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Symmetry Groups and Order Reduction

3.1 Symmetries and Linear Integrals

3.1.1 Nöther’s Theorem

Let (M, L) be a Lagrangian system and v a smooth field on M . The field v
gives rise to the one-parameter group g of diffeomorphisms gα : M → M
defined by the differential equation

d

dα
gα(x) = v(gα(x)) (3.1)

and the initial condition g0(x) = x.

Definition 3.1. The Lagrangian system (M, L) admits the group {gα} if the
Lagrangian L is invariant under the maps gα

∗ : TM → TM . The group g can
be naturally called a symmetry group, and the field v a symmetry field.

Let γ : ∆ → M be a motion of the Lagrangian system (M, L). Then the
composition gα ◦ γ : ∆→M is also a motion for every value of α.

In the non-autonomous case the Lagrangian L is a smooth function on the
tangent bundle of the extended configuration space ′M = M × R. We call
a group of diffeomorphisms ′gα : ′M → ′M a symmetry group of the system
(′M, L) if ′gα(x, t) = (y, t) for all (x, t) ∈M×R and the maps ′gα

∗ preserve L.
The group {′gα} gives rise to the smooth field on ′M

′v(x, t) =
d

dα
(′gα(x, t))α=0.

It is obvious that ′v(x, t) = (v(x, t), 0) ∈ T(x, t)(M × R) and v(x, t) can be
interpreted as a field on M smoothly depending on t.

Lemma 3.1. The system (M, L) admits the symmetry group {gα} if and only
if

(p · v)̇ = [L] · v. (3.2)
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� This follows from the identity

d

dα

∣
∣
∣
∣
α=0

L(gα
∗ ẋ) = (L′

ẋ · v)̇ − [L] · v. (3.3)

�
Lemma 3.1 is also valid in the non-autonomous case. Equality (3.2) implies

the following.

Theorem 3.1. If the system (M, L) admits the group {gα}, then I = p · v is
a first integral of the equations of motion.1

Let (M, 〈 , 〉, V ) be a natural mechanical system. The Lagrangian L =
〈ẋ, ẋ〉/2 +V (x) is invariant under the action of the group g if and only if this
property is enjoyed by the Riemannian metric 〈 , 〉 and the potential V . For
natural systems the integral I is clearly equal to 〈v, ẋ〉; it depends linearly on
the velocity.

Example 3.1. If in some coordinates x1, . . . , xn on M the Lagrangian L is
independent of x1, then the system (M, L) admits (locally) the symmetry
group gα : x1 �→ x1 + α, xk �→ xk (k � 2). This group corresponds to the
vector field v = ∂/∂x1. By Theorem 3.1 the quantity I = p · v = p1 = L′

ẋ1
is

conserved. In mechanics, x1 is called a cyclic coordinate, and the integral I a
cyclic integral. In particular, the energy integral is a cyclic integral of a cer-
tain extended Lagrangian system. In order to show this we introduce a new
time variable τ by the formula t = t(τ) and define a function ′L : T ′M → R

(′M = M × R) by the formula

′L(x′, t′, x, t) = L(x′/t′, x, t)t′, (·)′ =
d

dτ
(·).

It follows from Hamilton’s variational principle and the equality

τ2∫

τ1

′L dτ =

t2∫

t1

L dt

that if x : [t1, t2] →M is a motion of the system (M, L), then (x, t) : [τ1, τ2] →
′M is a motion of the extended Lagrangian system (′M, ′L). In the au-
tonomous case, time t is a cyclic coordinate and the cyclic integral

∂′L

∂t′
= L− ∂L

∂ẋ
· ẋ = const

coincides with the energy integral. 

1 In this form this theorem was first stated by E.Nöther in 1918. The connection

between the laws of conservation of momentum and angular momentum and the
groups of translations and rotations was already known to Lagrange and Jacobi.
Theorem 3.1 for natural systems was published by Levy in 1878.
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Theorem 3.2. If v(x0) �= 0, then in a small neighbourhood of the point x0

there exist local coordinates x1, . . . , xn such that I = p · v = p1.

This assertion is a consequence of the theorem on rectification of a vector
field.

Theorem 3.3. Suppose that I = p · v is a first integral of the equation of
motion [L] = 0. Then the phase flow of equation (3.1) is a symmetry group of
the Lagrangian system (M, L).

Theorems 3.2 and 3.3 imply the following.

Corollary 3.1. Integrals of natural systems that are linear in the velocities
locally are cyclic.

If there are several symmetry fields v1, . . . , vk, then the equation of motion
admits as many first integrals I1 = p·v1, . . . , Ik = p·vk. Assuming that (M, L)
is a natural Lagrangian system we use the Legendre transformations to pass
to Hamilton’s equations on T ∗M . The functions I1, . . . , Ik : T ∗M → R are
independent and in involution (in the standard symplectic structure on T ∗M)
if and only if the fields v1, . . . , vk are independent and commute on M . The
existence of linear integrals imposes restrictions not only on the Riemannian
metric and the potential of the force field, but also on the topology of the
configuration space.

Theorem 3.4. Let M be a connected compact orientable even-dimensional
manifold. If a Hamiltonian natural system on T ∗M has at least (dimM)/2
independent linear integrals in involution, then the Euler–Poincaré character-
istic of M is non-negative: χ(M) � 0.2

Corollary 3.2. Suppose that dimM = 2. If the natural system has a first
integral that is linear in the velocity, then M is diffeomorphic to the sphere or
the torus.

In the non-orientable case one must add the projective plane and the Klein
bottle.

� We now prove Corollary 3.2. If χ(M) < 0, then the symmetry field v
has singular points. Since the phase flow of the equation ẋ = v(x) is a group
of isometries of the two-dimensional Riemannian manifold (M, 〈 , 〉), the sin-
gular points xs are isolated and are of elliptic type. By Poincaré’s formula,
χ(M) =

∑
s ind (xs) > 0, a contradiction. �

We now consider a more general situation where an arbitrary Lie group G
acts (on the left) on M . Let G be the Lie algebra of G and let G ∗ be the dual
vector space of the space of the algebra G . We shall now define a natural map
IG : TM → G ∗ that associates with each point ẋ ∈ TM a linear function on G .
2 This assertion was obtained by Bolotin and Abrarov (see [56]).
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To each vector X ∈ G there corresponds a one-parameter subgroup gX ,
whose action on M generates a tangent field vX . The map X �→ vX is a
homomorphism of the algebra G into the Lie algebra of all vector fields on M .
We set IG(ẋ) = L′

ẋ · vX ; this function is linear in X.

Definition 3.2. The map IG : TM → G ∗ is called the momentum map of the
Lagrangian system (M, L) for the action of the group G (or simply momentum
if this causes no confusion).

Along with the momentum map IG : TM → G ∗ we have the map PG :
T ∗M → G ∗ defined by the formula PG(p) = p · vX . The momentum map IG
is the composition of the map PG and the Legendre transformation.

Example 3.2. Consider n free material points (rk, mk) in three-dimensional
Euclidean space. Let SO(2) be the group of rotations of the space around
the axis given by a unit vector e. The group SO(2) acts on the configuration
space R

3{r1} × · · · × R
3{rn}; the corresponding vector field is

(e × (r1 − ′r1), . . . , e × (rn − ′rn)),

where ′rk is the position vector of the kth point with initial point at some
point of the rotation axis. Since

L =
1
2

∑
mk〈ṙk, ṙk〉 + V (r1, . . . , rn),

the momentum

ISO(2) =
∑

mk 〈ṙk, e × (rk − ′rk)〉 =
〈
e,
∑

mk(rk − ′rk) × ṙk

〉

coincides with the already known angular momentum of the system with re-
spect to the axis.

Now let G = SO(3) be the group of rotations around some point o. The
dual space G ∗ = (so(3))∗ can be canonically identified with the algebra of
vectors of three-dimensional oriented Euclidean space where the commutator
is defined as the ordinary cross product. Then ISO(3) will clearly correspond
to the angular momentum of the system with respect to the point o. 


Definition 3.3. A group G is called a symmetry group of the Lagrangian
system (M, L) if L(g∗ẋ) = L(ẋ) for all ẋ ∈ TM and g ∈ G.

Theorem 3.5. Suppose that the system (M, L) admits G as a symmetry
group. Then the momentum map IG is a first integral (that is, IG takes con-
stant values on the motions of the Lagrangian system (M, L)).

This assertion is a consequence of Theorem 3.1.
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Example 3.3. We already saw in Ch. 1 that the equations of the problem of
n gravitating bodies admit the Galilean transformation group. However, the
Lagrange function

L =
1
2

∑
mk

(
ẋ2

k + ẏ2
k + ż2

k

)
+
∑

i<j

γmimj√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

is not invariant under the whole Galilean group. This function admits trans-
lations of the time axis and isometries of three-dimensional Euclidean space.
Translations of the time axis correspond to the conservation of the total en-
ergy; translations of Euclidean space, to the conservation of the momentum;
and the group of rotations, to the conservation of the angular momentum. We
consider in addition the group of homotheties

(x, y, z) �→ (αx, αy, αz), α > 0. (3.4)

This group is generated by the vector field

v =
∑

k

xk
∂

∂xk
+ yk

∂

∂yk
+ zk

∂

∂zk
.

