Code Optimization by Integer Linear
Programming

Daniel Kéastner* and Marc Langenbach

Universitit des Saarlandes, Fachbereich Informatik
Postfach 15 11 50, D-66041 Saarbriicken, Germany
Phone: +49 681 302 5589, Fax: +49 681 302 3065
{kaestner,mlangen}@cs.uni-sb.de
http://www.cs.uni-sb.de/ " {kaestner,mlangen}

Abstract. The code quality of many high-level language compilers in
the field of digital signal processing is not satisfactory. This is mostly
due to the complexity of the code generation problem together with the
irregularity of typical DSP architectures. Since digital signal processors
mostly are traded on the high volume consumer market, they are subject
to serious cost constraints. On the other hand, many embedded appli-
cations demand high performance capacities. Thus, it is very important
that the features of the processor are exploited as efficiently as possi-
ble. By using integer linear programming (ILP), the deficiencies of the
decoupling of different code generation phases can be removed, since it
is possible to integrate instruction scheduling and register assignment in
one homogeneous problem description. This way, optimal solutions can
be found—albeit at the cost of high compilation times. Our experiments
show, that approximations based on integer linear programming can pro-
vide a better solution quality than classical code generation algorithms
in acceptable runtime for medium sized code sequences. The experiments
were performed for a modern DSP, the Analog Devices ADSP-2106x.

1 Introduction

In the last decade, digital signal processors (DSPs) have established on the high-
volume consumer market to be the processors of choice for embedded systems.
The high-volume market imposes stringent cost constraints to the DSPs; on the
other hand, many embedded applications demand high performance capacities.
High-level language compilers often are unable to generate code meeting these
requirements [25]. This is mostly due to the complexity of the code generation
problem together with the irregularity of typical DSP architectures. Especially,
the phase coupling problem between instruction scheduling and register alloca-
tion plays an important role.

Since instruction scheduling and register allocation are A'P-hard problems,
they are mostly solved in separate phases by using heuristic methods. Classical

* Member of the Graduiertenkolleg ”Effizienz und Komplexitidt von Algorithmen und
Rechenanlagen” (supported by the DFG).

S. Jéahnichen (Ed.): CC’99, LNCS 1575, pp. 122-137, 1999.
© Springer-Verlag Berlin Heidelberg 1999

Code Optimization by Integer Linear Programming 123

heuristic methods are register allocation by heuristically guided graph color-
ing [5,6] or instruction scheduling by list scheduling [16], trace scheduling [3],
percolation scheduling [21] or region scheduling [12]. These algorithms are very
fast, but usually produce only suboptimal solutions without any information
about the solution quality.

The task of instruction scheduling is to rearrange a code sequence in order to
exploit instruction level parallelism. In register allocation, the values of variables
and expressions of the intermediate representation are mapped to registers in
order to minimize the number of memory references during program execution.
As the goals of these two phases often conflict, that phase which is executed first
imposes constraints on the other; this can lead to inefficient code. That problem
is known as the phase ordering problem.

Formulations based on integer linear programming (ILP) offer the possibil-
ity of integrating instruction scheduling and aspects of register allocation in an
homogeneous problem description and of solving them together. Moreover, it is
possible to get an optimal solution of the considered problems—albeit at the
cost of high calculation times. We have shown that by using ILP-based approxi-
mations, the computation time can be significantly reduced. The resulting code
quality is better than that of conventional graph-based algorithms. Moreover,
with integer linear programming, lower bounds on the optimal schedule length
can be calculated. This way, the quality of an approximate solution can be esti-
mated, if no optimal solution is available.

The paper is organized as follows: In Section 2, we will give a short overview
on related work. After an introduction to integer linear programming, we will
present an ILP-formulation for combined instruction scheduling and register as-
signment. In Section 5, some additional constraints are introduced which are re-
quired to adapt the formulation to a real-world target architecture, the
ADSP-2106x. Then we will give an overview on some ILP-based approxima-
tions in Section 6. The article concludes with a short summary and an outline
of future work.

2 Related Work

During the last years, the development of phase coupling code generation strate-
gies has gained increasing attention. In [1], Bradlee has developed a code gen-
eration policy where instruction scheduling and register allocation communicate
with each other. First, a pre-scheduler is invoked which computes schedule cost
estimates which allow the subsequent register allocation phase to quantify the
effect of its choices on the scheduler. After the allocation pase, the final schedule
is produced.

