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Theory of Small Oscillations

The study of the oscillations of a system in a neighbourhood of an equilibrium
position or a periodic motion usually begins with linearization. The linearized
system can be integrated. After this is done, the main properties of the oscil-
lations in the original system can often be determined by using the theory of
Poincaré–Birkhoff normal forms. This theory is an analogue of perturbation
theory (§ 6.2). The linearized system plays the role of the unperturbed system
with respect to the original one. In this chapter we describe the basic elements
of this approach.

The central problem of theory of small oscillations is the study of stability
of an equilibrium or a periodic motion. There is extensive literature devoted
to stability theory (see the surveys [11, 12, 24]). We consider briefly only some
results of this theory, which enable one to make conclusions on stability based
on studying normal forms. We also describe results related to the problem of
finding converses of Lagrange’s theorem on the stability of an equilibrium in
a conservative field.

8.1 Linearization

We consider a natural Lagrangian system

d

dt

(
∂L

∂q̇

)

− ∂L

∂q
= 0, L = T − U(q), T =

1
2
(A(q)q̇, q̇). (8.1)

The equilibrium positions of system (8.1) are critical points of the potential
energy U . In order to linearize system (8.1) about the equilibrium position
q = 0 it is sufficient to replace the kinetic energy T by its value T2 at q = 0,
and the potential energy U by its quadratic part U2 in a neighbourhood of
zero.
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Example 8.1. For a one-dimensional system,

L = a(q)q̇2/2 − U(q), L2 = T2 − U2 =
1
2
(aq̇2 − bq2),

a = a(0), b =
∂2U

∂q2

∣
∣
∣
∣
q=0

,

and the linearized equation of motion is aq̈ + bq = 0. 


We now consider a Hamiltonian system. Its equilibrium positions are crit-
ical points of the Hamiltonian. In order to linearize a Hamiltonian system
near an equilibrium position it is sufficient to replace the Hamiltonian by its
quadratic part in a neighbourhood of this equilibrium position.

The linearization of a Hamiltonian system near a periodic trajectory is
considered in § 8.3.2.

8.2 Normal Forms of Linear Oscillations

8.2.1 Normal Form of a Linear Natural Lagrangian System

We consider a dynamical system with a quadratic Lagrange function L2 =
T2 − U2, T2 � 0. Its oscillations take a particularly simple form in special
coordinates, which are called principal or normal.

Theorem 8.1. A quadratic Lagrange function can be reduced by a linear
change of coordinates Q = Cq to a diagonal form

L2 =
1
2
(Q̇2

1 + · · · + Q̇2
n) − 1

2
(λ1Q

2
1 + · · · + λnQ

2
n), (8.2)

and the equations of motion, correspondingly, to the form

Q̈i = −λiQi, i = 1, . . . , n. (8.3)

The eigenvalues λi are the roots of the characteristic equation

det(B − λA) = 0,

where T2 =
1
2
(Aq̇, q̇) and U2 =

1
2
(Bq, q).

� The pair of quadratic forms T2 and U2, one of which (T2) is positive
definite, can be reduced to principal axes by a simultaneous linear change of
variables. The new coordinates can be chosen so that the form T2 is reduced
to the sum of squares. �
Corollary 8.1. A system performing linear oscillations is a direct product of
n linear one-dimensional systems.
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For each one-dimensional system (8.3) there are three possible cases:

1) λi = ω2; the solution is Q = c1 cos ωt+ c2 sin ωt (oscillations);
2) λi = 0; the solution is Q = c1 + c2t (neutral equilibrium);
3) λi = −k2 < 0; the solution is Q = c1 cosh kt+ c2 sinh kt (instability).

Corollary 8.2. Suppose that one of the eigenvalues is positive: λ = ω2 > 0.
Then the system can perform a periodic oscillation of the form

q(t) = (c1 cos ωt+ c2 sin ωt)ξ,

where ξ is an eigenvector corresponding to λ: Bξ = λAξ.

This periodic motion is called a characteristic oscillation (or a principal
oscillation, or a normal mode), and the number ω a characteristic (or princi-
pal, or normal) frequency.

These results are also valid when there are multiple eigenvalues: in contrast
to a general system of differential equations (and even a general Hamiltonian
system), in a natural Lagrangian system no resonant terms of the form t sin ωt,
etc., can appear even in the case of multiple eigenvalues (only for λ = 0 Jordan
blocks of order 2 appear).

8.2.2 Rayleigh–Fisher–Courant Theorems on the Behaviour
of Characteristic Frequencies when Rigidity Increases
or Constraints are Imposed

Of two linear Lagrangian systems with equal kinetic energies, the more rigid
(or stiff ) is by definition the one that has higher potential energy.

Theorem 8.2. As the rigidity of a system performing small oscillations in-
creases, all the characteristic frequencies increase.

A natural Lagrangian system with n − 1 degrees of freedom is said to be
obtained from a system with n degrees of freedom performing small oscillations
by imposition of a linear constraint if its kinetic and potential energies are
the restrictions of the kinetic and potential energies of the original system to
an (n− 1)-dimensional subspace.

Theorem 8.3. The characteristic frequencies ω′
i, i = 1, . . . , n− 1 of the sys-

tem with constraint separate the characteristic frequencies ωi of the original
system (Fig. 8.1).

Fig. 8.1.



404 8 Theory of Small Oscillations

8.2.3 Normal Forms of Quadratic Hamiltonians

We consider a Hamiltonian system with a quadratic Hamiltonian function

ż = I
∂H

∂z
, z ∈ R

2n, H =
1
2
(Ωz, z), I =

(
0 −En

En 0

)

.

The roots of the characteristic equation

det(IΩ − λE2n) = 0

are called the eigenvalues of the Hamiltonian.

Theorem 8.4. The eigenvalues of the Hamiltonian are situated on the plane
of complex variable λ symmetrically with respect to the coordinate cross
(Fig. 8.2): if λ is an eigenvalue, then λ̄, −λ, −λ̄ are also eigenvalues. The
eigenvalues λ, λ̄, −λ, −λ̄ have equal multiplicities and the corresponding Jor-
dan structures are the same.

Fig. 8.2.

� The matrices IΩ and (−IΩ)T are similar: IΩ = I−1(−IΩ)T I (because
I2 = −1). �

Corollary 8.3. In a Hamiltonian system stability is always neutral: if an equi-
librium is stable, then the real parts of all the eigenvalues are equal to zero.

Corollary 8.4. If there is a purely imaginary simple eigenvalue, then it re-
mains on the imaginary axis under a small perturbation of the Hamiltonian.
Similarly, a real simple eigenvalue remains real under a small perturbation.

Corollary 8.5. If λ = 0 is an eigenvalue, then it necessarily has even multi-
plicity.
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According to Theorem 8.4, eigenvalues can be of four types: real pairs
(a,−a), purely imaginary pairs (ib,−ib), quadruplets (±a ± ib), and zero
eigenvalues.

For Hamiltonian systems the following assertion replaces the theorem on
reduction of the matrix of a linear differential equation to the Jordan form.