For α = 1 we have the identity transformation. The Lagrangian of the n-
body problem does not admit the group of homotheties. However, we can
use identity (3.3) for α = 1. Since T �→ α2T and V �→ α−1V under the
change of variables (3.4), equality (3.3) gives the already known Lagrange’s
identity:

dL

dα

∣
∣
∣
α=1

= (p · v)̇ ⇔ 2T − V =
∑

k

m(xkẋk + ykẏk + zkżk )̇ =
Ï

2
,

where I =
∑

m
(
x2

k + y2
k + z2

k

)
. 


3.1.2 Symmetries in Non-Holonomic Mechanics

Suppose that (M, S, L) is a non-holonomic system acted upon by additional
non-conservative forces F (ẋ, x) : TxM → T ∗

xM . The motions are defined by
the d’Alembert–Lagrange principle: ([L]−F ) ·ξ = 0 for all virtual velocities ξ.

Definition 3.4. The Lie group G is called a symmetry group of the non-
holonomic system (M, S, L) if

1) G preserves L,
2) the vector fields vX , X ∈ G , are fields of virtual velocities.

Definition 3.5. The moment of the force F relative to the group G is the
map ΦG : TM → G ∗ defined by the formula ΦG(ẋ) = F · vX .
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Theorem 3.6. If (M, S, L) admits G as a symmetry group, then (IG)̇ = ΦG.

Corollary 3.3. If F ≡ 0, then under the hypotheses of Theorem 3.6 the mo-
mentum IG is conserved.

One can derive Theorem 3.6 from the d’Alembert–Lagrange principle using
identity (3.3).

We now apply these general considerations to the dynamics of systems
of material points in three-dimensional oriented Euclidean space. We assume
that a force F acts on a point (r, m). We consider the group of translations
along a moving straight line with directional vector e(t) : r �→ r+αe, α ∈ R.

Theorem 3.7 ([353]). Suppose that the following conditions hold:

1) the vectors ξk = e (for 1 � k � n) are virtual velocities,
2) 〈P, ė〉 = 0, where P =

∑
mṙ is the total momentum.

Then 〈P, e〉̇ =
〈∑

F, e
〉
.

Corollary 3.4. Suppose that the vectors ξk = η̇ =
(∑

mr
/∑

m
)
˙ (for

1 � k � n) are virtual velocities at each instant. If the system moves freely
(F ≡ 0), then the velocity of its centre of mass η̇ is constant.

Example 3.4. Consider a balanced skate sliding on the horizontal plane and
a homogeneous disc rolling so that its plane is always vertical. By Corollary 3.4
the velocities of their centres of mass are constant. 


We also consider the group of rotations of Euclidean space around a moving
straight line l with directional unit vector e(t) passing through a point with
position vector r0(t). Let K be the angular momentum of a system of material
points with respect to the fixed origin of reference, and let Kl and Ml be,
respectively, the angular momentum and the moment of forces with respect
to the moving axis l.

Theorem 3.8 ([353]). Suppose that the following conditions hold:

1) when the system rotates as a rigid body around the axis l, the velocity
vectors of the material points are virtual velocities at each instant,

2) 〈P, (r0 × e)̇ 〉 + 〈K, e〉̇ = 0.

Then K̇l = Ml.

In particular, if the axis l does not change its direction in space (e(t) =
const), then condition 2) becomes Chaplygin’s condition (1897):

〈e, ṙ0 × η̇〉 = 0,

where η̇ is the velocity of the centre of mass. In the case where r0 = η
condition 2) can be simplified to 〈K + r0 × P, ė〉 = 0. This condition is
automatically satisfied under the additional assumption that e(t) = const.
For example, a balanced skate rotates around the vertical axis with constant
angular velocity.
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Example 3.5. Consider Chaplygin’s problem of the rolling on the horizontal
plane of a dynamically asymmetric ball whose centre of mass coincides with
its geometric centre. Let o be the contact point of the ball with the plane
and let K0 be the angular momentum of the ball with respect to the point o.
Chaplygin’s problem admits the group SO(3) of rotations around the contact
point. The momentum map ISO(3) is of course equal to K0, and the moment
of forces is zero: ΦG = 0. Consequently, K0 = const by Theorem 3.6. This ob-
servation allows us to form a closed system of differential equations of rolling
of the ball. Let k0 be the angular momentum in the moving space attached to
the rigid body, ω the angular velocity of rotation of the ball, and γ the unit
vertical vector. The fact that the vectors k0 and γ are constant in the fixed
space is equivalent to the equations

k̇0 + ω × k0 = 0, γ̇ + ω × γ = 0. (3.5)

Let A be the inertia tensor of the body with respect to the centre of mass, m
the mass of the ball, and a its radius. Then k0 = Aω+ma2γ×(ω×γ). This re-
lation turns equations (3.5) into a closed system of differential equations with
respect to ω and γ. Equations (3.5) have four independent integrals: F1 =
〈k0, k0〉, F2 = 〈k0, γ〉, F3 = 〈γ, γ〉 = 1, F4 = 〈k0, ω〉. The last integral ex-
presses the constancy of the kinetic energy of the rolling ball. Using these inte-
grals one can integrate equations (3.5) by quadratures (Chaplygin, 1903). 


3.1.3 Symmetries in Vakonomic Mechanics

Let (M, S, L) be a vakonomic system, and G a Lie group acting on M .

Definition 3.6. The group G is called a symmetry group of the vakonomic
system (M, S, L) if

1) the group G takes S ⊂ TM to S,
2) G preserves the restriction of L to S.

Definition 3.7. The momentum map IG of the vakonomic system for the
action of the group G is the map T ∗M → G ∗ defined by the formula p �→ p·vX ,
X ∈ G , where p is the vakonomic momentum.

Example 3.6. Suppose that the system (M, S, L) is natural and the kinetic
energy is given by a Riemannian metric 〈 , 〉. If the constraint S is given by
the equation 〈a(x), ẋ〉 = 0, then

I = 〈v, ẋ〉 + 〈p, a〉(a · v)/〈a, a〉. 


Theorem 3.9. If the vakonomic system (M, S, L) admits G as a symmetry
group, then IG = const.

The function IG is not observable in the general case. However, if the
symmetry fields vX , X ∈ G , are fields of virtual velocities, then IG is equal
to Lẋ · vX and therefore is observable.
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Example 3.7. A skate on the horizontal plane regarded as a vakonomic sys-
tem admits the group of translations, but does not admit the group of ro-
tations around the vertical axis. Consequently, the vakonomic momentum of
the skate is conserved. However, this quantity is not observable. The vako-
nomic momentum map for the action of the group of rotations of the skate
coincides with the ordinary angular momentum, which is not a first integral
of the equations of motion. 


3.1.4 Symmetries in Hamiltonian Mechanics

Let (M, ω2) be a symplectic connected manifold and suppose that a group
g = {gs} acts on M as a group of symplectic diffeomorphisms. The group g
gives rise to the vector field

v =
d

ds

∣
∣
∣
∣
s=0

gs.

This field is locally Hamiltonian: the 1-form ω2(·, v) is closed. Hence, locally
ω2(·, v) = dF . Extension of the function F to the entire manifold M leads, as
a rule, to a multivalued Hamiltonian function.

Example 3.8. Let N be a smooth manifold, and {gs} a group of diffeomor-
phisms of N generated by a vector field u. Since each diffeomorphism of the
manifold N takes 1-forms to 1-forms, the group {gs} acts also on the cotan-
gent bundle M = T ∗N . Recall that M has the standard symplectic structure
ω2 = dp ∧ dq = d(p · dq), where p, q are “canonical” coordinates on M . Since
the group {gs} preserves the 1-form p · dq, it preserves the 2-form ω2 and
therefore is a group of symplectic diffeomorphisms of the manifold M . The
action of {gs} on M is generated by the single-valued Hamiltonian function
F = p · u. 


Theorem 3.10. A group of symplectic diffeomorphisms {gs} with a single-
valued Hamiltonian function F preserves a function H : M → R if and only if
F is a first integral of the Hamiltonian system with Hamiltonian function H.

� The proof is based on the formula

d

ds

∣
∣
∣
∣
s=0

H(gs(x)) = {H, F}(x).
�

We now suppose that a Lie group G has a symplectic action on M such
that to each element X of the Lie algebra G of G there corresponds a one-
parameter subgroup with a single-valued Hamiltonian function FX . These
Hamiltonians are defined up to constant summands.

Definition 3.8. A symplectic action of G on M is called a Poisson action if
the correspondence X �→ FX can be chosen so that
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1) FX depends linearly on X,
2) {FX , FY } = F[X, Y ] for all X, Y ∈ G .

Example 3.9. Let N be a smooth manifold, and G a Lie group acting on N .
We lift the action of G on N to a symplectic action of G on T ∗N as described
in Example 3.8. The action thus constructed is a Poisson action. This follows
from the linearity of the function p · vX and the formula {p · vX , p · vY } =
p · [vX , vY ] = p · v[X,Y ]. 


A Poisson action of the group G on M defines the natural map PG : M →
G ∗ that associates with a point x the linear function FX(x) of the variable
X ∈ G on the algebra G . We call this map the momentum map for the Poisson
action of the group G.

