulsating waves with rich harmonics.
In modal voice, all the vocal fold layers are involved
in vibration, and the membranous glottis is completely
closed during the closed phase of each cycle. In falsetto,
only the edges of the vocal folds vibrate, glottal closure
becomes incomplete, and harmonic components reduce
remarkably.

The oscillation of the vocal folds during natural
speech is quasiperiodic, and cycle-to-cycle variation
are observed in speech waveforms as two types of
measures: jitter (frequency perturbation) and shimmer
(amplitude perturbation). These irregularities appear to
arise from combinations of biomechanical (vocal fold
asymmetry), neurogenic (involuntary activities of laryn-
geal muscles), and aerodynamic (fluctuations of airflow
and subglottal pressure) factors. In sustained phonation
of normal voice, the jitter is about 1% in frequency, and
the shimmer is about 6% in amplitude.

€) translation

———
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Fig. 2.6a-c Cricothyroid joint and Fy regulation mechanism. (a) The cricothyroid joint is locally controlled by the
thyroarytenoid and two parts of the cricothyroid muscles: Pars recta (anterior) and pars obliqua (posterior). As Fj rises,
the thyroid cartilage advances and cricoid cartilage rotates to the direction to stretch the vocal folds, which leads to the
increases in the stiffness of vocal fold tissue and in the natural resonance frequency of the vocal folds. (b) Rotation of the
cricothyroid joint is caused mainly by the action of the pars recta to raise the cricoid arch. (c) Translation of the joint is

produced mainly by the pars obliqua
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2.2.4 Regulation
of Fundamental Frequency (Fo)

The fundamental frequency (Fp) of voice is the lowest
harmonic component in voiced sounds, which conforms
to the natural frequency of vocal fold vibration. Fy
changes depending on two factors: regulation of the
length of the vocal folds and adjustment of aerodynamic
factors that satisfy the conditions necessary for vocal
fold vibration. In high Fp, the vocal folds become thin-
ner and longer; while in low Fp, the vocal folds become
shorter and thicker. As the vocal folds are stretched by
separating their two attachments (the anterior commis-
sure and vocal processes), the mass per unit length of
the vocal fold tissue is reduced while the stiffness of the
tissue layer involved in vibration increases. Thus, the
mass is smaller and the stiffness is greater for higher Fy
than lower Fy, and it follows that the characteristic fre-
quency of vibrating tissue increases for higher Fp. The
length of the vocal folds is adjusted by relative move-
ment of the cricoid and thyroid cartilages. Its natural
length is a determinant factor of individual difference
in Fp. The possible range of Fy in adult speakers is
about 80—400 Hz in males, and about 120—800 Hz in
females.

The thyroid and cricoid cartilages are articulated at
the cricothyroid joint. Any external forces applied to
this joint cause rotation and translation (sliding) of the
joint, which alters the length of the vocal folds. It is well
known that the two joint actions are brought about by the
contraction of the cricothyroid muscle to approximate
the two cartilages at their front edges. Figure 2.6 shows
two possible actions of the cricothyroid muscle on the
joint: rotation by the pars recta and translation of the pars
obliqua [2.9]. Questions still remain as to whether each
part of the cricothyroid conducts pure actions of rotation
or translation, and as to which part is more responsible

for determining Fj.
The extrinsic laryngeal muscles can also apply ex-

ternal forces to this joint as a supplementary mechanism
for regulating Fp [2.10]. The most well known among
the activities of the extrinsic muscles in this regulation
is the transient action of the sternohyoid muscle ob-
served as Fy falls. Since this muscle pulls down the
hyoid bone to lower the entire larynx, larynx lower-
ing has long been thought to play a certain role in
Fy lowering. Figure 2.7 shows a possible mechanism
of Fp lowering by vertical larynx movement revealed
by magnetic resonance imaging (MRI). As the cricoid
cartilage descends along the anterior surface of the
cervical spine, the cartilage rotates in a direction that

shortens the vocal folds because the cervical spine
shows anterior convexity at the level of the cricoid
cartilage [2.11].

Aerodynamic conditions are an additional factor
that alters Fj, as seen in the local rises of the sub-
glottal pressure during speech at stress or emphasis.
The increase of the subglottal air pressure results in
a larger airflow rate and a wider opening of the glottis,
which causes greater deformation of the vocal folds with
larger average tissue stiffness. The rate of F increase
due to the subglottal pressure is reported to be about
2-5Hz/cmH,0 when the chest cavity is compressed ex-
ternally, and is observed to be 5—15 Hz/cmH,0O, when

a) horizontal component

Larynx

lowering Joint

rotation

Fig.2.7a,b Extrinsic control of Fy. Actions of the cricothy-
roid joint are determined not only by the cricothyroid
muscle but also by other laryngeal muscles. Any exter-
nal forces applied to the joint can activate the actions of the
joint. (a) In Fy raising, advancement of the hyoid bone pos-
sibly apply a force to rotate the thyroid cartilage. (b) In Fy
lowering, the cricoid cartilage rotates as its posterior plate
descends along the anterior convexity of the cervical spine
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Fig.2.8a,b Glottographic methods. (a) PGG with fiberscopy uses a photodetector attached near the cricothyroid cartilage
in two locations: one attachment for measuring vibrations, and two attachment for glottal gestures. (b) EGG uses a pair
of electrodes on the skin above the thyroid lamina to form a induction circuit to record electrical currents passed through

the vocal-fold edges

it is measured between the beginning and end of speech
utterances.

2.2.5 Methods
for Measuring Voice Production

Speech production mechanisms arise from the func-
tions of the internal organs of the human body that
are mostly invisible. Therefore, better understanding of
speech production processes relies on the development
of observation techniques. The lung functions in speech
can be assessed by the tools for aerodynamic mea-
surements, while examination of the larynx functions
during speech requires special techniques for imaging
and signal recording.

Monitoring Respiratory Functions

Respiratory functions during speech are examined by
recording aerodynamic measurements of lung volume,
airflow, and pressure. Changes in lung volume are mon-
itored with several types of plethysmography (e.g.,
whole-body, induction, and magnetic). The airflow from
the mouth is measured with pneumotachography us-
ing a mask with pressure probes (differential-pressure
anemometry) or thermal probes (hot-wire anemometry).
Measurements of the subglottal pressure require a tra-
cheal puncture of a needle with a pressure sensor or
a thin catheter-type pressure transducer inserted from
the nostril to the trachea via the cartilaginous part of the
glottis.

Laryngeal Endoscopy

Imaging of the vocal folds during speech has been con-
ducted with a combination of an endoscope and video
camera. A solid-type endoscope is capable of observing
vocal fold vibration with stroboscopic or real-time digi-
tal imaging techniques during sustained phonation. The
flexible endoscope is beneficial for video recording of
glottal movements during speech with a fiber optic bun-
dle inserted into the pharynx through the nostril via the
velopharyngeal port. Recently, an electronic type of flex-
ible endoscope with a built-in image sensor has become
available.

Glottography

Glottography is a technique to monitor vocal fold vi-
bration as a waveform. Figure 2.8 shows two types
of glottographic techniques. Photoglottography (PGG)
detects light intensity modulated by the glottis using
an optical sensor. The sensor is placed on the neck
and a flexible endoscope is used as a light source.
The signal from the sensor corresponds to the glot-
tal aperture size, reflecting vocal fold vibration and
glottal adduction—abduction movement. Electroglotto-
graphy (EGG) records the contact of the left
and right vocal fold edges during vibration. High-
frequency current is applied to a pair of surface
electrodes placed on the skin above the thyroid lam-
ina, which detect a varying induction current that
corresponds to the change in vocal fold contact
area.
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2.3 Articulatory Mechanisms

Speech articulation is the most complex motor activ-
ity in humans, producing concatenations of phonemes
into syllables and syllables into words using movements
of the speech organs. These articulatory processes are
conducted within a phrase of a single expiratory phase
with continuous changes of vocal fold vibration, which
is one of the human-specific characteristics of sound
production mechanisms.

€°C|vued

2.3.1 Articulatory Organs

Articulatory organs are composed of the rigid organ of
the lower jaw and soft-tissue organs of the tongue, lips,
and velum, as illustrated in Fig.2.9. These organs to-
gether alter the resonance of the vocal tract in various
ways and generate sound sources for consonants in the
vocal tract. The tongue is the most important articu-
latory organ, and changes the gross configuration of
the vocal tract. Deformation of the whole tongue de-
termines vowel quality and produces palatal, velar, and
pharyngeal consonants. Movements of the tongue apex
and blade contribute to the differentiation of dental and
alveolar consonants and the realization of retroflex con-
sonants. The lips deform the open end of the vocal tract
by various types of gestures, assisting the production
of vowels and labial consonants. Actions of these soft-
tissue organs are essentially based on contractions of

Frontal sinus

Maxillary sinus

Anterior nares —

the muscles within these organs, and their mechanism
is often compared with the muscular hydrostat. Since
the tongue and lips have attachments to the lower jaw,
they are interlocked with the jaw to open the mouth.
The velum controls opening and closing of the velopha-
ryngeal port, and allows distinction between nasal and
oral sounds. Additionally, the constrictor muscles of the
pharynx adjust the lateral width of the pharyngeal cav-
ity, and their actions also assist articulation for vowels
and back consonants.

Upper Jaw

The upper jaw, or the maxilla with the upper teeth, is the
structure fixed to the skull, forming the palatal dome on
the arch of the alveolar process with the teeth. It forms
a fixed wall of the vocal tract and does not belong to the
articulatory organs: yet it is a critical structure for speech
articulation because it provides the frame of reference
for many articulatory gestures. The structures of the up-
per jaw offer the location for contact or approximation by
many parts of the tongue such as the apex, blade, and dor-
sum. The phonetics literature describes the place of artic-
ulation as classified according to the locations of lingual
approximation along the upper jaw for dental, alveolar,
and palatal consonants. The hard palate is covered by
the thick mucoperiosteum, which has several transverse
lines of mucosal folds called the palatine rugae.

Sphenoid sinus

Posterior nares
Nasopharynx

Velum

Hard palate
Upper lip

Oral vestibule

Lower lip

Mandibular
symphysis

Hyoid bone
Vestibular fold

Ventricle

Interdental space

Oropharynx

Epiglottis
Hypopharynx
Piriform fossa

Vocal fold Fig. 2.9 Illustration of the articulatory
system with names of articulators and

cavities
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Lower Jaw
The lower jaw, or the mandible with the lower teeth, is
the largest rigid motor organ among the speech produc-
tion apparatus. Its volume is about 100 cm>. As well as
playing the major role in opening and closing the mouth,
it provides attachments for many speech muscles and
supports the tongue, lips, and hyoid bone.

Figure 2.10 shows the action of the jaw and the mus-
cles used in speech articulation. The mandible articulates
with the temporal bone at the temporomandibular joint
(TMJ) and brings about jaw opening—closing actions by
rotation and translation. The muscles that control jaw
movements are generally called the masticatory mus-
cles. The jaw opening muscles are the digastric and
lateral pterygoid muscles. The strap muscles, such as
the geniohyoid and sternohyoid, also assist jaw opening.
The jaw closing muscles include the masseter, tempo-
ralis, and medial pterygoid muscles. While the larger
muscles play major roles in biting and chewing, com-
paratively small muscles are used for speech articulation.
The medial pterygoid is mainly used for jaw closing in
articulation, and the elastic recoil force of the connec-
tive tissues surrounding the mandible is another factor
for closing the jaw from its open position.

Tongue
The tongue is an organ of complex musculature [2.12].
It consists of a round body occupying its main mass
and a short blade with an apex. Its volume is approx-
imately 100cm?, including the muscles in the tongue
floor. The tongue body moves in the oral cavity by vari-
ously deforming its voluminous mass, while the tongue
blade alters its shape and changes the angle of the tongue
apex. Deformation of the tongue tissue is caused by con-
tractions of the extrinsic and intrinsic tongue muscles,
which are illustrated schematically in Fig. 2.11.

The extrinsic tongue muscles are those that arise out-
side of the tongue and end within the tongue tissue. This
group includes four muscles, the genioglossus, hyoglos-
sus, styloglossus, and palatoglossus muscles, although
the former three muscles are thought to be involved in
the articulation of the tongue. The palatoglossus muscle
participates in the lowering of the velum as discussed
later.

The genioglossus is the largest and strongest mus-
cle in the tongue. It begins from the posterior aspect of
the mandibular symphysis and runs along the midline of
the tongue. Morphologically, it belongs to the triangular
muscle, and its contraction effects differ across portions
of the muscle. Therefore, the genioglossus is divided
functionally into the anterior, middle, and posterior bun-

dles. The anterior and middle bundles run midsagittally,
and their contraction makes the midline groove of the
tongue for the production of front vowels. The ante-
rior bundle often makes a shallow notch on the tongue
surface called the lingual fossa and assists elevation of
the tongue apex. The middle bundle runs obliquely, and
advances the tongue body for front vowels. The poste-
rior bundle of the genioglossus runs midsagittally and

a) rotation and translation of the jaw joint

Temporomandibular joint

External ear canal

Tympanic bone

b) muscles for jaw movements

Lateral pterygoid

Medial pterygoid

Digastric

%

Fig.2.10a,b Actions of the temporomandibular joint and
muscles for jaw opening and closing. (a) The lower jaw
opens by rotation and translation of the mandible at the
temporomandibular joint. Jaw translation is needed for wide
opening of the jaw because jaw rotation is limited by the nar-
row space between the condyle and tympanic bone. (b) Jaw
opening in speech depends on the actions of the digastric
and medial pterygoid muscles with support of the strap
muscles. Jaw closing is carried out by the contraction of
the lateral pterygoid muscle and elastic recoil forces of the
tissues surrounding the jaw
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a) two major components of tongue deformation

Inferior
longitudinal

Genioglossus
anterior

Genioglossus
middle

b) extrinsic and intrinsic tongue muscles

Superior Palato-
longitudinal

pharyngeus

Styloglossus
Hyoglossus

Genioglossus
posterior

Geniohyoid Mylohyoid

Vertical

Transverse

Fig.2.1a,b Actions of the tongue and its musculature. (a) Major components of tongue deformation are high-front
vs.low-back (top) and high back versus low front (bottom) motions, (after [2.14]). (b) Lateral view (top) shows the
extrinsic and intrinsic muscles of the tongue with two tongue floor muscles. Coronal section (bottom) shows additional

intrinsic muscles

also spreads laterally, reaching a wide area of the tongue
root. This bundle draws the tongue root forward and el-
evates the upper surface of the tongue for high vowels
and anterior types of oral consonants. The hyoglossus
is a bilateral thin-sheet muscle, which arises from the
hyoid bone, runs upward along the sides of the tongue,
and ends in the tongue tissue, intermingling with the
styloglossus. Its contraction lowers the tongue dorsum
and pushes the tongue root backward for the produc-
tion of low vowels. The styloglossus is a bilateral long
muscle originating from the styloid process on the skull
base, running obliquely to enter the back sides of the
tongue. Within the tongue, it runs forward to reach
the apex of the tongue, while branching downward to
the hyoid bone and medially toward the midline. Al-
though the extra-lingual bundle of the styloglossus runs
obliquely, it pulls the tongue body straight back at the
insertion point because the bundle is surrounded by fatty
and muscular tissues. The shortening of the intra-lingual
bundle draws the tongue apex backward and causes an

upward bunching of the tongue body [2.13]. Each of
the extrinsic tongue muscles has two functions: draw-
ing of the relevant attachment point toward the origin,
and deforming the tongue tissue in the orthogonal ori-
entation. The resulting deformation of the tongue can be
explained by two antagonistic pairs of extrinsic muscles:
posterior genioglossus versus styloglossus, and anterior
genioglossus versus hyoglossus. The muscle arrange-
ment appears to be suitable for tongue body movements
in the vertical and horizontal dimensions.

The intrinsic tongue muscle is a group of muscles
that have both their origin and termination within the
tongue tissue. They include four bilateral muscles: the
superior longitudinal, inferior longitudinal, transverse,
and vertical muscles. The superior and inferior longitu-
dinal muscles operate on the tongue blade to produce
vertical and horizontal movements of the tongue tip.
The transverse and vertical muscles together compress
the tongue tissue medially to change the cross-sectional
shape of the tongue.
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a) actions of the lips and velum

b) selected muscles for lip and velum movements

Levator

Levator veli palatini
labii sup. \\ Epipharyngeal
Orbicularis ‘3 constrictor
O P, Palatoglossus
Orbicularis
oris inf.
Depressor
labii inf. ¢

Mentalis

Fig.2.12a,b Actions of the lips and velum, and their muscles. (a) Trace of MRI data in the production of /i/ and /u/ with
lip protrusion show that two parts of the orbicularis oris, marginal (front) and peripheral (back) bundles demonstrate their
geometrical changes within the vermillion tissue. The shapes of the velum also vary greatly between the rest position
(thick gray line) and vowel articulation. (b) Five labial muscles are shown selectively from among many facial muscles.
The velum shape is determined by the elevator, constrictor, and depressor (palatopharyngeus)

There are two muscles that support the tongue floor:
the geniohyoid and mylohyoid muscles. The geniohyoid
runs from the genial process of the mandibular symph-
ysis to the body of the hyoid bone. This muscle has
two functions: opening the jaw for open vowels and
advancing the hyoid bone to help raise Fj. The mylohy-
oid is a sheet-like muscle beneath the tongue body that
stretches between the mandible and the hyoid bone to
support the entire tongue floor. This muscle supports the
tongue floor to assist articulation of high front vowels
and oral consonants.

Lips and Velum
The lips are a pair of soft-tissue organs consisting of
many muscles. Their functions resemble those of the
tongue because they partly adhere to the mandible and
partly run within the soft tissue of the lips. The vermil-
lion, or the part of red skin, is the unique feature of the
human lips, which transmits phonetic signals visually.
The deformation of the lips in speech can be divided
into three components. The first is opening/closing of
the lip aperture, which is augmented by jaw movement.
The second is rounding/spreading of the lip tissue, pro-
duced by the changes in their left-right dimension. The
third is protrusion/retraction of the lip gesture, gener-
ated by three-dimensional deformation of the entire lip
tissue.

The muscles that cause deformation of the lips are
numerous. Figure 2.12 shows only a few representative

muscles of the lips. The orbicularis oris is the mus-
cle that surrounds the lips, consisting of two portions;
the marginal and peripheral bundles. Contraction of the
marginal bundles near the vermillion borders is thought
to produce lip rounding without protrusion. Contraction
of the peripheral bundles that run in the region around the
marginal bundles compresses the lip tissue circumferen-
tially to advance the vermillion in lip protrusion [2.15].
The mentalis arises from the mental part of the mandible
to the lip surface, and its contraction elevates the lower
lip by pulling the skin at the mental region. The levator
labii superior elevates the upper lip, and the depressor
labii inferior depresses the lower lip relative to the jaw.
The superior and inferior angli oris muscles move the lip
corners up and down, respectively, which makes facial
expressions rather than speech articulation.

The exact mechanism of lip protrusion is still in
question. Tissue bunching by muscle shortening as
a general rule for the organs of muscle does not fully
apply to the phenomenon of lip protrusion. This is be-
cause, as the vermilion thickens in lip protrusion, it
does not compress on the teeth; its dental surface of-
ten detaches from the teeth (Figure 2.12a). A certain
three-dimensional stress distribution within the entire
labial tissue must be considered to account for the causal
factors of lip protrusion.

The velum, or the soft palate, works as a valve be-
hind the hard palate to control the velopharyngeal port,
as shown in Fig. 2.12a. Elevation of the velum is carried

7
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out during the production of oral sounds, while lower-
ing takes place during the production of nasal sounds.
The action of the velum to close the velopharyngeal
port is not a pure hinge motion but is accompanied
by the deformation of the velum tissue with narrowing
of the nasopharyngeal wall. In velopharyngeal clo-
sure, the levator veli palatine contracts to elevate the
velum, and the superior pharyngeal constrictor muscle
produces concentric narrowing of the port. In velopha-
ryngeal opening, the palatoglossus muscle assists active
lowering of the velum.

2.3.2 Vocal Tract and Nasal Cavity

The vocal tract is an acoustic space where source sounds
for speech propagate. Vowels and consonants rely on
strengthening or weakening of the spectral components
of the source sound by resonance of the air column in
the vocal tract. In the broad definition, the vocal tract
includes all the air spaces where acoustic pressure vari-
ation takes place in speech production. In this sense,
the vocal tract divides into three regions: the subglottal
tract, the tract from the glottis to the lips, and the nasal
cavities.

The subglottal tract is the lower respiratory tract be-
low the glottis down to the lungs via the trachea and
bronchial tubes. The length of the trachea from the glot-
tis to the carina is 10—15cm in adults, including the

Paranasal sinuses

Piriform fossa

F Veropharyngeal port
Glottis

Nasal cavity

Subglottal
tract
‘ Interdental space ‘ ‘ Ventricle
‘ Oral cavity ‘ Oropharynx ‘
Oral vestibule Hypopharynx

Fig. 2.13 Acoustic design of the vocal tract. Passages from the sub-
glottal tract to two output ends at the lips and nares are shown
with the effects of tongue and velar movements. The resonance of
the vocal tract above the supraglottic laryngeal cavity determines
major the vowel formants (£, F2, and F3). The resonance of the
subglottal tract and interdental space interacts with the vowel for-
mants, while the hypopharyngeal cavities and other small cavities
cause local resonances and antiresonances in the higher-frequency
region

length of the subglottic laryngeal cavity (about 2 cm).
Vocal source sounds propagate from the glottis to the
trachea, causing the subglottal resonance in speech spec-
tra. The resonance frequencies of the subglottal airway
are estimated to be 640, 1400, and 2100 Hz [2.16]. The
second subglottal resonance is often observed below the
second formant of high vowels.

The vocal tract, according to the conventional def-
inition, is the passage of vocal sounds from the glottis
to the lips, where source sounds propagate and give
rise to the major resonances. The representative values
for the length of the main vocal tract from the glottis
to the lips are 15cm in adult females and 17.5cm in
adult males. According to the measurement data based
on the younger population, vocal tract lengths are 14 cm
in females and 16.5cm in males [2.17, 18], which are
shorter than the above values. Considering the elon-
gation of the vocal tract during a course of life, the
above representative values appear reasonable. While
the oral cavity length is maintained by the rigid struc-
tures of the skull and jaw, the pharyngeal cavity length
increases due to larynx lowering before and after pu-
berty. Thus, elongation of the pharyngeal cavity is the
major factor in the developmental variation in vocal tract
length.

The vocal tract anatomically divides into four seg-
ments: the hypopharyngeal cavities, the mesopharynx,
the oral cavity, and the oral vestibule (lip tube). The
hypopharyngeal part of the vocal tract consists of the
supraglottic laryngeal cavity (2 cm long) and the bilat-
eral conical cavities of the piriform fossa (2 cm long).
The mesopharynx extends from the aryepiglottic fold
to the anterior palatal arch. The oral cavity is the seg-
ment from the anterior palatal arch to the incisors. The
oral vestibule extends from the incisors to the lip open-
ing. The latter shows an anterior convexity, which often
makes it difficult to measure the exact location of lip
opening.

The vocal tract is not a simple uniaxial tube but has
a complex three-dimensional construction. The immo-
bile wall of the vocal tract includes the dental arch and
the palatal dome. The posterior pharyngeal wall is al-
most rigid, but it allows subtle changes in convexity
and orientation. The soft walls include the entire tongue
surface, the velum with the uvula, the lateral pharyn-
geal wall, and the lip tube. The shape of the vocal tract
varies individually due to a few factors. First, the lat-
eral width of the upper and lower jaws relative to the
pharyngeal cavity width affects tongue articulation and
results in a large individual variation of vocal tract shape
observed midsagittally. Second, the mobility of the jaw
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depending on the location of the mandibular symphysis
relative to the skull can vary the openness of vowels.
Third, the size of the tongue relative to the oral and pha-
ryngeal cavities varies individually; the larger the tongue
size, the smaller the articulatory space for vowels.

Figure 2.13 shows a schematic drawing of the vocal
tract and nasal cavity. The vocal tract has nearly con-
stant branches such as the piriform fossa (entrance to
the esophagus) and the vallecula (between the tongue
root and epiglottis). The vocal tract also has controlled
branches to the nasal cavity at the velopharyngeal port
and to the interdental space (the space bounded by the
upper and lower teeth and the lateral cheek wall). The
latter forms a pair of side-branches when the tongue is
in a higher position as in /i/ or /e/, while it is unified with
the oral cavity when the tongue is in a lower position as
in /a/.

The nasal cavity is an accessory channel to the main
vocal tract. Its horizontal dimension from the anterior
nares to the posterior wall of the epipharynx is approxi-
mately 10—11 cm. The nasal cavity can be divided into
the single-tube segment (the velopharyngeal region and
epipharynx) and the dual-tube segment (the nasal cavity
proper and nasal vestibule). Each of the bilateral chan-
nels of the nasal cavity proper has a complex shape of
walls with the three turbinates with thick mucous mem-
brane, which makes a narrower cross section compared
with the epipharyngeal area [2.19]. The nasal cavity
has its own side-branches of the paranasal sinuses; the
maxillary, sphenoid, ethomoid, and frontal sinuses.

The nasal cavity builds nasal resonance to accom-
plish phonetic features of nasal sounds and nasalized
vowels. The paranasal sinuses also contribute to acoustic
characteristics of the nasal sounds. The nasal murmur re-
sults from these characteristics: a Helmholtz resonance
of the entire nasopharyngeal tract from the glottis to
the anterior nares and regional Helmholtz resonances
caused by the paranasal sinuses, together characterized
by a resonance peak at 200—300 Hz and spectral flatten-
ing up to 2kHz [2.20,21]. The nasal resonance could
takes place even in oral vowels with a complete closure
of the velopharyngeal port: the soft tissue of the velum
transmits the pressure variation in the oral cavity to the
nasal cavity, which would enhances sound radiation for
close vowels and voiced stops.

2.3.3 Aspects of Articulation
in Relation to Voicing

Here we consider a few phonetic evidences that can be
considered as joint products of articulation and phona-

tion. Vowel production is the typical example for this
topic, in view of its interaction with the larynx. Reg-
ulation of voice quality, which has been thought to be
alaryngeal phenomenon, is largely affected by the lower
part of the vocal tract. The voiced versus voiceless dis-
tinction is a pertinent issue of phonetics that involves
both phonatory and articulatory mechanisms.

Production of Vowels
The production of vowels is the result of the joint action
of phonatory and articulatory mechanisms. In this pro-
cess, the larynx functions as a source generator, and the
vocal tract plays the role of an acoustic filter to modu-
late the source sounds and radiate from the lip opening,
as described by the source-filter theory [2.22,23]. The
quality of oral vowels is determined by a few peak fre-
quencies of vocal tract resonance (formants). In vowel
production, the vocal tract forms a closed tube with the
closed end at the glottis and the open end at the lip
opening. Multiple reflections of sound wave between
the two ends of the vocal tract give rise to vowel for-
mants (Fi, F», F3). The source-filter theory has been
supported by many studies as the fundamental concept
explaining the acoustic process of speech production,
which is further discussed in the next section.

Vowel articulation is the setup for the articulatory
organs to determine vocal tract shape for each vowel.
When the jaw is in a high position and the tongue is in
a high front position, the vocal tract assumes the shape
for /i/. Contrarily, when the jaw is in a low position and
the tongue is in a low back position, the vocal tract takes
the shape for /a/. The articulatory organ that greatly in-
fluences vocal tract shape for vowels is the tongue. When
the vocal tract is modeled as a tube with two segments
(front and back cavities), the movements of the tongue
body between its low back and high front positions cre-
ates contrasting diverging and converging shapes of the
main vocal tract. Jaw movement enhances these changes
in the front cavity volume, while pharyngeal constric-
tion assists in the back cavity volume. When the vocal
tract is modeled as a tube with three segments, the move-
ments of the tongue body between its high back and low
front positions determine the constriction or widening of
the vocal tract in its middle portion. The velum also con-
tributes to the articulation of open vowels by decreasing
the area of the vocal tract at the velum or making a nar-
row branch to the nasal cavity. The lip tube is another
factor for vowel articulation that determines the vocal
tract area near the open end.

Although muscular control for vowel articulation
is complex, a simplified view can be drawn based
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on electromyographic (EMG) data obtained from the
tongue muscles [2.24]. Figure 2.14a shows a systematic
pattern of muscle activities for CVC (consonant-vowel-
consonant) utterances with /p/ and four English corner
vowels. The anterior and posterior genioglossus are
active for front vowels, while the styloglossus and hyo-
glossus are active for back vowels. These muscles also
show a variation depending on vowel height. These ob-
servations are shown schematically in Fig.2.14b: the
basic control pattern for vowel articulation is the selec-
tion of two muscles among the four extrinsic muscles of
the tongue [2.25].

As the tongue or jaw moves for vowel articulation,
they apply forces to the surrounding organs and cause
secondary effects on vowel sounds. For example, ar-
ticulation of high vowels such as /i/ and /u/ is mainly
produced by contraction of the posterior genioglossus,
which is accompanied by forward movement of the hy-
oid bone. This action applies a force to rotate the thyroid

HG

a) hypopharyngeal resonance

Supra-laryngeal
vocal tract

Piriform fossa

Source 1

b) muscles selection pattern

Fig.2.14a,b Tongue EMG data during
VCV utterances and muscle selection
pattern in vowel articulation. (a) Aver-
aged EMG data for four English cor-
ner vowels are shown for the major
muscles of the tongue: the anterior
genioglossus (GGA), posterior ge-
nioglossus (GGP), hyoglossus (HG),
and styloglossus (SG). (b) The sys-
tematic variation observed in the
muscle—vowel matrix suggests a mus-
cle selection pattern

cartilage in a direction that stretches the vocal folds. In
evidence, higher vowels tend to have a higher Fp, known
as the intrinsic vowel Fy [2.26,27]. When the jaw opens
to produce open vowels, jaw rotation compresses the
tissue behind the mandibular symphysis, which applies
a force to rotate the thyroid cartilage in the opposite di-
rection, thereby shortening the vocal folds. Thus, the
jaw opening has the secondary effect of lowering the
intrinsic Fy for lower vowels.

Supra-Laryngeal Control of Voice Quality
The laryngeal mechanisms controlling voice quality
were described in an earlier section. In this section,
the supra-laryngeal factors are discussed. Recent stud-
ies have shown evidence that the resonances of the
hypopharyngeal cavities determine the spectral enve-
lope in the higher frequencies above 2.5 kHz by causing
an extra resonance and antiresonances [2.28-31]. The
hypopharyngeal cavities include a pair of vocal-tract

b) vocal-tract resonance

Fig.2.15a,b Vocal-tract resonance
with hypopharyngeal cavity coupling
in vowel production. (a) The supra-
glottal laryngeal cavity contributes
a resonance peak at 3—3.5 kHz, and
the bilateral cavities of the piri-
form fossa cause antiresonances at
4-5kHz. (b) The main vocal tract

Radiation
—
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above the laryngeal cavity determines
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the major vowel formants
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side-branches formed by the piriform fossa. Each fossa
maintains a relatively constant cavity during speech,
which is collapsed only in deep inhalation by the wide
abduction of the arytenoid cartilage. The piriform fossa
causes one or two obvious antiresonances in the higher
frequencies above 4 kHz [2.29] and affects the surround-
ing formants. The laryngeal cavity above the vocal
folds also contributes to shaping the higher frequen-
cies [2.28,32]. The supraglottic laryngeal cavity, from
the ventricles to the aryepiglottic folds via the ventricu-
lar folds, forms a type of Helmholtz resonator and gives
rise to a resonance at higher frequencies of 3—3.5 kHz.
This resonance can be counted as the fourth formant (F4)
but it is actually an extra formant to the resonance of the
vocal tract above the laryngeal cavity [2.30]. When the
glottis opens in the open phase of vocal fold vibration,
the supraglottic laryngeal cavity no longer constitutes
atypical Helmholtz resonator, and demonstrates a strong
damping of the resonance, which is observed as the dis-
appearance of the affiliated extra formant. Therefore, the
laryngeal cavity resonance shows a cyclic nature during
vocal fold vibration, and it is possibly absent in breathy
phonation or pathological conditions with insufficient
glottal closure [2.31]. Figure 2.15 shows an acoustic
model of the vocal tract to illustrate this coupling of the
hypopharyngeal cavities.

The hypopharyngeal cavities are not an entirely
fixed structure but vary due to physiological efforts
to control Fy and voice quality. A typical case of the

a) /asa/ in low-high accent

hypopharyngeal adjustment of voice quality is found
in the singing formant [2.28]. When high notes are
produced by opera singers, the entire larynx is pulled
forward due to the advanced position of the tongue,
which widens the piriform fossa to deepens the fossa’s
antiresonances, resulting in a decrease of the frequency
of the adjacent lower formant (F5). When the supra-
glottic laryngeal cavity is constricted, its resonance (F4)
comes down towards the lower formant (F3). Conse-
quently, the third to fifth formants come closer to each
other and generate a high resonance peak observed
near 3 kHz.

Regulation of Voiced and Voiceless Sounds
Voiced and voiceless sounds are often attributed to
the glottal state with and without vocal fold vibra-
tion, while their phonetic characteristics result from
phonatory and articulatory controls over the speech
production system. In voiced vowels, the vocal tract
forms a closed tube with no significant constrictions
except for the narrow laryngeal cavity. On the other
hand, in whispered vowels, the membranous glottis is
closed, and the supraglottic laryngeal cavity forms an
extremely narrow channel continued from the open car-
tilaginous glottis, with a moderate constriction of the
lower pharynx. Devoiced vowels exhibit a wide open
glottis and a reduction of tongue articulation. Pho-
netic distinctions of voiced and voiceless consonants
further involve fine temporal control over the larynx

b) /aza/in low—high accent
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Fig.2.16a,b Laryngeal articulatory patterns in producing VCV utterances with voiceless and voiced fricatives as in /asa/
and /aza/. From the top to bottom, speech signals, oral airflow, schematic patterns of vocal tract constriction, and glottal
area variations are shown schematically. This figure is based on the author’s recent experiment with anemometry with an
open-type airflow transducer and photoglotto-graphy with an external lighting technique, conducted by Dr: Shinji Maeda

(ENST) and the author
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and supra-laryngeal articulators in language-specific
ways.

In the production of voiced consonants, vocal fold vi-
bration typically continues during the voiced segments.
In voiced stops and fricatives, the closure or narrow-
ing of the vocal tract results in decrease in glottal
airflow and transglottal pressure difference. The glot-
tal airflow during the stop closure is maintained during
the closure due to the increases in vocal tract vol-
ume: the expansion of the oral cavity (jaw lowering
and cheek wall expansion) and the expansion of the
pharyngeal cavity (lateral wall expansion and larynx
lowering). During the closure period, air pressure vari-
ations are radiated not only from the vocal tract wall
but also from the anterior nares due to transvelar prop-
agation of the intra-oral sound pressure into the nasal
cavities.

In the production of voiceless consonants, vocal fold
vibration is suppressed due to a rapid reduction of the
transglottal pressure difference and abduction of the vo-
cal folds. During stop closures, the intra-oral pressure
builds up to reach the subglottal pressure, which en-
hances the rapid airflow after the release of the closure.
Then, vocal fold vibration restarts with a delay to the
release, which is observed as a long voice onset time
(VOT) for voiceless stops. The process of suppressing
vocal fold vibration is not merely a passive aerodynamic
process on the vocal folds, but is assisted by a physio-
logical process to control vocal fold stiffness. The
cricothyroid muscle has been observed to increase its
activity in producing voiceless consonants. This ac-
tivity results in a high—falling Fy pattern during the
following vowel, contributing a phonetic attribute to
voiceless consonants [2.33]. In glottal stops, vocal fold
vibration stops due to forced adduction of the vocal
folds with an effort closure of the supraglottic laryngeal
cavity.

Figure 2.16 illustrates the time course of the pro-
cesses during vowel-consonant-vowel (VCV) utterances
with a voiceless fricative in comparison to the case with
a voiced fricative. The voiceless segment initiates with
glottal abduction and alveolar constriction, and vocal
fold vibration gradually fades out during the phase of
glottal opening. After reaching the maximum glottal ab-
duction, the glottis enters the adduction phase, followed
by the release of the alveolar constriction. Then, the glot-
tis becomes narrower and vocal fold vibration restarts.
There is the time lag between the release of the constric-
tion and full adduction of the glottis, which results in the
peak flow seen in Fig. 2.16a, presumably accompanied
by aspiration sound at the glottis.

2.3.4 Articulators' Mobility
and Coarticulation

The mobility of speech articulators varies across organs
and contributes certain phonetic characteristics to speech
sounds. Rapid movements are essential to a sequence
from one distinctive feature to another, as observed in
the syllable /sa/ from a narrow constriction to the vocalic
opening, while gradual movements are found to produce
nasals and certain labial sounds. These variations are
principally due to the nature of articulators with respect
to their mobility. The articulatory mechanism involves
acomplex system that is built up by organs with different
motor characteristics. Their variation in temporal mobil-
ity may be explained by a few biological factors. The
first is the phylogenetic origin of the organs: the tongue
muscles share their origin with the fast motor systems
such as the eyeball or finger, while other muscles such as
in the lips or velum originate from the slow motor sys-
tem similar to the musculature of the alimentary tract.
The second is the innervation density to each muscle:
the faster organs are innervated by thicker nerve bundles,
and vise versa, which derives from an adaptation of the
biological system to required functions. In fact, the hu-
man hypoglossal nerve that supplies the tongue muscles
is much thicker than that of other members of the pri-
mate family. The third is the composition of muscle fiber
types in the musculature, which varies from organ to or-
gan. The muscles in the larynx have a high concentration
of the ultrafast fibers (type 2B), while the muscle to el-
evate the velum predominantly contains the slow fibers
(type 1). In accordance with these biological views, the
rate of the articulators movement indexed by the maxi-
mum number of syllables per second follows the order
of the tongue apex, body, and lips: the tongue moves at
a maximum rate of 8.2 syllables per second at the apex,
and 7.1 syllables per second with the back of the tongue,
while the lips and facial structures move at a maxi-
mum rate of 2.5-3 syllables per second [2.34]. More
recent measurements indicate that the lips are slower
than the tongue apex but faster than the tongue dorsum.
The velocities during speech tasks reach 166 mm/sec
for the lower lip, 196 mm/sec for the tongue tip, and
129 mm/sec for the tongue dorsum [2.35]. The discrep-
ancy between these two reports regarding the mobility
of the lips may be explained by the types of movements
measured: opening—closure movement by the jaw—lower
lip complex is faster than the movement of the lips
themselves, such as protrusion and spreading.

It is often noted that speech is characterized by asyn-
chrony among articulatory movements, and the degree
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of asynchrony varies with the feature to be realized.
Each articulator does not necessarily strictly keep pace
with other articulators in a syllable sequence. The phys-
iological basis of this asynchrony may be explained by
the mobility of the articulatory organs and motor preci-
sion required for the target of articulation. The slower
articulators such as the lips and velum tend to exhibit
marked coarticulation in production of labial and nasal
sounds. In stop—vowel-nasal sequences (such as /tan/),
the velopharyngeal port is tightly closed at the stop onset
and the velum begins to lower before the nasal con-
sonant. Thus, the vowel before the nasal consonant is
partly nasalized. When the vowel /u/ is preceded by /s/,
the lips start to protrude during the consonant prior to
the rounded vowel.

The articulators’ mobility also contributes some
variability to speech movements. The faster articula-
tors such as parts of the tongue show various patterns
from target undershooting to overshooting. In articula-
tion of close—open—close vowel sequences such as /iai/,
tongue movements naturally show undershooting for the
open vowel. In contrast, when the alveolar voiceless
stop /t/ is placed in the open vowel context as in /ata/,
the tongue blade sometimes shows an extreme overshoot
with a wide contact on the hard palate because such artic-
ulatory variations do not significantly affect the output
sounds. On the contrary, in alveolar and postalveolar
fricatives such as /s/ and /sh/, tongue movements also
show a dependence on articulatory precision because the
position of the tongue blade must be controlled precisely
to realize the narrow passage for generating frication
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sounds. The lateral /1/ is similar to the stops with respect
to the palatal contact, while the rhotic /t/ with no contact
to the palate can show a greater extent of articulatory
variations from retroflex to bunched types depending on
the preceding sounds.

2.3.5 Instruments
for Observing Articulatory Dynamics

X-ray and palatography have been used as common
tools for articulatory observation. Custom instruments
are also developed to monitor articulatory movements,
such as the X-ray microbeam system and magnetic sen-
sor system. The various types of newer medical imaging
techniques are being used to visualize the movements
of articulatory system using sonography and nuclear
magnetic resonance. These instruments are generally
large scale, although relatively compact instruments are
becoming available (e.g., magnetic probing system or
portable ultrasound scanner).

Palatography

The palatograph is a compact device to record tempo-
ral changes in the contact pattern of the tongue on the
palate. There are traditional static and modern dynamic
types. The dynamic type is called electropalatography, or
dynamic palatography, which employs an individually
customized palatal plate to be placed on the upper jaw.
As shown in Fig.2.17a, this system employs a palatal
plate with many surface electrodes to monitor electrical
contacts on the tongue’s surface.

b) magnetic sensing system

Transmitter
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Transmitter
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Fig.2.17a,b Electropalatography and magnetic sensing system. (a) Electropalatography displays tongue—palate contact
patterns by detecting weak electrical current caused by the contact between the electrodes on the artificial palate and the
tongue tissue. (b) Magnetic sensing system is based on detection of alternate magnetic fields with different frequencies

using miniature sensor coils
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Fig.2.18a,b Medical imaging techniques. (a) Ultrasound scanner uses an array of transmitters and receivers to detect
echo signals from regions where the ultrasound signals reflect strongly such as at the tissue-air boundaries on the tongue
surface. (b) Magnetic resonance imaging (MRI) generates strong static magnetic field, controlled gradient fields in the
three directions, and radio-frequency (RF) pulses. Hydrogen atoms respond to the RF pulses to generate echo signals,

which are detected with a receiver coil for spectral analysis

Marker Tracking System
A few custom devices have been developed to record
movements of markers attached on the articulatory
organs. X-ray microbeam and magnetic sensing sys-
tems belong to this category. Both can measure 10
markers simultaneously. The X-ray microbeam system
uses a computer-controlled narrow beam of high-energy
X-rays to track small metal pellets attached on the artic-
ulatory organs. This system allows automatic accurate
measurements of pellets with a minimum X-ray dosage.

The magnetic sensing system (magnetometer, or
magnetic articulograph) is designed to perform the same
function as the microbeam system without X-rays. The
system uses a set of transmitter coils that generate alter-
nate magnetic fields and miniature sensor coils attached
to the articulatory organs, as shown in Fig.2.17b. The
positions of the receiver coils are computed from the
filtered signals from the coils.

Medical Imaging Techniques
X-ray cinematography and X-ray video fluorography
have been used for re-cording articulatory movements in
two-dimensional projection images. The X-ray images
show clear outlines of rigid structures, while they pro-

2.4 Summary

This chapter described the structures of the human
speech organs and physiological mechanisms for pro-
ducing speech sounds. Physiological processes during

vide less-obvious boundaries for soft tissue. The outline
of the tongue is enhanced by the application of liquid
contrast media on the surface. Metal markers are of-
ten used to track the movements of flesh points on the
soft-tissue articulators.

Ultrasonography is a diagnostic technique to obtain
cross-sectional images of soft-tissues in real time. Ultra-
sound scanners consist of a sound probe (phased-array
piezo transducer and receiver) and image processor, as
illustrated in Fig.2.18a. The probe is attached to the
skin below the tongue to image the tongue surface in the
sagittal or coronal plane.

Magnetic resonance imaging (MRI), shown in
Fig.2.18b, is a developing medical technique that ex-
cels at soft-tissue imaging of the living body. Its principle
relies on excitation and relaxation of the hydrogen nu-
clei in water in a strong homogeneous magnetic field
in response to radio-frequency (RF) pulses applied with
variable gradient magnetic fields that determine the slice
position. MRI is essentially a method for recording
static images, while motion imaging setups with strobo-
scopic or real-time techniques have been applied to the
visualization of articulatory movements or vocal tract
deformation three-dimensionally [2.36].

speech are multidimensional in nature as described in
this chapter. Discoveries of their component mecha-
nisms have been dependent on technical developments
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for visualizing the human body and analyses of biolog-
ical signals, and this is still true today. For example, the
hypopharyngeal cavities have long been known to exist,
but their acoustic role was underestimated until recent
MRI observations. The topics in this chapter were cho-
sen with the author’s hope to provide a guideline for the
sophistication of speech technologies by reflecting the
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3. Nonlinear Cochlear Signal Processing
and Masking in Speech Perception

There are many classes of masking, but two major
classes are easily defined: neural masking and
dynamic masking. Neural masking characterizes
the internal noise associated with the neural
representation of the auditory signal, a form
of loudness noise. Dynamic masking is strictly
cochlear, and is associated with cochlear outer-
hair-cell processing. This form is responsible
for dynamic nonlinear cochlear gain changes
associated with sensorineural hearing loss, the
upward spread of masking, two-tone suppression
and forward masking. The impact of these various
forms of masking are critical to our understanding
of speech and music processing. In this review,
the details of what we know about nonlinear
cochlear and basilar membrane signal processing is
reviewed, and the implications of neural masking
is modeled, with a comprehensive historical review
of the masking literature. This review is appropriate
for a series of graduate lectures on nonlinear
cochlear speech and music processing, from an
auditory point of view.

3.1 Basics

Auditory masking is critical to our understanding of
speech and music processing. There are many classes
of masking, but two major classes are easily defined.
These two types of masking and their relation to nonlin-
ear (NL) speech processing and coding are the focus of
this chapter.

The first class of masking, denoted neural mask-
ing, is due to internal neural noise, characterized in
terms of the intensity just noticeable difference, denoted
AI(l, f, T) (abbreviated JNDy) and defined as the just
discriminable change in intensity. The JNDy is a func-
tion of intensity /, frequency f and stimulus type T (e.g.,
noise, tones, speech, music, etc.). As an internal noise,
the JND; may be modeled in terms of a loudness (i. e.,
perceptual intensity) noise density along the length of
the cochlea (0 < X < L), described in terms of a partial
loudness JIND (AL(X, T), a.k.a. IND ). The cochlea or
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inner ear is the organ that converts signals from acous-
tical to neural signals. The loudness JND is a function
of the partial loudness L(X), defined as the loudness
contribution coming from each cochlear critical band,
or more generally, along some fonotopic central audi-
tory representation. The critical band is a measure of
cochlear bandwidth at a given cochlear place X. The
loudness JND plays a major role in speech and music
coding since coding quantization noise may be masked
by this internal quantization (i. e., loudness noise).

The second masking class, denoted here as dy-
namic masking, comes from the NL mechanical action
of cochlear outer-hair-cell (OHC) signal processing. It
can have two forms, simultaneous and nonsimultane-
ous, also known as forward masking, or post-masking.
Dynamic-masking (i. e., nonlinear OHC signal process-
ing) is well known (i.e., there is a historical literature
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on this topic) to be intimately related to questions
of cochlear frequency selectivity, sensitivity, dynamic
range compression and loudness recruitment (the loss
of loudness dynamic range). Dynamic masking includes
the upward spread of masking (USM) effect, or in neu-
ral processing parlance, two-tone suppression (2TS). It
may be underappreciated that NL OHC processing (i. e.,
dynamic masking) is largely responsible for forward
masking (FM, or post-stimulus masking), which shows
large effects over long time scales. For example OHC
effects (FM/USM/2TS) can be as large as 50 dB, with an
FM latency (return to base line) of up to 200 ms. Forward
masking (FM) and NL OHC signal onset enhancement
are important to the detection and identification of per-
ceptual features of a speech signal. Some research has
concluded that forward masking is not related to OHC
processing [3.1, 2], so the topic remains controversial.
Understanding and modeling NL. OHC processing is key
to many speech processing applications. As a result, a vi-
brant research effort driven by the National Institute of
Health on OHC biophysics has ensued.

This OHC research effort is paying off at the high-
est level. Three key examples are notable. First is the
development of wide dynamic-range multiband com-
pression (WDRC) hearing aids. In the last 10—15 years
WDRC signal processing (first proposed in 1937 by
researchers at Bell Labs [3.3]), revolutionized the
hearing-aid industry. With the introduction of compres-
sion signal processing, hearing aids now address the
recruitment problem, thereby providing speech audibil-
ity over a much larger dynamic range, at least in quiet.
The problems of the impaired ear given speech in noise
is poorly understood today, but this problem is likely
related to the effects of NL OHC processing. This pow-
erful circuit (WDRC) is not the only reason hearing aids
of today are better. Improved electronics and transducers
have made significant strides as well. In the last few years
the digital barrier has finally been broken, with digital
signal processing hearing aids now becoming common.

A second example is the development of otoacoustic
emissions (OAE) as a hearing diagnostic tool. Pioneered
by David Kemp and Duck Kim, and then developed by
many others, this tool allows for cochlear evaluation of
neonates. The identification of cochlear hearing loss in
the first month has dramatically improves the lives of
these children (and their parents). While it is tragic to
be born deaf, it is much more tragic for the deafness to
go unrecognized until the child is three years old, when
they fail to learn to talk. If you cannot hear you do not
learn to talk. With proper and early cochlear implant
intervention, these kids can lead nearly normal-hearing

lives and even talk on the phone. However they cannot
understand speech in noise. It is at least possible that
this loss is due to the lack of NL. OHC processing.

A third example of the application of NL. OHC pro-
cessing to speech processing is still an underdeveloped
application area. The key open problem here is: How
does the auditory system, including the NL cochlea, fol-
lowed by the auditory cortex, processes human speech?
There are many aspects of this problem including speech
coding, speech recognition in noise, hearing aids and
language learning and reading disorders in children. If
we can solve the robust phone decoding problem, we
will fundamentally change the effectiveness of human-
machine interactions. For example, the ultimate hearing
aid is the hearing aid with built in robust speech feature
detection and phone recognition. While we have no idea
when this will come to be, and it is undoubtedly many
years off, when it happens there will be a technology
revolution that will change human communications.

In this chapter several topics will be reviewed. First
is the history of cochlear models including extensions
that have taken place in recent years. These models in-
clude both macromechanics and micromechanics of the
tectorial membrane and hair cells. This leads to com-
parisons of the basilar membrane, hair cell, and neural
frequency tuning. Hearing loss, loudness recruitment, as
well as other key topics of modern hearing health care,
are discussed. The role of NL mechanics and dynamic
range are reviewed to help the reader understand the
importance of modern wideband dynamic range com-
pression hearing aids as well as the overall impact of
NL OHC processing.

Any reader desiring further knowledge about
cochlear anatomy and function or a basic description
of hearing, they may consult Pickles [3.4], Dallos [3.5],
Yost [3.6].

3.1.1 Function of the Inner Ear

The goal of cochlear modeling is to refine our under-
standing of how auditory signals are processed. The
two main roles of the cochlea are to separate the input
acoustic signal into overlapping frequency bands, and
to compress the large acoustic intensity range into the
much smaller mechanical and electrical dynamic range
of the inner hair cell. This is a basic question of infor-
mation processing by the ear. The eye plays a similar
role as a peripheral organ. It breaks the light image into
rod- and cone-sized pixels, as it compresses the dynamic
range of the visual signal. Based on the intensity JND,
the corresponding visual dynamic range is about nine to
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outer hair cells, pillar cells and other supporting structures, the basilar membrane (BM), and the tectorial membrane (TM)
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ten orders of magnitude of intensity [3.7, 8], while the
ear has about 11 to 12. The stimulus has a relatively high
information rate. Neurons are low-bandwidth channels.
The eye and the ear must cope with this problem by re-
ducing the stimulus to a large number of low bandwidth
signals. It is then the job of the cortex to piece these
pixel signals back together, to reconstruct the world as
we see and hear it.

The acoustic information coding starts in the cochlea
(Fig. 3.1a) which is composed of three major chambers
formed by Reissner’s membrane and the basilar mem-
brane (BM). Mechanically speaking, there are only two
chambers, as Reissner’s membrane is only for electrical
isolation of the scala media (SM) [3.4, 5]. Figure 3.1b
shows a blown-up view of the organ of Corti where the
inner hair cells (IHC) and outer hair cells (OHC) sit be-
tween the BM and the tectorial membrane (TM). As the
BM moves up and down, the TM shears against the retic-
ular lamina (RL), causing the cilia of the inner and outer
hair cells to bend. The afferent auditory nerve fibers that
are connected to the inner hair cells carry the signal
information into the auditory system. Many fewer effer-
ent fibers bring signals from the auditory system to the
base of the outer hair cells. The exact purpose of these
efferent fibers remains unknown.

Inner Hair Cells
In very general terms, the role of the cochlea is to con-
vert sound at the eardrum into neural pulse patterns
along approximately 30 000 neurons of the human audi-
tory (VIIIth) nerve. After being filtered by the cochlea,
a low-level pure tone has a narrow spread of excita-
tion which excites the cilia of about 40 contiguous
inner hair cells [3.5,9, 10]. The IHC excitation sig-
nal has a narrow bandwidth and a center frequency
that depends on the inner hair cell’s location along the
basilar membrane. Each hair cell is about 10 wm in
diameter while the human basilar membrane is about
35 mm in length (35000 jwum). Thus the neurons of the
auditory nerve encode the responses of about 3500 in-
ner hair cells which form a single row of cells along
the length of the BM. Each inner-hair-cell voltage is
a low-pass-filtered representation of the detected inner-
hair-cell cilia displacement [3.11]. Each hair cell is
connected to many neurons, having a wide range of
spontaneous firing rates and thresholds [3.12]. In the
cat, for example, approximately 15-20 neurons en-
code each of these narrow band inner hair cells with
a neural timing code. It is commonly accepted that all
mammalian cochleae are similar in function except the
frequency range of operation differs between species

(e.g., human ~ 0.1-20kHz and cat ~ 0.3—-50kHz). It
is widely believed that the neuron information chan-
nel between the hair cell and the cochlear nucleus is
a combination of the mean firing rate and the rela-
tive timing between neural pulses (spikes). The mean
firing rate is reflected in the loudness coding, while
the relative timing carries more subtle cues, including
for example pitch information such as speech voicing
distinctions.

Outer Hair Cells
As shown in Fig. 3.1b there are typically three (occa-
sionally four) outer hair cells (OHCs) for each inner
hair cell (IHCs), leading to approximately 12 000 OHCs
in the human cochlea. Outer hair cells are used for inten-
sity dynamic-range control. This is a form of NL signal
processing, not dissimilar to Dolby sound processing.
This form of processing was inspired by cochlear func-
tion, and was in use long before it was patented by
Dolby, in movie sound systems developed by Bell Labs
in the 1930s and 1940s. Telephone speech is similarly
compressed [3.13] via u-law coding. It is well known
(as was first proposed by Lorente de N6 [3.14] and
Steinberg [3.3]) that noise damage of nerve cells (i.e.,
OHCs) leads to a reduction of dynamic range, a dis-
order clinically named loudness recruitment. The word
recruitment, which describes the abnormal growth of
loudness in the impaired ear, is a seriously misleading
term, since nothing is being recruited [3.15].

We may describe cochlear processing two ways: first
in terms of the signal representation at various points in
the system; and second, in terms of models which are
our most succinct means of conveying the conclusions
of years of detailed and difficult experimental work on
cochlear function. The body of experimental knowledge
has been very efficiently represented (to the extent that it
is understood) in the form of these mathematical models.
When no model exists (e.g., because we do not under-
stand the function), a more basic description via the
experimental data is necessary. Several good books and
review papers that make excellent supplemental reading
are available [3.4,8,16,17].

For pedagogical purposes this chapter has been di-
vided into four parts. Besides this introduction, we
include sections on the NL cochlea, neural masking, and
finally a brief discussion. Section 3.2 discusses dynamic
masking due to NL aspects of the cochlear outer hair
cells. This includes the practical aspects, and theory, of
the upward spread of masking (USM) and two-tone sup-
pression. Section 3.3 discusses neural masking, the JND,
loudness recruitment, the loudness signal-to-noise ratio
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(SNR), and the Weber fraction. Section 3.4 provides
a brief summary.

3.1.2 History of Cochlear Modeling

Typically the cochlea is treated as an uncoiled long thin
box, as shown in Fig. 3.2a. This represents the starting
point for the macromechanical models.

Macromechanics
In his book On the Sensations of Tone Helmholtz [3.18]
likened the cochlea to a bank of highly tuned resonators
selective to different frequencies, much like a piano or
a harp [3.19, p. 22-58], with each string representing
a different place X on the basilar membrane. This model
as proposed was quite limited since it leaves out key fea-
tures, the most important of which is the cochlear fluid
coupling between the mechanical resonators. But given
the early publication date, the great master of physics
and psychophysics Helmholtz shows deep insight and
his studies provided many very important contributions.

The next major contribution by Wegel and
Lane [3.20] stands in a class of its own even today, as
a double-barreled paper having both deep psychophys-
ical and modeling insight. Fletcher published much of
the Wegel and Lane data one year earlier [3.21]. It is

a)

: Tectorial membrane [elicotrema
Stapes/OW  gcala vestibuli

~RW Scala tympani Basilar membrane
Base Apex
x=0 x=L

Fig.3.2a,b On the left (a) see the basic 2-D box model of
the cochlea. The Base (x = 0) is the high-frequency end of
the cochlea while the Apex (x = L) carries the low frequen-
cies. On the right (b) the 1924 Wegel and Lane electrical
equivalent circuit. The model is built from a cascade of
electrical sections

not clear to me why Wegel and Lane are always quoted
for these results rather than Fletcher. In Fletcher’s 1930
modeling paper, he mentioned that he was the subject in
the Wegel and Lane study. It seems to me that Fletcher
deserves some of the credit. The paper was the first to
quantitatively describe the details of how a high level
low frequency tone affects the audibility of a second
low-level higher-frequency tone (i. e., the upward spread
of masking). It was also the first publication to propose
a modern model of the cochlea, as shown in Fig. 3.2b.
If Wegel and Lane had been able to solve the model
equations implied by their circuit (of course they had no
computer to do this), they would have predicted cochlear
traveling waves. It was their mistake, in my opinion, to
make this a single paper. The modeling portion of their
paper has been totally overshadowed by their experi-
mental results. Transmission line theory had been widely
exploited by Campbell, the first mathematical research
at AT&T research (ca. 1898) with the invention of the
wave filter [3.22,23], which had been used for speech
articulation studies [3.24-26], and Fletcher and Wegel
were fully utilizing Campbell’s important discoveries.

It was the experimental observations of G. von
Békésy starting in 1928 on human cadaver cochleae
which unveiled the physical nature of the basilar
membrane traveling wave. What von Békésy found (con-
sistent with the 1924 Wegel and Lane model) was that
the cochlea is analogous to a dispersive transmission
line where the different frequency components which
make up the input signal travel at different speeds along
the basilar membrane, thereby isolating each frequency
component at a different place X along the basilar
membrane. He properly identified this dispersive wave
a traveling wave, just as Wegel and Lane had predicted
in their 1924 model of the cochlea.

Over the intervening years these experiments have
been greatly improved, but von Békésy’s fundamental
observation of the traveling wave still stands. His origi-
nal experimental results, however, are not characteristic
of the responses seen in more-recent experiments, in
many important ways. These differences are believed
to be due to the fact that Békésy’s cochleae were dead,
and because of the high sound levels his experiments
required. He observed the traveling wave using strobo-
scopic light, in dead human cochleae, at sound levels
well above 140 dB — SPL.

Today we find that for a pure tone input the traveling
wave has a more sharply defined location on the basilar
membrane than that observed by von Békésy. In fact,
according to measurements made over the last 20 years,
the response of the basilar membrane to a pure tone
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can change in amplitude by more than five orders of
magnitude per millimeter of distance along the basilar
membrane (e.g., 300 dB/oct is equivalent to 100 dB/mm
in the cat cochlea).

The One-Dimensional Model of the Cochlea
To describe this response it is helpful to call upon
the macromechanical transmission line models of
Wegel [3.20] (Fig. 3.2b) and Fletcher [3.27], first quanti-
tatively analyzed by Zwislocki [3.28,29], Ranke [3.30],
Peterson and Bogert [3.31], Fletcher [3.32,33]. This
popular transmission line model is now denoted the
one-dimensional (1-D), or long-wave model.

Zwislocki [3.28] was first to quantitatively analyze
Wegel and Lane’s macromechanical cochlear model,
explaining Békésy’s traveling wave observations. The
stapes input pressure Pj is at the left, with the input
velocity Vi, as shown by the arrow, corresponding to
the stapes velocity. This model represents the mass of
the fluids of the cochlea as electrical inductors and the
BM stiffness as capacitors. Electrical circuit networks
are useful when describing mechanical systems. This
is possible because of an electrical to mechanical ana-
log that relates the two systems of equations. Electrical
circuit elements comprise a de facto standard for de-
scribing such equations. It is possible to write down the
equations that describe the system from the circuit of
Fig. 3.2b, by those trained in the art. Engineers and sci-
entists frequently find it easier to read and think in terms
of these pictorial circuit diagrams, than to interpret the
corresponding equations.

BM Impedance. During the following discussion it is
necessary to introduce the concept of a one-port (two-
wire) impedance. Ohm’s law defines the impedance as

effort
flow

Impedance = (3.1)

In an electrical system the impedance is the ratio of
a voltage (effort) over a current (flow). In a mechanical
system it is the force (effort) over the velocity (flow).

For linear time-invariant causal (LTIC) systems
(i.e., an impedance), phasor notation is very useful,
where the tone is represented as the real part (Re) of the
complex exponential

271419 = cos (27 ft + @) +isin 27 ft + ) .
(3.2)

The symbol = denotes equivalence. It means that the
quantity to the left of = is defined by the quantity on
the right. More specifically, impedance is typically de-

fined in the frequency domain using Laplace transform
notation, in terms of a damped tone

Ae® cos 27 ft +¢) = ARe e (3.3)

excitation, characterized by the tone’s amplitude A,
phase ¢ and complex Laplace frequency s = o +i2n f.
When a function such as Z(s) is shown as a function
of the complex frequency s, this means that its inverse
Laplace transform z(t) <> Z(s) must be causal. In the
time domain, the voltage may be found from the current
via a convolution with z(7). Three classic examples of
such impedances are presented next.

Example 3.1: The impedance of the tympanic mem-
brane (TM, or eardrum) is defined in terms of a pure
tone pressure in the ear canal divided by the result-
ing TM volume velocity (the velocity times the area of
TM motion) [3.34,35]. The pressure (effort) and vol-
ume velocity (flow) referred to here are conventionally
described using complex numbers, to account for the
phase relationship between the two.

Example 3.2: The impedance of a spring is given by the
ratio of the force F(f) to velocity V(f) = sX(f) with
displacement X

Z(s) = F K 1 (3.4)
(5)= vV s sC’ '

where the spring constant K is the stiffness, C the com-
pliance, and s is the complex radian frequency. The
stiffness is represented electrically as a capacitor (as
parallel lines in Fig. 3.2b). Having s = o +1i27 f in the
denominator indicates that the impedance of a spring has
a phase of —7/2 (e.g., —90°). Such a phase means that
when the velocity is cos (27 ft), the force is sin (27 f1).
This follows from Hooke’s law

K K
F=KX=—sX=—V.
s s

(3.5)

Example 3.3: From Newton’s law F = Ma where F is
the force, M is the mass, and acceleration a(s) = sV (s)
(i.e., the acceleration in the time domain is dv(z)/dt).
The electrical element corresponding to a mass is an
inductor, indicated in Fig. 3.2b by a coil. Thus for a mass
Z(s)=sM.

From these relations the magnitude of the impedance
of a spring decreases as 1/ f, while the impedance mag-
nitude of a mass is proportional to f. The stiffness with
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its —90° phase is called a lagging phase, while the mass
with its +90° phase is called a leading phase.

Different points along the basilar membrane are
represented by the cascaded sections of the lumped
transmission line model of Fig.3.2b. The position X
along the model is called the place variable and corre-
sponds to the longitudinal position along the cochlea.
The series (horizontal) inductors (coils) denoted by Ly
represent the fluid mass (inertia) along the length of
the cochlea, while the shunt elements represent the
mechanical (acoustical) impedance of the correspond-
ing partition (organ of Corti) impedance, defined as the
pressure drop across the partition divided by its volume
velocity per unit length

Kp(X)

Zpls, X) = —

+ Ry(X) + M, , (3.6)

where K (X) is the partition stiffness, and Ry, is the par-
tition resistance. Each inductor going to ground (/; in
Fig.3.2b) represents the partition plus fluid mass per
unit length M}, of the section. Note that sM, R, and
K /s are impedances, but the mass M and stiffness K are
not. The partition stiffness decreases exponentially along
the length of the cochlea, while the mass is frequently
approximated as being independent of place.

As shown in Fig.3.3a, for a given input frequency
the BM impedance magnitude has a local minimum at
the shunt resonant frequency, where the membrane that
can move in a relatively unrestricted manner. The shunt
resonance has special significance because at this reso-
nance frequency Fcr(X) the inductor and the capacitor
reactance cancel each other, creating an acoustic hole,
where the only impedance element that contributes to
the flow resistance is Rp,. Solving for Fcr(X)

M—"ZﬂiFfM =0 (3.7)

27iFer o ’
defines the cochlear map function, which is a key con-
cept in cochlear modeling:

1 |Ky(X
FCf(X)EE ;; ). (3.8)
p

The inverse of this function specifies the location of
the hole Xc¢(f) as shown in Fig. 3.3a. In the example
of Fig.3.3a two frequencies are show, at 1 and 8 kHz,
with corresponding resonant points shown by X.¢(1) and
Xcr(8).

Basal to Xf(f) in Fig. 3.3a, the basilar membrane
is increasingly stiff, and apically (to the right of the

a) |Z| (dB)
K@2xf

Log-magnitude
BM impedance

0 ch(g) ch( 1 ) X
Base Place Apex
b) Log(CF) (kHz)
Foax Cat cochlear map

Slope = 3mm/oct

Place (cm)

Fig.3.3 (a) Plot of the log-magnitude of the impedance as
a function of place for two different frequencies of 1 and
8 kHz showing the impedance; the region labeled K(X) is
the region dominated by the stiffness and has impedance
K(X)/s. The region labeled M is dominated by the mass
and has impedance sM. The characteristic places for 1 and
8 kHz are shown as X¢. (b) Cochlear map of the cat follow-
ing Liberman and Dodds. The resonance frequency depends
on place according to the cochlear map function (b). A crit-
ical bandwidth A¢(f) and a critical spread A,(X) area
related through the cochlear map

resonant point), the impedance is mass dominated. The
above description is dependent on the input frequency
f since the location of the hole is frequency dependent.
In this apical region the impedance has little influence
since almost no fluid flows past the low-impedance hole.
This description is key to our understanding of why the
various frequency components of a signal are splayed
out along the basilar membrane.

If one puts a pulse of current in at the stapes, the high-
est frequencies that make up the pulse would be shunted
close to the stapes since at high frequencies the hole is
near the stapes, while the lower frequencies would con-
tinue down the line. As the low-pass pulse travels down
the basilar membrane, the higher frequencies are pro-
gressively removed, until almost nothing is left when
the pulse reaches the end of the model (the helicotrema
end, the apex of the cochlea).
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When a single tone is played, the response in the base
increases in proportion to the BM compliance (inversely
with the stiffness) until there is is a local maximum just
before the traveling wave reaches the resonant hole, at
which point the response plummets, since the fluid flow
is shorted by the hole. For a fixed stimulus frequency
f there is a maximum along the place axis called the
characteristic place, denoted by X 83)( f). Likewise at
agiven place X as a function of frequency there is a local
maximum called the characteristic frequency, denoted
by F C(é’ )(X ). The relation between the peak in place as
a function of frequency or of the peak in frequency as
a function of place is also called the cochlear map. There
is serious confusion with conventional terminology here.
The resonant frequency of the BM impedance mathe-
matically defines F¢r and specifies the frequency on the
base of the high-frequency steep portion of the tuning
slope, not the peak. However the peak is used as the
visual cue, not the base of the high-frequency slope.
These two definitions differ by a small factor (that is ig-
nored) that depends directly on the high-frequency slope
of the response. Over most of the frequency range this
slope is huge, resulting in a very small factor, justifying
its being ignored. However at very low frequencies the
slope is shallow and the factor can then be large. The
droop in the cochlear map seen in Fig. 3.3b at the apex
(x = L) may be a result of these conflicting definitions.
The cochlear map function F¢r(X) plays a key role in
cochlear mechanics, has a long history, and is known by
many names [3.27,36—40], the most common today be-
ing Greenwood’s function. In the speech literature it is
called the Mel scale.

The spread of the response around the peak for
a fixed frequency is denoted the critical spread A,(f),
while the frequency spread at a given place is called
the critical band denoted A ¢(X). As early as 1933 it
was clear that the critical band must exist, as extensively
discussed by Fletcher and Munson [3.41]. At any point
along the BM the critical band is proportional to the
critical ratio k(X), defined as the ratio of pure tone de-
tection intensity at threshold in a background of white
noise, to the spectral level of the noise [3.42], namely

AF(X) o k(X) . (3.9

In the next section we shall show how the the rela-
tions between these various quantities are related via the
cochlear map.

Derivation of the Cochlear Map Function. The deriva-
tion of the cochlear map is based on counting critical
bands as shown by Fletcher [3.10] and popularized
by Greenwood [3.43]. The number of critical bands
N¢p may be found by integrating the critical band
density over both frequency and place, and equat-
ing these two integrals, resulting in the cochlear map
Fer(X):

Xcf Fer
N = f dX = / df . (3.10)
/ Ax(X) J Ap(f)

There are approximately 20 pure-tone frequency
JNDs per critical band [3.37], [3.42, p. 171], and
Fletcher showed that the critical ratio expressed in dB
kaB(X) is of the form aX + b, where a and b are con-
stants [3.10]. As verified by Greenwood [3.43, p. 1350,
(1)] the critical bandwidth in Hz is therefore

A f(X) oc 104asX0/10° (3.11)

The critical spread A,(X) is the effective width of
the energy spread on the basilar membrane for a pure
tone. Based on a suggestion by Fletcher, Allen showed
that for the cat, A,(X) corresponds to about 2.75 times
the basilar membrane width with Wym(X) o< eX [3.10].
It is reasonable to assume that the same relation would
hold in the human case.