Theorem 8.5 (Williamson [50]). There exists a real symplectic linear change
of variables reducing the Hamiltonian to a sum of partial Hamiltonians
(functions of disjoint subsets of conjugate variables), and the matrix of the
system, correspondingly, to a block-diagonal form. Each partial Hamiltonian
corresponds either to a real pair, or to an imaginary pair, or to a quadruplet of
eigenvalues, or to a zero eigenvalue. The partial Hamiltonians are determined,
up to a sign, by the Jordan blocks of the operator IΩ.

The list of partial Hamiltonians is given in [10, 240].
All the eigenvalues of a generic Hamiltonian are simple. To a simple real

pair (a,−a) there corresponds the partial Hamiltonian H = −ap1q1; to a
simple purely imaginary pair (ib,−ib), the Hamiltonian H = ±b

(
p2
1 + q21

)
/2

(the Hamiltonians with the upper and lower sign cannot be transformed into
one another); to a quadruplet (±a ± ib), the Hamiltonian H = −a(p1q1 +
p2q2) + b(p1q2 − p2q1). For an imaginary pair one often uses symplectic polar
coordinates ρ, ϕ : p =

√
2ρ cos ϕ, q =

√
2ρ sin ϕ. Then the Hamiltonian is

H = ±bρ, where ρ = (p2 + q2)/2.

Corollary 8.6. Let λ = iω be a simple purely imaginary eigenvalue. Then
the system can perform a periodic oscillation of the form

z = Re (ξ exp (iω(t+ t0))),

where ξ is a corresponding eigenvector: (IΩ − iωE2n) ξ = 0. This motion is
called a characteristic oscillation, and ω a characteristic frequency.

Corollary 8.7. If the eigenvalues are all distinct and purely imaginary, then
the Hamiltonian can be reduced to the normal form

H =
1
2
ω1

(
p2
1 + q21

)
+ · · · + 1

2
ωn

(
p2

n + q2n
)

(8.4)

or, in symplectic polar coordinates, H = ω1ρ1 + · · · + ωnρn. The motion is a
sum of characteristic oscillations.

Remark 8.1. If the Hamiltonian has the form (8.4), then the equilibrium is
stable regardless of whether the Hamiltonian is positive definite or not (for
a natural Lagrangian linear system an equilibrium is stable only if the total
energy is positive definite).

It is often necessary to consider not an individual Hamiltonian but a family
depending on parameters. In such a family, for some values of the parame-
ters there can appear singularities: multiple eigenvalues and, correspondingly,
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Jordan blocks of order greater than 1 in the matrix of the system; moreover,
these singularities can even be unremovable by a small change of the fam-
ily of Hamiltonians. For every finite l, the unremovable singularities arising
in l-parameter families of Hamiltonians are indicated in [240]. Also calcu-
lated therein are the versal deformations of these singularities, that is, normal
forms to which any family of quadratic Hamiltonians smoothly depending on
parameters can be reduced in a neighbourhood of singular values of the para-
meters by means of symplectic linear changes of variables smoothly depending
on the parameters. In particular, in a one-parameter family of Hamiltonians,
generally speaking, only the following three singularities occur: a real pair of
multiplicity two, (±a)2, with two Jordan blocks of order 2; an imaginary pair
of multiplicity two, (±ib)2, also with two Jordan blocks of order 2; and a zero
eigenvalue of multiplicity two, (0)2, with one Jordan block of order 2. The
versal deformations of these singularities are:

(±a)2 : H = −(a+ δ2)(p1q1 + p2q2) + p1q2 + δ1p2q1,

(±ib)2 : H = ±p
2
1 + p2

2

2
+ (b+ δ2) (p2q1 − p1q2) +

δ1
(
q21 + q22

)

2
,

(0)2 : H = ±p
2
1

2
+
δ1q

2
1

2
.

(8.5)

Here δ1, δ2 are the parameters of the deformations.

8.3 Normal Forms of Hamiltonian Systems
near an Equilibrium Position

8.3.1 Reduction to Normal Form

Let the origin of coordinates be an equilibrium position of an analytic Hamil-
tonian system with n degrees of freedom. Suppose that the eigenvalues of the
quadratic part of the Hamiltonian in a neighbourhood of the equilibrium po-
sition are all distinct and purely imaginary. In accordance with what was said
in § 8.1 and § 8.2.2, we represent the Hamiltonian in the form

H =
1
2
ω1

(
p2
1 + q21

)
+ · · · + 1

2
ωn

(
p2

n + q2n
)

+H3 +H4 + · · · , (8.6)

where Hm is a form of degree m in the phase variables p, q. (Some of the
frequencies ωi can be negative.)

Definition 8.1. The characteristic frequencies ω1, . . . , ωn satisfy a resonance
relation of order l > 0 if there exist integers ki such that k1ω1+· · ·+knωn = 0
and |k1| + · · · + |kn| = l. For example, ω1 = ω2 is a relation of order 2.

Definition 8.2. A Birkhoff normal form of degree L for the Hamiltonian is
a polynomial of degree L in symplectic phase variables P, Q that is actually
a polynomial of degree [L/2] in the variables ρi =

(
P 2

i +Q2
i

)
/2.
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Example 8.2. For a system with two degrees of freedom,

H = ω1ρ1 + ω2ρ2 +
1
2
(
ω11ρ

2
1 + 2ω12ρ1ρ2 + ω22ρ

2
2

)
(8.7)

is a Birkhoff normal form of degree 4. The terms quadratic in ρ describe the
dependence of the frequencies of the oscillations on the amplitudes. 


Theorem 8.6 (Birkhoff [14]). Suppose that the characteristic frequencies ωi

do not satisfy any resonance relation of order L or less. Then in a neigh-
bourhood of the equilibrium position 0 there exists a symplectic change of
variables (p, q) �→ (P, Q) fixing the equilibrium position 0 and such that in
the new variables the Hamiltonian function is reduced to a Birkhoff normal
form HL(ρ) of degree L up to terms of degree higher than L:

H(p, q) = HL(ρ) +R, R = O(|P | + |Q|)L+1. (8.8)

Discarding the non-normalized terms R in (8.8) we obtain an integrable
system whose action–angle variables are the symplectic polar coordinates
ρi, ϕi defined by

Pi =
√

2ρi cos ϕi, Qi =
√

2ρi sin ϕi, (8.9)

and whose trajectories wind round the tori ρ = const with frequencies
∂HL/∂ρ. Most of similar tori, which are invariant under the phase flow, in
the general case exist also in the original system; this follows from the results
of KAM theory (§ 6.3.6.B).

Birkhoff’s normalization amounts to Lindstedt’s procedure for eliminating
the fast phases (§ 6.2.2) if we normalize the deviations from the equilibrium
position by a small quantity ε (putting p = εp̂, q = εq̂, Ĥ = H/ε2) and pass
to the symplectic polar coordinates.

The normalization procedure is described below for a more general case
(see the proof of Theorem 8.7). The generating function of the normalizing
transformation is constructed in the form of a polynomial of degree L in the
phase variables. A change in the terms of degree l in the original Hamiltonian
does not change the terms of degree lower than l in the normal form (and of
degree lower than l − 1 in the normalizing transformation).