Proposition 3.1. Under the momentum map P the Poisson action of the
connected Lie group G is projected to the coadjoint action of the group G
on G ∗ in the sense that the following diagram is commutative:

M
g−→ M

P



4



4P

G ∗
Ad∗

g−1−→ G ∗

.

Suppose that (N, L) is a Lagrangian system and a Lie group G acts on N .
The Lagrangian L defines the Legendre transformation TN → T ∗N . The
composition of the momentum map PG : T ∗N → G ∗ for the lifted Poisson ac-
tion of G on the symplectic manifold T ∗N and the Legendre transformation
coincides with the momentum map IG : TN → G ∗ of the Lagrangian system
(N, L) for the action of G defined earlier.

If a function H : M → R is invariant under the Poisson action of the
group G, then by Theorem 3.10 the momentum map PG is a first integral of
the system with Hamiltonian function H.

In conclusion we discuss symmetries in Dirac’s generalized Hamiltonian
mechanics. Suppose that (M, ω2, H, N) is a Hamiltonian system with con-
straints, where H : M → R is the Hamiltonian function, and N a submanifold
of M (see § 1.5.1).

Theorem 3.11. Suppose that we are given a Poisson action of a Lie group
G on the symplectic manifold (M, ω2) such that G preserves the function H
and the submanifold N . Then the momentum map PG takes constant value
on the motions of the Hamiltonian system with constraints.

3.2 Reduction of Systems with Symmetries

3.2.1 Order Reduction (Lagrangian Aspect)

If a Lagrangian system (M, L) admits a symmetry group {gα}, then it turns
out that it is possible to diminish the number of the degrees of freedom of the
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system. To the group g there corresponds the first integral Ig, which is always
cyclic locally. First we consider the classical Routh’s method for eliminating
cyclic coordinates; then we discuss the global order reduction.

Suppose that the Lagrangian L(q̇, λ̇, q) does not involve the coordinate λ.
Using the equality L′

λ̇
= c we represent the cyclic velocity λ̇ as a function of q̇,

q, and c. Following Routh we introduce the function

Rc(q̇, q) = L(q̇, λ̇, q) − cλ̇
∣
∣
q̇, q, c

.

Theorem 3.12. A vector-function (q(t), λ(t)) is a motion of the Lagrangian
system (M, L) with the constant value of the cyclic integral Ig = c if and only
if q(t) satisfies Lagrange’s equation [Rc] = 0.

If there are several cyclic coordinates λ1, . . . , λk, then for the Routh func-
tion one should take Rc1,...,ck

= L−
∑

csλ̇s.
A small neighbourhood U of a non-singular point of the symmetry field

v is “regularly” foliated into the orbits of the group g (integral curves of the
field v): the quotient space N = U/g is a smooth manifold with Cartesian
coordinates q. It is natural to call the pair (N, Rc) the (locally) reduced La-
grangian system. For example, the elimination of the polar angle in Kepler’s
problem (see § 2.1.1) is an example of order reduction by Routh’s method.

Cyclic coordinates are not uniquely determined: among the new variables
Q = q, Λ = λ + f(q) the coordinate Λ is also a cyclic coordinate. Let
L̂(Q̇, Λ̇, Q) = L(q̇, λ̇, q). Then, obviously, L̂′

Λ̇
= L′

λ̇
= c. The Routh function

corresponding to the new cyclic coordinate Λ is R̂c(Q̇, Q) = Rc(q̇, q) + cf ′
q · q̇.

In view of the identity [ḟ ] ≡ 0 the summand c(f ′
q · q̇) of course does not affect

the form of the equation [Rc] = 0. But this means that the Routh function is
not uniquely determined for c �= 0. These observations prove to be useful in
the analysis of the global order reduction, which we shall now consider. For
definiteness we shall consider the case of natural Lagrangian systems.

Let (M, N, pr, S, G) be a fibre bundle with total space M , base space N ,
projection pr : M → N (the rank of the differential pr∗ is equal to dimN at
all points of M), fibre S, and structure group G. The group G acts on the
left on the fibre S freely and transitively. This action can be extended to a
left action of G on M ; then all the orbits of G will be diffeomorphic to S. In
the case of a principle bundle, the manifold S is diffeomorphic to the space of
the group G. The base space N can be regarded as the quotient space of the
manifold M by the equivalence relation defined by the action of the group G.
The tangent vectors vX , X ∈ G , to the orbits of the group G are vertical:
pr∗(vX) = 0.

Suppose that G is a symmetry group of a natural mechanical system
(M, 〈 , 〉, V ). We define on the bundle (M, N, pr, S, G) the “canonical” connec-
tion by declaring as horizontal the tangent vectors to M that are orthogonal
in the metric 〈 , 〉 to all the vectors vX , X ∈ G . This connection is compatible
with the structure group G: the distribution of horizontal vectors is mapped
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to itself under the action of G on M . A smooth path γ : [t1, t2] → M is said
to be horizontal if the tangent vectors γ̇(t) are horizontal for all t1 � t � t2.
It is easy to verify that for any smooth path γ̃ : [t1, t2] → N and any point
x1 ∈ M lying over γ̃(t1) (that is, such that pr(x1) = γ(t1)) there exists only
one horizontal path γ : [t1, t2] →M covering γ̃.

We equip the manifold N = M/G with the “quotient metric” 〈̃ , 〉 by first
restricting the original metric on M to the distribution of horizontal vectors
and then pushing it down onto N . Since the potential V : M → R is constant
on the orbits of the groupG, there exists a unique smooth function Ṽ : N → R

such that the following diagram is commutative:

M
pr−→ N

V ↘ ↙Ṽ
R

.

Theorem 3.13. The motions of the natural system (M, 〈 , 〉, V ) with zero
value of the momentum map IG are uniquely projected to the motions of the
reduced system (N, 〈̃ , 〉, Ṽ ).

� Let γ̃ : [t1, t2] → N be a motion of the reduced system, and γ̃α its varia-
tion with fixed ends. Let γα : [t1, t2] → M be a horizontal lifting of the path
γ̃α such that γα(t1) = γ0(t1) for all α. The variation field u of the family of
paths γα is such that u(t1) = 0 and u(t2) is a vertical vector. If L (respec-
tively, L̃) is the Lagrangian of the original (reduced) system, then by the first
variation formula,

δ

t2∫

t1

L̃ dt = δ

t2∫

t1

L dt = 〈γ̇0, u〉
∣
∣t2
t1

= 0.
�

Example 3.10. Consider the motion of a material point m in a central force
field. In this problem we have the bundle

(
R

3 \ {0} , R
+, pr, S2, SO(3));

the projection pr : R
3 \ {0} → R

+ is defined by the formula (x, y, z) �→√
x2 + y2 + z2. The Lagrangian L = m|ṙ|2/2+V (|r|) admits the group SO(3)

of rotations around the point x = y = z = 0. If the angular momentum ISO(3)

is equal to zero, then on R
+ = {s > 0} we obtain a one-dimensional reduced

system with the Lagrangian L̃ = mṡ2/2 + V (s). 


We now consider order reduction when the momentum map IG is non-zero.
We assume the group G to be commutative (Routh’s method can be applied
only in this case). Moreover, we assume that (M, N, pr, G) is a principal bun-
dle; in particular, the group G acts freely on M . Apart from the quotient
metric 〈̃ , 〉 on the base space we shall also need the curvature form of the
canonical connection. We remind the reader of the construction of this form.
First we introduce the connection 1-form ω on M with values in the Lie alge-
bra G . This form is defined as follows: if u ∈ TM , then ω(u) is equal to X ∈ G
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such that vX coincides with the vertical component of the vector u. In the
case of a principle bundle the kernel of the homomorphism of the Lie algebra
G into the algebra of vector fields on M is zero; hence the connection form is
well defined. For example, if dimG = 1, then one can set ω(u) = 〈u, v〉/〈v, v〉,
where v is the symmetry field. The curvature form Ω is a G -valued 2-form
such that Ω(u1, u2) = dω(u⊥1 , u

⊥
2 ), where u⊥ is the horizontal component of

a tangent vector u. Since G is a commutative symmetry group, the form Ω
can be pushed down to N . Let IG = c ∈ G ∗. Since Ω takes values in G , the
value of the momentum map on the curvature form is well defined: Ωc = c ·Ω.
The form Ωc is an R-valued form on the base space N . According to Cartan’s
structural equation Ω = dω + [ω, ω], the forms Ω and Ωc are closed.

Lemma 3.2. Let c ∈ G ∗. Then for every point x ∈ M there exists a unique
vertical tangent vector wc ∈ TxM such that IG(wc) = c.

Indeed, wc is the unique element in the set {w ∈ TxM : IG(w) = c} that
has minimum length in the 〈 , 〉-metric. This assertion is valid for an arbitrary
group G.

Definition 3.9. The effective (or amended, or reduced) force function of the
natural system with the symmetry group G corresponding to a constant value
IG = c of the momentum map is the function Vc : M → R equal to V −
〈wc, wc〉/2.

Lemma 3.3. The function Vc is invariant under Gc, where Gc ⊂ G is the
isotropy subgroup of the coadjoint action of G on G ∗ at the element c ∈ G ∗

(see Proposition 3.1).

Corollary 3.5. If G is commutative, then Vc is constant on the orbits of the
group G.