The direct observation of the cochlear map in the
cat was made by Liberman [3.44] and Liberman and
Dodds [3.45], and they showed the following empirical
formula fit the data

Fer(X) = 456(10%10=%/L) _0.8) (3.12)
where the length of the cat cochlea is L =21 mm,
and X is measured from the stapes [3.44]. The
same formula may be used for the human cochlea
if L =35mm is used, the 456 is replaced by 165.4,
and 0.8 by 0.88. Based on (3.12), and as de-
fined in Fig.3.3b, the slope of the cochlear map is
3 mm/oct for the cat and 5 mm/oct for the human, as
may be determined from the formula Llog;y(2)/2.1
with L =21 or 35 for cat and human, respec-
tively.

For a discussion of work after 1960 on the critical
band see Allen [3.10] and Hartmann [3.17].
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3.2 The Nonlinear Cochlea

3.2.1 Cochlear Modeling

In cochlear modeling there are two fundamental
intertwined complex problems, cochlear frequency se-
lectivity and cochlear/OHC nonlinearity. Wegel and
Lane’s 1924 transmission line wave theory was a most
important development, since it was published 26 years
prior to the experimental results of von Békésy, and
it was based on a simple set of physical principles,
conservation of fluid mass, and a spatially variable
basilar membrane stiffness. It gives insight into both
the NL cochlea, as well has two-dimensional (2-D)
model frequency-selective wave-transmission effects
(mass loading of the BM).

Over a 15 year period starting in 1971, there was
a paradigm shift. Three discoveries rocked the field:

1. nonlinear compressive basilar membrane and inner-
hair-cell measures of neural-like cochlear frequency
selectivity [3.47,48],

a) Gain (dB)
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—0—55dB
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-<%--85dB
--4--95 dB
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-20
1 10
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2. otoacoustic (ear canal) nonlinear emissions [3.49],
and
3. motile outer hair cells [3.50].

Today we know that these observations are related,
and all involve outer hair cells. A theory (e.g., a com-
putational model) is needed to tie these results together.
Many groups are presently working out such theories.

On the modeling side during the same period (the
1970’s) all the variants of Wegel and Lane 1-D linear
theory were becoming dated because:

1. numerical model results became available, which
showed that 2- and three-dimensional (3-D) models
were more frequency selective than the 1-D model,

2. experimental basilar membrane observations showed
that the basilar membrane motion had a nonlinear
compressive response growth, and

3. improved experimental basilar membrane obser-
vations became available which showed increased
nonlinear cochlear frequency selectivity.

b) Gain (dB)

cess gain

Frequency (kHz)

Fig.3.4a,b There are six numbers that characterize every curve, three slopes (S1, Sz, S3), in dB/oct, two frequencies
(F;, Fer), and the excess gain characterizes the amount of gain at Fr relative to the gain defined by S;. The excess gain
depends on the input level for the case of a nonlinear response like the cochlea. Rhode found up to & 35 dB of excess
gain at 7.4 kHz and 55 dB — SPL, relative to the gain at 105 dB — SPL. From of the 55 dB — SPL curve of (a) (the most
sensitive case), and his Table I, S; =9, S» =86, and S35 = —288 (dB/oct), F, = 5kHz, F = 7.4kHz, and an excess
gain of 27 dB. Rhode reported S| = 6 dB/oct, but 9 seems to be a better fit to the data, so 9 dB/oct is the value we have
used for our comparisons. (a) Response of the basilar membrane for his most sensitive animal. The graduations along
the abscissa are at 0.1, 1.0 and 10.0 kHz (after [3.46, Fig. 9a]) (b) Basic definition of the 6 parameters for characterizing
a tuning curve: slopes S1, 2, 33, frequencies F, and F¢f, and the excess gain
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Because these models and measures are still under
development today [the problem has not yet (ca. 2007)
been solved], it is necessary to describe the data
rather than the models. Data that drives these nonlinear
cochlear measures include:

® The upward spread of masking (USM), first de-
scribed quantitatively by Wegel and Lane in 1924,

® Distortion components generated by the cochlea and
described by Wegel and Lane [3.20], Goldstein and
Kiang [3.52], Smoorenburg [3.53], Kemp [3.54], Kim
etal. [3.55], Fahey and Allen [3.56] and many others,

® Normal loudness growth and recruitment in the im-
paired ear [3.3,41],

® The frequency dependent neural two-tone suppres-
sion observed by Sachs and Kiang [3.57], Arthur
et al. [3.58], Kiang and Moxon [3.59], Abbas and
Sachs [3.60], Fahey and Allen [3.56], Pang and
Guinan [3.61], and others,

® The frequency-dependent basilar membrane response-
level compression first described by Rhode [3.46,
47],

® The frequency-dependent inner-hair-cell receptor
potential level compression, first described by Sellick
and Russell [3.48], Russell and Sellick [3.62].

® Forward masking data that shows a linear return to
baseline after up to 0.2 s [3.63]. There may be com-
pelling evidence that OHCs are the source of forward
masking.

We shall discuss each of these, but two related meas-
ures are the most important for understanding these NL
masking effects, the upward spread of masking (USM)
and two-tone suppression (2TS).

Basilar Membrane Nonlinearity. The most basic early
and informative of these nonlinear effects was the NL
basilar membrane measurements made by Rhode [3.46,
47], as shown in Fig. 3.4a, showing that the basilar mem-
brane displacement to be a highly NL function of level.
For every four dB of pressure level increase on the in-
put, the output displacement (or velocity) only changed
one dB. This compressive nonlinearity depends on fre-
quency, and only occurs near the most sensitive region
(e.g., the tip of the tuning curve). For other frequencies
the system was either linear, namely, one dB of input
change gave one dB of output change for frequencies
away from the best frequency, or very close to linear.
This NL effect was highly dependent on the health of
the animal, and would decrease or would not be present
at all, when the animal was not in its physiologically
pristine state.

An important and useful measure of cochlear linear
and nonlinear response first proposed by Rhode [3.46,
Fig. 8], is shown in Fig. 3.4b which describes cochlear
tuning curves by straight lines on log—log coordinates.
Such straight line approximations are called Bode plots
in the engineering literature. The slopes and break
points, defined as the locations where the straight lines
cross, characterize the response.

Otoacoustic Emissions. A few years after Rhode’s
demonstration of cochlear nonlinearity, David Kemp
observed otoacoustic emissions (tonal sound emanat-
ing from the cochlea and NL echos to clicks and tone
bursts) [3.49,54,64-66]. Kemp’s findings were like a jolt
to the field, which led to a cottage industry of objective
testing of the auditory system, including both cochlear
and middle ear tests.

Motile OHCs. Subsequently, Brownell et al. [3.50] dis-
covered that isolated OHCs change their length when
placed in an electric field, thus that the outer hair cell
is motile. This then led to the intuitive and widespread
proposal that outer hair cells act as voltage-controlled
motors that directly drive the basilar membrane on a cy-
cle by cycle basis. It seems quite clear, from a great deal
of data, that the OHC onset response time is on the order
of one cycle or so of the BM impulse response, because
the first peak is linear [3.67]. The release time must be
determined by the OHC membrane properties, which is
slow relative to the attack. Thus OHC NL processing is
the basis for both the frequency asymmetry of simulta-
neous (upward versus downward spread) and temporal
(forward versus backward) masking.

As summarized in Fig. 3.5, OHCs provide feedback
to the BM via the OHC receptor potential, which in
turn is modulated by both the position of the basilar

Input

signal

Middle
ear

Cochlear fluid

BM impedance
Kbm (V ohc)

Tectorial membrane

Slow acting
active
|— feedback

| Outer hair cells

Inner hair cells

Fig.3.5 Block flow diagram of the inner ear (after
Allen [3.51])
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membrane (forming a fast feedback loop), and alterna-
tively by the efferent neurons that are connected to the
outer hair cells (forming a slow feedback loop). The de-
tails of all this are the topic of a great deal of present
research.

OHC:s are the one common element that link all the
NL data previously observed, and a missing piece of
the puzzle that most needs to be understood before any
model can hope to succeed in predicting basilar mem-
brane, hair cell, and neural tuning, or NL compression.
Understanding the outer hair cell’s two-way mechanical
transduction is viewed as the key to solving the problem
of the cochlea’s dynamic range.

Historically the implication that hair cells might play
an important role in cochlear mechanics go back at least
to 1936 when loudness recruitment was first reported by
Fowler [3.68] in a comment by R. Lorente de N6 [3.14]
stating that cochlear hair cells are likely to be involved
in loudness recruitment.

The same year Steinberg and Gardner [3.3] were
explicit about the action of recruitment when they con-
cluded:

When someone shouts, such a deafened person suf-
fers practically as much discomfort as a normal
hearing person would under the same circum-
stances. Furthermore for such a case, the effective
gain in loudness afforded by amplification depends
on the amount of variable type loss present. Owing
to the expanding action of this type of loss it would
be necessary to introduce a corresponding compres-
sion in the amplifier in order to produce the same
amplification at all levels.

Therefore as early as 1937 there was a clear sense
that cochlear hair cells were related to dynamic range
compression.

More recently, theoretical attempts to explain the dif-
ference in tuning between normal and damaged cochleae
led to the suggestion that OHCs could influence BM
mechanics. In 1983 Neely and Kim [3.69] concluded:

We suggest that the negative damping components
in the model may represent the physical action of
outer hair cells, functioning in the electrochemical
environment of the normal cochlea and serving to
boost the sensitivity of the cochlea at low levels of
excitation.

In 1999 yet another (a fourth) important discovery
was made, that the outer-hair-cell mechanical stiffness
depends on the voltage across its membrane [3.70, 71].
This change in stiffness, coupled with the naturally oc-

curring internal static pressure, may well account for
the voltage dependent accompanying length changes
(the cell’s voltage dependent motility). This view fol-
lows from the block diagram feedback model of the
organ of Corti shown in Fig.3.5 where the excita-
tion to the OHC changes the cell voltage Vipe, which
in turn changes the basilar stiffness [3.51]. This is
one of several possible theories that have been put
forth.

This experimental period set the stage for explain-
ing the two most dramatic NL measures of cochlear
response, the upward spread of masking and its re-
lated neural correlate, two-tone suppression, and may
well turn out to be the explanation of the nonlinear
forward-masking effect as well [3.63].

Simultaneous Dynamic-Masking

The psychophysically measured upward spread of
masking (USM) and the neurally measured two-tone
suppression (2TS) are closely related dynamic-masking
phenomena. Historically these two measures have been
treated independently in the literature. As will be
shown, it is now clear that they are alternative objective
measures of the same OHC compressive nonlinear-
ity. Both involve the dynamic suppression of a basal
(high-frequency) probe due to the simultaneous presen-
tation of an apical (low-frequency) suppressor. These
two views (USM versus 2TS) nicely complement
each other, providing a symbiotic view of cochlear
nonlinearity.

Upward Spread of Masking (USM). In a classic paper,
Mayer [3.72] was the first to describe the asymmetric
nature of masking [3.63,73]. Mayer made his qualitative
observations with the use of clocks, organ pipes and
tuning forks, and found that that the spread of masking
is a strong function of the probe-to-masker frequency
ratio (fp/ fm) [3.63].

In 1923, Fletcher published the first quantitative
results of tonal masking. In 1924, Wegel and Lane
extended Fletcher’s experiments (Fletcher was the sub-
ject [3.27, p. 325]) using a wider range of tones. Wegel
and Lane then discuss the results in terms of their 1-D
model described above. As shown in Fig. 3.6a, Wegel
and Lane’s experiments involved presenting listeners
with a masker tone at frequency f, =400Hz and in-
tensity I, (the abscissa), along with a probe tone at
frequency fp (the parameter used in the figure). At
each masker intensity and probe frequency, the thresh-
old probe intensity I;(Im) is determined, and displayed
relative to its threshold sensation level (SL) (the ordinate
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Fig.3.6a,b On the left (a) we see the psychoacoustic measure of 2TS, called the upward spread of masking. On the
right (b) are related measures taken in the auditory nerve by a procedure called two-tone suppression (2TS). Low- and
high-side masking or suppression have very different thresholds and slopes. These suppression slopes and thresholds are
very similar between 2TS and the USM. (a) Upward spread of masking as characterized by Wegel and Lane in 1924. The
solid lines correspond to the probe being higher than the 400 Hz masker, while the dashed lines correspond to the 400 Hz
probe lower than the masker. On the left we see upward spread of masking functions from Wegel and Lane for a 400 Hz
low-frequency masker. The abscissa is the masker intensity I, in dB —SL while the ordinate is the threshold probe
intensity I;(Im) in dB — SL. The frequency of the probe f,, expressed in kHz, is the parameter indicated on each curve.
The dashed box shows that the masking due to a 1 kHz tone becomes more than that at 450 Hz, for a 400 Hz probe. This
is the first observation of excitation pattern migration with input intensity. (b) Two-tone suppression (2TS) input—output
(I0) functions from Abbas and Sachs [3.60, Fig. 8]. On the left (1) is low-side suppression and on the right (2) we see
high-side suppression. In 2TS the suppressor plays the role of the masker and the probe the role of the maskee. Note
that the threshold of suppression for low-side suppressor (masker) is close to 70 dB — SPL, which is similar to human
low-side suppressors, the case of the Wegel and Lane USM (1) (60—70 dB — SPL). The onset of suppression for high-side
suppressors is close to the neuron’s CF threshold of 50 dB, as elaborated further in Fig. 3.7a

is the probe level at threshold [dB — SL]). The asterisk
indicates a threshold measure.

In Fig.3.6a fi, =400Hz, Iy, is the abscissa, f is
the parameter on each curve, in kHz, and the threshold
probe intensity If,‘(lm) is the ordinate. The dotted line
superimposed on the 3 kHz curve (I, /1090/10)24 repre-
sents the suppression threshold at 60 dB — SL which has
a slope of 2.4 dB/dB. The dotted line superimposed on
the 0.45kHz curve has a slope of 1 and a threshold of
16dB — SL.

Three regions are clearly evident: the downward
spread of masking (f, < fm, dashed curves), critical
band masking (f, ~ fm, dashed curve marked 0.45),
and the upward spread of masking (fp > fm, solid
curves) [3.74].

Critical band masking has a slope close to 1 dB/dB
(the superimposed dotted line has a slope of 1). Four
years later Riesz [3.75] shows critical band masking

obeys the near miss to Weber’s law, as described
in Sect.3.3.2. The downward spread of masking (the
dashed lines in Fig. 3.6a) has a low threshold intensity
and a variable slope that is less than one dB/dB, and
approaches 1 at high masker intensities. The upward
spread of masking (USM), shown by the solid curves,
has a threshold near 50dB re sensation level (e.g.,
65dB — SPL), and a growth just less than 2.5 dB/dB.
The dotted line superimposed on the f, = 3 kHz curve
has a slope of 2.4 dB/dB and a threshold of 60 dB — SL.

The dashed box shows that the upward spread
of masking of a probe at 1kHz can be greater
than the masking within a critical band (.e.,
fp=450Hz > fi, =400Hz). As the masker frequency
is increased, this crossover effect occurs in a small
frequency region (i. e., 1 /2 octave) above the masker fre-
quency. The crossover is a result of a well-documented
NL response migration, of the excitation pattern with
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Fig.3.7 (a) Definitions of 2TS low-side masking procedure (see (3.13) and (3.14)). (b) Example of 2TS (low-side
masking) in the cat auditory nerve (AN). A cat neural tuning curve taken with various low-side suppressors present
(suppressor below the best frequency), as indicated by the symbols. The tuning curve with the lowest threshold is for no
suppressor. When the suppressor changes by 20 dB, the F¢r threshold changes by 36 dB. Thus for a 2 kHz neuron, the
slope is 36/20, or 1.8. These numbers are similar to those measure by Delgutte [3.80]. One Pa = 94 dB — SPL

stimulus intensity, described in a wonderful paper by
McFadden [3.76]. Response migration was also ob-
served by Munson and Gardner in a classic paper on
forward masking [3.77]. This important migration ef-
fect is beyond the scope of the present discussion, but
is reviewed in [3.74, 78, 79] discussed in the caption of
Fig.3.10.

The upward spread of masking is important be-
cause it is easily measured psychophysically in normal
hearing people, is robust, well documented, and nicely
characterizes normal outer-hair-cell nonlinearities. The
psychophysically measured USM has correlates in basi-
lar membrane and hair cell signals, and is known as
two-tone suppression (2TS) in the auditory nerve litera-
ture, as discussed in the caption of Fig. 3.6b.

Two-Tone Suppression. The neural correlate of the
psychophysically measured USM is called two-tone sup-
pression (2TS). As shown in the insert of Fig. 3.7a, first
a neural tuning curve is measured. A pure tone probe
at intensity Ip(fp), and frequency fp, is placed a few
dB (e.g., 6 to 10) above threshold at the characteris-
tic (best) frequency of the neuron Fer (i.e., fp = Fer).
In 2TS a suppressor tone plays the role of the masker.
There are two possible thresholds. The intensity of the
suppressor tone Ig( f;) at frequency f; is increased until
either

1. the rate response to either the probe alone R(1,, Is =
0) decreases by a small increment Ag, or

2. drops to the small increment Ag, just above the
undriven spontaneous rate R(0, 0).

These two criteria are defined in Fig. 3.6b and may be
written

Ry(Ip. I¥) = R(I,, 0) — Ag (3.13)
and
Rspont(lpa Iq*) =R(0,0)+ Ag; (3.14)

Ap indicates a fixed small but statistically significant
constant change in the rate (e.g., Ag = 20 spikes/s is
a typical value). The threshold suppressor intensity is
defined as I7(fs), and as before the * indicates the thresh-
old suppressor intensity. The two threshold definitions
(3.13) and (3.14) are very different, and both are useful.
The difference in intensity between the two thresholds
is quite large, and the more common measure used by
Abbas and Sachs [3.60] is (3.13). The second measure
(3.14) is consistent with neural tuning curve suppres-
sion, and is therefore the more interesting of the two. It
corresponds to suppression of the probe to threshold.
Neural data of Abbas and Sachs [3.60, Fig. 8] are
reproduced in Fig. 3.6b. For this example (see entry in
lower-right just below 105), F¢r is 17.8kHz, and the
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fp = Fet probe intensity 201log 10(] Py]) is 60dB. The
label on the curves is the frequency fi. The thresh-
old intensity of the associated neural tuning curve is
has a low spontaneous rate and a 50-55dB threshold.
The left panel of Fig. 3.6b is for apical suppressors that
are lower in frequency than the characteristic frequency
(CF) probe (fs < fp). In this case the threshold is just
above 65 dB — SPL. The suppression effect is relatively
strong and almost independent of frequency. In this ex-
ample the threshold of the effect is less than 4 dB apart
(the maximum shift of the two curves) at suppressor
frequencies f of 10 and 5 kHz (a one octave separation).
The right panel shows the case fs > fp. The suppres-
sion threshold is close to the neuron’s threshold (e.g.,
50dB — SPL) for probes at 19 kHz, but increases rapidly
with frequency. The strength of the suppression is weak
in comparison to the case of the left panel (fs < fp), as
indicated by the slopes of the family of curves.

The Importance of the Criterion. The data of Fig. 3.6b
uses the first suppression threshold definition (3.13) R,
(a small drop from the probe driven rate). In this case the
F¢t probe is well above its detection threshold at the sup-
pression threshold, since according to definition (3.13),
the probe is just detectably reduced, and thus audible.
With the second suppression threshold definition (3.14),
the suppression threshold corresponds to the detection
threshold of the probe. Thus (3.14), suppression to the
spontaneous rate, is appropriate for Wegel and Lane’s
masking data where the probe is at its detection thresh-
old I;(Im). Suppression threshold definition (3.14) was
used when taking the 2TS data of Fig.3.7b, where the
suppression threshold was estimated as a function of
suppressor frequency.

To be consistent with a detection threshold criterion,
such as the detection criterion used by Wegel and Lane in
psychophysical masking, (3.14) must be used. To have
a tuning curve pass through the F¢r probe intensity of a
2TS experiment (i. e., be at threshold levels), it is nec-
essary to use the suppression to rate criterion given by
(3.14). This is shown in Fig. 3.7b where a family of tun-
ing curves is taken with different suppressors present.
As described by Fahey and Allen [3.56, Fig. 13], when
a probe is placed on a specific tuning curve of Fig. 3.7b,
corresponding to one of the suppressor level symbols
of Fig.3.7b, and a suppression threshold is measured,
that suppression curve will fall on the corresponding
suppression symbol of Fig.3.7b. There is a symmetry
between the tuning curve measured in the presents of
a suppressor, and a suppression threshold obtained with
a given probe. This symmetry only holds for criterion

(3.14), the detection threshold criterion, which is appro-
priate for Wegel and Lane’s data. If one uses (3.13) as
in [3.60] they will not see this symmetry as cleary.

Suppression Threshold. Using the criterion (3.14),
Fahey and Allen [3.56, Fig. 13] showed that the suppres-
sion threshold /7(I}) in the tails is near 65dB — SPL
(0.04 Pa). This is true for suppressors between 0.6 and
4kHz. A small amount of data are consistent with the
threshold being constant to much higher frequencies, but
the Fahey and Allen data are insufficient on that point.

Suppression Slope. Delgutte has written several insight-
ful papers on masking and suppression [3.80-82]. He
estimated how the intensity growth slope (in dB/dB)
of 2TS varies with suppressor frequency for several
probe frequencies [3.80]. As may be seen in his fig-
ure, the suppression growth slope for the case of a low
frequency apical suppressor on a high frequency basal
neuron (the case of the left panel of Fig.3.6b), is
~2.4dB/dB. This is the same slope as for Wegel and
Lane’s 400 Hz masker, 3 kHz probe USM data shown
in Fig. 3.6a. For suppressor frequencies greater than the
probe’s (fs > fp), Delgutte reports a slope that is signif-
icantly less than 1dB/dB. Likewise Wegel and Lane’s
data has slopes much less than 1 for the downward spread
of masking.

One may conclude that USM and 2TS data show
systematic and quantitative correlations between the
threshold levels and slopes. The significance of these
correlations has special importance because

1. they come from very different measurement
methods, and

2. Wegel and Lane’s USM are from human, while
the 2TS data are from cat, yet they show simi-
lar responses. This implies that the cat and human
cochleae may be quite similar in their NL responses.

The USM and 2TS threshold and growth slope
(e.g., 50dB—SL and 2.4dB/dB) are important fea-
tures that must be fully understood and modeled before
we can claim to understand cochlear function. While
there have been several models of 2TS [3.83-85] as
discussed in some detail by Delgutte [3.80], none are
in quantitative agreement with the data. The two-tone
suppression model of Hall [3.84] is an interesting contri-
bution to this problem because it qualitatively explores
many of the key issues. Finally forward-masking data
also show related nonlinear properties that we specu-
late may turn out to be related to NL. OHC function as
well [3.78,86,87].
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3.2.2 Outer-Hair-Cell Transduction

The purpose of this section is to address two intimately
intertwined problems cochlear frequency selectivity and
cochlear nonlinearity. The fundamental question in
cochlear research today is: What is the role of the outer
hair cell (OHC) in cochlear mechanics? The OHC is the
source of the NL effect, and the end product is dynamic
masking, including the USM, 2TS and forward masking,
all of which include dramatic amounts of gain and tuning
variation. The issues are the nature of the NL transfor-
mations of the BM, OHC cilia motion, and OHC soma
motility, at a given location along the basilar membrane.

The prevailing and popular cochlear-amplifier view
is that the OHC provides cochlear sensitivity and fre-
quency selectivity [3.5, 88-94]. The alternative view,
argued here, is that the OHC compresses the excita-
tion to the inner hair cell, thereby providing dynamic
range expansion.

There is an important difference between these two
views. The first view deemphasizes the role of the OHC
in providing dynamic range control (the OHC’s role is
to improve sensitivity and selectivity), and assumes that
the NL effects result from OHC saturation.

The second view places the dynamic range problem
as the top priority. It assumes that the sole purpose of the
OHC nonlinearity is to provide dynamic range compres-
sion, and that the OHC plays no role in either sensitivity
or selectivity, which are treated as important but inde-

a) b)
S

pendent issues. Of course other views besides these two
are possible.

The Dynamic-Range Problem
The question of how the large (up to 120dB) dy-
namic range of the auditory system is attained has been
a long standing problem which remains fundamentally
incomplete. For example, recruitment, the most common
symptom of neurosensory hearing loss, is best charac-
terized as the loss of dynamic range [3.3, 10, 15, 95].
Recruitment results from outer-hair-cell damage [3.96].
To successfully design hearing aids that deal with the
problem of recruitment, we need models that improve
our understanding of how the cochlea achieves its dy-
namic range.

Based on a simple analysis of the IHC voltage, one
may prove that the dynamic range of the IHC must be
less than 65 dB [3.97]. In fact it is widely accepted that
IHC dynamic range is less than 50 dB.

The THC’s transmembrane voltage is limited at the
high end by the cell’s open circuit (unloaded) mem-
brane voltage, and at the low end by thermal noise.
There are two obvious sources of thermal noise, cilia
Brownian motion, and Johnson (shot) noise across the
cell membrane (Fig. 3.8).

The obvious question arises: How can the basic
cochlear detectors (the IHCs) have a dynamic range
of less than 50dB (a factor of 0.3x10%), and yet the
auditory system has a dynamic range of up to 120dB

Noise model of
inner hair cell

Forward transduction
equivalent circuit

J
Membrane voltage Soma axial force
Cilia force and current and velocity
and velocity
v + +
Lo o n(5e) E ()
c
N TN T
: On(Fm) In(Via)
B @ ~ v, (V)
r R | Cu(T)
O —oO

Reverse transduction

Fig. 3.8a=c On the far left (a) is the electrical equivalent circuit model of an IHC with thermal noise sources due to the
cell leakage resistance Johnson and shot noise vy and the Brownian motion of the cilia, represented by the voltage noise
source vg. The cilia force f. and velocity {fc are the stimulus (input) variables to the forward transduction (b), and are
loaded by the mechanical impedance of the cilia viscous drag r and compliance c. (c) For OHCs, when the cilia move,
current flows into the cell charging the membrane capacitance, thus changing the membrane voltage V. This membrane
capacitance Cy (Vi) is voltage dependent (i. e., it is NL). The membrane voltage has also been shown to control the cell’s
soma axial stiffness. It follows that the axial force F,(Vy,) the cell can deliver, and the axial velocity V,(Vy,) of the cell,
must also depend on the membrane voltage. The precise details of how all this works is unknown
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(a factor of 10°)? The huge amount of indirect evidence
has shown that this increased dynamic range results from
mechanical NL signal compression provided by outer
hair cells. This dynamic-range compression shows up in
auditory psychophysics and in cochlear physiology in
many ways.

This thus forms the basic dynamic-range dilemma.

Outer-Hair-Cell Motility Model
A most significant finding in 1985 was of OHC motility,
namely that the OHC changes its length by up to 5% in
response to the cell’s membrane voltage [3.50,99, 100].
This less than 5% change in length must account for
a40dB (100 times) change in cochlear sensitivity. This
observation led to a significant increases in research on
the OHC cell’s motor properties.

In 1999 it was shown that the cell’s longitudinal
soma stiffness changes by at least a factor of 2 (> 100%),
again as a function of cell membrane voltage [3.70,71].
A displacement of the cilia in the direction of the tallest
cilia, which is called a depolarizing stimulus, decreases
the magnitude of the membrane voltage |V, |, decreases
the longitudinal soma stiffness, and decreases the cell
soma length. A hyperpolarizing stimulus increases the
stiffness and extends the longitudinal soma length.

Given this much larger relative change in stiffness
(a factor of 2) compared to the relative change in length
(a factor of 1.05), for a maximum voltage change, it

a) Magnitude displacement (m)
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seems possible, or even likely, that the observed length
changes (the motility) are simply a result of the volt-
age dependent stiffness. For example, imagine a spring
stretched by applying a constant force (say a weight),
and then suppose that the spring’s stiffness decreases. It
follows from Hooke’s law (3.5) that the spring’s length
will increase when the stiffness decreases.

Each cell is stretched by its internal static pressure
& [3.101], and its stiffness is voltage controlled [3.70,
71]. The voltage dependent relative stiffness change is
much greater than the relative motility change. Thus

we have the necessary conditions for stiffness-induced
motility.

3.2.3 Micromechanics

Unlike the case of macromechanical models, the physics
of every micromechanical model differs significantly.
This is in part due to the lack of direct experimental ev-
idence of physical parameters of the cochlea. This is an
important and very active area of research (e.g., [3.102]).

To organize our discussion of cochlear micromech-
anics, we represent each radial cross-section through the
cochlear partition (Fig.3.1b) as a linear two-port net-
work. A general formalization in transmission matrix
form of the relation between the basilar membrane input
pressure P(x, s) and velocity V(x, s) and the OHC out-
put cilia bundle shear force f(x,s) and shear velocity

b) dB-SPL

0.1 02 0.5 1 2 5 10 20 50
Frequency (kHz)

Fig.3.9a,b The tuning curves shown by the dashed lines are the average of single nerve fiber responses from six cats
obtained by M. C. Liberman and B. Delgutte. (a) Comparison between neural data and the computed model excitation
patterns from Allen’s passive RTM model (transfer function format). This CA model assumes an IHC cilia bundle

displacement of about 50 pm at the neural rate threshold. (b)

Comparison between neural data computed tuning curves

from Neely’s active model [3.98]. This CA model assumes an IHC cilia bundle displacement of 300 pm (0.3 nm) at the

neural rate threshold
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v(x, s)

(7)-(e0)(0)

where A, B, C, and D are complex functions of place X
and radian frequency s.

Passive BM Models
The most successful passive model of cochlear tuning
is the resonant tectorial membrane (RTM) model [3.9,
104]. The RTM model starts from the assumption that
the slope S> of BM tuning is insufficient to account for
the slope S of neural tuning, as seen in Fig. 3.4b. This
sharpening is accounted for by a reflection in the tecto-
rial membrane, introducing an antiresonance (spectral
zero) at frequency F, (Fig.3.4b), which is about half
an octave below the resonant frequency Fer of the basi-
lar membrane. As described by Allen and Neely [3.9],
the detailed A, B, C, D elements of (3.15) are given by
Allen [3.104], Allen and Neely [3.9].

As described in Allen [3.105], the response ratio
of THC cilia bundle displacement to basilar membrane

a) Neural tuning for 5 kHz tonal stimulus (14—124 dB-SPL)
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displacement is defined as Hinc(x, s). The parameters of
the RTM model may be chosen such that model results fit
the experimental neural threshold tuning curves closely,
as shown in Fig. 3.9a.

The Nonlinear RTM Model. The resonant tectorial mem-
brane (RTM) model is made NL by control of the BM
stiffness via OHC'’s stiffness is based on Fig. 3.1b. The
OHC soma stiffness has been shown to be voltage depen-
dent by Dallos et al. [3.106] and dependent on prestin
in the membrane wall [3.107]. If an elastic connection
is assumed where the TM attaches to the Limbus, and
if this elasticity is similar to that of the cilia of the
OHC, then the resulting transfer function between the
BM and THC cilia is strongly filtered at low frequen-
cies [3.51,103,108,109]. Such models are actively under
consideration [3.102].

It is postulated that the decrease in OHC stiffness ac-
companying cilia stimulation results in a decrease of the
net BM partition stiffness Kp(x) (i. €., increasing compli-
ance) of (3.6). As shown in Fig. 3.3, this decrease in the
local BM stiffness would result in the partition excitation
pattern shifting basally towards the stapes. Such shifts in
the BM response patterns are commonly seen. Another
way to view this is shown in Fig. 3.10. This migration
of the excitation pattern, combined with the assumption
that the TM has a high-pass characteristic, means that
the cilia excitation gain at CF is nonlinearly compressed

Fig.3.10a,b In (a) results of model calculations by Sen
and Allen [3.103] are shown of a NL BM stiffness model.
On the right shows a cartoon of what might happen to the
excitation pattern of a low-level probe when a suppressor
is turned on given such a nonlinearity. The presence of the
suppressor causes the probe to be suppressed and shifted
slightly toward the base when the stiffness is decreased with
increased level. It may be inferred from Fig. 3.3a that, if the
BM stiffness is reduced, the location of the maximum will
shift to the base, as is seen in real data. (a) Compression in
the NL RTM model. Note how the response at the peak is
reduced as the BM stiffness changes, causing the peak to
shift to the base. As this happens the response in the tail
region between 0 < X < 0.3 cm becomes more sensitive,
and thus shows an expansive NL response. All of these
effects have been seen in real BM data. (b) Cartoon showing
the effect of a low-side masker on a high-frequency tone as
afunction of position along the basilar membrane. When the
suppressor is turned on, the CF of the high-frequency probe
becomes less sensitive and shifts to higher frequencies. We
model this effect in the panel on the left as BM stiffness
that depends on level (i.e., Kp(/s))
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as the intensity increases. This compression effect is
shown in a cartoon format in Fig. 3.10b, while Fig. 3.10a
shows the actual calculated model results. Note how the
bandwidth A ¢(X)) remains approximately constant as
a function of input intensity.

Sewell [3.110] has nicely demonstrated that as the
voltage driving the hair cells changes, the neural gain in
dB at CF changes proportionally. It is not yet known why
the dB gain is proportional to the voltage (1 dB/mv),
however this would explain why forward masking de-
cays linearly in dB value with time, after a strong
excitation, since the membrane voltage Vi,(?) is propor-
tional to e~/ due to the OHC membrane’s 7, = RC
time constant. In my view, explaining the proportion-
ality between the neural threshold in dB and the linear
membrane voltage, is key.

Discussion. Two important advantages of the NL RTM
model include its physically based assumptions (de-
scribed above), and its simplicity. Given these physical
assumptions, we show next that the NL RTM model can
explain:

1. the basal-ward half-octave traveling-wave migration
as a function of increasing intensity [3.76],

2. the upward spread of masking (USM) [3.20, 21],
two-tone suppression (2TS) (see Sect. 3.2.1),

3. distortion product generation [3.49,55,56,111-113],

4. normal and recruiting loudness growth, and

5. hypersensitive tails [3.45].

From the steep 2.5 dB/dB slope of the USM and 2TS
(Fig.3.6a) it seems necessary that the low-frequency
suppressor is turning down the high-frequency probe
even though the growth of the masker at the high fre-
quency’s place is linear with masker level, as shown in
Fig. 3.10b.

Active BM Models
One obvious question about active cochlear models is
Are they really necessary? At least three attempts to an-
swer this question based on detailed comparisons of
basilar membrane responses have concluded that the
measured responses cannot be accounted for by a pas-
sive cochlear model [3.93,114-117].

The CA Hypothesis. The most popular active microme-
chanical theory is called the cochlear amplifier (CA)
hypothesis. The concept of the cochlear amplifier, ori-
ginated by Gold, Kemp, Kim and Neely, and named by
H. Davis, refers to a hypothetical mechanism within the
cochlear partition which increases the sensitivity of basi-

lar membrane vibrations to low-level sounds and, at the
same time, increases the frequency selectivity of these
vibrations [3.94]. The CA adds mechanical energy to
the cochlear partition at acoustic frequencies by draw-
ing upon the electrical and mechanical energy available
from the outer hair cells. In response to a tone, the CA
adds mechanical energy to the cochlear traveling wave
in the region defined by S as it approaches the place of
maximum response. This energy is reabsorbed at other
places along the cochlear partition. The resulting im-
provement in sensitivity of the ear due to the CA is
thought to be 40 dB, or more under certain conditions;
however, the details of how this amplification might be
accomplished are still unknown [3.118, 119]. A general
discussion of this model is presented in Geisler [3.90],
and in Allen and Fahey [3.91].

It is presumed that this OHC action amplifies the
BM signal energy on a cycle-by-cycle basis, increasing
the sensitivity [3.69,92]. In some of the models it is as-
sumed that this cycle-by-cycle pressure (force) due to the
OHCs causes the sharp BM tuning tip. In most of these
models, the CA is equivalent to introducing a frequency-
dependent negative damping (resistance) into the BM
impedance [3.120]. Nonlinear compression is intro-
duced by assuming that the resistance is signal level de-
pendent. This NL resistance model was first described by
Hall [3.84] for the case of R > 0. Thus the CA model is
an extension of Hall’s model to the case of R < 0. In sev-
eral models NL negative damping is obtained with a non-
linear stiffness and a small delay. The addition of a small
delay introduces a negative real part into the impedance.
In mathematical physics, NL damping resonators are
described by van der Pol equations, while NL stiffness
resonators are described by Duffing equations [3.121].

Allen and Fahey [3.91] developed a method for di-
rectly measuring the cochlear amplifier (CA) gain. All
of the studies to date using this method have found
no gain. However many researchers continue to be-
lieve that the CA has gain. Given that the gain is order
40-50 dB this is difficult to understand. A nice summary
of this situation has been recently published in Shera and
Guinan [3.120]. The reasons for the failure to directly
measure any CA gain are complex and multifaceted, and
many important questions remain open. One possibility
that remains open is that the many observed large NL
OHC BM effects we see are not due to cycle-by-cycle
power amplification of the BM traveling wave.

Discussion and Summary
Discussion. Both active and passive BM models are
reasonably successful at simulating the neural thresh-
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old response tuning curves. Thus we may need to
look elsewhere to contrast the difference between these
two approaches, such as 2TS/USM. While the passive
RTM model is easily made NL with the introduction of
Konhe(Vm), differences between nonlinear RTM and CA
models have not yet been investigated. The CA and RTM
models differ in their interpretation of damaged cochlear
responses. In CA models, the loss of sensitivity of the
cochlea with damage is interpreted as a loss of CA gain
while in passive models, the loss of sensitivity has been
interpreted as a 2:1 change in the BM stiffness [3.122].

The discovery of OHC motility demonstrates the
existence of a potential source of mechanical energy
within the cochlear partition which is suitably positioned
to influence vibrations of the basilar membrane. It is
still an open question whether this source of energy is
sufficient to power a CA at high frequencies.

One possible advantage of the CA is that of improv-
ing the signal-to-noise ratio in front of the IHC detector.
A weakness of the CA models has been their lack of
specificity about the physical realization of the active el-
ements. Until we have a detailed physical representation
for the CA, RTM models have the advantage of being
simpler and more explicit.

The discovery by He and Dallos that the OHC soma
stiffness is voltage dependent is an exciting development
for the NL passive RTM model, as it greatly simplifies
the implementation of the physical model. The RTM
model has been in disfavor because many feel it does
not account for basilar membrane tuning. This criticism
is largely due to the experimental results of physiologists
who have measured the BM—ear canal transfer function,
and found the tuning of BM velocity to be similar to
neural threshold response data. Much of the experimen-
tal BM data, however, are not convincing on this point,
with the BM slope S» (Fig. 3.4b) generally being much
smaller than that of neural responses [3.97]. The ques-
tion of whether an active model is required to simulate
measured BM responses is still being debated.

Better estimates of the amplitude of cilia bundle
displacement at a given sound pressure level directly ad-
dress the sensitivity questions. If the estimate of Russell
of 30mV /degree is correct [3.123], then the cochlear
sensitivity question may be resolved by having very
sensitive detectors. Also, better estimates are needed

3.3 Neural Masking

When modeling human psychophysics one must care-
fully distinguish the external physical variables, which

of the ratio of the BM frequency response to the IHC
frequency response, both at high and low frequencies.
Rhode’s approach of using the slopes of Fig. 3.4b rather
than traditional ad hoc bandwidth measures, is a useful
tool in this regard. The bandwidth 10dB down rela-
tive to the peak has been popular, but arbitrary and thus
poor, criterion in cochlear research. A second, some-
what better, bandwidth measure is Fletcher’s equivalent
rectangular bandwidth discussed in Allen [3.10].

Summary. This section has reviewed what we know
about the cochlea. The Basics section reviews the na-
ture of modeling and briefly describes the anatomy of
the inner ear, and the function of inner and outer hair
cells. In Sect. 3.1.2 we reviewed the history of cochlear
modeling. The Wegel and Lane paper was a key paper
that introduced the first detailed view of masking, and
in the same paper introduced the first modern cochlear
model Fig. 3.2b. We presented the basic tools of cochlear
modeling, impedance, and introduced the transmission
matrix method (two-port analysis). We describe how
these models work in intuitive terms, including how the
basilar membrane may be treated as having a frequency
dependent acoustic hole. The location of the hole, as
a function of frequency, is called the cochlear map. This
hole keeps fluid from flowing beyond a certain point,
producing the cochlear traveling wave.

We reviewed and summarized the NL measures of
cochlear response. Since these data are not fully under-
stood, and have not been adequately modeled, this is
the most difficult section. However it is worth the effort
to understand these extensive data and to appreciate the
various relations between them, such as the close paral-
lel between two-tone suppression and the upward spread
of masking, and between loudness recruitment and outer
hair cell damage.

We review several models of the hair cell, including
forward and reverse transduction. Some of this mater-
ial is recently published, and the view of these models
could easily change over the next few years as we better
understand reverse transduction.

Finally in Sect.3.2.3 we reviewed the basics of
micromechanics. We have presented the two basic types
of models, passive and active models, with a critical
review of each.

we call @ variables, from the internal psychophysical
variables, or ¥ variables. It may be helpful to note that

3.3 Neural Masking 45

€°¢|vued



46

€°¢|vued

Part A

Production, Perception, and Modeling of Speech

@ and ¥ sound similar to the initial syllable of the words
physical and psychological, respectively [3.124]. Psy-
chophysical modeling seeks a transformation from the
@ domain to the ¥ domain. The @ intensity of a sound is
easily quantified by direct measurement. The ¥ intensity
is the loudness. The idea that loudness could be quan-
tified was first suggested by Fechner [3.125] in 1860,
who raised the question of the quantitative transforma-
tion between the physical and psychophysical intensity.
For a recent review of this problem, and a brief sum-
mary of its long history, see Schlauch et al. [3.126]. This
section is based on an earlier report by Allen [3.79], and
Allen and Neely [3.127].

An increment in the intensity of a sound that results
in a just noticeable difference is called an intensity JND.
Fechner suggested quantifying the intensity-loudness
growth transformation by counting the number of the
loudness JNDs between two intensity values. However,
after many years of work, the details of the relation-
ship between loudness and the intensity JNDs remain
unclear [3.128-130].

The contribution of Allen and Neely [3.127] and
Allen [3.79] is that it takes a new view of the prob-
lem of the intensity JND and loudness by merging
the 1953 Fletcher neural excitation pattern model of
loudness [3.10, 131] with auditory signal detection the-
ory [3.132].

It is generally accepted that the intensity JND is
the physical correlate of the psychological-domain un-
certainty corresponding to the psychological intensity
representation of a signal. Along these lines, for long
duration pure tones and wide-band noise, we assume
that the ¥-domain intensity is the loudness, and that
the loudness JND results from loudness noise due to its
stochastic representation.

To model the intensity JND we must define a deci-
sion variable associated with loudness and its random
fluctuations. We call this loudness random decision vari-
able the single-trial loudness. Accordingly we define
the loudness and the loudness JND in terms of the
first and second moments of the single-trial loudness,
that is the mean and variance of the distribution of the
single-trial loudness decision variable. We also define
the ratio of the mean loudness to the loudness stan-
dard deviation as the loudness signal-to-noise ratio,
SNRy.

Our ultimate goal in this work is to use signal detec-
tion theory to unify masking and the JND, following
the 1947 outline of this problem by Miller [3.133].
Tonal data follows the near miss to Weber’s law
(thus does not obey Weber’s law), while the wide-

band noise data does obey Weber’s law. We will
show that the transformation of the ®-domain (in-
tensity) JND data (both tone and noise) into the ¥
domain (loudness) unifies these two types of JND
data, since SNRp.(L) is the same for both the tone
and noise cases. To help understand these results,
we introduce the concept of a near miss to Stevens’
law, which we show cancels the near-miss to We-
ber’s law, giving the invariance in SNRy, for the tone
case [3.127]. This work has applications in speech and
audio coding.

For the case of tones, we have chosen to illus-
trate our theoretical work using the classical intensity
modulation measurements of Riesz [3.75] who meas-
ured the intensity JND using small, low-frequency
(3 Hz), sinusoidal modulation of tones. Modern methods
generally use pulsed tones which are turned on and
off somewhat abruptly, to make them suitable for
a two-alternative, forced-choice (2AFC) paradigm.
This transient could trigger cochlear forward masking.
Riesz’s modulation method has a distinct advan-
tage for characterizing the internal signal detection
process, because it maintains a nearly steady-state
small-signal condition within the auditory system,
minimizing any cochlear forward masking compo-
nent. The interpretation of intensity JNDs is therefore
simplified since underlying stochastic processes are
stationary.

An outline of this neural masking section is as fol-
lows. After some basic definitions in Sect.3.3.1 and
a review of historical models (e.g., Weber and Fech-
ner), in Sect.3.3.2, we explore issues surrounding the
relation between the intensity JND and loudness, for
the special cases of tones in quiet and for wide-band
noise. First, we look at formulae for counting the num-
ber of intensity and loudness JNDs and we use these
formulae, together with decision-theoretic principles,
to relate loudness to the intensity JND. We then re-
view the loudness-JND theory developed by Hellman
and Hellman [3.134], which provided the inspiration
for the present work. Next, we empirically estimate the
loudness SNR, defined as the mean loudness over the
loudness variance, and proportional to L /AL, as a func-
tion of both intensity and loudness, using the tonal JND
data of Riesz [3.75] and the loudness growth function of
Fletcher and Munson [3.41]. We then repeat this calcu-
lation for Miller’s wide-band noise JND and loudness
data. Finally we propose a model of loudness that may be
used to compute the IND. This model merges Fletcher’s
neural excitation pattern model of loudness with signal
detection theory.
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3.3.1 Basic Definitions

We need a flexible yet clear notation that accounts for
important time fluctuations and modulations that are
present in the signals, such as beats and gated signals.
We include a definition of masked threshold because we
view the intensity JND as a special case of the masked
threshold [3.133]. We include a definition of beats so
that we can discuss their influence on Riesz’s method
for the measurement of intensity JNDs.

Intensity. In the time domain, it is common to define
the @ intensity in terms of the time-integrated squared
signal pressure s(¢), namely,

t
Is(t)EL / s> (r)dt , (3.16)
ocT
t—T

where T is the integration time and oc is the specific
acoustic impedance of air. The intensity level is defined
as I/ Liet, and the sound pressure level as |s|/sref, Wwhere
the reference intensity is It Or 10710 nW/ cm? and the
reference pressure spef = 20 wWPa. These two reference
levels are equivalent at only one temperature, but both
seem to be in use. Equivalence of the pressure and in-
tensity references requires that pc =40cgs Rayls. At
standard atmospheric pressure, this is only true when
the temperature is about 39 °C. Such levels are typically
expressed in dB units.

Intensity of Masker plus Probe. The JND is sometimes
called self-masking, to reflect the view that it is deter-
mined by the internal noise of the auditory system. To
model the JND it is useful to define a more-general meas-
ure called the masked threshold, which is defined in the
@ domain in terms of a nonnegative pressure scale fac-
tor @ applied to the probe signal p(¢) thatis then added to
the masking pressure signal m(¢). The relative intensity
of the probe and masker is varied by changing «. Setting
s(t) = m(t)+ap(t), we denote the combined intensity
as

t
1
Ingp(t.0) = — / () +ap®Pdt.  (3.17)
ocT
t—T

The unscaled probe signal p(¢) is chosen to have the
same long-term average intensity as the masker m(t),
defined as 7. Let I1,,(7) be the intensity of the masker with
no probe (@ = 0), and I,(7, ) = o1 be the intensity of
the scaled probe signal with no masker. Thus

I = Ingp(t, 0) = In(1) = (1, 1) .

Because of small fluctuations in Iy, and I, due to the
finite integration time T, this equality cannot be ex-
actly true. We are specifically ignoring these small
rapid fluctuations — when these rapid fluctuations are
important, our conclusions and model results must be
reformulated.

Beats. Rapid fluctuations having frequency compo-
nents outside the bandwidth of the period Tiecond
rectangular integration window are very small and
will be ignored (7 is assumed to be large). Accord-
ingly we drop the time dependence in terms I, and
Ip. The beats between m(t) and p(t) of these signals
are within a common critical band. Slowly varying
correlations, between the probe and masker having
frequency components within the bandwidth of the in-
tegration window, may not be ignored, as with beats
between two tones separated in frequency by a few
Hz. Accordingly we keep the time dependence in the
term I p(, o) and other slow—beating time dependent
terms. In the @ domain these beats are accounted for
as a probe-masker correlation function ppm(¢) [3.132,
p. 213].

Intensity Increment §1(t,e). Expanding (3.17) and solv-
ing for the intensity increment 81 we find

SI(t, &) = Imyp(t, @) — I = [2apmp() +* |1 ,
(3.18)

where
t

1
)= —— Hp(t)det 3.19
Pmp( ) ocTI / m(t)p(t) ( )
—T
defines a normalized cross-correlation function between

the masker and the probe. The correlation function must
lie between —1 and 1.

Detection Threshold. As the probe-to-masker ratio « is
increased from zero, the probe can eventually be de-
tected. We specify the probe detection threshold as oy,
where the asterisk indicates the threshold value of «
where a subject can discriminate intensity Iiynip(t, o)
from intensity /y4p(t, 0) 50% of the time, corrected for
chance (i. e., obtain a 75% correct score in a direct com-
parison of the two signals [3.132, p. 129]). The quantity
a(t, I) is the probe to masker root-mean-square (RMS)
pressure ratio at the detection threshold. It is a function
of the masker intensity / and, depending on the exper-
imental setup, time. o, summarizes the experimental
measurements.
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Masked Threshold Intensity. When ppnp =0, the
masked threshold intensity is defined in terms of o, as

I = Ip(e) = a1,

which is the threshold intensity of the probe in the
presence of the masker.

The masked threshold intensity is a function of
the stimulus modulation parameters. For example, tone
maskers and narrow-band noise maskers of equal inten-
sity, and therefore approximately equal loudness, give
masked thresholds that are about 20 dB different [3.135].
As a second example, when using the method of
beats [3.75], the just—detectable modulation depends on
the beat frequency. With modern 2AFC methods, the
signals are usually gated on and off (100% modula-
tion) [3.136]. According to Stevens and Davis [3.137,
p. 142]

A gradual transition, such as the sinusoidal variation
used by Riesz, is less easy to detect than an abrupt
transition; but, as already suggested, an abrupt
transition may involve the production of unwanted
transients.

One must conclude that the relative masked threshold
[i.e., a4 (2, I)]is a function of the modulation conditions,
and depends on p, and therefore 7'.

¥ -Domain Temporal Resolution. When modeling
time-varying psychological decision variables, the rel-
evant integration time 7 is not the duration defined by
the @ intensity (3.16), rather the integration time is de-
termined in the ¥ domain. This important ¥-domain
model parameter is called loudness temporal integra-
tion [3.138]. It was first explicitly modeled by Munson
in 1947 [3.139].

The @-domain temporal resolution (7') is critical to
the definition of the JND in Riesz’s experiment because
it determines the measured intensity of the beats. The V-
domain temporal resolution plays a different role. Beats
cannot be heard if they are faster than, and therefore fil-
tered out by, the ¥ domain response. The ¥-domain
temporal resolution also impacts results for gated stim-
uli, such as in the 2AFC experiment, though its role is
poorly understood in this case. To model the JND as
measured by Riesz’s method of just-detectable beats,
one must know the ¥-domain resolution duration to
calculate the probe—masker effective correlation pmp(7)
in the ¥ domain. It may be more practical to estimate
the ¥ domain resolution from experiments that esti-
mate the degree of correlation, as determined by the

beat modulation detection threshold as a function of the
beat frequency fp.

In summary, even though Riesz’s modulation detec-
tion experiment is technically a masking task, we treat it,
following Riesz [3.75], Miller [3.133], and Littler [3.16],
as characterizing the intensity JND. It follows that the ¥ -
domain temporal resolution plays a key role in intensity
JND and masking models.

The Intensity JIND Al. The intensity just-noticeable dif-
ference (JND) is

AI(D) =38(t, ay) , (3.20)
the intensity increment at the masked threshold, for
the special case where the probe signal is equal to the
masking signal (p(z) = m(t)). From (3.18) with « set to
threshold o, and pmp(t) =1

AI(I) = Qo +a2)I . (3.21)
It is traditional to define the intensity JND to be a func-
tion of /, rather than a function of «(/), as we have done
here. We shall treat both notations as equivalent [i.e.,
AI(l) or Al(a)].

An important alternative definition for the special
case of the pure-tone JND is to let the masker be a pure
tone, and let the probe be a pure tone of a slightly dif-
ferent frequency (e.g., a beat frequency difference of
fo =3 Hz). This was the definition used by Riesz [3.75].
Beats are heard at fy, = 3 Hz, and assuming the period of
3 Hz is within the passband of the ¥ temporal resolution
window, pmp(?) = sin (27 fyt). Thus

AI(t, I) = |20 sin 27 fot) + o)1 . (3.22)
If the beat period is less than the ¥ temporal resolu-
tion window, the beats are filtered out by the auditory
brain (the effective pmy is small) and we do not hear the
beats. In this case AI(]) = ai[ . This model needs to be
tested [3.139].

Internal Noise. It is widely accepted that the pure-tone
intensity JND is determined by the internal noise of
the auditory system [3.140, 141], and that AT is pro-
portional to the standard deviation of the ¥-domain
decision variable that is being discriminated in the in-
tensity detection task, reflected back into the @ domain.
The usual assumption, from signal detection theory, is
that Al = d'oy, where d’ is defined as the proportion-
ality between the change in intensity and the variance
d' = Al/oy. Threshold is typically when d’ = 1 but can



Nonlinear Cochlear Signal Processing and Masking in Speech Perception

depend on the the experimental design; oy is the inten-
sity standard deviation of the @-domain intensity due to
¥ -domain auditory noise [3.15,17,127].

Hearing Threshold. The hearing threshold (or un-
masked threshold) intensity may be defined as the
intensity corresponding to the first (lowest intensity)
JND. The hearing threshold is represented as II’,‘(O) to
indicate the probe intensity when the masker intensity
is small (i.e., I — 0). It is believed that internal noise is
responsible for the hearing threshold.

Loudness L. The loudness L of a sound is the ¥ in-
tensity. The loudness growth function L(I) depends on
the stimulus conditions. For example L(I) for a tone
and for wide-band noise are not the same functions.
Likewise the loudness growth function for a 100 ms
tone and a 1s tone differ. When defining a loudness
scale it is traditional to specify the intensity, frequency,
and duration of a tone such that the loudness growth
function is one [L([ief, fref, Irer) = 1 defines a loud-
ness scale]. For the sone scale, the reference signal is
a Irer =40dB — SPL tone at fif = 1 kHz with dura-
tion T = 1s. For Fletcher’s LU scale the reference
intensity is the hearing threshold, which means that
1 sone =975LU [3.42] for a normal hearing person.
Fletcher’s LU loudness scale seems a more-natural scale
than the sone scale used in the American National Stan-
dards Institute (ANSI) and International Organization
for Standardization (ISO) standards.

The Single=Trial Loudness. A fundamental postulate
of psychophysics is that all decision variables (i.e., ¥
variables) are random variables, drawn from some prob-
ability space [3.132, Chap. 5]. For early discussions of
this point see Montgomery [3.142] and p. 144 of Stevens
and Davis [3.137]. To clearly indicate the distinction be-
tween random and nonrandom variables, a tilde (~) is
used to indicate a random variable. As a mnemonic,
we can think of the ~ as a wiggle associated with
randomness.

We define the loudness decision variable as the
single-trial loudness L, which is the sample loudness
heard on each stimulus presentation. The loudness L is
then the expected value of the single-trial loudness L

L(H=EL). (3.23)
The second moment of the single-trial loudness
ol =&(L —L)> (3.24)

defines the loudness variance af and standard deviation
oL.

Derived Definitions
The definitions given above cover the basic variables.
However many alternative forms (various normaliza-
tions) of these variables are used in the literature. These
derived variables were frequently formed with the hope
of finding an invariance in the data. This could be viewed
as a form of modeling exercise that has largely failed
(e.g., the near miss to Weber’s law), and the shear num-
ber of combinations has led to serious confusions [3.138,
p- 152]. Each normalized variable is usually expressed
in dB, adding an additional unnecessary layer of con-
fusion to the picture. For example, masking is defined
as the masked threshold normalized by the unmasked
(quiet) threshold, namely

_ L)
15(0)

It is typically quoted in dB re sensation level (dB — SL).
The intensity JND is frequently expressed as a relative
JND called the Weber fraction defined by

J(I)Eﬂ. (3.25)
From the signal detection theory premise that
Al =d'oy [3.17], J is just the reciprocal of an effective
signal-to-noise ratio defined as

1
SNRy(]) = m (3.26)
1
since
d/
J :d’? = SNR. (3.27)
|

One conceptual difficulty with the Weber fraction J
is that it is an effective signal-to-noise ratio, expressed
in the @ (physical) domain, but determined by a ¥
(psychophysical) domain mechanism (internal noise),
as may be seen from Fig. 3.11.

Loudness JND AL. Any suprathreshold ¥-domain incre-
ments may be quantified by corresponding @ domain
increments. The loudness IND AL(I) is defined as the
change in loudness L([I) corresponding to the intensity
JND AI(I). While it is not possible to measure AL
directly, we assume that we may expand the loudness
function in a Taylor series (Fig. 3.11), giving

dL
LI +AD = L()+ Al 7| +HOT,
1

where HOT represents higher-order terms, which we
shall ignore. If we solve for

AL=LI+AI—L{) (3.28)
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Log(loudness)
v _ dlog(L)
VS dlogh T N\
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PIN model:
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Fechner's
hypothesis:
AL = const.
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‘ Weber's law: A/l = const. ‘ Log (intensity) (dB)

Fig.3.11 Summary of all historical ideas about psy-
chophysics and the relations between the @ and ¥ variables.
Along the abscissa we have the physical variable, intensity,
and along the ordinate, the psychological variable loud-
ness. The curve represents the loudness, on a log-intensity
log-loudness set of scales. A JND in loudness is shown as
AL and it depends on loudness, as described by the Poisson
internal noise (PIN) model shown in the box on the left.
Fechner assumed that AL was constant, which we now
know to be incorrect. The loudness JND is reflected back
into the physical domain as an intensity JND A/, which
also depends on level. Weber’s law, is therefore not true
in general (but is approximately true for wide-band noise).
Our analysis shows that the loudness SNR and the intensity
SNR must be related by the slope of the loudness growth
function, as given by (3.32). These relations are verified in
Fig.3.12, as discussed in detail in Allen and Neely [3.127]

we find

dL
AL= Al—
d/

. (3.29)
I

We call this expression the small-JND approximation.
The above shows that the loudness JIND A L([) is related
to the intensity JND A(I) by the slope of the loudness
function, evaluated at intensity /. According to the signal
detection model, the standard deviation of the single-trial

loudness is proportional to the loudness JND, namely
AL=dor . (3.30)

A more explicit way of expressing this assumption is
AL o1,

Al o
where d’ in both the @ and ¥ domains is the same and
thus cancels.

(3.31)

Loudness SNR. In a manner analogous to the @®-do-
main SNRj, we define the ¥-domain loudness SNR as
SNRy (L) = L/or(L). Given (3.30), it follows that

SNR; = vSNRy, (3.32)

where v is the slope of the log-loudness function with
respect to log-intensity. If we express the loudness as
a power law

Lh=1"

and let x =1log(/) and y =log(L), then y = vx. If the

change of v with respect to dB —SPL is small, then

dy/dx ~ Ay/Ax =~ v. Since dlog(y) = dy/y we get
AL Al
— =v—.

L 1
Equation (3.32) is important because

(3.33)

1. it tells us how to relate the SNRs between the @ and
Y domains,

2. every term is dimensionless,

3. the equation is simple, since v~ 1/3 is approxi-
mately constant above 40dB —SL (i.e., Stevens’
law), and because

4. we are used to seeing and thinking of loudness, in-
tensity, and the SNR, on log scales, and v as the slope
on log—log scales.

Counting JNDs. While the concept of counting JNDs
has been frequently discussed in the literature, starting
with Fechner, unfortunately the actual counting formula
(i.e., the equation) is rarely provided. As a result of a lit-
erature search, we found the formula in Nutting [3.143],
Fletcher [3.21], Wegel and Lane [3.20], Riesz [3.75],
Fletcher [3.144], and Miller [3.133].

To derive the JND counting formula, (3.29) is rewrit-
ten as

dl  dL

Al AL’
Integrating over an interval gives the total number of
intensity JNDs

I Ly
d/ dL
Np=| —=[ —,
Al AL
I L,

where L1 = L(I1) and L, = L(/I>). Each integral counts
the total number of JNDs in a different way between [
and I [3.75,144]. The number of INDs must be the same
regardless of the domain (i. e., the abscissa variable), @
orY.

(3.34)

(3.35)
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3.3.2 Empirical Models

This section reviews some earlier empirical models of
the JND and its relation to loudness relevant to our
development.

Weber's Law
In 1846 it was suggested by Weber that J([) is indepen-
dent of /. According to (3.21) and (3.25)

J(I) =20, +a .

If J is constant, then «, must be constant, which
we denote by a(/) (we strike out I to indicate that
oy 1s not a function of intensity). This expectation,
which is called Weber’s law [3.145], has been success-
fully applied to many human perceptions. We refer the
reader to the helpful and detailed review of these ques-
tions by Viemeister [3.129], Johnson et al. [3.146], and
Moore [3.147].

Somewhat frustrating is the empirical observation
that J(7) is not constant for the most elementary case of
a pure tone [3.75, 136]. This observation is referred to
as the near miss to Weber’s law [3.148].

Weber’s law does make one simple prediction that is
potentially important. From (3.35) along with Weber’s
law Jo = J( 1) we see that the formula for the number
of JNDs is

I

d/ 1 I
Nip = —=—1 — 1. 3.36
12 /JOI 7o n(h) (3.36)
I

It remains unexplained why Weber’s law holds as
well as it does [3.149, 150, p. 721] (it holds approxi-
mately for the case of wide band noise), or even why
it holds at all. Given the complex and NL nature of the
transformation between the @ and ¥ domains, coupled
with the belief that the noise source is in the ¥ domain,
it seems unreasonable that a law as simple as Weber’s
law could hold in any general way. A transformation of
the JND from the @ domain to the ¥ domain greatly
clarifies the situation.

Fechner's Postulate

In 1860 Fechner postulated that the loudness IND AL ()
is a constant [3.125,130, 151, 152]. We are only consid-
ering the auditory case of Fechner’s more general theory.
We shall indicate such a constancy with respect to I as
AL(A) (as before, we strike out the I to indicate that
AL is not a function of intensity). As first reported by
Stevens [3.153], we shall show that Fechner’s postulate
is not generally true.

The Weber—Fechner Law
It is frequently stated [3.152] that Fechner’s postulate
(AL(A)) and Weber’s law (Jo = J([)) lead to the con-
clusion that the difference in loudness between any two
intensities /1 and I, is proportional to the logarithm of
the ratio of the two intensities, namely

L) = L) _ ilog(’i) . (337
AL Jo I

This is easily seen by eliminating Nip from (3.36)
and by assuming Weber’s law and Fechner’s hypoth-
esis. This result is called Fechner’s law (also called
the Weber—Fechner law). It is not true because of the
faulty assumptions, Weber’s law and Fechner’s postu-
late.

3.3.3 Models of the JND

Starting in 1923, Fletcher and Steinberg studied loud-
ness coding of pure tones, noise, and speech [3.21,
154-156], and proposed that loudness was related to
neural spike count [3.41], and even provided detailed
estimates of the relation between the number of spikes
and the loudness in sones [3.42, p. 271]. In 1943 De
Vries first introduced a photon-counting Poisson pro-
cess model as a theoretical basis for the threshold
of vision [3.157]. Siebert [3.140] proposed that Pois-
son point-process noise, resulting from the neural rate
code, acts as the internal noise that limits the fre-
quency JND [3.136, 150]. A few years later [3.158],
and independently [3.159] McGill and Goldberg [3.160]
proposed that the Poisson internal noise (PIN) model
might account for the intensity JND, but they did not
find this to produce a reasonable loudness growth func-
tion. Hellman and Hellman [3.134] further refined the
argument that Poisson noise may be used to relate the
loudness growth to the intensity JND, and they found
good agreement between the JND and realistic loudness
functions.

Given Poisson noise, the variance is equal to the
mean, thus

AL(L) x VL. (3.38)

This may also be rewritten as of o L. We would expect
this to hold if the assumptions of McGill [3.148] (i.e.,
the PIN model) are valid.
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Fig.3.12a=d In 1947 Miller measured the JNDy and the loudness level for two subjects using wide-band modulated
noise (0.15-7kHz) for levels between 3 and 100dB — SL. The noise (dashed line) and pure tone (solid line) loudness
are shown in (a). The similarity between AL/L derived from the loudness curves for pure tones and for noise provide an
almost perfect fit to the SPIN model which results from assuming the noise is neural point-process noise. See the text for
a summary of these results. The direct derivation of AL based on pure tone JND and loudness data from Miller [3.133],

Riesz [3.75], Fletcher and Munson [3.41].

In the following we directly compare the loudness—
growth function of Fletcher and Munson to the number
of JNDs Nj> from Riesz [3.75,127] to estimate AL /L.

3.3.4 A Direct Estimate of the Loudness JND

Given its importance, it is important to estimate AL
directly from its definition (3.28), using Riesz’s AI([])
and Fletcher and Munson’s 1933 estimate of L(7).

Miller’s 1947 famous JND paper includes wide-
band-noise loudness-level results. We transformed these
JND data to loudness using Fletcher and Munson [3.41]
reference curve (i. e., Fig. 3.12a).

Loudness Growth, Recruitment, and the OHC
In 1924 Fletcher and Steinberg published an important
paper on the measurement of the loudness of speech sig-
nals [3.155]. In this paper, when describing the growth
of loudness, the authors state

the use of the above formula involved a summation
of the cube root of the energy rather than the energy.

This cube-root dependence had first been described by
Fletcher the year before [3.21].

In 1930 Fletcher [3.27] postulated that there was
a monotonic relationship between central nerve firings
rates and loudness. Given a tonal stimulus at the ear
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Fig.3.13a-d Test of the SPIN model against the classic results of Riesz [3.75], Jesteadt et al. [3.136]. Test of the model
derived on the /eft based on a comparison between loudness data and intensity JND data at 1 kHz, using the SPIN model

drum, Stevens’ law says that the loudness is given by
L=L(fx,DxI", (3.39)

where (f, x, I) are the frequency, place, and intensity of
the tone, respectively. The exponent v has been experi-
mentally established to be in the range between 1/4 and
1/3 for long duration pure tones at 1 kHz. Fletcher and
Munson [3.41] found v &~ 1/4 at high intensities and ap-
proximately 1 near threshold. Although apparently it has
not been adequately documented, v seems to be close to
1 for the recruiting ear [3.15].

Recruitment. What is the source of Fletcher’s cube-
root loudness growth (i.e., Stevens’ law)? Today
we know that cochlear outer hair cells are the
source of the cube-root loudness growth observed by
Fletcher.

From noise trauma experiments on animals and hu-
mans, we may conclude that recruitment (abnormal
loudness growth) occurs in the cochlea [3.3,96]. Stein-
berg and Gardner described such a loss as a variable
loss (i. e., sensory neural loss) and partial recruitment as
amixed loss (i. e., having a conductive component) [3.3,
161]. They and Fowler verified the conductive compo-
nent by estimating the air—bone gap. In a comment to
Fowler’s original presentation on loudness recruitment
in 1937, the famous anatomist Lorente de N¢ theorized
that recruitment is due to hair cell damage [3.14]. Stein-
berg and Gardner clearly understood recruitment, as is
indicated in the following quote [3.3, p. 20]

Owing to the expanding action of this type of loss
it would be necessary to introduce a corresponding
compression in the amplifier in order to produce the
same amplification at all levels.
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This compression/loss model of hearing and hear-
ing loss, along with the loudness models of Fletcher
and Munson [3.41], are basic to an eventual quantita-
tive understanding of NL cochlear signal processing and
the cochlea’s role in detection, masking and loudness in
normal and impaired ears. The work by Fletcher [3.162]
and Steinberg and Gardner [3.3], and work on modeling
hearing loss and recruitment [3.122] support this view.

In summary, many studies conclude that the cube-
root loudness growth starts with the NL compression
of basilar membrane motion due to stimulus-dependent
voltage changes within the OHC.

3.3.5 Determination of the Loudness SNR

In Fig. 3.12 we show a summary of L(1), v(I), J(I) and
AL/L =d'/SNRL for the tone and noise data.

The pure-tone and wide-band noise JND results may
be summarized in terms of the loudness SNRy (L) data
shown in Fig. 3.12d where we show AL/L = d'/SNRy,
as a function of loudness.

For noise below 55dB—SL (L < 5000LU) the
loudness signal-to-noise ratio SNRy, = L /or. decreases
as the square root of the loudness. For a loudness greater
than 5000LU (N =~ 5sones), AL/L =~ 0.025fn both
tones and noise (Fig. 3.12d)

In the lower-right panel (Fig.3.12d) we provide
a functional summary of AL /L for both tones and noise
with the light solid line described by

AL(L)
L

where h = +/2 and Lo =5000LU (= 5sone). We call
this relation the saturated Poisson internal noise (SPIN)
model. With these parameter values, (3.40) appears to
be a lower bound on the relative loudness JNDy, for both
tones and noise. From (3.33) AL/L = v(I)J(I). Note
how the product of v(7) and J([) is close to a constant
for tones above 5000 LU.

In Fig.3.12b the second top panel shows the ex-
ponent v(I) for both Fletcher and Munson’s and
Miller’s loudness growth function. In the lower-left
panel (Fig.3.12c) we see AI/I versus I for Miller’s
subjects, Miller’s equation, and Riesz’s JND equation.

(3.10)

= h[min(L, Lo)]""/? ,

Near miss to Stevens' Law
For tones the intensity exponent v(/) varies systemati-
cally between 0.3 and 0.4 above 50 dB — SL, as shown
by the solid line in the upper-right panel of Fig.3.12b.
We have highlighted this change in the power law with
intensity for a 1 kHz tone in the upper-right panel with

a light solid straight line. It is logical to call this effect
the near miss to Stevens’ law, since it cancels the near
miss to Weber’s law, giving a constant relative loudness
JND AL/L for tones.

Figure 3.13a shows the Fletcher—Munson loudness
data from Table III in [3.41]. The upper-right panel
(Fig.3.13b) is the slope of the loudness with respect
to intensity (LU cm?/W).In the lower-right (Fig. 3.13d)
we compare the SPIN model relative JND (3.43) (with
h =3.0), and the relative JND computed from the
Jesteadt et al. [3.136] formula (dashed line) and data
from their Table B-I (circles). They measured the JND
using pulsed tones for levels between 5 and 80dB.
The Jesteadt et al. data were taken with gated stimuli
(100% modulation) and 2AFC methods. It is expected
that the experimental method would lead to a differ-
ent value of & than the valued required for Riesz’s
data set. The discrepancy between 0 and 20dB may
be due to the 100% modulation for these stimuli. The
fit from 20 to 80dB —SL is less than a 5% maxi-
mum error, and much less in terms of RMS error.
Note the similarity in slope between the model and the
data.