In the absence of resonances, a Hamiltonian is in normal form if and only
if the Poisson bracket of the Hamiltonian and its quadratic part is identically
zero (see Proposition 5.1).

Considering the normalization as L→ ∞ we arrive at the notion of formal
normal form, which was discussed in § 5.1.3.

The definition of a normal form must be modified for the case where the
characteristic frequencies satisfy some resonance relations. The same modifica-
tion is also appropriate for nearly resonant frequencies. Let K be a sublattice
of the integer lattice Z

n defining the possible resonances (cf. § 6.1.1).
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Definition 8.3. A resonant normal form of degree L for the Hamiltonian for
resonances in K is a polynomial of degree L in symplectic variables Pi, Qi

which in the polar coordinates (8.9) depends on the phases ϕi only via their
combinations (k, ϕ) for k ∈ K.

Theorem 8.7 ([179, 271]). Suppose that the characteristic frequencies do not
satisfy any resonance relations of degree L or less, except, possibly, for rela-
tions (k, ω) = 0 with k ∈ K. Then in a neighbourhood of the zero equilibrium
position there exists a symplectic change of variables (p, q) �→ (P, Q) fixing
the zero equilibrium position and such that in the new variables the Hamil-
tonian function reduces to a resonant normal form of degree L for resonances
in K up to terms of degree higher than L.

� In the system with Hamiltonian (8.6) we perform the change of variables
with a generating function Pq+S(P, q), S = S3 + · · ·+SL. The new Hamil-
tonian has the form

H =
1
2
ω1

(
P 2

1 +Q2
1

)
+ · · · + 1

2
ωn

(
P 2

n +Q2
n

)
+ H3 + H4 + · · · ,

where Sl and Hl are forms of degree l in P, q and in P, Q, respectively. The
old and new Hamiltonians are connected by the relation

H

(

P +
∂S

∂q
, q

)

= H

(

P, q +
∂S

∂P

)

.

Equating here the forms of the same order in P , q we obtain

n∑

j=1

ωj

(

Pj
∂Sl

∂qj
− qj

∂Sl

∂Pj

)

= Hl − Fl, l = 3, . . . , L.

The form Fl is uniquely determined if we know the Sν ,Hν for ν � l − 1. In
the symplectic polar coordinates ρ, ϕ the last equation takes the form

ω
∂Sl

∂ϕ
= Hl − Fl.

We choose

Sl =
∑

i
fk(ρ)
(k, ω)

exp (i(k, ϕ)), k /∈ K,

where the fk are the coefficients of the Fourier series of Fl. Then Hl is in
the required normal form. Thus we can successively determine all the Sl,Hl.
Returning to Cartesian coordinates we obtain the result. �

Suppose that the Hamiltonian is in a resonant normal form. If the rank
of the sublattice K ⊂ Z

n defining the possible resonances is equal to r, then
the system has n − r independent integrals in involution which are linear
combinations with integer coefficients of the quantities ρi = (P 2

i + Q2
i )/2
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(cf. Theorem 6.15 in Ch. 6). In particular, if r = 1, then the system in the
normal form is integrable.

Resonance normalization amounts to von Zeipel’s procedure for eliminat-
ing the fast non-resonant phases (§ 6.2.2) if we normalize the deviations from
the equilibrium position by a small quantity ε and pass to the symplectic
polar coordinates.

In the presence of resonances, a Hamiltonian is in resonant normal form if
and only if the Poisson bracket of the Hamiltonian and its quadratic part is
identically zero (see Proposition 5.1).

If the matrix of the linearized system is not diagonalizable, then the
quadratic part of the Hamiltonian cannot be reduced to the form (8.4). How-
ever, the nonlinear terms can be reduced to the form indicated in Theorem 8.7;
see [151].

8.3.2 Phase Portraits of Systems with Two Degrees of Freedom
in a Neighbourhood of an Equilibrium Position
at a Resonance

Any system with two degrees of freedom whose Hamiltonian is in resonant
normal form is integrable. One can reduce such a system to a system with one
degree of freedom depending on the constant value of the first integral as a
parameter, and then draw the phase portraits. If the coefficients of the lower
terms of the normal form are generic, then for the given resonance there are
only finitely many types of phase portraits, and these types are determined by
the lower terms of the normal form. The phase portraits are qualitatively dif-
ferent only for finitely many resonances. Description of the portraits provides
exhaustive information about the motion near the resonance for systems in
a normal form in the generic case. Correspondingly, we obtain considerable
information on the motion for systems in which the lower terms of the Hamil-
tonian can be reduced to this normal form. Below we give the list of phase
portraits and their bifurcations. For lack of space we confine ourselves to the
case where the frequencies ω1 and ω2 have different signs, since this case is
more interesting from the viewpoint of stability theory (if ω1ω2 > 0, then
an energy level H = h � 1 is a sphere, and the equilibrium is stable). The
information requisite for constructing these portraits is contained in a series
of papers of Alfriend, Henrard, van der Burgh, Duistermaat, Markeev, Roels,
Sanders, Schmidt, et al. The complete information is presented in [217]. The
portraits for resonances of order higher than 4 can be found in [534].

Let k1, k2 be coprime positive coefficients of a resonance relation. There
exist coprime integers l1, l2 such that k1l2 − k2l1 = 1. In a neighbourhood of
the equilibrium position we pass to the canonical polar coordinates ρ, ϕ given
by (8.9) and then perform the change of variables

(ρ1, ρ2, ϕ1, ϕ2) �→ (G, I, ψ, χ)
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with the generating function

S = (k1ϕ1 + k2ϕ2)G+ (l1ϕ1 + l2ϕ2) I,

so that
ψ = k1ϕ1 + k2ϕ2, G = l2ρ1 − l1ρ2,

χ = l1ϕ1 + l2ϕ2, I = −k2ρ1 + k1ρ2.

Since by the assumption the Hamiltonian is in a normal form, it is inde-
pendent of χ; correspondingly, I is an integral of the problem. We perform the
isoenergetic reduction on an energy level H = h (see [10]); as the new time we
introduce the phase χ. We obtain the reduced system with one degree of free-
dom whose Hamiltonian depends on the parameter h. It is the phase portrait
of this system that must be analysed. In the generic case the portrait depends
essentially on one more parameter – the resonance detuning δ = k1ω1 + k2ω2.

A neighbourhood of the origin on the plane h, δ is partitioned into the
domains corresponding to different types of the phase portrait. These par-
titions for different resonances are shown in Fig. 8.3a–8.8a, and the bifurca-
tions of the phase portrait for going around the origin clockwise are shown
in Fig. 8.3b–8.8b, respectively. The numbering of the portraits corresponds to
the numbering of the domains on the plane of parameters. The unnumbered
portraits correspond to the curves separating the domains; they are given only
in Fig. 8.3–8.5.