This assertion allows us to define correctly the effective potential Ũc = −Ṽc

as a function on the base space N .

Theorem 3.14. A function γ : ∆ → M is a motion of the natural system
(M, 〈 , 〉, V ) with a constant value IG = c of the momentum map if and only
if the projection µ = pr ◦ γ : ∆→ N satisfies the differential equation

[Lc]µ = Fc(µ̇), (3.6)

where Lc = 〈̃µ̇, µ̇〉/2 + Ṽc and Fc(v) = Ωc(·, v).
Theorem 3.14 can be derived, for example, from Theorem 3.9.
Equation (3.6) can be regarded as the equation of motion of the nat-

ural system (N, 〈̃ , 〉, Ṽc) under the action of the additional non-conservative
forces Fc. Since Fc(v) · v = Ωc(v, v) = 0, these forces do not perform work on
the real motion. They are called gyroscopic forces.

Since the form Ωc is closed, we have locally Ωc = dωc. Consequently, (3.6)
is Lagrange’s equation [Rc] = 0, where Rc = Lc − ωc. Routh’s function Rc is
defined globally on TN only if the form Ωc is exact.
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Example 3.11. Consider the rotation of a rigid body with a fixed point in
an axially symmetric force field. The kinetic energy and the potential admit
the group SO(2) of rotations around the symmetry axis of the field. In this
problem, M is diffeomorphic to the underlying space of the group SO(3). The
reduction SO(3)/SO(2) was first carried out by Poisson as follows. Let e be
a unit vector of the symmetry axis of the force field regarded as a vector
of the moving space. The action of the subgroup SO(2) on SO(3) by right
translations leaves e invariant. The set of all positions of the vector e in the
moving space forms a two-dimensional sphere S2, called the “Poisson sphere”.
The points of S2 “number” the orbits of the rotation group SO(2). Thus, we
have the fibre bundle SO(3) with structure group SO(2) and base space S2.
The symmetry group SO(2) generates a first integral: the projection of the
angular momentum of the rigid body onto the axis with directional vector e
is conserved. By fixing a constant value of this projection we can simplify the
problem to the study of the reduced system with configuration space S2. Here
Routh’s function is not defined globally, since the curvature form Ω is not
exact: ∫

S2

Ω = 4π �= 0

for all values of the principal moments of inertia. We shall give explicit order-
reduction formulae below. 


The theory of order reduction for Lagrangian systems can be carried over,
with obvious modifications, to non-holonomic mechanics. To carry out the
reduction of a non-holonomic system to the quotient system by a symmetry
group we need the additional assumption that the constraints be invariant un-
der the action of this group. An example is provided by Chaplygin’s problem
of a ball rolling on a horizontal plane (see Example 3.5). This problem ad-
mits the group SO(2) of rotations of the ball around the vertical line passing
through its centre. The group SO(2) preserves the constraints, and the field
generating this group is a virtual velocity field. In fact we have eliminated the
rotation group in Example 3.5 using Poisson’s method.

In conclusion we also mention the “problem of hidden motions” or the
“problem of action at a distance”, which agitated physicists at the end of
19th century. Suppose that a natural mechanical system with n+1 degrees of
freedom moves freely and that its Lagrangian, representing only the kinetic
energy, admits a symmetry group with field v. Reducing the order of the sys-
tem we see that Routh’s function, which is the Lagrangian of the reduced
system with n degrees of freedom, contains the summand (the effective po-
tential) Ũc = 〈wc, wc〉/2 = c2/2〈v, v〉, which is independent of the velocities.
This summand can be interpreted as the potential of certain forces acting on
the reduced system. Helmholtz, Thomson, Hertz insisted that every mechan-
ical quantity that manifests itself as a “potential energy” is caused by hidden
“cyclic” motions. A typical example is the rotation of a symmetric top: since
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the rotation of the top around the symmetry axis cannot be detected, one
can regard the top as non-rotating and explain its strange behaviour by the
action of additional conservative forces.

Since Uc = 〈wc, wc〉/2 > 0, Routh’s method can produce only positive
potentials. However, since a potential is defined up to an additive constant,
this limitation is inessential if the configuration space is compact.

Theorem 3.15. Let (M, 〈 , 〉, V, Ω) be a mechanical system with a closed form
of gyroscopic forces Ω. If M is compact, then there exists a principal bundle
with base space M and structure symmetry group T

k, k � rankH2(M, R),
such that after the reduction according to Routh, for some constant value
JTk = c of the momentum map we have the equalities Vc = V +const, Ωc = Ω.

This assertion was proved by Bolotin (see [124]).
If Ω = 0, then for the fibre bundle in Theorem 3.15 we can take the direct

product M × S1{ϕ mod 2π} with the metric 〈ẋ, ẋ〉 + ϕ̇2/U(x), where 〈 , 〉 is
the Riemannian metric on M . The coordinate ϕ is cyclic; the corresponding
cyclic integral is ϕ̇/U = c. Routh’s function is Rc = 〈ẋ, ẋ〉/2 − c2U/2. For
c =

√
2 we have a natural system on M × S1/S1 �M with potential U .

3.2.2 Order Reduction (Hamiltonian Aspect)

Let F : M → R be a first integral of a Hamiltonian system with Hamilton-
ian H.

Proposition 3.2. If dF (z) �= 0, then in some neighbourhood of the point
z ∈ M there exist symplectic coordinates x1, . . . , xn, y1, . . . , yn such that
F (x, y) = y1 and ω =

∑
dyk ∧ dxk.

This assertion is the Hamiltonian version of the theorem on rectification
of trajectories.

In the coordinates x, y the function H is independent of x1. Consequently,
if we fix a value F = y1 = c, then the system of equations

ẋk = H ′
yk
, ẏk = −H ′

xk
(k � 2)

is a Hamiltonian system with n − 1 degrees of freedom. Thus, one integral
allows us to reduce the dimension of the phase space by two units: one unit
vanishes when the value F = c is fixed, and another vanishes due to the elim-
ination of the cyclic variable x1 along the orbit of the action of the symmetry
group {gα

F }. This remark can be generalized: if a Hamiltonian system has s
independent integrals in involution, then it can be reduced to a system with
n− s degrees of freedom. We remark that an effective use of the first integral
F for order reduction is held up by the problem of finding the orbits of the
group {gα

F }, which is related to integration of the Hamiltonian system with
Hamiltonian F .
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If the algebra of integrals is non-commutative, then the dimension of the
Hamiltonian system can be reduced by at least double the maximum dimen-
sion of a commutative subalgebra. The number of commuting integrals can
sometimes be increased by considering nonlinear functions of the first inte-
grals.

Example 3.12. In the problem of the motion of a point in a central field
in R

3 the algebra of first integrals has a subalgebra isomorphic to the Lie
algebra so(3). All of its commutative subalgebras are one-dimensional. Let
Mi be the projection of the angular momentum of the point onto the ith
axis of a Cartesian orthogonal coordinate system. It is easy to verify that the
functions M1 and M2 =

∑
M2

i are independent and commute. Thus, this
problem reduces to the study of a Hamiltonian system with one degree of
freedom. 


This method of order reduction for Hamiltonian systems is due to Poincaré,
who applied it in various problems of celestial mechanics. This is essentially
the Hamiltonian version of the order reduction according to Routh. If the al-
gebra of integrals is non-commutative, then Poincaré’s method does not make
full use of the known integrals. This shortcoming of Poincaré’s method was
overcome by Cartan, who studied the general case of an infinite-dimensional
Lie algebra of the first integrals (see [18]). More precisely, Cartan considered
a Hamiltonian system (M, ω2, H) with first integrals F1, . . . , Fk such that
{Fi, Fj} = aij(F1, . . . , Fk). The set of integrals F1, . . . , Fk defines the nat-
ural map F : M → R

k. In the general case the functions aij : R
k → R are

nonlinear.

Theorem 3.16 (Lie–Cartan). Suppose that a point c ∈ R
k is not a critical

value of the map F and has a neighbourhood where the rank of the matrix
(
aij

)

is constant. Then in a small neighbourhood U ⊂ R
k of the point c there exist k

independent functions ϕs : U → R such that the functions Φs = ϕs ◦F : N →
R, where N = F−1(U), satisfy the following relations:

{Φ1, Φ2} = · · · = {Φ2q−1, Φ2q} = 1 (3.7)

and all the other brackets are {Φi, Φj} = 0. The number 2q is equal to the
rank of the matrix

(
aij

)
.

A proof can be found in [18]. Using this theorem we can now easily re-
duce the order. Suppose that a point c = (c1, . . . , ck) satisfies the hypothe-
ses of Theorem 3.16. Then, in particular, the level set Mc = {x ∈ M :
Φs(x) = cs, 1 � s � k} is a smooth submanifold of M of dimension 2n − k,
where 2n = dimM . Since the functions Φ2q+1, . . . , Φk commute with all the
functions Φs, 1 � s � k, their Hamiltonian fields are tangent to the mani-
fold Mc. If these Hamiltonian fields are not hampered3 on Mc, then defined
3 A vector field is said to be not hampered if the motion with this field as the

velocity field is defined on the time interval (−∞, ∞).
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on Mc there is the action of the commutative group R
l, l = k− 2q, generated

by the phase flows of Hamilton’s equations with Hamiltonians Φs, s > 2q.
Since the functions Φs are functionally independent, the group R

l acts on Mc

without fixed points. If its orbits are compact (then they are l-dimensional
tori), then the quotient space Mc/R

l = M̃c is a smooth manifold called the
reduced phase space. Since dim M̃c = (2n−k)− l = 2(n−k+ q), the manifold
M̃c is always even-dimensional.