The AVIV retargetable code generator [13] builds on the retargetable code
generation framework SPAM for digital signal processors [26,27]. It uses a heuris-
tic branch-and-bound algorithm that performs functional unit assignment, op-
eration grouping, register bank allocation, and scheduling concurrently. Register
allocation proper is carried out as a second step. Bashford and Bieker [3] are de-

124 Daniel Kéastner and Marc Langenbach

veloping a framework for scheduling, compaction, and binding using constraint
logic programming. Both approaches are still work in progress, so final results
are not available yet.

There have been only few approaches to incorporate ILP-based methods into
the code generation process of a compiler. An approach for ILP-based instruction
scheduling for vector processors has been presented in [2]. Wilson et al. [28] use
an ILP-formulation for simultaneously performing scheduling, allocation, bind-
ing, and selection among different code alternatives. However the complexity of
the resulting formulations leads to very high computation times. Leupers has
developed a retargetable compiler for digital signal processors [18] where local
compaction is performed by integer linear programming. However the formula-
tion captures only the problem of instruction scheduling and no approximations
or partitioning techniques are considered. Other ILP-based approaches have been
developed in the context of software pipelining [24,11].

3 Basics of Integer Linear Programming

In integer programming problems, an objective function is maximized or mini-
mized subject to inequality and equality constraints and integrality restrictions
on some or all of the variables. The calculation of an optimal solution of an
integer linear program is A'P-hard; yet many large instances of such problems
can be solved. This, however, requires the selection of a structured formulation
and no ad-hoc approach [7].

In this paper, we will just sketch the basics of integer linear programming,
which are essential for the understanding of the presented ILP-approaches. For
further information see e.g. [20], [19], [22], or [7].

Let P. ={z | Az > b, x € R}, c€ R", be R™, A € R™*". Then Integer
linear programming (ILP) is the following optimization problem:

min z;p = P (1)
r e P.NZ"

The set P is called feasible region. If some of the variables have to be integral
while the others also can take real values, the problem is called mized integer
linear problem (MILP). The feasible area Py is called integral, if it is equal to the
convex hull P; of the integer points (P; = conv({z | z € P- NZ"}); see Fig. 1).
In this case, the optimal solution can be calculated in polynomial time by solving
its LP-relaxation. This means, that linear programming algorithms can be used,
since the solution of the (non-integer) linear program is guaranteed to be integral.
Therefore, while formulating an integer linear program, one should attempt to
find equality and inequality constraints such that P, will be integral. It has
been shown, that for every bounded system of rational inequalities there is an
integer polyhedron [10,23]. Unfortunately for most problems it is not known how
to formulate these additional inequalities—and there could be an exponential
number of them [19].

Code Optimization by Integer Linear Programming 125

> objective function

Fig. 1. Feasible Areas.

In general, P, ;Cé Py, and the LP-relaxation provides a lower bound on the
objective function. The efficiency of many integer programming algorithms de-
pends on the tightness of this bound. The better P, approximates the feasible
region P;, the sharper is the bound so that for an efficient solution of an ILP-
formulation, it is extremely important, that Py is close to P;.

4 The ILP Model

In this section, the problem of instruction scheduling is formally introduced.
An ILP formulation for instruction scheduling is presented and is extended to
include the problem of register assignment. These formulations work on basic-
block level; in [14] it is shown how they can be extended to programs with
structured control flow.

4.1 Instruction Scheduling

Basic Definitions

Let a sequence of partially ordered microoperations be given. Then the task of
instruction scheduling is to find a schedule which minimizes the execution time of
the instruction sequence and respects its partial order. This partial order among
the instructions is induced by the data dependences. If a microoperation i is
data dependent of another microoperation j, then the ordering of 4 and j must
not be changed; otherwise the semantics of the program would be changed. The
data dependences are modelled by the data dependence graph Gp = (Vp, Ep)
whose nodes correspond to the microoperations of the input program and whose
edges reflect dependences between the adjacent nodes. There are three different
types of data dependences:

— true dependence: i defines a resource which is used by j ((i,7) € E%%e)
— output dependence: i defines a resource which is also defined by j ((i,7) €
Eoutput)
D

— anti dependence: i uses a resource which is defined by j ((i,j) € Eg")

126 Daniel Kéastner and Marc Langenbach

rl = dm(i0, m0) m 4 = dm(il, ml) ‘ 16 = 4 + 15 urv = min(z4, r5)

¢ o

Fig. 2. Resource Flow Graph for two Instructions Executed on an ALU and the
Data Memory.