The normal forms for which the bifurcations are given have the form

Hk1,k2 = ω1ρ1 + ω2ρ2 + F (ρ1, ρ2) +Bρ
k1/2
1 ρ

k2/2
2 cos (k1ϕ1 + k2ϕ2 + ψ0).

Here F is a polynomial in ρ1, ρ2 beginning with the quadratic form F2(ρ1, ρ2)
(in the Hamiltonian H2,1 the term F must be omitted), and B, ψ0 are con-
stants. The required genericity conditions are B �= 0, A = F2(k1, k2) �= 0, and,
for the Hamiltonian H3,1, |A| �= 3

√
3|B|. The pictures correspond to the case

ω1 > 0, A > 0, B > 0 (this does not cause a loss of generality). The pictures
are given for the following resonant vectors (k1, k2): (2,1) in Fig. 8.3; (3,1) in
Fig. 8.4 if A < 3

√
3B, and in Fig. 8.5 if A > 3

√
3B; (4,1) in Fig. 8.6; (3,2) in

Fig. 8.7; and (4,3) in Fig. 8.8. For the resonant vectors (n, 1), n � 5, the bifur-
cations are the same as for (4,1); for (n, 2), n � 5, the same as for (3,2) but
the domain (5) is skipped in Fig. 8.7; for (n, 3), n � 5, the same as for (4,3);
and for (n, m), n � 5, m � 4, the same as for (4,3) but the domain (2) is
skipped in Fig. 8.8. (Of course, the number of singular points of each type
must be changed taking into account the symmetry of the Hamiltonian). The
axis δ = 0 is not a bifurcation line. The positions of the bifurcation lines with
respect to this axis may be different from those shown in the pictures.

We make several further remarks on the presentation of the information.
To ensure that the phase portraits have no singularities, we depicted them
for h > 0 in the polar coordinates

√
ρ2, ψ/k2, and for h < 0 in the polar

coordinates
√
ρ1, ψ/k1. For h = 0 the phase portrait in Fig. 8.3–8.5 is depicted
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Fig. 8.3.

Fig. 8.4.

in both sets of coordinates. For h > 0 (h < 0) the portrait may be thought
of as the section of a three-dimensional energy-level manifold by the plane
ϕ1 = 0 (respectively, ϕ2 = 0). To the equilibrium positions on the phase
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Fig. 8.5.

Fig. 8.6.

portrait there correspond periodic solutions1 of the original system with two
degrees of freedom, and to the closed curves there correspond two-dimensional
invariant tori. Here to equilibrium positions obtained from one another by a
rotation by angle 2π/k2 in the domain h > 0, or 2π/k1 in the domain h < 0,
there corresponds one and the same periodic solution piercing the surface of
the section k2 times (respectively, k1 times). Exactly the same is true for the
two-dimensional tori.

To complete the analysis of resonances in systems with two degrees of free-
dom it remains to consider the resonances that are essential already in the

1 For h = 0 to the equilibrium position at the centre of the portrait there corre-
sponds an equilibrium of the original system.
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Fig. 8.7.

Fig. 8.8.

quadratic terms of the Hamiltonian: the case of multiple eigenvalues and the
case of a zero eigenvalue.

For multiple eigenvalues, in the typical case the matrix of a linear Hamil-
tonian system has two Jordan blocks of order 2 (see § 8.2.3). If there are nearly
multiple eigenvalues, then the quadratic part of the Hamiltonian can be re-
duced to the form (±ib)2 in (8.5). According to [561], in this case the terms of
the Hamiltonian of order up to and including 4 can be reduced to the following
form, which is also called a normal form:

H =
a(p2

1 + p2
2)

2
+ω(p2q1 − p1q2)+

δ(q21 + q22)
2

+

+
(
q21 + q22

) [
D
(
q21 + q22

)
+B (p2q1 − p1q2) +C

(
p2
1 + p2

2

)]
,

a= ±1.

(8.10)
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The formal normal form is a series in q21 + q22 , p2
1 + p2

2, and p2q1 − p1q2.
Following [320, 563] we pass to the polar coordinates r, χ on the plane q1, q2
and introduce the corresponding momenta P, I defined by

q1 = r cos χ, p1 = P cos χ− I sin
χ

r
,

q2 = r sin χ, p2 = P sin χ+ I cos
χ

r
.

(8.11)

In the new variables the Hamiltonian (8.10) takes the form

H =
1
2
a

(

P 2 +
I2

r2

)

+ ωI + r2
(
δ

2
+Dr2 +BI + C

(

P 2 +
I2

r2

))

. (8.12)

Since the Hamiltonian is independent of the angle χ, the momentum I is
an integral, and for P , r we obtain a system with one degree of freedom
depending on the two parameters I and δ. Since we consider a neighbourhood
of the equilibrium position p = q = 0, we can neglect the term Cr2(P 2+I2/r2)
in (8.12): this term is much smaller than the term in the first bracket in (8.12).
The bifurcation diagram of the resulting system is given in Fig. 8.9 for the case
a = 1 and D > 0, and in Fig. 8.10 for the case a = 1 and D < 0. It is assumed
that I � 0, which does not cause any loss of generality.

Fig. 8.9.

The left- and right-most phase portraits in Fig. 8.9, 8.10 correspond to
I = 0. To ensure that they have no singularities we have to assume that r
takes values of both signs. The curves on the portraits which are symmetric
with respect to the axis r = 0 correspond to the same invariant surfaces in
the phase space of the system with two degrees of freedom.
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Fig. 8.10.

Finally, we consider the case of a zero eigenvalue (a degenerate equilib-
rium). This case appears already in systems with one degree of freedom; it
is such a system that we shall consider.2 We assume that in the linearized
system to the zero eigenvalue there corresponds a Jordan block of order 2
(see § 8.2.3). If the equilibrium is nearly degenerate, then it cannot be shifted
to the origin by a change of variables that is smooth in the parameters of the
problem. Hence the linear part remains in the Hamiltonian. The terms of the
Hamiltonian of order up to and including 3 can be reduced to the form

H = δq +
ap2

2
+ bq3, a = ±1. (8.13)

Suppose that a = 1 and b > 0. The bifurcation of the phase portrait
in the transition from negative δ to positive is shown in Fig. 8.11. The two
equilibrium positions merge and disappear.

Fig. 8.11.

The diagrams given here exhaust all the resonance-related bifurcations
that occur in one-parameter families of generic Hamiltonians with two degrees
of freedom and can be calculated from the normal form.
2 For two degrees of freedom, the order can be reduced to one by using the integral

corresponding to the non-zero characteristic frequency.
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These diagrams are also useful for a higher number of degrees of freedom.
Indeed, suppose that in a system with n degrees of freedom there is a single
resonance relation approximately satisfied by two frequencies. Then its normal
form has n − 2 integrals ρi = const and is reducible to a system with two
degrees of freedom. As a result we obtain one of the normal forms considered
above, whose coefficients depend on the parameters ρi � 1.