On the reduced phase space there exists a natural symplectic structure ω2,
which can be defined, for example, by a non-degenerate Poisson bracket {̃ , }.
Let A, B : M̃c → R be smooth functions. They can be lifted to smooth func-
tions ′A, ′B defined on the level manifold Mc ⊂ M . Let Ã, B̃ be arbitrary
smooth functions on M whose restrictions to Mc coincide with ′A, ′B. We
finally set {Ã, B} = {Ã, B̃}.

Lemma 3.4. The bracket {̃ , } is well defined (it is independent of the exten-
sions of the smooth functions from the submanifold M̃c to the whole of M)
and is a Poisson bracket on M̃c.

Let ′H be the restriction of the Hamiltonian function H to the integral
level Mc. Since the function ′H is constant on the orbits of the group R

l, there
exists a smooth function H̃ : Mc/R

l → R such that the diagram

Mc
pr−→ M̃c

′H↘ ↙H̃
R

is commutative.

Definition 3.10. The Hamiltonian system (M̃c, ω̃
2, H̃) is called the reduced

Hamiltonian system.

Theorem 3.17. A smooth map γ : ∆ → M with F (γ(t)) = c is a motion of
the Hamiltonian system (Mc, ω

2, H) if and only if the composition pr ◦ γ :
∆→ M̃c is a motion of the reduced Hamiltonian system (M̃c, ω̃

2, H̃).

� This theorem can be established by the following considerations. For-
mulae (3.7) show that the functions Φ1, . . . , Φk form a part of symplec-
tic coordinates in a neighbourhood of the submanifold Mc. More precisely,
in a small neighbourhood of every point of Mc one can introduce sym-
plectic coordinates x1, . . . , xn, y1, . . . , yn so that xi = Φ2i−1, yi = Φ2i if
i � q, and yi = Φi if i > 2q. This assertion is a consequence of the
well-known “completion lemma” of Carathéodory (see [10]). Since the func-
tions Φs are first integrals, in variables x, y the Hamiltonian has the form
H(y, x) = H(yq+1, . . . , yn, xk−q+1, . . . , xn). It remains to fix the values of the
cyclic integrals yq+1, . . . , yk−q and observe that the variables xs, ys (s > k−q)
are local coordinates on M̃c in which the form ω̃2 becomes “canonical”:∑

s>k−q dxs ∧ dys. �
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Remark 3.1. Since the k − q first integrals Φ2, . . . , Φ2q, Φ2q+1, . . . , Φk com-
mute, one can use them for reducing the order of the Hamiltonian system ac-
cording to Poincaré. The dimension of the local phase space of the reduced sys-
tem will be equal to 2n−2(k−q), that is, to the dimension of the manifold M̃c.
Moreover, by Theorem 3.16 the order reductions according to Poincaré and ac-
cording to Cartan give locally the same result, but the reduction by Poincaré’s
method can be carried out globally only under more restrictive conditions.

In degenerate cases the rank of the matrix of Poisson brackets
(
{Fi, Fj}

)

can of course drop. One can carry out the order reduction by Cartan’s scheme
also in this situation if in addition the integrals F1, . . . , Fk are assumed to
generate a finite-dimensional algebra (the functions aij : R

k → R are linear).
Indeed, suppose that we have a Poisson action of the group G on the sym-
plectic manifold (M, ω2). Consider the set Mc = P−1(c), the inverse image
of some point c ∈ G ∗ under the momentum map P : M → G ∗. If c is not
a critical value of the momentum map P , then Mc is a smooth submanifold
of M . Since the action of the group G is Poisson, by Proposition 3.1 the ele-
ments of G take the integral levels Mc one to another. Let Gc be the isotropy
subgroup at a point c ∈ G ∗ consisting of the g ∈ G such that Adg∗c = c. The
group Gc is a Lie group acting on Mc. If the orbits of Gc on Mc are compact,
then the reduced phase space M̃c = Mc/Gc is a smooth manifold. Then we
can define the reduced Hamiltonian system (M̃c, ω̃

2, H̃) by repeating word for
word the construction of order reduction according to Cartan. The connection
between the original and reduced Hamiltonian systems is again described by
Theorem 3.17. The proofs can be found in the works of Souriau [565] and
Marsden and Weinstein [411].

Example 3.13. The motion of a material point of unit mass in a central
field can be described by the Hamiltonian system in R

6 = R
3{x} × R

3{y}
with the standard symplectic structure and Hamiltonian function H(y, x) =
|y|2/2 + U(|x|). We fix the constant angular momentum vector x × y = µ
(µ �= 0). We may assume that µ = ce3, where e3 = (0, 0, 1) and c > 0. The
level set Mc is given by the equations x3 = y3 = 0, x1y2 − x2y1 = c. Clearly
the vector µ is invariant under the group SO(2) of rotations around the axis
with unit vector e3. To carry out the reduction with respect to this group we
introduce in the plane R

2 the polar coordinates r, ϕ and the corresponding
canonical conjugate variables pr, pϕ:

x1 = r cos ϕ, y1 = pr cos ϕ− pϕ

r
sin ϕ,

x2 = r sin ϕ, y2 = pr sin ϕ+
pϕ

r
cos ϕ.

Obviously, in the new variables the set Mc is given by the equations x3 =
y3 = 0, pϕ = c. The reduction with respect to the group SO(2) amounts
to the elimination of the angle variable ϕ. Thus, the reduced phase space
M̃c = Mc/SO(2) is diffeomorphic to R

+{r} × R{pr}; it is equipped with the
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reduced symplectic structure ω̃2 = dpr∧dr. The reduced Hamiltonian has the
form H̃ = (p2

r + c2r−2)/2 + U(r). 


If an element c ∈ G ∗ is generic (the matrix
(
aij

)
has maximum rank4),

then the group Gc is commutative; the order reduction conducted by this
scheme gives the same result as the reduction according to Cartan. If c = 0,
then the rank of the matrix

(
aij

)
drops to zero and the integral manifold M0

has the most “symmetric” structure: the isotropy subgroup G0 coincides with
the entire group G. In this case we have the maximal possible reduction of the
order of the Hamiltonian system by 2k = 2 dimG units (cf. Theorem 3.13).

Let (N, 〈 , 〉, V ) be a natural mechanical system, and G a compact commu-
tative symmetry group (isomorphic to T

k) acting freely on the configuration
space N . We can regard this system as a Hamiltonian system with symmetries
on M = T ∗N and apply our scheme of order reduction. There is a Poisson
action of the group G on T ∗N ; since this action is free, every value c ∈ G ∗ of
the momentum map is regular. Consequently, the smooth integral level man-
ifold Mc is defined (of codimension k = dimG in M), and the reduced phase
space M̃c (whose dimension is smaller by 2k than the dimension of M). On the
other hand, we can define the smooth reduced configuration space Ñ as the
quotient of N by the orbits of the action of G. Moreover, for the same value
c ∈ G ∗ we have the “seminatural” reduced Lagrangian system (Ñ , 〈̃ , 〉, Ṽc, Ωc)
(see § 3.1.2, Theorem 3.13). It is appropriate to define the reduced Lagrangian
L̃ : TÑ → R as the function given by the equality L̃(ẋ) = 〈˜̇x, ẋ〉/2 + Ṽc(x).

Theorem 3.18. For every c ∈ G ∗ there exists a diffeomorphism f : M̃c →
T ∗Ñ such that

1) f∗ω̃2 = Ω +Ωc, where Ω is the standard symplectic structure on T ∗N ,

2) the function f ◦ H̃ : T ∗Ñ → R is the Legendre transform of the reduced
Lagrangian defined by the metric 〈̃ , 〉.

Corollary 3.6. The manifold M̃0 is symplectically diffeomorphic to T ∗N .

If the group G is non-commutative, then the reduced phase space M̃c in
general does not coincide with the cotangent bundle of any smooth manifold.

Suppose that we have a free Poisson action of a commutative group G on
a symplectic manifold (M, ω2). In this case the passage to the reduced mani-
fold (M̃c, ω̃

2) can also be realized as follows. Consider the quotient manifold
N = M/G and the bracket ′{ , } on it which is the original Poisson bracket
{ , } pushed down to N . It is easy to see that the bracket ′{ , } is degenerate.

4 In the case of a Poisson algebra of integrals one should, perhaps, better speak
about the rank of the bilinear form {FX , FY } , X, Y ∈ G .
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If P : M → G ∗ is the momentum map, then there exists a smooth map
P̃ : N → G ∗ such that the diagram

M
pr−→ N

P↘ ↙P̃
G ∗

is commutative. Since G acts freely, a point c ∈ G ∗ is a critical value of the
map P if and only if c is a critical value of P̃ . Assuming that c ∈ G ∗ is a reg-
ular point we consider the smooth manifold Nc = P̃−1(c) and the restriction
of the bracket ′{ , } to Nc.