Each operation of the input program can be executed by a certain resource
type. In order to describe the mapping of instructions to hardware resources, the
resource graph G is used [29]. G is a bipartite directed graph Gr = (Vg, ERr),
where (j, k) € Er means that instruction j can be executed by the resources of
type k.

An ILP-Formulation for Instruction Scheduling
In the area of architectural synthesis, several ILP-formulations have been devel-
oped for the problem of instruction scheduling and resource allocation. We have
investigated two well-structured formulations in detail: OASIC [9,10], which is a
time-based formulation' and SILP [29,14], which is an order-based formulation.
In the scope of this paper, we will concentrate on SILP (Scheduling and
Allocating with Integer Linear Programming); an investigation of OASIC and a
comparison of both models can be found in [14,15]. First we will give an overview
of the SILP-terminology:

— The variable ¢; indicates the relative position of a microoperation within the
instructions of the optimized code sequence; the t;-values have to be integral.

— w; describes the execution time of instruction j € Vp.

— z; denotes the latency of the functional unit executing operation j, i.e. the
minimal time interval between successive data inputs to this functional unit.

— The number of available resources of type k € Vi is Ry.

— 75 describes the length of the life range of a variable created by operation j.

The ILP is generated from a resource flow graph Gp. This graph describes the
execution of a program as a flow of the available hardware resources through the
instructions of the program; for each resource type, this leads to a separated flow
network. Each resource type k£ € Vi is represented by two nodes kq, ks € V; the
nodes k¢ are the sources, the nodes kg are the sinks in the flow network to be de-
fined. The first instruction to be executed on resource type k gets an instance k.

! In a time-based ILP-formulation the choice of the decision variables is based on the
time the modelled event is assigned to. In an order-based formulation, the decision
variables reflect the ordering of the modelled events.

Code Optimization by Integer Linear Programming 127

of this type from the source node k¢q; after completed execution, it passes &, to
the next instruction using the same resource type. The last instruction using a
certain instance of a resource type returns it to kg. The number of simultaneously
used instances of a certain resource type must never exceed the number of avail-
able instances of this type. Fig. 2 shows an example resource flow graph for two
resource types of our target processor ADSP-2106x (see Sec. 5); on each resource
type, two independent instructions are executed. The resource flow graph Gp is
a directed graph Ggp = (Vp, Er) with Vp = UkeVKV}é and Ep = UkeVKElkp.
The set V£ contains the resource nodes for resource type k and all operations of
the input program which are executed by k. E%. is the set of edges connecting
nodes in VE. Each edge (i,7) € E¥ is mapped to a flow variable mfj € {0,1} .
A hardware resource of type k is moved through the edge (¢, 7) from node i to
node j, if and only if xfj =1.

The goal of this ILP-formulation is to minimize the execution time of the
code sequence to be scheduled. The execution time is measured in control steps
(clock cycles). The ILP-formulation for the problem of instruction scheduling
reads as follows:

min = Mgeps (2)

t; < Msteps VieVp (3)

ti—ti > w; Y (i,j) € Ex'Pt U Eive (4)

ti—ti 20 v (i,5) € BEE™ (5)

Sooal— Y ak=0 VieVp, VkeVi: (jk) € Er (6)

(i.4)EEE (5,)€EEE

oY alh=1Vjiew (7)

kEV: (i,j)EE}‘;

(4,k)EER
Z .Illzj < R Vk € Vi (8)
(k,j)EEL
ti—ti > zi+(Z oy =1y Y(,5) € By (9)
kEVK:
(i.5)€EY