3.3.6 Weber-Fraction Formula

In this section we derive the relation between the Weber
fraction J(/) given the loudness L(/) starting from the

small-JND approximation
AL =AIL'(I), (3.41)

where L'(I) = dL/dI. If we solve this equation for A
and divide by I we find

J(I) = AL_ AL (3.42)
1 I’ ’
Finally we substitute the SPIN model (3.40)
hL(I) . in
J()= L(I), L)~ '/? . 3.43
0)) TR0 [min(L(I), Lo)] (3.43)

This formula is the same as that derived by Hellman
and Hellman [3.134], when L < Lg. In Fig.3.13c we
plot (3.43) labeled SPIN-model with h = 2.4 and Lo =
10000 LU. For levels between 0 and 100dB — SL, the
SPIN model (solid curve) fit to Riesz’s data and Riesz’s
formula is excellent. Over this 100 dB range the curve
defined by the loudness function fits as well as the curve
defined by Riesz’s formula [3.127]. The excellent fit
gives us further confidence in the basic assumptions of
the model.
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3.4 Discussion and Summary

Inspired by the Poisson internal noise (PIN)-based
theory of Hellman and Hellman [3.134], we have de-
veloped a theoretical framework that can be used to
explore the relationship between the pure-tone loud-
ness and the intensity JND. The basic idea is to
combine Fletcher’s neural excitation response pattern
model of loudness with signal detection theory. We
defined a random decision variable called the single-
trial loudness. The mean of this random variable is
the loudness, while its standard deviation is propor-
tional to the loudness JND. We define the loudness
signal-to-noise ratio SNRy as the ratio of loudness
(the signal) to standard deviation (a measure of the
noise).

3.4.1 Model Validation

To evaluate the model we have compared the loudness
data of Fletcher and Munson [3.41] with the intensity
JND data of Riesz [3.75], for tones. A similar comparison
was made for noise using loudness and intensity JND
data from Miller [3.133]. We were able to unify the tone
and noise data by two equivalent methods in Fig. 3.12d.
Since the loudness SNR is proportional to the ratio of the
loudness to the IND L /AL, the SNR is also a piecewise
power-law function which we call the SPIN model. All
the data are in excellent agreement with the SPIN model,
providing support for the validity of this theory.
The above discussion has

® drawn out the fundamental nature of the JND,

® shown that the PIN loudness model holds below
5sone (5000 LU) (the solid line in the lower right
panel of Fig.3.11 below 5000 LU obeys the PIN
model, and the data for both tones and wide band
noise fall close to this line below 5000 LU) (one sone
is975LU[3.127,p.3631], thus S000LU = 5.13 LU.
From the loudness scale this corresponds to a 1 kHz
pure tone at 60 dB — SL),

® shown that above 5 sone the PIN model fails and the
loudness SNR remains constant.

3.4.2 The Noise Model

The SPIN Model
Equation (3.40) summarizes our results on the relative
loudness JND for both tones and noise. Using this for-
mula along with (3.32), the JND may be estimated for
tones and noise once the loudness has been determined,

by measurement, or by model. Fechner’s postulate, that
the loudness JND is constant, is not supported by our
analysis, in agreement with Stevens [3.153].

The PIN Model
The success of the PIN model is consistent with the
idea that the pure-tone loudness code is based on neural
discharge rate. This theory should apply between thresh-
old and moderate intensities (e.g., < 60dB) for frozen
stimuli where the JND is limited by internal noise.

CNS Noise
Above 60dB —SL we find that the loudness signal-
to-noise ratio saturated (Fig.3.12d) with a constant
loudness SNR between 30 and 50 for both the tone
and noise conditions, as summarized by Ekman’s
law [3.163]. We conclude that the Hellman and Hellman
theory must be modified to work above 5 sones.

Weber's Law

It is significant that, while both J(I) and v(I) vary
with intensity, the product is constant above 60 dB — SL.
Given that J = d’'/vSNRp, the saturation in SNRp, ex-
plains Weber’s law for wideband signals (since v and
SNR;, for that case are constant) as well as the near miss
to Weber’s law for tones, where v is not constant (the
near miss to Stevens’ law, Fig. 3.12a).

Generalization to Other Data

If or.(L, 1) depends on L, and is independent of I,
then the SNRp (L) should not depend on the nature
of the function L(/) (i.e., it should be true for any
L(I)). This prediction is supported by our analysis
summarized by (3.40). It will be interesting to see
how SNRp, depends on L and I for subjects hav-
ing a hearing-loss-induced recruitment, and how well
this theory explains other data in the literature, such
as loudness and JNDs with masking-induced recruit-
ment [3.126].

Conditions for Model Validity
To further test the SPIN model, several conditions must
be met. First the loudness and the JND must have been
measured under the same stimulus conditions. Second,
the internal noise must be the dominant factor in de-
termining the JND. This means that the stimuli must be
frozen (or have significant duration and bandwidth), and
the subjects well trained in the task. As the signal uncer-
tainty begins to dominate the internal noise, as it does in
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the cases of roving the stimulus, the intensity JND will
become independent of the loudness.

As discussed by Stevens and Davis [3.164, pp. 141-
143], JND data are quite sensitive to the modulation
conditions. The Riesz [3.75] and Munson [3.165] data
make an interesting comparison because they are taken
under steady—state conditions and are long duration tonal
signals. Both sets of experimental data (i.e., Riesz and
Munson) were taken in the same laboratory within a few
years of each other. In 1928 Wegel, Riesz, and Munson
were all members of Fletcher’s department. Riesz [3.75]
states that he used the same methods as Wegel and
Lane [3.20], and it is likely that Munson [3.165] did
as well.

Differences in the signal conditions are the most
likely explanation for the differences observed in the
intensity JND measurements of Riesz and Jesteadt
shown in Fig.3.13d. One difference between the data
of Riesz [3.75] and Jesteadt et al. [3.136] is that Riesz

References
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4. Perception of Speech and Sound

The transformation of acoustical signals into
auditory sensations can be characterized by psy-
chophysical quantities such as loudness, tonality,
or perceived pitch. The resolution limits of the
auditory system produce spectral and tempo-
ral masking phenomena and impose constraints
on the perception of amplitude modulations.
Binaural hearing (i. e., utilizing the acoustical dif-
ference across both ears) employs interaural time
and intensity differences to produce localization
and binaural unmasking phenomena such as the
binaural intelligibility level difference, i.e., the
speech reception threshold difference between
listening to speech in noise monaurally versus
listening with both ears.

The acoustical information available to the
listener for perceiving speech even under adverse
conditions can be characterized using the arti-
culation index, the speech transmission index, and
the speech intelligibility index. They can objectively
predict speech reception thresholds as a function
of spectral content, signal-to-noise ratio, and
preservation of amplitude modulations in the
speech waveform that enter the listener's ear. The
articulatory or phonetic information available to
and received by the listener can be characterized
by speech feature sets. Transinformation analysis
allows one to detect the relative transmission error
connected with each of these speech features. The
comparison across man and machine in speech

Acoustically produced speech is a very special sound
to our ears and brain. Humans are able to extract the
information contained in a spoken message extremely
efficiently even if the speech energy is lower than any
competing background sound. Hence, humans are able
to communicate acoustically even under adverse lis-
tening conditions, e.g., in a cafeteria. The process of
understanding speech can be subdivided into two stages.
First, an auditory pre-processing stage where the speech
sound is transformed into its internal representation in
the brain and special speech features are extracted (such
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recognition allows one to test hypotheses and
models of human speech perception. Conversely,
automatic speech recognition may be improved by
introducing human signal-processing principles
into machine processing algorithms.

as, e.g., acoustic energy in a certain frequency channel
as a function of time, or instantaneous pitch of a speech
sound). This process is assumed to be mainly bottom-up
with no special preference for speech sounds as com-
pared to other sounds. In other words, the information
contained in any of the speech features can be described
quite well by the acoustical contents of the input signal
to the ears. In a second step, speech pattern recognition
takes place under cognitive control where the internally
available speech cues are assembled by our brain to con-
vey the underlying message of the speech sound. This
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process is assumed to be top-down and cognitive con-
trolled, and is dependent on training, familiarity, and
attention. In the context of this handbook we primarily
consider the first step while assuming that the second
step operates in a nearly perfect way in normal hu-
man listeners, thus ignoring the vast field of cognitive
psychology, neuropsychology of speech, and psycholin-

4.1 Basic Psychoacoustic Quantities

The ear converts the temporally and spectrally fluctuat-
ing acoustic waveform of incoming speech and sound
into a stream of auditory percepts. The most important
dimensions of auditory perception are:

® the transformation of sound intensity into subjec-
tively perceived loudness,

® the transformation of major frequency components
of the sound into subjectively perceived pitch,

® the transformation of different temporal patterns and
rhythms into subjectively perceived fluctuations,

® the transformation of the spectro-temporal contents
of acoustic signals into subjectively perceived timbre
(which is not independent of the dimensions listed
above),

® the transformation of interaural disparities (i.e.,
differences across both ears) and spectro-temporal
contents of acoustical signals into the perceived
spatial location and spatial extent of an auditory
object.
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guistics. Instead, we consider the psychoacoustics of
transforming speech and other sounds into its internal
representation. We will concentrate on the acoustical
prerequisites of speech perception by measuring and
modeling the speech information contained in a sound
entering the ear, and finally the speech features that are
presumably used by our brain to recognize speech.

A basic prerequisite for being able to assign these dimen-
sions to a given sound is the ear’s ability to internally
separate acoustically superimposed sound sources into
different auditory streams or objects.

Psychoacoustics is the scientific discipline that
measures and models the relation between physical
acoustical quantities (e.g., the intensity of a sinusoidal
stimulus specified by sound pressure level, frequency,
and duration) and their respective subjective impression
(e.g., loudness, pitch, and perceived temporal extent).

4.1.1 Mapping of Intensity into Loudness

The absolute threshold in quiet conditions for a con-
tinuous sinusoid is highly dependent on the frequency
of the pure tone (Fig.4.1). It shows highest sensitivity
in the frequency region around 1kHz, which also car-
ries most speech information, and increases for low and
high frequencies. The normalized threshold in quiet at
1 kHz averaged over a large number of normal hearing
subjects is defined as 0 dB sound pressure level (SPL),
which corresponds to 20 pPa. As the level of the si-
nusoid increases, the perceived loudness increases with
approximately a doubling of perceived loudness with
a level increase by 10dB. All combinations of sound
pressure levels and frequencies of sinusoid that pro-
duce the same loudness as a reference 1kHz sinusoid
of a given level (in dB SPL) are denoted as isophones
(Fig.4.1). Hence, the loudness level (in phon) can only
be assigned to a sinusoid and not to a multi-frequency
mixture of sounds such as speech. This difference is
due to the fact that a broadband sound is perceived as
being louder than a narrow-band sound at the same

Fig. 4.1 Auditory field described by the threshold in quiet,
the isophones, and the uncomfortable listening level of
a continuous sinusoid as a function of tone frequency. Also
given is an average speech spectrum for male and female
speech plotted as a power density
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sound pressure level, which puts all of its energy
into one critical band. In order to express the speech
sound pressure level in a way that approximates the

human loudness impression, there are several options

available:

® Unweighted root-mean-square (RMS) level: the to-

Instantaneous

Specific loudness loudness in sone

Envelope/
Compression

Spectral
integration

Temporal
processing

Excitation pattern

Average loudness

tal signal intensity over the audio frequency range
is averaged within a certain time window (denoted
as slow, fast, or impulse, respectively, for standard-
ized sound level meters, or as the RMS value for
a digitized speech signal) and is expressed as dB
SPL, i.e., as 101log(//1Ip) where I denotes the sig-
nal intensity and [y denotes the reference signal

Fig. 4.2 Block diagram of a loudness model

intensity at auditory threshold. The usage of the dB
scale already takes into account the Weber—Fechner
law of psychophysics: roughly, a sound intensity
difference of 1 dB can be detected as the just notice-
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Fig. 4.3 Example plot of a speech sample, 1 kHz sinusoidal tone and a continuous speech-shaped noise sample represented
as a waveform, spectrogram, partial loudness pattern and resulting value in dB SPL, dBA and loudness in sone
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able intensity difference irrespective of the reference
level.

® A-weighted signal level: in order to account for the
higher sensitivity of the ear to mid-frequencies at
low levels, a spectral weighting function that ap-
proximates the isophones between 20 and 30 phon
(denoted as A-weighting) is applied to the spectral
components of the sound before they are summed up
to give the total sound level. The B- and C-weighting
curves are available for higher signal levels. Note
that the A-, B-, and C-weighted speech levels do not
differ too much from the unweighted speech level be-
cause the long-term average spectral shape of speech
includes most energy in the frequency range close
to 1 kHz where the weighting curves coincide. Since
none of these definitions include the psychophysi-
cal effect of loudness summation across frequency
and the temporal integration performed by our ear,
a speech sound at a given sound pressure level does
not necessarily produce the same perceived loudness
as a 1 kHz signal at this level.

® Loudness in sone. A more exact measure of per-
ceived loudness for sounds that differ in frequency
contents is given by a loudness calculation scheme
based on the sone scale. For a narrow-band sound
(like a sinusoid), the loudness in sone is expressed
as

Nlsone] = (I/Ip)* , (1.1)

where Iy is the reference intensity which is set to
40dB SPL for a sinusoid at 1kHz. Since the ex-
ponent « amounts to & 0.3 according to Stevens
and Zwicker [4.1], this yields a compression of
sound intensity similar to the nonlinear compression
in the human ear. For broadband sounds (such as
speech), the same compressive power law as given
above has to be applied to each critical frequency
band (see later) before the partial loudness contri-
butions are summed up across frequencies, which
results in the total loudness. The detailed loud-
ness calculation scheme (according to ISO 532b)
also accounts for the spread of spectral energy of
a narrow-band sound into adjacent frequency bands
known from cochlear physiology (Sect. 4.1.2). This
leakage of spectral energy can also be modeled
by a bank of appropriately shaped bandpass fil-
ters with a limited upper and lower spectral slope
(Fig.4.2).

To account for the time dependency of loudness percep-
tion, a temporal integration process is assumed that sums

up all intensity belonging to the same auditory object
within a period of approximately 200 ms. This roughly
models the effect that sounds with a constant sound level
are perceived as being louder if their duration increases
up to 200 ms while remaining constant in loudness if
the duration increases further. For fluctuating sounds
with fluctuating instantaneous loudness estimates, the
overall loudness impression is dominated by the respec-
tive loudness maxima. This can be well represented by
considering the 95 percentile loudness (i.e., the loud-
ness value that is exceeded for only 5% of the time) as
the average loudness value of a sequence of fluctuat-
ing sounds [4.1]. For illustration, Fig. 4.3 displays the
relation between waveform, spectrogram, partial loud-
ness pattern and resulting value in dB SPL, dBA and
loudness in sone for three different sounds.

4.1.2 Pitch

If the frequency of a sinusoid at low frequencies up
to 500 Hz is increased, the perceived tone height (or
pitch, also denoted as tonality) increases linearly with
frequency. At higher frequencies above 1 kHz, however,
the perceived pitch increases approximately logarith-
mically with increasing frequency. The combination
of both domains yields the psychophysical mel-scale
(Fig. 4.4).

This relation between frequency and subjective
frequency perception also represents the mapping of
frequencies on the basilar membrane (Sect.4.2.1 and

Tonality Z (bark) (ERB)
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Fig. 4.4 Tonality in bark and in mel over frequency (one
bark equals 100 mel). For comparison the (hypothetical)
place of maximum excitation on the basilar membrane and
the psychoacoustical frequency scale based on equivalent
rectangular bandwidth (ERB) is plotted
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Fig.4.4), where frequencies up to approximately 2 kHz
occupy half of the basilar membrane and those between
2kHz and 20 kHz the remaining half. The slope of this
function relates to the just noticeable difference (JND)
for frequency. The frequency JND is about 3 Hz for
frequencies below 500 Hz and about 0.6% for frequen-
cies above 1000 Hz, which is approximately 3 mel. This
value amounts to 1/30 of the frequency-dependent band-
width of the critical band which plays a role both in
loudness summation (see above) and in the psychophys-
ical effect of spectral masking. All spectral energy that
falls into one critical band is summed up and masks
(or disables) the detection of a sinusoidal tone centered
within that critical band as long as its level is below
this masked threshold. According to Zwicker et al. [4.2]
the auditory critical bandwidth is expressed in bark af-
ter the German physicist Barkhausen as a function of
frequency fp (in Hz) as:

1 bark = 100 mel
~ 100 Hz for frequencies below 500 Hz

~ 1/5 fo for frequencies above SO0 Hz .
(4.2)

The psychophysical frequency scale resulting from inte-
grating the critical bandwidth over frequency is denoted
as bark scale Z and can be approximated [4.4] by the
inverse function of the hyperbolical sinus

Z[bark] = 7 - arcsinh( f/650) (4.3)

More-refined measurements of spectral masking per-
formed by Moore and Patterson [4.5] resulted in the
equivalent rectangular bandwidth (ERB) as a measure
of the psychoacoustical critical bandwidth. It deviates
slightly from the bark scale, especially at low frequen-
cies (Fig.4.4).

It should be noted, however, that the pitch strength of
a sinusoid decreases steadily as the frequency increases.
A much more distinct pitch perception, which is also re-
lated to the pitch of musical instruments and the pitch
of voiced speech elements, can be perceived for a peri-
odic, broad band sound. For such complex sounds, the
term pitch should primarily be used to characterize the
(perceived) fundamental frequency while fone height or
tonality refers to the psychophysical equivalence of fre-
quency and coincides with pitch only for sinusoids. The
perception of pitch results both from temporal cues (i. e.,
the periodicity information within each critical band)
primarily at low frequencies, and from spectral pitch
cues, i.e., the regular harmonic structure/line spectrum
of a periodic sound primarily dominating at high fre-
quencies. Several theories exist about the perception

and relative importance of temporal and spectral pitch
cues [4.6]. For the perception of the pitch frequency
range of normal speech with fundamental frequencies
between approximately 80 Hz and 500 Hz, however, pre-
dominantly temporal pitch cues are exploited by our ear.
In this range, the pitch JND amounts to approximately
1Hz, i.e., better resolution occurs for the fundamental
frequency of a complex tone than for the audio frequency
of a single sinusoid at the fundamental frequency.

4.1.3 Temporal Analysis
and Modulation Perception

When perceiving complex sounds such as speech that
fluctuate in spectral contents across time, the ear can
roughly be modeled as a bank of critical-band wide
bandpass filters that transform the speech signal into
a number of narrow-band time signals at center fre-
quencies that are equally spaced across the bark scale.
Hence, the temporal analysis and resolution within each
of these frequency channels is of special importance

Basilar-membrane
filtering

Half-wave rectification

Low-pass filtering

Absolute threshold

Adaptation

Modulation
filterbank

T
55 8B ad
il

Optimal detector

Decision device

Fig. 4.5 Model of the effective signal processing in the
auditory system (after [4.3])
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a) Amplitude

for the overall function of our auditory system. For the
within-channel analysis, the following phenomena are
relevant.

® For center frequencies below ~ 1000 Hz, the tempo-
ral fine structure of the bandpass channel is coded
in the auditory nerve and is therefore accessible
to the brain. Hence the signal’s phase can be ex-
ploited during the central processing stages, e.g. for
a comparison between different frequency bands to
produce a difference in perceived timbre and for
a comparison between ears to produce a difference
in perceived localization as the phase characteristic
is changed. The latter results from extracting the in-
teraural phase difference of a sound signal arriving
from a point in space with a certain travel time to
either ear (see later).

® For center frequencies above 1kHz, primarily the
envelope of the signal is extracted and analyzed.
This makes the ear comparatively phase-deaf above
1 kHz. This envelope extraction is due to the asym-
metry between depolarization and hyperpolarization
at the synapses between inner hair cells and the
auditory nerve as well as due to the temporal inte-
gration observed in auditory nerve fibers (Chap. 3).
In auditory models this can be modeled to a good
approximation by a half-wave rectifier followed by
alow-pass filter with a cut-off frequency of ~ 1 kHz.

® The resulting envelope is subject to a compression
and adaptation stage that is required to map the
large dynamic range of auditory input signals to the
comparatively narrow dynamic range of the nervous
system. It is also necessary to set the operation point
of the respective further processing stages according
to some average value of the current input signal.
This compression and adaptation characteristic can

b) Masked threshold

Masker

Increase of
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duration
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/\ Quiet
0 0

|
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Fig. 4.6a,b Schematic plot of a masked threshold (a) of a short
probe tone in the presence of (or following) a masking noise burst
that extends across a variable amount of time (b) (simultaneous and
forward masking)

either be modeled as a logarithmic compression in
combination with the temporal leaky integrator using
an effective auditory temporal integration window
or, alternatively, by a series of nonlinear adaptation
loops (Fig. 4.5).

Such an adaptation stage produces the temporal inte-
gration effect already outlined in Sect.4.1.1, i.e., all
temporal energy belonging to the same acoustical object
is summed up within a time window with an effective
duration of up to 200 ms. In addition, temporal masking
is due to this integration or adaptation circuit. A short
probe signal (of an intensity higher than the threshold
intensity in quiet) will become inaudible in the presence
of a masking signal if the probe signal is presented either
before, during, or after the masker. Hence, the masker ex-
tends its masking property both back in time (backward
masking, extending to approximately S ms prior to the
onset of the masker), simultaneously with the probe sig-
nal (simultaneous masking, which becomes less efficient
if the masker duration is decreased below 200 ms) and
subsequent to the masker (forward masking, extending
up to 200 ms, Fig.4.6).

Note that forward masking in speech sounds can
prevent detection of soft consonant speech components
that are preceded by high-energy vocalic parts of speech.

An important further property of temporal analysis
in the auditory system is the perception and analysis
of the incoming temporal envelope fluctuations. While
slow amplitude modulations (modulation frequencies
below approximately 4 Hz) are primarily perceived as
temporal fluctuations, amplitude modulations between
approximately 8 Hz and 16 Hz produce a rolling, R-
type roughness percept. Modulations between 16 Hz
and approximately 80 Hz are perceived as roughness
of a sound. Higher modulation frequencies may be
perceived as spectral coloration of the input signal with-
out being resolved in the time domain by the auditory
system.

The auditory processing of sounds that differ in their
composition of modulation frequencies is best described
by the modulation spectrum concept which can be
modeled by a modulation filter bank (Fig. 4.5). The sep-
aration of different modulation frequencies into separate
modulation frequency channels (similar to separating the
audio frequencies into different center frequency chan-
nels in the inner ear) allows the brain to group together
sound elements that are generated from the same sound
source even if they interfere with sound elements from
a different sound source at the same center frequency.
Natural objects are usually characterized by a common
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modulation of the emitted frequency components as
a function of time. By grouping those sound compo-
nents that exhibit the same modulation spectrum across
different center frequencies, the brain is able to recom-
bine all the sound components of a certain object that
are spread out across different audio frequencies. This
property of the auditory system is advantageous in per-
forming a figure-background analysis (such as required
for the famous cocktail-party phenomenon, i. e., a talker
can be understood even in the background of a lively
party with several interfering voices).

A way of quantitatively measuring the auditory
grouping effect is the so-called co-modulation masking
release (CMR) depicted in Fig.4.7.

A probe tone has to be detected against a narrow-
band, fluctuating noise at the same frequency (on-
frequency masker). If the adjacent frequency bands are

Amplitude
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) Intensity d) Threshold (dB SPL)

55
50
Signal “e
Masker )
40 )
T 35 #CMR (UM-CM)
e ———————_—
Frequency 100 1000

Bandwidth (Hz)

Fig. 4.7a=d Schematic plot of co-modulation masking
release (after [4.7]). (a) Denotes the temporal-spectral dif-
ference in the unmodulated condition (flanking bands are
modulated in an uncorrelated way) whereas (b) shows the
pattern for co-modulated sidebands. In the latter case, the
detection of a sinusoid at the on-frequency masking band
is facilitated. (c), (d) Shows typical psychophysical data
for a band-widening experiment with unmodulated (open
symbols) and co-modulated masker (filled symbols). A con-
siderable difference in masked threshold for the sinusoidal
signal is observed

stimulated with uncorrelated noise samples, the thresh-
old of the tone in the modulated noise is comparatively
high. However, if the masking noise in the adjacent
bands fluctuates with the same amplitude modulations
across time (this is usually done by duplicating the
on-frequency masker and shifting its center frequency
appropriately), the probe tone becomes better audible
and a distinct threshold shift occurs. This is called
co-modulation masking release. It is mainly due to
within-channel cues, i.e., the modulation minima be-
come more distinct with increasing noise bandwidth and
hence allow for a better detection of the continuous probe
tone at a certain instant of time. It is also due to some
across-channel cues and cognitive processing, i.e., the
co-modulated components at different frequencies are
grouped to form a single auditory object which is distinct
from the probe tone. Since speech is usually character-
ized by a high degree of co-modulation across different
frequencies for a single speaker, the co-modulation
masking release helps to detect any irregularity which
is not co-modulated with the remainder of the speech
signal. Such detectable irregularities may reflect, e.g.,
any speech pathology, a second, faint acoustical object
or even speech processing artefacts. The CMR effect is
most prominent for amplitude modulation frequencies
between approximately 4 Hz and 50 Hz [4.7], which is
aregion where most of the modulation spectrum energy
of speech is located. Hence this effect is very relevant
for speech perception.

4.1.4 Binaural Hearing

Binaural processing, i. e., the central interaction between
signal information entering the right and the left ear
contributes significantly to

® suppression of subjectively perceived reverberation
in closed rooms,

® Jocalization of sound sources in space,

® suppression of unwanted sound sources in real
acoustical environments.

To perform these tasks, our brain can utilize

® interaural time (or phase) cues, i.e., the central
auditory system extracts the travel time difference
between the left and right ear,

® interaural intensity difference, i.e., our brain can
utilize the head-shadow effect: sound arriving at the
ear pointing towards the sound source in space is not
attenuated, while the sound arriving at the opposite
ear is attenuated,
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® spectral changes (coloration) of the sound reaching
the inner ear due to interference and scattering ef-
fects if the direction of the incoming sound varies
(Fig.4.8).

Normal listeners can localize sound sources with a pre-
cision of approximately 1° if sound arrives at the head
from the front. This relates to a just noticeable difference
(JND) in interaural time difference as small as 10 s and
an interaural level difference JND as low as 1 dB. This
remarkable high resolution is due to massive parallel
processing at the brain-stem level where the first neu-
ral comparison occurs between activation from the right
and left ear, respectively.

The binaural performance of our auditory system
is extremely challenged in complex acoustical every-
day situations characterized by several nonstationary
sound sources, reverberation, and a continuous change
of the interaural cues due to head movements in space.
For perceiving, localizing, and understanding speech
in such situations, the following phenomena are rele-
vant:

® Spectral integration of localization cues. Continu-
ous narrow-band signals are hard to localize because
their respective interaural time and level difference
achieved at the ear level are ambiguous: they can
result from any direction within a cone of confu-
sion, i.e., a surface that includes all spatial angles
centered around the interaural axis that yield the
same path difference between right and left ear. For
a broadband signal, the comparison across different
frequency channels helps to resolve this ambiguity.
Also, the onset cues in strongly fluctuating, broad-
band sounds contain more reliable localization cues

Localization ( ) Free sound
field

| b oo
A A\ Al
Time Intensity Spectral
difference difference difference

Fig. 4.8 Schematics of interaural cues due to interference
and scattering effects that can be utilized by the auditory
system

than the running cues in the steady-state situation for
continuous sounds.

® Precedence effect or the law of the first wavefront.
The direct sound (first wavefront) of a sound source
hitting the receiver’s ears determines the subjec-
tive localization percept. Conversely, any subsequent
wavefront (that is due to reflections from surround-
ing structures in a real acoustical environment and
hence carries the wrong directional information) is
not used to create the subjective localization impres-
sion. Even though reflections arriving approximately
5-20ms after the first wavefront are perceivable
and their energetic contribution to the total stimu-
lus percept is accessible to the brain, their respective
directional information seems to be suppressed. This
effect is utilized in some public address loudspeaker
systems that deliberately delay the amplified sound
in order for the small, unamplified direct sound to
reach the listener prior to the amplified sound with
the wrong directional information.

4.1.5 Binaural Noise Suppression

The localization mechanisms described above are not
only capable of separating the perceived localization of
several simultaneously active acoustical objects. They
are also a prerequisite for binaural noise suppression,
i. e., an enhancement of the desired signal and a suppres-
sion of undesired parts of the input signals that originate
from a different spatial direction. This enhancement is
also denoted as binaural release from masking. It can be
demonstrated by a tone-in-noise detection experiment
where in the reference condition tone and noise are the
same at both ears (i. e., exhibit the phase difference 0).
The detection threshold can be compared to the thresh-
old using the same noise, but inverting the signal on one
side (i. e., a phase difference of 7 for the signal), which
yields a higher detectability. This difference in thresh-
old is denoted as binaural masking level difference and
amounts up to 20 dB for short probe tones at frequencies
below 1000 Hz.

For speech signals, the binaural unmasking can be
measured by comparing the speech reception thresh-
old (i. e., the signal-to-noise ratio required to understand
50% of the presented speech material, see later) for dif-
ferent spatial arrangements of target speech sound and
interfering noise: in the reference condition, speech and
noise are presented directly in front of the subject, while
in the test condition speech comes from the front, but
the interfering sound source from the side. The gain
in speech reception threshold is called the intelligibil-
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Fig. 4.9 Intelligibility level difference (ILD, filled circles) and binaural intelligibility level difference (BILD, filled
squares) averaged across a group of normal and impaired listeners that differ in the shape of their respective audiogram
(high-frequency hearing loss abbreviated as HF-hearing loss). The difference in speech reception threshold across both
situations plotted on the left-hand side is plotted as average value and intersubject standard deviation

ity level difference. (The abbreviation ILD is used for
this difference, but is also used for interaural level differ-
ence.) Intelligibility level difference is due to a monaural
effect (i. e., improved signal-to-noise ratio at the ear op-
posite to the interfering sound source) and a binaural
effect. To separate this latter effect, another threshold in
the same spatial situation is used where the worse ear is
plugged and the speech reception threshold is obtained
using only the better ear, i.e., the ear with the better
signal-to-noise ratio. The difference in speech reception
threshold (SRT= between the latter two situations (i. .,
the difference due to adding the worse ear) is a purely

binaural effect, called the binaural intelligibility level
difference (BILD). Figure 4.9 gives an example of the
ILD and BILD at an incidence angle for the interfer-
ing noise of 90° in an anechoic condition for different
groups of listeners that vary in their hearing loss.

A basic model which describes binaural unmasking
phenomena quite well for speech signals in complex
acoustical environments is a multichannel equalization
and cancelation (EC) model such as that depicted in
Fig.4.10 [4.8].

Within each frequency band, an equalization and
cancelation mechanism [4.9] is used that first delays
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channel w pass

Attenuation H Delay H S:r%izssmg

Attenuation

Rightear Band-
channel w pass

Processing
C€ITors

Fig. 4.10 Sketch of a multichannel

binaural noise canceling model de-
@ scribing the binaural release from

masking for speech in complex

environments (after [4.8])
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Fig.4.11 SRT data (filled symbols) and predictions for three dif-
ferent acoustical conditions and normal listeners. The triangles
denote model predictions without introducing appropriate process-
ing errors, whereas the open symbols denote predictions employing
internal processing errors, that have been taken from average values
in other psychoacoustical tasks (after [4.8])

and amplifies one or both input channels to yield an
approximate match (equalization) of the composite in-
put signal within each frequency band. In a second,
the cancelation stage, the signals from both respec-
tive sides of the head are (imperfectly) subtracted from

each other. Hence, if the masker (after the equaliza-
tion step) is approximately the same in both ears, the
cancelation step will eliminate the masker with the ex-
ception of some remaining error signal. Conversely, the
desired signal, which differs in interaural phase and/or
intensity relation from the masker, should stay nearly
unchanged, yielding an improvement in signal-to-noise
ratio. Using an appropriate numerical optimization strat-
egy to fit the respective equalization parameters across
frequency, the model depicted in Fig.4.11 can predict
human performance quite well even under acoustically
difficult situations, such as, e.g., several interfering
talkers within a reverberant environment. Note that
this model effectively corresponds to an adaptive spa-
tial beam former, i. e., a frequency-dependent optimum
linear combination of the two sensor inputs to both
ears that yields a directivity optimized to improve the
signal-to-noise ratio for a given target direction and
interfering background noise. If the model output is
used to predict speech intelligibility with an appropri-
ate (monaural) speech intelligibility prediction method
[such as, e.g., the speech intelligibility index (SII),
see later], the binaural advantage for speech intelligi-
bility in rooms can be predicted quite well (Fig.4.11
from [4.8]).

Note that in each frequency band only one EC cir-
cuit is employed in the model. This reflects the empirical
evidence that the brain is only able to cancel out one
direction for each frequency band at each instant of
time. Hence, the processing strategy adopted will use
appropriate compromises for any given real situation.

4.2 Acoustical Information Required for Speech Perception

4.2.1 Speech Intelligibility
and Speech Reception Threshold (SRT)

Speech intelligibility (SI) is important for various fields
of research, engineering, and diagnostics for quantify-

ing very different phenomena such as the quality of
recordings, communication and playback devices, the
reverberation of auditoria, characteristics of hearing im-
pairment, benefit using hearing aids, or combinations of
these topics. The most useful way to define SIis: speech
intelligibility SI is the proportion of speech items (e.g.,
syllables, words, or sentences) correctly repeated by (a)
listener(s) for a given speech intelligibility test. This op-
erative definition makes SI directly and quantitatively
measurable.

The intelligibility function (Fig. 4.12) describes the
listener’s speech intelligibility SI as a function of speech
level L which may either refer to the sound pressure level
(measured in dB) of the speech signal or to the speech-
to-noise ratio (SNR) (measured in dB), if the test is
performed with interfering noise.

In most cases it is possible to fit the logistic function
SI (L) to the empirical data

A—1
1+exp (— —Lffmid)

1
SI(L)= 1 1 4 STmax , (b.t)

with Lyiq: speech level of the midpoint of the intelligi-
bility function; s: slope parameter, the slope at Lyg is
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Speech intelligibility
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
-20 15 -10 =5 0 5 10 15

Speech level (dB SNR)

Fig. 4.12 Typical example of SI function (solid line) for
word intelligibility test (closed response format with five
response alternatives). The dashed line denotes Lpiq. The
dotted lines denote the lower limit (1/A) and the asymptotic
maximum Slygymp of the SI function. Parameters: Lpyjg =
—3.5dB SNR, SIpnax = 0.9(SIasymp = 0.92), A =5, slope =
0.05/dB (s =3.6dB)

given by Slm%(?_”; Slhax: parameter for maximum in-

telligibility which can be smaller than 1 in some cases
(e.g., distorted speech signals or listeners with hearing
impairment). The asymptotic maximum of SIis given by
SImax + (1 —SInax)/A. A is the number of response al-
ternatives (e.g., A = 10 when the listener should respond
in a closed response format for instance using digits be-
tween ‘0" and ‘9’). In SI tests with open response format,
like word tests without limiting the number of response
alternatives, A is assumed to be infinite, that means

1

SI = Slax and
1+4exp (— —L}L‘mi" )
SIina
slope = % . (&.5)
s

The primary interest of many applications is the speech
reception threshold (SRT) which denotes the speech
level (measured in dB), which belongs to a given in-
telligibility (e.g., SI=10.5 or 0.7).

The accuracy of SI measurements is given by the
binomial distribution. Consequently, the standard error
SE(SI) of an SI estimate based on n items (e.g., words)
is given by

SE(SI) =,/ M ) (.6)

A further increase of this standard error is caused by
the fact that SI tests consist of several items (e.g., 50
words) which unavoidably differ in SI. Therefore, SI
tests should be constructed in a way that the SI of all
items is as homogeneous as possible.

To a first approximation, the standard error of the
SRT is equal to SE(SIgrT) (the standard error of the
SI estimate at the SRT) divided by the slope of the
intelligibility function at the SRT. Thus

SE(SISRT)

SE(SRT) = .
( ) slopegrT

(.7)

4.2.2 Measurement Methods

Speech Materials
A speech material (i. e., a set of speech items like words
or sentences) is suitable for SI tests when certain require-
ments are fulfilled: the different speech items have to be
homogeneous in SI to yield high measurement accuracy
and reproducibility in a limited measuring time, and the
distribution of phonemes should be representative of the
language being studied. Only speech materials that have
been optimized properly by a large number of evaluation
measurements can fulfill these requirements.

A large number of SI tests using different materials
are available for different languages. An overview of
American SI tests can be found in Penrod [4.10]. There
are different formats, i.e., nonsense syllables, single
words, and sentences. Sentences best represent a realistic
communication situation. Nonsense syllables and words
allow assessing of confusion matrices and analyzing
transmission of information. Furthermore, the intelli-
gibility functions of most sentence tests [4.11-16] show
slopes between 0.15 and 0.25 per dB, which are consid-
erably steeper than the values obtained with nonsense
syllables or single-word tests.

Since the standard deviation of SRT estimates is
inversely proportional to the slope of the intelligibility
function (see Sect. 4.2.1), these sentence tests are better
suited for efficient and reliable SRT measurements than
single-word tests.

Presentation Modes

Signals can be presented either via loudspeakers (free
field condition) or via headphones. The free field
condition is more natural. Drawbacks are a larger experi-
mental effort and difficulties in calibration. Especially
in spatial speech/noise situations (see Sect. 4.2.3), small
movements of the listener’s head may influence the
result of the SI measurement.

n
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The advantages of presentation via headphones are:
very good reproducibility for each individual listener,
smaller experimental effort, and spatial speech/noise
conditions can easily be realized using virtual acoustics.
Drawbacks are the individual calibration is complicated
because headphones may produce different sound pres-
sures in different ears. Measurements with hearing aids
are not possible.

Adaptive procedures can be used to concentrate pre-
sentation levels near the SRT, which yields highest
efficiency for SRT estimates. In sentence tests, each
word can be scored independently, which allows one
to design adaptive procedures which converge more
efficiently than adaptive procedures usually used in
psychoacoustics [4.17].

4.2.3 Factors Influencing Speech
Intelligibility

Measuring Method
The various speech materials mentioned above generate
different results. Therefore, only standardized speech
materials or speech materials with well known reference
intelligibility functions should be used.

Noise and Room Acoustics

Noise and reverberation reduce SI. Therefore, if SI in
silence is to be measured, environmental noise and re-
verberation have to be minimized (e.g., using sound
insulated cabins and damping headphones). On the other
hand, SI measurements can be used to investigate the
influence of different noises and room acoustics on
SI, which is important for the so called cocktail-party
phenomenon (see later).

Cocktail-Party Phenomenon

The human auditory system has very impressive abil-
ities in understanding a target talker even if maskers,
i.e., competitive sound sources like different talkers,
are present at the same time. An interesting review of
research on this so-called cocktail-party phenomenon
can be found in Bronkhorst [4.18]. The SI in these
multi-talker conditions is influenced by many masker
properties such as sound pressure level, frequency spec-
trum, amplitude modulations, spatial direction, and the
number of maskers. The spatial configuration of target
speaker and masker plays a very important role. Binaural
hearing (hearing with both ears) produces a very effec-
tive release from masking (improvement of the SRT) of
up to 12 dB compared to monaural hearing (hearing with
one ear) [4.18].

Hearing Impairment

An introduction to SI in clinical audiology can be found
in Penrod [4.10]. Hearing impairment can lead to an in-
crease of the SRT, a decrease of the maximum reachable
intelligibility Slasymp and a flatter slope of the intelligi-
bility function. The most difficult situations for hearing
impaired listeners are noisy environments with many
interfering sound sources (cocktail-party situation).
Therefore, SI tests in noise are important diagnostic
tools for assessing the daily-life consequences of a hear-
ing impairment and the benefit of a hearing aid. SI plays
a very important role for the research on and the fitting
of hearing aids.

4.2.4 Prediction Methods

Articulation Index (Al),

Speech Intelligibility Index (Sll),

and Speech Transmission Index (STI)
The most common methods for the prediction of speech
intelligibility are the articulation index (AI) [4.19-
21] which was renamed the speech intelligibility in-
dex (SII) [4.22], and the speech transmission index
(STI) [4.23,24] [Table 4.1]. The strength of these mo-
dels is the large amount of empirical knowledge they
are based on. All of these models assume that speech is
coded by several frequency channels that carry indepen-
dent information. This can be expressed by

AI:ZAL,
i

with Al denoting the cumulative articulation index of all
channels and Al; denoting the articulation index of the
single channels (including a weighting of the respective
channel).

Al and SII are derived from the speech signal by
calculating the signal to noise ratio SNR in the different
frequency channels:

Wi(SNR; + 15)
A=) T

(4.8)

(.9)

i

with W; denoting a frequency channel weighting factor
and SNR; denoting the signal-to-noise ratio in channel
i. W; depends on the speech material used and takes into
account that high frequencies are more important for
the recognition of consonants than for the recognition of
meaningful sentences. The main differences between the
different versions of Al and SII are the way they include
nonlinearities like distortion, masking, and broadening
of frequency bands.
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The speech transmission index (STI) uses the mod-
ulation transfer function instead of the SNR and is
especially successful for predicting SI in auditoria and
rooms, because it explicitly takes into account the flat-
tening of the information-carrying speech envelopes due
to reverberation.

The transformation of Al, SII, or STI to speech
intelligibility requires a nonlinear transformation that
has to be fitted to empirical data. The transforma-
tion depends on the kind of speech material used
and is usually steeper at its steepest point for mater-
ials with context (e.g., sentences) compared to single
words.

Statistical Methods
The assumption of independent information in differ-
ent frequency channels does not hold in all situations
because synergetic as well as redundant interactions

between different channels occur. The speech recogni-
tion sensitivity model [4.25,26] takes these interactions
into account using statistical decision theory in order to
model the linguistic entropy of speech.

Functional Method

These methods are based on relatively rough pa-
rameterizations of speech (i.e., long-term frequency
spectrum and sometimes modulation transfer func-
tion). The method (Table 4.1) proposed by Holube
and Kollmeier [4.27], however, is based on physio-
logical and psychoacoustical data and is a combination
of a functional model of the human auditory system
(Sect.4.1) and a simple automatic speech recognition
system (Sect. 4.3). A drawback of this approach is that
there is still a large gap between recognition rates of
humans and automatic speech recognition systems (for
areview see [4.28], Sect. 4.3).

Table 4.1 Examples of methods for the prediction of speech intelligibility (SI)

Method Signal parameters

Articulation index, Al
[4.19]
material

Articulation index, Al
[4.20]
material

Articulation index, Al [4.21]

speech and noise
Speech intelligibility index, SII
[4.22]

Speech transmission index, STI
[4.24]

Speech recognition
model, SRS [4.25,26]

Holube and Kollmeier [4.27]
loss

Levels and frequency spectra of
speech and noise, kind of speech

Levels and frequency spectra of
speech and noise, kind of speech

Levels and frequency spectra of

Levels and frequency spectra of
speech and noise, kind of speech
material, hearing loss

Modulation transfer function

sensitivity Levels and frequency spectra of
speech and noise, number of re-
sponse alternatives

Speech and noise signals, hearing

Comments

Macroscopic model that describes
the influence of the frequency con-
tent of speech on intelligibility

More complex than French and
Steinberg version, describes more
nonlinear effects, seldom used

Simplified version based on
[4.19], not in use anymore

Revision of ANSI S3.5-1969,
includes spread of masking, stan-
dard speech spectra, relative im-
portance of frequency bands

Predicts the change of intelligibil-
ity caused by a speech transmis-
sion system (e.g., an auditorium)
based on the modulation transfer
function of the system

Alternative to SII, handles fre-
quency band interactions and is
better suited for unsteady fre-
quency spectra

Microscopic modeling of signal
processing of auditory system
combined with simple automatic
speech recognition

3
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4.3 Speech Feature Perception

The information-theoretic approach to describing
speech perception assumes that human speech recog-
nition is based on the combined, parallel recognition of
several acoustical cues that are characteristic for certain
speech elements. While a phoneme represents the small-
est unit of speech information, its acoustic realization
(denoted as phone) can be quite variable in its acoustical
properties. Such a phone is produced in order to de-
liver a number of acoustical speech cues to the listener
who should be able to deduce from it the underlying
phoneme. Each speech cue represents one feature value
of more- or less-complex speech features like voicing,
frication, or duration, that are linked to phonetics and
to perception. These speech feature values are decoded
by the listener independently of each other and are used
for recognizing the underlying speech element (such as,
e.g., the represented phoneme). Speech perception can
therefore be interpreted as reception of certain values of
several speech features in parallel and in discrete time
steps.

Each phoneme is characterized by a unique com-
bination of the underlying speech feature values. The
articulation of words and sentences produces (in the
sense of information theory) a discrete stream of infor-
mation via a number of simultaneously active channels
(Fig.4.13).

The spoken realization of a given phoneme causes
a certain speech feature to assume one out of several dif-
ferent possible values. For example, the speech feature
voicing can assume the value one (i. e., voiced sound) or
the value zero (unvoiced speech sound). Each of these
features is transmitted via its own, specific transmission
channel to the speech recognition system of the listener.

Transmission
channels

Presented kOB Recognized
phone phone
Feature 1 Feature 1

/
|

Channel n

The channel consists of the acoustical transmission
channel to the listener’s ear and the subsequent decoding
of the signal in the central auditory system of the receiver
(which can be hampered by a hearing impairment or
a speech pathology). The listener recognizes the actually
assumed values of certain speech features and combines
these features to yield the recognized phoneme.

If p(i) gives the probability (or relative frequency)
that a specific speech feature assumes the value i and
P'(j) gives the probability (or relative frequency, re-
spectively) that the receiver receives the feature value
J»and p(i, j) gives the joint probability that the value
J is recognized if the value i is transmitted, then the
so-called transinformation 7 is defined as

N

- )P (j)
T=-Y"3 pi j)log, (w> . (610

i PG, )

The transinformation 7" assumes its maximal value for
perfect transmission of the input values to the output
values, i.e., if p(i, j) takes the diagonal form or any
permutation thereof. 7" equals O if the distribution of
received feature values is independent of the distribu-
tion of input feature values, i.e., if p(i, j) = p())p'(j).
The maximum value of 7 for perfect transmission (i. e.,
p(i, j) = p(i) = p'(j)) equals the amount of informa-
tion (in bits) included in the distribution of input feature
values H,i.e.,

N N
H=Y pi)HG{) =~ pi)loglp()]. (*.11)

i=1 i=1
In order to normalize T to give values between 0 and
1, the so-called transinformation index (TI) is often

Feature 2 Feature 2
Spoken i Fig.4.13 Schematic representation
phoneme | phoneme of speech recognition using speech
features. Each speech sound is char-
Feature 71 Feature 71 acterized by a combination of speech
ol Channel -1 e features that are modeled to be trans-

mitted independently of each other
by specialized (noisy) transmission
channels
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used, i.e.,
TI=T/H . (t.12)

For speech perception experiments, the distribution
p(i, j) can be approximated by a confusion matrix, i.e.,
a matrix denoting the frequency of a recognized speech
element j for all different presented speech elements i.
This confusion matrix can be condensed to a confusion
matrix of each specific speech feature if for each speech
element the corresponding value of the respective feature
is assigned. For example, a 20 x 20 confusion matrix of
consonants can be reduced to 2 x2 matrix of the feature
voicing if for each consonant the feature value voiced or
unvoiced is given. The transinformation analysis of this
feature-specific confusion matrix therefore allows ex-
tracting the transmission of all respective speech features
separately and hence can be used to characterize a certain
speech information transmission channel. Note however,
that such an analysis requires a sufficiently high num-
ber of entries in the confusion matrix to appropriately
sample p(i, j), which requires a large data set. Also,
it is not easy and straightforward to assign appropriate
speech features to all of the presented and recognized
speech sounds that will allow an adequate analysis of
the acoustical deficiencies in the transmission process.
From the multitude of different features and feature sets
that have been used in the literature to describe both
human speech production and speech perception, only
a very limited set of the most prominent features can be
discussed here ([4.29], for a more-complete coverage).

4.3.1 Formant Features

Vowels are primarily discriminated by their formant
structure, i.e., the resonance frequencies of the vocal
tract when shaping the vowels. For stationary vowels, the
relation between the first and second formant frequen-
cies (F1 and F>), respectively, and the perceived vowel
is quite well established (Fig. 4.14 and the introduction).

The classical theory of vowel perception has the ad-
vantage of being linked to the physical process of speech
production (i.e., the formant frequencies are closely
linked to the position and elevation of the tongue in
the vocal tract). However, modern theories of speech
perception no longer assume that vowel identification is
based solely on the position of the formant frequencies,
for the following reasons.

® For short vowels and for vocalic segments of run-
ning speech the perceived vowel often differs from
the expected spectral shapes, which are based on
long, isolated vowels. This indicates that the map-

F, (Hz)
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Fig. 4.14 Schematic plot of the perceived vowels as a func-
tion of F| and F; in the vowel triangle (sometimes plotted
as a quadrangle) for stationary vowels. Note that the vowel
boundaries overlap and that for short vowels and for seg-
ments of vowels in real speech these boundaries can vary
significantly

ping between formants and perceived vowels shows
different boundaries and different regions of overlap
depending on the respective speech context.

® The spectral shape of speech in real-life environ-
ments varies considerably due to large spectral vari-
ations of the room transfer function, and due to the
presence of reverberation and background noise. The
pure detection and identification of spectral peaks
would yield a much less robust perception of vowels
than can actually be observed in human listeners.

® Vowel discrimination and speech understanding is
even possible under extreme spectral manipulations,
such as, e.g., flat spectrum speech [4.30] and slit-
filtered speech (i. e., listening to speech through very
few spectral slits, [4.31]).

These findings indicate that speech perception is at least
partially based on temporal cues rather than purely on the
detection of spectral peaks or formants. Modern speech
perception theories therefore assume that our brain mon-
itors the temporal intensity pattern in each frequency
band characterized by a critical band filter (Sect.4.1).
By comparing these temporal patterns across a few cen-
ter frequencies that are not too closely spaced, a reliable
estimate of the presented vowel is possible. Such princi-
ples are both implemented in state-of-the-art perception
models (Sect.4.1) and in preprocessing/feature extrac-
tion strategies for automatic speech recognition systems
(Sect. 4.2.3 and the chapters in part E).
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4.3.2 Phonetic and Distinctive Feature Sets

The classical theory of consonant perception assumes
that several phonetically and acoustically defined fea-
tures are used by the auditory system to decode the
underlying, presented consonant. A distinctive feature
set combines all binary features that characterize all
available consonants in a unique way [4.32]. Both articu-
latory and (to a lesser degree) acoustical features can be
employed to construct such a feature set (see Table 4.2
for an example of a feature set and resulting confusion
matrices).

These feature sets where extended and used by
Miller and Nicely [4.33], by Wang and Bilger [4.34]
and subsequently by a large number of researchers
to characterize the listeners’ ability to discriminate
across consonants using, e.g., transinformation analysis
(Sect. 4.2.4). Using this approach, the amount of infor-

Table 4.2 Example for a consonant feature set and the
construction of confusion matrices for speech-in-noise
recognition data with normal-hearing listeners. Top right
panel: phonetic feature values for eleven consonants. Voic-
ing is a binary feature (with feature values 0 and 1), while
manner and place are ternary features. Middle: matrix of
confusion for consonants, obtained from human listening
tests, where noisy speech was presented at an SNR of
-10dB. Matrix element (i, j) denotes how often the conso-
nant in row i was confused with the consonant in column ;.
Bottom panels: confusion matrices for the phonetic features
place and voicing, derived from the matrix of confusion for
consonants

P t k b d

p 379 20 131 45 7
t 3 658 16 33
k 42 14 484 10 8
b 58 4 51 260 35
d 5 28 7 21 424
g 11 5 44 43 27
S
f 23 3 4
v 19 7 16 78 22
n 5 3 13 51
m 7 1 4 43 20

Anterior Medail Posterior
Anterior 2691 335 392
Medail 179 2317 131

Posterior 223 79 1094

mation carried by the specific feature that the receiving
side was able to use can be characterized quite well. For
example, the confusion matrix listed in Table 4.2 yields
a total information transmission index of 0.53 with the
features voicing assumed to be 0.53 and place 0.46.

However, these phonetic features show only a very
weak link to the auditory features actually used by
human listeners. From the view point of modern audi-
tory models that assume multichannel temporal energy
recording and analysis, most of the phonetic features
listed above can be regarded as special prototypes of
temporal-spectral patterns that are used by our cognitive
system to perform a pattern match between actually pre-
sented speech and a stored speech reference database in
our brain. Hence, they represent some complex combi-
nation of basic auditory perception features that might
be defined psychoacoustically or physiologically rather
than phonetically.

Voicing Manner Place
p 0 0 0
t 0 0 1
k 0 0 2
b 1 0 0
d 1 0 1
g 1 0 2
s 0 1 1
f 0 1 0
v 1 1 0
n 1 2 2
m 1 2 1
g S f v n m
31 49 46 4 5
1 1
117 1 16 12 6
88 18 143 16 25
93 1 3 19 49 6
449 9 73 18 7
702 3
88 556 38
43 7 51 398 9 30
12 2 23 364 78
25 8 62 95 346
Voiced Unvoiced
Voiced 3508 375
Unvoiced 367 3191
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Internal representation

Fig.4.15 Schematic diagram of
a model of the effective auditory
processing using a front end to trans-
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4.3.3 Internal Representation Approach
and Higher-Order
Temporal-Spectral Features

The internal representation approach of modeling
speech reception assumes that the speech signal is
transformed by our auditory system with some non-
linear, parallel processing operations into an internal
representation. This representation is used as the in-
put for a central, cognitive recognition unit which can
be assumed to operate as an ideal observer, i.e., it
performs a pattern match between the incoming inter-
nal representation and the multitude of stored internal
representations. The accuracy of this recognition pro-
cess is limited by the external variability of the speech
items to be recognized, i.e., by their deviation from
any of the stored internal templates. It is also limited
by the internal noise that blurs the received internal
representation due to neural noise and other physiolog-
ical and psychological factors. The amount of internal

a) Frequency (Hz)

05 1 15 0 05
Time (s)

noise can be estimated quite well from psychoacoustical
experiments.

Such an internal representation model puts most
of the peculiarities and limitations of the speech
recognition process into the nonlinear, destructive trans-
formation process from the acoustical speech waveform
into its internal representation, assuming that all trans-
formation steps are due to physiological processes that
can be characterized completely physiologically or by
psychoacoustical means (Fig. 4.15).

Several concepts and models to describe such an
internal representation have been developed so far. Some
of the basic ideas are as follows.

1. Auditory spectrogram: The basic internal represen-
tation assumes that the speech sound is separated
into a number of frequency bands (distributed evenly
across a psychoacoustically based frequency scale
like the bark or ERB scale) and that the compressed
frequency-channel-specific intensity is represented

¢) Frequency channel
30 =
25
20
15

10

1 1.5
Time (s)

Time.(s)

Fig. 4.16a—-c Auditory spectrogram representation of the German word Szall. It can be represented by a spectrogram
(a), a bark spectrogram on a log-loudness scale (b) or as a contrast-enhanced version using nonlinear feedback loops

(after [4.3,35]) (c)
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over time. The compression can either be a loga-
rithmic compression or a loudness-derived power
law compression that is also required to represent
human intensity resolution and loudness mapping.
The temporal representation can also include some
temporal contrast enhancement and sluggishness in
order to represent forward and backward masking
and temporal integration (Sect. 4.1). An example of
such a representation is given in Fig. 4.16.

Note that speech intelligibility in noise can be mod-
eled quite well with such an approach [4.27]. In addition,
such a transformation into the internal representation
can be implemented as a robust front end for automatic
speech recognition (e.g., [4.35]). Finally, it can be used
to predict any perceived deviations of the (coded) speech
from the original speech [4.36].

2. Modulation spectrogram: one important property of
the internal representation is the temporal analy-
sis within each audio frequency band using the
modulation filter bank concept. Temporal envelope
fluctuations in each audio frequency channel are
spectrally analyzed to yield the modulation spec-
trum in each frequency band, using either a fixed
set of modulation filters (modulation filter bank) or
a complete spectral analysis (modulation spectrum).
This representation yields the so-called amplitude

(Voiced) speech
Center frequency (Hz) - - -

5500
3400
2200
1400

910

530

240

55 73

100 135 182 246 333
Modulation frequency (Hz)

modulation spectrogram for each instant of time,
i.e., a two-dimensional representation of modu-
lation frequency across center audio frequencies
(Fig.4.17).

The physiological motivation for this analysis is
the finding of amplitude modulation sensitivity in
the auditory brain:adjacent cells are tuned to differ-
ent modulation frequencies. Their arrangement seems
to yield a perpendicular representation of modulation
frequencies across center frequencies [4.37]. In addi-
tion, psychoacoustical findings of modulation sensitivity
can best be described by a set of modulation filter
banks [4.3]. The advantage of the modulation spectro-
gram is that the additional dimension of modulation
frequency allows separation of acoustical objects that
occupy the same center frequency channel, but are mod-
ulated at different rates (considering either the syllabic
rate at low modulation frequencies or temporal pitch
at higher modulation frequencies). Such a more-refined
model of internal representation has been used to pre-
dict psychoacoustical effects [4.3] and was also used in
automatic speech recognition [4.38].

3. Temporal/spectral ripple or Gabor feature approach:
A generalization of the modulation frequency fea-
ture detectors in the temporal domain outlined above
also considers the spectral analysis of ripples in

Speech simulation noise

Center frequency (Hz)

55 73 100 135 182 246 33

Modulation frequency (Hz)

Fig. 4.17 Amplitude modulation spectrogram of a vowel / (fundamental frequency approx. 110Hz) in comparison to
amodulation spectrogram of speech-simulating noise. The modulation spectrum in each audio frequency band is displayed
as color (or greyscale, respectively) in the two-dimensional plane given by audio center frequency versus modulation

frequency
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Fig. 4.18 Sample representation of a Gabor feature that detects a certain speech feature. The two-dimensional Gabor
feature (lower left panel) that extends both in the time and frequency domain is cross-correlated with the mel spectrogram
(upper-left panel) to yield the temporal and spatial position of a best match (middle panel). In each audio frequency band,
the time-dependent output of the cross correlation is used as the input feature to an automatic speech recognizer [4.38]

the frequency domain as well as a ripple frequency
analysis for combined temporal and spectral mod-
ulations. Such a temporal-spectral ripple analysis
is motivated by physiological findings of the au-
ditory receptive fields in ferrets [4.39] as well as
psychoacoustical findings by Kaernbach [4.40] who

demonstrated a sensitivity towards combinations of
spectral variations and temporal variations. An ele-
gant way to formalize the sensitivity to joint temporal
and spectral energy variations is the Gabor feature
concept [4.38] that considers features with a limited
spectro-temporal extent tuned to a certain combina-
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Table 4.3 Recognition rates (in percent correct) for human speech recognition (HSR) at a signal-to-noise ratio (SNR) of
—10dB, compared to automatic speech recognition (ASR) accuracies at several signal-to-noise ratios. The recognition
task for ASR and for human listeners was to classify the middle phoneme in simple nonsense words, which were
combinations of either consonant—vowel-consonant or vowel—consonant—-vowel. The average rates are broken down into
consonant and vowel recognition. At +10dB SNR, ASR reaches an overall performance that is comparable to HSR at
—10dB SNR. If the same SNR of —10dB is employed for ASR, error rates are almost 50% higher than for HSR

Condition Average
HSR —10dB 74.5
ASR
clean 80.4
15dB 76.1
10dB 74.6
5dB 69.8
0dB 59.2
—5dB 49.8
—10dB 28.4

tion of temporal modulation frequency and spectral
ripple frequency (Figure 4.18).

The advantage of such a second-order receptive
field (i.e., the sensitivity to a certain combination of
a spectral and a temporal cue) is the ability to detect spe-
cific spectro-temporal structures, e.g., formant glides or
changes of fundamental frequency. It can also be con-
sidered as a generalization of the concepts outlined in
this section. Even though this approach has successfully
been implemented to improve the robustness of auto-
matic speech recognizers [4.38], it has not yet been used
to model human speech perception.

4.3.4 Man-Machine Comparison

Despite enormous technical advances in recent years,
automatic speech recognition (ASR) still suffers from
alack of performance compared to human speech recog-
nition (HSR), which prevents this technology from being
widely used. Recognition accuracies of machines drop
dramatically in acoustically adverse conditions, i.e., in
the presence of additive or convolutive noise, which
clearly demonstrates the lack of robustness. For com-
plex tasks such as the recognition of spontaneous speech,
ASR error rates are often an order of magnitude higher
than those of humans [4.28]. If no high-level gram-
matical information can be exploited (as in a simple
phoneme recognition task), the difference in perfor-
mance gets smaller, but still remains very noticeable.
For example, the HSR consonant recognition rate de-
rived from the confusion matrix in Table 4.2 is 67.7%.

Consonants Vowels
67.7 80.5
85.2 76.2
71.7 74.6
75.6 73.7
69.5 70.0
55.4 62.5
41.0 57.5
20.8 35.0

The ASR score for the very same task (i.e., the same
speech signals at an SNR of —10dB), obtained with
a common recognizer is 20.8%, which corresponds
to a relative increase of error rates of 144% (Ta-
ble 4.3).

This large gap underlines that current state-of-the-art
ASR technology is by far not as capable as the human
auditory system to recognize speech. As a consequence,
the fields of ASR and speech perception modeling in
humans may benefit from each other. Since the human
auditory system results from a long biological evolution
process and seems to be optimally adjusted to perform
robust speech recognition, ASR may profit from au-
ditory front ends which are based upon physiological
findings and incorporate principles of our hearing sys-
tem. Ideally, the feature matrix extracted from a speech
sound which is used to classify the respective speech
element should resemble the internal representation of
that speech sound in our brain as closely as possible.
Since this internal representation can be approximated
by an auditory model, such an auditory model seems
to be a good preprocessing stage for a speech recog-
nizer [4.35].

On the other hand, models of the signal processing
in the human auditory system can be evaluated using
ASR, because—under ideal conditions—human speech
perception and its model realization as anthropomor-
phic ASR system should yield a similar recognition
performance and error pattern in well-defined acoustical
conditions. Thus, modeling human speech perception
can benefit from the computational methods developed
in ASR.
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In this chapter, we provide an overview of meth-
ods for speech quality assessment. First, we define
the term speech quality and outline in Sect. 5.1
the main causes of degradation of speech quality.
Then, we discuss subjective test methods for quality
assessment, with a focus on standardized meth-
ods. Section 5.3 is dedicated to objective algorithms
for quality assessment. We conclude the chapter
with a reference table containing common quality
assessment scenarios and the corresponding most
suitable methods for quality assessment.

5.1 Degradation Factors

Affecting Speech Quality........................ 84

5.2 Subjective Tests...............ccoeeeiiieeiiinnnnnn. 85
5.2.1 Single Metric

(Integral Speech Quality) ............... 85

The rapid deployment of speech processing applications
increases the need for speech quality evaluation. The
success of any new technology (e.g., network equipment,
speech codec, speech synthesis system, etc.) depends
largely on end-user opinion of perceived speech quality.
Therefore, it is vital for the developers of a new service
or speech processing application to assess its speech
quality on a regular basis.

In addition to its role for services and speech process-
ing, speech quality evaluation is of critical importance
in the areas of clinical hearing diagnostics and psy-
choacoustical research. Although this chapter addresses
speech quality mainly from the viewpoint of telecom-
munication applications, it is also of general interest
for researchers dealing with speech quality assessment
methods.

When the speech signal reaches the human auditory
system, a speech perception process is initiated. This
process results in an auditory event, which is internal
and can be measured only through a description by the
listener (the subject). The subject then establishes a re-
lationship between the perceived and expected auditory
event. Thus, the speech quality is a result of a perception
and assessment process.

5. Speech Quality Assessment

V. Grancharov, W. B. Kleijn

5.2.2 Multidimensional Metric

(Diagnostic Speech-Quality)........... 87
5.2.3 Assessment
of Specific Quality Dimensions ....... 87
5.2.4 Test Implementation .................... 88
5.2.5 Discussion of Subjective Tests ........ 89
5.3 Objective Measures....................c..ccooe... 90

5.3.1 Intrusive Listening Quality Measures 90
5.3.2 Non-Intrusive Listening Quality

MeASUIeS ... 93
5.3.3 Objective Measures for Assessment
of Conversational Quality .............. 9L
5.3.4 Discussion of Objective Measures.... 94
5.4 Conclusions......................ccooieiiii . 95
References ..........ooooiviiiiiiiiiiii 96

Since the quality of a speech signal does not exist
independently of a subject, it is a subjective measure.
The most straightforward manner to estimate speech
quality is to play a speech sample to a group of listen-
ers, who are asked to rate its quality. Since subjective
quality assessment is costly and time consuming, com-
puter algorithms are often used to determine an objective
quality measure that approximates the subjective rating.
Section 5.2 provides an overview of subjective tests for
speech quality assessment, while Sect. 5.3 is dedicated
to objective quality assessment measures.

Speech quality has many perceptual dimensions.
Commonly used dimensions are intelligibility, nat-
uralness, loudness, listening effort, etc., while less
commonly used dimensions include nasality, graveness,
etc. However, the use of a multidimensional metric for
quality assessment is less common than the use of a sin-
gle metric, mainly as a result of cost and complexity.
A single metric, such as the mean opinion score scale,
gives an integral (overall) perception of an auditory
event and is therefore sufficient to predict the end-user
opinion of a speech communication system. However,
a single metric does not in general provide sufficient de-
tail for system designers. Multidimensional-metric tests
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are discussed in Sect.5.2.2 and single-metric tests are
discussed throughout the remainder of Sect. 5.2.

In some applications, it is desirable or historically
accepted to measure only specific quality dimensions,
such as intelligibility, listening effort, naturalness, and
ability for talker recognition. The most popular among
these measures are covered in Sect. 5.2.3.

The true speech quality is often referred to as con-
versational quality. Conversational tests usually involve
communication between two people, who are ques-
tioned later about the quality aspects of the conversation,
see Sect.5.2.1. However, the most frequently meas-
ured quantity is listening quality, which is the focus
of Sect.5.2.1. In the listening context, the speech qual-
ity is mainly affected by speech distortion due to speech
codecs, background noise, and packet loss. One can also

distinguish talking quality, which is mainly affected by
echo associated with delay and sidetone distortion.

The distorted (processed) signal or its parametric
representation is always required in an assessment of
speech quality. However, based on the availability of
the original (unprocessed) signal, two test situations
are possible: reference based and not reference based.
This classification is common for both the subjective
and objective evaluation of speech quality. The absolute
category rating (ACR) procedure, popular in subjective
tests, does not require the original signal, while in the
degradation category rating (DCR) approach the original
signal is needed. In objective speech quality assessment,
the historically accepted terms are intrusive (with origi-
nal) and non-intrusive (without original). These two test
scenarios will be discussed throughout the chapter.

5.1 Degradation Factors Affecting Speech Quality

The main underlying causes of degradation of speech
quality in modern speech communication systems are
delay (latency), packet loss, packet delay variation (jit-
ter), echo, and distortion introduced by the codec. These
factors affect psychological parameters such as intelligi-
bility, naturalness, and loudness, which in turn determine
the overall speech quality.

In this section, we briefly list the most common
impairment factors. We divide them into three classes:

1. factors that lead to listening difficulty
2. factors that lead to talking difficulty
3. factors that lead to conversational difficulty

The reader can find more-detailed information in
International Telecommunication Union, Telecommuni-
cation Standardization Sector (ITU-T) Rec. G.113 [5.1].
The effect of transmission impairments on users is dis-
cussed in ITU-T Rec. P.11 [5.2].

Degradation factors that cause an increase in listen-
ing difficulty include packet loss, distortion due to speech
codecs, speech clipping, and listener echo. Packet loss
corresponds to the percentage of speech frames that do
not reach their final destination. If no protective mea-
sures are taken, a packet loss rate of 5% results in
significant degradation of the speech quality. Bursts of
packet loss also affect speech quality. In systems with-
out error concealment, speech clipping occurs at any
time when the transmitted signal is lost. Speech clipping
may temporarily occur when the connection suffers from
packet loss or when voice activity detectors are used. Lis-

tener echo refers to a transmission condition in which
the main speech signal arrives at the listener’s end of the
connection accompanied by one or more delayed ver-
sions (echoes) of the signal. The intelligibility decreases
as the loudness loss increases. On the other hand, if the
loudness loss decreases too much, customer satisfaction
decreases because the received speech is too loud.

Degradation factors that cause difficulty while talk-
ing are talker echo and an incorrectly set sidetone. Talker
echo occurs when some portion of the talker’s speech
signal is returned with a delay sufficient (typically more
than 30 ms) to make the signal distinguishable from the
normal sidetone. The sidetone of a telephone set is the
transmission of sound from the telephone microphone
to the telephone receiver in the same telephone set. Too
little sidetone loss causes the returned speech levels to
be too loud and thus reduces customer satisfaction. Ex-
cessive sidetone loss can make a telephone set sound
dead as one is talking. In addition, the sidetone path
provides another route by which room noise can reach
the ear.

Conversation difficulties are caused by a third class
of degradation factors. Delay is defined as the time it
takes for the packet to arrive at its destination. Long de-
lays impair a conversation. Intelligible crosstalk occurs
when the speech signal from one telephone connection
is coupled to another telephone connection such that the
coupled signal is audible and intelligible to one or both
of the participants on the second telephone connection.
The background noise in the environment of the tele-
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phone set may have a substantial effect on the ease of
carrying on a conversation.

The study of degradation factors is important in the
design of a speech quality assessment test. The set of
degradation factors present in a communication sys-
tem determines the type of test to be performed. If the

5.2 Subjective Tests

Speech quality is a complex psychoacoustic outcome of
the human perception process. As such, it is necessarily
subjective, and can be assessed through listening test
involving human test subjects that listen to a speech
sample and assign a rating to it. In this section, we cover
the most commonly used subjective quality tests.