Proposition 3.3. The restriction of the bracket ′{ , } to Nc defines a sym-
plectic structure ′ω2, and the manifolds (M̃c, ω̃

2) and (Nc,
′ω2) are symplec-

tically diffeomorphic.

This remark can be generalized to the case of a non-commutative group G,
but taking the quotient of M with respect to the whole group G must be
replaced by the reduction with respect to the centre of G.

Example 3.14. In the problem of rotation of a rigid body with a fixed point
we have M = TSO(3) = SO(3) × R

3. If the body rotates in an axially
symmetric force field, then there is the one-parameter symmetry group G =
SO(2). The quotient manifold M/SO(2) is diffeomorphic to S2 × R

3. The
equations of motion on this five-dimensional manifold can be written as the
Euler–Poisson equations

k̇ + ω × k = V ′ × e, ė + ω × e = 0 (|e| = 1),

where k = Aω is the angular momentum and V : S2 → R is the force function
(see § 1.2). The bracket ′{ , } in S2 ×R

3 is defined by the following formulae:

′{ω1, ω2} = −A3ω3

A1A2
, . . . , ′{ω1, e1} = 0,

′{ω1, e2} = − e3
A1

, ′{ω1, e3} =
e2
A1

, . . . , ′{ei, ej} = 0.
(3.8)

The Euler–Poisson equations have the integral 〈k, e〉 = c generated by
the symmetry group SO(2). We fix a constant value of this integral and
consider the four-dimensional integral level Nc = {ω, e : 〈Aω, e〉 = c,
〈e, e〉 = 1}, which is diffeomorphic to the tangent bundle of the Poisson
sphere S2 = {e ∈ R

3 : 〈e, e〉 = 1}. We set ω = ′ω + ce/〈Ae, e〉; the vector
′ω is a horizontal tangent vector in the canonical connection of the principal
bundle (SO(3), S2, SO(2)) generated by the invariant Riemannian metric
〈Aω, ω〉/2. The projection SO(3) → S2 allows us to identify the horizontal
vectors ′ω with the tangent vectors to the Poisson sphere. Let 〈̃ , 〉 be the
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quotient metric on S2 given by 〈′̃a, ′b〉 = 〈′a, A′b〉. The Lagrange function of
the reduced system is obviously equal to

1
2
〈Aω, ω〉 + V (e) =

1
2

〈
′̃ω, ′ω

〉
+ Ṽc(e),

where Ṽc = V − c2/2〈Ae, e〉 is the effective force function. In the variables
′ω, e the standard symplectic structure on T ∗S2 is given by (3.8). For c �= 0
the reduced structure on T ∗S2 can also be defined by (3.8), only summands
proportional to the constant c must be added to the right-hand sides. 


3.2.3 Examples: Free Rotation of a Rigid Body
and the Three-Body Problem

First we consider the Euler problem of the free rotation of a rigid body around
a fixed point (see § 1.2.4). Here M = TSO(3) = SO(3) × R

3, the symmetry
groupG is the rotation group SO(3); the corresponding Poisson algebra of first
integrals is isomorphic to the Lie algebra so(3). We fix a value of the angular
momentum c ∈ G ∗ � R

3 and consider the integral level Mc = P−1
SO(3)(c). It is

easy to show that for any value of c the set Mc is a three-dimensional manifold
diffeomorphic to the space of the group SO(3). The isotropy group Gc is the
one-dimensional group SO(2) of rotations of the rigid body in the stationary
space around the constant vector of angular momentum. The reduced phase
space M̃c = SO(3)/SO(2) is diffeomorphic to the two-dimensional sphere.

This reduction can be realized, for example, as follows. Since the Hamil-
tonian vector field on M admits the group G, this field can be pushed down
to the quotient space M/G � R

3. The differential equation emerging on R
3

is the Euler equation

k̇ + ω × k = 0, ω = A−1k.

This equation can be represented in the Hamiltonian form Ḟ = {F, H}, where
H = 〈k, ω〉/2 is the kinetic energy of the rigid body, and the bracket { , } is
defined by the equalities {k1, k2} = −k3, {k2, k3} = −k1, {k3, k1} = −k2.
However, this bracket is degenerate: the function F = 〈k, k〉 commutes with
all the functions defined on R

3 = {k}. We obtain a non-degenerate Poisson
bracket by restricting the bracket { , } to the level surface F = |c|2, which
is diffeomorphic to the two-dimensional sphere S2. The required Hamiltonian
system arises on the symplectic manifold S2; its Hamiltonian function is the
total energy 〈k, ω〉/2 restricted to S2.

We now describe the classical method of reducing the Euler problem to a
Hamiltonian system with one degree of freedom based on the special canonical
variables. Let oXY Z be a stationary trihedron with origin at the fixed point,
and let oxyz be the moving coordinate system (the principal inertia axes of
the body). A position of the rigid body in the fixed space is determined by the
three Euler angles: ϑ (nutation angle) is the angle between the axes oZ and oz,
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ϕ (proper rotation angle) is the angle between the axis ox and the intersection
line of the planes oxy and oXY (called the line of nodes), ψ (precession angle)
is the angle between the axis oX and the line of nodes. The angles ϑ, ϕ, ψ
form a coordinate system on SO(3) similar to the geographical coordinates
on a sphere, which is singular at the poles (where ϑ = 0, π) and multivalued
on one meridian. Let pϑ, pϕ, pψ be the canonical momenta conjugate to the
coordinates ϑ, ϕ, ψ. If the rigid body rotates in an axially symmetric force
field with symmetry axis oZ, then the Hamiltonian function is independent
of the angle ψ. The order reduction in this case can be interpreted as the
“elimination of the node”, that is, the elimination of the cyclic variable ψ
which defines the position of the line of nodes in the fixed space.

Fig. 3.1. Special canonical variables

We now introduce the “special canonical variables” L, G, H, l, g, h. Let
Σ be the plane passing through the point o and perpendicular to the angular
momentum vector of the body. Then L is the projection of the angular mo-
mentum onto the axis oz, G is the magnitude of the angular momentum, H
is the projection of the angular momentum onto the axis oZ, l is the angle
between the axis ox and the intersection line of Σ and the plane oxy, g is the
angle between the intersection lines of Σ and the planes oxy and oXY , h is the
angle between the axis oX and the intersection line of Σ and the plane oXY .

Proposition 3.4. The transformation (ϑ, ϕ, ψ, pϑ, pϕ, pψ) �→ (l, g, h, L, G, H)
is “homogeneous” canonical:

pϑ dϑ+ pϕ dϕ+ pψ dψ = L dl +G dg +H dh.
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This assertion is due to Andoyer; non-canonical variables similar to the
elements L, G, H, l, g, h were used by Poisson in the analysis of the rotational
motion of celestial bodies [65].

It is easy to obtain from the definition of the special canonical variables
that A1ω1 =

√
G2 − L2 sin l, A2ω2 =

√
G2 − L2 cos l, and A3ω3 = L. Conse-

quently, in the Euler problem the Hamiltonian function reduces to the form

1
2
(
A1ω

2
1 +A2ω

2
2 +A3ω

2
3

)
=

1
2

(
sin 2l

A1
+

cos 2l

A2

)

(G2 − L2) +
L2

2A3
.

For a fixed value of the magnitude of the angular momentum G0, the variables
L, l vary within the annulus |L| � G0, l mod 2π. The level lines of the
Hamiltonian function are shown in Fig. 3.2. The curves L = ±G0 correspond
to the singular points of the Euler equations – the permanent rotations of the
body around the inertia axis oz. It is natural to regard the variables L, l as
geographical symplectic coordinates on the reduced phase space S2.

Fig. 3.2.

We now consider from the viewpoint of order reduction the three-body
problem, which has 9 degrees of freedom (in the spatial case). We shall show
that using the six integrals of momentum and angular momentum one can re-
duce the equations of motion of the three gravitating bodies to a Hamiltonian
system with 4 degrees of freedom. Using also the energy integral we conclude
that the three-body problem reduces to studying a dynamical system on a
certain seven-dimensional manifold. In the case where the three bodies are
permanently situated in a fixed plane, the dimension of this manifold is equal
to five. These results go back to Lagrange and Jacobi.

We pass to a barycentric coordinate system and first use the three-dimen-
sional commutative group of translations. Using this group we reduce the
dimension of Hamilton’s equations of motion from 18 to 12. The resulting re-
duced system, as the original one, has the symmetry group G = SO(3). Fixing
a value of the angular momentum we arrive at the equations of motion on a



3.2 Reduction of Systems with Symmetries 125

nine-dimensional integral manifold. Taking its quotient by the isotropy sub-
group of rotations around the constant angular momentum vector we obtain
the required Hamiltonian system with eight-dimensional phase space. Now
the question is how this reduction can be carried out explicitly.

First we eliminate the motion of the centre of mass. Let rs be the position
vectors of the point masses ms in a barycentric frame of reference, so that∑
msrs = 0. In order to use this relation for order reduction of the differential

equations of motion

msr̈s = V ′
rs

(1 � s � 3), V =
∑

i<j

mimj

rij
, (3.9)

we introduce the relative position vectors ξ = r2 − r1, η = r3 − ζ, where
ζ = (m1r1 +m2r2)/(m1 +m2) is the centre of mass of the points m1 and m2.
We set µ = m1m2/(m1 +m2) and ν = (m1 +m2)m3/

∑
ms.