The study of multiple resonances in systems with many degrees of freedom
is presently in its early stage. In [53] the case with frequency ratio 1 : 2 : 1 was
studied, its periodic solutions and additional integrals appearing for special
values of the parameters were found. In [54] it was shown that for the resonance
1 : 2 : 2 the normal form of order 3 has an additional symmetry, and the
corresponding system is completely integrable. In [218] it was shown that for
the resonance 1 : 1 : 2 the normal form of order 3 generates a non-integrable
system.3

8.3.3 Stability of Equilibria of Hamiltonian Systems
with Two Degrees of Freedom at Resonances

Studying the normal form provides considerable information about the motion
of the original system for which the lower terms of the Hamiltonian can be
reduced to this form. For example, if the normal form has a non-degenerate
periodic solution, then the original system has a periodic solution close to that
one. This follows from the implicit function theorem. Most of the invariant
tori that exist for the normal form also exist, in the general case, for the
original system. This follows from the results of KAM theory (one must use
Theorem 6.17 in § 6.3). As always in systems with two degrees of freedom, the
existence of invariant tori allows us to draw conclusions on stability.

If the characteristic frequencies of a system with two degrees of freedom do
not satisfy resonance relations of order up to and including 4, then the equilib-
rium is stable (under the additional condition of isoenergetic non-degeneracy);
this result was already discussed in § 6.3.6.B. For the remaining finitely many
resonant cases the following result holds.

Theorem 8.8 ([191, 320, 408, 561, 562, 563]). If the characteristic frequencies
satisfy a resonance relation of order � 4, and the conditions of generality of
position of § 8.3.2 hold, then the equilibrium of the original system is stable
or unstable simultaneously with the equilibrium of the normal form.

The stability can be proved by using KAM theory, and the instability,
by comparing the rate of moving away from the equilibrium position for the
original system and the normal form, or by constructing a Chetaev function.

3 In these papers it is assumed that to the multiple characteristic frequency there
correspond, in the matrix of the linearized system, four Jordan blocks of order 1,
rather than two blocks of order 2, that is, there is additional degeneracy: to obtain
this case in a generic system four parameters are required.
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In the notation of § 8.3.2 we have the following results.

Corollary 8.8 ([408]). For the resonance (2, 1) the equilibrium is unstable if
B �= 0 (Fig. 8.3).

Corollary 8.9 ([408]). For the resonance (3, 1) the equilibrium is stable if
|A| > 3

√
3 |B| > 0 (Fig. 8.5), and unstable if 0 < |A| < 3

√
3 |B| (Fig. 8.4).

Corollary 8.10 ([320, 561, 563]). If the linearized system has a multiple non-
zero frequency with a pair of Jordan blocks of order 2, then the equilibrium
of the full system is stable if aD > 0 (Fig. 8.9), and unstable if aD < 0
(Fig. 8.10).

Corollary 8.11 ([191, 562]). If the linearized system has a zero characteristic
frequency with a Jordan block of order 2, then the equilibrium of the full system
is unstable if b �= 0 (Fig. 8.11).

When some of the conditions of generality of position stated above are
violated, the problem of stability was analysed in [191, 408, 561, 562].

The separatrices on the phase portraits of the normal form, generally
speaking, split on passing to the exact system, as described in § 6.3.3.B.

8.4 Normal Forms of Hamiltonian Systems
near Closed Trajectories

8.4.1 Reduction to Equilibrium of a System
with Periodic Coefficients

Suppose that a Hamiltonian system with n + 1 degrees of freedom has a
closed trajectory which is not an equilibrium position. Such trajectories are
not isolated but, as a rule, form families. We now reduce the problem of the
oscillations in a neighbourhood of this family to a convenient form.

Proposition 8.1 (see, for example, [154]). In a neighbourhood of a closed
trajectory there exist new symplectic coordinates ϕ mod 2π, J , and z ∈ R

2n

such that J = 0 and z = 0 on the trajectory under consideration, and going
around this trajectory changes ϕ by 2π; on the trajectory itself, ϕ̇ = const.
In the new coordinates the Hamiltonian function takes the form H = f(J) +
H (z, ϕ, J), where f ′

J �= 0 and the expansion of H in z, J begins with terms
of the second order of smallness.
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We now perform the isoenergetic reduction (see [10]) choosing, on an en-
ergy level H = h, the phase ϕ for the new time (which we now denote by t).
The Hamiltonian of the problem takes the form F = F (z, t, h). For h = 0 the
origin is an equilibrium position of the system. Suppose that this equilibrium
is non-degenerate (all the multipliers are distinct from 1; the degenerate case
is considered in § 8.4.3). Then for small h the system also has a non-degenerate
equilibrium. By a change of variables smooth in the parameter one can shift
this equilibrium to the origin. The Hamiltonian takes the form

F =
1
2
(Ξ(t, h)z, z) +G(z, t, h), (8.14)

where the expansion ofG in z begins with terms of the third order of smallness;
the Hamiltonian has period 2π in t.

We now consider the linearized system.

Theorem 8.9 (see, for example, [614]). A linear Hamiltonian system that
is 2π-periodic in time can be reduced to an autonomous form by a linear
symplectic change of variables. If the system has no negative real multipliers,
then the reducing change of variables can be chosen to be 2π-periodic in time,
and if the system has negative real multipliers, then 4π-periodic. If the system
depends smoothly on a parameter, then the change of variables can also be
chosen to be smooth in this parameter.

Suppose that all the multipliers of the linearized system lie on the unit cir-
cle and are all distinct. Then, by the theorem stated above and by § 8.2.2, the
Hamiltonian (8.14) can be reduced by a linear 2π-periodic change of variables
to the form

Φ =
1
2
ω1

(
p2
1 + q21

)
+ · · · + 1

2
ωn

(
p2

n + q2n
)

+ Ψ(p, q, t, h), (8.15)

where the expansion of Ψ in the phase variables begins with terms of the third
order of smallness, and Ψ has period 2π in time t.

8.4.2 Reduction of a System with Periodic Coefficients
to Normal Form

Definition 8.4. The characteristic frequencies ω1, . . . , ωn satisfy a reso-
nance relation of order l > 0 for 2π-periodic systems if there exist integers
k0, k1, . . . , kn such that k1ω1 + · · ·+ knωn + k0 = 0 and |k1|+ · · ·+ |kn| = l.

Theorem 8.10 (Birkhoff [14]). Suppose that the characteristic frequencies ωi

of the 2π-periodic system (8.15) do not satisfy any resonance relation of order
L or less. Then there is a symplectic change of variables that is 2π-periodic
in time and reduces the Hamiltonian function to the same Birkhoff normal
form of degree L as if the system were autonomous, with the only difference
that the remainder terms of degree L + 1 and higher depend 2π-periodically
on time.
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The normalization procedure is similar to the one described in § 8.3.1. If
the system depends smoothly on a parameter, then the normalizing transfor-
mation can also be chosen to be smooth in the parameter.

For resonant cases one uses resonant normal forms. Let K be a sublattice
of the integer lattice Z

n+1 defining the possible resonances (cf. § 6.1.1).