5.2.1 Single Metric
(Integral Speech Quality)

Users of new speech processing applications are often
unaware of the underlying technology. Their main crite-
rion for assessing these applications is based on overall
speech quality. Therefore, we start our discussion with
single-metric subjective tests. In these tests, speech is
played to a group of listeners, who are asked to rate
the quality of this speech signal based on their overall
perception.

Listening Quality
In an ACR test, a pool of listeners rate a series of au-
dio files using a five-level impairment scale, as shown
in Table 5.1. After each sample is heard, the listeners

Table 5.1 Grades in the MOS scale. Listeners express their
opinion on the quality of the perceived speech signal (no
reference presented)

Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

Table 5.2 Grades in the detectability opinion scale. Listen-
ers give their opinion on the detectability of some property
of a sound

Objectionable 3

Detectable but not objectionable 2
Not detectable

degradation factors cause only an increase in listening
difficulty, it is sufficient to perform relatively inexpen-
sive and simple tests that measure listening quality. If the
degradation factors cause difficulty while talking, or dif-
ficulty while conversing, it is recommended to perform
the more-complex conversational quality tests.

express an opinion, based only on the most recently
heard sample. The average of all scores thus obtained
for speech produced by a particular system represents
its mean opinion score (MOS). The ACR listening qual-
ity method is standardized in [5.3], and is the most
commonly used subjective test procedure in telecom-
munications. The main reason for the popularity of this
test is its simplicity.

A good method for obtaining information on the
detectability of a distortion (e.g., echo) as a function of
some objective quantity (e.g., listening level) is to use
the detectability opinion scale (Table 5.2). The decisions
on a detectability scale are not equivalent to responses on
a continuous scale. It is therefore recommended to use
as a method of analysis the probability of response [5.3].

A disadvantage of ACR methods is that for some ap-
plications the resolution of their quality scale is not suffi-
cient. In such cases the DCR method is appropriate. DCR
methods provide a quality scale of higher resolution, due
to comparison of the distorted signal with one or more
reference/anchor signals. In a DCR test, the listeners are
presented with the unprocessed signal as a reference be-
fore they listen to the processed signal. The task for the
listener is to rate the perceived degradation by compar-
ing the second stimulus to the first on the scale presented
in Table 5.3. The quantity evaluated from the scores
is referred to as the degradation mean opinion score
(DMOS). DCR methods are also standardized in [5.3].

ABX is another popular method for speech quality
assessment [5.4]. It consists of presenting the listener

Table 5.3 Grades in the DMOS scale. Listeners are asked
to describe degradation in the second signal in relation to
the first signal

Inaudible

Audible but not annoying
Slightly annoying
Annoying

— N WA W

Very annoying
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with three samples: A, B, and X. The listener is asked
to select which of the samples A and B is identical to X.
This method provides a simple assessment of listener re-
liability, through the calculation of the number of correct
answers.

A standardized extension of the ABX method is
described in [5.5]. The subject assesses one of three
stimuli: A, B, and X. The known reference is always
available as stimulus X. The hidden reference and the
object are randomly assigned to A and B. The test sub-
ject is asked to assess the impairments in A compared
to X, and B compared to X, according to a contin-
uous impairment scale. [5.5] defines methods for the
subjective assessment of small impairments in audio sig-
nals (aimed at high-quality audio signals). This method
is aimed at so-called expert listeners (who have been
trained). The higher the quality reached by the systems
to be tested, the more important it is to have expert
listeners.

A test procedure more suitable for the subjective as-
sessment of intermediate-quality audio signals is the
multistimulus test with hidden reference and anchor
(MUSHRA), standardized in [5.6]. In this test, both
a known reference signal and hidden anchors are used.
During the test, the users can switch at will between
the known reference signal (which is not scored and is
known to be the original) and any of the signals under
test. They are required to score the stimuli on a con-
tinuous quality scale according to a continuous quality
scale from O to 100, using sliders on an electronic dis-
play. Thus, the subjects score the stimuli according to
a continuous quality scale. This scale is also extensively
used for the evaluation of video quality [5.7]. Contin-
uous quality scales provide a continuous rating system
to avoid quantization errors, but they are divided into
five equal lengths that correspond to the conventional
ITU-R fine-point quality scale. Results obtained from
continuous quality methods should not be treated as ab-
solute scores but as difference scores between the known
reference and the test condition.

In the DCR methods, listeners always rate the
amount by which the processed (second) sample is
degraded relative to the unprocessed (first) sample. Com-
parison category rating (CCR) procedures can be seen
as arefinement of DCR tests. A CCR procedure is a com-
parison test in which the listeners identify the quality of
the second stimulus relative to the first using a two-sided
rating scale. This scale is referred to as comparison mean
opinion score (CMOS) and is presented in Table 5.4. The
key ideain the CCR test method is to eliminate the order-
ing restriction of the DCR test at the expense of doubling

Table 5.4 Grades in the CMOS scale. Listeners grade the
perceived quality of a speech signal in relation to a reference
speech signal

Much better 3
Better 2
Slightly better 1
About the same 0
Slightly worse -1
Worse -2
Much worse =3

the total number of trials. For half of the trials (chosen at
random), the unprocessed speech is presented first, fol-
lowed by the processed speech. For the other half, the
order is reversed. An advantage of the CCR method over
the DCR method is the possibility to assess speech pro-
cessing that either degrades or improves the quality of
the speech.

For completeness, we mention a method for the
general assessment of sound quality that is described
in [5.8]. For this method, expert listeners are always
preferred over non-expert listeners. Based on the nature
and the purpose of the test, each of the scales presented
in Tables 5.1, 5.3, and 5.4 can be used.

Conversational Quality
So far we have discussed test procedures concerned with
the listening quality. In these tests, the listener rates the
signal that is received from the far end. Effects such as
echoes at the talker side and transmission delays are ig-
nored. Conversational quality refers to how listeners rate
their ability to converse during the call (which includes
listening quality impairments).

In conversational tests, a pool of subjects are placed
in interactive communication scenarios, and asked to
complete a task [5.3]. At the end of the conversation, the
listeners give an opinion on the connection on five-point
category-judgment scale (Table 5.1). The test subjects
also give their binary response on a difficulty scale.
The test subjects answer the question: Did you or your
partner have any difficulty in talking or hearing over
the connection with {Yes = 1, No = 0}. Conversational
quality tests are standardized in [5.3], and a thorough
study can be found in [5.9].

Conversational tests are exclusively not reference
based, yet they are significantly more complex to de-
sign and control than conventional listening tests. It is
therefore beneficial to perform listening tests where pos-
sible. Research on the relations between listening and
conversational quality can be found in [5.10].



Speech Quality Assessment | 5.2 Subjective Tests

Fig.5.1 The ITU-T P.835’s scheme
Silent voting Silent voting Silent voting for evaluating the Subjec[ive quali[y

Sentence | | period 1 Sentence 2 | period 2 Sentence 3 | period 3 of noise-suppression algorithms. Each

iL iL iL test sample is comprised of three
subsamples, where each subsample is

The speech signal in this | | The background in this The overall speech followed by a silent voting period
sample was sample was sample was

Not distorted 5 Not noticeable 5 || Excellent 5

Slightly distorted 4 Slightly noticeable 4 || Good 4

Somewhat distorted 3 Noticeable but not intrusive 3 || Fair 3

Fairly distorted 2 Somewhat intrusive 2 || Poor 2

Very distorted 1 Very intrusive 1|| Bad 1

5.2.2 Multidimensional Metric
(Diagnostic Speech-Quality)

In many cases, the designers of a speech-processing al-
gorithm want to obtain information about speech quality
together with diagnostic information. This task requires
a multidimensional metric subjective test, which pro-
vides more insight into system faults and shortcomings
than tests providing only an overall speech quality mea-
sure.

A procedure that assesses the speech quality
on a multidimensional metric is the diagnostic ac-
ceptability measure (DAM) [5.11], which provides
more-systematic feedback and evaluates speech qual-
ity on 16 scales. These scales belong to one of three
categories: signal quality, background quality, and over-
all quality. A weighted average of all these scales forms
a composite measure that describes the condition under
test. The DAM procedure is designed for trained (experi-
enced) listeners and, in contrast to most other measures,

the speech material is known to the listeners.
While the DAM procedure is general purpose, it

is also possible to design specialized multidimensional
metrics. One example is the procedure standardized
in [5.12], which describes a methodology for evalu-
ating the subjective quality of speech in noise and
noise-suppression algorithms. The methodology uses

Table5.5 Grades in the listening effort scale. Listeners
assess the effort required to understand the meaning of
sentence
Complete relaxation possible; no effort required
Attenuation necessary; no appreciable effort required
Moderate effort required
Considerable effort required

—_— N W B~ W

No meaning understood with any feasible effort

separate rating scales to estimate independently the sub-
jective quality of the speech signal alone, the background
noise alone, and overall quality. Each speech sample is
comprised of three subsamples, where each subsample
is followed by a silent voting period Fig.5.1. Recent
experiments with this procedure are presented in [5.13].

5.2.3 Assessment of Specific
Quality Dimensions

The diagnostic rhyme test (DRT) [5.14] evaluates speech
intelligibility. It uses a set of isolated words to test for
consonant intelligibility in the initial position. The DRT
uses 96 pairs of confusable words (which differ by a sin-
gle acoustic feature in the initial consonant) spoken in
isolation. First, the subject is presented visually with
a pair of rhymed words. Then, one word of the pair (se-
lected at random) is presented aurally and the subject is
required to indicate which of the two words was played.

The modified rhyme test (MRT) [5.15, 16] is an ex-
tension to the DRT. It evaluates the intelligibility of both
initial and final consonants. A set of six words is played
one at a time and the listener marks which word they
think they hear.

Intelligibility tests are rarely used to assess the qual-
ity of speech coding systems, since while most systems
affect naturalness, they do not degrade speech intelligi-
bility significantly. In other applications, such as speech
synthesis, intelligibility tests are the major testing tool.
In addition to DRT and MRT, other popular tests are the
Bellcore test [5.17], and the minimal pairs intelligibility
(MPI) test [5.18].

A frequently used opinion scale that focuses on
the listener’s ability to understand the meaning of the
sentence is the listening effort scale [5.3] (Table 5.5).
Methods using the listening effort scale generally yield
results that are better correlated with conversational
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opinion scores than methods using the listening quality
scale [5.19].

5.2.4 Test Implementation

The designer of a subjective test should take care of:

the selection of the test material
the selection of the test subjects
the choice of the test procedure
the analysis of the test results

o=

Careful experimental design and planning is needed
to ensure that uncontrolled factors, which can cause
ambiguity in the test results, are minimized.

Speech material should consist of simple,
short, meaningful, and preferably phonetically bal-
anced [5.20], sentences. In the ACR test, the sentences
should be made into sets of two without an obvious
connection of meaning between the sentences in a set
(Fig.5.2). If the impairments are simulated, the test de-
signer has the responsibility to make the model as close
to reality as possible. As an example, for high noise lev-
els people change their talking behavior (the Lombard
effect [5.21]), which is often not considered when noise
recording is digitally added to the clean-speech database.

~0.5s Sentence 1 ~0.5s Sentence 2 ~0.5s

Fig.5.2 A typical MOS test uses stimuli that contain two
short sentences, separated by a 0.5s seconds silence gap.
The resulting two-utterance stimulus has a duration of about
8-10s

Subjective quality assessment of
speech and audio

/\.

Listening quality Conversational quality

ITU-T Rec. P.800

Absolute category

ratings

ITU-T Rec. P.800,
ITU-R BS.1284-1

Degradation category ratings,
comparison category ratings

ITU-T Rec. P.800, ITU-R BS.1534-1,
ITU-R BS. 1284-1, ITU-R BS.1116-1

Fig. 5.3 Classification of subjective quality assessment methods and
related ITU standards and recommendations

The most important requirements for the selection
of the test subjects are:

1. they must be native speakers of the language in
which the tests are being conducted,

2. they do not have known hearing defects, and

3. they have not recently been involved in quality
assessment tests of the same or similar speech pro-
cessing system.

Note that some test procedures require experienced
listeners, e.g., [5.5], while others require naive listen-
ers, e.g., [5.12]. In general, a listening test should use
experienced listeners when impairments are small, or
when fast test convergency is needed (i. e., small num-
ber of listeners). However, listening tests using naive
listeners represent the actual conditions under which the
communication system will be used better.

A classification of the most popular subjective tests
standardized by the ITU is shown in Fig.5.3. As dis-
cussed earlier, the choice of a particular test procedure
is dependent on the type of impairments and the required
format (e.g., overall quality, diagnostic information,
etc.). Different test procedure may require different lis-
tening conditions (headphones or loudspeakers, scoring
on a computer or voting on paper, etc.), but these con-
ditions cannot be changed within the test. For most of
the test procedures it is recommended that test subjects
are given a break after 20—30 min of listening. It is vital
that subjects are not overloaded to the point of decreased
accuracy of judgment.

Test designers usually include reference conditions
(well-defined test conditions) in the quality assessment
procedure. There are two major reasons to introduce
reference conditions in listening tests. The first is to
provide a convenient means for comparing subjective
test results from different laboratories. The second is
that reference conditions provide a spread in quality
level, which increases the consistency of human ratings
across tests.

Reference conditions, used in telecommunications,
typically include a best possible condition (the origi-
nal signal or a high-quality speech codec), as well as
conditions where controlled degradation is introduced.
One of the most commonly used types of reference sig-
nals is the modulated noise reference unit (MNRU),
which is standardized in [5.22]. MNRU produces ran-
dom noise with an amplitude that is proportional to
the instantaneous speech amplitude (i. e., multiplicative
noise):

yi = se(1+1079/20y,) | (5.1)
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where yy, is the output noise-modulated speech, sy is the
original speech signal, v is the random noise, k is the
sample index, and Q is the ratio of the speech power to
the modulated noise power.

The average of the opinion scores should be cal-
culated for each test condition. A variety of statistical
procedures is available to compare the results obtained
from listening tests.

The z-test is a commonly used method to identify
a significant difference in means between two con-
ditions. The first step is to calculate the minimum
significant difference (MSD) threshold (at the 95% sig-
nificance level):

[ 2, 2
oy +o
MSD = 1959 2M—1) %, (5.2)

where M is the number of observations, aﬁ is the vari-
ance of the scores for condition A, O']% is the variance of
the scores for condition B, and f959, 2y —1) is a tabulated
critical value from Student’s T distribution at the 95%
significance level with 2(M — 1) degrees of freedom.

The second step is to compare the absolute differ-
ence between the mean values for the two conditions
|pea — up| with the previously calculated MSD thresh-
old. If |up —uB| > MSD one can conclude that the
quality of condition A is significantly different from
the quality of condition B at the 95% significance
level.

If there is a need to compare more than two con-
ditions, or compare conditions created by more than
one independent variable, one has to consider the us-
age of the analysis of variance (ANOVA) or honestly
significant difference (HSD) tests [5.23].

5.2.5 Discussion of Subjective Tests

Since the auditory event that causes the perception
of quality degradation is not available for direct mea-
surement, the test subjects describe their perception on
quality scales, which may be of different types. In a cat-
egory scale, the subject assigns a certain class (usually
labeled with numbers or symbols) to their perception
of signal quality. In an ordinal scale the subject ar-
ranges test samples into an order (e.g., the loudest sample
first). In interval and ratio scales the differences between
classes, or correspondingly the ratio between classes, is
quantified.

In ACR procedures, the test subjects rate each pre-
sented test item on a discrete ordinal scale, for example
labeled as described in Table 5.1. Each of these cate-

gories is assigned a number, and the total average of all
rating results is often expressed as an MOS. In ACR
procedures, the mean values are calculated assuming
that each category occupies the same interval on a per-
ceptual continuum, and the statistical processing of the
data assumes that this five-point ITU scale is an interval
scale.

Some studies [5.24] indicate that the intervals rep-
resented by the quality scale labels are not equal.
There are also indications that the scale labels can-
not be translated adequately into different languages,
such that the scale is equal in different countries.
It is common to apply statistical tests (e.g., analysis
of variance) to recorded scores. In the cases where
MOS scores are not presumed to represent a linear
scale, statistics for ordinal scales may need to be ap-
plied [5.25].

In the quality assessment procedures discussed so
far, we have assumed that the speech quality does not
vary significantly during the speech sample being evalu-
ated. In reality, quality of service may vary even during
a single conversation and attention must be paid when
investigating time-varying impairments. Time-varying
speech quality has been the main focus of several stud-
ies, e.g., [5.26-32]. Some important observations from
this research are that

1. the long-term perceived speech quality scores are
lower than the time average of the corresponding
short-term perceived speech quality scores,

2. the perceived long-term quality decreases when the
variance of the short-term speech quality increases,

3. listeners detect decreases in speech quality more
quickly than increases in speech quality, and

4. long-term scores are more strongly influenced by
events near the scoring time than by earlier events.

A methodology for the assessment of time-varying
speech quality is standardized in [5.33]. The test subjects
are asked to assess the speech quality continuously by
moving a slider along a continuous scale so that its po-
sition reflects their opinion on quality at that instant (the
slider position should be recorded every 500 ms). For
each utterance a mean instantaneous judgment is ob-
tained by averaging individual instantaneous judgments
over the subjects. At the end of the utterance, subjects
are asked to rate its overall quality on a five-point ACR
scale. For each utterance a mean overall judgment is ob-
tained by averaging individual overall judgments over
the subjects on the ACR scale. A substantial differ-
ence between the continuous score and the overall score
indicates a time-varying quality level.
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5.3 Objective Measures

In this Section we discuss objective quality measures:
computer algorithms designed to estimate quality degra-
dation. Subjective tests are believed to give the true
speech quality. However, the involvement of human
listeners makes them expensive and time consuming.
Subjective tests are not suitable to monitor the quality of
service (QoS) of a network on a daily basis, but objective
measures can be used for this purpose at a very low cost.
The main aspects that affect the applicability of objective
and subjective measures are summarized in Table 5.6.

Similarly to the subjective tests, some objective qual-
ity measures are designed to assess listening quality,
while others assess conversational quality. Alternatively,
the classification of objective quality measures can be
based on the type of input information they require:
intrusive quality measures require access to both the
original and distorted speech signal, while non-intrusive
measures base their estimate only on the distorted signal,
as illustrated in Fig. 5.4.

Early work on objective quality assessment focused
exclusively on intrusive methods, and non-intrusive
methods have received attention only in the last decade.
If only the distorted signal is available, sophisticated
modeling of the speech and/or distortions is typically
needed. In contrast, intrusive measures range from very
simple to sophisticated models that consider human
perception.

5.3.1 Intrusive Listening Quality Measures

Simple Time-

and Frequency-Domain Measures
The simplest class of intrusive objective quality mea-
sures consists of waveform-comparison algorithms,
such as those based on the signal-to-noise ratio (SNR)
and segmental SNR (SSNR). These two algorithms are
easy to implement, have low computational complex-
ity, and can provide indications of perceived speech
quality for a specific waveform-preserving speech sys-

Reference Distorted
signal System signal Non-intrusive
—
| under test measurement .
! Pred}cted
! - quality
e ) Intrusive Y
measurement

Fig. 5.4 Intrusive and non-intrusive types of quality assessment.
Non-intrusive algorithms do not have access to the reference signal

Table 5.6 Comparison of subjective and objective methods
for quality assessment. The symbol “+4” is used to denote
that the method is advantageous over the other method,
denoted by “—”

Subjective Objective

measures measures
Cost = +
Reproducibility = A
Automation = +
Unforeseen impairments + —

tem [5.34]. Unfortunately, when used to evaluate coding
and transmission systems in a more-general context,
SNR and SSNR show little correlation to perceived
speech quality. These measures are also sensitive to
a time shift, and therefore require precise signal align-
ment, which is not always a trivial problem.

The overall SNR distortion measure between an
original s and a distorted y speech vector is calculated
as [5.34]:

sTs
dsnr(s, y) = 10logq E s

where e = s —y. The vector dimension is sufficient to
contain the entire utterance.

The SSNR is calculated by splitting the two vectors
into smaller blocks and calculating an SNR value for
each of these blocks. The final SSNR value is obtained
by averaging the per-block SNR values, e.g., [5.35]:

1 N sTs
n
dssNR(S. Y) = Zl 1010g10< T ) :
n=

(5.3)

(5.4)

€,6n

where N is the total block number, n is the block index,
and the per-block error vector is defined as e, =s,, — y,,.
A typical block length is 5 ms. In a perceptual modifi-
cation of this measure, studied in [5.36], weights that
depend on the time-varying spectral envelope of the
original speech are applied.

Frequency-domain measures are known to be signif-
icantly better correlated with human perception [5.34],
but still relatively simple to implement. One of their crit-
ical advantages is that they are less sensitive to signal
misalignment. Some of the most popular frequency-
domain techniques are the [fakura—Saito (IS), the
cepstral distance (CD), the log-likelihood (LL), and the
log-area-ratio (LAR) measures [5.37].

The gain-normalized spectral distortion (SD) is
widely accepted as a quality measure of coded speech
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spectra [5.38]. In its most commonly used form, the SD Distorted Nerve

L . Perceived
evaluates the similarity of two autoregressive envelopes signal ockaden

quality

Auditory Cognitive

on a per-frame basis:

n r Ps(w, 2 d
ng)(s,y)=/ [101og10 (ﬁ)] % (5.5)

where Ps(w, n) and Py(w, n) are the autoregressive spec-
tra of the clean and processed signal. The per-frame
distances are generally combined into a global (per-
signal) distortion in the form of a root-mean SD:

N

Y dlps.y). (5.6)

n=1

1
d Ly) = —
SD(S,y) N

where N is the total number of frames. A further en-
hancement of SD is proposed in [5.39], where the
authors apply weighting with a perceived loudness func-
tion, which takes in consideration frequency-dependent
perception sensitivities. It is noted that perceived distor-
tion of the spectral fine structure is not considered in the
SD measures described above.

The distinguishing characteristic of both waveform
comparison and frequency-domain techniques is that
the basic measure operates on a per-frame basis and
that they use simple schemes to combine the estimated
per-frame distortions [5.40]. The most commonly em-
ployed method for the construction of a global objective
distortion measure over a number of N frames can
be computed by arithmetically averaging the per-frame
computed distance measures. In a more-sophisticated
form of this basic measure, unequal contributions to
perception from each speech frame can be taken into ac-
count. An unequal distribution can be related to frame
energy and/or voicing.

The measures discussed in this subsection only
have meaning when applied to frames where speech is
present. A known problem is that authors do not specify,
or use different rules, to select the subset of N speech
active frames from the entire frames set. To obtain re-
peatable results, it is advisable to use speech activity
detection based on a speech level meter [5.41].

The intrusive quality measures methods discussed
thus far are based on simple and tractable mathematical
models. The next topic in our discussion covers a more-
sophisticated family of quality measures that is based on
knowledge of the human auditory system.

Psychoacoustically Motivated Measures
Many intrusive quality measures are based on mimicry
of the human auditory system. This approach has led

processing mapping

Fig. 5.5 Human perception of speech quality, involving both hear-

ing and judgment

to highly accurate objective performance measures that
are useful in many contexts where the original signal is
present.

The process of human assessment of speech qual-
ity can be described as consisting of two stages, as
illustrated in Fig.5.5. In the first auditory processing
(hearing) stage, the received speech acoustic signal is
transformed into an auditory nerve excitation. Essen-
tial elements of auditory processing include bark-scale
frequency warping and spectral power to subjective
loudness conversion. The second stage of the quality
assessment process entails cognitive processing in the
brain, where compact features (that contain information
about the anomalies in the speech signal) are extracted
from auditory excitations. These features are combined
to form a final impression of the perceived speech sig-
nal quality. The cognitive models of speech distortions
are less well developed than the auditory model.

Figure 5.6 shows an outline of an ideal mimicry-
based speech quality assessment algorithm that incorpo-
rates both stages of subjective quality assessment. Both
original and distorted signals are first subjected to a per-
ceptual transform that mimics the auditory periphery.
Then a process mimicking high-level cognitive process
extracts patterns related to the language specifics, con-
text, etc. Finally, the distance between the expected
(original) and actual patterns is mapped to a selected
speech quality scale. Unfortunately, this scheme is cur-
rently not realizable, since the cognitive processing
performed by the human brain is largely unknown.

The human auditory periphery is well understood
and perceptual transforms are thought to be reasonably
accurate. The transforms result in a signal representation
that is scaled such that upon thresholding (representing
a minimum precision) only perceptually relevant infor-

s Perceptual | § Cognitive | Sp
— :
transform processing Q
- y . d(sp, yp) —>
y Perceptual y Cogmtl.ve yp
transform processing

Fig.5.6 A speech quality assessment algorithm that mimics the

process of human quality assessment
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mation is retained. The transforms reflect the fact that the
resolution of the ear is not uniform on the Hertz scale
and that the relation between perceived loudness and
signal intensity is nonlinear. The sensitivity of the ear
is a function of frequency and the corresponding abso-
lute hearing thresholds have been characterized. Finally,
many studies have demonstrated time- and frequency-
domain masking effects [5.42—45]. A study presented
in [5.46] argues that nonuniform frequency resolution
and nonlinear loudness perception are the most impor-
tant properties of auditory models.

Historically, researchers have followed two different
paths to incorporate knowledge of the auditory periph-
ery into quality assessment schemes. The first is based
on the masking threshold concept, where the reference
signal is used to calculate an estimate of the actual
masking threshold operating on a short-term frequency
spectrum. The difference between the reference and
processed signals is evaluated relative to this masking
threshold [5.36,47]. The second approach aims to com-
pare internal representations directly. Based on a model
of the auditory periphery, an internal representation of
both signals is calculated. This internal representation
contains the information that is available to the brain
for comparison of signals [5.48]. Note that the second
scheme is closer to the desired scheme shown in Fig. 5.6.

It can be shown that an appropriate weighting of
the difference for the masking approach is precisely the
inverse of the masking threshold. The frequency spectra
weighted by the inverse masking function can then be
interpreted as a simple internal representation of the
human ear, reconciling the two historic approaches.

Internal representations can have different levels of
sophistication. The bark spectral distortion (BSD) [5.49]
can be seen as one of the first and simplest internal
measures. The BSD is the averaged Euclidean distance
between the original and distorted speech signals in the
Bark domain. A similar measure is the information in-
dex (IT) [5.50], according to which the auditory system is
modeled by dividing the spectrum into 16 critical bands
and applying empirical frequency weights and a hear-
ing threshold for each band. The coherence function
(CF) [5.51] is a measure of the signal-to-distortion ra-
tio. The objective of the coherence function is to turn off
uncorrelated signals and pass correlated signals.

A more-sophisticated internal presentation is used
in [5.52], which describes a perceived speech quality
assessment algorithm called perceptual speech quality
measure (PSQM). Its scope is limited to higher-bitrate
speech codecs operating over error-free channels. The
transformation from the physical to the psychophysical

(internal) domain is performed in three steps — fre-
quency warping, time—frequency smearing, and level
compression [5.52].

In ITU-R. BS.1387-1, perceptual quality assess-
ment for digital audio (PEAQ) [5.53, 54], concurrent
frames of the original and processed signals are each
transformed to a basilar membrane representation (the
internal representation), and differences are further ana-
lyzed as a function of frequency and time by a cognitive
model.

ITU-T Rec. P.862, perceptual evaluation of speech
quality (PESQ) [5.55], measures the effects of one-way
speech distortion. The effects of loudness loss, delay,
sidetone, echo, and other impairments related to two-
way interaction are not reflected in PESQ scores. Factors
for which PESQ has demonstrated acceptable accuracy
are: speech input levels to a codec, transmission channel
errors, packet loss and packet loss concealment with
CELP codecs, bitrates if a codec has more than one
bitrate mode, transcodings, environmental noise at the
sending side, the effects of varying delay in listening
only tests, short-term time warping of audio signal, and
long-term time warping of audio signal.

ITU-T Rec. P.862 was designed to evaluate narrow-
band (3.4kHz) speech quality, and cannot deal with
wideband (7 kHz) speech quality. A recent research fo-
cus has been the development of a wideband extension
for PESQ, ITU-T Rec. P.862.2 [5.56].

The above discussion centered on processing that
mimics the human auditory periphery. The outcome is
a representation that corresponds to that in the auditory
nerve. This representation must then be mapped into
a quality measure. It is important to note that the lack of
knowledge about high-level cognitive brain processing
cannot be compensated for by more-sophisticated mod-
els of the auditory periphery. Less-audible parts of the
signal may be more objectionable if they are of higher
importance for the pattern extraction and comparison
process performed by the human brain.

Some important cognitive effects that affect the pro-
cess of quality judgment are:

1. linear distortion is generally less objectionable than
nonlinear distortion,

2. speech-correlated distortion is more objectionable
than uncorrelated distortion,

3. if the local information complexity is high, then
distortion is less objectionable, and

4. distortion in some spectral-temporal components,
such as formants, is more objectionable, since they
carry more information.
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Even though not completely understood, these ef-
fects have been used successfully by researchers to
improve perceived quality in speech coding [5.57, 58],
and enhancement [5.59] applications. These studies are
motivated by the evidence that noise is aurally masked
by rapid changes in the speech signal [5.43].

Perhaps the simplest way to develop a relationship
between two internal representations corresponding to
auditory nerve signals and a target subjective opinion
scale is to carry out a weighted summation of their
difference along the frequency and time axes. As an
example, PESQ performs integration in three steps, first
over frequency, then over short time intervals, and finally
over the entire speech signal. The authors of [5.60-62]
present an error integration scheme that is more consis-
tent with high-level brain processing. Holier et al. [5.60]
uses an entropy measure of the difference internal rep-
resentation. The measuring normalizing blocks (MNB)
algorithm [5.61, 62] utilizes a relatively simple percep-
tual transform, but a sophisticated error pooling system.
MNB uses a hierarchical structure of integration over
arange of time and frequency intervals.

A conceptually simple objective speech quality mea-
sure can also be obtained by integrating elements of
high-level brain processing. An interesting measure
based on distortion in the spectral peaks of speech was
proposed in [5.63]. The approach proposed in [5.64] is to
measure the phonetic distance between the original and
distorted signals (calculated as the weighted difference
between spectral slopes over several frequency bands).

A more-general approach to simulate this process
is through statistical mapping and data mining [e.g.,
Gaussian mixture models (GMMSs) or neural networks
(NNs)], or clustering [5.65]. Another example can be
found in [5.66], where the authors recognize the im-
portance of the high-level cognitive process and apply
a statistical data-mining approach. In the approach
of [5.66], a large pool of candidate features is created
and the ones that lead to the most accurate prediction of
perceived quality are selected.

5.3.2 Non-Intrusive
Listening Quality Measures

Intrusive objective speech quality measures can provide
a performance measure for a communication system
without the need for human listeners. However, in-
trusive measures require the presence of the original
signal, which is not available in some important applica-
tions, including QoS monitoring of telecommunication

networks. For such applications non-intrusive quality
assessment must be used.

A wide variety of approaches has been used to
obtain non-intrusive quality assessment. These include
methods that assess the possibility of the signal being
produced by human physiology, methods that compare
to the nearest signal from a speech database, and meth-
ods that learn the human mapping between signal and
quality directly.

Reference [5.67] reports a non-intrusive speech qual-
ity assessment that attempts to predict the likelihood that
the signal has been generated by the human vocal pro-
duction system. To achieve this, the speech signal under
assessment is first reduced to a set of features. This pa-
rameterized data is then used to estimate the perceived
quality by means of physiologically based rules.

The measure proposed in [5.68] is based on com-
paring the output speech to an artificial reference signal
thatis appropriately selected from an optimally clustered
codebook. The perceptual linear prediction (PLP) [5.69]
coefficients are used as a parametric representation of the
speech signal. A fifth-order all-pole model is performed
to suppress speaker-dependent details of the auditory
spectrum. The average distance between the unknown
test vector and the nearest reference centroids provides
an indication of speech degradation.

The authors of [5.70,71] propose a method that em-
ploys intrusive algorithms. However, they avoid the need
for the original signal. The method is based on measur-
ing packet degradations at the receive end. The measured
degradation is applied to a typical speech signal to pro-
duce a signal that is similarly degraded. An intrusive
algorithm can then be used to map the speech signal and
degradation signal to speech quality.

A novel, perceptually motivated, speech quality
assessment algorithm based on the temporal enve-
lope representation of speech is presented in [5.72]
and [5.73].

A non-intrusive speech quality assessment system,
based on a speech spectrogram, is presented in [5.74].
An interesting concept in this approach is that accu-
rate estimation of speech quality is achieved without
a perceptual transform of the signal.

The ITU standard for non-intrusive quality assess-
ment is ITU-T P.563 [5.75]. It consists of a combination
of a number of approaches. A total of 51 speech fea-
tures are extracted from the signal. Key features are
used to determine a dominant distortion class, in each of
which a linear combination of features is used to predict
a so-called intermediate speech quality. The final speech
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quality is estimated from the intermediate quality and 11
additional features.

Another approach is to use perceptually motivated
spectral envelope representations in combination with
a mapping from this representation to the quality mea-
sure through a GMM [5.76,77]. The authors of [5.68,78]
used a similar approach but with mappings based on
hidden Markov models (HMMs) and neural networks.

A recent development [5.79] simplifies this method

and combines the GMM mapping with a small set of

features selected for optimal performance from a large
set of features. As a result, the algorithm has very
low complexity, requiring only a small fraction of the
computational capability of a mobile phone.

5.3.3 Objective Measures for Assessment
of Conversational Quality

The emphasis in this chapter, and also in the literature
on quality assessment, is on listening quality. However,
some applications may require the assessment of con-
versational quality, i. e., to include impairments such as
delay and talker echo.

The E-model is a tool for predicting how an av-
erage user would rate the voice quality of a phone
call with known characterizing transmission parameters
(currently 21 input parameters). The E-model is stan-

dardized in ITU-T Rec. G.107 [5.80]. The objective of

the E-model is to determine a transmission quality rat-

ITU-T P.563: Non-intrusive monitoring of listening quality
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 Packet loss
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E-model: Non-intrusive monitoring of conversational quality
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Fig. 5.7 Non-intrusive monitoring of listening and conversational
quality over the network

ing, i.e., the R factor, with a typical range between 0
and 120. The R factor can be converted to estimated
listening and conversational quality MOS scores. The
E-model does not compare the original and received
signals directly. Instead, it uses the sum of equipment
impairment factors, each one quantifying the distortion
due to a particular factor. Impairment factors include
the type of speech codec, echo, averaged packet de-
lay, packet delay variation, and the fraction of packets
dropped. A fundamental assumption is that the impair-
ments on the psychological scale are additive [5.81]. The
transmission quality rating is determined as

R=Ro—Is—Ilg—leer + A, (5.7)

where R represent the basic signal-to-noise ratio (nois-
iness), including noise sources such as circuit and room
noise, I is a combination of all impairments that oc-
cur simultaneously with the voice signal (loudness), Ig
represents the impairments caused by the delay (echo
and delay), I.eff represents impairments caused by low-
bitrate codecs and packet losses (distortion), and A
allows for compensation of impairments factors.

The broader scope of conversational quality assess-
ment, as compared to listening quality assessment, is
illustrated in Fig.5.7. For completeness, we note that
speech quality can also by discussed solely from the
viewpoint of the context of the talker [5.82], with echo
and sidetone distortion being the main impairments.
There are also studies on the possibility of decompos-
ing conversational quality into listening, talking, and
interaction quality, and building a prediction from these
components.

5.3.4 Discussion of Objective Measures

Objective measures of speech quality are now relatively
mature, as is reflected in the standards defined by the
ITU-T. These standards and a corresponding classifi-
cation of the methods are presented in Fig.5.8. This
standardization indicates that the performance of these
measures is satisfactory for many practical applications.
In this subsection we discuss how the performance of ob-
jective quality measures can be evaluated, and provide
an indication of the performance of the state-of-the-art
algorithms.

The development of a computer algorithm that pre-
dicts the output of subjective quality test well is not
straightforward. Complications come from the fact that
speech perception is influenced by grammar rules and
semantic context. Modeling of factors such as the speak-
er’s emotional state and expectations of speech quality
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is even more difficult. It is therefore critical that newly
developed objective quality algorithms are properly cali-
brated to the output of subjective quality tests. Objective
measures that generate results that closely approximate
subjective test results are more useful than objective
measures that show larger deviation. To facilitate the
reproducibility of the evaluation process, it has to be
trained over a large multilanguage database that contains
a wide range of distortions, e.g., [5.83].

In the literature, two methods are commonly used
to evaluate the performance of quality assessment algo-
rithms. The first is suitable for codec or transmission
equipment evaluation. The subjective MOS for the
speech files within a particular test condition are first
averaged together. The objective MOS are likewise
grouped and averaged. Then, the correlation coefficient
R and the root-mean-square error (RMSE) ¢ between
the per-condition averaged subjective and the objective
MOS over all the conditions in the database are calcu-
lated. Let the measured subjective quality be denoted by
0, and the predicted objective quality by 0, then the
RMSE is given by

L —_O.)2
. M (5.8)

and the correlation coefficient is defined as
_ ZiL:1(Qi—MQ)(Qi—MQ)
\/ZiL:I(Qi - MQ)Z\/ZiLzl(Qi —no)?

where 1o and w4 are the mean values of the intro-
duced variables and L is the number of conditions in the
database.

An alternative method to evaluate the accuracy of
objective quality algorithms is to calculate the corre-
lation and RMSE between the objective and subjective
MOS for each utterance. This concept is better suited for
the assessment of performance in voice quality monitor-
ing applications. The RMSE and correlation coefficient
are calculated in a similar fashion as described above,

R , (5.9)

5.4 Conclusions

Perhaps the first question that comes to mind af-
ter reading an overview on speech quality assessment
is: why is it so difficult to assess speech quality

Objective quality assessment

Listening quality

T

Intrusive Non-intrusive

| ITU-T Rec. P.862 | | ITU-T Rec. P.563 |

Fig. 5.8 Classification of objective quality assessment methods and

related ITU standards and recommendations

but the summation is over MOS-labeled utterances in
the database, and L is the number of these utterances.

One typically overlooked problem in the training and
evaluation of objective quality algorithms is that most of
the currently available data are for ACR-type listening
tests. Thus, intrusive algorithms (e.g., [5.52, 84]) were
designed to predict listening quality not based on DCR
testing and with a DMOS scale, as is natural, but in terms
of MOS values. To the best of our knowledge, there are
no studies to assess the impact of this mismatch. This
issue is not relevant to non-intrusive algorithms such as
ITU-T P.563, [5.75], which are designed to predict the
outcome of ACR subjective tests.

Both intrusive and nonintrusive algorithms provide
a performance that is useful for practical applications.
The intrusive PESQ algorithm (ITU-T Rec. P.862.2)
has been observed to have a correlation coefficient R
of 0.85-0.95 [5.85, 86]. The nonintrusive ITU-T P.563
standard has a correlation coefficient of 0.8—0.9 [5.79,
86]. Recent work describing new nonintrusive measures
reports even higher correlations [5.79].

The discussed measures of listening and conversa-
tional quality are designed to predict the speech quality
from the simultaneous effect of a large number of dis-
tortions. An objective quality assessment measure can
also be designed to operate in a particular environment
only (e.g., specific speech coding standards in the con-
text of a particular mobile network). These constraints
can be used to obtain higher system accuracy and reduce
complexity and memory requirements [5.87].

and why are so many scales and test procedures
used? The explanation is that the auditory event that
causes the perception of quality degradation is always

Conversational quality

ITU-T Rec. G.107
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Table 5.7 A survey of typical quality assessment problems and recommended test methodology

Assessment problem

Subjective assessment of overall conversational quality

Multidimensional subjective speech quality assessment
Subjective assessment of speech intelligibility

Subjective assessment of general audio quality
Subjective assessment of high audio quality
Subjective assessment of intermediate audio quality
Subjective assessment of overall listening quality

of speech processing system

Subjective evaluation of speech processing algorithms
of similar quality (typically for high-quality speech
processing algorithms)

Subjective evaluation of systems that may increase

or decrease the quality of the input speech

Subjective evaluation of threshold values of certain quantities

Subjective evaluation of noise suppression algorithm

Objective assessment of listening speech quality
(reference signal not available)

Objective assessment of listening speech quality
(reference signal available)

Objective assessment of audio quality

(reference signal available)

Objective assessment of conversational speech quality
(network parameters available)

unknown and can be only projected on a particu-
lar scale(s) through the response of the test subject.
Thus, we generally deal with one or more projections
of speech quality, suitable for the particular applica-
tion.

It is difficult to give general guidance on which
assessment method is adequate for a specific quality as-
sessment problem. Nevertheless, in Table 5.7 we make
an attempt to relate some of the typical quality assess-
ment situations with an adequate test methodology.

References

Quality assessment method

Absolute category rating (ACR),

Conversation difficulty scale [5.3]
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Diagnostic rhyme test (DRT) [5.14],
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6.

The Wiener filter, named after its inventor, has
been an extremely useful tool since its inven-
tion in the early 1930s. This optimal filter is not
only popular in different aspects of speech pro-
cessing but also in many other applications. This
chapter presents the most fundamental results
of the Wiener theory with an emphasis on the
Wiener—Hopf equations, which are not convenient
to solve in practice. An alternative approach to
solving these equations directly is the use of an
adaptive filter, which is why this work also de-
scribes the most classical adaptive algorithms that
are able to converge, in a reasonable amount of
time, to the optimal Wiener filter.

6.1 OVervieW...................cccoooveiiiiiiieiieeann, 103
6.2 SignalModels.......................cooeeiiiin. 104
6.2.1 SISO Model ......oovveviiiiiiiin, 104
6.2.2 SIMOModel ......coovviiiiiiin, 105
6.2.3 MISO Model ........cooevviiiiiiin, 105
6.2.4 MIMO Model ......coevviiiiiiiiien, 106

6.1 Overview

In his landmark manuscript on extrapolation, interpo-
lation, and smoothing of stationary time series [6.1],
Norbert Wiener was one of the first researchers to treat
the filtering problem of estimating a process corrupted
by additive noise. The optimum estimate that he derived,
required the solution of an integral equation known as
the Wiener—Hopf equation [6.2]. Soon after he published
his work, Levinson formulated the same problem in dis-
crete time [6.3]. Levinson’s contribution has had a great
impact on the field. Indeed, thanks to him, Wiener’s
ideas have become more accessible to many engineers.
A very nice overview of linear filtering theory and the
history of the different discoveries in this area can be
found in [6.4].

In this chapter, we will show that the Wiener theory
plays a fundamental role in system identification. For ex-
ample, in many speech applications, impulse responses
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between loudspeakers (or speech sources) and micro-
phones need to be identified. Thanks to many (adaptive)
algorithms directly derived from the Wiener—Hopf equa-
tions, this task is now rather easy.

This chapter is organized as follows. Section 6.2
presents the four basic signal models used in this
work. In Sect. 6.3, we derive the optimal Wiener filter
for a single-input single-output (SISO) system. Sec-
tion 6.4 explains what happens if the length of the
modeling filter is shorter than the length of the true
impulse response (this case always occurs in prac-
tice). It is extremely useful in many applications to
be able to say how the input signal correlation ma-
trix, which appears in the Wiener—Hopf equations, is
conditioned. So we dedicate Sect. 6.5 to a detailed dis-
cussion on the condition number of this matrix. In
Sect. 6.6, we present a collection of basic adaptive
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filters. We insist on the classical normalized least-mean-
square (NLMS) algorithm. Section 6.7 generalizes
the Wiener filter to the multiple-input multiple-output
(MIMO) system case. While this generalization is

6.2 Signal Models

In many speech applications, a system with a number of
inputs and outputs needs to be identified. In this section,
we explain the four basic signal models. This classi-
fication is now well accepted and is the basis of many
interesting studies in different areas of control and signal
processing.

a) b (k)
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b) bk
k
1 @—n®
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— @ n®
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straightforward, the optimal solution does not always
exist and identification problems may be possible only
in some situations. Finally, we give our conclusions
in Sect. 6.8.

6.2.1 SISO Model

The first model we consider is the single-input single-
output (SISO) system, as shown in Fig. 6.1a. The output
signal is given by

x(k) = hxs(k)+b(k) , (6.1)
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—’| Hy(2) 2l()
2O o - -
L
—’| H3(z)
: : by (k)
[ Hun |
. —— x3(k)
sm (k) : z
— = Hw@
P b (k)
!
—  —x®

Fig. 6.1a=d Illustration of four distinct types of systems. (a) A single-input single-output (SISO) system. (b) A single-input
multiple-output (SIMO) system. (c) A multiple-input single-output (MISO) system. (d) A multiple-input multiple-output

(MIMO) system.
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where & is the channel impulse response, the symbol
* denotes the linear convolution operator, s(k) is the
source signal at time k, and b(k) is the additive noise
at the output. Here we assume that the system is lin-
ear and shift-invariant. The channel impulse response is
delineated usually with a finite impulse response (FIR)
filter rather than an infinite impulse response (IIR) fil-
ter. In vector/matrix form, the SISO signal model (6.1)
is written as:

x(k) = h s(k) + b(k) , (6.2)
where
h=1lhg hy - hp_11",

s(k)=[s(k) stk—1) -+ stk—L+D]I",
where [-]T denotes the transpose of a matrix or a vector,
and L is the channel length.

Using the z transform, the SISO signal model (6.2)

is described as follows:
X(2) = H(z)S(2)+ B(2) , (6.3)

where X(z), S(z), and B(z) are the z-transforms of x(k),
s(k), and b(k), respectively, and H(z) = Z,L:_Ol izl

The SISO model is simple and is probably the most
widely used and studied model in communication, signal
processing, and control theories.

6.2.2 SIMO Model

The diagram of a single-input multiple-output (SIMO)
system is illustrated in Fig. 6.1b, in which there are N
outputs from the same source as input and the n-th output
is expressed as:

Xu(k) =hYs(k)+by(k), n=1,2,--- N, (6.4)

where x;,(k), h,, and b, (k) are defined in a similar way
to those in (6.2), and L is the length of the longest
channel impulse response in this SIMO system. A more-
comprehensive expression of the SIMO model is given
by

x(k) = Hs (k) +b(k) , (6.5)
where

x(k) = Lxy (k) xa0k) - xn(oI".

hio hig -+ hip—

B hao hay -+ hap—1
hno hnia - A1) yyp
b(k) = [by(k) by(k) --- by(K)I" .

The SIMO model (6.5) is described in the z-transform
domain as:

X(z)=H(2)S(2)+ B(2) , (6.6)

where

X2)=[X1(2) X2(2) - Xn@)]I",

H(z)=[H(z) Hyz) --- Hy()]I".
L—1

H”(Z):Zhn,lzil, n:1,2,.-. ,N,
=0

B(2)=1[Bi(2) Bx(z) --- By()I"-

6.2.3 MISO Model

In the third type of systems as drawn in Fig.6.1c, we
suppose that there are M sources but only one output,
whose signal is then expressed as:

M
x(k) =Y hysu(k)+b(k),

m=1

=hTs(k)+b(k) , (6.7)
where
h=[nf 1 o a ]

hy,, = [hm,o hma -~ hm,Lfl]T s

st =[sT) sTk) - sTo]"
(k) = L5, (k) spu(k—1) -+ spk—L+1]".
In the z-transform domain, the MISO model is given by
X(z) = H'(2)S(2)+ B(2) , (6.8)

where

H) =[H\(z) Haz) - Hu@)I" .

L—1
Hy(z) = th,lz_l, m=1,2,---, M,
=0

S(2)=181(2) $2(z) -~ Su@I"-

Note that H(z) defined here is slightly different from
that in (6.6). We do not deliberately distinguish them
since their dimension can be easily deduced from the
context if slight attention is paid.
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6.2.4 MIMO Model

Figure 6.1d depicts a multiple-input multiple-output
(MIMO) system. A MIMO system with M inputs and
N outputs is referred to as an M x N system. At time k,
we have

x(k) =Hs (k) +b(k) , (6.9)

where
x(k) = [x1(k) x2k) - xn(0)1",
H=(H H, --- Hy),

himo hima -+ himp—1
hom,o hom,1 -+ hom,p—1

m = . . . . s
th,O th,l th,L—l NxL

m=1,2,---, M,
b(k) = [by(k) ba(k) --- by(I",

6.3 Derivation of the Wiener Filter

In this section, we are interested in the SISO system rep-
resented by (6.2). We assume that x(k) and the random
noise signal b(k) (independent of s(k)) are zero-mean
and stationary.

With the Wiener theory, it is possible to identify the
impulse response k, given s(k) and x(k). Define the error
signal,

e(k) = x(k) — x(k)
= x(k) —hse (k) | (6.11)
where
he="lhy hy -+ hp, 11"
is an estimate of k of length Ly < L and
st(k) = [s(k) stk—1) - stk—Le+ DI .

To find the optimal filter, we need to minimize a cost
function which is always built around the error signal
(6.11). The usual choice for this criterion is the mean-
square error (MSE) [6.5],

J(hy) = E{e*(k)}, (6.12)

where E{-} denotes mathematical expectation.

where hyy W=1,2,--- ,N,m=1,2,---, M) is the
impulse response of the channel from input m to output
n, and s(k) is defined similarly to that in (6.7). Again,
we have the model presented in the z-transform domain
as

X(z) =H(2)8(z) + B(2) , (6.10)
where

Hy1(z) Hi2(z) --- Him()

Hy1(z) Hxn(z) - Hom(2)
H(z) = . . ) . )
Hy1(z) Hy2(z) -+ Hyp(z)
L1
Hnm(z)=2hnm,lz_lv n=12,---,N,
=0

m=12--- M.

Clearly the MIMO system is the most general model
and the other three systems can be treated as special
examples of a MIMO system.

The optimal Wiener filter, ilf’o, is the one that cancels
the gradient of J(hy¢), i.e.,

aJ(h
L P (6.13)
oh¢
‘We have:
h k
8J(A £) _ 2E{e(k) BeE ) }
oh¢ ohy
= —2E{e(k)s¢(k)} . (6.14)
Therefore, at the optimum, we have:
Efeo(k)st(k)} = 0px1 » (6.15)
where
eo(k) = x(k) — h{ ,s¢(k) (6.16)

is the error signal for which J (ilf) is minimized (i. e., the
optimal filter). Expression (6.15) is called the principle
of orthogonality.

The optimal estimate of x(k) is:

Ro(k) = h{ ,s¢(k) . (6.17)

It is then easy to check, with the help of the principle of
orthogonality, that we also have:

Eeo(k)2o(k)} =0. (6.18)
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The previous expression is called the corollary to the
principle of orthogonality.

If we substitute (6.16) into (6.15), we find the
Wiener—Hopf equations,

Rih; o = pr . (6.19)
where

R¢ = E{s¢(k)s{ (b))
is the correlation matrix of the signal s(k) and

pr = E{ss(k)x(k)}

is the cross-correlation vector between s¢(k) and x(k).

The correlation matrix is symmetric and positive
semidefinite. It is also Toeplitz, i.e., a matrix which
has constant values along diagonals,

r(0) r(1) - r(Le—1)
Re— r(.l) r(?) . r(Lf.— 2) 7
r(Le=1) r(Ly=2) --- r(0)
with r(1) = E{s(k)s(k—1)},1=0,1,---, Lt — 1. In the

SISO system case, this matrix is usually positive definite
even for quasistationary signals like speech; however, it
can be very ill-conditioned.

Assuming that Ry is nonsingular, the optimal Wiener
filter is:

hio=R;"pr. (6.20)
The MSE can be rewritten as:

J(he) =02 —2plhe +hi Rehg (6.21)

6.4 Impulse Response Tail Effect

In many scenarios, the impulse response that we try to
estimate is either very long or its length is not known
so that the length (L¢) of any FIR modeling filter
will usually be shorter than the length (L) of the actual
impulse response. Let us split this impulse response into
two parts:

= (1)

where hy is a vector of size L¢ and h; is tlle tail of the
impulse response that is not modeled by h¢. Equation
(6.2), which represents the SISO system, is now:

x(k) = hfse(k) +his((k — L)+ b(k) , (6.27)

where 02 = E{x%(k)} i is the variance of the input signal
x(k). The criterion J (hf) is a quadratic function of the
filter coefficient vector /iy and has a single minimum
point. This point combines the optimal Wiener filter,
as shown above, and a value called the minimum MSE
(MMSE), which is obtained by substituting (6.20) into
(6.21):
Jmin = J(hf,o)
=02 plR; '
:az—a)g , (6.22)

X

where crh =EFE {)?Z(k)} is the variance of the optimal filter
output 51gnal Xo(k). This MMSE can be rewritten as:

Jmin = 0} + h"Rh — h{ Rehg, (6.23)

where og = E{b*(k)} is the variance of the noise and
R = E{s(k)sT(k)}. The value Jii, is bounded,

0f < Jmin<0p +h"Rh, VLg. (6.24)

We can easily check that for Lf = L, Jyin = ag, and
as L decreases compared to L, Jmin gets closer to its
maximum value ob +h"RA.

We define the normalized MMSE as:

2

- T (o
Jonin = L;" =1-—=2. (6.25)

Gx UX

According to (6.24), the normalized MMSE always
satisfies,

o? ~
—l; < Jmin < 1. (6.26)
O—X
where
stk —Lg) =[s(k— L¢) s(k—Ls—1)

Cstk—L+DIT
Substituting (6.27) into the cross-correlation vector, we
obtain,
pe = E{st(k)x(k)} = Rehs + Re(Le)he (6.28)
with Ri(Lf) = E {Sf(k)stT (k — L¢)}. Finally, inserting the
previous expression into the Wiener—Hopf equations
(6.20), we obtain:

hio=hi+ Ry "Re(Lp)hy . (6.29)

It is clear from (6.29) that the underestimation of the
length of the impulse response in the Wiener method

#1949 Med
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will introduce a bias [equal to R ! R{(L¢)hy] in the co-
efficients of the optimal filter. This bias depends on two
things: the energy of the tail impulse response and the
correlation of the input signal s(k). If s(k) is white, there
is no bias since in this particular case the matrix R¢(Ly¢)
is zero. But for highly correlated signals like speech,
R((Lf) may not be negligible and the second term on the
right-hand side of (6.29) may therefore be amplified if
the energy of the tail is significative. As a consequence,
it is important in practice to have a rough idea of the
physics of the system, in order to choose an appropriate

6.5 Condition Number

The correlation matrix that appears in the Wiener—Hopf
equations needs to be inverted to find the optimal filter.
If this matrix is ill-conditioned and the data is perturbed,
the accuracy of the solution will suffer a lot if the linear
system is solved directly. One way to improve the ac-
curacy is to regularize the covariance matrix. However,
this regularization depends on the condition number:
the higher the condition number, the larger the regular-
ization. So it is important to be able to estimate this
condition number in an efficient way, in order to use
this information to improve the quality of the solution.
Many other problems require the knowledge of this con-
dition number for different reasons. For example, the
performance of many adaptive algorithms depends on
this number. Therefore, it is of great interest to have
a detailed discussion of this topic here and to develop
apractical algorithm to determine this condition number.

6.5.1 Decomposition
of the Correlation Matrix

For a vector of length L + 1,

s (k) = [stk) stk—1) - stk—L))",

the covariance matrix of size (L + 1)x (L + 1) is:

Rp+1 = E{sp1(ks] (0}

N EORTATNE Y
A\ R\, @)

where R, = E{s(k)sT(k)} and

(6.30)

rL=1Ir1) rQ2) --- (DI,
rorL =[r(L) r(L—1) --- r(DIT.

length for the modeling filter for good identification. As
we can see, increasing the length of the filter will im-
prove the accuracy of the solution. On the other hand,
the complexity for solving the linear system will increase
and the conditioning of R¢ will be worsened. Therefore,
depending on the application, a reasonable balance has
to be found.

For simplification, in the rest of this chapter, we will
assume that Ly = L so that we can drop the subscript ‘f’
in all variables. In this scenario: Ry = R, s¢(k) = s(k),
ilf’o = ilo, etc.

By using the Schur complements, it is easy to invert
RL+]Z
—1 —lp 2T _ I
R, = (R e Qb menpr) e
—op b or
where

—1
by = RL IbL

=lbry bra - brrl' (6.32)
is the backward predictor of length L,
oL=r(0)—ry  bL
=r(0)~riaz (6.33)

is the prediction error energy, and a; = Jp by is the
forward predictor with J; being the co-identity matrix.
Equation (6.31) is important and will be used later for
a fast computation of the condition number.

6.5.2 Condition Number
with the Frobenius Norm

Usually, the condition number is computed by using
the 2-norm matrix. However, in the context of Toeplitz
matrices, it is more convenient to use the Frobenius norm
as explained below and in [6.6,7].

To simplify the notation, in this subsection we take
R; 41 =R. This matrix is symmetric, positive, and as-
sumed to be nonsingular. It can be diagonalized as
follows:

Q'RQ=14, (6.34)
where

Q'Q=QQ" =T, (6.35)

A =diag{Ay, A2, -+, Ar41}, (6.36)
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and0 < Ay < Ap <--- < Ap41. By definition, the square
root of R is:

R!/2=QA'2QT. (6.37)

The condition number of a matrix R is [6.8]:

X(R) = [IR[|IR™"], (6.38)
where |- || can be any matrix norm. Note that x(R)

depends on the underlying norm and subscripts will be
used to distinguish the different condition numbers.
Consider the Frobenius norm:

IR||F = {tr(RTR)}/2. (6.39)

We can easily check that, indeed, || - ||F is a matrix norm
since for any real matrices A and B and a real scalar c,
the following three conditions are satisfied:

® [Alp>=0and [[Algp=0if A =0+ 1xL+1),
® ||A+Blr < Alg+ Bl
® |cAllg=IcllAlE.

‘We have:

L1 1/2

IR g = {tr(R)} /2 = { > )»1} (6.40)

=1
and
Lt1 1/2
—1/2y. —Iw1/2 _ —

IR™ [l = {r(R™}/2 = :g x,] . (6.41)
Hence, the condition number of RY/? associated with
- llg is:

XERZ) =RV IR le = L+1.  (6.42)

(The inequality in the previous expression is easy to
show by using the Cauchy—Schwartz inequality.) In this
section, we choose to work on XF(Rl/ 2) [rather than
xr(R)], because efficient algorithms can be derived to
estimate its value, as will be shown in the next subsec-
tion. As far as we know, it does not seem obvious how
to estimate xp(R) efficiently.

If x(R'/?) is large, then R'/? is said to be an ill-
conditioned matrix. Note that this is a norm-dependent
property. However, according to [6.8], any two condition
numbers xo(R'/2) and X,g(Rl/ 2) are equivalent in that
constants ¢; and ¢ can be found for which:

c1xa(RY?) < xpRY?) < cr xR (6.43)

For example, for the 1- and 2-norm matrices and for R,
we can show [6.8]

1
(L+1)? x®R) = L1 x1(R) < x2(R). (6.44)

We now show the same principle for the F- and
2-norm matrices and for R'/2. We recall that:

[a
ya(R1/2) = i—“ . (6.45)
1

Since tr(R™!) > 1/ and tr(R) > A7, we have

tr(R) A
a®u®-1) > TR S ALt (6.46)
Al Al
hence,
xe(RY?) > o (R (6.47)

Also, since tr(R) <(L+ 1Az and tr(R™1) < (L +
1)/A1, we obtain:

r®u® ™) < (L 4+ )T < (12
Al A
(6.48)
thus,
xr(R?) < (L+1)x2(RY?). (6.49)

Therefore, we deduce that
xR < xR < (L+ xRV, (6.50)

Moreover, by using the two inequalities,

L+l \2 L+l
(Z ﬂz) >y B (6.51)
=1 =1

2 L+1

L+1
(Zm) <@L+DY B (6.52)
=1

=1

where B; > 0, VI, it is easy to show that

1
L—Hxém‘/z) < xr(R) < x3(R'/?)
<(L+1)xr(R). (6.53)

Note that x>(R) = x3(R!/?) but xp(R) # xZ(R!/?).
According to expressions (6.50) and (6.53), xr(R!/?)
and xé(RI/z) are a good measure of the condition
number of matrices R!'/2 and R, respectively. Ba-
sically, there is no difference in the trend of the
condition numbers of R and R'/2. In other words,
if RY2 is ill-conditioned (resp. well-conditioned) so
is R. In the next subsection, we will show how to
compute X%(Rl/ 2) by using the Levinson-Durbin al-
gorithm.
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Table 6.1 Computation of the condition number with the Levinson—Durbin algorithm

Initialization:

00 =r(0)
Levinson-Durbin algorithm: k= —— [r(l) al 1Ji—iri— 1]
01-1

a— —1
= .y

a=0-1(1—k?)
1=1,2,---,L

Condition number: P (RIL/E 1) =(L+DrO) Yoo ' [1+a]al]

6.5.3 Fast Computation
of the Condition Number

In this subsectlon we need to compute the two norms

H R},/le H and 0RL e “ efficiently. The calculation of

the first is stralghtforward Indeed:

2

HR;/jl HF — tt(Rps1) = (L + Dr(0) . (6.54)
Expression (6.54) requires one multiplication only.
Consider the matrix Gp :RZJIrl where its diago-
nal elements are g7 41 i, 1 =1,2,---, L+ 1.Itis clear
from (6.31) that the last diagonal component of G 1
1S L41,(L+1)(L+1) = QZI. The L-th diagonal element
of GL1is gy L= Qzl_] +Qzlb% ;.- Continuing the
same process, we easily find: '

L
gLiri =0+ oy 'b;. (6.55)

I=i
with o9 = r(0). Therefore, from (6.55) we deduce that:

2
—-1/2
[R P =G

_ZQ

(1+5/b))

6.6 Adaptive Algorithms

Solving the Wiener—Hopf equations directly is not very
practical, so adaptive algorithms are usually preferred
to find the optimal Wiener filter. The aim of this sec-
tion is to present a couple of basic adaptive algorithms
that converge to the actual impulse response k and
where the inversion of the correlation matrix R is
avoided.

L
Z (6.56)

=0

1+al al

with agao = bgbo =0
Finally, the condition number is:

)=+ l)r(O)ZQ

1=0

xF(R (1+ala) . (6.57)

By using the Toeplitz structure, the Levinson—
Durbin algorithm solves the linear prediction equation,
ap = RZIrL, in O(L?) operations instead of O(L?). This
algorithm computes all predictors a;, [=1,2,---, L,
and this is exactly what we need to compute (6.57).
Expression (6.57) also shows a very nice link between
the condition number and the predictors of all orders.
This algorithm, which has roughly the same complex-
ity as the Levinson—Durbin algorithm, is summarized
in Table 6.1. Note that a very efficient algorithm was
recently proposed by Dias and Leitdo [6.9] to com-
pute tr{TR™!} (where T is a Toeplitz matrix, this form
is a much more-general form than the one used in
this section) with the Trench algorithm. Using these
techniques here, we can further reduce the complexity
[to O(LInL)] for the estimation of the overall algo-
rithm.

6.6.1 Deterministic Algorithm

The deterministic or steepest-descent algorithm is ac-
tually an iterative algorithm. It is summarized by the
simple recursion,
h(k) = h(k = 1)+ u[p — Rk — 1],
k=0,1,2,---, (6.58)
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where p is a positive constant called the step-size par-
ameter. In this algorithm, p and R are supposed to be
known. The deterministic algorithm can be reformulated
with the error signal:

e(k) = x(k) —h"(k — Ds(k) , (6.59)
h(k) = h(k — 1)+ pE{s(k)e(k)} . (6.60)

Now the important question is: what are the condi-
tions on p to make the algorithm converge to the true
impulse response h? To answer this question, we will
examine the natural modes of the algorithm [6.10].

We define the misalignment vector as,

m(k) = h —h(k), (6.61)

which is the difference between the true impulse
response and the estimated one at time k. The pos-
itive quantity |lm(k)|3/|/k||3 is called the normalized
misalignment. If we substitute (6.2) into the cross-
correlation vector, we get,

p = E{s(k)x(k)} =Rh . (6.62)

Inserting (6.62) into (6.58) and subtracting & on both
sides of the equation, we obtain:

m(k) =T —puR)mk—1), (6.63)

where I is the identity matrix. Using the eigendecompo-
sition of R = QAQT in the previous expression, we get
the equivalent form,

vk)=O0—puA)vk—1), (6.64)
where
v(k) = Q'm(k) = Q"[h — h(k)] . (6.65)

Thus, for the /-th natural mode of the steepest-descent
algorithm, we have [6.5]

k) =0 —-purpytk—1), [=1,2,---,L
(6.66)

or, equivalently,
vk) = (1—pr)fv0), 1=1,2,--- L. (6.67)
The algorithm converges if,

lim vy (k)=0, VI. (6.68)
k—00

In this case,

lim h(k)=h . (6.69)
k—o00

It is straightforward to see from (6.67) that a neces-
sary and sufficient condition for the stability of the
deterministic algorithm is that,

—l<l—puy<1, VI, (6.70)

which implies,

2
O<pu<—, VI, (6.71)
Al

or

) (6.72)

O<pu<
)Lmax
where Amax 1S the largest eigenvalue of the correlation
matrix R.
Let us evaluate the time needed for each natural
mode to converge to a given value. Expression (6.67)
gives:

[v (k)]
n =kln|l—pur], (6.73)
[v1(0)]
hence,
1 k
k= n O (6.74)
In|1—pr]  [v(0)]

The time constant, t;, for the [-th natural mode is defined
by taking |v;(k)|/|vi(0)] = 1/e (where e is the base of the
natural logarithm) in (6.74). Therefore,

—1

= (6.75)
In |1 — ]

T

We can link the time constant with the condition
number of the correlation matrix R. First, let

o

w= , (6.76)
}\max
where
O<a<?2, (6.77)

to guaranty the convergence of the algorithm. « is called
the normalized step-size parameter. Suppose that the
smallest eigenvalue is A1 = Apip; in this case,

—1
~In [1 — aAmin/Amax|
B -1
In|l —a/xn®)|’
where x2(R) = Amax/Amin. We see that the convergence

time of the slowest natural mode depends on the condi-
tioning of R.

71
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From (6.65), we deduce that,
m" (ym(k) = v (k)v(k)

- oo |

L
=D k(= i) vi(0) . (6.79)
=1
This value gives an idea on the global convergence of
the filter to the true impulse response. This convergence
is clearly governed by the smallest eigenvalues of R.
We now examine the transient behavior of the MSE.
Using (6.2), the error signal (6.59) can be rewritten as

e(k) = x(k) — AT (k — 1)s(k)
=bk)+m (k- Ds(k), (6.80)
so that the MSE is:
J(k) = E{e*(k)}
= o} +m'(k—)Rm(k—1)
= o} +v (k- DAv(k—1)
L
=05+ (1= pa)™ 2vp(0) . (6.81)
=1
A plot of J(k) versus k is called the learning curve. Note

that the MSE decays exponentially. When the algorithm
is convergent, we see that,

lim J(k) = o} . (6.82)
k— o0

This value corresponds to the MMSE, Jpyin, obtained
with the optimal Wiener filter when Ly = L, which is
what we assume in this section.

6.6.2 Stochastic Algorithm

The stochastic gradient or least-mean-square (LMS)
algorithm, invented by Widrow and Hoff in the late
1950s [6.11], is certainly the most popular algorithm
that we can find in the literature of adaptive filters. The
popularity of the LMS is probably due to the fact that it
is easy to understand, easy to implement, and robust in
many respects.

One easy way to derive the stochastic gradient algo-
rithm is by approximating the deterministic algorithm.
Indeed, in practice, the two quantities p = E{s(k)x(k)}
and R = E{s(k)sT(k)} are in general not known. If we
take their instantaneous estimates:

p(k) =s(k)x(k) , (6.83)
R(k) =s(k)s T (k) , (6.8)

and replace them in the steepest-descent algorithm
(6.58), we get:

h(k) = h(k— 1)+ p[p(k) — RKAk — 1)]

=h(k— 1)+ us()[x(k) —s " (hk — 1)] .
(6.85)

This simple recursion is the LMS algorithm. Contrary to
the deterministic algorithm, the LMS weight vector iz(k)
is now a random vector. The three following equations
summarize this algorithm [6.5],

£(k) =sT(kh(k—1), filter output, (6.86)
e(k) = x(k) — x(k), error signal, (6.87)

h(k) = h(k — 1)+ ps(k)e(k),  adaptation, (6.88)

which requires 2L additions and 2L + 1 multiplications
at each iteration.

The stochastic gradient algorithm has been ex-
tensively studied and many theoretical results on its
performance have been obtained [6.5,10,12]. In particu-
lar, we can show the convergence in the mean and mean
square (see for example [6.13]), where under the inde-
pendence assumption, the condition is remarkably the
same as the one obtained for the deterministic algorithm,
ie.,

2
O<pu< . (6.89)
)Vmax
We can show that the asymptotic MSE for the LMS
is:

. 1% 2
1 =o(1+ZL 6.90
Jim_J (k) ab(+2 0;) . (6.90)
where 03 = E{s%(k)} is the variance of the input signal
s(k). If we compare (6.90) with the asymptotic MSE
for the steepest-descent algorithm (6.82), we notice that
a positive term,

Jex(00) = %Lafaf : (6.91)

is added, called the excess mean-square error. This term,
of course, has a negative effect on the final MSE and
its appearance is due to the approximation discussed at
the beginning of this subsection. We can reduce its ef-
fect by taking a very small p, but this will increase the
convergence time of the LMS. This tradeoff between
fast convergence and increased MSE is a well-known
effect and is something to consider in any practical

implementation.
A simple condition for the stability of LMS is that,
le(k)] < le(k)] (6.92)
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Table 6.2 The normalized LMS (NLMS) algorithm

Initialization: 7(0) = 07
Parameters: O<a<?2
§>0
Error: e(k) = x(k) — ST(k)il(k —-1)
a
Update: lf(k) = m
h(k) = h(k — 1) + pu(k)s (k)e(k)
where
(k) = x(k) — s T (k)h(k) (6.93)

is the a posteriori error signal, computed after the filter is
updated. This makes sense intuitively since e(k) contains
more meaningful information than e(k).

This condition is necessary for the LMS to converge
to the true impulse response but not sufficient. However,
it is very useful to use here and in many other algorithms
to find the bounds for the step size u.

Inserting (6.88) into (6.93) and using the condition
(6.92), we find:

0<p (6.94)

= ST hsk)
For L large, sT(k)s(k) = Lo = tr(R). On the other hand,
tr(R) = Y_F , ) and this implies that tr(R) > Amax.
Hence,
2 2
< Tosto = :
st (k)s(k) T Amax

If we now introduce the normalized step size o (0 <

o < 2), as we did in the previous subsection, the step
size of the LMS will vary with time as follows,

O<pu (6.95)

o

k)= —— 6.96

(k) ST (6.96)
and the LMS becomes the normalized LMS (NLMS):

i) = ik — 1)+ B0e®) (6.97)

sT(kys (k) ~
This algorithm is extremely helpful in practice, espe-
cially with nonstationary signals, since (k) can adjust
itself at each new iteration. In order to avoid numerical
difficulties when the energy of the input signal is small,
we regularize the algorithm,

as(k)e(k)
sT(sk)+68°

where § > 0 is the regularization factor. Table 6.2 sum-
marizes this very important algorithm. (Note that the

h(ky=hk—1)+ (6.98)

definition of (k) in this table is slightly modified in
order to include the regularization parameter §.)