Fig. 3.3. Elimination of the centre of mass in the n-body problem

Proposition 3.5. If rs(t) is a motion of the gravitating points, then the func-
tions ξ(t) and η(t) satisfy the equations

µξ̈ = W ′
ξ, νη̈ = W ′

η, W (ξ, η) = V
∣
∣
ξ, η

. (3.10)

These equations have the first integral

µ(ξ × ξ̇) + ν(η × η̇) =
∑

ms(rs × ṙs) = c.

Equations (3.10) describe the motion of the “fictitious” material points
with masses µ, ν. Proposition 3.5 can be easily generalized to the case of any
n > 3. Equations (3.10) with 6 degrees of freedom are of course Hamiltonian.

Elimination of the angular momentum (“elimination of the node”) can be
carried out for equations (3.10). However, it is easier to state the final result
independently in a symmetric form with respect to the masses m1, m2, m3.
Let Σ be the “Laplacian invariant plane”: it contains the barycentre and
is perpendicular to the constant angular momentum c. Let Π be the plane
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passing through the points m1, m2, m3. We denote by ϑi the angle of the
triangle m1m2m3 at the vertex mi, and by ∆ the area of this triangle. We
have the formulae

sin ϑi =
2∆
ρjρk

, cos ϑi =
ρ2

i − ρ2
j − ρ2

k

2ρjρk
, ∆ =

Π
√
ρj + ρk − ρi

4
√∑

ρs

, (3.11)

where i, j, k are allowed to be only the three cyclic permutations of the indices
1, 2, 3, and ρi is the length of the side of the triangle opposite the vertex mi.
Let γ be the angle between the planes Π and Σ; in the planar motion, γ ≡ 0.

Proposition 3.6. For a fixed value c =
∑

ms(rs × ṙs) of the angular mo-
mentum, in barycentric coordinates the equations of the three-body problem
reduce to the following Hamilton’s equations with four degrees of freedom:

Γ̇ = −H ′
γ , γ̇ = H ′

Γ ; Ṗs = −H ′
ρs
, ρ̇s = H ′

Ps
(1 � s � 3); (3.12)

H(Γ, P1, P2, P3, γ, ρ1, ρ2, ρ3) =

=
|c|2 sin γ

4∆

∑ ρ2
s

ms
sin 2

(
Γ

|c| sin γ +
ϑj − ϑk

3

)

+
∑ P 2

j + P 2
k − 2PjPk cos ϑi

2mi
+ |c| cos γ

∑(
Pj

ρk
− Pk

ρj

)
sin ϑi

3mi

+ |c|2 cos 2γ
∑ ρ2

j + ρ2
k − ρ2

i /2
36miρ2

jρ
2
k

−
∑ mjmk

ρi
,

where the quantities ∆, ϑ1, ϑ2, and ϑ3 are expressed by formulae (3.11) as
functions of ρ1, ρ2, ρ3, and

∑
fijk denotes the sum f123 + f231 + f312.

This proposition is due to van Kampen and Wintner [301]. The proof is
based on elementary but cumbersome calculations. The expressions of the
momenta Γ , Ps in terms of the coordinates and velocities of the gravitating
points are very cumbersome and usually are not used.

When the motion is planar, then the first two equations (3.12) reduce to
the equalities Γ = γ = 0 and we obtain a Hamiltonian system with three
degrees of freedom.

If c = 0, then equations (3.12) form a natural Hamiltonian system with
three degrees of freedom (cf. Theorem 3.13).

3.3 Relative Equilibria and Bifurcation
of Integral Manifolds

3.3.1 Relative Equilibria and Effective Potential

We again return to the study of a Hamiltonian system (M, ω2, H) admit-
ting a symmetry group G with a Poisson action on the phase space M . Let
(M̃, ω̃2, H̃) be the reduced Hamiltonian system in the sense of § 3.2.2.
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Definition 3.11. The phase curves of the Hamiltonian system on M with a
constant value PG = c of the momentum map that are taken by the projection
M → M̃c to equilibrium positions of the reduced Hamiltonian system are
called relative equilibria or stationary motions.

Example 3.15. Consider the rotation of a rigid body in an axially symmetric
force field. Let c be a fixed value of the angular momentum of the body with
respect to the symmetry axis of the force field. The equations of motion of
the reduced system can be represented in the form

Aω̇ = Aω × ω − e × V ′, ė = e × ω; 〈Aω, e〉 = c, 〈e, e〉 = 1, (3.13)

where V (e) is the force function. At an equilibrium position of the reduced
system we obviously have e = const and therefore ω = λe. The factor λ
can be uniquely determined from the equation 〈Aω, e〉 = c, which gives λ =
c/〈Ae, e〉. Since e = const, the angular velocity ω is also constant. From the
first equation (3.13) we obtain the following equation for finding the relative
equilibria with the angular momentum c:

c2(Ae × e) + (V ′ × e)〈Ae, e〉2 = 0, 〈e, e〉 = 1.

This result was first noted by Staude in 1894. In a stationary motion (a relative
equilibrium) the rigid body rotates uniformly around the symmetry axis of
the force field with the angular velocity |ω| = |c|/〈Ae, e〉. 


Proposition 3.7. A phase curve x(t) of the Hamiltonian system (M, ω2, H)
with the symmetry group G is a relative equilibrium if and only if x(t) =
gt(x(0)), where {gt} is a one-parameter subgroup of G.

� If x(t) = gt(x0) and {gt} is a subgroup of G, then the projection M → M̃c

takes the solution x(t) to an equilibrium position of the reduced system. Con-
versely, suppose that x(t) = ht(x0) is a relative equilibrium of the Hamil-
tonian system with Hamiltonian H satisfying the initial condition x(0) = x0.
We claim that {ht} is a subgroup of G. Let {gt} be a one-parameter subgroup
of G such that

d

dt

∣
∣
∣
∣
t=0

gt(x0) = ẋ(0)
(

=
d

dt

∣
∣
∣
∣
t=0

ht(x0)
)

. (3.14)

SinceG is a symmetry group, the groups {hs} and {gt} commute and therefore
x(t) = gt(x0) by (3.14). �

In Example 3.15 above, the trajectories of stationary motions are the orbits
of the group SO(2) of rotations of the body around the symmetry axis of the
field.

For natural mechanical systems with symmetries one can state a more
effective criterion for a motion to be stationary. Let (M, 〈 , 〉, V ) be a mechan-
ical system with a symmetry group (in the sense of § 3.2.1): the manifold M
is the space of a principal bundle with base space N and structure group G.
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Proposition 3.8. If the symmetry group G is commutative, then y ∈ N is a
relative equilibrium position (that is, the projection of a relative equilibrium
onto the base N) with momentum constant c ∈ G ∗ if and only if y is a critical
point of the effective potential Ũc : N → R.

This assertion follows from Theorem 3.14 and the definition of a relative
equilibrium. For example, since any smooth function on the sphere has at
least two critical points, Proposition 3.8 implies the following.

Corollary 3.7. The problem of rotation of a rigid body with a fixed point in
any axially symmetric force field has at least two distinct stationary rotations
for every value of the angular momentum.

One can estimate the number of distinct stationary motions in the general
case, for example, using Morse’s inequalities. However, it is usually possible
to obtain more precise information in concrete problems (see §§ 3.3.3–3.3.4).

3.3.2 Integral Manifolds, Regions of Possible Motion,
and Bifurcation Sets

Let (M, ω2, H, G) be a Hamiltonian system with a Poisson symmetry groupG.
Since the Hamiltonian H is a first integral, it is natural to combine this func-
tion with the momentum integrals P : M → G ∗ and consider the smooth
energy–momentum map H × P : M → R× G ∗.

Definition 3.12. We define the bifurcation set Σ of the Hamiltonian system
(M, ω2, H, G) as the set of points in R× G ∗ over whose neighbourhoods the
map H × P is not a locally trivial bundle.

In particular, the set Σ′ of critical values of the energy–momentum map is
contained in Σ. However, in the general case the set Σ is not exhausted by Σ′.
An example is provided by the bifurcation set of Kepler’s problem considered
in § 2.1.

Proposition 3.9. The critical points of the map H × P : M → R × G ∗ on a
regular level of the momentum map coincide with the relative equilibria.

This simple assertion proves to be useful in the study of the structure of
bifurcation sets.

Definition 3.13. For fixed values of the energy h ∈ R and the momentum
map c ∈ G ∗ the set Ih,c = (H × P )−1(h, c) is called the integral manifold of
the Hamiltonian system (M, ω2, H, G).

It is obvious that the integral levels Ih,c may not be smooth manifolds only
for (h, c) ∈ Σ. Since the action of the group G preserves the function H, the
isotropy group Gc acts on the level Ih,c and therefore the quotient manifold
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Ĩh, c = Ih, c/Gc is defined. If c is a regular value of the momentum map,
then Ĩh, c coincides with an energy level of the reduced Hamiltonian system
(M̃c, ω̃

2, H̃). It is therefore natural to call the set Ĩh, c the reduced integral
manifold . For example, in the spatial three-body problem typical manifolds
Ĩh,c are seven-dimensional, and in the planar problem their dimension is five.
Since the map H×P is a bundle over each connected component of R×G ∗\Σ,
the topological type of the integral manifolds Ĩh, c can change only as the point
(h, c) passes through the bifurcation set Σ.