The time constraints (equation (3)) guarantee, that for no instruction the
start time may exceed the maximal number of control steps Meps (Which is to
be calculated). Equations (4) and (5) are precedence constraints which are used
to model the data dependences. When instruction j depends on instruction i,
then j may be executed only after the execution of ¢ is finished. The flow conser-
vation constraints (equation (6)) assert that the value of the flow entering a node
equal the flow leaving that node. Moreover, each operation must be executed ex-
actly once by one hardware component. This is guaranteed by equation (7). The
Resource constraints (8) are necessary, since the number of available resources
of all resource types must not be exceeded. The constraints (9) are called serial
constraints. When operations 7 and j are both assigned to the same resource

128 Daniel Kéastner and Marc Langenbach

type k, then j must await the execution of ¢, when a component of resource
type k is actually moved along the edge (i,j) € E¥, ie., if xfj = 1. The bet-
ter the feasible region of the relaxation P, approximates the feasible region of
the integral problem P;, the more efficiently can the integer linear program be
solved. In [29], it is shown that the tightest polyhedron is described by using the
value oy = 2z — asap(j) + alap(i).

4.2 Integration of Register Asignment

Up to now, the presented ILP-formulation covers only the problem of instruction
scheduling. To take into account the problem of register assignment, this formu-
lation has to be extended. Register assignment is a subtask of register allocation.
The goal is to determine the physical register which is used to store a value that
has been previously selected to reside in a register. The choice of these registers
interacts with the reordering facilities of instruction scheduling.

Again following the concept of flow graphs, the register assignment problem
is formulated as register distribution problem. The register flow graph G% =
(VE,EY) is a directed graph. The set VZ =V, UG is composed of two subsets:
G = {g} represents a homogeneous register set and the nodes in V, represent
operations performing a write access to a register. Each node j € Vj is asso-
ciated with the generated variable whose lifetime is denoted by 7;. Each arc
(i,j) € EY. represents a possible flow of a register from ¢ to j and is mapped a
flow variable 2, € {0,1}. Then the same register is used to save the variables
created by nodes ¢ and j, if xfj = 1. Lifetimes of variables are associated with
true dependences. If an instruction ¢ writes to a register, then the life span of the
value created by 4 has to reach all uses of that value. To model this, additional
variables b;; > 0 are introduced which measure the distance between a defin-
ing instruction 7 and a corresponding use j. The formulation of the precedence
relation is replaced by the following equation:

tj — ti — bij = Ww; (10)
Then, for the lifetime of the register defined by instruction ¢ must hold:
T > by +w; Y (i,j) € ER° (11)

An instruction j may only write to the same register as a preceding instruction i,
if j is executed at a time when the lifetime of i, 7; is already terminated. This
is modelled by the register serial constraints:

tj—tiZwi—wj—l—Ti—k(xfj

—~1)-2T (12)

Here, T represents the number of machine operations of the input program, which
is a safe upper bound for the maximal possible lifetime. In order to correctly
model the register flow graph, flow conservation constraints, as well as resource
constraints and assignment constraints have to be added to the integer linear
program. This leads to the following equalities and inequalities:

Code Optimization by Integer Linear Programming 129

PM Data Bus

DM Data Bus

|]

REGISTER
FILE

MULTIPLIER SHIFTER ALU

16 x 40-bit

Fig. 3. Simplified Block Diagram.

Z z), < Ry Vg€ G (13)

(9.9)€ES
doal=1 Viev, (14)

(i.))EET
Sooali— > al,=0 VieVi VgeG (15)

(i,9)EEE (4,9)€EL
tj —t;i— T zwi—wj—i—(foj —1)-2T V(Z,j) EE% (16)

geG

The total number of constraints is O(n?), where n is the number of operations
in the input program. The number of binary variables is bounded by O(n?). The
proofs are given in [29,14].

The ILP-formulation as presented here can model only sequential code. How-
ever, it is possible to integrate the control structure of the input program into
an ILP, so that the movement of instructions across basic block boundaries can
be handled internally by the ILPs. This is covered in detail in [15].

5 Adaptation to the ADSP-2106x

We have adapted the investigated formulations to a modern 32-bit digital signal
processor with a load/store architecture, the ADSP-2106x SHARC (Super Har-
vard Architecture Computer) [1]. The processor contains three functional units:
an ALU, a shifter, and a multiplier. The memory consists of a data memory DM
and a program memory PM which can be used to store instructions and data
(see Fig. 3). Most arithmetic operations can be executed in parallel with a data
memory and a program memory access and in some cases, also the ALU and the
multiplier can operate in parallel.