Definition 8.5. A non-autonomous resonant normal form of degree L for a
Hamiltonian for resonances in K is a polynomial of degree L in symplectic
variables Pi, Qi which in the polar coordinates (8.9) depends on the phases
ϕi and time t only via their combinations k1ϕ1 + · · · + knϕn + k0t with
(k1, . . . , kn, k0) ∈ K.

Theorem 8.11. Suppose that the characteristic frequencies do not satisfy
any resonance relations of order L or less, except, possibly, for relations
k1ω1 + · · · + knωn + k0 = 0 with (k1, . . . , kn, k0) ∈ K. Then there exists
a symplectic 2π-periodic change of variables reducing the Hamiltonian to a
non-autonomous resonant normal form of degree L for resonances in K up to
terms of degree higher than L.

If the rank of the sublattice K is equal to r, then a system in a normal
form for resonances in K has n− r independent integrals in involution which
are linear combinations of the quantities ρi =

(
P 2

i +Q2
i

)
/2 with integer coef-

ficients. In particular, if there is only one resonance relation, then the system
is integrable.

8.4.3 Phase Portraits of Systems with Two Degrees of Freedom
near a Closed Trajectory at a Resonance

In a system with two degrees of freedom the oscillations about a closed tra-
jectory are described by a time-periodic system with one degree of freedom
depending on a parameter (§ 8.4.1). A system having a resonant normal form
for such a problem reduces to a system with one degree of freedom; its phase
portraits can be drawn. If the coefficients of the lower terms of the normal
form are generic, then there exists only finitely many types of phase portraits
for this resonance, and these types are determined by the lower terms of the
normal form. The phase portraits differ qualitatively only for finitely many
resonances. The list of them and the description of the bifurcations that the
portraits undergo when the parameters of the system pass through an exact
resonance are contained in [150, 152] and are reproduced below.

The normal forms Hk,k0 for resonances (k, k0) in the variables ρ, ψ =
ϕ+ k0t/k + ψ0 have the form

H3,k0 = δρ+Bρ3/2 cos 3ψ,

Hk,k0 = δρ+ ρ2A(ρ) +Bρk/2 cos kψ, k � 4.
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Here ρ and ψ are conjugate phase variables, δ = ω + k0/k is the resonance
detuning, A is a polynomial in ρ, and B, ψ0 are constants. The required
genericity conditions are B �= 0, A(0) �= 0 for k � 4, |A(0)| �= |B| for k = 4.
All the coefficients depend also on a parameter h. We assume that dδ/dh �= 0,
so that we can use δ instead of h. Under these conditions a small change in B
and in the coefficients of A does not cause bifurcations; hence we can ignore
the dependence of A and B on the parameter. We assume that B > 0 and
A(0) > 0; this does not cause any loss of generality.

The metamorphosis of the phase portrait as δ increases passing through
zero is shown for k = 3 in Fig. 8.12a; for k = 4 in Fig. 8.12b if A(0) < B,
and in Fig. 8.12c if A(0) > B; and for k = 5 in Fig. 8.12d.

Fig. 8.12.

For k � 6 the metamorphosis is the same as for k = 5, only there are
2k singular points around the origin, rather than 10. For k � 5 these sin-
gular points are at a distance of order

√
δ from the origin. The “oscillation

islands” surrounding stable points have width of order δ(k−2)/4. Consequently,
for k � 5 these islands occupy only a small proportion of the neighbourhood of
the origin under consideration, and the other phase curves are close to circles.

There are two more resonant cases which are already related to the
quadratic terms of the Hamiltonian. These are the cases where the multi-
pliers of a closed trajectory are equal to −1 or 1.
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If the multipliers are close to −1 (resonance (2, k0)), then in the typical
case the lower terms of the Hamiltonian can be reduced by a 4π-periodic
change of variables to the normal form

H = δq2 +
ap2

2
+Dq4, a = ±1.

The metamorphosis is shown in Fig. 8.13a for a = 1 and D > 0, and in
Fig. 8.13b for a = 1 and D < 0.

Fig. 8.13.

If the multipliers are close to 1 (resonance (1, k0)), then the lower terms
of the Hamiltonian can be reduced to the normal form

H = δq2 +
ap2

2
+ bq3, a = ±1.

The metamorphosis is shown in Fig. 8.14 (under the assumption that a = 1
and b > 0).

Fig. 8.14.
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The phase portraits constructed here allow one to determine many prop-
erties of the original system when its lower terms can be reduced to the corre-
sponding normal form. For example, to non-degenerate equilibrium positions
on the portraits there correspond periodic trajectories of the full system go-
ing over the original periodic trajectory k times. For a resonance of order 3
there is only one such trajectory, it is unstable and merges with the original
one at the instant of the exact resonance (δ = 0). For a resonance of order
k � 5 there are two such trajectories, one is stable, the other is unstable; they
branch off from the original trajectory at passing through the resonance along
the δ-axis in one definite direction. For a resonance of order 4, depending on
the values of the parameters, the picture is either the same as for order 3, or as
for order k � 5. At passing through a resonance of order 2 (the multipliers are
equal to −1) the original trajectory loses or acquires stability, and a periodic
trajectory branches off which goes twice over it. Finally, for a resonance of or-
der 1 (the multipliers are equal to 1) the original trajectory vanishes merging
with another trajectory with the same period (or, if we move in the opposite
direction along the parameter, two periodic trajectories are born).

To most of the closed curves on the phase portraits there correspond two-
dimensional invariant tori of the full system carrying conditionally periodic
motions (according to KAM theory).

Under the genericity conditions stated above, the stability or instability
of the original closed trajectory can be determined by using the normal form
(cf. Theorem 8.8). For k = 3 we have instability if B �= 0; for k = 4, stability
if |A(0)| > |B| > 0, and instability if 0 < |A(0)| < |B|; for k � 5, stability
if A(0)B �= 0. For the multipliers equal to −1 we have stability if aD > 0,
and instability if aD < 0. For the multipliers equal to 1 we have instability
if ab �= 0.

When we pass from the normal form to the exact system, the separatrices
that are present on the phase portraits, generally speaking, split similarly to
what was described in § 6.3.3.B.

8.5 Stability of Equilibria in Conservative Fields

8.5.1 Lagrange–Dirichlet Theorem

Theorem 8.12 (Lagrange–Dirichlet). If the potential has a strict local min-
imum at an equilibrium position, then the corresponding equilibrium state is
stable.

� For a Lyapunov function we can take the total mechanical energy. �
The hypothesis of the Lagrange–Dirichlet theorem is not a necessary con-

dition for stability.
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Example 8.3 (Painlevé–Wintner). Consider the infinitely differentiable po-
tential U(q) = (cos q−1) exp (−q−2), where q �= 0; U(0) = 0. The equilibrium
position q = 0 is stable, although the point q = 0 is of course not a local
minimum of the function U (Fig. 8.15).

U

q

Fig. 8.15.



In 1892 Lyapunov posed the problem of proving the converse of Lagrange’s
theorem for the case in which the coefficients of the quadratic form T =∑

aij(q)q̇iq̇j and the potential U are analytic functions in a neighbourhood of
the equilibrium position. A detailed survey of papers on Lyapunov’s problem
up to 1983 is contained in [24].