6.6.3 Variable-Step-Size NLMS Algorithm

The stability of the NLMS algorithm is governed by
a step-size parameter. As already discussed, the choice
of this parameter, within the stability conditions, reflects
a tradeoff between fast convergence and good tracking
ability on the one hand, and low misadjustment on the
other hand. To meet these conflicting requirements, the
step size needs to be controlled. While the formulation
of this problem is straightforward, a good and reliable
solution is not that easy to find. Many different schemes
have been proposed in the last two decades [6.14-21].
In this subsection, we show how to derive in a very
simple and elegant way a nonparametric variable-step-
size NLMS algorithm.

We define the a priori and a posteriori error signals
as, respectively,

e(k) = x(k) — AT (k — s(k)

=sT(k)[h —h(k—1)]+bk), (6.99)
&(k) = x(k) — AT (k)s(k)
=sT(k)[h — h(k)] + b(k) . (6.100)

Consider the linear update equation:
h(k) = h(k— 1)+ p(k)s(k)e(k) . (6.101)

One reasonable way to derive a (k) that makes (6.101)
stable is to cancel the a posteriori error signal ([6.22]
and references therein). Replacing (6.101) in (6.100)
with the requirement e(k) = 0 we easily find, assuming
e(k) # 0, Vk, that,

1
sT(k)s(k)
Therefore, the obtained algorithm is the classical NLMS.

While this procedure makes sense in the absence

of noise, finding the u(k), in the presence of noise,
that cancels (6.100) will introduce noise in k(k) since

uNLMs (k) = (6.102)

13
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Table 6.3 The nonparametric VSS-NLMS (NPVSS-NLMS) algorithm

Initialization: h(0)=0
62(0)=0
Parameters: A=1-— ik exponential window with K > 2
af, noise power known or estimated
S= cst~052, regularization
€ > 0, very small number to avoid division by zero
Error: e(k) = x(k) — ilT(k — Ds(k)
Update: 62(k) = 262(k— 1)+ (1 — 1)e> (k)

sy =[5 +5T(Rst)] ! [1

k) =
Mot [ 0 otherwise

_ L]
€+ 6,(k)
c(k) if (k) = o

h(k) = h(k — 1) + pnpvss (K)s (Ke(k)

sT(k)(h — h(k)) = —b(k) # 0, Vk. What we would like,
in fact, is to have sT(k)(h — h(k)) = 0, Vk, which implies
that e(k) = b(k). Hence, in this procedure we wish to
find the step-size parameter (k) in such a way that

E{e’(k)) =of, Vk. (6.103)

Using the approximation sT(k)s(k) = Las2 for L > 1,
knowing that p(k) is deterministic in nature, substituting
(6.101) into (6.100), using (6.99) to eliminate ﬁ(k -1,
and equating to (6.103), we find:

E{e*(k)} = [1 - p(k) Loy o, (k)
=07, (6.104)

where crez(k) = E{e2(k)} is the power of the error signal.
Developing (6.104), we obtain a quadratic equation,

20— 2k L (1% |_g
M()—T‘Szﬂ( )+(L052)2 _O’ez(k) =0,

(6.105)

for which the obvious solution is,

uNpvss (k) =

1 |: op ]
1 _
sT(k)s (k) oe(k)
= unLms(ba(k) , (6.106)

where a(k) [0 < a(k) < 1] is the normalized step size.
Therefore, the nonparametric VSS-NLMS (NPVSS-
NLMS) algorithm is [6.23],

h(k) = h(k — 1)+ unpvss (KOs (ke(k) (6.107)

where unpvss (k) is defined in (6.106).
We see from (6.106) that, before the algorithm
converges, o,(k) is large compared to op, thus

unpvss (k) ~ unpms (k). On the other hand, when the al-
gorithm starts to converge to the true solution, o,(k) X o
and unpvss(k) &~ 0. This is exactly what we desire in
order to have both good convergence and low misadjust-
ment. As we can notice, this approach was derived with
almost no assumptions compared to all other algorithms
belonging to the same family. Table 6.3 summarizes
a practical version of the NPVSS-NLMS algorithm.

6.6.4 Proportionate NLMS Algorithms

In this subsection, we explain two very useful al-
gorithms: the proportionate NLMS (PNLMS) and
improved PNLMS (IPNLMS) algorithms.

It is well known that the NLMS algorithm converges
and tracks slowly, especially for long impulse responses.
In many situations where an adaptive algorithm is re-
quired, convergence and tracking are critical for a good
performance of the entire system. While in the NLMS,
the adaptation step is the same for all components of
the filter, in the PNLMS [6.24], an adaptive individual
step size is assigned to each filter coefficient. The step
sizes are calculated from the last estimate of the fil-
ter coefficients in such a way that a larger coefficient
receives a larger increment, thus increasing the conver-
gence rate of that coefficient. This has the effect that
active coefficients are adjusted faster than inactive coef-
ficients (i. e., small or zero coefficients). Hence, PNLMS
converges much faster than NLMS for sparse impulse
responses. Unfortunately, PNLMS behaves much worse
than NLMS when the impulse response is not sparse.
This problem is due to the fact that the proportionate
update is not very well refined. In [6.25], an IPNLMS
was proposed where the adaptive individual step size has
abetter balance between the fixed step size of NLMS and
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the large amount of proportionality in PNLMS. As a re-
sult, [IPNLMS always converges and tracks better than
NLMS and PNLMS, no matter how sparse the impulse
response.

The error signal and the coefficient update equa-
tion of the two previously discussed algorithms can be
written as:

e(k) = x(k)—h"(k — s (k) , (6.108)
aG(k — Ds(k)e(k)

h(k) = h(k — l)+ST(k)G(k— D500 +5 " (6.109)
where
G(k—1) = diag{go(k— 1) gi(k—1)
oo gr1(k—=1} (6.110)

is a diagonal matrix that adjusts the step sizes of the

individual taps of the filter, & (0 < « < 2) is the overall

step-size factor, and § is the regularization parameter.
The NLMS algorithm is obtained by taking:

Gk =1, (6.111)
8 = SnLms = csto? (6.112)

where I, 03, and cst are the identity matrix, the power
of the signal s(k), and a small positive constant, respect-
ively.

In the PNLMS, the diagonal elements of G(k) =
Gp (k) are calculated as follows [6.24]:

¥p,1(k) = max {p max [‘Sp’ hotk)|, -+,
o] |fuol} (6.113)
Y (k)
k)y=—"——0<I<L-1, (6.114)
o100 = 1, oL

Table 6.4 The improved PNLMS (IPNLMS) algorithm

where

Yo = [p.0() 1p1(K) - yp.r1(0]" -

The parameters 8, and p are positive numbers with
typical values 8, =0.01, o =0.01. The first term in
(6.113), p, prevents hy(k) from stalling when its magni-
tude is much smaller than the magnitude of the largest
coefficient and 8, regularizes the updating when all co-
efficients are zero at initialization. For the regularization
parameter, we usually choose:

SpPNLMS = Snims/L . (6.115)

For the IPNLMS algorithm, the diagonal ma-
trix, G(k) = Gjp(k), is computed in a more-elegant
way [6.25]:

it = (1= g lico
(6.116)
Vipa(k)  1—p |huio)|
pa (k)= 2 = P (1 )
sint (&) lyip@oll — 2L ( 'B)2||h(k)||1
0<lI<L-1, (6.117)

where 8 (—1 < B < 1) is a parameter that controls the
amount of proportionality in the IPNLMS. For g = —1,
it can easily be checked that the IPNLMS and NLMS
algorithms are identical. For § close to 1, IPNLMS be-
haves like PNLMS. In practice, a good choice for g is
—0.5 or 0. With this choice and in simulations, IPNLMS
always performs better than NLMS and PNLMS. As for
the regularization parameter, it should be taken as:
1-8
2L
The IPNLMS algorithm is summarized in Table 6.4.

SIPNLMS = ONLMS - (6.118)

Initialization: m0)=0,1=0,1,---,L—1
Parameters: —-1<pg<l1

O<a<2

1—

SiPNLMS = Cst- o2 Z—Lﬂ

€ > 0, very small number to avoid division by zero
Error: e(k) = x(k) — " (k — Ds (k)

1_p = )|
Update: Gipik=1)=——+A+p—F—7F—
2L 2 h(k—l)Hl—i-e

o

(k) =

Z,L';(} s2(k— j)gip, j(k — 1)+ S1pNLMs

(k) = hy(k — 1)+ k) gip,1(k — Ds(k — De(k)

1=0,1,--- ,L—1

115
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Before finishing this subsection, it is worth mention-
ing another variant of PNLMS, called PNLMS++ [6.26].
In this algorithm, the adaptation of the filter coefficients
alternates between NLMS and PNLMS; as a result,
PNLMS++ seems slightly less sensitive to the assump-
tion of a sparse impulse response than PNLMS.

6.6.5 Sign Algorithms

Up to now, the only cost function that we have used has
been the MSE. What makes this criterion so interest-
ing is that an optimal solution (Wiener) can easily be
derived as well as very powerful adaptive algorithms.
An alternative to the MSE is the mean absolute error
(MAE) [6.27],

Ja(h) = E{le(k)|}

= E{|x(k) = hTs(k)|} . (6.119)
The gradient of this cost function is:
PR _ _ Blsosenteto (6.120)
where
e(k)
k] = . 6.121
sgnle(k)] (0] ( )

From the instantaneous value of the gradient of Ja(fl),
we can derive the sign-error adaptive filter:

h(k) = h(k — 1)+ pas(k)sgnle(k)] , (6.122)

6.7 MIMO Wiener Filter

In this section, we consider a MIMO system with M
inputs and N outputs (see Sect. 6.2 for more details):

x(k) =Hs(k)+b(k) , (6.128)

where

M
Xn(K) =Y Iy s (k) + by (K)
m=1
=B s +bu(k), n=1,2,--- N,

(6.129)

where j, is the adaptation step of the algorithm. This
algorithm is simplified compared to the LMS since the
L multiplications in the update equation are replaced by
a sign change of the components of the signal vector
s(k). Using the stability condition, |e(k)| < |e(k)|, we
deduce that:
s < 2le(k)|

T sThsk)

Another way to simplify the LMS filter is to replace
s(k) with its sign. We get the sign—data algorithm:

(k) = h(k — 1)+ 1. sgn[s(k)]e(k) , (6.12t)

0< (6.123)

where y] is the adaptation step of the algorithm and the
stability condition is:

2

sT(k)sgnls(k)] -

Combining the two previous approaches, we derive
the sign—sign algorithm:

(k) = h(k — 1)+ i sgn[s(k)Isgn[e(k)],  (6.126)
for which the stability condition is:

2
0< ,u,;’ < Lk)' .
sT(k)sgnls (k)]

The algorithms derived in this subsection are very
simple to implement and can be very useful in some
applications. However, their convergence rate is usu-
ally slower than the LMS and their excess MSE is
higher [6.28-30].

0<u, < (6.125)

(6.127)

and
hil hiz hiM h;
_ hy hy - hyy _ h;.
th\/1 thvz hXIM NxML h}/:
(6.130)

‘We define the error signal at time & at the n-th output
as:

en(k) = x,, (k) — %, (k)

=x,(k)—hYs(k), n=1,2,---,N,
(6.131)
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Table 6.5 The MISO NLMS algorithm

Initialization: B (0) = 01151
Parameters: O<a<?2
5§>0
Error: en(k) = X, (k) =T (k) (k — 1)
o
Update: k)= ——
B O = T s+

T (k) = I (ke — 1)+ (ks (ke (k)

where f1,,. is an estimate of h,,.. It is more convenient to
define an error signal vector for all outputs:

e(k) = x(k) — x(k)
=x(k)—Hs (k) , (6.132)
where H is an estimate of H and
e(k) = ley (k) ex(k) - en(i)]" -

Having written the error signal, we now define the
MIMO MSE with respect to the modeling filters as:

J(H) = EfeT(ke(k)}
N N N
=Y Elea®} =" Julh).
n=1 n=1

The minimization of (6.133) leads to the MIMO Wiener—
Hopf equations:

(6.133)

Rssﬁg =Py, (6.134)
where
Ry, = Efs(k)s” (k)
RSIS] R5|sz e RS]SM
— RSle RszSz RSzSM (6.135)
RSMsl RSMSQ e RSMSM

is the input signal covariance matrix (which has a block-
Toeplitz structure) with Ry, 5, = E{s, (k)s; (k)}, and

Py, = E{s()x" (k)}

= (psxl Psx, Pst) (6.136)

is the cross-correlation matrix between the input and
output signals, with psy, = E{s(k)x,(k)}.

It can easily be seen that the MIMO Wiener—Hopf
equations (6.134) can be decomposed into N indepen-
dent MISO Wiener—Hopf equations,

Ryhy.o=ps,, n=12,---,N, (6.137)

each one corresponding to an output signal of the system.
In other words, minimizing J (ﬁ) or minimizing each
Jn (izn;) independently gives exactly the same results
from an identification point of view. This observation
is very important from a practical point of view when
adaptive algorithms need to be designed. Indeed, any
MIMO adaptive filter is simplified to N MISO adaptive
filters. As an example, we give the MISO NLMS algo-
rithm in Table 6.5. We deduce from this discussion that,
obviously, the identification of a SIMO system is equiva-
lent to the identification of N independent SISO systems.
As a result, with a reference signal, the identification of
any acoustic system simplifies to the identification of
SISO or MISO systems.

6.7.1 Conditioning of the Covariance Matrix

The best possible case for the identification of
a MISO system is when the input signals s,,(k),
m=1,2,---, M, are uncorrelated. In this scenario, we
have:

Rgsi =0Lxr, Vm,i=12--- M, m#i,
(6.138)

and the input signal covariance matrix Ry is block-
diagonal. Therefore, if R;,5,, m=1,2,---, M, are
nonsingular and well conditioned, the impulse responses
of the MISO system are easy to estimate. This case,
however, does not often occur in practice so it is of little
interest.

The worst possible case, from an identification point
of view, is when the signals s,,(k) are generated from
a unique source sg(k), i.e.,

smk) =ghssk), m=12,--- .M,  (6.139)
where
_ T
8m _[gm,O 8m,1 """ gm,Lfl]

is the impulse response between the source sg(k) and
the signal s, (k). In this scenario, it can be shown that
matrix Rgy is rank-deficient by, at least, (M —2)L + 1.

nr
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As a matter of fact, from (6.139), the input signal vector
ss(k) can be written as

sty = [sTk) sTck) - T

= Gss(k)

810 811 0 81L-1 0 0 - 0
0 go g1 - gur-1 0 - 0
o - 0 g0 g1 - 81,11
82,0 82,1 - 82,L-1 0 0 - 0
0 g0 g1 -+ &1 0 -+ 0
0 0 82.0 82.1 82.L-1
8M0 M1 8M.L—1 0 0 --- 0
0 gmo gm1 -+ gmr—1 0 -+ 0
0 - 0 gmo gm1 - M. L—1

ss(k)

ss(k—1)

ss(k—2)

)

ss(k—2L+3)
ss(k—2L+2)

where G is an ML x (2L — 1) matrix, containing the im-
pulse responses g;, and is assumed to be of full column
rank, and sq(k) is a (2L — 1) x 1 vector. We then have:

Ry, = E{s(k)s’ (%)}
=GE{ss(k)s{ (b)}GT

=GR, G", (6.140)

where R, is the source signal covariance matrix of
size 2L —1)x(2L —1), assumed to be full rank. We
immediately see from (6.140), that:

Rank[Ry] = min{Rank[G], Rank[R;_.]}

=2L—-1, (6.141)

and

Null[Rys] = ML — Rank[R]

=(M-2)L+1, (6.142)
where Null[] and Rank[] denote the dimension of the
null space and the rank of a matrix, respectively.

From this analysis, one can see that a MISO system is
rank deficient if its inputs are the filtered version of the
same source signal. Thus, the Wiener—Hopf equations
do not have a unique solution.

In most practical situations, the signals s,,(k),
m=1,2,---, M, are somehow related. If they are
highly coherent, adaptive algorithms will be very slow to
converge to the true solution and in some situations, they
will converge to a solution that is far from the desired
one.

We are now going to show in the particular case of
a MISO system with two inputs how a high coherence
between these signals affects the condition number of
the covariance matrix:

R = (Rm] Rm> _
Rszsl Rszsz
For L — oo, a Toeplitz matrix is asymptotically
equivalent to a circulant matrix if its elements are ab-
solutely summable [6.31], which is the case for speech
signals. In this situation, we can decompose

Ry, =F71§sms,~F, m,i=1,2, (6.143)

where F is the Fourier matrix and the diagonal matrix

R, = diag { Ry, (0). Ry, 5 (1),
= = =

T RS,,,S,‘(L - 1)} (6144)
=

contains elements corresponding to the L frequency
bins that are formed from the discrete Fourier trans-
form (DFT) of the first column of R, ;. Letting ry,,, (1)
be the auto- and cross-correlation for m =i and m # i,
respectively, we see that the spectral content between
two signals is related to the correlation function by

oo
R ()= D rys (e 200,
l=—00

f=0,1,---,L—1. (6.145)
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Using (6.143), Ry can be expressed in terms of its
spectra as:

Ry = FJ lgsst
B (F—l 0L><L> gslm gslsz
OLXL F71 gszsl gszsz

FoOu (6.146)
0.x. F

To compute the condition number X%(R;s/ 2) (Sect. 6.5),
we need to compute tr(Ryy) and tr(Rs’Sl). The first trace
is easy to compute. Indeed, using (6.146), we easily find:

tr(Rys) = tr (Fglgsst) =t (5&3‘)

L—1
= (gslsl(l)Jrgmz(Z)) . (6.147)
=0

For the second trace, we have:
—1 —1p-1 —1
r(Ry) =u (F;'R5'Fa) =u (RG') . (6.148)

Furthermore, it is easy to show that:

! R 0
R == 1
= 0rxz R;
=
Lixe —RJmR—
=% , (6.149)
_RSZXI RY]Y] ILXL
where
1 p-1
51 = [ILXL _55152 (551&153‘252)] 55151 . (6150)

Ro = [l ~R2, (RLRSL) [Ros - (6:250)

6.8 Conclusions

In this chapter, we have explained the most important
results of the Wiener theory in the context of system
identification.

After discussing the four basic signal models, we
derived the optimal Wiener filter for a SISO system and
showed that this filter can be a very good approximation
of the desired impulse response.

We discussed in details the condition number of the
input signal correlation matrix. This matrix appears ex-
plicitly in the Wiener—Hopf equations and implicitly
in all adaptive filters. A high condition number will

Hence,

tr(RS_Sl) =1tr (gfl + 5;1)

L—1
= Z(l —ly®»H™!

[ Y1?1(Z)+Rs_2v2(l)] (6.152)
where
o [Rewof
ly(HI” = R (DR (1)
:>SI51 =>SQSZ
f=0,1,---,L—1, (6.153)

is the squared interchannel coherence function of the
f-th frequency bin.

We finally obtain the relationship between the inter-
channel coherence and the condition number based on
the Frobenius norm:

R/ [S [ . (z)+§m(l)] ]

[

—_

XY =y ORI [RILO

=0
+ Rs‘ziz(l)]] ) (6.154)

It is now evident from the previous expression that
X%(R‘lx/ 2) increases with the squared interchannel co-
herence function, hence degrading the condition of
Ry; as y — 1, X}%(Rsls/ 2) — oo and the identification
of the system is increasingly difficult, if not impossi-
ble.

perturb the accuracy of the solution of the Wiener—
Hopf equations and will slow the rate of convergence
of most adaptive algorithms. A fast, efficient algorithm
to compute the conditional number was also developed.

We also discussed several important adaptive filters.
In particular, the NLMS algorithm, which is extremely
popular and useful in practice, was derived. Other
emerging algorithms, such as the IPNLMS, were pre-
sented.

We generalized the Wiener principle to the MIMO
system case. We showed that the MIMO Wiener—Hopf

=
=)
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equations can be decomposed into N independent MISO
Wiener—Hopf equations. As a result, adaptive filters for
SISO and MISO systems, with a reference signal, cover
all possible cases. A deep analysis of the condition-
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Linear prediction plays a fundamental role in
all aspects of speech. Its use seems natural and
obvious in this context since for a speech signal the
value of its current sample can be well modeled
as a linear combination of its past values. In
this chapter, we attempt to present the most
important ideas on linear prediction. We derive
the principal results, widely recognized by speech
experts, in a very intuitive way without sacrificing
mathematical rigor.

7.1 Fundamentals..............................lL 121
7.2 Forward Linear Prediction..................... 122

7.1 Fundamentals

Linear prediction (LP) is a fundamental tool in many
diverse areas such as adaptive filtering, system identifi-
cation, economics, geophysics, spectral estimation, and
speech. Recently, a nice history of LP in the context of
speech coding was written by Atal [7.1]. Readers are
invited to consult this reference for more information
about this topic and how it has evolved.

Linear prediction is widely used in speech applica-
tions (recognition, compression, modeling, etc.) [7.2,3].
This is due to the fact that the speech production process
is well modeled with LP. Indeed, it is well recognized
that a speech signal can be written in the following
form [7.4,5],

L
x(k) =Y apx(k—1)+ Gu(k), (7.1)

=1
where k is the time index, L represents the number of
coefficients in the model (the order of the predictor),
a;, [=1,---, L, are defined as the linear prediction
coefficients, G is the gain of the system, and u(k) is
the excitation signal, which can be either a quasiperi-
odic train of impulses or a random noise source (also
a combination of both signals for voiced fricatives such
as ‘v, ‘z’, and ‘zh’). The periodic source produces
voiced sounds such as vowels and nasals, and the noise

7. Linear Prediction

J. Benesty, J. Chen, Y. Huang
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7.9 Multichannel Linear Prediction.............. 130
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source produces unvoiced or fricated sounds such as
the fricatives. The parameters, g;, determine the spec-
tral characteristics of the particular sound for each of
the two types of excitation and are widely used directly
in many speech coding schemes and automatic speech
recognition systems [7.4].

Equation (7.1) can be rewritten in the frequency do-
main, by using the z-transform. If H(z) is the transfer
function of the system, we have:

G

HZ) = ——7F7—
1=z
G

A 2
which is an all-pole transfer function. This filter [H(z)]
is a good model of the human vocal tract [7.2]. Our main
concern is to determine the predictor coefficients, a;, [ =
1,2,---, L,andto study the properties of the filter A(z).

The applications of LP are numerous. Before ad-
dressing the estimation of LP coefficients, we give some
examples to show the importance of LP. In many aspects
of speech processing (noise reduction, speech separa-
tion, speech dereverberation, speech coding, etc.), it is
of great interest to compare the closeness of the spec-
tral envelope of two speech signals (the desired and
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the processed ones) [7.6,7]. One way of doing this is
through comparing their LP coefficients. Consider the
two speech signals x(k) (desired) and x(k) (processed).
Without entering too much into the details, one possible
measure to evaluate the closeness of these two signals is
the Itakura distance:

E
ID,; =In E" ,

(7.3)

X
where E, and E; are the prediction-error powers of the
signals x(k) and x(k), respectively (see the following
sections for more details). Note that the Itakura distance
is not symmetric, i.e.,

ID,; # IDgy (7.4)

therefore, it is not a distance metric. However, asym-
metry is usually not a problem for applications such as
speech quality evaluation.

A more-powerful distance was proposed by Itakura
and Saito in their formulation of linear prediction as
an approximate maximum-likelihood estimation [7.8].
This distance between the two signals x(k) and x(k) is
defined as,

E; E;
=~ _In=-1.

ISD,; =
XX EX Ex

(7.5)

7.2 Forward Linear Prediction

Consider a stationary random signal x(k). The objective
of the forward linear prediction is to predict the value
of the sample x(k) from its past values, i.e., x(k— 1),
x(k—2), etc. We define the forward prediction error
as [7.10,11],

er, (k) = x(k) — £(k)

L
=x(k)—= > _arxk—1)
=1
=x(k)—a) x(k—1), (7.6)

where the superscript ‘T” denotes transposition, x(k) is
the predicted sample,

T
ar=lap ars -+ apl

is the forward predictor of length L, and
x(k—1) =[x(k—1) x(k—2) --- x(k—L)I"

is a vector containing the L most recent samples starting
with and including x(k — 1).

Like the Itakura distance, this measure is not symmetric
either; therefore, it is not a true metric.

The Itakura—Saito distance has many interesting
properties. It has been shown that this measure is highly
correlated with subjective quality judgements [7.6]. For
example, a recent report on speech codec evaluation re-
veals that, if the Itakura—Saito measure between two
speech signals is less than 0.5, the difference in their
mean opinion score would be less than 1.6 [7.9]. Many
other reported experiments also confirmed that when
the Itakura—Saito distance between two speech signals
is below 0.1, they would be perceived nearly identi-
cally by human ears. As a result, the Itakura—Saito
distance, which is based on LP, is often used as an
objective measure of speech quality. It is probably the
most widely used measure of similarity between speech
signals.

The two previous examples of the vocal-tract fil-
ter and the speech quality measure clearly show the
importance of LP in speech applications.

In this chapter, we study the theory of linear predic-
tion and derive the most important LP techniques that are
often encountered in many speech applications. We as-
sume here that all signals of interest are real, stationary,
and zero mean.

We would like to find the optimal Wiener predictor.
For that, we seek to minimize the mean-square error
(MSE):

Jiar) = E{ef (b)),

where E{-} denotes mathematical expectation. Taking
the gradient of Jr(a; ) with respect to a;, and equating to
01«1 (a vector of length L containing only zeroes), we
easily find the Wiener—Hopf equations:

(7.7)

Rraor =rf1, (7.8)
where the subscript ‘0’ in a,,, stands for optimal,
R, = E{x(k— Dx"(k—1)}
= E{x(x" (b))
r(0) r(1) -r(L—1)
r(1) r(0) - r(L-=2)
= . . . (7.9)
r(L—1) r(L=2) --- r(0)
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is the correlation matrix, and
ri,L = E{x(k—1x(k)}
=[r(1) r@ - rI" (7.10)
is the correlation vector. The matrix Ry has a Toeplitz
structure (i. e., all the entries along the diagonals are the

same); assuming that it is nonsingular, we deduce the
optimal forward predictor:

ao L :Rzlrf,L~ (7.11)
Expanding etz. 1 (k)in (7.7) and using (7.8) shows that
the minimum mean-square error (MMSE),
Jt,min = Jr(ao, 1)
=r(0)—r{ a0 = Er . (7.12)
This is also called the forward prediction-error power.
Define the augmented correlation matrix:

T
R = (O 7). (7.13)
rep Rp

equations (7.8) and (7.12) may be combined in a con-
venient way:

1 E
Ry 41 A (7.14)
—ao, L. 011

We refer to (7.14) as the augmented Wiener—Hopf equa-
tions of a forward predictor of order L. From (7.13) we
derive that,

det(Rp41) = Er, 1 det(Ry) , (7.15)

7.3 Backward Linear Prediction

The aim of the backward linear prediction is to predict
the value of the sample x(k — L) from its future val-
ues, i.e., x(k), x(k—1),---, x(k— L +1). We define the
backward prediction error as,
ep,(k)=x(k—L)—x(k—L)
L
=x(k—L)—Y brixtk—1+1)
I=1
=x(k—L)—b] x(k), (7.21)
where X(k — L) is the predicted sample,
br=1Ibyy bry - brol"
is the backward predictor of order L, and
x(k) = [x(k) x(k—1) - x(k—L+1)
The minimization of the MSE,
Jobr) = Ele} (b)), (7.22)

1T

where ‘det’ stands for determinant.
Let us now write the forward prediction errors for
the optimal predictors of orders L and L —i:

L
e.0.L(K) =x(k) =Y ao 1 1x(k—1), (7.16)
=1
L—i
eroL—ilk)=x(k) =Y a0 —iix(k—=D).  (1.17)
=1

From the principle of orthogonality [7.11], we know
that:

Eeto,.()x(k—1)} =01x . (7.18)
For 1 <i < L, we can verify by using (7.18), that:

Edet o, (K)ef,0,-i(k—0)} =0. (7.19)
As aresult,

lim Efero r(k)ero,L—i(k—i)}
L—oo
= Eero(k)ero(k—i)} =0. (7.20)
This indicates that the signal e (k) is a white noise. So
the optimal forward predictor has this important property

of being able to whiten a stationary random process,
provided that the order of the predictor is high enough.

leads to the Wiener—Hopf equations:

Rpbo =rp 1, (7.23)
where
ro, . = E{x(k)x(k— L)} (7.24)

=[rL) r(L—=1) - r(DI".
Therefore, the optimal backward predictor is:
by = Rzlrb,L . (7.25)
The MMSE for backward prediction,
Jo.min = Jb(bo,L)
=r(0)—ry 1boL = En.L, (7.26)

is also called the backward prediction-error power.
Define the augmented correlation matrix:

R
Rz 11 =< L rb’L) , (7.27)

r,{ )
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equations (7.23) and (7.26) may be combined in a con-
venient way:

—bo, 1 011
R : = .

We refer to this expression as the augmented Wiener—
Hopf equations of a backward predictor of order L.
One important property of backward predic-
tion is that the error signals of different orders
with the optimal predictors are uncorrelated, i.e.,
Elep,o,i(k)epo1(k)}=0,i #1,i,1=0,1,--- ,L—1.To
prove this, let us rewrite the error signal in vector form:

(7.28)

ep,o(k) = Lx(k) , (7.29)
where
eb,0(k) = [ep,0,0(k) eb0,1(k) -+ epor—1(K)]"
(7.30)
and
1 00---0
by, 10---0
L=| b, 1--0 (7.31)
_bg,L—l 1

is a lower triangular matrix with 1s along its main diag-
onal. The covariance matrix corresponding to the vector
signal ey, (k) is:

7.4 Levinson-Durbin Algorithm

The Levinson—Durbin algorithm is an efficient way to
solve the Wiener—Hopf equations for the forward and
backward prediction coefficients. This efficient method
can be derived thanks to the Toeplitz structure of
the correlation matrix Ry. This algorithm was first
invented by Levinson [7.13] and independently refor-
mulated at a later date by Durbin [7.14, 15]. Burg gave
a more-elegant presentation [7.16]. Before describing
this algorithm, we first need to show some important
relations between the forward and backward predictors.
We define the co-identity matrix as:

00---01
00---10
Jo=|:1:t
01---00

10---00

E{ep.o(kep o(k)} = LR,LT . (7.32)

By definition, the previous matrix is symmetric. The
matrix product Ry LT is a lower triangular matrix be-
cause of (7.28) and the main diagonal contains the
backward prediction-error powers Ep; (0 </ <L —1).
Since L is also a lower triangular matrix, the product
between the two matrices L and R;LT should have
the same structure and, since it has to be symmet-
ric, the only possibility is that this resulting matrix is
diagonal:

Eeno(key o(k)} = diag[Ev0. Ep,1, - Ev.r-1].
(7.33)
and hence the prediction errors are uncorre-
lated.
Furthermore,
LR L = diag[Ep,0. Ev,1.--- . Epr—1],  (7.34)
taking the inverse of the previous equation,
“Tp-ly -1 : -1 -1 -1
LR, 'L™" =diag[Ey . Eyy. - By ]
(7.35)
we finally get:
R, =LTdiag[E; o, E; |-+ By L. (7.36)

Expression (7.36) defines the Cholesky factorization of
the inverse matrix Rzl [7.10,12].

We can easily check that:

Ry J. =JiR. . (7.37)

The matrix Ry is said to be persymmetric. We also
have, rr 1 = Jprp, 1. If we left-multiply both sides of the

Wiener-Hopf equations (7.23) by J, we get:

JLRpbo L =Jro L =r1,L

=RpJrbor =Rpao 1, (7.38)
and, assuming that Ry, is nonsingular, we see that:
ao,r =J1bor . (7.39)
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Furthermore,
EvL =r(0)—ry  boL

=r(0)—ry  JrILboL

=r(0)—r{ a0
=Er L =EL. (7.40)

Therefore, for a stationary process, the forward and
backward prediction-error powers are equal and the
coefficients of the optimal forward predictor are the
same as those of the optimal backward predictor, but
in a reverse order.

The Levinson—-Durbin algorithm is based on recur-
sions of the orders of the prediction equations. Consider
the following expression,

1 Er
Ry rvoL _
T —ao -1 | = 0c-1)x1 | » (7.41)
ry . r(0)
’ 0 K
where

T
Kp=r(L)—ay;_Iv,L—1

=r(L)—ay, \Jo-1ri-1. (7.42)

‘We define the reflection coefficient as,

K
p=— (7.43)
Ep—i
From backward linear prediction, we have:
0 K
r©O) rf, L
r R! _bo,L—l = 0(L—1)><1 . (7.44)
f,L Rp | Ep

Multiplying both sides of the previous equation by k.,
we get,

0 K%EL_l
RL+1 _KLbo,L—l = 0(L—1)><1 . (7.45)
KL Ky

If we now subtract (7.45) from (7.41), we obtain,

1
Ep_1(1—«?
Riti | krbor—1—aor-1 Z( Ll L)> .

011
—xp

(7.146)

Assuming that Ry is nonsingular and identifying
(7.46) with (7.14), we can deduce the recursive equa-

tions:
aor = (a"'L‘1> —KL (b"'L‘1> , (7.47)
0 —1
Er=E 1(1—«3), (7.48)
do,L,L =KL - (7.49)

Iterating on the prediction-error power given in (7.48),
we find that,

L
EL=rO][(1-«7). (7.50)
=1
and since Ey, > 0, this implies that,
i) <1, Vi=1. (7.51)
Also, from (7.48) we see that we have,
0<E <E_, Vi=1, (7.52)

so, as the order of the predictors increases, the
prediction-error power decreases.

Table 7.1 summarizes the Levinson—Durbin algo-
rithm, whose arithmetic complexity is proportional to
L?. This algorithm is much more efficient than stand-
ard methods such as the Gauss elimination technique,
whose complexity is on the order of L3. The saving in
number of operations to find the optimal Wiener predic-
tor can be very important, especially when L is large.
The other advantage of the Levinson—Durbin algorithm
is that it gives the predictors of all orders and the al-
gorithm can be stopped if the prediction-error power is
under a threshold, which can be very useful in practice
when the choice of the predictor order is not easy to getin
advance. A slightly more-efficient approach, called the
split Levinson algorithm, can be found in [7.17]. This
algorithm requires roughly half the number of multipli-
cations and the same number of additions as the classical
Levison—-Durbin algorithm. Even more-efficient algo-
rithms have been proposed (see, for example, [7.18]) but
they are numerically unstable, which is not acceptable
in most speech applications.

Table 7.1 Levinson—Durbin algorithm

Initialization: Ey = r(0)

For 1</<L

1
: [rO—al, \Ji-irsi—i]

#°,]9 Med
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7.5 Lattice Predictor

In this section, we will show that the order-recursive
structure of the forward and backward prediction er-
rors has the form of a ladder, which is called a lattice
predictor.

Inserting (7.47) into the forward prediction error for
the optimal predictor of order L,

ero.L(k)=x(k)—a}  x(k—1), (7.53)
we obtain,
ef,o,L(k) = ef,0,L—1(k)
—ke (=BT, D)xk=1. (158

The second term (without the reflection coefficient) on
the right-hand side of (7.54) is the backward prediction
error, at time k — 1, for the optimal predictor of order
L — 1. Therefore, (7.54) can be rewritten

efo,L(k)=efo1-1(k)—Kpepor—1(k—1). (7.55)

If we insert (7.47) again into the backward prediction
error for the optimal predictor of order L,

eb.o,L (k) =x(k—L)—b} ; x(k)
=x(k—L)—ay  Jox(k), (7.56)
we get,
ep,o0,L(k) =epor—1(k—1)—kpefor—1(k). (7.57)

If we put (7.55) and (7.57) into a matrix form, we have,
efor(M)) _ [ 1 —kir ef 0,1.—1(k)
€b,0,L(k) —kr 1 eb.o,L—1(k—1)

L
_ 1 —x x(k)
1% )(x<k—1>) e

where we have taken for initial conditions (order 0),
ef.0.0(k) = x(k) and ep o 0(k — 1) = x(k — 1). Figure 7.1

eror1 () (+) )

Ky

3

evor-1 (k) z () evo.r (k)

Fig. 7.1 Stage [ of a lattice predictor

depicts the /-th stage of a lattice predictor. For the whole
lattice predictor, L of these stages are needed and are
connected in cascade, one to each other, starting from
order O to order L.

Now let us compute the variance of ep, o, 1 (k) from
(7.57),

E{el%,o,L(k)} = EL
=FE; | +K1%EL—1
— 2k Efef,o,—1(k)evo,.—1(k— 1)}
:EL,I(I—K%) . (7.59)

Developing the previous expression, we obtain,

_ Elefor—1(k)ep o r—1(k— 1)}
;=
Ep
Elef,o,1—1(k)ep,o,L—1(k—1)}

B, W@, -}

We see from (7.60) that the reflection coefficients are
also the normalized cross-correlation coefficients be-
tween the forward and backward prediction errors,
which is why they are also often called partial correlation
(PARCOR) coefficients [7.3, 19, 20]. These coefficients
are linked to the zeroes of the forward prediction-error
FIR filter of order L, whose transfer function is

L
Aor@=1-> aoriz'=]](1-z20.17").

=1 =1

(7.60)

~

(7.61)

where z,; are the roots of A, (z). Since k;, = ao, 1,1,
we have,

L
k= (=D T z0u - (7.62)
=1

The filter A, (z) can be shown to be minimum phase,
i.e., |z0,1| <1, VI. As a result [because of the relation
(7.39)], the filter B, 1.(z) corresponding to the backward
predictor is maximum phase. We will now show this
very important property that the forward predictor is
minimum phase. As far as we know, this simple and
elegant proof was first shown by M. Mohan Sondhi but
was never been published. A similar proof can be found
in [7.21] and [7.22].

To avoid cumbersome notation, redefine the coeffi-
cients w; = —ao, .1, with wo = 1, so that the polynomial



Linear Prediction | 7.6 Spectral Representation

becomes,
L
Aor@ =) wz". (7.63)
=0
Also, define the vector,
w=[wy wy --- wL]T
‘We know that,
Ry jw= EL ) (7.64)
0L><]
If A is a root of the polynomial, it follows that,
L—1
Aor@ ==z ) gz, withgo=1.
1=0

(7.65)

(Note that since A can be complex, the coefficients g; are,
in general, complex.) Thus the vector w can be written

w:g—)\g, (7.66)
where
g=01 g1 g - g1 0" =[g" 0]

g=I[01 g1 & - gL_1] =[0 g ]
Substituting (7.66) in (7.64), we obtain,
- Ep
Ri1ig= R 118+ . (7.67)
0rx1

Now, premultiplying by g" (where the superscript H
denotes conjugate transpose) gives,

§"R. g =28"R 112 . (7.68)

7.6 Spectral Representation

It is important to understand the link between the spec-
trum of a speech signal and its prediction coefficients.
Let us again take the speech model given in Sect. 7.1,

L
x(k) =Y apx(k—1)+ Gu(k) ., (7.78)
I=1
where we now assume that u(k) is a white random signal
with variance auz = 1. Since x(k) is the output of the filter

H(z) (see Sect.7.1), whose input is u(k), its spectrum
is [7.11],

Se(@) = |H(e)| Su(w), (7.75)

Thus,
. 2 . 12
#"Re1g| =2 (¢"Re112) (7.69)

Using the Schwartz inequality,

'g RL+1g‘ (8"R.412) (g"R1118) - (7.70)
However,
oH P H }’(0) rfTL 0
g'Rig=(0g ’
( ) rip Rp ) \g
=g"R.g . (7.72)
Similarly,
Ry r /
H H L Tb,L 8
Resig=(g" 0)
meas=(e o) (1 76) ()
=g"R.g . (7.72)

Therefore, 'Ry 18 = g"R; 1 1g, and the Schwartz in-
equality becomes,

'gHRLJrlg‘ g RL+1g) . (7.73)
From (7.69) we see that |A|2 < 1. This completes the
proof.

This property allows one easily to ensure that the
all-pole system in (7.2) is stable (when the correlation
matrix is positive definite) by simply imposing the con-
straint that the PARCOR coefficients are less than 1 in
magnitude. As a result, in speech communication, trans-
mitting PARCOR coefficients is more advantageous than
directly transmitting linear predication coefficients.

where  is the angular frequency, H(e?) is the fre-
quency response of the filter H(z), and S,(w) is the
spectrum of u. We have S, (w) =1 (u is white). Using
(7.2), we deduce the spectrum of x,

G2
|A(ei@)|?

2
= G . (7.76)

L il 2
1— Zl:l a e e

Sx(w) =

Therefore, the spectrum of a speech signal can be mod-
eled by the frequency response of an all-pole filter,
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whose elements are the prediction coefficients [7.23—
25].Consider the prediction error signal,

ep(k) = x(k)—a) x(k—1) . (7.77)
Taking the z-transform of (7.77) and setting z = €', we
obtain:
|EL(e))?
[AL(e)]”
where |E L(ei“’)l2 is the spectrum of ep (k). From

Sect. 7.2, we know that, for a large order L, linear pre-
diction tends to whiten the signal, so the power spectrum

Sy,L(w) = (7.78)

7.7 Linear Interpolation

Linear interpolation can be seen as a straightforward
generalization of forward and backward linear predic-
tions. Indeed, in linear interpolation, we try to predict
the value of the sample x(k — i) from its past and future
values [7.26,27]. We define the interpolation error as

ei(k) = x(k—i)—x(k—1i)

L
=x(k—i)— Y cipx(k—1)
1=0,1i
=clxpiik), i=0,1,---,L, (7.81)

where X(k — i) is the interpolated sample,

T
¢i=l-cio —cin ---cii o —cirl
is a vector of length L 41 containing the interpolation
coefficients, with ¢; ; = 1, and

xp1(k) = [x(k) x(k—1) --- x(k—L)IT.

The special cases i =0 and i = L are the forward and
backward prediction errors, respectively.

To find the optimal Wiener interpolator, we need to
minimize the cost function,

Ji(ei) = E{e; (b))
= C;FRL_HC,' s (7-82)
subject to the constraint
ciTv,- =c¢i=1, (7.83)
where

%=[00---010-.-0]"

|EL(ei‘”)|2 of the error signal, ey, (k), will tend to be flat.
Hence,

lim |EL(e)] =G?. (7.79)
L—o0
As a result,
G2

1= aeief

lim Sy p(w)= (7.80)
L—o0

This confirms that (7.76) can be a very good approxi-
mation of the spectrum of a speech signal, as long as the
order of the predictor is large enough.

is a vector of length L + 1 with its i-th component equal
to one and all others equal to zero. By using a La-
grange multiplier, it is easy to see that the solution to
this optimization problem is

Rp1¢0,i = Ejv; s (7.84)
where

T
Ei=c, ;Rr+160,i

1
v; R} 11V
is the interpolation-error power.
From (7.84) we find,
Co.i _
%’[’ =R}} v, (7.86)

hence the i-th column of RZJIF] is ¢o,;/ E;. We can now
see that RZJlrl can be factorized as follows [7.28]:

I —co1,0 ~-* —Co,L,0
_1 —C0.,0.1 1 © —Co,L,1
L+1 =
—Co,0,L. —Co,1,L """ 1
1JEp 0 --- 0
0 1/E; --- 0
0 0 - 1/Ei_
=CIp7'. (7.87)

oe
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Furthermore, since RZJ]FI is a symmetric matrix, (7.87)
can be written as,

1/Ep 0 -~ 0
0 1/E, -~ 0
1
R = . .
0 0 - 1/E
1 —Co,0,1 "+ —Co,0,L
—Co,1,0 1 + —Co,1,L
—Co,L,0 —Co,L,1 - 1
=D;'C,. (7.88)

Therefore, we deduce that,

Sodd _Coli 20,1, L (7.89)

E; E;
The first and last columns of RZ}H contain, respec-
tively, the normalized forward and backward predictors
and all the columns between contain the normalized
interpolators.

We are now going to show how the condition number
of the correlation matrix depends on the interpolators.
The condition number of the matrix Ry is defined
as [7.29]:

(RL+1)— ”RL+1””RL+1” > (7.90)

where || - || can be any matrix norm. Note that x(R) de-
pends on the underlying norm. Let us compute x(Ryz 1)
using the Frobenius norm:

IR llp = [(RE, Rp11)]"?

=[r(R} )] (7.92)

and

IR L e = [tr(RZil)]l/z- (7.92)
From (7.86), we have,

c‘f;’ -=vR i, (7.93)

which implies that,

L
> Z v R v
i=0

= tr(RLil) : (7.94)

C CO,

i

Also, we can easily check that,

L

tr(R7 1) = (L+ Dr2 () +2) (L+1-Dr* ().
=1
(7.95)

Therefore, the square of the condition number of the
correlation matrix associated with the Frobenius norm
is

=1

L
XERLy1) = [(L + D20 +2) (L+1- l)rz(o}

c c
or (7.96)

Some other interestmg relations between the forward
predictors and the condition number can be found
in [7.30].

To conclude this section, we would like to let read-
ers know that several algorithms exist to compute the
optimal predictors efficiently, see for example, [7.31]
and [7.32]. All these algorithms are based on Levinson—
Durbin recursions.

7.8 Line Spectrum Pair Representation

Line spectrum pair (LSP) representation, first introduced
by Itakura [7.33], is a more-robust way to represent the
coefficients of linear predictive models. The LSP poly-
nomials have some very interesting properties shown
in [7.34].

A polynomial P(z) of order L is said to be symmetric
if

P(z)=z"tprPiE™ (7.97)
and a polynomial Q(z) is antisymmetric if
0@)=-z"0™h. (7.98)

Let
AR =l—-aiz ' —az 2= —arz b (7.99)

be the optimal polynomial predictor of order L. It is well
known that in speech compression the coefficients of this
polynomial are inappropriate for quantization because
of their relatively large dynamic range and also because,
as stated earlier, quantization can change a stable LPC
filter into an unstable one [7.35]. From (7.99), we can
construct two artificial (L 4 1)-th-order (symmetric and
antisymmetric) polynomials by setting the (L + 1)-th

8°L]49 Med
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reflection coefficient, x741, to be +1 and —1. These
two cases correspond, respectively, to an entirely closed
or to an entirely open end at the last section of an acoustic
tube of L 4 1 piecewise-uniform sections [7.35],
P(2)=A@)+z tAGE™),
Q) =A@ -z A ™).
The polynomial A(z) can be easily reconstructed from
P(z) and Q(z) by

1
A(z) = E[P(z)—k 0()].

It was proved in [7.36] and [7.34] that the LSP poly-
nomials, P(z) and Q(z), have the following important
properties:

(7.100)
(7.101)

(7.102)

® all zeros of LSP polynomials are on the unit circle,

® the zeros of P(z) and Q(z) are interlaced, and

® the minimum-phase property of A(z) can be easily
preserved if the first two properties are intact after
quantization.

Now, define the two prediction error signals:

et (k) =x(n)— %[x(n —D+x(m]Ta™, (7.103)

e (k)y=x(n)— %[x(n —D—x(n)]'a . (7.104)

Itis shownin [7.37] and [7.38] that the LSP polynomials,
whose trivial zeroes have been removed, are equivalent

7.9 Multichannel Linear Prediction

Multichannel linear prediction can be very useful in
stereo or multichannel speech compression. In an in-
creasing number of speech or audio applications, we
have at least two channels available, which are often
highly correlated with each other. Therefore, it makes
sense to take this interchannel correlation into account
in order to obtain more-efficient compression schemes.
Multichannel linear prediction is the best way to do
this.
Let

T
X0 =[x10) w2k - xuh)]

be a real, zero-mean, stationary M-channel time series.
We define the multichannel forward prediction error
vector as,

to the two optimal Wiener predictors al and a . This is
easy to see if we rewrite, e (k) for example as

+T

etk = [1 - aT] xr+1(n)

at’
+ [—— 0} xr+1(n)
2
=g Lix41(n), (7.105)
where
110 ---0
o011 ---0
L=|::- - (7.106)
00--- 11
00--- 01
and
1
g= a’ (7.107)
2

By minimizing the MSE, E{et?(k)}, with respect to
g, with the constraint gTvl =1, one can find the most
important results. For readers who are interested in
more details on the properties of LSP polynomials, we
recommend the paper by Bdckstrom and Magi [7.39].

er,. (k) = x (k) — X (k)

L
= x()=> ALixk—1)

=1

= x(kb)—Alx(k—1), (7.108)

where
Ar=[Api Arp - Ap el

is the forward predictor matrix of size ML x M, each one
of the square matrices Ay ; is of size M x M, and

xk=D=[x"k-1) x"k-2) - x"k-D)"

is a vector of length ML. (For convenience, some of the
notation used in this section is the same as that in the
previous sections.)
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To derive the optimal Wiener forward predictors, we
need to minimize the MSE,
Ji(AL) = Elef , (ker. L (k)] . (7.109)

We find the multichannel Wiener—Hopf equations:

RriAo L =Re(1/L), (7.110)
where
R, = E{x(k— Dx"(k— 1)} (7.111)
= E{x(k)x" (k)}
R(0) R(1) - R(L-1)
RT(D RO) --- R(L-2)
RT(L—1) RY(L-2) --- R

(7.112)

is the block-Toeplitz covariance matrix of size ML x ML,
R() = E{x(k)x"(k—=D}, 1=0,1,---,L—1,
R(-1) = E{x(k=Dx"k)} =R"(1)
and
Ri(1/L) =[R(1) RQ2) --- R(L)I"
= Efx(k— Dy (k)

is the intercorrelation matrix of size ML x M.
Using the augmented block-Toeplitz covariance ma-
trix of size (ML 4+ M) x (ML + M):

R - RO Ra/L)
T \Reayny R, )

(7.113)

we deduce the augmented multichannel Wiener—Hopf
equations:

R (IMXM> _ ( E¢ )
L+1 = .
—AoL OMLxm

where I/ is the identity matrix of size M x M and

Er.. = E{ero.L(Kef , , (K)}
=R(O0)—R{(1/D)Ao 1

(7.114)

(7.115)

is the forward error covariance matrix of size M x M,
with

eroL(k)=x(k)—Al  x(k—1). (7.116)

We will proceed with the same philosophy to derive
important equations for the multichannel backward pre-
diction. We define the multichannel backward prediction
error vector as

ev. (k)= x(k—L)— f(k—L)
L
=xtk—L)=) Brxtk—1+1)
=1

= x(k—L)—B[x(k), (7.117)

where
B.=[B.; By, --- Byl

is the backward predictor matrix of size ML x M with
each one of the square submatrices By ; being of size
MxM.
The minimization of the MSE,
JoBL) = Ele} ; (Kev,L(k)} (7.118)

leads to the multichannel Wiener—Hopf equations for the
backward prediction:

R.Bo . =Ry(1/L), (7.119)
where
Ry(1/L) = E{x(k)x (k- L)} (7.120)

=[RT(L) RT(L—1) --- RT(H)IT.

By using the augmented block-Toeplitz covariance
matrix:

RLH:( R; Rbu/L))’

. (7.121)
R,(1/L) R(0)

we find the augmented multichannel Wiener—Hopf equa-
tions:

Ry B = (OMLar ) (7.122)
Tyvxm Ep, L
where
Ey L = E{eno.L(k)e} , , ()]
=R(0)—-R{(1/L)B, 1 (7.123)

is the backward error covariance matrix of size M x M,
with

ebo0,L(k) = x(k—L)—B} , x(k) . (7.124)
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To solve the multichannel Wiener—Hopf equations I
. . . MxM
efficiently, we need to derive some important rela- R _A -l K
tions [7.40]. Consider the following system, L o.L—1 | B, L—1b.L
Oyixm
I
Ry Ry(1/m)) [ " Kp .
—Ao,L—1
RI(1/L) R(0) 01\/([)><M = OML_mym (7.132)
-1
9.-? Ef 11 K.y Ko
; =10 ’ (7.125) Subtracting (7.132) from (7.127) and identifying
v ML-mxm | » : . . .
= K the resulting system with the augmented multichan-
© f.L nel Wiener—Hopf equations for backward prediction
where (7.122), we deduce the two recursions:
KL =RT(L)_R;£(1/L_1)A0,L—1 . (7.126) Ev. =Ep 11 _KvaEfi,ifleJ‘ s (7.133)
Consider the other system, B, — (0 MxM )
oL =
0 Bo, 11
RO) RIa/D\ ™" ,
—Bo -1 —
Ri(1/L) Ry I ° e E} K. (7.134)
MxM Ao L1 '
Kb, Relations (7.130), (7.131), (7.133), and (7.134) were
= | OML-mxm | - (7.127) independently discovered by Whittle [7.41] and Wiggins
Eb,1—1 and Robinson [7.42].
where Another important relation needs to be found. In-
deed, using (7.116) and (7.124), we can easily verify,
Kbz =R(L) ~R{(1/L—DBo,.-1 . (7.128) T
] ) Eleror-1(kep o _1(k—1)} =Kp 1 , (7.135)
If we post-multiply both sides of (7.127) by -
El;,i—lKﬂL’ we get: Eep,o,0—1(k— l)efyoyL_l(k)} =Ky, (7.136)
Outt which implies that,
X
Reyi [ —Bosoi | Epy(Kiz Ky =K{,. (7.137)
Ly Table 7.2 summarizes the Levinson—Wiggins—
Ky, E, lL_ Ke L Robinson algorithm [7.42—44], which is a generalization
— 0 ’ (7.129) of the Levinson—-Durbin algorithm to the multichannel
- (ML-m)xm : case.
Kt L

Subtracting (7.129) from (7.125) and identifying the
resulting system with the augmented multichannel
Wiener-Hopf equations for forward prediction [eq.
(7.114)], we deduce the two recursions:

Ep =K1 — Ko B Kpp, (7.130)
Ao —
Ao,L: o,L—1
0rixm
_ [ Boz- E; K. (7.131)
—Tyixm '

Similarly, if we post-multiply both sides of (7.125)
by Ef_Il‘_le,L’ we obtain:

Table7.2 Levinson—-Wiggins—Robinson algorithm

Initialization:E¢ o = Ey, o = R(0)
Forl <I/<L
Ko =R(O)—R{(1:1— 1B,

Aos= Aoi—-1 | _| Bou-1 E;l K],
Onrxm —Lyxm

0 —I _
Bo,l — MxM | MxM Ef,llfle,l
Bo,l—l Ao,l—l

Ei)=E¢;1 — Kb,tEbiL1Kg.1
Ep;=Ep -1 — K Er | Ky,
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7.10 Conclusions

In this chapter, we have tried to present the most im-
portant results in linear prediction for speech. We have
explained the principle of forward linear prediction and
have shown that the optimal prediction error signal tends
to be a white signal. We have extended the principle
of forward linear prediction to backward linear pre-
diction and derived the Cholesky factorization of the
inverse correlation matrix. We have developed the classi-
cal Levinson—Durbin algorithm, which is a very efficient
way to solve the Wiener—Hopf equations for the forward
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sented some notions of line spectrum pair polynomials.
Finally, in the last section, we have generalized some of
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The Kalman filter and its variants are some of the
most popular tools in statistical signal processing
and estimation theory. In this chapter, we intro-
duce the Kalman filter, providing a succinct, yet
rigorous derivation thereof, which is based on the
orthogonality principle. We also introduce several
important variants of the Kalman filter, namely
various Kalman smoothers, a Kalman predic-
tor, a nonlinear extension (the extended Kalman
filter), and adaptation to cases of temporally
correlated measurement noise.

The application of the Kalman filter to two
important speech processing problems, namely,
speech enhancement and speaker localization is
demonstrated.
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8.1.1 The Minimum Mean Square Linear
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Sufficient Conditions for Optimality 137
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The Kalman filter, together with its basic variants, are
some of the most widely applied tools in fields re-
lated to statistical signal processing, especially in the
context of causal, (nearly) real-time applications. In its
fundamental, classical form, Kalman filtering is aimed
at sequential (recursive) linear estimation of the state
of a linear dynamic system from noisy measurements,
linearly related to the unobserved state variables. The
general statistical framework of the Kalman filter is
Bayesian, namely a priori knowledge of statistical prop-
erties (up to second order) of the underlying process is
assumed. This knowledge is specified through the mean
and covariance of the initial state, and through the re-
cursive model equation, which can be used to propagate
these properties through time.

At each time instant, the Kalman filter’s output is
the optimal /inear minimum mean square error (MSE)
estimator of the state from measurements up to that
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time instant; moreover, it is the optimal minimum MSE
estimator in general (i.e., among all linear and non-
linear estimators), when the both the states and the
measurements share a jointly Gaussian probability dis-
tribution, specified by the model equations and by the
measurement equations. The recursive structure of the
filter (dwelling on the recursive structure of the model
and measurement equations) is computationally appeal-
ing, as it enables to automatically (and optimally) take
all past measurements into account, without the need
to explicitly remember (namely, spend memory re-
sources on) and account for these measurements. As
an important byproduct, the Kalman filter equations
also provide expressions for the MSE in the resulting
estimates.

The Kalman filter has found numerous applications
in fields related to control of dynamic systems. It is also
used for estimating and predicting the trajectories of
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moving objects, ranging from celestial bodies and mis-
siles to microscopic particles. Since the late 1980s the
Kalman filter was adopted for the estimation of speech
signals contaminated by additive noise.

Rudolf Emil Kalman was born on 19 May 1930 in
Budapest, Hungary (These historical notes are based on
Grewal and Andrews’ book [8.1] ). During the second
world war his family emigrated to the USA. In Novem-
ber 1958, while working in the Research Institute for
Advanced Studies (RIAS), Kalman came up with the
fundamental idea of applying state-space notation to the
Wiener filter problem. This turned out to be the basis
of the celebrated Kalman filter [8.2,3]. The first known
application of the Kalman filter, a trajectory estimation
for the Apollo mission, was the work of Schmidt [8.4,5]
conducted at the Ames Research Center of the National
Aeronautics and Space Administration (NASA). Since
then the Kalman filter is an essential part of nearly every
trajectory estimation task.

The Kalman filter and its variants (predictor,
smoother and nonlinear forms) are widely addressed
in the statistical signal processing and control theory lit-
erature. There is a plethora of articles and text books
on both theoretical and practical aspects. The interested
reader is referred to the books [8.1,6,7] and [8.8], to
name just a few. A survey of associated speech-related
papers can be found in Sect. 8.4.

8.1 Derivation of the Kalman Filter

Several approaches can be taken in the derivation of
the Kalman filter. Following specification of the model
equations and measurement equations, one can as-
sume a Gaussian distribution of the driving processes,
as well as of the initial state, and then derive the
posterior distributions of the states given the obser-
vations, taking the mean of the resulting distributions
as the states’ estimates, namely as the filter’s out-
puts. Another option is to take a recursive weighted
least-squares (WLS) approach combined with special
weighting of the previous estimate of the states in
the role of additional measurements. Both of these
approaches, while perfectly legitimate, tend to be some-
what cumbersome in the exposition of the associated
derivations.

In this section, we will take a slightly different
approach, dwelling on the well-known orthogonality
principle, which is a basic property of the optimal linear
estimator’s estimation error. By showing that the asso-
ciated optimality properties are automatically inherited

This chapter is aimed at providing an overview of
the basic Kalman filter, as well as some of its most
popular variants, including concise, yet rigorous deriva-
tions of the resulting expressions. In addition, it provides
emphasis on the applicability of Kalman filtering in
speech-processing-related problems, such as speech en-
hancement (denoising) and speaker tracking. Although
the general framework of Kalman filtering allows for
complex-valued state vectors and measurements, we
chose to concentrate, for simplicity, on the real-valued
case, which is most commonly encountered in speech-
related applications.

This chapter is structured as follows. In the next
section, we provide the formulation of the estimation
problem, as well as a rigorous derivation of the basic
Kalman filter equations. In Sect. 8.2, we demonstrate
the use of the Kalman filter in common stochastic de-
noising problems. Section 8.3 offers an overview of
classical, immediate extensions of the Kalman filter,
namely the Kalman predictor, the Kalman smoother (in
various forms), and the extended Kalman filter (which
addresses nonlinear models). Section 8.4 is dedicated
to applications of Kalman filter in the context of speech
processing; it provides a thorough literature survey of re-
cent research activities in this context, as well as detailed
examples of two popular applications, namely speech
enhancement and speaker tracking.

from one recursion phase to the next, we would establish
the claimed optimality of the entire scheme.

In the following subsection, we will review the op-
timal linear estimator (in the Bayesian framework) and
the associated necessary and sufficient conditions for
optimality. We will then exploit these conditions in
the derivation of the Kalman filter in the subsequent
subsection.

8.1.1 The Minimum Mean Square Linear
Optimal Estimator

Let x and y be two random vectors with an arbitrary
distribution having finite moments up to second order.
Denoting by z = (xT yT)T the concatenation of the two
vectors into a single vector, the mean and covariance of
z are then given by

n, =E(@x) = (”)
Ny

(8.1a)
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Coo = E[c— 1)z —1)T] = (g’”‘ ny) (8.1b)
yx =yy

with obvious partitions according to the respective di-
mensions, where 5, and 1, denote the means of x and
¥, respectively, Cyyx, Cyy, denote the covariance matri-
ces of x, y, respectively, and Cy, = C;x denotes the
covariance between x and y.

Assume now that it is desired to estimate x from
observation of a y using linear estimation of the form

F=Ay+b, (8.2)

where X denotes the estimate of x, and A and b are some
fixed matrix and vector, respectively, of the appropriate
dimensions. Note that any linear estimator can be rep-
resented in such a form, and its properties are uniquely
determined by A and b.

Assume further that it is desired to find the linear
estimator that attains the smallest (matrix) MSE among
all linear estimators. More specifically, denoting

€e=X%—x (8.3)
as the estimation error, the (matrix) MSE is defined as
P=E(ee)). (8.4)

An estimator X1 is said to attain a smaller (matrix) MSE
than another estimator, say X,, when the matrix Py at-
tained by X is smaller than the matrix P; attained by X7,
in the sense that the difference matrix P, — Py is positive
(semi-)definite.

Let us find A and b which minimize the MSE. For
any A, b, the estimation error is given by

e=fc—x=Ay—|—b—x

=Aly—ny)—(x—n)+c, (8.5)

where ¢ is a constant vector, defined as

c=b+An,—,. (8.6)
‘We thus obtain

P=E(ce") = E[(A(y —1y) — (x — 1) +©)
AQ =)= @x=1)+0)"]
= ACyyAT —AC,y — CoyAT 4 Cyy +ccT. (8.7)
Since the term ccT is positive semidefinite, P would
definitely be minimized with respect to ¢ (controlled by
b) by setting ¢ = 0, obtained by choosing

b=n,—Ay,. (8.8)

It now remains to minimize
P =AC;,AT — ACy; — C;yAT +Cyy (8.9)

with respect to A. Assuming that Cyy is invertible, we
note that P in (8.9) can also be written as

—1 1\ T
P=(A—CyC;}))Cyy- (A—CyyC,))
+Crx — CxyC;) Cye . (8.10)

If Cy, is singular, this means that the measurements vec-
tor y contains some redundancy, as one or more linear
combinations of its elements are zero (in the mean-
squared sense). This means in turn, that y can be reduced
into a smaller measurements vector with non-singular
covariance, without loss in the attainable MSE in es-
timating x. The first term in (8.10) is again positive
semi-definite, and may be set to zero by selecting

A=CyC;) . (8.11)

Since the other two terms do not depend on A (or on b),
this is the global minimizing solution, and the remainder
is the residual (minimal) MSE matrix. Combining (8.8)
and (8.11), we obtain the optimal linear estimator

&=1,+CryCyly—m,). (8.12)
whose MSE is given by (8.10):
P = Cyx — CyyC,, Cyx . (8.13)

8.1.2 The Estimation Error: Necessary and
Sufficient Conditions for Optimality

Recall the estimation error (8.5) of any linear estimator:

e=Aly—n)—(x—n)+c. (8.14)
We obviously have

E(e)=c (8.15)
and

E(ey") = ACyy — Cxy +c1y - (8.16)

When substituting (8.8) and (8.11) into (8.15) and (8.16)
we easily obtain E(e) =0and E (eyT) = 0. Moreover, it
can be seen from (8.15) and (8.16) that, for any linear es-
timator, E(e) =0 and E (eyT) =0 imply (respectively)
(8.8) and (8.11), which in turn imply the MSE optimal-
ity of the estimator. We may therefore conclude with
the following necessary and sufficient conditions for the
optimal linear estimator.
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Theorem 8.1

Let X denote an estimator of a random vector x from
the random vector (measurements) y, and let € =X —
x denote the estimation error. X is the optimal linear
estimator of x from y in the sense of minimum MSE if
and only if the following three conditions hold:

1. X is a linear function of y,
2. E(e)=0,
3. E(ey")=0.

The condition of linearity is trivial. The zero-mean
condition asserts that there is no constant bias in the
optimal linear estimation, since any such bias can be
removed in a linear operation, which would thereby re-
duce the MSE. The third condition asserts that there
should be no correlation between any of the estimation
error’s elements and any of the measurements. This is
a fundamental condition for MSE optimality of the op-
timal linear estimator: if any of its estimation error’s
elements were correlated with any of the measurements,
then this would (intuitively) mean that by observing
these measurements one could deduce the mean direc-
tion of departure of the respective errors from their (zero)
mean. Such knowledge would in turn imply that a linear
estimator of the respective estimation errors can be con-
structed and appended to the original estimator, so as to
further reduce the MSE without breeching the linearity
framework. If such an operation is possible, the original
estimator cannot be MSE-optimal.

Therefore, the orthogonality condition, together with
the zero-mean and linearity conditions, imply that all lin-
ear operations that may potentially reduce the MSE have
been exhausted, and no further linear operations may be
able to reduce the MSE further. Naturally, this implies
MSE optimality of the respective linear estimator. In the
sequel, we shall exploit these three conditions in con-
structively designing the estimator to satisfy all three,
thereby inducing its optimality.

8.1.3 The Kalman Filter

Quite commonly, it is required to estimate time-
dependent random vectors x, from measurements y,
obtained sequentially in time (where n is the time in-
dex). Although the expressions derived above for the
linear estimator’s parameters (the matrix A and vec-
tor b) can always be used, the associated computation
of covariance matrices (and their inversion) may be-
come prohibitively computationally demanding in such

applications, especially as the dimension of the ac-
cumulated measurements vector placed in a matrix
Y = (y1 y2 --- yn) increases. Even if these matrices
are computed offline, the required storage space has to
grow with the increase in the dimension of y, as more
measurements become available.

Often, however, the propagation of the statistics of
the process of interest (together with the measurements)
can be deduced from a recursive description of the
model. It would therefore be computationally appeal-
ing if it were possible to apply a recursive scheme, in
which the optimal linear estimator takes a similar form,
with simplified computation of the associated matrices.
Such a recursive (linear, optimal) estimation scheme is
known as Kalman filtering.

Assume that the underlying process of interest sat-
isfies the following recursive model equations:

X, =P, x,_1+w,, n=172,..., (8.17)

where @, denotes the (known) transition matrix from
the state at time instant n — 1 to the state at time in-
stant n and w, denotes the stochastic driving noise
at time instant n, assumed to be of zero mean with
known covariance Q,,. The initial conditions for this
set of equation are the mean my = E(x) and covariance
Po=F ((xo —m)(xg —mO)T) of the initial state x.

Assume further that the measurements y, are re-
lated to the states x,, via the following measurement
equations:

yo=Hx,+v,, n=12,..., (8.18)

where H,, denotes the (known) transformation matrix
from the state x, to the measurement y,, and v, de-
notes the stochastic measurement noise at time instant
n, assumed to be of zero mean with known covariance
R,.

It is further assumed that the initial state xg, the
driving noise w,,, and the measurement noise v, are all
uncorrelated, namely:

E(xowy) =0  E(xovy)=0  Vn
E(wnv,Tn) =0 Vn, m
E(w,w,,)=0  E(v,v,,)=0 Vn #m
E(w,wy))=Q, E(vyv,)=R,. V¥n (8.19)

In the classical causal filtering framework, it is
desired to compute, at each time instant n, the opti-
mal linear estimator of x, from all the measurements
Y1, Y2, - .., Yn up to the same time instant. We shall now
propose a recursive scheme for this estimation process.
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To this end, let us introduce a general simplified
notation, denoting by ¢ the optimal linear estimator
of xy fromyy, y2, ..., y¢. Likewise, we denote by €y =
Xkje — Xy this estimator’s estimation error, and by Py, =
E(exje€y,) its (matrix) MSE.

Assume now, that at time instant n we are given
Xn—1jn—1. Let us proceed in the following two-step
scheme:

1. Obtain ¥,,—1 from
Xnn—1=PuXp_1jn—1, (8.20)
2. Using the new measurement y,,, obtain X, from
Xnpn = Xnpn—1 + Ku (v —HpXpjn—1) , (8.21)

where K, is a special weighting matrix to be derived
shortly, often termed the Kalman gain.

These steps have the following intuitive interpretation:

® In the first step (often called the propagation step),
we compute the estimate of x,, based on all the pre-
vious measurements up to y,_. Since we already
have the optimal estimate of x,_; based on these
measurements, the best we can do, in the absence of
new information, is to apply the model equation to
Xn—1jn—1, ignoring the unknown, zero-mean driving
noise w,,.

® In the second step (often called the update step),
we use the new measurement y, to update the esti-
mate of x,, from the first step, which was only based
on previous measurements. The update consists of
an additive term, which is proportional to the inno-
vation contained in the new measurement y,. This
innovation reflects the additional information in y,
regarding the estimate %, : if the measurement is
equal to what could be expected from that estimate,
namely to H,,%,,—1, then there is no innovation (the
term is zero), and consequently X,,—1 is deemed
good enough to become X,,,, having been confirmed
by y,. However, usually this is not the case, and
a nonzero innovation has to be incorporated when
updating X,|,—1 to X,|,. The proper weighting in the
transformation from the innovation to the update is
prescribed by the Kalman gain matrix K,,.