130 Daniel Kéastner and Marc Langenbach

Register File

Multiplier

R7-F7 Any Register
-

e
Any Register R8-F8

ALU

R12-F12
R13-F13
R14-F14
R15-F15

Fig. 4. Register Groups and Usage in Multifunctional Instructions.

The register file consists of two sets of sixteen 40-bit registers, which are used
to store both fixed and floating point data. Furthermore, each set is divided into
four groups of four consecutive registers. ALU and multiplier can only operate
in parallel if the operands come from the appropriate register group (Fig. 4).

The execution of instructions is pipelined. In sequential program flow, when
one instruction is being fetched, the instruction fetched in the previous cycle is
being decoded, and the instruction fetched two cycles before is being executed.
Thus, the throughput is one instruction per cycle.

5.1 Prevention of Incorrect Parallelism

In the presented ILP-formulation, parallel execution of instructions assigned to
the same resource type is excluded by the serial constraints. Instructions assigned
to different resource nodes can always be executed in parallel. As this parallelism
is restricted in the considered architecture, additional constraints are required
which explicitly prohibit the parallel execution of a certain pair of operations.

For two operations ¢ and j, which must not be executed in parallel, i.e.
for which t; # t; must hold, constraints are formulated which represent the
disjunction (t; > t;) V (t; < t;j). Let I denote the number of operations in the
input program; then the following inequalities are required:

ti—t; > —vT (17)
t—t; < (1—v;)T (18)
vi; € {0,1} (19)
T=2I+1 (20)

A correctness proof is provided in [14].

5.2 Irregular Register Sets

The operands of multifunction-instructions using ALU and multiplier are re-
stricted to a set of four registers whithin the register file (see Fig. 3). Thus,

Code Optimization by Integer Linear Programming 131

there are four different register groups to be considered and no homogeneous
register set. For each such group, an own register node is inserted into the reg-
ister flow graph (G = {g1, g2, 93, 94})-

When instructions ¢ and j are combined to form a multifunction-instruction,
so that for the reaching definition m, the target register set is restricted to
exactly one g € G, it must be guaranteed that m in fact uses a register of
register set g. Then, a constraint of the form Z(Lm)eE% z¢ > 1 must hold. Since

Zg > (i,m) € BX, x =1, this automatically excludes the use of other register sets.

The formulation presented below uses two binary variables p;; and ¢;; which are
defined by following constraints.

ti — tj > —pijT (21)
ti —t; < qiT (22)
Pij +aij =1 (23)

where T' = 21 + 1. Using these values, the register constraints can be formulated
as follows:

> al, = 1—(ti—t) —pyT (24)
(i,m)€EY,

dooal, =14 (ti—t) —gyT (25)
(i,m)eEY,

The correctness proofs are omitted in this paper; they are explicitly given in [14].

6 Approximations

The computation time required to solve the generated ILPs is high. Therefore, it
is an interesting question to know, whether heuristics can be applied which can-
not guarantee an optimal solution but can also deal with larger input programs.
In this paper, we give an overview of the investigated approximation algorithms;
they are treated in detail in [14].

6.1 Approximation by Rounding

Approximation by rounding is a straightforward approach: the flow variables acfj
are relaxed? and the resulting relaxation is solved. Then the variable with a non-
integral value closest to 0 or 1 is fixed to that integer and the new mixed integer
linear program is solved. This is repeated until an integral solution has been
found. However, the solution quality is not convincing enough for this method
to be considered promising; moreover the calculation time can be high since
usually backtracking steps are required.

2 This means that the integrality constraint mfj € {0, 1} is replaced by 0 < xfj <1.

132 Daniel Kéastner and Marc Langenbach

6.2 Stepwise Approximation

The algorithm starts by solving the MILP obtained by relaxing all flow variables.
Then the following approach is repeated for all control steps. The algorithm
checks whether any operations were scheduled to the actual control step in spite
of a serial constraint formulated between them and the corresponding variables
are redeclared binary. Let M§ be the set of these variables. After solving the
resulting MILP, the variables € Mg with o = 1 are fixed to their actual
value and the next iteration starts. After considering each control step, the set
of all flow variables which still have non-integral values is determined. These
variables are redeclared binary and the MILP is solved again. This is repeated
until a feasible solution has been found. Since in each step optimal solutions
with respect to the already fixed variables are calculated, it can be expected
that the approximation leads to a good global solution. This is confirmed by the
test results.