Theorem 8.13. Suppose that the equilibrium position q = 0 is not a local
minimum of an analytic potential U . Then the equilibrium state (q̇, q) = (0, 0)
is unstable.

This result was established by Palamodov in [491]. Earlier he proved the
converse of the Lagrange–Dirichlet theorem for systems with two degrees of
freedom.

The proof of Theorem 8.13 is based on the following assertion going back
to Chetaev [180]. We assume that the matrix of kinetic energy

(
aij(q)

)
at the

point q = 0 is the identity matrix. This can be achieved by a suitable linear
change of coordinates.

Lemma 8.1 ([180, 24]). Suppose that in some neighbourhood Q of the point
q = 0 there exists a vector field v such that

1) v ∈ C1(Q) and v(0) = 0,
2) 〈v′ξ, ξ〉 � 〈ξ, ξ〉 for all ξ ∈ R

n and q ∈ Q,
3) 〈v, U ′〉 = PU , where P is positive and continuous in Q ∩ {U(q) < 0}.

Then any motion q(·) of the mechanical system with negative energy leaves
the domain Q in finite time.
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Remark 8.2. Let q(·) be a motion with zero total energy. If the equilibrium
position q = 0 is isolated, then (under the assumptions of Lemma 8.1) the
point q(t) either leaves some domain |q| � ε0 in finite time, or tends to zero
as t→ ∞.

The main difficulty in the proof of Palamodov’s theorem is precisely in the
construction of the required field v. This construction is based on the technique
of resolution of singularities, which is often used in algebraic geometry.

Example 8.4. Suppose that U is a quasi-homogeneous function with quasi-
homogeneity exponents α1, . . . , αn ∈ N:

U(λα1x1, . . . , λ
αnxn) = λαU(x1, . . . , xn), α ∈ N.

Then for the field v one can take the field Aq, where A = diag (α1, . . . , αn).
Indeed, 〈v, U ′〉 = αU by the Euler formula. 


Remark 8.3. Of special interest is the case where the potential energy has a
non-strict minimum. Laloy and Pfeiffer [365] proved that such critical points
of an analytic potential of a system with two degrees of freedom are unstable
equilibrium positions. This problem is so far unsolved in the multidimensional
case.

The problem of converses to the Lagrange–Dirichlet theorem is interesting
not only in the analytic but also in the smooth case, where the absence of a
minimum of the potential energy is determined by its Maclaurin series. Let

U = U2 + Uk + Uk+1 + · · · (8.16)

be the formal Maclaurin series of the potential U , where Us is a homogeneous
form of degree s in q1, . . . , qn. In a typical situation, of course, k = 3.

If the first form U2 does not have a minimum at the equilibrium position
q = 0, then this equilibrium is unstable. In this case one of the eigenvalues is
positive, and therefore the instability follows from the well-known theorem of
Lyapunov.

Therefore we consider the case where U2 � 0. We introduce the plane

Π = {q : U2(q) = 0}.

If dimΠ = 0, then the form U2 is positive definite and therefore the equilib-
rium q = 0 is stable by Theorem 8.12. We assume that dimΠ � 1. Let Wk

be the restriction of the form Uk in the expansion (8.16) to the plane Π. We
have the following.

Theorem 8.14 ([333]). If the form Wk does not have a minimum at the
point q = 0, then this equilibrium is unstable.
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The proof of Theorem 8.14 is based on the following idea: if the equations
of motion have a solution q(t) that asymptotically tends to the point q = 0 as
t→ +∞, then the equilibrium state (q, q̇) = (0, 0) is unstable. Indeed, in view
of the reversibility property, the equations of motion have also the solution
t �→ q(−t), which asymptotically goes out of the equilibrium position.

Under the hypotheses of Theorem 8.14 an asymptotic solution can be
represented as a series in negative powers of time:

∞∑

s=1

xs(ln t)
tsµ

, µ =
2

k − 2
, (8.17)

where xs ∈ R
n, and each component of the vector-function xs(·) is a polyno-

mial with constant coefficients.
Suppose that U2 = 0 and the Maclaurin series (8.16) converges. Then (as

established in [328, 357]) the series (8.17) converges for t � t0. Furthermore,
in the case of odd k the coefficients xs are altogether independent of time.

If U2 �≡ 0, then the series (8.17) are, as a rule, divergent even in the analytic
case.

Example 8.5. Consider the system of equations

ẍ =
∂U

∂x
, ÿ = ẋ2 − ∂U

∂y
; U = −4x3 +

y2

2
. (8.18)

The presence of the summand ẋ2 models the case where the kinetic energy is
non-Euclidean. Equations (8.18) have the formal solution

x =
1

2t2
, y =

1
t6

∞∑

n=0

a2n

t2n
, a2n =

(−1)n(2n+ 5)!
120

. (8.19)

The radius of convergence of the power series for y is zero.
However, equations (8.18) have the following exact asymptotic solutions

corresponding to the formal series (8.19):

x =
1

2t2
, y(t) = − sin t

∞∫

t

cos s
s6

ds+ cos t

∞∫

t

sin s
s6

ds

By performing successive integration by parts, from the last formula we ob-
tain the divergent series (8.19). This series is an asymptotic expansion of the
function y(t) as t→ +∞. 


According to Kuznetsov’s theorem [364], with each series (8.17) formally
satisfying the equations of motion one can associate a genuine solution for
which this series is an asymptotic expansion as t→ +∞:

q(t) −
N∑

s=1

xs

tsµ
= o

(
1
tNµ

)
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Note that the paper [364] appeared precisely in connection with the discussion
of the range of questions related to Theorem 8.14. Problems of constructing
asymptotic solutions of strongly nonlinear systems of differential equations
are considered in detail in the book [350].

We point out two important consequences of Theorem 8.14.
a) As we already noted, the question of stability of non-degenerate equi-

libria (at which det
(
∂2U/∂q2

)
�= 0) is decided by the Lagrange–Dirichlet

theorem. By Theorem 8.14, degenerate equilibria are unstable in a typical
situation. Indeed, in the general case the expansion (8.16) involves terms of
degree 3, and therefore W3 �≡ 0. It remains to observe that a non-zero form
of degree 3 cannot have a minimum.

b) Equilibria of a mechanical system in a conservative force field with
a harmonic potential (satisfying the Laplace equation ∆U = 0) are unsta-
ble. A special case is “Earnshaw’s theorem”: an equilibrium of a system of
electric charges in a stationary electric field is always unstable. Before the pa-
pers [328, 357] Earnshaw’s theorem had been proved only for the case where
the eigenvalues of the first approximation are non-zero.

Indeed, harmonic functions are analytic. We expand the potential in the
convergent Maclaurin series:

U = Uk + Uk+1 + · · · , k � 2.

Suppose that Uk �≡ 0 (otherwise U = 0 and then all points q will obviously be
unstable equilibrium positions). Clearly, Uk is also a harmonic function. By
the mean value theorem, Uk does not have a minimum at zero, whence the
instability follows (Theorem 8.14).