Natural and intuitively appealing as it may be, this
explanation can by no means serve as a proof of optimal-
ity. We shall now derive a rigorous proof of optimality,
based on the three necessary and sufficient conditions
mentioned above, namely linearity, zero-mean of the er-
ror, and orthogonality of the error to all measurements

on which the estimate is based. Our proof will be based
on recursive induction of these conditions, dwelling
on the recursive structure of the estimator. An impor-
tant byproduct of the proof will be an expression for
the Kalman gain matrix K,,, obtained by enforcing the
optimality conditions. We will also obtain important ex-
pressions for the associated error covariances Py, and
Py

As mentioned above, let us assume that at time
instant n we have X,_1j,—1, the optimal linear esti-
mator of x,_; from yy,yo,...,y,—1. Its associated
estimation error is €,_1,—1, which by virtue of the op-
timality of %, _1),—1, has zero mean and is orthogonal to
Yi,¥2, -5 ¥Yn—1-

We will now show that the proposed scheme prop-
agates the optimality conditions from X, _1|,—1 to the
resulting estimate X,, (and, also, along the way, to the
intermediate estimate X,,—1). Considering the linear-
ity condition first, it is obvious that, since X,_1j,—1 is
a linear function of all yi,y2, ..., ya—1, S0 iS Xy)n—1
obtained from (8.20) and thus also %,, obtained from
(8.21).

To examine the two remaining conditions, let us
monitor the propagation of the estimation error. Sub-
tracting x,, from (8.20), we obtain, by substituting (8.17),

€nln—1 :-’Acnln—l —Xn
= ‘pn-’%n—l\n—l —(Ppxy—1 +wy)
= ¢n(£n—1\n—l —Xp—1)— Wy
= ‘pnfn—lln—l —wy, . (8.22)

Likewise, subtracting x,, from (8.21), we get, by substi-
tuting (8.18),
€nln = fcn\n —Xn
= i‘n\n—l + Ky (yn — Hn-’/‘\fnln—l ) —Xp
=€nn—1+ K,(H,x, +v, — Hnin\n—l)
= €n|n—1 +Kn(_Hn€n\n71 +vy)
=I-K,H)e, -1 +K,v, . (8.23)
It is now easily observed that from (8.22)
E(en\n—l)=¢nE(€n—l\n—l)_E(wn)=07 (8.24)
and hence from (8.23),

E(eqn) = I- Kan)E(enln—l)"‘KnE(vn) =0,
(8.25)

thus the zero-mean condition is seen to propagate simply
by construction of the proposed estimation scheme. It
now remains to verify the orthogonality condition. Let
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us first examine the orthogonality of €,,—1 to all the
measurements on which %,|,—1 is based, namely to all
ye, £=1,2,...,n—1.Using (8.22) again we get

E(énln—ly}) = E[(¢n€n—1\n—] - wn)y}]
=9, E(en—]ln—ly}) - E(wny})
=0, £=1,2,...,n—1, (8.26)

where the first term is zeroed-out due to the optimal-
ity of X,_1ju—1, and the second term is zeroed-out
since all of the measurements y, up to £ =n—1 are
essentially linear functions of the random vectors xy,
wi, Wy, ..., Wy_1, V], V2,...,0,_1, which are all or-
thogonal to w, — thus these measurements are all
orthogonal to w, as well. Note that this already im-
plies that the intermediate estimate X,,—1 of (8.20) is
the optimal linear estimator of x,, from all measurements
up to the previous time instant n — 1.

We now wish to verify a similar orthogonality con-
dition for €,),. Note that for optimality of X, €,, has
to be orthogonal to all y, for £=1,2, ..., n, namely
to the same measurements as €,,—1, plus the new
measurement y, used in the update stage. Let us first
examine the orthogonality to past measurements only,
up to £ =n — 1. Using (8.23) we get

E(%m)’}) = E{[(I_Kan)en\nfl +Knvn]y}}
= (I - Kan)E(en\nfly(T) + KnE(vny})
=0, (=1,2,...,n—1, (8.27)

where the first term is zeroed-out following (8.26), and
the second is zeroed-out due to a similar argument as
used above for (8.26).

Note that all of the conditions up to this point were
propagated automatically by the structure of the estima-
tion scheme, regardless of the value of K,,. By imposing
the remaining condition of orthogonality of €, t0 y,,
we would now get an explicit expression for K,. We
have

E(Gnlnyz) = E{[d- Kan)enln—l +K,v,]
-(Hyx, + )"}
= E{[(I_Kan)en\n—] +K,v,]
: (Hn(fcnln—l ifn\n—1)+ vn)T} .
(8.28)

This expression involves six types of expectations that
have to be computed, as follows:

E(énln—lfz\nfl) =0, (8.29a)

since X,|,—1 is a linear function of measurements y, up
to £ =n— 1, all of which are orthogonal to €;,— [by
(8.26)];

E(€”|”*1€E|n—1) :Pnlnfl s (8.29b)
by definition;
E(€nn—1v,) =0, (8.290)

since €,|,—1 is a linear function of past measurements
and of x,,, all of which are in turn linear functions of
X0, Wi, Wy, ..., w, and vy, vy, ..., v,_1, Which are all
orthogonal to v,;

E(vaky,_1) =0, (8.29d)
due to a similar argument;

E(va€),_1) =0, (8.29€)
[same as (8.29¢)]; and

E(vyvy) =R, , (8.29f)

from the measurement equation (8.18). To conclude, we
obtain, substituting (8.29a)—(8.29f) into (8.28)

E(ennyy) = A—K,H,)P,,_1Hy +K,R,
(8.30)

which has to equal 0 to secure all optimality conditions.
This leads to the requirement

P 1H) = K, (H,Py,—1HL +R,) , (8.31)

which is easily satisfied by setting the Kalman gain K,
to be

-1
Kn :Pn\nle;lr(HnPnlnlez‘i‘Rn) . (8.32)

A remaining practical issue, which is also of inter-
est for performance evaluation, is the computation of
the error covariance Py,_1, required in the computa-
tion of (8.32). We take a similar recursive approach in
the computation of these matrices: assume that along
with %, _1},—1 (the previous estimate) we are also given
P,_1jn—1. From (8.22) we have

| P

= E(€nln—1€3_1)

= E[(d’nén—un—l — W, )(Pr€r—1jn—1— wn)T]
=®,Py 1,19, +Qu . (8.33)

in which we used the orthogonality of w, to €,_1,—1,
the latter being a linear function of random vectors from
the past, which are all uncorrelated with w,,.
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Although P,,— is sufficient for computing K,,
we are also interested in P, ,, both for obtaining the
estimate’s MSE and for passing that matrix onto the
following recursion phase. From (8.23) we get

Pujn = E(€nnp,)
= E{[d— K,H,)enn—1 + Ky v,]
(A=K, Hp)enn-1 +K,,)")
=T-K,H,)Py - 1(I-K,Hy)
+K,R,K", (8.34)

again having used the orthogonality of v, to €,,—1,
a linear function of past measurements and of x,,, which
are all orthogonal to v,. Although (8.34) can indeed
serve to compute P,|,, considerable simplification of
this expression is possible. In fact, it can be shown that
this expression is equivalent to the following:

Pnln = (I - Kan)Pn|n71 . (8~35)

To show this, observe that the difference between (8.34)
and (8.35) can be expressed as

— (- K,H,)Py, 1 H K} + K, R, K]

= (= Pyp—1H, +K,H,P,,_ 1 H! +K,R,)K}

= [ —Puju—1H,, + K, (H, Py Hy +R,) K] .
(8.36)

Substituting (8.31) we easily observe that this differ-
ence vanishes, implying the equivalence of the two
expressions.

This concludes the derivation of the expressions nec-
essary to carry out a single recursion phase, in which the
optimal linear estimate and its MSE matrix, provided
from the previous recursion phase, are used, together
with a new measurement, to compute an updated opti-
mal linear estimate and its associated MSE matrix. In

such a recursive structure, the output of each recursion
phase serves as the input to the next recursion phase, and
optimality is maintained throughout. A small remaining
issue is the initialization of the process: we first need
%00, the MSE-optimal linear estimate of x based on no
measurements at all. Naturally, that MSE-optimal esti-
mator is the known mean of x(, namely mg. Moreover,
the required covariance of that estimate is given by

Pojo = E[(%oj0 — X0)(Roj0 —x0)" ]
= E[(mo —x0)(mo —x0)" | =Py . (8.37)

We are now ready to summarize the recipe for
applying the Kalman filter:
Initialization:

Let Xo0 :=my ,
and Pyjo :=Pp .

Proceed forn=1,2, ... :
Propagation equations:

Xpjn—1:=PnXpn_1jn-1, (D
Pop1 =P Py 1y 19+ Q. (p2)
Update equations:
K, := Py H (H, Py H +R,) ™ (ul)
Xnin =Xpn—1 + Ky (yn —HpXpjn-1) , (u2)
Py i=0-K,H)Py—1 . (u3)

Note that (p2), (ul), and (u3) are all data indepen-
dent, so wherever applicable, they can be computed in
advance before the data sequence arrives. Only (p1) and
(u2) need to be computed online. This appealing feature
not only enables to save real-time computations, but also
enables one to assess the propagation of MSE in time
beforehand, as this MSE, expressed by the sequence of
P, is data independent.

8.2 Examples: Estimation of Parametric Stochastic Process

from Noisy Observations

Formulating the Kalman filter for the estimation of
a stochastic process contaminated by additive noise
often boils down to the definition of the state-space
equations. In this section, we will exemplify the pro-
cedure for noisy observations of several quite common
stochastic processes. Although we shall consider station-
ary processes, the derivation of the Kalman filter does not
necessitate any stationarity assumption. In Sect. 8.4 we

will consider speech signals, which can only be assumed
to be quasistationary.

Consider a difference equation with time-invariant
coefficients,

p q
x(m)=—Y ax(n—k)+ Y fuwn—k), (8.38)

k=1 k=0

m
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1 s(n) Po

s(n—p+1)
ap

Fig. 8.1 A block diagram presenting an autoregressive

moving-average process

where w(n) is some zero-mean white-noise input, with
variance E[w?(n)] = 03). The output signal is usually
termed an autoregressive moving-average (ARMA) pro-
cess. The process x(n) is a sum of two terms. The first
term is a weighted sum of past output signal values
[hence the term autoregressive (AR)]. The time-invariant
AR coefficients, ay, . .. , &) are the weight values. The
second term is a weighted average of past and current
input samples [hence the term moving-average (MA)].
The time-invariant MA coefficients, fo, ... , B4, are the
weight values. A possible block diagram of the pro-
cess generation is depicted in Fig. 8.1; this form is often
called direct form II, and is one of several alternative
forms.

The block z~! denotes a unit delay. It is desired
to estimate x(n) from noisy observations thereof, y(n),
given by

y(@) = x(n)+v(n), (8.39)

where v(n) denotes additive background noise with
variance o2.

We will now turn to a formulation of the state-space
representation of three special cases of the difference
equation given in (8.38), namely, AR, MA, and ARMA
processes. The state variables will be defined, in all three
cases, as the inputs of the delay units, constituting the

max(p, g+ 1) x 1 state vector

xz =@n—p+D)stn—p+2)...s(m). (8.40)

We assume without loss of generality that p > g. If this
inequality does not hold, extra, zero-valued coefficients
can be appended to the existing coefficients.

8.2.1 Autoregressive (AR) Process

In the autoregressive case, the coefficients gy, ... , B4
are assumed to be zero, while By = 1. The resulting
process is given by

p
x(n) =— Z apx(n —k)+w(n) . (8.41)
k=1

The px 1 state-vector is given by (8.40), where the state
variable s(n) is essentially the output signal x(n). In
some cases it might be useful to define a longer state-
vector with p+ 1 elements x(n — p), ... , x(n). We will
elaborate on such a case when discussing the application
to speech signals in Sect. 8.4. However, continuing with
the px 1 formulation, define the p x p transition matrix

0 1 0 0

o= . o |- (8.42)
0 0 1
—Qp —0p_| ccr —0p —0O

Note that the transition matrix is time invariant in this
case. Define also the vector (p x 1) and matrix (1 x p)

wl =0 ... 0wn), (8.43)
H=0...01). (8.4)

Then (8.41) and (8.39) can be rewritten as

X, =Px,_1 +w, (8.45)
y(n) =Hx, +v(n) .

Accordingly, the driving noise correlation matrix is
given by

00 ---0
Q=|- - - - (8.146)
0---0 0
0--- 0 o2

and, since in this case the measurement vector is a scalar,
the measurement noise correlation matrix is the scalar
R = 02. Using the state-space representation in (8.45)
the Kalman filter is readily applied.
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8.2.2 Moving-Average (MA) Process

In the moving-average case, the coefficients aq, ... , )
are assumed to be identically zero, hence the process
model simplifies to

q
x(m)=Y_ fawn—k). (8.47)

k=0

The (¢ + 1) x 1 state-vector is accordingly given in a form
similar to (8.40) with p replaced by ¢ + 1. Now the state
variable s(n) is essentially the input signal w(n). Us-
ing the above definitions, we can reformulate (8.47) in
a state-space representation. The (¢ + 1)x (g + 1) tran-
sition matrix becomes a simple time-shift matrix,

o1 0 ---0

o= o] (8.48)
0 vv .- 0 1
00 ---00

Define the vector [(¢ + 1) x 1] and matrix [1 x (g + 1)]

w' =0 ... 0wn), (8.49)
H=(8; ... i fo) - (8.50)

Then (8.47) and (8.39) can again be rewritten as

X, =®Px,_|1+w, (8.51)
y(n) =Hx, +v(n) .

As in the previous case (the AR process), the driving
noise correlation matrix is given by (8.46) and the meas-
urement noise correlation matrix by the scalar R = 2.
The state-space representation (8.51) can be used in the
Kalman formulation.

8.2.3 Autoregressive Moving-Average
(ARMA) Process

The state vector of the ARMA process is also given
by (8.40) (assuming p > ¢), but now it is not directly
related to either the input or the output signals. The
transition matrix is identical to the px p AR transition
matrix in (8.42). The p x 1 measurement matrix is equal
to the corresponding MA measurement matrix padded
with p —q — 1 zeros

H=(8, ... f1 fo0 ... 0). (8.52)

The driving noise vector is identical to both the AR and
MA processes and is given by (8.43). As in the spe-
cial cases, the driving noise correlation matrix is given
by (8.46) and the measurement noise correlation matrix
is the scalar R = o2
8.2.4 The Case

of Temporally Correlated Noise

The assumption that the measurement noise is tempo-
rally uncorrelated, i.e., E(v, v,Tn) =0, Vn #m is not
always realistic. To circumvent the need to account
explicitly for correlated noise in the Kalman filter equa-
tions, the following procedure is commonly used.

Assume that the measurement noise v,, can be de-
scribed using a state-space model as well. Let x denote
the respective noise state vector. Then

x,=®x;, | +w,, n=12..., (8.53)

where @) is a known matrix, and w), is a temporally un-
correlated zero-mean driving noise (for the noise signal)
with correlation matrix E [w;’l(wx)T] = Q. The meas-

urement noise v, is related to the noise state vector x),
by:

V,.V
v, =Hx, ,

n=1,2,..., (8.54)
where H) is known.

Assume that the recursive model in (8.17) and the
measurement equations (8.18) still hold. We restate these
equation with a slight change of notations. The signal

state-space model is given by:

x2=¢2x571+w: n=1,2,... (8.55)

n
and the signal measurement model is given by:
y=Hx +v,=Hx+Hx , n=12,...
(8.56)

Therefore, concatenating both state vectors will en-
able the use of the standard Kalman filter. Let

T s\T (.v\T
Xn = ((xn) (xn) )
be the augmented state vector, and define
T s\T v\ T
W, = ((wn) (wn) )
to be the driving noise vector. The augmented transition
matrix is then given by

S
o, (200
0

where 0 is an all-zeros matrix of the proper dimensions.
Then the concatenated recursive model is given by

X =P, x—1+w,, n=1,2,... (8.57)

13
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The respective driving noise covariance matrix is given
by

_(Q, 0
o-(% o).

Accordingly, the measurement equation can be reformu-
lated as

8.3 Extensions of the Kalman Filter
8.3.1 The Kalman Predictor

In various applications it is desirable to predict the
value of a future state, say x,,, from measurements
Y1,¥2, ..., Yy uptosome time instant n < m. The opti-
mal linear estimator (predictor) in the sense of minimum
MSE is the Kalman predictor, which is based on the
Kalman filter and has a simple, intuitively appealing
structure.

Let us first consider a one-step predictor, which

predicts (estimates) x,,41 from y1, y2, ..., y,. The pre-
diction equation is given by
£n+1|n = ¢n+1£n|n s (8.59)

where X, is the Kalman filter’s output at time instant
n, namely the optimal linear estimate of x, from the
same measurements. As shown in Sect. 8.1, in order
to establish optimality of the proposed predictor, we
need to verify linearity, zero-mean estimation errors,
and orthogonality of the estimation errors to all of the
measurements yi, y2, ... , ¥, on which the prediction
is based. The linearity property is trivially satisfied from
the linearity of the expression (8.59) and of the Kalman
filter. To examine the other two properties, let us first
establish a recursive relation for the prediction error.
Subtracting x,+; from both sides of (8.59), we get

€n+l|n = ¢n+l~/x\7n|n —Xn+1
= ¢n+1-’2'n|n —(Pyr1Xp +Wpt1)
=@, 1€ — Wyt , (8.60)
where we have substituted the model equation (8.17)
for x,4+1. It is now easily verified that the optimality
of the Kalman filter induces optimality of the one-step
predictor, as

E(€nt11n) = Pnr1E(€nn) — E(Wy41) = 0 (8.61)

yo=Hux,, n=1,2,..., (8.58)

where
H, = (H}H))

Note, that as the measurement equation (8.58) is noise-
free, the noise correlation matrix is zero, i.e., R,, = 0.

and

E(ent11nye) = Pui1 E(€qnye) — E(wuq1y¢) =0
(8.62)

forall¢ =1, 2, ..., n, where we have also exploited the
orthogonality of w, | to past measurements (which are
linear functions of xg, past of wy and past of v, all of
which are orthogonal to w;,11).

This establishes the optimality of the proposed one-
step Kalman predictor. The associated MSE is also easily
derived from (8.60),

T
Pn+l\n = ¢”+1P’1\”¢n+l|n +Qn+l s

where we have exploited the orthogonality of w41 to
€,z In fact, the expressions obtained so far are reminis-
cent of the prediction steps (p1) and (p2) of the Kalman
filter, in which the optimal one-step prediction X, ,—1 is
computed. Indeed, with one-step forward shifts of the
indices we naturally get similar expressions.

Now suppose that we have the optimal linear k-step
prediction and are interested in the k+ 1-step predic-
tion. The optimal linear k + 1-step predictor would have
a structure similar to the one-step predictor, but would be
based on the k-step predictor, rather than on the Kalman
filter output:

(8.63)

-%n+k+1\n = ¢n+k+l-£'n+k|n . (8.64)

Optimality can then be easily verified in the same way
as for the one-step predictor, as the recursive relation of
the prediction errors is essentially the same:

€ntk+1|n
=P i1 X rkn — Xnkr1
=D, i1 Xnkin — ( Pk 1Xn 1k + Wkt 1)

=@ k+1€n+kn — Wntk+1 - (8.65)

The optimality propagates in exactly the same way, as
orthogonality of w, ¢+ to past measurements and pre-
diction errors is maintained. Likewise, the MSE can be
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expressed as

T
Pn+k+]|n = ¢n+k+an+k|n¢n+k+1 +Qn+k+1 .
(8.66)

We have therefore established, by induction, the opti-
mality of a propagating predictor based on the Kalman
filter output. If the intermediate predictors are not re-
quired, the general d-step predictor can be computed
directly from the Kalman filter’s output as

i‘m\n = ‘Pm¢m—1 e ‘Pn—}—li«'n\n 5 (8.67)

which simply propagates the model equations from
time instant n to time instant m. The matrix products
D, P, - D, can be computed in advance, so that
only one matrix multiplication per prediction is required
in real time.

As to computation of the MSE, the recursive form
of (8.66) must be maintained, beginning with P, 1},
and ending with P,,,,. Naturally, the Kalman predictor’s
MSE Py, in estimating x,, from measurements up to
time instant n will always be greater than or equal to
(usually greater than) the Kalman filter’s error Py, in
estimating the same state from measurements up to time
instant m.

8.3.2 The Kalman Smoother

As opposed to the Kalman predictor, the Kalman
smoother is aimed at estimating the state x,, from meas-
urements yi, y2, ... , Ym, where m > n, namely to base
the estimate of x,, on future measurements, as well as on
past and present measurements. The output of the opti-
mal linear (Kalman) smoother must always be at least
as good as (and is often much better than) the output of
the optimal linear (Kalman) filter in terms of estimation
MSE, since it optimally accounts for more measure-
ments for estimation of x,,. Naturally, such a smoothing
scheme is not feasible in a causal real-time system. How-
ever, in view of the potential performance gain, it is
sometime desirable to trade affordable latency for im-
proved accuracy, namely to delay the output of the filter
until some further measurements are obtained, thereby
making the filter smoother. In addition, in non-real-time
applications it is sometimes possible to work in an of-
fline batch mode, in which it is possible to go back in
time and improve all of the causal filter’s estimates based
on the entire batch of measurements.

It is common practice to distinguish between three
different paradigms for smoothing, depending on the
associated application: fixed-interval smoothing, fixed-
point smoothing, and fixed-lag smoothing. We shall now

discuss each type separately, with emphasis on the fixed-
interval smoother, which can be viewed as the most
general of the three, as it can also be used in the context
of the other two.

Fixed-Interval Smoothing
A fixed-interval smoother is usually (but not neces-
sarily) used in the context of batch-mode processing:
once a batch of N measurements yi,y>...,yy has
been obtained, and the Kalman filter output X,), has
been computed for all n=1,2,..., N, it is desired
to go back and compute, for each n, a smoothed esti-
mate of x,, based on the entire batch of measurements,
which is therefore denoted by %,y. The fixed-interval
Kalman smoother offers a backwards-recursive scheme
for obtaining the desired estimates. Some fixed-interval
smoothers (see, e.g., [8.8]) employ three-pass smooth-
ing: in the first pass, the ordinary Kalman filter is applied;
in the second pass, a backwards Kalman filter is applied,;
in the third pass the results of both passes are optimally
combined to attain the smoothed output.

However, herein we shall review the Rauch-Tung—
Striebel two-pass smoother (derived by H. Rauch, K.
Tung and C. Striebel in 1965 [8.9]). The two-pass
smoother employs just one (the second) pass on the data
in addition to the original (Kalman filter) pass. This sec-
ond pass begins with the estimate of the last state X y|n
(which is both the filtered and the smoothed estimate
for n = N, since N is the last sample in the batch), and
propagates backwardsasn =N —1,N—2, ..., 1, gen-
erating the smoothed estimate %, at each time instant
n from the previously obtained Kalman filter’s outputs
Xpn and %,41), and from the smoothed output of the
succeeding time instant, X1/

For simplicity of notation, we shall denote the
Kalman smoother’s output (at time instant n) as X,,
rather than %, y. The form X, will still be used to de-
note the Kalman filter’s output. As already mentioned,
for n = N we have Xy = Xy|n, namely the smoother’s
output equals the Kalman filter’s output, which is al-
ready the optimal linear estimate of xy based on the
entire batch. Forn =N —1, N—2, ..., 1, the following
backwards-recursive scheme is proposed:

5‘\7n :-i'n\n +An(-i'n+] _j‘\:n+1|n) s
n=N—-1,N-2,...,1,
(8.68)

where A,, is a gain matrix given by

A, =P, P!

n+18 10 - (8.69)

5
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At each time instant n, the smoother corrects the filter
by adding a term that is proportional (via A,) to the dif-
ference between the smoother’s output and the filter’s
predicted output for n + 1. We shall now show the opti-
mality of this scheme by verifying the three optimality
conditions outlined in Sect. 8.1, namely: linearity, zero
mean of the estimation error, and orthogonality of the
estimation errors to the measurements yi, y2, ...,y
on which the estimates are based.

The linearity condition is trivially satisfied by the
proposed structure, dwelling on the linearity of the
Kalman filter. To verify the other two conditions, we
first obtain recursion relations for the estimation er-
ror, denoted by €, = X, — x,. By subtracting x,, from
both sides of (8.68) and x,4+; from both terms in the
parentheses we obtain

€y = €n|n +An(€nt1 _€n+1|n) > (8.70)

where €,|, and €1}, are the Kalman filter errors, de-
fined in Sect. 8.1. Due to the optimality of the Kalman
filter these errors have zero mean and are orthogonal to
allyy,y2, ..., yn.

Exploiting the zero-mean property in (8.70), we
obtain E(e,) = A, E(€,41). Recalling that ey = eyn
(whose mean is zero), the zero-mean property is thereby
induced backwards for all n.

We now consider the orthogonality property. From
(8.70) we obtain

E(€ny;) = E(€ninyg) +AnE(€ns1])
~AnE(€ni1inyg) VL.

Due to the optimality of the Kalman filter and to the

assumed optimality of X,+;, we immediately obtain

E(e, y}) =0 for all £ <n. Obviously, to establish the

smoother’s optimality it now remains to show the or-

thogonality of €, to y, forn < £ < N. Let us therefore

consider the case £ =n+k for positive values of k.
Based on the assumed optimality of X,+1, we obtain

E(e,,yLk)
= E(enlnyLk) - A"E(‘Hl\ny;rk)
= E[€nn HutiXni + Vnsi) |
— A E[€ns1n(HypiXn i+ vp40)" |
= E(enlnka)HLk — Ay E(en+1 Inka)HLk

= [E(en‘nka) _A"E(enJrlInka)]HLk )
(8.72)

(8.71)

where the third equality is due to orthogonality of €,
and €, 1), to future measurement noise v, for all pos-
itive k. We shall now show that the term in parentheses

in (8.72) is zero. Consider first the case k = 1. The term
in parentheses is then given by

E(e,,|,,x3+1) - AnE(‘nHInxLl)
= E(€nn(@p41%n +Wpt1)")
— A E[€ntipnEnsipn — 5n+1\n)T]
= E(en‘,,xZ)QLl "’AnE(enJrl\nfLun)
= E[€nnGenin — €nn) |1 +AnPriipn

=Py P, +AP 1, =0, (8.73)
where the transitions rely on orthogonality of €, to
w;+1, as well as on the orthogonality of both €, and
€,+1)n to the Kalman filter’s outputs X, and X1,
which are linear functions of measurements to which
these errors are orthogonal. The last equality is obtained
by substituting A, from (8.69).

Now consider, by induction, the case of k > 1. As-
sume that the expression in parentheses in (8.72) is zero
for some k, and consider k + 1, for which the expression
can be written as

E(enlnkaH) - A"E(€n+1|nxz+k+l)
= E[€nn(Pnikr1Xnrk + Wnikr1)" ]

— AwE[€ns1n( P it 1Xntk + Warks) ]
= E(en\nka)qu—kH

- A"E(‘n+1\nx3+k)¢1+k+1

= [E(€ninxy i) = AnE(€ns1n% 1) [P s
=0, (8.74)
where the second equality is due to the orthogonality
of €,|, and €1}, tO W, 1. This established the opti-
mality of the proposed smoother. A remaining important
issue is the resulting MSE, expressed by P, = E(e, €.
(we maintain the notation simplification in using P, in-
stead of P,|). Note that, while in the Kalman filter the
computation of P, as well as P, ,_1 is inherent to the
filtering equation and is therefore obtained as a byprod-
uct, the smoother does not require computation of P,,.
Nevertheless, we shall now derive a recursive expression
for this important measure of performance.

Obviously, we have Py = Py y. Let us now rewrite
(8.70) as:

€n _An€n+1 = €nin _AnenJrlln . (8~75)
Multiplying each side by its transpose and taking the
mean, we obtain
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P,+A,P, AT - E(e,,eL_JAI — A E(€ny1 GI)
= Pnln +AnPn+l \nAI
— E(€nn€ni1pn)An —AnE(€ns1pn€y,) - (8.76)
In order to obtain a closed-form recursive expression, we
need to evaluate the terms E(enezﬂ) and E(en\neL”n).
Regarding the latter, we observe that [using the recursion
in (8.22)]
E(€n|n€:+1|n) = E[en\n(¢n+] €nln — Wn+1 )T]
=Pn\n¢z+1 =AnPn+1|n ) (8.77)
where we have exploited the orthogonality of €, to

w,,+1, as well as the expression for A, (8.69). Regarding
the other term, let us first prove the identity

E[(en —Aneni)enr, ] =0. (8.78)
To show this, note that

E[(Gn —An€q1 )GZ—H]

= E[(en — A€ 1) Xy _xn+])T]

= _E[(Gn - An€n+1)xz+1]

= _E[(Gnln _Anfn-&-l\n)x’y]:Jrl] s (8.79)
where we have used the orthogonality of €, and €,
to X,+1 (a linear function of all the measurements, to
which both €, and €, are orthogonal), as well as the
relation (8.75). Now,

E(énlanJrl) = E[enln(¢n+1xn + Wyt )T]

= E(Enlnerz)¢I+1 = E[€nnGinin _enln)T]‘pZH

=P, ®), (8.80)

(again, due to orthogonality of €|, to W, and to X,,),
and

E(An€ntiin¥y )

= AnE[€nr1nEnsijn _€n+1\n)T]

=—ApPuiin =Py @, (8.81)
[due to the orthogonality of €,41|, t0 X,41), and due
to (8.69)]. Substituting (8.80) and (8.81) into (8.79), we

obtain the desired identity (8.78). Now, the expression
on the left-hand side of (8.78) can also be written as

E[(Gn _Anén—ﬁ—l)ez_;_l]
=E(e,,eLl)—AnE[enHeLl] ) (8.82)

Since this term has just been shown to vanish, we deduce
that

E(€nery)) = APy . (8.83)

We can now substitute the missing expressions (8.77)
and (8.83) (and their transposed forms) into (8.76),
obtaining

P, + AnPn+1AI - 2AnPn+1AI
= Pn\n +AnPn+1|nAT - 2AnPn+1|nA’,§ . (8.84)

n

We thus obtain the following (backwards-)recursive ex-
pression for P,:

Pn = Pnln _An(Pn+l\n - n+l)A£ ’
n=N-1,N-2,...,1,
(8.85)

in which it is nicely observed that, as expected, for
each n the smoother’s MSE P, is smaller than or
equal to (usually smaller than) the filter’s MSE Py,.
This is because the smoothed estimate is optimally
based on more measurements than the filtered esti-
mate. To observe this relation, note that for eachn < N
we have P, 1), > Pyy1jn41, and, since for n = N we
have Pyy =Py, we get, by backwards induction,
Porijn = Pogijns1 =Py foralln < N.

Fixed-Lag Smoothing
A fixed-lag smoother is aimed at estimating the state
at time n —d from measurements up to time n, where
d is some fixed positive integer (the lag). As n pro-
gresses, the smoother generates the estimates X,—qj,
trading a delay of d measurements (in real-time con-
texts) for improved accuracy in the estimation of x,,_.
We shall not specify the specific smoothing equations
in here; note only that the fixed-interval smoother de-
rived above can also be used for fixed-lag smoothing by
applying d backwards-recursions at each time instant.
However, such a scheme is computationally more expen-
sive than applying a true fixed-lag smoother, especially
for large values of d.

It is important to note, that in some applications
(mainly signal denoising) the state vector x contains
past-samples of the underlying signal — see, e.g., the
case of AR sources in Sect. 8.2. In such cases, estimates
of some fixed-lag past samples of the underlying sig-
nal(s) (as opposed to past samples of the entire state) are
readily available from the Kalman filter’s state estimate,
eliminating the need for a smoother. The maximum
available lag is determined by the oldest sample con-
tained in x,. For example, in the case of estimating AR
signals in white noise, it is the AR order minus 1. If de-
sired, it is theoretically possible to increase the size of the
state vector artificially so as to include more past sam-
ples that would automatically be estimated at the filter’s

L7
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output, thus eliminating the need for explicit smooth-
ing, but at the cost of increased dimensionality of the
Kalman filter. However, usually this trade-off has more
conceptual than computational appeal.

Fixed-Point Smoothing
A fixed-point smoother is aimed at estimating the state
at a fixed time instant m from measurements up to
time n, extending beyond m. Namely, as n progresses,
the smoother keeps updating its estimate %,,),. Again,
we shall not include the explicit fixed-point smooth-
ing equation in here; note only that, in principle, the
fixed-interval smoother can again be used to compute the
fixed-point smoothing, but at significantly higher com-
putational cost, especially as n departs farther from m.

8.3.3 The Extended Kalman Filter

In many scenarios the assumption of linear transition
and/or measurement models is not realistic. In fact, the
first full implementation that transformed the Kalman
filter into a useful working tool was done in the Ames
Research Center of the NASA in Mountain View, Cal-
ifornia in 1960 [8.10], where the trajectory estimation
for the Apollo project (the first manned mission to the
moon) was studied at the time. In that context, the linear
model was observed to be inadequate for describing the
trajectory of interest. The resulting extended Kalman
filter (EKF) was derived by Stanley F. Schmidt after
Kalman’s visit. This extension of the Kalman filter is still
the most popular tool for dealing with nonlinear appli-
cations. However, it should be stressed that, as opposed
to the case of a linear model, no claims of optimality
hold, and that the EKF is merely a heuristic extension
of the linear Kalman filter.
Consider the nonlinear recursive system:

Xn =Ko)W, n=1,2,..., (8.86)
where ¢, (-) is a nonlinear vector function of a vector
input. w, is the temporally uncorrelated driving noise.

Consider also the nonlinear measurement equation

Yn=h,(xp)+v,, n=12,..., (8.87)

where h,(-) is a nonlinear vector function of a vector
input. v, is the temporally uncorrelated measurement
noise.

The simple idea behind the EKF is to approximate
the nonlinear functions by their first-order Taylor series

expansion about the estimated trajectory [8.4,5]. Let,

¢, (x)

¢n(-£'l1—l\n—l) = ax |x:.%,,_1|,,_1

be the derivative matrix of the nonlinear transition func-
tion with respect to its argument at the current estimate,
namely, the (k, £)-th element of @,(X,—1,—1) is the
derivative of the k-th element of ¢, (x) with respect to
the £-th element of x, evaluated at x = X,,—1},—1. Then,
using a first-order Taylor approximation:

Xp N ¢n(-ﬁ'n71|nfl) + ¢n(£n71|n71)

'(x,,—fc,,_”,,_l)—i-w,,, n=1,2,... (8.88)

In the propagation step, based on the rationale of the
linear Kalman filter, we compute the estimate of x,, by
applying the model equation to X,_1j,—1, ignoring the
unknown, zero-mean driving noise w,,.

Enin—1=,En—1jn-1) - (8.89)

To calculate the corresponding covariance we first derive
the error term. Let,

€nln—1 = -’A"nln—l —Xp = ¢n(-i'n—1|n—1) —Xn
~ @, (Xn—1n—1) — (b, Xn—1jn—1)
+ ¢n(-’?fn—l\n—l)(xn _-ifn—l\n—l) +w,)
=@, (Xn—1jn—1)€n—1jn—1 — Wy . (8.90)

In the context of nonlinear models, it is common practice
to assume that the driving noise w, and the measure-
ment noise v, are not only uncorrelated sequences,
but are also statistically independent sequences and
are also statistically independent of the initial state x.
Using this assumption, the estimation error €,_1j,—1
can be assumed statistically independent of the future
driving noise w,, hence E(en_1|n_1w1)=0. There-
fore, the covariance is approximately given, under the
small-estimation-error assumption, as:

Pnlnfl
~ ¢n(~%n71\n71)Pn71|n71 ¢Z(‘i‘nfl|n71) + Qn .
(8.91)
Now, let
. Oh (x)
H,(xyn-1) = g—x |x:fc,,‘,,,1

be the derivative of the nonlinear measurement function
with respect to its argument at the current estimate. Then,

Yn ~ hn(-ﬁnlnfl) +Hn(»%n\n71)

'(xn_-i«'n\n—])‘l‘vn, n=12,... (8.92)
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This equation can be reformulated as

in =Yn— (hn(inlnfl) - Hn(ﬁn\nfl)ﬁnmfl) (8.93)

%Hn(-i'n\n—l)xn‘i‘vn» n=12,...

Note, that y,, depends both on the available estimate
Xnjn—1 and on y,. Using (8.21) the update equation
becomes,

in\n = £n|n71 + Kn(jn - Hn(inlnfl)ﬁn\nfl)

=-’2n|n—1 +Kn(yn _hn(-%nln—l)) 5 (8.94)

where the last transition is due to (8.93). The respective
covariance is approximated by

Pnln ~ [I_Kn(-%nln—l)Hn(-ﬁnln—l)]Pnln—l . (8-95)

The Kalman gain is similar to the linear case, using the
linearized equations.

K, =Pyju—1Hy Gpjn—1)
(H,, Gnfn—1)Pupn—1 HY Rnjn—1) + R, 17", (8.96)

Note that, as opposed to the case of the linear Kalman
filter, the Kalman gain and the associated covariances
cannot be calculated in advance (offline), since the
matrices @ and H are, in general, data dependent.

8.4 The Application of the Kalman Filter to Speech Processing

8.4.1 Literature Survey

Speech quality and intelligibility might significantly de-
teriorate in the presence of background noise, especially
when the speech signal is subject to subsequent process-
ing. In particular, speech coders, and automatic speech
recognition (ASR) systems, which were designed or
trained to act on clean speech signals, might be rendered
useless in the presence of background noise. Speech en-
hancement algorithms have therefore attracted a great
deal of interest over the past three decades.

Among these speech enhancement algorithms there
are numerous algorithms based on Wiener [8.11] or
Kalman filtering [8.2], both of which require knowledge
of the parameters involved. For example, for the appli-
cation of the Kalman filter, it is common to model the
speech as a quasistationary AR process [in the speech
context, the AR parameters are usually called linear pre-
dictive coefficients (LPC)], which requires knowledge
of the AR parameters. The noise level (and structure)
should also be available for the Kalman formulation.
Since these parameters are usually unknown, the prob-
lem of joint estimation of signal and parameters arises.
A typical procedure, applied to this type of problems,
is the estimate—maximize (EM) algorithm [8.12]. Un-
der the associated model assumptions, this procedure
is guaranteed to converge to the maximum-likelihood
(ML) estimate of the problem’s parameters, or at least
to a local maximum of the likelihood function, and to
yield an estimate of the speech signal, computed at the
parameter that maximizes the likelihood.

Paliwal and Basu [8.13] were, perhaps, the first
to use the Kalman filter in the context of speech en-
hancement. Their experimental results reveal its distinct

advantage over the Wiener filter, due to the ability of
the Kalman filter to account for the quasistationarity of
the speech signal. However, in their experiment the un-
known speech parameters were not estimated from the
noisy speech signal, but rather from the clean signal,
which is obviously unavailable in most practical situa-
tions. Gibson et al. [8.14, 15] proposed to extend the use
of the Kalman filter by incorporating a colored-noise
model for improving the enhancement performance for
a certain class of noise sources. The proposed algorithm
iterates between Kalman filtering of the given corrupted
speech measurements, and estimation of the speech pa-
rameters given the enhanced speech waveform. Since the
authors suggest using the ordinary Yule—Walker equa-
tions [8.16] for estimating the speech AR parameters,
the resulting algorithm is only an approximated version
of the EM algorithm. The estimated speech LPC param-
eters were shown to improve speech coding systems that
rely on AR modeling of the speech signal.

A comprehensive study of the use of the EM algo-
rithm in diverse problems of joint estimation of signals
and parameters is given in a series of works by Weinstein
et al. In [8.17], the noise cancelation problem presented
by Widrow [8.18] is addressed using the EM algorithm
in the frequency domain. The more-general two-channel
noise cancelation problem is addressed in [8.19]. Both
are comprised of iterations between parameter esti-
mation and Wiener filtering. In [8.20], a time-domain
formulation of the single-microphone speech enhance-
ment problem is presented. The approach consists of
representing the signal model using linear dynamic state
equations, and applying the EM method. The resulting
algorithm is similar in structure to the Lim and Op-
penheim [8.21] algorithm, except that the noncausal
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Wiener filter is replaced by the Kalman smoothing equa-
tions. Sequential speech enhancement algorithms are
presented as well. These sequential algorithms are char-
acterized by a forward Kalman filter whose parameters
are continuously updated by gradient-descent search on
the likelihood function. In [8.22,23] sequential approx-
imations to the EM algorithm are elaborated on in the
context of two-channels noise cancelation. The related
problem of single-microphone active noise cancelation
(ANC) is presented in [8.24].

Lee et al. [8.25, 26] extend the sequential single
sensor algorithm of Weinstein et al. by considering
an alternative speech-generation model, in which the
white Gaussian excitation sequence is replaced with
a Gaussian-mixture distributed sequence, that may ac-
count for the presence of an impulse train in the
excitation sequence of voiced speech. A recursive
gradient-based approach is applied to the parameter es-
timation. Lee et al. examined the signal-to-noise ratio
(SNR) improvement of the algorithm when applied to
synthetic speech input. Goh et al. [8.27] propose dif-
ferent modeling of the speech excitation sequence. The
proposed model is comprised of both Gaussian white
noise (modeling the unvoiced part) and an impulse train
(presenting the voiced part). The latter is modeled as
along-term AR process. The resulting high-dimensional
Kalman filter is efficiently implemented by exploiting
the sparsity of the associated matrices. The parameter
estimation is conducted via EM iterations. When the
standard Kalman filter gain is recursively computed,
one needs to estimate the speech and noise gains. To
avoid this estimation stage, Gabrea et al. [8.28] pro-
pose checking the whiteness of the innovation sequence
to test whether the asymptotically optimal solution has
been reached. Since the estimation of the AR parameters
cannot be avoided, Gabrea et al. propose to use the mod-
ified Yule—Walker procedure [8.29]. Another extension
to the work of Weinstein et al. was proposed by Gan-
not et al. [8.30]. In this work both iterative batch and
sequential versions of the EM algorithm are considered.
The estimate stage (E-step) is implemented by apply-
ing the Kalman filter. Higher-order statistics (HOS) are
employed to obtain a robust initialization to the param-
eter estimation stage (called the maximization stage —
M-step). Fujimoto and Ariki [8.31] use Kalman filtering
in the frequency domain (without using the AR model).
Initialization of their algorithm is obtained by the clas-
sical spectral subtraction [8.32] algorithm (see also the
relevant Chap. 44 in this Handbook).

Several nonlinear extensions to the standard Kalman
filter exist. Lee et al. [8.33] propose the application of

a robust Kalman filter. Similar to other contributions,
iterations between signal enhancement and parameter
estimation are conducted. The novelty of that paper
stems from the use of nonlinear estimation procedures.
Both the parameters and signals are estimated in a ro-
bust manner by introducing a saturation function into
the cost function, rather than using the standard squared
cost function. Ma et al. [8.34] introduce the application
of a postfilter based on masking properties of the human
auditory system to further enhance the resulting audi-
tory quality of the speech signal. However, not much
attention is paid in this work to the estimation of the
associated AR parameters.

Shen and Deng [8.35] present a new and interesting
approach to speech enhancement based on Hy, filter-
ing. This approach differs from the traditional Kalman
filtering approach in the definition of the error criterion
for the filter design. Rather than minimizing a squared
error term, as in the standard Kalman filter, their proce-
dure consists of calculating a filter that minimizes the
worst possible amplification of the estimation error in
terms of the modeling errors and additive noises. The
parameters are estimated in parallel using the Ho, cri-
terion as well. The authors claim that their resulting
minimax estimation method is highly robust and more
appropriate in practical speech enhancement. It should
be noted, however, that the implementation of the min-
imax criterion in the parameter estimation stage of the
algorithm seems to be much more complicated than the
conventional estimation procedure.

Wan et al. [8.36] assume a nonlinear model of the
speech production, i. e., that the speech utterance is the
output of a neural network (NN) with unknown parame-
ters. Their algorithm is comprised of iterations between
parameter estimation and signal enhancement. The non-
linearity inherent to the NN is addressed by the applica-
tion of the EKF. The recently proposed unscented trans-
form (UT), suggested by Julier et al. [8.37], is a novel
method for calculating first- and second-order statistics
of a random variable undergoing a nonlinear transfor-
mation, that was used for constructing a Kalman filter
for the nonlinear case. The resulting filter, named the un-
scented Kalman filter (UKF), was shown to be superior
to the well-established EKF in many application of inter-
est. Wan et al. [8.38] propose to replace the EKFin [8.36]
by the UKF, resulting in improved performance. Gannot
and Moonen [8.39] use the UKF in the speech enhance-
ment application (as well as speech dereverberation),
where the nonlinearity arises from the multiplication of
the speech and the parameters. Their proposed method
is only applied to a synthetic AR process. Fong and God-
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sill [8.40] use the particle Kalman filter for the speech
enhancement task. The speech signal gain is given a
random walk model, while its partial correlation coeffi-
cients (PARCOR) [8.41] are given a constrained random
walk model (as their absolute value must be smaller than
1). Monte Carlo filtering is applied for estimating these
parameters, whereas a linear Kalman filter is applied in
parallel for enhancing the speech signal.

A distinct family of algorithms, also using the
Kalman filter, employs a training stage for estimation
of the associated parameters. In this approach a hidden
Markov model (HMM) for the clean signals is esti-
mated from the training data, and the clean signal is
estimated from the noisy signal by applying Bayesian
estimators. This method was first proposed by Ephraim
et al. [8.42,43], where a bank of HMM state-related
Wiener filters was used. The Wiener filter was later re-
placed by the Kalman filter in [8.44,45]. The problem
of unknown speech gain contours and noise parame-
ters is alleviated by using EM iterations. This method,
proposed by Lee and Jung [8.46], use Kalman filter in
the E-step, based on the trained AR parameters and
the estimated noise parameters. In the M-step the noise
and gain parameters are recursively estimated. An inter-
acting multiple model (IMM) algorithm, in which the
Kalman filters in the different states interact with one
another, is applied for enhancing speech contaminated
by additive white or colored noise by Kim et al. [8.47].
Finally, a nonlinear extension of the HMM concept is
proposed by Lee et al. [8.48]. The speech is assumed
to be an output of a NN with time-varying parameters
controlled by a hidden Markov chain. Both the train-
ing and the enhancement stage become nonlinear. The
nonlinearity is addressed by application of the EKF.

8.4.2 Speech Enhancement

In the following derivation we model both the speech
and noise signals as AR processes. Hence, the case of
temporally correlated noise, derived in Sect.8.2.4, is
considered. Note, however, that the speech and noise
parameters are not known and should be estimated.
We propose the framework of the EM algorithm for
jointly estimating the signals and their parameters. For
the application of EM we have to specify the probability
distribution of the processes involved. In order to obtain
a tractable estimation scheme, we shall assume Gaussian
distribution models. Recall that in a Gaussian framework
the Kalman filter’s output is not only the optimal linear
estimate, but also the general optimal estimate, namely,
-i'n\n = EXxn|y0, Y1, -+ 5 Yn)-

For the full derivation of the related EM estimation
scheme the reader is referred to [8.49].

The Signal Model
Consider a speech signal received by a single micro-
phone and contaminated by a colored noise signal. Let
the signal measured by the microphone be given by:

y(n) =xn)+vn), (8.97)

where x(n) represents the sampled speech signal, and
v(n) represents additive background noise. We assume
the standard LPC modeling for the speech signal over
an analysis frame; i.e., x(n) is modeled as a Gaussian
stochastic AR process:

P
x(n) =— Z ax(n —k)+w(n) , (8.98)
k=1

where the excitation w®(n) is a zero-mean white
Gaussian noise with variance E{[w*(n)]*} = crf)s, and
ap, ... ,op are the AR coefficients, assumed to be time
invariant over an analysis frame, due to the quasistation-
arity assumption. We may incorporate the more-detailed
voiced speech model suggested in [8.50] in which the
excitation process is composed of a weighted linear com-
bination of an impulse train and a white-noise sequence
to represent voiced and unvoiced speech, respectively.
However, in our experiments, this approach did not
yield any significant performance improvements over
the standard LPC modeling. In reformulating (8.98) in
the state-space representation, we take an approach that
slightly differs from the state-space formulation of an
AR process, defined in Sect. 8.2. The state vector, de-
fined here, is a (p+ 1)x 1 vector. The extra term will
allow for more-convenient parameter estimation. Define

xS=@m—p)x(n—p+1) ... x(n)".
Define also the (p+ 1) x (p+ 1) speech transition matrix

0 1 0 - 0
0
P =
Do .0
0 0 N (|

0 —ap —ap—1 -+ —a2 —ay

Let w} be the (p+ 1)x 1 driving noise vector and H® be
the 1 x(p+ 1) the measurement matrix

wi=@0...0wm)",
H'=0...01).
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Then (8.98) can be rewritten as
x, =0 _ 4w, (8.99)
y(n) =H%) +v(n) .

The additive noise v(n) is also assumed to be a real-
ization from a zero-mean, possibly nonwhite Gaussian
AR process:

q
vin) == froin—k) +w'(n), (8.100)
k=1
where Bi, ..., B, are the AR parameters of the noise
process, and the excitation w"(n) is a white Gaussian
noise with variance E{[w"(n)]?} = afjv. Many common
noise sources may indeed be closely approximated as
low-order AR processes. Significant improvement may
be obtained by incorporating the colored-noise model
into the estimation process [8.15,30].

Equation (8.100) can be rewritten in a state-space
formulation as well. Define the (¢ + 1) x 1 state vector
x; =@h—q) vin—qg+1) ... v()T and the (¢+
1)x (g + 1) noise transition matrix

0 1 0 - 0
0
¥ =
Do .0
0 0 .01
0 =By —Bg—1 -+ =B =B

Let w), be the (¢ 4 1) x 1 driving noise vector and H' be
the 1x (g + 1) measurement vector

w=@0...0w ()",
H' =0...01).
Using these definitions (8.100) can be rewritten as
x,=9"x; | +w,, (8.101)
y(n)=sn)+Hx) .

Equations (8.99) and (8.101) can be concatenated
into a one, larger, state-space equation.

X, =Px,_|1+w,, (8.102)
y(n)=Hx, .

The augmented (p + ¢ +2) x 1 state vector x,, is defined
by

= (()" (=)'

= ((®)" xm) (&))" vm) . (8.103)

where X}, and X, are px 1 and ¢ x 1 regression vectors,
respectively, defined as

B=@n—p xn—p+1) ... xa—1)T,
=wh—q)vin—qg+1) ... vin—1)T.

The augmented state-transition matrix @ is given by

o (cps 0 ) .
0 o
The driving noise vector is given by
wy = ((w3)" (w))")
and the measurement vector is given by
H=H H").

The respective driving noise covariance matrices are
given by the (p+ 1)x(p+ 1) matrix Q° and the (¢ +
1)x (g + 1) matrix QV as

00 --- 0
0---0 0
0--- 0 ol
00

QV: . .t .
0--- 0 0
0--- 0 a2,

and the augmented covariance matrix

_(Q 0
Q‘(OQ)'

Note that the augmented state-space representa-
tion (8.102) is noise free. The signal v(n) is treated as
another source signal, rather than as a noise signal.

Assuming that all signal and noise parameters are
known, which implies that @, H, and Q are known,
the optimal MMSE linear state estimate of x,, (consist-
ing of the desired speech signal s(n)), given the frame
samples {y(0), y(1), ..., y(N — 1)}, is obtained by us-
ing the Kalman smoothing equations. However, since
the signal and noise parameters are not known a priori,
they must be estimated within the algorithm as well. If
the casual Kalman filter is used, rather than the Kalman
smoother, only a suboptimal estimation is obtained, but
the performance loss is usually not too significant.



The Kalman Filter

8.4 The Application of the Kalman Filter to Speech Processing

EM-Based Algorithm
The following (simplified) iterative algorithm was de-
rived in [8.30,49]. The algorithm that iterates between
state and parameter estimation can be viewed as a simpli-
fied version of the EM [8.12] procedure for the problem
at hand.

Let 6 be the vector of unknown parameters in the
extended model

0" = ("0l BT o), (8.104)
where
T _
a =(apap_q ...0q1),

B'=(Bg g1 - B1).

The EM algorithm is an iterative procedure for
computing the ML estimate of the parameters. In
our application, the noisy signal y(n) is divided
into non-overlapping frames comprising the samples
{y(0), y(1)..., y(N —1)}, where N is the frame length.
The EM algorithm is applied to each frame separately.

Denote by ¢ the iteration index in each frame. Let 9([)
be the estimate of @ after ¢ iterations of the algorithm in
the current frame. Define, y§ = {y(0), y(1), ... , y(n)},
the samples available for casual estimation. We use the
notations

-’?nln = E@(/K) (xnlyg) (8.105)
x,x1 = Eyo (xnleyg)

for designating estimates of the first- and second-order
statistics of the state vector, based on observations yg,

NG
and using the current parameter estimate 0( ). In the
Gaussian case, the term X,), of (8.105) is exactly the
output of the Kalman filter (operating with the parame-

ters set 9(8)) bearing the same notation. Note, however,
that in the non-Gaussian case the Kalman filter’s out-
put is merely the optimal /inear estimate of x,, from yj,
which differ from the conditional mean, namely from the
optimal general estimate used in (8.105). The second-
moment term x,x} is not directly available from the
Kalman filter, however it may be obtained indirectly as
follows.

The two terms in (8.105) are related via the corre-
sponding conditional covariance matrix

— R K .
x”x; —XnjnXy ), = Eé(‘f) (xnln —Xp)
. (inln _xn)T|yg) . (8.106)

Recall that the Kalman filter’s error covariance Py, is
essentially the unconditional MSE

Py = Eé(@) [(fn\n _xn)(-%nln _xn)T] s (8.107)

Luckily, however, in the Gaussian case the conditional
MSE of the optimal estimate x|, does not depend on
the data y. This implies, by taking the mean of the
conditional MSE with respect to yg, that the condi-
tional MSE equals the (constant) unconditional MSE.
We therefore conclude that the conditional covariance
in (8.106) is given by the Kalman filter’s output MSE
Py

Hence, the following relation can be used (in the
Gaussian case) for estimating the second-order statistics
of the state vector based on the observations yg and the
current parameter estimate

—

s T
Xn XY =Py +Znjnky), - (8.108)

The terms %, and Py, will be calculated in the sequel
using a forward Kalman filtering recursion.

To obtain the parameter estimation in the next iter-
ation, 9(‘5“), we use the following EM-based two-stage
iterative procedure. The Kalman filter constitutes the es-
timation stage (also known as the E-step) of the EM
algorithm. The Yule—Walker-based parameter estima-
tion constitutes the maximization stage of the algorithm,
known as the M-step.

E-step:
Forn=0,1,2,... , N—1:

Propagation equations:

A

N ) o
Xnn—1 =P Xn-1jn—1
2 (€) ~ (0) A
Pn|n71 =9 Pnfl|nfl(¢ )T +Q(Z)
Update equations:

inln :ﬁn\nfl +kn[y(n)_H~£n|nfl]
Pnln = Pnln—l _anPnln—l

Kalman gain:

1

" HPnIn—l HT

Pnln—lHT

Al N . .
¢( ) and Q¥ are estimates of the matrices @ and Q,

respectively, at the current iteration stage £.

The estimated parameters in the next iteration £ + 1
are computed by using equation sets similar to the
standard Yule—Walker solution for estimating the co-
efficients of an AR process, except that the correlation
values are replaced by their a posteriori empirical value.
This calculation constitutes the M-step of the algorithm.
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y(n)

M-step:
N-1 77 N-a
&(1+1)=—|: EZ(EZ)T] Zx,slx(n)
n=0 n=0
N—1
—=+D 1
o2, =5 [x 2(n)—}—(ot(IH))T.x x(m)]
n=0
v Nl — e N
B :—[ ) (%)) ] > xun)
n=0 n=0
N—1
—5=(+1) 1 A(I41)
v =% [2(0)+ @) TEy v(m)]
n=0

We note that x (x )T is ge\upper/lg:g pPXp submatrlx
of xnxn ) xnx(n), x (n), X(x n)iz\_x v(n), and vz(n) may
similarly be extracted from x,,xg. In fact, this is the
reason for choosing p + 1- and ¢ + 1-dimensional state
vectors for this estimation scheme, although, as seen in
Sect. 8.2, p- and g-dimensional state vectors are suf-
ficient for Kalman filtering when the parameters are
known.

Although the forward Kalman filter was used in-
stead of the optimal Kalman smoother, it is empirically
shown that the EM-based method maintains a mono-
tonic convergence behavior towards the ML estimate of
all unknown parameters or at least to a local maximum of
the likelihood function. Each iteration increases the like-
lihood of the estimate of the parameters and improves
the signal state-space estimator in MMSE sense.

The iterative algorithm [designated the Kalman EM
iterative (KEMI) method in [8.30]] is summarized in
Fig. 8.2. Note, that two other blocks are depicted in the
figure. The first block, denoted framing, is responsible
for the segmentation of the noisy speech signal. The

INIT Fin
a5 ST ~ (141
E : Falns X (X3) Yule-Walker | @
= Estimate Equations [~ @+D
5 I-, 1I- o
m order
i statistics | , ——— )
n| |(Kalman)| Xnin Xn(Xn) Yule-Walker | B
g Equations /;V(M)
w
[ —
[z |
o0 — G

Fig. 8.2 Iterative Kalman algorithm based on the EM procedure

second block is the initialization block. The initialization
procedure, based on the use of HOS, is beyond the scope
of this summary.

Demonstration
The performance of the KEMI algorithm is demon-
strated using the sonograms depicted in Fig.8.3. We
used a speech signal drawn from TIMIT [8.51] and
downsampled to 8 kHz. The speech signal was degraded
by additive noise at SNR = 5 dB. The noise source was
the speech-like noise signals drawn from the NOISEX-
92 [8.52] database. In applying the algorithm we used
an AR model with order p = 10 for the speech signal
and for modeling the nonwhite noise signal we used an
AR model with order ¢ = 4. In this experiment, we used
five iterations.

It is clearly shown in Fig. 8.3 that the noise sig-
nal is attenuated while imposing only minor distortion
on the speech signal. For a more-comprehensive and
comparative experimental study, including objective dis-
tortion measures as well as recognition rate of a speech
recognition algorithm, please refer to [8.49].

8.4.3 Speaker Tracking

Determining the spatial position of a speaker finds
a growing interest in video conference scenarios where
automated camera steering and tracking are required.
Acoustic source localization might also be used as a pre-
processor stage for speech enhancement algorithms,
which are based on microphone array beamformers.

Usually, methods for speaker localization consist of
two stages. In the first stage, a microphone array is used
to extract the time difference between arrivals of the
speech signal at each pair of microphones. For each
pair the time difference of arrival (TDOA) is estimated
using spatially separated microphone pairs. A classi-
cal method for estimating the TDOA is the generalized
cross-correlation (GCC) algorithm [8.53].

In the second stage the noisy TDOA readings from
all pairs are combined in order to produce the source
location estimate. In a dynamic setting the source lo-
cation may be time-varying, thus its estimate must be
constantly updated (tracked) as new TDOA readings
become available. It has become common practice to
employ Kalman filtering in such tracking problems, so
as to properly weigh the effect of incoming TDOA read-
ings on the estimated source location, accounting for
a smooth propagation model of the source’s trajectory
(when applicable). Although not directly related to the
processing of the speech signal itself, the use of Kalman
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filtering in this problem serves to demonstrate the di-
versity and versatility of this remarkable and practical
estimation tool.

Algorithm Derivation
Consider an M + 1-microphone array as depicted in
Fig. 8.4.

The microphones are placed at the Cartesian co-
ordinates m; = (x; y; z;)'; i =0, ..., M. To simplify
the exposition, the location of a reference microphone
mq is set at the origin of the axes mo= (0 0 0T
Define the source coordinates at time instant n by
§n = (xs(n) ys(n) zs(n)T. Each of the M microphones,
combined with the reference microphone, is used
at time instant n to extract a TDOA measurement
7i(n); i=1,..., M. Denote the i-th range difference
measurement by r;(n) = ct;(n), where ¢ is the sound
propagation speed (approximately 340m/s in air). It
can easily be verified from simple geometrical consider-
ations (see Fig. 8.4) that this range difference is related to
the source and the microphone location by the nonlinear
equation

ri(n) = llsn —mill = llspll; i=1,... ., M, (8.109)

where |is, || = /x2(n) + y2(n) + z2(n) denote the Eu-
clidean norm of the source coordinates.

Usually, only estimates of the true TDOAs are avail-
able. Thus, concatenating M estimates of the quantity
in (8.109), a nonlinear measurement model is obtained:

llsn —myll = llsn |l
ry, = +v, =h(sy)+v, .
lsn —mall —lisall
(8.110)
Here, vE:(vl(n) va(n) ... vy(n)) is a vector of

estimation errors with zero mean and covariance
R, =E(v, vz). The goal of the localization task is to
extract the speaker’s trajectory s, from the measure-
ments vector r,,. Any estimation procedure (e.g., [8.53])
could be used for the TDOA estimation. The method in-
troduced in the sequel, constituting the second stage of
the localization procedure, is independent of the choice
of the first stage.

We propose a dynamic model for the source trajec-
tory. As the actual track is unknown, a simplified random
walk model is used instead.

Spt1 = Ps, +wy, , (8.111)

a) Frequency (Hz) Clean

Time (s)
b) Frequency (Hz) Noisy
4000

Time (s)
C) Frequency (Hz) Kalman EM

2000
1500
1000 f=

500

Time (s)

Fig. 8.3a—c Iterative Kalman algorithm based on the EM proce-
dure
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Speech source

Fig. 8.4 Microphone array. Speaker location at time instant
n is s, with azimuth angle ¢s(n) and elevation angle 05(n).
Microphone position notated by m;; i =0, ..., M

EKF method

a) ¢ (deg)
300

250
200
150
100

—-100

-150 —— Estimated
-200
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Time (s)
b) ¢ (deg)
80

40
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Estimated
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Time (s)

Fig.8.5a,b Azimuth angle, ¢ (a), and elevation angle, 6
(b) estimation results in a switching scenario

where w, is the coordinate-wise, zero-mean, tem-
porally white driving noise with covariance matrix
Q, = E(w,,wz). @ is a transition matrix assumed to
be close to the identity matrix. This dynamic model
together with the nonlinear measurement model given
in (8.110) constitutes the state-space equation.

Since this model is nonlinear (due to the measure-
ment equation) the classical Kalman filter cannot be
used to estimate the state vector. Hence, a nonlinear ex-
tension thereof is required. We propose to use the EKF,
derived in Sect. 8.3.3. This procedure only yields a sub-
optimal solution to the problem at hand. We provide
here, for the completeness of the exposition, the calcula-
tions involved in the EKF aiming to solve the localization
problem. Note, that in our case, (8.111) is already linear.
However the measurement model in (8.110) still needs
to be linearized. Assume that an estimate §,,_1),—1 of the
speaker location at time instant n — 1, is known, as well
as its corresponding error covariance matrix, P, _1},—1.
Then, recalling that the model equation is linear, the
EKF recursion takes the following form.

Propagation equations:

§n|nfl = ¢§n71\n—1 (8.112a)
Pn|n71 = ¢Pnfl|n71¢T+Qn (8.112b)
Update equations:
S$nin =Snjn—1 +Ku(ry —h@njn-1)) (8.1120)
H, =V, h(Spn-1) (8.112d)
( §n|n—17ml _ §n\n—l )T
”§n|n—]_ml” ||§n\n71”
( Spn—1—my_ Sy )T
”ﬁn\n—I*mMH ”fnlnflu
Py =U0-K,H,) Py (8.112e)
Kalman gain:
—1
Kn :Pn\nleI (HnPnlnlez'i‘Rn) (8.112f)

with the initialization §o|o and its respective covariance
Pojo.

Demonstration
Consider the following simulation, which is typi-
cal of a video conference scenario. Two speakers,
located at two different and fixed locations, speak
alternately. The camera should be able to maneu-
ver from one person to the other. For this scenario,
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simulation is conducted with one speaker located at
the polar position (¢ =ZFrad 6 =Zrad R=1.5m)
and the other at (¢ = 3T”rad 6 =7%rad R=1.5m).
A directional interference is placed at the position
(¢=7%5rad 6 =Z%rad R=1.0m). Six microphones
were mounted at the following positions (Cartesian coor-
dinates, in meters), relative to the reference microphone
(which is at the axes origin):

ml=(0.3 0 0), ml=(-03 0 0),
ml=(003 0), m;y=( 0-03 0), (8113)
ml=(0 003), ml=(0 0-03).

8.5 Summary

In this chapter, we have introduced one of the most
important contributions to the field of statistical sig-
nal processing, namely, the Kalman filter. We provided
a rigorous derivation of the filter, based on the orthog-
onality principle. We also introduced several important
variants of the Kalman filter: various Kalman smoothers,
the Kalman predictor, a nonlinear extension (the EKF),
and the treatment of temporally correlated measurement
noise. We showed that the Kalman filter can easily deal
with quite common parametric families of processes (
AR, MA, and ARMA).

Finally, we demonstrated the application of the
Kalman filter to two important speech processing
problems, namely, speech enhancement and speaker lo-
calization. Despite the fact that the Kalman filter has
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9. Homomorphic Systems

and Cepstrum Analysis of Speech

In 1963, Bogert, Healy, and Tukey published a
chapter with one of the most unusual titles to be
found in the literature of science and engineer-
ing [9.1]. In this chapter, they observed that the
logarithm of the power spectrum of a signal plus
its echo (delayed and scaled replica) consists of
the logarithm of the signal spectrum plus a peri-
odic component due to the echo. They suggested
that further spectrum analysis of the log spectrum
could highlight the periodic component in the log
spectrum and thus lead to a new indicator of the
occurrence of an echo. Specifically they made the
following observation:

In general, we find ourselves operating on the
frequency side in ways customary on the time
side and vice versa.

As an aid in formalizing this new point of view,
they introduced a number of paraphrased words.
For example, they defined the cepstrum of a sig-
nal as the power spectrum of the logarithm of the
power spectrum of a signal. (In fact, they used
discrete-time spectrum estimates based on the
discrete Fourier transform.) Similarly, the term
quefrency was introduced for the independent
variable of the cepstrum [9.1].

In this chapter we will explore why the cep-
strum has emerged as a central concept in digital
speech processing. We will start with definitions
appropriate for discrete-time signal processing
and develop some of the general properties and
computational approaches for the cepstrum of
speech. Using this basis, we will explore the many
ways that the cepstrum has been used in speech
processing applications.

9.1 Definitions

As stated above, Bogert et al. based their definition of the
cepstrum on a rather loose interpretation of the power
spectrum of an analog signal. Since effective application
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of the cepstrum concept required digital processing, it
was necessary, early on, to develop a solid definition in
terms of discrete-time signal theory [9.2, 3].
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9.1.1 Definition of the Cepstrum

For discrete-time signals, a definition in the spirit of [9.1]
is that the cepstrum of a signal is the inverse discrete-
time Fourier transform (IDTFT) of the logarithm of
the magnitude of the DTFT of the signal. That is, the
cepstrum of a signal x[n] is defined as

T

1 . .
cln]=— / log | X(e'“)| e dw, (9.1a)
2
—TT
where the DTFT of the signal is defined as [9.4],
X&)=Y xlnje™". (9.1b)
n=—0o0

Equation (9.1a) is the definition of the cepstrum that we
shall use throughout this chapter. Note that c[n], being
an IDTFT, is nominally a function of a discrete index n.
If the input sequence is obtained by sampling an analog
signal, i.e., x[n] = x4(n/ fs), then it would be natural to
associate fime with the index n in the cepstrum. How-
ever, elaborating on the cepstrum conceit, Bogert et al.
introduced the term quefrency for the name of the inde-
pendent variable of the cepstrum [9.1]. This new term is
often useful in describing the fundamental properties of
the cepstrum. For example, low quefrencies correspond
to slowly varying components in the log magnitude spec-
trum, while high quefrencies correspond to rapidly vary
components of the log magnitude. Isolated peaks at mul-
tiples of a quefrency Py in the cepstrum correspond to
a periodic component in the log magnitude with period
27/ Py in normalized radian frequency w or fs/ Py in
cyclic analog frequency.

9.1.2 Homomorphic Systems

Contemporaneously with the introduction of the cep-
strum concept, Oppenheim [9.5] developed a new theory
of nonlinear systems that was based on the mathemat-
ical theory of linear vector spaces. The essence of this
theory was that certain operations of signal combination
(convolution and multiplication in particular) satisfy the

Fig. 9.1 Canonic form for homomorphic systems for convolution

same postulates as does vector addition in the theory
of linear vector spaces. From this observation, Oppen-
heim showed that classes of nonlinear systems could
be defined on the basis of a generalized principle of
superposition. He termed such systems homomorphic.
Of particular importance for our present discussion is
the class of homomorphic systems for which the input
and output are combined by convolution. Such systems
are represented by the canonic form shown in Fig.9.1,
where the operator D.{ } is called the characteristic
system for convolution and D;'{ } is its inverse. This
characteristic system is defined by the property that
when x[n] = x1[n]* xz[n], the corresponding output is

X[n] = Dy{x1[n]*x2[n]}
= Dy{x1[n]} + Dy{x2[n]}

= X1[n]+x2[n] . (9.2)

That is, the characteristic system transforms a combina-
tion by convolution into a corresponding combination
by addition.

The middle system in Fig. 9.1 is the system denoted
L{ }, which is an ordinary linear system satisfying the
principle of superposition with addition as both the input
and output operation for signal combination [9.4]. Note
that Fig. 9.1 shows the input and output operations at the
top and just outside of each block.

Finally, the inverse characteristic system must trans-
form a sum into a convolution so that the overall system
transformation satisfies H{x[n]*x2[n]} = H{xi[n]}*
H{xa[n]} = y1[n]* ya[n].

From Fig. 9.1, all homomorphic systems for convo-
lution differ only in the (ordinary) linear part L{ }. The
key to the definition is the characteristic system D.{ },
which turns convolution into addition, and as we will
see, it is D,{ } that makes the connection between the
cepstrum and the theory of homomorphic systems for
convolution. Indeed, Fig. 9.2 shows a sequence of math-
ematical operators that has the desired property in (9.2).
Specifically, the output X[n] can be represented by the
discrete-time Fourier transform equations

X(e9) = Z x[n]ein (9.3a)

X(e'”) = log[ X(e')] (9.3b)

£[n] = i/ﬁ(é”)emdw. (9.3¢)
2

=TT

Equation (9.3a) and (9.3c) are the DTFT and IDTFT, re-
spectively, while (9.3b) is the complex logarithm of the



Homomorphic Systems and Cepstrum Analysis of Speech

9.1 Definitions

complex function X(e'®). It is easily seen that the cas-
cade of these three operations has the desired property
of turning convolution into addition. First, the DTFT of
a convolution of two sequences is the product of their
DTFTs [9.4]. Appropriately defined, the complex log-
arithm of a product of two functions is the sum of the
complex logarithms of the individual functions. Finally,
the IDTFT is a linear operator in the conventional sense,
so the IDTFT of a sum is the sum of the corresponding
inverse transforms [9.4]. (Interestingly, the DTFT is also
linear in the conventional sense, but it is also a homo-
morphic operator with input operation convolution and
output operation multiplication. Likewise, the IDTFT
operator is both conventionally linear and homomorphic
with input operation multiplication and output operation
convolution.) Hence, if the complex logarithm in Fig. 9.2
is appropriately defined and computed, then if the input
is x[n] = x1[n]*x2[n], it follows that the output in in
Fig.9.2 is X[n] = x1[n] + x2[n].