Thus, the study of the original Hamiltonian system with symmetries re-
duces to the study of the map H ×P and the structure of the phase flows on
the reduced integral manifolds Ĩh, c.

We consider in more detail the structure of the energy–momentum map
for a natural mechanical system (M, 〈 , 〉, V ) with a symmetry group G; we
are not assuming the action of G on M to be free. Let Λ be the set of points
x ∈ M such that the isotropy subgroup Gx (consisting of g ∈ G such that
g(x) = x) has positive dimension. The set Λ is closed in M . For example, in
the spatial three-body problem Λ consists of collinear triples of points. In the
planar problem Λ reduces to the single point r1 = r2 = r3 = 0 (as usual we
assume that the barycentre is at the origin of reference).

Let J : ẋ → 〈ẋ, vX〉 be the momentum map. By Lemma 3.2, for every
point x ∈ M \ Λ and every c ∈ G ∗ there exists a unique vector wc(x) such
that J(wc) = c and 〈wc, vX〉 = 0 for all X ∈ G . In § 3.2.1 we defined the
effective potential Uc : M → R to be the function −V + 〈wc, wc〉/2.

Proposition 3.10. The effective potential has the following properties:

1) Uc(x) = min
v ∈ J−1

x (c)
H(v), where H(v) = 〈v, v〉/2 − V (x) is the total energy

of the system;
2) on M \ Λ the set of critical points of the map H : J−1(c) → R coincides

with wc(Γ ), where Γ is the set of critical points of the effective potential
Uc : M \ Λ→ R;

3) Σ′ = {(h, c) : h ∈ Uc(Γ )};
4) π(Ih, c) = U−1

c (−∞, h], where π : TM →M is the projection.

This proposition was stated by Smale; in concrete situations it had been
used even earlier by various authors. Part 2) refines Proposition 3.9.

Definition 3.14. The set π(Ih, c) ⊂M is called the region of possible motion
for the fixed values of the energy h and the momentum map c.

If the group G is commutative, then part 4) of Proposition 3.10 can be
replaced by

4′) π′(Ĩh, c) ⊂ Ũ−1
c (−∞, h], where π′ : TN → N is the projection, N = M/G

is the reduced configuration space, and Ũc : N → R is the effective poten-
tial.
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If M is compact, then Σ = Σ′ and inclusion in 4′) can be replaced by
equality. In the non-compact case this is no longer true: a counterexample
is provided by the spatial n-body problem. It is interesting to note that in
the planar n-body problem the region of possible motion is described by the
inequality Uc � h (Proposition 1.8 in § 1.1.5).

3.3.3 The Bifurcation Set in the Planar Three-Body Problem

Proposition 3.11. For any given set of masses in the planar three-body prob-
lem,

(1) in the coordinates h, c, the set of critical values Σ′ of the map H × J :
TM → R

2 consists of the four cubic curves given by equations of the form
hc2 = αi < 0 (1 � i � 4),

(2) the bifurcation set Σ consists of Σ′ and the coordinate axes h = 0 and
c = 0.

� If U is the potential energy in the three-body problem, then the effective
potential Uc is clearly equal to U + c2/2I, where I is the moment of inertia
of the points with respect to their barycentre (cf. § 1.1). In a relative equilib-
rium, dU is proportional to dI and therefore the three points form a central
configuration (see § 2.3.1). For a fixed value c �= 0 there are exactly five such
configurations: three collinear and two triangular. In the latter case the tri-
angle is necessarily equilateral and these two triangular configurations differ
only in the order of the gravitating points. Let ω be the constant angular
velocity of rotation of a central configuration. Then, obviously, |c| = I|ω|,
T = Iω2/2, and

h = T + U =
c2

2I
+ U.

Since all the configurations of this type are similar, we can assume that I =
α2I0 and U = α−1U0. The similarity ratio α can be found from the equality
2T = U , which is a consequence of Lagrange’s identity Ï = 2T − U . The
coefficient α is equal to c2/I0U0 and therefore hc2 = αs < 0 in a relative
equilibrium. By part 2) of Proposition 3.10 the bifurcation set Σ includes
the curves defined by the equations hc2 = αs (1 � s � 5). Among the five
numbers α1, . . . , α5 at least two are equal (they correspond to the triangular
solutions of Lagrange). The bifurcation set obviously includes also the straight
lines h = 0, c = 0 (as in Kepler’s problem). As shown by Smale, the set Σ
does not contain any other points (see [47]). �

Smale’s paper [47] contains information about the topological structure of
the integral manifolds in various connected components of the set R

2 \Σ.
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3.3.4 Bifurcation Sets and Integral Manifolds in the Problem
of Rotation of a Heavy Rigid Body with a Fixed Point

Let A1 � A2 � A3 be the principal moments of inertia of a rigid body, and
let x1, x2, x3 be the coordinates of the centre of mass relative to the principal
axes. If ω is the angular velocity of the body, and e the unit vertical vector
(both given in the moving space), then H = 〈Aω, ω〉/2 + ε〈x, e〉 and J =
〈Aω, e〉, where A = diag (A1, A2, A3). Our task is to describe the bifurcation
diagram Σ in the plane R

2 with coordinates h, c and the topological structure
of the reduced integral manifolds Ĩh, c. It is useful to consider first the special
degenerate case where ε = 0 (the Euler problem). The relative equilibria are
the critical points of the effective potential Ũc = c2/2〈Ae, e〉 on the unit sphere
〈e, e〉 = 1. If the body is asymmetric (A1 > A2 > A3), then there are exactly
six such points: (±1, 0, 0), (0,±1, 0), (0, 0,±1). These points correspond
to the uniform rotations of the rigid body around the principal axes. Since
ω = ce/〈Ae, e〉 in a relative equilibrium of the body (see Example 3.15), the
energy h and the angular momentum c are connected by one of the relations
h = c2/2As (1 � s � 3). Since the configuration space of the rigid body –
the group SO(3) – is compact, the bifurcation set Σ is the union of the three
parabolas (Fig. 3.4).

Fig. 3.4. Bifurcation diagram of the Euler problem

In the case of dynamical symmetry the number of parabolas diminishes;
if A1 = A2 = A3 = A, then Σ consists of the single parabola h = c2/2A. Let
Bh, c = {Ũc � h} be the region of possible motion on the Poisson sphere. The
classification of the regions Bh, c and the reduced integral manifolds Ĩh, c in
the Euler problem are given by the following.

Proposition 3.12. Suppose that A1 > A2 > A3. Then

1) if h < c2/2A1, then Bh, c = ∅ and Ĩh, c = ∅;

2) if c2/2A1 < h < c2/2A2, then Bh, c = D2 ∪D2 and Ĩh, c = 2S3;
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3) if c2/2A2 < h < c2/2A3, then Bh, c = D1 × S1 and Ĩh, c = S2 × S1;

4) if c2/2A3 < h, then Bh, c = S2 and Ĩh, c = SO(3).

The description of the topological structure of the reduced integral mani-
folds is based on the following observation: Ĩh, c is diffeomorphic to the fibre
bundle with base space Bh, c and fibre S1 such that the fibre over each point
of the boundary ∂Bh, c is identified with the point.

In the general case, where the centre of mass does not coincide with the
point of suspension, the problem of a complete description of the bifurca-
tion sets and integral manifolds is considerably more difficult. This prob-
lem was studied in detail in the papers of Katok [307], Tatarinov [579], and
Kuz’mina [363].

Fig. 3.5.

As an example we give a series of pictures in [579] which shows the mecha-
nism of the transformation of the bifurcation diagram when the centre of mass
passes from a generic position in the plane x3 = 0 to the axis x1 = x2 = 0.
The numbers in these pictures indicate the “multivalued genus” of the re-
gions of possible motion on the Poisson sphere. We say that a connected
region Bh, c has genus l if Bh, c is diffeomorphic to the sphere S2 from which l
non-intersecting open discs are removed. If a region of possible motion is dis-
connected, then we assign to it the multivalued genus l1, l2, . . . , where the ls
are the genera of its connected components. (Since in the situation under con-
sideration the numbers ls are at most three, no confusion arises.) The topology
of the integral manifolds is uniquely determined by the structure of the regions
of possible motion (their genera). The topological structure of maps defined
by integrals (for example, momentum maps or energy–momentum maps) is
described by the complex whose points are the connected components of the
level manifolds of the integrals. For example, for a Hamiltonian system with
one degree of freedom whose phase space is simply connected (a disc or a
sphere S2) this complex turns out to be a tree (the level lines of a function
with two maxima and one saddle, like the mountain El’brus, form a complex
homeomorphic to the letter Y). For a phase space that is a surface of genus g
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the resulting graph has g independent cycles (the simplest function on a torus
gives rise to a complex homeomorphic to the letter A).

If the number of independent integrals r is greater than 1, then the complex
of connected components is no longer a graph but an r-dimensional “surface”
with singularities.

The topological invariants of the components are “functions” on this com-
plex. The study of the topological structure of integrable problems should be
accompanied by the description of these complexes and “functions” on them.
But this has not been done even for the simplest classical integrable systems,
notwithstanding hundreds of publications (often erroneous) describing their
topological structure.