6.3 Isolated Flow Analysis

In this approach, only the flow variables corresponding to a certain resource
type r € R are declared as binary. The flow variables related to other resources
are relaxed. Then, an optimal solution of this MILP is calculated and the flow
variables x executed by r are fixed to their actual solution value by additional
equality constraints. This approach is repeated for all resource types, so a feasible
solution is obtained in the end. This way, in each step, an optimal solution
with respect to each individual resource flow is calculated. Since the overall
solution consists of individually optimal solutions of the different resource types,
in most cases it will be equal to an optimal solution of the entire problem.
This optimality, however, cannot be guaranteed, as when analysing an individual
resource flow, the others are only considered in their relaxed form. However the
computation time is reduced since only the binary variables associated to one
resource type are considered at a time.

6.4 Stepwise Approximation of Isolated Flow Analysis

The last approximation developed for the SILP-Formulation is a mixture of
the two previously presented approaches. At each step, the flow variables of
all resources except the actually considered resource type r are relaxed. For
the flow variables « with res(z) = r, the stepwise approximation is performed
until all these variables are fixed to an integral value. Then the next resource
type is considered. Clearly, this approximation is the fastest one, and in our
experimental results, the solutions provided by this approximation are as good
as the results of the two previously presented approximations. In the following,
we denote this approximation by SF.

7 Implementation and Experiments

In our experiments, we use ADSP-2106xassembler programs as input. These
programs can be generated by the gcc-based compiler g21k, shipped with the

Code Optimization by Integer Linear Programming 133

instructions

method

low er bounds (SILP)

fir
cascade

dft

program name

Fig. 5. Comparison of Solution Quality for Different Methods.

ADSP-2106x or can be written by hand. We have chosen as input programs typi-
cal applications of digital signal processing: a finite impulse response filter (fir),
an infinite impulse response filter (cascade), a discrete fourier transformation
(dft), one function of the whetstone-suite (whetp3), a histogramm (histo), and
a convolution algorithm (conv). The input programs make no use of the available
instruction-level parallelism of the processor. The run times have been measured
on a SPARC ULTRA 2x200 with 1024 MB RAM under Solaris 2.5.1.

An overview on the experimental results is given in Fig. 5. The input pro-
grams contain between 18 and 49 instructions. In order to oppose the ILP-based
techniques to classical algorithms, we have implemented several local schedul-
ing algorithms and a graph-based register allocator. The graph-based algorithm
which gave the best results was list scheduling with highest level first heuris-
tic [14,17]. Even with an optimal register assignment given, the produced code
sequences contained on average 13 % more instructions than the optimal code
sequences; the solution time was less than one second for each of the input pro-
grams. The investigated SILP approximations however produced optimal code
for each input program; the only exception was whetp3. ILP-based lower bounds
could be calculated within several seconds by solving the LP-relaxation of the
given problems. These bounds are on average 15 % below the optimal instruc-
tion number. The most important characteristics of the ILP-based algorithms
are shown in Tables 1 and 2. For reasons of complexity, only instruction schedul-
ing has been performed for the input programs whetp3, histo and conv; in-
tegrated instruction scheduling and register assignment has been performed for
fir, cascade and dft (entry “is+ra” in column “mode”). The generated ILPs
contain between 383 and 2143 constraints, between 93 and 946 binary variables
and the textual representation of the largest one takes 294.59 KB. As can be
seen in Table 2, even for programs whose exact solution (opt) took more than 24
hours, an ILP-based approximation could be calculated in less than 2 minutes

134 Daniel Kéastner and Marc Langenbach

name mode constr bin (expl) size [KB]

fir istra 422 675 (464) 58.94
cascade is+ra 606 950 (707) 89.37
dft is+ra 2143 1201 (946) 294.59
whetp3 is 383 214 (93) 15.26
histo is 716 434 (168) 29.66
conv is 963 452 (163) 40.09

Table 1. Characteristics of the ILPs generated by the SILP-based formulation.