The inverse of the characteristic system for convo-
lution is depicted in Fig.9.3. It is obtained by simply
using the complex exponential to invert the effect of the
complex logarithm.

The representation of Figs. 9.2 and 9.3 was devel-
oped by Oppenheim, Schafer, and Stockham, and first
published in [9.2, 3]. Because of the obvious close rela-
tionship of the characteristic system for convolution as
defined by (9.3a), (9.3b), and (9.3c¢) to the definition of
the cepstrum in (9.1a) and (9.1b), they called the output
of the characteristic system for convolution, the complex
cepstrum. This is not because the complex cepstrum is
complex; indeed, if x[n] is real, then X[n] will also be
real. Rather, the modifier complex is used to imply that
the complex logarithm is used in the computation of the
complex cepstrum. The complex logarithm in (9.3b) is
defined as

X(e') = log{X (")}

=log |X(e'”)| +iarg{X(e'®)}, (9.8)

where if X(e'®)= X (e!®)- X»(e'?), as for the con-
volution x[n] = x1[n]*xz[n], then the following must
hold:

log | X(e')| = log | X1 ()| +log | X2(e'”)| (9.52)

arg {X(')) = arg{X(e")} +arg {X2(e)} .
(9.5b)

Satisfying (9.5a) presents no serious difficulty, but (9.5b)
is more problematic as we discuss below.

The relationship between the cepstrum and complex
cepstrum can be obtained by noting that, if x[n] is real,

* o ‘A | + +!
x[n iw omplex | ¢ o I X[n
U prpr |[XED logarithm || DTET | =
: log {} !
|
D.{}

Fig. 9.2 DTFT representation of the characteristic system
volution

-k Yo i Complex o
n Y 1@ Y 1@
Yol prpp [ Y€ exponeatigll— )+ IDTFE
: exp { }
e S e

Fig. 9.3 DTFT representation of the inverse characteristic system

for convolution

then log | X( ei“’)| is a real and even fungtion of w, while
arg{X(e'”), the imaginary part of X(e'“), is a real and
odd function of w. This implies that [9.4],
X[n]+X[—n]

— 5

That is, as we have defined them, the cepstrum is the
even part of the complex cepstrum.

c[n] =Ev{x[n]} = (9.6)

9.1.3 Numerical Computation of Cepstra

So far, we have merely defined the cepstrum and com-
plex cepstrum in terms of mathematical operators. To be
useful for speech processing, we must replace these ope-
rators by computable operations. This can be done by
noting that the discrete Fourier transform (DFT) [com-
puted with a fast Fourier transform (FFT) algorithm]
is a sampled (in frequency) version of the DTFT of
a finite-length sequence, i.e., X[k] = X(eZTk/NY [9.4].
Figure 9.4 depicts the operations

N—1

X[k] = Z x[n]e{@mk/Nn (9.7a)
n=0

X[k] = log | X[k]| +iarg{ X [k]} (9.7b)

N—-1

- 1 . .

= _ i(2wk/N)n

inl =~ nX:(:) X[k]e , (9.70)

where the DTFT has been replaced by the finite DFT
computation. Note the tilde (7) symbol above c[n] and
X[n]in Fig. 9.4 and in (9.7¢), which is used to emphasize
that the cepstra computed using the DFT suffer from
time-domain aliasing due to the sampling of the log

for con-
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Fig. 9.4 Computing the cepstrum or complex cepstrum using the

DFT

of the DTFT [9.4]. Specifically, the complex cepstrum
computed by the DFT is related to the complex cepstrum
defined by the DTFT by the equation

oo

inl = > &n+rN].

r=—00

(9.8)

An identical equation holds for the time-aliased cep-
strum c¢[n].

The effect of time-domain aliasing can be made
negligible by using a large value for N. A more-
serious problem in computation of the complex
cepstrum is the computation of the complex logarithm.
As discussed above, we must compute samples of
arg{X(ei‘”)} = arg{Xl(ei‘“) - X»(e'®)} such that

arg{X[k]} = arg{X[k]} +arg{X[k]} , (9.9)

and this requires special care. Standard arctan functions
return the principal value of the phase angle, which we
denote, — < ARG{X[k]} <, and in general it must

9.2 Z-Transform Analysis

The characteristic system for convolution can also be
represented by the two-sided z-transform, as depicted in
Fig. 9.5. This representation is very useful for theoretical
investigations, and recent developments in polynomial
root finding have made the z-transform representation
a viable computational basis as well. For this purpose,
we assume that the input signal x[n] has a rational z-

* Complex +
logarithm
log { } |

Fig. 9.5 z-transform representation of the characteristic system for
convolution

be assumed that
ARG{X[k]} # ARG{X[k]} + ARG{X;[k]}, (9.10)

when X[k] = X[k]X2[k]. It is not that the principal
value gives the wrong phase for the product of two
DFTs, but that it is not equal to the sum of the two
individual principal value phases. The problem is the
discontinuities that result from the modulo 27 compu-
tation. If the principal value phase can be unwrapped by
finding a sequence R[k] such that

arg{ X[k]} = ARG{X[k]} + 27 R[k],

then the resulting phase would have the desired property
of (9.9). The sequence R[k] will have integer values
that are constant over subintervals of 0 <k < N/2.
Abrupt changes will occur at the discontinuities of
ARG{X[k]}. The earliest phase unwrapping algorithm
for cepstrum computation took the straightforward ap-
proach of searching for discontinuities of size 2w in
ARG{X[k]} [9.2,3]. This approach requires a very small
frequency sample spacing (N large) so as not to miss dis-
continuities that occur when the phase has a steep slope.
Tribolet gave an improved algorithm that uses both the
principal value phase and the phase derivative (which
can be computed directly from X[k]) [9.6].

While phase unwrapping can be problematic in some
situations involving the complex cepstrum, it is not
a problem in computing the cepstrum, where it is not
used, and as we will see in the next section, phase
unwrapping can be avoided by using the z-transform.

(9.11)

transform of the form

X(2) = Xmax(2) - Xuc(2) - Xmin(2) , (9.12)
where
M()
Xmax(2) = ZMO 1_[ (1 —aszl)
k=1
M, M,
= l_[(—llk) 1_[ (1 —a,:lz) ) (9.13a)
k=1 k=1
MLIC .
Xue@) =[] (1-e%z7"), (9.13b)

k=1
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1_[ — bz

k 1

1
1_[ 1—ckz

Xmin(z) =

M;
7 (9.13¢)

The zeros of Xmax(2), i.e., zx = ai, are zeros of X(z)
outside of the unit circle (|ag| > 1). The factor X ax(z) is
thus the maximum-phase part of X(z). The factor X,(z)
contains all the zeros (with angles 6;) on the unit circle.
The minimum-phase part is Xmin(z), where by and ci
are zeros and poles, respectively, that are inside the unit
circle (|bg| < 1 and |ck| < 1). The factor zMe implies
a shift of M,, samples to the left. It is included to simplify
the results in (9.16).

The complex cepstrum of x[n] is determined by as-
suming that the complex logarithm log[ X(z)] results in
the sum of logarithms of each of the product terms, i. e.,

M,
+Zlog (1—a;'z)

k=1

M,
[ [—an
k=1

MUC X
+Zlog(1 — etz

k=1

X(z) =log

M;

+log|A]| +Zlog (1 —bszl)
k=1

N;
—Zlog(l—cszl) . (9.14)

Applying the power series expansion

X n

-3 T o<1 (9.15)
n

n=1

log(1 —a) =

to each of the terms in (9.14) and collecting the coeffi-
cients of the positive and negative powers of z gives
M,

Z % n<0
k=1 e
[ [(—ao

k=1

&[nl= ( Ve _ion . (9.16)

log |A| +log n=0

n
k=1

i N;
an—l—zc—k n>0

Given all the poles and zeros of a z-transform X(z),
(9.16) allows us to compute a finite set of samples of
the complex cepstrum with no approximation. This is
clearly the case in theoretical analysis where the poles
and zeros are specified, but (9.16) is also useful as the
basis for computation. All that is needed is a process
for obtaining the z-transform as a rational function and
a process for finding the zeros of the numerator and
denominator. This has become more feasible with in-
creasing computational power and with new algorithmic
advances in finding roots of large polynomials [9.7].

One method of obtaining a z-transform is simply to
select a finite-length sequence of samples of a signal.
The z-transform is then simply a polynomial with the
samples x[n] as coefficients, i. e.,

M
X@)=) xnlz™" (9.17)
n=0
M, M;
=AlJO-az ") [J(1-bz").
k=1 k=1

A second method that yields a z-transform is the method
of linear predictive analysis, which we will discuss
briefly in Sect.9.5.

9.3 Discrete-Time Model for Speech Production

A short segment of a sampled speech waveform is shown
in Fig. 9.6. Note that about the first 90 ms (720 samples
at 8000 samples/s) look like random noise, while the re-
maining samples in view appear to be almost periodic.
Such a speech signal is the output of a physical sys-
tem that produces an acoustic wave whose properties
vary in time to encode a message. To create a speech
signal, humans perform a coordinated sequence of phys-

ical gestures involving the lungs, vocal cords, tongue,
and lips. Assuming that we have a sampled speech sig-
nal, it is helpful to have a discrete-time system model
upon which to base analysis [9.8,9]. A simple model
is depicted in Fig.9.7. The block on the right labeled
‘time-varying digital filter’ represents a linear system
with a slowly time-varying frequency response (or im-
pulse response). Its purpose is to model the frequency

€69 1ed
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L o L o 2]93% (ms) (3/;2 Fig. 9.7 Simplified discrete-time model for the speech sig-
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Fig. 9.6 Segment of sampled speech waveform (samples connected
by straight lines for plotting)

resonances (formants) of the human vocal tract. It is
common to assume that, over short time intervals, the
system is not time-varying, and that it is characterized
by an all-pole rational system function of the form

H(z)= G = G ,

E p
1= 7" l_[ (1— ckz_l)
k=1 k=1

(9.18)

where |cx| < 1 for stability. The blocks labeled ‘im-
pulse train generator’ and ‘random noise generator’
represent the glottal pulse excitation and fricative (con-

9.4 The Cepstrum of Speech

A fundamental tenet of digital speech processing is that
the properties of the speech signal change slowly relative
to the sampling rate of the signal, and furthermore, that
these properties can be sampled by a process of short-
time analysis in which speech properties such as pitch
and vocal tract response are assumed to hold constant
over a short time interval (called a window or frame)
of duration on the order of 20—30 ms. This is illustrated
in Fig. 9.6 by the 401-sample signal analysis windows
placed at sample index 0 and 1000 (0 and 125 ms). Typi-
cally for the 8000 samples/s sampling rate of the speech
in Fig. 9.6, the analysis window would be moved in steps
of 80—160 samples (10—20 ms).

9.4.1 Short-Time Cepstrum of Speech

Following [9.9], we assume that the model of Fig.9.7
represents the sampled speech signal s[n], and that over

nal

striction) excitation of the vocal tract, respectively. The
multiplicative factor G is lumped with H(z) in (9.18),
but it could be considered part of the excitation since
it simply applies a gain to the excitation. By prop-
erly choosing the parameters of the excitations and
the linear system, it is possible to create discrete-time
signals that are perceived to be very close, if not identi-
cal, to a given sampled human-produced speech signal.
Therefore, the model of Fig.9.7 is the basis for most
analysis/synthesis speech coders and automatic speech
recognition systems, and much work has been done on
estimating the time-varying parameters of this model
from sampled speech signals. Homomorphic filtering
and cepstrum analysis are important techniques for such
analysis.

the analysis interval the output of the model equals
the speech signal. Furthermore, over the length of the
window L, we assume that

slnl=uln]*h[n], 0<n<L-1, (9.19)
where h[n] is the impulse response corresponding to the
system function in (9.18). The impulse response h[n]
models the combined effects of the gain G, the vocal-
tract frequency response, the glottal wave shape, and
radiation of sound at the lips, but we will refer to it
simply as the vocal-tract impulse response. Also, we
assume that the impulse response /[#] is short compared
to the window so that the windowed segment can be
represented as

x[n] = wln](uln]*h[n])

XRuylnlxhn], 0<n<L-1, (9.20)
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where uy,[n] = wn]u[n], i.e., any tapering due to the
analysis window is incorporated into the excitation. In
the case of voiced speech, u[n] is an impulse train of the
form
Np—1
uln] = plnl= Y 8ln—kPy]. (9.21)
k=0
where 6[n] represents the unit sample sequence and Py
is the discrete-time pitch period. In the case of unvoiced
speech, the excitation would be a white noise sequence,
which is spectrally shaped by the linear filter.
For voiced speech, the windowed excitation is

Np—1

wyln] =winlplnl = Y wp, kI8 — kPl ,
k=0
(9.22)

where wp,[k] is the time-sampled window sequence
defined as

wikPy] k=0,1,...,N,—1

wp, k] =
0 otherwise
(9.23)
From (9.22), the DTFT of u,,[n] is
Np—1
Un(e) =Y wplkle 0 = Wp (),
k=0
(9.24)

and from (9.24) it follows that U,,(e®) is periodic in @
with period 27 / Py. Therefore,

X(e) = log{H(e")} +log {Uy(e)} (9.25)

has two components: (i) log{ H( i)}, due to the vocal-
tract frequency response and slowly varying in w, and
(ii) log{Wpo(e"”P 0)}, due to the excitation and periodic
with period 2w /Py. (For signals sampled with sam-
pling rate f;, this period corresponds to f5/PpHz in
cyclic analog frequency.) The complex cepstrum of the
windowed speech segment x[n] is therefore

£[n) = hln]+iy(n] . (9.26)
For voiced speech, the cepstral component due to the

excitation has the form

R Wpyln/Pol n=0,£Py, £2P, ...
uyln] =

0 otherwise
(9.27)

(Note that Wp,[n] corresponds to log{Wpo(ei“’)}, )
through the upsampling theorem [9.4], log{Wpo(ei‘”P 0)}
corresponds to (9.27).) That is, in keeping with the
21/ Py periodicity of log{Uw(ei‘”)} = 10g{Wp0(ei“’P0)},
the corresponding complex cepstrum (or cepstrum) has
impulses (isolated samples) at quefrencies that are mul-
tiples of Py. For unvoiced speech, no such periodicity
occurs in the logarithm, and therefore no cepstral peaks
occur.

To illustrate the cepstrum analysis of speech, a 401-
sample segment of voiced speech was selected by
a Hamming window positioned at sample 1000 in
Fig.9.6. The resulting windowed x[n] is shown in
Fig.9.8a. The log magnitude and unwrapped phase for
X(e'®) are shown as the rapidly oscillating curves in
Figs. 9.9a and 9.9b, respectively. The resulting com-
plex cepstrum is shown in Fig. 9.10a and the cepstrum
is shown in Fig.9.10b, i.e., Fig.9.10a is the IDTFT
of log{X(e'®)} with Fig.9.9a as the real part and
Fig.9.9b as the imaginary part, while Fig.9.10b is the
IDTFT of log | X(e'®)| with zero imaginary part. [From
(9.6), Figure 9.10b is also the even part of Fig.9.10a.]

a) x[n] = wln]s[n]

b) u, [n] = winlpln]
1.5

1
0.5
0
-0.5

0 10 20 30 40 50

) hin
0.5

0 10 20 30 40 50
Time (ms) (n/f;)

Fig.9.8a-c Time waveforms: (a) windowed speech
segment, (b) output corresponding to high-quefrency
components of the complex cepstrum, and (c) output corres-
ponding to low-quefrency components of the complex
cepstrum
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b) arg {X(c")} and arg { ¥(c)}
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0 0.5 1 1.5 2 2.5 3 35 4
Frequency (kHz)

Fig.9.9 (a) Log magnitude (the light-gray curve corre-
sponds to low-quefrency components), and (b) unwrapped
phase

a) x[n]
5

o.; - L _,WJW___,__,

Py _ Neo Neo Py

-0.5 e J; J;
-20 -15 -10 -5 0 5 10 15 20
Time (ms) (n/f;)

Fig. 9.10 (a) Complex cepstrum. (b) Cepstrum

Observe the rapidly varying periodic components in
Fig.9.9a,b, and the corresponding peaks in Fig.9.10
located at about quefrency 11.5ms (Py =92 samples
at f; = 8000 samples/s rate). These peaks in the cep-
strum and complex cepstrum are due to the voiced
nature of the speech segment, and their quefrency lo-
cations correspond to the pitch period in Fig.9.8a.
Furthermore, note that when expressed in Hz, the pe-
riod of the ripples in Fig.9.9 is 8000/92 = 87 Hz.
Thus, we see from the cepstrum that the fundamen-
tal voice frequency for this segment of speech is about
87 Hz.

9.4.2 Homomorphic Filtering of Speech

Homomorphic filtering can be used to separate the com-
ponents of the speech model. In the terminology of
Bogert et al., we lifter the signal by multiplying its com-
plex cepstrum (or cepstrum) by a sequence £[n], i.e., we
form

J[n] = L[n]X[n] . (9.28)

This is one choice for the linear system L{ } shown
in the canonic system of Fig.9.1. The corresponding
liftered output is obtained by implementing the inverse
characteristic system of Fig.9.3. Note that the corres-
ponding operation on the complex logarithm is periodic
convolution in the frequency domain, i.e.,

o
A s 1 A e A
Y(el?) = o / X(eYL(e @ 9)dp . (9.29)
T
—7T

In words, liftering is equivalent to frequency-invariant
linear filtering of the complex logarithm. For exam-
ple, multiplication by a function such as the light-gray
curve in Fig.9.10a would have the effect of remov-
ing the periodic component from the log magnitude
and unwrapped phase in Fig.9.9a or b or in the case
of the cepstrum, the periodic component would be re-
moved from only the log magnitude. Specifically, if we
multiply all components of the complex cepstrum of
Fig.9.10a above quefrency 50 (6.25 ms) by zero, and
compute the DTFT of the result, we obtain % (el®), as
shown by the smooth curves in Fig.9.9a,b. If we send
the resulting liftered complex logarithm through the ex-
ponential and inverse DTFT of the inverse characteristic
system of Fig.9.3, the result is as shown in Fig.9.8c,
which we can interpret as an estimate of z[n]. Similarly,
we can remove the low quefrencies by retaining cep-
strum components above some cutoff quefrency, and we
obtain an output that depends mainly on the excitation
components of the complex cepstrum. Such a result is
shown in Fig. 9.8b, which is an estimate of u,,[n]. No-
tice that the impulses at multiples of the pitch period
retain the shape of the Hamming window as suggested
by (9.22).

The previous example illustrates that homomorphic
filtering can be used to separate the components of a con-
volution, and this technique can be used to deconvolve
short segments of voiced speech. Specific applications
of this approach will be considered in the following
sections.
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9.5 Relation to LPC

The technique of linear predictive analysis, usually re-
ferred to as linear predictive coding (LPC), is widely
used in digital speech processing systems. It is therefore
of interest to consider the relationship between cepstrum
analysis and linear predictive analysis. In LPC, an all-
pole model such as (9.18) is obtained by first assuming
that the model output s[n] is equal to the given speech
signal x[n], and then computing a set of predictor co-
efficients o that minimize the mean-squared prediction
error

P 2
E:(ez[n]>:<<x[n]—2akx[n—k]> > . (9.30)

k=1
The optimum coefficients satisfy the set of p linear
equations in the p unknown coefficients oy

P
> arlk—ill=rlili=1,2,...,p,  (9.31a)
k=1

and the gain constant G is given by

P

G =r[0]—-) arlkl,
k=1

where r[k] =< x[n]x[n + k] > with < > denoting aver-

aging over a finite time window. Thus, p+ 1 values of

the autocorrelation function r[k] are sufficient to deter-

mine all the p+ 1 parameters of the all-pole model of

(9.18) [9.8].

(9.31b)

9.5.1 LPC Versus Cepstrum Smoothing

Figure 9.11 shows the autocorrelation function and the
cepstrum of the segment of speech in Fig.9.8a. (As is
common in LPC analysis [9.8], the high frequencies
were pre-emphasized by a first difference operator prior
to LPC and cepstral analysis.) Note that the autocorre-
lation function r[k] is the IDTFT of | X(e!®)|2, while the
cepstrum c[n] is the IDTFT of log | X( ¢l®)|, so it is not
surprising that they should be related and have similar
properties. Like the cepstrum, the autocorrelation shows
apeak at the time corresponding to the pitch period of the
speech signal; however, this peak is not nearly as distinct
as the peak in the cepstrum. In LPC analysis, the periodic
variations of the short-time Fourier transform are re-
moved by taking p to be much less than the pitch period
Po. The faint gray line in Fig. 9.11a shows the autocorre-
lation values selected to determine a system model with
p = 12, which is much less than the value Py =92 de-
termined by cepstrum analysis to be the period of the
segment of speech under analysis. Such a value for p

is sufficient to represent the combined effects of the vo-
cal tract, glottal spectrum, and radiation at the lips for
a sampling rate of 8 kHz, but too small to represent the
fine detail in the short-time spectrum. If H(z) in (9.18)
is evaluated on the unit circle of the z-plane, we get an
estimate of the frequency response of the linear system
of the speech model, i.e., the function log |H(ei“’/f5)|,
which is plotted in Fig.9.12 as the solid curve. It is su-
perimposed with the original log | X(el®/ /)|, shown as
the rapidly varying light-gray plot.

For comparison, the dashed line is the result of
liftering the short-time spectrum with a cepstrum cut-
off quefrency of n¢, =50 samples and the dash-dot
line shows liftering with a lower cutoff quefrency of
neo = 13. Thus, both the LPC model and cepstrum lif-
tering can smooth out the periodic component of the
short-time spectrum of a segment of voiced speech.
Notice that the peaks of the LPC spectrum tend be bi-
ased toward a nearby harmonic peak of the short-time
spectrum. This can cause undesirable variability in LPC
representations. Generally, the LPC order p is chosen to
provide one resonance (two complex-conjugate poles)
per kilohertz of bandwidth with 2—4 extra poles to rep-
resent overall spectral tilt, etc. The liftered spectra, on
the other hand, are essentially local averages of the log
of the short-time Fourier transform magnitude. Thus,
they follow the slow variations of the log of the short-
time spectrum, and the lower the cutoff quefrency, the
smoother the resulting spectrum estimate.

a) r[k]

-20 -15 -10 -5 0 5 10 15 20

0.5
0
_Py _ne o Po
-0.5 Js fs Js Js
-20 -15 -10 -5 0 5 10 15 20
Time (ms) (n/fs)

Fig. 9.1 (a) Autocorrelation function showing points used
in LPC analysis. (b) Cepstrum showing points used in
homomorphic smoothing of the short-time spectrum
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Fig. 9.12 Comparison of spectral smoothing methods

9.5.2 Cepstrum from LPC Model

In the LPC method, a short segment of windowed speech
is represented first by p + 1 autocorrelation values r[k],
k=0,1,..., p,thenby G and the predictor coefficients
ar, k=1,2,..., p,and finally by the z-transform H(z)
given by (9.18). The truncation of the autocorrelation
function to p+ 1 values causes the smoothing that we
seek in estimating the vocal tract system. If we realize
that, corresponding to H(z), there is an impulse response
h[n], then it follows that the LPC analysis has com-
puted the parameters of the z-transform of A[n], and
thus, we can think of LPC analysis as an implementa-
tion of the Z{ } operator in Fig.9.5 when the input is
h[n]. In Sect. 9.2, we showed that, given the rational z-
transform of a sequence, we can compute the complex
cepstrum directly from the zeros of the numerator and
denominator polynomials. From (9.18) and (9.16) and
the fact that the LPC model estimate is minimum phase
(all poles inside the unit circle) [9.8], it follows that the
complex cepstrum of the impulse response of the LPC
model is

0 n<0

A log G =0

hn] = ;g ) " (9.32)
Zc—k n>0
k=1 n

and the cepstrum would be

log G n=0
clnl =Ev{hlnl} =1 1 <5 ¢}’ L (0.33)
Egm n#0

9.5.3 Minimum Phase
and Recursive Computation

Minimum-phase sequences like the LPC model impulse
response have a number of important properties. Some of
these properties are themselves sufficient to define the
minimum-phase condition. For example, all the poles
and zeros of the z-transform of a minimum-phase se-
quence are inside the unit circle. An equivalent statement
is that the complex cepstrum is causal, i.e., fz[n] =0 for
n < 0asin (9.32).

The special properties of a minimum-phase se-
quence can be used to derive additional computational
algorithms that can be useful in speech process-
ing. For example, using the derivative theorem for
z-transforms [9.4] and the causality of minimum-
phase sequences and their complex cepstra, it can be
shown [9.3] that the impulse response of a minimum-
phase system and its corresponding complex cepstrum
are related by the recursion formula

0 n<0
hn] = log G . A n=20
hin] (k) hlklh[n —k]
— = —)——— n>1
h[0] = \n h[0]
(9.34)

If we write the system function of the LPC model of
(9.18) as

G G
H(z) = — s = (9.35)
. A(z)
1— Z gz
k=1
we can define

1 n=>0

alnl={ -, l1<n< p (9.36)
0 otherwise

as the sequence whose z-transform is the denomina-
tor polynomial A(z). Since the complex cepstrum is the
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inverse z-transform of I:I(z) =log G —log{A(z)}, it fol-
lows that fl[n] = (log G)8[n] — a[n], and using (9.34)
and the fact that fz[n] = —a:[n] for n > 1, we can ex-
press the complex cepstrum /A[n] directly in terms of the
predictor coefficients as

0 n<0
A log G n=0

=26,
oy + Z (;) il[k]an_k n>0
k=1

From (9.37) we see that the predictor coefficients can be
obtained from the complex cepstrum through

, (9.37)

9.6 Application to Pitch Detection

The cepstrum was first applied in the speech process-
ing field to determining the excitation parameters for
the discrete-time speech model of Fig.9.7. According
to Noll [9.11], his colleague M. R. Schroeder suggested
to him that the periodic structure of voiced speech was
very similar to the echo structure that motivated their
Bell Telephone Laboratories colleagues to define the
cepstrum. He applied the cepstrum using short-time
Fourier analysis as we have described in Sect.9.4.1,
and like Bogert et al. [9.1] he was only interested in
detecting periodicity, not in extracting the details of the
speech model. Noll proposed a pitch-detection algorithm
that was based on cepstrum analysis implemented as in
Fig. 9.4 and applied to successive short-time windowed
segments of a speech signal. This is illustrated in Fig. 9.6
for two window positions, one clearly unvoiced speech
and the later one voiced speech.

Figure 9.13 shows a plot that is very similar to the
plot first published by Noll [9.11]. On the left is a se-
quence of log short-time spectra (rapidly varying curves)
and on the right is the corresponding sequence of cep-
stra computed from the log spectra on the left. Spectrum
and cepstrum number 1 are from the segment of speech
selected by the leftmost window in Fig. 9.6. The succes-
sive spectra and cepstra are for 50 ms segments obtained
by moving the window in steps of 12.5 ms (100 samples
at 8000 samples/s). Thus, the second window position
in Fig. 9.6 corresponds to spectrum and cepstrum num-
ber 11 in Fig. 9.13. From the given window length and
time increment, we can see from Fig. 9.6 that for po-
sitions 1-5, the window will only include unvoiced
speech, while for positions 6 and 7 the signal will be
partly voiced and partly unvoiced. For positions 8—15 the

n—1

ap =hin] =y <S> hlKlow—x 1<n<p.(9.38)

k=1

From (9.38), it follows that p + 1 values of the com-
plex cepstrum are sufficient to fully determine the LPC
model since all the predictor coefficients and G can be
computed from fz[n] forn=0,1,...,p.

Kopec et al. [9.10] showed several other ways that
linear prediction and cepstrum analysis can be com-
bined to separate the components of more-complicated
models than the all-pole model usually assumed in LPC
analysis.

window only includes voiced speech. Note that the rapid
variations of the unvoiced spectra appear random with no
periodic structure. This is typical of Fourier transforms
(periodograms) of short segments of random signals.
On the other hand, the spectra for voiced segments have
a structure of periodic ripples due to the harmonic struc-
ture of the quasiperiodic segment of voiced speech. As
can be seen from the plots on the right, the cepstrum peak
at about quefrency 11-12ms strongly signals voiced
speech. As we have shown, the quefrency of the peak
is an accurate estimate of the pitch period during the
corresponding speech interval. As shown in Fig.9.11,
the autocorrelation function also displays an indication
of periodicity, but not not nearly as clearly as does the
cepstrum.

The essence of the pitch-detection algorithm pro-
posed by Noll is to compute a sequence of short-time
cepstra and search each successive cepstrum for a peak
in the quefrency region of the expected pitch pe-
riod. The presence of a strong peak implies voiced
speech, and the quefrency location of the peak gives
an estimate of the pitch period. As in most signal
processing applications such as this, the algorithm in-
cludes many features designed to handle cases that
do not fit the underlying model very well. For exam-
ple, for frames 6 and 7 the cepstrum peak is weak,
corresponding to the transition from unvoiced to voiced
speech. In other problematic cases, the peak at twice
the pitch period may be stronger than the peak at
the quefrency of the pitch period. Noll applied tem-
poral continuity constraints to prevent such errors.
The reader should consult Noll’s paper [9.11] for the
full details of his cepstrum pitch-detection algorithm.
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a) Short-time log spectra in cepstrum analysis b) Short-time cepstra
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Fig. 9.13 (a) Short-time spectra and (b) cepstra of segment of speech in Fig. 9.6

9.7 Applications to Analysis/Synthesis Coding

In analysis/synthesis speech coding, the sampled speech  the excitation parameters and impulse response are de-
signal is divided into frames (blocks of samples), and termined for each successive frame. The cepstrum can
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be used to estimate the parameters of the simple excita-
tion model. For compression, the excitation parameters
(voicing decision and pitch period) are quantized to-
gether with a quantized representation of the impulse
response of the vocal-tract system. The composite quan-
tized representation is then used for transmission or
storage. To reconstitute the speech signal, the model
of Fig.9.7 is used with model parameters updated at
the frame rate from the compressed data. For example,
LPC vocoders use LPC analysis techniques to obtain the
vocal-tract system model in the form of (9.18). This all-
pole representation implies that the vocal-tract model
can be implemented by a recursive digital filter for
synthesis [9.12].

The cepstrum has also been used in ana-
lysis/synthesis speech coding to extract an estimate of
the linear system in the speech model of Fig.9.7. We
shall discuss three approaches based on homomorphic
methods.

9.7.1 Homomorphic Vocoder

A homomorphic vocoder is an analysis/synthesis speech
coding system that uses a cepstrum pitch detector as de-
scribed in Sect. 9.6 to estimate the excitation parameters
and short-time homomorphic deconvolution to estimate
the time varying impulse response of the speech model
of Fig. 9.7 [9.13]. More specifically, the vocal-tract im-
pulse response is extracted by homomorphic filtering
from the same short-time cepstrum that is used for pitch
detection. Each frame of the speech signal is represented
by quantized versions of voiced/unvoiced decision, pitch
period, gain, and a set of low-quefrency cepstrum values
to represent the vocal tract impulse response. Since
the cepstrum is an even function of n, only c[n] for
n=1,...,n¢ need be retained in order to construct
c[—n]. Furthermore, we can assume that ¢[0] =log G.

Synthesis is done by discrete convolution of an
impulse response (reconstructed from the quantized low-
quefrency cepstrum values) with an excitation signal
constructed from the voicing, pitch period, and gain in-
formation. For voiced speech frames, the excitation is
a train of unit impulses with spacing Py (as estimated
from the cepstrum), while for unvoiced frames, the ex-
citation is a discrete random noise sequence. The gain
G is used to provide the correct signal amplitude after
synthesis.

Since the cepstrum (not the complex cepstrum) is
used to represent the linear filter for each frame, it is
not possible to estimate the fully fledged mixed-phase
impulse response as in the example of Fig.9.8c. The

cepstrum only represents the log magnitude of the short-
time spectrum. Therefore, it is necessary to generate an
appropriate phase to pair with the smoothed log magni-
tude function. This can be achieved as part of the liftering
that extracts the low-quefrency values of the cepstrum.
The simplest approach is to simply assign zero for the
phase at each frequency. This is the case if we define

ho[n] = £;[nlcln], (9.39)
where
AES L lnl = neo ) (9.40)

0 otherwise

This situation is depicted in Fig.9.10b. Since
fzz[n] = ﬁz[—n], it follows that Iflz(ei“)) is purely real.
Therefore, if /1. [n] is the input to the inverse characteris-
tic system D !{ } (implemented with the DFT), then the
resulting output /,[n] will have even symmetry as well.
As an example, Fig. 9.14a shows the zero-phase impulse
response that has the same log magnitude function as
the mixed-phase impulse response of Fig.9.8c, i.e., the
smooth function in Fig.9.9a .(The zero-phase impulse
response has been truncated to the range —80 <n < 80

a) h.[n]
1

-1

0 10 20 30 40 50
b) i, [n]
1

0.5

0 10 20 30 40 50

0 10 20 30 40 50
Time (ms) (n/f;)

Fig. 9.14 (a) Minimum-phase impulse response. (b) Max-
imum-phase impulse response. () Zero-phase impulse
response
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and a delay of 80 samples has been included to make the
impulse response causal.)

Another way of pairing a phase function with the
smoothed log magnitude is to impose the minimum-
phase condition, i. e., the complex cepstrum is zero for
n < 0. Specifically, if Amin[n] = €min[n]cln], where

2 1<n=<ne
Lmin[n] =131 n=0 ,

0 otherwise

(9.41)

then the resulting impulse response /nin[1] at the output
of the inverse characteristic system is a minimum-phase
impulse response whose Fourier transform has the same
log magnitude as does &, [n] corresponding to (9.39), and
whose phase is the minimum-phase function that would
be obtained through the discrete Hilbert transform [9.4].
Figure 9.14b shows the minimum-phase impulse
response that has the same Fourier transform log mag-
nitude as the impulse responses in Figs. 9.8c and 9.14a.

Still another way to obtain a nonzero phase is to
impose a maximum-phase condition; i.e., the complex
cepstrum is zero for n > 0. The maximum-phase im-
pulse response reconstructed from the cepstrum with
€max[n] = €min[—n] will be simply Amax[n] = Amin[—1].
For our example the maximum-phase impulse response
is shown in Fig.9.14c. [Since hmax[n] = Amin[—n] i
noncausal, we have included a delay of 160 samples
(20 ms) to make it causal.]

The complex cepstrum is not generally used in the
homomorphic vocoder because it would be necessary
to quantize and encode the complex cepstrum values
for —neo <n <ng as opposed to just 0 <n <ng
for the zero-phase, minimum-phase, and maximum-
phase representations. Oppenheim [9.13] reported on
experiments that showed that synthetic speech output
using minimum-phase impulse responses was preferred
slightly over synthesis with zero-phase impulse re-
sponses. Both minimum- and zero-phase synthesis were
preferred to maximum-phase impulse response synthe-
sis, even though the maximum-phase impulse response
has the same wave shape and energy distribution (ex-
cept time-reversed) as the minimum-phase impulse
response. Oppenheim speculated that this was because
the minimum-phase approach most closely matches the
short-time phase of the natural vocal-tract system.

9.7.2 Homomorphic Formant Vocoder

Homomorphic processing has also been proposed as the
basis for a formant vocoder [9.14]. Here the approach

was like the homomorphic vocoder of Sect. 9.7.1 in that
the excitation parameters were derived from a cepstrum
pitch detector, but instead of extracting an impulse re-
sponse at each frame, the first three formant (resonance)
frequencies were estimated and tracked in time from the
liftered short-time log magnitude spectrum. These three
(quantized) formant frequency estimates were used to
represent the vocal tract filter for each analysis frame.
For synthesis, the three formant frequencies were used to
control the complex pole locations of three second-order
sections of a 10th-order cascade-form recursive digital
filter; a sampling rate of 8 kHz was used. The remaining
four poles were fixed at values that give a natural overall
average spectral shape.

The set of plots in the left panel of Fig.9.13 illus-
trates how the formants were estimated and tracked in
the short-time log spectrum. Note that the smoothed log
spectra contain numerous local maxima (peaks). How-
ever, from a detailed study of the acoustics of speech
production and from extensive analysis of the short-time
spectrum of speech, it is well established that the formant
frequencies are confined to certain ranges of frequency
simply by physical constraints [9.8]. Furthermore, the
low-frequency peak in the spectra of Fig. 9.13 can be at-
tributed to the glottal pulse spectrum. Thus, by locating
the peaks in the liftered log spectrum that lie in the range
of approximately 200—3000 Hz, it is possible to identify
and track from frame to frame the first three formant
frequencies for voiced speech segments, as illustrated in
Fig.9.13. For unvoiced speech, a much simpler model
was proposed consisting of one complex-conjugate pair
of zeros and one complex-conjugate pair of poles. The
pole and zero locations were estimated from the liftered
log magnitude spectra so as to match the overall general
shape of the unvoiced spectrum [9.8].

Although this representation of speech is quite sim-
plified and therefore bound to suffer in terms of quality
of the synthetic speech that can be reconstructed, its
virtue is that the information rate for transmitting the
pitch period, gain, and three formant frequencies can
be very low. With rather straightforward coding tech-
niques, it was found that the information rate could be
as low as 600 bits/s without degradation of the quality
that could be achieved when the parameters were un-
quantized. For many talkers, the synthetic speech was
highly intelligible and of acceptable quality for commu-
nications. However, the simplicity and the many fixed
parameters of the synthesis model limit the quality that
can be achieved over a wide range of voices. This is
also true of both the LPC vocoder and the homomorphic
vocoder of Sect.9.7.1 with simplified voiced/unvoiced
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excitation modeling. Such approaches typically achieve
a level of speech quality reproduction that is accept-
able for some applications at bit rates around 2400 bps,
but not nearly transparent to modeling distortions. Such
representations are degraded by coarser quantization of
the parameters, but quality cannot be improved by sim-
ply representing the parameters with greater and greater
accuracy.

9.7.3 Analysis-by-Synthesis Vocoder

As increased computational power became readily avail-
able in decade of the 1980s, speech coding researchers
turned their attention toward more-sophisticated tech-
niques for modeling the excitation in LPC vocoders.
Such techniques as multipulse [9.15], code excita-
tion (CELP) [9.16], and self-excitation [9.17] led to
greatly improved output quality at somewhat higher
bit rates than the classical {V/UYV, pitch, gain} repre-
sentation used in the LPC and homomorphic vocoders.
All these approaches were based on the idea of ana-
lysis by synthesis. Although most of the innovations in
analysis-by-synthesis methods were originally created
in the context of LPC modeling of the vocal-tract fil-
ter, Chung [9.18, 19] demonstrated that the benefits of
the improved excitation modeling also applied to the
homomorphic vocoder.

Figure 9.15 shows a general block diagram for
an analysis-by-synthesis homomorphic vocoder. In
LPC-based coders of this type, the vocal-tract filter is re-
cursive. The homomorphic analysis-by-synthesis coder
uses an finite impulse response (FIR) filter derived from
the cepstrum as discussed above. As in other coders of
this type, analysis is done frame-by-frame. The analysis-
by-synthesis excitation modeling is based on finding the
excitation sequence u[n] that minimizes the perceptually
weighted error between the speech signal samples x[n]
and the reconstructed samples s[n] = h[n]*u[n]. Over
a frame of length L samples, the perceptually weighted
error is

dpw[n] = (x[n] — h[n]* u[n]) * gpwln]
= Xpwln] — hpw[n]*uln]

where gpwl[n] is the impulse response of the per-
ceptual weighting filter and hpw[n] = h[n]* gpw[n] is
the perceptually-weighted vocal-tract impulse response.
The computation of the perceptual weighting filter
and weighted impulse response for the homomorphic
analysis-by-synthesis coder will be discussed below.
Irrespective of how the vocal-tract impulse response
is derived, the basic excitation analysis proceeds by as-

(9.42)

Fig. 9.15 Analysis-by-synthesis homomorphic vocoder

suming that the excitation signal is composed of a set of
N (one or more) scaled component signals in the form

N
uln] =y Brity[n] . (9.43)
k=1

The set of excitation components uy, [n] is predeter-
mined. In the case of multipulse [9.15], the components
are shifted unit samples §[n — yx]; in CELP [9.16]
the components are drawn from a library or code-
book of white-noise sequences; and in the self-excited
paradigm [9.17], the components are segments drawn
from a memory of the past excitation sequence. In
fact, the composite excitation in (9.43) can consist of
a combination of such components [9.17].

The algorithm for determining u[n] for a given frame
begins by computing the output of the vocal-tract filter
due to the excitation of previous frames. This is sub-
tracted from the new frame of perceptually weighted
speech to initialize the error. Then the analysis proceeds
by a process something like the following to determine
the k-th component:

1. Choose a particular component i), [1] from the avail-
able set, and find the value of B that minimizes the
total squared residual error over the frame.

2. Repeat step 1 for all possible input components.
Choose the component (indexed by y) that gave
the lowest error, and subtract the output due to that
component from the error.

These steps are repeated N times to obtain the indexes
e for k=1,2,..., N. New values of the B; can be
determined after all the component sequences uy, [n]
have been selected.

The main difference between LPC and homo-
morphic analysis-by-synthesis coders is the way in
which the impulse responses are derived. In the case
of the homomorphic vocoder, h[n] is the quantized
minimum-phase FIR vocal-tract impulse response ob-
tained by low-pass liftering the cepstrum. The perceptual
weighting filter g,w[n] is derived directly from the cep-

Error Excitation | u[n] | FIR filter | s[n]
minimization generator h[n]
dyw[1] Perceptual
weighting
gpwln]

x[n]

d[n]
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strum according to the principles set out by Atal and
Schroeder [9.20], who argued that the approximation
errors in the regions of the formant peaks would be
aurally masked, so the weighting should be designed
to emphasize the regions between the formant peaks.
In the homomorphic vocoder system, the perceptually
weighted vocal tract impulse response is obtained di-
rectly from the cepstrum by [9.18]

hpwlnl = €pwlnleln] (9.44a)
where
l—asin(””) 0<n<n
Lpwln] = 2nco . (9.44b)

0 otherwise

This low-pass liftering of the cepstrum creates a per-
ceptually weighted vocal-tract filter where the formant
resonances are flattened out as suggested by Aral and
Schroeder [9.20]. To obtain the perceptual weighting
filter needed to prefilter the input in (9.42), we simply
observe that, since hpw[n] = hln]* gpw[n], it follows
that the complex cepstrum of gpw[n] is

gpwln] = hpw[n] — hln]
= (Lpwln] — Dhln] .

Figure 9.16 illustrates the perceptual weighting fil-
ter for the segment of speech used to create the earlier
examples. The light-gray solid curve is the smoothed
short-time log spectrum corresponding to the vocal-tract
filter impulse response k[n]. The dark solid curve is the
perceptually weighted vocal-tract filter corresponding
to hpw[n], and the dashed curve corresponds to the
perceptual weighting filter gpw[n]. Note how the percep-
tual weighting filter tends to de-emphasize the spectral
regions around the formant frequencies.

Chung [9.19] performed subjective tests of the
homomorphic analysis-by-synthesis coder, and com-

(9.45)

Vocal tract filter and error weighting filters

log magnitude
1

—— Vocal tract filter: neo = 16
| Error weighting filter: a = 0.8
-=--- Perceptually weighted vocal tract filter

0 1 2 3 4
Frequency (kHz)

Fig.9.16 Illustration of perceptual weighting filter derived
from the cepstrum

pared it to LPC-based coders. In a comparison where
the same analysis structure was used with both LPC and
homomorphic vocal-tract filters, he found no significant
difference. However, in comparison to the state-of-
the-art Department of Defense standard CELP coder
available at the time, both his LPC and homomorphic
systems were significantly inferior. He attributed this
to enhancements such as interpolation of vocal-tract
filters and interpolated codebook search that were im-
plemented in the the DoD standard system and not in his
LPC and homomorphic coders. While the results of these
subjective tests were inconclusive, it was demonstrated
that the homomorphic vocoder could be significantly
improved by use of analysis-by-synthesis excitation ana-
lysis, and that homomorphic processing afforded new
flexibilities in implementing perceptual weighting of the
coding error.

9.8 Applications to Speech Pattern Recognition

Perhaps the most pervasive application of the cepstrum
in speech processing is its use in pattern recognition
problems such as vector quantization (VQ) and auto-
matic speech recognition (ASR). In such applications,
a speech signal is represented on a frame-by-frame basis
by a sequence of short-time cepstra. In later discus-
sions in this section, it will be useful to use somewhat
more-complicated notation. Specifically, we denote the
cepstrum of the m-th frame of a signal x[n] as c,(,f) [n],

where n denotes the quefrency index of the cepstrum. In
cases where it is not necessary to distinguish between
signals or frames, these additional designations will be
omitted as we have done up to this point.

As we have shown, cepstra can be computed either
by LPC analysis or by DFT implementation of the char-
acteristic system. In either case, we can assume that
the cepstrum vector corresponds to a gain-normalized
(c[0] = 0) minimum-phase vocal-tract impulse response
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that is defined by the complex cepstrum

fz[n] _ 2c[n] 1<n<ng , (9.46)

0 n<0

where we have suppressed for now the notation ﬁ,)f).

In problems such as VQ or ASR, a test pattern c[n]
(a vector of cepstrum valuesn =1, 2, ... , n¢o) is com-
pared against a comparable reference pattern c[n]. Such
comparisons require a distortion measure. For example,
the Euclidean distance applied to the cepstrum would
give

Nco

D= Z ‘c[n] —E[n]‘2 . (9.47a)
n=1

Equivalently in the frequency domain,

T
1 . . 2
D=4—/'long(elw)l—long(elw)l do,
TT
—IT

(9.47b)

where log |H(e/?)]| is the log magnitude of the DTFT
of h[n] corresponding to the complex cepstrum in
(9.46) or the real part of the DTFT of fz[n] in (9.46).
Thus, cepstrum-based comparisons are strongly related
to comparisons of smoothed short-time spectra.

The cepstrum offers an effective and flexible repre-
sentation of speech for pattern recognition problems as
we will discuss below.

9.8.1 Compensation for Linear Filtering

Suppose that we have only a linearly filtered version of
the speech signal, y[n] = hgq[n]*x[n], instead of x[n].
If the analysis window is long compared to the length
of hg[n], the short-time cepstrum of one frame of the
filtered speech signal y[n] will be approximately

] =Dl +"[n] (9.48)

where ¢"@[n] will appear more or less the same in
each frame. Therefore, if we can estimate c(hd)[n],
which we assume is non-time-varying, we can obtain
cfff) [n] at each frame from cy[n] by subtraction; i.e.,
el = e ] — c*d[n). (Stockham [9.21] showed
how c¢"®[n] for such linear distortions can be es-
timated from the signal y[n] by time averaging the
log of the short-time Fourier transform.) This prop-
erty is extremely attractive in situations where the

set of reference patterns c¢[n] has been obtained un-
der different recording or transmission conditions from
those used to acquire the test vectors. In these cir-
cumstances, the test vectors can be compensated for
the effects of the linear filtering prior to comput-
ing the distance measures used for comparison of
patterns.

Another approach to removing the effects of linear
distortions is to observe that the cepstrum component
due to the distortion is the same in each frame. Therefore
it can be removed by a simple first difference operation
of the form

Al =] = [n]. (9.49)

Itis clear that, if ¢y [n] = iy [n] + %0 [n] with ¢ [n]
being independent of m, then Acgﬁ’)[n] = Acg;f)[n]; i.e.,
the linear distortion effects are removed.

Furui [9.22] first noted that, in addition to making
the cepstrum less susceptible to linear distortions, the
sequence of cepstrum values has temporal information
that could be of value for a speaker verification system.
He used polynomial fits to cepstrum sequences to ex-
tract simple representations of the temporal variation.
The delta cepstrum as defined in (9.49) is simply the
slope of a first-order polynomial fit to the cepstrum time
evolution.

9.8.2 Weighted Distance Measures

In using LPC analysis to obtain cepstrum feature vectors
for pattern recognition problems, it was observed that
there is significant statistical variability due to a variety
of factors, including short-time analysis window posi-
tion, bias toward harmonic peaks, and noise [9.23,24].
A solution to this problem is to use weighted distance
measures of the form
Nco

D=3 n]|cln]—eln]|” . (9.50a)
n=1

which can be written as the Euclidean distance of liftered
cepstra

D= " |elnlcln] — tlnleln]] .

n=1

(9.50b)

Tohkura [9.23] found, for example, that when av-
eraged over many frames of speech and speakers,
cepstrum values c[n] have zero means and variances
on the order of 1/n>. This suggests that £[n] =n for
n=1,2,...,nc could be used to equalize the contri-
butions for each term to the cepstrum distance.
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Juang et al. [9.24] observed that the variability due
to the vagaries of LPC analysis could be lessened by
using a high-pass lifter of the form

Ln]=140.5n¢ sin(mn/ne) , n=1,2,...

s Neo
(9.51)
Tests of weighted distance measures have shown con-
sistent improvements in automatic speech recognition
tasks [9.24].

9.8.3 Group Delay Spectrum

The weighted cepstral distance measures of the previous
subsection were given a new interpretation by ltakura
and Umezaki [9.25], who invoked the following basic
property of the DTFT:

dA(e)

nhin] = i———= , (9.52)
dw

where <= denotes the unique relationship between
a sequence and its DTFT. An interesting result can be
obtained if we represent the complex cepstrum as

hin] = cln]+gln] , (9.53)

where c[n] = Ev{fz[n]} is the even part and g[n] =
Odd{h[n]} is the odd part of the complex cepstrum. Re-
calling that the DTFT of the complex cepstrum is by
definition H(el”) = log |H(e'®)| +iarg{H(e!®)}, it can
be shown that the following DTFT relations hold:

ncln] <= iw (9.54a)
dw
and .
ngln] < —W . (9.54b)

The DTFT expression on the right in (9.54b) is the group
delay for the DTFT H( ei“’); i.e.,
darg{ H(e'*)}

dw '
Now if h[n] is obtained by LPC analysis as discussed
in Sect. 9.5, the complex cepstrum satisfies hn] =0 for
n < 0. This means that fz[n] =2c[n] = 2g[n] for n > 0.
If we define £[n] = n, then

grd{H(e'®)} = (9.55)

D= Y |tnlgln] - €ln]3ln]| (9.562)

n=—0o0

is equivalent to
1 T
D= / ‘grd{H(ei‘”)} - grd{FI(ei"’)}‘ do
JT
—7IT

(9.56b)

or, alternatively,

T

</
D=—
2w

-7

dlog|H(e)| dlog|H ()| d
— .
do dw

(9.560)

The result of (9.56c) was also given by Tohkura [9.23].
Instead of £[n] = n for all n, or the lifter of (9.51), Itakura
proposed the lifter

s —n2/272

Ln]=n'e (9.57)

This lifter has great flexibility. For example, if s = 0 we
have simply low-pass liftering of the cepstrum. If s = 1
and 7 is large, we have essentially £[n] =n for small
n with high-quefrency tapering. The effect of liftering
with (9.57) is illustrated in Fig.9.17, which shows in
(a) the short-time Fourier transform of a segment of
voiced speech along with an LPC spectrum with p = 12.
Figure 9.17b shows the liftered group delay spectrum
for s =1 and t ranging from 5 to 35 in steps of 10.
Observe that, as t increases, the formant frequencies are
increasingly emphasized. If larger values of s are used,
even greater enhancement of the resonance structure is
observed.

Itakura and Umezaki [9.25] tested the group delay
spectrum distance measure in an automatic speech
recognition system. They found that, for clean test ut-
terances, the difference in recognition rate was small for

a) LPC and short-time Fourier spectrum
log magnitude

— LPC spectrum
------ Short-time Fourier spectrum

b) Liftered group delay spectrum (s = 1)
Group delay

Frequency (kHz)

Fig.9.17a,b Illustration of Itakura’s liftered group delay
spectrum (after [9.25])
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different values of s when 7 & 5, although performance
suffered with increasing s for larger values of . This was
attributed to the fact that, for larger s, the group delay
spectrum becomes very sharply peaked and thus more
sensitive to small differences in formant locations. How-
ever, in test conditions with additive white noise and
also with linear filtering distortions, recognition rates
improved significantly with r = 5 and increasing values
of the parameter s.

9.8.4 Mel-Frequency Cepstrum Coefficients
(MFCC)

As we have seen, weighted cepstrum distance meas-
ures have a directly equivalent interpretation in terms
of distance in the frequency domain. This is significant
in light of models for the human perception of sound,
which are based on a frequency analysis performed in
the inner ear. With this in mind, Davis and Mermel-
stein [9.26] were motivated to formulate a new type of
cepstrum representation that has come to be widely used
and known as the mel-frequency cepstrum coefficients
(MECCQ).

The basic idea is to compute a frequency analysis
based upon a filter bank with approximately criti-
cal band spacing of the filters and bandwidths. For
4kHz bandwidth, approximately 20 filters are used.
In most implementations, a short-time Fourier analysis
is done first, resulting in a DFT X,,[k] for the m-
th frame. Then the DFT values are grouped together
in critical bands and weighted by triangular weight-
ing functions as depicted in Fig.9.18. Note that the
bandwidths in Fig. 9.18 are constant for center frequen-
cies below 1kHz and then increase exponentially up
to half the sampling rate of 4 kHz, resulting in 24 fil-
ters. The mel-spectrum of the m-th frame is defined for
r=1,2,...,Ras

Uy
ME,[r] = Ai > Ve KIX K1 (9.58a)

" k=L,

where V,[k] is the weighting function for the
r-th filter ranging from DFT index L, to U,
and

U,
1 r
Ar=— > IVIK1? (9.58b)

" k=L,

is a normalizing factor for the r-th mel-filter. This
normalization is built into the weighting functions in

Amplitude
0.01

0.005

(=]

0 1000 2000 3000 4000
Frequency (Hz)

Fig. 9.18 Weighting functions for mel-scale filtering

Fig.9.18. Itis needed so that a perfectly flat input Fourier
spectrum will produce a flat mel-spectrum. For each
frame, a discrete cosine (DCT) transform of the log of
the magnitude of the mel-filter outputs is computed to
form the function mfcc[n] as in

mfcc[n]

1 Rl MF,,[7] 2 ! (9.59)
_Egog( mlr]) cos 7<r+§>n .

Typically, mfcc[n] is evaluated for a number of coeffi-
cients Npfcc that is less than the number of mel-filters,
e.g2., Nmfee = 13 and R = 24. Figure 9.12 shows the re-
sult of MFCC analysis of a frame of voiced speech
compared with the short-time spectrum, LPC spec-
trum, and two homomorphically smoothed spectra. The
large dots are the values of log (MF,,[r]) and the curve
interpolated between them is a spectrum reconstructed
at the original DFT frequencies. Note that all these
spectra are different, but they have in common that
they have peaks at the formant resonances. At higher
frequencies, the reconstructed mel-spectrum of course
has more smoothing due to the structure of the filter
bank.

Note that the delta cepstrum idea expressed by (9.49)
can be applied to MFCC to remove the effects of linear
filtering as long as the frequency response of the distort-
ing linear filter does not vary much across each of the
mel-frequency bands.

The MFCC have become firmly established as the
basic feature vector for many speech and acoustic pattern
recognition problems. For this reason, new and efficient
ways of computing MFCC are of interest. An intriguing
proposal is to use floating gate electronic technology to
implement the filter bank and the DCT computation with
only microwatts of power [9.27].
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9.9 Summary

This chapter has attempted to summarize the many ways
in which the cepstrum has been used in speech process-
ing. We started with definitions and showed many of
the analytical results that flow from those definitions.

These results have found application in many areas of
speech and audio processing. With the advent of new
approaches to cepstrum computation, new applications
are likely to continue to emerge.

References
9.1 B.P. Bogert, M..R. Healy, J.W. Tukey: The que- 9.15 B.S. Atal, J. Remde: A new model of LPC exitation for
frency alanysis of times series for echos: cepstrum, producing natural-sounding speech at low bit rates,
pseudo-autocovariance, cross-cepstrum, and saphe Proc. IEEE ICASSP (1982), 614-617
cracking, Proc. of the Symposium on Time Series 9.16 M.R. Schroeder, B.S. Atal: Code-excited linear pre-
Analysis, ed. by M. Rosenblatt (Wiley, New York 1963) diction (CELP): high-quality speech at very low bit
9.2  R.W. Schafer: Echo removal by discrete generalized rates, Proc. IEEE ICASSP (1985), 937-940
linear filtering (MIT, Cambridge 1968), Ph.D. disser-  9.17 R.C. Rose, T.P. Barnwell Ill: The self excited vocoder
tation - an alternate approach to toll quality at 4800 bps,
9.3 A.V. Oppenheim, R.W. Schafer, T.G. Stockham Jr.: Proc. IEEE ICASSP 11, 453-456 (1986)
Nonlinear filtering of multiplied and convolved sig-  9.18 J.H. Chung, R.W. Schafer: Excitation modeling in a
nals, Proc. IEEE 56(8), 1264-1291 (1968) homomorphic vocoder, Proc. IEEE ICASSP 1, 25-28
9.4 A.V. Oppenheim, R.W. Schafer, J.R. Buck: Discrete- (1990)
Time Signal Processing (Upper Saddle River, 9.19 J.H. Chung, R.W. Schafer: Performance evaluation of
Prentice-Hall 1999) analysis-by-synthesis homomorphicvocoders, Proc.
9.5 A.N. Oppenheim: Superposition in a Class of IEEE ICASSP 2, 117-120 (1992)
Nonlinear Systems (MIT, Cambridge 1964), Ph.D. dis-  9.20 B.S. Atal, M.R. Schroeder: Predictive coding of
sertation, Also: MIT Research Lab. of Electronics, speech signals and subjective error criterion, IEEE
Cambridge, Massachusetts, Technical Report 432 Trans. Acoust. Speech ASSP-27, 247-254 (1079)
9.6  J.M. Tribolet: A new phase unwrapping algorithm, 9.21 T.G. Stockham Jr., T.M. Cannon, R.B. Ingebretsen:
IEEE Trans. Acoust. Speech ASSP-25(2), 170177 (1977) Blind deconvolution through digital signal process-
9.7 G.A. Sitton, C.S. Burrus, J.W. Fox, S. Treitel: Factor- ing, Proc. IEEE 63, 678-692 (1975)
ing very-high-degree polynomials, IEEE Signal Proc.  9.22 S. Furui: Cepstral analysis technique for automatic
Mag. 20(6), 27-42 (2003) speaker verification, IEEE Trans. Acoust. Speech
9.8  L.R. Rabiner, R.W. Schafer: Digital Processing of ASSP-29(2), 254-272 (1981)
Speech Signals (Prentice-Hall, Englewood Cliffs1978)  9.23 Y. Tohkura: A weighted cepstral distance measure
9.9  A.V. Oppenheim, R.W. Schafer: Homomorphic ana- for speech recognition, IEEE Trans. Acoust. Speech
lysis of speech, IEEE Trans. Audio Electroacoust. ASSP-35(10), 1414-1422 (1987)
AU-16, 221-228 (1968) 9.24 B.-H.Juang, L.R. Rabiner, J.G. Wilpon: On the use of
9.10 G.E. Kopec, A.V. Oppenheim, J.M. Tribolet: Speech bandpass liftering in speech recognition, IEEE Trans.
analysis by homomorphic prediction, IEEE Trans. Acoust. Speech ASSP-35(7), 947-954 (1987)
Acoust. Speech ASSP-25(1), 40-49 (1977) 9.25 F. Itakura, T. Umezaki: Distance measure for speech
9.11 A.M. Noll: Cepstrum pitch determination, J. Acoust. recognition based on the smoothed group delay
Soc. Am. 41(2), 293-309 (1967) spectrum, Proc. IEEE ICASSP 12, 1257-1260 (1987)
9.12 B.S. Atal, S.L. Hanauer: Speech analysis and syn-  9.26 S.B. Davis, P. Mermelstein: Comparison of para-
thesis by linear prediction of the speech wave, J. metric representations for monosyllabic word
Acoust. Soc. Am. 50, 561-580 (1971) recognition in continously spoken sentences,
9.13 A.V.Oppenheim: A speech analysis-synthesis system IEEE Trans. Acoust. Speech ASSP-28(4), 357-366
based on homomorphic filtering, J. Acoust. Soc. Am. (1980)
45(2), 293-309 (1969) 9.27 P.D. Smith, M. Kucic, R. Ellis, P. Hasler, D.V. An-
9.14 R.W. Schafer, L.R. Rabiner: System for automatic for- derson: Mel-frequency cepstrum encoding in analog

mant analysis of voiced speech, J. Acoust. Soc. Am.
47(2), 458-465 (1970)

floating-gate circuitry, Proc. ISCAS 2002(4), 671-674
(2002)



181

10. Pitch and Voicing Determination of Speech
with an Extension Toward Music Signals

W. J. Hess
This chapter reviews selected methods for pitch 10.2.3 Er:ﬁn;lg:i?,;gg{;;;n Methods: 188
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both these signals are time variant we first define 10.2.5 Least Squares
what is subsumed under the term pitch. Then we and Other Statistical Methods ... 191
subdivide pitch determination algorithms (PDAs) 10.2.6 Concluding Remarks ..................... 192
into short-term analysis algorithms, which apply
10.3 Selected Time-Domain Methods............. 192

some spectral transform and derive pitch from

a frequency or lag domain representation, and
time-domain algorithms, which analyze the signal
directly and apply structural analysis or determine
individual periods from the first partial or compute
the instant of glottal closure in speech. In the 1970s,
when many of these algorithms were developed,

the main application in speech technology was the and Voicing Determination............ 196
vocoder, whereas nowadays prosody recognition in 10.4.2 Pattern-Recognition VDAs ............. 197
speech understanding systems and high-accuracy 10.5 Evaluation and Postprocessing 197
pitch period determination for speech synthesis ’ 10.5.1 Developing Reference PDAg """"""
corpora are emphasized. In musical acoustics, pitch h with Instrumental Help............... 197
determination is applied in melody recognition or 10.5.2 Error Analysis..........ccooeveeiieiinnnnn. 198
automatic musical transcription, where we also 10.5.3 Evaluation of PDAs =
have the problem that several pitches can exist and VDAs— Some Results ............... 200 =3
simultaneously. 10.5.4 Postprocessing and Pitch Tracking.. 201 @
=
10.6 Applications in Speech and Music........... 201 (=]
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10.2.2 Cepstrum and Other 10.8 Concluding Remarks ............................. 207
Double-Transform Methods........... 187 References ............ccccceveiveiiiieiiieiiineiieeinn 208

Pitch and voicing determination of speech signals are
the two subproblems of voice source analysis. In voiced
speech, the vocal cords vibrate in a quasiperiodic way.
Speech segments with voiceless excitation are gener-
ated by turbulent air flow at a constriction or by the
release of a closure in the vocal tract. The parameters
we have to determine are the manner of excitation, i.e.,

10.3.1 Temporal Structure Investigation.... 192
10.3.2 Fundamental Harmonic Processing. 193
10.3.3 Temporal Structure Simplification... 193
10.3.4 Cascaded Solutions....................... 195

10.4 A Short Look into Voicing Determination. 195
10.4.1 Simultaneous Pitch

the presence of a voiced excitation and the presence of
a voiceless excitation, a problem we will refer to as voic-
ing determination and, for the segments of the speech
signal in which a voiced excitation is present, the rate of
vocal cord vibration, which is usually referred to as pitch
determination or fundamental frequency determination
in the literature.
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Unlike the analysis of vocal-tract parameters, where
a number of independent and equivalent representations
are possible, there is no alternative to the parameters
pitch and voicing, and the quality of a synthesized sig-
nal critically depends on their reliable and accurate
determination. This chapter presents a selection of the
methods applied in pitch and voicing determination. The
emphasis, however, is on pitch determination.

Over the last two decades, the task of fundamen-
tal frequency determination has become increasingly
popular in musical acoustics as well. In the begin-
ning the methodology was largely imported from the
speech community, but then the musical acoustics com-
munity developed algorithms and applications of their
own, which in turn became increasingly interesting to
the speech communication area. Hence it appears jus-
tified to include the aspect of fundamental frequency
determination of music signals and to present some of
the methods and specific problems of this area. One
specific problem is multipitch determination from poly-
phonic signals, a problem that might also occur in speech
when we have to separate two or more simultaneously
speaking voices.

Pitch determination has a rather long history which
goes back even beyond the times of vocoding. Liter-
ally hundreds of pitch determination algorithms (PDAs)
have been developed. The most important developments
leading to today’s state of the art were made in the
1960s and 1970s; most of the methods that are briefly
reviewed in this chapter were extensively discussed dur-
ing this period [10.1]. Since then, least-squares and other

statistical methods, particularly in connection with si-
nusoidal models [10.2], entered the domain. A number
of known methods were improved and refined, whereas
other solutions that required an amount of computational
effort that appeared prohibitive at the time the algorithm
was first developed were revived. With the widespread
use of databases containing many labeled and processed
speech data, it has nowadays also become possible to
thoroughly evaluate the performance of the algorithms.

The bibliography in [10.1], dating from 1983, in-
cludes about 2000 entries. To give a complete overview
of the more-recent developments, at least another 1000
bibliographic entries would have to be added. It goes
without saying that this is not possible here given the
space limitations. So we will necessarily have to present
a selection, and many important contributions cannot be
described.

The remainder of this chapter is organized as fol-
lows. In Sect. 10.1 the problems of pitch and voicing
determination are described, definitions of what is sub-
sumed under the term pitch are given, and the various
PDAs are grossly categorized. Sections 10.2 and 10.3
give a more-detailed description of selected PDAs.
Section 10.4 shortly reviews a selection of voicing de-
termination algorithms (VDAs); Sect. 10.5 deals with
questions of error analysis and evaluation. Selected ap-
plications are discussed in Sect. 10.6, and Sect. 10.7
finally presents a couple of new developments, such
as determining the instant of glottal closure or process-
ing signals that contain more than one pitch, such as
polyphonic music.

10.1 Pitch in Time-Variant Quasiperiodic Acoustic Signals

10.1.1 Basic Definitions

Pitch, i. e., the fundamental frequency Fp and fundamen-
tal period Ty of a (quasi)periodic signal, can be measured
in many ways. If a signal is completely stationary and
periodic, all these strategies — provided they operate cor-
rectly — lead to identical results. Since both speech and
musical signals, however, are nonstationary and time
variant, aspects of each strategy such as the starting
point of the measurement, the length of the measuring
interval, the way of averaging (if any), or the operating
domain (time, frequency, lag etc.) start to influence the
results and may lead to estimates that differ from algo-
rithm to algorithm even if all these results are correct
and accurate. Before entering a discussion on individ-
ual methods and applications, we must therefore have

a look at the parameter pitch and provide a clear defi-
nition of what should be measured and what is actually
measured.

A word on terminology first. There are three points
of view for looking at such a problem of acoustic signal
processing [10.3]: the production, the signal-processing,
and the perception points of view. For pitch deter-
mination of speech, the production point of view is
obviously oriented toward phonation in the human lar-
ynx; we will thus have to start from a time-domain
representation of the waveform as a train of laryn-
geal pulses. If a pitch determination algorithm (PDA)
works in a speech-production oriented way, it measures
individual laryngeal excitation cycles or, if some aver-
aging is performed, the rate of vocal-fold vibration. The
signal-processing point of view, which can be applied



Pitch and Voicing Determination of Speech | 10.1 Pitch in Time-Variant Quasiperiodic Acoustic Signals 183
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Fig.10.1a,b Time-domain definitions of Tp. (a) Speech
signal (a couple of periods), (b) glottal waveform (recon-
structed). For further detail, see the text

to any acoustic signal, means that (quasi)periodicity
or at least cyclic behavior is observed, and that the
task is to extract those features that best represent
this periodicity. The pertinent terms are fundamental
frequency and fundamental period. If individual cy-
cles are determined, we may (somewhat inconsistently)
speak of pitch periods or simply of periods. The per-
ception point of view leads to a frequency-domain
representation since pitch sensation primarily corre-
sponds to a frequency [10.4, 5] even if a time-domain
mechanism is involved [10.6]. This point of view is as-
sociated with the original meaning of the term pitch.
Yet the term pitch has consistently been used as some
kind of common denominator and a general name for
all those terms, at least in the technical literature on
speech [10.7]. In the following, we will therefore use
the term pitch in this wider sense, even for musical
signals.

When we proceed from production to perception,
we arrive at five basic definitions of pitch that apply to
speech signals and could read as follows ([10.1, 8, 9];
Fig. 10.1):

1. Ty is defined as the elapsed time between two

successive laryngeal pulses. Measurement starts
at a well-specified point within the glottal cycle,
preferably at the instant of glottal closure.
PDAs s that obey this definition will be able to locate
the points of glottal closure and to delimit individ-
ual laryngeal cycles. This goes beyond the scope of
ordinary pitch determination in speech; if only the
signal is available for the analysis, it must be totally
undistorted if reliable results are to be expected. For
music signals we can apply this definition if we an-
alyze a human voice or an instrument that operates
in a way similar to the human voice.

4a.

4b.

Ty is defined as the elapsed time between two
successive laryngeal pulses. Measurement starts
at an arbitrary point within an excitation cycle.
The choice of this point depends on the individual
method, but for a given PDA it is always located at
the same position within the cycle.

Time-domain PDAs usually follow this definition.
The reference point can be a significant extreme,
a certain zero crossing, etc. The signal is tracked
period by period in a synchronous way yielding
individual pitch periods. This principle can be ap-
plied to both speech and music signals. In speech it
may even be possible to derive the point of glottal
closure from the reference point when the signal is
undistorted.

Ty is defined as the elapsed time between two suc-
cessive excitation cycles. Measurement starts at an
arbitrary instant which is fixed according to exter-
nal conditions, and ends when a complete cycle has
elapsed.