8.5.2 Influence of Dissipative Forces

Suppose that a mechanical system is in addition acted upon by non-conser-
vative forces F (q, q̇); the motion is described by Lagrange’s equation

d

dt

(
∂L

∂q̇

)

− ∂L

∂q
= F, L = T − U. (8.20)

Definition 8.6. We call the force F a force of viscous friction with total dis-
sipation if F (q, 0) = 0 and (T + U)· = F q̇ < 0 for q̇ �= 0.

Even after addition of forces of viscous friction, the equilibrium positions
will again coincide with the critical points of the potential U . The equilibrium
states that were stable by Lagrange’s theorem remain stable with dissipation
of energy taken into account. Moreover, if the potential is an analytic func-
tion, then these equilibrium states become asymptotically stable. This is the
Kelvin–Chetaev theorem [181].
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Theorem 8.15 (see [327]). Suppose that the point q = 0 is not a local min-
imum of the function U , and U(0) = 0. The equilibrium state (q, q̇) = (0, 0)
of system (8.20) is unstable if one of the following conditions holds:

a) the function U is analytic in a neighbourhood of the point q = 0;
b) the function U is smooth and has no critical points in the domain

Σε = {q : U(q) < 0, |q| < ε} for some ε > 0.

In the analytic case condition b) holds automatically.

� Consider a motion q(·) with negative total energy and therefore with
q(0) ∈ Σε. We claim that the point q(t) leaves Σε in a finite time. Indeed, on
such a motion we have q̇(t) �≡ 0. Consequently, the total energy E = T + U
monotonically decreases. If q(t) ∈ Σε for all t > 0, and E(t) tends to a fi-
nite limit as t → +∞, then q̇(t) → 0. But for small values of the speed the
friction forces are small compared to the conservative forces, which impart a
sufficiently high velocity to the system. �

8.5.3 Influence of Gyroscopic Forces

Suppose that, apart from dissipative forces, the mechanical system is also
acted upon by additional gyroscopic forces

F = Ω(q̇, ·),

where Ω is a closed 2-form (the form of gyroscopic forces; see § 3.2). Since
gyroscopic forces do not perform any work, the equilibrium states that were
stable by the Lagrange–Dirichlet theorem remain stable after addition of gyro-
scopic forces. Moreover, if the dissipation is total and the potential U satisfies
the hypotheses of Theorem 8.15, then equilibrium states cannot be stabilized
by adding gyroscopic forces.

Suppose that q = 0 is a non-degenerate equilibrium. Poincaré called the
Morse index of the potential U at this point the degree of instability of the
equilibrium q = 0.

Theorem 8.16 (Kelvin–Chetaev [181]). If the degree of instability is odd,
then this equilibrium cannot be stabilized by adding dissipative and gyroscopic
forces.

The proof is based on verifying the fact that if the degree of instability is
odd, then among the eigenvalues there necessarily exists a positive one.

However, if the degree of instability is even, then such an equilibrium in the
absence of dissipative forces can be stabilized by suitable gyroscopic forces.
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Example 8.6. It is well known that the motion of a charge in an electric E
and magnetic H fields is described by the equation

mv̇ = e
(
E +

1
c
[v,H]

)
, (8.21)

where v = ẋ is the velocity of the charge (x ∈ R
3) and c is the speed of

light. We consider a stationary electromagnetic field (when E and H do not
explicitly depend on time). The field E is conservative: E = − grad ϕ. The
magnetic component of the Lorentz force is a gyroscopic force: its presence
does not affect the conservation of the total energy

W =
mv2

2
+ ϕ.

If H = 0, then all the equilibria (stationary points of the potential ϕ) are
unstable by Earnshaw’s theorem.

We now give a simple example showing that it is possible to stabilize
unstable equilibria by a stationary magnetic field [347]. Suppose that the
electric field E is created by two equal charges Q situated on the x3-axis at
a distance R from the origin O. Then the point O is an unstable equilibrium
position. The potential of the electric field is equal to ϕ+ + ϕ−, where

ϕ± = eQ
[
x2

1 + x2
2 + (R± x3)2

]−1/2

The expansion of the total energy W in the Maclaurin series has the form

W =
m
(
v2
1 + v2

2 + v2
3

)

2
−
eQ
(
x2

1 + x2
2 − 2x2

3

)

R3
+ · · · .

If eQ > 0 (which we assume in what follows), then the degree of instability
(the Morse index of the function W at the critical point x = v = 0) is equal
to two. However, if the charges e and Q have opposite signs, then the degree
of instability is odd (equal to one) and a gyroscopic stabilization is impossible
by the Kelvin–Chetaev theorem.

We introduce the magnetic field H = (0, 0, κ), κ = const, which of course
satisfies Maxwell’s equations. Since the kinetic energy and the electromagnetic
field are invariant under rotations around the x3-axis, equations (8.21) admit
the Nöther integral

Φ = m(v1x2 − v2x1) +
eκ

2c
(
x2

1 + x2
2

)
.

We seek a Lyapunov function in the form of a combination of integralsW+λΦ,
where λ = const. Choosing λ so that this integral takes minimum value we
obtain the following sufficient condition for the Lyapunov stability:

H2 >
8Qmc2

eR3
.
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Theorem 8.16 can be extended to systems of the most general form. Let
v be a smooth vector field on R

n = {x}. This field generates the dynamical
system

ẋ = v(x), x ∈ R
n. (8.22)

Suppose that x = 0 is an equilibrium position: v(0) = 0. Then in a neighbour-
hood of this point system (8.22) has the form

ẋ = Ax+ o(|x|),

where A is the Jacobi matrix of the field v at the point x = 0. We define the
degree of instability deg (x = 0) of the equilibrium x = 0 to be the number of
eigenvalues of the matrix A with positive real part (counting multiplicities).
This definition generalizes Poincaré’s definition of degree of instability for
classical mechanical systems. In particular, if the degree of instability is odd,
then the characteristic equation det(A− λE) = 0 has a positive root. We say
that the equilibrium x = 0 is non-degenerate if detA �= 0.

Suppose that there exists a smooth function F : R
n → R such that

Ḟ =
∂F

∂x
v � 0.

We say that such a system is dissipative. The function F kind of plays the
role of the total energy. It is easy to verify that the non-degenerate critical
points of the function F correspond to the equilibria of system (8.22).

Theorem 8.17 ([341]). Suppose that x = 0 is a non-degenerate equilibrium
which is a non-degenerate critical point of the function F . Then

deg (x = 0) = ind0 F mod 2.

In this equality on the right is the Morse index of the function F at the
critical point x = 0.

Corollary 8.12. Suppose that F is a Morse function. Then its critical points
of odd index are unstable equilibria.

This assertion includes the Kelvin–Chetaev theorem (Theorem 8.16). In-
deed, let W = T + U be the energy integral of a reversible system. Its index
at an equilibrium position is obviously odd. This index does not change after
addition of gyroscopic forces. Since Ẇ � 0 after addition of dissipative forces,
the instability of the equilibrium follows from Corollary 8.12 of Theorem 8.17.