(all figures refer to the fastest approximation SF). With exception of whetp3,
all solutions provided by the approximation were in fact optimal.

name mode method instr CPU-time

fir istra def 8 1.69 sec
fir istra app 8 19.58 sec

cascade is+ra def - >24h
cascade is+ra app 7 86.72 sec
dft is+ra def - >24h

dft is+ra app 14 9 min 20 sec
whetp3 is def 20 2h 4 min
whetp3 is app 21 85.96 sec
histo is def - >24h
histo is app 31 1h 2 min
conv is def 17 2h 1 min
conv is app 17 53.66 sec

Table 2. Runtime characteristics of the SILP-based ILPs.

8 Ongoing and Future Work

Even by using ILP-based approximations, the computation time can grow high
for large input programs. Thus, when compiling large programs, ILP-based solu-
tions cannot replace the classical methods. However it is profitable to integrate
ILP-based methods into conventional algorithms where an ILP-based optimiza-
tion is only performed for code sequences offering a high degree of potential
parallelism and whose efficiency is critical for the application. A typical example
are inner loops. Moreover, partitioning techniques have to be developed which
allow also for larger code sequences to be optimized by integer linear program-
ming. Up to now, only one target architecture has been considered. However,
in the field of digital signal processing, retargetability is an important issue.
Currently, a retargetable framework for the presented optimization techniques,
called PROPAN (Postpass Retargetable Optimizer and Analyzer) is developed.
The goal is to make the described optimizations generic, so that they can be

Code Optimization by Integer Linear Programming 135

adapted to a new target processor by a concise specification of the important
hardware features.

9 Conclusions

We have shown that the the problem of instruction scheduling and register as-
signment can be modeled completely and correctly as an integer linear program
for an irregular target architecture.

Based on a well-structured ILP-formulation, SILP, several approximations
can be calculated while solving the ILPs, leading to good results in relatively
low calculation times. The optimality of the result is not guaranteed by such
heuristics; yet better results can be obtained than with the conventional, graph-
based algorithms [17].

In conventional, graph-based algorithms, it is not possible to estimate the
quality of a solution. By solving partial relaxations of the ILP, lower bounds to
the optimal solution can be calculated. For the tested programs, the quality of
these lower bounds corresponds to the quality of solutions which are calculated
by conventional, graph-based algorithms. Thus, it is possible to give an interval
which safely contains the optimal solution and to obtain an estimate for the
quality of an approximate solution. This holds even when the optimal solution
cannot be calculated for reasons of complexity.

References

1. Analog Devices. ADSP-2106x SHARC User’s Manual, 1995. 129

2. Siamak Arya. An Optimal Instruction Scheduling Model for a Class of Vector
Processors. IEEE Transactions on Computers, C-34, November 1985. 124

3. Ulrich Bieker and Steven Bashford. Scheduling, Compaction and Binding
in a Retargetable Code Generator Using Constraint Logic Programming. 4.
GI/ITG/GME Workshop ”Methoden des Entwurfs und der Verifikation digitaler
Systeme”, March 1996. Kreischa, Germany. 123

4. D. G. Bradlee. Retargetable Instruction Scheduling for Pipelined Processors. Phd
thesis, Technical Report 91-08-07, University of Washington, 1991. 123

5. P. Briggs, K. Cooper, and L. Torczon. Improvements to Graph Coloring Register
Allocation. ACM Transactions on Programming Languages and Systems, 16(3):428
— 455, 1994. 123

6. D. Callahan and B. Koblenz. Register Allocation via Hierarchical Graph Coloring.
Proceedings of the ACM PLDI Conference, pages 192 — 202, 1991. 123

7. S. Chaudhuri, R.A. Walker, and J.E. Mitchell. Analyzing and Exploiting the Struc-
ture of the Constraints in the ILP-Approach to the Scheduling Problem. IEEE
Transactions on Very Large Scale Integration (VLSI) System, 2(4):456 — 471, De-
cember 1994. 124

8. J.A. Fisher. Trace Scheduling: A Technique for Global Microcode Compaction.
IEEE Transactions on Computers, C-30(7):478 — 490, July 1981. 123