This is an incremental definition. Ty still equals the
length of an individual period, but no longer from
the production point of view, since the definition
has nothing to do with an individual excitation
cycle. The synchronous method of processing is
maintained, but the phase relations between the la-
ryngeal waveform and the markers, i.e., the pitch
period delimiters at the output of the algorithm, are
lost. Once a reference point in time has been es-
tablished, it is kept as long as the measurement is
correct and the signal remains cyclic, for instance as
long as voicing continues. If this synchronization is
interrupted, the reference point is lost, and the next
reference point may be completely different with
respect to its position within an excitation cycle.
To is defined as the average length of several
periods. The way in which averaging is performed,
and how many periods are involved, is a matter of
the individual algorithm.

This is the standard definition of Ty for any
PDA that applies stationary short-term analysis,
including the implementations of frequency-
domain PDAs. Well-known methods, such as
cepstrum [10.10] or autocorrelation [10.11] ap-
proaches follow this definition. The pertinent
frequency-domain definition reads as follows.

Fy is defined as the fundamental frequency of an
(approximately) harmonic pattern in the (short-
term) spectral representation of the signal. It
depends on the particular method in which way
Fy is calculated from this pattern.
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The perception point of view of the problem leads to 10.1.2 Why is the Problem Difficult?
a different definition of pitch [10.5]:
Literally hundreds of methods for pitch determination
5.  Fy is defined as the frequency of the sinusoid that have been developed. None of them has been reported to
evokes the same perceived pitch (residue pitch, beerror free for any signal, application, or environmental
virtual pitch, etc.) as the complex sound that rep-  condition.
resents the input speech signal. At first glance the task appears simple: one just has
Above all, this definition is a long-term defi- to detect the fundamental frequency of a quasiperiodic
nition [10.12]. Pitch perception theories were first  signal. When dealing with speech signals, however, the
developed for stationary complex sounds with assumption of (quasi)periodicity is often far from reality.
constant Fp. The question of the behavior of For a number of reasons, the task of pitch determination
the human ear with respect to short-term per- must be counted among the most difficult problems in
ception of time-variant pitch is not yet fully speech analysis.
understood. The difference limen for Fy changes,
for instance, goes up by at least an order @ In principle, speech is a nonstationary process; the
of magnitude when time-variant stimuli are in- momentary position of the vocal tract may change
volved [10.13, 14]. In practice even such PDAs abruptly at any time. This leads to drastic variations
that claim to be perception oriented [10.15, 16] in the temporal structure of the signal, even between
enter the frequency domain in a similar way as subsequent pitch periods.
in definition 4b, i.e., by some discrete Fourier @ In fluent speech there are voiced segments that last
transform (DFT) with previous time-domain signal only a few pitch periods [10.17].
windowing. ® Due to the flexibility of articulatory gestures and the
wide variety of voices, there exist a multitude of
Since the results of individual algorithms differ ac- possible temporal structures. Narrowband formants
cording to the definition they follow, and since these at low harmonics (especially at the second or third
five definitions are partly given in the time (or lag) harmonic) are a particular source of trouble.
domain and partly in the frequency domain, it is nec- @ For an arbitrary speech signal uttered by an un-
essary to reestablish the relation between the time- and known speaker, the fundamental frequency can vary
frequency-domain representations of pitch, over a range of almost four octaves (50—800 Hz).
Especially for female voices, Fp thus often coin-
Fo=1/Ty (10.1) cides with the first formant (the latter being about
200-1400 Hz). This causes problems when inverse-
in such a way that, whenever a measurement is carried filtering techniques are applied.
out in one of these domains, however Ty or Fpis defined @ The excitation signal itself is not always regular.
there, the representation in the other domain will always Even under normal conditions, i. e., when the voice
be established by this relation. is neither hoarse nor pathologic, the glottal wave-
form exhibits occasional irregularities. In addition,
the voice may temporarily fall into vocal fry or creak
Creaky voice [-20ms ([10.18, 19]; Fig. 10.2).

Modal voice

Falsetto voice

i

Fig.10.2 Speech signal excitation with different voice registers
(male speaker, vowel [e])

® Additional problems arise in speech communication
systems, where the signal is often distorted or band
limited (for instance, in telephone or even mobile-
phone channels).

For music signals, the situation is comparable. The range
of Fy can be even wider than for speech. However, struc-
tural changes of the signal usually occur more slowly for
music. The maximum speed at which a musical instru-
ment can be played is about 10 notes per second so that
a single note usually lasts at least 100 ms. For speech,
on the other hand, 100 ms is already a lot of time which
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can consist of three or more segments. An additional
problem in music is that we may have to analyze poly-
phonic signals with several pitches present at the same
time.

10.1.3 Categorizing the Methods

A PDA is defined as consisting of three processing
steps: (a) the preprocessor, (b) the basic extractor,
and (c) the postprocessor [10.1,20]. The basic extrac-
tor performs the main task of converting the input
signal into a series of pitch estimates. The task
of the preprocessor is data reduction and enhance-
ment in order to facilitate the operation of the basic
extractor. The postprocessor (Sect. 10.5.4) is more ap-
plication oriented. Typical tasks are error correction,

10.2 Short-Term Analysis PDAs

In any short-term analysis PDA a short-term (or short-
time) transformation is performed in the preprocessor.
The speech signal is split into a series of frames; an in-
dividual frame is obtained by taking a limited number
of consecutive samples of the signal s(n) from a starting
point, n = g, to the ending point, n = ¢ + K. The frame
length K (or K + 1) is chosen short enough so that the
parameter(s) to be measured can be assumed approxi-
mately constant within the frame. On the other hand, K
must be large enough to guarantee that the parameter re-
mains measurable. For most short-term analysis PDAs
a frame thus requires two or three complete periods at
least. In extreme cases, when Fj changes abruptly, or
when the signal is irregular, these two conditions are in
conflict with each other and may become a source of
error [10.21]. The frame interval Q, i.e., the distance
between consecutive frames (or its reciprocal, the frame
rate), is determined in such a way that any significant
parameter change is documented in the measurements.
100 frames/s, i.e., Q = 10 ms, is a usual value.

The short-term transform can be thought of as behav-
ing like a concave mirror that focuses all the information
on pitch scattered across the frame into one single peak
in the spectral domain. This peak is then determined
by a peak detector (the usual implementation of the
basic extractor in this type of PDAs). Hence this al-
gorithm yields a sequence of average pitch estimates.
The short-term transform causes the phase relations be-
tween the spectral domain and the original signal to be
lost. At the same time, however, the algorithm loses

pitch tracking, and contour smoothing, or visualiza-
tion.

The existing PDA principles can be split into two
gross categories when the input signal of the basic ex-
tractor is taken as a criterion. If this signal has the same
time base as the original input signal, the PDA operates
in the time domain. It will thus measure Ty according
to one of the definitions 1-3 above. In all other cases,
somewhere in the preprocessor the time domain is left.
Since the input signal is time variant, this is done by
a short-term transform; and we will usually determine
To or Fy according to definitions 4a,b or 5; in some
cases definition 3 may apply as well. Accordingly, we
have the two categories: time-domain PDAs, and short-
term analysis PDAs. These will be discussed in the next
two sections.

much of its sensitivity to phase distortions and signal
degradation.

Not all the known spectral transforms show the de-
sired focusing effect. Those that do are in some way
related to the (power) spectrum: correlation techniques,
frequency-domain analysis, active modeling, and stat-
istical approaches (Fig. 10.3). These methods will be
discussed in more detail in the following.

10.2.1 Correlation and Distance Function

Among the correlation techniques we find the well-
known short-term autocorrelation function (ACF)

Short-term analysis pitch determination
t

¥

Frequency-domain

Distance function Cepstrum

d d

Correlation analysis
[M&M; N TR
¥

Autocorrelation Least-squares Active modeling

Harmonic analysis

!

methods
d d Ao d

Fig.10.3 Methods of short-term analysis (short-time analysis) pitch
determination. (Time 7 and lag d scales are identical; the frequency

f scale in the box ‘Harmonic analysis’ has been magnified)
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usually given by
q+K—d

r(d, q) = Z s(n)s(n+d) .

n=q
The autocorrelation function of a periodic signal exhibits
a strong peak when the lag d equals the period Ty/T of
the signal, 7 being the time-domain sampling interval
of the signal.

The autocorrelation PDA is among the oldest prin-
ciples for short-term analysis PDAs. However, it tends
to fail when the signal has a strong formant at the sec-
ond or third harmonic. Therefore this technique became
successful in pitch determination of band-limited speech
signals when it was combined with time-domain linear
or nonlinear preprocessing, such as center clipping or
inverse filtering [10.22,23].

The counterpart to autocorrelation is given by ap-
plying a distance function, for instance the average
magnitude difference function (AMDF) [10.24,25]:

q+K

AMDF(d, ¢)= Y _ |s(n) —s(n+d)| .

n=q

(10.2)

(10.3)

If the signal were strictly periodic, the distance func-
tion would vanish at the lag (delay time) d = Ty/T.
For quasiperiodic signals there will be at least a strong
minimum at this value of d. So, in contrast to other
short-term PDAs where the estimate of Tj or Fy is indi-
cated by a maximum whose position and value have to
be determined, the minimum has an ideal target value of
zero so that we only need to determine its position. For
this reason, distance functions do not require (quasi)-
stationarity within the measuring interval; they can cope
with very short frames of one pitch period or even less.
This principle is thus able to follow definition 3.

Shimamura and Kobayashi [10.26] combine ACF
and AMDF in that they weight the short-term ACF with
the reciprocal of the AMDEF, thus enhancing the principal
peak of the ACF at d = Ty /T. For the PDA they named
YIN, De Cheveigné and Kawahara [10.27] start from
a squared distance function,

q+K
D(d, q) =Y [s(n)—s(n+d)]’ (10.4)
n=q
and normalize it to increase its values at low lags,
D,
D'(d, q)= % ;d>0 (10.5)
7Y DG, 9)
5=1

with D’(0) = 1. In doing so, the authors were able to drop
the high-frequency limit of the measuring range and to

apply their PDA to high-pitched music signals as well.
The normalized distance function is locally interpolated
around its minima to increase the accuracy of the value
of D’ at the minima and the pitch estimate at the same
time.

Knowing that many errors arise from a mismatch
during short-term analysis (which results in too few or
too many pitch periods within a given frame), Fujisaki
et al. [10.21] investigated the influence of the relations
between the error rate, the frame length, and the actual
value of Ty for an autocorrelation PDA that operates
on the linear prediction residual. The optimum occurs
when the frame contains about three pitch periods. Since
this value is different for every individual voice, a fixed-
frame PDA runs nonoptimally for most situations. For an
exponential window, however, this optimum converges
to a time constant of about 10ms for all voices. For
a number of PDAs, especially for the autocorrelation
PDA, such a window permits recursive updating of the
autocorrelation function, i.e., sample-by-sample pitch
estimation without excessive computational effort.

Hirose et al. [10.28] and Talkin [10.17] showed that
the autocorrelation function can also be computed in
a nonstationary way using a suitable normalization,

q+K

> s(n)s(n+d)

n=q

q+kK q+kK .
|:Z sz(n):| |:Z sz(n+d):|

n=q n=q

r(d, q) = (10.6)

In Talkin’s PDA a 7.5 ms frame is used; the effective
frame length is of course 7.5 ms plus the longest pitch
period in the measuring range.

Terez [10.29] applies a multidimensional embed-
ding function and a scatter plot procedure derived from
chaos theory. The underlying idea, however, is quite
straightforward and leads to a distance function in a mul-
tidimensional state space. The problem is how to convert
the one-dimensional speech signal into a multidimen-
sional representation. In Terez’s algorithm a vector is
formed from several equally spaced samples of the
signal,

s(n) = [s() s +d) - s+ N,

(where the frame reference point ¢ has been omitted
here and in the following for sake of simplicity) whose
components create an N-dimensional space, the state
space. In Terez’s algorithm, N = 3 and d = 12 samples
gave the best results. If the signal is voiced, i. e., cyclic,
the vector s will describe a closed curve in the state
space as time proceeds, and after one pitch period it is

(10.7)
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expected to come back near the starting point. We can
thus expect the (Euclidian) distance

D(n, p) = lls(n) —=s(n+ p)ll (10.8)

generally to become a minimum when the trial period
p equals the true period Tp/T. If we compute D(n, p)
for all samples s(n) within the frame and all values of
p within the measuring range and count the number of
events, depending on p, where D lies below a prede-
termined threshold, we arrive at a periodicity histogram
that shows a sharp maximum at p = Tp/T.

As it develops the distance function D for all sam-
ples of a frame, this PDA follows the short-term analysis
principle. Yet one can think of running it with a compara-
tively short window, thus following definition 3.

The idea of using a multidimensional representa-
tion of the signal for a PDA (and VDA) dates back to the
1950s [10.1]. In 1964 Rader [10.30] published the vector
PDA where he used the output signals from a filterbank
(cf. Yaggi [10.31], Sect. 10.3.3) and their Hilbert trans-
forms to form a multidimensional vector s(n, ¢). Rader
then used the Euclidian distance between the vector at
the starting point n = g of the measurement and the
points g + p to set up a distance function which shows
a strong minimum when p equals the true period Ty/7T .
This PDA follows definition 3 as well.

Medan et al. [10.32] present a PDA (they called
the super-resolution PDA) that explicitly addresses the
problem of granularity due to signal sampling and ap-
plies a short-term window whose length depends on the
trial pitch period p in that it takes on a length of exactly
2p. A similarity function is formulated that expresses
the relation between the two periods in the window,

s(n,g)=a-s(n+p,q)+en, q);
n=q, - ,q+p—1. (10.9)

Here, a is a positive amplitude factor that takes into
account possible intensity changes between adjacent
periods. Equation (10.9) is optimized with respect to
a and the unknown period p applying a least-squares
criterion to minimize the error e,

g+p—1 )
> [s(n)—as(n+ p)]
~ . n=q
p = argmin, , pr—
Y s%(n)
n=q

(10.10)

This optimization finally results in maximization of the
correlation term
q+p-1

2
> s(n)s(n+ p)}

n=q

g+p-1 q+p-1
5 o [
n=q n=q

(10.112)

This resembles Talkin’s ACF approach [10.17] except
that here the trial period p determines the length of the
window as well.

From (10.11) a pitch period estimate can only be de-
rived as an integer number of samples. In a second pass,
this estimate is refined (to yield the super-resolution) by
expanding (10.11) for a fraction of a sample using linear
interpolation.

A

p = argmax

10.2.2 Cepstrum and Other
Double-Transform Methods

The sensitivity against strong first formants, especially
when they coincide with the second or third harmonic,
is one of the big problems in pitch determination. This
problem is suitably met by some procedure for spectral
flattening.

Spectral flattening can be achieved in several ways.
One of them is time-domain nonlinear distortion, such
as center clipping ([10.11, 22]; see previous section).
A second way is linear spectral distortion by inverse fil-
tering (e.g., [10.23]). A third way is frequency-domain
amplitude compression by nonlinear distortion of the
spectrum. This algorithm operates as follows: (1) short-
term analysis and transformation into the frequency
domain via a suitable discrete Fourier transform (DFT),
(2) nonlinear distortion in the frequency domain, and
(3) inverse DFT back into the time domain (which we
will call the lag domain to avoid ambiguity).

e or el o

Fig.10.4 Cepstrum pitch determination. Signal: vowel [i], 48 ms
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If we take the logarithm of the power spectrum as
the frequency-domain nonlinear distortion, we arrive at
the well-known cepstrum PDA ([10.10]; Fig. 10.4). In-
stead of the logarithmic spectrum, however, one can
also compute the amplitude spectrum or its square root
and transform it back [10.33, 34]. The inverse Fourier
transform of the power spectrum gives the autocorre-
lation function. All these so-called double-transform
techniques [10.33] lead to a lag-domain representation
that exhibits a strong maximum at the lagd = Ty /T . The
independent variable, lag (or quefrency, as it is called
with respect to the cepstrum [10.10]), has the physical
dimension of time, but as long as the phase relations are
discarded by the nonlinear distortion, all values of d re-
fer to a virtual point d = 0 where we will always find
a pitch pulse, and then the next one necessarily shows
upatd =Ty/T.

Two members of this group were already mentioned:
the autocorrelation PDA [10.11] and the cepstrum
PDA [10.10]. It is well known that the autocorrela-
tion function can be computed as the inverse Fourier
transform of the power spectrum. Here, the distortion
consists of taking the squared magnitude of the com-
plex spectrum. The cepstrum, on the other hand, uses
the logarithm of the spectrum. The two methods there-
fore differ only in the characteristics of the respective
nonlinear distortions applied in the spectral domain.
The cepstrum PDA is known to be rather insensitive
to strong formants at higher harmonics but to develop
a certain sensitivity to additive noise. The autocorrela-
tion PDA, on the other hand, is insensitive to noise but
rather sensitive to strong formants. Regarding the slope
of the distortion characteristic, we observe the dynamic
range of the spectrum being expanded by squaring the
spectrum for the autocorrelation PDA, whereas the spec-
trum is substantially flattened by taking the logarithm.
The two requirements — robustness against strong for-
mants and robustness against additive (white) noise —
are in some way contradictory. Expanding the dynamic
range of the spectrum emphasizes strong individual
components, such as formants, and suppresses wide-
band noise, whereas spectral flattening equalizes strong
components and at the same time raises the level of low-
energy regions in the spectrum, thus raising the level of
the noise as well. Thus it is worth looking for other char-
acteristics that perform spectral amplitude compression.
Sreenivas [10.36] proposed the fourth root of the power
spectrum instead of the logarithm. For larger amplitudes
this characteristic behaves very much like the logarithm;
for small amplitudes, however, it has the advantage of
going to zero and not to —oo. Weiss et al. [10.33] used the

amplitude spectrum, i. e., the magnitude of the complex
spectrum.

10.2.3 Frequency-Domain Methods:
Harmonic Analysis

Direct determination of Fy as the location of the lowest
peak in the power or amplitude spectrum is unreli-
able and inaccurate; it is preferable to investigate the
harmonic structure of the signal so that all harmonics
contribute to the estimate of Fy. One way to do this is
spectral compression combined with harmonic pattern
matching, which computes the fundamental frequency
as the greatest common divider of all harmonics. The
power spectrum is compressed along the frequency axis
by a factor of two, three etc. and then added to the orig-
inal power spectrum. This operation gives a peak at Fy
resulting from the coherent additive contribution of the
higher harmonics [10.35,37]. Some of these PDAs stem
from theories and functional models of pitch perception
in the human ear [10.12, 15, 16].

The PDA described by Martin [10.35] (Fig. 10.5)
modifies the harmonic pattern-matching principle in
such a way that the computational effort for the spectral
transform is minimized. The signal is first decimated
to 4kHz and then Fourier transformed by a 128 point
fast Fourier transform (FFT). This yields a spectral res-
olution of about 30 Hz, which is sufficient to represent

l Signal (32ms)
Decimate to 4kHz t
weight
l Amplitude spectrum
- (0—2kHz, 64 samples)
128 point FFT
compute amplitude spectrum r
. ‘ After maximum selection
Select significant extremes
set everything else to zero f
l Spectrum after interpolation

Interpolate around maxima (0-2kHz, 2048 samples)

refine spectral resolution
I An L

Spectral comb filter
compute estimator A(p)

Spectral comb filter (example)

Pt Fy g L
Ap)t | Harmonic estimator
= arg max [4(p)] M“'W'V\M »
) {Fo=p=124Hz

Fig.10.5 Frequency-domain PDA by harmonic compres-
sion and pattern matching (after Martin [10.35])
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values of Fp down to 60Hz. The algorithm then en-
hances any spectral information that may pertain to
a harmonic structure by preserving only those spectral
samples that represent local maxima or their immediate
neighbors and setting everything else to zero. To mea-
sure Fp with sufficient accuracy, the spectral resolution
is then increased to 1 Hz. A spectral comb filter, which
is applied over the whole range of Fy, yields the har-
monic estimation function A(p); the value of p where
this function reaches its maximum is taken as the es-
timate for Fy. In a more-recent version of this PDA,
Martin [10.38,39] applies a logarithmic frequency scale
for the computation of A(p), which results in another
substantial reduction of the computational effort and has
the additional advantage that the relative accuracy of the
PDA is now constant over the whole range of Fy.

Similar to Martin’s [10.38] PDA for speech,
Brown [10.41] developed a frequency-domain PDA for
music which uses a logarithmic frequency scale. In
Brown’s PDA the spacing on the frequency axis equals
a quarter tone (about 3%), i.e., 1/24 of an octave. In
such a scale that corresponds to a musical interval scale,
a harmonic structure, if the timbre is unchanged, al-
ways takes on the same pattern regardless of the value
of its fundamental frequency (Fig. 10.6). Consequently,
a pattern-recognition algorithm is applied to detect such
patterns in the spectrum and to locate their starting point
corresponding to Fp. The patterns themselves depend
on the kind of instrument analyzed and can be adjusted
according to the respective instruments.

Special attention is given to the frequency resolu-
tion of the PDA. To apply a pattern-recognition method,
patterns are expected to align with the semitone scale.
This requires the frequency scale spacing of a quarter

14l

oL L LA
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o J\l HJJ\MMMM}A

S (kHz)

0.

—_

Fig.10.6 Harmonic patterns in log frequency scale (after
Brown and Puckette [10.40])

tone. To make sure that a harmonic shows up in one and
only one frequency bin, we need a window length of
34 fundamental periods to satisfy the sampling theorem
in the frequency domain. For Fp = 100 Hz this would
give a window of 340 ms, which is far beyond reality
for speech and even excessive for music. However, if
we adapt the window-length requirement to the funda-
mental frequency to be determined, we would need 34
periods at any Fy to be measured, which results in much
shorter windows for higher-frequency bins. For the DFT,
this leads to a window whose length is inversely propor-
tional to the bin’s frequency. If the spectral values are
computed individually, both an individual time-domain
window for each frequency bin and unequal spacing
of the frequency bins are possible. Brown and Puck-
ette [10.40] showed that a fast Fourier transform can
be applied if its kernel is slightly modified. The PDA by
Medan et al. [10.32] is a time-domain counterpart to this
approach.

As the accuracy of this PDA was not sufficient to
determine Fy for instruments that can vary their frequen-
cies continuously (such as string or wind instruments or
a human voice), and as the required window length was
excessive even for music, a PDA with a 25ms win-
dow was developed [10.40] whose frequency resolution
was refined using a phase-change technique. This tech-
nique is based on the instantaneous-frequency approach
by Charpentier [10.42] (see below) who used the short-
term phase spectrum at two successive samples in time
to determine the frequencies of the individual harmon-
ics without needing spectral interpolation. When a Hann
window is used to weight the time signal, the time shift of
one sample can be recursively computed in the frequency
domain without needing another DFT.

Lahat et al. [10.43] transfer the autocorrelation
method into the frequency domain. The amplitude spec-
trum is passed through a bank of 16 spectral filters
(lifters), which cover the measuring range of Fy. At the
output of each lifter a frequency domain autocorrelation
function is calculated covering the respective range of
each lifter. The estimate for Fj is then determined as the
location of the maximum of that function and refined by
interpolation.

For harmonic analysis it is often convenient to es-
timate the number of harmonics, i.e., the order of
a harmonic model, simultaneously with the fundamen-
tal frequency. For instance, Doval and Rodet [10.44]
apply such a procedure for a PDA with an extremely
wide measuring range (40—4000 Hz) for music signals.
The algorithm is based on a harmonic-matching proce-
dure using a maximume-likelihood criterion. To obtain
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Fig.10.7a—c PDA with active model-
ing. (a) Signal: 32 ms, vowel [e], male
voice; (b) zeros of the 41-st-order
LP polynomial in the z plane (up-
per half; sampling frequency reduced
to 2kHz); (c) reconstructed impulse
response with zero phase and equal
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arapid initial estimate, the measuring range is split into
subranges that have an equal number of partials in the
frequency range for which the spectrum is analyzed. The
initial estimate is obtained by selecting the subrange that
is most likely to contain the optimal estimate for Fp. For
the final step of refining the estimate, only this subrange
is further processed.

The principle of instantaneous frequency (IF)
was introduced into pitch determination by Charpen-
tier [10.42]. Instantaneous frequency is defined as the
time derivative of the instantaneous phase,

@(t) ;== % for s(t) = a(t) expliw(t)t] , (10.12)

where a(t) is the instantaneous amplitude. The short-
term Fourier transform can be viewed as a set of
bandpass filters as follows,

S(f, 1) = f s(yw(t —1)e T 4r (10.13)
— e mift / s(Dw(t — 1) e 2/ =1) q¢
F(f,1)=eVS(f,1). (10.14)

Here, the signal F is the output of the bandpass centered
around the frequency f. The IF for this signal becomes

d
o(fit)= P arg[F(f, 1)]. (10.15)

There are different ways to effectively compute the
IF from the discrete short-term spectrum [10.42,45,46].
The bandpass filters have a certain bandwidth that de-
pends on the time-domain window applied [10.42] and
extends over more than one DFT coefficient. If we now
compute the IF for each frequency bin of the DFT spec-
trum of a voiced speech signal, the IFs of bins adjacent
to a strong harmonic tend to cluster around the true
frequency of this harmonic, and so it is possible to
enhance the harmonics in the spectrum if the bins are re-
grouped according to their respective IFs, thus forming

amplitude of all partials

the so-called IF amplitude spectrum. Abe et al. [10.45]
transform the IF amplitude spectrum back into the
time domain, thus obtaining a representation similar to
that of a double-spectral-transform PDA. Nakatani and
Irino [10.46] define a spectral dominance function that
suppresses insignificant information in the IF amplitude
spectrum and derive Fp by harmonic matching of this
dominance function.

10.2.4 Active Modeling

Linear prediction (LP) is usually applied to estimating
the transfer function of the vocal tract. If a high-order
LP filter is applied to a voiced speech signal, however,
its poles will match the individual harmonics of the sig-
nal rather than the resonances of the vocal tract. A PDA
based on this principle was designed by Azal (unpub-
lished; see [10.47], or [10.1]). The algorithm operates as
follows (Fig. 10.7):

® After decimation to 2kHz, the signal is analyzed
with a 41-st-order LP filter using the covariance
method of linear prediction. The high order guar-
antees that even at the low end of the Fy range, i.e.,
at Fyp = 50Hz, two complex poles are available for
each harmonic. Each complex pole pair represents
an exponentially decaying (or rising) oscillation.

® To eliminate phase information, all residues at the
pole locations in the z plane are set to unity. The
pertinent computation can be avoided when the lo-
cations of the poles are explicitly determined.

® The impulse response of the filter now supplies
a waveform for the estimation of Ty (Fig. 10.7c¢).
When the poles are explicitly available, it is sufficient
to determine and to sum up the impulse responses
of the individual second-order partial filters. This
method has the advantage that the sampling fre-
quency of the impulse response — and with it the
measurement accuracy — can easily be increased. In
addition, poles that are situated outside or far inside
the unit circle can be modified or excluded from
further processing.
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Arévalo [10.48] showed that this PDA is extremely
robust to noise and that one can also use it with short
frame lengths so that it matches definition 3.

10.2.5 Least Squares
and Other Statistical Methods

The first statistical approach in pitch determination
is based on a least-squares principle. Originally this
approach was based on a mathematical procedure to
separate a periodic signal of unknown period 7p from
Gaussian noise within a finite signal window [10.49]. It
computes the energy of the periodic component at a trial
period t and varies t over the whole range of 7p. The
value of 7 that maximizes the energy of the periodic
component for the given signal is then taken as the esti-
mate of Ty. Friedman [10.50] showed that this PDA has
a trivial maximum when t equals the window length K,
and developed a work-around.

With respect to robustness, the least-squares PDA
behaves like the autocorrelation principle: it is extremely
robust against noise but somewhat sensitive to strong
formants. However, there is no algorithmic shortcut so
that an order of K> operations are needed to compute
the estimate for a frame. So this PDA was slower than
its counterparts that can make use of the FFT; hence this
principle was not further pursued until more powerful
computers became available.

The method was revived with the upcoming of the si-
nusoidal model of speech [10.2]. The continuous speech
signal s(n) is modeled as a sum of sinusoids with time-
varying amplitudes, frequencies, and phases. Within
a short-term frame, these parameters can be assumed
constant,

M
s(n) = Z S exp (i2un+ o) . (10.16)

m=1

The parameters of this model are estimated from the
peaks within the short-term Fourier spectrum of the
frame. This can be converted into a PDA [10.51] when
the sinusoidal representation in (10.16), whose frequen-
cies are generally not harmonics of a fundamental, is
matched against a harmonic model,

K

u(n) ="y Up exp (ik2on+ ) . (10.17)
k=1

Starting from the difference between s(n) and u(n), the

match is done using a modified least-squares criterion,
which finally results in maximizing the expression with

respect to the trial (angular) fundamental frequency p,

K(p)
op)="Y_ Ulkp)
k=1

1
x {erg%c p)[Sm D(2y, —kp)] — EU (kp)} .

(10.18)

Like the model of virtual-pitch perception [10.4], this
criterion takes into account near-coincidences between
a harmonic kp and the (angular) frequency £2,, of the
respective component of the sinusoidal model, and it
defines a lobe L of width p around each harmonic and
the corresponding weighting function

D(2 —kpy = S22 —kp)/p ] (10.19)

(£2—kp)/p

within the lobe, and zero outside. The lobe becomes
narrow for low values of p and broader for higher values.
If there are several components £2,,, within a lobe, only
the largest is taken. The amplitude estimates U(kp) are
derived from a smoothed Fourier or LP spectrum of the
frame. The measurement may be confined to a subband
of the signal, e.g., to 2kHz.

Both the sinusoidal model and the PDA have been
applied to speech and music signals.

For pitch detection in noisy speech, third-order
statistics are occasionally applied. One such PDA was
developed by Moreno and Fonollosa [10.52]. Their PDA
applies a special third-order cumulant,

C,d):= Zs(n) s(n) s(n+d), (10.20)

n

which tends to vanish for noises with symmetrical dis-
tribution, such as Gaussian noise. It also tends to vanish
for voiceless fricatives, as Wells [10.53] discovered for
his VDA. If the signal is periodic, the cumulant C is also
periodic, but one cannot expect a maximum to occur
at d = 0. This PDA thus treats C(0, d) like an ordinary
signal, takes the autocorrelation function, and derives
Tp therefrom in the same way as it is done in an or-
dinary autocorrelation PDA. The algorithm was tested
with speech in various additive noises at various signal-
to-noise ratios (SNRs) against an autocorrelation PDA
(without any pre- or postprocessing) and found superior,
especially when noise levels were high.

The PDA by Tabrikian et al. [10.54] determines the
parameters of a harmonic-plus-noise model by max-
imizing a log-likelihood measure, i.e., the unknown
fundamental frequency, the spectral amplitudes of the
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harmonics, and the variance of the noise, which is mod-
eled to be Gaussian. It then performs pitch tracking over
consecutive frames using a method based on the max-
imum a posteriori probability. The authors tested their
PDA under extreme noise conditions and found that it
worked even at SNRs of —5 dB and worse. A similar al-
gorithm was developed by Godsill and Davy [10.55] for
music signals.

10.2.6 Concluding Remarks

Short-term analysis PDAs provide a sequence of average
pitch estimates rather than a measurement of individual
periods. They are not very sensitive to phase distortions
or to the absence of the first partial. They collect informa-
tion about pitch from many features and (mostly) from
several periods of the signal. They are thus robust against
additive noise. Some of them still work at SNRs of 0 dB
or worse. On the other hand, they are sensitive when the
signal does not fulfil their basic requirement, i. e., peri-
odicity. Rapid within-frame changes of Fy of irregularly
excited signals (e.g., laryngealizations) lead to failure.

10.3 Selected Time-Domain Methods

This category of PDAs is less homogenous than that
of the short-term analysis methods. One possibility to
group them is according to how the data reduction is
distributed between the preprocessor and the basic ex-
tractor, and we find most of these PDAs between two
extremes.

® Datareduction is done in the preprocessor. In the ex-
treme case, only the waveform of the first harmonic
is offered to the basic extractor. The basic extractor
processes this harmonic and derives pitch from it.

® Data reduction is done in the basic extractor, which
then has to cope with the whole complexity of the
temporal signal structure. In the extreme case, the
preprocessor is totally omitted. The basic extractor
investigates the temporal structure of the signal, ex-
tracts some key features, and derives the information
on pitch therefrom.

A third principle is situated somewhere in the mid-
dle of these extremes. Temporal structure simplification
performs a moderate data reduction in the preprocessor
but preserves the harmonic structure of the signal.

Time-domain PDAs are principally able to track the
signal period by period. At the output of the basic extrac-

One advantage of this principle that is not always
explicitly mentioned is the ability to give rather accu-
rate estimates and to overcome measurement granularity
due to signal sampling. To decrease computational com-
plexity, many of these PDAs perform some moderate
low-pass filtering and/or decrease the sampling fre-
quency in the first step and thus increase the granularity.
Once a crude estimate is available, it can be refined
via a local interpolation routine, which is frequently
implemented. This is most evident in active modeling
(Sect. 10.2.4) where the impulse response of the model
filter can be generated with an arbitrarily high sampling
frequency independently from the sampling frequency
of the signal. However, any other representation from
which pitch is derived — ACF, AMDE, cepstrum, etc.
— can be treated like a signal and can be locally up-
sampled, e.g., via a standard multirate finite impulse
response (FIR) filter, to increase measurement accuracy.
The evaluation by McGonegal et al. [10.56] showed that
an increased accuracy is honored by the human ear when
listening to synthetic speech generated with such a pitch
contour.

tor we usually obtain a sequence of period boundaries
(pitch markers). Since the local information on pitch is
taken from each period individually, time-domain PDAs
are sensitive to local signal degradations and are thus
less reliable than most of their short-term analysis coun-
terparts. On the other hand, time-domain PDAs may still
operate correctly even when the signal itself is aperiodic
(but still cyclic), in speech for instance due to temporary
voice perturbation or laryngealization.

Most time-domain PDAs, especially those which
follow definitions 2 and 3, were developed before the
1990s. With the introduction of time-domain pitch
modification methods [10.57], research in this area
concentrated on high-precision algorithms for determi-
nation of the instant of glottal closure. This issue will be
discussed in Sect. 10.7.1.

10.3.1 Temporal Structure Investigation

A pitch period in speech is the truncated response of
the vocal tract to an individual glottal impulse. Since
the vocal tract behaves like a lossy linear system, its
impulse response consists of a sum of exponentially
damped oscillations. It is therefore to be expected that
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the magnitude of the significant peaks in the signal is
greater at the beginning of the period than versus the end.
Appropriate investigation of the signal peaks (maxima
and/or minima) leads to an indication of periodicity.

There are some problems with this approach, how-
ever. First, the frequencies of the dominant damped
waveforms are determined by the local formant pattern
and may change abruptly. Second, damping of the for-
mants, particularly of a low first formant, is often quite
weak and can be hidden by temporary changes of the sig-
nal level due to articulation. Third, if the signal is phase
distorted, different formants may be excited at differ-
ent points in time. These problems are solvable but lead
to complex algorithmic solutions investigating a great
variety of temporal structures.

The usual way to carry out the analysis is the fol-
lowing [10.58].

® Do a moderate low-pass filtering to remove the
influence of higher formants.

® Determine all the local maxima and minima in the
signal.

® Exclude those extremes that are found to be insignif-
icant until one significant point per period is left; this
point will become the local pitch marker.

® Reject obviously wrong markers by local correction.

Many individual (and heuristic) solutions have been
developed, but they cannot be reviewed here for lack
of space. For more details, the reader is referred to the
literature [10.1].

10.3.2 Fundamental Harmonic Processing

Fop can be detected in the signal via the waveform
of the fundamental harmonic. If present in the signal,
this harmonic is extracted from the signal by extensive
low-pass filtering in the preprocessor. The basic extrac-
tor can then be relatively simple. Figure 10.8 shows
the principle of three basic extractors: zero-crossings
analysis as the simplest one, nonzero threshold ana-
lysis, and finally threshold analysis with hysteresis. The
zero-crossings analysis basic extractor sets a marker
whenever the zero axis is crossed with a defined po-
larity. This requires that the input waveform has two
and only two zero crossings per period. The threshold
analysis basic extractor sets a marker whenever a given
nonzero threshold is exceeded. When operating with
hysteresis, the marker is only set when a second (lower)
threshold is crossed in the opposite direction. This more-
elaborate device requires less low-pass filtering in the
preprocessor.

Threshold analysis basic extractor
with hysteresis
I

(Nonzero) threshold analysis basic extractor
! I

Zero—crossings analysis basic extractor
lﬂl/\ 1 1V\ VAN SVANI-VA NI AVANIAVA 3)
LRV ARV RV VRV Y,

AT @

Fig.10.8 Example of the performance of basic extractors
for fundamental harmonic extraction in speech. Signals:
(1) original (vowel [i], 32 ms), (2) low-pass filtered at
6 dB/oct, (3) low-pass filtered at 12dB/oct, and (4) low-
pass filtered at 18 dB/oct. The signal is such that success
and failure are displayed at the same time

The requirement for extensive low-pass filtering is
a severe weak point of this otherwise fast and simple
principle when applied to speech signals. In a number
of applications, however, such as voice quality meas-
urement or the preparation of reference elements for
time-domain speech synthesis, where the signals are
expected to be clean, the use of a PDA applying first-
partial processing may be advantageous. Dologlou and
Carayannis [10.59] proposed a PDA that overcomes
a great deal of the problems associated with the low-
pass filter. An adaptive linear-phase low-pass filter that
consists of a variable-length cascade of second-order fil-
ters with a double zero in the z plane at z = —1 is applied.
These filters are consecutively applied to the input sig-
nal; after each iteration the algorithm tests whether the
higher harmonics are sufficiently attenuated; if they are,
the filter stops. Tp is then derived from the remaining
first partial by a simple maximum detector. Very low-
frequency noise is tolerable since it barely influences the
positions of the maxima.

10.3.3 Temporal Structure Simplification

Algorithms of this type take some intermediate posi-
tion between the principles of structural analysis and
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Fig.10.9 Example PDA by Yaggi (1962 [10.31]). The signal is split into 19 subbands. In each channel (CH) the filtered
signal is rectified and smoothed; the weighted outputs of the channels are added, and pitch markers are derived from the

resulting signal via maximum detection

fundamental harmonic extraction. The majority of these
algorithms follow one of two principles: (1) inverse fil-
tering, and (2) epoch detection. Both of these principles
deal with the fact that the laryngeal excitation function
has a temporal structure that is much simpler and more
regular than the temporal structure of the speech signal
itself, and both methods when they work properly are
able to follow definition 1 if the signal is not grossly
phase distorted.

The inverse filter approach cancels the transfer func-
tion of the vocal tract and thus reconstructs the laryngeal
excitation function. If one is interested in pitch only and
not in the excitation function itself, a crude approxima-
tion of the inverse filter is sufficient. For instance, we
can confine the analysis to the first formant [10.60].

The second principle, epoch extraction [10.61], is
based on the fact that at the beginning of each laryngeal
pulse there is a discontinuity in the second derivative of
the excitation function. Usually this discontinuity can-
not be reliably detected in the speech signal because of
phase distortions that occur when the waveform passes

the vocal tract. The signal is thus first phase shifted by
90° (by applying a Hilbert transform). The squares of the
original and the phase-shifted signals are then added to
yield a new signal that shows a distinct peak at the time
when the discontinuity in the excitation function occurs.
In principle this yields the instantaneous amplitude of
the complex analytic signal constructed from the origi-
nal signal as its real part and the phase-shifted signal as
its imaginary part.

The original method [10.61] works best when the
spectrum of the investigated signal is flat to some extent.
To enforce spectral flatness, the analyzed signal can be
band limited to high frequencies well above the narrow-
band lower formants. Another way is to analyze the LP
residual or to filter the signal into subbands.

One prototype of these algorithms, which never be-
came widely known, was developed by Yaggi [10.31]. It
splits the signal into 19 subbands and subsequently rec-
tifies and smoothes the signal in each channel so that
the envelope is extracted. The individual channels are
then added, and the individual periods are derived from
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the resulting signal (Fig. 10.9). Another prototype is the
PDA by Dolansky [10.62] that models the envelope of
the pitch period by a decaying exponential function (in
analog technology) and sets a marker whenever the sig-
nal exceeds the modeled envelope, resetting the envelope
at the same time.

Both the inverse filter approach and the epoch de-
tection principle have one weak point, which frequently
arises with female voices. When Fjy is high, it may co-
incide with the first formant F1. In this case the signal
becomes nearly sinusoidal since we have something like
a double pole glottal formant and F1 at the same fre-
quency) in the overall transfer function. If an inverse
filter is not blocked in this case, it removes the funda-
mental harmonic from the signal and brings the PDA
to failure. For epoch detection, we know that the enve-
lope of a sinusoid is a constant (cos® x 4 sin” x = 1) and
does not show any discontinuity. Hence these algorithms
need a work-around for low values of F1.

This drawback was overcome by the finding that the
global statistical properties of the waveform change with
glottal opening and closing as well. We will come back
to this issue in Sect. 10.7.1.

Structural analysis of the signal itself or of some
simplified representation, especially when many possi-
ble structures have to be reviewed, is a good candidate for

self-organizing, nonlinear pattern-recognition methods,
i.e., for artificial neural networks. Such a PDA for
speech was introduced by Howard and Walliker [10.63].
The speech signal is divided into nine subbands with
a subsequent half-wave rectification and second-order
linear smoothing in each channel. The underlying idea
is to obtain a representation similar to thatin a wide-band
spectrogram. The basic extractor consists of a four-layer
perceptron structure, the input layer consisting of 41
successive samples in each subband. Two hidden lay-
ers with 10 units each and a fully connected network are
followed by a one-unit output layer, which is intended to
yield an impulse when the network encounters a signal
structure associated to the instant of glottal closure. The
network is trained using (differentiated) output signals
of alaryngograph as reference data. Such a structure has
the advantage that it can be based upon several features
occurring at different instants during a pitch period.

10.3.4 Cascaded Solutions

Among the many possibilities of such solutions, one
is of particular interest here: the cascade of a robust
short-term PDA and an accurate but less-robust time-
domain PDA. Such an algorithm is further described in
Sect. 10.7.1.

10.4 A Short Look into Voicing Determination

The task of voicing determination of speech signals may
be split up into two subtasks: (1) a decision of whether
or not a voiced excitation is present and (2) a decision of
whether or not a voiceless excitation is present. If nei-
ther of these excitations is active, the current segment
represents pause or silence; if both excitations are sim-
ultaneously active, we speak of mixed excitation. The
two features voiced and voiceless are binary unless they
occur simultaneously. In segments with mixed excita-
tion the degree of voicing — for instance, the energy
ratio of the voiced and voiceless excitations — may play
arole, although this feature is rarely exploited.

Most voicing determination algorithms (VDAS) thus
apply decisions. VDAs exploit almost any elementary
speech signal parameter that may be computed indepen-
dently of the type of input signal: energy, amplitude,
short-term autocorrelation coefficients, zero-crossings
count, ratio of signal amplitudes in different subbands
or after different types of filtering, linear prediction er-
ror, or the salience of a pitch estimate. According to the

method applied, VDAs can be grouped into three ma-
jor categories: (1) simple threshold analysis algorithms,
which exploit only a few basic parameters [10.64];
(2) more-complex algorithms based on pattern recog-
nition methods; and (3) integrated algorithms for both
voicing and pitch determination.

In this section, we distinguish between voiceless and
unvoiced. Unvoiced means that a frame can be anything
but voiced, i.e., it can be voiceless or silence. Voice-
less means that voiceless excitation is present so that
the frame is neither voiced nor silence. We will not re-
view such algorithms that distinguish between speech
and nonspeech — many of such algorithms have been
developed for other applications, such as voice over
Internet protocol (IP) or bandwidth reduction in mo-
bile telephony (see, for instance, Davis et al. [10.65],
for a survey). The basic task of the VDA in the con-
text of pitch determination is to decide whether a frame
or signal segment is voiced (and thus subject to pitch
determination) or unvoiced.
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10.4.1 Simultaneous Pitch
and Voicing Determination

A number of PDAs — usually pertaining to the short-
term analysis category — permit estimation the salience
of their results without having to know the actual value
of the pitch estimate. This is always possible when the
amplitude of the significant maximum or minimum at 7
or Fp in the basic extractor of the PDA can be compared
to a reference value. As an example, the ratio of the
values of the autocorrelation function at d = T and at
d = 0 (the latter equalling the signal energy) gives a di-
rect measure of the degree of periodicity of the signal. It
is dangerous, however, to rely on this feature alone. Of
course, it is correct (and almost trivial) to state that pitch
can exist only when the signal is voiced. However, this
statement cannot be simply reversed; i. e., we cannot say
that a segment is unvoiced because pitch is not existent
(or not measurable). The corresponding PDA may mo-
mentarily fail, or the signal may be voiced but irregular
([10.47,66]; see also Fig. 10.2 or Sect. 10.1.2). Ampli-
tude changes and especially small intraframe changes
of Fy severely degrade the salience of the pitch es-
timate [10.36]. It is thus at least necessary to check
adjacent frames before making a decision [10.10]. In this
respect, such a VDA behaves very much like a median
smoother in pitch determination.

In principle, these VDAs do not make a voiced—
unvoiced discrimination; rather they check for the
presence of a (sufficient but not absolutely necessary)
condition for a voiced signal. An improvement is to be
expected when such criteria are only used for declaring
a frame as voiced, and when the decision to declare it as
unvoiced is based on additional criteria [10.67].

The VDA by Lobanov [10.68] avoids this problem,
although it is based on a similar principle. A voice-
less segment of speech represents a stochastic signal
which is continuously excited. In contrast, the excita-
tion of a voiced signal is confined to a few instants per
period; major parts of the pitch period are composed of
exponentially decaying oscillations, and adjacent sam-
ples of the signal are highly correlated. This contrast of
a highly stochastic versus a highly deterministic signal
is preserved even when a voiced signal becomes irreg-
ular or aperiodic. Lobanov’s VDA exploits this feature
by computing the Hilbert transform of the speech signal,
combining the original signal and its Hilbert transform
to yield the complex analytic signal, and plotting the mo-
mentary amplitude and phase of the analytic signal in
the so-called phase plane. For voiced frames the analytic
signal will describe a closed curve. During unvoiced

segments, where the signal and its Hilbert transform
are much less correlated, the curve will touch almost
any point in the phase plane within a short interval. In
Lobanov’s algorithm the phase plane is crudely quan-
tized, and the algorithm simply counts the number of
points which have been touched within a given frame.

Talkin’s PDA [10.17] integrates the VDA into
the postprocessor that applies dynamic programming.
Among the various estimates for T to be tracked, there
is always a candidate unvoiced, which is selected when
it lies on the optimal path (Sect. 10.5.4).

Ahmadi and Spanias [10.67] present an improved
VDA module within an implementation of the cepstrum
PDA [10.10] for telephone-bandwidth speech. An utter-
ance is processed in two passes. The first pass, covering
the whole utterance, is to derive gross initial thresholds
for a rough voiced—unvoiced decision. Distributions are
taken for the relative amplitude of the main cepstral peak,
the relative zero-crossings rate, and normalized signal
energy. The medians of these distributions serve as ini-
tial thresholds for the decisions to be made in the second
pass. A frame is roughly declared unvoiced if its en-
ergy and cepstral peak amplitudes are below and its zero
crossings rate is above the respective threshold. Frames
are declared voiced according to their cepstral peak
amplitudes and a continuity criterion. The algorithm
was evaluated on data from the TIMIT corpus; refer-
ence values were obtained using the PDA by McAulay
and Quatieri [10.51] with visual inspection of uncer-
tain frames. For clean speech, voiced-to-unvoiced and
unvoiced-to-voiced errors together were about 1.5%.

McAuley and Quatieri [10.51] use their harmonic-
model PDA (Sect. 10.2.5) to incorporate a VDA. It is
based on the energy ratio between the harmonic energy
and the energy of the nonharmonic part of the signal (the
noise) which consists of everything not captured by the
harmonic structure. Frames for which this ratio is above
10dB are certainly voiced, while those for which the
ratio is below 4 dB are certainly unvoiced.

Fisher et al. [10.69] start from a generalized log
likelihood measure that is separately and independently
evaluated for the two hypotheses that the frame is
(1) voiced, or that it is (2) unvoiced. The measure
for the frame being voiced is based on the aforemen-
tioned ratio between harmonic and nonharmonic energy,
whereas the measure for unvoiced is based on a model
of colored Gaussian noise. The hypothesis with the
higher likelihood value wins for each frame; a dynamic-
programming postprocessor (Sect. 10.5.4) integrates the
VDA into the PDA which is also based on the harmonic-
plus-noise model.
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10.4.2 Pattern-Recognition VDAs

One of the motivations for applying a pattern-
recognition algorithm in a VDA was the wish to get
away from the conjunction of voicing determination and
pitch determination [10.70]. The VDA by Atal and Ra-
biner [10.70] (the first of a series of VDAs developed at
Bell Laboratories in the late 1970s) uses a statistical clas-
sifier and is based on five parameters: the signal energy,
the zero-crossing rate, the autocorrelation coefficient at
a delay of one sample, the first predictor coefficient of
a 12 pole LP analysis, and the energy of the normalized
prediction error. For a given environmental condition
the algorithm works well, but it is rather sensitive to en-
vironmental changes, e.g., from high-quality speech to
a telephone channel [10.47].

The usual classification problems in speech recog-
nition, where we have to cope with a large number of
different classes, require that the input parameters form
specific clusters in the parameter space, which are then
separated by the classifier. In contrast, the voicing deter-
mination problem has at most four categories (silence,
voiced, voiceless, and mixed) and the distribution of
the patterns in the parameter space is rather diffuse.
It is thus appropriate to concentrate the VDA on pat-
terns that are situated at or near the boundaries between

10.5 Evaluation and Postprocessing

To evaluate the performance of a measuring device, one
should have another instrument with at least the same ac-
curacy. If this is not available, at least objective criteria —
or data — are required to check and adjust the behavior of
the new device. In pitch and voicing determination both
these bases of comparison are tedious to generate. There
is no VDA or PDA that operates without errors [10.47].
There is no reference algorithm, even with instrumen-
tal support, that operates completely without manual
inspection or control [10.8,72]. Yet nowadays speech
databases with reference pitch contours and voicing in-
formation have become widely available so that at least
reliable reference data are there and are being used for
evaluation.

In this section, we first deal with the question of
how to generate reference data (Sect. 10.5.1). Then we
consider the question of error analysis (Sect. 10.5.2)
and present the results of some comparative evaluations
(Sect. 10.5.3). Finally, we describe the problem of pitch
tracking (Sect. 10.5.4), which is the foremost task of the
postprocessor.

the different categories in the parameter space. Such
a VDA was developed by Siegel and Bessey [10.66].
For some applications, such as high-quality analysis—
synthesis systems, incorporation of a mixed excitation
source is desirable: (1) for voiced fricatives, and (2) for
some high vowels, which tend to become partly devoiced
in connected speech [10.71]. Siegel and Bessey further
found that for the voiced—voiceless—mixed classifica-
tion, the number of features used for a voiced-unvoiced
classifier is insufficient. Their VDA is realized in two
steps using a binary decision tree structure. The first
step is a classifier which separates frames that are
predominantly voiced from those that are predomi-
nantly unvoiced. It uses a minimum-distance statistical
classifier exploiting seven features: normalized auto-
correlation coefficient at unit sample delay, minimum
normalized LP error, zero-crossings rate, signal energy,
overall degree of periodicity (via AMDF), and degree
of periodicity measured via the cepstrum in two sub-
bands. In both categories the mixed frames are split off
during the second step. The voiced—mixed decision uses
another six features, mostly cepstral and LP measures,
whereas the voiceless—mixed decision is based on two
features alone. The VDA is reported to work with 94%
overall accuracy and 77% correct identification of the
mixed frames.

10.5.1 Developing Reference PDAs
with Instrumental Help

A number of evaluations compared the algorithm(s) to
be tested to the results of a well-known algorithm such
as the cepstrum PDA, whose performance was known
to be good. Rabiner et al. [10.47] used an interactive
PDA to generate reference data. This procedure proved
reliable and accurate but required a great deal of hu-
man work. Other evaluations [10.1] used the output
signal of a vocoder for which the pitch contour was
exactly known or the output signal of a mechanic ac-
celerometer which derives the information on pitch from
the vibrations of the neck tissue at the larynx. The
latter device [10.73] was used by Viswanathan and Rus-
sell [10.74] for their evaluation of five PDAs. Indefrey
et al. [10.34] used a laryngograph to obtain the signal
for generating a reference contour.

Among the algorithms used for determining a ref-
erence pitch contour, methods that make use of an
instrument (such as a mechanic accelerometer or a laryn-
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gograph) that derives pitch directly from the laryngeal
waveform have been shown to be most effective. This
type of algorithm avoids most errors pertinent to the
problem of pitch determination from the speech signal,
and permits using natural speech for the evaluation of
the performance of PDAs. Among the many instruments
available, the laryngograph [10.72,75] is especially well
suited for this kind of application. It is robust and
reliable, does not prevent the speaker from natural articu-
lation, and gives a good estimate for the instant of glottal
closure. A number of PDAs have been designed for this
device [10.8,72]. In addition, Childers et al. [10.76] pro-
pose a four-category VDA that exploits the speech signal
and the laryngogram.

The principle of the laryngograph [10.75] is well
known. A small high-frequency electric current is passed
through the larynx by a pair of electrodes that are pressed
against the neck at the position of the larynx from both
sides. The opening and closing of the glottis during each
pitch period cause the laryngeal conductance to vary;
thus the high-frequency current is amplitude modulated.
In the receiver the current is demodulated and ampli-
fied. Finally, the resulting signal is high-pass filtered
to remove unwanted low-frequency components due to
vertical movement of the larynx.

Figure 10.10 shows an example of the laryngogram
(the output signal of the laryngograph) together with the
corresponding speech signal. In contrast to the speech
signal, the laryngogram is barely affected by the instan-
taneous configuration of the vocal tract, and the changes
in shape or amplitude are comparatively small. Since
every glottal cycle is represented by a single pulse, the
use of the laryngograph reliably suppresses gross period-
determination errors. In addition, it supplies the basis for
a good voiced—unvoiced discrimination since the laryn-
gogram is almost zero during unvoiced segments, when
the glottis is always open. Nonetheless, the laryngograph
is not free from problems: it may fail temporarily or per-

Speech signal (beginning of [ja])

: PSS P . |
A " T "

Larynéogrejlm

Differentiated laryngogram

AL

Fig.10.10 Speech signal, laryngogram, differentiated la-
ryngogram, and instants of glottal closure
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manently for some individual speakers, or it may miss
the beginning or end of a voiced segment by a short inter-
val — for instance, when the vocal folds, during the silent
phase of a plosive, continue to oscillate without produ-
cing a signal, or when voicing is resumed after a plosive
and the glottis does not completely close during the first
periods [10.72]. For such reasons, visual inspection of
the reference contour is necessary even with this con-
figuration; these checks, however, can be confined to
limited segments of the signal.

The instant of glottal closure is the point of max-
imum vocal-tract excitation, and it is justifiable to define
this instant as the beginning of a pitch period. In the
laryngogram this feature is well documented. As long
as the glottis is open, the conductance of the larynx is at
a minimum and the laryngogram is low and almost flat.
When the glottis closes, the laryngeal conductance goes
up and the laryngogram shows a steep upward slope.
The point of inflection during the steep rise of the laryn-
gogram, i.e., the instant of maximum change of the
laryngeal conductance, was found best suited to serve as
the reference point for this event.

10.5.2 Error Analysis

According to the classic study by Rabiner et al. [10.47],
which established the guidelines for the performance
evaluation of these algorithms for speech, PDAs and
VDASs commit four types of errors:

1. Gross pitch-determination errors

2. Fine pitch-determination errors, i.e., measurement
inaccuracies

3. Voiced-to-unvoiced errors

4. Unvoiced-to-voiced errors

The latter two types represent errors of voicing
determination, whereas the former two refer to pitch
determination.

Gross pitch-determination errors are drastic fail-
ures of a particular method or algorithm to determine
pitch [10.47]. Usually an error is considered to be gross
when the deviation between the correct value of Ty or
Fy and the estimate of the PDA exceeds the maximum
rate of change a voice can produce without becoming
irregular (Rabiner et al. [10.47]: 1 ms; Hess and Inde-
frey [10.8], Mousset et al. [10.77]: 10%; Krubsack and
Niederjohn [10.78]: 0.25 octave). Typical gross errors
are confusions between Fj and the formant F1, which
usually falls into the measuring range. Other typical er-
rors are the so-called octave errors, i. e., taking Fp/2 or
2 Fy as the pitch estimate.
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On the other hand, error situations may also arise
from drastic failures of the voice to produce a regular
excitation pattern, which is not very frequent in well-
behaved speech but is nearly always the case when the
voice temporarily falls into creak or vocal fry. Hedelin
and Huber [10.18] distinguish between four main types
of irregularity of phonation that occur frequently in
running speech: (1) laryngealization (a temporal near-
closure of the glottis resulting in single, irregular glottal
pulses); (2) creak or vocal fry as a temporal voice register
(Fig. 10.2); (3) creaky voice, which is even less struc-
tured than creak; and (4) diplophonic excitation, which
shows an irregular pattern between adjacent periods but
a more-regular one between every second pitch period.
A further problem, which may sometimes become se-
vere, is the rate of change of fundamental frequency.
Xu and Sun [10.79], also referring to earlier studies,
give data for the maximum rate of change of Fy that
a human voice is able to produce without becoming ir-
regular. They found that a human voice can change its
Fop at a speed up to 100 semitones per second, and that
this limit is frequently reached during running speech.
One hundred semitones per second means one semi-
tone (6%) per 10 ms or two semitones (12%) per 20 ms.
According to Sreenivas [10.36], a 4% within-frame Fy
change already affects the salience of the estimate in the
same way as additive noise with 15dB SNR. As we see
from these data, a 10% change of Fj within a frame can
easily occur. If we interpret these data with respect to
individual pitch periods, we see that deep male voices
with long periods (10 ms and more) are more strongly
affected than female voices. Nonetheless, a deviation of
10% for Fy estimates between adjacent frames seems
reasonable as a lower bound for gross errors because
a larger change is beyond the capabilities of a human
voice.

Hence, gross errors arise mainly from three standard
situations.

® Adverse signal conditions: strong first formants,
rapid change of the vocal-tract position, band-
limited or noisy recordings. Good algorithms reduce
these errors to a great extent but cannot completely
avoid them [10.47].

® Insufficient algorithm performance, e.g., mismatch
of Fp and frame length [10.21]; temporary absence
of the key feature in some algorithms.

® Errors that arise from irregular excitation of voiced
signals. Since most algorithms perform some aver-
aging or regularity check, they can do nothing but
fail when the source becomes irregular.

When a PDA is equipped with an error-detecting
routine (the majority of cases, even if no postprocessor
is used), and when it detects that an individual esti-
mate may be wrong, it is usually not able to decide
reliably whether this situation is a true measurement er-
ror, which should be corrected or at least indicated, or
a signal irregularity, where the estimate may be correct
and should be preserved as it is. This inability of most
PDAs to distinguish between the different sources of er-
ror situations is one of the great unsolved problems in
pitch determination.

In the study by Rabiner et al. [10.47] gross errors
are simply counted, and the percentage of frames with
gross errors compared to the total number of (correctly
recognized) voiced frames is given as the gross error
rate. However, the perceptual importance of gross errors
depends on the deviation between the estimate and the
correct value as well as the energy of the frame [10.74,
80], from which a weighted gross error measure was
derived [10.67],

L ER
GPE_?Z(EmaX>

k=1

pk) — Fo(k)
Fo(k)

, (10.21)

where p(k) is the incorrect estimate, E(k) is the en-
ergy of the frame, and Epax is the maximum energy
in the utterance. It appears useful to include both these
measures in an evaluation. The gross error count eval-
uates the PDA performance from a signal-processing
point of view, whereas GPE says something about their
perceptual relevance.

Measurement inaccuracies cause noisiness of the
obtained Tp or Fp contour. They are small deviations
from the correct value but can nevertheless be annoying
to the listener. Again there are three main causes.

® Inaccurate determination of the key feature. This
applies especially to algorithms that exploit the tem-
poral structure of the signal, for instance, when the
key feature is a principal maximum whose position
within a pitch period depends on the formant F1.

® Intrinsic measurement inaccuracies, such as the ones
introduced by sampling in digital systems.

® Errors from small fluctuations (jitter) of the voice,
which contribute to the perception of naturalness
and should thus be preserved.

Voicing errors are misclassifications of the VDA. We
have to distinguish between voiced-to-unvoiced errors,
in which a frame is classified as unvoiced although it is
in fact voiced, and unvoiced-to-voiced errors, with the
opposite misclassification. This scheme, as established
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in [10.47], does not take into account mixed excitation.
Voiced-to-unvoiced and unvoiced-to-voiced errors must
be regarded separately because they are perceptually
inequivalent [10.74], and the reasons for such errors
in an actual implementation may be different and even
contradictory. A number of VDAs even allow a tradeoff
between these two errors by adjusting their parameters.

10.5.3 Evaluation of PDAs
and VDAs- Some Results

Due to the absence of reliable criteria and systematic
guidelines, few publications on early PDAs included
a quantitative evaluation. As this situation has thor-
oughly changed, publications presenting new PDAs
increasingly also evaluate them. Mostly the newly de-
veloped PDA is evaluated against some well-known
PDAC(s) to show that the new approach is in some way
or for some kind of signals and conditions better or at
least equivalent to the known algorithms [10.46,52]. The
Keele database [10.81] has played a major role in this
respect. We will not discuss these evaluations here due
to lack of space; we rather deal with a couple of stud-
ies that did not aim at developing a new PDA but were
done to establish guidelines and show the state of the
art.

The classic studies by Rabiner et al. [10.47] and
McGonegal et al. [10.56] investigated seven PDAs (two
time domain, five short-term analysis) with respect to
pitch and voicing determination. The main results were:

® None of the PDAs investigated were error free, even
under good recording conditions. Each PDA had its
own favorite error; nevertheless, all error conditions
occurred for all of the PDAs.

® Almost any gross error was perceptible; in addi-
tion, unnatural noisiness of a pitch contour was well
perceived.

® The subjective evaluation did not match the prefer-
ence of the objective evaluation. In fact, none of the
objective criteria (number of gross errors, noisiness
of the pitch contour, or voicing errors) correlated
well with the subjective scale of preference.

Hence the question of which errors in pitch and voic-
ing determination are really annoying for the human
ear remained open. This issue was further pursued by
Viswanathan and Russell [10.74], who developed objec-
tive evaluation methods that are more closely correlated
to the subjective judgments. The individual error cate-
gories are weighted according to the consistency of the
error, i. €., the number of consecutive erroneous frames,

the momentary signal energy, the magnitude of the error,
and the special context.

Indefrey et al. [10.34], concentrating on the evalu-
ation of pitch determination errors only, investigated
several short-term PDAs in various configurations. They
showed that in many situations different short-term ana-
lysis PDAs behave in a complementary way so that
combining them in a multichannel PDA could lead to
better overall performance.

Indefrey et al. [10.34] also investigated the perfor-
mance of double-transform PDAs (cf. Sect. 10.2.2) with
additive Gaussian noise. Under this condition these al-
gorithms tend to break down at SNRs between 0 and
—6dB. It does not make a big difference whether the
SNR is defined globally (i. e., with a constant noise level
over a whole utterance) or segmentally (i.e., with the
same SNR for each frame), except that the slope of the
error curve at the breakdown point is larger for segmental
SNR. These results were confirmed in a number of other
studies [10.26, 46, 52]. Moreno and Fonollosa [10.52]
evaluated several autocorrelation PDAs (among them
their own) with several kinds of noise signals and found
that for the low-frequency-biased car noise the break-
down starts at an SNR of about 6 dB. The same holds
for babble noise [10.46].

De Cheveigné and Kawahara [10.27] investigated
eight PDAs whose software was available via the In-
ternet together with two of their own developments
([10.27], cf. Sect. 10.2.1; [10.82], based on an IF princi-
ple). Only gross errors were considered. The evaluation
was based upon an extensive database (almost two hours
of speech) with samples from three languages (En-
glish, French, and Japanese), including falsetto speech
from male speakers, and laryngograms as reference sig-
nals. Obviously aperiodic voiced signals were excluded.
Postprocessors and VDAs were disabled in the algo-
rithms as far as possible. The evaluation showed great
differences between algorithms and partly rather bad
performance (more than 10% gross errors for some of
them); the best one produced about 0.6% on average.
The evaluation also showed considerable dependency
of the error rate on the data so that the authors claim
the need for large databases when performing such
evaluations.

All these evaluations show that there is still no PDA
that works without errors, although they work better
now than 20 years ago. A gross error count of 0.6% is
regarded as excellent; nonetheless we must not forget
that, with the usual frame rate of 100 frames per sec-
ond, such an algorithm still produces a grossly wrong
estimate every two seconds of speech on average.
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10.6 Applications in Speech and Music

10.5.4 Postprocessing and Pitch Tracking

A standard procedure for the reduction of pitch deter-
mination errors is smoothing. Smoothing is possible
when a pitch contour is given as a sequence of Ty
or [y estimates and not as delimiters of individual
periods. The two standard smoothing methods are lin-
ear smoothing using some kind of low-pass filter and
(nonlinear) median smoothing [10.83]. Linear smooth-
ing reduces measurement inaccuracies but is unable to
cope with the effect of gross pitch determination er-
rors, which are reduced in size and distributed over
a larger amount of time but are not really removed.
Median smoothing, on the other hand, replaces each
pitch estimate with the middle value of an ordered
sequence of three, five, or seven adjacent estimates;
gross outliers are removed, but measurement inaccura-
cies remain unchanged. Rabiner et al. [10.83] combine
these methods and propose a two-step smoothing pro-
cedure with median smoothing coming first, followed
by a linear smoother. Linear smoothing, however, can
be dangerous since it may replace a gross error that has
been left in the median-smoothed contour by some esti-
mates lying between the correct value and the error and
so cause an inflection in the contour that is not due to
the signal.

Applying such a smoothing algorithm was shown
to substantially improve the (objective and subjective)
performance of any PDA to which it was applied [10.47,
56]. Specker [10.84] showed that postprocessing is able
to reduce the number of gross errors in a time-domain
PDA by almost an order of magnitude.

Secrest and Doddington [10.80] used dynamic pro-
gramming methods to find an optimal path through a list
of pitch estimate candidates with the smoothness of the
contour as the major criterion. They showed that this
technique performed better than any linear, nonlinear,
or median smoothing. This approach was further devel-
oped by Talkin [10.17]. Dynamic programming is well
suited to pitch tracking since it allows the basic extrac-
tor to give several pitch candidates so that we can deal

with more than only the best choice in each frame. Each
candidate is accompanied by a salience measure (usu-
ally the relative amplitude of the corresponding peak in
the representation from where the estimate is derived,
with respect to the reference point, e.g., the value of
the ACF at zero lag). In addition, Talkin’s PDA sup-
plies one candidate unvoiced per frame. Pitch tracking
is done by searching for an optimal path through the can-
didates from consecutive frames by minimizing a global
cost function. This global cost function is formed as
the sum of weighted local per-frame cost functions of
two types: (1) candidate costs, and (2) transition costs
between consecutive frames.

Candidate costs distinguish between pitch candi-
dates and the unvoiced candidate. The cost of a pitch
candidate equals one minus the salience measure of this
candidate. The cost of the unvoiced candidate is a con-
stant penalty plus the maximum salience measure within
the current frame.

The transition cost between consecutive frames also
depends on voicing. Between two unvoiced candidates
it is zero. Between two pitch candidates it depends on
the difference in frequency between the two estimates,
and special attention is given to octave jumps, which
are made costly but not totally impossible. The costs for
voiced-to-unvoiced transitions and vice versa include
a term with the reciprocal ltakura distance [10.85], an
energy term, and an extra penalty for this transition.
The rationale is that (1) these transitions are not too
frequent, (2) there are usually large spectral changes
between a voiced and an unvoiced frame, and (3) en-
ergy usually decreases at the end of a voiced part and
increases at its beginning.

There is no latency limit for the algorithm to find
the optimal path; in principle the search can extend over
a whole utterance. Talkin [10.17], however, reports that
it rarely takes more than 100 ms for all possible paths to
converge to a single point. The algorithm is part of the
well-known ESPS software package for speech analysis.
A comparable postprocessor operating on a probabilistic
approach is described in [10.86].

10.6 Applications in Speech and Music

Applications for PDAs in speech can be grouped into
four areas [10.1]:

1. Speech technology

2. Basic linguistic research, e.g., investigation of into-
nation

3. Education, such as teaching intonation to foreign-
language learners or to hard-of-hearing persons
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4. Clinical applications, such as the investigation of
voice quality

Some of these application areas have changed
greatly over the last two decades. The vocoder, which
was the main application for earlier speech technol-
ogy, has almost disappeared. Instead, investigating
prosodic events such as intonation, particularly in spon-
taneous speech, has become an important issue in
speech understanding systems [10.87], and many of
these systems now contain a prosody module. As it
is a long-term goal in speech technology to make
such devices operable from almost anywhere, a PDA
may even have to cope with signals from mobile
phones, which can be extremely bad and inconsis-
tent. Another new application area is data-driven speech
synthesis. Algorithms for time-domain pitch modifica-
tion, such as the well-known pitch-synchronous overlap
add (PSOLA) algorithm [10.57], require precise pitch
period determination to work properly, and with the
recent technology of nonuniform unit selection syn-
thesis large speech corpora have to be analyzed, yet
usually with excellent-quality signals free from phase
distortions.

What are the implications of this application shift
for the development of algorithms? PDAs for precise
pitch period determination of good-quality speech sig-
nals have been known for a long time; nonetheless the
main problem is exact synchronization with laryngeal
cycles, such as the instant of glottal closure. Such algo-
rithms, which originally come from clinical applications
where they were applied to isolated vowels, have been
extended to work for running speech as well.

In prosody recognition, intonation research and
speech technology now go together to a certain extent.
Prosody recognition needs intonation contours, not in-
dividual periods, and a certain lag between the running
time of the signal and the time of release of an esti-
mate is tolerable, in contrast to a vocoder where the
result must be available without delay. On the other
hand, prosody recognition must rely on automatic esti-
mates and cope with adverse conditions; above all, this
requires robustness.

The number of devices available for computer-aided
intonation teaching has been small [10.88]. However,
with the increased use of high-quality PDAs for into-
nation research, this will change. In the clinical area,
digital hearing prostheses have created a new application
area [10.63, 89]. We cannot discuss these applica-

tions here for reasons of space; the reader is referred
to [10.88, 89] for surveys.

Pitch determination of musical signals has