9. C. H. Gebotys and M.I. Elmasry. Optimal VLSI Architectural Synthesis. Kluwer
Academic, 1992. 126

136

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Daniel Kéastner and Marc Langenbach

C. H. Gebotys and M.I. Elmasry. Global Optimization Approach for Architectural
Synthesis. [EEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, CAD-12(9):1266 — 1278, September 1993. 124, 126

R. Govindarajan, Erik R. Altman, and Guang R. Gao. A Framework for Resource
Constrained Rate Optimal Software Pipelining. [IEEE Transactions on Parallel
and Distributed Systems, 7(11), November 1996. 124

Rajiv Gupta and Mary Lou Soffa. Region scheduling: An approach for detect-
ing and redistributing parallelism. IEEE Transactions on Software Engineering,
16(4):421-431, 1990. 123

Silvina Hanono and Srinivas Devadas. Instruction Scheduling, Resource Allocation,
and Scheduling in the AVIV Retargetable Code Generator. In Proceedings of the
DAC 1998, San Francisco, California, 1998. ACM. 123

Daniel Késtner. Instruktionsanordnung und Registerallokation auf der Basis ganz-
zahliger linearer Programmierung fiir den digitalen Signalprozessor ADSP-2106x.
Master’s thesis, University of the Saarland, 1997. 125, 126, 129, 130, 131, 133
Daniel Késtner and Marc Langenbach. Integer Linear Programming vs. Graph
Based Methods in Code Generation. Technical Report A/01/98, University of the
Saarland, Saarbriicken, Germany, January 1998. 126, 129

David Landskov, Scott Davidson, Bruce Shriver, and Patrick W. Mallet. Local Mi-
crocode Compaction Techniques. ACM Computing Surveys, 12(3):261-294, 1980.
123

Marc Langenbach. Instruktionsanordnung unter Verwendung graphbasierter Algo-
rithmen fiir den digitalen Signalprozessor ADSP-2106x. Master’s thesis, University
of the Saarland, 1997. 133, 135

Rainer Leupers. Retargetable Code Generation for Digital Signal Processors.
Kluwer Academic Publishers, 1997. 124

G.L. Nemhauser, A.H.G. Rinnooy Kan, and M.J. Todd, editors. Handbooks in
Operations Research and Management Science, volume 1 of Handbooks in Opera-
tions Research and Management Science. North-Holland, Amsterdam; New York;
Oxford, 1989. 124

G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John
Wiley and Sons, New York, 1988. 124

Alexandru Nicolau. Uniform parallelism exploitation in ordinary programs. In
International Conference on Parallel Processing, pages 614—618. IEEE Computer
Society Press, August 1985. 123

C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization, Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, 1982. 124

C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization, Algorithms and
Complexity, chapter 13, pages 318 — 322. Prentice-Hall, Englewood Cliffs, 1982.
124

John Ruttenberg, G.R. Gao, A. Stoutchinin, and W. Lichtenstein. Software
Pipelining Showdown: Optimal vs. Heuristic Methods in a Production Compiler.
Proceedings of the 1996 ACM SIGPLAN Conference on Programming Languages
Design and Implementation (PLDI 96), 31(5):1 — 11, May 1996. 124

M.A.R. Saghir, P. Chow, and C.G. Lee. Exploiting Dual Data-Memory Banks in
Digital Signal Processors. hitp://www.eecg.toronto.edu/ “saghir/papers/asplos7.ps,
1996. 122

SPAM Research Group, http://www.ee.princeton.edu/spam. SPAM Compiler
User’s Manual, September 1997. 123

27.

28.

29.

Code Optimization by Integer Linear Programming 137

Ashok Sudarsanam. Code Optimization Libraries for Retargetable Compilation for
Embedded Digital Signal Processors. PhD thesis, University of Princeton, November
1998. 123

Tom Wilson, Gary Grewal, Shawn Henshall, and Dilip Banerji. An ILP-Based
Approach to Code Generation. In Peter Marwedel and Gert Goossens, editors, Code
Generation for Embedded Processors, chapter 6, pages 103-118. Kluwer, Boston;
London; Dortrecht, 1995. 124

L. Zhang. SILP. Scheduling and Allocating with Integer Linear Programming. PhD
thesis, University of the Saarland, Technical Faculty, 1996. 126, 128, 129

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

